WorldWideScience

Sample records for molecular genetic approach

  1. Molecular Population Genetics.

    Science.gov (United States)

    Casillas, Sònia; Barbadilla, Antonio

    2017-03-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. Copyright © 2017 Casillas and Barbadilla.

  2. Molecular genetics and livestock selection. Approaches, opportunities and risks

    International Nuclear Information System (INIS)

    Williams, J.L.

    2005-01-01

    Following domestication, livestock were selected both naturally through adaptation to their environments and by man so that they would fulfil a particular use. As selection methods have become more sophisticated, rapid progress has been made in improving those traits that are easily measured. However, selection has also resulted in decreased diversity. In some cases, improved breeds have replaced local breeds, risking the loss of important survival traits. The advent of molecular genetics provides the opportunity to identify the genes that control particular traits by a gene mapping approach. However, as with selection, the early mapping studies focused on traits that are easy to measure. Where molecular genetics can play a valuable role in livestock production is by providing the means to select effectively for traits that are difficult to measure. Identifying the genes underpinning particular traits requires a population in which these traits are segregating. Fortunately, several experimental populations have been created that have allowed a wide range of traits to be studied. Gene mapping work in these populations has shown that the role of particular genes in controlling variation in a given trait can depend on the genetic background. A second finding is that the most favourable alleles for a trait may in fact. be present in animals that perform poorly for the trait. In the long term, knowledge of -the genes controlling particular traits, and the way they interact with the genetic background, will allow introgression between breeds and the assembly of genotypes that are best suited to particular environments, producing animals with the desired characteristics. If used wisely, this approach will maintain genetic diversity while improving performance over a wide range of desired traits. (author)

  3. Molecular approaches for genetic improvement of seed quality and characterization of genetic diversity in soybean: a critical review.

    Science.gov (United States)

    Tripathi, Niraj; Khare, Dhirendra

    2016-10-01

    Soybean is an economically important leguminous crop. Genetic improvements of soybeans have focused on enhancement of seed and oil yield, development of varieties suited to different cropping systems, and breeding resistant/tolerant varieties for various biotic and abiotic stresses. Plant breeders have used conventional breeding techniques for the improvement of these traits in soybean. The conventional breeding process can be greatly accelerated through the application of molecular and genomic approaches. Molecular markers have proved to be a new tool in soybean breeding by enhancing selection efficiency in a rapid and time-bound manner. An overview of molecular approaches for the genetic improvement of soybean seed quality parameters, considering recent applications of marker-assisted selection and 'omics' research, is provided in this article.

  4. Molecular genetics

    International Nuclear Information System (INIS)

    Parkinson, D.R.; Krontiris, T.G.

    1986-01-01

    In this chapter the authors review new findings concerning the molecular genetics of malignant melanoma in the context of other information obtained from clinical, epidemiologic, and cytogenetic studies in this malignancy. These new molecular approaches promise to provide a more complete understanding of the mechanisms involved in the development of melanoma, thereby suggesting new methods for its treatment and prevention

  5. Assessing Date Palm Genetic Diversity Using Different Molecular Markers.

    Science.gov (United States)

    Atia, Mohamed A M; Sakr, Mahmoud M; Adawy, Sami S

    2017-01-01

    Molecular marker technologies which rely on DNA analysis provide powerful tools to assess biodiversity at different levels, i.e., among and within species. A range of different molecular marker techniques have been developed and extensively applied for detecting variability in date palm at the DNA level. Recently, the employment of gene-targeting molecular marker approaches to study biodiversity and genetic variations in many plant species has increased the attention of researchers interested in date palm to carry out phylogenetic studies using these novel marker systems. Molecular markers are good indicators of genetic distances among accessions, because DNA-based markers are neutral in the face of selection. Here we describe the employment of multidisciplinary molecular marker approaches: amplified fragment length polymorphism (AFLP), start codon targeted (SCoT) polymorphism, conserved DNA-derived polymorphism (CDDP), intron-targeted amplified polymorphism (ITAP), simple sequence repeats (SSR), and random amplified polymorphic DNA (RAPD) to assess genetic diversity in date palm.

  6. Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches.

    Science.gov (United States)

    Ai, Lin; Chen, Mu-Xin; Alasaad, Samer; Elsheikha, Hany M; Li, Juan; Li, Hai-Long; Lin, Rui-Qing; Zou, Feng-Cai; Zhu, Xing-Quan; Chen, Jia-Xu

    2011-06-10

    Liver flukes belonging to the genus Fasciola are among the causes of foodborne diseases of parasitic etiology. These parasites cause significant public health problems and substantial economic losses to the livestock industry. Therefore, it is important to definitively characterize the Fasciola species. Current phenotypic techniques fail to reflect the full extent of the diversity of Fasciola spp. In this respect, the use of molecular techniques to identify and differentiate Fasciola spp. offer considerable advantages. The advent of a variety of molecular genetic techniques also provides a powerful method to elucidate many aspects of Fasciola biology, epidemiology, and genetics. However, the discriminatory power of these molecular methods varies, as does the speed and ease of performance and cost. There is a need for the development of new methods to identify the mechanisms underpinning the origin and maintenance of genetic variation within and among Fasciola populations. The increasing application of the current and new methods will yield a much improved understanding of Fasciola epidemiology and evolution as well as more effective means of parasite control. Herein, we provide an overview of the molecular techniques that are being used for the genetic characterization, detection and genotyping of Fasciola spp..

  7. New approaches to the treatment of orphan genetic disorders: Mitigating molecular pathologies using chemicals

    Directory of Open Access Journals (Sweden)

    RENATA V. VELHO

    2015-08-01

    Full Text Available With the advance and popularization of molecular techniques, the identification of genetic mutations that cause diseases has increased dramatically. Thus, the number of laboratories available to investigate a given disorder and the number of subsequent diagnosis have increased over time. Although it is necessary to identify mutations and provide diagnosis, it is also critical to develop specific therapeutic approaches based on this information. This review aims to highlight recent advances in mutation-targeted therapies with chemicals that mitigate mutational pathology at the molecular level, for disorders that, for the most part, have no effective treatment. Currently, there are several strategies being used to correct different types of mutations, including the following: the identification and characterization of translational readthrough compounds; antisense oligonucleotide-mediated splicing redirection; mismatch repair; and exon skipping. These therapies and other approaches are reviewed in this paper.

  8. New approaches to the treatment of orphan genetic disorders: Mitigating molecular pathologies using chemicals.

    Science.gov (United States)

    Velho, Renata V; Sperb-Ludwig, Fernanda; Schwartz, Ida V D

    2015-08-01

    With the advance and popularization of molecular techniques, the identification of genetic mutations that cause diseases has increased dramatically. Thus, the number of laboratories available to investigate a given disorder and the number of subsequent diagnosis have increased over time. Although it is necessary to identify mutations and provide diagnosis, it is also critical to develop specific therapeutic approaches based on this information. This review aims to highlight recent advances in mutation-targeted therapies with chemicals that mitigate mutational pathology at the molecular level, for disorders that, for the most part, have no effective treatment. Currently, there are several strategies being used to correct different types of mutations, including the following: the identification and characterization of translational readthrough compounds; antisense oligonucleotide-mediated splicing redirection; mismatch repair; and exon skipping. These therapies and other approaches are reviewed in this paper.

  9. Developmental psychopathology in an era of molecular genetics and neuroimaging: A developmental neurogenetics approach.

    Science.gov (United States)

    Hyde, Luke W

    2015-05-01

    The emerging field of neurogenetics seeks to model the complex pathways from gene to brain to behavior. This field has focused on imaging genetics techniques that examine how variability in common genetic polymorphisms predict differences in brain structure and function. These studies are informed by other complimentary techniques (e.g., animal models and multimodal imaging) and have recently begun to incorporate the environment through examination of Imaging Gene × Environment interactions. Though neurogenetics has the potential to inform our understanding of the development of psychopathology, there has been little integration between principles of neurogenetics and developmental psychopathology. The paper describes a neurogenetics and Imaging Gene × Environment approach and how these approaches have been usefully applied to the study of psychopathology. Six tenets of developmental psychopathology (the structure of phenotypes, the importance of exploring mechanisms, the conditional nature of risk, the complexity of multilevel pathways, the role of development, and the importance of who is studied) are identified, and how these principles can further neurogenetics applications to understanding the development of psychopathology is discussed. A major issue of this piece is how neurogenetics and current imaging and molecular genetics approaches can be incorporated into developmental psychopathology perspectives with a goal of providing models for better understanding pathways from among genes, environments, the brain, and behavior.

  10. Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches

    Directory of Open Access Journals (Sweden)

    Li Hai-Long

    2011-06-01

    Full Text Available Abstract Liver flukes belonging to the genus Fasciola are among the causes of foodborne diseases of parasitic etiology. These parasites cause significant public health problems and substantial economic losses to the livestock industry. Therefore, it is important to definitively characterize the Fasciola species. Current phenotypic techniques fail to reflect the full extent of the diversity of Fasciola spp. In this respect, the use of molecular techniques to identify and differentiate Fasciola spp. offer considerable advantages. The advent of a variety of molecular genetic techniques also provides a powerful method to elucidate many aspects of Fasciola biology, epidemiology, and genetics. However, the discriminatory power of these molecular methods varies, as does the speed and ease of performance and cost. There is a need for the development of new methods to identify the mechanisms underpinning the origin and maintenance of genetic variation within and among Fasciola populations. The increasing application of the current and new methods will yield a much improved understanding of Fasciola epidemiology and evolution as well as more effective means of parasite control. Herein, we provide an overview of the molecular techniques that are being used for the genetic characterization, detection and genotyping of Fasciola spp..

  11. Molecular marker systems for Oenothera genetics.

    Science.gov (United States)

    Rauwolf, Uwe; Golczyk, Hieronim; Meurer, Jörg; Herrmann, Reinhold G; Greiner, Stephan

    2008-11-01

    The genus Oenothera has an outstanding scientific tradition. It has been a model for studying aspects of chromosome evolution and speciation, including the impact of plastid nuclear co-evolution. A large collection of strains analyzed during a century of experimental work and unique genetic possibilities allow the exchange of genetically definable plastids, individual or multiple chromosomes, and/or entire haploid genomes (Renner complexes) between species. However, molecular genetic approaches for the genus are largely lacking. In this study, we describe the development of efficient PCR-based marker systems for both the nuclear genome and the plastome. They allow distinguishing individual chromosomes, Renner complexes, plastomes, and subplastomes. We demonstrate their application by monitoring interspecific exchanges of genomes, chromosome pairs, and/or plastids during crossing programs, e.g., to produce plastome-genome incompatible hybrids. Using an appropriate partial permanent translocation heterozygous hybrid, linkage group 7 of the molecular map could be assigned to chromosome 9.8 of the classical Oenothera map. Finally, we provide the first direct molecular evidence that homologous recombination and free segregation of chromosomes in permanent translocation heterozygous strains is suppressed.

  12. Molecular genetic gene-environment studies using candidate genes in schizophrenia: a systematic review.

    Science.gov (United States)

    Modinos, Gemma; Iyegbe, Conrad; Prata, Diana; Rivera, Margarita; Kempton, Matthew J; Valmaggia, Lucia R; Sham, Pak C; van Os, Jim; McGuire, Philip

    2013-11-01

    The relatively high heritability of schizophrenia suggests that genetic factors play an important role in the etiology of the disorder. On the other hand, a number of environmental factors significantly influence its incidence. As few direct genetic effects have been demonstrated, and there is considerable inter-individual heterogeneity in the response to the known environmental factors, interactions between genetic and environmental factors may be important in determining whether an individual develops the disorder. To date, a considerable number of studies of gene-environment interactions (G×E) in schizophrenia have employed a hypothesis-based molecular genetic approach using candidate genes, which have led to a range of different findings. This systematic review aims to summarize the results from molecular genetic candidate studies and to review challenges and opportunities of this approach in psychosis research. Finally, we discuss the potential of future prospects, such as new studies that combine hypothesis-based molecular genetic candidate approaches with agnostic genome-wide association studies in determining schizophrenia risk. © 2013 Elsevier B.V. All rights reserved.

  13. Catecholaminergic systems in stress: structural and molecular genetic approaches.

    Science.gov (United States)

    Kvetnansky, Richard; Sabban, Esther L; Palkovits, Miklos

    2009-04-01

    Stressful stimuli evoke complex endocrine, autonomic, and behavioral responses that are extremely variable and specific depending on the type and nature of the stressors. We first provide a short overview of physiology, biochemistry, and molecular genetics of sympatho-adrenomedullary, sympatho-neural, and brain catecholaminergic systems. Important processes of catecholamine biosynthesis, storage, release, secretion, uptake, reuptake, degradation, and transporters in acutely or chronically stressed organisms are described. We emphasize the structural variability of catecholamine systems and the molecular genetics of enzymes involved in biosynthesis and degradation of catecholamines and transporters. Characterization of enzyme gene promoters, transcriptional and posttranscriptional mechanisms, transcription factors, gene expression and protein translation, as well as different phases of stress-activated transcription and quantitative determination of mRNA levels in stressed organisms are discussed. Data from catecholamine enzyme gene knockout mice are shown. Interaction of catecholaminergic systems with other neurotransmitter and hormonal systems are discussed. We describe the effects of homotypic and heterotypic stressors, adaptation and maladaptation of the organism, and the specificity of stressors (physical, emotional, metabolic, etc.) on activation of catecholaminergic systems at all levels from plasma catecholamines to gene expression of catecholamine enzymes. We also discuss cross-adaptation and the effect of novel heterotypic stressors on organisms adapted to long-term monotypic stressors. The extra-adrenal nonneuronal adrenergic system is described. Stress-related central neuronal regulatory circuits and central organization of responses to various stressors are presented with selected examples of regulatory molecular mechanisms. Data summarized here indicate that catecholaminergic systems are activated in different ways following exposure to distinct

  14. Molecular and Genetic Determinants of Glioma Cell Invasion

    Directory of Open Access Journals (Sweden)

    Kenta Masui

    2017-12-01

    Full Text Available A diffusely invasive nature is a major obstacle in treating a malignant brain tumor, “diffuse glioma”, which prevents neurooncologists from surgically removing the tumor cells even in combination with chemotherapy and radiation. Recently updated classification of diffuse gliomas based on distinct genetic and epigenetic features has culminated in a multilayered diagnostic approach to combine histologic phenotypes and molecular genotypes in an integrated diagnosis. However, it is still a work in progress to decipher how the genetic aberrations contribute to the aggressive nature of gliomas including their highly invasive capacity. Here we depict a set of recent discoveries involving molecular genetic determinants of the infiltrating nature of glioma cells, especially focusing on genetic mutations in receptor tyrosine kinase pathways and metabolic reprogramming downstream of common cancer mutations. The specific biology of glioma cell invasion provides an opportunity to explore the genotype-phenotype correlation in cancer and develop novel glioma-specific therapeutic strategies for this devastating disease.

  15. Genetic approaches in comparative and evolutionary physiology

    Science.gov (United States)

    Bridgham, Jamie T.; Kelly, Scott A.; Garland, Theodore

    2015-01-01

    Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. PMID:26041111

  16. A methodological overview on molecular preimplantation genetic diagnosis and screening: a genomic future?

    Science.gov (United States)

    Vendrell, Xavier; Bautista-Llácer, Rosa

    2012-12-01

    The genetic diagnosis and screening of preimplantation embryos generated by assisted reproduction technology has been consolidated in the prenatal care framework. The rapid evolution of DNA technologies is tending to molecular approaches. Our intention is to present a detailed methodological view, showing different diagnostic strategies based on molecular techniques that are currently applied in preimplantation genetic diagnosis. The amount of DNA from one single, or a few cells, obtained by embryo biopsy is a limiting factor for the molecular analysis. In this sense, genetic laboratories have developed molecular protocols considering this restrictive condition. Nevertheless, the development of whole-genome amplification methods has allowed preimplantation genetic diagnosis for two or more indications simultaneously, like the selection of histocompatible embryos plus detection of monogenic diseases or aneuploidies. Moreover, molecular techniques have permitted preimplantation genetic screening to progress, by implementing microarray-based comparative genome hybridization. Finally, a future view of the embryo-genetics field based on molecular advances is proposed. The normalization, cost-effectiveness analysis, and new technological tools are the next topics for preimplantation genetic diagnosis and screening. Concomitantly, these additions to assisted reproduction technologies could have a positive effect on the schedules of preimplantation studies.

  17. Enhancing genetic gain in the era of molecular breeding.

    Science.gov (United States)

    Xu, Yunbi; Li, Ping; Zou, Cheng; Lu, Yanli; Xie, Chuanxiao; Zhang, Xuecai; Prasanna, Boddupalli M; Olsen, Michael S

    2017-05-17

    As one of the important concepts in conventional quantitative genetics and breeding, genetic gain can be defined as the amount of increase in performance that is achieved annually through artificial selection. To develop pro ducts that meet the increasing demand of mankind, especially for food and feed, in addition to various industrial uses, breeders are challenged to enhance the potential of genetic gain continuously, at ever higher rates, while they close the gaps that remain between the yield potential in breeders' demonstration trials and the actual yield in farmers' fields. Factors affecting genetic gain include genetic variation available in breeding materials, heritability for traits of interest, selection intensity, and the time required to complete a breeding cycle. Genetic gain can be improved through enhancing the potential and closing the gaps, which has been evolving and complemented with modern breeding techniques and platforms, mainly driven by molecular and genomic tools, combined with improved agronomic practice. Several key strategies are reviewed in this article. Favorable genetic variation can be unlocked and created through molecular and genomic approaches including mutation, gene mapping and discovery, and transgene and genome editing. Estimation of heritability can be improved by refining field experiments through well-controlled and precisely assayed environmental factors or envirotyping, particularly for understanding and controlling spatial heterogeneity at the field level. Selection intensity can be significantly heightened through improvements in the scale and precision of genotyping and phenotyping. The breeding cycle time can be shortened by accelerating breeding procedures through integrated breeding approaches such as marker-assisted selection and doubled haploid development. All the strategies can be integrated with other widely used conventional approaches in breeding programs to enhance genetic gain. More transdisciplinary

  18. MOLECULAR GENETIC MARKERS AND METHODS OF THEIR IDENTIFICATION IN MODERN FISH-FARMING

    Directory of Open Access Journals (Sweden)

    I. Hrytsyniak

    2014-03-01

    Full Text Available Purpose. The application of molecular genetic markers has been widely used in modern experimental fish-farming in recent years. This methodology is currently presented by a differentiated approach with individual mechanisms and clearly defined possibilities. Numerous publications in the scientific literature that are dedicated to molecular genetic markers for the most part offer purely practical data. Thus, the synthesis and analysis of existing information on the general principles of action and the limits of the main methods of using molecular genetic markers is an actual problem. In particular, such a description will make it possible to plan more effectively the experiment and to obtain the desired results with high reliability. Findings. The main types of variable parts of DNA that can be used as molecular genetic markers in determining the level of stock hybridization, conducting genetic inventory of population and solving other problems in modern fish-farming are described in this paper. Also, the article provides an overview of principal modern methods that can be used to identify molecular genetic markers. Originality. This work is a generalization of modern ideas about the mechanisms of experiments with molecular genetic markers in fish-farming. Information is provided in the form of consistent presentation of the principles and purpose of each method, as well as significant advances during their practical application. Practical value. The proposed review of classic and modern literature data on molecular genetic markers can be used for planning, modernization and correction of research activity in modern fish-farming.

  19. Reliable prediction of adsorption isotherms via genetic algorithm molecular simulation.

    Science.gov (United States)

    LoftiKatooli, L; Shahsavand, A

    2017-01-01

    Conventional molecular simulation techniques such as grand canonical Monte Carlo (GCMC) strictly rely on purely random search inside the simulation box for predicting the adsorption isotherms. This blind search is usually extremely time demanding for providing a faithful approximation of the real isotherm and in some cases may lead to non-optimal solutions. A novel approach is presented in this article which does not use any of the classical steps of the standard GCMC method, such as displacement, insertation, and removal. The new approach is based on the well-known genetic algorithm to find the optimal configuration for adsorption of any adsorbate on a structured adsorbent under prevailing pressure and temperature. The proposed approach considers the molecular simulation problem as a global optimization challenge. A detailed flow chart of our so-called genetic algorithm molecular simulation (GAMS) method is presented, which is entirely different from traditions molecular simulation approaches. Three real case studies (for adsorption of CO 2 and H 2 over various zeolites) are borrowed from literature to clearly illustrate the superior performances of the proposed method over the standard GCMC technique. For the present method, the average absolute values of percentage errors are around 11% (RHO-H 2 ), 5% (CHA-CO 2 ), and 16% (BEA-CO 2 ), while they were about 70%, 15%, and 40% for the standard GCMC technique, respectively.

  20. Teaching molecular genetics: Chapter 1--Background principles and methods of molecular biology.

    NARCIS (Netherlands)

    Knoers, N.V.A.M.; Monnens, L.A.H.

    2006-01-01

    In this first chapter of the series "Teaching molecular genetics," an introduction to molecular genetics is presented. We describe the structure of DNA and genes and explain in detail the central dogma of molecular biology, that is, the flow of genetic information from DNA via RNA to polypeptide

  1. Using a Molecular-Genetic Approach to Investigate Bacterial Physiology in a Continuous, Research-Based, Semester-Long Laboratory for Undergraduates

    Directory of Open Access Journals (Sweden)

    Jeremiah Foster Ault

    2011-09-01

    Full Text Available Designing investigative laboratory exercises that encourage critical thinking, problem solving, and independent thought for upper-division biology courses is a difficult but worthwhile task. In an effort to do so, we developed a semester-long, continuous, research-based investigative laboratory that integrates numerous genetic and molecular biology methods into the investigation of a bacterial physiological process. In this lab, students use random Tn5 transposon mutagenesis to create prodigiosin pigment mutants in the bacterium, Serratia marcescens. This is followed by phenotypic characterization, cloning, and sequencing the Tn insertion site to identify genes involved in pigment biosynthesis. During this lab, students gain ample experience performing basic lab techniques while learning about — and applying — methods for elucidating gene function. The approach to the laboratory and the outcomes are intimately integrated into the teaching of many fundamental physiological processes underlying prodigiosin production in bacteria. The result is a cohesive course that integrates the theory and application of molecular genetic techniques with the study of bacterial physiology. Assessments of student learning objectives demonstrated that students greatly improved their understanding of both physiological processes and the genetic techniques used to investigate them. In addition, students felt that this semester-long exercise provided the necessary laboratory experience they needed and desired in preparation for careers in molecular biology, microbiology, and biochemistry.

  2. Molecular genetic studies on obligate anaerobic bacteria

    International Nuclear Information System (INIS)

    Woods, D.R.

    1982-01-01

    Molecular genetic studies on obligate anaerobic bacteria have lagged behind similar studies in aerobes. However, the current interest in biotechnology, the involvement of anaerobes in disease and the emergence of antibioticresistant strains have focused attention on the genetics of anaerobes. This article reviews molecular genetic studies in Bacteroides spp., Clostridium spp. and methanogens. Certain genetic systems in some anaerobes differ from those in aerobes and illustrate the genetic diversity among bacteria

  3. Teaching molecular genetics: Chapter 1--Background principles and methods of molecular biology.

    Science.gov (United States)

    Knoers, Nine V A M; Monnens, Leo A H

    2006-02-01

    In this first chapter of the series "Teaching molecular genetics," an introduction to molecular genetics is presented. We describe the structure of DNA and genes and explain in detail the central dogma of molecular biology, that is, the flow of genetic information from DNA via RNA to polypeptide (protein). In addition, several basic and frequently used general molecular tools, such as restriction enzymes, Southern blotting, DNA amplification and sequencing are discussed, in order to lay the foundations for the forthcoming chapters.

  4. Food control and a citizen science approach for improving teaching of Genetics in universities.

    Science.gov (United States)

    Borrell, Y J; Muñoz-Colmenero, A M; Dopico, E; Miralles, L; Garcia-Vazquez, E

    2016-09-10

    A Citizen Science approach was implemented in the laboratory practices of Genetics at the University of Oviedo, related with the engaging topic of Food Control. Real samples of food products consumed by students at home (students as samplers) were employed as teaching material in three different courses of Genetics during the academic year 2014-2015: Experimental Methods in Food Production (MBTA) (Master level), and Applied Molecular Biology (BMA) and Conservation Genetics and Breeding (COMGE) (Bachelor/Degree level). Molecular genetics based on PCR amplification of DNA markers was employed for species identification of 22 seafood products in COMGE and MBTA, and for detection of genetically modified (GM) maize from nine products in BMA. In total six seafood products incorrectly labeled (27%), and two undeclared GM maize (22%) were found. A post-Laboratory survey was applied for assessing the efficacy of the approach for improving motivation in the Laboratory Practices of Genetics. Results confirmed that students that worked on their own samples from local markets were significantly more motivated and better evaluated their Genetic laboratory practices than control students (χ(2)  = 12.11 p = 0.033). Our results suggest that citizen science approaches could not be only useful for improving teaching of Genetics in universities but also to incorporate students and citizens as active agents in food control. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):450-462, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  5. Molecular genetic researches on the radiation genetics of Drosophila in JINR

    International Nuclear Information System (INIS)

    Afanas'eva, K.P.; Aleksandrova, M.V.; Aleksandrov, I.D.

    2016-01-01

    Molecular genetic studies of radiation-induced heritable DNA lesions are carried out by the genetic group of Laboratory of nuclear problem in Joint Institute for Nuclear Research. The first results of molecular analysis of γ –ray- and neutron-induced vestigial mutations using PCR and sequencing will be presented. (authors)

  6. Molecular genetic approach for screening of hereditary non-polyposis colorectal cancer

    Directory of Open Access Journals (Sweden)

    Metka Ravnik-Glavač

    2005-07-01

    Full Text Available Background: The main goal of knowledge concerning human diseases is to transfer as much as possible useful information into clinical applications. Hereditary non-polyposis colorectal cancer (HNPCC is the most common autosomal dominant inherited predisposition for colorectal cancer, accounting for 1–2% of all bowel cancer. The only way to diagnose HNPCC is by a family history consistent with the disease defined by International Collaborative Group on HNPCC (Amsterdam criteria I and II. The main molecular cause of HNPCC is a constitutional mutation in one of the mismatch repair (MMR genes. Since HNPCC mutations have been detected also in families that did not fulfil the Amsterdam criteria, molecular genetic characteristics of HNPCC cancers have been proposed as valuable first step in HNPCC identification. Microsatellite instability is present in about 90% of cancers of HNPCC patients. However, of all MSI colorectal cancers 80– 90% are sporadic. Several molecular mechanisms have been uncovered that enable distinguishing to some extent between sporadic and HNPCC cancers with MSI including hypermethylation of hMLH1 promoter and frequent mutations in BAX and TGFBR2 in sporadic CRC with MSI-H.Conclusions: The determination of MSI status and careful separation of MSI positive colorectal cancer into sporadic MSIL, sporadic MSI-H, and HNPCC MSI-H followed by mutation detection in MMR genes is important for prevention, screening and management of colorectal cancer. In some studies we and others have already shown that large-scale molecular genetic analysis for HNPCC can be done and is sensitive enough to approve population screening. Population screening includes also colonoscopy which is restricted only to the obligate carriers of the mutation. This enables that the disease is detected in earlier stages which would greatly decrease medical treatment costs and most importantly decrease mortality. In Slovenia we have started population screening based

  7. Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli.

    Science.gov (United States)

    Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex K; Hacohen, Nir; Amit, Ido; Regev, Aviv

    2013-04-01

    Individual genetic variation affects gene responsiveness to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness quantitative trait loci or reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant responds as an activator of the antiviral response; using RNA interference, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli.

  8. Molecular, Genetic and Agronomic Approaches to Utilizing Pulses as Cover Crops and Green Manure into Cropping Systems.

    Science.gov (United States)

    Tani, Eleni; Abraham, Eleni; Chachalis, Demosthenis; Travlos, Ilias

    2017-06-05

    Cover crops constitute one of the most promising agronomic practices towards a more sustainable agriculture. Their beneficial effects on main crops, soil and environment are many and various, while risks and disadvantages may also appear. Several legumes show a high potential but further research is required in order to suggest the optimal legume cover crops for each case in terms of their productivity and ability to suppress weeds. The additional cost associated with cover crops should also be addressed and in this context the use of grain legumes such as cowpea, faba bean and pea could be of high interest. Some of the aspects of these grain legumes as far as their use as cover crops, their genetic diversity and their breeding using conventional and molecular approaches are discussed in the present review. The specific species seem to have a high potential for use as cover crops, especially if their noticeable genetic diversity is exploited and their breeding focuses on several desirable traits.

  9. Molecular, Genetic and Agronomic Approaches to Utilizing Pulses as Cover Crops and Green Manure into Cropping Systems

    Science.gov (United States)

    Tani, Eleni; Abraham, Eleni; Chachalis, Demosthenis; Travlos, Ilias

    2017-01-01

    Cover crops constitute one of the most promising agronomic practices towards a more sustainable agriculture. Their beneficial effects on main crops, soil and environment are many and various, while risks and disadvantages may also appear. Several legumes show a high potential but further research is required in order to suggest the optimal legume cover crops for each case in terms of their productivity and ability to suppress weeds. The additional cost associated with cover crops should also be addressed and in this context the use of grain legumes such as cowpea, faba bean and pea could be of high interest. Some of the aspects of these grain legumes as far as their use as cover crops, their genetic diversity and their breeding using conventional and molecular approaches are discussed in the present review. The specific species seem to have a high potential for use as cover crops, especially if their noticeable genetic diversity is exploited and their breeding focuses on several desirable traits. PMID:28587254

  10. Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0399 TITLE: Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy PRINCIPAL INVESTIGATOR: John F...Include area code) October 2015 Annual Report 30 Sep 2014 - 29 Sep 2015 Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy John... encephalopathy (CTE), but the underlying molecular changes remain unclear. Here, biochemical and genetic studies that deepen our understanding of the

  11. Replacement method and enhanced replacement method versus the genetic algorithm approach for the selection of molecular descriptors in QSPR/QSAR theories.

    Science.gov (United States)

    Mercader, Andrew G; Duchowicz, Pablo R; Fernández, Francisco M; Castro, Eduardo A

    2010-09-27

    We compare three methods for the selection of optimal subsets of molecular descriptors from a much greater pool of such regression variables. On the one hand is our enhanced replacement method (ERM) and on the other is the simpler replacement method (RM) and the genetic algorithm (GA). These methods avoid the impracticable full search for optimal variables in large sets of molecular descriptors. Present results for 10 different experimental databases suggest that the ERM is clearly preferable to the GA that is slightly better than the RM. However, the latter approach requires the smallest amount of linear regressions and, consequently, the lowest computation time.

  12. Congenital heart disease and genetic syndromes: new insights into molecular mechanisms.

    Science.gov (United States)

    Calcagni, Giulio; Unolt, Marta; Digilio, Maria Cristina; Baban, Anwar; Versacci, Paolo; Tartaglia, Marco; Baldini, Antonio; Marino, Bruno

    2017-09-01

    Advances in genetics allowed a better definition of the role of specific genetic background in the etiology of syndromic congenital heart defects (CHDs). The identification of a number of disease genes responsible for different syndromes have led to the identification of several transcriptional regulators and signaling transducers and modulators that are critical for heart morphogenesis. Understanding the genetic background of syndromic CHDs allowed a better characterization of the genetic basis of non-syndromic CHDs. In this sense, the well-known association of typical CHDs in Down syndrome, 22q11.2 microdeletion and Noonan syndrome represent paradigms as chromosomal aneuploidy, chromosomal microdeletion and intragenic mutation, respectively. Area covered: For each syndrome the anatomical features, distinctive cardiac phenotype and molecular mechanisms are discussed. Moreover, the authors include recent genetic findings that may shed light on some aspects of still unclear molecular mechanisms of these syndromes. Expert commentary: Further investigations are needed to enhance the translational approach in the field of genetics of CHDs. When there is a well-established definition of genotype-phenotype (reverse medicine) and genotype-prognosis (predictive and personalized medicine) correlations, hopefully preventive medicine will make its way in this field. Subsequently a reduction will be achieved in the morbidity and mortality of children with CHDs.

  13. Guidelines on the use of molecular genetics in reintroduction programs

    Science.gov (United States)

    Michael K. Schwartz

    2005-01-01

    The use of molecular genetics can play a key role in reintroduction efforts. Prior to the introduction of any individuals, molecular genetics can be used to identify the most appropriate source population for the reintroduction, ensure that no relic populations exist in the reintroduction area, and guide captive breeding programs. The use of molecular genetics post-...

  14. Application of molecular genetic tools for forest pathology

    Science.gov (United States)

    Mee-Sook Kim; John Hanna; Amy Ross-Davis; Ned Klopfenstein

    2012-01-01

    In recent years, advances in molecular genetics have provided powerful tools to address critical issues in forest pathology to help promote resilient forests. Although molecular genetic tools are initially applied to understand individual components of forest pathosystems, forest pathosystems involve dynamic interactions among biotic and abiotic components of the...

  15. Studying Human Disease Genes in "Caenorhabditis Elegans": A Molecular Genetics Laboratory Project

    Science.gov (United States)

    Cox-Paulson, Elisabeth A.; Grana, Theresa M.; Harris, Michelle A.; Batzli, Janet M.

    2012-01-01

    Scientists routinely integrate information from various channels to explore topics under study. We designed a 4-wk undergraduate laboratory module that used a multifaceted approach to study a question in molecular genetics. Specifically, students investigated whether "Caenorhabditis elegans" can be a useful model system for studying genes…

  16. Molecular genetic approach to human meningioma: loss of genes on chromosome 22

    International Nuclear Information System (INIS)

    Seizinger, B.R.; De La Monte, S.; Atkins, L.; Gusella, J.F.; Martuza, R.L.

    1987-01-01

    A molecular genetic approach employing polymorphic DNA markers has been used to investigate the role of chromosomal aberrations in meningioma, one of the most common tumors of the human nervous system. Comparison of the alleles detected by DNA markers in tumor DNA versus DNA from normal tissue revealed chromosomal alterations present in primary surgical specimens. In agreement with cytogenetic studies of cultured meningiomas, the most frequent alteration detected was loss of heterozygosity on chromosome 22. Forty of 51 patients were constitutionally heterozygous for at least one chromosome 22 DNA marker. Seventeen of the 40 constitutionally heterozygotic patients (43%) displayed hemizygosity for the corresponding marker in their meningioma tumor tissues. Loss of heterozygosity was also detected at a significantly lower frequency for markers on several other autosomes. In view of the striking association between acoustic neuroma and meningioma in bilateral acoustic neurofibromatosis and the discovery that acoustic neuromas display specific loss of genes on chromosome 22, the authors propose that a common mechanism involving chromosome 22 is operative in the development of both tumor types. Fine-structure mapping to reveal partial deletions in meningiomas may provide the means to clone and characterize a gene (or genes) of importance for tumorigenesis in this and possibly other clinically associated tumors of the human nervous system

  17. Molecular and Chemical Genetic Approaches to Developmental Origins of Aging and Disease in Zebrafish

    Science.gov (United States)

    Sasaki, Tomoyuki; Kishi, Shuji

    2013-01-01

    The incidence of diseases increases rapidly with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but mostly inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states in response to different environmental or genetic perturbations. On the one hand, we hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds of adaptive plasticity by chemical genetic approaches, we have been investigating whether any relationship exists between the regulatory mechanisms that function in early development and in senescence using the zebrafish (Danio rerio), a small freshwater fish and a useful model animal for genetic studies. We have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during embryogenesis (“embryonic senescence”), subsequently showing shortened lifespan in adulthoods. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other hand, unexpected senescence-related genes might also be involved in the early developmental process and regulation. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes and small molecular compounds that can be linked to the senescence phenotype, and thereby facilitates searching for the evolutionary and developmental origins

  18. Child Development and Molecular Genetics: 14 Years Later

    Science.gov (United States)

    Plomin, Robert

    2013-01-01

    Fourteen years ago, the first article on molecular genetics was published in this journal: "Child Development, Molecular Genetics, and What to Do With Genes Once They Are Found" (R. Plomin & M. Rutter, 1998). The goal of the article was to outline what developmentalists can do with genes once they are found. These new directions for developmental…

  19. Dating Antarctic ice sheet collapse: Proposing a molecular genetic approach

    Science.gov (United States)

    Strugnell, Jan M.; Pedro, Joel B.; Wilson, Nerida G.

    2018-01-01

    Sea levels at the end of this century are projected to be 0.26-0.98 m higher than today. The upper end of this range, and even higher estimates, cannot be ruled out because of major uncertainties in the dynamic response of polar ice sheets to a warming climate. Here, we propose an ecological genetics approach that can provide insight into the past stability and configuration of the West Antarctic Ice Sheet (WAIS). We propose independent testing of the hypothesis that a trans-Antarctic seaway occurred at the last interglacial. Examination of the genomic signatures of bottom-dwelling marine species using the latest methods can provide an independent window into the integrity of the WAIS more than 100,000 years ago. Periods of connectivity facilitated by trans-Antarctic seaways could be revealed by dating coalescent events recorded in DNA. These methods allow alternative scenarios to be tested against a fit to genomic data. Ideal candidate taxa for this work would need to possess a circumpolar distribution, a benthic habitat, and some level of genetic structure indicated by phylogeographical investigation. The purpose of this perspective piece is to set out an ecological genetics method to help resolve when the West Antarctic Ice Shelf last collapsed.

  20. Plant genetic and molecular responses to water deficit

    Directory of Open Access Journals (Sweden)

    Silvio Salvi

    2011-02-01

    Full Text Available Plant productivity is severely affected by unfavourable environmental conditions (biotic and abiotic stresses. Among others, water deficit is the plant stress condition which mostly limits the quality and the quantity of plant products. Tolerance to water deficit is a polygenic trait strictly dependent on the coordinated expression of a large set of genes coding for proteins directly involved in stress-induced protection/repair mechanisms (dehydrins, chaperonins, enzymes for the synthesis of osmoprotectants and detoxifying compounds, and others as well as genes involved in transducing the stress signal and regulating gene expression (transcription factors, kinases, phosphatases. Recently, research activities in the field evolved from the study of single genes directly involved in cellular stress tolerance (functional genes to the identification and characterization of key regulatory genes involved in stress perception and transduction and able to rapidly and efficiently activate the complex gene network involved in the response to stress. The complexity of the events occurring in response to stress have been recently approached by genomics tools; in fact the analysis of transcriptome, proteome and metabolome of a plant tissue/cell in response to stress already allowed to have a global view of the cellular and molecular events occurring in response to water deficit, by the identification of genes activated and co-regulated by the stress conditions and the characterization of new signalling pathways. Moreover the recent application of forward and reverse genetic approaches, trough mutant collection development, screening and characterization, is giving a tremendous impulse to the identification of gene functions with key role in stress tolerance. The integration of data obtained by high-throughput genomic approaches, by means of powerful informatic tools, is allowing nowadays to rapidly identify of major genes/QTLs involved in stress tolerance

  1. Update on the Cytogenetics and Molecular Genetics of Chordoma

    Directory of Open Access Journals (Sweden)

    Larizza Lidia

    2005-02-01

    Full Text Available Abstract Chordoma is a rare mesenchymal tumour of complex biology for which only histologic and immunohistochemical criteria have been defined, but no biomarkers predicting the clinical outcome and response to treatment have yet been recognised. We herein review the interdisciplinary information achieved by epidemiologists, neurosurgeons and basic scientists on chordoma, usually a sporadic tumour, which also includes a small fraction of familial cases. Main focus is on the current knowledge of the genetic alterations which might pinpoint candidate genes and molecular mechanisms shared by sporadic and familiar chordomas. Due to the scarcity of the investigated tumour specimens and the multiple chromosome abnormalities found in tumours with aberrant karyotypes, conventional cytogenetics and Fluorescence In Situ Hybridization failed to detect recurrent chordoma-specific chromosomal rearrangements. Genome-wide approaches such as Comparative Genomic Hybridization (CGH are yet at an initial stage of application and should be implemented using BAC arrays either genome-wide or targeting selected genomic regions, disclosed by Loss of Heterozygosity (LOH studies. An LOH region was shown by a systematic study on a consistent number of chordomas to encompass 1p36, a genomic interval where a candidate gene was suggested to reside. Despite the rarity of multiplex families with chordoma impaired linkage studies, a chordoma locus could be mapped to chromosome 7q33 by positive lod score in three independent families. The role in chordomagenesis of the Tuberous Sclerosis Complex (TSC genes has been proved, but the extent of involvement of TSC1 and TSC2 oncosuppressors in chordoma remains to be assessed. In spite of the scarce knowledge on the genetics and molecular biology of chordoma, recent initiation of clinical trials using molecular-targeted therapy, should validate new molecular targets and predict the efficacy of a given therapy. Comparative genetic and

  2. A multiobjective approach to the genetic code adaptability problem.

    Science.gov (United States)

    de Oliveira, Lariza Laura; de Oliveira, Paulo S L; Tinós, Renato

    2015-02-19

    The organization of the canonical code has intrigued researches since it was first described. If we consider all codes mapping the 64 codes into 20 amino acids and one stop codon, there are more than 1.51×10(84) possible genetic codes. The main question related to the organization of the genetic code is why exactly the canonical code was selected among this huge number of possible genetic codes. Many researchers argue that the organization of the canonical code is a product of natural selection and that the code's robustness against mutations would support this hypothesis. In order to investigate the natural selection hypothesis, some researches employ optimization algorithms to identify regions of the genetic code space where best codes, according to a given evaluation function, can be found (engineering approach). The optimization process uses only one objective to evaluate the codes, generally based on the robustness for an amino acid property. Only one objective is also employed in the statistical approach for the comparison of the canonical code with random codes. We propose a multiobjective approach where two or more objectives are considered simultaneously to evaluate the genetic codes. In order to test our hypothesis that the multiobjective approach is useful for the analysis of the genetic code adaptability, we implemented a multiobjective optimization algorithm where two objectives are simultaneously optimized. Using as objectives the robustness against mutation with the amino acids properties polar requirement (objective 1) and robustness with respect to hydropathy index or molecular volume (objective 2), we found solutions closer to the canonical genetic code in terms of robustness, when compared with the results using only one objective reported by other authors. Using more objectives, more optimal solutions are obtained and, as a consequence, more information can be used to investigate the adaptability of the genetic code. The multiobjective approach

  3. Advances in genetics. Volume 22: Molecular genetics of plants

    International Nuclear Information System (INIS)

    Scandalios, J.G.; Caspari, E.W.

    1984-01-01

    This book contains the following four chapters: Structural Variation in Mitochondrial DNA; The Structure and Expression of Nuclear Genes in Higher Plants; Chromatin Structure and Gene Regulation in Higher Plants; and The Molecular Genetics of Crown Gall Tumorigenesis

  4. The Molecular Genetics of von Willebrand Disease

    Directory of Open Access Journals (Sweden)

    Ergül Berber

    2012-12-01

    Full Text Available Quantitative and/or qualitative deficiency of von Willebrand factor (vWF is associated with the most common inherited bleeding disease von Willebrand disease (vWD. vWD is a complex disease with clinical and genetic heterogeneity. Incomplete penetrance and variable expression due to genetic and environmental factors contribute to its complexity. vWD also has a complex molecular pathogenesis. Some vWF gene mutations are associated with the affected vWF biosynthesis and multimerization, whereas others are associated with increased clearance and functional impairment. Moreover, in addition to a particular mutation, type O blood may result in the more severe phenotype. The present review aimed to provide a summary of the current literature on the molecular genetics of vWD.

  5. The molecular genetics of von Willebrand disease.

    Science.gov (United States)

    Berber, Ergül

    2012-12-01

    Quantitative and/or qualitative deficiency of von Willebrand factor (vWF) is associated with the most common inherited bleeding disease von Willebrand disease (vWD). vWD is a complex disease with clinical and genetic heterogeneity. Incomplete penetrance and variable expression due to genetic and environmental factors contribute to its complexity. vWD also has a complex molecular pathogenesis. Some vWF gene mutations are associated with the affected vWF biosynthesis and multimerization, whereas others are associated with increased clearance and functional impairment. Moreover, in addition to a particular mutation, type O blood may result in the more severe phenotype. The present review aimed to provide a summary of the current literature on the molecular genetics of vWD. None declared.

  6. Molecular genetics: Step by step implementation in maize breeding

    Directory of Open Access Journals (Sweden)

    Konstantinov Kosana

    2007-01-01

    Full Text Available Efficiency in plant breeding is determined primarily by the ability to screen for genetic polymorphism, productivity and yield stability early in program. Dependent on the knowledge about the biochemical bases of the trait and nature of its genetic control, trait could be modified either through mutagenesis of genes controlling it or through the transfer of already existing mutant genes, controlling desired trait to different plant genotypes by classic crossing. Objective of this report is to present partly results on the investigation of the possibilities to apply ionizing radiations (fast neutrons, γ -rays and chemical mutagens (EI, iPMS, EMS, ENU to get maize and wheat mutants with increased amount and improved protein quality. Besides this approach in mutation breeding, results on the very early investigation of biochemical background of opaque -2 mutation including use of coupled cell - free RNA and protein synthesis containing components from both wild and opaque - 2 maize genotypes (chromatin, RNA polymerase, microsomall fraction, protein bodies will be presented. Partial results on opaque - 2 gene incorporation in different genetic background are reviewed. Part of report is dealing with different classes of molecular markers (proteins, RFLP, AFLP, RAPD, and SSR application in maize genome polymorphism investigation. Besides application of different molecular markers classes in the investigation of heterosis phenomena they are useful in biochemical pathway of important traits control determination as well. .

  7. Molecular approaches to improvement of Jatropha curcas Linn. as a sustainable energy crop.

    Science.gov (United States)

    Sudhakar Johnson, T; Eswaran, Nalini; Sujatha, M

    2011-09-01

    With the increase in crude oil prices, climate change concerns and limited reserves of fossil fuel, attention has been diverted to alternate renewable energy sources such as biofuel and biomass. Among the potential biofuel crops, Jatropha curcas L, a non-domesticated shrub, has been gaining importance as the most promising oilseed, as it does not compete with the edible oil supplies. Economic relevance of J. curcas for biodiesel production has promoted world-wide prospecting of its germplasm for crop improvement and breeding. However, lack of adequate genetic variation and non-availability of improved varieties limited its prospects of being a successful energy crop. In this review, we present the progress made in molecular breeding approaches with particular reference to tissue culture and genetic transformation, genetic diversity assessment using molecular markers, large-scale transcriptome and proteome studies, identification of candidate genes for trait improvement, whole genome sequencing and the current interest by various public and private sector companies in commercial-scale cultivation, which highlights the revival of Jatropha as a sustainable energy crop. The information generated from molecular markers, transcriptome profiling and whole genome sequencing could accelerate the genetic upgradation of J. curcas through molecular breeding.

  8. Molecular genetic studies in flax (Linum usitatissimum L.)

    NARCIS (Netherlands)

    Vromans, J.

    2006-01-01

    In this thesis five molecular genetic studies on flax ( Linum usitatissimum L.) are described, of which two chapters aim to characterize the genetic structure and the amount of genetic diversity in the primary and secondary gene pool of the crop species. Three chapters describe the development of

  9. Molecular genetics of dyslexia: an overview.

    Science.gov (United States)

    Carrion-Castillo, Amaia; Franke, Barbara; Fisher, Simon E

    2013-11-01

    Dyslexia is a highly heritable learning disorder with a complex underlying genetic architecture. Over the past decade, researchers have pinpointed a number of candidate genes that may contribute to dyslexia susceptibility. Here, we provide an overview of the state of the art, describing how studies have moved from mapping potential risk loci, through identification of associated gene variants, to characterization of gene function in cellular and animal model systems. Work thus far has highlighted some intriguing mechanistic pathways, such as neuronal migration, axon guidance, and ciliary biology, but it is clear that we still have much to learn about the molecular networks that are involved. We end the review by highlighting the past, present, and future contributions of the Dutch Dyslexia Programme to studies of genetic factors. In particular, we emphasize the importance of relating genetic information to intermediate neurobiological measures, as well as the value of incorporating longitudinal and developmental data into molecular designs. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression and Treatment

    Science.gov (United States)

    Willis, Rudolph E.

    2016-01-01

    It has been declared repeatedly that cancer is a result of molecular genetic abnormalities. However, there has been no working model describing the specific functional consequences of the deranged genomic processes that result in the initiation and propagation of the cancer process during carcinogenesis. We no longer need to question whether or not cancer arises as a result of a molecular genetic defect within the cancer cell. The legitimate questions are: how and why? This article reviews the preeminent data on cancer molecular genetics and subsequently proposes that the sentinel event in cancer initiation is the aberrant production of fused transcription activators with new molecular properties within normal tissue stem cells. This results in the production of vital oncogenes with dysfunctional gene activation transcription properties, which leads to dysfunctional gene regulation, the aberrant activation of transduction pathways, chromosomal breakage, activation of driver oncogenes, reactivation of stem cell transduction pathways and the activation of genes that result in the hallmarks of cancer. Furthermore, a novel holistic molecular genetic model of cancer initiation and progression is presented along with a new paradigm for the approach to personalized targeted cancer therapy, clinical monitoring and cancer diagnosis. PMID:27649156

  11. Molecular characterization and assessment of genetic diversity of ...

    African Journals Online (AJOL)

    R Madhusudhana

    genetic diversity available at molecular level among a set of phenotypically different ... allele matching and cluster analysis based on unweighted neighbor- joining (Gascuel, 1997) ..... on isozyme data-a simulation study. Theor. Appl. Genet.

  12. Improving Molecular Genetic Test Utilization through Order Restriction, Test Review, and Guidance.

    Science.gov (United States)

    Riley, Jacquelyn D; Procop, Gary W; Kottke-Marchant, Kandice; Wyllie, Robert; Lacbawan, Felicitas L

    2015-05-01

    The ordering of molecular genetic tests by health providers not well trained in genetics may have a variety of untoward effects. These include the selection of inappropriate tests, the ordering of panels when the assessment of individual or fewer genes would be more appropriate, inaccurate result interpretation and inappropriate patient guidance, and significant unwarranted cost expenditure. We sought to improve the utilization of molecular genetic tests by requiring providers without specialty training in genetics to use genetic counselors and molecular genetic pathologists to assist in test selection. We used a genetic and genomic test review process wherein the laboratory-based genetic counselor performed the preanalytic assessment of test orders and test triage. Test indication and clinical findings were evaluated against the test panel composition, methods, and test limitations under the supervision of the molecular genetic pathologist. These test utilization management efforts resulted in a decrease in genetic test ordering and a gross cost savings of $1,531,913 since the inception of these programs in September 2011 through December 2013. The combination of limiting the availability of complex genetic tests and providing guidance regarding appropriate test strategies is an effective way to improve genetic tests, contributing to judicious use of limited health care resources. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  13. Intelligent DNA-based molecular diagnostics using linked genetic markers

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, D.K.; Perlin, M.W.; Hoffman, E.P.

    1994-12-31

    This paper describes a knowledge-based system for molecular diagnostics, and its application to fully automated diagnosis of X-linked genetic disorders. Molecular diagnostic information is used in clinical practice for determining genetic risks, such as carrier determination and prenatal diagnosis. Initially, blood samples are obtained from related individuals, and PCR amplification is performed. Linkage-based molecular diagnosis then entails three data analysis steps. First, for every individual, the alleles (i.e., DNA composition) are determined at specified chromosomal locations. Second, the flow of genetic material among the individuals is established. Third, the probability that a given individual is either a carrier of the disease or affected by the disease is determined. The current practice is to perform each of these three steps manually, which is costly, time consuming, labor-intensive, and error-prone. As such, the knowledge-intensive data analysis and interpretation supersede the actual experimentation effort as the major bottleneck in molecular diagnostics. By examining the human problem solving for the task, we have designed and implemented a prototype knowledge-based system capable of fully automating linkage-based molecular diagnostics in X-linked genetic disorders, including Duchenne Muscular Dystrophy (DMD). Our system uses knowledge-based interpretation of gel electrophoresis images to determine individual DNA marker labels, a constraint satisfaction search for consistent genetic flow among individuals, and a blackboard-style problem solver for risk assessment. We describe the system`s successful diagnosis of DMD carrier and affected individuals from raw clinical data.

  14. Molecular approaches to child psychopathology.

    Science.gov (United States)

    Alsobrook, J P; Pauls, D L

    1998-04-01

    Basic research into the genetics of childhood psychiatric disorders has substantially increased during the last two decades. Specific genetic mutations have been characterized in some developmental disorders (e.g., fragile X syndrome and Prader-Willi syndrome), but thus far identification of etiological gene mutations in psychiatric illnesses has been unsuccessful. Several psychiatric disorders serve as examples of the current state of molecular approaches in child psychopathology. Investigations to date of Gilles de la Tourette's syndrome (GTS) have not resulted in the discovery of a gene of major effect. Some studies have implicated the D2 and D4 dopamine receptors as having a direct role in the etiology of GTS, but other studies have disputed those findings. However, the dopamine D2 receptor may modulate the severity of GTS. Obsessive-compulsive disorder has a reported association with a low-activity allele of the enzyme catechol-O-methyltransferase; however, the low-activity genotype is also seen in a significant proportion of unaffected individuals. For reading disability two distinct phenotypes (phonological awareness and single-word reading) have been linked to separate loci on chromosomes 6 and 15. Attention deficit hyperactivity disorder (ADHD) has a reported association with the dopamine transporter. Findings of a genetic locus for the personality trait of novelty seeking remain controversial.

  15. Introductory guide to the statistics of molecular genetics.

    Science.gov (United States)

    Eley, Thalia C; Rijsdijk, Frühling

    2005-10-01

    This introductory guide presents the main two analytical approaches used by molecular geneticists: linkage and association. Traditional linkage and association methods are described, along with more recent advances in methodologies such as those using a variance components approach. New methods are being developed all the time but the core principles of linkage and association remain the same. The basis of linkage is the transmission of a marker along with a disease within families, whereas association is based on the comparison of marker frequencies in case and control groups. It is becoming increasingly clear that effect sizes of individual markers on diseases and traits are likely to be very small. As such, much greater power is needed, and correspondingly greater sample sizes. Although non-replication is still a problem, molecular genetic studies in some areas such as attention deficit/hyperactivity disorder (ADHD) are starting to show greater convergence. Epidemiologists and other researchers with large well-characterized samples will be well placed to use these methods. Inter-disciplinary studies can then ask far more interesting questions such as those relating to developmental, multivariate and gene-environment interaction hypotheses.

  16. WONOEP appraisal: new genetic approaches to study epilepsy

    Science.gov (United States)

    Rossignol, Elsa; Kobow, Katja; Simonato, Michele; Loeb, Jeffrey A.; Grisar, Thierry; Gilby, Krista L.; Vinet, Jonathan; Kadam, Shilpa D.; Becker, Albert J.

    2014-01-01

    Objective New genetic investigation techniques, including next-generation sequencing, epigenetic profiling, cell lineage mapping, targeted genetic manipulation of specific neuronal cell types, stem cell reprogramming and optogenetic manipulations within epileptic networks are progressively unravelling the mysteries of epileptogenesis and ictogenesis. These techniques have opened new avenues to discover the molecular basis of epileptogenesis and to study the physiological impacts of mutations in epilepsy-associated genes on a multilayer level, from cells to circuits. Methods This manuscript reviews recently published applications of these new genetic technologies in the study of epilepsy, as well as work presented by the authors at the genetic session of the XII Workshop on the Neurobiology of Epilepsy in Quebec, Canada. Results Next-generation sequencing is providing investigators with an unbiased means to assess the molecular causes of sporadic forms of epilepsy and have revealed the complexity and genetic heterogeneity of sporadic epilepsy disorders. To assess the functional impact of mutations in these newly identified genes on specific neuronal cell-types during brain development, new modeling strategies in animals, including conditional genetics in mice and in utero knockdown approaches, are enabling functional validation with exquisite cell-type and temporal specificity. In addition, optogenetics, using cell-type specific Cre recombinase driver lines, is enabling investigators to dissect networks involved in epilepsy. Genetically-encoded cell-type labeling is also providing new means to assess the role of the non-neuronal components of epileptic networks such as glial cells. Furthermore, beyond its role in revealing coding variants involved in epileptogenesis, next-generation sequencing can be used to assess the epigenetic modifications that lead to sustained network hyperexcitability in epilepsy, including methylation changes in gene promoters and non

  17. The rapid evolution of molecular genetic diagnostics in neuromuscular diseases.

    Science.gov (United States)

    Volk, Alexander E; Kubisch, Christian

    2017-10-01

    The development of massively parallel sequencing (MPS) has revolutionized molecular genetic diagnostics in monogenic disorders. The present review gives a brief overview of different MPS-based approaches used in clinical diagnostics of neuromuscular disorders (NMDs) and highlights their advantages and limitations. MPS-based approaches like gene panel sequencing, (whole) exome sequencing, (whole) genome sequencing, and RNA sequencing have been used to identify the genetic cause in NMDs. Although gene panel sequencing has evolved as a standard test for heterogeneous diseases, it is still debated, mainly because of financial issues and unsolved problems of variant interpretation, whether genome sequencing (and to a lesser extent also exome sequencing) of single patients can already be regarded as routine diagnostics. However, it has been shown that the inclusion of parents and additional family members often leads to a substantial increase in the diagnostic yield in exome-wide/genome-wide MPS approaches. In addition, MPS-based RNA sequencing just enters the research and diagnostic scene. Next-generation sequencing increasingly enables the detection of the genetic cause in highly heterogeneous diseases like NMDs in an efficient and affordable way. Gene panel sequencing and family-based exome sequencing have been proven as potent and cost-efficient diagnostic tools. Although clinical validation and interpretation of genome sequencing is still challenging, diagnostic RNA sequencing represents a promising tool to bypass some hurdles of diagnostics using genomic DNA.

  18. Molecular genetics of early-onset Alzheimer's disease revisited.

    Science.gov (United States)

    Cacace, Rita; Sleegers, Kristel; Van Broeckhoven, Christine

    2016-06-01

    As the discovery of the Alzheimer's disease (AD) genes, APP, PSEN1, and PSEN2, in families with autosomal dominant early-onset AD (EOAD), gene discovery in familial EOAD came more or less to a standstill. Only 5% of EOAD patients are carrying a pathogenic mutation in one of the AD genes or a apolipoprotein E (APOE) risk allele ε4, most of EOAD patients remain unexplained. Here, we aimed at summarizing the current knowledge of EOAD genetics and its role in ongoing approaches to understand the biology of AD and disease symptomatology as well as developing new therapeutics. Next, we explored the possible molecular mechanisms that might underlie the missing genetic etiology of EOAD and discussed how the use of massive parallel sequencing technologies triggered novel gene discoveries. To conclude, we commented on the relevance of reinvestigating EOAD patients as a means to explore potential new avenues for translational research and therapeutic discoveries. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. NEW MOLECULAR TECHNOLOGIES IN GENETIC DIAGNOSIS OF MALE INFERTILITY

    Directory of Open Access Journals (Sweden)

    V. B. Chernykh

    2017-01-01

    Full Text Available In recent years, the accelerated development of technologies in the field of molecular genetics and cytogenetics has led to significant opportunities of the research and diagnosis of mutations and variations of the genome. This article provides a brief review of new molecular technology, also as the results of their use in reproductive medicine and their perspectives in the genetic diagnosis of male infertility. 

  20. Genetic diversity among Korean bermudagrass (Cynodon spp.) ecotypes characterized by morphological, cytological and molecular approaches.

    Science.gov (United States)

    Kang, Si-Yong; Lee, Geung-Joo; Lim, Ki Byung; Lee, Hye Jung; Park, In Sook; Chung, Sung Jin; Kim, Jin-Baek; Kim, Dong Sub; Rhee, Hye Kyung

    2008-04-30

    The genus Cynodon comprises ten species. The objective of this study was to evaluate the genetic diversity of Korean bermudagrasses at the morphological, cytological and molecular levels. Morphological parameters, the nuclear DNA content and ploidy levels were observed in 43 bermudagrass ecotypes. AFLP markers were evaluated to define the genetic diversity, and chromosome counts were made to confirm the inferred cytotypes. Nuclear DNA contents were in the ranges 1.42-1.56, 1.94-2.19, 2.54, and 2.77-2.85 pg/2C for the triploid, tetraploid, pentaploid, and hexaploid accessions, respectively. The inferred cytotypes were triploid (2n = 3x = 27), tetraploid (2n = 4x = 36), pentaploid (2n = 5x = 45), and hexaploid (2n = 6x = 54), but the majority of the collections were tetraploid (81%). Mitotic chromosome counts verified the corresponding ploidy levels. The fast growing fine-textured ecotypes had lower ploidy levels, while the pentaploids and hexaploids were coarse types. The genetic similarity ranged from 0.42 to 0.94 with an average of 0.64. UPGMA cluster analysis and principle coordinate analysis separated the ecotypes into 6 distinct groups. The genetic similarity suggests natural hybridization between the different cytotypes, which could be useful resources for future breeding and genetic studies.

  1. Usher syndrome: an effective sequencing approach to establish a genetic and clinical diagnosis.

    Science.gov (United States)

    Lenarduzzi, S; Vozzi, D; Morgan, A; Rubinato, E; D'Eustacchio, A; Osland, T M; Rossi, C; Graziano, C; Castorina, P; Ambrosetti, U; Morgutti, M; Girotto, G

    2015-02-01

    Usher syndrome is an autosomal recessive disorder characterized by retinitis pigmentosa, sensorineural hearing loss and, in some cases, vestibular dysfunction. The disorder is clinically and genetically heterogeneous and, to date, mutations in 11 genes have been described. This finding makes difficult to get a precise molecular diagnosis and offer patients accurate genetic counselling. To overcome this problem and to increase our knowledge of the molecular basis of Usher syndrome, we designed a targeted resequencing custom panel. In a first validation step a series of 16 Italian patients with known molecular diagnosis were analysed and 31 out of 32 alleles were detected (97% of accuracy). After this step, 31 patients without a molecular diagnosis were enrolled in the study. Three out of them with an uncertain Usher diagnosis were excluded. One causative allele was detected in 24 out 28 patients (86%) while the presence of both causative alleles characterized 19 patients out 28 (68%). Sixteen novel and 27 known alleles were found in the following genes: USH2A (50%), MYO7A (7%), CDH23 (11%), PCDH15 (7%) and USH1G (2%). Overall, on the 44 patients the protocol was able to characterize 74 alleles out of 88 (84%). These results suggest that our panel is an effective approach for the genetic diagnosis of Usher syndrome leading to: 1) an accurate molecular diagnosis, 2) better genetic counselling, 3) more precise molecular epidemiology data fundamental for future interventional plans. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Molecular diversity and genetic relationships in Secale

    Indian Academy of Sciences (India)

    Molecular diversity and genetic relationships in Secale. E. Santos, M. Matos, P. Silva, A. M. Figueiras, C. Benito and O. Pinto-Carnide. J. Genet. 95, 273–281. Table 1. RAPD and ISSR primers used in this study. Primer. 5 –3. Primer. 5 –3. RAPDs (Operon). A1. CAGGCCCTTC. C5. CATGACCGCC. A4. AATCGGGCTG. C6.

  3. RESEARCH NOTE Molecular genetic analysis of consanguineous ...

    Indian Academy of Sciences (India)

    Navya

    Molecular genetic analysis of consanguineous families with primary microcephaly ... Translational Research Institute, Academic Health System, Hamad Medical ..... bridging the gap between homozygosity mapping and deep sequencing.

  4. Genetic dissimilarity among sweet potato genotypes using morphological and molecular descriptors

    Directory of Open Access Journals (Sweden)

    Elisângela Knoblauch Viega de Andrade

    2017-08-01

    Full Text Available This study aimed to evaluate the genetic dissimilarity among sweet potato genotypes using morphological and molecular descriptors. The experiment was conducted in the Olericulture Sector at Federal University of Jequitinhonha and Mucuri Valleys (UFVJM and evaluated 60 sweet potato genotypes. For morphological characterization, 24 descriptors were used. For molecular characterization, 11 microsatellite primers specific for sweet potatoes were used, obtaining 210 polymorphic bands. Morphological and molecular diversity was obtained by dissimilarity matrices based on the coefficient of simple matching and the Jaccard index for morphological and molecular data, respectively. From these matrices, dendrograms were built. There is a large amount of genetic variability among sweet potato genotypes of the germplasm bank at UFVJM based on morphological and molecular characterizations. There was no duplicate suspicion or strong association between morphological and molecular analyses. Divergent accessions have been identified by molecular and morphological analyses, which can be used as parents in breeding programmes to produce progenies with high genetic variability.

  5. Molecular research and genetic engineering of resistance to ...

    African Journals Online (AJOL)

    This paper reviews the recent research progress on genetic methods of resistance, the status and existing problems, traditional breeding, the main resistance mechanism, molecular markers and genetic engineering of resistance genes. It is hoped that new breeding methods and new varieties resistant to Verticillium wilt will ...

  6. Molecular Genetic Studies of Some Eye Diseases Affecting the ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Molecular Genetic Studies of Some Eye Diseases Affecting the Indian Population. Single gene disorders. Complex eye diseases. Genotype-phenotype correlation. Molecular diagnostics.

  7. Digitotalar dysmorphism: Molecular elucidation

    African Journals Online (AJOL)

    obtained for molecular studies. Since the distal arthrogryposes (DAs) are genetically heterogeneous, an unbiased approach to mutation ... Diseases and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa, with an interest in molecular genetics of connective ...

  8. Molecular characterization of genetic diversity in some durum wheat ...

    African Journals Online (AJOL)

    Molecular characterization of genetic diversity in some durum wheat ... African Journal of Biotechnology ... Thus, RAPD offer a potentially simple, rapid and reliable method to evaluate genetic variation and relatedness among ten wheat ...

  9. Micropropagation, genetic engineering, and molecular biology of Populus

    Science.gov (United States)

    N. B. Klopfenstein; Y. W. Chun; M. -S. Kim; M. A. Ahuja; M. C. Dillon; R. C. Carman; L. G. Eskew

    1997-01-01

    Thirty-four Populus biotechnology chapters, written by 85 authors, are comprised in 5 sections: 1) in vitro culture (micropropagation, somatic embryogenesis, protoplasts, somaclonal variation, and germplasm preservation); 2) transformation and foreign gene expression; 3) molecular biology (molecular/genetic characterization); 4) biotic and abiotic resistance (disease,...

  10. Molecular Darwinism: The Contingency of Spontaneous Genetic Variation

    OpenAIRE

    Arber, Werner

    2011-01-01

    The availability of spontaneously occurring genetic variants is an important driving force of biological evolution. Largely thanks to experimental investigations by microbial geneticists, we know today that several different molecular mechanisms contribute to the overall genetic variations. These mechanisms can be assigned to three natural strategies to generate genetic variants: 1) local sequence changes, 2) intragenomic reshuffling of DNA segments, and 3) acquisition of a segment of foreign...

  11. Genetic Breeding and Diversity of the Genus Passiflora: Progress and Perspectives in Molecular and Genetic Studies

    Directory of Open Access Journals (Sweden)

    Carlos Bernard M. Cerqueira-Silva

    2014-08-01

    Full Text Available Despite the ecological and economic importance of passion fruit (Passiflora spp., molecular markers have only recently been utilized in genetic studies of this genus. In addition, both basic genetic researches related to population studies and pre-breeding programs of passion fruit remain scarce for most Passiflora species. Considering the number of Passiflora species and the increasing use of these species as a resource for ornamental, medicinal, and food purposes, the aims of this review are the following: (i to present the current condition of the passion fruit crop; (ii to quantify the applications and effects of using molecular markers in studies of Passiflora; (iii to present the contributions of genetic engineering for passion fruit culture; and (iv to discuss the progress and perspectives of this research. Thus, the present review aims to summarize and discuss the relationship between historical and current progress on the culture, breeding, and molecular genetics of passion fruit.

  12. Genetics and molecular biology of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    King, M.C. [California Univ., Berkeley, CA (United States); Lippman, M. [Georgetown Univ. Medical Center, Washington, DC (United States)] [comps.

    1992-12-31

    This volume contains the abstracts of oral presentations and poster sessions presented at the Cold Springs Harbor Meeting on Cancer Cells, this meeting entitled Genetics and Molecular Biology of Breast Cancer.

  13. Molecular markers: a potential resource for ginger genetic diversity studies.

    Science.gov (United States)

    Ismail, Nor Asiah; Rafii, M Y; Mahmud, T M M; Hanafi, M M; Miah, Gous

    2016-12-01

    Ginger is an economically important and valuable plant around the world. Ginger is used as a food, spice, condiment, medicine and ornament. There is available information on biochemical aspects of ginger, but few studies have been reported on its molecular aspects. The main objective of this review is to accumulate the available molecular marker information and its application in diverse ginger studies. This review article was prepared by combing material from published articles and our own research. Molecular markers allow the identification and characterization of plant genotypes through direct access to hereditary material. In crop species, molecular markers are applied in different aspects and are useful in breeding programs. In ginger, molecular markers are commonly used to identify genetic variation and classify the relatedness among varieties, accessions, and species. Consequently, it provides important input in determining resourceful management strategies for ginger improvement programs. Alternatively, a molecular marker could function as a harmonizing tool for documenting species. This review highlights the application of molecular markers (isozyme, RAPD, AFLP, SSR, ISSR and others such as RFLP, SCAR, NBS and SNP) in genetic diversity studies of ginger species. Some insights on the advantages of the markers are discussed. The detection of genetic variation among promising cultivars of ginger has significance for ginger improvement programs. This update of recent literature will help researchers and students select the appropriate molecular markers for ginger-related research.

  14. Determination of genetic structure of germplasm collections: are traditional hierarchical clustering methods appropriate for molecular marker data?

    NARCIS (Netherlands)

    Odong, T.L.; Heerwaarden, van J.; Jansen, J.; Hintum, van T.J.L.; Eeuwijk, van F.A.

    2011-01-01

    Despite the availability of newer approaches, traditional hierarchical clustering remains very popular in genetic diversity studies in plants. However, little is known about its suitability for molecular marker data. We studied the performance of traditional hierarchical clustering techniques using

  15. Supplementary data: Molecular assessment of genetic diversity in ...

    Indian Academy of Sciences (India)

    Molecular assessment of genetic diversity in cluster bean. (Cyamopsis tetragonoloba) genotypes. Rakesh Pathak, S. K. Singh, Manjit Singh and A. Henry. J. Genet. 89, 243–246. Figure 1. RAPD profile of 1–16 Cyamopsis tetragonoloba genotypes amplified with arbitrary primer OPA-16. Figure 2. RAPD profile of 17–32 ...

  16. Role of molecular testing in the multidisciplinary diagnostic approach of ichthyosis.

    Science.gov (United States)

    Diociaiuti, Andrea; El Hachem, May; Pisaneschi, Elisa; Giancristoforo, Simona; Genovese, Silvia; Sirleto, Pietro; Boldrini, Renata; Angioni, Adriano

    2016-01-13

    The term ichthyosis describes a generalized disorder of cornification characterized by scaling and/or hyperkeratosis of different skin regions. Mutations in a broad group of genes related to keratinocyte differentiation and epidermal barrier function have been demonstrated to play a causative role in disease development. Ichthyosis may be classified in syndromic or non-syndromic forms based on the occurrence or absence of extracutaneous signs. In this setting, the diagnosis of ichthyosis is an integrated multistep process requiring a multidisciplinary approach in order to formulate the appropriate diagnostic hypothesis and to address the genetic testing. Due to the complex features of the different ichthyoses and the high number of genes involved we have investigated a group of 64 patients, affected by syndromic and non-syndromic diseases, using Next Generation Sequencing as a new tool for the molecular diagnosis. Using this innovative molecular approach we were able to find pathogenic mutations in 53 out of 64 patients resulting in 82.8 % total detection rate. An interesting result from the analysis of the data is the high rate of novel sequence variations found compared to known mutations and the relevant rate of homozygous mutations. The possibility to analyze a large number of genes associated with various diseases allows to study cases with phenotypes not well-determined, giving the opportunity to make new genotype-phenotype correlation. In some cases there were discrepancies between clinical features and histology or electron microscopy and only molecular analysis allowed to definitively resolve the diagnostic dilemma. The genetic diagnosis of ichthyosis leads to a more accurate and effective genetic counseling, allowing correct evaluation of the risk of recurrence, particularly in families with consanguineous background.

  17. A molecular, genetic and physiological analysis of plant aluminum tolerance (abstract)

    International Nuclear Information System (INIS)

    Pineros, M.

    2005-01-01

    Aluminum (Al) toxicity is an important agronomic trait, limiting crop production on acid soils that comprise up to 50% of the world's potentially arable lands. A significant genetic variation in Al tolerance exists in both crop plants and Arabidopsis. The exploitation of this genetic variation to breed crops with increased Al tolerance has been a productive and active area of research, however, the underlying molecular, genetic and physiological bases are still not well understood. Only very recently was the first Al tolerance gene, ALMT1, isolated in wheat and shown to be a novel Al-activated malate transporter. Work in our laboratory has focused on using integrated genomic (gene and protein expression profiling), molecular genetic and physiological approaches to identify novel Al tolerance genes and the physiological mechanisms they control in the cereal crops maize and sorghum, and also in arabidopsis. In sorghum we had previously shown that Al tolerance is the result of a single locus, Alt/sub SB/ which maps to the top of sorghum chromosome 3 in a region totally distinct from where the major Al tolerance maps in wheat and other related members of the Triticeae. Very recently, we have used map-based cloning techniques in sorghum to clone Alt/sub SB/ and have found it is a novel Al tolerance gene. Here we will present a molecular characterization of the Alt/sub SB/ gene and also the physiological mechanism of sorghum Al tolerance it controls. In arabidopsis, we have previously shown that Al tolerance is a quantitative trait and have identified two major Al tolerance QTL on chromosomes 1 and 5. These genes function to confer tolerance via Al via activated root malate release. We found that a member of the arabidopsis gene family that is a close homolog to wheat ALMT1 maps near the largest tolerance QTL on chromosome 1 and have also found this gene encodes the Al-activated malate transport involved in arabidopsis Al tolerance. However, we have clear molecular

  18. The molecular genetic architecture of self-employment.

    Science.gov (United States)

    van der Loos, Matthijs J H M; Rietveld, Cornelius A; Eklund, Niina; Koellinger, Philipp D; Rivadeneira, Fernando; Abecasis, Gonçalo R; Ankra-Badu, Georgina A; Baumeister, Sebastian E; Benjamin, Daniel J; Biffar, Reiner; Blankenberg, Stefan; Boomsma, Dorret I; Cesarini, David; Cucca, Francesco; de Geus, Eco J C; Dedoussis, George; Deloukas, Panos; Dimitriou, Maria; Eiriksdottir, Guðny; Eriksson, Johan; Gieger, Christian; Gudnason, Vilmundur; Höhne, Birgit; Holle, Rolf; Hottenga, Jouke-Jan; Isaacs, Aaron; Järvelin, Marjo-Riitta; Johannesson, Magnus; Kaakinen, Marika; Kähönen, Mika; Kanoni, Stavroula; Laaksonen, Maarit A; Lahti, Jari; Launer, Lenore J; Lehtimäki, Terho; Loitfelder, Marisa; Magnusson, Patrik K E; Naitza, Silvia; Oostra, Ben A; Perola, Markus; Petrovic, Katja; Quaye, Lydia; Raitakari, Olli; Ripatti, Samuli; Scheet, Paul; Schlessinger, David; Schmidt, Carsten O; Schmidt, Helena; Schmidt, Reinhold; Senft, Andrea; Smith, Albert V; Spector, Timothy D; Surakka, Ida; Svento, Rauli; Terracciano, Antonio; Tikkanen, Emmi; van Duijn, Cornelia M; Viikari, Jorma; Völzke, Henry; Wichmann, H-Erich; Wild, Philipp S; Willems, Sara M; Willemsen, Gonneke; van Rooij, Frank J A; Groenen, Patrick J F; Uitterlinden, André G; Hofman, Albert; Thurik, A Roy

    2013-01-01

    Economic variables such as income, education, and occupation are known to affect mortality and morbidity, such as cardiovascular disease, and have also been shown to be partly heritable. However, very little is known about which genes influence economic variables, although these genes may have both a direct and an indirect effect on health. We report results from the first large-scale collaboration that studies the molecular genetic architecture of an economic variable-entrepreneurship-that was operationalized using self-employment, a widely-available proxy. Our results suggest that common SNPs when considered jointly explain about half of the narrow-sense heritability of self-employment estimated in twin data (σ(g)(2)/σ(P)(2) = 25%, h(2) = 55%). However, a meta-analysis of genome-wide association studies across sixteen studies comprising 50,627 participants did not identify genome-wide significant SNPs. 58 SNPs with pself-employment in an independent sample (p≥0.039). Our results are consistent with a highly polygenic molecular genetic architecture of self-employment, with many genetic variants of small effect. Although self-employment is a multi-faceted, heavily environmentally influenced, and biologically distal trait, our results are similar to those for other genetically complex and biologically more proximate outcomes, such as height, intelligence, personality, and several diseases.

  19. Advances in molecular genetic studies of primary dystonia

    Directory of Open Access Journals (Sweden)

    MA Ling-yan

    2013-07-01

    Full Text Available Dystonias are heterogeneous hyperkinetic movement disorders characterized by involuntary muscle contractions which result in twisting, repetitive movements and abnormal postures. In recent years, there was a great advance in molecular genetic studies of primary dystonia. This paper will review the clinical characteristics and molecular genetic studies of primary dystonia, including early-onset generalized torsion dystonia (DYT1, whispering dysphonia (DYT4, dopa-responsive dystonia (DYT5, mixed-type dystonia (DYT6, paroxysmal kinesigenic dyskinesia (DYT10, myoclonus-dystonia syndrome (DYT11, rapid-onset dystonia parkinsonism (DYT12, adult-onset cervical dystonia (DYT23, craniocervical dystonia (DYT24 and primary torsion dystonia (DYT25.

  20. The Molecular Genetic Architecture of Self-Employment

    Science.gov (United States)

    van der Loos, Matthijs J. H. M.; Rietveld, Cornelius A.; Eklund, Niina; Koellinger, Philipp D.; Rivadeneira, Fernando; Abecasis, Gonçalo R.; Ankra-Badu, Georgina A.; Baumeister, Sebastian E.; Benjamin, Daniel J.; Biffar, Reiner; Blankenberg, Stefan; Boomsma, Dorret I.; Cesarini, David; Cucca, Francesco; de Geus, Eco J. C.; Dedoussis, George; Deloukas, Panos; Dimitriou, Maria; Eiriksdottir, Guðny; Eriksson, Johan; Gieger, Christian; Gudnason, Vilmundur; Höhne, Birgit; Holle, Rolf; Hottenga, Jouke-Jan; Isaacs, Aaron; Järvelin, Marjo-Riitta; Johannesson, Magnus; Kaakinen, Marika; Kähönen, Mika; Kanoni, Stavroula; Laaksonen, Maarit A.; Lahti, Jari; Launer, Lenore J.; Lehtimäki, Terho; Loitfelder, Marisa; Magnusson, Patrik K. E.; Naitza, Silvia; Oostra, Ben A.; Perola, Markus; Petrovic, Katja; Quaye, Lydia; Raitakari, Olli; Ripatti, Samuli; Scheet, Paul; Schlessinger, David; Schmidt, Carsten O.; Schmidt, Helena; Schmidt, Reinhold; Senft, Andrea; Smith, Albert V.; Spector, Timothy D.; Surakka, Ida; Svento, Rauli; Terracciano, Antonio; Tikkanen, Emmi; van Duijn, Cornelia M.; Viikari, Jorma; Völzke, Henry; Wichmann, H. -Erich; Wild, Philipp S.; Willems, Sara M.; Willemsen, Gonneke; van Rooij, Frank J. A.; Groenen, Patrick J. F.; Uitterlinden, André G.; Hofman, Albert; Thurik, A. Roy

    2013-01-01

    Economic variables such as income, education, and occupation are known to affect mortality and morbidity, such as cardiovascular disease, and have also been shown to be partly heritable. However, very little is known about which genes influence economic variables, although these genes may have both a direct and an indirect effect on health. We report results from the first large-scale collaboration that studies the molecular genetic architecture of an economic variable–entrepreneurship–that was operationalized using self-employment, a widely-available proxy. Our results suggest that common SNPs when considered jointly explain about half of the narrow-sense heritability of self-employment estimated in twin data (σg 2/σP 2 = 25%, h 2 = 55%). However, a meta-analysis of genome-wide association studies across sixteen studies comprising 50,627 participants did not identify genome-wide significant SNPs. 58 SNPs with pentrepreneurship reveal significant associations. Finally, SNP-based genetic scores that use results from the meta-analysis capture less than 0.2% of the variance in self-employment in an independent sample (p≥0.039). Our results are consistent with a highly polygenic molecular genetic architecture of self-employment, with many genetic variants of small effect. Although self-employment is a multi-faceted, heavily environmentally influenced, and biologically distal trait, our results are similar to those for other genetically complex and biologically more proximate outcomes, such as height, intelligence, personality, and several diseases. PMID:23593239

  1. [Colorectal cancer (CCR): genetic and molecular alterations].

    Science.gov (United States)

    Juárez-Vázquez, Clara Ibet; Rosales-Reynoso, Mónica Alejandra

    2014-01-01

    The aim of this review is to present a genetic and molecular overview of colorectal carcinogenesis (sporadic and hereditary origin) as a multistage process, where there are a number of molecular mechanisms associated with the development of colorectal cancer and genomic instability that allows the accumulation of mutations in proto-oncogenes and tumor suppressor genes, chromosomal instability, and methylation and microsatellite instability, and the involvement of altered expression of microRNAs' prognosis factors.

  2. Southern-by-Sequencing: A Robust Screening Approach for Molecular Characterization of Genetically Modified Crops

    Directory of Open Access Journals (Sweden)

    Gina M. Zastrow-Hayes

    2015-03-01

    Full Text Available Molecular characterization of events is an integral part of the advancement process during genetically modified (GM crop product development. Assessment of these events is traditionally accomplished by polymerase chain reaction (PCR and Southern blot analyses. Southern blot analysis can be time-consuming and comparatively expensive and does not provide sequence-level detail. We have developed a sequence-based application, Southern-by-Sequencing (SbS, utilizing sequence capture coupled with next-generation sequencing (NGS technology to replace Southern blot analysis for event selection in a high-throughput molecular characterization environment. SbS is accomplished by hybridizing indexed and pooled whole-genome DNA libraries from GM plants to biotinylated probes designed to target the sequence of transformation plasmids used to generate events within the pool. This sequence capture process enriches the sequence data obtained for targeted regions of interest (transformation plasmid DNA. Taking advantage of the DNA adjacent to the targeted bases (referred to as next-to-target sequence that accompanies the targeted transformation plasmid sequence, the data analysis detects plasmid-to-genome and plasmid-to-plasmid junctions introduced during insertion into the plant genome. Analysis of these junction sequences provides sequence-level information as to the following: the number of insertion loci including detection of unlinked, independently segregating, small DNA fragments; copy number; rearrangements, truncations, or deletions of the intended insertion DNA; and the presence of transformation plasmid backbone sequences. This molecular evidence from SbS analysis is used to characterize and select GM plants meeting optimal molecular characterization criteria. SbS technology has proven to be a robust event screening tool for use in a high-throughput molecular characterization environment.

  3. Integrating molecular QTL data into genome-wide genetic association analysis: Probabilistic assessment of enrichment and colocalization.

    Directory of Open Access Journals (Sweden)

    Xiaoquan Wen

    2017-03-01

    Full Text Available We propose a novel statistical framework for integrating the result from molecular quantitative trait loci (QTL mapping into genome-wide genetic association analysis of complex traits, with the primary objectives of quantitatively assessing the enrichment of the molecular QTLs in complex trait-associated genetic variants and the colocalizations of the two types of association signals. We introduce a natural Bayesian hierarchical model that treats the latent association status of molecular QTLs as SNP-level annotations for candidate SNPs of complex traits. We detail a computational procedure to seamlessly perform enrichment, fine-mapping and colocalization analyses, which is a distinct feature compared to the existing colocalization analysis procedures in the literature. The proposed approach is computationally efficient and requires only summary-level statistics. We evaluate and demonstrate the proposed computational approach through extensive simulation studies and analyses of blood lipid data and the whole blood eQTL data from the GTEx project. In addition, a useful utility from our proposed method enables the computation of expected colocalization signals using simple characteristics of the association data. Using this utility, we further illustrate the importance of enrichment analysis on the ability to discover colocalized signals and the potential limitations of currently available molecular QTL data. The software pipeline that implements the proposed computation procedures, enloc, is freely available at https://github.com/xqwen/integrative.

  4. Genetic diversity of popcorn genotypes using molecular analysis.

    Science.gov (United States)

    Resh, F S; Scapim, C A; Mangolin, C A; Machado, M F P S; do Amaral, A T; Ramos, H C C; Vivas, M

    2015-08-19

    In this study, we analyzed dominant molecular markers to estimate the genetic divergence of 26 popcorn genotypes and evaluate whether using various dissimilarity coefficients with these dominant markers influences the results of cluster analysis. Fifteen random amplification of polymorphic DNA primers produced 157 amplified fragments, of which 65 were monomorphic and 92 were polymorphic. To calculate the genetic distances among the 26 genotypes, the complements of the Jaccard, Dice, and Rogers and Tanimoto similarity coefficients were used. A matrix of Dij values (dissimilarity matrix) was constructed, from which the genetic distances among genotypes were represented in a more simplified manner as a dendrogram generated using the unweighted pair-group method with arithmetic average. Clusters determined by molecular analysis generally did not group material from the same parental origin together. The largest genetic distance was between varieties 17 (UNB-2) and 18 (PA-091). In the identification of genotypes with the smallest genetic distance, the 3 coefficients showed no agreement. The 3 dissimilarity coefficients showed no major differences among their grouping patterns because agreement in determining the genotypes with large, medium, and small genetic distances was high. The largest genetic distances were observed for the Rogers and Tanimoto dissimilarity coefficient (0.74), followed by the Jaccard coefficient (0.65) and the Dice coefficient (0.48). The 3 coefficients showed similar estimations for the cophenetic correlation coefficient. Correlations among the matrices generated using the 3 coefficients were positive and had high magnitudes, reflecting strong agreement among the results obtained using the 3 evaluated dissimilarity coefficients.

  5. Molecular genetics of aging in the fly: is this the end of the beginning?

    Science.gov (United States)

    Helfand, Stephen L; Rogina, Blanka

    2003-02-01

    How we age and what we can do about it have been uppermost in human thought since antiquity. The many false starts have frustrated experimentalists and theoretical arguments pronouncing the inevitability of the process have created a nihilistic climate among scientists and the public. The identification of single gene alterations that substantially extend life span in nematodes and flies however, have begun to reinvigorate the field. Drosophila's long history of contributions to aging research, rich storehouse of genetic information, and powerful molecular techniques make it an excellent system for studying the molecular mechanisms underlying the process of aging. In recent years, Drosophila has been used to test current theories on aging and explore new directions of potential importance to the biology of aging. One such example is the surprising finding that, as opposed to the commonly held assumption that adult life is a period of random passive decline in which all things are thought to fall apart, the molecular life of the adult fly appears to be a state of dynamic well-regulated change. In the fly, the level of expression of many different genes changes in an invariant, often age-dependent, manner. These as well as other molecular genetic studies and demographic analyses using the fly have begun to challenge widely held ideas about aging providing evidence that aging may be a much more dynamic and malleable process than anticipated. With the enormous success that Drosophila molecular genetics has demonstrated in helping understand complex biological phenomena such as development there is much optimism that similar approaches can be adapted to assist in understanding the process of aging. Copyright 2003 Wiley Periodicals, Inc.

  6. Molecular evaluation of genetic diversity and association studies in ...

    Indian Academy of Sciences (India)

    Molecular evaluation of genetic diversity and association studies in rice. (Oryza sativa L.) C. Vanniarajan, K. K. Vinod and Andy Pereira. J. Genet. 91, 9–19. Table 1. Chromosome-wise distribution of SSR alleles and their number (k), polymorphic information content (PIC) and allele discrimination index (Dm). Chromosome.

  7. Empirical Refinements of a Molecular Genetics Learning Progression: The Molecular Constructs

    Science.gov (United States)

    Todd, Amber; Kenyon, Lisa

    2016-01-01

    This article describes revisions to four of the eight constructs of the Duncan molecular genetics learning progression [Duncan, Rogat, & Yarden, (2009)]. As learning progressions remain hypothetical models until validated by multiple rounds of empirical studies, these revisions are an important step toward validating the progression. Our…

  8. Primer on molecular genetics. DOE Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  9. EMQN/CMGS best practice guidelines for the molecular genetic testing of Huntington disease.

    Science.gov (United States)

    Losekoot, Monique; van Belzen, Martine J; Seneca, Sara; Bauer, Peter; Stenhouse, Susan A R; Barton, David E

    2013-05-01

    Huntington disease (HD) is caused by the expansion of an unstable polymorphic trinucleotide (CAG)n repeat in exon 1 of the HTT gene, which translates into an extended polyglutamine tract in the protein. Laboratory diagnosis of HD involves estimation of the number of CAG repeats. Molecular genetic testing for HD is offered in a wide range of laboratories both within and outside the European community. In order to measure the quality and raise the standard of molecular genetic testing in these laboratories, the European Molecular Genetics Quality Network has organized a yearly external quality assessment (EQA) scheme for molecular genetic testing of HD for over 10 years. EQA compares a laboratory's output with a fixed standard both for genotyping and reporting of the results to the referring physicians. In general, the standard of genotyping is very high but the clarity of interpretation and reporting of the test result varies more widely. This emphasizes the need for best practice guidelines for this disorder. We have therefore developed these best practice guidelines for genetic testing for HD to assist in testing and reporting of results. The analytical methods and the potential pitfalls of molecular genetic testing are highlighted and the implications of the different test outcomes for the consultand and his or her family members are discussed.

  10. Medulloblastoma: Molecular Genetics and Animal Models

    Directory of Open Access Journals (Sweden)

    Corey Raffel

    2004-07-01

    Full Text Available Medulloblastoma is a primary brain tumor found in the cerebellum of children. The tumor occurs in association with two inherited cancer syndromes: Turcot syndrome and Gorlin syndrome. Insights into the molecular biology of the tumor have come from looking at alterations in the genes altered in these syndromes, PTC and APC, respectively. Murine models of medulloblastoma have been constructed based on these alterations. Additional murine models that, while mimicking the appearance of the human tumor, seem unrelated to the human tumor's molecular alterations have been made. In this review, the clinical picture, origin, molecular biology, murine models of medulloblastoma are discussed. Although a great deal has been discovered about this tumor, the genetic alterations responsible for tumor development in a majority of patients have yet to be described.

  11. Molecular genetic approaches to the study of cellular senescence.

    Science.gov (United States)

    Goletz, T J; Smith, J R; Pereira-Smith, O M

    1994-01-01

    Cellular senescence is an inability of cells to synthesize DNA and divide, which results in a terminal loss of proliferation despite the maintenance of basic metabolic processes. Senescence has been proposed as a model for the study of aging at the cellular level, and the basis for this model system and its features have been summarized. Although strong experimental evidence exists to support the hypothesis that cellular senescence is a dominant active process, the mechanisms responsible for this phenomenon remain a mystery. Investigators have taken several approaches to gain a better understanding of senescence. Several groups have documented the differences between young and senescent cells, and others have identified changes that occur during the course of a cell's in vitro life span. Using molecular and biochemical approaches, important changes in gene expression and function of cell-cycle-associated products have been identified. The active production of an inhibitor of DNA synthesis has been demonstrated. This may represent the final step in a cascade of events governing senescence. The study of immortal cells which have escaped senescence has also provided useful information, particularly with regard to the genes governing the senescence program. These studies have identified four complementation groups for indefinite division, which suggests that there are at least four genes or gene pathways in the senescence program. Through the use of microcell-mediated chromosome transfer, chromosomes encoding senescence genes have been identified; efforts to clone these genes are ongoing.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Incorporating personalized gene sequence variants, molecular genetics knowledge, and health knowledge into an EHR prototype based on the Continuity of Care Record standard

    Science.gov (United States)

    Jing, Xia; Kay, Stephen; Marley, Tom; Hardiker, Nicholas R.; Cimino, James J.

    2011-01-01

    by the EHR to filter and present molecular genetics knowledge and health knowledge from OntoKBCF. Conclusions This research shows a feasible model for delivering patient sequence variants and presenting tailored molecular genetics knowledge and health knowledge via a standards-based EHR system prototype. EHR standards can be extended to include the necessary patient data (as we have demonstrated in the case of the CCR), while knowledge can be obtained from external knowledge bases that are created and maintained independently from the EHR. This approach can form the basis for a personalized medicine framework, a more comprehensive standards-based EHR system and a potential platform for advancing translational research by both disseminating results and providing opportunities for new insights into phenotype-genotype relationships. PMID:21946299

  13. A molecular genetic toolbox for Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Bredeweg, Erin L.; Pomraning, Kyle R.; Dai, Ziyu

    2017-01-01

    used these tools to build the "Yarrowia lipolytica Cell Atlas," a collection of strains with endogenous fluorescently tagged organelles in the same genetic background, in order to define organelle morphology in live cells. Conclusions: These molecular and isogenetic tools are useful for live assessment...

  14. DataGenno: building a new tool to bridge molecular and clinical genetics

    Directory of Open Access Journals (Sweden)

    Fabricio F Costa

    2011-03-01

    Full Text Available Fabricio F Costa1,2, Luciano S Foly1, Marcelo P Coutinho11DataGenno Interactive Research Ltd., Itaperuna, Rio de Janeiro, Brazil; 2Cancer Biology and Epigenomics Program, Children's Memorial Research Center, Northwestern University's Feinberg School of Medicine, Chicago, IL, USAAbstract: Clinical genetics is one of the most challenging fields in medicine, with thousands of children born every year with congenital defects that have no satisfactory diagnosis. There are more than 6,000 known single-gene disorders that can cause birth defects or diseases in approximately 1 in every 200 births. Clinical and molecular information on genetic diseases and syndromes are widespread in the literature, and there are few databases combining this information. Therefore, it is very challenging for health care professionals and researchers to translate the latest advances in science and medicine into effective clinical interventions and new treatments. In order to overcome this obstacle and promote networking, we are building DataGenno, an online medical and scientific portal. DataGenno has been developed to be a source of information on genetic diseases and syndromes for the needs of all heath care professionals and researchers. Our database will be able to integrate both clinical and molecular aspects of genetic diseases in a fully interactive environment. DataGenno’s system already contains clinical and molecular information for 300 diseases, with approximately 6,000 signs and symptoms of these diseases in a database combined with a search engine. Our main goal is to cover all genetic diseases described to date, providing not only clinical information such as morphological and anatomical features but also the most comprehensive molecular genetics/genomics features and available testing information. We are also developing ways to connect DataGenno’s portal with Electronic Health Records in order to improve the efficiency of patient care. Additionally

  15. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.

    Science.gov (United States)

    Wagner, James M; Alper, Hal S

    2016-04-01

    Coupling the tools of synthetic biology with traditional molecular genetic techniques can enable the rapid prototyping and optimization of yeast strains. While the era of yeast synthetic biology began in the well-characterized model organism Saccharomyces cerevisiae, it is swiftly expanding to include non-conventional yeast production systems such as Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. These yeasts already have roles in the manufacture of vaccines, therapeutic proteins, food additives, and biorenewable chemicals, but recent synthetic biology advances have the potential to greatly expand and diversify their impact on biotechnology. In this review, we summarize the development of synthetic biological tools (including promoters and terminators) and enabling molecular genetics approaches that have been applied in these four promising alternative biomanufacturing platforms. An emphasis is placed on synthetic parts and genome editing tools. Finally, we discuss examples of synthetic tools developed in other organisms that can be adapted or optimized for these hosts in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Genetic variability of hull-less barley accessions based on molecular and quantitative data

    Directory of Open Access Journals (Sweden)

    Ricardo Meneses Sayd

    2015-02-01

    Full Text Available The objective of this work was to characterize and quantify the genetic, molecular, and agronomic variability of hull-less barley genotypes, for the selection of parents and identification of genotypes adapted to the irrigated production system in the Brazilian Cerrado. Eighteen hull-less barley accessions were evaluated, and three covered barley accessions served as reference. The characterization was based on 157 RAPD molecular markers and ten agronomic traits. Genetic distance matrices were obtained based on molecular markers and quantitative traits. Graphic grouping and dispersion analyses were performed. Genetic, molecular, and agronomic variability was high among genotypes. Ethiopian accessions were genetically more similar, and the Brazilian ones were genetically more distant. For agronomic traits, two more consistent groupings were obtained, one with the most two-rowed materials, and the other with six-rowed materials. The more diverging materials were the two-rowed CI 13453, CN Cerrado 5, CN Cerrado 1, and CN Cerrado 2. The PI 356466, CN Cerrado 1, PI 370799, and CI 13453 genotypes show agronomic traits of interest and, as genetically different genotypes, they are indicated for crossing, in breeding programs.

  17. Genetic and molecular analysis of radon-induced rat lung tumours

    International Nuclear Information System (INIS)

    Guilly, M.N.; Joubert, Ch.; Levalois, C.; Dano, L.; Chevillard, S.

    2002-01-01

    We have a model of radon-induced rat lung tumours, which allow us to analyse the cytogenetic and molecular alterations of the tumours. The aim is to better understand the mechanisms of radio-induced carcinogenesis and to define if it exists a specificity of radio-induced genetic alterations as compared to the genetic alterations found in the sporadic tumours. We have started our analysis by developing global cytogenetic and molecular approaches. We have shown that some alterations are recurrent. The genes that are potentially involved are the oncogene MET and the tumour suppressor Bene p16, which are also frequently altered in human lung tumours. Simultaneously, we have focussed our analysis by targeting the search of mutation in the tumour suppressor gene TP3. We have found that 8 of 39 tumours were mutated by deletion in the coding sequence of TP53. This high frequency of deletion, which is not observed in the human p53 mutation database could constitute a signature of radio-induced alterations. On this assumption, this type of alteration should not be only found on TP53 Bene but also in other suppressor genes which are inactivated by a mutation such as p16 for example. The work we are carrying out on radio-induced tumours among humans and animals is directed to this end. (author)

  18. Molecular Characterization of Transgenic Events Using Next Generation Sequencing Approach.

    Science.gov (United States)

    Guttikonda, Satish K; Marri, Pradeep; Mammadov, Jafar; Ye, Liang; Soe, Khaing; Richey, Kimberly; Cruse, James; Zhuang, Meibao; Gao, Zhifang; Evans, Clive; Rounsley, Steve; Kumpatla, Siva P

    2016-01-01

    Demand for the commercial use of genetically modified (GM) crops has been increasing in light of the projected growth of world population to nine billion by 2050. A prerequisite of paramount importance for regulatory submissions is the rigorous safety assessment of GM crops. One of the components of safety assessment is molecular characterization at DNA level which helps to determine the copy number, integrity and stability of a transgene; characterize the integration site within a host genome; and confirm the absence of vector DNA. Historically, molecular characterization has been carried out using Southern blot analysis coupled with Sanger sequencing. While this is a robust approach to characterize the transgenic crops, it is both time- and resource-consuming. The emergence of next-generation sequencing (NGS) technologies has provided highly sensitive and cost- and labor-effective alternative for molecular characterization compared to traditional Southern blot analysis. Herein, we have demonstrated the successful application of both whole genome sequencing and target capture sequencing approaches for the characterization of single and stacked transgenic events and compared the results and inferences with traditional method with respect to key criteria required for regulatory submissions.

  19. Molecular Characterization of Transgenic Events Using Next Generation Sequencing Approach.

    Directory of Open Access Journals (Sweden)

    Satish K Guttikonda

    Full Text Available Demand for the commercial use of genetically modified (GM crops has been increasing in light of the projected growth of world population to nine billion by 2050. A prerequisite of paramount importance for regulatory submissions is the rigorous safety assessment of GM crops. One of the components of safety assessment is molecular characterization at DNA level which helps to determine the copy number, integrity and stability of a transgene; characterize the integration site within a host genome; and confirm the absence of vector DNA. Historically, molecular characterization has been carried out using Southern blot analysis coupled with Sanger sequencing. While this is a robust approach to characterize the transgenic crops, it is both time- and resource-consuming. The emergence of next-generation sequencing (NGS technologies has provided highly sensitive and cost- and labor-effective alternative for molecular characterization compared to traditional Southern blot analysis. Herein, we have demonstrated the successful application of both whole genome sequencing and target capture sequencing approaches for the characterization of single and stacked transgenic events and compared the results and inferences with traditional method with respect to key criteria required for regulatory submissions.

  20. Advances in molecular identification, taxonomy, genetic variation and diagnosis of Toxocara spp.

    Science.gov (United States)

    Chen, Jia; Zhou, Dong-Hui; Nisbet, Alasdair J; Xu, Min-Jun; Huang, Si-Yang; Li, Ming-Wei; Wang, Chun-Ren; Zhu, Xing-Quan

    2012-10-01

    The genus Toxocara contains parasitic nematodes of human and animal health significance, such as Toxocara canis, Toxocara cati and Toxocara vitulorum. T. canis and T. cati are among the most prevalent parasites of dogs and cats with a worldwide distribution. Human infection with T. canis and T. cati, which can cause a number of clinical manifestations such as visceral larva migrans (VLMs), ocular larva migrans (OLMs), eosinophilic meningoencephalitis (EME), covert toxocariasis (CT) and neurotoxocariasis, is considered the most prevalent neglected helminthiasis in industrialized countries. The accurate identification Toxocara spp. and their unequivocal differentiation from each other and from other ascaridoid nematodes causing VLMs and OLMs has important implications for studying their taxonomy, epidemiology, population genetics, diagnosis and control. Due to the limitations of traditional (morphological) approaches for identification and diagnosis of Toxocara spp., PCR-based techniques utilizing a range of genetic markers in the nuclear and mitochondrial genomes have been developed as useful alternative approaches because of their high sensitivity, specificity, rapidity and utility. In this article, we summarize the current state of knowledge and advances in molecular identification, taxonomy, genetic variation and diagnosis of Toxocara spp. with prospects for further studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Phenotypic and molecular genetic analysis of Pyruvate Kinase ...

    African Journals Online (AJOL)

    Phenotypic and molecular genetic analysis of Pyruvate Kinase deficiency in a Tunisian family. Jaouani Mouna, Hamdi Nadia, Chaouch Leila, Kalai Miniar, Mellouli Fethi, Darragi Imen, Boudriga Imen, Chaouachi Dorra, Bejaoui Mohamed, Abbes Salem ...

  2. [Genetic polymorphism of flax Linum usitatissimum based on use of molecular cytogenetic markers].

    Science.gov (United States)

    Rachinskaia, O A; Lemesh, V A; Muravenko, O V; Iurkevich, O Iu; Guzenko, E V; Bol'sheva, N L; Bogdanova, M V; Samatadze, T E; Popov, K V; Malyshev, S V; Shostak, N G; Heller, K; Khotyleva, L V; Zelenin, A V

    2011-01-01

    Using a set of approaches based on the use of molecular cytogenetic markers (DAPI/C-banding, estimation of the total area of DAPI-positive regions in prophase nuclei, FISH with 26S and 5S rDNA probes) and the microsatellite (SSR-PCR) assay, we studied genomic polymorphism in 15 flax (Linum usitatissimum L.) varieties from different geographic regions belonging to three directions of selection (oil, fiber, and intermediate flaxes) and in the k-37 x Viking hybrid. All individual chromosomes have been identified in the karyotypes of these varieties on the basis of the patterns of differential DAPI/C-banding and the distribution of 26S and 5S rDNA, and idiograms of the chromosomes have been generated. Unlike the oil flax varieties, the chromosomes in the karyotypes of the fiber flax varieties have, as a rule, pericentromeric and telomeric DAPI-positive bands of smaller size, but contain larger intercalary regions. Two chromosomal rearrangements (chromosome 3 inversions) were discovered in the variety Luna and in the k-37 x Viking hybrid. In both these forms, no colocalization of 26S rDNA and 5S rDNA on the satellite chromosome was detected. The SSR assay with the use of 20 polymorphic pairs of primers revealed 22 polymorphic loci. Based on the SSR data, we analyzed genetic similarity of the flax forms studied and constructed a genetic similarity dendrogram. The genotypes studied here form three clusters. The oil varieties comprise an independent cluster. The genetically related fiber flax varieties Vita and Luna, as well as the landrace Lipinska XIII belonging to the intermediate type, proved to be closer to the oil varieties than the remaining fiber flax varieties. The results of the molecular chromosomal analysis in the fiber and oil flaxes confirm their very close genetic similarity. In spite of this, the combined use of the chromosomal and molecular markers has opened up unique possibilities for describing the genotypes of flax varieties and creating their genetic

  3. Use of molecular genetics and historical records to reconstruct the ...

    African Journals Online (AJOL)

    Recent advances in molecular genetics made the inference of past demographic events through the analysis of gene pools from modern populations possible. The technology uses genetic markers to provide previously unavailable resolution into questions of human evolution, migration and the historical relationship of ...

  4. Genetic factors and molecular mechanisms in dry eye disease.

    Science.gov (United States)

    Lee, Ling; Garrett, Qian; Flanagan, Judith; Chakrabarti, Subhabrata; Papas, Eric

    2018-04-01

    Dry eye disease (DED) is a complex condition with a multifactorial etiology that can be difficult to manage successfully. While external factors are modifiable, treatment success is limited if genetic factors contribute to the disease. The purpose of this review is to compile research describing normal and abnormal ocular surface function on a molecular level, appraise genetic studies involving DED or DED-associated diseases, and introduce the basic methods used for conducting genetic epidemiology studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Molecular species identification and population genetics of ...

    African Journals Online (AJOL)

    Molecular genetic techniques, such as DNA barcoding and genotyping, are increasingly being used to assist with the conservation and management of chondrichthyans worldwide. Southern Africa is a shark biodiversity hotspot, with a large number of endemic species. According to the IUCN Red List, a quarter of South ...

  6. Molecular diversity and genetic relationships in Secale

    Indian Academy of Sciences (India)

    The objective of this study was to quantify the molecular diversity and to determine the genetic relationships amongSecalespp. and among cultivars ofSecale ... Faculty of Sciences, Campo Grande, Lisboa, Portugal; Departamento de Genética, Facultad de Biologia, Universidad Complutense, C/ José Antonio Novais, 12, ...

  7. Molecular Genetic of Atopic dermatitis: An Update

    Science.gov (United States)

    Al-Shobaili, Hani A.; Ahmed, Ahmed A.; Alnomair, Naief; Alobead, Zeiad Abdulaziz; Rasheed, Zafar

    2016-01-01

    Atopic dermatitis (AD) is a chronic multifactorial inflammatory skin disease. The pathogenesis of AD remains unclear, but the disease results from dysfunctions of skin barrier and immune response, where both genetic and environmental factors play a key role. Recent studies demonstrate the substantial evidences that show a strong genetic association with AD. As for example, AD patients have a positive family history and have a concordance rate in twins. Moreover, several candidate genes have now been suspected that play a central role in the genetic background of AD. In last decade advanced procedures similar to genome-wide association (GWA) and single nucleotide polymorphism (SNP) have been applied on different population and now it has been clarified that AD is significantly associated with genes of innate/adaptive immune systems, human leukocyte antigens (HLA), cytokines, chemokines, drug-metabolizing genes or various other genes. In this review, we will highlight the recent advancements in the molecular genetics of AD, especially on possible functional relevance of genetic variants discovered to date. PMID:27004062

  8. Molecular markers unravel intraspecific and interspecific genetic ...

    Indian Academy of Sciences (India)

    [Kotwal S., Dhar M. K., Kour B., Raj K. and Kaul S. 2013 Molecular markers unravel intraspecific and interspecific genetic variability in ... of bowel problems including chronic constipation, amoebic ..... while to select parents from accessions, Pov80 and Pov79 ... nology (DBT), Govt. of India, for financial assistance in the form.

  9. Generalizing genetical genomics: getting added value from environmental perturbation.

    Science.gov (United States)

    Li, Yang; Breitling, Rainer; Jansen, Ritsert C

    2008-10-01

    Genetical genomics is a useful approach for studying the effect of genetic perturbations on biological systems at the molecular level. However, molecular networks depend on the environmental conditions and, thus, a comprehensive understanding of biological systems requires studying them across multiple environments. We propose a generalization of genetical genomics, which combines genetic and sensibly chosen environmental perturbations, to study the plasticity of molecular networks. This strategy forms a crucial step toward understanding why individuals respond differently to drugs, toxins, pathogens, nutrients and other environmental influences. Here we outline a strategy for selecting and allocating individuals to particular treatments, and we discuss the promises and pitfalls of the generalized genetical genomics approach.

  10. New approaches in mathematical biology: Information theory and molecular machines

    International Nuclear Information System (INIS)

    Schneider, T.

    1995-01-01

    My research uses classical information theory to study genetic systems. Information theory was founded by Claude Shannon in the 1940's and has had an enormous impact on communications engineering and computer sciences. Shannon found a way to measure information. This measure can be used to precisely characterize the sequence conservation at nucleic-acid binding sites. The resulting methods, by completely replacing the use of ''consensus sequences'', provide better models for molecular biologists. An excess of conservation led us to do experimental work on bacteriophage T7 promoters and the F plasmid IncD repeats. The wonderful fidelity of telephone communications and compact disk (CD) music can be traced directly to Shannon's channel capacity theorem. When rederived for molecular biology, this theorem explains the surprising precision of many molecular events. Through connections with the Second Law of Thermodyanmics and Maxwell's Demon, this approach also has implications for the development of technology at the molecular level. Discussions of these topics are held on the internet news group bionet.info-theo. (author). (Abstract only)

  11. Molecular Genetics of Beauveria bassiana Infection of Insects.

    Science.gov (United States)

    Ortiz-Urquiza, A; Keyhani, N O

    2016-01-01

    Research on the insect pathogenic filamentous fungus, Beauveria bassiana has witnessed significant growth in recent years from mainly physiological studies related to its insect biological control potential, to addressing fundamental questions regarding the underlying molecular mechanisms of fungal development and virulence. This has been in part due to a confluence of robust genetic tools and genomic resources for the fungus, and recognition of expanded ecological interactions with which the fungus engages. Beauveria bassiana is a broad host range insect pathogen that has the ability to form intimate symbiotic relationships with plants. Indeed, there is an increasing realization that the latter may be the predominant environmental interaction in which the fungus participates, and that insect parasitism may be an opportunist lifestyle evolved due to the carbon- and nitrogen-rich resources present in insect bodies. Here, we will review progress on the molecular genetics of B. bassiana, which has largely been directed toward identifying genetic pathways involved in stress response and virulence assumed to have practical applications in improving the insect control potential of the fungus. Important strides have also been made in understanding aspects of B. bassiana development. Finally, although increasingly apparent in a number of studies, there is a need for progressing beyond phenotypic mutant characterization to sufficiently investigate the molecular mechanisms underlying B. bassiana's unique and diverse lifestyles as saprophyte, insect pathogen, and plant mutualist. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Molecular and genetic mechanisms of environmental mutagens

    International Nuclear Information System (INIS)

    Kubitschek, H.E.; Derstine, P.L.; Griego, V.M.; Matsushita, T.; Peak, J.G.; Peak, M.J.; Reynolds, P.R.; Webb, R.B.; Williams-Hill, D.

    1981-01-01

    This program is primarily concerned with elucidation of the nature of DNA lesions produced by environmental and energy related mutagens, their mechanisms of action, and their repair. The main focus is on actions of chemical mutagens and electromagnetic radiations. Synergistic interactions between mutagens and the mutational processes that lead to synergism are being investigated. Mutagens are chosen for study on the basis of their potential for analysis of mutation (as genetic probes), for development of procedures for reducing mutational damage, for their potential importance to risk assessment, and for development of improved mutagen testing systems. Bacterial cells are used because of the rapidity and clarity of scientific results that can be obtained, the detailed genetic maps, and the many well-defined mutand strains available. The conventional tools of microbial and molecular genetics are used, along with intercomparison of genetically related strains. Advantage is taken of tcollective dose commitment will result in more attention being paid to potential releases of radionuclides at relatively short times after disposal

  13. Genetic Diversity Analysis in 27 Tomato Accessions Using Morphological and Molecular Markers

    Directory of Open Access Journals (Sweden)

    Catur Herison

    2018-02-01

    Full Text Available Genetic diversity is the most important aspect in tomato breeding activities. Better assessment on the diversity of the collected accessions will come up with better result of the cultivar development. This study aimed at analyzing the genetic diversity of 27 tomato accessions by morphological and molecular markers. Twenty seven accessions collected from various regions of Indonesia were planted in the field and evaluated for their morphological traits, and RAPD analyzed for their molecular markers. The UPGMA clustering analyzes, elaborating the combination of morphological and molecular data, indicated that the tomato accessions could be grouped into 5 major groups with 70 % genetic similarity levels. Current study indicated that although many accessions came from different locations, they congregated into the same group. Cherry, Kudamati 1 and Lombok 3 were the farthest genetic distant accessions to the others. Those three genotypes will be the most valuable accessions, when they were crossed with other accessions, for designing a prospective breeding program in the future.

  14. Genetic diversity in cultivated carioca common beans based on molecular marker analysis

    Directory of Open Access Journals (Sweden)

    Juliana Morini Küpper Cardoso Perseguini

    2011-01-01

    Full Text Available A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats - SSRs and amplified fragment length polymorphisms - AFLPs for assessing the genetic diversity of carioca beans. The amount of information provided by Roger's modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm.

  15. [The development of molecular human genetics and its significance for perspectives of modern medicine].

    Science.gov (United States)

    Coutelle, C; Speer, A; Grade, K; Rosenthal, A; Hunger, H D

    1989-01-01

    The introduction of molecular human genetics has become a paradigma for the application of genetic engineering in medicine. The main principles of this technology are the isolation of molecular probes, their application in hybridization reactions, specific gene-amplification by the polymerase chain reaction, and DNA sequencing reactions. These methods are used for the analysis of monogenic diseases by linkage studies and the elucidation of the molecular defect causing these conditions, respectively. They are also the basis for genomic diagnosis of monogenic diseases, introduced into the health care system of the GDR by a national project on Duchenne/Becker muscular dystrophy, Cystic Fibrosis and Phenylketonuria. The rapid development of basic research on the molecular analysis of the human genome and genomic diagnosis indicates, that human molecular genetics is becoming a decisive basic discipline of modern medicine.

  16. Molecular genetics and genomics generate new insights into invertebrate pest invasions.

    Science.gov (United States)

    Kirk, Heather; Dorn, Silvia; Mazzi, Dominique

    2013-07-01

    Invertebrate pest invasions and outbreaks are associated with high social, economic, and ecological costs, and their significance will intensify with an increasing pressure on agricultural productivity as a result of human population growth and climate change. New molecular genetic and genomic techniques are available and accessible, but have been grossly underutilized in studies of invertebrate pest invasions, despite that they are useful tools for applied pest management and for understanding fundamental features of pest invasions including pest population demographics and adaptation of pests to novel and/or changing environments. Here, we review current applications of molecular genetics and genomics in the study of invertebrate pest invasions and outbreaks, and we highlight shortcomings from the current body of research. We then discuss recent conceptual and methodological advances in the areas of molecular genetics/genomics and data analysis, and we highlight how these advances will further our understanding of the demographic, ecological, and evolutionary features of invertebrate pest invasions. We are now well equipped to use molecular data to understand invertebrate dispersal and adaptation, and this knowledge has valuable applications in agriculture at a time when these are critically required.

  17. On Gene Concepts and Teaching Genetics: Episodes from Classical Genetics

    Science.gov (United States)

    Burian, Richard M.

    2013-02-01

    This paper addresses the teaching of advanced high school courses or undergraduate courses for non-biology majors about genetics or history of genetics. It will probably be difficult to take the approach described here in a high school science course, although the general approach could help improve such courses. It would be ideal for a college course in history of genetics or a course designed to teach non-science majors how science works or the rudiments of the genetics in a way that will help them as citizens. The approach aims to teach the processes of discovery, correction, and validation by utilizing illustrative episodes from the history of genetics. The episodes are treated in way that should foster understanding of basic questions about genes, the sorts of techniques used to answer questions about the constitution and structure of genes, how they function, and what they determine, and some of the major biological disagreements that arose in dealing with these questions. The material covered here could be connected to social and political issues raised by genetics, but these connections are not surveyed here. As it is, to cover this much territory, the article is limited to four major episodes from Mendel's paper to the beginning of World War II. A sequel will deal with the molecularization of genetics and with molecular gene concepts through the Human Genome Project.

  18. Introduction to focus issue: quantitative approaches to genetic networks.

    Science.gov (United States)

    Albert, Réka; Collins, James J; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks

  19. Molecular Darwinism: the contingency of spontaneous genetic variation.

    Science.gov (United States)

    Arber, Werner

    2011-01-01

    The availability of spontaneously occurring genetic variants is an important driving force of biological evolution. Largely thanks to experimental investigations by microbial geneticists, we know today that several different molecular mechanisms contribute to the overall genetic variations. These mechanisms can be assigned to three natural strategies to generate genetic variants: 1) local sequence changes, 2) intragenomic reshuffling of DNA segments, and 3) acquisition of a segment of foreign DNA. In these processes, specific gene products are involved in cooperation with different nongenetic elements. Some genetic variations occur fully at random along the DNA filaments, others rather with a statistical reproducibility, although at many possible sites. We have to be aware that evolution in natural ecosystems is of higher complexity than under most laboratory conditions, not at least in view of symbiotic associations and the occurrence of horizontal gene transfer. The encountered contingency of genetic variation can possibly best ensure a long-term persistence of life under steadily changing living conditions.

  20. Population genetic structure of rare and endangered plants using molecular markers

    Science.gov (United States)

    Raji, Jennifer; Atkinson, Carter T.

    2013-01-01

    This study was initiated to assess the levels of genetic diversity and differentiation in the remaining populations of Phyllostegia stachyoides and Melicope zahlbruckneri in Hawai`i Volcanoes National Park and determine the extent of gene flow to identify genetically distinct individuals or groups for conservation purposes. Thirty-six Amplified Fragment Length Polymorphic (AFLP) primer combinations generated a total of 3,242 polymorphic deoxyribonucleic acid (DNA) fragments in the P. stachyoides population with a percentage of polymorphic bands (PPB) ranging from 39.3 to 65.7% and 2,780 for the M. zahlbruckneri population with a PPB of 18.8 to 64.6%. Population differentiation (Fst) of AFLP loci between subpopulations of P. stachyoides was low (0.043) across populations. Analysis of molecular variance of P. stachyoides showed that 4% of the observed genetic differentiation occurred between populations in different kīpuka and 96% when individuals were pooled from all kīpuka. Moderate genetic diversity was detected within the M. zahlbruckneri population. Bayesian and multivariate analyses both classified the P. stachyoides and M. zahlbruckneri populations into genetic groups with considerable sub-structuring detected in the P. stachyoides population. The proportion of genetic differentiation among populations explained by geographical distance was estimated by Mantel tests. No spatial correlation was found between genetic and geographic distances in both populations. Finally, a moderate but significant gene flow that could be attributed to insect or bird-mediated dispersal of pollen across the different kīpuka was observed. The results of this study highlight the utility of a multi-allelic DNA-based marker in screening a large number of polymorphic loci in small and closely related endangered populations and revealed the presence of genetically unique groups of individuals in both M. zahlbruckneri and P. stachyoides populations. Based on these findings

  1. Unraveling the genetic landscape of autosomal recessive Charcot-Marie-Tooth neuropathies using a homozygosity mapping approach

    Science.gov (United States)

    Zimoń, Magdalena; Battaloǧlu, Esra; Parman, Yesim; Erdem, Sevim; Baets, Jonathan; De Vriendt, Els; Atkinson, Derek; Almeida-Souza, Leonardo; Deconinck, Tine; Ozes, Burcak; Goossens, Dirk; Cirak, Sebahattin; Van Damme, Philip; Shboul, Mohammad; Voit, Thomas; Van Maldergem, Lionel; Dan, Bernard; El-Khateeb, Mohammed S.; Guergueltcheva, Velina; Lopez-Laso, Eduardo; Goemans, Nathalie; Masri, Amira; Züchner, Stephan; Timmerman, Vincent; Topaloǧlu, Haluk; De Jonghe, Peter

    2016-01-01

    Autosomal recessive forms of Charcot-Marie-Tooth disease (ARCMT) are rare but severe disorders of the peripheral nervous system. Their molecular basis is poorly understood due to the extensive genetic and clinical heterogeneity, posing considerable challenges for patients, physicians, and researchers. We report on the genetic findings from a systematic study of a large collection of 174 independent ARCMT families. Initial sequencing of the three most common ARCMT genes (ganglioside-induced differentiation protein 1—GDAP1, SH3 domain and tetratricopeptide repeats-containing protein 2—SH3TC2, histidine-triad nucleotide binding protein 1—HINT1) identified pathogenic mutations in 41 patients. Subsequently, 87 selected nuclear families underwent single nucleotide polymorphism (SNP) genotyping and homozygosity mapping, followed by targeted screening of known ARCMT genes. This strategy provided molecular diagnosis to 22 % of the families. Altogether, our unbiased genetic approach identified pathogenic mutations in ten ARCMT genes in a total of 41.3 % patients. Apart from a newly described founder mutation in GDAP1, the majority of variants constitute private molecular defects. Since the gene testing was independent of the clinical phenotype of the patients, we identified mutations in patients with unusual or additional clinical features, extending the phenotypic spectrum of the SH3TC2 gene. Our study provides an overview of the ARCMT genetic landscape and proposes guidelines for tackling the genetic heterogeneity of this group of hereditary neuropathies. PMID:25231362

  2. Molecular Insights into the Genetic Diversity of Garcinia cambogia Germplasm Accessions

    Directory of Open Access Journals (Sweden)

    C Tharachand

    2015-10-01

    Full Text Available ABSTRACTIn this work, the genetic relationship among twelveGarcinia cambogia (Gaertn. Desr. accessions were evaluated using Random Amplified Polymorphic DNA markers. The samples were part of the germplasm collected and maintained at NBPGR Regional station, Thrissur, India. Out of thirty RAPD primers used for screening, seven primers produced a total of 128 polymorphic markers in twelve accessions. The Polymorphic Information Content (PIC ranged from 0.28 (OPA18 to 0.37 (OPA9 and Marker Index (MI ranged between 3.61 (OPA12 and 5.93 (OPA3 among the primers used. Jaccard's coefficient of genetic similarity ranged between 0.07 and 0.64. The dendrogram constructed based on the similarity matrix generated from the molecular and morphological data showed the genetic relationship among the sampled accessions. Mantel matrix test showed a positive correlation (r = 0.49 between the cluster analysis of RAPD data and morphological data. The clustering pattern in the molecular dendrogram and Principle Coordinate Analysis (PCoA showed that the genotypes were diverse, which was in congruence with the similarity index values and morphological dendrogram. High frequency of similarity values in the range of 0.11 to 0.17 suggested the existence of high genetic diversity among the accessions. The high level of genetic diversity among the studied accessions ofG.cambogia was also supported by the large variation in the morphological characters observed in the flowers, leaves, fruits and seeds of these sampled accessions. This is the first report for the molecular based genetic diversity studies for these accessions.

  3. Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging.

    Science.gov (United States)

    Gilad, Assaf A; Shapiro, Mikhail G

    2017-06-01

    Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.

  4. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    2011-01-01

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  5. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  6. Genetic diversity analysis of common beans based on molecular markers.

    Science.gov (United States)

    Gill-Langarica, Homar R; Muruaga-Martínez, José S; Vargas-Vázquez, M L Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-10-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  7. The molecular genetic basis of age-related macular degeneration ...

    Indian Academy of Sciences (India)

    2009-12-10

    Dec 10, 2009 ... this review, we have provided an overview on the underlying molecular genetic mechanisms in AMD worldwide and highlight ..... eases like diabetes (Scott et al. ...... 2006 Systematic review and meta-analysis of.

  8. A genetic analysis of segregation distortion revealed by molecular ...

    Indian Academy of Sciences (India)

    Journal of Genetics, Vol. 90, No. ... Segregation analysis was based on 64 molecular markers, including 26 .... FHB of RIL populations was controlled by quantitative trait ... The authors acknowledge financial support by the National Basic.

  9. Management of insect pests: Nuclear and related molecular and genetic techniques

    International Nuclear Information System (INIS)

    1993-01-01

    The conference was organized in eight sessions: opening, genetic engineering and molecular biology, genetics, operational programmes, F 1 sterility and insect behaviour, biocontrol, research and development on the tsetse fly, and quarantine. The 64 individual contributions have been indexed separately for INIS. Refs, figs and tabs

  10. Integrating survey and molecular approaches to better understand wildlife disease ecology.

    Directory of Open Access Journals (Sweden)

    Brendan D Cowled

    Full Text Available Infectious wildlife diseases have enormous global impacts, leading to human pandemics, global biodiversity declines and socio-economic hardship. Understanding how infection persists and is transmitted in wildlife is critical for managing diseases, but our understanding is limited. Our study aim was to better understand how infectious disease persists in wildlife populations by integrating genetics, ecology and epidemiology approaches. Specifically, we aimed to determine whether environmental or host factors were stronger drivers of Salmonella persistence or transmission within a remote and isolated wild pig (Sus scrofa population. We determined the Salmonella infection status of wild pigs. Salmonella isolates were genotyped and a range of data was collected on putative risk factors for Salmonella transmission. We a priori identified several plausible biological hypotheses for Salmonella prevalence (cross sectional study design versus transmission (molecular case series study design and fit the data to these models. There were 543 wild pig Salmonella observations, sampled at 93 unique locations. Salmonella prevalence was 41% (95% confidence interval [CI]: 37-45%. The median Salmonella DICE coefficient (or Salmonella genetic similarity was 52% (interquartile range [IQR]: 42-62%. Using the traditional cross sectional prevalence study design, the only supported model was based on the hypothesis that abundance of available ecological resources determines Salmonella prevalence in wild pigs. In the molecular study design, spatial proximity and herd membership as well as some individual risk factors (sex, condition score and relative density determined transmission between pigs. Traditional cross sectional surveys and molecular epidemiological approaches are complementary and together can enhance understanding of disease ecology: abundance of ecological resources critical for wildlife influences Salmonella prevalence, whereas Salmonella transmission is

  11. Integrating Survey and Molecular Approaches to Better Understand Wildlife Disease Ecology

    Science.gov (United States)

    Cowled, Brendan D.; Ward, Michael P.; Laffan, Shawn W.; Galea, Francesca; Garner, M. Graeme; MacDonald, Anna J.; Marsh, Ian; Muellner, Petra; Negus, Katherine; Quasim, Sumaiya; Woolnough, Andrew P.; Sarre, Stephen D.

    2012-01-01

    Infectious wildlife diseases have enormous global impacts, leading to human pandemics, global biodiversity declines and socio-economic hardship. Understanding how infection persists and is transmitted in wildlife is critical for managing diseases, but our understanding is limited. Our study aim was to better understand how infectious disease persists in wildlife populations by integrating genetics, ecology and epidemiology approaches. Specifically, we aimed to determine whether environmental or host factors were stronger drivers of Salmonella persistence or transmission within a remote and isolated wild pig (Sus scrofa) population. We determined the Salmonella infection status of wild pigs. Salmonella isolates were genotyped and a range of data was collected on putative risk factors for Salmonella transmission. We a priori identified several plausible biological hypotheses for Salmonella prevalence (cross sectional study design) versus transmission (molecular case series study design) and fit the data to these models. There were 543 wild pig Salmonella observations, sampled at 93 unique locations. Salmonella prevalence was 41% (95% confidence interval [CI]: 37–45%). The median Salmonella DICE coefficient (or Salmonella genetic similarity) was 52% (interquartile range [IQR]: 42–62%). Using the traditional cross sectional prevalence study design, the only supported model was based on the hypothesis that abundance of available ecological resources determines Salmonella prevalence in wild pigs. In the molecular study design, spatial proximity and herd membership as well as some individual risk factors (sex, condition score and relative density) determined transmission between pigs. Traditional cross sectional surveys and molecular epidemiological approaches are complementary and together can enhance understanding of disease ecology: abundance of ecological resources critical for wildlife influences Salmonella prevalence, whereas Salmonella transmission is driven by

  12. The Molecular Epidemiology and Genetic Environment of Carbapenemases Detected in Africa.

    Science.gov (United States)

    Sekyere, John Osei; Govinden, Usha; Essack, Sabiha

    2016-01-01

    Research articles describing carbapenemases and their genetic environments in Gram-negative bacteria were reviewed to determine the molecular epidemiology of carbapenemases in Africa. The emergence of resistance to the carbapenems, the last resort antibiotic for difficult to treat bacterial infections, affords clinicians few therapeutic options, with a resulting increase in morbidities, mortalities, and healthcare costs. However, the molecular epidemiology of carbapenemases throughout Africa is less described. Research articles and conference proceedings describing the genetic environment and molecular epidemiology of carbapenemases in Africa were retrieved from Google Scholar, Scifinder, Pubmed, Web of Science, and Science Direct databases. Predominant carbapenemase genes so far described in Africa include the blaOXA-48 type, blaIMP, blaVIM, and blaNDM in Acinetobacter baumannii, Klebsiella pneumoniae, Enterobacter cloacae, Citrobacter spp., and Escherichia coli carried on various plasmid types and sizes, transposons, and integrons. Class D and class B carbapenemases, mainly prevalent in A. baumannii, K. pneumoniae, E. cloacae, Citrobacter spp., and E. coli were the commonest carbapenemases. Carbapenemases are mainly reported in North and South Africa as under-resourced laboratories, lack of awareness and funding preclude the detection and reporting of carbapenemase-mediated resistance. Consequently, the true molecular epidemiology of carbapenemases and their genetic environment in Africa is still unknown.

  13. Molecular genetic markers for thyroid FNAB. Established assays and future perspective.

    Science.gov (United States)

    Musholt, Thomas J; Musholt, P B

    2015-01-01

    Thyroid nodules > 1 cm are observed in about 12% of unselected adult employees aged 18-65 years screened by ultrasound scan (40). While intensive ultrasound screening leads to early detection of thyroid diseases, the determination of benign or malignant behaviour remains uncertain and may trigger anxieties in many patients and their physicians. A considerable number of thyroid resections are consecutively performed due to suspicion of malignancy in the detected nodes. Fine needle aspiration biopsy (FNAB) has been recommended for the assessment of thyroid nodules to facilitate detection of thyroid carcinomas but also to rule out malignancy and thereby avoid unnecessary thyroid resections. However, cytology results are dependent on experience of the respective cytologist and unfortunately inconclusive in many cases. Molecular genetic markers are already used nowadays to enhance sensitivity and specificity of FNAB cytology in some centers in Germany. The most clinically relevant molecular genetic markers as pre-operative diagnostic tools and the clinical implications for the intraoperative and postoperative management were reviewed. Molecular genetic markers predominantly focus on the preoperative detection of thyroid malignancies rather than the exclusion of thyroid carcinomas. While some centers routinely assess FNABs, other centers concentrate on FNABs with cytology results of follicular neoplasia or suspicion of thyroid carcinoma. Predominantly mutations of BRAF, RET/PTC, RAS, and PAX8/PPARγ or expression of miRNAs are analyzed. However, only the detection of BRAF mutations predicts the presence of (papillary) thyroid malignancy with almost 98% probability, indicating necessity of oncologic thyroid resections irrespective of the cytology result. Other genetic alterations are associated with thyroid malignancy with varying frequency and achieve less impact on the clinical management. Molecular genetic analysis of FNABs is increasingly performed in Germany

  14. 76 FR 18227 - Molecular and Clinical Genetics Panel of the Medical Devices Advisory Committee; Notice of...

    Science.gov (United States)

    2011-04-01

    ...] Molecular and Clinical Genetics Panel of the Medical Devices Advisory Committee; Notice of Meeting... comment period for the notice announcing a meeting of the Molecular and Clinical Genetics Panel (the panel... Clinical Genetics Panel of the Medical Devices Advisory Committee, and the opening of a public docket to...

  15. Molecular genetic studies of bacteroides fragilis

    International Nuclear Information System (INIS)

    Southern, J.A.

    1986-03-01

    This study aimed at providing a means for probing the molecular genetic organization of B.fragilis, particularly those strains where the DNA repair mechanisms had been described. The following routes of investigation were followed: the bacteriocin of B.fragilis BF-1; the investigation of any plasmids which might be discovered, with the aim of constructing a hybrid plasmid which might replicate in both E.coli and B.fragilis; and the preparation of a genetic library which could be screened for Bacteroides genes which might function in E.coli. Should any genes be isolated by screening the library they were to be studied with regard to their expression and regulation in E.coli. The above assays make use of radioactive markers such as 14 C, 35 S, 32 P, and 3 H in the labelling of RNA, plasmids and probes

  16. Panel 4: Recent Advances in Otitis Media in Molecular Biology, Biochemistry, Genetics, and Animal Models

    Science.gov (United States)

    Li, Jian-Dong; Hermansson, Ann; Ryan, Allen F.; Bakaletz, Lauren O.; Brown, Steve D.; Cheeseman, Michael T.; Juhn, Steven K.; Jung, Timothy T. K.; Lim, David J.; Lim, Jae Hyang; Lin, Jizhen; Moon, Sung-Kyun; Post, J. Christopher

    2014-01-01

    Background Otitis media (OM) is the most common childhood bacterial infection and also the leading cause of conductive hearing loss in children. Currently, there is an urgent need for developing novel therapeutic agents for treating OM based on full understanding of molecular pathogenesis in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Objective To provide a state-of-the-art review concerning recent advances in OM in the areas of molecular biology, biochemistry, genetics, and animal model studies and to discuss the future directions of OM studies in these areas. Data Sources and Review Methods A structured search of the current literature (since June 2007). The authors searched PubMed for published literature in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Results Over the past 4 years, significant progress has been made in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. These studies brought new insights into our understanding of the molecular and biochemical mechanisms underlying the molecular pathogenesis of OM and helped identify novel therapeutic targets for OM. Conclusions and Implications for Practice Our understanding of the molecular pathogenesis of OM has been significantly advanced, particularly in the areas of inflammation, innate immunity, mucus overproduction, mucosal hyperplasia, middle ear and inner ear interaction, genetics, genome sequencing, and animal model studies. Although these studies are still in their experimental stages, they help identify new potential therapeutic targets. Future preclinical and clinical studies will help to translate these exciting experimental research findings into clinical applications. PMID:23536532

  17. Molecular research on the genetic diversity of Tunisian date palm ...

    African Journals Online (AJOL)

    Molecular research on the genetic diversity of Tunisian date palm ( Phoenix dactylifera L.) using the random amplified microsatellite polymorphism (RAMPO) and amplified fragment length polymorphism (AFLP) methods.

  18. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study

    Directory of Open Access Journals (Sweden)

    Flávio de Oliveira Francisco

    2013-01-01

    Full Text Available Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings.

  19. Molecular genetics of hemophilia A: Clinical perspectives | Tantawy ...

    African Journals Online (AJOL)

    Since the publication of the sequence of the factor VIII (F8) gene in 1984, a large number of mutations that cause hemophilia A have been identified and a significant progress has been made in translating this knowledge for clinical diagnostic and therapeutic purposes. Molecular genetic testing is used to determine the ...

  20. Nasopharyngeal angiofibroma: review of the genetic and molecular aspects

    Directory of Open Access Journals (Sweden)

    Oliveira, Viviane Boaventura de

    2008-09-01

    Full Text Available Introduction: Juvenile nasopharyngeal angiofibroma (JNA is a rare fibrovascular tumor of unknown etiology, with few studies analyzing its pathogenesis. Objective: Reviewing JNA's pathogenesis, emphasizing genetic and molecular aspects. Method: All the relevant articles indexed in PUBMED and LILACS, besides reference book chapters, published between 1959 and 2007 were reviewed. Results: The sex selectivity seen in JNA may be explained by intranuclear accumulation of androgen receptor and beta-catenin, a co-activator which increases the tumor sensitivity to androgynous. The genetic alterations seen in JNA are most frequently located in sexual chromosomes. A number of growth factors seem to be related to the tumor pathogenesis. The insulin-like growth factor II is highly expressed while the vascular endothelial growth factor and the transforming growth factor beta are released by stromal cells and may influence the JNA's growth and vascularization. Conclusion: In spite of the scarce data describing the JNA etiology and pathogenesis, genetic and molecular factors seem to collaborate to the understanding of the disease's many clinical and morphological features. Knowledge regarding these specific issues could contribute for the establishment of potential therapeutic targets in the future.

  1. Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241)

    DEFF Research Database (Denmark)

    Pilu, R.; Panzeri, D.; Gavazzi, G.

    2003-01-01

    -nutritional factor for animals, and isolation of maize low phytic acid (lpa) mutants provides a novel approach to study its biochemical pathway and to tackle the nutritional problems associated with it. Following chemical mutagenesis of pollen, we have isolated a viable recessive mutant named lpa 241 showing about...... 90% reduction of phytic acid and about a tenfold increase in seed-free phosphate content. Although germination rate was decreased by about 30% compared to wild-type, developement of mutant plants was apparentely unaffected. The results of the genetic, biochemical and molecular characterization...

  2. Molecular Markers for Genetic Diversity Studies of European Hare (Lepus europaeus Pallas, 1778 Populations

    Directory of Open Access Journals (Sweden)

    Noémi Soós

    2015-05-01

    Full Text Available The purpose of this article is to give an overview of different molecular techniques which have been used in studies concerning population genetic issues of Lepus species and specifically of L. europaeus. The importance of these researches is ever-growing as the European populations of the brown hare have suffered several falloffs as a consequent upon both natural and anthropogenic effects. With developing tools and techniques molecular genetics have become the centrepiece of population genetics and conservation biology. Nucleic acid methods based on both bi- and uniparentally inherited DNA (allozymes, microsatellites, Y chromosome, mtDNA are often used to study genetic structure, diversity and phylogeography of different species’ populations due to their effectiveness in identifying genetic variability

  3. Construction of intergeneric conjugal transfer for molecular genetic ...

    African Journals Online (AJOL)

    SAM

    2014-03-26

    Mar 26, 2014 ... The attB integration site in the S. mobaraensis genome was detected as a single attB ... present study, to promote the molecular genetic study of. S. mobaraensis .... further increase in the number of E. coli donor cells. (≥1.25 × 108) (Choi et .... rational mutagenesis and random mutagenesis. Appl. Microbiol.

  4. Generalizing genetical genomics : getting added value from environmental perturbation

    NARCIS (Netherlands)

    Li, Yang; Breitling, Rainer; Jansen, Ritsert C.

    2008-01-01

    Genetical genomics is a useful approach for studying the effect of genetic perturbations on biological systems at the molecular level. However, molecular networks depend on the environmental conditions and, thus, a comprehensive understanding of biological systems requires studying them across

  5. Hamartomatous polyps - a clinical and molecular genetic study

    DEFF Research Database (Denmark)

    Jelsig, Anne Marie

    2016-01-01

    the knowledge on clinical course and molecular genetics in patients with HPs and HPS, and to investigate research participants' attitude towards the results of extensive genetic testing. Paper I: In the first paper we investigated the occurrence, anatomic distribution, and other demographics of juvenile polyps...... appearance. Patients with one or a few juvenile polyps are usually not offered clinical follow-up as the polyp(s) are considered not to harbour any malignant potential. Nevertheless, it is important to note that juvenile polyps and HPs are also found in patients with hereditary hamartomatous polyposis......-Jeghers syndrome, and the PTEN hamartoma tumour syndrome. Currently, the HPS diagnoses are based on clinical criteria and are often assisted with genetic testing as candidate genes have been described for each syndrome. This thesis is based on six scientific papers. The overall aim of the studies was to expand...

  6. Advancing ecological understandings through technological transformations in noninvasive genetics.

    Science.gov (United States)

    Beja-Pereira, Albano; Oliveira, Rita; Alves, Paulo C; Schwartz, Michael K; Luikart, Gordon

    2009-09-01

    Noninvasive genetic approaches continue to improve studies in molecular ecology, conservation genetics and related disciplines such as forensics and epidemiology. Noninvasive sampling allows genetic studies without disturbing or even seeing the target individuals. Although noninvasive genetic sampling has been used for wildlife studies since the 1990s, technological advances continue to make noninvasive approaches among the most used and rapidly advancing areas in genetics. Here, we review recent advances in noninvasive genetics and how they allow us to address important research and management questions thanks to improved techniques for DNA extraction, preservation, amplification and data analysis. We show that many advances come from the fields of forensics, human health and domestic animal health science, and suggest that molecular ecologists explore literature from these fields. Finally, we discuss how the combination of advances in each step of a noninvasive genetics study, along with fruitful areas for future research, will continually increase the power and role of noninvasive genetics in molecular ecology and conservation genetics. © 2009 Blackwell Publishing Ltd.

  7. Implementation of molecular karyotyping in clinical genetics

    Directory of Open Access Journals (Sweden)

    Luca Lovrecic

    2013-11-01

    Full Text Available Rapid development of technologies for the study of the human genome is an expected step after the discovery and sequencing of the entire human genome. Chromosomal microarrays, which allow us to perform tens of thousands of previously individual experiments simultaneously, are being utilized in all areas of human genetics and genomics. Initially, this was applicable only for research purposes, but in the last few years their clinical diagnostic purposes are becoming more and more relevant. Using molecular karyotyping (also chromosomal microarray, comparative genomic hybridization with microarray, aCGH, one can analyze microdeletions / microduplications in the whole human genome at once. It is a first-tier cytogenetic diagnostic test instead of G-banded karyotyping in patients with developmental delay and/or congenital anomalies. Molecular karyotyping is used as a diagnostic test in patients with unexplained developmental delay and/or idiopathic intellectual disability and/or dysmorphic features and/or multiple congenital anomalies (DD/ID/DF/MCA. In addition, the method is used in prenatal diagnostics and in some centres also in preimplantation genetic diagnosis.The aim of this paper is to inform the professional community in the field about this new diagnostic method and its implementation in Slovenia, and to define the clinical situations where the method is appropriate.

  8. Somatic cell and molecular genetics approach to DNA repair and mutagenesis

    International Nuclear Information System (INIS)

    Thompson, L.H.

    1985-01-01

    In the CHO cell line, UV-sensitive mutants representing five genetic complementation groups have been identified. Mutants from each of these groups were shown to be defective in performing the incision step of repair after exposure to UV. The large number of complementation groups of xeroderma pigmentosa mutations has raised the question whether these groups all correspond to single gene loci. The same issue applies to the 5 groups of UV-sensitive CHO mutants. One approach toward answering this question is to localize in the human karyotype the genes that complement the defects in the CHO mutants. Thus, by making CHO/human cell hybrids under the appropriate selective conditions, we have begun to map each of the complementing human genes. The mutation in strain UV20 (Group 2) was complemented by human chromosome 19. Preliminary evidence suggests that UV5 may also be complemented by human chromosome 19 while each of the other 3 groups involves a different human chromosome. Somewhat surprisingly, mutant EM9 is also complemented by a gene on chromosome 19

  9. Strengthening molecular genetics and training in craniosynostosis: The need of the hour

    Science.gov (United States)

    Barik, Mayadhar; Bajpai, Minu; Panda, Shasanka Shekhar; Malhotra, Arun; Samantaray, Jyotish Chandra; Dwivedi, Sada Nanda

    2014-01-01

    Craniosynostosis (CS) is premature fusion of skull. It is divided into two groups: Syndromic craniosynostosis (SCS) and non-syndromic craniosynostosis (NSC). Its incidence in Indian population is 1:1000 live births where as in the USA it is 1:2500 live births. Its incidence varies from country to country. Molecular genetics having great interest and relevance in medical students, faculty, scientist, pediatric neurosurgeon and staff nurses, our objective was to educate the medical students, residents, researchers, clinicians, pediatric neurosurgeon, anesthetists, pediatricians, staff nurses and paramedics. We summarized here including with diagnosis, investigations, surgical therapy, induction therapy, and molecular therapy. Molecular genetics training is needed to know the information regarding development of skull, cranial connective tissue, craniofacial dysplasia, frame work, network of receptors and its etiopathogenesis. The important part is clinically with molecular therapy (MT) how to manage CS in rural sector and metropolitan cities need a special attention. PMID:25288859

  10. Strengthening molecular genetics and training in craniosynostosis: The need of the hour

    Directory of Open Access Journals (Sweden)

    Mayadhar Barik

    2014-01-01

    Full Text Available Craniosynostosis (CS is premature fusion of skull. It is divided into two groups: Syndromic craniosynostosis (SCS and non-syndromic craniosynostosis (NSC. Its incidence in Indian population is 1:1000 live births where as in the USA it is 1:2500 live births. Its incidence varies from country to country. Molecular genetics having great interest and relevance in medical students, faculty, scientist, pediatric neurosurgeon and staff nurses, our objective was to educate the medical students, residents, researchers, clinicians, pediatric neurosurgeon, anesthetists, pediatricians, staff nurses and paramedics. We summarized here including with diagnosis, investigations, surgical therapy, induction therapy, and molecular therapy. Molecular genetics training is needed to know the information regarding development of skull, cranial connective tissue, craniofacial dysplasia, frame work, network of receptors and its etiopathogenesis. The important part is clinically with molecular therapy (MT how to manage CS in rural sector and metropolitan cities need a special attention.

  11. Arbitrariness is not enough: towards a functional approach to the genetic code.

    Science.gov (United States)

    Lacková, Ľudmila; Matlach, Vladimír; Faltýnek, Dan

    2017-12-01

    Arbitrariness in the genetic code is one of the main reasons for a linguistic approach to molecular biology: the genetic code is usually understood as an arbitrary relation between amino acids and nucleobases. However, from a semiotic point of view, arbitrariness should not be the only condition for definition of a code, consequently it is not completely correct to talk about "code" in this case. Yet we suppose that there exist a code in the process of protein synthesis, but on a higher level than the nucleic bases chains. Semiotically, a code should be always associated with a function and we propose to define the genetic code not only relationally (in basis of relation between nucleobases and amino acids) but also in terms of function (function of a protein as meaning of the code). Even if the functional definition of meaning in the genetic code has been discussed in the field of biosemiotics, its further implications have not been considered. In fact, if the function of a protein represents the meaning of the genetic code (the sign's object), then it is crucial to reconsider the notion of its expression (the sign) as well. In our contribution, we will show that the actual model of the genetic code is not the only possible and we will propose a more appropriate model from a semiotic point of view.

  12. Best practice guidelines for the molecular genetic diagnosis of Type 1 (HFE-related hereditary haemochromatosis

    Directory of Open Access Journals (Sweden)

    Barton David E

    2006-11-01

    Full Text Available Abstract Background Hereditary haemochromatosis (HH is a recessively-inherited disorder of iron over-absorption prevalent in Caucasian populations. Affected individuals for Type 1 HH are usually either homozygous for a cysteine to tyrosine amino acid substitution at position 282 (C282Y of the HFE gene, or compound heterozygotes for C282Y and for a histidine to aspartic acid change at position 63 (H63D. Molecular genetic testing for these two mutations has become widespread in recent years. With diverse testing methods and reporting practices in use, there was a clear need for agreed guidelines for haemochromatosis genetic testing. The UK Clinical Molecular Genetics Society has elaborated a consensus process for the development of disease-specific best practice guidelines for genetic testing. Methods A survey of current practice in the molecular diagnosis of haemochromatosis was conducted. Based on the results of this survey, draft guidelines were prepared using the template developed by UK Clinical Molecular Genetics Society. A workshop was held to develop the draft into a consensus document. The consensus document was then posted on the Clinical Molecular Genetics Society website for broader consultation and amendment. Results Consensus or near-consensus was achieved on all points in the draft guidelines. The consensus and consultation processes worked well, and outstanding issues were documented in an appendix to the guidelines. Conclusion An agreed set of best practice guidelines were developed for diagnostic, predictive and carrier testing for hereditary haemochromatosis and for reporting the results of such testing.

  13. The characterization of goat genetic diversity : Towards a genomic approach

    NARCIS (Netherlands)

    Ajmone-Marsan, P.; Colli, L.; Han, J. L.; Achilli, A.; Lancioni, H.; Joost, S.; Crepaldi, P.; Pilla, F.; Stella, A.; Taberlet, P.; Boettcher, P.; Negrini, R.; Lenstra, J. A.

    2014-01-01

    The investigation of genetic diversity at molecular level has been proposed as a valuable complement and sometimes proxy to phenotypic diversity of local breeds and is presently considered as one of the FAO priorities for breed characterization. By recommending a set of selected molecular markers

  14. Molecular Genetic and Gene Therapy Studies of the Musculoskeletal System

    National Research Council Canada - National Science Library

    Baylink, David

    2004-01-01

    The primary goal of the proposed work is to apply several state of the art molecular genetic and gene therapy technologies to address fundamental questions in bone biology with a particular emphasis on attempting: l...

  15. Molecular and genetic insights into an infantile epileptic encephalopathy-CDKL5 disorder

    Institute of Scientific and Technical Information of China (English)

    Ailing Zhou; Song Han; Zhaolan Joe Zhou

    2017-01-01

    BACKGROUND:The discovery that mutations in cyclin-dependent kinase-like 5 (CDKL5) gene are associated with infantile epileptic encephalopathy has stimulated world-wide research effort to understand the molecular and genetic basis of CDKL5 disorder.Given the large number of literature published thus far,this review aims to summarize current genetic studies,draw a consensus on proposed molecular functions,and point to gaps of knowledge in CDKL5 research.METHODS:A systematic review process was conducted using the PubMed search engine focusing on CDKL5 studies in the recent ten years.We analyzed these publications and summarized the findings into four sections:genetic studies,CDKL5 expression pattems,molecular functions,and animal models.We also discussed challenges and future directions in each section.RESULTS:On the clinical side,CDKL5 disorder is characterized by early onset epileptic seizures,intellectual disability,and stereotypical behaviors.On the research side,a series of molecular and genetic studies in human patients,cell cultures and animal models have established the causality of CDKL5 to the infantile epileptic encephalopathy,and pointed to a key role for CDKL5 in regulating neuronal function in the brain.Mouse models of CDKL5 disorder have also been developed,and notably,manifest behavioral phenotypes,mimicking numerous clinical symptoms of CDKL5 disorder and advancing CDKL5 research to the preclinical stage.CONCLUSIONS:Given what we have leamed thus far,future identification of robust,quantitative,and sensitive outcome measures would be the key in animal model studies,particularly in heterozygous females.In the meantime,molecular and cellular studies of CDKL5 should focus on mechanism-based investigation and aim to uncover druggable targets that offer the potential to rescue or ameliorate CDKL5 disorder-related phenotypes.

  16. Molecular and genetic insights into an infantile epileptic encephalopathy - CDKL5 disorder.

    Science.gov (United States)

    Zhou, Ailing; Han, Song; Zhou, Zhaolan Joe

    2017-02-01

    The discovery that mutations in cyclin-dependent kinase-like 5 ( CDKL5 ) gene are associated with infantile epileptic encephalopathy has stimulated world-wide research effort to understand the molecular and genetic basis of CDKL5 disorder. Given the large number of literature published thus far, this review aims to summarize current genetic studies, draw a consensus on proposed molecular functions, and point to gaps of knowledge in CDKL5 research. A systematic review process was conducted using the PubMed search engine focusing on CDKL5 studies in the recent ten years. We analyzed these publications and summarized the findings into four sections: genetic studies, CDKL5 expression patterns, molecular functions, and animal models. We also discussed challenges and future directions in each section. On the clinical side, CDKL5 disorder is characterized by early onset epileptic seizures, intellectual disability, and stereotypical behaviors. On the research side, a series of molecular and genetic studies in human patients, cell cultures and animal models have established the causality of CDKL5 to the infantile epileptic encephalopathy, and pointed to a key role for CDKL5 in regulating neuronal function in the brain. Mouse models of CDKL5 disorder have also been developed, and notably, manifest behavioral phenotypes, mimicking numerous clinical symptoms of CDKL5 disorder and advancing CDKL5 research to the preclinical stage. Given what we have learned thus far, future identification of robust, quantitative, and sensitive outcome measures would be the key in animal model studies, particularly in heterozygous females. In the meantime, molecular and cellular studies of CDKL5 should focus on mechanism-based investigation and aim to uncover druggable targets that offer the potential to rescue or ameliorate CDKL5 disorder-related phenotypes.

  17. A Molecular Genetic Basis Explaining Altered Bacterial Behavior in Space.

    Directory of Open Access Journals (Sweden)

    Luis Zea

    Full Text Available Bacteria behave differently in space, as indicated by reports of reduced lag phase, higher final cell counts, enhanced biofilm formation, increased virulence, and reduced susceptibility to antibiotics. These phenomena are theorized, at least in part, to result from reduced mass transport in the local extracellular environment, where movement of molecules consumed and excreted by the cell is limited to diffusion in the absence of gravity-dependent convection. However, to date neither empirical nor computational approaches have been able to provide sufficient evidence to confirm this explanation. Molecular genetic analysis findings, conducted as part of a recent spaceflight investigation, support the proposed model. This investigation indicated an overexpression of genes associated with starvation, the search for alternative energy sources, increased metabolism, enhanced acetate production, and other systematic responses to acidity-all of which can be associated with reduced extracellular mass transport.

  18. A Molecular Genetic Basis Explaining Altered Bacterial Behavior in Space

    Science.gov (United States)

    Prasad, Nripesh; Levy, Shawn E.; Stodieck, Louis; Jones, Angela; Shrestha, Shristi; Klaus, David

    2016-01-01

    Bacteria behave differently in space, as indicated by reports of reduced lag phase, higher final cell counts, enhanced biofilm formation, increased virulence, and reduced susceptibility to antibiotics. These phenomena are theorized, at least in part, to result from reduced mass transport in the local extracellular environment, where movement of molecules consumed and excreted by the cell is limited to diffusion in the absence of gravity-dependent convection. However, to date neither empirical nor computational approaches have been able to provide sufficient evidence to confirm this explanation. Molecular genetic analysis findings, conducted as part of a recent spaceflight investigation, support the proposed model. This investigation indicated an overexpression of genes associated with starvation, the search for alternative energy sources, increased metabolism, enhanced acetate production, and other systematic responses to acidity—all of which can be associated with reduced extracellular mass transport. PMID:27806055

  19. EMQN/CMGS best practice guidelines for the molecular genetic testing of Huntington disease

    OpenAIRE

    Losekoot, Monique; van Belzen, Martine J; Seneca, Sara; Bauer, Peter; Stenhouse, Susan A R; Barton, David E

    2012-01-01

    Huntington disease (HD) is caused by the expansion of an unstable polymorphic trinucleotide (CAG)n repeat in exon 1 of the HTT gene, which translates into an extended polyglutamine tract in the protein. Laboratory diagnosis of HD involves estimation of the number of CAG repeats. Molecular genetic testing for HD is offered in a wide range of laboratories both within and outside the European community. In order to measure the quality and raise the standard of molecular genetic testing in these ...

  20. Modern classification of neoplasms: reconciling differences between morphologic and molecular approaches

    International Nuclear Information System (INIS)

    Berman, Jules

    2005-01-01

    For over 150 years, pathologists have relied on histomorphology to classify and diagnose neoplasms. Their success has been stunning, permitting the accurate diagnosis of thousands of different types of neoplasms using only a microscope and a trained eye. In the past two decades, cancer genomics has challenged the supremacy of histomorphology by identifying genetic alterations shared by morphologically diverse tumors and by finding genetic features that distinguish subgroups of morphologically homogeneous tumors. The Developmental Lineage Classification and Taxonomy of Neoplasms groups neoplasms by their embryologic origin. The putative value of this classification is based on the expectation that tumors of a common developmental lineage will share common metabolic pathways and common responses to drugs that target these pathways. The purpose of this manuscript is to show that grouping tumors according to their developmental lineage can reconcile certain fundamental discrepancies resulting from morphologic and molecular approaches to neoplasm classification. In this study, six issues in tumor classification are described that exemplify the growing rift between morphologic and molecular approaches to tumor classification: 1) the morphologic separation between epithelial and non-epithelial tumors; 2) the grouping of tumors based on shared cellular functions; 3) the distinction between germ cell tumors and pluripotent tumors of non-germ cell origin; 4) the distinction between tumors that have lost their differentiation and tumors that arise from uncommitted stem cells; 5) the molecular properties shared by morphologically disparate tumors that have a common developmental lineage, and 6) the problem of re-classifying morphologically identical but clinically distinct subsets of tumors. The discussion of these issues in the context of describing different methods of tumor classification is intended to underscore the clinical value of a robust tumor classification. A

  1. Molecular markers for genetic diversity and phylogeny research of ...

    African Journals Online (AJOL)

    Brazilian sheep descended from several breeds brought to the New World by Portuguese and Spanish colonists, and they have evolved and adapted to local climatic variations and acquired tolerance or resistance to many diseases. Molecular markers are widely used in analyzing genetic variability, and markers such as ...

  2. Cytogenetics and molecular genetics of Wilms' tumor of childhood

    NARCIS (Netherlands)

    Slater, R. M.; Mannens, M. M.

    1992-01-01

    We describe the way in which application of cytogenetic and molecular genetic techniques to the study of Wilms' tumor (WT) of the kidney and the associated congenital disorders, such as sporadic aniridia and the Beckwith-Wiedemann syndrome, has led to identification of two regions on the short arm

  3. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.

    Science.gov (United States)

    Kumar, Sudhir; Stecher, Glen; Li, Michael; Knyaz, Christina; Tamura, Koichiro

    2018-06-01

    The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.

  4. Genética molecular: avanços e problemas Molecular genetics: advances and problems

    Directory of Open Access Journals (Sweden)

    Eloi S. Garcia

    1996-03-01

    Full Text Available Este artigo traz a discussão sobre genética molecular em saúde ao campo da saúde pública. Com a revolução produzida pela chegada da engenharia genética, é importante discutir alguns dos avanços e problemas desta tecnologia para a sociedade. Está na hora de se fazer uma avaliação clara e bem informada acerca do que já se conseguiu e do que ainda podemos conseguir através desta tecnologia. A sociedade precisa compreender as implicações éticas e práticas de uma tecnologia capaz de produzir drogas milagrosas, dagnósticos modernos e a cura de todas as doenças. Alguns pontos particularmente delicados pertinentes às questões sociais ligadas à biologia molecular e ao projeto genoma humano são discutidos.This article is an attempt to draw the discussion on molecular genetics in health into the public health domain. Now that the genetic engineering revolution has arrived, it is important to point out the advances and problems this technology poses for society. It is time for a clear, informed assessment of what we have already achieved and may soon achieve using this technology. Clearly, society needs to understand the ethical and practical implications of a technology which can produce miracle drugs and modern diagnoses and cure virtually every disease. Important points from sensitive social issues raised by molecular biology and the human genome project are discussed.

  5. A “genetics first” approach to selection

    Science.gov (United States)

    A different approach for using genomic information in genetic improvement is proposed. Past research in population genetics and animal breeding combined with information on sequence variants suggest the possibility that selection might be able to capture a portion of inbreeding and heterosis effect...

  6. Genética, biologia molecular e ética: as relações trabalho e saúde Genetics, molecular biology and ethics: work and health connections

    Directory of Open Access Journals (Sweden)

    Gilka Jorge Figaro Gattás

    2002-01-01

    Full Text Available O artigo discute o impacto dos avanços da genética e da biologia molecular sobre a prática em saúde ocupacional. O conhecimento atual sobre o genoma humano permite, em certas circunstâncias, identificar fatores individuais de suscetibilidade a doenças em situações de exposição a substâncias químicas ou físicas, ou ainda, a doenças genéticas de manifestação tardia. Estudos epidemiológicos incorporando elementos da genética e da biologia molecular têm sido desenhados para avaliar a interação de variantes metabólicas e exposições ambientais no risco de ocorrência de diferentes doenças. Apesar desta perspectiva, considera-se que as pesquisas nesta área são ainda incipientes. A estratégia para a redução dos danos causados à saúde do trabalhador deve continuar a ter como base, prioritariamente, a modificação e a adequação dos ambientes de trabalho e não a especificação genética da força de trabalho. Introduzir a discussão sobre a necessidade de definir princípios de responsabilidade social no uso de informações genéticas e que possam reger ações éticas em saúde do trabalhador é uma das propostas principais deste artigo.This paper provides a discussion about the increasing development of genetics and molecular biomarkers technologies and consequent impact on practices of occupational health. Genetic analysis could be in specific populations at occupational, pharmacological or environmental exposures. Current knowledge of human genome open up the possibility of individual genetic screening of disease susceptibility among those exposed in workplaces to chemical or physical hazards, or for late onset hereditary disease. Epidemiological studies including genetic and molecular biology approaches have been designed to evaluate the interaction of genetically determined metabolic variants with different environmental exposures on the risk of diseases. The strategy for worker's health promotion must be

  7. Endogenous Molecular-Cellular Network Cancer Theory: A Systems Biology Approach.

    Science.gov (United States)

    Wang, Gaowei; Yuan, Ruoshi; Zhu, Xiaomei; Ao, Ping

    2018-01-01

    In light of ever apparent limitation of the current dominant cancer mutation theory, a quantitative hypothesis for cancer genesis and progression, endogenous molecular-cellular network hypothesis has been proposed from the systems biology perspective, now for more than 10 years. It was intended to include both the genetic and epigenetic causes to understand cancer. Its development enters the stage of meaningful interaction with experimental and clinical data and the limitation of the traditional cancer mutation theory becomes more evident. Under this endogenous network hypothesis, we established a core working network of hepatocellular carcinoma (HCC) according to the hypothesis and quantified the working network by a nonlinear dynamical system. We showed that the two stable states of the working network reproduce the main known features of normal liver and HCC at both the modular and molecular levels. Using endogenous network hypothesis and validated working network, we explored genetic mutation pattern in cancer and potential strategies to cure or relieve HCC from a totally new perspective. Patterns of genetic mutations have been traditionally analyzed by posteriori statistical association approaches in light of traditional cancer mutation theory. One may wonder the possibility of a priori determination of any mutation regularity. Here, we found that based on the endogenous network theory the features of genetic mutations in cancers may be predicted without any prior knowledge of mutation propensities. Normal hepatocyte and cancerous hepatocyte stable states, specified by distinct patterns of expressions or activities of proteins in the network, provide means to directly identify a set of most probable genetic mutations and their effects in HCC. As the key proteins and main interactions in the network are conserved through cell types in an organism, similar mutational features may also be found in other cancers. This analysis yielded straightforward and testable

  8. Isolation and molecular genetic characterization of a yeast strain ...

    African Journals Online (AJOL)

    The yeast was identified by molecular genetics technique based on sequence analysis of the variable D1/D2 domain of the large subunit (26S) ribosomal DNA. Subsequent 26S rRNA gene sequencing showed 100% base sequence homology and it was identified as Candida viswanathii. The degradation of PAHs

  9. The molecular genetics of inflammatory, autoimmune, and infectious diseases of the sinonasal tract: a review.

    Science.gov (United States)

    Montone, Kathleen T

    2014-06-01

    The sinonasal tract is frequently affected by a variety of nonneoplastic inflammatory disease processes that are often multifactorial in their etiology but commonly have a molecular genetic component. To review the molecular genetics of a variety of nonneoplastic inflammatory diseases of the sinonasal tract. Inflammatory lesions of the sinonasal tract can be divided into 3 main categories: (1) chronic rhinosinusitis, (2) infectious diseases, and (3) autoimmune diseases/vasculitides. The molecular diagnosis and pathways of a variety of these inflammatory lesions are currently being elucidated and will shed light on disease pathogenesis and treatment. The sinonasal tract is frequently affected by inflammatory lesions that arise through complex interactions of environmental, infectious, and genetic factors. Because these lesions are all inflammatory in nature, the molecular pathology surrounding them is most commonly due to upregulation and down-regulation of genes that affect inflammatory responses and immune regulation.

  10. Genetic Diversity Analysis of Tagetes Species Using PCR Based Molecular Markers

    International Nuclear Information System (INIS)

    Shahzadi, I.; Ahmad, R.; Waheed, U.; Shah, M. F.

    2016-01-01

    Tagetes is a genus of medicinally important wild and cultivated plants containing several chemical compounds. Lack of information on variation at molecular level present in Tagetes species is paramount to understand the genetic basis of medicinally important compounds. Current study aims at finding genetic variability in Tagetes species using random and specific molecular markers. Two primer systems including 25 RAPD and 3 STS (limonene gene) were used to ascertain genetic diversity of 15 Tagetes genotypes belonging to different species. We found that 20 of the 25 tested RAPD primers generated stable band patterns with 167 loci of amplification products. The proportion of polymorphic bands was 95.21 percent for RAPD primers. Three STS primers generated a total of 29 amplification products, of which 96.55 percent were polymorphic. Homology of genotypes was 53.18 percent and 51.11 percent with RAPD and STS primers respectively. The dendrogram obtained revealed that the range of overall genetic distances estimated was 22 percent to 100 percent through RAPD and 9 percent to 100 percent through STS markers. The findings help to establish that PCR-based assay such as RAPD and STS could be used successfully for estimation of genetic diversity of different genotypes of Tagetes that can be used for selection of parents for improvement of the species. (author)

  11. Molecular genetic identification of some wheat cultivars in the sudan

    International Nuclear Information System (INIS)

    Mekki, I. I; El Amin, H. B.

    2002-01-01

    Four wheat (Triticum aestivum L.) cultivars, namely condor, El-Nellene, Wadi El Neil and Debeira were characterized on biochemical and molecular bases. The biochemical ones were protein-banding patterns, using sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and isozymes to identify the biochemical genetic fingerprint of the four cultivars. Water-soluble protein-banding pattern showed no polymorphisms among the tested cultivars. The data from starch gel electrophoresis of enzymes, malate dehydrogenase (MDH), esterase (EST) and acid phosphate (ACPH) showed that the cultivars are monomorphic. Further trials to identify the molecular genetic fingerprints of the studied cultivars were carried out using RAPD-PCR twenty-five primers were tested to perform. RAPD-PCR analysis. From the PCR products, a phylogenetic map, i.e, dendrogram, was constructed for the studied cultivars which depicted tow groups. The first group contained Wadi El Neil and Deberia with 48.4% similarity, and the second group contained Condor and El Neileen with 100% similarity. There was no similarity between Condor and Debeira (100% dissimilarity). Therefor, these data can be used subsequently for genetic engineering research and for wheat breeding programmes in the Sudan.(Author)

  12. Quality control in mutation analysis: the European Molecular Genetics Quality Network (EMQN).

    Science.gov (United States)

    Müller, C R

    2001-08-01

    The demand for clinical molecular genetics testing has steadily grown since its introduction in the 1980s. In order to reach and maintain the agreed quality standards of laboratory medicine, the same internal and external quality assurance (IQA/EQA) criteria have to be applied as for "conventional" clinical chemistry or pathology. In 1996 the European Molecular Genetics Quality Network (EMQN) was established in order to spread QA standards across Europe and to harmonise the existing national activities. EMQN is operated by a central co-ordinator and 17 national partners from 15 EU countries; since 1998 it is being funded by the EU commission for a 3-year period. EMQN promotes QA by two tools: by providing disease-specific best practice meetings (BPM) and EQA schemes. A typical BPM is focussed on one disease or group of related disorders. International experts report on the latest news of gene characterisation and function and the state-of-the-art techniques for mutation detection. Disease-specific EQA schemes are provided by experts in the field. DNA samples are sent out together with mock clinical referrals and a diagnostic question is asked. Written reports must be returned which are marked for genotyping and interpretation. So far, three BPMs have been held and six EQA schemes are in operation at various stages. Although mutation types and diagnostic techniques varied considerably between schemes, the overall technical performance showed a high diagnostic standard. Nevertheless, serious genotyping errors have been occurred in some schemes which underline the necessity of quality assurance efforts. The European Molecular Genetics Quality Network provides a necessary platform for the internal and external quality assurance of molecular genetic testing.

  13. Simulation Approach for Timing Analysis of Genetic Logic Circuits

    DEFF Research Database (Denmark)

    Baig, Hasan; Madsen, Jan

    2017-01-01

    in a manner similar to electronic logic circuits, but they are much more stochastic and hence much harder to characterize. In this article, we introduce an approach to analyze the threshold value and timing of genetic logic circuits. We show how this approach can be used to analyze the timing behavior...... of single and cascaded genetic logic circuits. We further analyze the timing sensitivity of circuits by varying the degradation rates and concentrations. Our approach can be used not only to characterize the timing behavior but also to analyze the timing constraints of cascaded genetic logic circuits...

  14. A systematic approach to assessing the clinical significance of genetic variants.

    Science.gov (United States)

    Duzkale, H; Shen, J; McLaughlin, H; Alfares, A; Kelly, M A; Pugh, T J; Funke, B H; Rehm, H L; Lebo, M S

    2013-11-01

    Molecular genetic testing informs diagnosis, prognosis, and risk assessment for patients and their family members. Recent advances in low-cost, high-throughput DNA sequencing and computing technologies have enabled the rapid expansion of genetic test content, resulting in dramatically increased numbers of DNA variants identified per test. To address this challenge, our laboratory has developed a systematic approach to thorough and efficient assessments of variants for pathogenicity determination. We first search for existing data in publications and databases including internal, collaborative and public resources. We then perform full evidence-based assessments through statistical analyses of observations in the general population and disease cohorts, evaluation of experimental data from in vivo or in vitro studies, and computational predictions of potential impacts of each variant. Finally, we weigh all evidence to reach an overall conclusion on the potential for each variant to be disease causing. In this report, we highlight the principles of variant assessment, address the caveats and pitfalls, and provide examples to illustrate the process. By sharing our experience and providing a framework for variant assessment, including access to a freely available customizable tool, we hope to help move towards standardized and consistent approaches to variant assessment. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. The impact of advances in human molecular biology on radiation genetic risk estimation in man

    International Nuclear Information System (INIS)

    Sankaranarayanan, K.

    1996-01-01

    This paper provides an overview of the conceptual framework, the data base, methods and assumptions used thus far to assess the genetic risks of exposure of human populations to ionising radiation. These are then re-examined in the contemporary context of the rapidly expanding knowledge of the molecular biology of human mendelian diseases. This re-examination reveals that (i) many of the assumptions used thus far in radiation genetic risk estimation may not be fully valid and (ii) the current genetic risk estimates are probably conservative, but provide an adequate margin of safety for radiological protection. The view is expressed that further advances in the field of genetic risk estimation will be largely driven by advances in the molecular biology of human genetic diseases. (author). 37 refs., 5 tabs

  16. 76 FR 6623 - Molecular and Clinical Genetics Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-02-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0066] Molecular and Clinical Genetics Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY... public. Name of Committee: Molecular and Clinical Genetics Panel of the Medical Devices Advisory...

  17. Molecular and genetic epidemiology of cancer in low- and medium-income countries.

    Science.gov (United States)

    Malhotra, Jyoti

    2014-01-01

    Genetic and molecular factors can play an important role in an individual's cancer susceptibility and response to carcinogen exposure. Cancer susceptibility and response to carcinogen exposure can be either through inheritance of high penetrance but rare germline mutations that constitute heritable cancer syndromes, or it can be inherited as common genetic variations or polymorphisms that are associated with low to moderate risk for development of cancer. These polymorphisms can interact with environmental exposures and can influence an individual's cancer risk through multiple pathways, including affecting the rate of metabolism of carcinogens or the immune response to these toxins. Thus, these genetic polymorphisms can account for some of the geographical differences seen in cancer prevalence between different populations. This review explores the role of molecular epidemiology in the field of cancer prevention and control in low- and medium-income countries. Using data from Human Genome Project and HapMap Project, genome-wide association studies have been able to identify multiple susceptibility loci for different cancers. The field of genetic and molecular epidemiology has been further revolutionized by the discovery of newer, faster, and more efficient DNA-sequencing technologies including next-generation sequencing. The new DNA-sequencing technologies can play an important role in planning and implementation of cancer prevention and screening strategies. More research is needed in this area, especially in investigating new biomarkers and measuring gene-environment interactions. Copyright © 2014 Icahn School of Medicine at Mount Sinai. Published by Elsevier Inc. All rights reserved.

  18. Genetics and molecular biology of hypotension

    Science.gov (United States)

    Robertson, D.

    1994-01-01

    Major strides in the molecular biology of essential hypertension are currently underway. This has tended to obscure the fact that a number of inherited disorders associated with low blood pressure exist and that these diseases may have milder and underrecognized phenotypes that contribute importantly to blood pressure variation in the general population. This review highlights some of the gene products that, if abnormal, could cause hypotension in some individuals. Diseases due to abnormalities in the catecholamine enzymes are discussed in detail. It is likely that genetic abnormalities with hypotensive phenotypes will be as interesting and diverse as those that give rise to hypertensive disorders.

  19. Molecular and genetic insights into an infantile epileptic encephalopathy – CDKL5 disorder

    Science.gov (United States)

    Zhou, Ailing; Han, Song

    2017-01-01

    Background The discovery that mutations in cyclin-dependent kinase-like 5 (CDKL5) gene are associated with infantile epileptic encephalopathy has stimulated world-wide research effort to understand the molecular and genetic basis of CDKL5 disorder. Given the large number of literature published thus far, this review aims to summarize current genetic studies, draw a consensus on proposed molecular functions, and point to gaps of knowledge in CDKL5 research. Methods A systematic review process was conducted using the PubMed search engine focusing on CDKL5 studies in the recent ten years. We analyzed these publications and summarized the findings into four sections: genetic studies, CDKL5 expression patterns, molecular functions, and animal models. We also discussed challenges and future directions in each section. Results On the clinical side, CDKL5 disorder is characterized by early onset epileptic seizures, intellectual disability, and stereotypical behaviors. On the research side, a series of molecular and genetic studies in human patients, cell cultures and animal models have established the causality of CDKL5 to the infantile epileptic encephalopathy, and pointed to a key role for CDKL5 in regulating neuronal function in the brain. Mouse models of CDKL5 disorder have also been developed, and notably, manifest behavioral phenotypes, mimicking numerous clinical symptoms of CDKL5 disorder and advancing CDKL5 research to the preclinical stage. Conclusions Given what we have learned thus far, future identification of robust, quantitative, and sensitive outcome measures would be the key in animal model studies, particularly in heterozygous females. In the meantime, molecular and cellular studies of CDKL5 should focus on mechanism-based investigation and aim to uncover druggable targets that offer the potential to rescue or ameliorate CDKL5 disorder-related phenotypes. PMID:28580010

  20. A Baseline Algorithm for Molecular Diagnosis of Genetic Eye Diseases: Ophthalmologist’s Perspective

    Directory of Open Access Journals (Sweden)

    Hande Taylan Şekeroğlu

    2016-12-01

    Full Text Available To the Editor: Genetic eye diseases constitute a large and heterogeneous group. Individual diseases may cause multiple structural/functional anomalies and developmental features. Family history may be suggestive; however, it may also be challenging, particularly in late-onset conditions or in cases of variable expression. In the current era of genetic advances, diagnosis of a genetic eye disease is facilitated by well-established collaboration between ophthalmologists and geneticists, as increasingly more patients will be asking for genetic counseling and prenatal diagnosis in addition to ophthalmologic management. Molecular investigation of a genetic eye disease requires customized analysis and advanced technology in addition to the requisite detailed family history and accurate ophthalmological diagnosis. A common indication for genetic testing is the validation of a preliminary diagnosis made in clinical practice. The need to determine the prognostic implications of the genotype, assessment of the recurrence risk and in particular, the possibility of specific gene therapy in the near future encourages clinicians to pursue genetic research. We present here a baseline algorithm covering common genetic mechanisms in order to outline a basic molecular approach for ophthalmologists. The first step of the flow chart, a prudent clinical examination with complete description of the phenotype, is indispensible for making a precise and accurate preliminary diagnosis (Figure 1. If the phenotype is pathognomonic, Sanger sequencing is preferred for confirmation.1 A previously established genotype-phenotype correlation may add to the value, either by providing accurate prognostic information or by indicating which particular mutation to look for. One such example may be electroretinographic supranormal rod response, indicating KCNV2 mutation type cone dystrophy, which can be precisely detected by Sanger sequencing or qPCR.2 Conventional karyotyping reveals

  1. Molecular genetics of breast cancer

    International Nuclear Information System (INIS)

    Radice, P.; Pierotti, M. A.

    1997-01-01

    In the last two decades, molecular studies have enlightened the complexity of the genetic alterations that occur in breast cancer cells. To date, more than 40 different genes or loci have been found to be altered in breast carcinomas. Although some of these genes, as for example ERBB2, appear to be mutated in a high proportion of cases, their mechanism of action and their role in the different stages of cancer development are still poorly understood. More recently, two major determinants of the inherited predisposition to breast cancer, BRCA1 and BRCA2, have been isolated. As a consequence, it is now possible to screen families with a positive history of breast carcinomas for the identification of mutations carriers, in order to address these individuals into adequate programs of cancer surveillance and prevention

  2. Molecular tailoring approach for exploring structures, energetics and ...

    Indian Academy of Sciences (India)

    Administrator

    Keywords. Molecular clusters; linear scaling methods; molecular tailoring approach (MTA); Hartree– ..... energy decomposition analysis also performed and which clearly ... through molecular dynamics simulation furnished by. Takeguchi,. 46.

  3. Genetic influences on attention deficit hyperactivity disorder symptoms from age 2 to 3: A quantitative and molecular genetic investigation

    Directory of Open Access Journals (Sweden)

    Saudino Kimberly J

    2010-12-01

    Full Text Available Abstract Background A twin study design was used to assess the degree to which additive genetic variance influences ADHD symptom scores across two ages during infancy. A further objective in the study was to observe whether genetic association with a number of candidate markers reflects results from the quantitative genetic analysis. Method We have studied 312 twin pairs at two time-points, age 2 and age 3. A composite measure of ADHD symptoms from two parent-rating scales: The Child Behavior Checklist/1.5 - 5 years (CBCL hyperactivity scale and the Revised Rutter Parent Scale for Preschool Children (RRPSPC was used for both quantitative and molecular genetic analyses. Results At ages 2 and 3 ADHD symptoms are highly heritable (h2 = 0.79 and 0.78, respectively with a high level of genetic stability across these ages. However, we also observe a significant level of genetic change from age 2 to age 3. There are modest influences of non-shared environment at each age independently (e2 = 0.22 and 0.21, respectively, with these influences being largely age-specific. In addition, we find modest association signals in DAT1 and NET1 at both ages, along with suggestive specific effects of 5-HTT and DRD4 at age 3. Conclusions ADHD symptoms are heritable at ages 2 and 3. Additive genetic variance is largely shared across these ages, although there are significant new effects emerging at age 3. Results from our genetic association analysis reflect these levels of stability and change and, more generally, suggest a requirement for consideration of age-specific genotypic effects in future molecular studies.

  4. Molecular Genetic Identification Of Some Flax Mutants

    International Nuclear Information System (INIS)

    AMER, I.M.; MOUSTAFA, H.A.M.

    2009-01-01

    Five flax genotypes (Linum usitatissimum L.) i.e., commercial cultivar Sakha 2, the mother variety Giza 4 and three mutant types induced by gamma rays, were screened for their salinity tolerance in field experiments (salinity concentration was 8600 and 8300 ppm for soil and irrigation water, respectively). Mutation 6 was the most salt tolerant as compared to the other four genotypes.RAPD technique was used to detect some molecular markers associated with salt tolerance in flax (Mut 6), RAPD-PCR results using 12 random primers exhibited 149 amplified fragments; 91.9% of them were polymorphic and twelve molecular markers (8.1%) for salt tolerant (mutant 6) were identified with molecular size ranged from 191 to 4159 bp and only eight primers successes to amplify these specific markers. Concerning the other mutants, Mut 15 and Mut 25 exhibited 4.3% and 16.2% specific markers, respectively. The induced mutants exhibited genetic similarity to the parent variety were about 51%, 58.3% and 61.1% for Mut 25, Mut 6 and Mut 15, respectively. These specific markers (SM) are used for identification of the induced mutations and it is important for new variety registration.

  5. Therapeutic approaches to genetic disorders

    African Journals Online (AJOL)

    salah

    Although prevention is the ideal goal for genetic disorders, various types of therapeutic ... The patient being ... pirical or aimed at controlling or mediating signs and symptoms without care. ... plications and gene therapy approaches .... genes family, have opened a wide and .... cancer where nanoparticles are used to.

  6. Genetic studies and a search for molecular markers that are linked ...

    African Journals Online (AJOL)

    SERVER

    Instead, linkage analysis resulted in the construction of a molecular marker linkage map consisting of 45 ..... This limits the application of this marker type, particularly in ... primer design when one uses RAPDs. .... Concepts of Genetics. Fourth.

  7. [Molecular, genetic and physiological analysis of photoinhibition and photosynthetic

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    A major goal of this project is to use a combined molecular genetic, biochemical and physiological approach to understand the relationship between photosynthetic performance and the structure of the multifunctional D1 reaction center protein of Photosystem II encoded by the chloroplast psbA gene. Relative to other chloroplast proteins, turover of D1 is rapid and highly light dependent and de novo synthesis of D1 is required for a plant's recovery from short term exposure to irradiances which induce photoinhibitory damage. These observations have led to models for a damage/repair cycle of PSII involving the targeted degradation and replacement of photodamaged D1. To investigate the effects of perturbing the D1 cycle on photosynthesis and autotrophic growth under high and low irradiance, we have examined the consequences of site-specific mutations of the psbA and 16S rRNA genes affecting synthesis, maturation and function/stability of the D1 protein introduced into the chloroplast genome of wildtype strain of the green alga Chlamydomonas reinhardtii using biolistic transformation.

  8. Advancing ecological understandings through technological transformations in noninvasive genetics

    Science.gov (United States)

    Albano Beja-Pereira; Rita Oliveira; Paulo C. Alves; Michael K. Schwartz; Gordon Luikart

    2009-01-01

    Noninvasive genetic approaches continue to improve studies in molecular ecology, conservation genetics and related disciplines such as forensics and epidemiology. Noninvasive sampling allows genetic studies without disturbing or even seeing the target individuals. Although noninvasive genetic sampling has been used for wildlife studies since the 1990s, technological...

  9. Genetics of healthy aging in Europe: the EU-integrated project GEHA (GEnetics of Healthy Aging)

    DEFF Research Database (Denmark)

    Franceschi, Claudio; Bezrukov, Vladyslav; Blanché, Hélène

    2007-01-01

    The aim of the 5-year European Union (EU)-Integrated Project GEnetics of Healthy Aging (GEHA), constituted by 25 partners (24 from Europe plus the Beijing Genomics Institute from China), is to identify genes involved in healthy aging and longevity, which allow individuals to survive to advanced old......DNA). The genetic analysis will be performed by 9 high-throughput platforms, within the framework of centralized databases for phenotypic, genetic, and mtDNA data. Additional advanced approaches (bioinformatics, advanced statistics, mathematical modeling, functional genomics and proteomics, molecular biology...... age in good cognitive and physical function and in the absence of major age-related diseases. To achieve this aim a coherent, tightly integrated program of research that unites demographers, geriatricians, geneticists, genetic epidemiologists, molecular biologists, bioinfomaticians, and statisticians...

  10. Genetic, functional and molecular features of glucocorticoid receptor binding.

    Directory of Open Access Journals (Sweden)

    Francesca Luca

    Full Text Available Glucocorticoids (GCs are key mediators of stress response and are widely used as pharmacological agents to treat immune diseases, such as asthma and inflammatory bowel disease, and certain types of cancer. GCs act mainly by activating the GC receptor (GR, which interacts with other transcription factors to regulate gene expression. Here, we combined different functional genomics approaches to gain molecular insights into the mechanisms of action of GC. By profiling the transcriptional response to GC over time in 4 Yoruba (YRI and 4 Tuscans (TSI lymphoblastoid cell lines (LCLs, we suggest that the transcriptional response to GC is variable not only in time, but also in direction (positive or negative depending on the presence of specific interacting transcription factors. Accordingly, when we performed ChIP-seq for GR and NF-κB in two YRI LCLs treated with GC or with vehicle control, we observed that features of GR binding sites differ for up- and down-regulated genes. Finally, we show that eQTLs that affect expression patterns only in the presence of GC are 1.9-fold more likely to occur in GR binding sites, compared to eQTLs that affect expression only in its absence. Our results indicate that genetic variation at GR and interacting transcription factors binding sites influences variability in gene expression, and attest to the power of combining different functional genomic approaches.

  11. [Molecular biology of renal cancer: bases for genetic directed therapy in advanced disease].

    Science.gov (United States)

    Maroto Rey, José Pablo; Cillán Narvaez, Elena

    2013-06-01

    There has been expansion of therapeutic options in the management of metastatic renal cell carcinoma due to a better knowledge of the molecular biology of kidney cancers. There are different tumors grouped under the term renal cell carcinoma, being clear cell cancer the most frequent and accounting for 80% of kidney tumors. Mutations in the Von Hippel-Lindau gene can be identified in up to 80% of sporadic clear cell cancer, linking a genetically inheritable disease where vascular tumors are frequent, with renal cell cancer. Other histologic types present specific alterations in molecular pathways, like c-MET in papillary type I tumors, and Fumarase Hydratase in papillary type II tumors. Identification of the molecular alteration for a specific tumor may offer an opportunity for treatment selection based on biomarkers, and, in the future, for developing an engineering designed genetic treatment.

  12. Molecular marker studies in riverine buffaloes, for characterization and diagnosis of genetic defects

    International Nuclear Information System (INIS)

    Yadav, B.R.

    2005-01-01

    The buffalo is probably the last livestock species to have been domesticated, with many genetic, physiological and behavioural traits not yet well understood. Molecular markers have been used for characterizing animals and breeds, diagnosing diseases and identifying anatomical and physiological anomalies. RFLP studies showed low heterozygosity, but genomic and oligonucleotide probes showed species-specific bands useful for identification of carcass or other unknown samples. Use of RAPD revealed band frequencies, band sharing frequencies, genetic distances, and genetic and identity indexes in different breeds. Bovine microsatellite primers indicate that 70.9% of bovine loci were conserved in buffalo. Allele numbers, sizes, frequencies, heterozygosity and polymorphism information content showed breed-specific patterns. Different marker types - genomic and oligonucleotide probes, RAPD and microsatellites - are useful in parent identification. Individual specific DNA fingerprinting techniques were applied with twin-born animal (XX/XY) chimerism, sex identification, anatomically defective and XO individuals. Molecular markers are a potential tool for geneticists and breeders to evaluate existing germplasm and to manipulate it to develop character-specific strains and to provide the basis for effective genetic conservation. (author)

  13. Comparative Approaches to Genetic Discrimination: Chasing Shadows?

    Science.gov (United States)

    Joly, Yann; Feze, Ida Ngueng; Song, Lingqiao; Knoppers, Bartha M

    2017-05-01

    Genetic discrimination (GD) is one of the most pervasive issues associated with genetic research and its large-scale implementation. An increasing number of countries have adopted public policies to address this issue. Our research presents a worldwide comparative review and typology of these approaches. We conclude with suggestions for public policy development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2012 - 31 January 2013

    Czech Academy of Sciences Publication Activity Database

    Mendel, Jan; Urbánková, Soňa; Vyskočilová, M.

    2013-01-01

    Roč. 13, č. 3 (2013), s. 546-549 ISSN 1755-098X Institutional support: RVO:68081766 Keywords : genetic database * microsatellite marker loci Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.626, year: 2013

  15. Dynamic traffic assignment : genetic algorithms approach

    Science.gov (United States)

    1997-01-01

    Real-time route guidance is a promising approach to alleviating congestion on the nations highways. A dynamic traffic assignment model is central to the development of guidance strategies. The artificial intelligence technique of genetic algorithm...

  16. [Clinical genealogical and molecular genetic study of patients with mental retardation].

    Science.gov (United States)

    Hryshchenko, N V; B'ichkova, A M; Lyvshyts, A B; Kravchenko, S A; Pampukha, V N; Solov'ev, A A; Kucherenko, A M; Tatarskiĭ, P F; Afanas'eva, N A; Dubrovskaia, E V; Patskun, Ie Y; Zymak-Zakutnaia, N O; Nykytchina, T V; Lohysh, S Iu; Lyvshyts, L A

    2012-01-01

    The results of clinical, genealogical, cytogenetic and molecular genetic studies of 113 patients from 96 families with different forms of mental retardation from Ukraine are presented. This study was held as part of the CHERISH project of the 7-th Framework Program. The aim of the project is to improve diagnostics of mental retardation in children in Eastern Europe and Central Asia through detailed analysis of known chromosomal and gene's aberrations and to find the new gene-candidates that cause mental retardation. All patients have normal chromosome number (46XY or 46XX). The cases with fragile-X syndrome were eliminated using molecular genetic methods. Genome rearrangements were found among 28 patients using cytogenetic analysis, multiplex ligation-dependent probe amplification (MLPA analysis) ofsubtelomeric regions and array-based comparative genomic hybridisation (array CGH screening). In 10 cases known pathogenic CNV's were identified, 11 cases are unknown aberrations; their pathogenicity is being determined. The rest cases are known nonpathogenic gene rearrangements. Obtained results show the strong genetic heterogeneity of hereditary forms of mental retardation. The further studies will allow to identificate genes candidates and certain mutations in these genes that may be associated with this pathology.

  17. Impact of Professional Learning on Teachers' Representational Strategies and Students' Cognitive Engagement with Molecular Genetics Concepts

    Science.gov (United States)

    Nichols, Kim

    2018-01-01

    A variety of practices and specialised representational systems are required to understand, communicate and construct molecular genetics knowledge. This study describes teachers' use of multimodal representations of molecular genetics concepts and how their strategies and choice of resources were interpreted, understood and used by students to…

  18. Plant genotoxicity: a molecular cytogenetic approach in plant bioassays.

    Science.gov (United States)

    Maluszynska, Jolanta; Juchimiuk, Jolanta

    2005-06-01

    It is important for the prevention of DNA changes caused by environment to understand the biological consequences of DNA damages and their molecular modes of action that lead to repair or alterations of the genetic material. Numerous genotoxicity assay systems have been developed to identify DNA reactive compounds. The available data show that plant bioassays are important tests in the detection of genotoxic contamination in the environment and the establishment of controlling systems. Plant system can detect a wide range of genetic damage, including gene mutations and chromosome aberrations. Recently introduced molecular cytogenetic methods allow analysis of genotoxicity, both at the chromosomal and DNA level. FISH gives a new possibility of the detection and analysis of chromosomal rearrangements in a great detail. DNA fragmentation can be estimated using the TUNEL test and the single cell gel electrophoresis (Comet assay).

  19. Using Genetic Buffering Relationships Identified in Fission Yeast To Elucidate the Molecular Pathology of Tuberous Sclerosis

    Science.gov (United States)

    2016-07-01

    tsc1 and tsc2 loss of function mutations in Schizosaccharomyces pombe. Northeast Regional Yeast Meeting, June 16-17, University at Buffalo, The State...AWARD NUMBER: W81XWH-14-1-0169 TITLE: Using Genetic Buffering Relationships Identified in Fission Yeast To Elucidate the Molecular Pathology of...SUBTITLE Using Genetic Buffering Relationships Identified in Fission 5a. CONTRACT NUMBER W81XWH-14-1-0169 Yeast to Elucidate the Molecular Pathology

  20. Engaging nurses in genetics: the strategic approach of the NHS National Genetics Education and Development Centre.

    Science.gov (United States)

    Kirk, Maggie; Tonkin, Emma; Burke, Sarah

    2008-04-01

    The UK government announced the establishment of an NHS National Genetics Education and Development Centre in its Genetics White Paper. The Centre aims to lead and coordinate developments to enhance genetics literacy of health professionals. The nursing program takes a strategic approach based on Ajzen's Theory of Planned Behavior, using the UK nursing genetics competences as the platform for development. The program team uses innovative approaches to raise awareness of the relevance of genetics, working collaboratively with policy stakeholders, as key agents of change in promoting competence. Providing practical help in preparing learning and teaching resources lends further encouragement. Evaluation of the program is dependent on gathering baseline data, and the program has been informed by an education needs analysis. The challenges faced are substantial and necessitate international collaboration where expertise and resources can be shared to produce a global system of influence to facilitate the engagement of non-genetic nurses.

  1. Molecular profiling techniques as tools to detect potential unintended effects in genetically engineered maize

    CSIR Research Space (South Africa)

    Barros, E

    2010-05-01

    Full Text Available Molecular Profiling Techniques as Tools to Detect Potential Unintended Effects in Genetically Engineered Maize Eugenia Barros Introduction In the early stages of production and commercialization of foods derived from genetically engineered (GE) plants... systems. In a recent paper published in Plant Biotechnology Journal,4 we compared two transgenic white maize lines with the non-transgenic counterpart to investigate two possible sources of variation: genetic engineering and environmental variation...

  2. Reno-endocrinal disorders: A basic understanding of the molecular genetics

    Directory of Open Access Journals (Sweden)

    Sukhminder Jit Singh Bajwa

    2012-01-01

    Full Text Available The successful management of endocrine diseases is greatly helped by the complete understanding of the underlying pathology. The knowledge about the molecular genetics contributes immensely in the appropriate identification of the causative factors of the diseases and their subsequent management. The fields of nephrology and endocrinology are also interrelated to a large extent. Besides performing the secretory functions, the renal tissue also acts as target organ for many hormones such as antidiuretic hormone (ADH, atrial natriuretic peptides (ANP, and aldosterone. Understanding the molecular genetics of these hormones is important because the therapeutic interventions in many of these conditions is related to shared renal and endocrine functions, including the anemia of renal disease, chronic kidney disease, mineral bone disorders, and hypertension related to chronic kidney disease. Their understanding and in-depth knowledge is very essential in designing and formulating the therapeutic plans and innovating new management strategies. However, we still have to go a long way in order to completely understand the various confounding causative relationships between the pathology and disease of these reno-endocrinal manifestations.

  3. A molecular genetic approach to roebuck individual identification in the case of poaching in Serbia

    Directory of Open Access Journals (Sweden)

    Dimitrijević Vladimir

    2013-01-01

    Full Text Available Application of the molecular genetic methods in forensic cases dealing with wild animals has significantly increased recently. These techniques are practically used in order to help solving four key problems : determination of kind of the wild animal, geographic origin, kinship ties and individual identification. In this work the first case of introducing the examination of polimorphism of microsatelite genetic markers within forensic analysis in the cases of poaching in Serbia is presented. The objectives of this forensic analysis was to determine if the meat confiscated during house search of the suspect comes from roebuck origin (Capreolus capreolus, which remains had been found by a game warden in the field during closed season, where the suspect denied the offense, claiming that the meat comes from other roebuck that had been shot during the previous hunting season. DNK was isolated from the skin and fur samples taken from the roebuck corpse found in the woods, as well as from the frozen meat found in the suspect’s house. Both amplification and polimorphism examination of the eight microsatelite markers (ROE01, NVHRT21, NVHRT24, NVHRT48, NVHRT73, RT7 AND RT27 were carried out. In all the examined samples, the same pattern of variability of the tested microsatelites was determined, that is it was proved that DNK profiles of the samples taken from roebuck corpse were identical to DNK profile of the meat sample found in the suspect’s house. This result clearly indicates that all the examined biological samples originate from the same animal, and consequently represents forensically valid evidence in the case of roebuck poaching. [Projekat Ministarstva nauke Republike Srbije, br. III46002

  4. An imaging genetics approach to understanding social influence

    Directory of Open Access Journals (Sweden)

    Emily eFalk

    2012-06-01

    Full Text Available Normative social influences shape nearly every aspect of our lives, yet the biological processes mediating the impact of these social influences on behavior remain incompletely understood. In this Hypothesis, we outline a theoretical framework and an integrative research approach to the study of social influences on the brain and genetic moderators of such effects. First, we review neuroimaging evidence linking social influence and conformity to the brain’s reward system. We next review neuroimaging evidence linking social punishment (exclusion to brain systems involved in the experience of pain, as well as evidence linking exclusion to conformity. We suggest that genetic variants that increase sensitivity to social cues may predispose individuals to be more sensitive to either social rewards or punishments (or potentially both, which in turn increases conformity and susceptibility to normative social influences more broadly. To this end, we review evidence for genetic moderators of neurochemical responses in the brain, and suggest ways in which genes and pharmacology may modulate sensitivity to social influences. We conclude by proposing an integrative imaging genetics approach to the study of brain mediators and genetic modulators of a variety of social influences on human attitudes, beliefs, and actions.

  5. An imaging genetics approach to understanding social influence.

    Science.gov (United States)

    Falk, Emily B; Way, Baldwin M; Jasinska, Agnes J

    2012-01-01

    Normative social influences shape nearly every aspect of our lives, yet the biological processes mediating the impact of these social influences on behavior remain incompletely understood. In this Hypothesis, we outline a theoretical framework and an integrative research approach to the study of social influences on the brain and genetic moderators of such effects. First, we review neuroimaging evidence linking social influence and conformity to the brain's reward system. We next review neuroimaging evidence linking social punishment (exclusion) to brain systems involved in the experience of pain, as well as evidence linking exclusion to conformity. We suggest that genetic variants that increase sensitivity to social cues may predispose individuals to be more sensitive to either social rewards or punishments (or potentially both), which in turn increases conformity and susceptibility to normative social influences more broadly. To this end, we review evidence for genetic moderators of neurochemical responses in the brain, and suggest ways in which genes and pharmacology may modulate sensitivity to social influences. We conclude by proposing an integrative imaging genetics approach to the study of brain mediators and genetic modulators of a variety of social influences on human attitudes, beliefs, and actions.

  6. Biotechnological approaches for the genetic improvement of Jatropha curcas L.: A biodiesel plant

    KAUST Repository

    Kumar, Nitish; Singh, Amritpal S.; Kumari, Swati; Reddy, Muppala P.

    2015-01-01

    . In this review, an effort is made to project the current biotechnology and molecular biology tools employed in the direction of, evaluating the genetic diversity and phylogeny revelation of Jatropha spp., identification of genetic markers for desirable traits

  7. A New Approach for Flexible Molecular Docking Based on Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Yi Fu

    2015-01-01

    Full Text Available Molecular docking methods play an important role in the field of computer-aided drug design. In the work, on the basis of the molecular docking program AutoDock, we present QLDock as a tool for flexible molecular docking. For the energy evaluation, the algorithm uses the binding free energy function that is provided by the AutoDock 4.2 tool. The new search algorithm combines the features of a quantum-behaved particle swarm optimization (QPSO algorithm and local search method of Solis and Wets for solving the highly flexible protein-ligand docking problem. We compute the interaction of 23 protein-ligand complexes and compare the results with those of the QDock and AutoDock programs. The experimental results show that our approach leads to substantially lower docking energy and higher docking precision in comparison to Lamarckian genetic algorithm and QPSO algorithm alone. QPSO-ls algorithm was able to identify the correct binding mode of 74% of the complexes. In comparison, the accuracy of QPSO and LGA is 52% and 61%, respectively. This difference in performance rises with increasing complexity of the ligand. Thus, the novel algorithm QPSO-ls may be used to dock ligand with many rotatable bonds with high accuracy.

  8. Classical and molecular genetics of malignant melanoma and dysplastic naevi

    International Nuclear Information System (INIS)

    Traupe, H.; Macher, E.

    1988-01-01

    The authors conclude that the prevailing concept of monogenic autosomaldominant inheritance of dysplastic naevi and familial melanoma is not compatible with the principles of formal (Mendelian) genetics. The concept of polygenic inheritance offers instead a sound basis to explain familial aggregation of dysplastic naevi and melanoma. The various genes involved have not yet been identified at the molecular level. The recent advances made possible by modern DNA technology have given us a new view of carcinogenesis. In human malignant melanoma, chromosomes 1, 6, 7 are of particular interest and oncogenes located on these chromosomes may be involved with the initiation, promotion and progression of melanoma. Carcinogenesis is viewed as a multistep process and even tumour initiation requires the input of at least two independent oncogenes. Molecular genetics thus adds an important argument for the existence of a polygenic predisposition to melanoma. The concept of polygenic inheritance is not restricted to familial melanoma, but implies that all melanomas basically share the same predisposition and are due to similar genetic mechanisms. In some patients an inherited genetic predisposition is of great importance, whereas in others (the majority) environmental factors (e.g. UV-light-induced mutations) will be the cause of initial steps in the malignant transformation. The concept of polygenic inheritance has consequences for the management of our patients. In contrast to simple Mendelian inheritance, the risk for dysplastic naevi and melanoma is not constantly 50%, but increases with the number of family members already affected. Persons belonging to families with more that 2 affected close relatives should be considered at high risk regardless of the dysplastic naevus status. Strict surveillance of this patient group is warranted for melanoma prevention

  9. Molecular genetics made simple

    Directory of Open Access Journals (Sweden)

    Heba Sh. Kassem

    2012-07-01

    Full Text Available Genetics have undoubtedly become an integral part of biomedical science and clinical practice, with important implications in deciphering disease pathogenesis and progression, identifying diagnostic and prognostic markers, as well as designing better targeted treatments. The exponential growth of our understanding of different genetic concepts is paralleled by a growing list of genetic terminology that can easily intimidate the unfamiliar reader. Rendering genetics incomprehensible to the clinician however, defeats the very essence of genetic research: its utilization for combating disease and improving quality of life. Herein we attempt to correct this notion by presenting the basic genetic concepts along with their usefulness in the cardiology clinic. Bringing genetics closer to the clinician will enable its harmonious incorporation into clinical care, thus not only restoring our perception of its simple and elegant nature, but importantly ensuring the maximal benefit for our patients.

  10. Molecular genetics made simple

    Science.gov (United States)

    Kassem, Heba Sh.; Girolami, Francesca; Sanoudou, Despina

    2012-01-01

    Abstract Genetics have undoubtedly become an integral part of biomedical science and clinical practice, with important implications in deciphering disease pathogenesis and progression, identifying diagnostic and prognostic markers, as well as designing better targeted treatments. The exponential growth of our understanding of different genetic concepts is paralleled by a growing list of genetic terminology that can easily intimidate the unfamiliar reader. Rendering genetics incomprehensible to the clinician however, defeats the very essence of genetic research: its utilization for combating disease and improving quality of life. Herein we attempt to correct this notion by presenting the basic genetic concepts along with their usefulness in the cardiology clinic. Bringing genetics closer to the clinician will enable its harmonious incorporation into clinical care, thus not only restoring our perception of its simple and elegant nature, but importantly ensuring the maximal benefit for our patients. PMID:25610837

  11. Progress in the molecular and genetic modification breeding of beef cattle in China.

    Science.gov (United States)

    Tong, Bin; Zhang, Li; Li, Guang-Peng

    2017-11-20

    The studies of beef cattle breeding in China have been greatly improved with the rapid development of the international beef cattle industrialization. The beef cattle breeding technologies have rapidly transformed from traditional breeding to molecular marker-assisted breeding, genomic selection and genetic modification breeding. Hundreds of candidate genes and molecular markers associated with growth, meat quality, reproduction performance and diseases resistance have been identified, and some of them have already been used in cattle breeding. Genes and molecular markers associated with growth and development are focused on the growth hormone, muscle regulatory factors, myostatin and insulin-like growth factors. Meat quality is mediated by fatty acid transport and deposition related signals, calpains and calpain system, muscle regulatory factors and muscle growth regulation pathways. Reproduction performance is regulated by GnRH-FSH-LH, growth differentiation factor 9, prolactin receptor and forkhead box protein O1. Disease resistance is modulated by the major histocompatibility complex gene family, toll-like receptors, mannose-binding lectin and interferon gene signals. In this review, we summarize the most recent progress in beef cattle breeding in marker-assisted selection, genome-wide selection and genetic modification breeding, aiming to provide a reference for further genetic breeding research of beef cattle in China.

  12. Genetics of eosinophilic esophagitis.

    Science.gov (United States)

    Kottyan, L C; Rothenberg, M E

    2017-05-01

    Eosinophilic esophagitis (EoE) is a chronic, allergic disease associated with marked mucosal eosinophil accumulation. EoE disease risk is multifactorial and includes environmental and genetic factors. This review will focus on the contribution of genetic variation to EoE risk, as well as the experimental tools and statistical methodology used to identify EoE risk loci. Specific disease-risk loci that are shared between EoE and other allergic diseases (TSLP, LRRC32) or unique to EoE (CAPN14), as well as Mendellian Disorders associated with EoE, will be reviewed in the context of the insight that they provide into the molecular pathoetiology of EoE. We will also discuss the clinical opportunities that genetic analyses provide in the form of decision support tools, molecular diagnostics, and novel therapeutic approaches.

  13. Genetic diversity and molecular characterization of Saccharomyces cerevisiae strains from winemaking environments

    OpenAIRE

    Schuller, Dorit Elisabeth

    2004-01-01

    Tese de doutoramento em Ciências The principal aim of the present work is to assess the genetic diversity of fermenting Saccharomyces cerevisiae strains found in vineyards belonging to the Vinho Verde Region in order to create a strain collection representing the region’s biodiversity wealth as a basis for future strain selection and improvement programs. Validation of molecular techniques for accurate genotyping is an indispensable prerequisite for biogeographical surveys. Molecular ty...

  14. Genetic and clinical characteristics of primary and secondary glioblastoma is associated with differential molecular subtype distribution

    OpenAIRE

    Li, Rui; Li, Hailin; Yan, Wei; Yang, Pei; Bao, Zhaoshi; Zhang, Chuanbao; Jiang, Tao; You, Yongping

    2015-01-01

    Glioblastoma multiforme (GBM) is classified into primary (pGBM) or secondary (sGBM) based on clinical progression. However, there are some limits to this classification for insight into genetically and clinically distinction between pGBM and sGBM. The aim of this study is to characterize pGBM and sGBM associating with differential molecular subtype distribution. Whole transcriptome sequencing data was used to assess the distribution of molecular subtypes and genetic alterations in 88 pGBM and...

  15. A Report on Molecular Diagnostic Testing for Inherited Retinal Dystrophies by Targeted Genetic Analyses.

    Science.gov (United States)

    Ramkumar, Hema L; Gudiseva, Harini V; Kishaba, Kameron T; Suk, John J; Verma, Rohan; Tadimeti, Keerti; Thorson, John A; Ayyagari, Radha

    2017-02-01

    To test the utility of targeted sequencing as a method of clinical molecular testing in patients diagnosed with inherited retinal degeneration (IRD). After genetic counseling, peripheral blood was drawn from 188 probands and 36 carriers of IRD. Single gene testing was performed on each patient in a Clinical Laboratory Improvement Amendment (CLIA) certified laboratory. DNA was isolated, and all exons in the gene of interest were analyzed along with 20 base pairs of flanking intronic sequence. Genetic testing was most often performed on ABCA4, CTRP5, ELOV4, BEST1, CRB1, and PRPH2. Pathogenicity of novel sequence changes was predicted by PolyPhen2 and sorting intolerant from tolerant (SIFT). Of the 225 genetic tests performed, 150 were for recessive IRD, and 75 were for dominant IRD. A positive molecular diagnosis was made in 70 (59%) of probands with recessive IRD and 19 (26%) probands with dominant IRD. Analysis confirmed 12 (34%) of individuals as carriers of familial mutations associated with IRD. Thirty-two novel variants were identified; among these, 17 sequence changes in four genes were predicted to be possibly or probably damaging including: ABCA4 (14), BEST1 (2), PRPH2 (1), and TIMP3 (1). Targeted analysis of clinically suspected genes in 225 subjects resulted in a positive molecular diagnosis in 26% of patients with dominant IRD and 59% of patients with recessive IRD. Novel damaging mutations were identified in four genes. Single gene screening is not an ideal method for diagnostic testing given the phenotypic and genetic heterogeneity among IRD cases. High-throughput sequencing of all genes associated with retinal degeneration may be more efficient for molecular diagnosis.

  16. the genetic and molecular basis of bacterial invasion of epithelial cells

    African Journals Online (AJOL)

    DR. AMINU

    The pathogenic species of bacteria are of great medical importance as causative agents of infectious diseases. Moreover, as the condition of human existence have changed, so have the bacterial species that produce diseases. It is against this background that molecular genetics have now entered the field of microbial ...

  17. [Malignant Melanoma - from Classical Histology towards Molecular Genetic Testing].

    Science.gov (United States)

    Ryška, A; Horký, O; Berkovcová, J; Tichá, I; Kalinová, M; Matějčková, M; Bóday, Á; Drábek, J; Martínek, P; Šimová, J; Sieglová, K; Vošmiková, H

    Malignant melanoma is - in comparison with other skin tumors - a relatively rare malignant neoplasm with highly aggressive biologic behavior and variable prognosis. Recent data in pathology and molecular diagnostics indicate that malignant melanoma is in fact not a single entity but a group of different neoplasms with variable etiopathogenesis, biologic behavior and prognosis. New therapeutic options using targeted treatment blocking MAPK signaling pathway require testing of BRAF gene mutation status. This helps to select patients with highest probability of benefit from this treatment. This article summarizes information on the correlation of morphological findings with genetic changes, discusses the representation of individual genetic types in various morphological subgroups and deals with the newly proposed genetic classification of melanoma and the current possibilities, pitfalls and challenges in BRAF testing of malignant melanoma. It also describes the current testing situation in the Czech Republic - the methods used, the representation of BRAF mutations in the tested population and the future of testing. It also shows the limitations of the BRAF and MEK targeted treatment concept resulting from the heterogeneity of the tumor population. Mechanisms of acquired resistance to MAPK pathway inhibitors, possibilities of their detection, and issues of combination of targeted therapy and immunotherapy are discussed.Key words: malignant melanoma - BRAF - mutation - molecular targeted therapy - tumor microenvironment - tumor heterogeneity This work was supported by projects PROGRES Q40/11, BBMRICZ LM2015089, SVV 260398 and GACR 17-10331S. The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.Submitted: 28. 3. 2017Accepted: 16. 5. 2017.

  18. Permanent genetic resources added to molecular ecology resources database 1 February 2013-31 March 2013

    Czech Academy of Sciences Publication Activity Database

    Arias, M. C.; Atteke, C.; Augusto, S. C.; Bailey, J.; Bazaga, P.; Beheregaray, L. B.; Benoit, L.; Blatrix, R.; Born, C.; Brito, R. M.; Chen, H.-K.; Covarrubias, S.; de Vega, C.; Djiéto-Lordon, C.; Dubois, M.-P.; Francisco, F. O.; García, C.; Concalves, P. H. P.; González, C.; Gutiérrez-Rodríguez, C.; Hammer, M. P.; Herrera, C. M.; Itoh, H.; Kamimura, S.; Karaoglu, H.; Kojima, S.; Li, S.-L.; Ling, H. J.; Matos Maravi, Pavel F.; McKey, D.; Mezui-M’Eko, J.; Ornelas, J. F.; Park, R. F.; Pozo, M. I.; Ramula, S.; Rigueiro, C.; Sandoval-Castillo, J.; Santiago, L. R.; Seino, M. M.; Song, C.-B.; Takeshima, H.; Vasemägi, A.; Wellings, C. R.; Yan, J.; Du, Y.-Z.; Zhang, C.-R.; Zhang, T.-Y.

    2013-01-01

    Roč. 13, č. 4 (2013), s. 760-762 ISSN 1755-098X Institutional support: RVO:60077344 Keywords : molecular ecology Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.626, year: 2013 http://onlinelibrary.wiley.com/doi/10.1111/1755-0998.12121/pdf

  19. Molecular evaluation of genetic variability of wheat elite breeding material

    Directory of Open Access Journals (Sweden)

    Brbaklić Ljiljana

    2009-01-01

    Full Text Available Estimation of genetic variability of breeding material is essential for yield improvement in wheat cultivars. Modern techniques based on molecular markers application are more efficient and precise in genetic variability evaluation then conventional methods. Variability of 96 wheat cultivars and lines was analyzed using four microsatellite markers (Gwm11, Gwm428, Psp3200, Psp3071. The markers were chosen according to their potential association with important agronomical traits indicated in the literature. Total of 31 alleles were detected with maximum number of alleles (11 in Xgwm11 locus. The highest polymorphism information content (PIC value (0,831 was found in the locus Xpsp3071. The genotypes were grouped into three subpopulations based on their similarity in the analyzed loci. The results have indicated wide genetic variability of the studied material and possibility of its application in further breeding process after validation of marker-trait association. .

  20. GENETICS AND MOLECULAR BIOLOGY AND PIG MEAT QUALITY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    J. BULLA

    2007-05-01

    Full Text Available The main goals in pig breeding have for many years been to improve growth rate, feedconversion and carcass composition. There have been less efforts to improve meat qualityparameters (WHC, pH, tenderness, colour etc. but the main contribution has been areduction of stress susceptibility and PSE meat. Unfortunately, the quantitative geneticapproach has yielded few clues regarding the fundamental genetic changes that accompaniedthe selection of animal for superior carcass attributes. While mapping efforts are makingsignificant major effects on carcass and his quality composition DNA test would be availableto detect some positive or negative alleles. There are clear breed effects on meat quality,which in some cases are fully related to the presence of a single gene with major effect (RYR1,MYF4, H-FABP, LEPR, IGF2. Molecular biology methods provides excellent opportunitiesto improve meat quality in selection schemes within breeds and lines. Selection on majorgenes will not only increase average levels of quality but also decrease variability (ei increaseuniformity. The aim of this paper is to discuss there genetic and non-genetic opportunities.

  1. GENETICS AND MOLECULAR BIOLOGY AND PIG MEAT QUALITY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    BULLA, J.

    2007-01-01

    Full Text Available The main goals in pig breeding have for many years been to improve growth rate, feedconversion and carcass composition. There have been less efforts to improve meat qualityparameters (WHC, pH, tenderness, colour etc. but the main contribution has been areduction of stress susceptibility and PSE meat. Unfortunately, the quantitative geneticapproach has yielded few clues regarding the fundamental genetic changes that accompaniedthe selection of animal for superior carcass attributes. While mapping efforts are makingsignificant major effects on carcass and his quality composition DNA test would be availableto detect some positive or negative alleles. There are clear breed effects on meat quality,which in some cases are fully related to the presence of a single gene with major effect (RYR1,MYF4, H-FABP, LEPR, IGF2. Molecular biology methods provides excellent opportunitiesto improve meat quality in selection schemes within breeds and lines. Selection on majorgenes will not only increase average levels of quality but also decrease variability (ei increaseuniformity. The aim of this paper is to discuss there genetic and non-genetic opportunities.

  2. Molecular mechanisms of the genetic risk factors in pathogenesis of Alzheimer disease.

    Science.gov (United States)

    Kanatsu, Kunihiko; Tomita, Taisuke

    2017-01-01

    Alzheimer disease (AD) is a neurodegenerative disease characterized by the extensive deposition of senile plaques and neurofibrillary tangles. Until recently, only the APOE gene had been known as a genetic risk factor for late-onset AD (LOAD), which accounts for more than 95% of all AD cases. However, in addition to this well-established genetic risk factor, genome-wide association studies have identified several single nucleotide polymorphisms as genetic risk factors of LOAD, such as PICALM and BIN1 . In addition, whole genome sequencing and exome sequencing have identified rare variants associated with LOAD, including TREM2 . We review the recent findings related to the molecular mechanisms by which these genetic risk factors contribute to AD, and our perspectives regarding the etiology of AD for the development of therapeutic agents.

  3. A Hybrid Genetic Algorithm Approach for Optimal Power Flow

    Directory of Open Access Journals (Sweden)

    Sydulu Maheswarapu

    2011-08-01

    Full Text Available This paper puts forward a reformed hybrid genetic algorithm (GA based approach to the optimal power flow. In the approach followed here, continuous variables are designed using real-coded GA and discrete variables are processed as binary strings. The outcomes are compared with many other methods like simple genetic algorithm (GA, adaptive genetic algorithm (AGA, differential evolution (DE, particle swarm optimization (PSO and music based harmony search (MBHS on a IEEE30 bus test bed, with a total load of 283.4 MW. Its found that the proposed algorithm is found to offer lowest fuel cost. The proposed method is found to be computationally faster, robust, superior and promising form its convergence characteristics.

  4. Future possibilities in migraine genetics

    DEFF Research Database (Denmark)

    Rudkjøbing, Laura Aviaja; Esserlind, Ann-Louise; Olesen, Jes

    2012-01-01

    Migraine with and without aura (MA and MO, respectively) have a strong genetic basis. Different approaches using linkage-, candidate gene- and genome-wide association studies have been explored, yielding limited results. This may indicate that the genetic component in migraine is due to rare...... variants; capturing these will require more detailed sequencing in order to be discovered. Next-generation sequencing (NGS) techniques such as whole exome and whole genome sequencing have been successful in finding genes in especially monogenic disorders. As the molecular genetics research progresses......, the technology will follow, rendering these approaches more applicable in the search for causative migraine genes in MO and MA. To date, no studies using NGS in migraine genetics have been published. In order to gain insight into the future possibilities of migraine genetics, we have looked at NGS studies...

  5. Genetic testing for patients with renal disease: procedures, pitfalls, and ethical considerations.

    Science.gov (United States)

    Korf, B R

    1999-07-01

    The Human Genome Project is rapidly producing insights into the molecular basis of human genetic disorders. The most immediate clinical benefit is the advent of new diagnostic methods. Molecular diagnostic tools are available for several genetic renal disorders and are in development for many more. Two general approaches to molecular diagnosis are linkage-based testing and direct mutation detection. The former is used when the gene has not been cloned but has been mapped in relation to polymorphic loci. Linkage-based testing is also helpful when a large diversity of mutations makes direct detection difficult. Limitations include the need to study multiple family members, the need for informative polymorphisms, and genetic heterogeneity. Direct mutation detection is limited by genetic heterogeneity and the need to distinguish nonpathogenic allelic variants from pathogenic mutations. Molecular testing raises a number of complex ethical issues, including those associated with prenatal or presymptomatic diagnosis. In addition, there are concerns about informed consent, privacy, genetic discrimination, and technology transfer for newly developed tests. Health professionals need to be aware of the technical and ethical implications of these new methods of testing, as well as the complexities in test interpretation, as molecular approaches are increasingly integrated into medical practice.

  6. A rigorous approach to facilitate and guarantee the correctness of the genetic testing management in human genome information systems.

    Science.gov (United States)

    Araújo, Luciano V; Malkowski, Simon; Braghetto, Kelly R; Passos-Bueno, Maria R; Zatz, Mayana; Pu, Calton; Ferreira, João E

    2011-12-22

    Recent medical and biological technology advances have stimulated the development of new testing systems that have been providing huge, varied amounts of molecular and clinical data. Growing data volumes pose significant challenges for information processing systems in research centers. Additionally, the routines of genomics laboratory are typically characterized by high parallelism in testing and constant procedure changes. This paper describes a formal approach to address this challenge through the implementation of a genetic testing management system applied to human genome laboratory. We introduced the Human Genome Research Center Information System (CEGH) in Brazil, a system that is able to support constant changes in human genome testing and can provide patients updated results based on the most recent and validated genetic knowledge. Our approach uses a common repository for process planning to ensure reusability, specification, instantiation, monitoring, and execution of processes, which are defined using a relational database and rigorous control flow specifications based on process algebra (ACP). The main difference between our approach and related works is that we were able to join two important aspects: 1) process scalability achieved through relational database implementation, and 2) correctness of processes using process algebra. Furthermore, the software allows end users to define genetic testing without requiring any knowledge about business process notation or process algebra. This paper presents the CEGH information system that is a Laboratory Information Management System (LIMS) based on a formal framework to support genetic testing management for Mendelian disorder studies. We have proved the feasibility and showed usability benefits of a rigorous approach that is able to specify, validate, and perform genetic testing using easy end user interfaces.

  7. Molecular characterization and genetic diversity of different genotypes of Oryza sativa and Oryza glaberrima

    Directory of Open Access Journals (Sweden)

    Caijin Chen

    2017-11-01

    Conclusions: Genetic diversity studies revealed that 50 rice types were clustered into different subpopulations whereas three genotypes were admixtures. Molecular fingerprinting and 10 specific markers were obtained to identify the 53 rice genotypes. These results can facilitate the potential utilization of sibling species in rice breeding and molecular classification of O. sativa and O. glaberrima germplasms.

  8. Chemical Genetics — A Versatile Method to Combine Science and Higher Level Teaching in Molecular Genetics

    Directory of Open Access Journals (Sweden)

    Björn Sandrock

    2012-10-01

    Full Text Available Phosphorylation is a key event in many cellular processes like cell cycle, transformation of environmental signals to transcriptional activation or polar growth. The chemical genetics approach can be used to analyse the effect of highly specific inhibition in vivo and is a promising method to screen for kinase targets. We have used this approach to study the role of the germinal centre kinase Don3 during the cell division in the phytopathogenic fungus Ustilago maydis. Due to the easy determination of the don3 phenotype we have chosen this approach for a genetic course for M.Sc. students and for IMPRS (International Max-Planck research school students. According to the principle of “problem-based learning” the aim of this two-week course is to transfer knowledge about the broad spectrum of kinases to the students and that the students acquire the ability to design their own analog-sensitive kinase of interest. In addition to these training goals, we benefit from these annual courses the synthesis of basic constructs for genetic modification of several kinases in our model system U. maydis.

  9. Molecular genetics of follicular cell thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    Valentina D. Yakushina

    2016-09-01

    Full Text Available Thyroid cancer is the most frequent endocrine malignancy. In the most cases thyroid cancer arises from follicular cells. Diagnosis of the cancer is based on the cytological analysis of fine needle aspiration biopsy of thyroid nodes. But the accuracy of the cytological diagnosis is about 80% that leads to the false positive and false negative cases and wrong strategy of treatment. Identification of genetic and epigenetic markers in the biopsies will allow to improve diagnostic accuracy. This article describes mutations, aberrant DNA methylation and abnormal microRNA expression constituting the core of molecular genetics of follicular cell thyroid cancer. The mutations given in the article includes point mutations, fusions and copy number variation. Besides frequent and well described driver mutations in genes of МАРK, PI3K/Akt and Wnt signaling pathways, as well as TP53 and TERT genes, we introduce here less frequent mutations appeared in the literature during the past two years. In addition the article contains examples of diagnostic panels applying these markers.

  10. Human fertility, molecular genetics, and natural selection in modern societies.

    Directory of Open Access Journals (Sweden)

    Felix C Tropf

    Full Text Available Research on genetic influences on human fertility outcomes such as number of children ever born (NEB or the age at first childbirth (AFB has been solely based on twin and family-designs that suffer from problematic assumptions and practical limitations. The current study exploits recent advances in the field of molecular genetics by applying the genomic-relationship-matrix based restricted maximum likelihood (GREML methods to quantify for the first time the extent to which common genetic variants influence the NEB and the AFB of women. Using data from the UK and the Netherlands (N = 6,758, results show significant additive genetic effects on both traits explaining 10% (SE = 5 of the variance in the NEB and 15% (SE = 4 in the AFB. We further find a significant negative genetic correlation between AFB and NEB in the pooled sample of -0.62 (SE = 0.27, p-value = 0.02. This finding implies that individuals with genetic predispositions for an earlier AFB had a reproductive advantage and that natural selection operated not only in historical, but also in contemporary populations. The observed postponement in the AFB across the past century in Europe contrasts with these findings, suggesting an evolutionary override by environmental effects and underscoring that evolutionary predictions in modern human societies are not straight forward. It emphasizes the necessity for an integrative research design from the fields of genetics and social sciences in order to understand and predict fertility outcomes. Finally, our results suggest that we may be able to find genetic variants associated with human fertility when conducting GWAS-meta analyses with sufficient sample size.

  11. Genetic diversity assessment of sesame core collection in China by phenotype and molecular markers and extraction of a mini-core collection

    Directory of Open Access Journals (Sweden)

    Zhang Yanxin

    2012-11-01

    Full Text Available Abstract Background Sesame (Sesamum indicum L. is one of the four major oil crops in China. A sesame core collection (CC was established in China in 2000, but no complete study on its genetic diversity has been carried out at either the phenotypic or molecular level. To provide technical guidance, a theoretical basis for further collection, effective protection, reasonable application, and a complete analysis of sesame genetic resources, a genetic diversity assessment of the sesame CC in China was conducted using phenotypic and molecular data and by extracting a sesame mini-core collection (MC. Results Results from a genetic diversity assessment of sesame CC in China were significantly inconsistent at the phenotypic and molecular levels. A Mantel test revealed the insignificant correlation between phenotype and molecular marker information (r = 0.0043, t = 0.1320, P = 0.5525. The Shannon-Weaver diversity index (I and Nei genetic diversity index (h were higher (I = 0.9537, h = 0.5490 when calculated using phenotypic data from the CC than when using molecular data (I = 0.3467, h = 0.2218. A mini-core collection (MC containing 184 accessions was extracted based on both phenotypic and molecular data, with a low mean difference percentage (MD, 1.64%, low variance difference percentage (VD, 22.58%, large variable rate of coefficient of variance (VR, 114.86%, and large coincidence rate of range (CR, 95.76%. For molecular data, the diversity indices and the polymorphism information content (PIC for the MC were significantly higher than for the CC. Compared to an alternative random sampling strategy, the advantages of capturing genetic diversity and validation by extracting a MC using an advanced maximization strategy were proven. Conclusions This study provides a comprehensive characterization of the phenotypic and molecular genetic diversities of the sesame CC in China. A MC was extracted using both phenotypic and molecular data. Low MD% and VD%, and

  12. Genetic diversity assessment of sesame core collection in China by phenotype and molecular markers and extraction of a mini-core collection

    Science.gov (United States)

    2012-01-01

    Background Sesame (Sesamum indicum L.) is one of the four major oil crops in China. A sesame core collection (CC) was established in China in 2000, but no complete study on its genetic diversity has been carried out at either the phenotypic or molecular level. To provide technical guidance, a theoretical basis for further collection, effective protection, reasonable application, and a complete analysis of sesame genetic resources, a genetic diversity assessment of the sesame CC in China was conducted using phenotypic and molecular data and by extracting a sesame mini-core collection (MC). Results Results from a genetic diversity assessment of sesame CC in China were significantly inconsistent at the phenotypic and molecular levels. A Mantel test revealed the insignificant correlation between phenotype and molecular marker information (r = 0.0043, t = 0.1320, P = 0.5525). The Shannon-Weaver diversity index (I) and Nei genetic diversity index (h) were higher (I = 0.9537, h = 0.5490) when calculated using phenotypic data from the CC than when using molecular data (I = 0.3467, h = 0.2218). A mini-core collection (MC) containing 184 accessions was extracted based on both phenotypic and molecular data, with a low mean difference percentage (MD, 1.64%), low variance difference percentage (VD, 22.58%), large variable rate of coefficient of variance (VR, 114.86%), and large coincidence rate of range (CR, 95.76%). For molecular data, the diversity indices and the polymorphism information content (PIC) for the MC were significantly higher than for the CC. Compared to an alternative random sampling strategy, the advantages of capturing genetic diversity and validation by extracting a MC using an advanced maximization strategy were proven. Conclusions This study provides a comprehensive characterization of the phenotypic and molecular genetic diversities of the sesame CC in China. A MC was extracted using both phenotypic and molecular data. Low MD% and VD%, and large VR% and CR

  13. Chondrosarcoma: With Updates on Molecular Genetics

    Directory of Open Access Journals (Sweden)

    Mi-Jung Kim

    2011-01-01

    Full Text Available Chondrosarcoma (CHS is a malignant cartilage-forming tumor and usually occurs within the medullary canal of long bones and pelvic bones. Based on the morphologic feature alone, a correct diangosis of CHS may be difficult, Therefore, correlation of radiological and clinicopathological features is mandatory in the diagnosis of CHS. The prognosis of CHS is closely related to histologic grading, however, histologic grading may be subjective with high inter-observer variability. In this paper, we present histologic grading system and clinicopathological and radiological findings of conventional CHS. Subtypes of CHSs, such as dedifferentiated, mesenchymal, and clear cell CHSs are also presented. In addition, we introduce updated cytogenetic and molecular genetic findings to expand our understanding of CHS biology. New markers of cell differentiation, proliferation, and cell signaling might offer important therapeutic and prognostic information in near future.

  14. Molecular genetics of inherited eye disorders.

    Science.gov (United States)

    MacDonald, I M; Sasi, R

    1994-10-01

    In the past 10 y, there have been considerable advances in the mapping, isolation, and characterization of many genes for important ocular conditions: retinitis pigmentosa, Norrie disease, Waardenburg syndrome, choroideremia, aniridia, retinoblastoma, and others. The candidate gene approach has now supplemented classical linkage studies and positional cloning in the investigation of ocular disorders. Developmentally expressed genes and animal models have provided insights as to the etiology of other disorders. With this knowledge at hand, genetic counselling for heritable eye diseases has been greatly improved.

  15. Molecular genetics in neurology.

    Science.gov (United States)

    Martin, J B

    1993-12-01

    There has been remarkable progress in the identification of mutations in genes that cause inherited neurological disorders. Abnormalities in the genes for Huntington disease, neurofibromatosis types 1 and 2, one form of familial amyotrophic lateral sclerosis, fragile X syndrome, myotonic dystrophy, Kennedy syndrome, Menkes disease, and several forms of retinitis pigmentosa have been elucidated. Rare disorders of neuronal migration such as Kallmann syndrome, Miller-Dieker syndrome, and Norrie disease have been shown to be due to specific gene defects. Several muscle disorders characterized by abnormal membrane excitability have been defined as mutations of the muscle sodium or chloride channels. These advances provide opportunity for accurate molecular diagnosis of at-risk individuals and are the harbinger of new approaches to therapy of these diseases.

  16. Molecular genetics of craniosynostosis

    Science.gov (United States)

    Caterine; Auerkari, Elza Ibrahim

    2018-03-01

    Tight regulation process and complex interplay occur along the osteogenic interfaces of the cranial sutures in normal growth and development of the skull. Cranial sutures serve as sites of bone growth while maintaining a state of patency to accommodate the developing brain. Cranial sutures are fibro-cellular structures that separate the rigid plates of the skull bones. Premature fusion of one or more cranial sutures leads to a condition known as craniosynostosis. Craniosynostosis is one of the most common craniofacial anomalies with a prevalence of 1 in 2,500 newborns. Several genes have been identified in the pathogenesis of craniosynostosis. Molecular signaling events and the intracellular signal transduction pathways implicated in the suture pathobiology will provide a useful approach for therapeutic targeting.

  17. Perspectives of genetic engineering in radiobiology

    International Nuclear Information System (INIS)

    Khanson, K.P.; Zvonareva, N.B.; Evtushenko, V.I.

    1988-01-01

    Present evidence on the use of genetic engineering methods in studying the molecular mechanism of radiation damage and repair of DNA, as well as radiation mutagenesis and carcinogenesis has been summarized. The new approach to radiobiological research has proved to be extremely fruitful. Some previously unknown types of structural disorders in DNA molecule have been discovered, some repair genes isolated and their primary structure established, some aspects of radiation mutagenesis elucidated, and research into disiphering the molecular bases of neoplastic transformations of exposed cells are being successfully investigated. The perspectives of using genetic engineering methods in radiobiology are discussed

  18. Toward molecular pathogenesis of an autoimmune disease: Refined genetic mapping of autoimmune polyglandular disease type I (APECED)

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, J.; Bjoerses, P.; Peltonen, L. [National Public Health Institute, Helsinki (Finland)] [and others

    1994-09-01

    Autoimmune reactions encoupled to many human diseases are still only partially understood. Unravelling the molecular pathogenesis of inherited diseases with a strong autoimmune component in their clinical expression could help to dissect individual components in the molecular background of abnormal immune response. One such genetic disorder is autosomal recessive autoimmune polyglandular disease type I (PGD I), also known as autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, MIM 240300). The disease is especially enriched in the genetically isolated population of Finland and we have assigned the APECED locus to human chromosome 21q22.3 in 14 Finnish families by linkage analyses. The best positional lod score of 6.49 was observed with marker D21S49. Based on the history of the Finns, the gene pool of this population clearly demonstrates the consequences of a founder effect and consequent isolation. In the Finnish population, we can take advantage of linkage disequilibrium and allelic association studies to more precisely define the critical DNA region for our disease gene of interest than would be possible by linkage analyses alone. We are now able to define the chromosomal region of interest between two flanking markers locating 1 cM apart. Linkage disequilibrium is observed with three of the markers used in the analyses and this suggests a distance of less than 500 kb to the disease locus, well approachable with molecular cloning techniques. Overlapping YAC and cosmid clones spanning our region of interest will facilitate the cloning of APECED gene in the near future.

  19. Molecular genetic analysis of a cattle population to reconstitute the extinct Algarvia breed

    Directory of Open Access Journals (Sweden)

    Rangel-Figueiredo Teresa

    2010-06-01

    Full Text Available Abstract Background Decisions to initiate conservation programmes need to account for extant variability, diversity loss and cultural and economic aspects. Molecular markers were used to investigate if putative Algarvia animals could be identified for use as progenitors in a breeding programme to recover this nearly extinct breed. Methods 46 individuals phenotypically representative of Algarvia cattle were genotyped for 27 microsatellite loci and compared with 11 Portuguese autochthonous and three imported breeds. Genetic distances and factorial correspondence analyses (FCA were performed to investigate the relationship among Algarvia and related breeds. Assignment tests were done to identify representative individuals of the breed. Y chromosome and mtDNA analyses were used to further characterize Algarvia animals. Gene- and allelic-based conservation analyses were used to determine breed contributions to overall genetic diversity. Results Genetic distance and FCA results confirmed the close relationship between Algarvia and southern Portuguese breeds. Assignment tests without breed information classified 17 Algarvia animals in this cluster with a high probability (q > 0.95. With breed information, 30 cows and three bulls were identified (q > 0.95 that could be used to reconstitute the Algarvia breed. Molecular and morphological results were concordant. These animals showed intermediate levels of genetic diversity (MNA = 6.0 ± 1.6, Rt = 5.7 ± 1.4, Ho = 0.63 ± 0.19 and He = 0.69 ± 0.10 relative to other Portuguese breeds. Evidence of inbreeding was also detected (Fis = 0.083, P st = 0.028, P > 0.05. Algarvia cattle provide an intermediate contribution (CB = 6.18, CW = -0.06 and D1 = 0.50 to the overall gene diversity of Portuguese cattle. Algarvia and seven other autochthonous breeds made no contribution to the overall allelic diversity. Conclusions Molecular analyses complemented previous morphological findings to identify 33 animals that

  20. A Molecular Genetic Lab to Generate Inclusive and Exclusive Forensic Evidence: Two Suspects, a Victim, and a Bloodstained T-Shirt

    Science.gov (United States)

    Smit, Julie; Heath, Daniel D.; Walter, Ryan P.

    2014-01-01

    Molecular genetic laboratory exercises can be ineffective due the student's lack of connection to the complex and sequential protocols. In this inquiry-based molecular genetic laboratory exercise, we harness students' fascination with human forensics and provide a real-life scenario using biomolecular techniques to identify "whose…

  1. Molecular and genetic aspects of odontogenic tumors: a review.

    Science.gov (United States)

    Garg, Kavita; Chandra, Shaleen; Raj, Vineet; Fareed, Wamiq; Zafar, Muhammad

    2015-06-01

    Odontogenic tumors contain a heterogeneous collection of lesions that are categorized from hamartomas to benign and malignant neoplasms of inconstant aggressiveness. Odontogenic tumors are usually extraordinary with assessed frequency of short of 0.5 cases/100,000 population for every year. The lesions such as odontogenic tumors are inferred from the components of the tooth-structuring contraption. They are discovered solely inside the maxillary and mandibular bones. This audit speaks to experiences and cooperation of the molecular and genetic variations connected to the development and movement of odontogenic tumors which incorporate oncogenes, tumor-silencer genes, APC gene, retinoblastoma genes, DNA repair genes, onco-viruses, development components, telomerase, cell cycle controllers, apoptosis-related elements, and regulators/conttrollers of tooth development. The reasonable and better understanding of the molecular components may prompt new ideas for their detection and administrating a better prognosis of odontogenic tumors.

  2. Testicular germ cell tumors: Molecular genetic and clinicomorphological aspects

    Directory of Open Access Journals (Sweden)

    M. V. Nemtsova

    2015-03-01

    Full Text Available Testicular tumors are the most common form of solid cancer in young men. According to the 2004 WHO classification, testicular germ cell tumors (TGCT may present with different histological types. Embryonic cells of varying grade may be a source of TGCT and the occurrence of this type of tumors is directly related to the formation of a pool of male sex cells and gametogenesis. The paper gives information on mo- lecular stages for the process of formation of male sex cells in health, as well as ways of their impairments leading to TGCT. An investigation of the profiles of gene expression and the spectrum of molecular damages revealed genes responsible for a predisposition to the sporadic and hereditary forms of TGCT. The paper presents the current molecular genetic and clinicomorphological characteristics of TGCT. 

  3. Candidate gene molecular markers as tools for analyzing genetic susceptibility to morbillivirus infection in stranded Cetaceans

    Czech Academy of Sciences Publication Activity Database

    Stejskalová, K.; Bayerova, Z.; Futas, J.; Hrazdilová, K.; Klumplerova, M.; Oppelt, J.; Šplíchalová, P.; Di Guardo, G.; Mazzariol, S.; Di Francesco, C. E.; Di Francesco, G.; Terracciano, G.; Paiu, R.M.; Ursache, T. D.; Modrý, David; Horin, P.

    2017-01-01

    Roč. 90, č. 6 (2017), s. 343-353 ISSN 2059-2302 Institutional support: RVO:60077344 Keywords : Cetacea * haplotype * immunity * innate * mhc-dqb * Phocoena phocoena * polymorphism * single nucleotide * Stenella coeruleoalba Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology

  4. Origin of microbial life: Nano- and molecular events, thermodynamics/entropy, quantum mechanisms and genetic instructions.

    Science.gov (United States)

    Trevors, J T

    2011-03-01

    Currently, there are no agreed upon mechanisms and supporting evidence for the origin of the first microbial cells on the Earth. However, some hypotheses have been proposed with minimal supporting evidence and experimentation/observations. The approach taken in this article is that life originated at the nano- and molecular levels of biological organization, using quantum mechanic principles that became manifested as classical microbial cell(s), allowing the origin of microbial life on the Earth with a core or minimal, organic, genetic code containing the correct instructions for cell(s) for growth and division, in a micron dimension environment, with a local entropy range conducive to life (present about 4 billion years ago), and obeying the laws of thermodynamics. An integrated approach that explores all encompassing factors necessary for the origin of life, may bring forth plausible hypotheses (and mechanisms) with much needed supporting experimentation and observations for an origin of life theory. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Genetic algorithm and neural network hybrid approach for job-shop scheduling

    OpenAIRE

    Zhao, Kai; Yang, Shengxiang; Wang, Dingwei

    1998-01-01

    Copyright @ 1998 ACTA Press This paper proposes a genetic algorithm (GA) and constraint satisfaction adaptive neural network (CSANN) hybrid approach for job-shop scheduling problems. In the hybrid approach, GA is used to iterate for searching optimal solutions, CSANN is used to obtain feasible solutions during the iteration of genetic algorithm. Simulations have shown the valid performance of the proposed hybrid approach for job-shop scheduling with respect to the quality of solutions and ...

  6. Genetic diversity analyses of Lasiodiplodia theobromae on Morus alba and Agave sisalana based on RAPD and ISSR molecular markers

    Directory of Open Access Journals (Sweden)

    Hong-hui Xie

    2016-10-01

    Full Text Available Genetic diversity of 23 Lasiodiplodia theobromae isolates on Morus alba and 6 isolates on Agave sisalana in Guangxi province, China, was studied by using random amplified polymorphic DNA and inter-simple sequence repeat molecular markers. Results of two molecular markers showed that the average percentage of polymorphic loci of all isolates was more than 93%. Both dendrograms of two molecular markers showed obvious relationship between groups and the geographical locations where those strains were collected, among which, the 23 isolates on M. alba were divided into 4 populations and the 6 isolates on A. sisalana were separated as a independent population. The average genetic identity and genetic distance of 5 populations were 0.7215, 0.3284 and 0.7915, 0.2347, respectively, which indicated that the genetic identity was high and the genetic distance was short in the 5 populations. Average value of the gene diversity index (H and the Shannon’s information index (I of 29 isolates were significantly higher than 5 populations which showed that genetic diversity of those isolates was richer than the populations and the degree of genetic differentiation of the isolates was higher. The Gst and Nm of 29 isolates were 0.4411, 0.6335 and 0.4756, 0.5513, respectively, which showed that the genetic diversity was rich in those isolates.

  7. DNA Re-EvolutioN: a game for learning molecular genetics and evolution.

    Science.gov (United States)

    Miralles, Laura; Moran, Paloma; Dopico, Eduardo; Garcia-Vazquez, Eva

    2013-01-01

    Evolution is a main concept in biology, but not many students understand how it works. In this article we introduce the game DNA Re-EvolutioN as an active learning tool that uses genetic concepts (DNA structure, transcription and translation, mutations, natural selection, etc.) as playing rules. Students will learn about molecular evolution while playing a game that mixes up theory and entertainment. The game can be easily adapted to different educational levels. The main goal of this play is to arrive at the end of the game with the longest protein. Students play with pawns and dices, a board containing hypothetical events (mutations, selection) that happen to molecules, "Evolution cards" with indications for DNA mutations, prototypes of a DNA and a mRNA chain with colored "nucleotides" (plasticine balls), and small pieces simulating t-RNA with aminoacids that will serve to construct a "protein" based on the DNA chain. Students will understand how changes in DNA affect the final protein product and may be subjected to positive or negative selection, using a didactic tool funnier than classical theory lectures and easier than molecular laboratory experiments: a flexible and feasible game to learn and enjoy molecular evolution at no-cost. The game was tested by majors and non-majors in genetics from 13 different countries and evaluated with pre- and post-tests obtaining very positive results. © 2013 by The International Union of Biochemistry and Molecular Biology.

  8. The Molecular Revolution in Cutaneous Biology: Era of Molecular Diagnostics for Inherited Skin Diseases.

    Science.gov (United States)

    McGrath, John A

    2017-05-01

    The discovery of pathogenic mutations in inherited skin diseases represents one of the major landmarks of late 20th century molecular genetics. Mutation data can provide accurate diagnoses, improve genetic counseling, help define disease mechanisms, establish disease models, and provide a basis for translational research and testing of novel therapeutics. The process of detecting disease mutations, however, has not always been straightforward. Traditional approaches using genetic linkage or candidate gene analysis have often been limited, costly, and slow to yield new insights, but the advent of next-generation sequencing (NGS) technologies has altered the landscape of current gene discovery and mutation detection approaches. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  9. Cryptic Genetic Variation in Evolutionary Developmental Genetics

    Directory of Open Access Journals (Sweden)

    Annalise B. Paaby

    2016-06-01

    Full Text Available Evolutionary developmental genetics has traditionally been conducted by two groups: Molecular evolutionists who emphasize divergence between species or higher taxa, and quantitative geneticists who study variation within species. Neither approach really comes to grips with the complexities of evolutionary transitions, particularly in light of the realization from genome-wide association studies that most complex traits fit an infinitesimal architecture, being influenced by thousands of loci. This paper discusses robustness, plasticity and lability, phenomena that we argue potentiate major evolutionary changes and provide a bridge between the conceptual treatments of macro- and micro-evolution. We offer cryptic genetic variation and conditional neutrality as mechanisms by which standing genetic variation can lead to developmental system drift and, sheltered within canalized processes, may facilitate developmental transitions and the evolution of novelty. Synthesis of the two dominant perspectives will require recognition that adaptation, divergence, drift and stability all depend on similar underlying quantitative genetic processes—processes that cannot be fully observed in continuously varying visible traits.

  10. Joint analysis of phenotypic and molecular diversity provides new insights on the genetic variability of the Brazilian physic nut germplasm bank.

    Science.gov (United States)

    Alves, Alexandre Alonso; Bhering, Leonardo Lopes; Rosado, Tatiana Barbosa; Laviola, Bruno Galvêas; Formighieri, Eduardo Fernandes; Cruz, Cosme Damião

    2013-09-01

    The genetic variability of the Brazilian physic nut (Jatropha curcas) germplasm bank (117 accessions) was assessed using a combination of phenotypic and molecular data. The joint dissimilarity matrix showed moderate correlation with the original matrices of phenotypic and molecular data. However, the correlation between the phenotypic dissimilarity matrix and the genotypic dissimilarity matrix was low. This finding indicated that molecular markers (RAPD and SSR) did not adequately sample the genomic regions that were relevant for phenotypic differentiation of the accessions. The dissimilarity values of the joint dissimilarity matrix were used to measure phenotypic + molecular diversity. This diversity varied from 0 to 1.29 among the 117 accessions, with an average dissimilarity among genotypes of 0.51. Joint analysis of phenotypic and molecular diversity indicated that the genetic diversity of the physic nut germplasm was 156% and 64% higher than the diversity estimated from phenotypic and molecular data, respectively. These results show that Jatropha genetic variability in Brazil is not as limited as previously thought.

  11. Nuances of Morphology in Myelodysplastic Diseases in the Age of Molecular Diagnostics.

    Science.gov (United States)

    Shaver, Aaron C; Seegmiller, Adam C

    2017-10-01

    Morphologic dysplasia is an important factor in diagnosis of myelodysplastic syndrome (MDS). However, the role of dysplasia is changing as new molecular genetic and genomic technologies take a more prominent place in diagnosis. This review discusses the role of morphology in the diagnosis of MDS and its interactions with cytogenetic and molecular testing. Recent changes in diagnostic criteria have attempted to standardize approaches to morphologic diagnosis of MDS, recognizing significant inter-observer variability in assessment of dysplasia. Definitive correlates between cytogenetic/molecular and morphologic findings have been described in only a small set of cases. However, these genetic and morphologic tools do play a complementary role in the diagnosis of both MDS and other myeloid neoplasms. Diagnosis of MDS requires a multi-factorial approach, utilizing both traditional morphologic as well as newer molecular genetic techniques. Understanding these tools, and the interplay between them, is crucial in the modern diagnosis of myeloid neoplasms.

  12. Molecular and genetic aspects of odontogenic tumors: a review

    Directory of Open Access Journals (Sweden)

    Kavita Garg

    2015-06-01

    Full Text Available Odontogenic tumors contain a heterogeneous collection of lesions that are categorized from hamartomas to benign and malignant neoplasms of inconstant aggressiveness. Odontogenic tumors are usually extraordinary with assessed frequency of short of 0.5 cases/100,000 population for every year. The lesions such as odontogenic tumors are inferred from the components of the tooth-structuring contraption. They are discovered solely inside the maxillary and mandibular bones. This audit speaks to experiences and cooperation of the molecular and genetic variations connected to the development and movement of odontogenic tumors which incorporate oncogenes, tumor-silencer genes, APC gene, retinoblastoma genes, DNA repair genes, onco-viruses, development components, telomerase, cell cycle controllers, apoptosis-related elements, and regulators/controllers of tooth development. The reasonable and better understanding of the molecular components may prompt new ideas for their detection and administrating a better prognosis of odontogenic tumors.

  13. Pathogenesis of Gastric Cancer: Genetics and Molecular Classification.

    Science.gov (United States)

    Figueiredo, Ceu; Camargo, M C; Leite, Marina; Fuentes-Pananá, Ezequiel M; Rabkin, Charles S; Machado, José C

    Gastric cancer is the fifth most incident and the third most common cause of cancer-related death in the world. Infection with Helicobacter pylori is the major risk factor for this disease. Gastric cancer is the final outcome of a cascade of events that takes decades to occur and results from the accumulation of multiple genetic and epigenetic alterations. These changes are crucial for tumor cells to expedite and sustain the array of pathways involved in the cancer development, such as cell cycle, DNA repair, metabolism, cell-to-cell and cell-to-matrix interactions, apoptosis, angiogenesis, and immune surveillance. Comprehensive molecular analyses of gastric cancer have disclosed the complex heterogeneity of this disease. In particular, these analyses have confirmed that Epstein-Barr virus (EBV)-positive gastric cancer is a distinct entity. The identification of gastric cancer subtypes characterized by recognizable molecular profiles may pave the way for a more personalized clinical management and to the identification of novel therapeutic targets and biomarkers for screening, prognosis, prediction of response to treatment, and monitoring of gastric cancer progression.

  14. Current and future molecular approaches to investigate the white pine blister rust pathosystem

    Science.gov (United States)

    B. A. Richardson; A. K. M. Ekramoddoulah; J.-J. Liu; M.-S. Kim; N. B. Klopfenstein

    2010-01-01

    Molecular genetics is proving to be especially useful for addressing a wide variety of research and management questions on the white pine blister rust pathosystem. White pine blister rust, caused by Cronartium ribicola, is an ideal model for studying biogeography, genetics, and evolution because: (1) it involves an introduced pathogen; (2) it includes multiple primary...

  15. Molecular imaging: a new approach to nuclear cardiology

    International Nuclear Information System (INIS)

    Dobrucki, L.W.; Sinusas, A.J.

    2005-01-01

    Nuclear cardiology has historically played an important role in detection of cardiovascular disease as well as risk statification. With the growth of molecular biology have come new therapeutic interventions and the requirement for new diagnostic imaging approaches. Noninvasive targeted radiotracer based as well as transporter gene imaging strategies are evolving to meet these new needs, but require the development of an interdisciplinary approach which focuses on molecular processes, as well as the pathogenesis and progression of disease. This progress has been made possible with the availability of transgenic animal models along with many technological advances. Future adaptations of the developing experimental procedures and instrumentations will allow for the smooth translation and application to clinical practice. This review is intended as a brief overview on the subject molecular imaging. Basic concepts and historical perspective of molecular imaging will be reviewed first, followed by description of current technology, and concluding with current applications in cardiology. The emphasis will be on the use of both single photon emission computed tomography (SPECT) and positron emission tomography (PET) radiotracers, although other imaging modalities will be also briefly discussed. The specific approaches presented here will include receptor-based and reporter gene imaging of natural and therapeutical angiogenesis

  16. Molecular markers to assess genetic diversity and mutant identifications in Jatropha curcas

    International Nuclear Information System (INIS)

    Azhar Mohamad; Yie Min Kwan; Fatin Mastura Derani; Abdul Rahim Harun

    2010-01-01

    Jatropha curcas (Linnaeus) belongs to the Euphorbiaceae family, is a multipurpose use, drought resistant and perennial plant. It is an economic important crop, which generates wide interest in understanding the genetic diversity of the species towards selection and breeding of superior genotypes. Jatropha accessions are closely related family species. Thus, better understanding of the effectiveness of the different DNA-based markers is an important step towards plant germplasm characterization and evaluation. It is becoming a prerequisite for more effective application of marker techniques in breeding programs. Inter-simple sequence repeats (ISSRs) has shown rapid, simple, reproducible and inexpensive means in molecular taxonomy, conservation breeding and genetic diversity analysis. These markers were used to understand diversity and differentiate amongst accessions of Jatropha population and mutant lines generated by acute gamma radiation. The ISSR for marker applications are essential to facilitate management, conservation and genetic improvement programs towards improvement of bio-diesel production and medication substances. A total of 62 ISSR primers were optimized for polymorphism evaluations on five foreign accessions (Africa, India, Myanmar, Indonesia, Thailand), nine local accessions and two mutants of Jatropha. Optimization was resulted 54 ISSR primers affirmative for the polymorphism evaluation study, which encountered 12 ISSR primers, showed significance polymorphism amongst the accessions and mutants. Marker derived from ISSR profiling is a powerful method for identification and molecular classification of Jatropha from accession to generated mutant varieties. (author)

  17. Genetic characterization, molecular epidemiology, and phylogenetic relationships of insect-specific viruses in the taxon Negevirus.

    Science.gov (United States)

    Nunes, Marcio R T; Contreras-Gutierrez, María Angélica; Guzman, Hilda; Martins, Livia C; Barbirato, Mayla Feitoza; Savit, Chelsea; Balta, Victoria; Uribe, Sandra; Vivero, Rafael; Suaza, Juan David; Oliveira, Hamilton; Nunes Neto, Joaquin P; Carvalho, Valeria L; da Silva, Sandro Patroca; Cardoso, Jedson F; de Oliveira, Rodrigo Santo; da Silva Lemos, Poliana; Wood, Thomas G; Widen, Steven G; Vasconcelos, Pedro F C; Fish, Durland; Vasilakis, Nikos; Tesh, Robert B

    2017-04-01

    The recently described taxon Negevirus is comprised of a diverse group of insect-specific viruses isolated from mosquitoes and phlebotomine sandflies. In this study, a comprehensive genetic characterization, molecular, epidemiological and evolutionary analyses were conducted on nearly full-length sequences of 91 new negevirus isolates obtained in Brazil, Colombia, Peru, Panama, USA and Nepal. We demonstrated that these arthropod restricted viruses are clustered in two major phylogenetic groups with origins related to three plant virus genera (Cilevirus, Higrevirus and Blunevirus). Molecular analyses demonstrated that specific host correlations are not present with most negeviruses; instead, high genetic variability, wide host-range, and cross-species transmission were noted. The data presented here also revealed the existence of five novel insect-specific viruses falling into two arthropod-restrictive virus taxa, previously proposed as distinct genera, designated Nelorpivirus and Sandewavirus. Our results provide a better understanding of the molecular epidemiology, evolution, taxonomy and stability of this group of insect-restricted viruses. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Genetic Confirmation of Mungbean (Vigna radiata) and Mashbean (Vigna mungo) Interspecific Recombinants using Molecular Markers.

    Science.gov (United States)

    Abbas, Ghulam; Hameed, Amjad; Rizwan, Muhammad; Ahsan, Muhammad; Asghar, Muhammad J; Iqbal, Nayyer

    2015-01-01

    Molecular confirmation of interspecific recombinants is essential to overcome the issues like self-pollination, environmental influence, and inadequacy of morphological characteristics during interspecific hybridization. The present study was conducted for genetic confirmation of mungbean (female) and mashbean (male) interspecific crosses using molecular markers. Initially, polymorphic random amplified polymorphic DNA (RAPD), universal rice primers (URP), and simple sequence repeats (SSR) markers differentiating parent genotypes were identified. Recombination in hybrids was confirmed using these polymorphic DNA markers. The NM 2006 × Mash 88 was most successful interspecific cross. Most of true recombinants confirmed by molecular markers were from this cross combination. SSR markers were efficient in detecting genetic variability and recombination with reference to specific chromosomes and particular loci. SSR (RIS) and RAPD identified variability dispersed throughout the genome. In conclusion, DNA based marker assisted selection (MAS) efficiently confirmed the interspecific recombinants. The results provided evidence that MAS can enhance the authenticity of selection in mungbean improvement program.

  19. Assessment of genetic diversity in Isabgol (Plantago ovata Forsk ...

    African Journals Online (AJOL)

    sandeep kaswan

    improvement of this crop (Dhar et al., 2005). Therefore, it is necessary to analyze or examine the genetic diversity provided by the gene pools and then harnessed for crop improvement. The concept of molecular marker is an ideal approach for this purpose. They are reliable indicator of genetic diversity because they are ...

  20. Translating clinical research of Molecular Biology into a personalized, multidisciplinary approach of colorectal cancer patients.

    Science.gov (United States)

    Strambu, V; Garofil, D; Pop, F; Radu, P; Bratucu, M; Popa, F

    2014-03-15

    Although multimodal treatment has brought important benefit, there is still great heterogeneity regarding the indication and response to chemotherapy in Stage II and III, and individual variations related to both overall survival and toxicity of new therapies in metastatic disease or tumor relapse. Recent research in molecular biology led to the development of a large scale of genetic biomarkers, but their clinical use is not concordant with the high expectations. The Aim of this review is to identify and discuss the molecular markers with proven clinical applicability as prognostic and/or predictive factors in CRC and also to establish a feasible algorithm of molecular testing, as routine practice, in the personalized, multidisciplinary approach of colorectal cancer patients in our country. Despite the revolution that occurred in the field of molecular marker research, only Serum CEA, Immunohistochemical analysis of mismatch repair proteins and PCR testing for KRAS and BRAF mutations have confirmed their clinical utility in the management of colorectal cancer. Their implementation in the current practice should partially resolve some of the controversies related to this heterogenic pathology, in matters of prognosis in different TNM stages, stage II patient risk stratification, diagnosis of hereditary CRC and likelihood of benefit from anti EGFR therapy in metastatic disease. The proposed algorithms of molecular testing are very useful but still imperfect and require further validation and constant optimization.

  1. Fanconi anaemia: genetics, molecular biology, and cancer – implications for clinical management in children and adults.

    Science.gov (United States)

    Schneider, M; Chandler, K; Tischkowitz, M; Meyer, S

    2015-07-01

    Fanconi anaemia (FA) is an inherited disease with congenital and developmental abnormalities, cross-linker hypersensitivity and extreme cancer predisposition. With better understanding of the genetic and molecular basis of the disease, and improved clinical management, FA has been transformed from a life-limiting paediatric disease to an uncommon chronic condition that needs lifelong multidisciplinary management, and a paradigm condition for the understanding of the gene-environment interaction in the aetiology of congenital anomalies, haematopoiesis and cancer development. Here we review genetic, molecular and clinical aspects of FA, and discuss current controversies and future prospects. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Synovial sarcoma with radiological appearances of primitive neuroectodermal tumour/Ewing sarcoma: differentiation by molecular genetic studies

    International Nuclear Information System (INIS)

    O'Donnell, P.; Diss, T.C.; Whelan, J.; Flanagan, A.M.

    2006-01-01

    Synovial sarcoma (SS) arises in soft tissues but may invade adjacent bone. We describe a case of SS presenting as aggressive lysis of the proximal ulna, the imaging of which suggested a primary bone lesion. Needle biopsy showed a 'small round blue cell tumour', and a primitive neuroectodermal tumour (PNET)/Ewing sarcoma was suggested on the basis of the imaging appearances. The definitive diagnosis of synovial sarcoma was made following molecular genetic studies, which demonstrated a fusion product incorporating the genes SYT and SSX1. The importance of correct diagnosis to guide appropriate management, and, therefore, the necessity for molecular genetic studies, is discussed. (orig.)

  3. Molecular Approaches to Studying Denitrification

    Science.gov (United States)

    Voytek, M. A.

    2001-05-01

    Denitrification is carried out by a diverse array of microbes, mainly as an alternative mode of respiration that allows the organisms to respire using oxidized N compounds instead of oxygen. A common approach in biogeochemistry to the study of the regulation of denitrification is to assess activity by mass balance of substrates and products or direct rate measurements and has intrinsically assumed resource regulation of denitrification. Reported rates can vary significantly even among ecosystems characterized by similar environmental conditions, thus indicating that direct control by abiotic factors often is not sufficient to predict denitrification rates accurately in natural environments. Alternatively, a microbiological approach would proceed with the identification of the organisms responsible and an evaluation of the effect of environmental factors on the biochemical pathways involved. Traditional studies have relied on culturing techniques, such as most probable number enrichments, and have failed to assess the role of the predominately uncultivable members of the microbial community. A combination of biogeochemical measurements and the assessment of the microbial community is necessary and becoming increasingly possible with the development and application of molecular techniques. In order to understand how the composition and physiological behavior of the microbial community affects denitrification rates, we use a suite of molecular techniques developed for phylogenetic and metabolic characterization of denitrifying communities. Molecular tools available for quantifying denitrifying bacteria and assessing their diversity and activity are summarized. Their application is illustrated with examples from marine and freshwater environments. Emerging techniques and their application to ground water studies will be discussed.

  4. MODY in Siberia – molecular genetics and clinical characteristics

    Directory of Open Access Journals (Sweden)

    Alla Konstantinovna Ovsyannikova

    2017-05-01

    Full Text Available The diagnosis of maturity onset diabetes of the young (MODY has high clinical significance in young patients (no absolute need for exogenous insulin; normoglycaemia in most patients achieved by dieting or taking oral hypoglycaemic agents and their relatives (high probability of first-degree relatives being carriers of mutations, which requires a thorough collection of family history and determination of the parameters of carbohydrate metabolism. Aim. This study aimed was to determine the clinical characteristics of different subtypes of MODY in a Siberian region. Materials and Methods. We performed an examination, biochemical and hormonal blood tests, ultrasound and molecular genetic testing of 20 patients with a clinical diagnosis of MODY. Results. Four subtypes of MODY were verified: MODY2 in 11 patients, MODY3 in two, MODY8 in one and MODY12 in two. Eleven patients (69% exhibited no clinical manifestations of carbohydrate metabolism disorders, and one patient showed weight loss during early stage of the disease. Comorbidities included dyslipidemia, thyroid gland disorders and arterial hypertension. One patient (6% exhibited diabetic nephropathy; two (13%, diabetic retinopathy and three (19%, peripheral neuropathy of lower legs. All patients achieved the target carbohydrate metabolism; the level of C-peptide was within the reference range. Conclusion. Four different subtypes of MODY (2, 3, 8, 12 were diagnosed in the present study, which differed in their clinical characteristics, presence of complications and treatment strategies. Our knowledge of monogenic forms of diabetes is expanding with the development in molecular genetics, but several aspects related to them require further study.

  5. Molecular genetic analysis of activation-tagged transcription factors thought to be involved in photomorphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Neff, Michael M.

    2011-06-23

    This is a final report for Department of Energy Grant No. DE-FG02-08ER15927 entitled “Molecular Genetic Analysis of Activation-Tagged Transcription Factors Thought to be Involved in Photomorphogenesis”. Based on our preliminary photobiological and genetic analysis of the sob1-D mutant, we hypothesized that OBP3 is a transcription factor involved in both phytochrome and cryptochrome-mediated signal transduction. In addition, we hypothesized that OBP3 is involved in auxin signaling and root development. Based on our preliminary photobiological and genetic analysis of the sob2-D mutant, we also hypothesized that a related gene, LEP, is involved in hormone signaling and seedling development.

  6. PERSONALIZED MEDICINE: GENOME, ELECTRONIC HEALTH AND INTELLIGENT SYSTEMS. PART 2. MOLECULAR GENETICS AND METHODS OF INTELLECTUAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    B. A. Kobrinskii

    2017-01-01

    Full Text Available The transition to personalized medicine in practical terms should combine the problems of molecular-genetic predisposition to diseases with transient states in the organism in the direction of possible pathology. Classification and monitoring of the state can be  effectively carried out using artificial intelligence methods. Various intellectual approaches are considered in different conditions for  monitoring patient.

  7. ["A decision meaning a new foundation...": from the Kaiser Wilhelm Institute for Anthropology, Human Genetics and Eugenics to the Max Planck Institute for Molecular Genetics].

    Science.gov (United States)

    Sachse, Carola

    2011-01-01

    The Max Planck Institute for Molecular Genetics (MPIMG) in Berlin-Dahlem dates its establishment to 1964. Its homepage makes no mention of its predecessor institutes, the Kaiser Wilhelm Institute for Anthropology, Human Genetics and Eugenics (KWIA) and the subsequent MPI for Comparative Genetics and Hereditary Pathology (MPIVEE). This article traces the two critical phases of transition regarding the constellations of academic staff, institutional and epistemic ruptures and continuities specific to the era. Only one of the five department heads from the final war years, Hans Nachtsheim, remained a researcher within the Max Planck Society (MPG); he nevertheless continued to advocate the pre-war and wartime eugenic agenda in the life sciences and social policy. The generational change of 1959/60 became a massive struggle within the institute, in which microbial genetics (with Fritz Kaudewitz) was pitted against human genetics (with Friedrich Vogel) and managed to establish itself after a fresh change in personnel in 1964/65. For the Dahlem institute, this involved a far-reaching reorientation of its research, but for the genetically oriented life sciences in the Max Planck Society as a whole it only meant that molecular biology, which was already being pursued in the West German institutes, gained an additional facility. With this realignment of research traditions, the Society was able to draw a line under the Nazi past without having to address it head-on.

  8. Genetic diversity of dog breeds: within-breed diversity comparing genealogical and molecular data.

    Science.gov (United States)

    Leroy, G; Verrier, E; Meriaux, J C; Rognon, X

    2009-06-01

    The genetic diversity of 61 dog breeds raised in France was investigated. Genealogical analyses were performed on the pedigree file of the French kennel club. A total of 1514 dogs were also genotyped using 21 microsatellite markers. For animals born from 2001 to 2005, the average coefficient of inbreeding ranged from 0.2% to 8.8% and the effective number of ancestors ranged from 9 to 209, according to the breed. The mean value of heterozygosity was 0.62 over all breeds (range 0.37-0.77). At the breed level, few correlations were found between genealogical and molecular parameters. Kinship coefficients and individual similarity estimators were, however, significantly correlated, with the best mean correlation being found for the Lynch & Ritland estimator (r = 0.43). According to both approaches, it was concluded that special efforts should be made to maintain diversity for three breeds, namely the Berger des Pyrénées, Braque Saint-Germain and Bull Terrier.

  9. New STS molecular markers for assessment of genetic diversity and DNA fingerprinting in hop (Humulus lupulus L.)

    Czech Academy of Sciences Publication Activity Database

    Patzak, J.; Vrba, Lukáš; Matoušek, Jaroslav

    2007-01-01

    Roč. 50, č. 1 (2007), s. 15-25 ISSN 0831-2796 R&D Projects: GA ČR GA521/03/0072 Institutional research plan: CEZ:AV0Z50510513 Keywords : hop (Humulus lupulus L.) * genetic diversity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.785, year: 2007

  10. Plant responses to UV and blue light: biochemical and genetic approaches

    International Nuclear Information System (INIS)

    Jenkins, G.I.; Christie, J.M.; Fuglevand, G.; Long, J.C.; Jackson, J.A.

    1995-01-01

    UV and blue light control many aspects of plant growth and development. It is evident that several different photoreceptors mediate responses to UV and blue light, and there are reports of the functional and biochemical characterisation of a putative photoreceptor for phototropism and of the functional and molecular characterisation of the CRY1 photoreceptor, encoded by the Arabidopsis HY4 gene. The CRY1 photoreceptor mediates extension growth and gene expression responses to UV-A/blue light presumably through different or branching signal transduction pathways. Progress has been made in cell physiological and biochemical studies of UV/blue light signal transduction, but much remains to be done to relate candidate UV/blue signal transduction events to particular photoreceptors and responses. The application of a genetic approach in Arabidopsis has been responsible for many advances in understanding UV/blue responses, but further UV-B, UV-A and blue light response mutants need to be isolated. (author)

  11. Review: domestic animal forensic genetics - biological evidence, genetic markers, analytical approaches and challenges.

    Science.gov (United States)

    Kanthaswamy, S

    2015-10-01

    This review highlights the importance of domestic animal genetic evidence sources, genetic testing, markers and analytical approaches as well as the challenges this field is facing in view of the de facto 'gold standard' human DNA identification. Because of the genetic similarity between humans and domestic animals, genetic analysis of domestic animal hair, saliva, urine, blood and other biological material has generated vital investigative leads that have been admitted into a variety of court proceedings, including criminal and civil litigation. Information on validated short tandem repeat, single nucleotide polymorphism and mitochondrial DNA markers and public access to genetic databases for forensic DNA analysis is becoming readily available. Although the fundamental aspects of animal forensic genetic testing may be reliable and acceptable, animal forensic testing still lacks the standardized testing protocols that human genetic profiling requires, probably because of the absence of monetary support from government agencies and the difficulty in promoting cooperation among competing laboratories. Moreover, there is a lack in consensus about how to best present the results and expert opinion to comply with court standards and bear judicial scrutiny. This has been the single most persistent challenge ever since the earliest use of domestic animal forensic genetic testing in a criminal case in the mid-1990s. Crime laboratory accreditation ensures that genetic test results have the courts' confidence. Because accreditation requires significant commitments of effort, time and resources, the vast majority of animal forensic genetic laboratories are not accredited nor are their analysts certified forensic examiners. The relevance of domestic animal forensic genetics in the criminal justice system is undeniable. However, further improvements are needed in a wide range of supporting resources, including standardized quality assurance and control protocols for sample

  12. Identification of single-copy orthologous genes between Physalis and Solanum lycopersicum and analysis of genetic diversity in Physalis using molecular markers.

    Science.gov (United States)

    Wei, Jingli; Hu, Xiaorong; Yang, Jingjing; Yang, Wencai

    2012-01-01

    The genus Physalis includes a number of commercially important edible and ornamental species. Its high nutritional value and potential medicinal properties leads to the increased commercial interest in the products of this genus worldwide. However, lack of molecular markers prevents the detailed study of genetics and phylogeny in Physalis, which limits the progress of breeding. In the present study, we compared the DNA sequences between Physalis and tomato, and attempted to analyze genetic diversity in Physalis using tomato markers. Blasting 23180 DNA sequences derived from Physalis against the International Tomato Annotation Group (ITAG) Release2.3 Predicted CDS (SL2.40) discovered 3356 single-copy orthologous genes between them. A total of 38 accessions from at least six species of Physalis were subjected to genetic diversity analysis using 97 tomato markers and 25 SSR markers derived from P. peruviana. Majority (73.2%) of tomato markers could amplify DNA fragments from at least one accession of Physalis. Diversity in Physalis at molecular level was also detected. The average Nei's genetic distance between accessions was 0.3806 with a range of 0.2865 to 0.7091. These results indicated Physalis and tomato had similarity at both molecular marker and DNA sequence levels. Therefore, the molecular markers developed in tomato can be used in genetic study in Physalis.

  13. Molecular genetics of pancreatic neoplasms and their morphologic correlates: an update on recent advances and potential diagnostic applications.

    Science.gov (United States)

    Reid, Michelle D; Saka, Burcu; Balci, Serdar; Goldblum, Andrew S; Adsay, N Volkan

    2014-02-01

    To summarize the most clinically and biologically relevant advances in molecular/genetic characteristics of various pancreatic neoplasms, with morphologic correlation. Whole-exome sequencing of numerous benign and malignant pancreatic tumors, along with the plethora of highly sensitive molecular studies now available for analyzing these tumors, provide mounting evidence to support the long-held belief that cancer is essentially a genetic disease. These genetic discoveries have not only helped to confirm the age-old, morphology-based classifications of pancreatic neoplasia but have shed new light on their mechanisms. Many of these molecular discoveries are currently being used in preoperative diagnosis. Mutations in KRAS, P16/CDKN2A, TP53, and SMAD4/DPC4 are commonly seen in ductal neoplasia but not in nonductal tumors; ductal adenocarcinomas with SMAD4/DPC4 loss are associated with widespread metastasis and poor prognosis. GNAS and RNF43 mutations have been discovered in most intraductal pancreatic mucinous neoplasms, providing critical molecular fingerprints for their diagnosis. Mutation in DAXX/ATRX is only seen in pancreatic neuroendocrine tumors, making it a useful potential marker in distinguishing these tumors from mimics. When combined with morphologic observations, molecular studies will increase our understanding of the pathogenesis and morphomolecular signatures associated with specific neoplasms and provide new horizons for precision medicine and targeted therapies.

  14. Environmental Contamination Genetic Consequences Monitoring on the Former Semipalatinsk Test Site: General Approach

    International Nuclear Information System (INIS)

    Seisebaev, A.T.; Bakhtin, M.M.; Zhapbasov, R.Zh.

    1998-01-01

    genetic monitoring of natural populations of plants and animals and the theoretic approach for their fulfillment. We also consider the main issues of research work on assessment and forecast of the remote genetic consequences of nuclear tests at STS: 1) assessment of the environmental radiation situation; determination of the indicator species of plants and animals and the criteria encompassing the different levels from the molecular one through the genetic to the population one; 2) study of the dose dependence of the genetic effects under the chronic ionizing radiation; 3) analysis of mutation process dynamics in the following generations of population under various exposure condition; 4) study of the possible ways of population adaptation to the chronic impact of various radiation doses; 5) analysis of relation between different genetic changes in exposed population and ecology alterations, etc

  15. Molecular epidemiology and evolutionary genetics of Mycobacterium tuberculosis in Taipei

    OpenAIRE

    Su Ih-Jen; Lee Shi-Yi; Tsai Wen-Shing; Sun Jun-Ren; Chang Jia-Ru; Lin Chih-Wei; Tseng Fan-Chen; Dou Horng-Yunn; Lu Jang-Jih

    2008-01-01

    Abstract Background The control of tuberculosis in densely populated cities is complicated by close human-to-human contacts and potential transmission of pathogens from multiple sources. We conducted a molecular epidemiologic analysis of 356 Mycobacterium tuberculosis (MTB) isolates from patients presenting pulmonary tuberculosis in metropolitan Taipei. Classical antibiogram studies and genetic characterization, using mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (M...

  16. Avoiding pitfalls in molecular genetic testing: case studies of high-resolution array comparative genomic hybridization testing in the definitive diagnosis of Mowat-Wilson syndrome.

    Science.gov (United States)

    Kluk, Michael Joseph; An, Yu; James, Philip; Coulter, David; Harris, David; Wu, Bai-Lin; Shen, Yiping

    2011-05-01

    The molecular testing options available for the diagnosis of genetic disorders are numerous and include a variety of different assay platforms. The consultative input of molecular pathologists and cytogeneticists, working closely with the ordering clinicians, is often important for definitive diagnosis. Herein, we describe two patients who had long histories of unexplained signs and symptoms with a high clinical suspicion of an underlying genetic etiology. Initial molecular testing in both cases was negative, but the application of high-resolution array comparative genomic hybridization technology lead to definitive diagnosis in both cases. We summarize the clinical findings and molecular testing in each case, discuss the differential diagnoses, and review the clinical and pathological findings of Mowat-Wilson syndrome. This report highlights the importance for those involved in molecular testing to know the nature of the underlying genetic abnormalities associated with the suspected diagnosis, to recognize the limitations of each testing platform, and to persistently pursue repeat testing using high-resolution technologies when indicated. This concept is applicable to both germline and somatic molecular genetic testing. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  17. Coevolutionary genetic variation in the legume-rhizobium transcriptome.

    Science.gov (United States)

    Heath, Katy D; Burke, Patricia V; Stinchcombe, John R

    2012-10-01

    Coevolutionary change requires reciprocal selection between interacting species, where the partner genotypes that are favoured in one species depend on the genetic composition of the interacting species. Coevolutionary genetic variation is manifested as genotype × genotype (G × G) interactions for fitness in interspecific interactions. Although quantitative genetic approaches have revealed abundant evidence for G × G interactions in symbioses, the molecular basis of this variation remains unclear. Here we study the molecular basis of G × G interactions in a model legume-rhizobium mutualism using gene expression microarrays. We find that, like quantitative traits such as fitness, variation in the symbiotic transcriptome may be partitioned into additive and interactive genetic components. Our results suggest that plant genetic variation had the largest influence on nodule gene expression and that plant genotype and the plant genotype × rhizobium genotype interaction determine global shifts in rhizobium gene expression that in turn feedback to influence plant fitness benefits. Moreover, the transcriptomic variation we uncover implicates regulatory changes in both species as drivers of symbiotic gene expression variation. Our study is the first to partition genetic variation in a symbiotic transcriptome and illuminates potential molecular routes of coevolutionary change. © 2012 Blackwell Publishing Ltd.

  18. Comparison of weighting approaches for genetic risk scores in gene-environment interaction studies.

    Science.gov (United States)

    Hüls, Anke; Krämer, Ursula; Carlsten, Christopher; Schikowski, Tamara; Ickstadt, Katja; Schwender, Holger

    2017-12-16

    Weighted genetic risk scores (GRS), defined as weighted sums of risk alleles of single nucleotide polymorphisms (SNPs), are statistically powerful for detection gene-environment (GxE) interactions. To assign weights, the gold standard is to use external weights from an independent study. However, appropriate external weights are not always available. In such situations and in the presence of predominant marginal genetic effects, we have shown in a previous study that GRS with internal weights from marginal genetic effects ("GRS-marginal-internal") are a powerful and reliable alternative to single SNP approaches or the use of unweighted GRS. However, this approach might not be appropriate for detecting predominant interactions, i.e. interactions showing an effect stronger than the marginal genetic effect. In this paper, we present a weighting approach for such predominant interactions ("GRS-interaction-training") in which parts of the data are used to estimate the weights from the interaction terms and the remaining data are used to determine the GRS. We conducted a simulation study for the detection of GxE interactions in which we evaluated power, type I error and sign-misspecification. We compared this new weighting approach to the GRS-marginal-internal approach and to GRS with external weights. Our simulation study showed that in the absence of external weights and with predominant interaction effects, the highest power was reached with the GRS-interaction-training approach. If marginal genetic effects were predominant, the GRS-marginal-internal approach was more appropriate. Furthermore, the power to detect interactions reached by the GRS-interaction-training approach was only slightly lower than the power achieved by GRS with external weights. The power of the GRS-interaction-training approach was confirmed in a real data application to the Traffic, Asthma and Genetics (TAG) Study (N = 4465 observations). When appropriate external weights are unavailable, we

  19. [Noonan syndrome can be diagnosed clinically and through molecular genetic analyses].

    Science.gov (United States)

    Henningsen, Marie Krab; Jelsig, Anne Marie; Andersen, Helle; Brusgaard, Klaus; Ousager, Lilian Bomme; Hertz, Jens Michael

    2015-08-03

    Noonan syndrome is part of the group of RASopathies caused by germ line mutations in genes involved in the RAS/MAPK pathway. There is substantial phenotypic overlap among the RASopathies. Diagnosis of Noonan syndrome is often based on clinical features including dysmorphic facial features, short stature and congenital heart disease. Rapid advances in sequencing technology have made molecular genetic analyses a helpful tool in diagnosing and distinguishing Noonan syndrome from other RASopathies.

  20. On Generating Optimal Signal Probabilities for Random Tests: A Genetic Approach

    Directory of Open Access Journals (Sweden)

    M. Srinivas

    1996-01-01

    Full Text Available Genetic Algorithms are robust search and optimization techniques. A Genetic Algorithm based approach for determining the optimal input distributions for generating random test vectors is proposed in the paper. A cost function based on the COP testability measure for determining the efficacy of the input distributions is discussed. A brief overview of Genetic Algorithms (GAs and the specific details of our implementation are described. Experimental results based on ISCAS-85 benchmark circuits are presented. The performance of our GAbased approach is compared with previous results. While the GA generates more efficient input distributions than the previous methods which are based on gradient descent search, the overheads of the GA in computing the input distributions are larger.

  1. Molecular genetic diversity of Punica granatum L. (pomegranate) as revealed by microsatellite DNA markers

    Science.gov (United States)

    Pomegranate (Punica granatum L.) is one of the oldest known edible fruits and more and more it arouse interest of scientific community given its numerous biological activities. However, information about its genetic resources and characterization using reliable molecular markers are still scarce. In...

  2. Study of inter species diversity and population structure by molecular genetic method in Iranian Artemia

    OpenAIRE

    Hajirostamloo, Mahbobeh

    2005-01-01

    Artemia is a small crustacean that adapted to live in brine water and has been seen in different brine water sources in Iran. Considering the importance of genetic studies manifest inter population differences in species, to estimate genetic structure, detect difference at molecular level and separate different Artemia populations of Iran, also study of phylogenic relationships among them, samples of Artemia were collected from nine region: Urmia lake in West Azerbaijan, Sh...

  3. Population-genetic approach to standardization of radiation and non-radiation factors

    International Nuclear Information System (INIS)

    Telnov, I.

    2006-01-01

    Numerous studies demonstrate the importance of genetic predisposition in the development of wide range of pathologies and unfavorable effects caused by different factors. This prompts to account for genetic factors in the risk assessment of unfavorable effects. Current approaches used to solve this problem are far from perfect. On the one hand, recommendations on occupational selection bas ed on genetic signs are presently considered as human rights violation. On the other hand, to medically inform an individual with certain genetic characteristics about possible unfavorable health effects due to occupational hazard has little effect. Finally, a vast number of polymorphic genes in human genome (at least 30%) hampers accounting for all possible factors of genetic predisposition to the increasing number of environmental factors. Therefore, the current situation proves it appropriate to develop the new approach to account for genetic predisposition of individuals that would be free of flaws considered above. A possible basis for such an approach is the assessment of genotype specific relative risk (G.S.R.R.) that accounts for genetic predisposition (susceptibility) of individuals to the effects of unfavorable factors. The study used results from 65 studies. This effort was undertaken to study the association between 32 diseases and unfavorable effects and 17 genetic polymorphic systems. Data analysis included calculation of relative risk (R.R.) of specific diseases or effects development in individuals with different genotypes. Genotype-specific relative risk (G.S.R.R.) of diseases and unfavorable effects in individuals with 'sensitive' genotypes was calculated. Since about the third of genes in human genome are polymorphic, and therefore, a considerable number of genes can be involved in genetic predisposition of an individual to a specific unfavorable effect, an averaged G.S.R.R. of diseases and unfavorable effects was calculated for integral characteristics on

  4. Molecular Genetics and Gene Therapy in Esophageal Cancer: a Review Article

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Noori Daloii Ph.D.

    2011-06-01

    Full Text Available Background: With approximately 386,000 deaths per year, esophageal cancer is the 6th most common cause of death due to cancer in the world. This cancer, like any other cancer, is the outcome of genetic alterations or environmental factors such as tobacco smoke and gastro-esophageal reflux. Tobacco smoking is a major etiologic factor for esophageal squamous cell carcinoma in western countries, and it increases the risk by approximately 3 to 5 folds. Chronic gastro-esophageal reflux usually leads to the replacement of squamous mucosa by intestinal-type Barrett’s metaplastic mucosa which is considered the most important factor causing esophageal adenocarcinoma. In contrast to esophageal adenocarcinoma, different risk factors and mechanisms, such as mutations in oncogenes and tumor suppressor genes, play an important role in causing esophageal squamous cell carcinoma. Molecular studies on esophageal cancers have revealed frequent genetic abnormalities in esophageal squamous cell carcinoma and adenocarcinoma, including altered expression of p53, p16, cyclin D1, EGFR, E-cadherin, COX-2, iNOS, RARs, Rb, hTERT, p21, APC, c-MYC, VEGF, TGT-α and NF-κB. Many studies have focused on the role of different polymorphisms such as aldehyde dehydrogenase 2 and alcohol dehydrogenase 2 in causing esophageal cancer. Different agents including bestatin, curcumin, black raspberries, 5-lipoxygenase (LOX and COX-2 inhibitors have been found to play a role in inhibiting esophageal carcinogenesis. Different gene therapy approaches including p53 and p21WAF1 replacement gene therapies and therapy by suicide genes have also been experimented. Moreover, efforts have been made to use nanotechnology and aptamer technology in this regard.

  5. In situ conservation and landscape genetics in forest species

    Directory of Open Access Journals (Sweden)

    Martín L.M.

    2012-03-01

    Full Text Available Conservation of forest genetic resources is essential for sustaining the environmental and productive values of forests. One of the environmental values is the conservation of the diversity that is assessed through the amount of genetic diversity stored by forests, their structure and dynamics. The current need for forest conservation and management has driven a rapid expansion of landscape genetics discipline that combines tools from molecular genetics, landscape ecology and spatial statistics and is decisive for improving not only ecological knowledge but also for properly managing population genetic resources. The objective of this study is to show the way to establish the safeguard of genetic diversity through this approach using the results obtained in sweet chestnut (Castanea sativa Mill. that has provided a better understanding on the species genetic resources. In this respect, we will show how the information provided by different types of molecular markers (genomic and genic offer more accurate indication on the distribution of the genetic diversity among and within populations assuming different evolutionary drivers.

  6. Cellular and Molecular Biological Approaches to Interpreting Ancient Biomarkers

    Science.gov (United States)

    Newman, Dianne K.; Neubauer, Cajetan; Ricci, Jessica N.; Wu, Chia-Hung; Pearson, Ann

    2016-06-01

    Our ability to read the molecular fossil record has advanced significantly in the past decade. Improvements in biomarker sampling and quantification methods, expansion of molecular sequence databases, and the application of genetic and cellular biological tools to problems in biomarker research have enabled much of this progress. By way of example, we review how attempts to understand the biological function of 2-methylhopanoids in modern bacteria have changed our interpretation of what their molecular fossils tell us about the early history of life. They were once thought to be biomarkers of cyanobacteria and hence the evolution of oxygenic photosynthesis, but we now believe that 2-methylhopanoid biosynthetic capacity originated in the Alphaproteobacteria, that 2-methylhopanoids are regulated in response to stress, and that hopanoid 2-methylation enhances membrane rigidity. We present a new interpretation of 2-methylhopanes that bridges the gap between studies of the functions of 2-methylhopanoids and their patterns of occurrence in the rock record.

  7. Implication of Gastric Cancer Molecular Genetic Markers in Surgical Practice.

    Science.gov (United States)

    Nemtsova, Marina V; Strelnikov, Vladimir V; Tanas, Alexander S; Bykov, Igor I; Zaletaev, Dmitry V; Rudenko, Viktoria V; Glukhov, Alexander I; Kchorobrich, Tatiana V; Li, Yi; Tarasov, Vadim V; Barreto, George E; Aliev, Gjumrakch

    2017-10-01

    We have investigated aberrant methylation of genes CDH1, RASSF1A, MLH1, N33, DAPK, expression of genes hTERT, MMP7, MMP9, BIRC5 (survivin), PTGS2, and activity of telomerase of 106 gastric tumor samples obtained intra-operatively and 53 gastric tumor samples from the same group of patients obtained endoscopically before surgery. Biopsy specimens obtained from 50 patients with chronic calculous cholecystitis were used as a control group. Together with tissue samples obtained from different sites remote to tumors, a total of 727 samples have been studied. The selected parameters comprise a system of molecular markers that can be used in both diagnostics of gastric cancer and in dynamic monitoring of patients after surgery. Special attention was paid to the use of molecular markers for the diagnostics of malignant process in the material obtained endoscopically since the efficacy of morphological diagnostics in biopsies is compromised by intratumoral heterogeneity, which may prevent reliable identification of tumor cells in the sampling. Our data indicated that certain molecular genetic events provided more sensitive yet specific markers of the tumor. We demonstrated that molecular profiles detected in preoperative biopsies were confirmed by the material obtained intra-operatively. The use of endoscopic material facilitates gastric tumors pre-operative diagnostics, improving early detection of gastric cancer and potential effective treatment strategies.

  8. Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background.

    Directory of Open Access Journals (Sweden)

    Saskia Decuypere

    Full Text Available The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L. donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread

  9. Identification of single-copy orthologous genes between Physalis and Solanum lycopersicum and analysis of genetic diversity in Physalis using molecular markers.

    Directory of Open Access Journals (Sweden)

    Jingli Wei

    Full Text Available The genus Physalis includes a number of commercially important edible and ornamental species. Its high nutritional value and potential medicinal properties leads to the increased commercial interest in the products of this genus worldwide. However, lack of molecular markers prevents the detailed study of genetics and phylogeny in Physalis, which limits the progress of breeding. In the present study, we compared the DNA sequences between Physalis and tomato, and attempted to analyze genetic diversity in Physalis using tomato markers. Blasting 23180 DNA sequences derived from Physalis against the International Tomato Annotation Group (ITAG Release2.3 Predicted CDS (SL2.40 discovered 3356 single-copy orthologous genes between them. A total of 38 accessions from at least six species of Physalis were subjected to genetic diversity analysis using 97 tomato markers and 25 SSR markers derived from P. peruviana. Majority (73.2% of tomato markers could amplify DNA fragments from at least one accession of Physalis. Diversity in Physalis at molecular level was also detected. The average Nei's genetic distance between accessions was 0.3806 with a range of 0.2865 to 0.7091. These results indicated Physalis and tomato had similarity at both molecular marker and DNA sequence levels. Therefore, the molecular markers developed in tomato can be used in genetic study in Physalis.

  10. Biochemical and molecular genetic studies on some cyanobacterial isolates

    International Nuclear Information System (INIS)

    Kamal, E.A.R.; Ebrahim, S.A.A.

    2011-01-01

    In the present study, the isolation and purification of a set of Cyanobacteria strains belonging to genus Oscillatoria was undertaken, followed by the analyses of phylogenetic relationships using different biochemical and molecular genetic techniques (SOS-PAGE and RAPO-PCR). A total of 45 protein bands were observed within the studied Osci/latoria isolates by SOS-PAGE (only three unique bands, eight monomorphic bands and 37 polymorphic bands). On the other hand, extracted ONA from isolates was used to identify the molecular fingerprints. A sum of 94 polymorphic bands was generated by these primers in the Ocsi/laloria genotypes under study. A total of 20 unique bands were identified out of the polymorphic ones. These unique bands were used to discriminate among the studied Ocsi/latoria isolates. Most isolates of Ocsi/latoria genotypes were discriminated by one or more unique bands. Numerical taxonomic using 45 protein attributes of 19 isolates and RAPO markers on five isolates. Two methods -Clustering (UPGMA) and Principal Component Analysis (PCA) were used for these analyses. The similarities and clusters produced between the studied isolates were discussed.

  11. Biochemical and molecular genetic studies on some cyanobacterial isolates

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, E A.R. [Umm Al-Qura University, Makkah (Saudi Arabia). Dept. of Biology; Ebrahim, S A.A. [Ain Sham University, Cairo (Egypt). Dept. of Cytogenetic

    2011-11-15

    In the present study, the isolation and purification of a set of Cyanobacteria strains belonging to genus Oscillatoria was undertaken, followed by the analyses of phylogenetic relationships using different biochemical and molecular genetic techniques (SOS-PAGE and RAPO-PCR). A total of 45 protein bands were observed within the studied Osci/latoria isolates by SOS-PAGE (only three unique bands, eight monomorphic bands and 37 polymorphic bands). On the other hand, extracted ONA from isolates was used to identify the molecular fingerprints. A sum of 94 polymorphic bands was generated by these primers in the Ocsi/laloria genotypes under study. A total of 20 unique bands were identified out of the polymorphic ones. These unique bands were used to discriminate among the studied Ocsi/latoria isolates. Most isolates of Ocsi/latoria genotypes were discriminated by one or more unique bands. Numerical taxonomic using 45 protein attributes of 19 isolates and RAPO markers on five isolates. Two methods -Clustering (UPGMA) and Principal Component Analysis (PCA) were used for these analyses. The similarities and clusters produced between the studied isolates were discussed.

  12. Identifying genetic signatures of selection in a non-model species, alpine gentian (Gentiana nivalis L.), using a landscape genetic approach

    DEFF Research Database (Denmark)

    Bothwell, H.; Bisbing, S.; Therkildsen, Nina Overgaard

    2013-01-01

    It is generally accepted that most plant populations are locally adapted. Yet, understanding how environmental forces give rise to adaptive genetic variation is a challenge in conservation genetics and crucial to the preservation of species under rapidly changing climatic conditions. Environmental...... loci, we compared outlier locus detection methods with a recently-developed landscape genetic approach. We analyzed 157 loci from samples of the alpine herb Gentiana nivalis collected across the European Alps. Principle coordinates of neighbor matrices (PCNM), eigenvectors that quantify multi...... variables identified eight more potentially adaptive loci than models run without spatial variables. 3) When compared to outlier detection methods, the landscape genetic approach detected four of the same loci plus 11 additional loci. 4) Temperature, precipitation, and solar radiation were the three major...

  13. Scarlet Fever Upsurge in England and Molecular-Genetic Analysis in North-West London, 2014

    Centers for Disease Control (CDC) Podcasts

    2016-08-16

    Sarah Gregory reads an abridged version of the article, Scarlet Fever Upsurge in England and Molecular-Genetic Analysis in North-West London, 2014.  Created: 8/16/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/16/2016.

  14. Quality assurance practices in Europe: a survey of molecular genetic testing laboratories

    Science.gov (United States)

    Berwouts, Sarah; Fanning, Katrina; Morris, Michael A; Barton, David E; Dequeker, Elisabeth

    2012-01-01

    In the 2000s, a number of initiatives were taken internationally to improve quality in genetic testing services. To contribute to and update the limited literature available related to this topic, we surveyed 910 human molecular genetic testing laboratories, of which 291 (32%) from 29 European countries responded. The majority of laboratories were in the public sector (81%), affiliated with a university hospital (60%). Only a minority of laboratories was accredited (23%), and 26% was certified. A total of 22% of laboratories did not participate in external quality assessment (EQA) and 28% did not use reference materials (RMs). The main motivations given for accreditation were to improve laboratory profile (85%) and national recognition (84%). Nearly all respondents (95%) would prefer working in an accredited laboratory. In accredited laboratories, participation in EQA (Pquality assurance (Pquality implementation score (QIS), we showed that accredited laboratories (average score 92) comply better than certified laboratories (average score 69, Pquality indicators. We conclude that quality practices vary widely in European genetic testing laboratories. This leads to a potentially dangerous situation in which the quality of genetic testing is not consistently assured. PMID:22739339

  15. A genetic ensemble approach for gene-gene interaction identification

    Directory of Open Access Journals (Sweden)

    Ho Joshua WK

    2010-10-01

    Full Text Available Abstract Background It has now become clear that gene-gene interactions and gene-environment interactions are ubiquitous and fundamental mechanisms for the development of complex diseases. Though a considerable effort has been put into developing statistical models and algorithmic strategies for identifying such interactions, the accurate identification of those genetic interactions has been proven to be very challenging. Methods In this paper, we propose a new approach for identifying such gene-gene and gene-environment interactions underlying complex diseases. This is a hybrid algorithm and it combines genetic algorithm (GA and an ensemble of classifiers (called genetic ensemble. Using this approach, the original problem of SNP interaction identification is converted into a data mining problem of combinatorial feature selection. By collecting various single nucleotide polymorphisms (SNP subsets as well as environmental factors generated in multiple GA runs, patterns of gene-gene and gene-environment interactions can be extracted using a simple combinatorial ranking method. Also considered in this study is the idea of combining identification results obtained from multiple algorithms. A novel formula based on pairwise double fault is designed to quantify the degree of complementarity. Conclusions Our simulation study demonstrates that the proposed genetic ensemble algorithm has comparable identification power to Multifactor Dimensionality Reduction (MDR and is slightly better than Polymorphism Interaction Analysis (PIA, which are the two most popular methods for gene-gene interaction identification. More importantly, the identification results generated by using our genetic ensemble algorithm are highly complementary to those obtained by PIA and MDR. Experimental results from our simulation studies and real world data application also confirm the effectiveness of the proposed genetic ensemble algorithm, as well as the potential benefits of

  16. Cystic fibrosis, molecular genetics for all life

    Directory of Open Access Journals (Sweden)

    Ausilia Elce

    2015-10-01

    Full Text Available Cystic fibrosis (CF is the most frequent lethal autosomal recessive disorder among Caucasians (incidence: 1:2,500 newborn. In the last two decades CF prognosis considerably improved and many patients well survive into their adulthood. Furthermore, milder CF with a late onset was described. CF is a challenge for laboratory of molecular genetics that greatly contributes to the natural history of the disease since fetal age. Carrier screening and prenatal diagnosis, also by non-invasive analysis of maternal blood fetal DNA, are now available, and many labs offer preimplantation diagnosis. The major criticism in prenatal medicine is the lack of an effective multidisciplinary counseling that helps the couples to plan their reasoned reproductive choice. Most countries offer newborn screening that significantly reduce CF morbidity but different protocols based on blood trypsin, molecular analysis and sweat chloride cause a variable efficiency of the screening programs. Again, laboratory is crucial for CF diagnosis in symptomatic patients: sweat chloride is the diagnostic golden standard, but different methodologies and the lack of quality control in most labs reduce its effectiveness. Molecular analysis contributes to confirm diagnosis in symptomatic subjects; furthermore, it helps to predict the disease outcome on the basis of the mutation (genotype-phenotype correlation and mutations in a myriad of genes, inherited independently by CF transmembrane conductance regulator (CFTR, which may modulate the clinical expression of the disease in each single patient (modifier genes. More recently, the search of the CFTR mutations gained a role in selecting CF patients that may benefit from biological therapy based on correctors and potentiators that are effective in patients bearing specific mutations (personalized therapy. All such applications of molecular diagnostics confirm the “uniqueness” of each CF patient, offering to laboratory medicine the

  17. Molecular Approaches for High Throughput Detection and Quantification of Genetically Modified Crops: A Review

    Directory of Open Access Journals (Sweden)

    Ibrahim B. Salisu

    2017-10-01

    Full Text Available As long as the genetically modified crops are gaining attention globally, their proper approval and commercialization need accurate and reliable diagnostic methods for the transgenic content. These diagnostic techniques are mainly divided into two major groups, i.e., identification of transgenic (1 DNA and (2 proteins from GMOs and their products. Conventional methods such as PCR (polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA were routinely employed for DNA and protein based quantification respectively. Although, these Techniques (PCR and ELISA are considered as significantly convenient and productive, but there is need for more advance technologies that allow for high throughput detection and the quantification of GM event as the production of more complex GMO is increasing day by day. Therefore, recent approaches like microarray, capillary gel electrophoresis, digital PCR and next generation sequencing are more promising due to their accuracy and precise detection of transgenic contents. The present article is a brief comparative study of all such detection techniques on the basis of their advent, feasibility, accuracy, and cost effectiveness. However, these emerging technologies have a lot to do with detection of a specific event, contamination of different events and determination of fusion as well as stacked gene protein are the critical issues to be addressed in future.

  18. Molecular and morphological approaches for species delimitation and hybridization investigations of two Cichla species

    Directory of Open Access Journals (Sweden)

    Andrea A. F. Mourão

    Full Text Available ABSTRACT The hybridization is a widely-discussed issue in several studies with fish species. For some authors, hybridization may be related with diversification and speciation of several groups, or also with the extinction of populations or species. Difficulties to differentiate species and hybrids may be a problem to correctly apply a management of wild species, because hybrid lineages, especially the advanced ones, may resemble the parental species. The genus Cichla Bloch & Schneider, 1801 constitutes an interesting experimental model, considering that hybridization and taxonomic uncertainties hinder a correct identification. Considering these problems, in this study, we developed genetic methodologies and applied meristic and morphometric approaches in wild samples in order to identify species and for test a possible hybridization between Cichla kelberi Kullander & Ferreira, 2006 and Cichla piquiti Kullander & Ferreira, 2006. For this, C. kelberi, C. piquiti and potential hybrid ( carijó individuals were collected in Paraná and Tietê rivers (SP, Brazil. For meristic and morphometric methods, the individuals were analyzed using the statistical software Pcord 5:31, while for molecular methods, primers for PCR-multiplex were designed and enzyme for PCR-RFLP were selected, under the species-specific nucleotide. All results indicated that the carijó is not an interspecific hybrid, because it presented identical genetic pattern and morphology closed to C. piquiti. Thus, we propose that carijó is a C. piquiti morphotype. In addition, this study promotes a new molecular tool that could be used in future research, monitoring and management programs of the genus Cichla.

  19. [Molecular genetic analysis and clinical aspects of patients with hereditary hemochromatosis].

    Science.gov (United States)

    Lange, U; Teichmann, J; Dischereit, G

    2014-08-01

    The purpose of the study was to perform a molecular genetic analysis and to document clinical aspects in patients with hereditary hemochromatosis. The study included 33 outpatients (23 males average age 50.6 years and 10 females average age 60.6 years) with a disorder of iron metabolism (transferrin saturation > 75 %) as confirmation of hemochromatosis who were subjected to molecular genetic and clinical analyses. A homozygous mutation of the hemochromatosis (HFE) gene (C282YY) was detected in 63.6 %, a compound heterozygous mutation (C282Y/H63D) in 30.3% and no mutation of the HFE gene was detected in 6.1 %. The following organ manifestations could be objectified: arthralgia (78.8 %), liver disease (39.9 %), skin hyperpigmentation (30.3 %), osteoporosis (24.2 %), diabetes mellitus (24.2 %) and cardiomyopathy (12.1 %). Comparison between patients with heterozygous and homozygous hemochromatosis revealed the following differences: compound heterozygote patients presented less frequently with osteoarthritis of the metacarpophalangeal (MCP) joints and hands (85.7 %/71.4 % homozygotes vs. 60 %/60 % heterozygotes). Osteoarthritis of the shoulder joints and osteoporosis as well as hypothyroidism were more frequent in compound heterozygote patients, whereas osteoarthritis of the knee and hip joints as well as liver disease were more common in homozygote patients. No differences between both groups were seen with respect to the clinical manifestations of cardiomyopathy and diabetes mellitus. Prevalent causes of death in hereditary hemochromatosis are heart failure, liver disease (cirrhosis and hepatocellular carcinoma) and portal hypertension. Therefore, an early diagnosis, adequate therapy and genetic screening of family members are of great importance. Medicinal treatment will only effectively prevent deleterious organ involvement and subsequent complications if initiated at an early stage. Furthermore, an overview of the current data is given.

  20. Variabilidade genética de acessos de maracujá-suspiro com base em marcadores moleculares Genetic variability of wild passion fruit determined by molecular markers

    Directory of Open Access Journals (Sweden)

    Keize Pereira Junqueira

    2007-01-01

    Full Text Available Passiflora nitida é uma espécie silvestre amplamente distribuída pelo território brasileiro, constituindo-se em fonte de resistência a doenças foliares e de raízes. O objetivo deste trabalho foi avaliar a variabilidade genética entre acessos de P. nitida procedentes de diferentes tipos fitofisionômicos de Cerrado e estados brasileiros (Goiás, Distrito Federal, Tocantins, Mato Grosso e Amazonas, usando marcadores moleculares RAPD. O DNA genômico de cada acesso foi extraído, e doze iniciadores decâmeros foram utilizados para a obtenção de marcadores moleculares RAPD, que foram convertidos em matriz de dados binários, a partir da qual foram estimadas as distâncias genéticas entre os acessos e realizadas análises de agrupamento e de dispersão gráfica. Foram obtidos 196 marcadores para P. nitida, dos quais 63,81% foram polimórficos. As distâncias genéticas entre os acessos de maracujá variaram de 0,031 a 0,614 e, considerando apenas P. nitida, de 0,031 a 0,417. Os marcadores moleculares demonstraram alta variabilidade genética dos acessos de P. nitida. Menores distâncias genéticas foram verificadas entre os acessos originados do mesmo estado. Considerando-se os acessos de um mesmo estado, menores distâncias genéticas foram verificadas entre os acessos provenientes de tipos fitofisionômicos próximos. O acesso "Manaus 2" apresentou o maior distanciamento genético em relação aos demais acessos.Passiflora nitida is a wild species widely distributed in Brazilian territory. It is a source of resistance to foliar and soil borne diseases. The objective of this work was to evaluate the genetic variability among accessions of P. nitida proceeding from different types of Cerrado (Brazilian savannah vegetation and brazilian states (Goiás, Distrito Federal, Tocantins, Mato Grosso and Amazonas using RAPD molecular markers. The genomic DNA of each origin was extracted and amplified using 12 decamer primers to obtain RAPD

  1. A propensity score approach to correction for bias due to population stratification using genetic and non-genetic factors.

    Science.gov (United States)

    Zhao, Huaqing; Rebbeck, Timothy R; Mitra, Nandita

    2009-12-01

    Confounding due to population stratification (PS) arises when differences in both allele and disease frequencies exist in a population of mixed racial/ethnic subpopulations. Genomic control, structured association, principal components analysis (PCA), and multidimensional scaling (MDS) approaches have been proposed to address this bias using genetic markers. However, confounding due to PS can also be due to non-genetic factors. Propensity scores are widely used to address confounding in observational studies but have not been adapted to deal with PS in genetic association studies. We propose a genomic propensity score (GPS) approach to correct for bias due to PS that considers both genetic and non-genetic factors. We compare the GPS method with PCA and MDS using simulation studies. Our results show that GPS can adequately adjust and consistently correct for bias due to PS. Under no/mild, moderate, and severe PS, GPS yielded estimated with bias close to 0 (mean=-0.0044, standard error=0.0087). Under moderate or severe PS, the GPS method consistently outperforms the PCA method in terms of bias, coverage probability (CP), and type I error. Under moderate PS, the GPS method consistently outperforms the MDS method in terms of CP. PCA maintains relatively high power compared to both MDS and GPS methods under the simulated situations. GPS and MDS are comparable in terms of statistical properties such as bias, type I error, and power. The GPS method provides a novel and robust tool for obtaining less-biased estimates of genetic associations that can consider both genetic and non-genetic factors. 2009 Wiley-Liss, Inc.

  2. Congruence between morphological and molecular markers inferred from the analysis of the intra-morphotype genetic diversity and the spatial structure of Oxalis tuberosa Mol.

    Science.gov (United States)

    Pissard, Audrey; Arbizu, Carlos; Ghislain, Marc; Faux, Anne-Michèle; Paulet, Sébastien; Bertin, Pierre

    2008-01-01

    Oxalis tuberosa is an important crop cultivated in the highest Andean zones. A germplasm collection is maintained ex situ by CIP, which has developed a morphological markers system to classify the accessions into morphotypes, i.e. groups of morphologically identical accessions. However, their genetic uniformity is currently unknown. The ISSR technique was used in two experiments to determine the relationships between both morphological and molecular markers systems. The intra-morphotype genetic diversity, the spatial structures of the diversity and the congruence between both markers systems were determined. In the first experience, 44 accessions representing five morphotypes, clearly distinct from each other, were analyzed. At the molecular level, the accessions exactly clustered according to their morphotypes. However, a genetic variability was observed inside each morphotype. In the second experiment, 34 accessions gradually differing from each other on morphological base were analyzed. The morphological clustering showed no geographical structure. On the opposite, the molecular analysis showed that the genetic structure was slightly related to the collection site. The correlation between both markers systems was weak but significant. The lack of perfect congruence between morphological and molecular data suggests that the morphological system may be useful for the morphotypes management but is not appropriate to study the genetic structure of the oca. The spatial structure of the genetic diversity can be related to the evolution of the species and the discordance between the morphological and molecular structures may result from similar selection pressures at different places leading to similar forms with a different genetic background.

  3. Molecular Genetic Insights on Cheetah (Acinonyx jubatus) Ecology and Conservation in Namibia

    OpenAIRE

    Marker, Laurie L.; Wilkerson, Alison J. Pearks; Sarno, Ronald J.; Martenson, Janice; Breitenmoser-Würsten, Christian; O'Brien, Stephen J.; Johnson, Warren E.

    2017-01-01

    The extent and geographic patterns of molecular genetic diversity of the largest remaining free-ranging cheetah population were described in a survey of 313 individuals from throughout Namibia. Levels of relatedness, including paternity/maternity (parentage), were assessed across all individuals using 19 polymorphic microsatellite loci, and unrelated cheetahs (n = 89) from 7 regions were genotyped at 38 loci to document broad geographical patterns. There was limited differentiation among regi...

  4. Theoretical study of molecular vibrations in electron momentum spectroscopy experiments on furan: An analytical versus a molecular dynamical approach

    International Nuclear Information System (INIS)

    Morini, Filippo; Deleuze, Michael S.; Watanabe, Noboru; Takahashi, Masahiko

    2015-01-01

    The influence of thermally induced nuclear dynamics (molecular vibrations) in the initial electronic ground state on the valence orbital momentum profiles of furan has been theoretically investigated using two different approaches. The first of these approaches employs the principles of Born-Oppenheimer molecular dynamics, whereas the so-called harmonic analytical quantum mechanical approach resorts to an analytical decomposition of contributions arising from quantized harmonic vibrational eigenstates. In spite of their intrinsic differences, the two approaches enable consistent insights into the electron momentum distributions inferred from new measurements employing electron momentum spectroscopy and an electron impact energy of 1.2 keV. Both approaches point out in particular an appreciable influence of a few specific molecular vibrations of A 1 symmetry on the 9a 1 momentum profile, which can be unravelled from considerations on the symmetry characteristics of orbitals and their energy spacing

  5. Comparing targeted exome and whole exome approaches for genetic diagnosis of neuromuscular disorders

    Directory of Open Access Journals (Sweden)

    Svetlana Gorokhova

    2015-12-01

    Full Text Available Massively parallel sequencing is rapidly becoming a widely used method in genetic diagnostics. However, there is still no clear consensus as to which approach can most efficiently identify the pathogenic mutations carried by a given patient, while avoiding false negative and false positive results. We developed a targeted exome approach (MyoPanel2 in order to optimize genetic diagnosis of neuromuscular disorders. Using this approach, we were able to analyse 306 genes known to be mutated in myopathies as well as in related disorders, obtaining 98.8% target sequence coverage at 20×. Moreover, MyoPanel2 was able to detect 99.7% of 11,467 known mutations responsible for neuromuscular disorders. We have then used several quality control parameters to compare performance of the targeted exome approach with that of whole exome sequencing. The results of this pilot study of 140 DNA samples suggest that targeted exome sequencing approach is an efficient genetic diagnostic test for most neuromuscular diseases.

  6. Avoiding Pitfalls in Molecular Genetic Testing: Case Studies of High-Resolution Array Comparative Genomic Hybridization Testing in the Definitive Diagnosis of Mowat-Wilson Syndrome

    OpenAIRE

    Kluk, Michael Joseph; An, Yu; James, Philip; Coulter, David; Harris, David; Wu, Bai-Lin; Shen, Yiping

    2011-01-01

    The molecular testing options available for the diagnosis of genetic disorders are numerous and include a variety of different assay platforms. The consultative input of molecular pathologists and cytogeneticists, working closely with the ordering clinicians, is often important for definitive diagnosis. Herein, we describe two patients who had long histories of unexplained signs and symptoms with a high clinical suspicion of an underlying genetic etiology. Initial molecular testing in both ca...

  7. Description of ionization in the molecular approach to atomic collisions. II

    International Nuclear Information System (INIS)

    Errea, L.F.; Mendez, L.; Riera, A.; Sevila, I.; Harel, C.; Jouin, H.; Pons, B.

    2002-01-01

    We complement a previous article [Harel et al., Phys. Rev. A 55, 287 (1997)] that studied the characteristics of the description of ionization by the molecular approach to atomic collisions, by comparing the wave functions with accurate counterparts. We show how the failure of the basis to describe the phase of the ionizing wave function results in a trapping of the corresponding population in some molecular channels. The time evolution of the molecular wave function then departs from the exact one and the ionization and capture mechanisms appear as interlocked. We thus elucidate the question of the 'natural' boundary of the molecular approach and draw further consequences as to the choice of pseudostates and the use of translation factors

  8. Molecular Markers and Cotton Genetic Improvement: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Waqas Malik

    2014-01-01

    Full Text Available Narrow genetic base and complex allotetraploid genome of cotton (Gossypium hirsutum L. is stimulating efforts to avail required polymorphism for marker based breeding. The availability of draft genome sequence of G. raimondii and G. arboreum and next generation sequencing (NGS technologies facilitated the development of high-throughput marker technologies in cotton. The concepts of genetic diversity, QTL mapping, and marker assisted selection (MAS are evolving into more efficient concepts of linkage disequilibrium, association mapping, and genomic selection, respectively. The objective of the current review is to analyze the pace of evolution in the molecular marker technologies in cotton during the last ten years into the following four areas: (i comparative analysis of low- and high-throughput marker technologies available in cotton, (ii genetic diversity in the available wild and improved gene pools of cotton, (iii identification of the genomic regions within cotton genome underlying economic traits, and (iv marker based selection methodologies. Moreover, the applications of marker technologies to enhance the breeding efficiency in cotton are also summarized. Aforementioned genomic technologies and the integration of several other omics resources are expected to enhance the cotton productivity and meet the global fiber quantity and quality demands.

  9. [Genetic diagnostics of cancer diseases].

    Science.gov (United States)

    Cobilanschi, Joana

    2013-11-27

    Cancer is caused by genetic alterations, but only 10% of the cancer diseases are inherited. The probability for an individual or a family of having inherited cancer, individual consequences of the respective results of genetic testing, as well as its costs and reimbursement by the health insurance must be addressed by expert genetic counseling which at-risk requires special expertise. Identification of a germline mutation which may predispose to a variety of different cancer types allows determination of an individual's specific life time risk in symptomatic as well as in a-symptomatic family members. Identification of the underlying defective gene in heritable cancer disorders also enables optimized preventive and novel therapeutic approaches specifically targeting the underlying molecular pathomechanisms.

  10. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2005-09-15

    We have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, we have developed a molecular model that has facilitated our understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5, EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 (and three HLL genes) and ETO1 (and ETOL genes) in my laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the previous period, we have identified and characterized a gene that genetically acts upstream of the ethylene receptors. ETO1 encodes negative regulators of ethylene biosynthesis.

  11. Molecular biology of human muscle disease

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, P.W.; Epstein, H.F. (Baylor Coll. of Medicine, Houston, TX (United States))

    1991-01-01

    The molecular revolution that is transforming the entire biomedical field has had far-reaching impact in its application to inherited human muscle disease. The gene for Duchenne muscular dystrophy was one of the first cloned without knowledge of the defective protein product. This success was based upon the availability of key chromosomal aberrations that provided molecular landmarks for the disease locus. Subsequent discoveries regarding the mode of expression for this gene, the structure and localization of its protein product dystrophin, and molecular diagnosis of affected and carrier individuals constitute a paradigm for investigation of human genetics. Finding the gene for myotonic muscular dystrophy is requiring the brute force approach of cloning several million bases of DNA, identifying expressed sequences, and characterizing candidate genes. The gene that causes hypertrophic cardiomyopathy has been found serendipitously to be one of the genetic markers on chromosome 14, the {beta} myosin heavy chain.

  12. Molecular and Genetic Investigation of Tau in Chronic Traumatic Encephalopathy (Log No. 13267017)

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-14-1-0399 TITLE: Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy (Log No. 13267017) PRINCIPAL...this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data ...sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden

  13. Hereditary hemorrhagic telangiectasia: genetics and molecular diagnostics in a new era

    Directory of Open Access Journals (Sweden)

    Jamie eMcDonald

    2015-01-01

    Full Text Available Hereditary hemorrhagic telangiectasia (HHT is a vascular dysplasia characterized by telangiectases and arteriovenous malformations (AVMs in particular locations described in consensus clinical diagnostic criteria published in 2000. Two genes in the transforming growth factor-beta (TGF-β signaling pathway, ENG and ACVRL1, were discovered almost two decades ago, and mutations in these genes have been reported to cause up to 85% of HHT. In our experience, approximately 96% of individuals with HHT have a mutation in these two genes, when published (Curaçao diagnostic criteria for HHT are strictly applied. More recently, two additional genes in the same pathway, SMAD4 and GDF2, have been identified in a much smaller number of patients with a similar or overlapping phenotype to HHT. Yet families still exist with compelling evidence of a hereditary telangiectasia disorder, but no identifiable mutation in a known gene. Recent availability of whole exome and genome testing has created new opportunities to facilitate gene discovery, identify genetic modifiers to explain clinical variability, and potentially define an increased spectrum of hereditary telangiectasia disorders. An expanded approach to molecular diagnostics for inherited telangiectasia disorders that incorporates a multi-gene next generation sequencing (NGS HHT panel is proposed.

  14. Biochemical and molecular study of genetic stability in tomatoes plants rom seeds treated with low doses of X-ray

    International Nuclear Information System (INIS)

    Ramirez, R; Gonzalez, LM; Chavez, Licet; Camejo, Yanelis; Gonzalez, Maria C; Fernandez, Arais

    2008-01-01

    For the extensive agricultural exploitation of vegetable radio stimulation, it is indispensable to study the genetic stability of treated varieties, having in mind X ray potentialities of inducing not only physiological but genetic changes as well. Therefore, biochemical and molecular markers were employed in tomato plants derived from irradiated seeds at low doses of X rays. For the biochemical analysis, peroxidases, polyphenoloxidases and dismutase superoxide isoenzymes were determined whereas the Random Amplification of Polymorphic DNA (RAPD) method based on Polymerase Chain Reaction (PCR) was used for the molecular analysis. When comparing the electrophoretic patterns from the control and irradiated treatments applied to the three enzymatic systems, there were not appreciable variations on the number of bands and their intensities, indicating the little variability induced in these systems by the low X ray doses. Also, from the molecular viewpoint, electrophoretic patterns showed a clear amplification of DNA by generating a total of 155 bands in all varieties studied. This molecular marker showed a high monomorphism independently of the treatments applied, with values ranging between 86 and 97 %, indicating that irradiation at low doses did not induce an important genetic variability and confirming its possible practical usefulness for stimulating some physiological processes without causing. (Author)

  15. Molecular basis for genetic deficiency of the second component of human complement

    International Nuclear Information System (INIS)

    Cole, F.S.; Whitehead, A.S.; Auerbach, H.S.; Lint, T.; Zeitz, H.J.; Kilbridge, P.; Colten, H.R.

    1985-01-01

    Genetic deficiency of the second component of complement (C2) is the most common complement-deficiency state among Western Europeans and is frequently associated with autoimmune diseases. To examine the molecular basis of this deficiency, the authors established cultures of blood monocytes from four families with C2-deficient members. Using a hemolytic-plaque assay, [ 35 S]methionine metabolic labeling of proteins in tissue culture and immunoprecipitation, RNA extraction and Northern blot analysis, and DNA restriction-enzyme digestion and Southern blot analysis, the authors found that C2 deficiency is not due to a major gene deletion or rearrangement but is the result of a specific and selective pretranslational regulatory defect in C2 gene expression. This leads to a lack of detectable C2 mRNA and a lack of synthesis of C2 protein. The approach used in this study should prove useful in examination of other plasma protein deficiencies, especially those in which the deficient gene is normally expressed in peripheral-blood monocytes or tissue macrophages and in which ethical considerations preclude the use of liver or other tissue for study

  16. Molecular biology approaches in bioadhesion research

    Directory of Open Access Journals (Sweden)

    Marcelo Rodrigues

    2014-07-01

    Full Text Available The use of molecular biology tools in the field of bioadhesion is still in its infancy. For new research groups who are considering taking a molecular approach, the techniques presented here are essential to unravelling the sequence of a gene, its expression and its biological function. Here we provide an outline for addressing adhesion-related genes in diverse organisms. We show how to gradually narrow down the number of candidate transcripts that are involved in adhesion by (1 generating a transcriptome and a differentially expressed cDNA list enriched for adhesion-related transcripts, (2 setting up a BLAST search facility, (3 perform an in situ hybridization screen, and (4 functional analyses of selected genes by using RNA interference knock-down. Furthermore, latest developments in genome-editing are presented as new tools to study gene function. By using this iterative multi-technologies approach, the identification, isolation, expression and function of adhesion-related genes can be studied in most organisms. These tools will improve our understanding of the diversity of molecules used for adhesion in different organisms and these findings will help to develop innovative bio-inspired adhesives.

  17. Landscape genetic approaches to guide native plant restoration in the Mojave Desert

    Science.gov (United States)

    Shryock, Daniel F.; Havrilla, Caroline A.; DeFalco, Lesley; Esque, Todd C.; Custer, Nathan; Wood, Troy E.

    2016-01-01

    Restoring dryland ecosystems is a global challenge due to synergistic drivers of disturbance coupled with unpredictable environmental conditions. Dryland plant species have evolved complex life-history strategies to cope with fluctuating resources and climatic extremes. Although rarely quantified, local adaptation is likely widespread among these species and potentially influences restoration outcomes. The common practice of reintroducing propagules to restore dryland ecosystems, often across large spatial scales, compels evaluation of adaptive divergence within these species. Such evaluations are critical to understanding the consequences of large-scale manipulation of gene flow and to predicting success of restoration efforts. However, genetic information for species of interest can be difficult and expensive to obtain through traditional common garden experiments. Recent advances in landscape genetics offer marker-based approaches for identifying environmental drivers of adaptive genetic variability in non-model species, but tools are still needed to link these approaches with practical aspects of ecological restoration. Here, we combine spatially-explicit landscape genetics models with flexible visualization tools to demonstrate how cost-effective evaluations of adaptive genetic divergence can facilitate implementation of different seed sourcing strategies in ecological restoration. We apply these methods to Amplified Fragment Length Polymorphism (AFLP) markers genotyped in two Mojave Desert shrub species of high restoration importance: the long-lived, wind-pollinated gymnosperm Ephedra nevadensis, and the short-lived, insect-pollinated angiosperm Sphaeralcea ambigua. Mean annual temperature was identified as an important driver of adaptive genetic divergence for both species. Ephedra showed stronger adaptive divergence with respect to precipitation variability, while temperature variability and precipitation averages explained a larger fraction of adaptive

  18. Forward Genetic Approaches for Elucidation of Novel Regulators of Lyme Arthritis Severity

    Directory of Open Access Journals (Sweden)

    Kenneth K.C. Bramwell

    2014-06-01

    Full Text Available Patients experiencing natural infection with Borrelia burgdorferi display a spectrum of associated symptoms and severity, strongly implicating the impact of genetically determined host factors in the pathogenesis of Lyme disease. Herein, we provide a summary of the host genetic factors that have been demonstrated to influence the severity and chronicity of Lyme arthritis symptoms, and a review of the resources available, current progress, and added value of a forward genetic approach for identification of novel genetic regulators.

  19. Molecular approaches for bacterial azoreductases

    Directory of Open Access Journals (Sweden)

    Montira Leelakriangsak

    2013-12-01

    Full Text Available Azo dyes are the dominant types of synthetic dyes, widely used in textiles, foods, leather, printing, tattooing, cosmetics, and pharmaceutical industries. Many microorganisms are able to decolorize azo dyes, and there is increasing interest in biological waste treatment methods. Bacterial azoreductases can cleave azo linkages (-N=N- in azo dyes, forming aromatic amines. This review mainly focuses on employing molecular approaches, including gene manipulation and recombinant strains, to study bacterial azoreductases. The construction of the recombinant protein by cloning and the overexpression of azoreductase is described. The mechanisms and function of bacterial azoreductases can be studied by other molecular techniques discussed in this review, such as RT-PCR, southern blot analysis, western blot analysis, zymography, and muta-genesis in order to understand bacterial azoreductase properties, function and application. In addition, understanding the regulation of azoreductase gene expression will lead to the systematic use of gene manipulation in bacterial strains for new strategies in future waste remediation technologies.

  20. [Molecular and immunohistochemical diagnostics in melanoma].

    Science.gov (United States)

    Schilling, B; Griewank, K G

    2016-07-01

    To provide appropriate therapy and follow-up to patients with malignant melanoma, proper diagnostics are of critical importance. Targeted therapy of advanced melanoma is based on the molecular genetic analyses of tumor tissue. In addition, sequencing of genes and other genetic approaches can provide insight into the origin of melanocytic tumors and can aid in distinguishing benign from malignant lesions. In this regard, spizoid neoplasms remain a challenging entity. Aside from genetic analyses of tumor tissue, immunohistochemistry remains an essential tool in melanoma diagnostics and TNM classification. With new immunotherapies being approved for advanced melanoma, immunohistochemistry to determine PD-L1 expression has gained clinical interest. While PD-L1 expression is associated with response to PD-1 blockade, a substantial number of patients without PD-L1 expression can still experience tumor remission upon treatment. In this review, current and future developments in melanoma diagnostics with regard to molecular genetics and immunohistochemistry are summarized. The utilization of such analyses in clinical decision making is also discussed.

  1. HNPCC (Lynch Syndrome): Differential Diagnosis, Molecular Genetics and Management - a Review

    Science.gov (United States)

    2003-01-01

    HNPCC (Lynch syndrome) is the most common form of hereditary colorectal cancer (CRC), wherein it accounts for between 2-7 percent of the total CRC burden. When considering the large number of extracolonic cancers integral to the syndrome, namely carcinoma of the endometrium, ovary, stomach, hepatobiliary system, pancreas, small bowel, brain tumors, and upper uroepithelial tract, these estimates of its frequency are likely to be conservative. The diagnosis is based upon its natural history in concert with a comprehensive cancer family history inclusive of all anatomic sites. In order for surveillance and management to be effective and, indeed, lifesaving, among these high-risk patients, the linchpin to cancer control would be the physician, who must be knowledgeable about hereditary cancer syndromes, their molecular and medical genetics, genetic counseling, and, most importantly, the natural history of the disorders, so that the entirety of this knowledge can be melded to highly-targeted management.

  2. Genetic divergence through joint analysis of morphoagronomic and molecular characters in accessions of Jatropha curcas.

    Science.gov (United States)

    Pestana-Caldas, C N; Silva, S A; Machado, E L; de Souza, D R; Cerqueira-Pereira, E C; Silva, M S

    2016-10-05

    The aim of this study was to investigate the genetic divergence between accessions of Jatropha curcas through joint analysis of morphoagronomic and molecular characters. To this end, we investigated 11 morphoagronomic characters and performed molecular genotyping, using 23 inter-simple sequence repeat (ISSR) primers in 46 accessions of J. curcas. We calculated the contribution of each character on divergence using analysis of variance. The grouping among accessions was performed using the Ward-MLM (modified location model) method, using morphoagronomic and molecular data, whereas the cophenetic correlation was obtained based on Gower's algorithm. There were significant differences in all growth-related characteristics: number of primary and secondary branches per plant, plant height, and stem diameter. For characters related to grain production, differences were found for number of fruit clusters per plant and number of inflorescence clusters per plant and average number of seeds per fruit. The greatest phenotypic variation was found in plant height (59.67- 222.33 cm), whereas the smallest variation was found in average number of seeds per fruit (0-2.90), followed by the number of fruit clusters per plant (0-8.67). In total, 94 polymorphic ISSR fragments were obtained. The genotypic grouping identified six groups, indicating that there is genetic divergence among the accessions. The most promising crossings for future hybridization were identified among accessions UFRB60 and UFVJC45, and UFRB61 and UFVJC18. In conclusion, the joint analysis of morphoagronomic characters and ISSR markers is an efficient method to assess the genetic divergence in J. curcas.

  3. An introduction to genetic quality in the context of sexual selection.

    Science.gov (United States)

    Pitcher, Trevor E; Mays, Herman L

    2008-09-01

    This special issue of Genetica brings together empirical researchers and theoreticians to present the latest on the evolutionary ecology of genetic quality in the context of sexual selection. The work comes from different fields of study including behavioral ecology, quantitative genetics and molecular genetics on a diversity of organisms using different approaches from comparative studies, mathematical modeling, field studies and laboratory experiments. The papers presented in this special issue primarily focus on genetic quality in relation to (1) sources of genetic variation, (2) polyandry, (3) new theoretical developments and (4) comprehensive reviews.

  4. Reverse Genetics Approaches for the Development of Influenza Vaccines

    Science.gov (United States)

    Nogales, Aitor; Martínez-Sobrido, Luis

    2016-01-01

    Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines. PMID:28025504

  5. Earthquake—explosion discrimination using genetic algorithm-based boosting approach

    Science.gov (United States)

    Orlic, Niksa; Loncaric, Sven

    2010-02-01

    An important and challenging problem in seismic data processing is to discriminate between natural seismic events such as earthquakes and artificial seismic events such as explosions. Many automatic techniques for seismogram classification have been proposed in the literature. Most of these methods have a similar approach to seismogram classification: a predefined set of features based on ad-hoc feature selection criteria is extracted from the seismogram waveform or spectral data and these features are used for signal classification. In this paper we propose a novel approach for seismogram classification. A specially formulated genetic algorithm has been employed to automatically search for a near-optimal seismogram feature set, instead of using ad-hoc feature selection criteria. A boosting method is added to the genetic algorithm when searching for multiple features in order to improve classification performance. A learning set of seismogram data is used by the genetic algorithm to discover a near-optimal feature set. The feature set identified by the genetic algorithm is then used for seismogram classification. The described method is developed to classify seismograms in two groups, whereas a brief overview of method extension for multiple group classification is given. For method verification, a learning set consisting of 40 local earthquake seismograms and 40 explosion seismograms was used. The method was validated on seismogram set consisting of 60 local earthquake seismograms and 60 explosion seismograms, with correct classification of 85%.

  6. Molecular fingerprinting of principal neurons in the rodent hippocampus: A neuroinformatics approach.

    Science.gov (United States)

    Hamilton, D J; White, C M; Rees, C L; Wheeler, D W; Ascoli, G A

    2017-09-10

    Neurons are often classified by their morphological and molecular properties. The online knowledge base Hippocampome.org primarily defines neuron types from the rodent hippocampal formation based on their main neurotransmitter (glutamate or GABA) and the spatial distributions of their axons and dendrites. For each neuron type, this open-access resource reports any and all published information regarding the presence or absence of known molecular markers, including calcium-binding proteins, neuropeptides, receptors, channels, transcription factors, and other molecules of biomedical relevance. The resulting chemical profile is relatively sparse: even for the best studied neuron types, the expression or lack thereof of fewer than 70 molecules has been firmly established to date. The mouse genome-wide in situ hybridization mapping of the Allen Brain Atlas provides a wealth of data that, when appropriately analyzed, can substantially augment the molecular marker knowledge in Hippocampome.org. Here we focus on the principal cell layers of dentate gyrus (DG), CA3, CA2, and CA1, which together contain approximately 90% of hippocampal neurons. These four anatomical parcels are densely packed with somata of mostly excitatory projection neurons. Thus, gene expression data for those layers can be justifiably linked to the respective principal neuron types: granule cells in DG and pyramidal cells in CA3, CA2, and CA1. In order to enable consistent interpretation across genes and regions, we screened the whole-genome dataset against known molecular markers of those neuron types. The resulting threshold values allow over 6000 very-high confidence (>99.5%) expressed/not-expressed assignments, expanding the biochemical information content of Hippocampome.org more than five-fold. Many of these newly identified molecular markers are potential pharmacological targets for major neurological and psychiatric conditions. Furthermore, our approach yields reasonable expression

  7. Molecular characterization and genetic diversity of Jatropha curcas L. in Costa Rica

    Science.gov (United States)

    Vásquez-Mayorga, Marcela; Fuchs, Eric J.; Hernández, Eduardo J.; Herrera, Franklin; Hernández, Jesús; Moreira, Ileana; Arnáez, Elizabeth

    2017-01-01

    We estimated the genetic diversity of 50 Jatropha curcas samples from the Costa Rican germplasm bank using 18 EST-SSR, one G-SSR and nrDNA-ITS markers. We also evaluated the phylogenetic relationships among samples using nuclear ribosomal ITS markers. Non-toxicity was evaluated using G-SSRs and SCARs markers. A Neighbor-Joining (NJ) tree and a Maximum Likelihood (ML) tree were constructed using SSR markers and ITS sequences, respectively. Heterozygosity was moderate (He = 0.346), but considerable compared to worldwide values for J. curcas. The PIC (PIC = 0.274) and inbreeding coefficient (f =  − 0.102) were both low. Clustering was not related to the geographical origin of accessions. International accessions clustered independently of collection sites, suggesting a lack of genetic structure, probably due to the wide distribution of this crop and ample gene flow. Molecular markers identified only one non-toxic accession (JCCR-24) from Mexico. This work is part of a countrywide effort to characterize the genetic diversity of the Jatropha curcas germplasm bank in Costa Rica. PMID:28289556

  8. Genetic and Molecular Mechanisms of Quantitative Trait Loci Controlling Maize Inflorescence Architecture.

    Science.gov (United States)

    Li, Manfei; Zhong, Wanshun; Yang, Fang; Zhang, Zuxin

    2018-03-01

    The establishment of inflorescence architecture is critical for the reproduction of flowering plant species. The maize plant generates two types of inflorescences, the tassel and the ear, and their architectures have a large effect on grain yield and yield-related traits that are genetically controlled by quantitative trait loci (QTLs). Since ear and tassel architecture are deeply affected by the activity of inflorescence meristems, key QTLs and genes regulating meristematic activity have important impacts on inflorescence development and show great potential for optimizing grain yield. Isolation of yield trait-related QTLs is challenging, but these QTLs have direct application in maize breeding. Additionally, characterization and functional dissection of QTLs can provide genetic and molecular knowledge of quantitative variation in inflorescence architecture. In this review, we summarize currently identified QTLs responsible for the establishment of ear and tassel architecture and discuss the potential genetic control of four ear-related and four tassel-related traits. In recent years, several inflorescence architecture-related QTLs have been characterized at the gene level. We review the mechanisms of these characterized QTLs.

  9. Molecular characterization and genetic diversity of Jatropha curcas L. in Costa Rica

    Directory of Open Access Journals (Sweden)

    Marcela Vásquez-Mayorga

    2017-02-01

    Full Text Available We estimated the genetic diversity of 50 Jatropha curcas samples from the Costa Rican germplasm bank using 18 EST-SSR, one G-SSR and nrDNA-ITS markers. We also evaluated the phylogenetic relationships among samples using nuclear ribosomal ITS markers. Non-toxicity was evaluated using G-SSRs and SCARs markers. A Neighbor-Joining (NJ tree and a Maximum Likelihood (ML tree were constructed using SSR markers and ITS sequences, respectively. Heterozygosity was moderate (He = 0.346, but considerable compared to worldwide values for J. curcas. The PIC (PIC = 0.274 and inbreeding coefficient (f =  − 0.102 were both low. Clustering was not related to the geographical origin of accessions. International accessions clustered independently of collection sites, suggesting a lack of genetic structure, probably due to the wide distribution of this crop and ample gene flow. Molecular markers identified only one non-toxic accession (JCCR-24 from Mexico. This work is part of a countrywide effort to characterize the genetic diversity of the Jatropha curcas germplasm bank in Costa Rica.

  10. Combinatorial chemistry approach to development of molecular plastic solar cells

    NARCIS (Netherlands)

    Godovsky, Dmitri; Inganäs, Olle; Brabec, Christoph J.; Sariciftci, N. Serdar; Hummelen, Jan C.; Janssen, Rene A.J.; Prato, M.; Maggini, M.; Segura, Jose; Martin, Nazario

    1999-01-01

    We used a combinatorial chemistry approach to develop the molecular plastic solar cells based on soluble fullerene derivatives or solubilized TCNQ molecules in combination with conjugated polymers. Profiles, formed by the diffusion of low molecular weight component in the spin-cast polymer host were

  11. A hybrid framework of first principles molecular orbital calculations and a three-dimensional integral equation theory for molecular liquids: Multi-center molecular Ornstein-Zernike self-consistent field approach

    Science.gov (United States)

    Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi

    2015-07-01

    In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl- + CH3Cl → ClCH3 + Cl-) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.

  12. A hybrid framework of first principles molecular orbital calculations and a three-dimensional integral equation theory for molecular liquids: multi-center molecular Ornstein-Zernike self-consistent field approach.

    Science.gov (United States)

    Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi

    2015-07-07

    In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl(-) + CH3Cl → ClCH3 + Cl(-)) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.

  13. A Genetic-Algorithms-Based Approach for Programming Linear and Quadratic Optimization Problems with Uncertainty

    Directory of Open Access Journals (Sweden)

    Weihua Jin

    2013-01-01

    Full Text Available This paper proposes a genetic-algorithms-based approach as an all-purpose problem-solving method for operation programming problems under uncertainty. The proposed method was applied for management of a municipal solid waste treatment system. Compared to the traditional interactive binary analysis, this approach has fewer limitations and is able to reduce the complexity in solving the inexact linear programming problems and inexact quadratic programming problems. The implementation of this approach was performed using the Genetic Algorithm Solver of MATLAB (trademark of MathWorks. The paper explains the genetic-algorithms-based method and presents details on the computation procedures for each type of inexact operation programming problems. A comparison of the results generated by the proposed method based on genetic algorithms with those produced by the traditional interactive binary analysis method is also presented.

  14. Iterative Calibration: A Novel Approach for Calibrating the Molecular Clock Using Complex Geological Events.

    Science.gov (United States)

    Loeza-Quintana, Tzitziki; Adamowicz, Sarah J

    2018-02-01

    During the past 50 years, the molecular clock has become one of the main tools for providing a time scale for the history of life. In the era of robust molecular evolutionary analysis, clock calibration is still one of the most basic steps needing attention. When fossil records are limited, well-dated geological events are the main resource for calibration. However, biogeographic calibrations have often been used in a simplistic manner, for example assuming simultaneous vicariant divergence of multiple sister lineages. Here, we propose a novel iterative calibration approach to define the most appropriate calibration date by seeking congruence between the dates assigned to multiple allopatric divergences and the geological history. Exploring patterns of molecular divergence in 16 trans-Bering sister clades of echinoderms, we demonstrate that the iterative calibration is predominantly advantageous when using complex geological or climatological events-such as the opening/reclosure of the Bering Strait-providing a powerful tool for clock dating that can be applied to other biogeographic calibration systems and further taxa. Using Bayesian analysis, we observed that evolutionary rate variability in the COI-5P gene is generally distributed in a clock-like fashion for Northern echinoderms. The results reveal a large range of genetic divergences, consistent with multiple pulses of trans-Bering migrations. A resulting rate of 2.8% pairwise Kimura-2-parameter sequence divergence per million years is suggested for the COI-5P gene in Northern echinoderms. Given that molecular rates may vary across latitudes and taxa, this study provides a new context for dating the evolutionary history of Arctic marine life.

  15. A systems genetics approach provides a bridge from discovered genetic variants to biological pathways in rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Hirofumi Nakaoka

    Full Text Available Genome-wide association studies (GWAS have yielded novel genetic loci underlying common diseases. We propose a systems genetics approach to utilize these discoveries for better understanding of the genetic architecture of rheumatoid arthritis (RA. Current evidence of genetic associations with RA was sought through PubMed and the NHGRI GWAS catalog. The associations of 15 single nucleotide polymorphisms and HLA-DRB1 alleles were confirmed in 1,287 cases and 1,500 controls of Japanese subjects. Among these, HLA-DRB1 alleles and eight SNPs showed significant associations and all but one of the variants had the same direction of effect as identified in the previous studies, indicating that the genetic risk factors underlying RA are shared across populations. By receiver operating characteristic curve analysis, the area under the curve (AUC for the genetic risk score based on the selected variants was 68.4%. For seropositive RA patients only, the AUC improved to 70.9%, indicating good but suboptimal predictive ability. A simulation study shows that more than 200 additional loci with similar effect size as recent GWAS findings or 20 rare variants with intermediate effects are needed to achieve AUC = 80.0%. We performed the random walk with restart (RWR algorithm to prioritize genes for future mapping studies. The performance of the algorithm was confirmed by leave-one-out cross-validation. The RWR algorithm pointed to ZAP70 in the first rank, in which mutation causes RA-like autoimmune arthritis in mice. By applying the hierarchical clustering method to a subnetwork comprising RA-associated genes and top-ranked genes by the RWR, we found three functional modules relevant to RA etiology: "leukocyte activation and differentiation", "pattern-recognition receptor signaling pathway", and "chemokines and their receptors".These results suggest that the systems genetics approach is useful to find directions of future mapping strategies to illuminate

  16. Individual Biomarkers Using Molecular Personalized Medicine Approaches.

    Science.gov (United States)

    Zenner, Hans P

    2017-01-01

    Molecular personalized medicine tries to generate individual predictive biomarkers to assist doctors in their decision making. These are thought to improve the efficacy and lower the toxicity of a treatment. The molecular basis of the desired high-precision prediction is modern "omex" technologies providing high-throughput bioanalytical methods. These include genomics and epigenomics, transcriptomics, proteomics, metabolomics, microbiomics, imaging, and functional analyses. In most cases, producing big data also requires a complex biomathematical analysis. Using molecular personalized medicine, the conventional physician's check of biomarker results may no longer be sufficient. By contrast, the physician may need to cooperate with the biomathematician to achieve the desired prediction on the basis of the analysis of individual big data typically produced by omex technologies. Identification of individual biomarkers using molecular personalized medicine approaches is thought to allow a decision-making for the precise use of a targeted therapy, selecting the successful therapeutic tool from a panel of preexisting drugs or medical products. This should avoid the treatment of nonresponders and responders that produces intolerable unwanted effects. © 2017 S. Karger AG, Basel.

  17. Prostate cancer molecular profiling: the Achilles heel for the implementation of precision medicine.

    Science.gov (United States)

    Oliveira-Barros, Eliane Gouvêa; Nicolau-Neto, Pedro; Da Costa, Nathalia Meireles; Pinto, Luís Felipe Ribeiro; Palumbo, Antonio; Nasciutti, Luiz Eurico

    2017-11-01

    Cancer has been mainly treated by traditional therapeutic approaches which do not consider the human genetic diversity and present limitations, probably as a consequence of a poor knowledge of both patient's genetic background and tumor biology. Due to genome project conclusion and large-scale gene analyses emergence, the therapeutic management of several prevalent and aggressive tumors has dramatically improved and represents the closest examples of a precision medicine intervention in this field. Nonetheless, prostate cancer (PCa) remains as a challenge to personalized medicine implementation, probably due to its notorious heterogeneous molecular profile. Cancer treatment personalized approaches rely on the premise that a well-defined panorama of tumor molecular alterations can help selecting new and specific therapeutic targets for its treatment and potentially discriminate tumors which behave differentially. Lately, molecular and genetic studies have been investigating PCa basis, revealing multiple recurrent genomic alterations that include mutations, DNA copy-number variations, rearrangements, and gene fusions, among others. In addition to the increment on PCa molecular biology knowledge, mapping the molecular alterations pattern of this neoplasia, especially the differences existent between tumors displaying distinct behaviors, could represent a great improvement concerning the identification of new targets, personalized medicine, and patients' management and prognosis. © 2017 International Federation for Cell Biology.

  18. Genetic diversity analysis of Chrysopidae family (Insecta, Neuroptera) via molecular markers.

    Science.gov (United States)

    Yari, Kheirollah; Mirmoayedi, Alinaghi; Marami, Marzieh; Kazemi, Elham; Kahrizi, Danial

    2014-09-01

    In entomology, improvement of molecular methods would be beneficial tools for accurate identification and detecting the genetic diversity of insect species to discover a corroborative evidence for the traditional classification based on morphology. The aim of this study was focused on RAPD-PCR method for distinguishing the genetic diversity between eight species of Chrysopidae family. In current research, many specimens were collected in different locations of Tehran province (Iran), between them 24 specimens were identified. The wing venation, male genitalia and other morphological characters were used for identification and also the sexing of species was recognized with study of external genitalia. Then, the DNA was extracted with CTAB method. The RAPD-PCR method was carried out with twenty random primers. The agarose gel electrophoresis was used for separation of the PCR products. Based on electrophoresis results, 133 bands were amplified and between them, 126 bands were poly-morph and others were mono-morph. Also, among the applied primers, the primers OPA02 with 19 bands and OPA03 with 8 bands were amplified the maximum and minimum of bands, respectively. The results showed that 80.35 and 73.21 % of genetic similarity existed between Chrysopa pallens-Chrysopa dubitans, and between the Chrysoperla kolthoffi and Chrysoperla carnea, respectively. The minimum (45.53 %) of genetic similarity was observed between C. kolthoffi and C. dubitans, and the maximum (0.80 %) was seen between C. pallens and C. dubitans.

  19. Molecular phylogeny of Toxoplasmatinae: comparison between inferences based on mitochondrial and apicoplast genetic sequences

    Directory of Open Access Journals (Sweden)

    Michelle Klein Sercundes

    2016-03-01

    Full Text Available Abstract Phylogenies within Toxoplasmatinae have been widely investigated with different molecular markers. Here, we studied molecular phylogenies of the Toxoplasmatinae subfamily based on apicoplast and mitochondrial genes. Partial sequences of apicoplast genes coding for caseinolytic protease (clpC and beta subunit of RNA polymerase (rpoB, and mitochondrial gene coding for cytochrome B (cytB were analyzed. Laboratory-adapted strains of the closely related parasites Sarcocystis falcatula and Sarcocystis neurona were investigated, along with Neospora caninum, Neospora hughesi, Toxoplasma gondii (strains RH, CTG and PTG, Besnoitia akodoni, Hammondia hammondiand two genetically divergent lineages of Hammondia heydorni. The molecular analysis based on organellar genes did not clearly differentiate between N. caninum and N. hughesi, but the two lineages of H. heydorni were confirmed. Slight differences between the strains of S. falcatula and S. neurona were encountered in all markers. In conclusion, congruent phylogenies were inferred from the three different genes and they might be used for screening undescribed sarcocystid parasites in order to ascertain their phylogenetic relationships with organisms of the family Sarcocystidae. The evolutionary studies based on organelar genes confirm that the genusHammondia is paraphyletic. The primers used for amplification of clpC and rpoB were able to amplify genetic sequences of organisms of the genus Sarcocystisand organisms of the subfamily Toxoplasmatinae as well.

  20. Molecular methods in nuclear medicine therapy

    International Nuclear Information System (INIS)

    Lee, Kyung Han

    2001-01-01

    Nuclear medicine has traditionally contributed to molecular oncology by allowing noninvasive monitoring of tumor metabolism, growth and genetic changes, thereby providing a basis for appropriate biology-based treatment planning. However, NM techniques are now being applied as an active therapeutic tool in novel molecular approaches for cancer treatment. Such areas include research on cancer therapy with radiolabeled ligands or oligonucleotides, and utilization of synergism between NM radiotherapy and gene transfer techniques. Here we will focus on novel aspects of nuclear medicine therapy

  1. A Statistical Approach to Exoplanetary Molecular Spectroscopy Using Spitzer Eclipses

    Science.gov (United States)

    Deming, Drake; Garhart, Emily; Burrows, Adam; Fortney, Jonathan; Knutson, Heather; Todorov, Kamen

    2018-01-01

    Secondary eclipses of exoplanets observed using the Spitzer Space Telescope measure the total emission emergent from exoplanetary atmospheres integrated over broad photometric bands. Spitzer photometry is excellent for measuring day side temperatures, but is less well suited to the detection of molecular absorption or emission features. Even for very hot exoplanets, it can be difficult to attain the accuracy on eclipse depth that is needed to unambiguously interpret the Spitzer results in terms of molecular absorption or emission. However, a statistical approach, wherein we seek deviations from a simple blackbody planet as a function of the planet's equilibrium temperature, shows promise for defining the nature and strength of molecular absorption in ensembles of planets. In this paper, we explore such an approach using secondary eclipses observed for tens of hot exoplanets during Spitzer's Cycles 10, 12, and 13. We focus on the possibility that the hottest planets exhibit molecular features in emission, due to temperature inversions.

  2. PopSc: Computing Toolkit for Basic Statistics of Molecular Population Genetics Simultaneously Implemented in Web-Based Calculator, Python and R.

    Science.gov (United States)

    Chen, Shi-Yi; Deng, Feilong; Huang, Ying; Li, Cao; Liu, Linhai; Jia, Xianbo; Lai, Song-Jia

    2016-01-01

    Although various computer tools have been elaborately developed to calculate a series of statistics in molecular population genetics for both small- and large-scale DNA data, there is no efficient and easy-to-use toolkit available yet for exclusively focusing on the steps of mathematical calculation. Here, we present PopSc, a bioinformatic toolkit for calculating 45 basic statistics in molecular population genetics, which could be categorized into three classes, including (i) genetic diversity of DNA sequences, (ii) statistical tests for neutral evolution, and (iii) measures of genetic differentiation among populations. In contrast to the existing computer tools, PopSc was designed to directly accept the intermediate metadata, such as allele frequencies, rather than the raw DNA sequences or genotyping results. PopSc is first implemented as the web-based calculator with user-friendly interface, which greatly facilitates the teaching of population genetics in class and also promotes the convenient and straightforward calculation of statistics in research. Additionally, we also provide the Python library and R package of PopSc, which can be flexibly integrated into other advanced bioinformatic packages of population genetics analysis.

  3. PopSc: Computing Toolkit for Basic Statistics of Molecular Population Genetics Simultaneously Implemented in Web-Based Calculator, Python and R.

    Directory of Open Access Journals (Sweden)

    Shi-Yi Chen

    Full Text Available Although various computer tools have been elaborately developed to calculate a series of statistics in molecular population genetics for both small- and large-scale DNA data, there is no efficient and easy-to-use toolkit available yet for exclusively focusing on the steps of mathematical calculation. Here, we present PopSc, a bioinformatic toolkit for calculating 45 basic statistics in molecular population genetics, which could be categorized into three classes, including (i genetic diversity of DNA sequences, (ii statistical tests for neutral evolution, and (iii measures of genetic differentiation among populations. In contrast to the existing computer tools, PopSc was designed to directly accept the intermediate metadata, such as allele frequencies, rather than the raw DNA sequences or genotyping results. PopSc is first implemented as the web-based calculator with user-friendly interface, which greatly facilitates the teaching of population genetics in class and also promotes the convenient and straightforward calculation of statistics in research. Additionally, we also provide the Python library and R package of PopSc, which can be flexibly integrated into other advanced bioinformatic packages of population genetics analysis.

  4. The molecular genetic makeup of acute lymphoblastic leukemia.

    Science.gov (United States)

    Mullighan, Charles G

    2012-01-01

    Genomic profiling has transformed our understanding of the genetic basis of acute lymphoblastic leukemia (ALL). Recent years have seen a shift from microarray analysis and candidate gene sequencing to next-generation sequencing. Together, these approaches have shown that many ALL subtypes are characterized by constellations of structural rearrangements, submicroscopic DNA copy number alterations, and sequence mutations, several of which have clear implications for risk stratification and targeted therapeutic intervention. Mutations in genes regulating lymphoid development are a hallmark of ALL, and alterations of the lymphoid transcription factor gene IKZF1 (IKAROS) are associated with a high risk of treatment failure in B-ALL. Approximately 20% of B-ALL cases harbor genetic alterations that activate kinase signaling that may be amenable to treatment with tyrosine kinase inhibitors, including rearrangements of the cytokine receptor gene CRLF2; rearrangements of ABL1, JAK2, and PDGFRB; and mutations of JAK1 and JAK2. Whole-genome sequencing has also identified novel targets of mutation in aggressive T-lineage ALL, including hematopoietic regulators (ETV6 and RUNX1), tyrosine kinases, and epigenetic regulators. Challenges for the future are to comprehensively identify and experimentally validate all genetic alterations driving leukemogenesis and treatment failure in childhood and adult ALL and to implement genomic profiling into the clinical setting to guide risk stratification and targeted therapy.

  5. Novel approach to improve molecular imaging research: Correlation between macroscopic and molecular pathological findings in patients

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Ingrid, E-mail: i.boehm@uni-bonn.de [Department of Diagnostic Radiology, ZARF Project, Center for Molecular Imaging Research MBMB, Philipps University of Marburg, Baldingerstrasse, 35039 Marburg (Germany)

    2011-09-15

    Purpose: Currently, clinical research approaches are sparse in molecular imaging studies. Moreover, possible links between imaging features and pathological laboratory parameters are unknown, so far. Therefore, the goal was to find a possible relationship between imaging features and peripheral blood cell apoptosis, and thereby to present a novel way to complement molecular imaging research. Materials and methods: The investigation has been done in systemic lupus erythematosus (SLE), a prototype of an autoimmune disease characterized by multiorgan involvement, autoantibody production, and disturbed apoptosis. Retrospectively, radiological findings have been compared to both autoantibody findings and percentage apoptotic blood cells. Results: Two SLE groups could be identified: patients with normal (annexin V binding < 20%), and with increased apoptosis (annexin V binding > 20%) of peripheral blood cells. The frequency of radiological examinations in SLE patients significantly correlated with an increased percentage of apoptotic cells (p < 0.005). In patients with characteristic imaging findings (e.g. lymph node swelling, pleural effusion) an elevated percentage of apoptotic cells was present. In contrast SLE-patients with normal imaging findings or uncharacteristic results of minimal severity had normal percentages of apoptotic blood cells. Conclusion: This correlation between radiographic findings and percentage of apoptotic blood cells provides (1) further insight into pathological mechanisms of SLE, (2) will offer the possibility to introduce apoptotic biomarkers as molecular probes for clinical molecular imaging approaches in future to early diagnose organ complaints in patients with SLE, and (3) is a plea to complement molecular imaging research by this clinical approach.

  6. The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes

    Directory of Open Access Journals (Sweden)

    Ané Jean-Michel

    2002-01-01

    Full Text Available Abstract Background The legume Medicago truncatula has emerged as a model plant for the molecular and genetic dissection of various plant processes involved in rhizobial, mycorrhizal and pathogenic plant-microbe interactions. Aiming to develop essential tools for such genetic approaches, we have established the first genetic map of this species. Two parental homozygous lines were selected from the cultivar Jemalong and from the Algerian natural population (DZA315 on the basis of their molecular and phenotypic polymorphism. Results An F2 segregating population of 124 individuals between these two lines was obtained using an efficient manual crossing technique established for M. truncatula and was used to construct a genetic map. This map spans 1225 cM (average 470 kb/cM and comprises 289 markers including RAPD, AFLP, known genes and isoenzymes arranged in 8 linkage groups (2n = 16. Markers are uniformly distributed throughout the map and segregation distortion is limited to only 3 linkage groups. By mapping a number of common markers, the eight linkage groups are shown to be homologous to those of diploid alfalfa (M. sativa, implying a good level of macrosynteny between the two genomes. Using this M. truncatula map and the derived F3 populations, we were able to map the Mtsym6 symbiotic gene on linkage group 8 and the SPC gene, responsible for the direction of pod coiling, on linkage group 7. Conclusions These results demonstrate that Medicago truncatula is amenable to diploid genetic analysis and they open the way to map-based cloning of symbiotic or other agronomically-important genes using this model plant.

  7. HNPCC (Lynch Syndrome: Differential Diagnosis, Molecular Genetics and Management - a Review

    Directory of Open Access Journals (Sweden)

    Lynch Henry T

    2003-12-01

    Full Text Available Abstract HNPCC (Lynch syndrome is the most common form of hereditary colorectal cancer (CRC, wherein it accounts for between 2-7 percent of the total CRC burden. When considering the large number of extracolonic cancers integral to the syndrome, namely carcinoma of the endometrium, ovary, stomach, hepatobiliary system, pancreas, small bowel, brain tumors, and upper uroepithelial tract, these estimates of its frequency are likely to be conservative. The diagnosis is based upon its natural history in concert with a comprehensive cancer family history inclusive of all anatomic sites. In order for surveillance and management to be effective and, indeed, lifesaving, among these high-risk patients, the linchpin to cancer control would be the physician, who must be knowledgeable about hereditary cancer syndromes, their molecular and medical genetics, genetic counseling, and, most importantly, the natural history of the disorders, so that the entirety of this knowledge can be melded to highly-targeted management.

  8. Molecular Cloning Designer Simulator (MCDS: All-in-one molecular cloning and genetic engineering design, simulation and management software for complex synthetic biology and metabolic engineering projects

    Directory of Open Access Journals (Sweden)

    Zhenyu Shi

    2016-12-01

    Full Text Available Molecular Cloning Designer Simulator (MCDS is a powerful new all-in-one cloning and genetic engineering design, simulation and management software platform developed for complex synthetic biology and metabolic engineering projects. In addition to standard functions, it has a number of features that are either unique, or are not found in combination in any one software package: (1 it has a novel interactive flow-chart user interface for complex multi-step processes, allowing an integrated overview of the whole project; (2 it can perform a user-defined workflow of cloning steps in a single execution of the software; (3 it can handle multiple types of genetic recombineering, a technique that is rapidly replacing classical cloning for many applications; (4 it includes experimental information to conveniently guide wet lab work; and (5 it can store results and comments to allow the tracking and management of the whole project in one platform. MCDS is freely available from https://mcds.codeplex.com. Keywords: BioCAD, Genetic engineering software, Molecular cloning software, Synthetic biology, Workflow simulation and management

  9. Molecular genetics of glioblastomas: defining subtypes and understanding the biology.

    Science.gov (United States)

    Renault, Ilana Zalcberg; Golgher, Denise

    2015-02-01

    Despite comprehensive therapy, which includes surgery, radiotherapy, and chemotherapy, the prognosis of glioblastoma multiforme is very poor. Diagnosed individuals present an average of 12 to 18 months of life. This article provides an overview of the molecular genetics of these tumors. Despite the overwhelming amount of data available, so far little has been translated into real benefits for the patient. Because this is such a complex topic, the goal is to point out the main alterations in the biological pathways that lead to tumor formation, and how this can contribute to the development of better therapies and clinical care. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Novel Molecular Therapies for Heritable Skin Disorders

    Science.gov (United States)

    Uitto, Jouni; Christiano, Angela M.; Irwin McLean, W. H.; McGrath, John A.

    2013-01-01

    Tremendous progress has been made in the past two decades in molecular genetics of heritable skin diseases, and pathogenic mutations have been identified in as many as 500 distinct human genes. This progress has resulted in improved diagnosis with prognostic implications, refined genetic counseling, and has formed the basis for prenatal and presymptomatic testing as well as preimplantation genetic diagnosis. However, there has been relatively little progress in developing effective and specific treatments for these often devastating diseases. Very recently, however, a number of novel molecular strategies, including gene therapy, cell-based approaches, and protein replacement therapy have been explored for treatment of these conditions. This overview will focus on the prototypic heritable blistering disorders, epidermolysis bullosa and related keratinopathies, in which significant progress has been recently made towards treatment, and illustrate how some of the translational research therapies have already entered the clinical arena. PMID:22158553

  11. Update on Anaplastic Thyroid Carcinoma: Morphological, Molecular, and Genetic Features of the Most Aggressive Thyroid Cancer

    Directory of Open Access Journals (Sweden)

    Moira Ragazzi

    2014-01-01

    Full Text Available Anaplastic thyroid carcinoma (ATC is the most aggressive form of thyroid cancer. It shows a wide spectrum of morphological presentations and the diagnosis could be challenging due to its high degree of dedifferentiation. Molecular and genetic features of ATC are widely heterogeneous as well and many efforts have been made to find a common profile in order to clarify its cancerogenetic process. A comprehensive review of the current literature is here performed, focusing on histopathological and genetic features.

  12. Targeted association mapping demonstrating the complex molecular genetics of fatty acid formation in soybean.

    Science.gov (United States)

    Li, Ying-hui; Reif, Jochen C; Ma, Yan-song; Hong, Hui-long; Liu, Zhang-xiong; Chang, Ru-zhen; Qiu, Li-juan

    2015-10-23

    The relative abundance of five dominant fatty acids (FAs) (palmitic, stearic, oleic, linoleic and linolenic acids) is a major factor determining seed quality in soybean. To clarify the currently poorly understood genetic architecture of FAs in soybean, targeted association analysis was conducted in 421 diverse accessions phenotyped in three environments and genotyped using 1536 pre-selected SNPs. The population of 421 soybean accessions displayed significant genetic variation for each FA. Analysis of the molecular data revealed three subpopulations, which reflected a trend depending on latitude of cultivation. A total of 37 significant (p seed quality of soybean with benefits for human health and for food processing.

  13. CRISPR-Cas9: a promising genetic engineering approach in cancer research

    Science.gov (United States)

    Ratan, Zubair Ahmed; Son, Young-Jin; Uddin, Bhuiyan Mohammad Mahtab; Yusuf, Md. Abdullah; Zaman, Sojib Bin; Kim, Jong-Hoon; Banu, Laila Anjuman

    2018-01-01

    Bacteria and archaea possess adaptive immunity against foreign genetic materials through clustered regularly interspaced short palindromic repeat (CRISPR) systems. The discovery of this intriguing bacterial system heralded a revolutionary change in the field of medical science. The CRISPR and CRISPR-associated protein 9 (Cas9) based molecular mechanism has been applied to genome editing. This CRISPR-Cas9 technique is now able to mediate precise genetic corrections or disruptions in in vitro and in vivo environments. The accuracy and versatility of CRISPR-Cas have been capitalized upon in biological and medical research and bring new hope to cancer research. Cancer involves complex alterations and multiple mutations, translocations and chromosomal losses and gains. The ability to identify and correct such mutations is an important goal in cancer treatment. In the context of this complex cancer genomic landscape, there is a need for a simple and flexible genetic tool that can easily identify functional cancer driver genes within a comparatively short time. The CRISPR-Cas system shows promising potential for modeling, repairing and correcting genetic events in different types of cancer. This article reviews the concept of CRISPR-Cas, its application and related advantages in oncology. PMID:29434679

  14. Molecular tools for carotenogenesis analysis in the zygomycete Mucor circinelloides.

    Science.gov (United States)

    Torres-Martínez, Santiago; Ruiz-Vázquez, Rosa M; Garre, Victoriano; López-García, Sergio; Navarro, Eusebio; Vila, Ana

    2012-01-01

    The carotene producer fungus Mucor circinelloides is the zygomycete more amenable to genetic manipulations by using molecular tools. Since the initial development of an effective procedure of genetic transformation, more than two decades ago, the availability of new molecular approaches such as gene replacement techniques and gene expression inactivation by RNA silencing, in addition to the sequencing of its genome, has made Mucor a valuable organism for the study of a number of processes. Here we describe in detail the main techniques and methods currently used to manipulate M. circinelloides, including transformation, gene replacement, gene silencing, RNAi, and immunoprecipitation.

  15. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2002-12-03

    The authors have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, they developed a molecular model that has facilitated the understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5 EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 and three HLS1-LIKE genes in the laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the award period, they have identified and begun preliminary characterization of two genes that genetically act upstream of the ethylene receptors. ETO1 and RAN1 encode negative regulators of ethylene biosynthesis and signaling respectively. Progress on the analysis of these genes along with HOOKLESS1 is described.

  16. A hybrid framework of first principles molecular orbital calculations and a three-dimensional integral equation theory for molecular liquids: Multi-center molecular Ornstein–Zernike self-consistent field approach

    International Nuclear Information System (INIS)

    Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi

    2015-01-01

    In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein–Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple S N 2 reaction (Cl − + CH 3 Cl → ClCH 3 + Cl − ) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF

  17. The Impact of Evolutionary Driving Forces on Human Complex Diseases: A Population Genetics Approach

    Directory of Open Access Journals (Sweden)

    Amr T. M. Saeb

    2016-01-01

    Full Text Available Investigating the molecular evolution of human genome has paved the way to understand genetic adaptation of humans to the environmental changes and corresponding complex diseases. In this review, we discussed the historical origin of genetic diversity among human populations, the evolutionary driving forces that can affect genetic diversity among populations, and the effects of human movement into new environments and gene flow on population genetic diversity. Furthermore, we presented the role of natural selection on genetic diversity and complex diseases. Then we reviewed the disadvantageous consequences of historical selection events in modern time and their relation to the development of complex diseases. In addition, we discussed the effect of consanguinity on the incidence of complex diseases in human populations. Finally, we presented the latest information about the role of ancient genes acquired from interbreeding with ancient hominids in the development of complex diseases.

  18. EMQN best practice guidelines for the molecular genetic diagnosis of hereditary hemochromatosis (HH)

    Science.gov (United States)

    Porto, Graça; Brissot, Pierre; Swinkels, Dorine W; Zoller, Heinz; Kamarainen, Outi; Patton, Simon; Alonso, Isabel; Morris, Michael; Keeney, Steve

    2016-01-01

    Molecular genetic testing for hereditary hemochromatosis (HH) is recognized as a reference test to confirm the diagnosis of suspected HH or to predict its risk. The vast majority (typically >90%) of patients with clinically characterized HH are homozygous for the p.C282Y variant in the HFE gene, referred to as HFE-related HH. Since 1996, HFE genotyping was implemented in diagnostic algorithms for suspected HH, allowing its early diagnosis and prevention. However, the penetrance of disease in p.C282Y homozygotes is incomplete. Hence, homozygosity for p.C282Y is not sufficient to diagnose HH. Neither is p.C282Y homozygosity required for diagnosis as other rare forms of HH exist, generally referred to as non-HFE-related HH. These pose significant challenges when defining criteria for referral, testing protocols, interpretation of test results and reporting practices. We present best practice guidelines for the molecular genetic diagnosis of HH where recommendations are classified, as far as possible, according to the level and strength of evidence. For clarification, the guidelines' recommendations are preceded by a detailed description of the methodology and results obtained with a series of actions taken in order to achieve a wide expert consensus, namely: (i) a survey on the current practices followed by laboratories offering molecular diagnosis of HH; (ii) a systematic literature search focused on some identified controversial topics; (iii) an expert Best Practice Workshop convened to achieve consensus on the practical recommendations included in the guidelines. PMID:26153218

  19. Protocols in human molecular genetics

    National Research Council Canada - National Science Library

    Mathew, Christopher G

    1991-01-01

    ... sequences has led to the development of DNA fingerprinting. The application of these techniques to the study of the human genome has culminated in major advances such as the cloning of the cystic fibrosis gene, the construction of genetic linkage maps of each human chromosome, the mapping of many genes responsible for human inherited disorders, genet...

  20. Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord

    DEFF Research Database (Denmark)

    Kiehn, Ole; Butt, Simon J.B.

    2003-01-01

    . These latter experiments have defined EphA4 as a molecular marker for mammalian excitatory hindlimb CPG neurons. We also review genetic approaches that can be applied to the mouse spinal cord. These include methods for identifying sub-populations of neurons by genetically encoded reporters, techniques to trace...... network connectivity with cell-specific genetically encoded tracers, and ways to selectively ablate or eliminate neuron populations from the CPG. We propose that by applying a multidisciplinary approach it will be possible to understand the network structure of the mammalian locomotor CPG...

  1. Effects of Maternal Obesity on Fetal Programming: Molecular Approaches

    Science.gov (United States)

    Neri, Caterina; Edlow, Andrea G.

    2016-01-01

    Maternal obesity has become a worldwide epidemic. Obesity and a high-fat diet have been shown to have deleterious effects on fetal programming, predisposing offspring to adverse cardiometabolic and neurodevelopmental outcomes. Although large epidemiological studies have shown an association between maternal obesity and adverse outcomes for offspring, the underlying mechanisms remain unclear. Molecular approaches have played a key role in elucidating the mechanistic underpinnings of fetal malprogramming in the setting of maternal obesity. These approaches include, among others, characterization of epigenetic modifications, microRNA expression, the gut microbiome, the transcriptome, and evaluation of specific mRNA expression via quantitative reverse transcription polmerase chain reaction (RT-qPCR) in fetuses and offspring of obese females. This work will review the data from animal models and human fluids/cells regarding the effects of maternal obesity on fetal and offspring neurodevelopment and cardiometabolic outcomes, with a particular focus on molecular approaches. PMID:26337113

  2. A genetic algorithm approach to recognition and data mining

    Energy Technology Data Exchange (ETDEWEB)

    Punch, W.F.; Goodman, E.D.; Min, Pei [Michigan State Univ., East Lansing, MI (United States)] [and others

    1996-12-31

    We review here our use of genetic algorithm (GA) and genetic programming (GP) techniques to perform {open_quotes}data mining,{close_quotes} the discovery of particular/important data within large datasets, by finding optimal data classifications using known examples. Our first experiments concentrated on the use of a K-nearest neighbor algorithm in combination with a GA. The GA selected weights for each feature so as to optimize knn classification based on a linear combination of features. This combined GA-knn approach was successfully applied to both generated and real-world data. We later extended this work by substituting a GP for the GA. The GP-knn could not only optimize data classification via linear combinations of features but also determine functional relationships among the features. This allowed for improved performance and new information on important relationships among features. We review the effectiveness of the overall approach on examples from biology and compare the effectiveness of the GA and GP.

  3. Genetic alterations in hepatocellular carcinoma: An update

    Science.gov (United States)

    Niu, Zhao-Shan; Niu, Xiao-Jun; Wang, Wen-Hong

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Although recent advances in therapeutic approaches for treating HCC have improved the prognoses of patients with HCC, this cancer is still associated with a poor survival rate mainly due to late diagnosis. Therefore, a diagnosis must be made sufficiently early to perform curative and effective treatments. There is a need for a deeper understanding of the molecular mechanisms underlying the initiation and progression of HCC because these mechanisms are critical for making early diagnoses and developing novel therapeutic strategies. Over the past decade, much progress has been made in elucidating the molecular mechanisms underlying hepatocarcinogenesis. In particular, recent advances in next-generation sequencing technologies have revealed numerous genetic alterations, including recurrently mutated genes and dysregulated signaling pathways in HCC. A better understanding of the genetic alterations in HCC could contribute to identifying potential driver mutations and discovering novel therapeutic targets in the future. In this article, we summarize the current advances in research on the genetic alterations, including genomic instability, single-nucleotide polymorphisms, somatic mutations and deregulated signaling pathways, implicated in the initiation and progression of HCC. We also attempt to elucidate some of the genetic mechanisms that contribute to making early diagnoses of and developing molecularly targeted therapies for HCC. PMID:27895396

  4. Molecular Diagnostics of ?-Thalassemia

    OpenAIRE

    Atanasovska, B; Bozhinovski, G; Chakalova, L; Kocheva, S; Karanfilski, O; Plaseska-Karanfiska, D

    2012-01-01

    A high-quality hemoglobinopathy diagnosis is based on the results of a number of tests including assays for molecular identification of causative mutations. We describe the current diagnostic strategy for the identification of ?-thalassemias and hemoglobin (Hb) variants at the International Reference Laboratory for Haemoglobinopathies, Research Centre for Genetic Engineering and Biotechnology (RCGEB) ?Georgi D. Efremov,? Skopje, Republic of Macedonia. Our overall approach and most of the meth...

  5. Library of molecular associations: curating the complex molecular basis of liver diseases

    Directory of Open Access Journals (Sweden)

    Maass Thorsten

    2010-03-01

    Full Text Available Abstract Background Systems biology approaches offer novel insights into the development of chronic liver diseases. Current genomic databases supporting systems biology analyses are mostly based on microarray data. Although these data often cover genome wide expression, the validity of single microarray experiments remains questionable. However, for systems biology approaches addressing the interactions of molecular networks comprehensive but also highly validated data are necessary. Results We have therefore generated the first comprehensive database for published molecular associations in human liver diseases. It is based on PubMed published abstracts and aimed to close the gap between genome wide coverage of low validity from microarray data and individual highly validated data from PubMed. After an initial text mining process, the extracted abstracts were all manually validated to confirm content and potential genetic associations and may therefore be highly trusted. All data were stored in a publicly available database, Library of Molecular Associations http://www.medicalgenomics.org/databases/loma/news, currently holding approximately 1260 confirmed molecular associations for chronic liver diseases such as HCC, CCC, liver fibrosis, NASH/fatty liver disease, AIH, PBC, and PSC. We furthermore transformed these data into a powerful resource for molecular liver research by connecting them to multiple biomedical information resources. Conclusion Together, this database is the first available database providing a comprehensive view and analysis options for published molecular associations on multiple liver diseases.

  6. Adult soft tissue sarcomas: conventional therapies and molecularly targeted approaches.

    Science.gov (United States)

    Mocellin, Simone; Rossi, Carlo R; Brandes, Alba; Nitti, Donato

    2006-02-01

    The therapeutic approach to soft tissue sarcomas (STS) has evolved over the past two decades based on the results from randomized controlled trials, which are guiding physicians in the treatment decision-making process. Despite significant improvements in the control of local disease, a significant number of patients ultimately die of recurrent/metastatic disease following radical surgery due to a lack of effective adjuvant treatments. In addition, the characteristic chemoresistance of STS has compromised the therapeutic value of conventional antineoplastic agents in cases of unresectable advanced/metastatic disease. Therefore, novel therapeutic strategies are urgently needed to improve the prognosis of patients with STS. Recent advances in STS biology are paving the way to the development of molecularly targeted therapeutic strategies, the efficacy of which relies not only on the knowledge of the molecular mechanisms underlying cancer development/progression but also on the personalization of the therapeutic regimen according to the molecular features of individual tumours. In this work, we review the state-of-the-art of conventional treatments for STS and summarize the most promising findings in the development of molecularly targeted therapeutic approaches.

  7. Genetic approaches refine ex situ lowland tapir (Tapirus terrestris) conservation.

    Science.gov (United States)

    Gonçalves da Silva, Anders; Lalonde, Danielle R; Quse, Viviana; Shoemaker, Alan; Russello, Michael A

    2010-01-01

    Ex situ conservation management remains an important tool in the face of continued habitat loss and global environmental change. Here, we use microsatellite marker variation to evaluate conventional assumptions of pedigree-based ex situ population management and directly inform a captive lowland tapir breeding program within a range country. We found relatively high levels of genetic variation (N(total) = 41; mean H(E) = 0.67 across 10 variable loci) and little evidence for relatedness among founder individuals (N(founders) = 10; mean relatedness = -0.05). Seven of 29 putative parent-offspring relationships were excluded by parentage analysis based on allele sharing, and we identified 2 individuals of high genetic value to the population (mk genetic markers were used to inform kinship. We discuss our results within the context of recent studies that have assessed the utility of neutral molecular markers for ex situ conservation.

  8. Molecular Risk Factors for Schizophrenia.

    Science.gov (United States)

    Modai, Shira; Shomron, Noam

    2016-03-01

    Schizophrenia (SZ) is a complex and strongly heritable mental disorder, which is also associated with developmental-environmental triggers. As opposed to most diagnosable diseases (yet similar to other mental disorders), SZ diagnosis is commonly based on psychiatric evaluations. Recently, large-scale genetic and epigenetic approaches have been applied to SZ research with the goal of potentially improving diagnosis. Increased computational analyses and applied statistical algorithms may shed some light on the complex genetic and epigenetic pathways contributing to SZ pathogenesis. This review discusses the latest advances in molecular risk factors and diagnostics for SZ. Approaches such as these may lead to a more accurate definition of SZ and assist in creating extended and reliable clinical diagnoses with the potential for personalized treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Malignant mesothelioma: biology, diagnosis and therapeutic approaches

    Czech Academy of Sciences Publication Activity Database

    Tomasetti, M.; Amati, M.; Santarelli, L.; Alleva, R.; Neužil, Jiří

    2009-01-01

    Roč. 2, č. 2 (2009), s. 190-206 ISSN 1874-4672 Institutional research plan: CEZ:AV0Z50520514 Keywords : malignant mesothelioma * biology * diagnosis and therapeutic approaches Subject RIV: EB - Genetics ; Molecular Biology

  10. Application of Molecular Genetics to the Investigation of Inherited Bleeding Disorders

    DEFF Research Database (Denmark)

    Lethagen, Stefan Rune; Dunø, Morten; Nielsen, Lars Bo

    2013-01-01

    Hemophilia is an inherited bleeding disorder primarily caused by deficiency of coagulation factor (F)VIII (hemophilia A) or FIX (hemophilia B). Both conditions are X-linked. More than 2100 different F8 mutations have been described, the most common being a 500 kb inversion involving exon 1 to exo...... quality control systems in place, and participate in established external quality assessment programs....... the causative mutation is unknown. More rare bleeding disorders are generally recessively inherited, and are often caused by mutations that are specific for individual families, and mutations are scattered throughout the genes. Laboratories performing molecular genetic analyses must have validated internal...

  11. Cytogenetic and molecular-genetic aberrations in malignant primary bone tumors

    International Nuclear Information System (INIS)

    Zoubek, A.; Kovar, H.; Gadner, H.

    1998-01-01

    Osteosarcoma, chondrosarcoma and tumors of the Ewing group are the most frequently observed primary malignant bone tumors. In an Internet homepage recently constructed for the Orthopedic Hospital Rizzoli Bologna, Italy, these tumors have represented the majority of 4423 malignant bone tumors in the archives of this institution since 1920 (http://www.tizeta.it/rizzoli). Malignant fibrous histiocytoma, fibrosarcoma, hemangioendothelioma, malignant hemangiopericytoma and giant-cell tumors are diagnosed less frequently. Since the introduction of modern molecular and cytogenic techniques, knowledge of genetic aberrations in malginant bone tumors has steadily increased. However, so far only for the group of Ewing tumors has a recurrent chromosomal marker, the translocation t(11; 22)(q24; q12), been identified. (orig.) [de

  12. Molecular genetic mutation analysis in Menkes-disease with prenatal diagnosis

    DEFF Research Database (Denmark)

    László, Aranka; Endreffy, Emoke; Tümer, Zeynep

    2010-01-01

    Menkes disease (MD) is an X-linked recessive multisystemic lethal, heredodegenerative disorder. Progressive neurodegeneration and connective tissue disturbances with microscopically kinky hair are the main symptoms. Molecular genetic mutation analysis was made at a Hungarian male infant suffering...... from MD and prenatal diagnosis was done in this MD loaded family. METHOD: The 12th exon of ATP7A gene has been analyzed by dideoxy-finger printing (DDF), polymerase chain reaction (PCR), direct sequencing of exon 12. The specific mutation was screened from chorionic villi of the maternal aunt at the 14......th gestational week. RESULTS: In the exon 12th a basic pair substitution with Arg 844 His change was detected leading to very severe fatal missense mutation....

  13. Molecular markers in the epidemiology and diagnosis of coccidioidomycosis.

    Science.gov (United States)

    Duarte-Escalante, Esperanza; Frías-De-León, María Guadalupe; Zúñiga, Gerardo; Martínez-Herrera, Erick; Acosta-Altamirano, Gustavo; Reyes-Montes, María Del Rocío

    2014-01-01

    The prevalence of coccidioidomycosis in endemic areas has been observed to increase daily. To understand the causes of the spread of the disease and design strategies for fungal detection in clinical and environmental samples, scientists have resorted to molecular tools that allow fungal detection in a natural environment, reliable identification in clinical cases and the study of biological characteristics, such as reproductive and genetic structure, demographic history and diversification. We conducted a review of the most important molecular markers in the epidemiology of Coccidioides spp. and the diagnosis of coccidioidomycosis. A literature search was performed for scientific publications concerning the application of molecular tools for the epidemiology and diagnosis of coccidioidomycosis. The use of molecular markers in the epidemiological study and diagnosis of coccidioidomycosis has allowed for the typing of Coccidioides spp. isolates, improved understanding of their mode of reproduction, genetic variation and speciation and resulted in the development specific, rapid and sensitive strategies for detecting the fungus in environmental and clinical samples. Molecular markers have revealed genetic variability in Coccidioides spp. This finding influences changes in the epidemiology of coccidioidomycosis, such as the emergence of more virulent or antifungal resistant genotypes. Furthermore, the molecular markers currently used to identify Coccidioides immitis and Coccidioides posadasii are specific and sensitive. However, they must be validated to determine their application in diagnosis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  14. Towards mosquito sterile insect technique programmes: Exploring genetic, molecular, mechanical and behavioural methods of sex separation in mosquitoes

    Czech Academy of Sciences Publication Activity Database

    Gilles, J. R. L.; Schetelig, M. F.; Scolari, F.; Marec, František; Capurro, M.L.; Franz, G.; Bourtzis, K.

    132S, č. 1 (2014), S178-S187 ISSN 0001-706X R&D Projects: GA ČR GA523/09/2106 Grant - others:Deutsche Forschungsgemeinschalft(DE) SCHE 1833/1 Institutional support: RVO:60077344 Keywords : female elimination * vector control * genetic sexing strains (GSS) Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.270, year: 2014 http://www.sciencedirect.com/science/article/pii/S0001706X13002209?via=ihub

  15. Molecular genetics

    International Nuclear Information System (INIS)

    Kubitschek, H.E.

    1975-01-01

    Progress is reported on studies on the nature and action of lethal and mutagenic lesions in DNA and the mechanisms by which these are produced in bacteria by ionizing radiation or by decay of radioisotopes incorporated in DNA. Studies of radioisotope decay provide the advantages that the original lesion is localized in the genetic material and the immediate physical and chemical changes that occur at decay are known. Specific types of DNA damage were related to characteristic decay properties of several radioisotopes. Incorporated 125 I, for example, induces a double-stranded break in DNA with almost every decay, but causes remarkably little damage of any other kind to the DNA. (U.S.)

  16. Understanding the Science-Learning Environment: A Genetically Sensitive Approach

    Science.gov (United States)

    Haworth, Claire M. A.; Davis, Oliver S. P.; Hanscombe, Ken B.; Kovas, Yulia; Dale, Philip S.; Plomin, Robert

    2013-01-01

    Previous studies have shown that environmental influences on school science performance increase in importance from primary to secondary school. Here we assess for the first time the relationship between the science-learning environment and science performance using a genetically sensitive approach to investigate the aetiology of this link. 3000…

  17. Evaluation of the molecular level visualisation approach for teaching and learning chemistry in Thailand

    Science.gov (United States)

    Phenglengdi, Butsari

    This research evaluates the use of a molecular level visualisation approach in Thai secondary schools. The goal is to obtain insights about the usefulness of this approach, and to examine possible improvements in how the approach might be applied in the future. The methodology used for this research used both qualitative and quantitative approaches. Data were collected in the form of pre- and post-intervention multiple choice questions, open-ended-questions, drawing exercises, one-to-one interviews and video recordings of class activity. The research was conducted in two phases, involving a total of 261 students from the 11th Grade in Thailand. The use of VisChem animations in three studies was evaluated in Phase I. Study 1 was a pilot study exploring the benefits of incorporating VisChem animations to portray the molecular level. Study 2 compared test results between students exposed to these animations of molecular level events, and those not. Finally, in Study 3, test results were gathered from different types of schools (a rural school, a city school, and a university school). The results showed that students (and teachers) had misconceptions at the molecular level, and VisChem animations could help students understand chemistry concepts at the molecular level across all three types of schools. While the animation treatment group had a better score on the topic of states of water, the non-animation treatment group had a better score on the topic of dissolving sodium chloride in water than the animation group. The molecular level visualisation approach as a learning design was evaluated in Phase II. This approach involved a combination of VisChem animations, pictures, and diagrams together with the seven-step VisChem learning design. The study involved three classes of students, each with a different treatment, described as Class A - Traditional approach; Class B - VisChem animations with traditional approach; and Class C - Molecular level visualisation approach

  18. Safety of genetically engineered foods: approaches to assessing unintended health effects

    National Research Council Canada - National Science Library

    Committee on Identifying and Assessing Unintended Effects of Genetically Engineered Foods on Human Health, National Research Council

    2004-01-01

    .... It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues...

  19. Rationale for an integrated approach to genetic epidemiology.

    Science.gov (United States)

    Laberge, Claude M; Knoppers, Bartha Maria

    1992-10-01

    Genetic knowledge is now in the public domain and its interpretation by the media and the citizens brings the issues into the public forum of discussion for the necessary ethical, legal and socio-cultural evaluation of its application. Science is being perceived by some as dangerous and as requiring international regulation. Others feel that genetic knowledge will be the breakthrough that will permit medical progress and individual autonomy with regards to personal health and lifestyle choices. The mapping of the human genome has already yielded valuable information on an increasing number of diseases and their variants. Prevailing popular and journalistic archetypes ("imaginaires") used in the media are perceived by the producers as slowing down the possible application of genetic knowledge. The answers to these dilemmas are not readily apparent nor are they prescribed by classical philosophy of medicine. Since genetic knowledge eventually resides with the individual who carries the genes of disease and/or susceptibility, a logical approach to integration of this knowledge at a societal level would seem to reside with individual education and decision-making. The politics of the ensuing social debate could transform the current social contract since an individual's interests need to be balanced against those of his or her immediate family in the sharing of information. The ethical foundations of such a contract requires the genetic education of "Everyone" as a matter of urgent priority. Genetic education should not serve ideological power struggles between the medical establishment and the ethical-legal alliance. Instead, it should ensure the transfer of knowledge to physicians, to patients, to users, to planners, to social science and humanities researchers and to politicians, so that they may make "informed" and free decisions....

  20. Molecular subtypes of osteosarcoma identified by reducing tumor heterogeneity through an interspecies comparative approach

    Science.gov (United States)

    Scott, Milcah C.; Sarver, Aaron L.; Gavin, Katherine J.; Thayanithy, Venugopal; Getzy, David M.; Newman, Robert A.; Cutter, Gary R.; Lindblad-Toh, Kerstin; Kisseberth, William C.; Hunter, Lawrence E.; Subramanian, Subbaya; Breen, Matthew; Modiano, Jaime F.

    2011-01-01

    The heterogeneous and chaotic nature of osteosarcoma has confounded accurate molecular classification, prognosis, and prediction for this tumor. The occurrence of spontaneous osteosarcoma is largely confined to humans and dogs. While the clinical features are remarkably similar in both species, the organization of dogs into defined breeds provides a more homogeneous genetic background that may increase the likelihood to uncover molecular subtypes for this complex disease. We thus hypothesized that molecular profiles derived from canine osteosarcoma would aid in molecular subclassification of this disease when applied to humans. To test the hypothesis, we performed genome wide gene expression profiling in a cohort of dogs with osteosarcoma, primarily from high-risk breeds. To further reduce inter-sample heterogeneity, we assessed tumor-intrinsic properties through use of an extensive panel of osteosarcoma-derived cell lines. We observed strong differential gene expression that segregated samples into two groups with differential survival probabilities. Groupings were characterized by the inversely correlated expression of genes associated with G2/M transition and DNA damage checkpoint and microenvironment-interaction categories. This signature was preserved in data from whole tumor samples of three independent dog osteosarcoma cohorts, with stratification into the two expected groups. Significantly, this restricted signature partially overlapped a previously defined, predictive signature for soft tissue sarcomas, and it unmasked orthologous molecular subtypes and their corresponding natural histories in five independent data sets from human patients with osteosarcoma. Our results indicate that the narrower genetic diversity of dogs can be utilized to group complex human osteosarcoma into biologically and clinically relevant molecular subtypes. This in turn may enhance prognosis and prediction, and identify relevant therapeutic targets. PMID:21621658

  1. Molecular anthropology in the genomic era.

    Science.gov (United States)

    Destro-Bisol, Giovanni; Jobling, Mark A; Rocha, Jorge; Novembre, John; Richards, Martin B; Mulligan, Connie; Batini, Chiara; Manni, Franz

    2010-01-01

    Molecular Anthropology is a relatively young field of research. In fact, less than 50 years have passed since the symposium "Classification and Human Evolution" (1962, Burg Wartenstein, Austria), where the term was formally introduced by Emil Zuckerkandl. In this time, Molecular Anthropology has developed both methodologically and theoretically and extended its applications, so covering key aspects of human evolution such as the reconstruction of the history of human populations and peopling processes, the characterization of DNA in extinct humans and the role of adaptive processes in shaping the genetic diversity of our species. In the current scientific panorama, molecular anthropologists have to face a double challenge. As members of the anthropological community, we are strongly committed to the integration of biological findings and other lines of evidence (e.g. linguistic and archaeological), while keeping in line with methodological innovations which are moving the approach from the genetic to the genomic level. In this framework, the meeting "DNA Polymorphisms in Human Populations: Molecular Anthropology in the Genomic Era" (Rome, December 3-5, 2009) offered an opportunity for discussion among scholars from different disciplines, while paying attention to the impact of recent methodological innovations. Here we present an overview of the meeting and discuss perspectives and prospects of Molecular Anthropology in the genomic era.

  2. Applications of a formal approach to decipher discrete genetic networks.

    Science.gov (United States)

    Corblin, Fabien; Fanchon, Eric; Trilling, Laurent

    2010-07-20

    A growing demand for tools to assist the building and analysis of biological networks exists in systems biology. We argue that the use of a formal approach is relevant and applicable to address questions raised by biologists about such networks. The behaviour of these systems being complex, it is essential to exploit efficiently every bit of experimental information. In our approach, both the evolution rules and the partial knowledge about the structure and the behaviour of the network are formalized using a common constraint-based language. In this article our formal and declarative approach is applied to three biological applications. The software environment that we developed allows to specifically address each application through a new class of biologically relevant queries. We show that we can describe easily and in a formal manner the partial knowledge about a genetic network. Moreover we show that this environment, based on a constraint algorithmic approach, offers a wide variety of functionalities, going beyond simple simulations, such as proof of consistency, model revision, prediction of properties, search for minimal models relatively to specified criteria. The formal approach proposed here deeply changes the way to proceed in the exploration of genetic and biochemical networks, first by avoiding the usual trial-and-error procedure, and second by placing the emphasis on sets of solutions, rather than a single solution arbitrarily chosen among many others. Last, the constraint approach promotes an integration of model and experimental data in a single framework.

  3. Identifying Genetic Hotspots by Mapping Molecular Diversity of Widespread Trees: When Commonness Matters.

    Science.gov (United States)

    Souto, Cintia P; Mathiasen, Paula; Acosta, María Cristina; Quiroga, María Paula; Vidal-Russell, Romina; Echeverría, Cristian; Premoli, Andrea C

    2015-01-01

    Conservation planning requires setting priorities at the same spatial scale at which decision-making processes are undertaken considering all levels of biodiversity, but current methods for identifying biodiversity hotspots ignore its genetic component. We developed a fine-scale approach based on the definition of genetic hotspots, which have high genetic diversity and unique variants that represent their evolutionary potential and evolutionary novelties. Our hypothesis is that wide-ranging taxa with similar ecological tolerances, yet of phylogenetically independent lineages, have been and currently are shaped by ecological and evolutionary forces that result in geographically concordant genetic patterns. We mapped previously published genetic diversity and unique variants of biparentally inherited markers and chloroplast sequences for 9 species from 188 and 275 populations, respectively, of the 4 woody dominant families of the austral temperate forest, an area considered a biodiversity hotspot. Spatial distribution patterns of genetic polymorphisms differed among taxa according to their ecological tolerances. Eight genetic hotspots were detected and we recommend conservation actions for some in the southern Coastal Range in Chile. Existing spatially explicit genetic data from multiple populations and species can help to identify biodiversity hotspots and guide conservation actions to establish science-based protected areas that will preserve the evolutionary potential of key habitats and species. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Molecular genetics of pituitary development in zebrafish.

    Science.gov (United States)

    Pogoda, Hans-Martin; Hammerschmidt, Matthias

    2007-08-01

    The pituitary gland of vertebrates consists of two major parts, the neurohypophysis (NH) and the adenohypophysis (AH). As a central part of the hypothalamo-hypophyseal system (HHS), it constitutes a functional link between the nervous and the endocrine system to regulate basic body functions, such as growth, metabolism and reproduction. The development of the AH has been intensively studied in mouse, serving as a model for organogenesis and differential cell specification. However, given that the AH is a relatively recent evolutionary advance of the chordate phylum, it is also interesting to understand its development in lower chordate systems. In recent years, the zebrafish has emerged as a powerful lower vertebrate system for developmental studies, being amenable for large-scale genetic approaches, embryological manipulations, and in vivo imaging. Here, we present an overview of current knowledge of the mechanisms and genetic control of pituitary formation during zebrafish development. First, we describe the components of the zebrafish HHS, and the different pituitary cell types and hormones, followed by a description of the different steps of normal pituitary development. The central part of the review deals with the genes found to be essential for zebrafish AH development, accompanied by a description of the corresponding mutant phenotypes. Finally, we discuss future directions, with particular focus on evolutionary aspects, and some novel functional aspects with growing medical and social relevance.

  5. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci

    Science.gov (United States)

    Shen, Changbing; Gao, Jing; Sheng, Yujun; Dou, Jinfa; Zhou, Fusheng; Zheng, Xiaodong; Ko, Randy; Tang, Xianfa; Zhu, Caihong; Yin, Xianyong; Sun, Liangdan; Cui, Yong; Zhang, Xuejun

    2016-01-01

    Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo. PMID:26870082

  6. From playfulness and self-centredness via grand expectations to normalisation: a psychoanalytical rereading of the history of molecular genetics.

    Science.gov (United States)

    Zwart, H A E

    2013-11-01

    In this paper, I will reread the history of molecular genetics from a psychoanalytical angle, analysing it as a case history. Building on the developmental theories of Freud and his followers, I will distinguish four stages, namely: (1) oedipal childhood, notably the epoch of model building (1943-1953); (2) the latency period, with a focus on the development of basic skills (1953-1989); (3) adolescence, exemplified by the Human Genome Project, with its fierce conflicts, great expectations and grandiose claims (1989-2003) and (4) adulthood (2003-present) during which revolutionary research areas such as molecular biology and genomics have achieved a certain level of normalcy--have evolved into a normal science. I will indicate how a psychoanalytical assessment conducted in this manner may help us to interpret and address some of the key normative issues that have been raised with regard to molecular genetics over the years, such as 'relevance', 'responsible innovation' and 'promise management'.

  7. A proteomic network approach across the ALS-FTD disease spectrum resolves clinical phenotypes and genetic vulnerability in human brain.

    Science.gov (United States)

    Umoh, Mfon E; Dammer, Eric B; Dai, Jingting; Duong, Duc M; Lah, James J; Levey, Allan I; Gearing, Marla; Glass, Jonathan D; Seyfried, Nicholas T

    2018-01-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases with overlap in clinical presentation, neuropathology, and genetic underpinnings. The molecular basis for the overlap of these disorders is not well established. We performed a comparative unbiased mass spectrometry-based proteomic analysis of frontal cortical tissues from postmortem cases clinically defined as ALS, FTD, ALS and FTD (ALS/FTD), and controls. We also included a subset of patients with the C9orf72 expansion mutation, the most common genetic cause of both ALS and FTD Our systems-level analysis of the brain proteome integrated both differential expression and co-expression approaches to assess the relationship of these differences to clinical and pathological phenotypes. Weighted co-expression network analysis revealed 15 modules of co-expressed proteins, eight of which were significantly different across the ALS-FTD disease spectrum. These included modules associated with RNA binding proteins, synaptic transmission, and inflammation with cell-type specificity that showed correlation with TDP-43 pathology and cognitive dysfunction. Modules were also examined for their overlap with TDP-43 protein-protein interactions, revealing one module enriched with RNA-binding proteins and other causal ALS genes that increased in FTD/ALS and FTD cases. A module enriched with astrocyte and microglia proteins was significantly increased in ALS cases carrying the C9orf72 mutation compared to sporadic ALS cases, suggesting that the genetic expansion is associated with inflammation in the brain even without clinical evidence of dementia. Together, these findings highlight the utility of integrative systems-level proteomic approaches to resolve clinical phenotypes and genetic mechanisms underlying the ALS-FTD disease spectrum in human brain. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  8. Cardiovascular Molecular Imaging

    International Nuclear Information System (INIS)

    Lee, Kyung Han

    2009-01-01

    Molecular imaging strives to visualize processes in living subjects at the molecular level. Monitoring biochemical processes at this level will allow us to directly track biological processes and signaling events that lead to pathophysiological abnormalities, and help make personalized medicine a reality by allowing evaluation of therapeutic efficacies on an individual basis. Although most molecular imaging techniques emerged from the field of oncology, they have now gradually gained acceptance by the cardiovascular community. Hence, the availability of dedicated high-resolution small animal imaging systems and specific targeting imaging probes is now enhancing our understanding of cardiovascular diseases and expediting the development of newer therapies. Examples include imaging approaches to evaluate and track the progress of recent genetic and cellular therapies for treatment of myocardial ischemia. Other areas include in vivo monitoring of such key molecular processes as angiogenesis and apoptosis. Cardiovascular molecular imaging is already an important research tool in preclinical experiments. The challenge that lies ahead is to implement these techniques into the clinics so that they may help fulfill the promise of molecular therapies and personalized medicine, as well as to resolve disappointments and controversies surrounding the field

  9. Molecular analysis and genetic diversity of Aedes albopictus (Diptera, Culicidae) from China.

    Science.gov (United States)

    Ruiling, Zhang; Peien, Leng; Xuejun, Wang; Zhong, Zhang

    2018-05-01

    Aedes albopictus is one of the most invasive species, which can carry Dengue virus, Yellow fever virus and more than twenty arboviruses. Based on mitochondrial gene cytochrome c oxidase I (COI) and samples collected from 17 populations, we investigated the molecular character and genetic diversity of Ae. albopictus from China. Altogether, 25 haplotypes were detected, including 10 shared haplotypes and 15 private haplotypes. H1 was the dominant haplotype, which is widely distributed in 13 populations. Tajima'D value of most populations was significantly negative, demonstrating that populations experienced rapid range expansion recently. Most haplotypes clustered together both in phylogenetic and median-joining network analysis without clear phylogeographic patterns. However, neutrality tests revealed shallow divergences among Hainan and Guangxi with other populations (0.15599 ≤ F ST ≤ 0.75858), which probably due to interrupted gene flow, caused by geographical isolations. In conclusion, Ae. albopictus populations showed low genetic diversity in China.

  10. Toward an integrative molecular approach to wildlife disease.

    Science.gov (United States)

    DeCandia, Alexandra L; Dobson, Andrew P; vonHoldt, Bridgett M

    2018-01-29

    Pathogens pose serious threats to human health, agricultural investment, and biodiversity conservation through the emergence of zoonoses, spillover to domestic livestock, and epizootic outbreaks. As such, wildlife managers are often tasked with mitigating the negative effects of disease. Yet, parasites form a major component of biodiversity that often persist. This is due to logistical challenges of implementing management strategies and to insufficient understanding of host-parasite dynamics. We advocate for an inclusive understanding of molecular diversity in driving parasite infection and variable host disease states in wildlife systems. More specifically, we examine the roles of genetic, epigenetic, and commensal microbial variation in disease pathogenesis. These include mechanisms underlying parasite virulence and host resistance and tolerance, and the development, regulation, and parasite subversion of immune pathways, among other processes. Case studies of devil facial tumor disease in Tasmanian devils (Sarcophilus harrisii) and chytridiomycosis in globally distributed amphibians exemplify the broad range of questions that can be addressed by examining different facets of molecular diversity. For particularly complex systems, integrative molecular analyses present a promising frontier that can provide critical insights necessary to elucidate disease dynamics operating across scales. These insights enable more accurate risk assessment, reconstruction of transmission pathways, discernment of optimal intervention strategies, and development of more effective and ecologically sound treatments that minimize damage to the host population and environment. Such measures are crucial when mitigating threats posed by wildlife disease to humans, domestic animals, and species of conservation concern. © 2018 Society for Conservation Biology.

  11. The history of Old World camelids in the light of molecular genetics.

    Science.gov (United States)

    Burger, Pamela Anna

    2016-06-01

    Old World camels have come into the focus as sustainable livestock species, unique in their morphological and physiological characteristics and capable of providing vital products even under extreme environmental conditions. The evolutionary history of dromedary and Bactrian camels traces back to the middle Eocene (around 40 million years ago, mya), when the ancestors of Camelus emerged on the North American continent. While the genetic status of the two domestic species has long been established, the wild two-humped camel has only recently been recognized as a separate species, Camelus ferus, based on molecular genetic data. The demographic history established from genome drafts of Old World camels shows the independent development of the three species over the last 100,000 years with severe bottlenecks occurring during the last glacial period and in the recent past. Ongoing studies involve the immune system, relevant production traits, and the global population structure and domestication of Old World camels. Based on the now available whole genome drafts, specific metabolic pathways have been described shedding new light on the camels' ability to adapt to desert environments. These new data will also be at the origin for genome-wide association studies to link economically relevant phenotypes to genotypes and to conserve the diverse genetic resources in Old World camelids.

  12. Molecular genetic insights on cheetah (Acinonyx jubatus) ecology and conservation in Namibia.

    Science.gov (United States)

    Marker, Laurie L; Pearks Wilkerson, Alison J; Sarno, Ronald J; Martenson, Janice; Breitenmoser-Würsten, Christian; O'Brien, Stephen J; Johnson, Warren E

    2008-01-01

    The extent and geographic patterns of molecular genetic diversity of the largest remaining free-ranging cheetah population were described in a survey of 313 individuals from throughout Namibia. Levels of relatedness, including paternity/maternity (parentage), were assessed across all individuals using 19 polymorphic microsatellite loci, and unrelated cheetahs (n = 89) from 7 regions were genotyped at 38 loci to document broad geographical patterns. There was limited differentiation among regions, evidence that this is a generally panmictic population. Measures of genetic variation were similar among all regions and were comparable with Eastern African cheetah populations. Parentage analyses confirmed several observations based on field studies, including 21 of 23 previously hypothesized family groups, 40 probable parent/offspring pairs, and 8 sibling groups. These results also verified the successful integration and reproduction of several cheetahs following natural dispersal or translocation. Animals within social groups (family groups, male coalitions, or sibling groups) were generally related. Within the main study area, radio-collared female cheetahs were more closely interrelated than similarly compared males, a pattern consistent with greater male dispersal. The long-term maintenance of current patterns of genetic variation in Namibia depends on retaining habitat characteristics that promote natural dispersal and gene flow of cheetahs.

  13. Molecular and Genetic Basis of Hereditary Connective-Tissue Diseases Accompanied by Frequent Fractures

    Directory of Open Access Journals (Sweden)

    G. T. Yakhyaeva

    2016-01-01

    Full Text Available Frequent bone fractures in infancy require the elimination of a large number (> 100 of genetic disorders. The modern diagnostic method of hereditary diseases characterized by debilitating course is a new generation sequencing. The article presents the results of molecular-genetic study conducted in 18 patients with clinical symptoms of connective tissue disorders. 10 (56% patients had mutations in the genes encoding type I collagen chains, leading to the development of osteogenesis imperfecta, 5 (28% — mutations in IV and V type collagen genes that are responsible for the development of Ehlers-Danlos syndrome. 3 (17% patients had mutations in the gene encoding fibrillin-1 protein, deficiency of which is manifested by Marfan syndrome. However, the correlation between patient's phenotype and discovered mutations in the investigated gene is established not in all cases.

  14. Novel molecular markers of Chlamydia pecorum genetic diversity in the koala (Phascolarctos cinereus)

    Science.gov (United States)

    2011-01-01

    Background Chlamydia pecorum is an obligate intracellular bacterium and the causative agent of reproductive and ocular disease in several animal hosts including koalas, sheep, cattle and goats. C. pecorum strains detected in koalas are genetically diverse, raising interesting questions about the origin and transmission of this species within koala hosts. While the ompA gene remains the most widely-used target in C. pecorum typing studies, it is generally recognised that surface protein encoding genes are not suited for phylogenetic analysis and it is becoming increasingly apparent that the ompA gene locus is not congruent with the phylogeny of the C. pecorum genome. Using the recently sequenced C. pecorum genome sequence (E58), we analysed 10 genes, including ompA, to evaluate the use of ompA as a molecular marker in the study of koala C. pecorum genetic diversity. Results Three genes (incA, ORF663, tarP) were found to contain sufficient nucleotide diversity and discriminatory power for detailed analysis and were used, with ompA, to genotype 24 C. pecorum PCR-positive koala samples from four populations. The most robust representation of the phylogeny of these samples was achieved through concatenation of all four gene sequences, enabling the recreation of a "true" phylogenetic signal. OmpA and incA were of limited value as fine-detailed genetic markers as they were unable to confer accurate phylogenetic distinctions between samples. On the other hand, the tarP and ORF663 genes were identified as useful "neutral" and "contingency" markers respectively, to represent the broad evolutionary history and intra-species genetic diversity of koala C. pecorum. Furthermore, the concatenation of ompA, incA and ORF663 sequences highlighted the monophyletic nature of koala C. pecorum infections by demonstrating a single evolutionary trajectory for koala hosts that is distinct from that seen in non-koala hosts. Conclusions While the continued use of ompA as a fine

  15. Novel molecular markers of Chlamydia pecorum genetic diversity in the koala (Phascolarctos cinereus

    Directory of Open Access Journals (Sweden)

    Timms Peter

    2011-04-01

    Full Text Available Abstract Background Chlamydia pecorum is an obligate intracellular bacterium and the causative agent of reproductive and ocular disease in several animal hosts including koalas, sheep, cattle and goats. C. pecorum strains detected in koalas are genetically diverse, raising interesting questions about the origin and transmission of this species within koala hosts. While the ompA gene remains the most widely-used target in C. pecorum typing studies, it is generally recognised that surface protein encoding genes are not suited for phylogenetic analysis and it is becoming increasingly apparent that the ompA gene locus is not congruent with the phylogeny of the C. pecorum genome. Using the recently sequenced C. pecorum genome sequence (E58, we analysed 10 genes, including ompA, to evaluate the use of ompA as a molecular marker in the study of koala C. pecorum genetic diversity. Results Three genes (incA, ORF663, tarP were found to contain sufficient nucleotide diversity and discriminatory power for detailed analysis and were used, with ompA, to genotype 24 C. pecorum PCR-positive koala samples from four populations. The most robust representation of the phylogeny of these samples was achieved through concatenation of all four gene sequences, enabling the recreation of a "true" phylogenetic signal. OmpA and incA were of limited value as fine-detailed genetic markers as they were unable to confer accurate phylogenetic distinctions between samples. On the other hand, the tarP and ORF663 genes were identified as useful "neutral" and "contingency" markers respectively, to represent the broad evolutionary history and intra-species genetic diversity of koala C. pecorum. Furthermore, the concatenation of ompA, incA and ORF663 sequences highlighted the monophyletic nature of koala C. pecorum infections by demonstrating a single evolutionary trajectory for koala hosts that is distinct from that seen in non-koala hosts. Conclusions While the continued use of

  16. Imaging Genetics and Genomics in Psychiatry: A Critical Review of Progress and Potential.

    Science.gov (United States)

    Bogdan, Ryan; Salmeron, Betty Jo; Carey, Caitlin E; Agrawal, Arpana; Calhoun, Vince D; Garavan, Hugh; Hariri, Ahmad R; Heinz, Andreas; Hill, Matthew N; Holmes, Andrew; Kalin, Ned H; Goldman, David

    2017-08-01

    Imaging genetics and genomics research has begun to provide insight into the molecular and genetic architecture of neural phenotypes and the neural mechanisms through which genetic risk for psychopathology may emerge. As it approaches its third decade, imaging genetics is confronted by many challenges, including the proliferation of studies using small sample sizes and diverse designs, limited replication, problems with harmonization of neural phenotypes for meta-analysis, unclear mechanisms, and evidence that effect sizes may be more modest than originally posited, with increasing evidence of polygenicity. These concerns have encouraged the field to grow in many new directions, including the development of consortia and large-scale data collection projects and the use of novel methods (e.g., polygenic approaches, machine learning) that enhance the quality of imaging genetic studies but also introduce new challenges. We critically review progress in imaging genetics and offer suggestions and highlight potential pitfalls of novel approaches. Ultimately, the strength of imaging genetics and genomics lies in their translational and integrative potential with other research approaches (e.g., nonhuman animal models, psychiatric genetics, pharmacologic challenge) to elucidate brain-based pathways that give rise to the vast individual differences in behavior as well as risk for psychopathology. Copyright © 2017 Society of Biological Psychiatry. All rights reserved.

  17. Molecular biology: Self-sustaining chemistry

    Directory of Open Access Journals (Sweden)

    Wrede Paul

    2007-10-01

    Full Text Available Abstract Molecular biology is an established interdisciplinary field within biology that deals fundamentally with the function of any nucleic acid in the cellular context. The molecular biology section in Chemistry Central Journal focusses on the genetically determined chemistry and biochemistry occuring in the cell. How can thousands of chemical reactions interact smoothly to maintain the life of cells, even in a variable environment? How is this self-sustaining system achieved? These are questions that should be answered in the light of molecular biology and evolution, but with the application of biophysical, physico-chemical, analytical and preparative technologies. As the Section Editor for the molecular biology section in Chemistry Central Journal, I hope to receive manuscripts that present new approaches aimed at better answering and shedding light upon these fascinating questions related to the chemistry of livings cells.

  18. [Molecular, genetic and physiological analysis of photoinhibition and photosynthetic]. Progress report, June 1991--November 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    A major goal of this project is to use a combined molecular genetic, biochemical and physiological approach to understand the relationship between photosynthetic performance and the structure of the multifunctional D1 reaction center protein of Photosystem II encoded by the chloroplast psbA gene. Relative to other chloroplast proteins, turover of D1 is rapid and highly light dependent and de novo synthesis of D1 is required for a plant`s recovery from short term exposure to irradiances which induce photoinhibitory damage. These observations have led to models for a damage/repair cycle of PSII involving the targeted degradation and replacement of photodamaged D1. To investigate the effects of perturbing the D1 cycle on photosynthesis and autotrophic growth under high and low irradiance, we have examined the consequences of site-specific mutations of the psbA and 16S rRNA genes affecting synthesis, maturation and function/stability of the D1 protein introduced into the chloroplast genome of wildtype strain of the green alga Chlamydomonas reinhardtii using biolistic transformation.

  19. Genetic engineering for skeletal regenerative medicine.

    Science.gov (United States)

    Gersbach, Charles A; Phillips, Jennifer E; García, Andrés J

    2007-01-01

    The clinical challenges of skeletal regenerative medicine have motivated significant advances in cellular and tissue engineering in recent years. In particular, advances in molecular biology have provided the tools necessary for the design of gene-based strategies for skeletal tissue repair. Consequently, genetic engineering has emerged as a promising method to address the need for sustained and robust cellular differentiation and extracellular matrix production. As a result, gene therapy has been established as a conventional approach to enhance cellular activities for skeletal tissue repair. Recent literature clearly demonstrates that genetic engineering is a principal factor in constructing effective methods for tissue engineering approaches to bone, cartilage, and connective tissue regeneration. This review highlights this literature, including advances in the development of efficacious gene carriers, novel cell sources, successful delivery strategies, and optimal target genes. The current status of the field and the challenges impeding the clinical realization of these approaches are also discussed.

  20. Molecular genetic diversity of the Saccharomyces yeasts in Taiwan: Saccharomyces arboricola, Saccharomyces cerevisiae and Saccharomyces kudriavzevii.

    Science.gov (United States)

    Naumov, Gennadi I; Lee, Ching-Fu; Naumova, Elena S

    2013-01-01

    Genetic hybridization, sequence and karyotypic analyses of natural Saccharomyces yeasts isolated in different regions of Taiwan revealed three biological species: Saccharomyces arboricola, Saccharomyces cerevisiae and Saccharomyces kudriavzevii. Intraspecies variability of the D1/D2 and ITS1 rDNA sequences was detected among S. cerevisiae and S. kudriavzevii isolates. According to molecular and genetic analyses, the cosmopolitan species S. cerevisiae and S. kudriavzevii contain local divergent populations in Taiwan, Malaysia and Japan. Six of the seven known Saccharomyces species are documented in East Asia: S. arboricola, S. bayanus, S. cerevisiae, S. kudriavzevii, S. mikatae, and S. paradoxus.

  1. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Department of Clinical Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia CY2370, Cyprus; Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia CY2370, Cyprus; Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of ...

  2. Genetic and neural approaches to nuclear transient identification

    International Nuclear Information System (INIS)

    Almeida, Jose Carlos Soares de; Mol, Antonio Carlos de Abreu; Pereira, Claudio Marcio Nascimento Abreu; Lapa, Celso Marcelo Franklin

    2005-01-01

    This work presents two approaches for pattern recognition to the same set of reactor signals. The first one describes a possibilistic approach optimized by genetic algorithm. The use of a possibilistic classification provides a natural and consistent classification rules, leading naturally to a good heuristic to handle the 'don't know' response, in case of unrecognized transient, which is fairly desirable in transient classification systems where safety is critical, since wrong or not reliable classifications can be catastrophic. Application of the proposed approach to a nuclear transient identification problem reveals good capability of the genetic algorithm in learning optimized possibilistic classification rules for efficient diagnosis including 'don't know' response. The second one uses two multilayer neural networks (NN). The first NN is responsible for the dynamic identification. This NN uses, as input, a short set (in a moving time window) of recent measurements of each variable avoiding the necessity of using starting events. The second NN is used to validate the instantaneous identification (from the first net) through the validation of each variable. This net is responsible for allowing the system to provide a 'don't know' response. In order to validate both methods, a Nuclear Power Plant (NPP) transient identification problem comprising postulated accidents, simulated for a pressurized water reactor, was proposed in the validation process it has been considered noisy data in order to evaluate the method robustness. Obtained results reveal the ability of the methods in dealing with both dynamic identification of transients and correct 'don't know' response. (author)

  3. An imaging genetics approach to understanding social influence

    OpenAIRE

    Emily eFalk; Emily eFalk; Baldwin eWay; Agnes eJasinska

    2012-01-01

    Normative social influences shape nearly every aspect of our lives, yet the biological processes mediating the impact of these social influences on behavior remain incompletely understood. In this Hypothesis, we outline a theoretical framework and an integrative research approach to the study of social influences on the brain and genetic moderators of such effects. First, we review neuroimaging evidence linking social influence and conformity to the brain’s reward system. We next review neur...

  4. An imaging genetics approach to understanding social influence

    OpenAIRE

    Falk, Emily B.; Way, Baldwin M.; Jasinska, Agnes J.

    2012-01-01

    Normative social influences shape nearly every aspect of our lives, yet the biological processes mediating the impact of these social influences on behavior remain incompletely understood. In this Hypothesis, we outline a theoretical framework and an integrative research approach to the study of social influences on the brain and genetic moderators of such effects. First, we review neuroimaging evidence linking social influence and conformity to the brain's reward system. We next review neuro...

  5. Stability of nanofluids: Molecular dynamic approach and experimental study

    International Nuclear Information System (INIS)

    Farzaneh, H.; Behzadmehr, A.; Yaghoubi, M.; Samimi, A.; Sarvari, S.M.H.

    2016-01-01

    Highlights: • Nanofluid stability is investigated and discussed. • A molecular dynamic approach, considering different forces on the nanoparticles, is adopted. • Stability diagrams are presented for different thermo-fluid conditions. • An experimental investigation is carried out to confirm the theoretical approach. - Abstract: Nanofluids as volumetric absorbent in solar energy conversion devices or as working fluid in different heat exchangers have been proposed by various researchers. However, dispersion stability of nanofluids is an important issue that must be well addressed before any industrial applications. Conditions such as severe temperature gradient, high temperature of heat transfer fluid, nanoparticle mean diameters and types of nanoparticles and base fluid are among the most effective parameters on the stability of nanofluid. A molecular dynamic approach, considering kinetic energy of nanoparticles and DLVO potential energy between nanoparticles, is adopted to study the nanofluid stability for different nanofluids at different working conditions. Different forces such as Brownian, thermophoresis, drag and DLVO are considered to introduce the stability diagrams. The latter presents the conditions for which a nanofluid can be stable. In addition an experimental investigation is carried out to find a stable nanofluid and to show the validity of the theoretical approach. There is a good agreement between the experimental and theoretical results that confirms the validity of our theoretical approach.

  6. Synthetic Genetic Targeting of Genome Instability in Cancer

    International Nuclear Information System (INIS)

    Sajesh, Babu V.; Guppy, Brent J.; McManus, Kirk J.

    2013-01-01

    Cancer is a leading cause of death throughout the World. A limitation of many current chemotherapeutic approaches is that their cytotoxic effects are not restricted to cancer cells, and adverse side effects can occur within normal tissues. Consequently, novel strategies are urgently needed to better target cancer cells. As we approach the era of personalized medicine, targeting the specific molecular defect(s) within a given patient’s tumor will become a more effective treatment strategy than traditional approaches that often target a given cancer type or sub-type. Synthetic genetic interactions are now being examined for their therapeutic potential and are designed to target the specific genetic and epigenetic phenomena associated with tumor formation, and thus are predicted to be highly selective. In general, two complementary approaches have been employed, including synthetic lethality and synthetic dosage lethality, to target aberrant expression and/or function associated with tumor suppressor genes and oncogenes, respectively. Here we discuss the concepts of synthetic lethality and synthetic dosage lethality, and explain three general experimental approaches designed to identify novel genetic interactors. We present examples and discuss the merits and caveats of each approach. Finally, we provide insight into the subsequent pre-clinical work required to validate novel candidate drug targets

  7. Investigating the structural impacts of I64T and P311S mutations in APE1-DNA complex: a molecular dynamics approach.

    Directory of Open Access Journals (Sweden)

    C George Priya Doss

    Full Text Available Elucidating the molecular dynamic behavior of Protein-DNA complex upon mutation is crucial in current genomics. Molecular dynamics approach reveals the changes on incorporation of variants that dictate the structure and function of Protein-DNA complexes. Deleterious mutations in APE1 protein modify the physicochemical property of amino acids that affect the protein stability and dynamic behavior. Further, these mutations disrupt the binding sites and prohibit the protein to form complexes with its interacting DNA.In this study, we developed a rapid and cost-effective method to analyze variants in APE1 gene that are associated with disease susceptibility and evaluated their impacts on APE1-DNA complex dynamic behavior. Initially, two different in silico approaches were used to identify deleterious variants in APE1 gene. Deleterious scores that overlap in these approaches were taken in concern and based on it, two nsSNPs with IDs rs61730854 (I64T and rs1803120 (P311S were taken further for structural analysis.Different parameters such as RMSD, RMSF, salt bridge, H-bonds and SASA applied in Molecular dynamic study reveals that predicted deleterious variants I64T and P311S alters the structure as well as affect the stability of APE1-DNA interacting functions. This study addresses such new methods for validating functional polymorphisms of human APE1 which is critically involved in causing deficit in repair capacity, which in turn leads to genetic instability and carcinogenesis.

  8. [Molecular-Genetic Diagnosis and Molecular-Targeted Therapy in Cancer: Challenges in the Era of Precision Medicine].

    Science.gov (United States)

    Miyachi, Hayato

    2015-10-01

    Elucidation of the molecular pathogenesis of neoplasms and application of emerging technologies for testing and therapy have resulted in a series of paradigm shifts in patient care, from conventional to personalized medicine. This has been promoted by companion diagnostics and molecular targeted therapy, tailoring the treatment to the individual characteristics of each patient. Precision oncology has been accelerated by integrating the enhanced resolution of molecular analysis, mechanism clarity, and therapeutic relevance through genomic knowledge. In its clinical implementation, there are laboratory challenges concerning accurate measurement using stored samples, differentiation between driver and passenger mutations as well as between germline and somatic mutations, bioinformatics availability, practical decision-making algorithms, and ethical issues regarding incidental findings. The medical laboratory has a new role in providing not only testing services but also an instructive approach to users to ensure the sample quality and privacy protection of personal genome information, supporting the quality of patient practice based on laboratory diagnosis.

  9. Examination of taxonomic uncertainties surrounding Brucella abortus bv. 7 by phenotypic and molecular approaches.

    Science.gov (United States)

    Garin-Bastuji, Bruno; Mick, Virginie; Le Carrou, Gilles; Allix, Sebastien; Perrett, Lorraine L; Dawson, Claire E; Groussaud, Pauline; Stubberfield, Emma J; Koylass, Mark; Whatmore, Adrian M

    2014-03-01

    Brucella taxonomy is perpetually being reshuffled, at both the species and intraspecies levels. Biovar 7 of Brucella abortus was suspended from the Approved Lists of Bacterial Names Brucella classification in 1988, because of unpublished evidence that the reference strain 63/75 was a mixture of B. abortus biovars 3 and 5. To formally clarify the situation, all isolates previously identified as B. abortus bv. 7 in the AHVLA and ANSES strain collections were characterized by classical microbiological and multiple molecular approaches. Among the 14 investigated strains, including strain 63/75, only four strains, isolated in Kenya, Turkey, and Mongolia, were pure and showed a phenotypic profile in agreement with the former biovar 7, particularly agglutination with both anti-A/anti-M monospecific sera. These results were strengthened by molecular strategies. Indeed, genus- and species-specific methods allowed confirmation that the four pure strains belonged to the B. abortus species. The combination of most approaches excluded their affiliation with the recognized biovars (biovars 1 to 6 and 9), while some suggested that they were close to biovar 3.These assays were complemented by phylogenetic and/or epidemiological methods, such as multilocus sequence analysis (MLSA) and variable-number tandem repeat (VNTR) analysis. The results of this polyphasic investigation allow us to propose the reintroduction of biovar 7 into the Brucella classification, with at least three representative strains. Interestingly, the Kenyan strain, sharing the same biovar 7 phenotype, was genetically divergent from other three isolates. These discrepancies illustrate the complexity of Brucella taxonomy. This study suggests that worldwide collections could include strains misidentified as B. abortus bv. 7, and it highlights the need to verify their real taxonomic position.

  10. Genetic Mutations and Epigenetic Modifications: Driving Cancer and Informing Precision Medicine

    Science.gov (United States)

    Coyle, Krysta Mila; Boudreau, Jeanette E.

    2017-01-01

    Cancer treatment is undergoing a significant revolution from “one-size-fits-all” cytotoxic therapies to tailored approaches that precisely target molecular alterations. Precision strategies for drug development and patient stratification, based on the molecular features of tumors, are the next logical step in a long history of approaches to cancer therapy. In this review, we discuss the history of cancer treatment from generic natural extracts and radical surgical procedures to site-specific and combinatorial treatment regimens, which have incrementally improved patient outcomes. We discuss the related contributions of genetics and epigenetics to cancer progression and the response to targeted therapies and identify challenges and opportunities for the success of precision medicine. The identification of patients who will benefit from targeted therapies is more complex than simply identifying patients whose tumors harbour the targeted aberration, and intratumoral heterogeneity makes it difficult to determine if a precision therapy is successful during treatment. This heterogeneity enables tumors to develop resistance to targeted approaches; therefore, the rational combination of therapeutic agents will limit the threat of acquired resistance to therapeutic success. By incorporating the view of malignant transformation modulated by networks of genetic and epigenetic interactions, molecular strategies will enable precision medicine for effective treatment across cancer subtypes. PMID:28685150

  11. Genetics, health care, and public policy: an introduction to public health genetics

    National Research Council Canada - National Science Library

    Stewart, Alison

    2007-01-01

    ... initiative About this book Further reading and resources Principles of public health The emergence of public health genetics The human genome project and 'genomic medicine' Community genetics Current developments in public health genetics Genomics and global health 2 Genetic science and technology Basic molecular genetics Genes and the geno...

  12. Pituitary Tumors in Childhood: an update in their diagnosis, treatment and molecular genetics

    Science.gov (United States)

    Keil, Margaret F.; Stratakis, Constantine A.

    2009-01-01

    Pituitary tumors are rare in childhood and adolescence, with a reported prevalence of up to 1 per million children. Only 2 - 6% of surgically treated pituitary tumors occur in children. Although pituitary tumors in children are almost never malignant and hormonal secretion is rare, these tumors may result in significant morbidity. Tumors within the pituitary fossa are of two types mainly, craniopharyngiomas and adenomas; craniopharyngiomas cause symptoms by compressing normal pituitary, causing hormonal deficiencies and producing mass effects on surrounding tissues and the brain; adenomas produce a variety of hormonal conditions such as hyperprolactinemia, Cushing disease and acromegaly or gigantism. Little is known about the genetic causes of sporadic lesions, which comprise the majority of pituitary tumors, but in children, more frequently than in adults, pituitary tumors may be a manifestation of genetic conditions such as multiple endocrine neoplasia type 1 (MEN 1), Carney complex, familial isolated pituitary adenoma (FIPA), and McCune-Albright syndrome. The study of pituitary tumorigenesis in the context of these genetic syndromes has advanced our knowledge of the molecular basis of pituitary tumors and may lead to new therapeutic developments. PMID:18416659

  13. Molecular pathways underpinning ethanol-induced neurodegeneration

    Directory of Open Access Journals (Sweden)

    Dan eGoldowitz*

    2014-07-01

    Full Text Available While genetics impacts the type and severity of damage following developmental ethanol exposure, little is currently known about the molecular pathways that mediate these effects. Traditionally, research in this area has used a candidate gene approach and evaluated effects on a gene-by-gene basis. Recent studies, however, have begun to use unbiased approaches and genetic reference populations to evaluate the roles of genotype and epigenetic modifications in phenotypic changes following developmental ethanol exposure, similar to studies that evaluated numerous alcohol-related phenotypes in adults. Here, we present work assessing the role of genetics and chromatin-based alterations in mediating ethanol-induced apoptosis in the developing nervous system. Utilizing the expanded family of BXD recombinant inbred mice, animals were exposed to ethanol at postnatal day 7 via subcutaneous injection (5.0 g/kg in 2 doses. Tissue was collected 7 hours after the initial ethanol treatment and analyzed by activated caspase-3 immunostaining to visualize dying cells in the cerebral cortex and hippocampus. In parallel, the levels of two histone modifications relevant to apoptosis, γH2AX and H3K14 acetylation, were examined in the cerebral cortex using protein blot analysis. Activated caspase-3 staining identified marked differences in cell death across brain regions between different mouse strains. Genetic analysis of ethanol susceptibility in the hippocampus led to the identification of a quantitative trait locus on chromosome 12, which mediates, at least in part, strain-specific differential vulnerability to ethanol-induced apoptosis. Furthermore, analysis of chromatin modifications in the cerebral cortex revealed a global increase in γH2AX levels following ethanol exposure, but did not show any change in H3K14 acetylation levels. Together, these findings provide new insights into the molecular mechanisms and genetic contributions underlying ethanol

  14. The History of Patenting Genetic Material.

    Science.gov (United States)

    Sherkow, Jacob S; Greely, Henry T

    2015-01-01

    The US Supreme Court's recent decision in Association for Molecular Pathology v. Myriad Genetics, Inc. declared, for the first time, that isolated human genes cannot be patented. Many have wondered how genes were ever the subjects of patents. The answer lies in a nuanced understanding of both legal and scientific history. Since the early twentieth century, "products of nature" were not eligible to be patented unless they were "isolated and purified" from their surrounding environment. As molecular biology advanced, and the capability to isolate genes both physically and by sequence came to fruition, researchers (and patent offices) began to apply patent-law logic to genes themselves. These patents, along with other biological patents, generated substantial social and political criticism. Myriad Genetics, a company with patents on BRCA1 and BRCA2, two genes critical to assessing early-onset breast and ovarian cancer risk, and with a particularly controversial business approach, became the antagonist in an ultimately successful campaign to overturn gene patents in court. Despite Myriad's defeat, some questions concerning the rights to monopolize genetic information remain. The history leading to that defeat may be relevant to these future issues.

  15. Search of molecular ground state via genetic algorithm: Implementation on a hybrid SIMD-MIMD platform

    International Nuclear Information System (INIS)

    Pucello, N.; D'Agostino, G.; Pisacane, F.

    1997-01-01

    A genetic algorithm for the optimization of the ground-state structure of a metallic cluster has been developed and ported on a SIMD-MIMD parallel platform. The SIMD part of the parallel platform is represented by a Quadrics/APE100 consisting of 512 floating point units, while the MIMD part is formed by a cluster of workstations. The proposed algorithm is composed by a part where the genetic operators are applied to the elements of the population and a part which performs a further local relaxation and the fitness calculation via Molecular Dynamics. These parts have been implemented on the MIMD and on the SIMD part, respectively. Results have been compared to those generated by using Simulated Annealing

  16. [Use of archival formalin-fixed, paraffin-embedded (FFPE) tissue samples for molecular genetic analysis in diffuse large B-cell lymphoma (DLBCL)].

    Science.gov (United States)

    Jarošová, Marie; Kučerová, Jana; Flodr, Patrik; Mikešová, Michaela; Procházka, Vít; Papajík, Tomáš

    2014-04-01

    The currently valid molecular genetic subclassification of patients with diffuse large B-cell lymphoma (DLBCL) into three prognostic subgroups based on expression profiling has been the objective of numerous genetic studies. In routine clinical practice, however, expression profiling technology remains unavailable for the most of centers. Apart from the technology, in some cases molecular genetic laboratories have problems obtaining high-quality material, i.e. fresh tissues, for RNA isolation to determine gene expression. One possibility is to determine the gene expression from RNA obtained by isolation from formalin-fixed, paraffin-embedded (FFPE) tissue. This pilot study aimed at isolating RNA from FFPE in patients diagnosed with DLBCL and verifying the potential use of such RNA for the expression analysis of 7 selected genes. Although the study showed that it is possible to isolate RNA and determine the expression of the selected genes from archival material, the values of relative expression of some genes in the set were too variable to be used for unambiguous prognostic classification. It was confirmed that retrospective analyses of selected genes may be performed with sufficient material obtained, and that properly archived blocks may be used for molecular biology analyses even after 8 years.

  17. The conservation genetics juggling act: Integrating genetics and ecology, science and policy

    Science.gov (United States)

    Haig, Susan M.; Miller, Mark P.; Bellinger, Renee; Draheim, Hope M.; Mercer, Dacey; Mullins, Tom

    2016-01-01

    The field of conservation genetics, when properly implemented, is a constant juggling act integrating molecular genetics, ecology, and demography with applied aspects concerning managing declining species or implementing conservation laws and policies. This young field has grown substantially since the 1980’s following development of the polymerase chain reaction and now into the genomics era. Our lab has “grown up” with the field, having worked on these issues for over three decades. Our multi-disciplinary approach entails understanding the behavior and ecology of species as well as the underlying processes that contribute to genetic viability. Taking this holistic approach provides a comprehensive understanding of factors that influence species persistence and evolutionary potential while considering annual challenges that occur throughout their life cycle. As a federal lab, we are often addressing the needs of the U.S. Fish and Wildlife Service in their efforts to list, de-list or recover species. Nevertheless, there remains an overall communication gap between research geneticists and biologists who are charged with implementing their results. Therefore, we outline the need for a National Center for Small Population Biology to ameliorate this problem and provide organizations charged with making status decisions firmer ground from which to make their critical decisions. 

  18. MOLECULAR BIOLOGICAL AND RADIOLOGICAL TECHNOLOGIES IN THE COMPLEX DIAGNOSIS OF AUXILLARY PATHOLOGY

    Directory of Open Access Journals (Sweden)

    N. I. Rozhkova

    2009-01-01

    Full Text Available Introduction. A diversity of axillary pathologies was a prerequisite for the development of a new differential approach to diagnosing such conditions. There are new technologies (pre- and intraoperative radionuclide studies, molecular genetic techniques, that have shown themselves, along with classical methods (physical examination, mammography, X-ray and ultrasound studies.Materials and methods. The subject of the analysis is the results of a comprehensive examination of 502 women aged 22 to 84 years. Different groups were comprehensively examined using both X-ray, ultrasound, radionuclide, and molecular genetic (polymerase chain reaction studies.Results. The molecular genetic and cytological studies could provide the actual results in 95 and 84% of cases, respectively; but a com- prehensive clinical study and X-ray ultrasound computed tomography could yield them in marginal metastases in only 65.3%. Conclusion. The authors have proposed the optimal diagnostic algorithm for examination in the ambulatory-outpatient network and specialized institutions.

  19. Genome-Wide Approaches to Drosophila Heart Development

    Directory of Open Access Journals (Sweden)

    Manfred Frasch

    2016-05-01

    Full Text Available The development of the dorsal vessel in Drosophila is one of the first systems in which key mechanisms regulating cardiogenesis have been defined in great detail at the genetic and molecular level. Due to evolutionary conservation, these findings have also provided major inputs into studies of cardiogenesis in vertebrates. Many of the major components that control Drosophila cardiogenesis were discovered based on candidate gene approaches and their functions were defined by employing the outstanding genetic tools and molecular techniques available in this system. More recently, approaches have been taken that aim to interrogate the entire genome in order to identify novel components and describe genomic features that are pertinent to the regulation of heart development. Apart from classical forward genetic screens, the availability of the thoroughly annotated Drosophila genome sequence made new genome-wide approaches possible, which include the generation of massive numbers of RNA interference (RNAi reagents that were used in forward genetic screens, as well as studies of the transcriptomes and proteomes of the developing heart under normal and experimentally manipulated conditions. Moreover, genome-wide chromatin immunoprecipitation experiments have been performed with the aim to define the full set of genomic binding sites of the major cardiogenic transcription factors, their relevant target genes, and a more complete picture of the regulatory network that drives cardiogenesis. This review will give an overview on these genome-wide approaches to Drosophila heart development and on computational analyses of the obtained information that ultimately aim to provide a description of this process at the systems level.

  20. Genetic species identification in weatherfish and first molecular confirmation of Oriental Weatherfish Misgurnus anguillicaudatus (Cantor, 1842 in Central Europe

    Directory of Open Access Journals (Sweden)

    Belle Christina C.

    2017-01-01

    Full Text Available The Oriental Weatherfish is considered a globally invasive fish species. In Europe, several reported feral populations of Oriental Weatherfish display an overlapping distribution range with native weatherfish Misgurnus fossilis, a declining species of international conservation and aquatic management concern. Morphologically distinguishing the different weatherfish species can be difficult, as their coloration is highly variable, many species reveal high phenotypic plasticity, and morphological traits like coloration might be not obvious or might be degraded during field sampling and after preservation. Herein, we analysed suspicious weatherfish specimens from southern Germany, demonstrating the usefulness of molecular genetic species identifications in this genus. We present the first molecular genetic species record of Misgurnus anguillicaudatus in Central Europe, and confirm the range expansion of Oriental Weatherfish into the river Inn catchment in southern Germany. As accurate species identification is crucial both in the context of monitoring and conserving native endangered species, and in early detection and prevention of biological invasion, we suggest the standard use of genetic species identification if morphological traits are not obvious.

  1. Genetic analysis of post-mating reproductive barriers in hybridizing European Populus species

    OpenAIRE

    Macaya-Sanz, David; Suter, Leonie; Joseph, Jeffrey A.; Barbará, Thelma; Alba, N.; González-Martínez, S. C.; Widmer, Alex; Lexer, Christian

    2011-01-01

    Molecular genetic analyses of experimental crosses provide important information on the strength and nature of post-mating barriers to gene exchange between divergent populations, which are topics of great interest to evolutionary geneticists and breeders. Although not a trivial task in long-lived organisms such as trees, experimental interspecific recombinants can sometimes be created through controlled crosses involving natural F₁'s. Here, we used this approach to understand the genetics of...

  2. Approaches to quality management and accreditation in a genetic testing laboratory

    Science.gov (United States)

    Berwouts, Sarah; Morris, Michael A; Dequeker, Elisabeth

    2010-01-01

    Medical laboratories, and specifically genetic testing laboratories, provide vital medical services to different clients: clinicians requesting a test, patients from whom the sample was collected, public health and medical-legal instances, referral laboratories and authoritative bodies. All expect results that are accurate and obtained in an efficient and effective manner, within a suitable time frame and at acceptable cost. There are different ways of achieving the end results, but compliance with International Organization for Standardization (ISO) 15189, the international standard for the accreditation of medical laboratories, is becoming progressively accepted as the optimal approach to assuring quality in medical testing. We present recommendations and strategies designed to aid genetic testing laboratories with the implementation of a quality management system, including key aspects such as document control, external quality assessment, internal quality control, internal audit, management review, validation, as well as managing the human side of change. The focus is on pragmatic approaches to attain the levels of quality management and quality assurance required for accreditation according to ISO 15189, within the context of genetic testing. Attention is also given to implementing efficient and effective quality improvement. PMID:20720559

  3. Education and certification of genetic counselors.

    Science.gov (United States)

    Katsichti, L; Hadzipetros-Bardanis, M; Bartsocas, C S

    1999-01-01

    Genetic counseling is defined by the American Society of Human Genetics as a communication process which deals with the human problems associated with the occurrence, or risk of occurrence, of a genetic disorder in a family. The first graduate program (Master's degree) in genetic counseling started in 1969 at Sarah Lawrence College, NY, USA, while in 1979 the National Society of Genetic Counseling (NSGC) was established. Today, there are 29 programs in U.S.A. offering a Master's degree in Genetic Counseling, five programs in Canada, one in Mexico, one in England and one in S. Africa. Most of these graduate programs offer two year training, consisting of graduate courses, seminars, research and practical training. Emphasis is given in human physiology, biochemistry, clinical genetics, cytogenetics, molecular and biochemical genetics, population genetics and statistics, prenatal diagnosis, teratology and genetic counseling in relation to psychosocial and ethical issues. Certification for eligible candidates is available through the American Board of Medical Genetics (ABMG). Requirements for certification include a master's degree in human genetics, training at sites accredited by the ABMG, documentation of genetic counseling experience, evidence of continuing education and successful completion of a comprehensive ABMG certification examination. As professionals, genetic counselors should maintain expertise, should insure mechanisms for professional advancement and should always maintain the ability to approach their patients.

  4. Development and evaluation of a bioinformatics approach for designing molecular assays for viral detection.

    Directory of Open Access Journals (Sweden)

    Pierre H H Schneeberger

    Full Text Available Viruses belonging to the Flaviviridae and Bunyaviridae families show considerable genetic diversity. However, this diversity is not necessarily taken into account when developing diagnostic assays, which are often based on the pairwise alignment of a limited number of sequences. Our objective was to develop and evaluate a bioinformatics workflow addressing two recurrent issues of molecular assay design: (i the high intraspecies genetic diversity in viruses and (ii the potential for cross-reactivity with close relatives.The workflow developed herein was based on two consecutive BLASTn steps; the first was utilized to select highly conserved regions among the viral taxon of interest, and the second was employed to assess the degree of similarity of these highly-conserved regions to close relatives. Subsequently, the workflow was tested on a set of eight viral species, including various strains from the Flaviviridae and Bunyaviridae families.The genetic diversity ranges from as low as 0.45% variable sites over the complete genome of the Japanese encephalitis virus to more than 16% of variable sites on segment L of the Crimean-Congo hemorrhagic fever virus. Our proposed bioinformatics workflow allowed the selection-based on computing scores-of the best target for a diagnostic molecular assay for the eight viral species investigated.Our bioinformatics workflow allowed rapid selection of highly conserved and specific genomic fragments among the investigated viruses, while considering up to several hundred complete genomic sequences. The pertinence of this workflow will increase in parallel to the number of sequences made publicly available. We hypothesize that our workflow might be utilized to select diagnostic molecular markers for higher organisms with more complex genomes, provided the sequences are made available.

  5. Molecular biology of the lung cancer

    International Nuclear Information System (INIS)

    Panov, S.Z.

    2005-01-01

    Background. Lung cancer is one of the most common malignant diseases and leading cause of cancer death worldwide. The advances in molecular biology and genetics, including the modern microarray technology and rapid sequencing techniques, have enabled a remarkable progress into elucidating the lung cancer ethiopathogenesis. Numerous studies suggest that more than 20 different genetic and epigenetic alterations are accumulating during the pathogenesis of clinically evident pulmonary cancers as a clonal, multistep process. Thus far, the most investigated alterations are the inactivational mutations and losses of tumour suppressor genes and the overexpression of growth-promoting oncogenes. More recently, the acquired epigenetic inactivation of tumour suppressor genes by promoter hypermethylation has been recognized. The early clonal genetic abnormalities that occur in preneoplastic bronchial epithelium damaged by smoking or other carcinogenes are being identified. The molecular distinctions between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), as well as between tumors with different clinical outcomes have been described. These investigations lead to the h allmarks of lung cancer . Conclusions. It is realistic to expect that the molecular and cell culture-based investigations will lead to discoveries of new clinical applications with the potential to provide new avenues for early diagnosis, risk assessment, prevention, and most important, new more effective treatment approaches for the lung cancer patients. (author)

  6. Gene transfer technology and genetic radioisotope targeting therapy

    International Nuclear Information System (INIS)

    Wang Jiaqiong; Wang Zizheng

    2004-01-01

    With deeper cognition about mechanisms of disease at the cellular and molecular level, gene therapy has become one of the most important research fields in medical molecular biology at present. Gene transfer technology plays an important role during the course of gene therapy, and further improvement should be made about vectors carrying target gene sequences. Also, gene survey is needed during gene therapy, and gene imaging is the most effective method. The combination of gene therapy and targeted radiotherapy, that is, 'Genetic Radioisotope Targeting Therapy', will be a novel approach to tumor gene therapy

  7. Genetic diversity and structure of tea plant in Qinba area in China by three types of molecular markers.

    Science.gov (United States)

    Zhang, Yu; Zhang, Xiaojuan; Chen, Xi; Sun, Wang; Li, Jiao

    2018-01-01

    Qinba area has a long history of tea planting and is a northernmost region in China where Camellia sinensis L. is grown. In order to provide basic data for selection and optimization of molecular markers of tea plants. 118 markers, including 40 EST-SSR, 40 SRAP and 38 SCoT markers were used to evaluate the genetic diversity of 50 tea plant ( Camellia sinensis. ) samples collected from Qinb. tea germplasm, assess population structure. In this study, a total of 414 alleles were obtained using 38 pairs of SCoT primers, with an average of 10.89 alleles per primer. The percentage of polymorphic bands (PPB), polymorphism information content (PIC), resolving power (Rp), effective multiplex ratio (EMR), average band informativeness (Ib av ), and marker index (MI) were 96.14%, 0.79, 6.71, 10.47, 0.58, and 6.07 respectively. 338 alleles were amplified via 40 pairs of SRAP (8.45 per primer), with PPB, PIC, Rp, EMR, Ib av, and MI values of 89.35%, 0.77, 5.11, 7.55, 0.61, and 4.61, respectively. Furthermore, 320 alleles have been detected using 40 EST-SSR primers (8.00 per primer), with PPB, PIC, Rp, EMR, Ib av , and MI values of 94.06%, 0.85, 4.48, 7.53, 0.56, and 4.22 respectively. These results indicated that SCoT markers had higher efficiency.Mantel test was used to analyze the genetic distance matrix generated by EST-SSRs, SRAPs and SCoTs. The results showed that the correlation between the genetic distance matrix based on EST-SSR and that based on SRAP was very small ( r  = 0.01), followed by SCoT and SRAP ( r  = 0.17), then by SCoT and EST-SSR ( r  = 0.19).The 50 tea samples were divided into two sub-populations using STRUCTURE, Neighbor-joining (NJ) method and principal component analyses (PCA). The results produced by STRUCTURE were completely consistent with the PCA analysis. Furthermore, there is no obvious relationship between the results produced using sub-populational and geographical data. Among the three types of markers, SCoT markers has many

  8. Indel Group in Genomes (IGG) Molecular Genetic Markers1[OPEN

    Science.gov (United States)

    Burkart-Waco, Diana; Kuppu, Sundaram; Britt, Anne; Chetelat, Roger

    2016-01-01

    Genetic markers are essential when developing or working with genetically variable populations. Indel Group in Genomes (IGG) markers are primer pairs that amplify single-locus sequences that differ in size for two or more alleles. They are attractive for their ease of use for rapid genotyping and their codominant nature. Here, we describe a heuristic algorithm that uses a k-mer-based approach to search two or more genome sequences to locate polymorphic regions suitable for designing candidate IGG marker primers. As input to the IGG pipeline software, the user provides genome sequences and the desired amplicon sizes and size differences. Primer sequences flanking polymorphic insertions/deletions are produced as output. IGG marker files for three sets of genomes, Solanum lycopersicum/Solanum pennellii, Arabidopsis (Arabidopsis thaliana) Columbia-0/Landsberg erecta-0 accessions, and S. lycopersicum/S. pennellii/Solanum tuberosum (three-way polymorphic) are included. PMID:27436831

  9. Molecular profiling of cancer--the future of personalized cancer medicine: a primer on cancer biology and the tools necessary to bring molecular testing to the clinic.

    Science.gov (United States)

    Stricker, Thomas; Catenacci, Daniel V T; Seiwert, Tanguy Y

    2011-04-01

    Cancers arise as a result of an accumulation of genetic aberrations that are either acquired or inborn. Virtually every cancer has its unique set of molecular changes. Technologies have been developed to study cancers and derive molecular characteristics that increasingly have implications for clinical care. Indeed, the identification of key genetic aberrations (molecular drivers) may ultimately translate into dramatic benefit for patients through the development of highly targeted therapies. With the increasing availability of newer, more powerful, and cheaper technologies such as multiplex mutational screening, next generation sequencing, array-based approaches that can determine gene copy numbers, methylation, expression, and others, as well as more sophisticated interpretation of high-throughput molecular information using bioinformatics tools like signatures and predictive algorithms, cancers will routinely be characterized in the near future. This review examines the background information and technologies that clinicians and physician-scientists will need to interpret in order to develop better, personalized treatment strategies. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. [Evaluation of Molecular Genetic Diversity of Wild Apple Malus sieversii Populations from Zailiysky Alatau by Microsatellite Markers].

    Science.gov (United States)

    Omasheva, M E; Chekalin, S V; Galiakparov, N N

    2015-07-01

    The territory of Kazakhstan is part of the distribution range of Malus sieversii, which is one of the ancestors of cultivated apple tree varieties. The collected samples of Sievers apple leaves from five populations growing in the Zailiysky Alatau region served as a source not only for the creation of a bank of genomic DNA but also for determination ofthe wild apple genetic polymorphism. The seven microsatellite markers used in this study revealed 86 alleles with different frequencies, as well as the characteristic pools of rare alleles for each of the populations. Molecular genetic analysis showed a high level of genetic diversity (H(o) = 0.704; PIC = 0.752; I = 1.617). Moreover, interpopulation variability accounted only for 7.5% of total variability, confirming the genetic closeness of the populations examined. Based on phylogenetic analysis, it was demonstrated that the Bel'bulak and Almaty Reserve populations were closest to each other, while the most distant were the Ketmen and Great Almaty gorge populations, which suggests the dependence of genetic distance on the geographical.

  11. Genetic Analysis of Gravity Signal Transduction in Arabidopsis thaliana Seedlings

    Science.gov (United States)

    Boonsirichai, K.; Harrison, B.; Stanga, J.; Young, L.-S.; Neal, C.; Sabat, G.; Murthy, N.; Harms, A.; Sedbrook, J.; Masson, P.

    The primary roots of Arabidopsis thaliana seedlings respond to gravity stimulation by developing a tip curvature that results from differential cellular elongation on opposite flanks of the elongation zone. This curvature appears modulated by a lateral gradient of auxin that originates in the gravity-perceiving cells (statocytes) of the root cap through an apparent lateral repositioning of a component the auxin efflux carrier complex within these cells (Friml et al, 2002, Nature 415: 806-809). Unfortunately, little is known about the molecular mechanisms that govern early phases of gravity perception and signal transduction within the root-cap statocytes. We have used a molecular genetic approach to uncover some of these mechanisms. Mutations in the Arabidopsis ARG1 and ARL2 genes, which encode J-domain proteins, resulted in specific alterations in root and hypocotyl gravitropism, without pleiotropic phenotypes. Interestingly, ARG1 and ARL2 appear to function in the same genetic pathway. A combination of molecular genetic, biochemical and cell-biological approaches were used to demonstrate that ARG1 functions in early phases of gravity signal transduction within the root and hypocotyl statocytes, and is needed for efficient lateral auxin transport within the cap. The ARG1 protein is associated with components of the secretory and/or endosomal pathways, suggesting its role in the recycling of components of the auxin efflux carrier complex between plasma membrane and endosome (Boonsirichai et al, 2003, Plant Cell 15:2612-2625). Genetic modifiers of arg1-2 were isolated and shown to enhance the gravitropic defect of arg1-2, while resulting in little or no gravitropic defects in a wild type ARG1 background. A slight tendency for arg1-2;mar1-1 and arg1-2;mar2-1 double-mutant organs to display an opposite gravitropic response compared to wild type suggests that all three genes contribute to the interpretation of the gravity-vector information by seedling organs. The

  12. LGMD2D syndrome: the importance of clinical and molecular genetics in patient and family management. Case Report.

    Science.gov (United States)

    Al-Harbi, Khalid M; Abdallah, Atiyeh M

    2016-09-01

    We report the case of a seven-year-old female from a consanguineous Saudi family with autosomal recessive limb girdle muscular dystrophy type 2D (LGMD2D) most likely caused by a rare SGCA mutation. Histopathological and molecular investigations resulted in the discovery of a homozygous mutation (c.226 C>T (p.L76 F)) in exon 3 of SGCA in the patient. The parents and one sibling were heterozygous carriers, but the mutation was not otherwise detected in 80 ethnic controls from the same geographic area. In silico analysis revealed that the mutation resulted in a functional leucine to phenylalanine alteration that was deleterious to the protein structure. This is only the second reported case of the p.L76F mutation in LGMD, and highlights that molecular genetics analysis is essential to deliver the most appropriate management to the patient and offer the family genetic counseling.

  13. Expression profiling of a genetic animal model of depression reveals novel molecular pathways underlying depressive-like behaviours.

    Directory of Open Access Journals (Sweden)

    Ekaterini Blaveri

    2010-09-01

    Full Text Available The Flinders model is a validated genetic rat model of depression that exhibits a number of behavioural, neurochemical and pharmacological features consistent with those observed in human depression.In this study we have used genome-wide microarray expression profiling of the hippocampus and prefrontal/frontal cortex of Flinders Depression Sensitive (FSL and control Flinders Depression Resistant (FRL lines to understand molecular basis for the differences between the two lines. We profiled two independent cohorts of Flinders animals derived from the same colony six months apart, each cohort statistically powered to allow independent as well as combined analysis. Using this approach, we were able to validate using real-time-PCR a core set of gene expression differences that showed statistical significance in each of the temporally distinct cohorts, representing consistently maintained features of the model. Small but statistically significant increases were confirmed for cholinergic (chrm2, chrna7 and serotonergic receptors (Htr1a, Htr2a in FSL rats consistent with known neurochemical changes in the model. Much larger gene changes were validated in a number of novel genes as exemplified by TMEM176A, which showed 35-fold enrichment in the cortex and 30-fold enrichment in hippocampus of FRL animals relative to FSL.These data provide significant insights into the molecular differences underlying the Flinders model, and have potential relevance to broader depression research.

  14. Fusarium diversity in soil using a specific molecular approach and a cultural approach.

    Science.gov (United States)

    Edel-Hermann, Véronique; Gautheron, Nadine; Mounier, Arnaud; Steinberg, Christian

    2015-04-01

    Fusarium species are ubiquitous in soil. They cause plant and human diseases and can produce mycotoxins. Surveys of Fusarium species diversity in environmental samples usually rely on laborious culture-based methods. In the present study, we have developed a molecular method to analyze Fusarium diversity directly from soil DNA. We designed primers targeting the translation elongation factor 1-alpha (EF-1α) gene and demonstrated their specificity toward Fusarium using a large collection of fungi. We used the specific primers to construct a clone library from three contrasting soils. Sequence analysis confirmed the specificity of the assay, with 750 clones identified as Fusarium and distributed among eight species or species complexes. The Fusarium oxysporum species complex (FOSC) was the most abundant one in the three soils, followed by the Fusarium solani species complex (FSSC). We then compared our molecular approach results with those obtained by isolating Fusarium colonies on two culture media and identifying species by sequencing part of the EF-1α gene. The 750 isolates were distributed into eight species or species complexes, with the same dominant species as with the cloning method. Sequence diversity was much higher in the clone library than in the isolate collection. The molecular approach proved to be a valuable tool to assess Fusarium diversity in environmental samples. Combined with high throughput sequencing, it will allow for in-depth analysis of large numbers of samples. Published by Elsevier B.V.

  15. Intracellular, genetic or congenital immunisation--transgenic approaches to increase disease resistance of farm animals.

    Science.gov (United States)

    Müller, M; Brem, G

    1996-01-26

    Novel approaches to modify disease resistance or susceptibility in livestock are justified not only by economical reasons and with respect to animal welfare but also by recent advancements in molecular genetics. The control or elimination of infectious pathogens in farm animals is historically achieved by the use of vaccines and drugs and by quarantine safeguards and eradication. Currently, research on the improvement of disease resistance based on nucleic acid technology focuses on two main issues: additive gene transfer and the development of nucleic acid vaccines. The strategies aim at the stable or transient expression of components known to influence non-specific or specific host defence mechanisms against infectious pathogens. Thus, candidates for gene transfer experiments include all genes inducing or conferring innate and acquired immunity as well as specific disease resistance genes. Referring to the site and mode of action and the source of the effective agent the strategies are termed 'intracellular', 'genetic' and 'congenital' immunisation. The targeted disruption (deletive gene transfer) of disease susceptibility genes awaits the establishment of totipotential embryonic cell lineages in farm animals. The cytokine network regulates cellular viability, growth and differentiation in physiological and pathophysiological states. The identification of the JAK-STAT pathway used by many cytokines for their intracellular signal propagation has provided not only new target molecules for modulating the immune response but will also permit the further elucidation of host-pathogen interactions and resistance mechanisms.

  16. Modeling AEC—New Approaches to Study Rare Genetic Disorders

    Science.gov (United States)

    Koch, Peter J.; Dinella, Jason; Fete, Mary; Siegfried, Elaine C.; Koster, Maranke I.

    2015-01-01

    Ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome is a rare monogenetic disorder that is characterized by severe abnormalities in ectoderm-derived tissues, such as skin and its appendages. A major cause of morbidity among affected infants is severe and chronic skin erosions. Currently, supportive care is the only available treatment option for AEC patients. Mutations in TP63, a gene that encodes key regulators of epidermal development, are the genetic cause of AEC. However, it is currently not clear how mutations in TP63 lead to the various defects seen in the patients’ skin. In this review, we will discuss current knowledge of the AEC disease mechanism obtained by studying patient tissue and genetically engineered mouse models designed to mimic aspects of the disorder. We will then focus on new approaches to model AEC, including the use of patient cells and stem cell technology to replicate the disease in a human tissue culture model. The latter approach will advance our understanding of the disease and will allow for the development of new in vitro systems to identify drugs for the treatment of skin erosions in AEC patients. Further, the use of stem cell technology, in particular induced pluripotent stem cells (iPSC), will enable researchers to develop new therapeutic approaches to treat the disease using the patient’s own cells (autologous keratinocyte transplantation) after correction of the disease-causing mutations. PMID:24665072

  17. Recent advances in the molecular genetics of the lignin degrading fungus, phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    Covert, S.F.

    1991-01-01

    During the past several years, molecular genetics research on phanerochaete chrysosporium, a white-rot basidiomycete, has increased dramatically. It is known that families of highly homologous, clustered genes encode the lignin peroxidases. The same appears to be true with the exocellobiohydrolase genes. Functional domains and active sites have been tentatively identified from the deduced amino acid sequences of these genes. Current investigations focus on elucidating the genomic organization of gene families, the mechanism(s) of gene regulation, and the role and interaction of specific gene products in lignocellulose degradation. (author)

  18. Molecular genetic contributions to socioeconomic status and intelligence.

    Science.gov (United States)

    Marioni, Riccardo E; Davies, Gail; Hayward, Caroline; Liewald, Dave; Kerr, Shona M; Campbell, Archie; Luciano, Michelle; Smith, Blair H; Padmanabhan, Sandosh; Hocking, Lynne J; Hastie, Nicholas D; Wright, Alan F; Porteous, David J; Visscher, Peter M; Deary, Ian J

    2014-05-01

    Education, socioeconomic status, and intelligence are commonly used as predictors of health outcomes, social environment, and mortality. Education and socioeconomic status are typically viewed as environmental variables although both correlate with intelligence, which has a substantial genetic basis. Using data from 6815 unrelated subjects from the Generation Scotland study, we examined the genetic contributions to these variables and their genetic correlations. Subjects underwent genome-wide testing for common single nucleotide polymorphisms (SNPs). DNA-derived heritability estimates and genetic correlations were calculated using the 'Genome-wide Complex Trait Analyses' (GCTA) procedures. 21% of the variation in education, 18% of the variation in socioeconomic status, and 29% of the variation in general cognitive ability was explained by variation in common SNPs (SEs ~ 5%). The SNP-based genetic correlations of education and socioeconomic status with general intelligence were 0.95 (SE 0.13) and 0.26 (0.16), respectively. There are genetic contributions to intelligence and education with near-complete overlap between common additive SNP effects on these traits (genetic correlation ~ 1). Genetic influences on socioeconomic status are also associated with the genetic foundations of intelligence. The results are also compatible with substantial environmental contributions to socioeconomic status.

  19. Molecular approaches to detect and study the organisms causing ...

    African Journals Online (AJOL)

    This review will summarise the molecular approaches used to detect and analyse the genomes of Babesia bovis, B. bigemina and Anaplasma marginale which cause bovine babesiosis and anaplasmosis. These tick borne diseases are widely distributed in Africa, Asia, Australia, and Central and South America and for ...

  20. Molecular genetic diversity and genetic structure of Vietnamese indigenous pig populations

    DEFF Research Database (Denmark)

    Pham, L. D.; Do, Duy Ngoc; Nam, L. Q.

    2014-01-01

    The study characterized genetic diversity and genetic structure of five indigenous pig populations (Ha Lang, Muong Te, Mong Cai, Lung and Lung Pu), two wild pig populations (Vietnamese and Thai wild pigs) and an exotic pig breed (Yorkshire) using FAO/ISAG recommended 16 microsatellite markers...

  1. Pathway-based Analysis of the Hidden Genetic Heterogeneities in Cancers

    Directory of Open Access Journals (Sweden)

    Xiaolei Zhao

    2014-02-01

    Full Text Available Many cancers apparently showing similar phenotypes are actually distinct at the molecular level, leading to very different responses to the same treatment. It has been recently demonstrated that pathway-based approaches are robust and reliable for genetic analysis of cancers. Nevertheless, it remains unclear whether such function-based approaches are useful in deciphering molecular heterogeneities in cancers. Therefore, we aimed to test this possibility in the present study. First, we used a NCI60 dataset to validate the ability of pathways to correctly partition samples. Next, we applied the proposed method to identify the hidden subtypes in diffuse large B-cell lymphoma (DLBCL. Finally, the clinical significance of the identified subtypes was verified using survival analysis. For the NCI60 dataset, we achieved highly accurate partitions that best fit the clinical cancer phenotypes. Subsequently, for a DLBCL dataset, we identified three hidden subtypes that showed very different 10-year overall survival rates (90%, 46% and 20% and were highly significantly (P = 0.008 correlated with the clinical survival rate. This study demonstrated that the pathway-based approach is promising for unveiling genetic heterogeneities in complex human diseases.

  2. Molecular evidence and high genetic diversity of shrew-borne Seewis virus in Slovenia.

    Science.gov (United States)

    Resman, Katarina; Korva, Miša; Fajs, Luka; Zidarič, Tanja; Trilar, Tomi; Zupanc, Tatjana Avšič

    2013-10-01

    Seewis virus, the shrew-borne hantavirus from Sorex araneus, has been molecularly detected in reservoir hosts in many different central European countries and Russia. Slovenia is a known endemic country for rodent-borne hantaviruses, therefore the aim of the study was to investigate the presence of shrew-borne hantaviruses in insectivores. Viral L, S and M segment have been recovered only from tissue samples of 7 S. araneus, despite several shrew species were tested. Phylogenetic analysis showed high genetic diversity of SWSV in Slovenia, ranging from 3 to 19.4% for different viral segments. The most divergent were M segment sequences, with 19.4% nucleotide divergence among Slovenian strains. Above that, different SWSV strains from Slovenia do not group into separate geographic clusters. While three separate genetic clades were determined, two of them were simultaneously present in one location at the same time. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Applications of molecular markers in the discrimination of Panax species and Korean ginseng cultivars (Panax ginseng

    Directory of Open Access Journals (Sweden)

    Ick Hyun Jo

    2017-10-01

    Full Text Available The development of molecular markers is one of the most useful methods for molecular breeding and marker-based molecular associated selections. Even though there is less information on the reference genome, molecular markers are indispensable tools for determination of genetic variation and identification of species with high levels of accuracy and reproducibility. The demand for molecular approaches for marker-based breeding and genetic discriminations in Panax species has greatly increased in recent times and has been successfully applied for various purposes. However, owing to the existence of diverse molecular techniques and differences in their principles and applications, there should be careful consideration while selecting appropriate marker types. In this review, we outline the recent status of different molecular marker applications in ginseng research and industrial fields. In addition, we discuss the basic principles, requirements, and advantages and disadvantages of the most widely used molecular markers, including restriction fragment length polymorphism, random amplified polymorphic DNA, sequence tag sites, simple sequence repeats, and single nucleotide polymorphisms.

  4. Applications of molecular markers in the discrimination of Panax species and Korean ginseng cultivars (Panax ginseng).

    Science.gov (United States)

    Jo, Ick Hyun; Kim, Young Chang; Kim, Dong Hwi; Kim, Kee Hong; Hyun, Tae Kyung; Ryu, Hojin; Bang, Kyong Hwan

    2017-10-01

    The development of molecular markers is one of the most useful methods for molecular breeding and marker-based molecular associated selections. Even though there is less information on the reference genome, molecular markers are indispensable tools for determination of genetic variation and identification of species with high levels of accuracy and reproducibility. The demand for molecular approaches for marker-based breeding and genetic discriminations in Panax species has greatly increased in recent times and has been successfully applied for various purposes. However, owing to the existence of diverse molecular techniques and differences in their principles and applications, there should be careful consideration while selecting appropriate marker types. In this review, we outline the recent status of different molecular marker applications in ginseng research and industrial fields. In addition, we discuss the basic principles, requirements, and advantages and disadvantages of the most widely used molecular markers, including restriction fragment length polymorphism, random amplified polymorphic DNA, sequence tag sites, simple sequence repeats, and single nucleotide polymorphisms.

  5. Molecular hematology

    National Research Council Canada - National Science Library

    Provan, Drew; Gribben, John

    2010-01-01

    ... The molecular basis of hemophilia, 219 Paul LF Giangrande 4 The genetics of acute myeloid leukemias, 42 Carolyn J Owen & Jude Fitzgibbon 19 The molecular basis of von Willebrand disease, 233 Luciano Baronc...

  6. The Molecular Basis of Evolution and Disease: A Cold War Alliance.

    Science.gov (United States)

    Suárez-Díaz, Edna

    2017-03-28

    This paper extends previous arguments against the assumption that the study of variation at the molecular level was instigated with a view to solving an internal conflict between the balance and classical schools of population genetics. It does so by focusing on the intersection of basic research in protein chemistry and the molecular approach to disease with the enactment of global health campaigns during the Cold War period. The paper connects advances in research on protein structure and function as reflected in Christian Anfinsen's The molecular basis of evolution, with a political reading of Emilé Zuckerkandl and Linus Pauling's identification of molecular disease and evolution. Beyond atomic fallout, these advances constituted a rationale for the promotion of genetic surveys of human populations in the Third World, in connection with international health programs. Light is shed not only on the experimental roots of the molecular challenge but on the broader geopolitical context where the rising role of biomedicine and public health (particularly the malaria eradication campaigns) had an impact on evolutionary biology.

  7. Molecular and genetic approach to understanding the mechanisms by which fractionated X-irradiation induces leukemia in mice

    Energy Technology Data Exchange (ETDEWEB)

    Meruelo, D; Rossomando, A

    1986-01-01

    The authors laboratory's approach to try to shed light on the question of a viral etiology for radiation-induced leukemia has focused on defining, localizing and understanding the mode of action of genes involved in susceptibility to fractionated x-irradiation-(FXI) induced disease. These studies have indicated that multiple genes control the process of leukemogenesis. Not every mouse strain which shows some susceptibility to FXI-induced leukemia carries the susceptible gene at each of the multiple loci involved in the disease process. It is plausible to conclude that more than one mechanism of leukemogenesis can be triggered by FXI. Studies have focused on the mode of action of one such locus Ril-1. Several reagents have been developed to help clone and characterize this locus. Currently chromosomal ''walking'' and ''hopping'' techniques are being used in conjunction with an RFLP molecular probe which is adjacent to Ril-1. In addition a cDNA library has been prepared from a radiation-induced thymoma and substraction hybridization analysis is being used in the search for Ril-1.

  8. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice.

    Directory of Open Access Journals (Sweden)

    Sharat Kumar Pradhan

    Full Text Available Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright's F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance.

  9. Molecular Characterization and Genetic Diversity of the Macaw Palm Ex Situ Germplasm Collection Revealed by Microsatellite Markers

    Directory of Open Access Journals (Sweden)

    Fekadu G. Mengistu

    2016-10-01

    Full Text Available Macaw palm (Acrocomia aculeata is native to tropical forests in South America and highly abundant in Brazil. It is cited as a highly productive oleaginous palm tree presenting high potential for biodiesel production. The aim of this work was to characterize and study the genetic diversity of A. aculeata ex situ collections from different geographical states in Brazil using microsatellite (Simple Sequence Repeats, SSR markers. A total of 192 accessions from 10 provenances were analyzed with 10 SSR, and variations were detected in allelic diversity, polymorphism, and heterozygosity in the collections. Three major groups of accessions were formed using PCoA—principal coordinate analysis, UPGMA—unweighted pair-group method with arithmetic mean, and Tocher. The Mantel test revealed a weak correlation (r = 0.07 between genetic and geographic distances among the provenances reaffirming the result of the grouping. Reduced average heterozygosity (Ho < 50% per locus (or provenance confirmed the predominance of endogamy (or inbreeding in the germplasm collections as evidenced by positive inbreeding coefficient (F > 0 per locus (or per provenance. AMOVA—Analysis of Molecular Variance revealed higher (48.2% genetic variation within population than among populations (36.5%. SSR are useful molecular markers in characterizing A. aculeata germplasm and could facilitate the process of identifying, grouping, and selecting genotypes. Present results could be used to formulate appropriate conservation strategies in the genebank.

  10. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice.

    Science.gov (United States)

    Pradhan, Sharat Kumar; Barik, Saumya Ranjan; Sahoo, Ambika; Mohapatra, Sudipti; Nayak, Deepak Kumar; Mahender, Anumalla; Meher, Jitandriya; Anandan, Annamalai; Pandit, Elssa

    2016-01-01

    Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright's F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance.

  11. Molecular Genetics of Metal Detoxification: Prospects for Phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Ow, David W. ow@pgec.ams.usda.gov

    2000-09-01

    Unlike compounds that can be broken down, the remediation of most heavy metals and radionuclides requires physical extraction from contaminated sources. Plants can extract inorganics, but effective phytoextraction requires plants that produce high biomass, grow rapidly and possess high capacity-uptake for the inorganic substance. Either hyperaccumulator plants must be bred for increased growth and biomass or hyperaccumulation traits must be engineered into fast growing, high biomass plants. This latter approach requires fundamental knowledge of the molecular mechanisms in the uptake and storage of inorganics. Much has been learned in recent years on how plants and certain fungi chelate and transport selected heavy metals. This progress has been facilitated by the use of Schizosaccharomyces pombe as a model system. The use of a model organism for study permits rapid characterization of the molecular process. As target genes are identified in a model organism, their sequences can be modified for expression in a heterologous host or aid in the search of homologous genes in more complex organisms. Moreover, as plant nutrient uptake is intrinsically linked to the association with rhizospheric fungi, elucidating metal sequestration in this fungus permits additional opportunities for engineering rhizospheric microbes to assist in phytoextraction.

  12. Food Control and a Citizen Science Approach for Improving Teaching of Genetics in Universities

    Science.gov (United States)

    Borrell, Y. J.; Muñoz-Colmenero, A. M.; Dopico, E.; Miralles, L.; Garcia-Vazquez, E.

    2016-01-01

    A Citizen Science approach was implemented in the laboratory practices of Genetics at the University of Oviedo, related with the engaging topic of Food Control. Real samples of food products consumed by students at home ("students as samplers") were employed as teaching material in three different courses of Genetics during the academic…

  13. Sex determination of Pohnpei Micronesian kingfishers using morphological and molecular genetic techniques

    Science.gov (United States)

    Kesler, Dylan C.; Lopes, I.F.; Haig, Susan M.

    2006-01-01

    Conservation-oriented studies of Micronesian Kingfishers (Todiramphus cinnamominus) have been hindered by a lack of basic natural history information, despite the status of the Guam subspecies (T. c. cinnamominus) as one of the most endangered species in the world. We used tissue samples and morphometric measures from museum specimens and wild-captured Pohnpei Micronesian Kingfishers (T. c. reichenbachii) to develop methods for sex determination. We present a modified molecular protocol and a discriminant function that yields the probability that a particular individual is male or female. Our results revealed that females were significantly larger than males, and the discriminant function correctly predicted sex in 73% (30/41) of the individuals. The sex of 86% (18/21) of individuals was correctly assigned when a moderate reliability threshold was set. Sex determination using molecular genetic techniques was more reliable than methods based on morphology. Our results will facilitate recovery efforts for the critically endangered Guam Micronesian Kingfisher and provide a basis for sex determination in the 11 other endangered congeners in the Pacific Basin.

  14. Genetic, genomic, and molecular tools for studying the protoploid yeast, L. waltii.

    Science.gov (United States)

    Di Rienzi, Sara C; Lindstrom, Kimberly C; Lancaster, Ragina; Rolczynski, Lisa; Raghuraman, M K; Brewer, Bonita J

    2011-02-01

    Sequencing of the yeast Kluyveromyces waltii (recently renamed Lachancea waltii) provided evidence of a whole genome duplication event in the lineage leading to the well-studied Saccharomyces cerevisiae. While comparative genomic analyses of these yeasts have proven to be extremely instructive in modeling the loss or maintenance of gene duplicates, experimental tests of the ramifications following such genome alterations remain difficult. To transform L. waltii from an organism of the computational comparative genomic literature into an organism of the functional comparative genomic literature, we have developed genetic, molecular and genomic tools for working with L. waltii. In particular, we have characterized basic properties of L. waltii (growth, ploidy, molecular karyotype, mating type and the sexual cycle), developed transformation, cell cycle arrest and synchronization protocols, and have created centromeric and non-centromeric vectors as well as a genome browser for L. waltii. We hope that these tools will be used by the community to follow up on the ideas generated by sequence data and lead to a greater understanding of eukaryotic biology and genome evolution. 2010 John Wiley & Sons, Ltd.

  15. SOYBEAN - MOLECULAR ASPECTS OF BREEDING

    Directory of Open Access Journals (Sweden)

    Aleksandra Sudarić

    2012-12-01

    Full Text Available The book Soybean: Molecular Aspects of Breeding focuses recent progress in our understanding of the genetics and molecular biology of soybean. This book is divided into four parts and contains 22 chapters. Part I, Molecular Biology and Biotechnology focuses advances in molecular biology and laboratory procedures that have been developed recently to manipulate DNA. Part II, Breeding for abiotic stress covers proteomics approaches form as a powerful tool for investigating the molecular mechanisms of the plant responses to various types of abiotic stresses. Part III, Breeding for biotic stress addresses issues related to application of molecular based strategies in order to increase soybean resistance to various biotic factors. Part IV, Recent Technology reviews recent technologies into the realm of soybean monitoring, processing and product use. While the information accumulated in this book is of primary interest for plant breeders, valuable insights are also offered to agronomists, molecular biologists, physiologists, plant pathologists, food scientists and students. The book is a result of efforts made by many experts from different countries (USA, Japan, Croatia, Serbia, China, Canada, Malawi, Iran, Hong Kong, Brasil, Mexico.

  16. Moleculargenetic variance of RH blood group system within human population of Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Lejla Lasić

    2013-02-01

    Full Text Available There are two major theories for inheritance of Rh blood group system: Fisher - Race theory and Wiener theory. Aim of this study was identifying frequency of RHDCE alleles in Bosnian - Herzegovinian population and introduction of this method in screening for Rh phenotype in B&H since this type of analysis was not used for blood typing in B&H before. Rh blood group was typed by Polymerase Chain Reaction, using the protocols and primers previously established by other authors, then carrying out electrophoresis in 2-3% agarose gel. Percentage of Rh positive individuals in our sample is 84.48%, while the percentage of Rh negative individuals is 15.52%. Inter-rater agreement statistic showed perfect agreement (K=1 between the results of Rh blood system detection based on serological and molecular-genetics methods. In conclusion, molecular - genetic methods are suitable for prenatal genotyping and specific cases while standard serological method is suitable for high-throughput of samples.

  17. The use of genetic transformation in the study of ovarian-specific gene expression

    International Nuclear Information System (INIS)

    Manzi, A.; Andone, S.; Rotoli, D.; Capua, M.R.; Gargiulo, G.; Graziani, F.; Malva, C.

    1998-01-01

    We are using genetic and molecular approaches to understand the mechanisms controlling the establishment of the cellular specificity of expression during oogenesis. Female-sterile mutations have been isolated and the molecular analysis is revealing interesting cell-cell interaction systems that work not only during oogenesis but also at other developmental stages. We will review in this paper our most recent studies on genes involved in ovarian development. (author)

  18. Molecular markers for analyses of intraspecific genetic diversity in the Asian Tiger mosquito, Aedes albopictus.

    Science.gov (United States)

    Manni, Mosè; Gomulski, Ludvik M; Aketarawong, Nidchaya; Tait, Gabriella; Scolari, Francesca; Somboon, Pradya; Guglielmino, Carmela R; Malacrida, Anna R; Gasperi, Giuliano

    2015-03-28

    The dramatic worldwide expansion of Aedes albopictus (the Asian tiger mosquito) and its vector competence for numerous arboviruses represent a growing threat to public health security. Molecular markers are crucially needed for tracking the rapid spread of this mosquito and to obtain a deeper knowledge of population structure. This is a fundamental requirement for the development of strict monitoring protocols and for the improvement of sustainable control measures. Wild population samples from putative source areas and from newly colonised regions were analysed for variability at the ribosomal DNA internal transcribed spacer 2 (ITS2). Moreover, a new set of 23 microsatellite markers (SSR) was developed. Sixteen of these SSRs were tested in an ancestral (Thailand) and two adventive Italian populations. Seventy-six ITS2 sequences representing 52 unique haplotypes were identified, and AMOVA indicated that most of their variation occurred within individuals (74.36%), while only about 8% was detected among populations. Spatial analyses of molecular variance revealed that haplotype genetic similarity was not related to the geographic proximity of populations and the haplotype phylogeny clearly indicated that highly related sequences were distributed across populations from different geographical regions. The SSR markers displayed a high level of polymorphism both in the ancestral and in adventive populations, and F ST estimates suggested the absence of great differentiation. The ancestral nature of the Thai population was corroborated by its higher level of variability. The two types of genetic markers here implemented revealed the distribution of genetic diversity within and between populations and provide clues on the dispersion dynamics of this species. It appears that the diffusion of this mosquito does not conform to a progressive expansion from the native Asian source area, but to a relatively recent and chaotic propagule distribution mediated by human activities

  19. Genetic Complexity of Episodic Memory: A Twin Approach to Studies of Aging

    Science.gov (United States)

    Kremen, William S.; Spoon, Kelly M.; Jacobson, Kristen C.; Vasilopoulos, Terrie; McCaffery, Jeanne M.; Panizzon, Matthew S.; Franz, Carol E.; Vuoksimaa, Eero; Xian, Hong; Rana, Brinda K.; Toomey, Rosemary; McKenzie, Ruth; Lyons, Michael J.

    2016-01-01

    Episodic memory change is a central issue in cognitive aging, and understanding that process will require elucidation of its genetic underpinnings. A key limiting factor in genetically informed research on memory has been lack of attention to genetic and phenotypic complexity, as if “memory is memory” and all well-validated assessments are essentially equivalent. Here we applied multivariate twin models to data from late-middle-aged participants in the Vietnam Era Twin Study of Aging to examine the genetic architecture of 6 measures from 3 standard neuropsychological tests: the California Verbal Learning Test-2, and Wechsler Memory Scale-III Logical Memory (LM) and Visual Reproductions (VR). An advantage of the twin method is that it can estimate the extent to which latent genetic influences are shared or independent across different measures before knowing which specific genes are involved. The best-fitting model was a higher order common pathways model with a heritable higher order general episodic memory factor and three test-specific subfactors. More importantly, substantial genetic variance was accounted for by genetic influences that were specific to the latent LM and VR subfactors (28% and 30%, respectively) and independent of the general factor. Such unique genetic influences could partially account for replication failures. Moreover, if different genes influence different memory phenotypes, they could well have different age-related trajectories. This approach represents an important step toward providing critical information for all types of genetically informative studies of aging and memory. PMID:24956007

  20. An Airborne Conflict Resolution Approach Using a Genetic Algorithm

    Science.gov (United States)

    Mondoloni, Stephane; Conway, Sheila

    2001-01-01

    An airborne conflict resolution approach is presented that is capable of providing flight plans forecast to be conflict-free with both area and traffic hazards. This approach is capable of meeting constraints on the flight plan such as required times of arrival (RTA) at a fix. The conflict resolution algorithm is based upon a genetic algorithm, and can thus seek conflict-free flight plans meeting broader flight planning objectives such as minimum time, fuel or total cost. The method has been applied to conflicts occurring 6 to 25 minutes in the future in climb, cruise and descent phases of flight. The conflict resolution approach separates the detection, trajectory generation and flight rules function from the resolution algorithm. The method is capable of supporting pilot-constructed resolutions, cooperative and non-cooperative maneuvers, and also providing conflict resolution on trajectories forecast by an onboard FMC.

  1. Molecular causes and consequences of genetic instability with respect to the FA/BRCA Caretaker Pathway

    OpenAIRE

    Neveling, Kornelia

    2012-01-01

    In the context of this thesis, I investigated the molecular causes and functional consequences of genetic instability using a human inherited disease, Fanconi anemia. FA patients display a highly variable clinical phenotype, including congenital abnormalities, progressive bone marrow failure and a high cancer risk. The FA cellular phenotype is characterized by spontaneous and inducible chromosomal instability, and a typical S/G2 phase arrest after exposure to DNA-damaging agents. So far, 13 g...

  2. Molecular genetics of experimental hypertension and the metabolic syndrome: from gene pathways to new therapies

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Kurtz, T. W.

    2007-01-01

    Roč. 49, č. 5 (2007), s. 941-952 ISSN 0194-911X R&D Projects: GA MZd(CZ) NR8545; GA ČR(CZ) GA301/04/0390; GA ČR(CZ) GA301/06/0028 Grant - others:The Howard Hughes Institute(US) HHMI55005624 Institutional research plan: CEZ:AV0Z50110509 Keywords : SHR * CD36 * metabolic syndrome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.194, year: 2007

  3. Neuro-genetic hybrid approach for the solution of non-convex economic dispatch problem

    International Nuclear Information System (INIS)

    Malik, T.N.; Asar, A.U.

    2009-01-01

    ED (Economic Dispatch) is non-convex constrained optimization problem, and is used for both on line and offline studies in power system operation. Conventionally, it is solved as convex problem using optimization techniques by approximating generator input/output characteristic. Curves of monotonically increasing nature thus resulting in an inaccurate dispatch. The GA (Genetic Algorithm) has been used for the solution of this problem owing to its inherent ability to address the convex and non-convex problems equally. This approach brings the solution to the global minimum region of search space in a short time and then takes longer time to converge to near optimal results. GA based hybrid approaches are used to fine tune the near optimal results produced by GA. This paper proposes NGH (Neuro Genetic Hybrid) approach to solve the economic dispatch with valve point effect. The proposed approach combines the GA with the ANN (Artificial Neural Network) using SI (Swarm Intelligence) learning rule. The GA acts as a global optimizer and the neural network fine tunes the GA results to the desired targets. Three machines standard test system has been tested for validation of the approach. Comparing the results with GA and NGH model based on back-propagation learning, the proposed approach gives contrast improvements showing the promise of the approach. (author)

  4. Measurement Frontiers in Molecular Biology

    Science.gov (United States)

    Laderman, Stephen

    2009-03-01

    Developments of molecular measurements and manipulations have long enabled forefront research in evolution, genetics, biological development and its dysfunction, and the impact of external factors on the behavior of cells. Measurement remains at the heart of exciting and challenging basic and applied problems in molecular and cell biology. Methods to precisely determine the identity and abundance of particular molecules amongst a complex mixture of similar and dissimilar types require the successful design and integration of multiple steps involving biochemical manipulations, separations, physical probing, and data processing. Accordingly, today's most powerful methods for characterizing life at the molecular level depend on coordinated advances in applied physics, biochemistry, chemistry, computer science, and engineering. This is well illustrated by recent approaches to the measurement of DNA, RNA, proteins, and intact cells. Such successes underlie well founded visions of how molecular biology can further assist in answering compelling scientific questions and in enabling the development of remarkable advances in human health. These visions, in turn, are motivating the interdisciplinary creation of even more comprehensive measurements. As a further and closely related consequence, they are motivating innovations in the conceptual and practical approaches to organizing and visualizing large, complex sets of interrelated experimental results and distilling from those data compelling, informative conclusions.

  5. Analysis of stock investment selection based on CAPM using covariance and genetic algorithm approach

    Science.gov (United States)

    Sukono; Susanti, D.; Najmia, M.; Lesmana, E.; Napitupulu, H.; Supian, S.; Putra, A. S.

    2018-03-01

    Investment is one of the economic growth factors of countries, especially in Indonesia. Stocks is a form of investment, which is liquid. In determining the stock investment decisions which need to be considered by investors is to choose stocks that can generate maximum returns with a minimum risk level. Therefore, we need to know how to allocate the capital which may give the optimal benefit. This study discusses the issue of stock investment based on CAPM which is estimated using covariance and Genetic Algorithm approach. It is assumed that the stocks analyzed follow the CAPM model. To do the estimation of beta parameter on CAPM equation is done by two approach, first is to be represented by covariance approach, and second with genetic algorithm optimization. As a numerical illustration, in this paper analyzed ten stocks traded on the capital market in Indonesia. The results of the analysis show that estimation of beta parameters using covariance and genetic algorithm approach, give the same decision, that is, six underpriced stocks with buying decision, and four overpriced stocks with a sales decision. Based on the analysis, it can be concluded that the results can be used as a consideration for investors buying six under-priced stocks, and selling four overpriced stocks.

  6. The human pain genetics database: an interview with Luda Diatchenko.

    Science.gov (United States)

    Diatchenko, Luda

    2018-06-05

    Luda Diatchenko, MD, PhD is a Canada Excellence Research Chair in Human Pain Genetics, Professor, Faculty of Medicine, Department of Anesthesia and Faculty of Dentistry at McGill University, Alan Edwards Centre for Research on Pain. She earned her MD and PhD in the field of molecular biology from the Russian State Medical University. She started her career in industry, she was a Leader of the RNA Expression Group at Clontech, Inc., and subsequently, Director of Gene Discovery at Attagene, Inc. During this time, she was actively involved in the development of several widely used and widely cited molecular tools for the analysis of gene expression and regulation. Her academic career started at 2000 in the Center for Neurosensory Disorders at University of North Carolina. Her research since then is focused on determining the cellular and molecular biological mechanisms by which functional genetic variations impact human pain perception and risk of development of chronic pain conditions, enabling new approaches to identify new drug targets, treatment responses to analgesics and diagnostic. Multiple collaborative activities allow the Diatchenko group to take basic genetic findings all the way from human association studies, through molecular and cellular mechanisms to animal models and ultimately to human clinical trials. In total, she has authored or co-authored over 120 peer-reviewed research papers in journals, ten book chapters and edited a book in human pain genetics. She is a member and an active officer of several national and international scientific societies, including the International Association for the Study of Pain and the American Pain Society.

  7. Molecular detection and genetic diversity of Babesia gibsoni in dogs in Bangladesh.

    Science.gov (United States)

    Terao, Masashi; Akter, Shirin; Yasin, Md Golam; Nakao, Ryo; Kato, Hirotomo; Alam, Mohammad Zahangir; Katakura, Ken

    2015-04-01

    Babesia gibsoni is a tick-borne hemoprotozoan parasite of dogs that often causes fever and hemolytic illness. Detection of B. gibsoni has been predominantly reported in Asian countries, including Japan, Korea, Taiwan, Malaysia, Bangladesh and India. The present study shows the first molecular characterization of B. gibsoni detected from dogs in Bangladesh. Blood samples were collected on FTA® Elute cards from 50 stray dogs in Mymensingh District in Bangladesh. DNA eluted from the cards was subjected to nested PCR for the 18S rRNA gene of Babesia species. Approximately 800bp PCR products were detected in 15 of 50 dogs (30%). Based on restriction fragment length polymorphism (RFLP) and direct sequencing of the PCR products, all parasite isolates were identified as B. gibsoni. Furthermore, the BgTRAP (B. gibsoni thrombospondin-related adhesive protein) gene fragments were detected in 13 of 15 18S rRNA gene PCR positive blood samples. Phylogenetic analysis of the BgTRAP gene revealed that B. gibsoni parasites in Bangladesh formed a cluster, which was genetically different from other Asian B. gibsoni isolates. In addition, tandem repeat analysis of the BgTRAP gene clearly showed considerable genetic variation among Bangladeshi isolates. These results suggested that B. gibsoni parasites in a different genetic clade are endemic in dogs in Bangladesh. Further studies are required to elucidate the origin, distribution, vector and pathogenesis of B. gibsoni parasites circulating in dogs in Bangladesh. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Genetic Disruption of the Core Circadian Clock Impairs Hippocampus-Dependent Memory

    Science.gov (United States)

    Wardlaw, Sarah M.; Phan, Trongha X.; Saraf, Amit; Chen, Xuanmao; Storm, Daniel R.

    2014-01-01

    Perturbing the circadian system by electrolytically lesioning the suprachiasmatic nucleus (SCN) or varying the environmental light:dark schedule impairs memory, suggesting that memory depends on the circadian system. We used a genetic approach to evaluate the role of the molecular clock in memory. Bmal1[superscript -/-] mice, which are arrhythmic…

  9. The influence of small dose radiation on some molecular and genetic parameters of peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Mel'nov, S.B.; Morozik, P.M.

    2001-01-01

    About 70% of Chernobyl radionuclide fallout was spread on the territory of Belarus. As a result, 2,5 million people now are living in contaminated areas under the pressure of the additional influence of low dose radiation. The aim of the current research is to definite the effects of this factor on some molecular and genetic characteristics of the children - prominent residents of the contaminated areas

  10. Toward the identification of molecular cogs.

    Science.gov (United States)

    Dziubiński, Maciej; Lesyng, Bogdan

    2016-04-05

    Computer simulations of molecular systems allow determination of microscopic interactions between individual atoms or groups of atoms, as well as studies of intramolecular motions. Nevertheless, description of structural transformations at the mezoscopic level and identification of causal relations associated with these transformations is very difficult. Structural and functional properties are related to free energy changes. Therefore, to better understand structural and functional properties of molecular systems, it is required to deepen our knowledge of free energy contributions arising from molecular subsystems in the course of structural transformations. The method presented in this work quantifies the energetic contribution of each pair of atoms to the total free energy change along a given collective variable. Next, with the help of a genetic clustering algorithm, the method proposes a division of the system into two groups of atoms referred to as molecular cogs. Atoms which cooperate to push the system forward along a collective variable are referred to as forward cogs, and those which work in the opposite direction as reverse cogs. The procedure was tested on several small molecules for which the genetic clustering algorithm successfully found optimal partitionings into molecular cogs. The primary result of the method is a plot depicting the energetic contributions of the identified molecular cogs to the total Potential of Mean Force (PMF) change. Case-studies presented in this work should help better understand the implications of our approach, and were intended to pave the way to a future, publicly available implementation. © 2015 Wiley Periodicals, Inc.

  11. PAX6 aniridia syndrome: clinics, genetics, and therapeutics.

    Science.gov (United States)

    Lim, Hyun Taek; Kim, Dae Hee; Kim, Hyuna

    2017-09-01

    Aniridia is a rare and panocular disorder affecting most of the ocular structures which may have significant impact on vision. The purpose of this review is to describe the clinical features, genetics, and therapeutic options for this disease and to provide an update of current knowledge and latest research findings. Aside from the ocular features, a variety of associated systemic abnormalities, including hormonal, metabolic, gastrointestinal, genitourinary, and neurologic pathologies have been reported in children with aniridia. Although mutations in PAX6 are a major cause of aniridia, genetic defects in nearby genes, such as TRIM44 or ELP4, have also been reported to cause aniridia. Recent improvement in genetic testing technique will help more rapid and precise diagnosis for aniridia. A promising therapeutic approach called nonsense suppression therapy has been introduced and successfully used in an animal model. Aniridia is a challenging disease. The progressive nature of this condition and its potential complications require continuous and life-long ophthalmologic care. Genetic diagnosis for aniridia is important for establishing definitive molecular characterization as well as identifying individuals at high risk for Wilms tumor. Recent advancement in understanding the genetic pathogenesis of this disease offers promise for the approaches to treatment.

  12. [Establishing Individualized Medicine for Intractable Cancer Based on Clinical Molecular Pathogenesis].

    Science.gov (United States)

    Jono, Hirofumi

    2018-01-01

     Although cancer treatment has dramatically improved with the development of molecular-targeted agents over the past decade, identifying eligible patients and predicting the therapeutic effects remain a major challenge. Because intratumoral heterogeneity represents genetic and molecular differences affecting patients' responses to these therapeutic agents, establishing individualized medicine based on precise molecular pathological analysis of tumors is urgently required. This review focuses on the pathogenesis of oral squamous cell carcinoma (OSCC), a common head and neck neoplasm, and introduces our approaches toward developing novel anticancer therapies particularly based on clinical molecular pathogenesis. Deeper understanding of more precise molecular pathogenesis in clinical settings may open up novel strategies for establishing individualized medicine for OSCC.

  13. Reclassification of Mixed Oligoastrocytic Tumors Using a Genetically Integrated Diagnostic Approach

    Directory of Open Access Journals (Sweden)

    Seong-Ik Kim

    2018-01-01

    Full Text Available Background Mixed gliomas, such as oligoastrocytomas (OA, anaplastic oligoastrocytomas, and glioblastomas (GBMs with an oligodendroglial component (GBMO are defined as tumors composed of a mixture of two distinct neoplastic cell types, astrocytic and oligodendroglial. Recently, mutations ATRX and TP53, and codeletion of 1p/19q are shown to be genetic hallmarks of astrocytic and oligodendroglial tumors, respectively. Subsequent molecular analyses of mixed gliomas preferred the reclassification to either oligodendroglioma or astrocytoma. This study was designed to apply genetically integrated diagnostic criteria to mixed gliomas and determine usefulness and prognostic value of new classification in Korean patients. Methods Fifty-eight cases of mixed OAs and GBMOs were retrieved from the pathology archives of Seoul National University Hospital from 2004 to 2015. Reclassification was performed according to genetic and immunohistochemical properties. Clinicopathological characteristics of each subgroup were evaluated. Overall survival was assessed and compared between subgroups. Results We could reclassify all mixed OAs and GBMOs into either astrocytic or oligodendroglial tumors. Notably, 29 GBMOs could be reclassified into 11 cases of GBM, IDH-mutant, 16 cases of GBM, IDH-wildtype, and two cases of anaplastic oligodendroglioma, IDH mutant. Overall survival was significantly different among these new groups (p<.001. Overall survival and progression-free survival were statistically better in gliomas with IDH mutation, ATRX mutation, no microscopic necrosis, and young patient age (cut off, 45 years old. Conclusions Our results strongly suggest that a genetically integrated diagnosis of glioma better reflects prognosis than former morphology-based methods.

  14. A fuzzy genetic approach for network reconfiguration to enhance voltage stability in radial distribution systems

    International Nuclear Information System (INIS)

    Sahoo, N.C.; Prasad, K.

    2006-01-01

    This paper presents a fuzzy genetic approach for reconfiguration of radial distribution systems (RDS) so as to maximize the voltage stability of the network for a specific set of loads. The network reconfiguration involves a mechanism for selection of the best set of branches to be opened, one from each loop, such that the reconfigured RDS possesses desired performance characteristics. This discrete solution space is better handled by the proposed scheme, which maximizes a suitable optimizing function (computed using two different approaches). In the first approach, this function is chosen as the average of a voltage stability index of all the buses in the RDS, while in the second approach, the complete RDS is reduced to a two bus equivalent system and the optimizing function is the voltage stability index of this reduced two bus system. The fuzzy genetic algorithm uses a suitable coding and decoding scheme for maintaining the radial nature of the network at every stage of genetic evolution, and it also uses a fuzzy rule based mutation controller for efficient search of the solution space. This method, tested on 69 bus and 33 bus RDSs, shows promising results for the both approaches. It is also observed that the network losses are reduced when the voltage stability is enhanced by the network reconfiguration

  15. Zebrafish Functional Genetics Approach to the Pathogenesis of Well-Differentiated Liposarcoma

    Science.gov (United States)

    2015-12-01

    Roderick JE, LaBelle JL, Bird G, Mathieu R, Bodaar K, Colon D, Pyati U, Stevenson KE, Qi J, Harris M, Silverman LB, Sallan SE, Bradner JL, Neuberg DS...pathogenesis of high-risk T-cell acute lymphoblastic leukemia. Our approach combines human cancer genomics with functional genetics, biochemistry and

  16. Biotechnological approaches for the genetic improvement of Jatropha curcas L.: A biodiesel plant

    KAUST Repository

    Kumar, Nitish

    2015-08-14

    Ever increasing demand for energy sources and reduction of non-renewable fossil fuel reserves have lead to exploration of alternative and renewable energy sources. Due to wide distribution, agronomic suitability, and desirable oil properties, J. curcas has been identified as a renewable and alternative energy source of biodiesel. Large scale commercial cultivation of this crop would not only be environmentally friendly and be worthwhile in carbon sequestration but also in decreasing the energy supply pressures. Wide adaptation across geographic regions, short gestation period compared to most tree species, rapid growth, hardiness, optimum plant size, and easy propagation in combination make this species suitable for large scale cultivation on barren lands. The limited information of the genetics and inheritance of desirable traits, unpredictable and low yields, the limited diversity and susceptibility to diseases and insects are however, key limitations in fruitful farming of J. curcas. In this review, an effort is made to project the current biotechnology and molecular biology tools employed in the direction of, evaluating the genetic diversity and phylogeny revelation of Jatropha spp., identification of genetic markers for desirable traits, development of efficient micropropagation and regeneration system, and genetic transformation methods for J. curcas. © 2015 Elsevier B.V.

  17. Simulating a base population in honey bee for molecular genetic studies.

    Science.gov (United States)

    Gupta, Pooja; Conrad, Tim; Spötter, Andreas; Reinsch, Norbert; Bienefeld, Kaspar

    2012-06-27

    Over the past years, reports have indicated that honey bee populations are declining and that infestation by an ecto-parasitic mite (Varroa destructor) is one of the main causes. Selective breeding of resistant bees can help to prevent losses due to the parasite, but it requires that a robust breeding program and genetic evaluation are implemented. Genomic selection has emerged as an important tool in animal breeding programs and simulation studies have shown that it yields more accurate breeding value estimates, higher genetic gain and low rates of inbreeding. Since genomic selection relies on marker data, simulations conducted on a genomic dataset are a pre-requisite before selection can be implemented. Although genomic datasets have been simulated in other species undergoing genetic evaluation, simulation of a genomic dataset specific to the honey bee is required since this species has a distinct genetic and reproductive biology. Our software program was aimed at constructing a base population by simulating a random mating honey bee population. A forward-time population simulation approach was applied since it allows modeling of genetic characteristics and reproductive behavior specific to the honey bee. Our software program yielded a genomic dataset for a base population in linkage disequilibrium. In addition, information was obtained on (1) the position of markers on each chromosome, (2) allele frequency, (3) χ(2) statistics for Hardy-Weinberg equilibrium, (4) a sorted list of markers with a minor allele frequency less than or equal to the input value, (5) average r(2) values of linkage disequilibrium between all simulated marker loci pair for all generations and (6) average r2 value of linkage disequilibrium in the last generation for selected markers with the highest minor allele frequency. We developed a software program that takes into account the genetic and reproductive biology specific to the honey bee and that can be used to constitute a genomic

  18. [The use of RAPD and ITE molecular markers to study genetical structure of the Crimean population of Triticum boeoticum Boiss].

    Science.gov (United States)

    Mallabaeva, D Sh; Ignatov, A N; Sheĭko, I A; Isikov, V P; Geliuta, V P; Boĭko, N G; Seriapin, A A; Dorokhov, D B

    2007-01-01

    Wild wheat Triticum boeoticum Boiss. is the rare species are included in the Red Book of Ukraine. This species are reducing the magnitude of population and the area of distribution under anthropogenic activity. We studied genetic structure of two populations of T. boeoticum, located on Sapun Mountain and in Baidar Valley in Crimea. According RAPD and ITE molecular analysis we have estimated that the population of T. boeoticum on Sapun Mountain is genetically more impoverished than a population from the Baidar Valley. For preservation of maximal natural genetic polymorphism of the rare species it is recommended to direct efforts to preservations of a population of T. boeoticum from the Baidar Valley.

  19. Molecular phylogeny of mangroves IV. nature and extent of intra-specific genetic variation and species diversity in mangroves

    International Nuclear Information System (INIS)

    Parida, A.; Parani, M.; Lakshmi, M.; Elango, S.; Ram, N.; Anuratha, C.S.

    1998-01-01

    Mangroves occupy estuarine ecosystems in the tropical regions of the world. Despite their highly productive nature and the protective roles they play in the coastal region, the ecosystem as a whole is under severe threat due to various climatic and anthropogenic factors. Therefore, the need for conservation of mangroves is widely emphasised. However, information on existing genetic diversity based on which a strategy for genetic conservation is to be drawn is not available for mangroves. This is primarily because conventional genetic analysis is difficult in these species for various reasons. Therefore, as an aid to our on-going conservation programme, efforts were made to assess the nature and extent of diversity in a number of mangrove species of the Indian coast using molecular markers. The nature and extent of intra-population diversity in sixteen mangrove species and detailed analysis of inter-population genetic polymorphism in four species, Acanthus ilicifolius, Excoecaria agallocha, Avicennia spp and Rhizophora (species and hybrid), is reported in the present communication. (author)

  20. [Cytogenetic and molecular genetic diagnosis of a neonate with partial 13q trisomy and partial 5p monosomy].

    Science.gov (United States)

    Xiao, Wenjun; Gao, Zhenkui; Meng, Qian; Zhang, Man

    2014-12-01

    To diagnose a neonate presenting with multiple dysmorphic features, Cri-du-chat signs and hypoglycemia and to correlate the phenotype with the genotype. The patient was diagnosed with conventional cytogenetics and real-time fluorescence quantitative PCR (QF-PCR). The phenotype was then correlated with the genotype through a review of literature. The neonate was diagnosed with a partial 13q trisomy (q12 → qter) and partial 5p monosomy (p15 →pter). A rare diagnosis has been established with combined cytogenetic and molecular genetic techniques. QF-PCR has a broad application in genetic diagnosis.

  1. Molecular Findings Among Patients Referred for Clinical Whole-Exome Sequencing

    Science.gov (United States)

    Yang, Yaping; Muzny, Donna M.; Xia, Fan; Niu, Zhiyv; Person, Richard; Ding, Yan; Ward, Patricia; Braxton, Alicia; Wang, Min; Buhay, Christian; Veeraraghavan, Narayanan; Hawes, Alicia; Chiang, Theodore; Leduc, Magalie; Beuten, Joke; Zhang, Jing; He, Weimin; Scull, Jennifer; Willis, Alecia; Landsverk, Megan; Craigen, William J.; Bekheirnia, Mir Reza; Stray-Pedersen, Asbjorg; Liu, Pengfei; Wen, Shu; Alcaraz, Wendy; Cui, Hong; Walkiewicz, Magdalena; Reid, Jeffrey; Bainbridge, Matthew; Patel, Ankita; Boerwinkle, Eric; Beaudet, Arthur L.; Lupski, James R.; Plon, Sharon E.; Gibbs, Richard A.; Eng, Christine M.

    2015-01-01

    ), 65 (12.3%) X-linked, and 1 (0.2%) mitochondrial. Of 504 patients with a molecular diagnosis, 23 (4.6%) had blended phenotypes resulting from 2 single gene defects. About 30% of the positive cases harbored mutations in disease genes reported since 2011. There were 95 medically actionable incidental findings in genes unrelated to the phenotype but with immediate implications for management in 92 patients (4.6%), including 59 patients (3%) with mutations in genes recommended for reporting by the American College of Medical Genetics and Genomics. CONCLUSIONS AND RELEVANCE Whole-exome sequencing provided a potential molecular diagnosis for 25% of a large cohort of patients referred for evaluation of suspected genetic conditions, including detection of rare genetic events and new mutations contributing to disease. The yield of whole-exome sequencing may offer advantages over traditional molecular diagnostic approaches in certain patients. PMID:25326635

  2. Current status of the genetics and molecular taxonomy of Echinococcus species.

    Science.gov (United States)

    McManus, D P

    2013-11-01

    The taxonomy of Echinococcus has long been controversial. Based mainly on differences in morphology and host-parasite specificity characteristics, 16 species and 13 subspecies were originally described. Subsequently, most of these taxa were regarded as synonyms for Echinococcus granulosus and only 4 valid species were recognised: E. granulosus; E. multilocularis; E. oligarthrus and E. vogeli. But, over the past 50 years, laboratory and field observations have revealed considerable phenotypic variability between isolates of Echinococcus, particularly those of E. granulosus, which include differences in: morphology in both larval and adult stages, development in vitro and in vivo, host infectivity and specificity, chemical composition, metabolism, proteins and enzymes, pathogenicity and antigenicity. The application of molecular tools has revealed differences in nucleic acid sequences that reflect this phenotypic variation and the genetic and phenotypic characteristics complement the previous observations made by the descriptive parasitologists many years ago. The fact that some of these variants or strains are poorly or not infective to humans has resulted in a reappraisal of the public health significance of Echinococcus in areas where such variants occur. A revised taxonomy for species in the Echinococcus genus has been proposed that is generally accepted, and is based on the new molecular data and the biological and epidemiological characteristics of host-adapted species and strains.

  3. Non-Genetic Engineering Approaches for Isolating and Generating Novel Yeasts for Industrial Applications

    Science.gov (United States)

    Chambers, P. J.; Bellon, J. R.; Schmidt, S. A.; Varela, C.; Pretorius, I. S.

    Generating novel yeast strains for industrial applications should be quite straightforward; after all, research into the genetics, biochemistry and physiology of Baker's Yeast, Saccharomyces cerevisiae, has paved the way for many advances in the modern biological sciences. We probably know more about this humble eukaryote than any other, and it is the most tractable of organisms for manipulation using modern genetic engineering approaches. In many countries, however, there are restrictions on the use of genetically-modified organisms (GMOs), particularly in foods and beverages, and the level of consumer acceptance of GMOs is, at best, variable. Thus, many researchers working with industrial yeasts use genetic engineering techniques primarily as research tools, and strain development continues to rely on non-GM technologies. This chapter explores the non-GM tools and strategies available to such researchers.

  4. Basic Genetics: A Human Approach.

    Science.gov (United States)

    Biological Sciences Curriculum Study, Colorado Springs, CO. Center for Education in Human and Medical Genetics.

    This document (which has the form of a magazine) provides a variety of articles, stories, editorials, letters, interviews, and other types of magazine features (such as book reviews) which focus on human genetics. In addition to providing information about the principles of genetics, nearly all of the sections in the "magazine" address moral,…

  5. Multiobjective genetic algorithm approaches to project scheduling under risk

    OpenAIRE

    Kılıç, Murat; Kilic, Murat

    2003-01-01

    In this thesis, project scheduling under risk is chosen as the topic of research. Project scheduling under risk is defined as a biobjective decision problem and is formulated as a 0-1 integer mathematical programming model. In this biobjective formulation, one of the objectives is taken as the expected makespan minimization and the other is taken as the expected cost minimization. As the solution approach to this biobjective formulation genetic algorithm (GA) is chosen. After carefully invest...

  6. Genetics of human hydrocephalus

    Science.gov (United States)

    Williams, Michael A.; Rigamonti, Daniele

    2006-01-01

    Human hydrocephalus is a common medical condition that is characterized by abnormalities in the flow or resorption of cerebrospinal fluid (CSF), resulting in ventricular dilatation. Human hydrocephalus can be classified into two clinical forms, congenital and acquired. Hydrocephalus is one of the complex and multifactorial neurological disorders. A growing body of evidence indicates that genetic factors play a major role in the pathogenesis of hydrocephalus. An understanding of the genetic components and mechanism of this complex disorder may offer us significant insights into the molecular etiology of impaired brain development and an accumulation of the cerebrospinal fluid in cerebral compartments during the pathogenesis of hydrocephalus. Genetic studies in animal models have started to open the way for understanding the underlying pathology of hydrocephalus. At least 43 mutants/loci linked to hereditary hydrocephalus have been identified in animal models and humans. Up to date, 9 genes associated with hydrocephalus have been identified in animal models. In contrast, only one such gene has been identified in humans. Most of known hydrocephalus gene products are the important cytokines, growth factors or related molecules in the cellular signal pathways during early brain development. The current molecular genetic evidence from animal models indicate that in the early development stage, impaired and abnormal brain development caused by abnormal cellular signaling and functioning, all these cellular and developmental events would eventually lead to the congenital hydrocephalus. Owing to our very primitive knowledge of the genetics and molecular pathogenesis of human hydrocephalus, it is difficult to evaluate whether data gained from animal models can be extrapolated to humans. Initiation of a large population genetics study in humans will certainly provide invaluable information about the molecular and cellular etiology and the developmental mechanisms of human

  7. Genética molecular aplicada ao câncer cutâneo não melanoma Molecular genetics of non-melanoma skin cancer

    Directory of Open Access Journals (Sweden)

    Marcos Antonio Rodrigues Martinez

    2006-10-01

    Full Text Available Os cânceres cutâneos não melanoma são as neoplasias malignas mais comuns em humanos. O carcinoma basocelular e o carcinoma espinocelular representam cerca de 95% dos cânceres cutâneos não melanoma, o que os torna um crescente problema para a saúde p��blica mundial devido a suas prevalências cada vez maiores. As alterações genéticas que ocorrem no desenvolvimento dessas malignidades cutâneas são apenas parcialmente compreendidas, havendo muito interesse no conhecimento e determinação das bases genéticas dos cânceres cutâneos não melanoma que expliquem seus fenótipos, comportamentos biológicos e potenciais metastáticos distintos. Apresenta-se uma revisão atualizada da genética molecular aplicada aos cânceres cutâneos não melanoma, em especial ao carcinoma basocelular e carcinoma espinocelular, enfatizando os mais freqüentes genes e os principais mecanismos de instabilidade genômica envolvidos no desenvolvimento dessas malignidades cutâneas.Non-melanoma skin cancers are the most common malignant neoplasms in humans. About 95% of all non-melanoma skin cancers are represented by basal cell carcinoma and squamous cell carcinoma. Their prevalences are still increasing worldwide, representing an important public health problem. The genetic alterations underlying basal cell carcinoma and squamous cell carcinoma development are only partly understood. Much interest lies in determining the genetic basis of non-melanoma skin cancers, to explain their distinctive phenotypes, biological behaviors and metastatic potential. We present here a molecular genetic update, focusing on the most frequent genes and genomic instability involved in the development and progression of non-melanoma skin cancers.

  8. A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement

    Science.gov (United States)

    Prasad, Megana K; Geoffroy, Véronique; Vicaire, Serge; Jost, Bernard; Dumas, Michael; Le Gras, Stéphanie; Switala, Marzena; Gasse, Barbara; Laugel-Haushalter, Virginie; Paschaki, Marie; Leheup, Bruno; Droz, Dominique; Dalstein, Amelie; Loing, Adeline; Grollemund, Bruno; Muller-Bolla, Michèle; Lopez-Cazaux, Séréna; Minoux, Maryline; Jung, Sophie; Obry, Frédéric; Vogt, Vincent; Davideau, Jean-Luc; Davit-Beal, Tiphaine; Kaiser, Anne-Sophie; Moog, Ute; Richard, Béatrice; Morrier, Jean-Jacques; Duprez, Jean-Pierre; Odent, Sylvie; Bailleul-Forestier, Isabelle; Rousset, Monique Marie; Merametdijan, Laure; Toutain, Annick; Joseph, Clara; Giuliano, Fabienne; Dahlet, Jean-Christophe; Courval, Aymeric; El Alloussi, Mustapha; Laouina, Samir; Soskin, Sylvie; Guffon, Nathalie; Dieux, Anne; Doray, Bérénice; Feierabend, Stephanie; Ginglinger, Emmanuelle; Fournier, Benjamin; de la Dure Molla, Muriel; Alembik, Yves; Tardieu, Corinne; Clauss, François; Berdal, Ariane; Stoetzel, Corinne; Manière, Marie Cécile; Dollfus, Hélène; Bloch-Zupan, Agnès

    2016-01-01

    Background Orodental diseases include several clinically and genetically heterogeneous disorders that can present in isolation or as part of a genetic syndrome. Due to the vast number of genes implicated in these disorders, establishing a molecular diagnosis can be challenging. We aimed to develop a targeted next-generation sequencing (NGS) assay to diagnose mutations and potentially identify novel genes mutated in this group of disorders. Methods We designed an NGS gene panel that targets 585 known and candidate genes in orodental disease. We screened a cohort of 101 unrelated patients without a molecular diagnosis referred to the Reference Centre for Oro-Dental Manifestations of Rare Diseases, Strasbourg, France, for a variety of orodental disorders including isolated and syndromic amelogenesis imperfecta (AI), isolated and syndromic selective tooth agenesis (STHAG), isolated and syndromic dentinogenesis imperfecta, isolated dentin dysplasia, otodental dysplasia and primary failure of tooth eruption. Results We discovered 21 novel pathogenic variants and identified the causative mutation in 39 unrelated patients in known genes (overall diagnostic rate: 39%). Among the largest subcohorts of patients with isolated AI (50 unrelated patients) and isolated STHAG (21 unrelated patients), we had a definitive diagnosis in 14 (27%) and 15 cases (71%), respectively. Surprisingly, COL17A1 mutations accounted for the majority of autosomal-dominant AI cases. Conclusions We have developed a novel targeted NGS assay for the efficient molecular diagnosis of a wide variety of orodental diseases. Furthermore, our panel will contribute to better understanding the contribution of these genes to orodental disease. Trial registration numbers NCT01746121 and NCT02397824. PMID:26502894

  9. Molecular concept in human oral cancer.

    Science.gov (United States)

    Krishna, Akhilesh; Singh, Shraddha; Kumar, Vijay; Pal, U S

    2015-01-01

    The incidence of oral cancer remains high in both Asian and Western countries. Several risk factors associated with development of oral cancer are now well-known, including tobacco chewing, smoking, and alcohol consumption. Cancerous risk factors may cause many genetic events through chromosomal alteration or mutations in genetic material and lead to progression and development of oral cancer through histological progress, carcinogenesis. Oral squamous carcinogenesis is a multistep process in which multiple genetic events occur that alter the normal functions of proto-oncogenes/oncogenes and tumor suppressor genes. Furthermore, these gene alterations can deregulate the normal activity such as increase in the production of growth factors (transforming growth factor-α [TGF-α], TGF-β, platelet-derived growth factor, etc.) or numbers of cell surface receptors (epidermal growth factor receptor, G-protein-coupled receptor, etc.), enhanced intracellular messenger signaling and mutated production of transcription factors (ras gene family, c-myc gene) which results disturb to tightly regulated signaling pathways of normal cell. Several oncogenes and tumor suppressor genes have been implicated in oral cancer especially cyclin family, ras, PRAD-1, cyclin-dependent kinase inhibitors, p53 and RB1. Viral infections, particularly with oncogenic human papilloma virus subtype (16 and 18) and Epstein-Barr virus have tumorigenic effect on oral epithelia. Worldwide, this is an urgent need to initiate oral cancer research programs at molecular and genetic level which investigates the causes of genetic and molecular defect, responsible for malignancy. This approach may lead to development of target dependent tumor-specific drugs and appropriate gene therapy.

  10. The molecular genetics of holoprosencephaly.

    Science.gov (United States)

    Roessler, Erich; Muenke, Maximilian

    2010-02-15

    Holoprosencephaly (HPE) has captivated the imagination of Man for millennia because its most extreme manifestation, the single-eyed cyclopic newborn infant, brings to mind the fantastical creature Cyclops from Greek mythology. Attempting to understand this common malformation of the forebrain in modern medical terms requires a systematic synthesis of genetic, cytogenetic, and environmental information typical for studies of a complex disorder. However, even with the advances in our understanding of HPE in recent years, there are significant obstacles remaining to fully understand its heterogeneity and extensive variability in phenotype. General lessons learned from HPE will likely be applicable to other malformation syndromes. Here we outline the common, and rare, genetic and environmental influences on this conserved developmental program of forebrain development and illustrate the similarities and differences between these malformations in humans and those of animal models. 2010 Wiley-Liss, Inc.

  11. Molecular features of grass allergens and development of biotechnological approaches for allergy prevention.

    Science.gov (United States)

    Devis, Deborah L; Davies, Janet M; Zhang, Dabing

    2017-09-01

    Allergic diseases are characterized by elevated allergen-specific IgE and excessive inflammatory cell responses. Among the reported plant allergens, grass pollen and grain allergens, derived from agriculturally important members of the Poaceae family such as rice, wheat and barley, are the most dominant and difficult to prevent. Although many allergen homologs have been predicted from species such as wheat and timothy grass, fundamental aspects such as the evolution and function of plant pollen allergens remain largely unclear. With the development of genetic engineering and genomics, more primary sequences, functions and structures of plant allergens have been uncovered, and molecular component-based allergen-specific immunotherapies are being developed. In this review, we aim to provide an update on (i) the distribution and importance of pollen and grain allergens of the Poaceae family, (ii) the origin and evolution, and functional aspects of plant pollen allergens, (iii) developments of allergen-specific immunotherapy for pollen allergy using biotechnology and (iv) development of less allergenic plants using gene engineering techniques. We also discuss future trends in revealing fundamental aspects of grass pollen allergens and possible biotechnological approaches to reduce the amount of pollen allergens in grasses. Copyright © 2017. Published by Elsevier Inc.

  12. Endometrial cancer : from a molecular genetic perspective

    NARCIS (Netherlands)

    E. Smid-Koopman (Ellen)

    2002-01-01

    textabstractThe first observations indicative of a role of genetic factors in carcinogenesis were made as early as 1912, when Rous demonstrated that a filterable agent (i.e. virus) could induce cancer in chicken (Rous 1965). In 1914, Boveri postulated a "genetic" theory on carcinogenesis by

  13. Precision medicine and molecular imaging: new targeted approaches toward cancer therapeutic and diagnosis

    Science.gov (United States)

    Ghasemi, Mojtaba; Nabipour, Iraj; Omrani, Abdolmajid; Alipour, Zeinab; Assadi, Majid

    2016-01-01

    This paper presents a review of the importance and role of precision medicine and molecular imaging technologies in cancer diagnosis with therapeutics and diagnostics purposes. Precision medicine is progressively becoming a hot topic in all disciplines related to biomedical investigation and has the capacity to become the paradigm for clinical practice. The future of medicine lies in early diagnosis and individually appropriate treatments, a concept that has been named precision medicine, i.e. delivering the right treatment to the right patient at the right time. Molecular imaging is quickly being recognized as a tool with the potential to ameliorate every aspect of cancer treatment. On the other hand, emerging high-throughput technologies such as omics techniques and systems approaches have generated a paradigm shift for biological systems in advanced life science research. In this review, we describe the precision medicine, difference between precision medicine and personalized medicine, precision medicine initiative, systems biology/medicine approaches (such as genomics, radiogenomics, transcriptomics, proteomics, and metabolomics), P4 medicine, relationship between systems biology/medicine approaches and precision medicine, and molecular imaging modalities and their utility in cancer treatment and diagnosis. Accordingly, the precision medicine and molecular imaging will enable us to accelerate and improve cancer management in future medicine. PMID:28078184

  14. Precision medicine and molecular imaging: new targeted approaches toward cancer therapeutic and diagnosis.

    Science.gov (United States)

    Ghasemi, Mojtaba; Nabipour, Iraj; Omrani, Abdolmajid; Alipour, Zeinab; Assadi, Majid

    2016-01-01

    This paper presents a review of the importance and role of precision medicine and molecular imaging technologies in cancer diagnosis with therapeutics and diagnostics purposes. Precision medicine is progressively becoming a hot topic in all disciplines related to biomedical investigation and has the capacity to become the paradigm for clinical practice. The future of medicine lies in early diagnosis and individually appropriate treatments, a concept that has been named precision medicine, i.e. delivering the right treatment to the right patient at the right time. Molecular imaging is quickly being recognized as a tool with the potential to ameliorate every aspect of cancer treatment. On the other hand, emerging high-throughput technologies such as omics techniques and systems approaches have generated a paradigm shift for biological systems in advanced life science research. In this review, we describe the precision medicine, difference between precision medicine and personalized medicine, precision medicine initiative, systems biology/medicine approaches (such as genomics, radiogenomics, transcriptomics, proteomics, and metabolomics), P4 medicine, relationship between systems biology/medicine approaches and precision medicine, and molecular imaging modalities and their utility in cancer treatment and diagnosis. Accordingly, the precision medicine and molecular imaging will enable us to accelerate and improve cancer management in future medicine.

  15. Genetic Dissection of Sympatric Populations of Brown Planthopper, Nilaparvata lugens (Stål, Using DALP-PCR Molecular Markers

    Directory of Open Access Journals (Sweden)

    M. A. Latif

    2012-01-01

    Full Text Available Direct amplified length polymorphism (DALP combines the advantages of a high-resolution fingerprint method and also characterizing the genetic polymorphisms. This molecular method was also found to be useful in brown planthopper, Nilaparvata lugens species complex for the analysis of genetic polymorphisms. A total of 11 populations of Nilaparvata spp. were collected from 6 locations from Malaysia. Two sympatric populations of brown planthopper, N. lugens, one from rice and the other from a weed grass (Leersia hexandra, were collected from each of five locations. N. bakeri was used as an out group. Three oligonucleotide primer pairs, DALP231/DALPR′5, DALP234/DALPR′5, and DALP235/DALPR′5 were applied in this study. The unweighted pair group method with arithmetic mean (UPGMA dendrogram based on genetic distances for the 11 populations of Nilaparvata spp. revealed that populations belonging to the same species and the same host type clustered together irrespective of their geographical localities of capture. The populations of N. lugens formed into two distinct clusters, one was insects with high esterase activities usually captured from rice and the other was with low esterase activities usually captured from L. hexandra. N. bakeri, an out group, was the most isolated group. Analyses of principal components, molecular variance, and robustness also supported greatly to the findings of cluster analysis.

  16. Genetic Dissection of Sympatric Populations of Brown Planthopper, Nilaparvata lugens (Stål), Using DALP-PCR Molecular Markers

    Science.gov (United States)

    Latif, M. A.; Rafii, M. Y.; Mazid, M. S.; Ali, M. E.; Ahmed, F.; Omar, M. Y.; Tan, S. G.

    2012-01-01

    Direct amplified length polymorphism (DALP) combines the advantages of a high-resolution fingerprint method and also characterizing the genetic polymorphisms. This molecular method was also found to be useful in brown planthopper, Nilaparvata lugens species complex for the analysis of genetic polymorphisms. A total of 11 populations of Nilaparvata spp. were collected from 6 locations from Malaysia. Two sympatric populations of brown planthopper, N. lugens, one from rice and the other from a weed grass (Leersia hexandra), were collected from each of five locations. N. bakeri was used as an out group. Three oligonucleotide primer pairs, DALP231/DALPR′5, DALP234/DALPR′5, and DALP235/DALPR′5 were applied in this study. The unweighted pair group method with arithmetic mean (UPGMA) dendrogram based on genetic distances for the 11 populations of Nilaparvata spp. revealed that populations belonging to the same species and the same host type clustered together irrespective of their geographical localities of capture. The populations of N. lugens formed into two distinct clusters, one was insects with high esterase activities usually captured from rice and the other was with low esterase activities usually captured from L. hexandra. N. bakeri, an out group, was the most isolated group. Analyses of principal components, molecular variance, and robustness also supported greatly to the findings of cluster analysis. PMID:22593700

  17. A Novel Forward Genetic Screen for Identifying Mutations Affecting Larval Neuronal Dendrite Development in Drosophila melanogaster

    OpenAIRE

    Medina, Paul Mark B.; Swick, Lance L.; Andersen, Ryan; Blalock, Zachary; Brenman, Jay E.

    2006-01-01

    Vertebrate and invertebrate dendrites are information-processing compartments that can be found on both central and peripheral neurons. Elucidating the molecular underpinnings of information processing in the nervous system ultimately requires an understanding of the genetic pathways that regulate dendrite formation and maintenance. Despite the importance of dendrite development, few forward genetic approaches have been used to analyze the latest stages of dendrite development, including the ...

  18. Teaching Molecular Biology with Microcomputers.

    Science.gov (United States)

    Reiss, Rebecca; Jameson, David

    1984-01-01

    Describes a series of computer programs that use simulation and gaming techniques to present the basic principles of the central dogma of molecular genetics, mutation, and the genetic code. A history of discoveries in molecular biology is presented and the evolution of these computer assisted instructional programs is described. (MBR)

  19. Pheno2Geno - High-throughput generation of genetic markers and maps from molecular phenotypes for crosses between inbred strains.

    Science.gov (United States)

    Zych, Konrad; Li, Yang; van der Velde, Joeri K; Joosen, Ronny V L; Ligterink, Wilco; Jansen, Ritsert C; Arends, Danny

    2015-02-19

    Genetic markers and maps are instrumental in quantitative trait locus (QTL) mapping in segregating populations. The resolution of QTL localization depends on the number of informative recombinations in the population and how well they are tagged by markers. Larger populations and denser marker maps are better for detecting and locating QTLs. Marker maps that are initially too sparse can be saturated or derived de novo from high-throughput omics data, (e.g. gene expression, protein or metabolite abundance). If these molecular phenotypes are affected by genetic variation due to a major QTL they will show a clear multimodal distribution. Using this information, phenotypes can be converted into genetic markers. The Pheno2Geno tool uses mixture modeling to select phenotypes and transform them into genetic markers suitable for construction and/or saturation of a genetic map. Pheno2Geno excludes candidate genetic markers that show evidence for multiple possibly epistatically interacting QTL and/or interaction with the environment, in order to provide a set of robust markers for follow-up QTL mapping. We demonstrate the use of Pheno2Geno on gene expression data of 370,000 probes in 148 A. thaliana recombinant inbred lines. Pheno2Geno is able to saturate the existing genetic map, decreasing the average distance between markers from 7.1 cM to 0.89 cM, close to the theoretical limit of 0.68 cM (with 148 individuals we expect a recombination every 100/148=0.68 cM); this pinpointed almost all of the informative recombinations in the population. The Pheno2Geno package makes use of genome-wide molecular profiling and provides a tool for high-throughput de novo map construction and saturation of existing genetic maps. Processing of the showcase dataset takes less than 30 minutes on an average desktop PC. Pheno2Geno improves QTL mapping results at no additional laboratory cost and with minimum computational effort. Its results are formatted for direct use in R/qtl, the leading R

  20. Kazusa Marker DataBase: a database for genomics, genetics, and molecular breeding in plants

    Science.gov (United States)

    Shirasawa, Kenta; Isobe, Sachiko; Tabata, Satoshi; Hirakawa, Hideki

    2014-01-01

    In order to provide useful genomic information for agronomical plants, we have established a database, the Kazusa Marker DataBase (http://marker.kazusa.or.jp). This database includes information on DNA markers, e.g., SSR and SNP markers, genetic linkage maps, and physical maps, that were developed at the Kazusa DNA Research Institute. Keyword searches for the markers, sequence data used for marker development, and experimental conditions are also available through this database. Currently, 10 plant species have been targeted: tomato (Solanum lycopersicum), pepper (Capsicum annuum), strawberry (Fragaria × ananassa), radish (Raphanus sativus), Lotus japonicus, soybean (Glycine max), peanut (Arachis hypogaea), red clover (Trifolium pratense), white clover (Trifolium repens), and eucalyptus (Eucalyptus camaldulensis). In addition, the number of plant species registered in this database will be increased as our research progresses. The Kazusa Marker DataBase will be a useful tool for both basic and applied sciences, such as genomics, genetics, and molecular breeding in crops. PMID:25320561