WorldWideScience

Sample records for molecular energy dissipation

  1. Energy Dissipation in Molecular Systems

    CERN Document Server

    Tramer, André; Lahmani, Fran oise

    2005-01-01

    Energy Dissipation in Molecular Systems analyzes experimental data on the redistribution and dissipation of energy injected into molecular systems by radiation or charged particles. These processes, competing with such practically important relaxation channels as chemical reaction or stimulated emission (laser action), are the primary focus in this monograph. Among other topics, the book treats vibrational redistribution and electronic relaxation in isolated molecules and the effects of inter-molecular interactions (collisions, complex formation, solvent effects) on the relaxation paths. Primary photo-chemical processes (such as isomerization, proton or hydrogen-atom transfer, electron transfer and ionization) are also treated as particular cases of vibrational or electronic relaxation. Only a basic knowledge of quantum mechanics and spectroscopy is assumed and calculations are kept to a strict minimum, making the book more accessible to students.

  2. David Adler Lectureship Award Talk: Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films

    Science.gov (United States)

    Krim, Jacqueline

    2015-03-01

    Studies of the fundamental origins of friction have undergone rapid progress in recent years, with the development of new experimental and computational techniques for measuring and simulating friction at atomic length and time scales. The increased interest has sparked a variety of discussions and debates concerning the nature of the atomic-scale and quantum mechanisms that dominate the dissipative process by which mechanical energy is transformed into heat. Measurements of the sliding friction of physisorbed monolayers and bilayers can provide information on the relative contributions of these various dissipative mechanisms. Adsorbed films, whether intentionally applied or present as trace levels of physisorbed contaminants, moreover are ubiquitous at virtually all surfaces. As such, they impact a wide range of applications whose progress depends on precise control and/or knowledge of surface diffusion processes. Examples include nanoscale assembly, directed transport of Brownian particles, material flow through restricted geometries such as graphene membranes and molecular sieves, passivation and edge effects in carbon-based lubricants, and the stability of granular materials associated with frictional and frictionless contacts. Work supported by NSFDMR1310456.

  3. Energy dissipation in biomolecular machines

    Energy Technology Data Exchange (ETDEWEB)

    Lervik, Anders

    2012-07-01

    thermodynamic efficiency is found to be low (< 13 %) in all cases for the experimental conditions considered, which means that a large amount of the energy released from the ATP-hydrolysis is dissipated as heat. A complementary molecular dynamics study targeted on a bilayer for which the protein shows a relatively large efficiency (compared to other bilayers) shows that membrane deformation and large efficiency are not mutually exclusive. Overall, this thesis highlights the usefulness of the mesoscopic non-equilibrium thermodynamic framework applied to molecular machines and energy transduction and dissipation in these. The main result is that the mesoscopic nonequilibrium thermodynamic framework is applicable to molecular pumps and can be extended to include heat effects. This framework is general and can be applied to other molecular machines as well. Further, the results also support the notion that the calcium pump may contribute to non-shivering thermogenesis in certain tissues.(Author)

  4. ENERGY DISSIPATION PROCESSES IN SOLAR WIND TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Wei, F. S.; Feng, X. S.; Sun, T. R.; Zuo, P. B. [SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Xu, X. J. [Space Science Institute, Macau University of Science and Technology, Macao (China); Zhang, J., E-mail: yw@spaceweather.ac.cn [School of Physics, Astronomy and Computational Sciences, George Mason University, 4400 University Drive, MSN 3F3, Fairfax, Virginia 22030 (United States)

    2015-12-15

    Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation ultimately cannot be achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection (MR) are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind MR region. We find that the MR region shows unique multifractal scaling in the dissipation range, while the ambient solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for intermittent multifractal dissipation region scaling around a MR site, and they also have significant implications for the fundamental energy dissipation process.

  5. Energy dissipation processes in solar wind turbulence

    CERN Document Server

    Wang, Y; Feng, X S; Xu, X J; Zhang, J; Sun, T R; Zuo, P B

    2015-01-01

    Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation cannot be ultimately achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind magnetic reconnection region. We find that the magnetic reconnection region shows a unique multifractal scaling in the dissipation range, while the ambient solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for the intermittent multifractal dissipation region scaling around a magnetic reconnection site, and they also have significant implications for the fundamental energy...

  6. Material Systems for Blast-Energy Dissipation

    Energy Technology Data Exchange (ETDEWEB)

    James Schondel; Henry S. Chu

    2010-10-01

    Lightweight panels have been designed to protect buildings and vehicles from blast pressures by activating energy dissipation mechanisms under the influence of blast loading. Panels were fabricated which featured a variety of granular materials and hydraulic dissipative deformation mechanisms and the test articles were subjected to full-scale blast loading. The force time-histories transmitted by each technology were measured by a novel method that utilized inexpensive custom-designed force sensors. The array of tests revealed that granular materials can effectively dissipate blast energy if they are employed in a way that they easily crush and rearrange. Similarly, hydraulic dissipation can effectively dissipate energy if the panel features a high fraction of porosity and the panel encasement features low compressive stiffness.

  7. ATOMIZATION CAUSED BY BOTTOM FLOW ENERGY DISSIPATION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Bottom flow energy dissipation is one of the common energydissipation methods for flood-releasing structures with high water head. Measures of this energy dissipation depend mainly on the turbulent action of hydraulic jump.In this paper, the physical process and the calculating methods of the atomization caused by bottom flow energy dissipation were studied, the computation models of atomization quantity for the self-aerated flow in overflow and hydraulic jump regions are presented, and the main results are of theoretical and practical significance for the hydraulic and electric engineering.

  8. Complex Fluids in Energy Dissipating Systems

    Directory of Open Access Journals (Sweden)

    Francisco J. Galindo-Rosales

    2016-07-01

    Full Text Available The development of engineered systems for energy dissipation (or absorption during impacts or vibrations is an increasing need in our society, mainly for human protection applications, but also for ensuring the right performance of different sort of devices, facilities or installations. In the last decade, new energy dissipating composites based on the use of certain complex fluids have flourished, due to their non-linear relationship between stress and strain rate depending on the flow/field configuration. This manuscript intends to review the different approaches reported in the literature, analyses the fundamental physics behind them and assess their pros and cons from the perspective of their practical applications.

  9. Characteristics of energy dissipation in hyperconcentrated flows

    Institute of Scientific and Technical Information of China (English)

    An-ping SHU; Qing-quan LIU; Yu-jun YI; Zhi-dong ZHANG

    2008-01-01

    An equilibrium equation for the turbulence energy in sediment-laden flows was derived on the basis of solid-liquid two-phase flow theory.The equation was simplified for two-dimensional,uniform,steady and fully developed turbulent hyperconcentrated flows.An energy efficiency coefficient of suspended-load motion was obtained from the turbulence energy equation,which is defined as the ratio of the sediment suspension energy to the turbulence energy of the sediment-laden flows.Laboratory experiments were conducted to investigate the characteristics of energy dissipation in hyperconcentrated flows.A total of 115 experimental runs were carried out,comprising 70 runs with natural sediments and 45 runs with cinder powder.Effects of sediment concentration on sediment suspension energy and flow resistance were analyzed and the relation between the energy efficiency coefficient of suspended-load motion and sediment concentration was established on the basis of experimental data.Furthermore,the characteristics of energy dissipation in hyperconcentrated flows were identified and described.It was found that the high sediment concentration does not increase the energy dissipation;on the contrary,it decreases flow resistance.

  10. Electrical energy storage and dissipation in materials

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xiaoyu, E-mail: zheng@math.kent.edu [Department of Mathematical Sciences, Kent State University, Kent, OH 44242 (United States); Palffy-Muhoray, Peter [Liquid Crystal Institute, Kent State University, Kent, OH 44242 (United States)

    2015-09-18

    Using a simple classical approach, we consider where and how electrical energy is stored in lossy dispersive materials. We argue that the material contribution to the electrical energy density is simply the sum of the kinetic and potential energies of the charges present under the influence of the applied electric field. It follows that the stored energy density must be positive. We provide simple expressions for the stored and dissipated energy densities; in the lossless case, our expressions reduce to the standard results of Brillouin and Landau.

  11. Modelling the Pan-Spectral Energy Distribution of Starburst Galaxies: I. The role of ISM pressure & the Molecular Cloud Dissipation Timescale

    CERN Document Server

    Dopita, M A; Fischera, J; Sutherland, R; Tuffs, R J; Popescu, C C; Kewley, L J; Reuland, M; Leitherer, C

    2004-01-01

    In this paper, we combine the stellar spectral synthesis code STARBURST 99, the nebular modelling code MAPPINGS IIIq, a 1-D dynamical evolution model of \\HII regions around massive clusters of young stars and a simplified model of synchrotron emissivity to produce purely theoretical self-consistent synthetic spectral energy distributions (SEDs) for (solar metallicity) starbursts lasting some $10^8$ years. These SEDs extend from the Lyman Limit to beyond 21 cm. We find that two ISM parameters control the form of the SED; the pressure in the diffuse phase of the ISM (or, equivalently, its density), and the molecular cloud dissipation timescale. We present detailed SED fits to Arp 220 and NGC 6240, and we give the predicted colors for starburst galaxies derived from our models for the IRAS and the Spitzer Space Observatory MIPS and IRAC instruments. Our models reproduce the spread in observed colors of starburst galaxies. Finally, we present absolute calibrations to convert observed fluxes into star formation ra...

  12. Magnetotail energy dissipation during an auroral substorm

    Science.gov (United States)

    Panov, E. V.; Baumjohann, W.; Wolf, R. A.; Nakamura, R.; Angelopoulos, V.; Weygand, J. M.; Kubyshkina, M. V.

    2016-12-01

    Violent releases of space plasma energy from the Earth's magnetotail during substorms produce strong electric currents and bright aurora. But what modulates these currents and aurora and controls dissipation of the energy released in the ionosphere? Using data from the THEMIS fleet of satellites and ground-based imagers and magnetometers, we show that plasma energy dissipation is controlled by field-aligned currents (FACs) produced and modulated during magnetotail topology change and oscillatory braking of fast plasma jets at 10-14 Earth radii in the nightside magnetosphere. FACs appear in regions where plasma sheet pressure and flux tube volume gradients are non-collinear. Faster tailward expansion of magnetotail dipolarization and subsequent slower inner plasma sheet restretching during substorm expansion and recovery phases cause faster poleward then slower equatorward movement of the substorm aurora. Anharmonic radial plasma oscillations build up displaced current filaments and are responsible for discrete longitudinal auroral arcs that move equatorward at a velocity of about 1 km s-1. This observed auroral activity appears sufficient to dissipate the released energy.

  13. Assessing relative volatility/intermittency/energy dissipation

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole E.; Pakkanen, Mikko S.; Schmiegel, Jürgen

    2014-01-01

    We introduce the notion of relative volatility/intermittency and demonstrate how relative volatility statistics can be used to estimate consistently the temporal variation of volatility/intermittency when the data of interest are generated by a non-semimartingale, or a Brownian semistationary...... process in particular. This estimation method is motivated by the assessment of relative energy dissipation in empirical data of turbulence, but it is also applicable in other areas. We develop a probabilistic asymptotic theory for realised relative power variations of Brownian semistationary processes......, and introduce inference methods based on the theory. We also discuss how to extend the asymptotic theory to other classes of processes exhibiting stochastic volatility/intermittency. As an empirical application, we study relative energy dissipation in data of atmospheric turbulence....

  14. Low Energy Dissipation Nano Device Research

    Science.gov (United States)

    Yu, Jenny

    2015-03-01

    The development of research on energy dissipation has been rapid in energy efficient area. Nano-material power FET is operated as an RF power amplifier, the transport is ballistic, noise is limited and power dissipation is minimized. The goal is Green-save energy by developing the Graphene and carbon nantube microwave and high performance devices. Higher performing RF amplifiers can have multiple impacts on broadly field, for example communication equipment, (such as mobile phone and RADAR); higher power density and lower power dissipation will improve spectral efficiency which translates into higher system level bandwidth and capacity for communications equipment. Thus, fundamental studies of power handling capabilities of new RF (nano)technologies can have broad, sweeping impact. Because it is critical to maximizing the power handling ability of grephene and carbon nanotube FET, the initial task focuses on measuring and understanding the mechanism of electrical breakdown. We aim specifically to determine how the breakdown voltage in graphene and nanotubes is related to the source-drain spacing, electrode material and thickness, and substrate, and thus develop reliable statistics on the breakdown mechanism and probability.

  15. Energy localization in weakly dissipative resonant chains

    Science.gov (United States)

    Kovaleva, Agnessa

    2016-08-01

    Localization of energy in oscillator arrays has been of interest for a number of years, with special attention paid to the role of nonlinearity and discreteness in the formation of localized structures. This work examines a different type of energy localization arising due to the presence of dissipation in nonlinear resonance arrays. As a basic model, we consider a Klein-Gordon chain of finite length subjected to a harmonic excitation applied at an edge of the chain. It is shown that weak dissipation may be a key factor preventing the emergence of resonance in the entire chain, even if its nondissipative analog is entirely captured into resonance. The resulting process in the dissipative oscillator array represents large-amplitude resonant oscillations in a part of the chain adjacent to the actuator and small-amplitude oscillations in the distant part of the chain. The conditions of the emergence of resonance as well as the conditions of energy localization are derived. An agreement between the obtained analytical results and numerical simulations is demonstrated.

  16. Estimation of turbulent kinetic energy dissipation

    Science.gov (United States)

    Chen, Huey-Long; Hondzo, Miki; Rao, A. Ramachandra

    2001-06-01

    The kinetic energy dissipation rate is one of the key intrinsic fluid flow parameters in environmental fluid dynamics. In an indirect method the kinetic energy dissipation rate is estimated from the Batchelor spectrum. Because the Batchelor spectrum has a significant difference between the highest and lowest spectral values, the spectral bias in the periodogram causes the lower spectral values at higher frequencies to increase. Consequently, the accuracy in fitting the Batchelor spectrum is affected. In this study, the multitaper spectral estimation method is compared to conventional methods in estimating the synthetic temperature gradient spectra. It is shown in the results that the multitaper spectra have less bias than the Hamming window smoothed spectra and the periodogram in estimating the synthetic temperature gradient spectra. The results of fitting the Batchelor spectrum based on four error functions are compared. When the theoretical noise spectrum is available and delineated at the intersection of the estimated spectrum, the fitting results of the kinetic energy dissipation rate corresponding to the four error functions do not have significant differences. However, when the noise spectrum is unknown and part of the Batchelor spectrum overlaps the region where the noise spectrum dominates, the weighted chi-square distributed error function has the best fitting results.

  17. Assessing Relative Volatility/Intermittency/Energy Dissipation

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole E.; Pakkanen, Mikko; Schmiegel, Jürgen

    We introduce the notion of relative volatility/intermittency and demonstrate how relative volatility statistics can be used to estimate consistently the temporal variation of volatility/intermittency even when the data of interest are generated by a non-semimartingale, or a Brownian semistationary...... process in particular. While this estimation method is motivated by the assessment of relative energy dissipation in empirical data of turbulence, we apply it also to energy price data. Moreover, we develop a probabilistic asymptotic theory for relative power variations of Brownian semistationary...... processes and Ito semimartingales and discuss how it can be used for inference on relative volatility/intermittency....

  18. Wind Turbine Control with Active Damage Reduction through Energy Dissipation

    NARCIS (Netherlands)

    Barradas Berglind, Jose de Jesus; Jayawardhana, Bayu; Wisniewski, Rafał

    2016-01-01

    In this paper we propose an active damage reduction control strategy for wind turbines based on dissipated energy. To this end we rely on the equivalences relating both damage in the rainflow counting sense and dissipated energy to the variations of Preisach hysteresis operators. Since dissipation

  19. Energy dissipation in flows through curved spaces

    Science.gov (United States)

    Debus, J.-D.; Mendoza, M.; Succi, S.; Herrmann, H. J.

    2017-01-01

    Fluid dynamics in intrinsically curved geometries is encountered in many physical systems in nature, ranging from microscopic bio-membranes all the way up to general relativity at cosmological scales. Despite the diversity of applications, all of these systems share a common feature: the free motion of particles is affected by inertial forces originating from the curvature of the embedding space. Here we reveal a fundamental process underlying fluid dynamics in curved spaces: the free motion of fluids, in the complete absence of solid walls or obstacles, exhibits loss of energy due exclusively to the intrinsic curvature of space. We find that local sources of curvature generate viscous stresses as a result of the inertial forces. The curvature- induced viscous forces are shown to cause hitherto unnoticed and yet appreciable energy dissipation, which might play a significant role for a variety of physical systems involving fluid dynamics in curved spaces. PMID:28195148

  20. Large Eddy Simulation of SGS Turbulent Kinetic Energy and SGS Turbulent Dissipation in a Backward-Facing Step Turbulent Flow

    Institute of Scientific and Technical Information of China (English)

    王兵; 张会强; 王希麟

    2004-01-01

    The instantaneous and time-averaged statistic characteristics of the sub-grid scale (SGS) turbulent kinetic energy and SGS dissipation in a backward-facing step turbulent flow have been studied bylarge eddy simulation. The SGS turbulent kinetic energy and SGS turbulent dissipation vary in different flow regions and decrease with the flow developing spatially. The fluid molecular dissipation shares about 14% to 28% of the whole dissipation.

  1. Harvesting dissipated energy with a mesoscopic ratchet.

    Science.gov (United States)

    Roche, B; Roulleau, P; Jullien, T; Jompol, Y; Farrer, I; Ritchie, D A; Glattli, D C

    2015-04-01

    The search for new efficient thermoelectric devices converting waste heat into electrical energy is of major importance. The physics of mesoscopic electronic transport offers the possibility to develop a new generation of nanoengines with high efficiency. Here we describe an all-electrical heat engine harvesting and converting dissipated power into an electrical current. Two capacitively coupled mesoscopic conductors realized in a two-dimensional conductor form the hot source and the cold converter of our device. In the former, controlled Joule heating generated by a voltage-biased quantum point contact results in thermal voltage fluctuations. By capacitive coupling the latter creates electric potential fluctuations in a cold chaotic cavity connected to external leads by two quantum point contacts. For unequal quantum point contact transmissions, a net electrical current is observed proportional to the heat produced.

  2. INFLUENCING FACTORS FOR THE ENERGY DISSIPATION RATIO OF STEPPED SPILLWAYS

    Institute of Scientific and Technical Information of China (English)

    CHEN Qun; DAI Guang-qing; ZHU Fen-qing

    2005-01-01

    In order to search for the measure to increase the energy dissipation ratio of stepped spillways, some main influencing factors for the energy dissipation ratio of stepped spillways, such as unit discharge, dam slope, height of step and so on, were studied. The results show that the energy dissipation ratio decreases with the increase in the unit discharge and increases as the slope becomes gentle. The effects of step height on the energy dissipation ratio are closely related to unit discharge. If the unit discharge is smaller, the change of energy dissipation ratio with step height becomes greater. While, if the unit discharge is greater, the influence of step height on energy dissipation ratio is very little. According to the distributions of the turbulence kinetic energy and turbulence dissipation rate obtained by numerical simulation, the basic reason of the decrease of energy dissipation ratio with the increase in the unit discharge was discussed and some specific measures to increase the energy dissipation ratio were suggested.

  3. Energy dissipation of rockfalls by coppice structures

    Directory of Open Access Journals (Sweden)

    G. Ciabocco

    2009-06-01

    Full Text Available The objective of this work is to develop elements to improve understanding of the behaviour of a coppice in relation to the phenomenon of falling boulders. The first section proposes an amendment to the equation for calculating the index which describes the probability of impact between a rock and plants in managed coppice forests. A study was carried out, using models to calculate the kinetic energy of a falling boulder along a slope considering the kinetic energy dissipated during the impact with the structure of forest plants managed by coppice. The output of the simulation models were then compared with the real dynamics of falling boulders in field tests using digital video.

    It emerged from an analysis of the results of this comparison that a modification to the 1989 Gsteiger equation was required, in order to calculate the "Average Distance between Contacts" (ADC. To this purpose, the concept of "Structure of Interception", proposed in this paper, was developed, valid as a first approach for describing the differences in the spatial distribution of stems between coppice and forest. This study also aims to provide suggestions for forestry management, in order to maintain or increase the protective capacity of a coppice managed with conventional techniques for the area studied, modifying the dendrometric characteristics.

  4. Energy dissipation of rockfalls by coppice structures

    Science.gov (United States)

    Ciabocco, G.; Boccia, L.; Ripa, M. N.

    2009-06-01

    The objective of this work is to develop elements to improve understanding of the behaviour of a coppice in relation to the phenomenon of falling boulders. The first section proposes an amendment to the equation for calculating the index which describes the probability of impact between a rock and plants in managed coppice forests. A study was carried out, using models to calculate the kinetic energy of a falling boulder along a slope considering the kinetic energy dissipated during the impact with the structure of forest plants managed by coppice. The output of the simulation models were then compared with the real dynamics of falling boulders in field tests using digital video. It emerged from an analysis of the results of this comparison that a modification to the 1989 Gsteiger equation was required, in order to calculate the "Average Distance between Contacts" (ADC). To this purpose, the concept of "Structure of Interception", proposed in this paper, was developed, valid as a first approach for describing the differences in the spatial distribution of stems between coppice and forest. This study also aims to provide suggestions for forestry management, in order to maintain or increase the protective capacity of a coppice managed with conventional techniques for the area studied, modifying the dendrometric characteristics.

  5. Comparison of Energy Dissipation with and without Aerators

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Experimental results showed that aerators increase the energy dissipation of the flow in the channel by reducing the velocity coefficient φ in the deflector bucket and the jet-trajectory length, by increasing energy dissipation of the jet flow in the air and the diffusion length of the jet falling into the pool and by reducing the energy intensity of the jet falling into the pool. The energy dissipation prevents wash out downstream.When air is not entrained in the water flow, the aerators act as artificial irregularities in the channel. The energy dissipation due to the aerators in the channel without entrained air is greater than when air is entrained in the water flow.Correlations of the experimental data can be used to estimate the energy dissipation effect of the aerators on the outlet structure for the three test cases.

  6. The negative feedback molecular mechanism which regulates excitation level in the plant photosynthetic complex LHCII: towards identification of the energy dissipative state.

    Science.gov (United States)

    Zubik, Monika; Luchowski, Rafal; Puzio, Michal; Janik, Ewa; Bednarska, Joanna; Grudzinski, Wojciech; Gruszecki, Wieslaw I

    2013-03-01

    Overexcitation of the photosynthetic apparatus is potentially dangerous because it can cause oxidative damage. Photoprotection realized via the feedback de-excitation in the pigment-protein light-harvesting complex LHCII, embedded in the chloroplast lipid environment, was studied with use of the steady-state and time-resolved fluorescence spectroscopy techniques. Illumination of LHCII results in the pronounced singlet excitation quenching, demonstrated by decreased quantum yield of the chlorophyll a fluorescence and shortening of the fluorescence lifetimes. Analysis of the 77K chlorophyll a fluorescence emission spectra reveals that the light-driven excitation quenching in LHCII is associated with the intensity increase of the spectral band in the region of 700nm, relative to the principal band at 680nm. The average chlorophyll a fluorescence lifetime at 700nm changes drastically upon temperature decrease: from 1.04ns at 300K to 3.63ns at 77K. The results of the experiments lead us to conclude that: (i) the 700nm band is associated with the inter-trimer interactions which result in the formation of the chlorophyll low-energy states acting as energy traps and non-radiative dissipation centers; (ii) the Arrhenius analysis, supported by the results of the FTIR measurements, suggests that the photo-reaction can be associated with breaking of hydrogen bonds. Possible involvement of photo-isomerization of neoxanthin, reported previously (Biochim. Biophys. Acta 1807 (2011) 1237-1243) in generation of the low-energy traps in LHCII is discussed.

  7. A dimensionless model of impact piezoelectric energy harvesting with dissipation

    Science.gov (United States)

    Fu, Xinlei; Liao, Wei-Hsin

    2016-04-01

    Impact excitation is common in the environment. Impact piezoelectric energy harvesting could realize frequency up-conversion. However, the dissipation mechanism in impact piezoelectric energy harvesting has not been investigated so far. There is no comprehensive model to be able to analyze the impact piezoelectric energy harvesting thoroughly. This paper is aimed to develop a generalized model that considers dissipation mechanism of impact piezoelectric energy harvesting. In this electromechanical model, Hertzian contact theory and impact dissipation mechanism are identified as constitutive mechanisms. The impact force is compared and the energy distribution is analyzed so that input energy corresponds to impact dissipated energy, structural damping dissipated energy and harvested electrical energy. We then nondimensionalize the developed model and define five dimensionless parameters with attributed physical meanings, including dimensionless parameters of impact dissipation, mass ratio, structural damping, electromechanical coupling, and electrical load. We conclude it is more accurate to consider impact dissipation mechanism to predict impact force and harvested energy. The guideline for improving harvested energy based on parametric studies of dimensionless model is to increase mass ratio, to minimize structural damping, to maximize electromechanical coupling, to use optimal load resistance for impedance matching, and to choose proper impact velocity .

  8. Energy dissipation through wind-generated breaking waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuwen; CAO Ruixue; XIE Lingling

    2012-01-01

    Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.

  9. Temporal intermittency of energy dissipation in magnetohydrodynamic turbulence.

    Science.gov (United States)

    Zhdankin, Vladimir; Uzdensky, Dmitri A; Boldyrev, Stanislav

    2015-02-13

    Energy dissipation in magnetohydrodynamic (MHD) turbulence is known to be highly intermittent in space, being concentrated in sheetlike coherent structures. Much less is known about intermittency in time, another fundamental aspect of turbulence which has great importance for observations of solar flares and other space or astrophysical phenomena. In this Letter, we investigate the temporal intermittency of energy dissipation in numerical simulations of MHD turbulence. We consider four-dimensional spatiotemporal structures, "flare events," responsible for a large fraction of the energy dissipation. We find that although the flare events are often highly complex, they exhibit robust power-law distributions and scaling relations. We find that the probability distribution of dissipated energy has a power-law index close to α≈1.75, similar to observations of solar flares, indicating that intense dissipative events dominate the heating of the system. We also discuss the temporal asymmetry of flare events as a signature of the turbulent cascade.

  10. Energy Dissipation in the Smagorinsky Model of Turbulence

    CERN Document Server

    Layton, William

    2016-01-01

    The Smagorinsky model, unmodified, is often reported to severely overdiffuse flows. Previous estimates of the energy dissipation rate of the Smagorinsky model for shear flows reflect a blow up of model energy dissipation as Re increases. This blow up is consistent with the numerical evidence and leads to the question: Is the over dissipation due to the influence of the turbulent viscosity in boundary layers alone or is its action on small scales generated by the nonlinearity through the cascade also a contributor? This report develops model dissipation estimates for body force driven flow under periodic boundary conditions (and thus only with nonlinearity generated small scales). It is proven that the model's time averaged energy dissipation rate satisfies the same upper bound as for the NSE plus one additional term that vanishes uniformly in the Reynolds number as the Smagorinsky length scale decreases. Since this estimate is consistent with that observed for the NSE, it establishes that, without boundary la...

  11. Surveying the role of excitation energy in probing nuclear dissipation

    Institute of Scientific and Technical Information of China (English)

    YE Wei

    2009-01-01

    A dynamical Langevin model is employed to calculate the excess of the evaporation residue cross sections of the 194pb nucleus over that predicted by the standard statistical model as a function of nuclear dissipation strength. It is shown that large excitation energy can increase the effects of nuclear dissipation on the excess of the evaporation residues and the sensitivity of this excess to the dissipation strength, and that more higher excitation energies have little contribution to further raising this sensitivity. These results suggest that on the experimental side, producing those compound systems with moderate excitation energy is sufficient for a good determination of the pre-saddle nuclear dissipation strength by measuring the evaporation residue cross section, and that forming an extremely highly excited system does not considerably improve the sensitivity of evaporation residues to the dissipation strength.

  12. Electromagnetic energy storage and power dissipation in nanostructures

    CERN Document Server

    Zhao, J M

    2014-01-01

    The processes of storage and dissipation of electromagnetic energy in nanostructures depend on both the material properties and the geometry. In this paper, the distributions of local energy density and power dissipation in nanogratings are investigated using the rigorous coupled-wave analysis. It is demonstrated that the enhancement of absorption is accompanied by the enhancement of energy storage both for material at the resonance of its dielectric function described by the classical Lorentz oscillator and for nanostructures at the resonance induced by its geometric arrangement. The appearance of strong local electric field in nanogratings at the geometry-induced resonance is directly related to the maximum electric energy storage. Analysis of the local energy storage and dissipation can also help gain a better understanding of the global energy storage and dissipation in nanostructures for photovoltaic and heat transfer applications.

  13. Topographic generation of submesoscale centrifugal instability and energy dissipation.

    Science.gov (United States)

    Gula, Jonathan; Molemaker, M Jeroen; McWilliams, James C

    2016-09-29

    Most of the ocean kinetic energy is contained in the large scale currents and the vigorous geostrophic eddy field, at horizontal scales of order 100 km. To achieve equilibrium the geostrophic currents must viscously dissipate their kinetic energy at much smaller scale. However, geostrophic turbulence is characterized by an inverse cascade of energy towards larger scale, and the pathways of energy toward dissipation are still in question. Here, we present a mechanism, in the context of the Gulf Stream, where energy is transferred from the geostrophic flow to submesoscale wakes through anticyclonic vertical vorticity generation in the bottom boundary layer. The submesoscale turbulence leads to elevated local dissipation and mixing outside the oceanic boundary layers. This process is generic for boundary slope currents that flow in the direction of Kelvin wave propagation. Topographic generation of submesoscale flows potentially provides a new and significant route to energy dissipation for geostrophic flows.

  14. Topographic generation of submesoscale centrifugal instability and energy dissipation

    Science.gov (United States)

    Gula, Jonathan; Molemaker, M. Jeroen; McWilliams, James C.

    2016-01-01

    Most of the ocean kinetic energy is contained in the large scale currents and the vigorous geostrophic eddy field, at horizontal scales of order 100 km. To achieve equilibrium the geostrophic currents must viscously dissipate their kinetic energy at much smaller scale. However, geostrophic turbulence is characterized by an inverse cascade of energy towards larger scale, and the pathways of energy toward dissipation are still in question. Here, we present a mechanism, in the context of the Gulf Stream, where energy is transferred from the geostrophic flow to submesoscale wakes through anticyclonic vertical vorticity generation in the bottom boundary layer. The submesoscale turbulence leads to elevated local dissipation and mixing outside the oceanic boundary layers. This process is generic for boundary slope currents that flow in the direction of Kelvin wave propagation. Topographic generation of submesoscale flows potentially provides a new and significant route to energy dissipation for geostrophic flows. PMID:27681822

  15. STUDY ON JETS IMPACT IN AIR FOR ENERGY DISSIPATION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper is concerned with the applications of water jet impact in air to energy dissipation. The scattered jet flow impinges into the downstream water plunge pool, which greatly improves the inflow condition of the submerged jet in the pool and make it diffuse very quickly. The model experiments were conducted, which showed that a large jet flow could be scattered by a small one through impacting. The minimum discharge ratio for flow dispersion was studied. The unequal jet impact in air for energy dissipation was brought forward firstly in this paper as a new type of energy dissipator.

  16. Magnetic energy dissipation in force-free jets

    Science.gov (United States)

    Choudhuri, Arnab Rai; Konigl, Arieh

    1986-01-01

    It is shown that a magnetic pressure-dominated, supersonic jet which expands or contracts in response to variations in the confining external pressure can dissipate magnetic energy through field-line reconnection as it relaxes to a minimum-energy configuration. In order for a continuous dissipation to occur, the effective reconnection time must be a fraction of the expansion time. The dissipation rate for the axisymmetric minimum-energy field configuration is analytically derived. The results indicate that the field relaxation process could be a viable mechanism for powering the synchrotron emission in extragalactic jets if the reconnection time is substantially shorter than the nominal resistive tearing time in the jet.

  17. Identification of energy dissipation mechanisms in CNT-reinforced nanocomposites

    Science.gov (United States)

    Gardea, Frank; Glaz, Bryan; Riddick, Jaret; Lagoudas, Dimitris C.; Naraghi, Mohammad

    2016-03-01

    In this paper we present our recent findings on the mechanisms of energy dissipation in polymer-based nanocomposites obtained through experimental investigations. The matrix of the nanocomposite was polystyrene (PS) which was reinforced with carbon nanotubes (CNTs). To study the mechanical strain energy dissipation of nanocomposites, we measured the ratio of loss to storage modulus for different CNT concentrations and alignments. CNT alignment was achieved via hot-drawing of PS-CNT. In addition, CNT agglomeration was studied via a combination of SEM imaging and Raman scanning. We found that at sufficiently low strains, energy dissipation in composites with high CNT alignment is not a function of applied strain, as no interfacial slip occurs between the CNTs and PS. However, below the interfacial slip strain threshold, damping scales monotonically with CNT content, which indicates the prevalence of CNT-CNT friction dissipation mechanisms within agglomerates. At higher strains, interfacial slip also contributes to energy dissipation. However, the increase in damping with strain, especially when CNT agglomerates are present, does not scale linearly with the effective interface area between CNTs and PS, suggesting a significant contribution of friction between CNTs within agglomerates to energy dissipation at large strains. In addition, for the first time, a comparison between the energy dissipation in randomly oriented and aligned CNT composites was made. It is inferred that matrix plasticity and tearing caused by misorientation of CNTs with the loading direction is a major cause of energy dissipation. The results of our research can be used to design composites with high energy dissipation capability, especially for applications where dynamic loading may compromise structural stability and functionality, such as rotary wing structures and antennas.

  18. Effective dissipation: Breaking time-reversal symmetry in driven microscopic energy transmission

    Science.gov (United States)

    Brown, Aidan I.; Sivak, David A.

    2016-09-01

    At molecular scales, fluctuations play a significant role and prevent biomolecular processes from always proceeding in a preferred direction, raising the question of how limited amounts of free energy can be dissipated to obtain directed progress. We examine the system and process characteristics that efficiently break time-reversal symmetry at fixed energy loss; in particular for a simple model of a molecular machine, an intermediate energy barrier produces unusually high asymmetry for a given dissipation. We relate the symmetry-breaking factors found in this model to recent observations of biomolecular machines.

  19. Energy flow and energy dissipation in a free surface.

    Science.gov (United States)

    Goldburg, Walter; Cressman, John

    2005-11-01

    Turbulent flows on a free surface are strongly compressible [1] and do not conserve energy in the absence of viscosity as bulk fluids do. Despite violation of assumptions essential to Kolmogorov's theory of 1941 (K41) [2, 3], surface flows show strong agreement with Kolmogorov scaling, though intermittency is larger there. Steady state turbulence is generated in a tank of water, and the spatially averaged energy flux is measured from the four-fifth's law at each instant of time. Likewise, the energy dissipation rate as measured from velocity gradients is also a random variable in this experiment. The energy flux - dissipation rate cross-correlation is measured to be correlated in incompressible bulk flows, but strongly anti-correlated on the surface. We argue that the reason for this discrepancy between surface and bulk flows is due to compressible effects present on the surface. [1] J. R. Cressman, J. Davoudi, W. I. Goldburg, and J. Schumacher, New Journal of Physics, 6, 53, 2004. [2] U. Frisch. Turbulence: The legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge, 1995. [3] A. N. Kolmogorov, Doklady Akad. Nauk SSSR, 32, 16, 1941.

  20. Thermodynamic Study of Energy Dissipation in Adiabatic Superconductor Logic

    Science.gov (United States)

    Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2015-09-01

    Because of its extremely high energy efficiency, adiabatic superconductor logic is one of the most promising candidates for the realization of a practical reversible computer. In a previous study, we proposed a logically and physically reversible logic gate using adiabatic superconductor logic, and numerically demonstrated reversible computing. In the numerical calculation, we assumed that the average energy dissipation at finite temperature corresponds to that at zero temperature. However, how the phase difference of a Josephson junction in adiabatic superconductor logic behaves at finite temperature is not yet well understood, and whether thermal noise can induce a nonadiabatic state change remains unclear. In the present study, we investigate energy dissipation in adiabatic superconductor logic at finite temperature through numerical analyses using the Monte Carlo method. We investigate the average and standard deviation of the energy dissipation through both numerical calculation and analytical estimation. Finally, we discuss the minimum energy dissipation required for adiabatic switching operations.

  1. Fluctuations of the dissipated energy in a granular system

    Science.gov (United States)

    Lasanta, Antonio; Hurtado, Pablo I.; Garrido, Pedro L.; Brey, J. Javier

    2011-03-01

    Large fluctuations, play an important role in many fields of science as they crucially determine the fate of a system. The statistics of these fluctuations encodes essential information on the physics of the system at hand. This is particularly important in systems far from equilibrium, where no general theory exists up to date capable of predicting macroscopic and fluctuating behavior in terms of microscopic physics.The study of fluctuations far from equilibrium may open the door to such general theory. In this work we follow this path by studying the fluctuations of the dissipated energy in an oversimplified model of a granular system. The model, first proposed and solved by Levanony and Levine [1], is a simple one dimensional diffusive lattice system which includes energy dissipation as a main ingredient. When subject to boundary heat baths, the system reaches an steady state characterized by a highly nonlinear temperature profile and a nonzero average energy dissipation. For long but finite times, the time-averaged dissipated energy fluctuates, obeying a large deviation principle. We study the large deviation function (LDF) of the dissipated energy by means of advanced Monte Carlo techniques [2], arriving to the following results: (i) the LDF of the dissipated energy has only a positive branch, meaning that for long times only positive dissipation is expected, (ii) as a result of microscopic time-irreversibility, the LDF does not obeys the Gallavotti-Cohen fluctuation theorem, (iii) the LDF is Gaussian around the average dissipation, but non-Gaussian, asymmetric tails quickly develop away from the average, and (iv) the granular system adopts a precise optimal profile in order to facilitate a given dissipation fluctuation, different from the steady profile. We compare our numerical results with predictions based on hydrodynamic fluctuation theory [3], finding good agreement.

  2. Energy-dissipation-model for metallurgical multi-phase-systems

    Energy Technology Data Exchange (ETDEWEB)

    Mavrommatis, K.T. [Rheinisch-Westfaelische Technische Hochschule Aachen, Aachen (Germany)

    1996-12-31

    Entropy production in real processes is directly associated with the dissipation of energy. Both are potential measures for the proceed of irreversible processes taking place in metallurgical systems. Many of these processes in multi-phase-systems could then be modelled on the basis of the energy-dissipation associated with. As this entity can often be estimated using very simple assumptions from first principles, the evolution of an overall measure of systems behaviour can be studied constructing an energy-dissipation -based model of the system. In this work a formulation of this concept, the Energy-Dissipation-Model (EDM), for metallurgical multi-phase-systems is given. Special examples are studied to illustrate the concept, and benefits as well as the range of validity are shown. This concept might be understood as complement to usual CFD-modelling of complex systems on a more abstract level but reproducing essential attributes of complex metallurgical systems. (author)

  3. OBSERVATION OF ENERGY DISSIPATION PEAK IN POLYSTYRENE MELT ABOVE Tg

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper two different kinds of dynamic mechanical techniques (inversed torsion pendulum and energy dissipation apparatus) were used to study the dynamic behavior of atactic monodisperse polystyrene above glass transition.The plots of energy dissipation versus temperature were presented for two atactic polystyrene samples. An apparent energy dissipation peak occurred above Tg in each plot measured by the inversed torsion pendulum, and simultaneously the sample was found to flow assuredly at the moment. To exclude the influence of the flow and demonstrate there was a peak indeed above Tg, the energy dissipation apparatus was used, in which the samples were put into a cup. An obvious peak appeared,and it was in agreement with the peak observed by the inversed torsion pendulum. On basis of the results measured by the two kinds of apparatus, a conclusion is drawn that a peak occurrs above Tg, which gives a manifestation for the existence of the liquid-liquid transition.

  4. Muscle power attenuation by tendon during energy dissipation

    National Research Council Canada - National Science Library

    Nicolai Konow; Emanuel Azizi; Thomas J. Roberts

    2012-01-01

    ... (and probably damaging) velocities and powers during active muscle fascicle lengthening. We directly measured lateral gastrocnemius muscle force and length in wild turkeys during controlled landings requiring rapid energy dissipation...

  5. Energy Dissipation Analysis of Bended SMA Bar in Isothermal State

    Institute of Scientific and Technical Information of China (English)

    PENG Gang; LI Li; TAN Jia-xiang

    2004-01-01

    The theory calculation formula is deduced about stress distribution in cross section and changes in Martensite percentages with the section height of random section shape bar under the action of the bending moment according to the Brinson's Constitutive Relation.The bar's energy dissipation capability under circulation of bending moment was analyzed and the calculation theory was set up. By using MATLAB program and the numerical calculation for uniform rectangle cross section bar, the relationships among the maximal stress and strain on cross section edge with bend load, the stress and Martensite percent's with cross section height, the energy dissipation capability with cross section height, and the energy dissipation capability with maximal strain on cross section edge are gained, also those curves are discused. It is put forward that the SMA material can be used for passive structure vibration control to dissipate energy of bend load.

  6. Robust Stabilization of Uncertain Systems Based on Energy Dissipation Concepts

    Science.gov (United States)

    Gupta, Sandeep

    1996-01-01

    Robust stability conditions obtained through generalization of the notion of energy dissipation in physical systems are discussed in this report. Linear time-invariant (LTI) systems which dissipate energy corresponding to quadratic power functions are characterized in the time-domain and the frequency-domain, in terms of linear matrix inequalities (LMls) and algebraic Riccati equations (ARE's). A novel characterization of strictly dissipative LTI systems is introduced in this report. Sufficient conditions in terms of dissipativity and strict dissipativity are presented for (1) stability of the feedback interconnection of dissipative LTI systems, (2) stability of dissipative LTI systems with memoryless feedback nonlinearities, and (3) quadratic stability of uncertain linear systems. It is demonstrated that the framework of dissipative LTI systems investigated in this report unifies and extends small gain, passivity, and sector conditions for stability. Techniques for selecting power functions for characterization of uncertain plants and robust controller synthesis based on these stability results are introduced. A spring-mass-damper example is used to illustrate the application of these methods for robust controller synthesis.

  7. Reversibility and energy dissipation in adiabatic superconductor logic.

    Science.gov (United States)

    Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2017-03-06

    Reversible computing is considered to be a key technology to achieve an extremely high energy efficiency in future computers. In this study, we investigated the relationship between reversibility and energy dissipation in adiabatic superconductor logic. We analyzed the evolution of phase differences of Josephson junctions in the reversible quantum-flux-parametron (RQFP) gate and confirmed that the phase differences can change time reversibly, which indicates that the RQFP gate is physically, as well as logically, reversible. We calculated energy dissipation required for the RQFP gate to perform a logic operation and numerically demonstrated that the energy dissipation can fall below the thermal limit, or the Landauer bound, by lowering operation frequencies. We also investigated the 1-bit-erasure gate as a logically irreversible gate and the quasi-RQFP gate as a physically irreversible gate. We calculated the energy dissipation of these irreversible gates and showed that the energy dissipation of these gate is dominated by non-adiabatic state changes, which are induced by unwanted interactions between gates due to logical or physical irreversibility. Our results show that, in reversible computing using adiabatic superconductor logic, logical and physical reversibility are required to achieve energy dissipation smaller than the Landauer bound without non-adiabatic processes caused by gate interactions.

  8. Hydraulic Jump and Energy Dissipation with Sluice Gate

    Directory of Open Access Journals (Sweden)

    Youngkyu Kim

    2015-09-01

    Full Text Available Movable weirs have been developed to address the weaknesses of conventional fixed weirs. However, the structures for riverbed protection downstream of movable weirs are designed using the criteria of fixed weirs in most cases, and these applications cause problems, such as scour and deformation of structures, due to misunderstanding the difference between different types of structures. In this study, a hydraulic experiment was conducted to examine weir type-specific hydraulic phenomena, compare hydraulic jumps and downstream flow characteristics according to different weir types, and analyze hydraulic characteristics, such as changes in water levels, velocities and energy. Additionally, to control the flow generated by a sluice gate, energy dissipators were examined herein for their effectiveness in relation to different installation locations and heights. As a result, it was found that although sluice gates generated hydraulic jumps similar to those of fixed weirs, their downstream supercritical flow increased to eventually elongate the overall hydraulic jumps. In energy dissipator installation, installation heights were found to be sensitive to energy dissipation. The most effective energy dissipator height was 10% of the downstream free surface water depth in this experiment. Based on these findings, it seems desirable to use energy dissipators to reduce energy, as such dissipators were found to be effective in reducing hydraulic jumps and protecting the riverbed under sluice gates.

  9. A Note on Kinetic Energy, Dissipation and Enstrophy

    Science.gov (United States)

    Wu, Jie-Zhi; Zhou, Ye; Fan, Meng

    1998-01-01

    The dissipation rate of a Newtonian fluid with constant shear viscosity can be shown to include three constituents: dilatation, vorticity, and surface strain. The last one is found to make no contributions to the change of kinetic energy. These dissipation constituents arc used to identify typical compact turbulent flow structures at high Reynolds numbers. The incompressible version of the simplified kinetic-energy equation is then cast to a novel form, which is free from the work rate done by surface stresses but in which the full dissipation re-enters.

  10. Relative Energy Dissipation: Sensitive to Structural Changes of Liquids

    Institute of Scientific and Technical Information of China (English)

    祖方遒; 郭丽君; 朱震刚; 凤仪

    2002-01-01

    Energy dissipation techniques, widely used in solid physics previously, are proven to be sensitive also to changes in liquid structure. It has been suggested from relative energy dissipation that changes in liquid structure can occur as a function of temperature in some ordinary binary systems such as Pb-Sn, In-Sn and In-Bi. This finding may be helpful to understand liquid structure changing patterns, therefore enriching the phenomenology of liquid state physics. This is significant for engineering practices.

  11. Energy/dissipation-preserving Birkhoffian multi-symplectic methods for Maxwell's equations with dissipation terms

    Science.gov (United States)

    Su, Hongling; Li, Shengtai

    2016-04-01

    In this paper, we propose two new energy/dissipation-preserving Birkhoffian multi-symplectic methods (Birkhoffian and Birkhoffian box) for Maxwell's equations with dissipation terms. After investigating the non-autonomous and autonomous Birkhoffian formalism for Maxwell's equations with dissipation terms, we first apply a novel generating functional theory to the non-autonomous Birkhoffian formalism to propose our Birkhoffian scheme, and then implement a central box method to the autonomous Birkhoffian formalism to derive the Birkhoffian box scheme. We have obtained four formal local conservation laws and three formal energy global conservation laws. We have also proved that both of our derived schemes preserve the discrete version of the global/local conservation laws. Furthermore, the stability, dissipation and dispersion relations are also investigated for the schemes. Theoretical analysis shows that the schemes are unconditionally stable, dissipation-preserving for Maxwell's equations in a perfectly matched layer (PML) medium and have second order accuracy in both time and space. Numerical experiments for problems with exact theoretical results are given to demonstrate that the Birkhoffian multi-symplectic schemes are much more accurate in preserving energy than both the exponential finite-difference time-domain (FDTD) method and traditional Hamiltonian scheme. We also solve the electromagnetic pulse (EMP) propagation problem and the numerical results show that the Birkhoffian scheme recovers the magnitude of the current source and reaction history very well even after long time propagation.

  12. Energy Dissipation and Apparent Viscosity of Semi-solid Metal during Rheological Processes Part Ⅰ: Energy Dissipation

    Institute of Scientific and Technical Information of China (English)

    Wen LIU; Shuming XING; Peiwei BAO; Milan ZHANG; Liming XIAO

    2007-01-01

    The energy dissipation caused by the viscous force has great effects on the flow property of semi-solid metal during rheological processes such as slurry preparing, delivering and cavity filling. Experimental results in this paper indicate that the viscous friction between semi-solid metal and pipe wall, the collisions among the solid particles, and the liquid flow around particles are the three main types of energy dissipation. On the basis of the hydromechanics, the energy dissipation calculation model is built. It is demonstrated that the micro-structural parameters such as effective solid fraction, particle size and shape, and flow parameters such as the mean velocity, the fluctuant velocity of particles and the relative velocity between the fluid and solid phase, affect the energy dissipation of semi-solid metal.

  13. Energy dissipation measurements in frequency-modulated scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Proksch, Roger [Asylum Research, Santa Barbara, CA (United States); Kalinin, Sergei V [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2010-11-12

    Local dissipation measurements by scanning probe microscopy have attracted increasing interest as a method for probing energy losses and hysteretic phenomena due to magnetic, electrical, and structural transformations at the tip-surface junction. One challenge of this technique is the lack of a standard for ensuring quantification of the dissipation signal. In the following, we explored magnetic dissipation imaging of an yttrium-iron garnet (YIG) sample, using a number of similar but not identical cantilever probes. Typical frequency-dependent dispersion of the actuator-probe assembly commonly approached {+-} 1 part in 10{sup 3} Hz{sup -1}, much larger than the minimum detectable level of {+-} 1 part in 10{sup 5} Hz{sup -1}. This cantilever-dependent behavior results in a strong crosstalk between the conservative (frequency) and dissipative channels. This crosstalk was very apparent in the YIG dissipation images and in fact should be an inherent feature of single-frequency heterodyne detection schemes. It may also be a common effect in other dissipation imaging, even down to the atomic level, and in particular may be a significant issue when there are correlations between the conservative and dissipative components. On the other hand, we present a simple method for correcting for this effect. This correction technique resulted in self-consistent results for the YIG dissipation measurements and would presumably be effective for other systems as well.

  14. Dissipation enhanced vibrational sensing in an olfactory molecular switch

    Energy Technology Data Exchange (ETDEWEB)

    Chęcińska, Agata; Heaney, Libby [Centre for Quantum Technologies, National University of Singapore, Singapore 117543 (Singapore); Pollock, Felix A. [Atomic and Laser Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Nazir, Ahsan [Photon Science Institute and School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Centre for Quantum Dynamics, Imperial College London, London SW7 2AZ (United Kingdom)

    2015-01-14

    Motivated by a proposed olfactory mechanism based on a vibrationally activated molecular switch, we study electron transport within a donor-acceptor pair that is coupled to a vibrational mode and embedded in a surrounding environment. We derive a polaron master equation with which we study the dynamics of both the electronic and vibrational degrees of freedom beyond previously employed semiclassical (Marcus-Jortner) rate analyses. We show (i) that in the absence of explicit dissipation of the vibrational mode, the semiclassical approach is generally unable to capture the dynamics predicted by our master equation due to both its assumption of one-way (exponential) electron transfer from donor to acceptor and its neglect of the spectral details of the environment; (ii) that by additionally allowing strong dissipation to act on the odorant vibrational mode, we can recover exponential electron transfer, though typically at a rate that differs from that given by the Marcus-Jortner expression; (iii) that the ability of the molecular switch to discriminate between the presence and absence of the odorant, and its sensitivity to the odorant vibrational frequency, is enhanced significantly in this strong dissipation regime, when compared to the case without mode dissipation; and (iv) that details of the environment absent from previous Marcus-Jortner analyses can also dramatically alter the sensitivity of the molecular switch, in particular, allowing its frequency resolution to be improved. Our results thus demonstrate the constructive role dissipation can play in facilitating sensitive and selective operation in molecular switch devices, as well as the inadequacy of semiclassical rate equations in analysing such behaviour over a wide range of parameters.

  15. Dissipation of Molecular Cloud Turbulence by Magnetohydrodynamic Shockwaves

    Science.gov (United States)

    Lehmann, Andrew; Wardle, Mark

    2015-08-01

    The character of star formation is intimately related to the supersonic magnetohydrodynamic (MHD) turbulent dynamics of the giant molecular clouds in which stars form. A significant amount of the turbulent energy dissipates in low velocity shock waves. These shocks cause molecular line cooling of the compressed and heated gas, and so their radiative signatures probe the nature of the turbulence. In MHD fluids the three distinct families of shocks—fast, intermediate and slow—differ in how they compress and heat the molecular gas, and so observational differences between them may also distinguish driving modes of turbulent regions.Here we use a two-fluid model to compare the characteristics of one-dimensional fast and slow MHD shocks. Fast MHD shocks are magnetically driven, forcing ion species to stream through the neutral gas ahead of the shock front. This magnetic precursor heats the gas sufficiently to create a large, warm transition zone where all the fluid variables only weakly change in the shock front. In contrast, slow MHD shocks are driven by gas pressure where neutral species collide with ion species in a thin hot slab that closely resembles an ordinary gas dynamic shock.We computed observational diagnostics for fast and slow shocks at velocities vs = 2-4 km/s and preshock Hydrogen nuclei densities n(H) = 102-4 cm-3. We followed the abundances of molecules relevant for a simple oxygen chemistry and include cooling by CO, H2 and H2O. Estimates of intensities of CO rotational lines show that high-J lines, above J = 6→5, are more strongly excited in slow MHD shocks. We discuss how these shocks could help interpret recently observed anomalously strong mid- and high-J CO lines emitted by warm gas in the Milky Way and external galaxies, and implications for simulations of MHD turbulence.

  16. DECAY OF ENERGY FOR A DISSIPATIVE ANISOTROPIC ELASTIC SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Qin Yuming; Liu Xin; Deng Shuxian

    2011-01-01

    In this article, we study the large-time behavior of energy for a N-dimensional dissipative anisotropic elastic system. By means of multiplicative techniques, energy method, and Zuazua's estimate technique, we prove the decay property of energy for anisotropic elastic system.

  17. Energy equation, the dissipation function and the Euler turbine equation

    Energy Technology Data Exchange (ETDEWEB)

    Mobarak, A. (Cairo Univ. (Egypt). Faculty of Engineering)

    1978-01-01

    The derivation of the energy equation for a rotating frame of coordinates is presented. The link between the thermodynamics and the fluid dynamics of viscous flow and which is generally given by the dissipation function is discussed in more detail. This work shows, that the published definition of the dissipation function is an improper one, and leads in connection with the energy equation to contradictory results when considering the principle of energy conservation. Further, the Euler turbine equation is discussed, and it is shown that the present form is only valid, if the flow condition in the rotor (the relative system) is steady.

  18. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    Science.gov (United States)

    Soto-Aquino, D.; Rinaldi, C.

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.

  19. Energy dissipation in magnetic null points at kinetic scales

    CERN Document Server

    Olshevsky, Vyacheslav; Eriksson, Elin; Markidis, Stefano; Lapenta, Giovanni

    2015-01-01

    We use kinetic particle-in-cell and magnetohydrodynamic simulations supported by an observational dataset to investigate magnetic reconnection in clusters of null points in space plasma. The magnetic configuration under investigation is driven by fast adiabatic flux rope compression that dissipates almost half of the initial magnetic field energy. In this phase powerful currents are excited producing secondary instabilities, and the system is brought into a state of `intermittent turbulence' within a few ion gyro-periods. Reconnection events are distributed all over the simulation domain and energy dissipation is rather volume-filling. Numerous spiral null points interconnected via their spines form null lines embedded into magnetic flux ropes; null point pairs demonstrate the signatures of torsional spine reconnection. However, energy dissipation mainly happens in the shear layers formed by adjacent flux ropes with oppositely directed currents. In these regions radial null pairs are spontaneously emerging an...

  20. Protein-mediated energy-dissipating pathways in mitochondria.

    Science.gov (United States)

    Starkov, Anatoly A

    2006-10-27

    Mitochondrial production of reactive oxygen species (ROS) is a well-established fact of fundamental importance to aging and etiology of many pathologies with serious public health implications. The ROS production is an innate property of mitochondrial biochemistry inseparable from the oxidative metabolism. Recent discoveries indicate that in addition to several ROS-detoxifying enzyme systems, which remove ROS, mitochondria may also be able to limit their ROS production by the mechanism comprising several protein-mediated energy-dissipating ("uncoupling") pathways. Although the physiological significance and in vivo modus operandi of these pathways remain to be elucidated, several proteins potentially capable of energy dissipation are known. This mini-review addresses the identity of mitochondrial protein-mediated energy-dissipating pathways and the experimental evidence to their role in controlling ROS production.

  1. Identification of a mechanism of photoprotective energy dissipation in higher plants.

    Science.gov (United States)

    Ruban, Alexander V; Berera, Rudi; Ilioaia, Cristian; van Stokkum, Ivo H M; Kennis, John T M; Pascal, Andrew A; van Amerongen, Herbert; Robert, Bruno; Horton, Peter; van Grondelle, Rienk

    2007-11-22

    Under conditions of excess sunlight the efficient light-harvesting antenna found in the chloroplast membranes of plants is rapidly and reversibly switched into a photoprotected quenched state in which potentially harmful absorbed energy is dissipated as heat, a process measured as the non-photochemical quenching of chlorophyll fluorescence or qE. Although the biological significance of qE is established, the molecular mechanisms involved are not. LHCII, the main light-harvesting complex, has an inbuilt capability to undergo transformation into a dissipative state by conformational change and it was suggested that this provides a molecular basis for qE, but it is not known if such events occur in vivo or how energy is dissipated in this state. The transition into the dissipative state is associated with a twist in the configuration of the LHCII-bound carotenoid neoxanthin, identified using resonance Raman spectroscopy. Applying this technique to study isolated chloroplasts and whole leaves, we show here that the same change in neoxanthin configuration occurs in vivo, to an extent consistent with the magnitude of energy dissipation. Femtosecond transient absorption spectroscopy, performed on purified LHCII in the dissipative state, shows that energy is transferred from chlorophyll a to a low-lying carotenoid excited state, identified as one of the two luteins (lutein 1) in LHCII. Hence, it is experimentally demonstrated that a change in conformation of LHCII occurs in vivo, which opens a channel for energy dissipation by transfer to a bound carotenoid. We suggest that this is the principal mechanism of photoprotection.

  2. Nonlinear aspects of energy dissipation in wood-panel joints

    Institute of Scientific and Technical Information of China (English)

    Sara Casciati

    2007-01-01

    The joints connecting vertical and horizontal elements are the "weak link" in structural systems assembled from wood panels. If they are too weak, local failures may occur, resulting in performance that is significantly below expectations. If they are too resistant, the joints may be unable to dissipate energy during vibrations, thus possibly initiating a fast progressive failure. This paper re-processes and re-elaborates the results of shaking table tests previously carried out by the author and other co-workers. The goal is to assess the feasibility of a joint which is able to dissipate energy during vibration, without degrading the connection performance.

  3. Energy Dissipation in Sandwich Structures During Axial Compression

    DEFF Research Database (Denmark)

    Urban, Jesper

    2002-01-01

    The purpose of this paper is to investigate the energy dissipation in sandwich structures during axial crushing. Axial crushing tests on six sandwich elements are described. The sandwich elements consist of a polyurethane core and E-glass/Polyester skin. The elements compare to full-scale structu......The purpose of this paper is to investigate the energy dissipation in sandwich structures during axial crushing. Axial crushing tests on six sandwich elements are described. The sandwich elements consist of a polyurethane core and E-glass/Polyester skin. The elements compare to full...

  4. Isospin Effect of Coulomb Interaction on Momentum Dissipation in Intermediate Energy Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Ye; GUO Wen-Jun; XING Yong-Zhong; Li Xi-Guo

    2004-01-01

    We investigate the isospin effect of Coulomb interaction on the momentum dissipation or nuclear stopping in the intermediate energy heavy ion collisions by using the isospin-dependent quantum molecular dynamics model. The calculated results show that the Coulomb interaction induces obviously the reductions of the momentum dissipation. We also find that the variation amplitude of momentum dissipation induced by the Coulomb interaction depends sensitively on the form and strength of symmetry potential. However, the isospin effect of Coulomb interaction on the momentum dissipation is less than that induced by the in-medium nucleon-nucleon cross section.In this case, Coulomb interaction does not change obviously the isospin effect of momentum dissipation induced by the in-medium two-body collision. In particular, the Coulomb interaction is preferable for standing up the isospin effect of in-medium nucleon-nucleon cross section on the momentum dissipation and reducing the isospin effect of symmetry potential on it, which is important for obtaining the feature about the sensitive dependence of momentum dissipation on the in-medium nucleon-nucleon cross section and weakly on the symmetry potential.

  5. ENERGY DISSIPATION IN MAGNETIC NULL POINTS AT KINETIC SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Olshevsky, Vyacheslav; Lapenta, Giovanni [Centre for Mathematical Plasma Astrophysics (CmPA), KU Leuven (Belgium); Divin, Andrey [Department of Physics, St. Petersburg State University (Russian Federation); Eriksson, Elin [Swedish Institute of Space Physics, Uppsala Division, Uppsala (Sweden); Markidis, Stefano, E-mail: sya@mao.kiev.ua [High Performance Computing and Visualization (HPCViz), KTH Royal Institute of Technology, Stockholm (Sweden)

    2015-07-10

    We use kinetic particle-in-cell and MHD simulations supported by an observational data set to investigate magnetic reconnection in clusters of null points in space plasma. The magnetic configuration under investigation is driven by fast adiabatic flux rope compression that dissipates almost half of the initial magnetic field energy. In this phase powerful currents are excited producing secondary instabilities, and the system is brought into a state of “intermittent turbulence” within a few ion gyro-periods. Reconnection events are distributed all over the simulation domain and energy dissipation is rather volume-filling. Numerous spiral null points interconnected via their spines form null lines embedded into magnetic flux ropes; null point pairs demonstrate the signatures of torsional spine reconnection. However, energy dissipation mainly happens in the shear layers formed by adjacent flux ropes with oppositely directed currents. In these regions radial null pairs are spontaneously emerging and vanishing, associated with electron streams and small-scale current sheets. The number of spiral nulls in the simulation outweighs the number of radial nulls by a factor of 5–10, in accordance with Cluster observations in the Earth's magnetosheath. Twisted magnetic fields with embedded spiral null points might indicate the regions of major energy dissipation for future space missions such as the Magnetospheric Multiscale Mission.

  6. Energy Dissipation in Magnetic Null Points at Kinetic Scales

    Science.gov (United States)

    Olshevsky, Vyacheslav; Divin, Andrey; Eriksson, Elin; Markidis, Stefano; Lapenta, Giovanni

    2015-07-01

    We use kinetic particle-in-cell and MHD simulations supported by an observational data set to investigate magnetic reconnection in clusters of null points in space plasma. The magnetic configuration under investigation is driven by fast adiabatic flux rope compression that dissipates almost half of the initial magnetic field energy. In this phase powerful currents are excited producing secondary instabilities, and the system is brought into a state of “intermittent turbulence” within a few ion gyro-periods. Reconnection events are distributed all over the simulation domain and energy dissipation is rather volume-filling. Numerous spiral null points interconnected via their spines form null lines embedded into magnetic flux ropes; null point pairs demonstrate the signatures of torsional spine reconnection. However, energy dissipation mainly happens in the shear layers formed by adjacent flux ropes with oppositely directed currents. In these regions radial null pairs are spontaneously emerging and vanishing, associated with electron streams and small-scale current sheets. The number of spiral nulls in the simulation outweighs the number of radial nulls by a factor of 5-10, in accordance with Cluster observations in the Earth's magnetosheath. Twisted magnetic fields with embedded spiral null points might indicate the regions of major energy dissipation for future space missions such as the Magnetospheric Multiscale Mission.

  7. Dissipation of tidal energy and Love numbers on Enceladus

    Science.gov (United States)

    Shoji, D.; Hussmann, H.; Kurita, K.; Sohl, F.

    2011-10-01

    In this work, by using free oscillation theory, we calculated energy dissipation in Enceladus by considering the several inner structure models and rheologies. We also estimated Love and Shida numbers with and without the liquid layer, which is effective way to consider the heat mechanism and design future missions.

  8. Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 2; Waves and Dissipation

    Science.gov (United States)

    Wilson, L. B., III; Sibeck, D. G.; Breneman, A. W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.

    2014-01-01

    We present the first quantified measure of the energy dissipation rates, due to wave-particle interactions, in the transition region of the Earth's collision-less bow shock using data from the Time History of Events and Macro-Scale Interactions during Sub-Storms spacecraft. Our results show that wave-particle interactions can regulate the global structure and dominate the energy dissipation of collision-less shocks. In every bow shock crossing examined, we observed both low-frequency (less than 10 hertz) and high-frequency (approximately or greater than10 hertz) electromagnetic waves throughout the entire transition region and into the magnetosheath. The low-frequency waves were consistent with magnetosonic-whistler waves. The high-frequency waves were combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. The high-frequency waves had the following: (1) peak amplitudes exceeding delta B approximately equal to 10 nanoteslas and delta E approximately equal to 300 millivolts per meter, though more typical values were delta B approximately equal to 0.1-1.0 nanoteslas and delta E approximately equal to 10-50 millivolts per meter (2) Poynting fluxes in excess of 2000 microWm(sup -2) (micro-waves per square meter) (typical values were approximately 1-10 microWm(sup -2) (micro-waves per square meter); (3) resistivities greater than 9000 omega meters; and (4) associated energy dissipation rates greater than 10 microWm(sup -3) (micro-waves per cubic meter). The dissipation rates due to wave-particle interactions exceeded rates necessary to explain the increase in entropy across the shock ramps for approximately 90 percent of the wave burst durations. For approximately 22 percent of these times, the wave-particle interactions needed to only be less than or equal to 0.1 percent efficient to balance the nonlinear wave steepening that produced the shock waves. These results show that wave

  9. Dissipation and energy balance in electronic dynamics of Na clusters

    Science.gov (United States)

    Vincendon, Marc; Suraud, Eric; Reinhard, Paul-Gerhard

    2017-06-01

    We investigate the impact of dissipation on the energy balance in the electron dynamics of metal clusters excited by strong electro-magnetic pulses. The dynamics is described theoretically by Time-Dependent Density-Functional Theory (TDDFT) at the level of Local Density Approximation (LDA) augmented by a self interaction correction term and a quantum collision term in Relaxation-Time Approximation (RTA). We evaluate the separate contributions to the total excitation energy, namely energy exported by electron emission, potential energy due to changing charge state, intrinsic kinetic and potential energy, and collective flow energy. The balance of these energies is studied as function of the laser parameters (frequency, intensity, pulse length) and as function of system size and charge. We also look at collisions with a highly charged ion and here at the dependence on the impact parameter (close versus distant collisions). Dissipation turns out to be small where direct electron emission prevails namely for laser frequencies above any ionization threshold and for slow electron extraction in distant collisions. Dissipation is large for fast collisions and at low laser frequencies, particularly at resonances. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  10. Wave propagation and energy dissipation in viscoelastic granular media

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In terms of viscoelasticity, the relevant theory of wave in granular media is analyzed in this paper.Under the conditions of slight deformation of granules, wave equation, complex number expressions of propagation vector and attenuation vector, attenuation coefficient expressions of longitudinal wave and transverse wave,etc, are analyzed and deduced. The expressions of attenuation coefficients of viscoelastic longitudinal wave and transverse wave show that the attenuation of wave is related to frequency. The higher the frequency is, the more the attenuation is, which is tested by the laboratory experiment. In addition, the energy dissipation is related to the higher frequency wave that is absorbed by granular media. The friction amongst granular media also increase the energy dissipation. During the flowing situation the expression of transmission factor of energy shows that the granular density difference is the key factor which leads to the attenuation of vibrating energy.This has been proved by the experiment results.

  11. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Soto-Aquino, D. [ERC Incorporated, Air Force Research Laboratory, 10 E. Saturn Blvd., Edwards AFB, CA 93524 (United States); Rinaldi, C., E-mail: carlos.rinaldi@bme.ufl.edu [J. Crayton Pruitt Family Department of Biomedical Engineering and Department of Chemical Engineering, University of Florida, PO Box 116131, Gainesville, FL 32611-6131 (United States)

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given. - Highlights: • Rosensweig's model for SAR was extended to high fields. • The MRSh relaxation equation was used to predict SAR at high fields. • Rotational Brownian dynamics simulations were used to predict SAR. • The results of these models were compared. • Predictions of effect of size and field conditions on SAR are presented.

  12. Wave Energy Dissipation by Permeable and Impermeable Submerged Breakwaters

    Directory of Open Access Journals (Sweden)

    Yonguk Ryu

    2016-01-01

    Full Text Available The purpose of this study was to investigate the effect of the porosity of a submerged breakwater on wave fields, including snapshots of the wave, velocity profiles of the water over the structure, and the kinetic energy of the wave. Two-dimensional experiments were conducted for submerged trapezoidal breakwaters with impermeable and permeable layers in a two-dimensional wave tank. The flow fields obtained by the particle image velocimetry (PIV technique are presented to understand the flow characteristics due to the waves’ interactions with the submerged impermeable and permeable breakwaters, and these characteristics showed that the vertical velocity dominant flow occurred under the crest of the wave. In addition, the kinetic energies were compared for different porosities and wave conditions. The comparisons of the wave flow fields and kinetic energy distributions showed that the different pattern of the dissipated kinetic energy was dependent on the porosity. The dissipation of kinetic energy also was observed to increase as the wave period increased. The comparisons indicated that greater amounts of energy were dissipated for longer wave periods.

  13. Energy dissipation dataset for reversible logic gates in quantum dot-cellular automata.

    Science.gov (United States)

    Bahar, Ali Newaz; Rahman, Mohammad Maksudur; Nahid, Nur Mohammad; Hassan, Md Kamrul

    2017-02-01

    This paper presents an energy dissipation dataset of different reversible logic gates in quantum-dot cellular automata. The proposed circuits have been designed and verified using QCADesigner simulator. Besides, the energy dissipation has been calculated under three different tunneling energy level at temperature T=2 K. For estimating the energy dissipation of proposed gates; QCAPro tool has been employed.

  14. Energy dissipation of highly charged ions on Al oxide films.

    Science.gov (United States)

    Lake, R E; Pomeroy, J M; Sosolik, C E

    2010-03-03

    Slow highly charged ions (HCIs) carry a large amount of potential energy that can be dissipated within femtoseconds upon interaction with a surface. HCI-insulator collisions result in high sputter yields and surface nanofeature creation due to strong coupling between the solid's electronic system and lattice. For HCIs interacting with Al oxide, combined experiments and theory indicate that defect mediated desorption can explain reasonably well preferential O atom removal and an observed threshold for sputtering due to potential energy. These studies have relied on measuring mass loss on the target substrate or probing craters left after desorption. Our approach is to extract highly charged ions onto the Al oxide barriers of metal-insulator-metal tunnel junctions and measure the increased conductance in a finished device after the irradiated interface is buried under the top metal layer. Such transport measurements constrain dynamic surface processes and provide large sets of statistics concerning the way individual HCI projectiles dissipate their potential energy. Results for Xe(q +) for q = 32, 40, 44 extracted onto Al oxide films are discussed in terms of postirradiation electrical device characteristics. Future work will elucidate the relationship between potential energy dissipation and tunneling phenomena through HCI modified oxides.

  15. Estimating wave energy dissipation in the surf zone using thermal infrared imagery

    National Research Council Canada - National Science Library

    Carini, Roxanne J; Chickadel, C. Chris; Jessup, Andrew T; Thomson, Jim

    2015-01-01

    ...‐resolving model by Duncan (1981). The wave energy dissipation rate estimates show a pattern of increased breaking during low tide over a sand bar, consistent with in situ turbulent kinetic energy dissipation rate estimates from fixed...

  16. Energy Dissipation by Metamorphic Micro-Robots in Viscous Fluids

    CERN Document Server

    Hogg, Tad

    2015-01-01

    Microscopic robots could perform tasks with high spatial precision, such as acting on precisely-targeted cells in biological tissues. Some tasks may benefit from robots that change shape, such as elongating to improve chemical gradient sensing or contracting to squeeze through narrow channels. This paper evaluates the energy dissipation for shape-changing (i.e., metamorphic) robots whose size is comparable to bacteria. Unlike larger robots, surface forces dominate the dissipation. Theoretical estimates indicate that the power likely to be available to the robots, as determined by previous studies, is sufficient to change shape fairly rapidly even in highly-viscous biological fluids. Achieving this performance will require significant improvements in manufacturing and material properties compared to current micromachines. Furthermore, optimally varying the speed of shape change only slightly reduces energy use compared to uniform speed, thereby simplifying robot controllers.

  17. Stable schemes for dissipative particle dynamics with conserved energy

    Energy Technology Data Exchange (ETDEWEB)

    Stoltz, Gabriel, E-mail: stoltz@cermics.enpc.fr

    2017-07-01

    This article presents a new numerical scheme for the discretization of dissipative particle dynamics with conserved energy. The key idea is to reduce elementary pairwise stochastic dynamics (either fluctuation/dissipation or thermal conduction) to effective single-variable dynamics, and to approximate the solution of these dynamics with one step of a Metropolis–Hastings algorithm. This ensures by construction that no negative internal energies are encountered during the simulation, and hence allows to increase the admissible timesteps to integrate the dynamics, even for systems with small heat capacities. Stability is only limited by the Hamiltonian part of the dynamics, which suggests resorting to multiple timestep strategies where the stochastic part is integrated less frequently than the Hamiltonian one.

  18. Computational model for noncontact atomic force microscopy: energy dissipation of cantilever.

    Science.gov (United States)

    Senda, Yasuhiro; Blomqvist, Janne; Nieminen, Risto M

    2016-09-21

    We propose a computational model for noncontact atomic force microscopy (AFM) in which the atomic force between the cantilever tip and the surface is calculated using a molecular dynamics method, and the macroscopic motion of the cantilever is modeled by an oscillating spring. The movement of atoms in the tip and surface is connected with the oscillating spring using a recently developed coupling method. In this computational model, the oscillation energy is dissipated, as observed in AFM experiments. We attribute this dissipation to the hysteresis and nonconservative properties of the interatomic force that acts between the atoms in the tip and sample surface. The dissipation rate strongly depends on the parameters used in the computational model.

  19. Energy dissipation in magnetic null points at kinetic scales

    OpenAIRE

    Olshevsky, Vyacheslav; Divin, Andrey; Eriksson, Elin; Markidis, Stefano; Lapenta, Giovanni

    2015-01-01

    We use kinetic particle-in-cell and MHD simulations supported by an observational data set to investigate magnetic reconnection in clusters of null points in space plasma. The magnetic configuration under investigation is driven by fast adiabatic flux rope compression that dissipates almost half of the initial magnetic field energy. In this phase powerful currents are excited producing secondary instabilities, and the system is brought into a state of "intermittent turbulence" within a few io...

  20. SEISMIC ISOLATION AND ENERGY DISSIPATION: THEORETICAL BASIS AND APPLICATIONS

    OpenAIRE

    Marsico, Maria Rosaria

    2008-01-01

    The protection of the building from seismic events is a fundamental phase in the structures design should be introduced to avoid the loss of lives especially when it occurs in developing countries. This natural calamity produces social and economic consequences because a lot of people are killed by the collapse of brittle heavy unreinforced masonry or poorly constructed concrete buildings. The engineers can use in their professional practice seismic isolation or energy dissipation devices to ...

  1. Hybrid Recentering Energy Dissipative Device for Seismic Protection

    Directory of Open Access Journals (Sweden)

    Wenke Tang

    2014-01-01

    Full Text Available A hybrid recentering energy dissipative device that has both recentering and energy dissipation capabilities is proposed and studied in this paper. The proposed hybrid device, referred to as the hybrid shape memory alloy (SMA recentering viscous fluid (RCVF energy dissipation device, connects the apex of a chevron brace to an adjoining beam using two sets of SMA wires arranged in series on either side of the brace and a viscous fluid damper arranged in parallel with the SMA wires. The viscous damper is used because being a velocity-dependent device it does not exert any force that counteracts the recentering force from the SMA wires after the vibration of the frame ceases. In the numerical study, the Wilde’s SMA constitutive model is used to model the SMA wires, and the Maxwell model is used to simulate the viscous fluid damper. To demonstrate the viability and effectiveness of the proposed hybrid device, comparative studies are performed on several single-story shear frames and a series of four-story steel frames. The results show that the frames equipped with the hybrid device have noticeably smaller peak top story displacements and residual story drifts when subjected to ground motions at three different intensity levels.

  2. Analysis of base isolation and energy dissipation systems for NPP structures using fragility models

    Energy Technology Data Exchange (ETDEWEB)

    Vulpe, A. [Technical Univ. of Iasi (Romania). Dept. of Structural Mechanics; Carausu, A. [Technical Univ. of Iasi (Romania). Dept. od Mathematics

    1995-12-31

    Some extensions of analytical models for base isolation and energy dissipation systems, involving fragility models, are presented. The equation of motion is extended with a term corresponding to Energy Dissipation effect, and the fragility of IEDS (Isolation and Energy Dissipations Systems) is evaluated using a bilinear regression line. (author). 11 refs., 2 figs.

  3. Response and energy dissipation of rock under stochastic stress waves

    Institute of Scientific and Technical Information of China (English)

    DENG Jian; BIAN Li

    2007-01-01

    The response and energy dissipation of rock under stochastic stress waves were analyzed based on dynamic fracture criterion of brittle materials integrating with Fourier transform methods of spectral analysis When the stochastic stress waves transnut through rocks,the frequency and energy ratio of harmonic components were calculated by analytical and discrete analysis methods.The stress waves in shale, malmstone and liparite were taken as examples to illustrate the proposed analysis methods.The results show the harder the rock, the less absorption of energy,the more the useless elastic waves transmitting through rock, and the narrower the cutoff frequency to fracture rock.When the whole stress energy doubles either by doubling the duration time or byincreasing the amplitude of stress wave, ratio of the energy of elastic waves transmitting through rock to me whole stress energy (i.e.energy dissipation ratio)is decreased to 10%-15%. When doubling the duration time.the cutoff frequency to fracture rock remains constant.However, with the increase of the amplitude of stress wave. the cutoff frequency increases accordingly.

  4. Statistics of the dissipated energy in driven diffusive systems.

    Science.gov (United States)

    Lasanta, A; Hurtado, Pablo I; Prados, A

    2016-03-01

    Understanding the physics of non-equilibrium systems remains one of the major open questions in statistical physics. This problem can be partially handled by investigating macroscopic fluctuations of key magnitudes that characterise the non-equilibrium behaviour of the system of interest; their statistics, associated structures and microscopic origin. During the last years, some new general and powerful methods have appeared to delve into fluctuating behaviour that have drastically changed the way to address this problem in the realm of diffusive systems: macroscopic fluctuation theory (MFT) and a set of advanced computational techniques that make it possible to measure the probability of rare events. Notwithstanding, a satisfactory theory is still lacking in a particular case of intrinsically non-equilibrium systems, namely those in which energy is not conserved but dissipated continuously in the bulk of the system (e.g. granular media). In this work, we put forward the dissipated energy as a relevant quantity in this case and analyse in a pedagogical way its fluctuations, by making use of a suitable generalisation of macroscopic fluctuation theory to driven dissipative media.

  5. A new concept to reveal protein dynamics based on energy dissipation.

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Ma

    Full Text Available Protein dynamics is essential for its function, especially for intramolecular signal transduction. In this work we propose a new concept, energy dissipation model, to systematically reveal protein dynamics upon effector binding and energy perturbation. The concept is applied to better understand the intramolecular signal transduction during allostery of enzymes. The E. coli allosteric enzyme, aspartokinase III, is used as a model system and special molecular dynamics simulations are designed and carried out. Computational results indicate that the number of residues affected by external energy perturbation (i.e. caused by a ligand binding during the energy dissipation process shows a sigmoid pattern. Using the two-state Boltzmann equation, we define two parameters, the half response time and the dissipation rate constant, which can be used to well characterize the energy dissipation process. For the allostery of aspartokinase III, the residue response time indicates that besides the ACT2 signal transduction pathway, there is another pathway between the regulatory site and the catalytic site, which is suggested to be the β15-αK loop of ACT1. We further introduce the term "protein dynamical modules" based on the residue response time. Different from the protein structural modules which merely provide information about the structural stability of proteins, protein dynamical modules could reveal protein characteristics from the perspective of dynamics. Finally, the energy dissipation model is applied to investigate E. coli aspartokinase III mutations to better understand the desensitization of product feedback inhibition via allostery. In conclusion, the new concept proposed in this paper gives a novel holistic view of protein dynamics, a key question in biology with high impacts for both biotechnology and biomedicine.

  6. Energy Dissipation of Axionic Boson Stars in Magnetized Conducting Media

    CERN Document Server

    Iwazaki, A

    1999-01-01

    Axions are possible candidates of dark matter in the present Universe. They have been argued to form axionic boson stars. Since they are shown to possess oscillating electric fields in a magnetic field, they loose their energies in magnetized conducting media. We show that colliding with a white dwarf, the axionic boson stars dissipate their energies with the rate being roughly $\\sim 10^{35}$ erg/s. According to recent evaluation of the population of the white dwarfs as candidates of MACHOs, we estimate that the event rate of the collisions is roughly 4 per year in a solid angle $5^{\\circ}\\times 5^{\\circ}$.

  7. A photophysical control mechanism for zeaxanthin-associated radiationless energy dissipation in photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Frank, H.A.; Cua, A. [Connecticut Univ., Storrs, CT (United States). Dept. of Chemistry; Young, A. [Johns Moores Univ., Liverpool (United Kingdom). School of Biological and Earth Sciences; Gosztola, D.; Wasielewski, M.R. [Argonne National Lab., IL (United States)

    1994-09-01

    Understanding the way in which excess solar energy is dissipated by photosynthetic membranes under high light stress is a major problem in photosynthesis studies. This paper reports femtosecond time-resolved, fast-transient optical spectroscopic analyses of three important xanthophylls: violaxanthin, antheraxanthin, zeoaxanthin. The results support the notion that the enzymatic reactions that interconvert these xanthophylls act as a kind of ``molecular gear shift`` controlling whether the molecules function as light-harvesting pigments performing forward energy transfer or as fluorescence quenchers performing reverse energy transfer.

  8. Energy dissipation control of magneto-rheological damper

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker; Krenk, Steen

    2008-01-01

    The efficiency of a damper depends on the amount of energy dissipation during a typical cycle experienced by the damper. For viscous dampers this leads to substantial frequency dependence. For dampers with hysteresis the tuning and efficiency also depends on the apparent amplitude of the damper...... response. For irregular damper response the amplitude is evaluated as the magnitude of closed hysteresis loops. These loops are identified in real time by the rainflow rules, stored in a Markov-type matrix and used to predict the magnitude of subsequent closed loops. From this prediction the properties...

  9. Energy dissipation in intercalated carbon nanotube forests with metal layers

    Science.gov (United States)

    Boddu, Veera M.; Brenner, Matthew W.

    2016-02-01

    Vertically aligned carbon nanotube (CNT) forests were synthesized to study their quasi-static mechanical properties in a layered configuration with metallization. The top and bottom surfaces of CNT forests were metalized with Ag, Fe, and In using paste, sputtering, and thermal evaporation, respectively. Stacks of one, two, and three layers of these forests were assembled and compressed to measure their mechanical properties. The samples were strain limited to 0.7, and the results indicate that energy dissipation is approximately linear with respect to the number of layers and relatively independent of metal type. The energy per unit volume was approximately the same for all samples. Successive stacking of CNT forests reduces local buckling events, which is enhanced with a thick Ag deposition on the CNT forest surface. Young's modulus was also observed to increase as the number of layers was increased. These results are useful in the design of composite materials for high energy absorption and high stiffness applications.

  10. Energy diffusion controlled reaction rate in dissipative Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    Deng Mao-Lin; Zhu Wei-Qiu

    2007-01-01

    In this paper the energy diffusion controlled reaction rate in dissipative Hamiltonian systems is investigated by using the stochastic averaging method for quasi Hamiltonian systems. The boundary value problem of mean first-passage time (MFPT) of averaged system is formulated and the energy diffusion controlled reaction rate is obtained as the inverse of MFPT. The energy diffusion controlled reaction rate in the classical Kramers bistable potential and in a two-dimensional bistable potential with a heat bath are obtained by using the proposed approach respectively. The obtained results are then compared with those from Monte Carlo simulation of original systems and from the classical Kramers theory. It is shown that the reaction rate obtained by using the proposed approach agrees well with that from Monte Carlo simulation and is more accurate than the classical Kramers rate.

  11. DISSIPATION OF WAVE ENERGY ON VERY MILD SLOPE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper presents the analysis and calculation of wave attenuation when waves travel on sand bed, sand ripple bed and muddy bed, respectively. The study shows that (1) The dissipation of wave energy due to bottom percolation may be neglected on sand bed; (2) The wave attenuation due to the friction of sand ripples is one order higher than that of flat sand bed and (3) The energy loss of waves propagating on muddy bed is the largest. Then, the equivalent coefficients of friction are calculated in order to compare with the solution by the bottom-friction model. Wave attenuation are also computed by the Bingham-model and the principle of conservation of wave energy flux on very mild muddy slope. The results coincide well with the wave information from the Lianyungang Wave Observation Station. Theoretical prediction proves that the equivalent coefficients of friction strongly rely on water depth, which inerease with decreasing depth.

  12. Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics.

    Science.gov (United States)

    Petsev, Nikolai D; Leal, L Gary; Shell, M Scott

    2015-01-28

    We present a new multiscale simulation methodology for coupling a region with atomistic detail simulated via molecular dynamics (MD) to a numerical solution of the fluctuating Navier-Stokes equations obtained from smoothed dissipative particle dynamics (SDPD). In this approach, chemical potential gradients emerge due to differences in resolution within the total system and are reduced by introducing a pairwise thermodynamic force inside the buffer region between the two domains where particles change from MD to SDPD types. When combined with a multi-resolution SDPD approach, such as the one proposed by Kulkarni et al. [J. Chem. Phys. 138, 234105 (2013)], this method makes it possible to systematically couple atomistic models to arbitrarily coarse continuum domains modeled as SDPD fluids with varying resolution. We test this technique by showing that it correctly reproduces thermodynamic properties across the entire simulation domain for a simple Lennard-Jones fluid. Furthermore, we demonstrate that this approach is also suitable for non-equilibrium problems by applying it to simulations of the start up of shear flow. The robustness of the method is illustrated with two different flow scenarios in which shear forces act in directions parallel and perpendicular to the interface separating the continuum and atomistic domains. In both cases, we obtain the correct transient velocity profile. We also perform a triple-scale shear flow simulation where we include two SDPD regions with different resolutions in addition to a MD domain, illustrating the feasibility of a three-scale coupling.

  13. Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott [Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106-5080 (United States)

    2015-01-28

    We present a new multiscale simulation methodology for coupling a region with atomistic detail simulated via molecular dynamics (MD) to a numerical solution of the fluctuating Navier-Stokes equations obtained from smoothed dissipative particle dynamics (SDPD). In this approach, chemical potential gradients emerge due to differences in resolution within the total system and are reduced by introducing a pairwise thermodynamic force inside the buffer region between the two domains where particles change from MD to SDPD types. When combined with a multi-resolution SDPD approach, such as the one proposed by Kulkarni et al. [J. Chem. Phys. 138, 234105 (2013)], this method makes it possible to systematically couple atomistic models to arbitrarily coarse continuum domains modeled as SDPD fluids with varying resolution. We test this technique by showing that it correctly reproduces thermodynamic properties across the entire simulation domain for a simple Lennard-Jones fluid. Furthermore, we demonstrate that this approach is also suitable for non-equilibrium problems by applying it to simulations of the start up of shear flow. The robustness of the method is illustrated with two different flow scenarios in which shear forces act in directions parallel and perpendicular to the interface separating the continuum and atomistic domains. In both cases, we obtain the correct transient velocity profile. We also perform a triple-scale shear flow simulation where we include two SDPD regions with different resolutions in addition to a MD domain, illustrating the feasibility of a three-scale coupling.

  14. Adhesion on Nanoorganized Multilayers: Surface Thermodynamics and Local Energy Dissipation

    Directory of Open Access Journals (Sweden)

    Yolla Kazzi

    2010-01-01

    Full Text Available Nanostructured multilayers, composed of alternate organic (3-mercaptopropyltrimethoxysilane, alkylthiols, polydimethylsiloxane and metallic (gold layers, are grafted onto glass and prepared in order to modify the mechanical and dissipative properties of a thin surface layer of the substrate. The external face is constituted either of gold or alkyl groups, allowing us to study two types of surfaces exhibiting different chemical and thermodynamic properties. The formation and the structure of the nanostructured multilayers are first examined by means of various techniques such as atomic force microscopy (AFM, wettability, X-ray photoelectron spectroscopy (XPS, and conductivity measurements. All the results concerning the structure of the systems studied are used to understand the adhesive properties at short contact times (tack of the multi-layers and an elastomer (polyisoprene. The influence of the structural aspects of gold layers, the length of the alkyl chains of the top layer, the terminal functionality, and the length of the confined organic layer between two gold layers on the energy of adhesion regarding the polyisoprene are clearly demonstrated. The influence of the nano-structured surface layers on adhesion phenomena is explained in terms of either the surface thermodynamics or local energy dissipation during the propagation of a fracture according to complex mechanisms.

  15. Seismic Behaviour of Reinforced Concrete Slit Shear Walls Energy Dissipators

    Directory of Open Access Journals (Sweden)

    Sergiu Băetu

    2010-01-01

    Full Text Available The types of slit walls energy dissipators, from monolith or precast reinforced concrete, proposed by researchers and the seismic behaviour of these types of walls are described. The overall ductility of the structure increases, considering the energy dissipation solutions proposed by the researchers of the reinforced concrete walls, resulting a supplementary safety for the structure. The objective of these solutions is to create an ideal structure for tall multi-storey buildings, that behaves as a rigid structure at low seismic action and turns into a flexible one in case of a high intensity earthquake action. The solutions for increasing ductility proposed in this paper are viable and easily to use in constructions practice. For the analysis of slit wall, the researchers used a series of analytical calculation methods, among the most important being the equivalent frame method and the finite element method, both presented s. 3 of the paper. The researchers concluded that by using this calculations methods, the dynamic behaviour of the reinforced concrete slit walls can be simulated very accurate and realistic.

  16. Dynamically controlled energy dissipation for fast magnetic vortex switching

    Science.gov (United States)

    Badea, R.; Berezovsky, J.

    2017-09-01

    Manipulation of vortex states in magnetic media provides new routes towards information storage and processing technology. The typical slow relaxation times (˜100 ns) of magnetic vortex dynamics may present an obstacle to the realization of these applications. Here, we investigate how a vortex state in a ferromagnetic microdisk can be manipulated in a way that translates the vortex core while enhancing energy dissipation to rapidly damp the vortex dynamics. We use time-resolved differential magneto-optical Kerr effect microscopy to measure the motion of the vortex core in response to applied magnetic fields. We first map out how the vortex core becomes sequentially trapped by pinning sites as it translates across the disk. After applying a fast magnetic field step to translate the vortex from one pinning site to another, we observe long-lived dynamics of the vortex as it settles to the new equilibrium. We then demonstrate how the addition of a short (magnetic field pulse can induce additional energy dissipation, strongly damping the long-lived dynamics. A model of the vortex dynamics using the Thiele equation of motion explains the mechanism behind this effect.

  17. Energy dissipation dataset for reversible logic gates in quantum dot-cellular automata

    Directory of Open Access Journals (Sweden)

    Ali Newaz Bahar

    2017-02-01

    Full Text Available This paper presents an energy dissipation dataset of different reversible logic gates in quantum-dot cellular automata. The proposed circuits have been designed and verified using QCADesigner simulator. Besides, the energy dissipation has been calculated under three different tunneling energy level at temperature T=2 K. For estimating the energy dissipation of proposed gates; QCAPro tool has been employed.

  18. Dissipative generalized Chaplygin gas as phantom dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago, Casilla 307, Santiago (Chile)]. E-mail: ncruz@lauca.usach.cl; Lepe, Samuel [Instituto de Fisica, Facultad de Ciencias Basicas y Matematicas, Pontificia Universidad Catolica de Valparaiso, Avenida Brasil 2950, Valparaiso (Chile)]. E-mail: slepe@ucv.cl; Pena, Francisco [Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de la Frontera, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile)]. E-mail: fcampos@ufro.cl

    2007-03-15

    The generalized Chaplygin gas, characterized by the equation of state p=-A/{rho}{sup {alpha}}, has been considered as a model for dark energy due to its dark-energy-like evolution at late times. When dissipative processes are taken into account, within the framework of the standard Eckart theory of relativistic irreversible thermodynamics, cosmological analytical solutions are found. Using the truncated causal version of the Israel-Stewart formalism, a suitable model was constructed which crosses the w=-1 barrier. The future-singularities encountered in both approaches are of a new type, and not included in the classification presented by Nojiri and Odintsov [S. Nojiri, S.D. Odintsov, Phys. Rev. D 72 (2005) 023003].

  19. Energy shaping and dissipation: Underwater vehicle stabilization using internal rotors

    Science.gov (United States)

    Woolsey, Craig Arthur

    This dissertation concerns nonlinear feedback stabilization of mechanical systems using energy-based methods. Nonlinear techniques are appealing because they can yield large regions of attraction for feedback-stabilized equilibria. Energy-based methods are particularly attractive for mechanical systems because these methods preserve a physical view of a system's dynamics and because they yield Lyapunov functions. For conservative systems, proof of stability typically requires the existence of a Lyapunov function. For systems with damping, Lyapunov functions can be used to design feedback dissipation to ensure or enhance asymptotic stability and to obtain more global conclusions. Both as a case study of a particular control methodology and as a practical contribution in the area of underwater vehicle control, we consider stabilization of an underwater vehicle using internal rotors as actuators. The methodology used to develop stabilizing control laws consists of three steps. The first step involves shaping the kinetic energy of the conservative dynamics. For the underwater vehicle, the control term in this step may be interpreted as modifying the system inertia. In the second step, feedback dissipation is designed based on a Lyapunov function developed in the first step. In the third step, it is verified that the effect of external damping due to viscous forces does not destroy the stability results. This method is applied first to a vehicle whose centers of gravity and buoyancy coincide and then to a vehicle with noncoincident centers of gravity and buoyancy. The method of controlled Lagrangians, developed in recent years, is a generalization of the idea of kinetic energy shaping. The method applies to underactuated mechanical systems (systems with more degrees of freedom than independent actuators). Motivated by the results of the investigation into the effect of external damping on an underwater vehicle with internal rotors, we study the effect of damping on more

  20. Mean shear regulates the intermittency of energy dissipation rate

    Science.gov (United States)

    Morshed, Khandakar; Dasi, Lakshmi

    2012-11-01

    We studied the multi-fractal properties of the instantaneous fluctuations of the turbulent kinetic energy dissipation rate, ɛ in the strongly anisotropic flow past a backward facing step. Measurements correspond to time-resolved PIV at Reynolds number, Re= 13600, 9000, and 5500 based on the free stream velocity and step height. Results indicate a significant dependence of the intermittent dissipation rate signal with respect to Re and local mean shear, S. Probability analysis showed that the fluctuations in ɛ are less skewed around its mean in regions of intense shear. The frequency of relatively intense bursts of intermittent fluctuations in ɛ appear to be dependent on the magnitude of these events. Lacunarity, a measure that characterizes such magnitude and temporal scale dependent intermittency of fluctuating signals, revealed that intermittency in ɛ reduces with S across all temporal scales. However, the intermittency of ɛ appears to increase with burst magnitudes. We discuss the implications of these results on the established multi-fractal picture of small-scale turbulence and the effects of large scale anisotropy.

  1. A modal approach to modeling spatially distributed vibration energy dissipation.

    Energy Technology Data Exchange (ETDEWEB)

    Segalman, Daniel Joseph

    2010-08-01

    The nonlinear behavior of mechanical joints is a confounding element in modeling the dynamic response of structures. Though there has been some progress in recent years in modeling individual joints, modeling the full structure with myriad frictional interfaces has remained an obstinate challenge. A strategy is suggested for structural dynamics modeling that can account for the combined effect of interface friction distributed spatially about the structure. This approach accommodates the following observations: (1) At small to modest amplitudes, the nonlinearity of jointed structures is manifest primarily in the energy dissipation - visible as vibration damping; (2) Correspondingly, measured vibration modes do not change significantly with amplitude; and (3) Significant coupling among the modes does not appear to result at modest amplitudes. The mathematical approach presented here postulates the preservation of linear modes and invests all the nonlinearity in the evolution of the modal coordinates. The constitutive form selected is one that works well in modeling spatially discrete joints. When compared against a mathematical truth model, the distributed dissipation approximation performs well.

  2. Molecular dissipation in the nonlinear eddy viscosity in the Navier-Stokes equations: modelling of accretion discs

    CERN Document Server

    Lanzafame, Giuseppe

    2012-01-01

    Physical damping, regarding the nonlinear Navier-Stokes viscous flow dynamics, refers to a tensorial turbulent dissipation term, attributed to adjacent moving macroscopic flow components. Mutual dissipation among these parts of fluid is described by a braking term in the momentum equation together with a heating term in the energy equation, both responsible of the damping of the momentum variation and of the viscous conversion of mechanical energy into heat. A macroscopic mixing scale length is currently the only characteristic length needed in the nonlinear modelling of viscous fluid dynamics describing the nonlinear eddy viscosity through the kinematic viscosity coefficient in the viscous stress tensor, without any reference to the chemical composition and to the atomic dimensions. Therefore, in this paper, we write a new formulation for the kinematic viscosity coefficient to the turbulent viscous physical dissipation in the Navier-Stokes equations, where molecular parameters are also included. Results of 2...

  3. Polarization Swings Reveal Magnetic Energy Dissipation in Blazars

    CERN Document Server

    Zhang, Haocheng; Boettcher, Markus; Guo, Fan; Li, Hui

    2015-01-01

    The polarization signatures of the blazar emissions are known to be highly variable. In addition to small fluctuations of the polarization angle around a mean value, sometimes large (> 180^o) polarization angle swings are observed. We suggest that such p henomena can be interpreted as arising from light-travel-time effects within an underlying axisymmetric emission region. We present the first simultaneous fitting of the multi-wavelength spectrum, variability and time-dependent polarization features of a correlated optical and gamma-ray flaring event of the prominent blazar 3C279, which was accompanied by a drastic change of its polarization signatures. This unprecedented combination of spectral, variability, and polarization information in a coherent physical model allows us to place stringent constraints on the particle acceleration and magnetic-field topology in the relativistic jet of a blazar, strongly favoring a scenario in which magnetic energy dissipation is the primary driver of the flare event.

  4. Unit stream power, minimum energy dissipation rate, and river engineering

    Institute of Scientific and Technical Information of China (English)

    Chih Ted Yang

    2010-01-01

    Unit stream power is the most important and dominant parameter for the determination of transport rate of sand,gravel, and hyper-concentrated sediment with wash load.Minimum energy dissipation rate theory, or its simplified minimum unit stream power and minimum stream power theories,can provide engineers the needed theoretical basis for river morphology and river engineering studies.The Generalized Sediment Transport model for Alluvial River Simulation computer mode series have been developed based on the above theories.The computer model series have been successfully applied in many countries.Examples will be used to illustrate the applications of the computer models to solving a wide range of river morphology and river engineering problems.

  5. Energy Dissipation during Diffusion at Metal Surfaces: Disentangling the Role of Phonons versus Electron-Hole Pairs

    Science.gov (United States)

    Rittmeyer, Simon P.; Ward, David J.; Gütlein, Patrick; Ellis, John; Allison, William; Reuter, Karsten

    2016-11-01

    Helium spin echo experiments combined with ab initio based Langevin molecular dynamics simulations are used to quantify the adsorbate-substrate coupling during the thermal diffusion of Na atoms on Cu(111). An analysis of trajectories within the local density friction approximation allows the contribution from electron-hole pair excitations to be separated from the total energy dissipation. Despite the minimal electronic friction coefficient of Na and the relatively small mass mismatch to Cu promoting efficient phononic dissipation, about (20 ±5 )% of the total energy loss is attributable to electronic friction. The results suggest a significant role of electronic nonadiabaticity in the rapid thermalization generally relied upon in adiabatic diffusion theories.

  6. NUMERICAL SIMULATION OF TURBULENT FLOW THROUGH THROAT-TYPE ENERGY-DISSIPATORS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The flow through the throat-type energy-dissi-pators is calculated by using an axis-symmetrical K-ε turbu-lence model. The velocity field, the pressure field and the dis-tributions of turbulent energy and its dissipation rate are ac-quired. The energy dissipation through the throat-type ener-gy-dissipators can be seen in detail. The calculated pressuredistribution is compared with the measured and in good agree-ment. The results are useful to understand deeply the flowcharacteristics of the throat-type energy-dissipators.

  7. Energy flux measurement from the dissipated energy in capillary wave turbulence.

    Science.gov (United States)

    Deike, Luc; Berhanu, Michael; Falcon, Eric

    2014-02-01

    We study experimentally the influence of dissipation on stationary capillary wave turbulence on the surface of a liquid by changing its viscosity. We observe that the frequency power-law scaling of the capillary spectrum departs significantly from its theoretical value when the dissipation is increased. The energy dissipated by capillary waves is also measured and found to increase nonlinearly with the mean power injected within the liquid. Here we propose an experimental estimation of the energy flux at every scale of the capillary cascade. The latter is found to be nonconstant through the scales. For fluids of low enough viscosity, we found that both capillary spectrum scalings with the frequency and the newly defined mean energy flux are in good agreement with wave turbulence theory. The Kolmogorov-Zakharov constant is then experimentally estimated and compared to its theoretical value.

  8. Mechanism of active transport: free energy dissipation and free energy transduction.

    OpenAIRE

    Tanford, C

    1982-01-01

    The thermodynamic pathway for "chemiosmotic" free energy transduction in active transport is discussed with an ATP-driven Ca2+ pump as an illustrative example. Two innovations are made in the analysis. (i) Free energy dissipated as heat is rigorously excluded from overall free energy bookkeeping by focusing on the dynamic equilibrium state of the chemiosmotic process. (ii) Separate chemical potential terms for free energy donor and transported ions are used to keep track of the thermodynamic ...

  9. An Optimal Free Energy Dissipation Strategy of the MinCDE Oscillator in Regulating Symmetric Bacterial Cell Division.

    Directory of Open Access Journals (Sweden)

    Liping Xiong

    2015-08-01

    Full Text Available Sustained molecular oscillations are ubiquitous in biology. The obtained oscillatory patterns provide vital functions as timekeepers, pacemakers and spacemarkers. Models based on control theory have been introduced to explain how specific oscillatory behaviors stem from protein interaction feedbacks, whereas the energy dissipation through the oscillating processes and its role in the regulatory function remain unexplored. Here we developed a general framework to assess an oscillator's regulation performance at different dissipation levels. Using the Escherichia coli MinCDE oscillator as a model system, we showed that a sufficient amount of energy dissipation is needed to switch on the oscillation, which is tightly coupled to the system's regulatory performance. Once the dissipation level is beyond this threshold, unlike stationary regulators' monotonic performance-to-cost relation, excess dissipation at certain steps in the oscillating process damages the oscillator's regulatory performance. We further discovered that the chemical free energy from ATP hydrolysis has to be strategically assigned to the MinE-aided MinD release and the MinD immobilization steps for optimal performance, and a higher energy budget improves the robustness of the oscillator. These results unfold a novel mode by which living systems trade energy for regulatory function.

  10. Experimental Study of Hysteretic Steel Damper for Energy Dissipation Capacity

    Directory of Open Access Journals (Sweden)

    Daniel R. Teruna

    2015-01-01

    Full Text Available This study aims to evaluate energy absorption capacity of hysteretic steel damper for earthquake protection of structures. These types of steel dampers are fabricated from mild steel plate with different geometrical shapes on the side part, namely, straight, concave, and convex shapes. The performance of the proposed device was verified experimentally by a series of tests under increasing in-plane cyclic load. The overall test results indicated that the proposed steel dampers have similar hysteretic curves, but the specimen with convex-shaped side not only showed stable hysteretic behavior but also showed excellent energy dissipation capabilities and ductility factor. Furthermore, the load-deformation relation of these steel dampers can be decomposed into three parts, namely, skeleton curve, Bauschinger part, and elastic unloading part. The skeleton curve is commonly used to obtain the main parameters, which describe the behavior of steel damper, namely, yield strength, elastic stiffness, and postyield stiffness ratio. Moreover, the effective stiffness, effective damping ratio, cumulative plastic strain energy, and cumulative ductility factor were also derived from the results. Finally, an approximation trilinear hysteretic model was developed based on skeleton curve obtained from experimental results.

  11. Laser control of molecular excitations in stochastic dissipative media.

    Science.gov (United States)

    Tremblay, Jean Christophe

    2011-05-07

    In the present work, ideas for controlling photochemical reactions in dissipative environments using shaped laser pulses are presented. New time-local control algorithms for the stochastic Schrödinger equation are introduced and compared to their reduced density matrix analog. The numerical schemes rely on time-dependent targets for guiding the reaction along a preferred path. The methods are tested on the vibrational control of adsorbates at metallic surfaces and on the ultrafast electron dynamics in a strong dissipative medium. The selective excitation of the specific states is achieved with improved yield when using the new algorithms. Both methods exhibit similar convergence behavior and results compare well with those obtained using local optimal control for the reduced density matrix. The favorable scaling of the methods allows to tackle larger systems and to control photochemical reactions in dissipative media of molecules with many more degrees of freedom.

  12. Effect of mean velocity shear on the dissipation rate of turbulent kinetic energy

    Science.gov (United States)

    Yoshizawa, Akira; Liou, Meng-Sing

    1992-01-01

    The dissipation rate of turbulent kinetic energy in incompressible turbulence is investigated using a two-scale DIA. The dissipation rate is shown to consist of two parts; one corresponds to the dissipation rate used in the current turbulence models of eddy-viscosity type, and another comes from the viscous effect that is closely connected with mean velocity shear. This result can elucidate the physical meaning of the dissipation rate used in the current turbulence models and explain part of the discrepancy in the near-wall dissipation rates between the current turbulence models and direct numerical simulation of the Navier-Stokes equation.

  13. Butterfly hysteresis loop and dissipative spin reversal in the S=1/2, V15 molecular complex

    OpenAIRE

    Chiorescu, I.; Wernsdorfer, W.; Müller, A.; Bögge, H.; Barbara, B.

    1999-01-01

    Time resolved magnetization measurements have been performed on a spin 1/2 molecular complex, so called V$_{15}$. Despite the absence of a barrier, magnetic hysteresis is observed over a timescale of several seconds. A detailed analysis in terms of a dissipative two level model is given, in which fluctuations and splittings are of same energy. Spin-phonon coupling leads to long relaxation times and to a particular "butterfly" hysteresis loop.

  14. Phonon Excitation and Energy Redistribution in Phonon Space for Energy Dissipation and Transport in Lattice Structure with Nonlinear Dispersion

    Science.gov (United States)

    Xu, Zhi-Jie

    2015-01-01

    We first propose fundamental solutions of wave propagation in dispersive chain subject to a localized initial perturbation in the displacement. Analytical solutions are obtained for both second order nonlinear dispersive chain and homogenous harmonic chain using stationary phase approximation. Solution is also compared with numerical results from molecular dynamics (MD) simulations. Locally dominant phonon modes (k-space) are introduced based on these solutions. These locally defined spatially and temporally varying phonon modes k(x, t) are critical to the concept of the local thermodynamic equilibrium (LTE). Wave propagation accompanying with the nonequilibrium dynamics leads to the excitation of these locally defined phonon modes. It is found that the system energy is gradually redistributed among these excited phonons modes (k-space). This redistribution process is only possible with nonlinear dispersion and requires a finite amount of time to achieve a steady state distribution. This time scale is dependent on the spatial distribution (or frequency content) of the initial perturbation and the dispersion relation. Sharper and more concentrated perturbation leads to a faster energy redistribution and dissipation. This energy redistribution generates localized phonons with various frequencies that can be important for phonon-phonon interaction and energy dissipation in nonlinear systems. Depending on the initial perturbation and temperature, the time scale associated with this energy distribution can be critical for energy dissipation compared to the Umklapp scattering process. Ballistic type of heat transport along the harmonic chain reveals that at any given position, the lowest mode (k = 0) is excited first and gradually expanding to the highest mode (kmax(x,t)), where kmax(x,t) can only asymptotically approach the maximum mode kB of the first Brillouin zone (kmax(x,t) → kB). No energy distributed into modes with kmax(x,t) proportional to the sound speed

  15. Passive control experiment of building with spacious first story by magnet-friction energy dissipation device

    Institute of Scientific and Technical Information of China (English)

    LI Qing-xiang; WANG Wei

    2005-01-01

    Based on the former performance capacity experiments of the magnet-friction energy dissipation devices, including the permanent magnet-friction energy dissipation device (PMF) and electromagnet-friction energy dissipation devices ( EMF), a 5-story steel frame model with spacious first story is designed and made according to a scale of 1/4. The magnet-friction energy dissipation devices can realize continuously varied controlling force, with rapid response and reverse recognition. Therefore, they overcome shortcomings usually found in energy dissipation devices whose force models are invariable. The two kinds of devices were fixed on the flexible first story of the structure model, and the shaking table tests have been carried out, respectively. In these tests,the performance of the devices and their effectiveness in structural control were confirmed. In this paper, the test results and analysis are discussed.

  16. Fractional characteristic times and dissipated energy in fractional linear viscoelasticity

    Science.gov (United States)

    Colinas-Armijo, Natalia; Di Paola, Mario; Pinnola, Francesco P.

    2016-08-01

    In fractional viscoelasticity the stress-strain relation is a differential equation with non-integer operators (derivative or integral). Such constitutive law is able to describe the mechanical behavior of several materials, but when fractional operators appear, the elastic and the viscous contribution are inseparable and the characteristic times (relaxation and retardation time) cannot be defined. This paper aims to provide an approach to separate the elastic and the viscous phase in the fractional stress-strain relation with the aid of an equivalent classical model (Kelvin-Voigt or Maxwell). For such equivalent model the parameters are selected by an optimization procedure. Once the parameters of the equivalent model are defined, characteristic times of fractional viscoelasticity are readily defined as ratio between viscosity and stiffness. In the numerical applications, three kinds of different excitations are considered, that is, harmonic, periodic, and pseudo-stochastic. It is shown that, for any periodic excitation, the equivalent models have some important features: (i) the dissipated energy per cycle at steady-state coincides with the Staverman-Schwarzl formulation of the fractional model, (ii) the elastic and the viscous coefficients of the equivalent model are strictly related to the storage and the loss modulus, respectively.

  17. Shape minimization of the dissipated energy in dyadic trees

    CERN Document Server

    De La Sablonière, Xavier Dubois; Privat, Yannick

    2010-01-01

    In this paper, we study the role of boundary conditions on the optimal shape of a dyadic tree in which flows a Newtonian fluid. Our optimization problem consists in finding the shape of the tree that minimizes the viscous energy dissipated by the fluid with a constrained volume, under the assumption that the total flow of the fluid is conserved throughout the structure. These hypotheses model situations where a fluid is transported from a source towards a 3D domain into which the transport network also spans. Such situations could be encountered in organs like for instance the lungs and the vascular networks. Two fluid regimes are studied: (i) low flow regime (Poiseuille) in trees with an arbitrary number of generations using a matricial approach and (ii) non linear flow regime (Navier-Stokes, moderate regime with a Reynolds number $100$) in trees of two generations using shape derivatives in an augmented Lagrangian algorithm coupled with a 2D/3D finite elements code to solve Navier-Stokes equations. It relie...

  18. Standard guide for determining friction energy dissipation in reciprocating tribosystems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide covers and is intended for use in interpreting the friction forces recorded in reciprocating tribosystems. The guide applies to any reciprocating tribosystem, whether it is a wear or fretting test or an actual machine or device. 1.2 The energy dissipation guide was developed in analyzing friction results in the Test Method G133 reciprocating ball-on-flat test, but it applies to other ASTM or ISO reciprocating tests. This technique is frequently used to record the friction response in fretting tribosystems. 1.3 Specimen material may play some role in the results if the materials under test display viscoelastic behavior. This guide as written is for metals, plastics, and ceramics that do not display viscoelastic behavior. It also applies to lubricated and non-lubricated contacts. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, asso...

  19. Relative Entropy, Interaction Energy and the Nature of Dissipation

    Directory of Open Access Journals (Sweden)

    Bernard Gaveau

    2014-06-01

    Full Text Available Many thermodynamic relations involve inequalities, with equality if a process does not involve dissipation. In this article we provide equalities in which the dissipative contribution is shown to involve the relative entropy (a.k.a. Kullback-Leibler divergence. The processes considered are general time evolutions both in classical and quantum mechanics, and the initial state is sometimes thermal, sometimes partially so. By calculating a transport coefficient we show that indeed—at least in this case—the source of dissipation in that coefficient is the relative entropy.

  20. Energy conservation in dissipative processes: Teacher expectations and strategies associated with imperceptible thermal energy

    CERN Document Server

    Daane, Abigail R; Vokos, Stamatis; Scherr, Rachel E

    2014-01-01

    Research has demonstrated that many students and some teachers do not consistently apply the conservation of energy principle when analyzing mechanical scenarios. In observing elementary and secondary teachers engaged in learning activities that require tracking and conserving energy, we find that challenges to energy conservation often arise in dissipative scenarios in which kinetic energy transforms into thermal energy (e.g., a ball rolls to a stop). We find that teachers expect that when they can see the motion associated with kinetic energy, they should be able to perceive the warmth associated with thermal energy. Their expectations are violated when the warmth produced is imperceptible. In these cases, teachers reject the idea that the kinetic energy transforms to thermal energy. Our observations suggest that apparent difficulties with energy conservation may have their roots in a strong and productive association between forms of energy and their perceptible indicators. We see teachers resolve these ch...

  1. Leakage current and induced electrical energy dissipation in nonlinear oscillation of dielectric elastomer actuators

    Science.gov (United States)

    Zhang, Junshi; Chen, Hualing; Li, Dichen

    2017-09-01

    Subject to a high voltage, leakage current and induced electrical energy dissipation inevitably occur during the actuation of dielectric elastomers (DEs). In this article, a theoretical model is developed to investigate the dissipative performance of DEs in dynamic actuation. Effects of three different actuation conditions, including DE materials’ viscoelasticity intensity, amplitude of applied voltage, and mechanical tensile force, are considered. Numerical calculations are employed to detect the dynamic dissipative performance of DEs including leakage current, electrical power density, and electrical energy density in certain vibrational periods. Leakage current and induced electrical energy dissipation are enhanced with the enlargement of amplitude of applied voltage and mechanical force, and are suppressed as the intensity of DEs’ viscoelastic creep increases. The electrical energy for dissipation and actuation is also analyzed and compared.

  2. Dissipative tunneling and orthogonality catastrophe in molecular transistors

    DEFF Research Database (Denmark)

    Braig, S.; Flensberg, Karsten

    2004-01-01

    of the charge on the molecule to the vibrational modes of the environment has on the I-V characteristics. We find that, for comparable characteristic length scales of the van der Waals and electrostatic interaction of the molecule with the environmental vibrational modes, the I-V characteristics...... are qualitatively changed from what one would expect from orthogonality catastrophe and develop a steplike discontinuity at the onset of conduction. For the case of very different length scales, we recover dissipation consistent with modeling the electrostatic forces as an external influence on the system comprised...

  3. Extrema principles of entropy production and energy dissipation in fluid mechanics

    Science.gov (United States)

    Horne, W. Clifton; Karamcheti, Krishnamurty

    1988-01-01

    A survey is presented of several extrema principles of energy dissipation as applied to problems in fluid mechanics. An exact equation is derived for the dissipation function of a homogeneous, isotropic, Newtonian fluid, with terms associated with irreversible compression or expansion, wave radiation, and the square of the vorticity. By using entropy extrema principles, simple flows such as the incompressible channel flow and the cylindrical vortex are identified as minimal dissipative distributions. The principal notions of stability of parallel shear flows appear to be associated with a maximum dissipation condition. These different conditions are consistent with Prigogine's classification of thermodynamic states into categories of equilibrium, linear nonequilibrium, and nonlinear nonequilibrium thermodynamics; vortices and acoustic waves appear as examples of dissipative structures. The measurements of a typical periodic shear flow, the rectangular wall jet, show that direct measurements of the dissipative terms are possible.

  4. Extrema principles of entrophy production and energy dissipation in fluid mechanics

    Science.gov (United States)

    Horne, W. Clifton; Karamcheti, Krishnamurty

    1988-01-01

    A survey is presented of several extrema principles of energy dissipation as applied to problems in fluid mechanics. An exact equation is derived for the dissipation function of a homogeneous, isotropic, Newtonian fluid, with terms associated with irreversible compression or expansion, wave radiation, and the square of the vorticity. By using entropy extrema principles, simple flows such as the incompressible channel flow and the cylindrical vortex are identified as minimal dissipative distributions. The principal notions of stability of parallel shear flows appears to be associated with a maximum dissipation condition. These different conditions are consistent with Prigogine's classification of thermodynamic states into categories of equilibrium, linear nonequilibrium, and nonlinear nonequilibrium thermodynamics; vortices and acoustic waves appear as examples of dissipative structures. The measurements of a typical periodic shear flow, the rectangular wall jet, show that direct measurements of the dissipative terms are possible.

  5. Energy transfer and dissipation in equilibrium and nonequilibrium turbulence

    CERN Document Server

    Valente, Pedro C

    2013-01-01

    The nonequilibrium dissipation behaviour discovered for decaying fractal square grid-generated turbulence is experimentally investigated using hot-wire anemometry in a wind tunnel. The previous results are consolidated and benchmarked with turbulence generated by regular square-mesh grids, designed to retain certain geometrical parameters of the fractal square grid. This comparison shows that the nonequilibrium behaviour is manifested in both fractal square grid- and regular square-mesh grid-generated turbulence for a downstream region during the turbulence decay up to the first few multiples of the wake interaction distance. For one of the regular grids it is shown that beyond this region there is a transition to the classical dissipation behaviour if the local turbulent Reynolds number is sufficiently high. A sharp conclusion can thus be drawn that this behaviour is more general than initially thought and therefore of much greater scientific and engineering significance. The nonequilibrium dissipation pheno...

  6. Dissipation, generalized free energy, and a self-consistent nonequilibrium thermodynamics of chemically driven open subsystems.

    Science.gov (United States)

    Ge, Hao; Qian, Hong

    2013-06-01

    Nonequilibrium thermodynamics of a system situated in a sustained environment with influx and efflux is usually treated as a subsystem in a larger, closed "universe." A question remains with regard to what the minimally required description for the surrounding of such an open driven system is so that its nonequilibrium thermodynamics can be established solely based on the internal stochastic kinetics. We provide a solution to this problem using insights from studies of molecular motors in a chemical nonequilibrium steady state (NESS) with sustained external drive through a regenerating system or in a quasisteady state (QSS) with an excess amount of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and inorganic phosphate (Pi). We introduce the key notion of minimal work that is needed, W(min), for the external regenerating system to sustain a NESS (e.g., maintaining constant concentrations of ATP, ADP and Pi for a molecular motor). Using a Markov (master-equation) description of a motor protein, we illustrate that the NESS and QSS have identical kinetics as well as the second law in terms of the same positive entropy production rate. The heat dissipation of a NESS without mechanical output is exactly the W(min). This provides a justification for introducing an ideal external regenerating system and yields a free-energy balance equation between the net free-energy input F(in) and total dissipation F(dis) in an NESS: F(in) consists of chemical input minus mechanical output; F(dis) consists of dissipative heat, i.e. the amount of useful energy becoming heat, which also equals the NESS entropy production. Furthermore, we show that for nonstationary systems, the F(dis) and F(in) correspond to the entropy production rate and housekeeping heat in stochastic thermodynamics and identify a relative entropy H as a generalized free energy. We reach a new formulation of Markovian nonequilibrium thermodynamics based on only the internal kinetic equation without further

  7. The role of energy dissipation of polymeric scaffolds in the mechanobiological modulation of chondrogenic expression.

    Science.gov (United States)

    Abdel-Sayed, Philippe; Darwiche, Salim E; Kettenberger, Ulrike; Pioletti, Dominique P

    2014-02-01

    Mechanical stimulation has been proposed to induce chondrogenesis in cell-seeded scaffolds. However, the effects of mechanical stimuli on engineered cartilage may vary substantially between different scaffolds. This advocates for the need to identify an overarching mechanobiological variable. We hypothesize that energy dissipation of scaffolds subjected to dynamic loading may be used as a mechanobiology variable. The energy dissipation would furnish a general criterion to adjust the mechanical stimulation favoring chondrogenesis in scaffold. Epiphyseal chondro-progenitor cells were then subject to unconfined compression 2 h per day during four days in different scaffolds, which differ only by the level of dissipation they generated while keeping the same loading conditions. Scaffolds with higher dissipation levels upregulated the mRNA of chondrogenic markers. In contrast lower dissipation of scaffolds was associated with downregulation of chondrogenic markers. These results showed that energy dissipation could be considered as a mechanobiology variable in cartilage. This study also indicated that scaffolds with energy dissipation level close to the one of cartilage favors chondrogenic expression when dynamical loading is present.

  8. SIMULATION OF THE ATOMIZED FLOW BY SLIT TYPE BUCKET ENERGY DISSIPATOR

    Institute of Scientific and Technical Information of China (English)

    LIU Shi-he; DUAN Hong-dong

    2005-01-01

    Slit type bucket is one kind of flip bucket for energy dissipation generally used in the hydraulic project.In this paper the atomized flow produced behind this energy dissipator is analyzed, a numerical model for the aerated jet considering air entrainment and air resistance force is suggested, and simulation of the rain resulted by the atomized flow is also discussed.Furthermore, the prototype observation data for the atomized flow of Dongjiang Hydropower Station is used to verify the model suggested.

  9. Effect of Two Temperatures on Reflection Coefficient in Micropolar Thermoelastic with and without Energy Dissipation Media

    Directory of Open Access Journals (Sweden)

    Rajneesh Kumar

    2014-01-01

    Full Text Available The reflection of plane waves at the free surface of thermally conducting micropolar elastic medium with two temperatures is studied. The theory of thermoelasticity with and without energy dissipation is used to investigate the problem. The expressions for amplitudes ratios of reflected waves at different angles of incident wave are obtained. Dissipation of energy and two-temperature effects on these amplitude ratios with angle of incidence are depicted graphically. Some special and particular cases are also deduced.

  10. K-12 Teacher Understanding of Energy Conservation: Conceptual Metaphor, Dissipation, and Degradation

    Science.gov (United States)

    Daane, Abigail R.

    In K-12 educational settings, conservation of energy is typically presented in two ways: the conservation of energy principle (energy is neither created nor destroyed) and the sociopolitical need to conserve energy (we guard against energy being used up). These two meanings of conservation typically remain disconnected from each other and can appear contradictory, even after instruction. In an effort to support teachers in building robust understandings of energy from their existing knowledge, I designed a study to investigate the productive ideas in K-12 teachers' conversations about energy. A micro-analysis of discourse, gestures, and artifacts of professional development courses revealed teachers' productive ideas about three aspects of energy: conceptual metaphor, dissipation and degradation. In learning about energy, K-12 teachers come to use conceptual metaphors in their own language and value attending to students' metaphorical language as a means of formative assessment. Teachers' conversations about dissipation suggest that apparent difficulties with energy conservation may have their roots in a strong association between forms of energy (thermal) and their perceptible indicators (warmth). Teachers address this challenge by employing an exaggeration strategy to locate the dissipated thermal energy, making the energy indicator perceptible. Finally, teachers' unprompted statements about sociopolitical aspects of energy are related to both statements from the NGSS and aspects of energy degradation. I conclude that energy conservation can be better taught and learned in K-12 Education by: 1) understanding and applying conceptual metaphors about energy in K-12 settings, 2) using prior experiences to better understand dissipative energy processes involving imperceptible thermal energy, thereby understanding how energy conservation applies in all situations, and 3) connecting productive ideas about sociopolitical aspects of energy to canonical physics. Keywords

  11. Josephson current through a molecular transistor in a dissipative environment

    DEFF Research Database (Denmark)

    Novotny, T; Rossini, Gianpaolo; Flensberg, Karsten

    2005-01-01

    We study the Josephson coupling between two superconductors through a single correlated molecular level, including Coulomb interaction on the level and coupling to a bosonic environment. All calculations are done to the lowest, i.e., the fourth, order in the tunneling coupling and we find a suppr...

  12. On the dissipation of the rotation energy of dust grains in interstellar magnetic fields

    CERN Document Server

    Papoular, Renaud

    2016-01-01

    A new mechanism is described, analyzed and visualized, for the dissipation of suprathermal rotation energy of molecules in magnetic fields, a necessary condition for their alignment. It relies upon the Lorentz force perturbing the motion of every atom of the structure, as each is known to carry its own net electric charge because of spatial fluctuations in electron density. If the molecule is large enough that the frequency of its lowest-frequency phonon lies near or below the rotation frequency, then the rotation couples with the molecular normal modes and energy flows from the former to the latter. The rate of this exchange is very fast, and the vibrational energy is radiated away in the IR at a still faster rate, which completes the removal of rotation energy. The energy decay rate scales like the field intensity, the initial angular velocity, the number of atoms in the grain and the inverse of the moment of inertia. It does not depend on the susceptibility. Here, the focus is on carbon-rich molecules whic...

  13. Energy dissipation of Alfven wave packets deformed by irregular magnetic fields in solar-coronal arches

    Science.gov (United States)

    Similon, Philippe L.; Sudan, R. N.

    1989-01-01

    The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.

  14. Estimation of turbulent energy dissipation in the boundary layer using Smoke Image Velocimetry

    Science.gov (United States)

    Mikheev, N. I.; Goltsman, A. E.; Saushin, I. I.; Dushina, O. A.

    2017-08-01

    Turbulent energy dissipation in the turbulent boundary layer has been estimated experimentally. Dissipation has been derived from dynamics of two-component instantaneous velocity vector fields measured by an optical method. Smoke Image Velocimetry technique based on digital processing of smoke visualization of flow and adapted to relatively large smoke displacement between two consecutive video frames has been employed. The obtained dissipation profiles have been compared with measurements by multi-sensor hot-wire anemometers, stereo PIV, Tomo-3D-PTV with VIC+, and DNS results.

  15. Limiting Energy Dissipation Induces Glassy Kinetics in Single-Cell High-Precision Responses.

    Science.gov (United States)

    Das, Jayajit

    2016-03-08

    Single cells often generate precise responses by involving dissipative out-of-thermodynamic-equilibrium processes in signaling networks. The available free energy to fuel these processes could become limited depending on the metabolic state of an individual cell. How does limiting dissipation affect the kinetics of high-precision responses in single cells? I address this question in the context of a kinetic proofreading scheme used in a simple model of early-time T cell signaling. Using exact analytical calculations and numerical simulations, I show that limiting dissipation qualitatively changes the kinetics in single cells marked by emergence of slow kinetics, large cell-to-cell variations of copy numbers, temporally correlated stochastic events (dynamic facilitation), and ergodicity breaking. Thus, constraints in energy dissipation, in addition to negatively affecting ligand discrimination in T cells, can create a fundamental difficulty in determining single-cell kinetics from cell-population results. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Derivation and application of the energy dissipation factor in the design of fishways

    Science.gov (United States)

    Towler, Brett; Mulligan, Kevin; Haro, Alexander J.

    2015-01-01

    Reducing turbulence and associated air entrainment is generally considered advantageous in the engineering design of fish passage facilities. The well-known energy dissipation factor, or EDF, correlates with observations of the phenomena. However, inconsistencies in EDF forms exist and the bases for volumetric energy dissipation rate criteria are often misunderstood. A comprehensive survey of EDF criteria is presented. Clarity in the application of the EDF and resolutions to these inconsistencies are provided through formal derivations; it is demonstrated that kinetic energy represents only 1/3 of the total energy input for the special case of a broad-crested weir. Specific errors in published design manuals are identified and resolved. New, fundamentally sound, design equations for culvert outlet pools and standard Denil Fishway resting pools are developed. The findings underscore the utility of EDF equations, demonstrate the transferability of volumetric energy dissipation rates, and provide a foundation for future refinement of component-, species-, and life-stage-specific EDF criteria.

  17. Can dissipation prevent explosive decomposition in high-energy heavy ion collisions?

    CERN Document Server

    Fraga, E S; Fraga, Eduardo S.

    2005-01-01

    We discuss the role of dissipation in the explosive spinodal decomposition scenario of hadron production during the chiral transition after a high-energy heavy ion collision. We use a Langevin description inspired by microscopic nonequilibrium field theory results to perform real-time lattice simulations of the behavior of the chiral fields. We show that the effect of dissipation can be dramatic. Analytic results for the short-time dynamics are also presented.

  18. A case study of the energy dissipation of the gravity wave field based on satellite altimeter measurements

    Science.gov (United States)

    Huang, N. E.; Parsons, C. L.; Long, S. R.; Bliven, L. F.

    1983-01-01

    Wave breaking is proposed as the primary energy dissipation mechanism for the gravity wave field. The energy dissipation rate is calculated based on the statistical model proposed by Longuet-Higgins (1969) with a modification of the breaking criterion incorporating the surface stress according to Phillips and Banner (1974). From this modified model, an analytic expression is found for the wave attenuation rate and the half-life time of the wave field which depend only on the significant slope of the wave field and the ratio of friction velocity to initial wave phase velocity. These expressions explain why the freshly generated wave field does not last long, but why swells are capable of propagating long distances without substantial change in energy density. It is shown that breaking is many orders of magnitude more effective in dissipating wave energy than the molecular viscosity, if the significant slope is higher than 0.01. Limited observational data from satellite and laboratory are used to compare with the analytic results, and show good agreement.

  19. Relaxation dynamics in quantum dissipative systems: The microscopic effect of intramolecular vibrational energy redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Uranga-Piña, L. [Facultad de Física, Universidad de la Habana, San Lázaro y L, Vedado, 10400 Havana (Cuba); Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany); Tremblay, J. C., E-mail: jean.c.tremblay@gmail.com [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany)

    2014-08-21

    We investigate the effect of inter-mode coupling on the vibrational relaxation dynamics of molecules in weak dissipative environments. The simulations are performed within the reduced density matrix formalism in the Markovian regime, assuming a Lindblad form for the system-bath interaction. The prototypical two-dimensional model system representing two CO molecules approaching a Cu(100) surface is adapted from an ab initio potential, while the diatom-diatom vibrational coupling strength is systematically varied. In the weak system-bath coupling limit and at low temperatures, only first order non-adiabatic uni-modal coupling terms contribute to surface-mediated vibrational relaxation. Since dissipative dynamics is non-unitary, the choice of representation will affect the evolution of the reduced density matrix. Two alternative representations for computing the relaxation rates and the associated operators are thus compared: the fully coupled spectral basis, and a factorizable ansatz. The former is well-established and serves as a benchmark for the solution of Liouville-von Neumann equation. In the latter, a contracted grid basis of potential-optimized discrete variable representation is tailored to incorporate most of the inter-mode coupling, while the Lindblad operators are represented as tensor products of one-dimensional operators, for consistency. This procedure results in a marked reduction of the grid size and in a much more advantageous scaling of the computational cost with respect to the increase of the dimensionality of the system. The factorizable method is found to provide an accurate description of the dissipative quantum dynamics of the model system, specifically of the time evolution of the state populations and of the probability density distribution of the molecular wave packet. The influence of intra-molecular vibrational energy redistribution appears to be properly taken into account by the new model on the whole range of coupling strengths. It

  20. Relaxation dynamics in quantum dissipative systems: the microscopic effect of intramolecular vibrational energy redistribution.

    Science.gov (United States)

    Uranga-Piña, L; Tremblay, J C

    2014-08-21

    We investigate the effect of inter-mode coupling on the vibrational relaxation dynamics of molecules in weak dissipative environments. The simulations are performed within the reduced density matrix formalism in the Markovian regime, assuming a Lindblad form for the system-bath interaction. The prototypical two-dimensional model system representing two CO molecules approaching a Cu(100) surface is adapted from an ab initio potential, while the diatom-diatom vibrational coupling strength is systematically varied. In the weak system-bath coupling limit and at low temperatures, only first order non-adiabatic uni-modal coupling terms contribute to surface-mediated vibrational relaxation. Since dissipative dynamics is non-unitary, the choice of representation will affect the evolution of the reduced density matrix. Two alternative representations for computing the relaxation rates and the associated operators are thus compared: the fully coupled spectral basis, and a factorizable ansatz. The former is well-established and serves as a benchmark for the solution of Liouville-von Neumann equation. In the latter, a contracted grid basis of potential-optimized discrete variable representation is tailored to incorporate most of the inter-mode coupling, while the Lindblad operators are represented as tensor products of one-dimensional operators, for consistency. This procedure results in a marked reduction of the grid size and in a much more advantageous scaling of the computational cost with respect to the increase of the dimensionality of the system. The factorizable method is found to provide an accurate description of the dissipative quantum dynamics of the model system, specifically of the time evolution of the state populations and of the probability density distribution of the molecular wave packet. The influence of intra-molecular vibrational energy redistribution appears to be properly taken into account by the new model on the whole range of coupling strengths. It

  1. Energy Dissipation Model for 4G and WLAN Networks in Smart Phones

    Directory of Open Access Journals (Sweden)

    Shalini Prasad

    2016-07-01

    Full Text Available With the modernization of the telecommunication standards, there has been considerable evolution of various technologies to assist cost effective communication. In this regard, the fourth generation communication services or commonly known as 4G mobile networks have penetrated almost every part of the world to offer faster and seamless data connectivity. However, such services come at the cost of energy drained from the smart phone supporting 4G services. This paper presents an algorithm that is capable of evaluating the actual amount of energy being dissipated while using next generation mobile networks. The study also performs a comparative analysis of energy dissipation of 4G networks with other wireless local area networks to understand the networks that cause more energy dissipation.

  2. Relationship between dynamical entropy and energy dissipation far from thermodynamic equilibrium.

    Science.gov (United States)

    Green, Jason R; Costa, Anthony B; Grzybowski, Bartosz A; Szleifer, Igal

    2013-10-08

    Connections between microscopic dynamical observables and macroscopic nonequilibrium (NE) properties have been pursued in statistical physics since Boltzmann, Gibbs, and Maxwell. The simulations we describe here establish a relationship between the Kolmogorov-Sinai entropy and the energy dissipated as heat from a NE system to its environment. First, we show that the Kolmogorov-Sinai or dynamical entropy can be separated into system and bath components and that the entropy of the system characterizes the dynamics of energy dissipation. Second, we find that the average change in the system dynamical entropy is linearly related to the average change in the energy dissipated to the bath. The constant energy and time scales of the bath fix the dynamical relationship between these two quantities. These results provide a link between microscopic dynamical variables and the macroscopic energetics of NE processes.

  3. Sea ice floes dissipate the energy of steep ocean waves

    CERN Document Server

    Toffoli, Alessandro; Meylan, Michael H; Cavaliere, Claudio; Alberello, Alberto; Elsnab, John; Monty, Jason P

    2015-01-01

    Wave attenuation by ice floes is an important parameter for modelling the Arctic Oceans. At present, attenuation coefficients are extracted from linear models as a function of the incident wave period and floe thickness. Recent explorations in the Antarctic Mixed Ice Zone (MIZ) revealed a further dependence on wave amplitude, suggesting that nonlinear contributions are non-negligible. An experimental model for wave attenuation by a single ice floe in a wave flume is here presented. Observations are compared with linear predictions based on wave scattering. Results indicate that linear models perform well under the effect of gently sloping waves. For more energetic wave fields, however, transmitted wave height is normally over predicted. Deviations from linearity appear to be related to an enhancement of wave dissipation induced by unaccounted wave-ice interaction processes, including the floe over wash.

  4. Energy dissipation end states of the sphere restricted planar three-body problem with collisional interaction

    Science.gov (United States)

    Gabriel, T. S. J.; Scheeres, D. J.

    2016-11-01

    We perform a large number of gravitational granular mechanics simulations to investigate the role of energy dissipation in the sphere-restricted planar three-body problem where, for a given angular momentum, multiple end-state configurations are available to the system. For the case of three equal spheres, previous studies have mapped all relative equilibria of the problem as a function of angular momentum. We find trends in the production of end states as a function of angular momentum and dissipation parameters, as well as outline the dynamical-mechanical interactions that generate these results. For strongly dissipative systems a relationship between the minimum energy function of the system and the end-state dynamics is uncovered. In particular, the likelihood of achieving one end state over another is largely governed by the geometrical projection of the minimum energy function. In contrast, for systems with low-energy dissipation the end state becomes a function of the relative depth of the different energy wells available to the system. This study highlights the importance of having well-defined dissipative properties of a gravitational granular system, such as those used to study the dynamics of rubble pile asteroids and planetary rings.

  5. Effect of the selected seismic energy dissipation capacity on the materials quantity for reinforced concrete walls

    Directory of Open Access Journals (Sweden)

    José Miguel Benjumea Royero

    2017-02-01

    Full Text Available Context: Regarding their design of reinforced concrete structural walls, the Colombian seismic design building code allows the engineer to select one of the three seismic energy dissipation capacity (ordinary, moderate, and special depending on the seismic hazard of the site. Despite this, it is a common practice to choose the minor requirement for the site because it is thought that selecting a higher requirement will lead to larger structural materials amounts and, therefore, cost increments.  Method: In this work, an analytical study was performed in order to determine the effect of the selected energy dissipation capacity on the quantity of materials and ductility displacement capacity of R/C walls. The study was done for a region with low seismic hazard, mainly because this permitted to explore and compare the use of the three seismic energy dissipations capacities. The effect of different parameters such as the wall total height and thickness, the tributary loaded area, and the minimum volumetric steel ratio were studied. Results: The total amount of steel required for the walls with moderate and special energy dissipation capacity corresponds, on average, to 77% and 89%, respectively, of the quantity required for walls with minimum capacity. Conclusions: it is possible to achieve reductions in the total steel required weight when adopting either moderated or special seismic energy dissipation instead of the minimum capacity.  Additionally, a significant increment in the seismic ductility displacements capacity of the wall was obtained.

  6. Experimental and numerical investigation of energy dissipation in elastomeric rotational joint under harmonic loading

    Science.gov (United States)

    Jrad, Hanen; Dion, Jean Luc; Renaud, Franck; Tawfiq, Imad; Haddar, Mohamed

    2016-10-01

    This paper focuses on energy losses caused by inner damping and friction in an elastomeric rotational joint. A description of the design of a new experimental device intended to characterize dynamic stiffness in rotational elastomeric joint is presented. An original method based on Lagrange's equations, which allows accurately measuring forces and torques only with accelerometers, is proposed in order to identify dissipated energy in the rotational elastomeric joint. A rheological model developed taking into account dependence of the torque and the angular displacement (rotation). Experimental results and simulations used to quantify the dissipated energy in order to evaluate the damping ratio are presented and discussed.

  7. Isospin Effect on the Process of Multifragmentation and Dissipation at Intermediate Energy Heavy Ion Collisions

    CERN Document Server

    Liu Jian Ye; Zuo, W; Wang, S J; Zhao, Q; Guo, W J; Chen, B; Liu, Jian-Ye; Yang, Yan-Fang; Zuo, Wei; Wang, Shun-Jin; Zhao, Qiang; Guo, Wen-Jun; Chen, Bo

    2001-01-01

    In the simulation of intermediate energy heavy ion collisions by using the isospin dependent quantum molecular dynamics, the isospin effect on the process of multifragmentation and dissipation has been studied. It is found that the multiplicity of intermediate mass fragments $N_{imf}$ for the neutron-poor colliding system is always larger than that for the neutron-rich system, while the quadrupole of single particle momentum distribution $Q_{zz}$ for the neutron-poor colliding system is smaller than that of the neutron-rich system for all projectile-target combinations studied at the beam energies from about 50MeV/nucleon to 150MeV/nucleon. Since $Q_{zz}$ depends strongly on isospin dependence of in-medium nucleon-nucleon cross section and weakly on symmetry potential at the above beam energies, it may serve as a good probe to extract the information on the in-medium nucleon-nucleon cross section. The correlation between the multiplicity $N_{imf}$ of intermediate mass fragments and the total numer of charged ...

  8. Theoretical and numerical study of hydraulic characteristics of orifice energy dissipator

    Directory of Open Access Journals (Sweden)

    NingHE

    2010-06-01

    Full Text Available Different factors affecting the efficiency of the orifice energy dissipator were investigated based on a series of theoretical analyses and numerical simulations. The main factors investigated by dimension analysis were identified, including the Reynolds number (Re, the ratio of the orifice diameter to the inner diameter of the pipe ( , and the ratio of distances between orifices to the inner diameter of the pipe ( . Then, numerical simulations were conducted with a two-equation turbulence model. The calculation results show the following: Hydraulic characteristics change dramatically as flow passes through the orifice, with abruptly increasing velocity and turbulent energy, and decreasing pressure. The turbulent energy appears to be low in the middle and high near the pipe wall. For the energy dissipation setup with only one orifice, when Re is smaller than 105, the orifice energy dissipation coefficient K increases rapidly with the increase of Re. When Re is larger than 105, K gradually stabilizes. As increases, K and the length of the recirculation region L1 show similar variation patterns, which inversely vary with . The function curves can be approximated as straight lines. For the energy dissipation model with two orifices, because of different incoming flows at different orifices, the energy dissipation coefficient of the second orifice (K2 is smaller than that of the first. If is less than 5, the K value of the model, depending on the variation of K2, increases with the spacing between two orifices L , and an orifice cannot fulfill its energy dissipation function. If is greater than 5, K2 tends to be steady; thus, the K value of the model gradually stabilizes. Then, the flow fully develops, and L has almost no impact on the value of K.

  9. Honey bees (Apis mellifera ligustica) swing abdomen to dissipate residual flying energy landing on a wall

    Science.gov (United States)

    Zhao, Jieliang; Huang, He; Yan, Shaoze

    2017-03-01

    Whether for insects or for aircrafts, landing is one of the indispensable links in the verification of airworthiness safety. The mechanisms by which insects achieve a fast and stable landing remain unclear. An intriguing example is provided by honeybees (Apis mellifera ligustica), which use the swinging motion of their abdomen to dissipate residual flying energy and to achieve a smooth, stable, and quick landing. By using a high-speed camera, we observed that touchdown is initiated by honeybees extending their front legs or antennae and then landing softly on a wall. After touchdown, they swing the rest of their bodies until all flying energy is dissipated. We suggested a simplified model with mass-spring dampers for the body of the honeybee and revealed the mechanism of flying energy transfer and dissipation in detail. Results demonstrate that body translation and abdomen swinging help honeybees dissipate residual flying energy and orchestrate smooth landings. The initial kinetic energy of flying is transformed into the kinetic energy of the abdomen's rotary movement. Then, the kinetic energy of rotary movement is converted into thermal energy during the swinging cycle. This strategy provides more insight into the mechanism of insect flying, which further inspires better design on aerial vehicle with better landing performance.

  10. Energy propagation in dissipative systems Part I: Centrovelocity for linear systems

    NARCIS (Netherlands)

    Groesen, van Embrecht; Mainardi, Francesco

    1989-01-01

    Based on a balance equation for the energy density, an expression for the centrovelocity is derived which differs from the usual energy-flux velocity by a loss-flux term as a consequence of the presence of dissipation. In this part the expression is investigated for linear wave equations, in particu

  11. Energy Transfer in molecular devices

    CERN Document Server

    Caraglio, M

    2014-01-01

    Protein machines often exhibit long range interplay between different sites in order to achieve their biological tasks. We investigate and characterize the non--linear energy localization and the basic mechanisms of energy transfer in protein devices. By studying two different model protein machines, with different biological functions, we show that genuinely non--linear phenomena are responsible for energy transport between the different machine sites involved in the biological functions. The energy transfer turns out to be extremely efficient from an energetic point of view: by changing the energy initially provided to the model device, we identify a well defined range of energies where the time for the energy transport to occur is minimal and the amount of transferred energy is maximum. Furthermore, by introducing an implicit solvent, we show that the energy is localized on the internal residues of the protein structure, thus minimizing the dissipation.

  12. An estimate of energy dissipation due to soil-moisture hysteresis

    KAUST Repository

    McNamara, H.

    2014-01-01

    Processes of infiltration, transport, and outflow in unsaturated soil necessarily involve the dissipation of energy through various processes. Accounting for these energetic processes can contribute to modeling hydrological and ecological systems. The well-documented hysteretic relationship between matric potential and moisture content in soil suggests that one such mechanism of energy dissipation is associated with the cycling between wetting and drying processes, but it is challenging to estimate the magnitude of the effect in situ. The Preisach model, a generalization of the Independent Domain model, allows hysteresis effects to be incorporated into dynamical systems of differential equations. Building on earlier work using such systems with field data from the south-west of Ireland, this work estimates the average rate of hysteretic energy dissipation. Through some straightforward assumptions, the magnitude of this rate is found to be of O(10-5) W m-3. Key Points Hysteresis in soil-water dissipates energy The rate of dissipation can be estimated directly from saturation data The rate of heating caused is significant ©2013. American Geophysical Union. All Rights Reserved.

  13. Energy dissipation and contour integral characterizing fracture behavior of incremental plasticity

    Institute of Scientific and Technical Information of China (English)

    Qi-Lin He; Lin-Zhi Wu; Ming Li; Hong-Bo Chen

    2011-01-01

    Jep-integral is derived for characterizing the fracture behavior of elastic-plastic materials. The Jep-integral differs from Rice's J-integral in that the free energy density rather than the stress working density is employed to define energy-momentum tensor. The Jep-integral is proved to be path-dependent regardless of incremental plasticity and deformation plasticity. The Jep-integral possesses clearly clear physical meaning: (1) the value Jeptjp evaluated on the infinitely small contour surrounding the crack tip represents the crack tip energy dissipation; (2) when the global steadystate crack growth condition is approached, the value of Jepfar-ss calculated along the boundary contour equals to the sum of crack tip dissipation and bulk dissipation of plastic zone. The theoretical results are verified by simulating mode I crack problems.

  14. Estimation of the kinetic energy dissipation in fall-arrest system and manikin during fall impact.

    Science.gov (United States)

    Wu, John Z; Powers, John R; Harris, James R; Pan, Christopher S

    2011-04-01

    Fall-arrest systems (FASs) have been widely applied to provide a safe stop during fall incidents for occupational activities. The mechanical interaction and kinetic energy exchange between the human body and the fall-arrest system during fall impact is one of the most important factors in FAS ergonomic design. In the current study, we developed a systematic approach to evaluate the energy dissipated in the energy absorbing lanyard (EAL) and in the harness/manikin during fall impact. The kinematics of the manikin and EAL during the impact were derived using the arrest-force time histories that were measured experimentally. We applied the proposed method to analyse the experimental data of drop tests at heights of 1.83 and 3.35 m. Our preliminary results indicate that approximately 84-92% of the kinetic energy is dissipated in the EAL system and the remainder is dissipated in the harness/manikin during fall impact. The proposed approach would be useful for the ergonomic design and performance evaluation of an FAS. STATEMENT OF RELEVANCE: Mechanical interaction, especially kinetic energy exchange, between the human body and the fall-arrest system during fall impact is one of the most important factors in the ergonomic design of a fall-arrest system. In the current study, we propose an approach to quantify the kinetic energy dissipated in the energy absorbing lanyard and in the harness/body system during fall impact.

  15. User Manual and Source Code for a LAMMPS Implementation of Constant Energy Dissipative Particle Dynamics (DPD-E)

    Science.gov (United States)

    2014-06-01

    User Manual and Source Code for a LAMMPS Implementation of Constant Energy Dissipative Particle Dynamics ( DPD -E) by James P. Larentzos...Energy Dissipative Particle Dynamics ( DPD -E) James P. Larentzos Engility Corporation John K. Brennan, Joshua D. Moore, and William D. Mattson...Constant Energy Dissipative Particle Dynamics ( DPD -E) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) James P

  16. Structural development and energy dissipation in simulated silicon apices

    Directory of Open Access Journals (Sweden)

    Samuel Paul Jarvis

    2013-12-01

    Full Text Available In this paper we examine the stability of silicon tip apices by using density functional theory (DFT calculations. We find that some tip structures - modelled as small, simple clusters - show variations in stability during manipulation dependent on their orientation with respect to the sample surface. Moreover, we observe that unstable structures can be revealed by a characteristic hysteretic behaviour present in the F(z curves that were calculated with DFT, which corresponds to a tip-induced dissipation of hundreds of millielectronvolts resulting from reversible structural deformations. Additionally, in order to model the structural evolution of the tip apex within a low temperature NC-AFM experiment, we simulated a repeated tip–surface indentation until the tip structure converged to a stable termination and the characteristic hysteretic behaviour was no longer observed. Our calculations suggest that varying just a single rotational degree of freedom can have as measurable an impact on the tip–surface interaction as a completely different tip structure.

  17. Structural development and energy dissipation in simulated silicon apices.

    Science.gov (United States)

    Jarvis, Samuel Paul; Kantorovich, Lev; Moriarty, Philip

    2013-12-20

    In this paper we examine the stability of silicon tip apices by using density functional theory (DFT) calculations. We find that some tip structures - modelled as small, simple clusters - show variations in stability during manipulation dependent on their orientation with respect to the sample surface. Moreover, we observe that unstable structures can be revealed by a characteristic hysteretic behaviour present in the F(z) curves that were calculated with DFT, which corresponds to a tip-induced dissipation of hundreds of millielectronvolts resulting from reversible structural deformations. Additionally, in order to model the structural evolution of the tip apex within a low temperature NC-AFM experiment, we simulated a repeated tip-surface indentation until the tip structure converged to a stable termination and the characteristic hysteretic behaviour was no longer observed. Our calculations suggest that varying just a single rotational degree of freedom can have as measurable an impact on the tip-surface interaction as a completely different tip structure.

  18. Energy Dissipation Capacity of Reinforced Concrete Beams Strengthened with CFRP Strips

    Science.gov (United States)

    Hong, Sungnam; Park, Sun-Kyu

    2016-05-01

    Cyclic loading tests were performed to investigate the energy dissipation capacities of reinforced concrete (RC) beams strengthened with carbon-fiber-reinforced polymer (CFRP) strips. Four RC beams were manufactured and three-point loaded. Responses of the strengthened beams to the cyclic loadings were measured, including deflections at the center of their span and strains of the CFRP strips and reinforcing steel rebars. Based on test results, the energy dissipation capacity of the strengthened beams were evaluated in comparison with that of an unstrengthened control beam.

  19. Preserving energy resp. dissipation in numerical PDEs using the "Average Vector Field" method

    CERN Document Server

    Celledoni, E; McLachlan, R I; McLaren, D I; O'Neale, D; Owren, B; Quispel, G R W

    2012-01-01

    We give a systematic method for discretizing Hamiltonian partial differential equations (PDEs) with constant symplectic structure, while preserving their energy exactly. The same method, applied to PDEs with constant dissipative structure, also preserves the correct monotonic decrease of energy. The method is illustrated by many examples. In the Hamiltonian case these include: the sine-Gordon, Korteweg-de Vries, nonlinear Schrodinger, (linear) time-dependent Schrodinger, and Maxwell equations. In the dissipative case the examples are: the Allen-Cahn, Cahn-Hilliard, Ginzburg-Landau, and heat equations.

  20. A variational framework for nonlinear chemical thermodynamics employing the maximum energy dissipation principle.

    Science.gov (United States)

    Moroz, Adam

    2009-06-11

    The maximum energy dissipation principle is employed to nonlinear chemical thermodynamics in terms of distance variable (generalized displacement) from the global equilibrium, applying the optimal control interpretation to develop a variational formulation. The cost-like functional was chosen to support the suggestion that such a formulation corresponds to the maximum energy dissipation principle. Using this approach, the variational framework was proposed for a nonlinear chemical thermodynamics, including a general cooperative kinetics model. The formulation is in good agreement with standard linear nonequilibrium chemical thermodynamics.

  1. Magnetic energy dissipation and mean magnetic field generation in planar convection-driven dynamos.

    Science.gov (United States)

    Tilgner, A

    2014-07-01

    A numerical study of dynamos in rotating convecting plane layers is presented which focuses on magnetic energies and dissipation rates and the generation of mean fields (where the mean is taken over horizontal planes). The scaling of the magnetic energy with the flux Rayleigh number is different from the scaling proposed in spherical shells, whereas the same dependence of the magnetic dissipation length on the magnetic Reynolds number is found for the two geometries. Dynamos both with and without mean field exist in rapidly rotating convecting plane layers.

  2. Direct Experimental Evidence of Nonequilibrium Energy Sharing in Dissipative Collisions

    Science.gov (United States)

    Casini, G.; Maurenzig, P. R.; Olmi, A.; Bini, M.; Calamai, S.; Meucci, F.; Pasquali, G.; Poggi, G.; Stefanini, A. A.; Gobbi, A.; Hildenbrand, K. D.

    1997-02-01

    Primary and secondary masses of heavy reaction products have been deduced from kinematics and energy-time-of-flight measurements, respectively, for the direct and reverse collisions of 100Mo with 120Sn at 14.1A MeV. Direct experimental evidence of the correlation of energy sharing with net mass transfer and model-independent results on the evolution of the average excitation from equal-energy to equal-temperature partition are presented.

  3. Testing and Modeling for Energy Dissipation Behavior of Velocity and Displacement Dependent Hydraulic Damper

    Institute of Scientific and Technical Information of China (English)

    SUNG Wen-Pei; SHIH Ming-Hsiang

    2008-01-01

    A passive energy-dissipating device,velocity,and displacement dependent hydraulic damper (VDHD),is developed to reduce the seismic response of structure.This device is cemprised of a hydraulic jack,check valve,relief valve,and throttle valve.The numerical analysis model for SAP2000 nonlinear analysis program is proposed to simulate the energy-dissipating characteristics of VDHD.The analysis re-sults of this model compared with the seismic resistant tests reveal that this proposed model can accurately describe the actual energy-dissipating behavior of VDHD.The efficiency of VDHD is confirmed using this proposed model for carrying out numerical analyses of bare building,building added with bulking resistant bracing(BBR),and VDHD.The energy-dissipating capabilities of VDHD are performing excellent displace-ment and acceleration control with various ground magnitudes;being an energy absorber to absorb me-chanical energy in the structure and resist structural movement;and gathering the advantage of BRB.

  4. Wave energy dissipation due to mudbanks formed off southwest coast of India

    Science.gov (United States)

    Samiksha, S. V.; Vethamony, P.; Rogers, W. Erick; Pednekar, P. S.; Babu, M. T.; Dineshkumar, P. K.

    2017-09-01

    Mudbanks (MBs) are a unique natural phenomenon, and form along the southwest coast of India during the southwest monsoon. They are characterized by a calm-water region, bordered by a rough sea. In order to quantify the wave energy dissipation, wave data were collected at two water depths (15 m and 7 m) before and during the period of formation of MBs off Alappuzha, Kerala. The observations indicate that MBs exist even in deeper water beyond 15 m water depth, contrary to earlier findings that they only form in depths of 0-5 m. The analysis showed 65-70% wave height attenuation. As spectral density evolves with shoaling, energy dissipation was examined using the concept of wave energy flux. The combination of high frequency dissipation and nonlinear energy transfer from higher-frequency to low-frequency waves resulted in a reduction of energy across a wide frequency range. The WAVEWATCH III® (WW3) model with wave-mud interaction physics was used to capture the signature of wave energy dissipation due to MBs. The accuracy of prediction of significant wave heights (Hs) of the WW3 model was verified using Hs of measured waves and ERA- Interim (ECMWF Reanalysis Interim data). The model accurately reproduced both the wave heights in the MB region and their general characteristics. The measurements and model results complement each other in explaining changes associated with an apparent shift of the MBs.

  5. Direct Experimental Evidence of Nonequilibrium Energy Sharing in Dissipative Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.; Maurenzig, P.; Olmi, A.; Bini, M.; Calamai, S.; Meucci, F.; Pasquali, G.; Poggi, G.; Stefanini, A. [Istituto Nazionale di Fisica Nucleare and Universita di Firenze, I--50125 Florence (Italy); Gobbi, A.; Hildenbrand, K. [Gesellschaft fuer Schwerionenforschung, D--64291 Darmstadt (Germany)

    1997-02-01

    Primary and secondary masses of heavy reaction products have been deduced from kinematics and energy{endash}time-of-flight measurements, respectively, for the direct and reverse collisions of {sup 100}Mo with {sup 120}Sn at 14.1AMeV. Direct experimental evidence of the correlation of energy sharing with net mass transfer and model-independent results on the evolution of the average excitation from equal-energy to equal-temperature partition are presented. {copyright} {ital 1997} {ital The American Physical Society}

  6. Quantitative calculation for the dissipated energy of fault rock burst based on gradient-dependent plasticity

    Institute of Scientific and Technical Information of China (English)

    Xuebin Wang; Shuhong Dai; Long Hai

    2004-01-01

    The capacity of energy absorption by fault bands after rock burst was calculated quantitatively according to shear stressshear deformation curves considering the interactions and interplaying among microstructures due to the heterogeneity of strain softening rock materials. The post-peak stiffness of rock specimens subjected to direct shear was derived strictly based on gradientdependent plasticity, which can not be obtained from the classical elastoplastic theory. Analytical solutions for the dissipated energy of rock burst were proposed whether the slope of the post-peak shear stress-shear deformation curve is positive or not. The analytical solutions show that shear stress level, confining pressure, shear strength, brittleness, strain rate and heterogeneity of rock materials have important influence on the dissipated energy. The larger value of the dissipated energy means that the capacity of energy dissipation in the form of shear bands is superior and a lower magnitude of rock burst is expected under the condition of the same work done by external shear force. The possibility of rock burst is reduced for a lower softening modulus or a larger thickness of shear bands.

  7. Effect of landing height on frontal plane kinematics, kinetics and energy dissipation at lower extremity joints.

    Science.gov (United States)

    Yeow, C H; Lee, P V S; Goh, J C H

    2009-08-25

    Lack of the necessary magnitude of energy dissipation by lower extremity joint muscles may be implicated in elevated impact stresses present during landing from greater heights. These increased stresses are experienced by supporting tissues like cartilage, ligaments and bones, thus aggravating injury risk. This study sought to investigate frontal plane kinematics, kinetics and energetics of lower extremity joints during landing from different heights. Eighteen male recreational athletes were instructed to perform drop-landing tasks from 0.3- to 0.6-m heights. Force plates and motion-capture system were used to capture ground reaction force and kinematics data, respectively. Joint moment was calculated using inverse dynamics. Joint power was computed as a product of joint moment and angular velocity. Work was defined as joint power integrated over time. Hip and knee joints delivered significantly greater joint power and eccentric work (pheights. Substantial increase (pwork was noted at the hip joint in response to increasing landing height. Knee and hip joints acted as key contributors to total energy dissipation in the frontal plane with increase in peak ground reaction force (GRF). The hip joint was the top contributor to energy absorption, which indicated a hip-dominant strategy in the frontal plane in response to peak GRF during landing. Future studies should investigate joint motions that can maximize energy dissipation or reduce the need for energy dissipation in the frontal plane at the various joints, and to evaluate their effects on the attenuation of lower extremity injury risk during landing.

  8. The series elastic shock absorber: tendon elasticity modulates energy dissipation by muscle during burst deceleration.

    Science.gov (United States)

    Konow, Nicolai; Roberts, Thomas J

    2015-04-07

    During downhill running, manoeuvring, negotiation of obstacles and landings from a jump, mechanical energy is dissipated via active lengthening of limb muscles. Tendon compliance provides a 'shock-absorber' mechanism that rapidly absorbs mechanical energy and releases it more slowly as the recoil of the tendon does work to stretch muscle fascicles. By lowering the rate of muscular energy dissipation, tendon compliance likely reduces the risk of muscle injury that can result from rapid and forceful muscle lengthening. Here, we examine how muscle-tendon mechanics are modulated in response to changes in demand for energy dissipation. We measured lateral gastrocnemius (LG) muscle activity, force and fascicle length, as well as leg joint kinematics and ground-reaction force, as turkeys performed drop-landings from three heights (0.5-1.5 m centre-of-mass elevation). Negative work by the LG muscle-tendon unit during landing increased with drop height, mainly owing to greater muscle recruitment and force as drop height increased. Although muscle strain did not increase with landing height, ankle flexion increased owing to increased tendon strain at higher muscle forces. Measurements of the length-tension relationship of the muscle indicated that the muscle reached peak force at shorter and likely safer operating lengths as drop height increased. Our results indicate that tendon compliance is important to the modulation of energy dissipation by active muscle with changes in demand and may provide a mechanism for rapid adjustment of function during deceleration tasks of unpredictable intensity.

  9. Phase space scales of free energy dissipation in gradient-driven gyrokinetic turbulence

    Science.gov (United States)

    Hatch, D. R.; Jenko, F.; Bratanov, V.; Navarro, A. Bañón; Navarro

    2014-08-01

    A reduced four-dimensional (integrated over perpendicular velocity) gyrokinetic model of slab ion temperature gradient-driven turbulence is used to study the phase-space scales of free energy dissipation in a turbulent kinetic system over a broad range of background gradients and collision frequencies. Parallel velocity is expressed in terms of Hermite polynomials, allowing for a detailed study of the scales of free energy dynamics over the four-dimensional phase space. A fully spectral code - the DNA code - that solves this system is described. Hermite free energy spectra are significantly steeper than would be expected linearly, causing collisional dissipation to peak at large scales in velocity space even for arbitrarily small collisionality. A key cause of the steep Hermite spectra is a critical balance - an equilibration of the parallel streaming time and the nonlinear correlation time - that extends to high Hermite number n. Although dissipation always peaks at large scales in all phase space dimensions, small-scale dissipation becomes important in an integrated sense when collisionality is low enough and/or nonlinear energy transfer is strong enough. Toroidal full-gyrokinetic simulations using the Gene code are used to verify results from the reduced model. Collision frequencies typically found in present-day experiments correspond to turbulence regimes slightly favoring large-scale dissipation, while turbulence in low-collisionality systems like ITER and space and astrophysical plasmas is expected to rely increasingly on small-scale dissipation mechanisms. This work is expected to inform gyrokinetic reduced modeling efforts like Large Eddy Simulation and gyrofluid techniques.

  10. Earthquake Energy Dissipation in Light of High-Velocity, Slip-Pulse Shear Experiments

    Science.gov (United States)

    Reches, Z.; Liao, Z.; Chang, J. C.

    2014-12-01

    We investigated the energy dissipation during earthquakes by analysis of high-velocity shear experiments conducted on room-dry, solid samples of granite, tonalite, and dolomite sheared at slip-velocity of 0.0006-1m/s, and normal stress of 1-11.5MPa. The experimental fault were loaded in one of three modes: (1) Slip-pulse of abrupt, intense acceleration followed by moderate deceleration; (2) Impact by a spinning, heavy flywheel (225 kg); and (3) Constant velocity loading. We refer to energy dissipation in terms of power-density (PD=shear stress*slip-velocity; units of MW/m^2), and Coulomb-energy-density (CED= mechanical energy/normal stress; units of m). We present two aspects: Relative energy dissipation of the above loading modes, and relative energy dissipation between impact experiments and moderate earthquakes. For the first aspect, we used: (i) the lowest friction coefficient of the dynamic weakening; (ii) the work dissipated before reaching the lowest friction; and (iii) the cumulative mechanical work during the complete run. The results show that the slip-pulse/impact modes are energy efficient relatively to the constant-velocity mode as manifested by faster, more intense weakening and 50-90% lower energy dissipation. Thus, for a finite amount of pre-seismic crustal energy, the efficiency of slip-pulse would amplify earthquake instability. For the second aspect, we compare the experimental CED of the impact experiments to the reported breakdown energy (EG) of moderate earthquakes, Mw = 5.6 to 7.2 (Chang et al., 2012). In is commonly assumed that the seismic EG is a small fraction of the total earthquake energy, and as expected in 9 out of 11 examined earthquakes, EG was 0.005 to 0.07 of the experimental CED. We thus speculate that the experimental relation of Coulomb-energy-density to total slip distance, D, CED = 0.605 × D^0.933, is a reasonable estimate of total earthquake energy, a quantity that cannot be determined from seismic data.

  11. Magnetic Energy Dissipation during the 2014 March 29 Solar Flares

    CERN Document Server

    Aschwanden, Markus J

    2015-01-01

    We calculated the time evolution of the free magnetic energy during the 2014-Mar-29 flare (SOL2014-03-29T17:48), the first X-class flare detected by IRIS. The free energy was calculated from the difference between the nonpotential field, constrained by the geometry of observed loop structures, and the potential field. We use AIA/SDO and IRIS images to delineate the geometry of coronal loops in EUV wavelengths, as well as to trace magnetic field directions in UV wavelengths in the chromosphere and transition region. We find an identical evolution of the free energy for both the coronal and chromospheric tracers, as well as agreement between AIA and IRIS results, with a peak free energy of $E_{free}(t_{peak}) \\approx (45 \\pm 2) \\times 10^{30}$ erg, which decreases by an amount of $\\Delta E_{free} \\approx (29 \\pm 3) \\times 10^{30}$ erg during the flare decay phase. The consistency of free energies measured from different EUV and UV wavelengths for the first time here, demonstrates that vertical electric currents...

  12. Cyclic; uniaxial tension; dissipated energy; damage evolution; waveform; concrete

    Indian Academy of Sciences (India)

    NEHA SAXENA; NILESH MALI; SATCHIDANAND SATPUTE

    2017-01-01

    Distillation is one of the most widely used separation unit operations in process industries, although it is quite energy intensive. In many cases, the enormous energy requirements for distillation make it economically infeasible to carry out the separation. Thermally coupled distillation system (TCDS) is an advanced distillation method that provides significant energy savings of about 30% as compared with conventional distillation column sequences. The most well-known TCDS sequence, the Petlyuk configuration, has some operational challenges due to bidirectional vapour flow, which makes its implementation difficult in two-column mode. To overcome these limitations, a number of unidirectional vapour flow configurations have been proposedin the literature. The work on simulation analysis for such configurations is limited. In this paper, simulation models for two such configurations are developed, analyzed and compared with the Petlyuk and conventional distillation column sequences for separation of equimolar mixture of benzene–toluene–ethylbenzene.

  13. Canonical-Dissipative Nonequilibrium Energy Distributions: Parameter Estimation via Implicit Moment Method, Implementation and Application

    Science.gov (United States)

    Frank, T. D.; Kim, S.; Dotov, D. G.

    2013-11-01

    Canonical-dissipative nonequilibrium energy distributions play an important role in the life sciences. In one of the most fundamental forms, such energy distributions correspond to two-parametric normal distributions truncated to the left. We present an implicit moment method involving the first and second energy moments to estimate the distribution parameters. It is shown that the method is consistent with Cohen's 1949 formula. The implementation of the algorithm is discussed and the range of admissible parameter values is identified. In addition, an application to an earlier study on human oscillatory hand movements is presented. In this earlier study, energy was conceptualized as the energy of a Hamiltonian oscillator model. The canonical-dissipative approach allows for studying the systematic change of the model parameters with oscillation frequency. It is shown that the results obtained with the implicit moment method are consistent with those derived in the earlier study by other means.

  14. Large-scale length that could determine the mean rate of energy dissipation in turbulence

    CERN Document Server

    Mouri, H; Kawashima, Y; Hashimoto, K

    2012-01-01

    The mean rate of energy dissipation in turbulence is traditionally assumed to scale with parameters of the energy-containing large scales, i.e., the root-mean-square fluctuation of the longitudinal velocity u and its correlation length L(u). However, the resultant scaling coefficient C(u) is known to depend on the large-scale configuration of the flow. We define the correlation length L(u2) of the local energy u2, study the scaling coefficient C(u2) with experimental data of several flows, and find a possibility that C(u2) does not depend on the flow configuration. Not L(u) but rather L(u2) could scale with the typical size of the energy-containing eddies, so that L(u2) determines the mean rate at which the energy is transferred from those eddies to the smaller eddies and is eventually dissipated into heat.

  15. Seismic energy dissipation study of linear fluid viscous dampers in steel structure design

    Directory of Open Access Journals (Sweden)

    A. Ras

    2016-09-01

    Full Text Available Energy dissipation systems in civil engineering structures are sought when it comes to removing unwanted energy such as earthquake and wind. Among these systems, there is combination of structural steel frames with passive energy dissipation provided by Fluid Viscous Dampers (FVD. This device is increasingly used to provide better seismic protection for existing as well as new buildings and bridges. A 3D numerical investigation is done considering the seismic response of a twelve-storey steel building moment frame with diagonal FVD that have linear force versus velocity behaviour. Nonlinear time history, which is being calculated by Fast nonlinear analysis (FNA, of Boumerdes earthquake (Algeria, May 2003 is considered for the analysis and carried out using the SAP2000 software and comparisons between unbraced, braced and damped structure are shown in a tabulated and graphical format. The results of the various systems are studied to compare the structural response with and without this device of the energy dissipation thus obtained. The conclusions showed the formidable potential of the FVD to improve the dissipative capacities of the structure without increasing its rigidity. It is contributing significantly to reduce the quantity of steel necessary for its general stability.

  16. Sea spray aerosol and wave energy dissipation in the surf zone

    NARCIS (Netherlands)

    Francius, M.J.; Piazzola, J.; Forget, P.; Calve, O. le; Kusmierczyk-Michulec, J.

    2007-01-01

    Results from a quantitative model for the prediction of the sea-salt mass flux produced in the surf zone are presented in this paper. The model relates the surf zone sea salt mass flux to the amount of wave energy dissipated in the surf zone. In order to apply this aerosol emission model, a wave num

  17. Energy-Based Lyapunov Functions for Forced Hamiltonian Systems with Dissipation

    NARCIS (Netherlands)

    Maschke, Bernhard; Ortega, Romeo; Schaft, Arjan J. van der

    2000-01-01

    In this paper, we propose a constructive procedure to modify the Hamiltonian function of forced Hamiltonian systems with dissipation in order to generate Lyapunov functions for nonzero equilibria. A key step in the procedure, which is motivated from energy-balance considerations standard in network

  18. Loss of energy dissipation capacity from the deadzone in linear and nonlinear viscous damping devices

    Institute of Scientific and Technical Information of China (English)

    Mai Tong; Thomas Liebner

    2007-01-01

    In a viscous damping device under cyclic loading, after the piston reaches a peak stroke, the reserve movement that follows may sometimes experience a short period of delayed or significantly reduced device force output. A similar delay or reduced device force output may also occur at the damper's initial stroke as it moves away from its neutral position.This phenomenon is referred to as the effect of "deadzone". The deadzone can cause a loss of energy dissipation capacity and less efficient vibration control. It is prominent in small amplitude vibrations. Although there are many potential causes of deadzone such as environmental factors, construction, material aging, and manufacture quality, in this paper, its general effect in linear and nonlinear viscous damping devices is analyzed. Based on classical dynamics and damping theory, a simple model is developed to capture the effect of deadzone in terms of the loss of energy dissipation capacity. The model provides several methods to estimate the loss of energy dissipation within the deadzone in linear and sublinear viscous fluid dampers.An empirical equation of loss of energy dissipation capacity versus deadzone size is formulated, and the equivalent reduction of effective damping in SDOF systems has been obtained. A laboratory experimental evaluation is carried out to verify the effect of deadzone and its numerical approximation. Based on the analysis, a modification is suggested to the corresponding formulas in FEMA 356 for calculation of equivalent damping ifa deadzone is to be considered.

  19. Dissipation of excess excitation energy of the needle leaves in Pinus trees during cold winters

    Science.gov (United States)

    Zhang, AO; Cui, Zhen-Hai; Yu, Jia-Lin; Hu, Zi-Ling; Ding, Rui; Ren, Da-Ming; Zhang, Li-Jun

    2016-12-01

    Photooxidative damage to the needle leaves of evergreen trees results from the absorption of excess excitation energy. Efficient dissipation of this energy is essential to prevent photodamage. In this study, we determined the fluorescence transients, absorption spectra, chlorophyll contents, chlorophyll a/ b ratios, and relative membrane permeabilities of needle leaves of Pinus koraiensis, Pinus tabulaeformis, and Pinus armandi in both cold winter and summer. We observed a dramatic decrease in the maximum fluorescence ( F m) and substantial absorption of light energy in winter leaves of all three species. The F m decline was not correlated with a decrease in light absorption or with changes in chlorophyll content and chlorophyll a/ b ratio. The results suggested that the winter leaves dissipated a large amount of excess energy as heat. Because the cold winter leaves had lost normal physiological function, the heat dissipation depended solely on changes in the photosystem II supercomplex rather than the xanthophyll cycle. These findings imply that more attention should be paid to heat dissipation via changes in the photosystem complex structure during the growing season.

  20. Energy-Based Lyapunov Functions for Forced Hamiltonian Systems with Dissipation

    NARCIS (Netherlands)

    Maschke, Bernhard; Ortega, Romeo; Schaft, Arjan J. van der

    2000-01-01

    In this paper, we propose a constructive procedure to modify the Hamiltonian function of forced Hamiltonian systems with dissipation in order to generate Lyapunov functions for nonzero equilibria. A key step in the procedure, which is motivated from energy-balance considerations standard in network

  1. Identification of a mechanism of photoprotective energy dissipation in higher plants

    NARCIS (Netherlands)

    Ruban, A.V.; Berera, R.; Ilioia, C.; Stokkum, van I.H.M.; Kennis, J.T.M.; Pascal, A.A.; Amerongen, van H.; Robert, B.; Horton, P.; Grondelle, van R.

    2007-01-01

    Under conditions of excess sunlight the efficient light-harvesting antenna1 found in the chloroplast membranes of plants is rapidly and reversibly switched into a photoprotected quenched state in which potentially harmful absorbed energy is dissipated as heat2, 3, a process measured as the non-photo

  2. Non-existence of global solutions to generalized dissipative Klein-Gordon equations with positive energy

    Directory of Open Access Journals (Sweden)

    Maxim Olegovich Korpusov

    2012-07-01

    Full Text Available In this article the initial-boundary-value problem for generalized dissipative high-order equation of Klein-Gordon type is considered. We continue our study of nonlinear hyperbolic equations and systems with arbitrary positive energy. The modified concavity method by Levine is used for proving blow-up of solutions.

  3. Identification of a mechanism of photoprotective energy dissipation in higher plants

    NARCIS (Netherlands)

    Ruban, A.V.; Berera, R.; Ilioia, C.; Stokkum, van I.H.M.; Kennis, J.T.M.; Pascal, A.A.; Amerongen, van H.; Robert, B.; Horton, P.; Grondelle, van R.

    2007-01-01

    Under conditions of excess sunlight the efficient light-harvesting antenna1 found in the chloroplast membranes of plants is rapidly and reversibly switched into a photoprotected quenched state in which potentially harmful absorbed energy is dissipated as heat2, 3, a process measured as the

  4. Laboratory air-entraining breaking waves: Imaging visible foam signatures to estimate energy dissipation

    Science.gov (United States)

    Callaghan, A. H.; Deane, G. B.; Stokes, M. D.

    2016-11-01

    Oceanic air-entraining breaking waves fundamentally influence weather and climate through bubble-mediated ocean-atmosphere exchanges, and influence marine engineering design by impacting statistics of wave heights, crest heights, and wave loading. However, estimating individual breaking wave energy dissipation in the field remains a fundamental problem. Using laboratory experiments, we introduce a new method to estimate energy dissipation by individual breaking waves using above-water images of evolving foam. The data show the volume of the breaking wave two-phase flow integrated in time during active breaking scales linearly with wave energy dissipated. To determine the volume time-integral, above-water images of surface foam provide the breaking wave timescale and horizontal extent of the submerged bubble plume, and the foam decay time provides an estimate of the bubble plume penetration depth. We anticipate that this novel remote sensing method will improve predictions of air-sea exchanges, validate models of wave energy dissipation, and inform ocean engineering design.

  5. Energy dissipation from a correlated system driven out of equilibrium

    Science.gov (United States)

    Rameau, J. D.; Freutel, S.; Kemper, A. F.; Sentef, M. A.; Freericks, J. K.; Avigo, I.; Ligges, M.; Rettig, L.; Yoshida, Y.; Eisaki, H.; Schneeloch, J.; Zhong, R. D.; Xu, Z. J.; Gu, G. D.; Johnson, P. D.; Bovensiepen, U.

    2016-12-01

    In complex materials various interactions have important roles in determining electronic properties. Angle-resolved photoelectron spectroscopy (ARPES) is used to study these processes by resolving the complex single-particle self-energy and quantifying how quantum interactions modify bare electronic states. However, ambiguities in the measurement of the real part of the self-energy and an intrinsic inability to disentangle various contributions to the imaginary part of the self-energy can leave the implications of such measurements open to debate. Here we employ a combined theoretical and experimental treatment of femtosecond time-resolved ARPES (tr-ARPES) show how population dynamics measured using tr-ARPES can be used to separate electron-boson interactions from electron-electron interactions. We demonstrate a quantitative analysis of a well-defined electron-boson interaction in the unoccupied spectrum of the cuprate Bi2Sr2CaCu2O8+x characterized by an excited population decay time that maps directly to a discrete component of the equilibrium self-energy not readily isolated by static ARPES experiments.

  6. Log-stable law of energy dissipation as a framework of turbulence intermittency

    CERN Document Server

    Mouri, H

    2015-01-01

    To describe the small-scale intermittency of turbulence, a self-similarity is assumed for the probability density function of a logarithm of the rate of energy dissipation smoothed over a length scale among those in the inertial range. The result is an extension of Kolmogorov's classical theory in 1941, i.e., a one-parameter framework where the logarithm obeys some stable distribution. Scaling laws are obtained for the dissipation rate and for the two-point velocity difference. They are consistent with theoretical constraints and with the observed scaling laws. Also discussed is the physics that determines the value of the parameter.

  7. Global existence and energy decay rates for a Kirchhoff-type wave equation with nonlinear dissipation.

    Science.gov (United States)

    Kim, Daewook; Kim, Dojin; Hong, Keum-Shik; Jung, Il Hyo

    2014-01-01

    The first objective of this paper is to prove the existence and uniqueness of global solutions for a Kirchhoff-type wave equation with nonlinear dissipation of the form Ku'' + M(|A (1/2) u|(2))Au + g(u') = 0 under suitable assumptions on K, A, M(·), and g(·). Next, we derive decay estimates of the energy under some growth conditions on the nonlinear dissipation g. Lastly, numerical simulations in order to verify the analytical results are given.

  8. On a variational formulation of the maximum energy dissipation principle for non-equilibrium chemical thermodynamics

    Science.gov (United States)

    Moroz, Adam

    2008-05-01

    In this work we revise the applicability of the optimal control and variational approach to the maximum energy dissipation (MED) principle in non-equilibrium thermodynamics. The optimal control analogies for the kinetical and potential parts of thermodynamic Lagrangian (in the form of a sum of the positively defined thermodynamic potential and positively defined dissipative function) have been considered. An interpretation of thermodynamic momenta is discussed with respect to standard optimal control applications, which employ dynamic constraints. Also included is interpretation in terms of the least action principle.

  9. Pulsatile blood flow, shear force, energy dissipation and Murray's Law

    Directory of Open Access Journals (Sweden)

    Bengtsson Hans-Uno

    2006-08-01

    Full Text Available Abstract Background Murray's Law states that, when a parent blood vessel branches into daughter vessels, the cube of the radius of the parent vessel is equal to the sum of the cubes of the radii of daughter blood vessels. Murray derived this law by defining a cost function that is the sum of the energy cost of the blood in a vessel and the energy cost of pumping blood through the vessel. The cost is minimized when vessel radii are consistent with Murray's Law. This law has also been derived from the hypothesis that the shear force of moving blood on the inner walls of vessels is constant throughout the vascular system. However, this derivation, like Murray's earlier derivation, is based on the assumption of constant blood flow. Methods To determine the implications of the constant shear force hypothesis and to extend Murray's energy cost minimization to the pulsatile arterial system, a model of pulsatile flow in an elastic tube is analyzed. A new and exact solution for flow velocity, blood flow rate and shear force is derived. Results For medium and small arteries with pulsatile flow, Murray's energy minimization leads to Murray's Law. Furthermore, the hypothesis that the maximum shear force during the cycle of pulsatile flow is constant throughout the arterial system implies that Murray's Law is approximately true. The approximation is good for all but the largest vessels (aorta and its major branches of the arterial system. Conclusion A cellular mechanism that senses shear force at the inner wall of a blood vessel and triggers remodeling that increases the circumference of the wall when a shear force threshold is exceeded would result in the observed scaling of vessel radii described by Murray's Law.

  10. Effect of specimen size on energy dissipation characteristics of red sandstone under high strain rate

    Institute of Scientific and Technical Information of China (English)

    Li Ming; Mao Xianbiao; Lu Aihong; Tao Jing; Zhang Guanghui; Zhang Lianying; Li Chong

    2014-01-01

    In this experiment, red sandstone specimens, having slenderness ratios of 0.5, 0.7, 0.9 and 1.1 respec-tively, were subjected to blow tests using a Split Hopkinson Pressure Bar (SHPB) system at a pressure of 0.4 atmospheres. In this paper, we have analyzed the effect of slenderness ratio on the mechanical properties and energy dissipation characteristics of red sandstone under high strain rates. The processes of compaction, elastic deformation and stress softening deformation of specimens contract with an increase in slenderness ratio, whilst the nonlinear deformation process extends correspondingly. In addi-tion, degrees of damage of specimens reduced gradually and the type of destruction showed a transfor-mation trend from stretching failure towards shear failure when the slenderness ratio increased. A model of dynamic damage evolution in red sandstone was established and the parameters of the constitutive model at different ratios of length to diameter were determined. By comparison with the experimental curve, the accuracy of the model, which could reflect the stress-strain dynamic characteristics of red sandstone, was verified. From the view of energy dissipation, an increase in slenderness ratio of a specimen decreased the proportion of energy dissipation and caused a gradual fall in the capability of energy dissipation during the specimen failure process. To some extent, the study indicated the effects of slenderness ratios on the mechanical properties and energy dissipation characteristics of red sandstone under the high strain rate, which provides valuable references to related engineering designs and academic researches.

  11. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys.

    Science.gov (United States)

    Zhang, Yanwen; Stocks, G Malcolm; Jin, Ke; Lu, Chenyang; Bei, Hongbin; Sales, Brian C; Wang, Lumin; Béland, Laurent K; Stoller, Roger E; Samolyuk, German D; Caro, Magdalena; Caro, Alfredo; Weber, William J

    2015-10-28

    A grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects. Suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary solid solutions is observed. Understanding and controlling energy dissipation and defect dynamics by altering alloy complexity may pave the way for new design principles of radiation-tolerant structural alloys for energy applications.

  12. Energy Dissipation in Graphene Mechanical Resonators with and without Free Edges

    Directory of Open Access Journals (Sweden)

    Makoto Takamura

    2016-09-01

    Full Text Available Graphene-based nanoelectromechanical systems (NEMS have high future potential to realize sensitive mass and force sensors owing to graphene’s low mass density and exceptional mechanical properties. One of the important remaining issues in this field is how to achieve mechanical resonators with a high quality factor (Q. Energy dissipation in resonators decreases Q, and suppressing it is the key to realizing sensitive sensors. In this article, we review our recent work on energy dissipation in doubly-clamped and circular drumhead graphene resonators. We examined the temperature (T dependence of the inverse of a quality factor ( Q - 1 to reveal what the dominant dissipation mechanism is. Our doubly-clamped trilayer resonators show a characteristic Q - 1 -T curve similar to that observed in monolayer resonators: Q - 1 ∝ T 2 above ∼100 K and ∝ T 0.3 below ∼100 K. By comparing our results with previous experimental and theoretical results, we determine that the T 2 and T 0.3 dependences can be attributed to tensile strain induced by clamping metals and vibrations at the free edges in doubly-clamped resonators, respectively. The Q - 1 -T curve in our circular drumhead resonators indicates that removing free edges and clamping metal suppresses energy dissipation in the resonators, resulting in a linear T dependence of Q - 1 in a wide temperature range.

  13. Energy and angular momentum sharing in dissipative collisions

    CERN Document Server

    Casini, G; Calamai, S; Laforest, R; Maurenzig, P R; Olmi, A; Pasquali, G; Piantelli, S; Poggi, G; Saint-Laurent, F; Steckmeyer, J C; Stefanini, A A; Taccetti, N

    2000-01-01

    Primary and secondary masses of heavy reaction products have been deduced from kinematics and E-ToF measurements, respectively, for the direct and reverse collisions of 93Nb and 116Sn at 25 AMeV. Light charged particles have also been measured in coincidence with the heavy fragments. Direct experimental evidence of the correlation of energy-sharing with net mass transfer has been found using the information from both the heavy fragments and the light charged particles. The ratio of Hydrogen and Helium multiplicities points to a further correlation of angular momentum sharing with net mass transfer.

  14. Energy and angular momentum sharing in dissipative collisions

    Science.gov (United States)

    Casini, G.; Bini, M.; Calamai, S.; Laforest, R.; Maurenzig, P. R.; Olmi, A.; Pasquali, G.; Piantelli, S.; Poggi, G.; Saint-Laurent, F.; Steckmeyer, J. C.; Stefanini, A. A.; Taccetti, N.

    Primary and secondary masses of heavy reaction products have been deduced from kinematics and E-ToF measurements, respectively, for the direct and reverse collisions of 93Nb and 116Sn at 25 AMeV. Light charged particles have also been measured in coincidence with the heavy fragments. Direct experimental evidence of the correlation of energy-sharing with net mass transfer has been found using information from both the heavy fragments and the light charged particles. The ratio of hydrogen and helium multiplicities points to a further correlation of angular momentum sharing with net mass transfer.

  15. Energy and angular momentum sharing in dissipative collisions

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.; Bini, M.; Calamai, S.; Maurenzig, P.R.; Olmi, A.; Pasquali, G.; Piantelli, S.; Poggi, G.; Stefanini, A.A.; Taccetti, N. [Istituto Nazionale di Fisica Nucleare, Florence (Italy); Laforest, R.; Steckmeyer, J.C. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Saint-Laurent, F. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)

    2000-12-01

    Primary and secondary masses of heavy reaction products have been deduced from kinematics and E-ToF measurements, respectively, for the direct and reverse collisions of {sup 93}Nb and {sup 116}Sn at 25 AMeV. Light charged particles have also been measured in coincidence with the heavy fragments. Direct experimental evidence of the correlation of energy-sharing with net mass transfer has been found using information from both the heavy fragments and the light charged particles. The ratio of hydrogen and helium multiplicities points to a further correlation of angular momentum sharing with net mass transfer. (orig.)

  16. Magneto-elastic artificial neurons with extremely low energy dissipation

    Science.gov (United States)

    Biswas, Ayan K.; Al-Rashid, Md Mamun; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-03-01

    We present a detailed analysis of artificial step transfer function neurons and binary weight synapses implemented with magneto-tunneling junctions whose soft layers are magnetostrictive nanomagnets switched with voltage generated mechanical strain. These devices are more energy-efficient than CMOS-based neurons or so-called spin neurons that are based on magnets switched with spin-polarized current. We studied their switching dynamics using stochastic Landau-Lifshitz-Gilbert simulations for two different geometries (elliptical and cylindrical) of the magnetostrictive nanomagnet. Our study revealed that while the step transition (firing) of the magnetic neuron is always very sharp at 0 K, the threshold is significantly broadened at room temperature, regardless of geometry and regardless of whether the magnet is switched with strain or spin-polarized current. While this could preclude some applications, the extreme energy-efficiency of these neurons makes them nearly ideal for use in certain types of neuromorphic computation. This work is supported by the NSF under grant ECCS-1124714 and CCF-1216614.

  17. Energy Dissipation and Landau Damping in Two- and Three-dimensional Plasma Turbulence

    Science.gov (United States)

    Li, Tak Chu; Howes, Gregory G.; Klein, Kristopher G.; TenBarge, Jason M.

    2016-12-01

    Plasma turbulence is ubiquitous in space and astrophysical plasmas, playing an important role in plasma energization, but the physical mechanisms leading to dissipation of the turbulent energy remain to be definitively identified. Kinetic simulations in two dimensions (2D) have been extensively used to study the dissipation process. How the limitation to 2D affects energy dissipation remains unclear. This work provides a model of comparison between two- and three-dimensional (3D) plasma turbulence using gyrokinetic simulations; it also explores the dynamics of distribution functions during the dissipation process. It is found that both 2D and 3D nonlinear gyrokinetic simulations of a low-beta plasma generate electron velocity-space structures with the same characteristics as that of the linear Landau damping of Alfvén waves in a 3D linear simulation. The continual occurrence of the velocity-space structures throughout the turbulence simulations suggests that the action of Landau damping may be responsible for the turbulent energy transfer to electrons in both 2D and 3D, and makes possible the subsequent irreversible heating of the plasma through collisional smoothing of the velocity-space fluctuations. Although, in the 2D case where variation along the equilibrium magnetic field is absent, it may be expected that Landau damping is not possible, a common trigonometric factor appears in the 2D resonant denominator, leaving the resonance condition unchanged from the 3D case. The evolution of the 2D and 3D cases is qualitatively similar. However, quantitatively, the nonlinear energy cascade and subsequent dissipation is significantly slower in the 2D case.

  18. Comparison of cumulative dissipated energy between the Infiniti and Centurion phacoemulsification systems

    Directory of Open Access Journals (Sweden)

    Chen M

    2015-07-01

    Full Text Available Ming Chen,1 Erik Anderson,2 Geoffrey Hill,3 John J Chen,4 Thomas Patrianakos2 1Department of Surgery, University of Hawaii, Honolulu, HI, 2Department of Ophthalmology, John H Stroger, Jr Hospital of Cook County, Chicago, IL, 3Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, 4Biostatistics Core, John A Burns School of Medicine, University of Hawaii, Honolulu, HI, USA Purpose: To compare cumulative dissipated energy between two phacoemulsification machines. Setting: An ambulatory surgical center, Honolulu, Hawaii, USA. Design: Retrospective chart review. Methods: A total of 2,077 consecutive cases of cataract extraction by phacoemulsification performed by five surgeons from November 2012 to November 2014 were included in the study; 1,021 consecutive cases were performed using the Infiniti Vision System, followed by 1,056 consecutive cases performed using the Centurion Vision System. Results: The Centurion phacoemulsification system required less energy to remove a cataractous lens with an adjusted average energy reduction of 38% (5.09 percent-seconds (P<0.001 across all surgeons in comparison to the Infiniti phacoemulsification system. The reduction in cumulative dissipated energy was statistically significant for each surgeon, with a range of 29%–45% (2.25–12.54 percent-seconds (P=0.005–<0.001. Cumulative dissipated energy for both the Infiniti and Centurion systems varied directly with patient age, increasing an average of 2.38 percent-seconds/10 years. Conclusion: The Centurion phacoemulsification system required less energy to remove a cataractous lens in comparison to the Infiniti phacoemulsification system. Keywords: phacoemulsification, cumulative dissipated energy, Centurion Vision System, Infiniti Vision System

  19. Experimental study of breaking and energy dissipation in surface waves

    Science.gov (United States)

    Ruiz Chavarria, Gerardo; Le Gal, Patrice; Le Bars, Michael

    2014-11-01

    We present an experimental study of the evolution of monochromatic waves produced by a parabolic wave maker. Because of the parabolic shape of the wave front, the waves exhibit spatial focusing and their amplitude dramatically increases over distances of a few wavelengths. Unlike linear waves, the amplitude of the free surface deformation cannot exceed a certain threshold and when this happens the waves break. In order to give a criterion for the appearance of breaking, we calculate the steepness defined as ɛ = H/ λ (where H is the wave height and λ their wavelength) for waves of frequencies in the range 4-10 Hz. We found that wave breaking develops when ɛ attains approximately a value of 0.10. We also evaluate the lost of energy carried by the waves during their breaking by a detailed and accurate measurement of their amplitude using an optical Fourier transform profilometry. G. Ruiz Chavarria acknowledges DGAPA-UNAM by support under Project IN 116312 (Vorticidad y ondas no lineales en fluidos).

  20. Energy method for multi-dimensional balance laws with non-local dissipation

    KAUST Repository

    Duan, Renjun

    2010-06-01

    In this paper, we are concerned with a class of multi-dimensional balance laws with a non-local dissipative source which arise as simplified models for the hydrodynamics of radiating gases. At first we introduce the energy method in the setting of smooth perturbations and study the stability of constants states. Precisely, we use Fourier space analysis to quantify the energy dissipation rate and recover the optimal time-decay estimates for perturbed solutions via an interpolation inequality in Fourier space. As application, the developed energy method is used to prove stability of smooth planar waves in all dimensions n2, and also to show existence and stability of time-periodic solutions in the presence of the time-periodic source. Optimal rates of convergence of solutions towards the planar waves or time-periodic states are also shown provided initially L1-perturbations. © 2009 Elsevier Masson SAS.

  1. Dissipation of Electrical Energy in Submerged Arc Furnaces Producing Silicomanganese and High-Carbon Ferromanganese

    Science.gov (United States)

    Steenkamp, Joalet Dalene; Hockaday, Christopher James; Gous, Johan Petrus; Nzima, Thabo Witness

    2017-09-01

    Submerged-arc furnace technology is applied in the primary production of ferroalloys. Electrical energy is dissipated to the process via a combination of arcing and resistive heating. In processes where a crater forms between the charge zone and the reaction zone, electrical energy is dissipated mainly through arcing, e.g., in coke-bed based processes, through resistive heating. Plant-based measurements from a device called "Arcmon" indicated that in silicomanganese (SiMn) production, at times up to 15% of the electrical energy used is transferred by arcing, 30% in high-carbon ferromanganese (HCFeMn) production, compared with 5% in ferrochromium and 60% in ferrosilicon production. On average, the arcing is much less at 3% in SiMn and 5% in HCFeMn production.

  2. Shock Formation and Energy Dissipation of Slow Magnetosonic Waves in Coronal Plumes

    Science.gov (United States)

    Cuntz, M.; Suess, S. T.

    2003-01-01

    We study the shock formation and energy dissipation of slow magnetosonic waves in coronal plumes. The wave parameters and the spreading function of the plumes as well as the base magnetic field strength are given by empirical constraints mostly from SOHO/UVCS. Our models show that shock formation occurs at low coronal heights, i.e., within 1.3 bun, depending on the model parameters. In addition, following analytical estimates, we show that scale height of energy dissipation by the shocks ranges between 0.15 and 0.45 Rsun. This implies that shock heating by slow magnetosonic waves is relevant at most heights, even though this type of waves is apparently not a solely operating energy supply mechanism.

  3. Photoprotection of reaction centers: thermal dissipation of absorbed light energy vs charge separation in lichens.

    Science.gov (United States)

    Heber, Ulrich; Soni, Vineet; Strasser, Reto J

    2011-05-01

    During desiccation, fluorescence emission and stable light-dependent charge separation in the reaction centers (RCs) of photosystem II (PSII) declined strongly in three different lichens: in Parmelia sulcata with an alga as the photobiont, in Peltigera neckeri with a cyanobacterium and in the tripartite lichen Lobaria pulmonaria. Most of the decline of fluorescence was caused by a decrease in the quantum efficiency of fluorescence emission. It indicated the activation of photoprotective thermal energy dissipation. Photochemical activity of the RCs was retained even after complete desiccation. It led to light-dependent absorption changes and found expression in reversible increases in fluorescence or in fluorescence quenching. Lowering the temperature changed the direction of fluorescence responses in P. sulcata. The observations are interpreted to show that reversible light-induced increases in fluorescence emission in desiccated lichens indicate the functionality of the RCs of PSII. Photoprotection is achieved by the drainage of light energy to dissipating centers outside the RCs before stable charge separation can take place. Reversible quenching of fluorescence by strong illumination is suggested to indicate the conversion of the RCs from energy conserving to energy dissipating units. This permits them to avoid photoinactivation. On hydration, re-conversion occurs to energy-conserving RCs.

  4. On the energy dissipation rate at the inner edge of circumbinary discs

    Science.gov (United States)

    Terquem, Caroline; Papaloizou, John C. B.

    2016-10-01

    We study, by means of numerical simulations and analysis, the details of the accretion process from a disc onto a binary system. We show that energy is dissipated at the edge of a circumbinary disc and this is associated with the tidal torque that maintains the cavity: angular momentum is transferred from the binary to the disc through the action of compressional shocks and viscous friction. These shocks can be viewed as being produced by fluid elements which drift into the cavity and, before being accreted, are accelerated onto trajectories that send them back to impact the disc. The rate of energy dissipation is approximately equal to the product of potential energy per unit mass at the disc's inner edge and the accretion rate, estimated from the disc parameters just beyond the cavity edge, that would occur without the binary. For very thin discs, the actual accretion rate onto the binary may be significantly less. We calculate the energy emitted by a circumbinary disc taking into account energy dissipation at the inner edge and also irradiation arising there from reprocessing of light from the stars. We find that, for tight PMS binaries, the SED is dominated by emission from the inner edge at wavelengths between 1-4 and 10 μm. This may apply to systems like CoRoT 223992193 and V1481 Ori.

  5. On the energy dissipation rate at the inner edge of circumbinary discs

    CERN Document Server

    Terquem, Caroline

    2016-01-01

    We study, by means of numerical simulations and analysis, the details of the accretion process from a disc onto a binary system. We show that energy is dissipated at the edge of a circumbinary disc and this is associated with the tidal torque that maintains the cavity: angular momentum is transferred from the binary to the disc through the action of compressional shocks and viscous friction. These shocks can be viewed as being produced by fluid elements which drift into the cavity and, before being accreted, are accelerated onto trajectories that send them back to impact the disc. The rate of energy dissipation is approximately equal to the product of potential energy per unit mass at the disc's inner edge and the accretion rate, estimated from the disc parameters just beyond the cavity edge, that would occur without the binary. For very thin discs, the actual accretion rate onto the binary may be significantly less. We calculate the energy emitted by a circumbinary disc taking into account energy dissipation...

  6. Singlet Energy Dissipation in the Photosystem II Light-Harvesting Complex Does Not Involve Energy Transfer to Carotenoids

    NARCIS (Netherlands)

    Mueller, Marc G.; Lambrev, Petar; Reus, Michael; Wientjes, Emilie; Croce, Roberta; Holzwarth, Alfred R.; Müller, Marc G.

    2010-01-01

    The energy dissipation mechanism in oligomers of the major light-harvesting complex II (LHC II) from Arabidopsis thaliana mutants npq1 and npq2, zeaxanthin-deficient and zeaxanthin-enriched, respectively, has been studied by femtosecond transient absorption. The kinetics obtained at different excita

  7. Coronal energy input and dissipation in a solar active region 3D MHD model

    CERN Document Server

    Bourdin, Philippe-A; Peter, Hardi

    2015-01-01

    Context. We have conducted a 3D MHD simulation of the solar corona above an active region in full scale and high resolution, which shows coronal loops, and plasma flows within them, similar to observations. Aims. We want to find the connection between the photospheric energy input by field-line braiding with the coronal energy conversion by Ohmic dissipation of induced currents. Methods. To this end we compare the coronal energy input and dissipation within our simulation domain above different fields of view, e.g. for a small loops system in the active region (AR) core. We also choose an ensemble of field lines to compare, e.g., the magnetic energy input to the heating per particle along these field lines. Results. We find an enhanced Ohmic dissipation of currents in the corona above areas that also have enhanced upwards-directed Poynting flux. These regions coincide with the regions where hot coronal loops within the AR core are observed. The coronal density plays a role in estimating the coronal temperatur...

  8. Lane-changing behavior and its effect on energy dissipation using full velocity difference model

    Science.gov (United States)

    Wang, Jian; Ding, Jian-Xun; Shi, Qin; Kühne, Reinhart D.

    2016-07-01

    In real urban traffic, roadways are usually multilane with lane-specific velocity limits. Most previous researches are derived from single-lane car-following theory which in the past years has been extensively investigated and applied. In this paper, we extend the continuous single-lane car-following model (full velocity difference model) to simulate the three-lane-changing behavior on an urban roadway which consists of three lanes. To meet incentive and security requirements, a comprehensive lane-changing rule set is constructed, taking safety distance and velocity difference into consideration and setting lane-specific speed restriction for each lane. We also investigate the effect of lane-changing behavior on distribution of cars, velocity, headway, fundamental diagram of traffic and energy dissipation. Simulation results have demonstrated asymmetric lane-changing “attraction” on changeable lane-specific speed-limited roadway, which leads to dramatically increasing energy dissipation.

  9. Response of mean turbulent energy dissipation rate and spectra to concentrated wall suction

    Science.gov (United States)

    Oyewola, O.; Djenidi, L.; Antonia, R. A.

    2008-01-01

    The response of mean turbulent energy dissipation rate and spectra to concentrated suction applied through a porous wall strip has been quantified. Both suction and no suction data of the spectra collapsed reasonably well for Kolmogorov normalised wavenumber k {1/*} > 0.2. Similar results were also observed for second-order structure functions (not shown) for Kolmogorov normalised radius r* suction results shows a significant departure from the no suction case of the Kolmogorov normalised spectra and second-order structure functions for k {1/*} 20, respectively. The departure at the larger scales with collapse at the small scales suggests that suction induce a change in the small-scale motion. This is also reflected in the alteration of mean turbulent energy dissipation rate and Taylor microscale Reynolds number. This change is a result of the weakening of the large-scale structures. The effect is increased as the suction rate is increased.

  10. Analysis of the Thermo-Viscous Effect on Friction and Energy Dissipation in Oil Lubricated Interfaces

    DEFF Research Database (Denmark)

    Johansen, Per; Roemer, Daniel Beck; Andersen, Torben O.

    2016-01-01

    -dimensional thermo-elastohydrodynamic lubrication models of fluid power components. The computational efforts involved in simulation with such models entail that design optimization are to some extend impractical. However, such models are also pursued in theoretical tribology with the aim to study loss and wear...... investigations, due to computational effort, whereby analytical research in loss mechanisms still have certain advantages. In this paper, the thermo-viscous effect of a lubricant is included in an analytical study of the friction and energy dissipation of oil hydraulic thin-films. This analytical study is based...... an influence from the surface temperature gradient on the viscous friction, which id not revealed when applying classical isothermal analysis. The significance of the thermo-viscous effect on friction and energy dissipation is analyzed analytically in order to provide a qualitative insight to the relation...

  11. Determination of energy dissipation of a spider silk structure under impulsive loading

    Science.gov (United States)

    Alencastre, Jorge; Mago, Carlos; Rivera, Richard

    2015-09-01

    Various researches and studies have demonstrated that spider silk is much stronger and more deformable than a steel string of the same diameter from a mechanical approach. These excellent properties have caused many scientific disciplines to get involved, such as bio-mechanics, bio-materials and bio-mimetics, in order to create a material of similar properties and characteristics. It should be noted that the researches and studies have been oriented mainly as a quasi-static model. For this research, the analysis has taken a dynamic approach and determined the dissipation energy of a structure which is made of spider silk "Dragline" and produced by the Argiope-Argentata spider, through an analytical-experimental way, when being subjected to impulsive loading. Both experimental and analytical results, the latter obtained by using adjusted models, have given high levels of dissipation energy during the first cycle of vibration, which are consistent with the values suggested by other authors.

  12. Energy release in high latitudes during the dissipation of ionospheric currents

    Energy Technology Data Exchange (ETDEWEB)

    Faermark, D.S.; Levitin, A.E.; Fel' dshtejn, Ya.I.; Belov, B.A.; Gajdukov, V.Yu.; Afonina, R.G.; Demidova, Yu.Z.

    Space-time distributions of Joule heating in the ionosphere for both summer and equinox seasons at different parameters of the interplanetary medium are obtained. It is shown, that in high latitudes there is a continuous Joule dissipation on which additional sources of energy release (qsub(j)) are superimposed. These sources are controlled by the Bsub(z) and Bsub(y) components of the interplanetary magnetic field (IMF) vector. In the region of high latitudes (PHI > or approximately 60 deg) there is a continuous Joule dissipation of ionospheric currents. Near the aurora borealis oval the maxima of qsub(j) (Bsub(z)=Bsub(y)=0) in the evening and morning sectors constitute: in summer season approximately 1-2 mW/mS; in the equinox season approximately 4-8 mW/mS. In the polar cap region, a continuous Joule dissipation with high values qsub(j) (Bsub(z)=Bsub(y)=0) is observed in the morning sector. Constantly existing Joule dissipation ensures a heat influx of approximately (2 - 4) x 10 W to the high-latitude ionosphere irrespectively of a year season.

  13. Diameter-dependent dissipation of vibration energy of cantilevered multiwall carbon nanotubes.

    Science.gov (United States)

    Sawaya, Shintaro; Arie, Takayuki; Akita, Seiji

    2011-04-22

    This study investigated the mechanical properties of vibrating cantilevered multiwall carbon nanotubes in terms of energy loss in a vibrating nanotube. Young's moduli of the nanotubes show a clear dependence of the perfection of the sp(2) carbon network, as determined from Raman spectroscopy. The energy loss corresponding to the inverse of the quality factor increases with increasing tube diameter, although the nanotube maintains high mechanical strength around 0.5 TPa. This fact implies that the vibration energy is dissipated mainly not by defects, but by van der Waals interactions between walls.

  14. New parallelizable schemes for integrating the Dissipative Particle Dynamics with Energy Conservation

    CERN Document Server

    Homman, A -A; Roussel, J; Stoltz, G

    2015-01-01

    This work presents new parallelizable numerical schemes for the integration of Dissipative Particle Dynamics with Energy conservation (DPDE). So far, no numerical scheme presented in the literature is able to correctly preserve the energy over long times and give rise to small error on average properties for moderately small timesteps, while being straightforwardly parallelizable. We present in this article three new methods, all of them straightforwardly parallelizable, and allowing to correctly preserve the total energy of the system. We illustrate the accuracy and performance of these new schemes both on equilibrium and nonequilibrium parallel simulations.

  15. An Estimation of Turbulent Kinetic Energy and Energy Dissipation Rate Based on Atmospheric Boundary Layer Similarity Theory

    Science.gov (United States)

    Han, Jongil; Arya, S. Pal; Shaohua, Shen; Lin, Yuh-Lang; Proctor, Fred H. (Technical Monitor)

    2000-01-01

    Algorithms are developed to extract atmospheric boundary layer profiles for turbulence kinetic energy (TKE) and energy dissipation rate (EDR), with data from a meteorological tower as input. The profiles are based on similarity theory and scalings for the atmospheric boundary layer. The calculated profiles of EDR and TKE are required to match the observed values at 5 and 40 m. The algorithms are coded for operational use and yield plausible profiles over the diurnal variation of the atmospheric boundary layer.

  16. Protein crystallization in stirred systems--scale-up via the maximum local energy dissipation.

    Science.gov (United States)

    Smejkal, Benjamin; Helk, Bernhard; Rondeau, Jean-Michel; Anton, Sabine; Wilke, Angelika; Scheyerer, Peter; Fries, Jacqueline; Hekmat, Dariusch; Weuster-Botz, Dirk

    2013-07-01

    Macromolecular bioproducts like therapeutic proteins have usually been crystallized with µL-scale vapor diffusion experiments for structure determination by X-ray diffraction. Little systematic know-how exists for technical-scale protein crystallization in stirred vessels. In this study, the Fab-fragment of the therapeutic antibody Canakinumab was successfully crystallized in a stirred-tank reactor on a 6 mL-scale. A four times faster onset of crystallization of the Fab-fragment was observed compared to the non-agitated 10 µL-scale. Further studies on a liter-scale with lysozyme confirmed this effect. A 10 times faster onset of crystallization was observed in this case at an optimum stirrer speed. Commonly suggested scale-up criteria (i.e., minimum stirrer speed to keep the protein crystals in suspension or constant impeller tip speed) were shown not to be successful. Therefore, the criterion of constant maximum local energy dissipation was applied for scale-up of the stirred crystallization process for the first time. The maximum local energy dissipation was estimated by measuring the drop size distribution of an oil/surfactant/water emulsion in stirred-tank reactors on a 6 mL-, 100 mL-, and 1 L-scale. A comparable crystallization behavior was achieved in all stirred-tank reactors when the maximum local energy dissipation was kept constant for scale-up. A maximum local energy dissipation of 2.2 W kg(-1) was identified to be the optimum for lysozyme crystallization at all scales under study.

  17. Observations of Thin Current Sheets in the Solar Wind and Their Role in Magnetic Energy Dissipation

    Science.gov (United States)

    Perri, S.; Goldstein, M. L.; Dorelli, J.; Sahraoui, F.; Gurgiolo, C. A.; Karimabadi, H.; Mozer, F.; Wendel, D. E.; TenBarge, J.; Roytershteyn, V.

    2013-12-01

    A recent analysis of 450 vec/s resolution data from the STAFF search-coil magnetometer on board Cluster has revealed, for the first time, the presence of thin current sheets and discontinuities from the proton Larmor scale down to the electron Larmor scale in the solar wind. This is in the range of scales where a cascade of energy consistent with highly oblique kinetic Alfvénic fluctuations (KAW), eventually dissipated by electron Landau damping, has been detected. The current sheets have been found to have a size between 20-200 km, indicating that they are very localized. We will compare the observations with results coming from 2D Hall MHD, Gyrokinetic, and full Particle-in-Cell turbulence simulations. Preliminary work has highlighted promising qualitative agreement between the properties of the structures observed in the Cluster data and the current sheets generated in the simulations. With the aim of investigating the role played by those structures in dissipating the magnetic energy in the solar wind, E●J has been computed within each magnetic discontinuity. This has been made possible via a combined analysis of both STAFF-SC magnetic field data and the electric field data from the Electric Fields and Wave instrument (EFW). We describe procedures used to reduce the noise in the EFW data. The results obtained represent an effort to clarify the processes involved in the dissipation of magnetic energy in the solar wind.

  18. EXPERIMENTAL STUDY ON WAVE ENERGY DISSIPATION AND COHESIVE SEDIMENT TRANSPORT IN SILT COAST

    Institute of Scientific and Technical Information of China (English)

    Shixiong HU; Onyx WAI

    2001-01-01

    The interaction between the wave and fluid mud layer plays an important role in the development of silt coast. Sediment is essentially transported in the form of rheological flow of mud layer under the wave action, and on the other hand, the fluid mud layer damps the wave considerably. This paper studies the laws of wave energy dissipation and mud bed deformation, and the movement of mud layer through laboratory experiments. The results show that the wave energy dissipation follows an exponential law along the propagation distance. The bulk density of the mud layer affects the rate of the wave energy dissipation greatly. The wave damping coefficient (Ki) is a fuction of the mud density affected greatly by the relative wave height (H/h).Analysis also indicates that the mud density affect the rate of mud transport and the moving velocity (Vmax) of the surface mud is inversely proportional to the mud density. Both the relative wave height (H/h) and wave-damping coefficient (Ki) are proportional to the Vmax. Analysis also shows that the mud transport rate (Tr) is proportional to the wave damping rate (1-H0/H15), the relative wave height (H/h),and inversely proportional to the volume concentration (Cv) and dimensionless coefficient of H/gT2.

  19. Energy Input and Dissipation in the Ionosphere-Thermosphere (IT) System

    Science.gov (United States)

    Huang, C. Y.; Huang, Y.; Su, Y. J.; Sutton, E. K.; Hairston, M. R.

    2015-12-01

    AFRL The long-held view of energy input and dissipation into the IT system says that the primary region in which dynamic and electrodynamic processes occur is the auroral zone. Recent observations have indicated that this may not be completely true. The dominant form of energy input to the IT system is electromagnetic, and not particle precipitation. Poynting flux measured on DMSP spacecraft during storms indicates that energy can be deposited at all local times (LTs) in both hemispheres at polar latitudes as well as in the auroral zones. One major effect of this energy input is Joule heating of the ionosphere and thermosphere. We have analyzed the ion temperature measured by DMSP for a number of storms. During storm main phases, the increase in ion temperature maximizes at polar latitudes. We have processed neutral densities from CHAMP, GRACE and GOCE which show localized Joule heating at extremely high latitudes in both hemispheres. We conclude that energy input and dissipation occurs in the polar cap as well as in the auroral zones. Our results require a re-examination of the processes by which energy can enter the IT system, as well as where and how energy is transferred to ions and neutrals

  20. The concentration gradient flow battery as electricity storage system: Technology potential and energy dissipation

    Science.gov (United States)

    van Egmond, W. J.; Saakes, M.; Porada, S.; Meuwissen, T.; Buisman, C. J. N.; Hamelers, H. V. M.

    2016-09-01

    Unlike traditional fossil fuel plants, the wind and the sun provide power only when the renewable resource is available. To accommodate large scale use of renewable energy sources for efficient power production and utilization, energy storage systems are necessary. Here, we introduce a scalable energy storage system which operates by performing cycles during which energy generated from renewable resource is first used to produce highly concentrated brine and diluate, followed up mixing these two solutions in order to generate power. In this work, we present theoretical results of the attainable energy density as function of salt type and concentration. A linearized Nernst-Planck model is used to describe water, salt and charge transport. We validate our model with experiments over wide range of sodium chloride concentrations (0.025-3 m) and current densities (-49 to +33 A m-2). We find that depending on current density, charge and discharge steps have significantly different thermodynamic efficiency. In addition, we show that at optimal current densities, mechanisms of energy dissipation change with salt concentration. We find the highest thermodynamic efficiency at low concentrate concentrations. When using salt concentrations above 1 m, water and co-ion transport contribute to high energy dissipation due to irreversible mixing.

  1. Energy dissipation of energetic electrons in the inhomogeneous intergalactic medium during the epoch of reionization

    CERN Document Server

    Kaurov, Alexander A

    2015-01-01

    We explore a time-dependent energy dissipation of the energetic electrons in the inhomogeneous intergalactic medium (IGM) during the epoch of cosmic reionization. In addition to the atomic processes we take into account the Inverse Compton (IC) scattering of the electrons on the comic microwave background (CMB) photons, which is the dominant channel of energy loss for the electrons with energies above a few MeV. We show that: (1) the effect on the IGM has both local (atomic processes) and non-local (IC radiation) components; (2) the energy distribution between Hydrogen and Helium ionizations depends on the initial electron energy; (3) the local baryon overdensity significantly affects the fractions of energy distributed in each channel; and (4) the relativistic effect of atomic cross section become important during the epoch of cosmic reionization. We release our code as open source for further modification by the community.

  2. Magnetic jets in long GRBs: jet stability, energy dissipation & the connection with the magnetar model

    Science.gov (United States)

    Bromberg, Omer

    2016-07-01

    It is commonly accepted that jets in long GRBs are powered by the magnetized rotation of a compact object: a BH or a fastly rotating magnetar. Such jets are intrinsically unstable to disruptive kink modes, yet they maintain their shape over many orders of magnitude as they propagate through the star and beyond, while converting their electromagnetic energy into radiation and kinetic energy. This calls for an efficient dissipation mechanism to work within the jet, without causing its disruption. In this talk I will present results from a 3D study of relativistic magnetized GRB jets propagating in stellar envelopes. The collimation of the jet leads to two types of instabilities: i) a local kink mode that causes internal dissipation of the magnetic energy to a state of equipartition with the thermal energy, ii) a global kink mode, which bodily deforms the jet, causing it to slow down may lead to jet stalling. I will discuss the interesting implications from these results on the energy emission in long GRBs and on the type of compact objects that power them. In particular I will show that within the framework of the magnetar model, the jet is expected to become highly kinked unstable and fail to breakout of the star. Instead it inflates a bubble with ~10^52 erg of energy at the center of the star leading to a highly energetic supernova.

  3. Log-stable law of energy dissipation as a framework of turbulence intermittency

    Science.gov (United States)

    Mouri, Hideaki

    2015-03-01

    To describe the small-scale intermittency of turbulence, a self-similarity is assumed for the probability density function of a logarithm of the rate of energy dissipation smoothed over a length scale among those in the inertial range. The result is an extension of Kolmogorov's classical theory [A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 301 (1941)], i.e., a one-parameter framework where the logarithm obeys some stable distribution. Scaling laws are obtained for the dissipation rate and for the two-point velocity difference. They are consistent with theoretical constraints and with the observed scaling laws. Also discussed is the physics that determines the value of the parameter.

  4. Uniqueness of Landau-Lifshitz energy frame in relativistic dissipative hydrodynamics.

    Science.gov (United States)

    Tsumura, Kyosuke; Kunihiro, Teiji

    2013-05-01

    We show that the relativistic dissipative hydrodynamic equation derived from the relativistic Boltzmann equation by the renormalization-group method uniquely leads to the one in the energy frame proposed by Landau and Lifshitz, provided that the macroscopic-frame vector, which defines the local rest frame of the flow velocity, is independent of the momenta of constituent particles, as it should. We argue that the relativistic hydrodynamic equations for viscous fluids must be defined on the energy frame if consistent with the underlying relativistic kinetic equation.

  5. Rate of Dissipation of the Energy of Low-Frequency Mechanical Disturbances in a Tire

    Science.gov (United States)

    Grinchuk, P. S.; Fisenko, S. P.

    2016-11-01

    An expression for the rate of dissipation of the energy of low-frequency mechanical disturbances in a tire, accounting for the tired wheel radius, velocity of motion, and loading, has been derived. After processing experimental data on heating the tread rubber of an oversize tire by the proposed method, it has been revealed that about 30% of the energy of deformations appearing in motion of a loaded tire is converted into heat, and the coefficient of heat transfer between the tire and air has been derived.

  6. Wave Energy Dissipation of Waves Breaking on a Reef with a Steep Front Slope

    DEFF Research Database (Denmark)

    Jensen, M.S.; Burcharth, Hans F.; Brorsen, Michael

    2005-01-01

    The Transformation of waves propagating over a steep bottom slope is of great importance regarding the coastal processes in the near-shore area.This study will contribute with tools to predict the dissipated wave energy for irregular waves passing a steep submerged slope. An extensive number...... of test with regular and irregular waves breaking over a steep bottom slope have been performed in the Hydraulics & Coastal Engineering Laboratory, Aalborg University. Based on these experimental data formulae have been developed capable of predicting he transmitted wave energy over steep slopes....

  7. Global vs local energy dissipation: the energy cycle of the turbulent Von K\\'arm\\'an flow

    CERN Document Server

    Kuzzay, Denis; Dubrulle, Bérengère

    2015-01-01

    In this paper, we investigate the relations between global and local energy transfers in a turbulent Von K\\'arm\\'an flow. The goal is to understand how and where energy is dissipated in such a flow and to reconstruct the energy cycle in an experimental device where local as well as global quantities can be measured. We use PIV measurements and we model the Reynolds stress tensor to take subgrid scales into account. This procedure involves a free parameter that is calibrated using angular momentum balance. We then estimate the local and global mean injected and dissipated power for several types of impellers, for various Reynolds numbers and for various flow topologies. These PIV-estimates are then compared with direct injected power estimates provided by torque measurements at the impellers. The agreement between PIV-estimates and direct measurements depends on the flow topology. In symmetric situations, we are able to capture up to 90% of the actual global energy dissipation rate. However, our results become...

  8. Impact Vibration Attenuation for a Flexible Robotic Manipulator through Transfer and Dissipation of Energy

    Directory of Open Access Journals (Sweden)

    Yushu Bian

    2013-01-01

    Full Text Available Due to the presence of system flexibility, impact can excite severe large amplitude vibration responses of the flexible robotic manipulator. This impact vibration exhibits characteristics of remarkable nonlinearity and strong energy. The main goal of this study is to put forward an energy-based control method to absorb and attenuate large amplitude impact vibration of the flexible robotic manipulator. The method takes advantage of internal resonance and is implemented through a vibration absorber based on the transfer and dissipation of energy. The addition of the vibration absorber to the flexible arm generates a coupling effect between vibration modes of the system. By means of analysis on 2:1 internal resonance, the exchange of energy is proven to be existent. The impact vibrational energy can be transferred from the arm to the absorber and dissipated through the damping of the absorber. The results of numerical simulations are promising and preliminarily verify that the method is feasible and can be used to combat large amplitude impact vibration of the flexible manipulator undergoing rigid motion.

  9. Achievement of Runaway Electron Energy Dissipation by High-Z Gas Injection in DIII-D

    Science.gov (United States)

    Hollmann, E. M.

    2014-10-01

    Disruption runaway electron (RE) formation followed by RE beam-wall strikes is a concern for future tokamaks, motivating the study of mitigation techniques to reduce the RE beam energy in a controlled manner. A promising approach for doing this is the injection of high-Z gas into the RE beam. Massive (100 torr-l) injection of high-Z gas into RE beams in DIII-D is shown to significantly dissipate both RE magnetic and kinetic energy. For example, injection of argon into a typical 300 kA current RE beam is observed to cause a drop in kinetic energy from 50 kJ to 10 kJ in 10 ms, thus rapidly reducing the damage-causing capability of the RE beam. Both the RE kinetic energy and pitch angle are important for determining the resulting wall damage, with high energy, high pitch angle electrons typically considered most dangerous. The RE energy distribution is found to be more skewed toward low energies than predicted by avalanche theory. The pitch angle is not found to be constant, as is frequently assumed, but is shown to drop from sin(θ) ~ 1 for energies less than 1 MeV to sin(θ) ~ 0 . 2 for energies greater than 10 MeV. Injection of high-Z impurities does not appear to change the overall shape of the energy or pitch angle distributions dramatically. The enhanced RE energy dissipation appears to be caused primarily via collisions with the cold plasma leading to line radiation. Synchrotron power loss only becomes significant in the absence of high-Z impurities, while radial transport loss of REs is seen to become dominant if the RE beam moves sufficiently close to the vessel walls. The experiments demonstrate that avalanche theory somewhat underestimates collisional dissipation of REs in the presence of high-Z atoms, even in the absence of radial transport losses, meaning that reducing RE wall damage in large tokamaks should be easier than previously expected. Supported by the US Department of Energy under DE-FG02-07ER54917 and DE-FC02-04ER54698.

  10. Relationship Between Hysteresis Dissipated Energy and Temperature Rising in Fiber-Reinforced Ceramic-Matrix Composites Under Cyclic Loading

    Science.gov (United States)

    Longbiao, Li

    2016-06-01

    In this paper, the relationship between hysteresis dissipated energy and temperature rising of the external surface in fiber-reinforced ceramic-matrix composites (CMCs) during the application of cyclic loading has been analyzed. The temperature rise, which is caused by frictional slip of fibers within the composite, is related to the hysteresis dissipated energy. Based on the fatigue hysteresis theories considering fibers failure, the hysteresis dissipated energy and a hysteresis dissipated energy-based damage parameter changing with the increase of cycle number have been investigated. The relationship between the hysteresis dissipated energy, a hysteresis dissipated energy-based damage parameter and a temperature rise-based damage parameter have been established. The experimental temperature rise-based damage parameter of unidirectional, cross-ply and 2D woven CMCs corresponding to different fatigue peak stresses and cycle numbers have been predicted. It was found that the temperature rise-based parameter can be used to monitor the fatigue damage evolution and predict the fatigue life of fiber-reinforced CMCs.

  11. Dissipation of MeV ion energy in solids, structure formation and phase changes

    Science.gov (United States)

    Sen, P.; Aggarwal, G.; Tiwari, U.

    1998-12-01

    Instabilities arise out of dynamic events and can lead to nonequilibrium (self-organization) processes. Ion irradiation is by nature a nonequilibrium process and hence formation of structures, metastable or otherwise is to be expected. Recently, it has been theoretically predicted that metals under ion irradiation can lead to dissipative structure formation arising out of radiation damage and their subsequent annealing. The possibility of direct observation of such structures in metals under irradiation is however reduced due to nonavailability of a large concentration of defects (mainly point defects) at any point of time. In this experimental presentation we show that this can be overcome through the involvement of microstructural imperfections which rearrange during irradiation. Employing microstructurally impure specimens of Fe and Ni, it is shown that heavy ions dissipate their electronic energy to modify atomic arrangements at the microstructure. The increased concentration of defects (atomic rearrangements), amenable to statistical decay is shown to produce effects in the 4-probe resistivity measurements which we assign to dissipative structure formation.

  12. On valence electron density, energy dissipation and plasticity of bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Pang, J.J.; Tan, M.J. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798 Singapore (Singapore); Liew, K.M., E-mail: kmliew@cityu.edu.hk [Department of Civil and Architectural Engineering, City University of Hong Kong, Kowloon (Hong Kong)

    2013-11-15

    Highlights: ► Relationship between valence electron density and plasticity of metallic glasses. ► Poisson's ratio increases as electron density decreases. ► Energy dissipation proposed to understand plasticity. ► Low electron density indicates small activation energy. -- Abstract: In conventional crystalline alloys, valence electron density (VED) is one of the most significant factors in determining their phase stability and mechanical properties. Extending the concept to metallic glasses (MGs), it is found, not totally surprisingly, that their mechanical properties are VED-dependent as in crystalline alloys. Interestingly, the whole VED region can be separated into two zones: Zone 1 consists of Mg-, Ca-, and RE-based (RE for rare earth) alloys; Zone 2 consists of the rest of MGs. In either zone, for each type of MGs, Poisson's ratio generally decreases as VED increases. From the energy dissipation viewpoint proposed recently, the amorphous plasticity is closely related to the activation energy for the operation of shear-transformation-zones (STZs). Smaller STZ activation energy suggests higher ductility because STZs with lower activation energy are able to convert deformation work more efficiently into configurational energy rather than heat, which yields mechanical softening and advances the growth of shear bands (SBs). Following this model, it is revealed that the activation energies for STZ operation and crystallization are certainly proportional to VED. Thus, it is understood that, in Zone 2, MGs have a smaller VED and hence lower activation energies which are favorable for ductility and Poisson's ratio. In Zone 1, MGs have the lowest VED but apparent brittleness because either of low glass transition temperature and poor resistance to oxidation or of a large fraction of covalent bonds.

  13. Improved Multibody Dynamics for Investigating Energy Dissipation in Train Collisions Based on Scaling Laws

    Directory of Open Access Journals (Sweden)

    Heng Shao

    2016-01-01

    Full Text Available This study aimed to investigate energy dissipation in train collisions. A 1/8 scaled train model, about one-dimensional in longitudinal direction, was used to carry out a scaled train collision test. Corresponding multibody dynamic simulations were conducted using traditional and improved method model (IMM in ADAMS. In IMM, the connection between two adjacent cars was expressed by a nonlinear spring and energy absorbing structures were equivalently represented by separate forces, instead of one force. IMM was able to simulate the motion of each car and displayed the deformation of structures at both ends of the cars. IMM showed larger deformations and energy absorption of structures in moving cars than those in stationary cars. Moreover, the asymmetry in deformation proportion in main energy absorbing structures decreased with increasing collision speed. The asymmetry decreased from 11.69% to 3.60% when the collision speed increased from 10 km/h to 36 km/h.

  14. Performance-Based Seismic Retrofit of Soft-Story Woodframe Buildings Using Energy-Dissipation Systems

    Science.gov (United States)

    Tian, Jingjing

    Low-rise woodframe buildings with disproportionately flexible ground stories represent a significant percentage of the building stock in seismically vulnerable communities in the Western United States. These structures have a readily identifiable structural weakness at the ground level due to an asymmetric distribution of large openings in the perimeter wall lines and to a lack of interior partition walls, resulting in a soft story condition that makes the structure highly susceptible to severe damage or collapse under design-level earthquakes. The conventional approach to retrofitting such structures is to increase the ground story stiffness. An alternate approach is to increase the energy dissipation capacity of the structure via the incorporation of supplemental energy dissipation devices (dampers), thereby relieving the energy dissipation demands on the framing system. Such a retrofit approach is consistent with a Performance-Based Seismic Retrofit (PBSR) philosophy through which multiple performance levels may be targeted. The effectiveness of such a retrofit is presented via examination of the seismic response of a full-scale four-story building that was tested on the outdoor shake table at NEES-UCSD and a full-scale three-story building that was tested using slow pseudo-dynamic hybrid testing at NEES-UB. In addition, a Direct Displacement Design (DDD) methodology was developed as an improvement over current DDD methods by considering torsion, with or without the implementation of damping devices, in an attempt to avoid the computational expense of nonlinear time-history analysis (NLTHA) and thus facilitating widespread application of PBSR in engineering practice.

  15. A biomolecular implementation of logically reversible computation with minimal energy dissipation.

    Science.gov (United States)

    Klein, J P; Leete, T H; Rubin, H

    1999-10-01

    Energy dissipation associated with logic operations imposes a fundamental physical limit on computation and is generated by the entropic cost of information erasure, which is a consequence of irreversible logic elements. We show how to encode information in DNA and use DNA amplification to implement a logically reversible gate that comprises a complete set of operators capable of universal computation. We also propose a method using this design to connect, or 'wire', these gates together in a biochemical fashion to create a logic network, allowing complex parallel computations to be executed. The architecture of the system permits highly parallel operations and has properties that resemble well known genetic regulatory systems.

  16. Quantified Energy Dissipation Rates: Electromagnetic Wave Observations in the Terrestrial Bow Shock

    CERN Document Server

    Wilson, L B; Breneman, A W; Contel, O Le; Cully, C; Turner, D L; Angelopoulos, V

    2013-01-01

    We present the first quantified measure of the rate of energy dissipated per unit volume by high frequency electromagnetic waves in the transition region of the Earth's collisionless bow shock using data from the THEMIS spacecraft. Every THEMIS shock crossing examined with available wave burst data showed both low frequency ( 10 Hz) electromagnetic and electrostatic waves throughout the entire transition region and into the magnetosheath. The waves in both frequency ranges had large amplitudes, but the higher frequency waves, which are the focus of this study, showed larger contributions to both the Poynting flux and the energy dissipation rates. The higher frequency waves were identified as combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. These waves were found to have: (1) amplitudes capable of exceeding dB ~ 10 nT and dE ~ 300 mV/m, though more typical values were dB ~ 0.1-1.0 nT and dE ~ 10-50 mV/m; (2) energy flu...

  17. The Energy-Momentum Tensor for a Dissipative Fluid in General Relativity

    CERN Document Server

    Pimentel, Oscar M; Lora-Clavijo, F D

    2016-01-01

    Considering the growing interest of the astrophysicist community in the study of dissipative fluids with the aim of getting a more realistic description of the universe, we present in this paper a physical analysis of the energy-momentum tensor of a viscous fluid with heat flux. We introduce the general form of this tensor and, using the approximation of small velocity gradients, we relate the stresses of the fluid with the viscosity coefficients, the shear tensor and the expansion factor. Exploiting these relations, we can write the stresses in terms of the extrinsic curvature of the normal surface to the 4-velocity vector of the fluid, and we can also establish a connection between the perfect fluid and the symmetries of the spacetime. On the other hand, we calculate the energy conditions for a dissipative fluid through contractions of the energy-momentum tensor with the 4-velocity vector of an arbitrary observer. This method is interesting because it allows us to compute the conditions in a reasonable easy...

  18. Geometrical Dependence of Electrical Energy dissipated for Intra-Cloud Flashes using LMA Data

    Science.gov (United States)

    Salinas, V.; Bruning, E. C.

    2015-12-01

    Lightning Mapping Array (LMA) data were used to estimate total electrical energy dissipation for 73 intra-cloud flashes from a Mesoscale Convective System (MCS) that occurred near Lubbock, TX on June 6th, 2013. Charge volumes and spacing were estimated from the convex hull of VHF sources emitted by positive and negative breakdown. Energy was obtained by solving for the electric field and potential in two ways. For reference, a three-dimensional Poisson solver was used with the observed convex hull geometry. Analytical estimates were then made by applying the same charge volumes to simplified geometries: charged spheres, cylinders, and plane parallel discs. Charge density was retrieved by applying constraints of charge conservation and the presence of a breakeven electric field. The analytic geometries were compared to the convex hull method in order to quantify and evaluate the geometric dependence of the total energy dissipated. Preliminary results showed the cylindrical geometry produced values within the range of other values reported in the literature, and in close agreement with solutions for the convex-hull geometry.

  19. Charge and Energy Transfer Dynamics in Molecular Systems

    CERN Document Server

    May, Volkhard

    2004-01-01

    This second edition is based on the successful concept of the first edition in presenting a unified perspective on molecular charge and energy transfer processes. The authors bridge the regimes of coherent and dissipative dynamics, thus establishing the connection between classic rate theories and modern treatments of ultrafast phenomena. The book serves as an introduction for graduate students and researchers. Among the new topics of this second edition are. - semiclassical and quantum-classical hybrid formulations of molecular dynamics. - the basics of femtosecond nonlinear spectroscopy. - e

  20. Dissipation of the excess energy of the adsorbate- thermalization via electron transfer

    CERN Document Server

    Strak, Paweł; Krukowski, Stanisław

    2016-01-01

    A new scenario of thermalization process of the adsorbate attached at solid surfaces is proposed. The scenario is based on existence of electric dipole layer in which the electron wavefunctions extend over the positive ions. Thus the strong local electric field exists which drags electron into the solids and repels the positive ions. The electrons are tunneling conveying the energy into the solid interior. The positive ions are retarded in the field, which allows them to loose excess kinetic energy and to be located smoothly into the adsorption sites. In this way the excess energy is not dissipated locally avoiding melting or creation of defects, in accordance with the experiments. The scenario is supported by the ab intio calculation results including density function theory of the slabs representing AlN surface and the Schrodinger equation for time evolution of hydrogen-like atom at the solid surface.

  1. Energy-dissipating and self-repairing SMA-ECC composite material system

    Science.gov (United States)

    Li, Xiaopeng; Li, Mo; Song, Gangbing

    2015-02-01

    Structural component ductility and energy dissipation capacity are crucial factors for achieving reinforced concrete structures more resistant to dynamic loading such as earthquakes. Furthermore, limiting post-event residual damage and deformation allows for immediate re-operation or minimal repairs. These desirable characteristics for structural ‘resilience’, however, present significant challenges due to the brittle nature of concrete, its deformation incompatibility with ductile steel, and the plastic yielding of steel reinforcement. Here, we developed a new composite material system that integrates the unique ductile feature of engineered cementitious composites (ECC) with superelastic shape memory alloy (SMA). In contrast to steel reinforced concrete (RC) and SMA reinforced concrete (SMA-RC), the SMA-ECC beams studied in this research exhibited extraordinary energy dissipation capacity, minimal residual deformation, and full self-recovery of damage under cyclic flexural loading. We found that the tensile strain capacity of ECC, tailored up to 5.5% in this study, allows it to work compatibly with superelastic SMA. Furthermore, the distributed microcracking damage mechanism in ECC is critical for sufficient and reliable recovery of damage upon unloading. This research demonstrates the potential of SMA-ECC for improving resilience of concrete structures under extreme hazard events.

  2. Energy dissipation rate limits for flow through rough channels and tidal flow across topography

    CERN Document Server

    Kerswell, R R

    2016-01-01

    An upper bound on the energy dissipation rate per unit mass, $\\epsilon$, for pressure-driven flow through a channel with rough walls is derived for the first time. For large Reynolds numbers, $Re$, the bound - $\\epsilon \\,\\leq \\, c\\, U^3/h$ where $U$ is the mean flow through the channel, $h$ the channel height and $c$ a numerical prefactor - is independent of $Re$ (i.e. the viscosity) as in the smooth channel case but the numerical prefactor $c$, which is only a function of the surface heights and surface gradients (i.e. not higher derivatives), is increased. Crucially, this new bound captures the correct scaling law of what is observed in rough pipes and demonstrates that while a smooth pipe is a singular limit of the Navier-Stokes equations (data suggests $\\epsilon \\, \\sim \\, 1/(\\log Re)^2\\, U^3/h$ as $Re \\rightarrow \\infty$), it is a regular limit for current bounding techniques. As an application, the bound is extended to oscillatory flow to estimate the energy dissipation rate for tidal flow across botto...

  3. Verification of energy dissipation rate scalability in pilot and production scale bioreactors using computational fluid dynamics.

    Science.gov (United States)

    Johnson, Chris; Natarajan, Venkatesh; Antoniou, Chris

    2014-01-01

    Suspension mammalian cell cultures in aerated stirred tank bioreactors are widely used in the production of monoclonal antibodies. Given that production scale cell culture operations are typically performed in very large bioreactors (≥ 10,000 L), bioreactor scale-down and scale-up become crucial in the development of robust cell-culture processes. For successful scale-up and scale-down of cell culture operations, it is important to understand the scale-dependence of the distribution of the energy dissipation rates in a bioreactor. Computational fluid dynamics (CFD) simulations can provide an additional layer of depth to bioreactor scalability analysis. In this communication, we use CFD analyses of five bioreactor configurations to evaluate energy dissipation rates and Kolmogorov length scale distributions at various scales. The results show that hydrodynamic scalability is achievable as long as major design features (# of baffles, impellers) remain consistent across the scales. Finally, in all configurations, the mean Kolmogorov length scale is substantially higher than the average cell size, indicating that catastrophic cell damage due to mechanical agitation is highly unlikely at all scales.

  4. Influence of the energy dissipation rate in the discharge of a plasma synthetic jet actuator

    Energy Technology Data Exchange (ETDEWEB)

    Belinger, A; Cambronne, J P [Universite de Toulouse, UPS, INPT, LAPLACE - Laboratoire Plasma et Conversion d' Energie, 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); Hardy, P; Barricau, P; Caruana, D, E-mail: daniel.caruana@onera.fr [ONERA Centre Midi-Pyrenees, Departement Modeles pour l' Aerodynamique et l' Energetique, BP74025, 2 avenue Edouard Belin, 31055 TOULOUSE CEDEX 4 (France)

    2011-09-14

    A promising actuator for high-speed flow control, referred to as a plasma synthetic jet (PSJ), is being studied by the DMAE department of the ONERA, and the Laplace laboratory of the CNRS, in France. This actuator was inspired by the 'sparkjet' device developed by the Johns Hopkins University Applied Physics Laboratory. The PSJ, which produces a synthetic jet with high exhaust velocities, no active mechanical components and no mass flow admission, holds the promise of enabling high-speed flows to be manipulated. With this high-velocity jet it is possible to reduce fluid phenomena such as transition and turbulence, thus making it possible to increase an aircraft's performance whilst at the same time reducing its environmental impact. A thermal plasma discharge was created in a micro-cavity, causing the gas to be expelled. It is relevant that the velocity and momentum depend on the energy dispersed by the electric discharge. To control the frequency and energy dispersed in the plasma, the Laplace laboratory has developed two high-voltage power supply systems. These allow two different types of discharge to be produced, with energy being supplied to the discharge in two different manners. In this paper, we focus on the impact of the power supply on the plasma synthetic jet, and in particular on the role of the rate of energy dissipation in the discharge. In order to estimate the influence of the power supply on the machinery of the actuator, specific experimental techniques were used to investigate the electrical (voltage, current), thermal (Infra-red camera) and aerodynamic (jet duration, isentropic pressure, jet velocity) characteristics. These data sets were used to determine which of the two power supplies was more effective, thus allowing us to reach several conclusions concerning the importance of the energy dissipation rate on the PSJ actuator.

  5. On turbulent kinetic energy production and dissipation in dilute polymer solutions

    Science.gov (United States)

    Liberzon, A.; Guala, M.; Kinzelbach, W.; Tsinober, A.

    2006-12-01

    Drag reduction by dilute polymer solutions is the most recognized phenomenon in wall-bounded turbulent flows, which is associated with large scales (e.g., velocity scales) in spite of a consensus that polymers act mainly on much smaller scales of velocity derivatives. We demonstrate that drag reduction is only one sort of polymers' effect on a turbulent flow and show how turbulent velocity and velocity derivatives are altered in the presence of dilute polymers, irrespective of drag reduction phenomena. This is an experimental study on the interaction of dilute polymers with a complex three-dimensional turbulent flow with small mean velocity gradients. Lagrangian data (e.g., velocities and velocity gradients) of flow tracers were obtained by using three-dimensional particle tracking velocimetry in an observational volume in the turbulent bulk region, far from the boundaries. The focus is on aspects related to the turbulent kinetic energy (TKE) production, -⟨uiuj⟩Sij (ui is the fluctuating velocity, ⟨uiuj⟩ is the Reynolds stress tensor, and Sij is the mean rate-of-strain tensor), such as an anisotropy of Reynolds stresses and the alignment of the velocity vector field with respect to the eigenframe of Sij, among others. We base our study on the comparison of turbulent quantities in flows of water and of dilute polymer solution, forced in two distinct ways: frictional forcing by smooth rotating disks and inertial forcing by disks with baffles. The comparison of the results from the water and from the dilute polymer solution flows allows a critical examination of the influence of polymers on the TKE production, viscous dissipation, and the related turbulent properties. We conclude with (i) quantification of the direct effect of polymers on the small scales of velocity derivatives, (ii) evidence of an additional dissipation mechanism by the polymers, which is the main reason for the strong inhibition of the viscous dissipation, 2νs2, in a turbulent bulk, (iii

  6. Energy input and dissipation in a temperate lake during the spring transition

    Science.gov (United States)

    Woolway, R. Iestyn; Simpson, John H.

    2017-08-01

    ADCP and temperature chain measurements have been used to estimate the rate of energy input by wind stress to the water surface in the south basin of Windermere. The energy input from the atmosphere was found to increase markedly as the lake stratified in spring. The efficiency of energy transfer ( Eff), defined as the ratio of the rate of working in near-surface waters ( RW) to that above the lake surface ( P 10), increased from ˜0.0013 in vertically homogenous conditions to ˜0.0064 in the first 40 days of the stratified regime. A maximum value of Eff˜0.01 was observed when, with increasing stratification, the first mode internal seiche period decreased to match the diurnal wind period of 24 h. The increase in energy input, following the onset of stratification was reflected in enhancement of the mean depth-varying kinetic energy without a corresponding increase in wind forcing. Parallel estimates of energy dissipation in the bottom boundary layer, based on determination of the structure function show that it accounts for ˜15% of RW in stratified conditions. The evolution of stratification in the lake conforms to a heating stirring model which indicates that mixing accounts for ˜21% of RW. Taken together, these estimates of key energetic parameters point the way to the development of full energy budgets for lakes and shallow seas.

  7. Numerical simulation of flare energy build-up and release via Joule dissipation. [solar MHD model

    Science.gov (United States)

    Wu, S. T.; Bao, J. J.; Wang, J. F.

    1986-01-01

    A new numerical MHD model is developed to study the evolution of an active region due to photospheric converging motion, which leads to magnetic-energy buildup in the form of electric current. Because this new MHD model has incorporated finite conductivity, the energy conversion occurs from magnetic mode to thermal mode through Joule dissipation. In order to test the causality relationship between the occurrence of flare and photospheric motion, a multiple-pole configuration with neutral point is used. Using these results it is found that in addition to the converging motion, the initial magnetic-field configuration and the redistribution of the magnetic flux at photospheric level enhance the possibility for the development of a flare.

  8. Some Properties of the Kinetic Energy Flux and Dissipation in Turbulent Stellar Convection Zones

    CERN Document Server

    Meakin, Casey

    2010-01-01

    We investigate simulated turbulent flow within thermally driven stellar convection zones. Different driving sources are studied, including cooling at the top of the convectively unstable region, as occurs in surface convection zones; and heating at the base by nuclear burning. The transport of enthalpy and kinetic energy, and the distribution of turbulent kinetic energy dissipation are studied. We emphasize the importance of global constraints on shaping the quasi-steady flow characteristics, and present an analysis of turbulent convection which is posed as a boundary value problem that can be easily incorporated into standard stellar evolution codes for deep, efficient convection. Direct comparison is made between the theoretical analysis and the simulated flow and very good agreement is found. Some common assumptions traditionally used to treat quasi-steady turbulent flow in stellar models are briefly discussed. The importance and proper treatment of convective boundaries are indicated.

  9. Fibrous cartilage of human menisci is less shock-absorbing and energy-dissipating than hyaline cartilage.

    Science.gov (United States)

    Gaugler, Mario; Wirz, Dieter; Ronken, Sarah; Hafner, Mirjam; Göpfert, Beat; Friederich, Niklaus F; Elke, Reinhard

    2015-04-01

    To test meniscal mechanical properties such as the dynamic modulus of elasticity E* and the loss angle δ at two loading frequencies ω at different locations of the menisci and compare it to E* and δ of hyaline cartilage in indentation mode with spherical indenters. On nine pairs of human menisci, the dynamic E*-modulus and loss angle δ (as a measure of the energy dissipation) were determined. The measurements were performed at two different strain rates (slow sinusoidal and fast single impact) to show the strain rate dependence of the material. The measurements were compared to previous similar measurements with the same equipment on human hyaline cartilage. The resultant E* at fast indentation (median 1.16 MPa) was significantly higher, and the loss angle was significantly lower (median 10.2°) compared to slow-loading mode's E* and δ (median 0.18 MPa and 16.9°, respectively). Further, significant differences for different locations are shown. On the medial meniscus, the anterior horn shows the highest resultant dynamic modulus. In dynamic measurements with a spherical indenter, the menisci are much softer and less energy-dissipating than hyaline cartilage. Further, the menisci are stiffer and less energy-dissipating in the middle, intermediate part compared to the meniscal base. In compression, the energy dissipation of meniscus cartilage plays a minor role compared to hyaline cartilage. At high impacts, energy dissipation is less than on low impacts, similar to cartilage.

  10. Giant strain-sensitivity of acoustic energy dissipation in solids containing dry and saturated cracks with wavy interfaces

    CERN Document Server

    Zaitsev, V Yu

    2011-01-01

    Mechanisms of acoustic energy dissipation in heterogeneous solids attract much attention in view of their importance for material characterization, nondestructive testing, and geophysics. Due to the progress in measurement techniques in recent years it has been revealed that rocks can demonstrate extremely high strain sensitivity of seismo-acoustic loss. In particular, it has been found that strains of order $10^{-8}$ produced by lunar and solar tides are capable to cause variations in the seismoacoustic decrement on the order of several percents. Some laboratory data (although obtained for higher frequencies) also indicate the presence of very high dissipative nonlinearity. Conventionally discussed dissipation mechanisms (thermoelastic loss in dry solids, Biot and squirt-type loss in fluid-saturated ones) do not suffice to interpret such data. Here, the dissipation at individual cracks is revised taking into account the influence of wavy asperities of their surfaces quite typical of real cracks, which can dr...

  11. Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice.

    Science.gov (United States)

    Zhou, Yanhong; Lam, Hon Ming; Zhang, Jianhua

    2007-01-01

    Photoprotection mechanisms of rice plants were studied when its seedlings were subjected to the combined stress of water and high light. The imposition of water stress, induced by PEG 6000 which was applied to roots, resulted in substantial inhibition of stomatal conductance and net photosynthesis under all irradiance treatments. Under high light stress, the rapid decline of photosynthesis with the development of water stress was accompanied by decreases in the maximum velocity of RuBP carboxylation by Rubisco (V(cmax)), the capacity for ribulose-1,5-bisphosphate regeneration (J(max)), Rubisco and stromal FBPase activities, and the quantum efficiency of photosystem II, in the absence of any stomatal limitation of CO(2) supply. Water stress significantly reduced the energy flux via linear electron transport (J(PSII)), but increased light-dependent and DeltapH- and xanthophyll-mediated thermal dissipation (J(NPQ)). It is concluded that the drought-induced inhibition of photosynthesis under different irradiances in the rice was due to both diffusive and metabolic limitations. Metabolic limitation of photosynthesis may be related to the adverse effects of some metabolic processes and the oxidative damage to the chloroplast. Meanwhile, an enhanced thermal dissipation is an important process to minimize the adverse effects of drought and high irradiance when CO(2) assimilation is suppressed.

  12. Energy-conserving dissipative particle dynamics with temperature-dependent properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen; Tang, Yu-Hang; Lei, Huan; Caswell, Bruce; Karniadakis, George E.

    2014-05-01

    The dynamic properties of fluid, including diffusivity and viscosity, are temperature-dependent and can significantly influence the flow dynamics of mesoscopic non-isothermal systems. To capture the correct temperature-dependence of a fluid, an energy-conserving dissipative particle dynamics (eDPD) model is developed by expressing the weighting terms of the dissipative force and the random force as functions of temperature. The diffusivity and viscosity of liquid water at various temperatures ranging from 273 K to 373 K are used as examples for verifying the proposed model. Simulations of a Poiseuille flow and a steady case of heat conduction for reproducing the Fourier law are carried out to validate the present eDPD formulation and the thermal boundary conditions. Results show that the present eDPD model recovers the standard DPD model when isothermal fluid systems are considered. For non-isothermal fluid systems, the present model can predict the diffusivity and viscosity consistent with available experimental data of liquid water at various temperatures. Moreover, an analytical formula for determining the mesoscopic heat friction is proposed. The validity of the formula is confirmed by reproducing the experimental data for Prandtl number of liquid water at various temperatures. The proposed method is demonstrated in water but it can be readily extended to other liquids. (C) 2014 Elsevier Inc. All rights reserved.

  13. Landau-Zener transitions mediated by an environment: population transfer and energy dissipation.

    Science.gov (United States)

    Dodin, Amro; Garmon, Savannah; Simine, Lena; Segal, Dvira

    2014-03-28

    We study Landau-Zener transitions between two states with the addition of a shared discretized continuum. The continuum allows for population decay from the initial state as well as indirect transitions between the two states. The probability of nonadiabatic transition in this multichannel model preserves the standard Landau-Zener functional form except for a shift in the usual exponential factor, reflecting population transfer into the continuum. We provide an intuitive explanation for this behavior assuming individual, independent transitions between pairs of states. In contrast, the ground state survival probability at long time shows a novel, non-monotonic, functional form with an oscillatory behavior in the sweep rate at low sweep rate values. We contrast the behavior of this open-multistate model to other generalized Landau-Zener models incorporating an environment: the stochastic Landau-Zener model and the dissipative case, where energy dissipation and thermal excitations affect the adiabatic region. Finally, we present evidence that the continuum of states may act to shield the two-state Landau-Zener transition probability from the effect of noise.

  14. Experimental investigation of the optimization of stilling basin with shallow- water cushion used for low Froude number energy dissipation

    Institute of Scientific and Technical Information of China (English)

    李连侠; 廖华胜; 刘达; 蒋胜银

    2015-01-01

    Energy dissipations induced by the hydraulic jump and the trajectory jet are the most widely known as the two dissipation modes at the downstream of flood discharging structures, which are often considered quite different even contradictory. However, such two energy dissipators can be used jointly and harmonically. In this paper, a new type of stilling basin with a shallow-water cushion and a triangular bottom deflector is proposed based on two different scale physical model tests of the flood discharging tunnel No.2 of Luding hydropower project. The experimental results show that the flow regime of the hydraulic jump in the presented stilling basin with bottom deflector enjoys a good and stable performance within a large range of flow rates and the energy dissipation rate is considerably high as compared to the conventional stilling basin even at a low Froude number. The results also indicate that the stilling basin with triangular bottom deflector has a better performance in improving the potential cavitation erosion according to the analysis of the pressure and the cavitation number compared to the trapezoidal one. The proposed new type of shallow-cushion stilling basin with a shallow-water cushion can be applied in similar energy dissipation projects with low Froude number and large range of flow rates.

  15. Optimization of synthesis and peptization steps to obtain iron oxide nanoparticles with high energy dissipation rates

    Energy Technology Data Exchange (ETDEWEB)

    Mérida, Fernando [Deparment of Chemical Engineering, University of Puerto Rico, Mayagüez, P.O. Box 9046, Mayagüez, PR 00680 (United States); Chiu-Lam, Andreina [Department of Chemical Engineering, University of Florida, P.O. Box 116005, Gainesville, FL 32611-6005 (United States); Bohórquez, Ana C. [J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, FL 32611-6131 (United States); Maldonado-Camargo, Lorena [Department of Chemical Engineering, University of Florida, P.O. Box 116005, Gainesville, FL 32611-6005 (United States); Pérez, María-Eglée; Pericchi, Luis [Department of Mathematics, University of Puerto Rico, Río Piedras, P.O. Box 70377, San Juan, PR 00936-8377 (United States); Torres-Lugo, Madeline [Deparment of Chemical Engineering, University of Puerto Rico, Mayagüez, P.O. Box 9046, Mayagüez, PR 00680 (United States); Rinaldi, Carlos, E-mail: carlos.rinaldi@bme.ufl.edu [Department of Chemical Engineering, University of Florida, P.O. Box 116005, Gainesville, FL 32611-6005 (United States); J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, FL 32611-6131 (United States)

    2015-11-15

    Magnetic Fluid Hyperthermia (MFH) uses heat generated by magnetic nanoparticles exposed to alternating magnetic fields to cause a temperature increase in tumors to the hyperthermia range (43–47 °C), inducing apoptotic cancer cell death. As with all cancer nanomedicines, one of the most significant challenges with MFH is achieving high nanoparticle accumulation at the tumor site. This motivates development of synthesis strategies that maximize the rate of energy dissipation of iron oxide magnetic nanoparticles, preferable due to their intrinsic biocompatibility. This has led to development of synthesis strategies that, although attractive from the point of view of chemical elegance, may not be suitable for scale-up to quantities necessary for clinical use. On the other hand, to date the aqueous co-precipitation synthesis, which readily yields gram quantities of nanoparticles, has only been reported to yield sufficiently high specific absorption rates after laborious size selective fractionation. This work focuses on improvements to the aqueous co-precipitation of iron oxide nanoparticles to increase the specific absorption rate (SAR), by optimizing synthesis conditions and the subsequent peptization step. Heating efficiencies up to 1048 W/g{sub Fe} (36.5 kA/m, 341 kHz; ILP=2.3 nH m{sup 2} kg{sup −1}) were obtained, which represent one of the highest values reported for iron oxide particles synthesized by co-precipitation without size-selective fractionation. Furthermore, particles reached SAR values of up to 719 W/g{sub Fe} (36.5 kA/m, 341 kHz; ILP=1.6 nH m{sup 2} kg{sup −1}) when in a solid matrix, demonstrating they were capable of significant rates of energy dissipation even when restricted from physical rotation. Reduction in energy dissipation rate due to immobilization has been identified as an obstacle to clinical translation of MFH. Hence, particles obtained with the conditions reported here have great potential for application in nanoscale thermal

  16. A two-dimensional problem for a fibre-reinforced anisotropic thermoelastic half-space with energy dissipation

    Indian Academy of Sciences (India)

    Ibrahim A Abbas

    2011-06-01

    The theory of thermoelasticity with energy dissipation is employed to study plane waves in a fibre-reinforced anisotropic thermoelastic half-space. We apply a thermal shock on the surface of the half-space which is taken to be traction free. The problem is solved numerically using a finite element method. Moreover, the numerical solutions of the non-dimensional governing partial differential equations of the problem are shown graphically. Comparisons are made with the results predicted by Green–Naghdi theory of the two types (GNII without energy dissipation) and (GNIII with energy dissipation). We found that the reinforcement has great effect on the distribution of field quantities. Results carried out in this paper can be used to design various fibre-reinforced anisotropic thermoelastic elements under thermal load to meet special engineering requirements.

  17. The Onset of Nonlinear Flow in Three-Dimensional Heterogeneous Flow Domains Based on Energy Dissipation Measures

    Science.gov (United States)

    Meakin, P.; Basagaoglu, H.; Succi, S.; Welhan, J.

    2005-12-01

    The onset of nonlinear flow in three-dimensional random disordered porous flow domains was analyzed using participation numbers based on local kinetic energies, and energy dissipation rates computed via non-equilibrium kinetic tensors. A three-dimensional lattice Boltzmann model was used to simulate gravity-driven single-phase flow over a range of Reynolds numbers that included the crossover from linear to nonlinear flow. The simulations results indicated that the kinetic energy participation number characterized the onset of nonlinear flow in terms of transition to a more dispersed (uniform) distribution of kinetic energy densities as the flow rate increased. However, the energy dissipation participation number characterized the onset of nonlinear flow in terms of a transition to a more locally concentrated distribution of energy dissipation densities at higher flows. The flow regime transition characterized by the energy dissipation participation number occurred over a nearly equal or a narrower range of Reynolds numbers compared to the transition characterized by the kinetic energy participation number. The results also revealed that the boundary conditions (periodic vs. no-slip) parallel to the main flow direction have an insignificant effect on the magnitude of the critical Reynolds number, that characterizes the onset of nonlinear effects, although they did influence the spatial correlations of the pore-scale kinetic energy and the energy dissipation densities in all Cartesian directions. Flow domains with periodic boundaries resulted in less-localized (more dispersed) steady-state flows than domains with no-slip boundaries. These results should be useful for designing future experiment like those of Zeria et al. 2005 (Transport in Porous Media, 60:159-181) that would have significant potential implications in diverse fields.

  18. Turbulent energy dissipation rate in a tilting flume with a highly rough bed

    Science.gov (United States)

    Coscarella, F.; Servidio, S.; Ferraro, D.; Carbone, V.; Gaudio, R.

    2017-08-01

    Turbulent flows on highly rough beds, such as those occurring in natural watercourses, represent a longstanding and fascinating problem of hydraulics, motivating in the past few decades huge research on new models of turbulence. In this work, laboratory experiments are presented on a stream flowing on a heterogeneous pebble bed with varying slope. The analysis of the flow speed puts in evidence a clear inertial range, where the Kolmogorov 4/5-law for the streamwise velocity spatial increments holds. The law is used for a systematic estimation of the turbulent kinetic energy dissipation rate 𝜖 , here measured for three different bed slopes and hence for three different shear Reynolds numbers. The experiments presented here suggest that small scale turbulence has properties similar to the classical picture of homogeneous universal turbulence invoked by the Kolmogorov theory.

  19. Magneto-thermo-elastic waves in an infinite perfectly conducting elastic solid with energy dissipation

    Institute of Scientific and Technical Information of China (English)

    Payel Das; Mridula Kanoria

    2009-01-01

    The generalized thermo-elasticity theory, i.e., Green and Naghdi (G-N) III theory, with energy dissipation (TEWED) is employed in the study of time-harmonic plane wave propagation in an unbounded, perfectly electrically conducting elastic medium subject to primary uniform magnetic field. A more general dispersion equation with com-plex coefficients is obtained for coupled magneto-thermo-elastic wave solved in complex domain by using the Leguerre's method. It reveals that the coupled magneto-thermo-elastic wave corresponds to modified dilatational and thermal wave propagation with finite speeds modified by finite thermal wave speeds, thermo-elastic coupling, thermal diffusivity, and the external magnetic field. Numerical results for a copper-like material are presented.

  20. Velocity and pressure distributions in discharge tunnel of rotary-obstruction composite inner energy dissipation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    On the basis of model test and theoretical analysis of velocity and pressure distributions,an hypothesis is presented that the distribution of tangential velocity in radial direction seems to be a combinational distribution of a quasi-free vortex and a quasi-forced vortex for the discharge tunnel of rotary-obstruction composite inner energy dissipation.The variations of corresponding parameters about the hypothesis are obtained under test conditions in this paper.The formula of pressure distribution in radial direction is deduced theoretically,and the theoretical values of pressure distribution computed by the formula are well consistent with the measured ones,showing that the formula is correct and can be applied to the computation and analysis of pressure distribution of this discharge tunnel.

  1. Energy dissipation in dielectrics after swift heavy-ion impact: A hybrid model

    Science.gov (United States)

    Osmani, O.; Medvedev, N.; Schleberger, M.; Rethfeld, B.

    2011-12-01

    The energy dissipation after irradiation of dielectrics with swift heavy ions is studied applying a combination of the Monte Carlo (MC) method and the two-temperature model (TTM). Within the MC calculation the transient dynamics of the electrons in the excited dielectric is described: the primary excitation and relaxation of the target electrons as well as the creation of secondary electrons. From the MC data, it was observed that the electron system can be considered as thermalized after a time of t≈100 fs after the ion impact. Then the TTM is applied to calculate the spatial and temporal evolution of the electron and lattice temperature via the electron-phonon coupling using the MC data as initial conditions. Additionally, this MC-TTM combination allows to compute material parameters of strongly excited matter.

  2. Biomimetic staggered composites with highly enhanced energy dissipation: Modeling, 3D printing, and testing

    Science.gov (United States)

    Zhang, Pu; Heyne, Mary A.; To, Albert C.

    2015-10-01

    We investigate the damping enhancement in a class of biomimetic staggered composites via a combination of design, modeling, and experiment. In total, three kinds of staggered composites are designed by mimicking the structure of bone and nacre. These composite designs are realized by 3D printing a rigid plastic and a viscous elastomer simultaneously. Greatly-enhanced energy dissipation in the designed composites is observed from both the experimental results and theoretical prediction. The designed polymer composites have loss modulus up to ~500 MPa, higher than most of the existing polymers. In addition, their specific loss modulus (up to 0.43 km2/s2) is among the highest of damping materials. The damping enhancement is attributed to the large shear deformation of the viscous soft matrix and the large strengthening effect from the rigid inclusion phase.

  3. Superconducting qubit in a nonstationary transmission line cavity: Parametric excitation, periodic pumping, and energy dissipation

    Science.gov (United States)

    Zhukov, A. A.; Shapiro, D. S.; Remizov, S. V.; Pogosov, W. V.; Lozovik, Yu. E.

    2017-02-01

    We consider a superconducting qubit coupled to the nonstationary transmission line cavity with modulated frequency taking into account energy dissipation. Previously, it was demonstrated that in the case of a single nonadiabatical modulation of a cavity frequency there are two channels of a two-level system excitation which are due to the absorption of Casimir photons and due to the counterrotating wave processes responsible for the dynamical Lamb effect. We show that the parametric periodical modulation of the resonator frequency can increase dramatically the excitation probability. Remarkably, counterrotating wave processes under such a modulation start to play an important role even in the resonant regime. Our predictions can be used to control qubit-resonator quantum states as well as to study experimentally different channels of a parametric qubit excitation.

  4. Energy dissipation by submarine obstacles during landslide impact on reservoir - potentially avoiding catastrophic dam collapse

    Science.gov (United States)

    Kafle, Jeevan; Kattel, Parameshwari; Mergili, Martin; Fischer, Jan-Thomas; Tuladhar, Bhadra Man; Pudasaini, Shiva P.

    2017-04-01

    Dense geophysical mass flows such as landslides, debris flows and debris avalanches may generate super tsunami waves as they impact water bodies such as the sea, hydraulic reservoirs or mountain lakes. Here, we apply a comprehensive and general two-phase, physical-mathematical mass flow model (Pudasaini, 2012) that consists of non-linear and hyperbolic-parabolic partial differential equations for mass and momentum balances, and present novel, high-resolution simulation results for two-phase flows, as a mixture of solid grains and viscous fluid, impacting fluid reservoirs with obstacles. The simulations demonstrate that due to the presence of different obstacles in the water body, the intense flow-obstacle-interaction dramatically reduces the flow momentum resulting in the rapid energy dissipation around the obstacles. With the increase of obstacle height overtopping decreases but, the deflection and capturing (holding) of solid mass increases. In addition, the submarine solid mass is captured by the multiple obstacles and the moving mass decreases both in amount and speed as each obstacle causes the flow to deflect into two streams and also captures a portion of it. This results in distinct tsunami and submarine flow dynamics with multiple surface water and submarine debris waves. This novel approach can be implemented in open source GIS modelling framework r.avaflow, and be applied in hazard mitigation, prevention and relevant engineering or environmental tasks. This might be in particular for process chains, such as debris impacts in lakes and subsequent overtopping. So, as the complex flow-obstacle-interactions strongly and simultaneously dissipate huge energy at impact such installations potentially avoid great threat against the integrity of the dam. References: Pudasaini, S. P. (2012): A general two-phase debris flow model. J. Geophys. Res. 117, F03010, doi: 10.1029/ 2011JF002186.

  5. Reassessing the Plastic Hinge Model for Energy Dissipation of Axially Loaded Columns

    Directory of Open Access Journals (Sweden)

    R. M. Korol

    2014-01-01

    Full Text Available This paper investigates the energy dissipation potential of axially loaded columns and evaluates the use of a plastic hinge model for analysis of hi-rise building column collapse under extreme loading conditions. The experimental program considered seven axially loaded H-shaped extruded aluminum structural section columns having slenderness ratios that would be typical of floor-to-ceiling heights in buildings. All seven test specimens initially experienced minor-axis overall buckling followed by formation of a plastic hinge at the mid-height region, leading to local buckling of the flanges on the compression side of the plastic hinge, and eventual folding of the compression flanges. The experimental energy absorption, based on load-displacement relations, was compared to the energy estimates based on section plastic moment resistance based on measured yield stress and based on measured hinge rotations. It was found that the theoretical plastic hinge model underestimates a column’s actual ability to absorb energy by a factor in the range of 3 to 4 below that obtained from tests. It was also noted that the realizable hinge rotation is less than 180°. The above observations are based, of course, on actual columns being able to sustain high tensile strains at hinge locations without fracturing.

  6. Rock Drilling Performance Evaluation by an Energy Dissipation Based Rock Brittleness Index

    Science.gov (United States)

    Munoz, H.; Taheri, A.; Chanda, E. K.

    2016-08-01

    To reliably estimate drilling performance both tool-rock interaction laws along with a proper rock brittleness index are required to be implemented. In this study, the performance of a single polycrystalline diamond compact (PDC) cutter cutting and different drilling methods including PDC rotary drilling, roller-cone rotary drilling and percussive drilling were investigated. To investigate drilling performance by rock strength properties, laboratory PDC cutting tests were performed on different rocks to obtain cutting parameters. In addition, results of laboratory and field drilling on different rocks found elsewhere in literature were used. Laboratory and field cutting and drilling test results were coupled with values of a new rock brittleness index proposed herein and developed based on energy dissipation withdrawn from the complete stress-strain curve in uniaxial compression. To quantify cutting and drilling performance, the intrinsic specific energy in rotary-cutting action, i.e. the energy consumed in pure cutting action, and drilling penetration rate values in percussive action were used. The results show that the new energy-based brittleness index successfully describes the performance of different cutting and drilling methods and therefore is relevant to assess drilling performance for engineering applications.

  7. Energy dissipation in the blade tip region of an axial fan

    Science.gov (United States)

    Bizjan, B.; Milavec, M.; Širok, B.; Trenc, F.; Hočevar, M.

    2016-11-01

    A study of velocity and pressure fluctuations in the tip clearance flow of an axial fan is presented in this paper. Two different rotor blade tip designs were investigated: the standard one with straight blade tips and the modified one with swept-back tip winglets. Comparison of integral sound parameters indicates a significant noise level reduction for the modified blade tip design. To study the underlying mechanisms of the energy conversion and noise generation, a novel experimental method based on simultaneous measurements of local flow velocity and pressure has also been developed and is presented here. The method is based on the phase space analysis by the use of attractors, which enable more accurate identification and determination of the local flow structures and turbulent flow properties. Specific gap flow energy derived from the pressure and velocity time series was introduced as an additional attractor parameter to assess the flow energy distribution and dissipation within the phase space, and thus determines characteristic sources of the fan acoustic emission. The attractors reveal a more efficient conversion of the pressure to kinetic flow energy in the case of the modified (tip winglet) fan blade design, and also a reduction in emitted noise levels. The findings of the attractor analysis are in a good agreement with integral fan characteristics (efficiency and noise level), while offering a much more accurate and detailed representation of gap flow phenomena.

  8. Energy Conservation in Dissipative Processes: Teacher Expectations and Strategies Associated with Imperceptible Thermal Energy

    Science.gov (United States)

    Daane, Abigail R.; McKagan, Sarah B.; Vokos, Stamatis; Scherr, Rachel E.

    2015-01-01

    Research has demonstrated that many students and some teachers do not consistently apply the conservation of energy principle when analyzing mechanical scenarios. In observing elementary and secondary teachers engaged in learning activities that require tracking and conserving energy, we find that challenges to energy conservation often arise in…

  9. Energy Conservation in Dissipative Processes: Teacher Expectations and Strategies Associated with Imperceptible Thermal Energy

    Science.gov (United States)

    Daane, Abigail R.; McKagan, Sarah B.; Vokos, Stamatis; Scherr, Rachel E.

    2015-01-01

    Research has demonstrated that many students and some teachers do not consistently apply the conservation of energy principle when analyzing mechanical scenarios. In observing elementary and secondary teachers engaged in learning activities that require tracking and conserving energy, we find that challenges to energy conservation often arise in…

  10. Investigation of energy dissipation due to contact angle hysteresis in capillary effect

    Science.gov (United States)

    Athukorallage, Bhagya; Iyer, Ram

    2016-06-01

    Capillary action or Capillarity is the ability of a liquid to flow in narrow spaces without the assistance of, and in opposition to, external forces like gravity. Three effects contribute to capillary action, namely, adhesion of the liquid to the walls of the confining solid; meniscus formation; and low Reynolds number fluid flow. We investigate the dissipation of energy during one cycle of capillary action, when the liquid volume inside a capillary tube first increases and subsequently decreases while assuming quasi-static motion. The quasi-static assumption allows us to focus on the wetting phenomenon of the solid wall by the liquid and the formation of the meniscus. It is well known that the motion of a liquid on an non-ideal surface involves the expenditure of energy due to contact angle hysteresis. In this paper, we derive the equations for the menisci and the flow rules for the change of the contact angles for a liquid column in a capillary tube at a constant temperature and volume by minimizing the Helmholtz free energy using calculus of variations. We describe the numerical solution of these equations and present results from computations for the case of a capillary tube with 1 mm diameter.

  11. Investigation of the transfer and dissipation of energy in isotropic turbulence

    CERN Document Server

    Yoffe, Samuel R

    2013-01-01

    A parallel pseudospectral code for the direct numerical simulation (DNS) of isotropic turbulence has been developed. The code has been extensively benchmarked using established results from literature. The code has been used to conduct a series of runs for freely-decaying turbulence. We explore the use of power-law decay of the total energy to determine an evolved time and compare with the use of dynamic quantities such as the peak dissipation rate, maximum transport power and velocity derivative skewness. Stationary turbulence has also been investigated, where we ensure that the energy input rate remains constant for all runs. We present results for Reynolds numbers up to R{\\lambda} = 335 on a 1024^3 lattice. An exploitation of the pseudospectral technique is used to calculate second and third-order structure functions from the energy and transfer spectra, with a comparison presented to the real-space calculation. An alternative to ESS is discussed, with the second-order exponent found to approach 2/3. The d...

  12. Thermodynamic Modeling of Developed Structural Turbulence Taking into Account Fluctuations of Energy Dissipation

    Science.gov (United States)

    Kolesnichenko, A. V.

    2004-03-01

    A thermodynamic approach to the construction of a phenomenological macroscopic model of developed turbulence in a compressible fluid is considered with regard for the formation of space-time dissipative structures. A set of random variables were introduced into the model as internal parameters of the turbulent-chaos subsystem. This allowed us to obtain, by methods of nonequilibrium thermodynamics, the kinetic Fokker-Planck equation in the configuration space. This equation serves to determine the temporary evolution of the conditional probability distribution function of structural parameters pertaining to the cascade process of fragmentation of large-scale eddies and temperature inhomogeneities and to analyze Markovian stochastic processes of transition from one nonequilibrium stationary turbulent-motion state to another as a result of successive loss of stability caused by a change in the governing parameters. An alternative method for investigating the mechanisms of such transitions, based on the stochastic Langevin-type equation intimately related to the derived kinetic equation, is also considered. Some postulates and physical and mathematical assumptions used in the thermodynamic model of structurized turbulence are discussed in detail. In particular, we considered, using the deterministic transport equation for conditional means, the cardinal problem of the developed approach-the possibility of the existence of asymptotically stable stationary states of the turbulent-chaos subsystem. Also proposed is the nonequilibrium thermodynamic potential for internal coordinates, which extends the well-known Boltzmann-Planck relationship for equilibrium states to the nonequilibrium stationary states of the representing ensemble. This potential is shown to be the Lyapunov function for such states. The relation is also explored between the internal intermittence in the inertial interval of scales and the fluctuations of the energy of dissipation. This study is aimed at

  13. A simple artificial light-harvesting dyad as a model for excess energy dissipation on oxygenic photosynthesis

    NARCIS (Netherlands)

    Berera, R.; Herrero, C.; Stokkum, van I.H.M.; Vengris, M.; Kodis, G.; Palacios, R.E.; Amerongen, van H.; Grondelle, van R.; Gust, D.; Moore, T.A.; Moore, A.L.; Kennis, J.T.M.

    2006-01-01

    Under excess illumination, plant photosystem II dissipates excess energy through the quenching of chlorophyll fluorescence, a process known as nonphotochemical quenching. Activation of nonphotochemical quenching has been linked to the conversion of a carotenoid with a conjugation length of nine doub

  14. Development of numerical modelling of analysis program for energy-dissipating behaviour of velocity dependent hydraulic damper

    Indian Academy of Sciences (India)

    M-H Shih; W-P Sung; M-J Wu

    2010-10-01

    A relief valve parallel to the throttle valve is added to a Velocity dependent hydraulic damper (VDHD) so that the orifice size that regulates the oil flow can be adjusted. This device adjustment will allow the damper to have an adaptive control of damping by changing its damping coefficient. A mathematical model including a serial friction model and a small damper that is parallel to the friction model added to the Maxwell model for simulating the actual energy-dissipating behaviour of the VDHD was proposed in this research. To extend the useful value of VDHD, a numerical analysis model based on the SAP2000 nonlinear analysis program was applied to simulate the energy-dissipating characteristics of VDHD in this study. The analysis results obtained by using the mathematical model and the proposed SAP2000 numerical model conform to the seismic resistant test results, and confirm that the SAP2000 nonlinear analysis program can accurately describe the actual energy-dissipating behaviour of the VDHD installed on structures under various energy-dissipating situations.

  15. Relationship of immediate intraocular pressure rise to phaco-tip ergonomics and energy dissipation.

    Science.gov (United States)

    Vasavada, Abhay R; Mamidipudi, Praveen R; Minj, Mamta

    2004-01-01

    To evaluate the rise in intraocular pressure (IOP) after phacoemulsification using a straight microtip or a Kelman microtip and its relationship to phaco energy delivered to the eye. Iladevi Cataract & IOL Research Center, Ahmedabad, India. This prospective randomized study comprised 48 consecutive age- and sex-matched patients with senile cataract. Inclusion criteria included older than 45 years and presence of any type of cataract from grade I to III. The patients were divided into 2 groups: straight microtip and Kelman microtip. Each group comprised 13 men and 11 women. The mean age was 58.29 years +/- 6.46 (SD) in the straight microtip group and 60.05 +/- 8.45 years in the Kelman microtip group. The IOP was measured preoperatively and postoperatively with a pneumotonometer and applanation tonometer. One surgeon performed all operations using a standardized surgical technique and topical anesthesia. The intraoperative mean phaco power and ultrasound (US) time were noted. The effective phaco time (EPT), percentage of IOP rise, and wound-site thermal injury (mild, moderate, or severe) were calculated. The correlation between the EPT and percentage of rise in IOP was evaluated using correlation coefficients and the paired t test. The mean preoperative IOP was 13.73 +/- 2.89 mm Hg in the straight microtip group and 15.14 +/- 2.60 mm Hg in the Kelman microtip group. The mean US time was 239.4 +/- 1.61 seconds and 238.2 +/- 1.48 seconds, respectively. The mean phaco power was 17.37% +/- 3.28% in the straight microtip group and 17.10% +/- 5.26% in the Kelman microtip group and the mean EPT, 39.06 +/- 2.28 seconds and 40.08 +/- 0.24 seconds, respectively (P =.412). The mean rise in IOP was 111.60% +/- 37.83% in the straight microtip group and 91.29% +/- 31.85% in the Kelman microtip group. The difference between groups was significant (Pphaco energy dissipated in the eye was the same between the 2 groups, the percentage of IOP rise was greater with the straight microtip

  16. High-Energy Dissipation Performance in Epoxy Coatings by the Synergistic Effect of Carbon Nanotube/Block Copolymer Conjugates.

    Science.gov (United States)

    Garate, Hernan; Bianchi, Micaela; Pietrasanta, Lía I; Goyanes, Silvia; D'Accorso, Norma B

    2017-01-11

    Hierarchical assembly of hard/soft nanoparticles holds great potential as reinforcements for polymer nanocomposites with tailored properties. Here, we present a facile strategy to integrate polystyrene-grafted carbon nanotubes (PSgCNT) (0.05-0.3 wt %) and poly(styrene-b-[isoprene-ran-epoxyisoprene]-b-styrene) block copolymer (10 wt %) into epoxy coatings using an ultrasound-assisted noncovalent functionalization process. The method leads to cured nanocomposites with core-shell block copolymer (BCP) nanodomains which are associated with carbon nanotubes (CNT) giving rise to CNT-BCP hybrid structures. Nanocomposite energy dissipation and reduced Young's Modulus (E*) is determined from force-distance curves by atomic force microscopy operating in the PeakForce QNM imaging mode and compared to thermosets modified with BCP and purified carbon nanotubes (pCNT). Remarkably, nanocomposites bearing PSgCNT-BCP conjugates display an increase in energy dissipation of up to 7.1-fold with respect to neat epoxy and 53% more than materials prepared with pCNT and BCP at the same CNT load (0.3 wt %), while reduced Young's Modulus shows no significant change with CNT type and increases up to 25% compared to neat epoxy E* at a CNT load of 0.3 wt %. The energy dissipation performance of nanocomposites is also reflected by the lower wear coefficients of materials with PSgCNT and BCP compared to those with pCNT and BCP, as determined by abrasion tests. Furthermore, scanning electron microscopy (SEM) images taken on wear surfaces show that materials incorporating PSgCNT and BCP exhibit much more surface deformation under shear forces in agreement with their higher ability to dissipate more energy before particle release. We propose that the synergistic effect observed in energy dissipation arises from hierarchical assembly of PSgCNT and BCP within the epoxy matrix and provides clues that the CNT-BCP interface has a significant role in the mechanisms of energy dissipation of epoxy coating

  17. Superconducting energy scales and anomalous dissipative conductivity in thin films of molybdenum nitride

    Science.gov (United States)

    Simmendinger, Julian; Pracht, Uwe S.; Daschke, Lena; Proslier, Thomas; Klug, Jeffrey A.; Dressel, Martin; Scheffler, Marc

    2016-08-01

    We report investigations of molybdenum nitride (MoN) thin films with different thickness and disorder and with superconducting transition temperature 9.89 K ≥Tc≥2.78 K . Using terahertz frequency-domain spectroscopy we explore the normal and superconducting charge carrier dynamics for frequencies covering the range from 3 to 38 cm-1 (0.1 to 1.1 THz). The superconducting energy scales, i.e., the critical temperature Tc, the pairing energy Δ , and the superfluid stiffness J , and the superfluid density ns can be well described within the Bardeen-Cooper-Schrieffer theory for conventional superconductors. At the same time, we find an anomalously large dissipative conductivity, which cannot be explained by thermally excited quasiparticles, but rather by a temperature-dependent normal-conducting fraction, persisting deep into the superconducting state. Our results on this disordered system constrain the regime, where discernible effects stemming from the disorder-induced superconductor-insulator transition possibly become relevant, to MoN films with a transition temperature lower than at least 2.78 K.

  18. Quantum chemical insights in energy dissipation and carotenoid radical cation formation in light harvesting complexes.

    Science.gov (United States)

    Wormit, Michael; Dreuw, Andreas

    2007-06-21

    Light harvesting complexes (LHCs) have been identified in all photosynthetic organisms. To understand their function in light harvesting and energy dissipation, detailed knowledge about possible excitation energy transfer (EET) and electron transfer (ET) processes in these pigment proteins is of prime importance. This again requires the study of electronically excited states of the involved pigment molecules, in LHCs of chlorophylls and carotenoids. This paper represents a critical review of recent quantum chemical calculations on EET and ET processes between pigment pairs relevant for the major LHCs of green plants (LHC-II) and of purple bacteria (LH2). The theoretical methodology for a meaningful investigation of such processes is described in detail, and benefits and limitations of standard methods are discussed. The current status of excited state calculations on chlorophylls and carotenoids is outlined. It is focused on the possibility of EET and ET in the context of chlorophyll fluorescence quenching in LHC-II and carotenoid radical cation formation in LH2. In the context of non-photochemical quenching of green plants, it is shown that replacement of the carotenoid violaxanthin by zeaxanthin in its binding pocket of LHC-II can not result in efficient quenching. In LH2, our computational results give strong evidence that the S(1) states of the carotenoids are involved in carotenoid cation formation. By comparison of theoretical findings with recent experimental data, a general mechanism for carotenoid radical cation formation is suggested.

  19. Analysis of errors in the measurement of energy dissipation with two-point LDA

    Energy Technology Data Exchange (ETDEWEB)

    Ducci, A.; Yianneskis, M. [Department of Mechanical Engineering, King' s College London, Experimental and Computational Laboratory for the Analysis of Turbulence (ECLAT), London (United Kingdom)

    2005-04-01

    In the present study, an attempt has been made to identify and quantify, with a rigorous analytical approach, all possible sources of error involved in the estimation of the fluctuating velocity gradients ({partial_derivative}u{sub i}/{partial_derivative}x{sub j}){sup 2} when a two-point laser Doppler velocimetry (LDV) technique is employed. Measurements were carried out in a grid-generated turbulence flow where the local dissipation rate can be calculated from the decay of kinetic energy. An assessment of the cumulative error determined through the analysis has been made by comparing the values of the spatial gradients directly measured with the gradient estimated from the decay of kinetic energy. The main sources of error were found to be related to the length of the two control volumes and to the fitting range, as well as the function used to interpolate the correlation coefficient when the Taylor length scale (or({partial_derivative}u{sub i}/{partial_derivative}x{sub j}){sup 2}) are estimated. (orig.)

  20. Effective dissipation: breaking time-reversal symmetry

    CERN Document Server

    Brown, Aidan I

    2016-01-01

    At molecular scales, fluctuations play a significant role and prevent biomolecular processes from always proceeding in a preferred direction, raising the question of how limited amounts of free energy can be dissipated to obtain directed progress. We examine the system and process characteristics that efficiently break time-reversal symmetry at fixed energy loss; in particular for a simple model of a molecular machine, an intermediate energy barrier produces unusually high asymmetry for a given dissipation. Such insight into symmetry-breaking factors that produce particularly high time asymmetry suggests generalizations to a broader class of systems.

  1. Prolonged AICAR-induced AMP-kinase activation promotes energy dissipation in white adipocytes: novel mechanisms integrating HSL and ATGL.

    Science.gov (United States)

    Gaidhu, Mandeep P; Fediuc, Sergiu; Anthony, Nicole M; So, Mandy; Mirpourian, Mani; Perry, Robert L S; Ceddia, Rolando B

    2009-04-01

    This study was designed to investigate the effects of prolonged activation of AMP-activated protein kinase (AMPK) on lipid partitioning and the potential molecular mechanisms involved in these processes in white adipose tissue (WAT). Rat epididymal adipocytes were incubated with 5'-aminoimidasole-4-carboxamide-1-beta-d-ribofuranoside (AICAR;0.5 mM) for 15 h. Also, epididymal adipocytes were isolated 15 h after AICAR was injected (i.p. 0.7 g/kg body weight) in rats. Adipocytes were utilized for various metabolic assays and for determination of gene expression and protein content. Time-dependent in vivo plasma NEFA concentrations were determined. AICAR treatment significantly increased AMPK activation, inhibited lipogenesis, and increased FA oxidation. This was accompanied by upregulation of peroxisome proliferator-activated receptor (PPAR)alpha, PPARdelta, and PPARgamma-coactivator-1alpha (PGC-1alpha) mRNA levels. Lipolysis was first suppressed, but then increased, both in vitro and in vivo, with prolonged AICAR treatment. Exposure to AICAR increased adipose triglyceride lipase (ATGL) content and FA release, despite inhibition of basal and epinephrine-stimulated hormone-sensitive lipase (HSL) activity. Here, we provide evidence that prolonged AICAR-induced AMPK activation can remodel adipocyte metabolism by upregulating pathways that favor energy dissipation versus lipid storage in WAT. Additionally, we show novel time-dependent effects of AICAR-induced AMPK activation on lipolysis, which involves antagonistic modulation of HSL and ATGL.

  2. The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Jesse, Stephen [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kalinin, Sergei V [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Proksch, Roger [Asylum Research, 6310 Hollister Avenue, Santa Barbara, CA 93117 (United States); Baddorf, A P [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Rodriguez, B J [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2007-10-31

    Mapping energy transformation pathways and dissipation on the nanoscale and understanding the role of local structure in dissipative behavior is a key challenge for imaging in areas ranging from electronics and information technologies to efficient energy production. Here we develop a family of novel scanning probe microscopy (SPM) techniques in which the cantilever is excited and the response is recorded over a band of frequencies simultaneously, rather than at a single frequency as in conventional SPMs. This band excitation (BE) SPM allows very rapid acquisition of the full frequency response at each point (i.e. transfer function) in an image and in particular enables the direct measurement of energy dissipation through the determination of the Q-factor of the cantilever-sample system. The BE method is demonstrated for force-distance and voltage spectroscopies and for magnetic dissipation imaging with sensitivity close to the thermomechanical limit. The applicability of BE for various SPMs is analyzed, and the method is expected to be universally applicable to ambient and liquid SPMs.

  3. Thermodynamics of a tropical cyclone: generation and dissipation of mechanical energy in a self-driven convection system

    OpenAIRE

    OZAWA,Hisashi; SHIMOKAWA, Shinya

    2015-01-01

    The formation process of circulatory motion of a tropical cyclone is investigated from a thermodynamic viewpoint. The generation rate of mechanical energy by a fluid motion under diabatic heating and cooling, and the dissipation rate of this energy due to irreversible processes are formulated from the first and second laws of thermodynamics. This formulation is applied to a tropical cyclone, and the formation process of the circulatory motion is examined from a balance between the generation ...

  4. Thermoelastic wave propagation in a rotating elastic medium without energy dissipation

    Directory of Open Access Journals (Sweden)

    S. K. Roychoudhuri

    2005-02-01

    Full Text Available A study is made of the propagation of time-harmonic plane thermoelastic waves of assigned frequency in an infinite rotating medium using Green-Naghdi model (1993 of linear thermoelasticity without energy dissipation. A more general dispersion equation is derived to examine the effect of rotation on the phase velocity of the modified coupled thermal dilatational shear waves. It is observed that in thermoelasticity theory of type II (Green-Naghdi model, the modified coupled dilatational thermal waves propagate unattenuated in contrast to the classical thermoelasticity theory, where the thermoelastic waves undergo attenuation (Parkus, Chadwick, and Sneddon. The solutions of the more general dispersion equation are obtained for small thermoelastic coupling by perturbation technique. Cases of high and low frequencies are also analyzed. The rotation of the medium affects both quasielastic dilatational and shear wave speeds to the first order in ω for low frequency, while the quasithermal wave speed is affected by rotation up to the second power in ω. However, for large frequency, rotation influences both the quasidilatational and shear wave speeds to first order in ω and the quasithermal wave speed to the second order in 1/ω.

  5. Resolution and Energy Dissipation Characteristics of Implicit LES and Explicit Filtering Models for Compressible Turbulence

    Directory of Open Access Journals (Sweden)

    Romit Maulik

    2017-04-01

    Full Text Available Solving two-dimensional compressible turbulence problems up to a resolution of 16, 384^2, this paper investigates the characteristics of two promising computational approaches: (i an implicit or numerical large eddy simulation (ILES framework using an upwind-biased fifth-order weighted essentially non-oscillatory (WENO reconstruction algorithm equipped with several Riemann solvers, and (ii a central sixth-order reconstruction framework combined with various linear and nonlinear explicit low-pass spatial filtering processes. Our primary aim is to quantify the dissipative behavior, resolution characteristics, shock capturing ability and computational expenditure for each approach utilizing a systematic analysis with respect to its modeling parameters or parameterizations. The relative advantages and disadvantages of both approaches are addressed for solving a stratified Kelvin-Helmholtz instability shear layer problem as well as a canonical Riemann problem with the interaction of four shocks. The comparisons are both qualitative and quantitative, using visualizations of the spatial structure of the flow and energy spectra, respectively. We observe that the central scheme, with relaxation filtering, offers a competitive approach to ILES and is much more computationally efficient than WENO-based schemes.

  6. Discovery of intramolecular signal transduction network based on a new protein dynamics model of energy dissipation.

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Ma

    Full Text Available A novel approach to reveal intramolecular signal transduction network is proposed in this work. To this end, a new algorithm of network construction is developed, which is based on a new protein dynamics model of energy dissipation. A key feature of this approach is that direction information is specified after inferring protein residue-residue interaction network involved in the process of signal transduction. This enables fundamental analysis of the regulation hierarchy and identification of regulation hubs of the signaling network. A well-studied allosteric enzyme, E. coli aspartokinase III, is used as a model system to demonstrate the new method. Comparison with experimental results shows that the new approach is able to predict all the sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. In addition, the signal transduction network shows a clear preference for specific structural regions, secondary structural types and residue conservation. Occurrence of super-hubs in the network indicates that allosteric regulation tends to gather residues with high connection ability to collectively facilitate the signaling process. Furthermore, a new parameter of propagation coefficient is defined to determine the propagation capability of residues within a signal transduction network. In conclusion, the new approach is useful for fundamental understanding of the process of intramolecular signal transduction and thus has significant impact on rational design of novel allosteric proteins.

  7. Electro-magneto-thermo-elastic response of infinite functionally graded cylinders without energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Zenkour, Ashraf M., E-mail: zenkour@hotmail.com [Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516 (Egypt); Abbas, Ibrahim A. [Department of Mathematics, Faculty of Science and Arts-Khulais, King Abdulaziz University, Jeddah (Saudi Arabia); Department of Mathematics, Faculty of Science, Sohag University, Sohag (Egypt)

    2015-12-01

    The electro-magneto-thermo-elastic analysis problem of an infinite functionally graded (FG) hollow cylinder is studied in the context of Green–Naghdi's (G–N) generalized thermoelasticity theory (without energy dissipation). Material properties are assumed to be graded in the radial direction according to a novel power-law distribution in terms of the volume fractions of the metal and ceramic constituents. The inner surface of the FG cylinder is pure metal whereas the outer surface is pure ceramic. The equations of motion and the heat-conduction equation are used to derive the governing second-order differential equations. A finite element scheme is presented for the numerical purpose. The system of differential equations is solved numerically and some plots for displacement, radial and electromagnetic stresses, and temperature are presented. The radial displacement, mechanical stresses and temperature as well as the electromagnetic stress are all investigated along the radial direction of the infinite cylinder. - Highlights: • The electro-magneto-thermo-elastic analysis problem of a FG cylinder is studied. • A finite element scheme is presented for the numerical purpose. • The results are investigated along the radial direction of the infinite cylinder. • It provides interesting information for all researchers working on this subject.

  8. A new permanent magnetic friction damper device for passive energy dissipation

    Science.gov (United States)

    Dai, Hongzhe; Huang, Zuojian; Wang, Wei

    2014-10-01

    This paper summarizes the development of a new permanent magnetic friction damper (PMFD) device designed to protect structures during earthquakes. The device is based on the concept that when two permanent magnetic strips are osculated, magnetic attraction is produced and the magnitude can be adjusted and predicted by changing the area of the contact surface of the strips. Thus, the controlling force of the PMFD device varies continuously with the response of the structure and thereby overcomes the drawbacks of conventional friction dampers, the force models for which are invariable. We performed shaking table tests and numerical studies for a five-story steel frame structure fitted with PMFD devices; the results demonstrate that the new device effectively reduces the seismic response of a structure due to its excellent energy dissipation capacity. Moreover, the controlling force supplied by the new PMFD device can be adaptively adjusted according to the magnitude of the excitations. Therefore, the new PMFD device presents a viable alternative to conventional friction-based earthquake-resistant designs both for new construction and for upgrading existing structures.

  9. Energy Dissipation through Quasi-Static Tides in White Dwarf Binaries

    CERN Document Server

    Willems, B; Kalogera, V

    2009-01-01

    We study tidal interactions in white dwarf binaries in the limiting case of quasi-static tides. The formalism is valid for arbitrary orbital eccentricities and therefore applicable to white dwarf binaries in the Galactic disk as well as globular clusters. In the quasi-static limit, the total perturbation of the gravitational potential shows a phase shift with respect to the position of the companion, the magnitude of which is determined primarily by the efficiency of energy dissipation through convective damping. We determine rates of secular evolution of the orbital elements and white dwarf rotational angular velocity for a 0.3 solar mass helium white dwarf in binaries with orbital frequencies in the LISA gravitational wave frequency band and companion masses ranging from 0.3 to 10^5 solar masses. The resulting tidal evolution time scales for the orbital semi-major axis are longer than a Hubble time, so that convective damping of quasi-static tides need not be considered in the construction of gravitational ...

  10. Energy decay for wave equations of phi-Laplacian type with weakly nonlinear dissipation

    Directory of Open Access Journals (Sweden)

    Aissa Guesmia

    2008-08-01

    Full Text Available In this paper, first we prove the existence of global solutions in Sobolev spaces for the initial boundary value problem of the wave equation of $phi$-Laplacian with a general dissipation of the form $$ (|u'|^{l-2}u''-Delta_{phi}u+sigma(t g(u'=0 quadext{in } Omegaimes mathbb{R}_+ , $$ where $Delta_{phi}=sum_{i=1}^n partial_{x_i}igl(phi (|partial_{x_i}|^2partial_{x_i}igr$. Then we prove general stability estimates using multiplier method and general weighted integral inequalities proved by the second author in [18]. Without imposing any growth condition at the origin on $g$ and $phi$, we show that the energy of the system is bounded above by a quantity, depending on $phi$, $sigma$ and $g$, which tends to zero (as time approaches infinity. These estimates allows us to consider large class of functions $g$ and $phi$ with general growth at the origin. We give some examples to illustrate how to derive from our general estimates the polynomial, exponential or logarithmic decay. The results of this paper improve and generalize many existing results in the literature, and generate some interesting open problems.

  11. Dilepton emission in high-energy heavy-ion collisions with dissipative hydrodynamics

    CERN Document Server

    Vujanovic, Gojko; Shen, Chun; Luzum, Matthew; Schenke, Bjoern; Jeon, Sangyoung; Gale, Charles

    2015-01-01

    In this contribution we study the effects of three transport coefficients of dissipative hydrodynamics on thermal dilepton anisotropic flow observables. The first two transport coefficients investigated influence the overall size and growth rate of shear viscous pressure, while the last transport coefficient governs the magnitude of net baryon number diffusion in relativistic dissipative fluid dynamics. All calculations are done using state-of-the-art 3+1D hydrodynamical simulations. We show that thermal dileptons are sensitive probes of the transport coefficients of dissipative hydrodynamics.

  12. Theory of harmonic dissipation in disordered solids

    Science.gov (United States)

    Damart, T.; Tanguy, A.; Rodney, D.

    2017-02-01

    Mechanical spectroscopy, i.e., cyclic deformations at varying frequencies, is used theoretically and numerically to compute dissipation in model glasses. From a normal mode analysis, we show that in the high-frequency terahertz regime where dissipation is harmonic, the quality factor (or loss angle) can be expressed analytically. This expression is validated through nonequilibrium molecular dynamics simulations applied to a model of amorphous silica (SiO2). Dissipation is shown to arise from nonaffine relaxations triggered by the applied strain through the excitation of vibrational eigenmodes that act as damped harmonic oscillators. We discuss an asymmetry vector field, which encodes the information about the structural origin of dissipation computed by mechanical spectroscopy. In the particular case of silica, we find that the motion of oxygen atoms, which induce a deformation of the Si-O-Si bonds, is the main contributor to harmonic energy dissipation.

  13. Plantar enthesopathy: thickening of the enthesis is correlated with energy dissipation of the plantar fat pad during walking.

    Science.gov (United States)

    Wearing, Scott C; Smeathers, James E; Urry, Stephen R; Sullivan, Patrick M; Yates, Bede; Dubois, Philip

    2010-12-01

    The enthesis of the plantar fascia is thought to play an important role in stress dissipation. However, the potential link between entheseal thickening characteristic of enthesopathy and the stress-dissipating properties of the intervening plantar fat pad have not been investigated. This study was conducted to identify whether plantar fat pad mechanics explain variance in the thickness of the fascial enthesis in individuals with and without plantar enthesopathy. Case-control study; Level of evidence, 3. The study population consisted of 9 patients with unilateral plantar enthesopathy and 9 asymptomatic, individually matched controls. The thickness of the enthesis of the symptomatic, asymptomatic, and a matched control limb was acquired using high-resolution ultrasound. The compressive strain of the plantar fat pad during walking was estimated from dynamic lateral radiographs acquired with a multifunction fluoroscopy unit. Peak compressive stress was simultaneously acquired via a pressure platform. Principal viscoelastic parameters were estimated from subsequent stress-strain curves. The symptomatic fascial enthesis (6.7 ± 2.0 mm) was significantly thicker than the asymptomatic enthesis (4.2 ± 0.4 mm), which in turn was thicker than the enthesis (3.3 ± 0.4 mm) of control limbs (P stress, peak strain, or secant modulus of the plantar fat pad between limbs. However, the energy dissipated by the fat pad during loading and unloading was significantly lower in the symptomatic limb (0.55 ± 0.17) when compared with asymptomatic (0.69 ± 0.13) and control (0.70 ± 0.09) limbs (P correlated with the energy dissipation ratio of the plantar fat pad (r = .72, P < .05), but only in the symptomatic limb. The energy-dissipating properties of the plantar fat pad are associated with the sonograpic appearance of the enthesis in symptomatic limbs, providing a previously unidentified link between the mechanical behavior of the plantar fat pad and enthesopathy.

  14. A molecular dynamics approach to dissipative relativistic hydrodynamics: propagation of fluctuations

    CERN Document Server

    Shahsavar, Leila; Montakhab, Afshin

    2016-01-01

    Relativistic generalization of hydrodynamic theory has attracted much attention from a theoretical point of view. However, it has many important practical applications in high energy as well as astrophysical contexts. Despite various attempts to formulate relativistic hydrodynamics, no definitive consensus has been achieved. In this work, we propose to test the predictions of four types of \\emph{first-order} hydrodynamic theories for non-perfect fluids in the light of numerically exact molecular dynamics simulations of a fully relativistic particle system in the low density regime. In this regard, we study the propagation of density, velocity and heat fluctuations in a wide range of temperatures using extensive simulations and compare them to the corresponding analytic expressions we obtain for each of the proposed theories. As expected in the low temperature classical regime all theories give the same results consistent with the numerics. In the high temperature extremely relativistic regime, not all conside...

  15. Thermodynamics of a tropical cyclone: generation and dissipation of mechanical energy in a self-driven convection system

    Directory of Open Access Journals (Sweden)

    Hisashi Ozawa

    2015-01-01

    Full Text Available The formation process of circulatory motion of a tropical cyclone is investigated from a thermodynamic viewpoint. The generation rate of mechanical energy by a fluid motion under diabatic heating and cooling, and the dissipation rate of this energy due to irreversible processes are formulated from the first and second laws of thermodynamics. This formulation is applied to a tropical cyclone, and the formation process of the circulatory motion is examined from a balance between the generation and dissipation rates of mechanical energy in the fluid system. We find from this formulation and data analysis that the thermodynamic efficiency of tropical cyclones is about 40% lower than the Carnot maximum efficiency because of the presence of thermal dissipation due to irreversible transport of sensible and latent heat in the atmosphere. We show that a tropical cyclone tends to develop within a few days through a feedback supply of mechanical energy when the sea surface temperature is higher than 300 K, and when the horizontal scale of circulation becomes larger than the vertical height of the troposphere. This result is consistent with the critical radius of 50 km and the corresponding central pressure of about 995 hPa found in statistical properties of typhoons observed in the western North Pacific.

  16. State space approach for the vibration of nanobeams based on the nonlocal thermoelasticity theory without energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Zenkour, A. M.; Alnefaie, K. A.; Abu-Hamdeh, N. H.; Aljinaid, A. A.; Aifanti, E. C. [King Abdulaziz University, Jeddah (Saudi Arabia); Abouelregal, A. E. [Mansoura University, Mansoura (Egypt)

    2015-07-15

    In this article, an Euler-Bernoulli beam model based upon nonlocal thermoelasticity theory without energy dissipation is used to study the vibration of a nanobeam subjected to ramp-type heating. Classical continuum theory is inherently size independent, while nonlocal elasticity exhibits size dependence. Among other things, this leads to a new expression for the effective nonlocal bending moment as contrasted to its classical counterpart. The thermal problem is addressed in the context of the Green-Naghdi (GN) theory of heat transport without energy dissipation. The governing partial differential equations are solved in the Laplace transform domain by the state space approach of modern control theory. Inverse of Laplace transforms are computed numerically using Fourier expansion techniques. The effects of nonlocality and ramping time parameters on the lateral vibration, temperature, displacement and bending moment are discussed.

  17. Twins: A New Mission to Solve the Problem of Turbulence and Energy Dissipation at Electron Scales in the Solar Wind

    Science.gov (United States)

    Sahraoui, F.

    2014-12-01

    The ESA/Cluster and the NASA/Themis missions have allowed for making a significant progress in understanding the problem of turbulence and energy dissipation at sub-ion and electron scales in the solar wind. Yet, several key questions cannot be addressed by these missions or by the upcoming ones (e.g., MMS, Solar Orbiter) because of instrumental limitations. We will discuss some of these scientific questions and instrumental limitations, then present a new mission concept, TWINS, designed to solve the problem of turbulence and energy dissipation at electron scales in the solar wind. This dual-spacecraft mission is based on the TOR concept, a single spacecraft mission proposed to the ESA/S1-class call in 2012. TWINS is one the mission concepts that is currently being discussed within the community in view of proposing it to the upcoming ESA/M4 call expected in 2014.

  18. Dissipated energy as a method to characterize the cartilage damage in large animal joints: an in vitro testing model.

    Science.gov (United States)

    Walter, Christian; Leichtle, Ulf; Lorenz, Andrea; Mittag, Falk; Wülker, Nikolaus; Müller, Otto; Bobrowitsch, Evgenij; Rothstock, Stephan

    2013-09-01

    Several quantitative methods for the in vitro characterization of cartilage quality are available. However, only a few of these methods allow surgical cartilage manipulations and the subsequent analysis of the friction properties of complete joints. This study introduces an alternative approach to the characterization of the friction properties of entire joint surfaces using the dissipated energy during motion of the joint surfaces. Seven sheep wrist joints obtained post mortem were proximally and distally fixed to a material testing machine. With the exception of the carpometacarpal articulation surface, all joint articulations were fixed with 'Kirschner' wires. Three cartilage defects were simulated with a surgically introduced groove (16 mm(2), 32 mm(2), 300 mm(2)) and compared to intact cartilage without an artificial defect. The mean dissipated energy per cycle was calculated from the hysteresis curve during ten torsional motion cycles (±10°) under constant axial preload (100-900 N). A significant increase in dissipated energy was observed with increasing cartilage defect size and axial load (p0.073), while all other defect conditions were significantly different (p=0.015). All defect sizes were significantly different (p=0.049) at 900 N axial load. We conclude that the method introduced here could be an alternative for the study of cartilage damage, and further applications based on the principles of this method could be developed for the evaluation of different cartilage treatments. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Mean excitation energies for molecular ions

    DEFF Research Database (Denmark)

    Jensen, Phillip W. K.; Sauer, Stephan P. A.; Oddershede, Jens;

    2017-01-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase...... with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state...... contributing to the mean excitation energy....

  20. Mean excitation energies for molecular ions

    Science.gov (United States)

    Jensen, Phillip W. K.; Sauer, Stephan P. A.; Oddershede, Jens; Sabin, John R.

    2017-03-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.

  1. Mean excitation energies for molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Phillip W.K.; Sauer, Stephan P.A. [Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Oddershede, Jens [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States); Sabin, John R., E-mail: sabin@qtp.ufl.edu [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States)

    2017-03-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.

  2. The quantum Kirchhoff equation and quantum current and energy spectrum of a homogeneous mesoscopic dissipation transmission line

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    On the basis of quantization of charge, the loop equations of quantum circuits are investigated by using the Heisenberg motion equation for a mesoscopic dissipation transmission line. On the supposition that the system has a symmetry under translation in charge space, the quantum current and the quantum energy spectrum in the mesoscopic transmission line are given by solving their eigenvalue equations. Results show that the quantum current and the quantum energy spectrum are not only related to the parameters of the transmission line, but also dependent on the quantized character of the charge obviously.

  3. Exploring Interannual Sandbar Behavior Along a High-Energy Dissipative Coast

    Science.gov (United States)

    Cohn, N.; Ruggiero, P.; Walstra, D.

    2012-12-01

    The Columbia River Littoral Cell (CRLC) in the Pacific Northwest is a modally dissipative coastline characterized by fine-grained sediment and high wave energy. Storms of magnitude are frequent in this region, with significant wave heights exceeding 10 m approximately once per year. Sandbars in the CRLC have been observed to follow the interannual pattern of net offshore migration (NOM) that has been observed at several other locations, with bars typically forming close to shore, migrating seaward, and ultimately degenerating offshore. Including playing a major role in local sand budgets, sandbars also influence circulation patterns and storm impact to the coast. Despite the importance of these geomorphic features to coastal environments much is still unknown concerning the dominant mechanics that drive interannual sandbar behavior. A recent, three-year model hindcast of bar evolution off the coast of the Netherlands (Noordwijk) indicated that bar response is most heavily influenced by two factors: the directionality of waves relative to the coastline and the depth of the bar crest below the water surface (D.J.R. Walstra, A.J.H.M. Reniers, R. Ranasinghe, J.A. Roelcink, and B.G. Ruessink, Coast Eng. 47:190-200, 2012). While other factors such as wave height, wave period, and tidal elevation were recognized as influencing bar morphology, overall they were determined to play a subordinate role in bar behavior. In order to test whether the conclusions from the Noordwijk study are generally valid, the same model (Unibest-TC) and approach will be applied to bathymetric data from the CRLC. Because the CRLC and Noordwijk have widely different physical characteristics (e.g., wave climate, sediment supply, beach slope, tidal range) the CRLC provides a sharply different environment for which to investigate interannual bar behavior. Annual nearshore bathymetric surveys in the CRLC have been completed for over a decade using personal watercraft outfitted with the Coastal

  4. Viscous dissipation of energy at the stage of accumulation of the Earth

    Science.gov (United States)

    Yurie Khachay, Professor; Olga Hachay, Professor; Antipin, Alexandr

    2017-04-01

    significant. That influence is defined by a set of factors. It was changed the width of the formed outer core. It was changed the distribution of the temperature and hydrostatic pressure inside the core and reciprocally the viscosity of the matter. It had been changed the orbit parameters of the system Earth-Moon. The received results depend from the parameters, the values of which are known with large degree of uncertainty. They have to be specified during next researchers. This work was supported by grant RFBRI №16-05-00540 References. 1. V.Anfilogov,Y. Khachay ,2005, Possible variant of matter differentiation on the initial stage of Earth's forming //DAN, 2005, V. 403, № 6, p. 803-806. 2.V.Anfilogov,Y.Khachay ,2015, Some Aspects of the Solar System Formation. Springer Briefs of the Earth Sciences. -75p 3.Khachay Yu.V., Hachay O.A. Heat production by the viscous dissipation of energy at the stage of accumulation of the Earth. Geophysical Research AbstractsVol. 18, EGU2016-2825, 2016 4. Khachay Yu. Realization of thermal Convection into the initial Earth's Core on the Stage of planetary Accumulation // Geophysical Research Abstracts, Vol. 17, EGU2015-2211, 2015.

  5. A Method for Localizing Energy Dissipation in Blazars Using Fermi Variability

    Science.gov (United States)

    Dotson, Amanda; Georganopoulos, Markos; Kazanas, Demosthenes; Perlman, Eric S.

    2013-01-01

    The distance of the Fermi-detected blazar gamma-ray emission site from the supermassive black hole is a matter of active debate. Here we present a method for testing if the GeV emission of powerful blazars is produced within the sub-pc scale broad line region (BLR) or farther out in the pc-scale molecular torus (MT) environment. If the GeV emission takes place within the BLR, the inverse Compton (IC) scattering of the BLR ultraviolet (UV) seed photons that produces the gamma-rays takes place at the onset of the Klein-Nishina regime. This causes the electron cooling time to become practically energy independent and the variation of the gamma-ray emission to be almost achromatic. If on the other hand the -ray emission is produced farther out in the pc-scale MT, the IC scattering of the infrared (IR) MT seed photons that produces the gamma-rays takes place in the Thomson regime, resulting to energy-dependent electron cooling times, manifested as faster cooling times for higher Fermi energies. We demonstrate these characteristics and discuss the applicability and limitations of our method.

  6. A comparative study between dissipative particle dynamics and molecular dynamics for simple- and complex-geometry flows.

    Science.gov (United States)

    Keaveny, Eric E; Pivkin, Igor V; Maxey, Martin; Em Karniadakis, George

    2005-09-08

    The purpose of this study is to compare the results from molecular-dynamics and dissipative particle dynamics (DPD) simulations of Lennard-Jones (LJ) fluid and determine the quantitative effects of DPD coarse graining on flow parameters. We illustrate how to select the conservative force coefficient, the cut-off radius, and the DPD time scale in order to simulate a LJ fluid. To show the effects of coarse graining and establish accuracy in the DPD simulations, we conduct equilibrium simulations, Couette flow simulations, Poiseuille flow simulations, and simulations of flow around a periodic array of square cylinders. For the last flow problem, additional comparisons are performed against continuum simulations based on the spectral/hp element method.

  7. Limits to sustained energy intake. XXIII. Does heat dissipation capacity limit the energy budget of lactating bank voles?

    Science.gov (United States)

    Sadowska, Edyta T; Król, Elżbieta; Chrzascik, Katarzyna M; Rudolf, Agata M; Speakman, John R; Koteja, Paweł

    2016-03-01

    Understanding factors limiting sustained metabolic rate (SusMR) is a central issue in ecological physiology. According to the heat dissipation limit (HDL) theory, the SusMR at peak lactation is constrained by the maternal capacity to dissipate body heat. To test that theory, we shaved lactating bank voles (Myodes glareolus) to experimentally elevate their capacity for heat dissipation. The voles were sampled from lines selected for high aerobic exercise metabolism (A; characterized also by increased basal metabolic rate) and unselected control lines (C). Fur removal significantly increased the peak-lactation food intake (mass-adjusted least square means ± s.e.; shaved: 16.3 ± 0.3 g day(-1), unshaved: 14.4 ± 0.2 g day(-1); Plines. Thus, the experimental evolution model did not reveal a difference in the limiting mechanism between animals with inherently different metabolic rates.

  8. 浅论掺气设施的消能作用%Study on the Energy Dissipation of Aerator

    Institute of Scientific and Technical Information of China (English)

    栗帅; 张建民; 陈剑刚; 胡小禹

    2011-01-01

    掺气减蚀设施不仅能有效地减缓空蚀和磨蚀的发生,而且具有一定的消能作用.结合某水电站溢洪道的模型试验研究,分析了溢洪道掺气减蚀工程措施的消能效果,并首次定量地计算了消能率.试验和计算结果表明,在高水头、大单宽流量溢洪道中每道掺气挑坎的消能水头为2~5 m,随着级数的增加消能水头逐渐增加.试验还表明,在满足掺气要求和水流流态平稳的条件下,尽可能多设置掺气设施不仅不会增加工程量,还可以降低泄槽因高速水流冲刷破坏的风险,而且有利于下游消能防冲设计的优化.%Air entrainment facilities can not only effectively reduce the occurrence of cavitation and abrasion, but also has a certain role on energy dissipation. Combining with the experimental research of a spillway model, the energy dissipation of the aerator in the spillway is analyzed and the energy dissipation rate is firstly quantified. The results show that the head will decrease about 2-5 m after flowing through an aerator in a spillway with high water head and large unit discharge, and the head decrease will be increased with the increase of the number of aerators. The experimental study also shows that, under the conditions of meeting the requirements of aeration and keeping flow stable, setting the aerators as much as possible will not increase the construction quantity, but it can reduce the risk of chute damage due to high-speed flow and is beneficial to the optimization of downstream energy dissipation and erosion control designs.

  9. THE STORAGE AND DISSIPATION OF MAGNETIC ENERGY IN THE QUIET SUN CORONA DETERMINED FROM SDO/HMI MAGNETOGRAMS

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, K. A.; Sabol, J.; Mackay, D. H. [School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Van Ballegooijen, A. A., E-mail: karen@mcs.st-and.ac.uk [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-06-20

    In recent years, higher cadence, higher resolution observations have revealed the quiet-Sun photosphere to be complex and rapidly evolving. Since magnetic fields anchored in the photosphere extend up into the solar corona, it is expected that the small-scale coronal magnetic field exhibits similar complexity. For the first time, the quiet-Sun coronal magnetic field is continuously evolved through a series of non-potential, quasi-static equilibria, deduced from magnetograms observed by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, where the photospheric boundary condition which drives the coronal evolution exactly reproduces the observed magnetograms. The build-up, storage, and dissipation of magnetic energy within the simulations is studied. We find that the free magnetic energy built up and stored within the field is sufficient to explain small-scale, impulsive events such as nanoflares. On comparing with coronal images of the same region, the energy storage and dissipation visually reproduces many of the observed features. The results indicate that the complex small-scale magnetic evolution of a large number of magnetic features is a key element in explaining the nature of the solar corona.

  10. Quantitative structure-activity relationship (QSAR) models for polycyclic aromatic hydrocarbons (PAHs) dissipation in rhizosphere based on molecular structure and effect size

    Energy Technology Data Exchange (ETDEWEB)

    Ma Bin; Chen Huaihai; Xu Minmin; Hayat, Tahir [Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310029 (China); He Yan, E-mail: yhe2006@zju.edu.c [Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310029 (China); Xu Jianming, E-mail: jmxu@zju.edu.c [Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310029 (China)

    2010-08-15

    Rhizoremediation is a significant form of bioremediation for polycyclic aromatic hydrocarbons (PAHs). This study examined the role of molecular structure in determining the rhizosphere effect on PAHs dissipation. Effect size in meta-analysis was employed as activity dataset for building quantitative structure-activity relationship (QSAR) models and accumulative effect sizes of 16 PAHs were used for validation of these models. Based on the genetic algorithm combined with partial least square regression, models for comprehensive dataset, Poaceae dataset, and Fabaceae dataset were built. The results showed that information indices, calculated as information content of molecules based on the calculation of equivalence classes from the molecular graph, were the most important molecular structural indices for QSAR models of rhizosphere effect on PAHs dissipation. The QSAR model, based on the molecular structure indices and effect size, has potential to be used in studying and predicting the rhizosphere effect of PAHs dissipation. - Effect size based on meta-analysis was used for building PAHs dissipation quantitative structure-activity relationship (QSAR) models.

  11. Molecular dynamics study of a CNT-buckyball-enabled energy absorption system.

    Science.gov (United States)

    Chen, Heng; Zhang, Liuyang; Becton, Matthew; Nie, Hong; Chen, Jinbao; Wang, Xianqiao

    2015-07-14

    An energy absorption system (EAS) composed of a carbon nanotube (CNT) with nested buckyballs is put forward for energy dissipation during impact owing to the outstanding mechanical properties of both CNTs and buckyballs. Here we implement a series of molecular dynamics (MD) simulations to investigate the energy absorption capabilities of several different EASs based on a variety of design parameters. For example, the effects of impact energy, the number of nested buckyballs, and of the size of the buckyballs are analyzed to optimize the energy absorption capability of the EASs by tuning the relevant design parameters. Simulation results indicate that the energy absorption capability of the EAS is closely associated with the deformation characteristics of the confined buckyballs. A low impact energy leads to recoverable deformation of the buckyballs and the dissipated energy is mainly converted to thermal energy. However, a high impact energy yields non-recoverable deformation of buckyballs and thus the energy dissipation is dominated by the strain energy of the EAS. The simulation results also reveal that there exists an optimal value of the number of buckyballs for an EAS under a certain impact energy. Larger buckyballs are able to deform to a larger degree yet also need less impact energy to induce plastic deformation, therefore performing with a better overall energy absorption ability. Overall, the EAS in this study shows a remarkably high energy absorption density of 2 kJ g(-1), it is a promising candidate for mitigating impact energy and sheds light on the research of buckyball-filled CNTs for other applications.

  12. Evaporation residue cross sections for the {sup 64}Ni + {sup 144,154}Sm reaction -- Energy dissipation in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Blumenthal, D.J.; Davids, C.N. [and others

    1995-08-01

    The fission hindrance of hot nuclei was deduced recently from an enhanced emission of GDR {gamma} rays, neutrons and charged particles prior to scission of heavy nuclei. In the most recent experiments addressing this topic, namely new measurements of the pre-scission {gamma} rays and evaporation residues from the {sup 32}S + {sup 184}W reaction, a rather sharp transition from negligible to full one-body dissipation occurs over the excitation energy region E{sub exc} = 60-100 MeV. However, the cross section does not appear to level out or start to decline again at the upper end of the energy range as expected in this interpretation. It is therefore clearly desirable to extend the excitation energy range to look for such an effect in order to either corroborate or refute this interpretation.

  13. Two finite-difference schemes that preserve the dissipation of energy in a system of modified wave equations

    CERN Document Server

    Macías-Díaz, J E; 10.1016/j.cnsns.2009.04.017

    2011-01-01

    In this work, we present two numerical methods to approximate solutions of systems of dissipative sine-Gordon equations that arise in the study of one-dimensional, semi-infinite arrays of Josephson junctions coupled through superconducting wires. Also, we present schemes for the total energy of such systems in association with the finite-difference schemes used to approximate the solutions. The proposed methods are conditionally stable techniques that yield consistent approximations not only in the domains of the solution and the total energy, but also in the approximation to the rate of change of energy with respect to time. The methods are employed in the estimation of the threshold at which nonlinear supratransmission takes place, in the presence of parameters such as internal and external damping, generalized mass, and generalized Josephson current. Our results are qualitatively in agreement with the corresponding problem in mechanical chains of coupled oscillators, under the presence of the same paramete...

  14. Expressions of dissipated powers and stored energies in poroelastic media modeled by {u,U} and {u,P} formulations.

    Science.gov (United States)

    Dazel, Olivier; Sgard, Franck; Becot, François-Xavier; Atalla, Noureddine

    2008-04-01

    This paper is devoted to the rigorous obtention of the energy balance in porous materials. The wave propagation in the porous media is described by Biot-Allard's {u,U} and {u,P} formulations. The paper derives the expressions for stored kinetic and strain energies together with dissipated energies. It is shown that, in the case of mixed formulations, these expressions do not correspond to the real and imaginary parts of the variational formulations. A quantitative convergence analysis of finite element scheme is then undertaken with the help of these indicators. It is shown that the order of convergence of these indicators for linear finite-element is one and that they are then well fitted to check the validity of finite-element models.

  15. Comparative study of passive and semi-active energy dissipation devices intended for overhead cranes; Etude comparative de dispositifs de dissipation d`energie passif et semi-actif destines aux ponts roulants

    Energy Technology Data Exchange (ETDEWEB)

    Guihot, P.; Revaud, D.

    1996-04-01

    This paper deals with the results of a bibliographic survey of energy dissipation devices which could be adapted for overhead cranes. The principle of passive devices using friction, yielding steel systems of viscous and viscoelastic systems are remembered. An active control system, which needs a minimum of external control energy is also presented. The application to overhead cranes which have a strong non linear behaviour under strong seismic motion (sliding between rails and wheels, local yielding and damage) is further discussed. The first results of a numerical study in progress are likewise purposed. The criterion of selection of the devices turn on the performance, the robustness and the reliability. The behaviour in the presence of non linearities, the sensitivity to the variations of the vibratory characteristics, and lastly the sensitivity to the response delay of the active controller are taken into account. (authors). 14 refs., 4 figs.

  16. Experimental estimation of the heat energy dissipated in a volume surrounding the tip of a fatigue crack

    Directory of Open Access Journals (Sweden)

    G. Meneghetti

    2016-01-01

    Full Text Available Fatigue crack initiation and propagation involve plastic strains that require some work to be done on the material. Most of this irreversible energy is dissipated as heat and consequently the material temperature increases. The heat being an indicator of the intense plastic strains occurring at the tip of a propagating fatigue crack, when combined with the Neuber’s structural volume concept, it might be used as an experimentally measurable parameter to assess the fatigue damage accumulation rate of cracked components. On the basis of a theoretical model published previously, in this work the heat energy dissipated in a volume surrounding the crack tip is estimated experimentally on the basis of the radial temperature profiles measured by means of an infrared camera. The definition of the structural volume in a fatigue sense is beyond the scope of the present paper. The experimental crack propagation tests were carried out on hot-rolled, 6-mm-thick AISI 304L stainless steel specimens subject to completely reversed axial fatigue loading.

  17. Dissipative particle dynamics with an effective pair potential from integral equation theory of molecular liquids.

    Science.gov (United States)

    Kobryn, Alexander E; Nikolić, Dragan; Lyubimova, Olga; Gusarov, Sergey; Kovalenko, Andriy

    2014-10-16

    We present a method of DPD simulation based on a coarse-grained effective pair potential obtained from the DRISM-KH molecular theory of solvation. The theory is first used to calculate the radial distribution functions of all-atom solute monomers in all-atom solvent and then to invert them into an effective pair potential between coarse-grained beads such that their fluid without solvent accounts for molecular specificities and solvation effects in the all-atom system. Bonded interactions are sampled in relatively short MD of the all-atom system and modeled with best multi-Gaussian fit. Replacing the heuristically defined conservative force potential in DPD, the coarse-grained effective pair potential is free from the artificial restrictions on potential range and shape and on equal volume of solute and solvent blobs inherent in standard DPD. The procedure is flexible in specifying coarse-grained mapping and enormously increases computational efficiency by eliminating solvent. The method is validated on polystyrene chains of various length in toluene at finite concentrations for room and polystyrene glass transition temperature. It yields the chain elastic properties and diffusion coefficient in good agreement with experiment and all-atom MD simulations. DPD with coarse-grained effective pair potential is capable of predicting both structural and dynamic properties of polymer solutions and soft matter with high accuracy and computational efficiency.

  18. The effect of the polymer relaxation time on the nonlinear energy cas- cade and dissipation of statistically steady and decaying homogeneous isotropic turbulence

    Science.gov (United States)

    Valente, Pedro C.; da Silva, Carlos B.; Pinho, Fernando T.

    2013-11-01

    We report a numerical study of statistically steady and decaying turbulence of FENE-P fluids for varying polymer relaxation times ranging from the Kolmogorov dissipation time-scale to the eddy turnover time. The total turbulent kinetic energy dissipation is shown to increase with the polymer relaxation time in both steady and decaying turbulence, implying a ``drag increase.'' If the total power input in the statistically steady case is kept equal in the Newtonian and the viscoelastic simulations the increase in the turbulence-polymer energy transfer naturally lead to the previously reported depletion of the Newtonian, but not the overall, kinetic energy dissipation. The modifications to the nonlinear energy cascade with varying Deborah/Weissenberg numbers are quantified and their origins investigated. The authors acknowledge the financial support from Fundação para a Ciência e a Tecnologia under grant PTDC/EME-MFE/113589/2009.

  19. Current-driven plasma acceleration versus current-driven energy dissipation. I - Wave stability theory

    Science.gov (United States)

    Kelly, A. J.; Jahn, R. G.; Choueiri, E. Y.

    1990-01-01

    The dominant unstable electrostatic wave modes of an electromagnetically accelerated plasma are investigated. The study is the first part of a three-phase program aimed at characterizing the current-driven turbulent dissipation degrading the efficiency of Lorentz force plasma accelerators such as the MPD thruster. The analysis uses a kinetic theory that includes magnetic and thermal effects as well as those of an electron current transverse to the magnetic field and collisions, thus combining all the features of previous models. Analytical and numerical solutions allow a detailed description of threshold criteria, finite growth behavior, destabilization mechanisms and maximized-growth characteristics of the dominant unstable modes. The lower hybrid current-driven instability is implicated as dominant and was found to preserve its character in the collisional plasma regime.

  20. Anharmonic exciton dynamics and energy dissipation in liquid water from two-dimensional infrared spectroscopy

    Science.gov (United States)

    De Marco, Luigi; Fournier, Joseph A.; Thämer, Martin; Carpenter, William; Tokmakoff, Andrei

    2016-09-01

    Water's extended hydrogen-bond network results in rich and complex dynamics on the sub-picosecond time scale. In this paper, we present a comprehensive analysis of the two-dimensional infrared (2D IR) spectrum of O-H stretching vibrations in liquid H2O and their interactions with bending and intermolecular vibrations. By exploring the dependence of the spectrum on waiting time, temperature, and laser polarization, we refine our molecular picture of water's complex ultrafast dynamics. The spectral evolution following excitation of the O-H stretching resonance reveals vibrational dynamics on the 50-300 fs time scale that are dominated by intermolecular delocalization. These O-H stretch excitons are a result of the anharmonicity of the nuclear potential energy surface that arises from the hydrogen-bonding interaction. The extent of O-H stretching excitons is characterized through 2D depolarization measurements that show spectrally dependent delocalization in agreement with theoretical predictions. Furthermore, we show that these dynamics are insensitive to temperature, indicating that the exciton dynamics alone set the important time scales in the system. Finally, we study the evolution of the O-H stretching mode, which shows highly non-adiabatic dynamics suggestive of vibrational conical intersections. We argue that the so-called heating, commonly observed within ˜1 ps in nonlinear IR spectroscopy of water, is a nonequilibrium state better described by a kinetic temperature rather than a Boltzmann distribution. Our conclusions imply that the collective nature of water vibrations should be considered in describing aqueous solvation.

  1. A Technique for Mapping Characteristic Lengths to Preserve Energy Dissipated via Strain Softening in a Multiscale Analysis

    Science.gov (United States)

    Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.

    2014-01-01

    It is often advantageous to account for the microstructure of the material directly using multiscale modeling. For computational tractability, an idealized repeating unit cell (RUC) is used to capture all of the pertinent features of the microstructure. Typically, the RUC is dimensionless and depends only on the relative volume fractions of the different phases in the material. This works well for non-linear and inelastic behavior exhibiting a positive-definite constitutive response. Although, once the material exhibits strain softening, or localization, a mesh objective failure theories, such as smeared fracture theories, nodal and element enrichment theories (XFEM), cohesive elements or virtual crack closure technique (VCCT), can be utilized at the microscale, but the dimensions of the RUC must then be defined. One major challenge in multiscale progressive damage modeling is relating the characteristic lengths across the scales in order to preserve the energy that is dissipated via localization at the microscale. If there is no effort to relate the size of the macroscale element to the microscale RUC, then the energy that is dissipated will remain mesh dependent at the macroscale, even if it is regularized at the microscale. Here, a technique for mapping characteristic lengths across the scales is proposed. The RUC will be modeled using the generalized method of cells (GMC) micromechanics theory, and local failure in the matrix constituent subcells will be modeled using the crack band theory. The subcell characteristic lengths used in the crack band calculations will be mapped to the macroscale finite element in order to regularize the local energy in a manner consistent with the global length scale. Examples will be provided with and without the regularization, and they will be compared to a baseline case where the size and shape of the element and RUC are coincident (ensuring energy is preserved across the scales).

  2. Dissipation of the energy imparted by mid-latitude storms in the Southern Ocean

    Science.gov (United States)

    Jouanno, Julien; Capet, Xavier; Madec, Gurvan; Roullet, Guillaume; Klein, Patrice

    2016-06-01

    The aim of this study is to clarify the role of the Southern Ocean storms on interior mixing and meridional overturning circulation. A periodic and idealized numerical model has been designed to represent the key physical processes of a zonal portion of the Southern Ocean located between 70 and 40° S. It incorporates physical ingredients deemed essential for Southern Ocean functioning: rough topography, seasonally varying air-sea fluxes, and high-latitude storms with analytical form. The forcing strategy ensures that the time mean wind stress is the same between the different simulations, so the effect of the storms on the mean wind stress and resulting impacts on the Southern Ocean dynamics are not considered in this study. Level and distribution of mixing attributable to high-frequency winds are quantified and compared to those generated by eddy-topography interactions and dissipation of the balanced flow. Results suggest that (1) the synoptic atmospheric variability alone can generate the levels of mid-depth dissipation frequently observed in the Southern Ocean (10-10-10-9 W kg-1) and (2) the storms strengthen the overturning, primarily through enhanced mixing in the upper 300 m, whereas deeper mixing has a minor effect. The sensitivity of the results to horizontal resolution (20, 5, 2 and 1 km), vertical resolution and numerical choices is evaluated. Challenging issues concerning how numerical models are able to represent interior mixing forced by high-frequency winds are exposed and discussed, particularly in the context of the overturning circulation. Overall, submesoscale-permitting ocean modeling exhibits important delicacies owing to a lack of convergence of key components of its energetics even when reaching Δx = 1 km.

  3. Bottom-up derivation of conservative and dissipative interactions for coarse-grained molecular liquids with the conditional reversible work method

    Energy Technology Data Exchange (ETDEWEB)

    Deichmann, Gregor; Marcon, Valentina; Vegt, Nico F. A. van der, E-mail: vandervegt@csi.tu-darmstadt.de [Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt (Germany)

    2014-12-14

    Molecular simulations of soft matter systems have been performed in recent years using a variety of systematically coarse-grained models. With these models, structural or thermodynamic properties can be quite accurately represented while the prediction of dynamic properties remains difficult, especially for multi-component systems. In this work, we use constraint molecular dynamics simulations for calculating dissipative pair forces which are used together with conditional reversible work (CRW) conservative forces in dissipative particle dynamics (DPD) simulations. The combined CRW-DPD approach aims to extend the representability of CRW models to dynamic properties and uses a bottom-up approach. Dissipative pair forces are derived from fluctuations of the direct atomistic forces between mapped groups. The conservative CRW potential is obtained from a similar series of constraint dynamics simulations and represents the reversible work performed to couple the direct atomistic interactions between the mapped atom groups. Neopentane, tetrachloromethane, cyclohexane, and n-hexane have been considered as model systems. These molecular liquids are simulated with atomistic molecular dynamics, coarse-grained molecular dynamics, and DPD. We find that the CRW-DPD models reproduce the liquid structure and diffusive dynamics of the liquid systems in reasonable agreement with the atomistic models when using single-site mapping schemes with beads containing five or six heavy atoms. For a two-site representation of n-hexane (3 carbons per bead), time scale separation can no longer be assumed and the DPD approach consequently fails to reproduce the atomistic dynamics.

  4. Molecular energies from an incremental fragmentation method

    Science.gov (United States)

    Meitei, Oinam Romesh; Heßelmann, Andreas

    2016-02-01

    The systematic molecular fragmentation method by Collins and Deev [J. Chem. Phys. 125, 104104 (2006)] has been used to calculate total energies and relative conformational energies for a number of small and extended molecular systems. In contrast to the original approach by Collins, we have tested the accuracy of the fragmentation method by utilising an incremental scheme in which the energies at the lowest level of the fragmentation are calculated on an accurate quantum chemistry level while lower-cost methods are used to correct the low-level energies through a high-level fragmentation. In this work, the fragment energies at the lowest level of fragmentation were calculated using the random-phase approximation (RPA) and two recently developed extensions to the RPA while the incremental corrections at higher levels of the fragmentation were calculated using standard density functional theory (DFT) methods. The complete incremental fragmentation method has been shown to reproduce the supermolecule results with a very good accuracy, almost independent on the molecular type, size, or type of decomposition. The fragmentation method has also been used in conjunction with the DFT-SAPT (symmetry-adapted perturbation theory) method which enables a breakdown of the total nonbonding energy contributions into individual interaction energy terms. Finally, the potential problems of the method connected with the use of capping hydrogen atoms are analysed and two possible solutions are supplied.

  5. Finescale parameterizations of energy dissipation in a region of strong internal tides and sheared flow, the Lucky-Strike segment of the Mid-Atlantic Ridge

    Science.gov (United States)

    Pasquet, Simon; Bouruet-Aubertot, Pascale; Reverdin, Gilles; Turnherr, Andreas; Laurent, Lou St.

    2016-06-01

    The relevance of finescale parameterizations of dissipation rate of turbulent kinetic energy is addressed using finescale and microstructure measurements collected in the Lucky Strike segment of the Mid-Atlantic Ridge (MAR). There, high amplitude internal tides and a strongly sheared mean flow sustain a high level of dissipation rate and turbulent mixing. Two sets of parameterizations are considered: the first ones (Gregg, 1989; Kunze et al., 2006) were derived to estimate dissipation rate of turbulent kinetic energy induced by internal wave breaking, while the second one aimed to estimate dissipation induced by shear instability of a strongly sheared mean flow and is a function of the Richardson number (Kunze et al., 1990; Polzin, 1996). The latter parameterization has low skill in reproducing the observed dissipation rate when shear unstable events are resolved presumably because there is no scale separation between the duration of unstable events and the inverse growth rate of unstable billows. Instead GM based parameterizations were found to be relevant although slight biases were observed. Part of these biases result from the small value of the upper vertical wavenumber integration limit in the computation of shear variance in Kunze et al. (2006) parameterization that does not take into account internal wave signal of high vertical wavenumbers. We showed that significant improvement is obtained when the upper integration limit is set using a signal to noise ratio criterion and that the spatial structure of dissipation rates is reproduced with this parameterization.

  6. Introduction to practice of molecular simulation molecular dynamics, Monte Carlo, Brownian dynamics, lattice Boltzmann and dissipative particle dynamics

    CERN Document Server

    Satoh, Akira

    2010-01-01

    This book presents the most important and main concepts of the molecular and microsimulation techniques. It enables readers to improve their skills in developing simulation programs by providing physical problems and sample simulation programs for them to use. Provides tools to develop skills in developing simulations programs Includes sample simulation programs for the reader to use Appendix explains Fortran and C languages in simple terms to allow the non-expert to use them.

  7. 欧拉圆盘不同能量耗散机理之间的关联∗%Relations among different energy dissipations of Euler disk

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The energy dissipation of a disc spinning on a horizontal plane is studied, as the angleαof the coin made with the horizontal plane decreases, while the angular velocity Ω of the point of contact increases. Effect of the ratio x between the thickness and diameter of an Euler disc and theαon the energy dissipation is studied. We find, by using numerical simulation, that when x is small enough, the lose of the kinetic energy and the gravitational potential energy of the mass center is dominant in energy dissipations; when x>0.4142, the rotational kinetic energy dissipation of the disc around the axis that is parallel to the disc surface, is the leading factor. The requirements in which thickness can be neglected are also obtained, and they can give some hints to the relevant theories and experiments. Our results show that whenα>10◦ and b/a18◦, which improves the results obtained before. We speculate that the dominant dissipation is the gliding friction in the final stage of the motion, because when the disc is motionless, one face of the disc lies absolutely in contact with the horizontal surface just before the disc halts. One can assume that they are in contact completely but the disc does not halt, thus axis 1 and axis Z are almost in the same direction. In this case, the energy dissipation of the Euler disc is due to the gliding friction. To some extent, this accounts for the disc final halt.

  8. Chaos and Energy Spreading for Time-Dependent Hamiltonians, and the Various Regimes in the Theory of Quantum Dissipation

    Science.gov (United States)

    Cohen, Doron

    2000-08-01

    We make the first steps toward a generic theory for energy spreading and quantum dissipation. The Wall formula for the calculation of friction in nuclear physics and the Drude formula for the calculation of conductivity in mesoscopic physics can be regarded as two special results of the general formulation. We assume a time-dependent Hamiltonian H(Q, P; x(t)) with x(t)=Vt, where V is slow in a classical sense. The rate-of-change V is not necessarily slow in the quantum-mechanical sense. The dynamical variables (Q, P) may represent some "bath" which is being parametrically driven by x. This bath may consist of just a few degrees of freedom, but it is assumed to be classically chaotic. In the case of either the Wall or Drude formula, the dynamical variables (Q, P) may represent a single particle. In any case, dissipation means an irreversible systematic growth of the (average) energy. It is associated with the stochastic spreading of energy across levels. The latter can be characterized by a transition probability kernel Pt(n ∣ m), where n and m are level indices. This kernel is the main object of the present study. In the classical limit, due to the (assumed) chaotic nature of the dynamics, the second moment of Pt(n ∣ m) exhibits a crossover from ballistic to diffusive behavior. In order to capture this crossover within quantum mechanics, a proper theory for the quantal Pt(n ∣ m) should be constructed. We define the V regimes where either perturbation theory or semiclassical considerations are applicable in order to establish this crossover. In the limit ℏ→0 perturbation theory does not apply but semiclassical considerations can be used in order to argue that there is detailed correspondence, during the crossover time, between the quantal and the classical Pt(n ∣ m). In the perturbative regime there is a lack of such correspondence. Namely, Pt(n ∣ m) is characterized by a perturbative core-tail structure that persists during the crossover time. In

  9. Ordering of anisotropic nanoparticles in diblock copolymer lamellae: Simulations with dissipative particle dynamics and a molecular theory

    Science.gov (United States)

    Berezkin, Anatoly V.; Kudryavtsev, Yaroslav V.; Gorkunov, Maxim V.; Osipov, Mikhail A.

    2017-04-01

    Local distribution and orientation of anisotropic nanoparticles in microphase-separated symmetric diblock copolymers has been simulated using dissipative particle dynamics and analyzed with a molecular theory. It has been demonstrated that nanoparticles are characterized by a non-trivial orientational ordering in the lamellar phase due to their anisotropic interactions with isotropic monomer units. In the simulations, the maximum concentration and degree of ordering are attained for non-selective nanorods near the domain boundary. In this case, the nanorods have a certain tendency to align parallel to the interface in the boundary region and perpendicular to it inside the domains. Similar orientation ordering of nanoparticles located at the lamellar interface is predicted by the molecular theory which takes into account that the nanoparticles interact with monomer units via both isotropic and anisotropic potentials. Computer simulations enable one to study the effects of the nanorod concentration, length, stiffness, and selectivity of their interactions with the copolymer components on the phase stability and orientational order of nanoparticles. If the volume fraction of the nanorods is lower than 0.1, they have no effect on the copolymer transition from the disordered state into a lamellar microstructure. Increasing nanorod concentration or nanorod length results in clustering of the nanorods and eventually leads to a macrophase separation, whereas the copolymer preserves its lamellar morphology. Segregated nanorods of length close to the width of the diblock copolymer domains are stacked side by side into smectic layers that fill the domain space. Thus, spontaneous organization and orientation of nanorods leads to a spatial modulation of anisotropic composite properties which may be important for various applications.

  10. pH-sensitive drug loading/releasing in amphiphilic copolymer PAE-PEG: integrating molecular dynamics and dissipative particle dynamics simulations.

    Science.gov (United States)

    Luo, Zhonglin; Jiang, Jianwen

    2012-08-20

    Molecular dynamics (MD) and dissipative particle dynamics (DPD) simulations are integrated to investigate the loading/releasing of anti-cancer drug camptothecin (CPT) in pH-sensitive amphiphilic copolymer, composed of hydrophobic poly(β-amino ester) (PAE) and hydrophilic methyl ether-capped poly(ethylene glycol) (PEG). MD simulation is used to estimate the Flory-Huggins interaction parameters and miscibility of binary components. On this basis, DPD simulation is applied to examine the micellization of PAE-PEG, CPT loading in PAE-PEG, and CPT releasing in PAEH-PEG. With increasing concentration, PAE-PEG forms spherical then disk-like micelles and finally vesicles, as a competitive counterbalance of free energies for the formation of shell, interface and core. CPT loading in PAE-PEG micelles/vesicles is governed by adsorption-growth-micellization mechanism, and CPT is loaded into both hydrophobic core and interface of hydrophobic core/hydrophilic shell. The predicted loading efficiency is close to experimental value. Similar to literature reports, the loading of high concentration of CPT is observed to cause morphology transition from micelles to vesicles. Upon protonation, CPT is released from micelles/vesicles by swelling-demicellization-releasing mechanism. This multi-scale simulation study provides microscopic insight into the mechanisms of drug loading and releasing, and might be useful for the design of new materials for high-efficacy drug delivery.

  11. Vibrational energy transfer in shocked molecular crystals.

    Science.gov (United States)

    Hooper, Joe

    2010-01-07

    We consider the process of establishing thermal equilibrium behind an ideal shock front in molecular crystals and its possible role in initiating chemical reaction at high shock pressures. A new theory of equilibration via multiphonon energy transfer is developed to treat the scattering of shock-induced phonons into internal molecular vibrations. Simple analytic forms are derived for the change in this energy transfer at different Hugoniot end states following shock compression. The total time required for thermal equilibration is found to be an order of magnitude or faster than proposed in previous work; in materials representative of explosive molecular crystals, equilibration is predicted to occur within a few picoseconds following the passage of an ideal shock wave. Recent molecular dynamics calculations are consistent with these time scales. The possibility of defect-induced temperature localization due purely to nonequilibrium phonon processes is studied by means of a simple model of the strain field around an inhomogeneity. The specific case of immobile straight dislocations is studied, and a region of enhanced energy transfer on the order of 5 nm is found. Due to the rapid establishment of thermal equilibrium, these regions are unrelated to the shock sensitivity of a material but may allow temperature localization at high shock pressures. Results also suggest that if any decomposition due to molecular collisions is occurring within the shock front itself, these collisions are not enhanced by any nonequilibrium thermal state.

  12. Targeted energy transfer in laminar vortex-induced vibration of a sprung cylinder with a nonlinear dissipative rotator

    Science.gov (United States)

    Blanchard, Antoine; Bergman, Lawrence A.; Vakakis, Alexander F.

    2017-07-01

    We computationally investigate the dynamics of a linearly-sprung circular cylinder immersed in an incompressible flow and undergoing transverse vortex-induced vibration (VIV), to which is attached a rotational nonlinear energy sink (NES) consisting of a mass that freely rotates at constant radius about the cylinder axis, and whose motion is restrained by a rotational linear viscous damper. The inertial coupling between the rotational motion of the attached mass and the rectilinear motion of the cylinder is ;essentially nonlinear;, which, in conjunction with dissipation, allows for one-way, nearly irreversible targeted energy transfer (TET) from the oscillating cylinder to the nonlinear dissipative attachment. At the intermediate Reynolds number Re = 100, the NES-equipped sprung cylinder undergoes repetitive cycles of slowly decaying oscillations punctuated by intervals of chaotic instabilities. During the slowly decaying portion of each cycle, the dynamics of the cylinder is regular and, for large enough values of the ratio ε of the NES mass to the total mass (i.e., NES mass plus cylinder mass), can lead to significant vortex street elongation with partial stabilization of the wake. As ε approaches zero, no such vortex elongation is observed and the wake patterns appear similar to that for a sprung cylinder with no NES. We apply proper orthogonal decomposition (POD) to the velocity flow field during a slowly decaying portion of the solution and show that, in situations where vortex elongation occurs, the NES, though not in direct contact with the surrounding fluid, has a drastic effect on the underlying flow structures, imparting significant and continuous passive redistribution of energy among POD modes. We construct a POD-based reduced-order model for the lift coefficient to characterize energy transactions between the fluid and the cylinder throughout the slowly decaying cycle. We introduce a quantitative signed measure of the work done by the fluid on the

  13. Scaling and memory in the return intervals of energy dissipation rate in three-dimensional fully developed turbulence

    CERN Document Server

    Liu, Chuang; Ren, Fei; Zhou, Wei-Xing

    2008-01-01

    We study the statistical properties of return intervals $r$ between successive energy dissipation rates above a certain threshold $Q$ in three-dimensional fully developed turbulence. We find that the distribution function $P_Q(r)$ scales with the mean return interval $R_Q$ as $P_Q(r)=R_Q^{-1}f(r/R_Q)$ except for $r=1$, where the scaling function $f(x)$ has two power-law regimes. The return intervals are short-term and long-term correlated and possess multifractal nature. The Hurst index of the return intervals decays exponentially against $R_Q$, predicting that rare extreme events with $R_Q\\to\\infty$ are also long-term correlated with the Hurst index $H_\\infty=0.639$.

  14. Characterisation of ductile tearing resistance by the energy dissipation rate: Effects of material, specimen shape and size

    Energy Technology Data Exchange (ETDEWEB)

    Anuschewski, P.; Brocks, W.; Hellmann, D. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2002-07-01

    The J-integral, which is widely used in elastic-plastic fracture mechanics, is not the true driving force any more if the crack is propagating. This leads to some inconsistencies when ductile tearing resistance is characterised in terms of J, especially for large crack extensions. Instead, TURNER has proposed the energy dissipation rate as a physically more meaningful quantity. His concept is discussed and more evidence is given, which will provide a better understanding of ductile tearing. It is shown how this quantity can be re-evaluated from experimental J{sub R}-cuvves of bend and tensile specimens. The energy dissipation rate is decreasing with crack extension in gross plasticity and approaches a stationary state. The analysis of numerous experimental data revealed, that the R({delta}a)-curves can be described by an exponential function with three parameters, namely the initial value, R{sub 0} = R({delta}a=0), the final stationary value, R{infinity}, and a ''length of decay'', 1/{lambda}, from the initial to the stationary value. The shapes of the cumulative J{sub R}-curves can be derived for different specimen geometries by integration. The three parameters, R{sub 0}, R{infinity}, {lambda}, together with an integration constant, the initiation value, J{sub 4}, characterise ductile fracture resistance both quantitatively and physically interpretable, and hence constraint effects on R-curves can be quantified in terms of these parameters. Geometry functions derived from plastic limit load expressions are defined for normalisation of R({delta}a)-curves, which cover some of the geometry effects. The concept of the dissipation rate does not give a final answer to the problem of geometry dependence of R-curves, but it provides some approaches to a better physical understanding, what J{sub R}-curves actually are, how they can be characterised and parametrised, which are the reasons for ''geometry effects'' and how the latter

  15. Energy dissipation of highly charged ions interacting with solid surfaces; Energieeintrag langsamer hochgeladener Ionen in Festkoerperoberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kost, D.

    2006-07-01

    Motivated by the incomplete scientific description of the relaxation of highly charged ions in front of solid surfaces and their energy balance, this thesis describes an advanced complementary study of determining deposited fractions and re-emitted fractions of the potential energy of highly charged ions. On one side, a calorimetric measurement setup is used to determine the retained potential energy and on the other side, energy resolved electron spectroscopy is used for measuring the reemitted energy due to secondary electron emission. In order to study the mechanism of energy retention in detail, materials with different electronic structures are investigated: Cu, n-Si, p-Si and SiO{sub 2}. In the case of calorimetry, a linear relationship between the deposited potential energy and the inner potential energy of the ions was determined. The total potential energy which stays in the solid remains almost constant at about (80 {+-} 10) %. Comparing the results of the Cu, n-Si and p-Si targets, no significant difference could be shown. Therefore we conclude that the difference in energy deposition between copper, n-doped Si and p-doped Si is below 10 %, which is significantly lower than using SiO{sub 2} targets. For this purpose, electron spectroscopy provides a complementary result. For Cu and Si surfaces, an almost linear increase of the re-emitted energy with increasing potential energy of the ion up to Ar{sup 7+} was also observed. The ratio of the re-emitted energy is about (10 {+-} 5) % of the total potential energy of the incoming ion, almost independent of the ion charge state. In contrast, an almost vanishing electron emission was observed for SiO{sub 2} and for charge states below q=7. For Ar{sup 8+} and Ar{sup 9+}, the electron emission increased due to the contribution of the projectile LMM Auger electrons and the re-emitted energy amounts up to 20 % for Cu and Si and around 10 % for SiO{sub 2}. These results are in good agreement with the calorimetric

  16. Shod landing provides enhanced energy dissipation at the knee joint relative to barefoot landing from different heights.

    Science.gov (United States)

    Yeow, C H; Lee, P V S; Goh, J C H

    2011-12-01

    Athletic shoes can directly provide shock absorption at the foot due to its cushioning properties, however it remains unclear how these shoes may affect the level of energy dissipation contributed by the knee joint. This study sought to investigate biomechanical differences, in terms of knee kinematics, kinetics and energetics, between barefoot and shod landing from different heights. Twelve healthy male recreational athletes were recruited and instructed to perform double-leg landing from 0.3-m and 0.6-m heights in barefoot and shod conditions. The shoe model tested was Brooks Maximus II. Markers were placed on the subjects based on the Plug-in Gait Marker Set. Force-plates and motion-capture system were used to capture ground reaction force (GRF) and kinematics data respectively. 2×2-ANOVA (barefoot/shod condition×landing height) was performed to examine differences in knee kinematics, kinetics and energetics between barefoot and shod conditions from different landing heights. Peak GRF was not significantly different (p=0.732-0.824) between barefoot and shod conditions for both landing heights. Knee range-of-motion, flexion angular velocity, external knee flexion moment, and joint power and work were higher during shod landing (pbarefoot landing for both landing heights. No significant interactions (p=0.073-0.933) were found between landing height and barefoot/shod condition for the tested parameters. While the increase in landing height can elevate knee energetics independent of barefoot/shod conditions, we have also shown that the shod condition was able to augment the level of energy dissipation contributed by the knee joint, via the knee extensors, regardless of the tested landing heights.

  17. Study on Impact Damage and Energy Dissipation of Coal Rock Exposed to High Temperatures

    Directory of Open Access Journals (Sweden)

    Tu-bing Yin

    2016-01-01

    Full Text Available The dynamic failure characteristics of coal rock exposed to high temperatures were studied by using a split Hopkinson pressure bar (SHPB system. The relationship between energy and time history under different temperature conditions was obtained. The energy evolution and the failure modes of specimens were analyzed. Results are as follows: during the test, more than 60% of the incident energy was not involved in the breaking of the sample, while it was reflected back. With the increase of temperature, the reflected energy increased continuously; transmitted and absorbed energy showed an opposite variation. At the temperature of 25 to 100°C, the absorbed energy was less than that transmitted, while this phenomenon was opposite after 100°C. The values of specific energy absorption (SEA were distributed at 0.04 to 0.1 J·cm−3, and its evolution with temperature could be divided into four different stages. Under different temperature conditions, the failure modes and the broken blocks of the samples were obviously different, combining with the variation of microstructure characteristics of coal at high temperatures; the physical mechanism of damage and failure patterns of coal rock are explained from the viewpoint of energy.

  18. Direct experimental evidence of non-equilibrium energy sharing in dissipative collisions

    CERN Document Server

    Casini, G; Olmi, A; Bini, M; Calamai, S; Meucci, F; Pasquali, G; Poggi, G; Stefanini, A A; Gobbi, A; Hildenbrand, K D

    1996-01-01

    Primary and secondary masses of heavy reaction products have been deduced from kinematics and E-ToF measurements, respectively, for the direct and reverse collisions of 100Mo with 120Sn at 14.1 A MeV. Direct experimental evidence of the correlation of energy-sharing with net mass transfer and model-independent results on the evolution of the average excitation from equal-energy to equal-temperature partition are presented.

  19. Differentiation in light energy dissipation between hemiepiphytic and non-hemiepiphytic Ficus species with contrasting xylem hydraulic conductivity.

    Science.gov (United States)

    Hao, Guang-You; Wang, Ai-Ying; Liu, Zhi-Hui; Franco, Augusto C; Goldstein, Guillermo; Cao, Kun-Fang

    2011-06-01

    Hemiepiphytic Ficus species (Hs) possess traits of more conservative water use compared with non-hemiepiphytic Ficus species (NHs) even during their terrestrial growth phase, which may result in significant differences in photosynthetic light use between these two growth forms. Stem hydraulic conductivity, leaf gas exchange and chlorophyll fluorescence were compared in adult trees of five Hs and five NHs grown in a common garden. Hs had significantly lower stem hydraulic conductivity, lower stomatal conductance and higher water use efficiency than NHs. Photorespiration played an important role in avoiding photoinhibition at high irradiance in both Hs and NHs. Under saturating irradiance levels, Hs tended to dissipate a higher proportion of excessive light energy through thermal processes than NHs, while NHs dissipated a larger proportion of electron flow than Hs through the alternative electron sinks. No significant difference in maximum net CO2 assimilation rate was found between Hs and NHs. Stem xylem hydraulic conductivity was positively correlated with maximum electron transport rate and negatively correlated with the quantum yield of non-photochemical quenching across the 10 studied Ficus species. These findings indicate that a canopy growth habit during early life stages in Hs of Ficus resulted in substantial adaptive differences from congeneric NHs not only in water relations but also in photosynthetic light use and carbon economy. The evolution of epiphytic growth habit, even for only part of their life cycle, involved profound changes in a suite of inter-correlated ecophysiological traits that persist to a large extent even during the later terrestrial growth phase.

  20. Probing interstellar turbulence in cirrus with deep optical imaging: no sign of energy dissipation at 0.01 pc scale

    Science.gov (United States)

    Miville-Deschênes, M.-A.; Duc, P.-A.; Marleau, F.; Cuillandre, J.-C.; Didelon, P.; Gwyn, S.; Karabal, E.

    2016-08-01

    Diffuse Galactic light has been observed in the optical since the 1930s. We propose that, when observed in the optical with deep imaging surveys, it can be used as a tracer of the turbulent cascade in the diffuse interstellar medium (ISM), down to scales of about 1 arcsec. Here we present a power spectrum analysis of the dust column density of a diffuse cirrus at high Galactic latitude (l ≈ 198°, b ≈ 32°) as derived from the combination of a MegaCam g-band image, obtained as part of the MATLAS large programme at the CFHT, with Planck radiance and WISE 12 μm data. The combination of these three datasets have allowed us to compute the density power spectrum of the H i over scales of more than three orders of magnitude. We found that the density field is well described by a single power law over scales ranging from 0.01 to 50 pc. The exponent of the power spectrum, γ = -2.9 ± 0.1, is compatible with what is expected for thermally bi-stable and turbulent H i. We did not find any steepening of the power spectrum at small scales indicating that the typical scale at which turbulent energy is dissipated in this medium is smaller than 0.01 pc. The ambipolar diffusion scenario that is usually proposed as the main dissipative agent, is consistent with our data only if the density of the cloud observed is higher than the typical values assumed for the cold neutral medium gas. We discuss the new avenue offered by deep optical imaging surveys for the study of the low density ISM structure and turbulence.

  1. Simulated Quantum Computation of Molecular Energies

    CERN Document Server

    Aspuru-Guzik, A; Love, P J; Head-Gordon, M; Aspuru-Guzik, Al\\'an; Dutoi, Anthony D.; Love, Peter J.; Head-Gordon, Martin

    2005-01-01

    The calculation time for the energy of atoms and molecules scales exponentially with system size on a classical computer but polynomially using quantum algorithms. We demonstrate that such algorithms can be applied to problems of chemical interest using modest numbers of quantum bits. Calculations of the water and lithium hydride molecular ground-state energies have been carried out on a quantum computer simulator using a recursive phase-estimation algorithm. The recursive algorithm reduces the number of quantum bits required for the readout register from about 20 to 4. Mappings of the molecular wave function to the quantum bits are described. An adiabatic method for the preparation of a good approximate ground-state wave function is described and demonstrated for a stretched hydrogen molecule. The number of quantum bits required scales linearly with the number of basis functions, and the number of gates required grows polynomially with the number of quantum bits.

  2. Microstructure controlling of Ti/N particles dissipated energy to superficial layer of titanium nitride film

    Institute of Scientific and Technical Information of China (English)

    MA Zhongquan; ZHANG Qin

    2004-01-01

    The titanium nitride (TiNx) thin film with a controllable surface structure was fabricated by the dc-reactive magnetron sputtering technique, and the variation of microstructure in the surface layer with the energy of condensed adatom was investigated through X-ray diffraction (XRD) pattern and transmission electron microscope (TEM). It was found that the lattice parameters and the full width at half maximum (fwhm) of XRD peak on the top layers in the preferred orientation of (111) and (002) were closely correlated to the impacting induced phase composition, compressive strain, crystallite size and the fault density of the thin films. In the theory, a new means was used to model the atomistic process of per condensed adatom. The average energy at least in the minimum energy state of the incorporate adatom on TiN surface layer was statistically formulized through a careful consideration of dynamical process, which properly interpreted the experimental observations.

  3. Dissipated energy and entropy production for an unconventional heat engine: the stepwise `circular cycle'

    Science.gov (United States)

    di Liberto, Francesco; Pastore, Raffaele; Peruggi, Fulvio

    2011-05-01

    When some entropy is transferred, by means of a reversible engine, from a hot heat source to a colder one, the maximum efficiency occurs, i.e. the maximum available work is obtained. Similarly, a reversible heat pumps transfer entropy from a cold heat source to a hotter one with the minimum expense of energy. In contrast, if we are faced with non-reversible devices, there is some lost work for heat engines, and some extra work for heat pumps. These quantities are both related to entropy production. The lost work, i.e. ? , is also called 'degraded energy' or 'energy unavailable to do work'. The extra work, i.e. ? , is the excess of work performed on the system in the irreversible process with respect to the reversible one (or the excess of heat given to the hotter source in the irreversible process). Both quantities are analysed in detail and are evaluated for a complex process, i.e. the stepwise circular cycle, which is similar to the stepwise Carnot cycle. The stepwise circular cycle is a cycle performed by means of N small weights, dw, which are first added and then removed from the piston of the vessel containing the gas or vice versa. The work performed by the gas can be found as the increase of the potential energy of the dw's. Each single dw is identified and its increase, i.e. its increase in potential energy, evaluated. In such a way it is found how the energy output of the cycle is distributed among the dw's. The size of the dw's affects entropy production and therefore the lost and extra work. The distribution of increases depends on the chosen removal process.

  4. Fast magnetic energy dissipation in relativistic plasma induced by high order laser modes

    Institute of Scientific and Technical Information of China (English)

    Y.J.Gu; Q.Yu; O.Klimo; T.Zh.Esirkepov; S.V.Bulanov; S.Weber; G.Korn

    2016-01-01

    Fast magnetic field annihilation in a collisionless plasma is induced by using TEM(1,0) laser pulse. The magnetic quadrupole structure formation, expansion and annihilation stages are demonstrated with 2.5-dimensional particle-in-cell simulations. The magnetic field energy is converted to the electric field and accelerate the particles inside the annihilation plane. A bunch of high energy electrons moving backwards is detected in the current sheet. The strong displacement current is the dominant contribution which induces the longitudinal inductive electric field.

  5. Scale-selective dissipation in energy-conserving finite element schemes for two-dimensional turbulence

    CERN Document Server

    Natale, Andrea

    2016-01-01

    We analyse the multiscale properties of energy-conserving upwind-stabilised finite element discretisations of the two-dimensional incompressible Euler equations. We focus our attention on two particular methods: the Lie derivative discretisation introduced in Natale and Cotter (2016a) and the SUPG discretisation of the vorticity advection equation. Such discretisations provide control on enstrophy by modelling different types of scale interactions. We quantify the performance of the schemes in reproducing the non-local energy backscatter that characterises two-dimensional turbulent flows.

  6. Pall摩擦耗能减震器减震性能研究%The shock absorption properties of Pall frictional energy dissipation shock absorber

    Institute of Scientific and Technical Information of China (English)

    孙志松

    2009-01-01

    Against to the fast developing status of structural shock absorption technology, the applied situation of Pall frictional energy dissipa-tion shock absorber was introduced. The basic constitution and shack absorption properties of Pall frictional energy dissipation shock absorber were analyzed, the result indicated that it can dissipate large amount seismic energy and had better shock absorption effect with energy dissipa-tion supporting of Pall frictional shock absorption device as protective structure.%针对结构减震技术迅速发展的现状,介绍了Pall摩擦耗能减震器的应用情况,就Pall摩擦耗能减震器的基本构造及减震性能进行了分析,结果表明:采用安装Pall摩擦减震装置的耗能支撑来保护结构,可耗散大量地震能量,减震效果好.

  7. The water-water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted

    NARCIS (Netherlands)

    Driever, S.M.; Baker, N.R.

    2011-01-01

    Electron flux from water via photosystem II (PSII) and PSI to oxygen (water–water cycle) may provide a mechanism for dissipation of excess excitation energy in leaves when CO2 assimilation is restricted. Mass spectrometry was used to measure O2 uptake and evolution together with CO2 uptake in leaves

  8. Monin-Obukhov Similarity Functions of the Structure Parameter of Temperature and Turbulent Kinetic Energy Dissipation Rate in the Stable Boundary Layer

    NARCIS (Netherlands)

    Hartogensis, O.K.; Debruin, H.A.R.

    2005-01-01

    The Monin-Obukhov similarity theory (MOST) functions fepsi; and fT, of the dissipation rate of turbulent kinetic energy (TKE), ¿, and the structure parameter of temperature, CT2, were determined for the stable atmospheric surface layer using data gathered in the context of CASES-99. These data cover

  9. The water-water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted

    NARCIS (Netherlands)

    Driever, S.M.; Baker, N.R.

    2011-01-01

    Electron flux from water via photosystem II (PSII) and PSI to oxygen (water–water cycle) may provide a mechanism for dissipation of excess excitation energy in leaves when CO2 assimilation is restricted. Mass spectrometry was used to measure O2 uptake and evolution together with CO2 uptake in leaves

  10. Interphasial energy transfer and particle dissipation in particle-laden wall turbulence

    NARCIS (Netherlands)

    Zhao, L.; Andersson, H.I.; Gillissen, J.J.J.

    2013-01-01

    Transfer of mechanical energy between solid spherical particles and a Newtonian carrier fluid has been explored in two-way coupled direct numerical simulations of turbulent channel flow. The inertial particles have been treated as individual point particles in a Lagrangian framework and their

  11. Interphasial energy transfer and particle dissipation in particle-laden wall turbulence

    NARCIS (Netherlands)

    Zhao, L.; Andersson, H.I.; Gillissen, J.J.J.

    2013-01-01

    Transfer of mechanical energy between solid spherical particles and a Newtonian carrier fluid has been explored in two-way coupled direct numerical simulations of turbulent channel flow. The inertial particles have been treated as individual point particles in a Lagrangian framework and their feedba

  12. Infragravity-wave dynamics in shallow water : energy dissipation and role in sand suspension and transport

    NARCIS (Netherlands)

    de Bakker, A.T.M.

    2016-01-01

    Infragravity waves (20-200 s) receive their energy from sea-swell waves (2-20 s), and are thought to be important to beach erosion during storms, when they can reach up to several meters in height. Numerous studies have observed that on sandy beaches infragravity waves can lose a large part of their

  13. Infragravity-wave dynamics in shallow water : energy dissipation and role in sand suspension and transport

    NARCIS (Netherlands)

    de Bakker, A.T.M.

    2016-01-01

    Infragravity waves (20-200 s) receive their energy from sea-swell waves (2-20 s), and are thought to be important to beach erosion during storms, when they can reach up to several meters in height. Numerous studies have observed that on sandy beaches infragravity waves can lose a large part of their

  14. Dissipative soliton comb

    CERN Document Server

    Podivilov, Evgeniy V; Bednyakova, Anastasia E; Fedoruk, Mikhail P; Babin, Sergey A

    2016-01-01

    Dissipative solitons are stable localized coherent structures with linear frequency chirp generated in normal-dispersion mode-locked lasers. The soliton energy in fiber lasers is limited by the Raman effect, but implementation of intracavity feedback for the Stokes wave enables synchronous generation of a coherent Raman dissipative soliton. Here we demonstrate a new approach for generating chirped pulses at new wavelengths by mixing in a highly-nonlinear fiber of two frequency-shifted dissipative solitons, as well as cascaded generation of their clones forming a "dissipative soliton comb" in the frequency domain. We observed up to eight equidistant components in a 400-nm interval demonstrating compressibility from ~10 ps to ~300 fs. This approach, being different from traditional frequency combs, can inspire new developments in fundamental science and applications.

  15. Exploring the mechanism(s) of energy dissipation in the light harvesting complex of the photosynthetic algae Cyclotella meneghiniana.

    Science.gov (United States)

    Ramanan, Charusheela; Berera, Rudi; Gundermann, Kathi; van Stokkum, Ivo; Büchel, Claudia; van Grondelle, Rienk

    2014-09-01

    Photosynthetic organisms have developed vital strategies which allow them to switch from a light-harvesting to an energy dissipative state at the level of the antenna system in order to survive the detrimental effects of excess light illumination. These mechanisms are particularly relevant in diatoms, which grow in highly fluctuating light environments and thus require fast and strong response to changing light conditions. We performed transient absorption spectroscopy on FCPa, the main light-harvesting antenna from the diatom Cyclotella meneghiniana, in the unquenched and quenched state. Our results show that in quenched FCPa two quenching channels are active and are characterized by differing rate constants and distinct spectroscopic signatures. One channel is associated with a faster quenching rate (16ns⁻¹) and virtually no difference in spectral shape compared to the bulk unquenched chlorophylls, while a second channel is associated with a slower quenching rate (2.7ns⁻¹) and exhibits an increased population of red-emitting states. We discuss the origin of the two processes in the context of the models proposed for the regulation of photosynthetic light-harvesting. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.

  16. On a Thermodynamic Mechanism of Dissipation of Mechanical Energy in Porous Elastomers as Applied to the Problem of Heating of Automobile Tires

    Science.gov (United States)

    Grinchuk, P. S.; Shnip, A. I.

    2016-11-01

    It has been shown that in the case of cyclic mechanical loads on a porous elastomer there are regimes in which irreversible processes of heat transfer between the gas and the elastomer are responsible for the appearance of a nonzero heat flux averaged over the period and directed from the gas into the condensed phase; this heat flux is compensated for with the dissipation of mechanical energy from the loading source. A possible influence of this mechanism of dissipation on the heating of automobile tires is assessed. Possible methods of recording of this effect are discussed.

  17. Local 4/5-law and energy dissipation anomaly in turbulence of incompressible MHD Equations

    Science.gov (United States)

    Guo, Shanshan; Tan, Zhong

    2016-12-01

    In this paper, we establish the longitudinal and transverse local energy balance equation of distributional solutions of the incompressible three-dimensional MHD equations. In particular, we find that the functions D_L^ɛ (u,B) and D_T^ɛ (u,B) appeared in the energy balance, all converging to the defect distribution (in the sense of distributions) D(u,B) which has been defined in Gao et al. (Acta Math Sci 33:865-871, 2013). Furthermore, we give a simpler form of defect distribution term, which is similar to the relation in turbulence theory, called the "4 / 3-law." As a corollary, we give the analogous "4 / 5-law" holds in the local sense.

  18. On Multiscale Modeling: Preserving Energy Dissipation Across the Scales with Consistent Handshaking Methods

    Science.gov (United States)

    Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.; Waas, Anthony M.

    2013-01-01

    A mesh objective crack band model was implemented within the generalized method of cells micromechanics theory. This model was linked to a macroscale finite element model to predict post-peak strain softening in composite materials. Although a mesh objective theory was implemented at the microscale, it does not preclude pathological mesh dependence at the macroscale. To ensure mesh objectivity at both scales, the energy density and the energy release rate must be preserved identically across the two scales. This requires a consistent characteristic length or localization limiter. The effects of scaling (or not scaling) the dimensions of the microscale repeating unit cell (RUC), according to the macroscale element size, in a multiscale analysis was investigated using two examples. Additionally, the ramifications of the macroscale element shape, compared to the RUC, was studied.

  19. Design of Energy Dissipation Structures, Luogu Hydropower Project%洛古水电站泄洪消能建筑物设计

    Institute of Scientific and Technical Information of China (English)

    朱瑞晨; 吴春鸣; 吴关叶

    2013-01-01

    In Luogu Hydropower Project, three surface outlets are arranged centrally and two bottom outlets on both sides.The surface outlet is with the energy dissipation structure consisting of X-type flaring pier, WES curve, step weir surface and stilling basin.The bot-tom outlet is with the energy dissipation structure consisting of pressure chute within dam, ogee and stilling basin.Both surface and bot-tom outlets share the same stilling basin.Verified by model test, the layout of the energy dissipation structures of Luogu Hydropower Pro-ject well accommodate both the geological and topographical conditions at the dam site, satisfy requirements of flood discharge and energy dissipation, and achieve excellent energy dissipation.%洛古水电站采用3表孔集中布置、2底孔分列两侧的孔口布置方案,表孔采用“X”型宽尾墩+WES曲线+台阶堰面+消力池的消能方式,底孔采用坝内有压式流道+反弧+消力池的消能方式,表底孔共用1个消力池。通过模型试验验证,洛古水电站泄洪消能建筑物的布置型式很好地适应了坝址的地形地质条件,能够满足泄洪消能要求,消能效果良好。

  20. Energy and dissipation range spectra in the inertial range of homogeneous turbulence

    Science.gov (United States)

    Yakhot, V.; She, Z.-S.; Orszag, S. A.

    A study is conducted of deviations from Kolmogorov's inertial-range scaling behavior using the dynamical 'renormalization group' (RNG) analysis of turbulence; RNG has been found to yield good predictions for inertial-range statistics including the Kolmogorov and the Batchelor-Obukhov-Corrsin constants. Attention is given to the implications of the deviations for higher-order statistics of small-scale turbulence. It was established by Edwards (1964) that the relation between the exponent of the inertial range energy spectrum and that of the Gaussian force correlation spectrum is independent of the perturbation expansion. It is presently shown that this relationship holds even for higher-order correlation functions.

  1. Profile Evolution and Energy Dissipation for Internal Soliton Transmitting over Different Submarine Ridges

    Institute of Scientific and Technical Information of China (English)

    Chen-Yuan CHEN; I-Fan TSENG; Hsien-Chueh Peter YANG; Cheng-Wu CHEN; Tsung-Hao CHEN

    2006-01-01

    Fundamental experiments were carried out in a wave flume on internal solitary wave (ISW) of depression-type propagating over a submerged ridge. The seabed ridge included either triangular or semicircular shape- regarded as topographic obstacles. Influenced by the submarine ridge, the transmitted waves were found to always consist of a leading pulse (a solitary wave) followed by a dispersive wave train. The wave profile propagating over a triangular ridge was similar to that caused by a semicircular obstacle. Apparently, the smooth face of a semicircular ridge produced time lag of wave propagation. From experimental results available, the reduction in wave energy induced by a semicircular ridge was larger than that by a triangular one. The events of wave distortion, strong breaking, internal bolus, and stratification mixing happened in case that the crest of an ISW was great enough to interact with the topographic obstacle. The reduction in wave energy strong breaking, and it depended on the ridge height rather than the geometric shape of the ridge.

  2. Energy dissipation and angular momentum transfer within a magnetically torqued accretion disc

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We discuss transportation and redistribution of energy and angular momentum in the magnetic connection(MC) process and Blandford-Payne(BP) process.MC results in readjusting the interior viscous torque,and its effects are operative not only in but also beyond the MC region.The BP process is invoked to transfer the "excessive" angular momentum from an accretion disc.In addition,we derive a criterion for the interior viscous torque to resolve the puzzle of the overall equilibrium of angular momentum in disc accretion.It turns out that the efficiency of BP at extracting angular momentum and the intensity of the outflow are required to be greater than some critical values.

  3. Damage Prediction of Projectile Penetration Process Based on Energy Dissipation Rate.

    Science.gov (United States)

    1985-08-01

    terms of at least a length parameter, say Z in Figure 1(a), that describes the degree of uniformity or homo - geneity of the stress or energy state...but those acting on the plane with the same . , dV/dA value as that in the uniaxial test. In view of equations (5) and (6), homo - geneity of the...i k C~~~~~a zL C -na-u 50 2 C CC 3 i c a s’ CUC~~~- LCI"i -~i. C u -- - C C2 C- C - u-c. a 5ULcta C Cuv -COI-a WEt 1 . EcC i-li ’ t o- C j 2 wC o4 icXl

  4. Energy Dissipation and Apparent Viscosity of Semi-solid Metal during Rheological Processes Part Ⅱ: Apparent Viscosity

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This study investigated the rheological properties of semi-solid metal. An analytical model of apparent viscosity was built up based on analysis of energy dissipation during rheological processes such as slurry preparing,delivering and model filling. The rheological properties of SSM (semi-solid metal) slurry was described by an analytical model in terms of microstructural parameters, which consist of effective solid fraction, particle size and shape, and flow parameters such as mean velocity, fluctuant velocity and relative velocity between liquid and solid phase. The model was verified in the experiment of A356 alloys with a coaxial double-bucket rheometer. And the maximum relative error between the theoretical value and measured one is less than 10%.The results of experiment and theoretical calculation also indicate that the microstructural parameters and flow parameters are two major factors that affect the apparent viscosity of semi-solid alloys, and fluctuant velocity and relative velocity between liquid and solid phase are the key factors to distinguish between steady and transient rheological properties.

  5. Cartilage surface characterization by frictional dissipated energy during axially loaded knee flexion--an in vitro sheep model.

    Science.gov (United States)

    Lorenz, Andrea; Rothstock, Stephan; Bobrowitsch, Evgenij; Beck, Alexander; Gruhler, Gerhard; Ipach, Ingmar; Leichtle, Ulf G; Wülker, Nikolaus; Walter, Christian

    2013-05-31

    Cartilage defects and osteoarthritis (OA) have an increasing incidence in the aging population. A wide range of treatment options are available. The introduction of each new treatment requires controlled, evidence based, histological and biomechanical studies to identify potential benefits. Especially for the biomechanical testing there is a lack of established methods which combine a physiologic testing environment of complete joints with the possibility of body-weight simulation. The current in-vitro study presents a new method for the measurement of friction properties of cartilage on cartilage in its individual joint environment including the synovial fluid. Seven sheep knee joints were cyclically flexed and extended under constant axial load with intact joint capsule using a 6° of freedom robotic system. During the cyclic motion, the flexion angle and the respective torque were recorded and the dissipated energy was calculated. Different mechanically induced cartilage defect sizes (16 mm², 50 mm², 200 mm²) were examined and compared to the intact situation at varying levels of the axial load. The introduced setup could significantly distinguish between most of the defect sizes for all load levels above 200 N. For these higher load levels, a high reproducibility was achieved (coefficient of variation between 4% and 17%). The proposed method simulates a natural environment for the analysis of cartilage on cartilage friction properties and is able to differentiate between different cartilage defect sizes. Therefore, it is considered as an innovative method for the testing of new treatment options for cartilage defects.

  6. Mechanical reinforcement of bioceramics scaffolds via fracture energy dissipation induced by sliding action of MoS2 nanoplatelets.

    Science.gov (United States)

    Shuai, Cijun; Sun, Hang; Gao, Chengde; Feng, Pei; Guo, Wang; Yang, Youwen; Zhao, Mingchun; Yang, Sheng; Yuan, Fulai; Peng, Shuping

    2017-07-20

    The inherent brittleness of bioceramics restricts their applications in load bearing implant, although they possess good biocompatibility and bioactivity. In this study, molybdenum disulfide nanoplatelets (MSNPs) were used to reinforce bioceramics (Mg2SiO4/CaSiO3) scaffolds fabricated by selective laser sintering (SLS). The fracture mode of scaffolds was transformed from transgranular to mixed trans- and intergranular. It could be explained that MSNPs could slide easily due to their weak interlayer van der Waals interactions and provide elastic deformation due to their high elastic modulus. Such sliding action and elastic deformation synergistically induced crack bridging, crack deflection, pull-out and break of MSNPs. Those effects effectively increased the fracture energy dissipation and strain capacity as well as changed the fracture mode, contributing to high fracture toughness and compression strength. Additionally, the scaffolds with MSNPs not only formed a bioactive apatite layer in simulated body fluid, but also supported cell adhesion and proliferation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Particle propagation, wave growth and energy dissipation in a flaring flux tube

    Science.gov (United States)

    White, S. M.; Melrose, D. B.; Dulk, G. A.

    1986-01-01

    Wave amplification by downgoing particles in a common flare model is investigated. The flare is assumed to occur at the top of a coronal magnetic flux loop, and results in the heating of plasma in the flaring region. The hot electrons propagate down the legs of the flux tube towards increasing magnetic field. It is simple to demonstrate that the velocity distributions which result in this model are unstable to both beam instabilities and cyclotron maser action. An explanation is presented for the propagation effects on the distribution, and the properties of the resulting amplified waves are explored, concentrating on cyclotron maser action, which has properties (emission in the z mode below the local gyrofrequency) quite different from maser action by other distributions considered in the context of solar flares. The z mode waves will be damped in the coronal plasma surrounding the flaring flux tube and lead to heating there. This process may be important in the overall energy budget of the flare. The downgoing maser is compared with the loss cone maser, which is more likely to produce observable bursts.

  8. Unified stability condition for particulate and aggregative fluidization-Exploring energy dissipation with direct numerical simulation

    Institute of Scientific and Technical Information of China (English)

    Min Wei; Limin Wang; Jinghai Li

    2013-01-01

    Fully resolved simulations of particulate and aggregative fluidization systems are performed successfully with the so-called combined lattice Boltzmann method and time-driven hard-sphere model (LBM-TDHS).In this method,the discrete particle phase is described by time-driven hard-sphere model,and the governing equations of the continuous fluid phase are solved with lattice Boltzmann method.Particle-fluid coupling is implemented by immersed moving boundary method.Time averaged flow structure of the simulated results show the formation of core-annulus structure and sigmoid distribution of voidage in the axial direction,which are typical phenomena in fluidization systems.Combining the results of the simulation,the energy consumption Nst for suspending and transporting solids is calculated from the direct numerical simulation (DNS) of fluidization,and the stability criterion Nst/NT =min proposed in EMMS/bubbling model is verified numerically.Furthermore the numerical results show that the value of Nst/NT in particulate fluidization is much higher than that in aggregative fluidization,but Nst/NT =min is effective for both particulate and aggregative fluidization.

  9. Israel-Stewart approach to viscous dissipative extended holographic Ricci dark energy dominated universe

    CERN Document Server

    Chattopadhyay, Surajit

    2016-01-01

    The present paper reports a study on viscous extended holographic Ricci dark energy (EHRDE) in flat FRW universe based on Israel-Stewart approach. Under the consideration that the universe is dominated by EHRDE the evolution equation for the bulk viscous pressure $\\Pi$ in the framework of the truncated Israel-Stewart theory has been taken as $\\tau \\dot{\\Pi}+\\Pi=-3\\xi H$, where $\\tau$ is the relaxation time and $\\xi$ is the bulk viscosity coefficient. Considering effective pressure as a sum of thermodynamic pressure of EHRDE and bulk viscous pressure we have observed that under the influence of bulk viscosity the EoS parameter $w_{DE}$ is behaving like phantom i.e. $w_{DE}\\leq -1$. It has been observed that the magnitude of the effective pressure $p_{eff}=p+\\Pi$ is a monotone decreasing function of time and due to the decreasing effect of bulk viscosity the effective pressure has been found decreasing with evolution of the universe. Finally it has been shown that the generalized second law of thermodynamics is...

  10. Israel-Stewart Approach to Viscous Dissipative Extended Holographic Ricci Dark Energy Dominated Universe

    Directory of Open Access Journals (Sweden)

    Surajit Chattopadhyay

    2016-01-01

    Full Text Available This paper reports a study on the truncated Israel-Stewart formalism for bulk viscosity using the extended holographic Ricci dark energy (EHRDE. Under the consideration that the universe is dominated by EHRDE, the evolution equation for the bulk viscous pressure Π in the framework of the truncated Israel-Stewart theory has been taken as τΠ˙+Π=-3ξH, where τ is the relaxation time and ξ is the bulk viscosity coefficient. Considering effective pressure as a sum of thermodynamic pressure of EHRDE and bulk viscous pressure, it has been observed that under the influence of bulk viscosity the EoS parameter wDE is behaving like phantom, that is, wDE≤-1. It has been observed that the magnitude of the effective pressure peff=p+Π is decaying with time. We also investigated the case for a specific choice of scale factor; namely, a(t=(t-t0β/(1-α. For this choice we have observed that a transition from quintessence to phantom is possible for the equation of state parameter. However, the ΛCDM phase is not attainable by the state-finder trajectories for this choice. Finally it has been observed that in both of the cases the generalized second law of thermodynamics is valid for the viscous EHRDE dominated universe enveloped by the apparent horizon.

  11. Practical lesson of Photosynthesis: A demonstration of Hill reaction in chloroplasts with energy dissipation by fluorescence upon photosystems uncoupling or inhibition by Diuron herbicide

    Directory of Open Access Journals (Sweden)

    Vadim Ravara Viviani

    2016-05-01

    Full Text Available During photosynthesis, the photochemical electron transfer process is easily demonstrated by the Hill reaction, where artificial electron acceptors are reduced by active chloroplasts suspensions in the presence of light.  However, the destiny of luminous energy absorbed by chlorophyll molecules in uncoupled or damaged photosystems is not usually demonstrated. Here we provide an adaptation of the classical Hill reaction using intact spinach chloroplasts, which includes the visualization of energy dissipation by fluorescence in lysed chloroplasts, and a dose/effect response in photosystems inhibited by the herbicide DCMU. This laboratory lesson, which is aimed to biochemistry and biophysics for undergraduate courses of Chemistry, Biological, Environmental and Agricultural Sciences, provides the basic photochemical principles using the classical Hill reaction, and photophysical principles through the visualization of energy dissipation by chlorophyll fluorescence,  improving the understanding of the photosynthetic process, and introducing the concept of fluorescence and its applications as bioanalytical tool to monitor photosynthesis in plants and vegetal ecosystems.

  12. Scalable Quantum Simulation of Molecular Energies

    CERN Document Server

    O'Malley, P J J; Kivlichan, I D; Romero, J; McClean, J R; Barends, R; Kelly, J; Roushan, P; Tranter, A; Ding, N; Campbell, B; Chen, Y; Chen, Z; Chiaro, B; Dunsworth, A; Fowler, A G; Jeffrey, E; Megrant, A; Mutus, J Y; Neill, C; Quintana, C; Sank, D; Vainsencher, A; Wenner, J; White, T C; Coveney, P V; Love, P J; Neven, H; Aspuru-Guzik, A; Martinis, J M

    2015-01-01

    We report the first electronic structure calculation performed on a quantum computer without exponentially costly precompilation. We use a programmable array of superconducting qubits to compute the energy surface of molecular hydrogen using two distinct quantum algorithms. First, we experimentally execute the unitary coupled cluster method using the variational quantum eigensolver. Our efficient implementation predicts the correct dissociation energy to within chemical accuracy of the numerically exact result. Next, we experimentally demonstrate the canonical quantum algorithm for chemistry, which consists of Trotterization and quantum phase estimation. We compare the experimental performance of these approaches to show clear evidence that the variational quantum eigensolver is robust to certain errors, inspiring hope that quantum simulation of classically intractable molecules may be viable in the near future.

  13. Energy Transfer and Dissipation in of Hydraulic Wind Turbines%液压型风力发电机组能量传递与耗散

    Institute of Scientific and Technical Information of China (English)

    艾超; 闫桂山; 孔祥东; 董彦武

    2015-01-01

    Taking a hydraulic wind turbine as the research object,the energy transfer and dissipa-tion were studied for energy conversion mechanism in hydraulic wind turbine.The entire unit was di-vided into several key sub-units.The energy transfer models were established,and the variation of energy transfer was analyzed.The energy dissipation was derived and analyzed based on energy trans-fer models,and mathematical models of energy dissipation were obtained.Using 30kVA hydraulic wind turbine simulation platform as the simulation and experimental foundation,simulation and ex-perimental researches of energy transfer and dissipation were carried out.The accuracy of theoretical analyses was verified.The results show that energy feature state is changed during operation,contai-ning a certain energy dissipation,and the overall efficiency is about 65.7%.%为分析液压型风力发电机机组能量转化机理,针对其能量传递与耗散问题展开了研究。将整个机组分解为若干个关键子单元,建立机组能量传递模型,分析机组能量传递变化规律;以能量传递模型为基础,对机组能量耗散进行推导分析,得到机组能量耗散数学模型。将30 kV·A液压型风力发电机组实验台作为仿真和实验基础,对机组能量传递与耗散进行仿真与实验研究,进而验证理论分析的准确性。研究结果表明:机组在工作过程中其能量特征状态发生改变,并存在一定的能耗,整机效率约为65.7%。

  14. The common extremalities in biology and physics maximum energy dissipation principle in chemistry, biology, physics and evolution

    CERN Document Server

    Moroz, Adam

    2011-01-01

    This book is the first unified systemic description of dissipative phenomena, taking place in biology, and non-dissipative (conservative) phenomena, which is more relevant to physics. Fully updated and revised, this new edition extends our understanding of nonlinear phenomena in biology and physics from the extreme / optimal perspective. The first book to provide understanding of physical phenomena from a biological perspective and biological phenomena from a physical perspectiveDiscusses emerging fields and analysisProvides examples

  15. Dissipative particle dynamics (DPD) simulations with fragment molecular orbital (FMO) based effective parameters for 1-Palmitoyl-2-oleoyl phosphatidyl choline (POPC) membrane

    Science.gov (United States)

    Doi, Hideo; Okuwaki, Koji; Mochizuki, Yuji; Ozawa, Taku; Yasuoka, Kenji

    2017-09-01

    In dissipative particle dynamics (DPD) simulations, it is necessary to use the so-called χ parameter set that express the effective interactions between particles. Recently, we have developed a new scheme to evaluate the χ parameters in a non-empirical way through a series of fragment molecular orbital (FMO) calculations. As a challenging test, we have performed the DPD simulations using the FMO-based χ parameters for a mixture of 1-Palmitoyl-2-oleoyl phosphatidyl choline (POPC) and water. The structures of both membrane and vesicle were formed successfully. The calculated structural parameters of membrane were in good agreement with experimental results.

  16. Comparison of Energy Dissipation, Stiffness, and Damage of Structural Oriented Strand Board (OSB, Conventional Gypsum, and Viscoelastic Gypsum Shearwalls Subjected to Cyclic Loads

    Directory of Open Access Journals (Sweden)

    Andrew S. Blasetti

    2012-06-01

    Full Text Available A key element in the seismic load resisting system of a wood framed structure is the shear wall which is typically sheathed on one side with plywood or oriented strand board (OSB and gypsum on the other. The shear capacity of gypsum sheathed shear walls is typically neglected in high seismic areas due to the susceptibility of conventional drywall screw connections to damage caused by earthquakes. The earthquake resistance of an innovative viscoelastic (VE gypsum shearwall is evaluated and compared to conventional structural and non-structural walls. Ten 8 ft × 8 ft wood framed wall specimens of three configurations [nailed-OSB, screw-gypsum, and VE polymer-gypsum] were subjected to a cyclic test protocol. The energy dissipation, stiffness, and damage characteristics of all shearwalls are reported herein. Testing results indicate the VE-gypsum walls can dissipate more energy than the OSB structural panels and 500% more energy that the conventional gypsum sheathed walls and contains a constant source of energy dissipation not seen in the structural and non-structural walls. The wall stiffness of the OSB wall degrades at a far greater rate that the VE gypsum wall and at continued cycling degrades below the VE wall stiffness. Unlike both of the conventional wall types, the VE wall showed no visible or audible signs of damage when subjected to shear displacements up to 1.

  17. Altered Right Ventricular Kinetic Energy Work Density and Viscous Energy Dissipation in Patients with Pulmonary Arterial Hypertension: A Pilot Study Using 4D Flow MRI.

    Directory of Open Access Journals (Sweden)

    Q Joyce Han

    Full Text Available Right ventricular (RV function has increasingly being recognized as an important predictor for morbidity and mortality in patients with pulmonary arterial hypertension (PAH. The increased RV after-load increase RV work in PAH. We used time-resolved 3D phase contrast MRI (4D flow MRI to derive RV kinetic energy (KE work density and energy loss in the pulmonary artery (PA to better characterize RV work in PAH patients.4D flow and standard cardiac cine images were obtained in ten functional class I/II patients with PAH and nine healthy subjects. For each individual, we calculated the RV KE work density and the amount of viscous dissipation in the PA.PAH patients had alterations in flow patterns in both the RV and the PA compared to healthy subjects. PAH subjects had significantly higher RV KE work density than healthy subjects (94.7±33.7 mJ/mL vs. 61.7±14.8 mJ/mL, p = 0.007 as well as a much greater percent PA energy loss (21.1±6.4% vs. 2.2±1.3%, p = 0.0001 throughout the cardiac cycle. RV KE work density and percent PA energy loss had mild and moderate correlations with RV ejection fraction.This study has quantified two kinetic energy metrics to assess RV function using 4D flow. RV KE work density and PA viscous energy loss not only distinguished healthy subjects from patients, but also provided distinction amongst PAH patients. These metrics hold promise as imaging markers for RV function.

  18. Mechanical energy dissipation induced by sloshing and wave breaking in a fully coupled angular motion system. Part I: Theoretical formulation and Numerical Investigation

    CERN Document Server

    Bouscasse, Benjamin; Souto-Iglesias, Antonio; Pita, José Luis Cercós

    2013-01-01

    A single degree of freedom angular motion dynamical system involving the coupling of a moving mass that creates an external torque, a rigid tank, driven by this torque, and fluid which partially fills the tank, is analyzed in the present paper series. The analysis of such a system is relevant for understanding the energy dissipation mechanisms resulting from fluid sloshing and wave breaking. Understanding such mechanisms poses open problems in the fluid mechanics field, and they are relevant for the design of a wide range of Tuned Liquid Damper devices of substantial industrial applicability. In Part I the dynamical system is described in detail to show its nonlinear features both in terms of mechanical and fluid dynamical aspects. A semi-analytical model of the energy dissipated by the fluid, based on a hydraulic jump solution and valid for small oscillation angles, is developed. In order to extend the analysis to large oscillation angles, a Smoothed Particle Hydrodynamics solver is also developed, adapting ...

  19. Response Surface Methodology Control Rod Position Optimization of a Pressurized Water Reactor Core Considering Both High Safety and Low Energy Dissipation

    Directory of Open Access Journals (Sweden)

    Yi-Ning Zhang

    2017-02-01

    Full Text Available Response Surface Methodology (RSM is introduced to optimize the control rod positions in a pressurized water reactor (PWR core. The widely used 3D-IAEA benchmark problem is selected as the typical PWR core and the neutron flux field is solved. Besides, some additional thermal parameters are assumed to obtain the temperature distribution. Then the total and local entropy production is calculated to evaluate the energy dissipation. Using RSM, three directions of optimization are taken, which aim to determine the minimum of power peak factor Pmax, peak temperature Tmax and total entropy production Stot. These parameters reflect the safety and energy dissipation in the core. Finally, an optimization scheme was obtained, which reduced Pmax, Tmax and Stot by 23%, 8.7% and 16%, respectively. The optimization results are satisfactory.

  20. Dissipative structures and chaos

    CERN Document Server

    Mori, Hazime

    1998-01-01

    This monograph consists of two parts and gives an approach to the physics of open nonequilibrium systems. Part I derives the phenomena of dissipative structures on the basis of reduced evolution equations and includes Bénard convection and Belousov-Zhabotinskii chemical reactions. Part II discusses the physics and structures of chaos. While presenting a construction of the statistical physics of chaos, the authors unify the geometrical and statistical descriptions of dynamical systems. The shape of chaotic attractors is characterized, as are the mixing and diffusion of chaotic orbits and the fluctuation of energy dissipation exhibited by chaotic systems.

  1. Numerical simulation of mechanisms of deformation,failure and energy dissipation in porous rock media subjected to wave stresses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The pore characteristics,mineral compositions,physical and mechanical properties of the subarkose sandstones were acquired by means of CT scan,X-ray diffraction and physical tests.A few physical models possessing the same pore characteristics and matrix properties but different porosities compared to the natural sandstones were developed.The 3D finite element models of the rock media with varied porosities were established based on the CT image processing of the physical models and the MIMICS software platform.The failure processes of the porous rock media loaded by the split Hopkinson pressure bar(SHPB) were simulated by satisfying the elastic wave propagation theory.The dynamic responses,stress transition,deformation and failure mechanisms of the porous rock media subjected to the wave stresses were analyzed.It is shown that an explicit and quantitative analysis of the stress,strain and deformation and failure mechanisms of porous rocks under the wave stresses can be achieved by using the developed 3D finite element models.With applied wave stresses of certain amplitude and velocity,no evident pore deformation was observed for the rock media with a porosity less than 15%.The deformation is dominantly the combination of microplasticity(shear strain),cracking(tensile strain) of matrix and coalescence of the cracked regions around pores.Shear stresses lead to microplasticity,while tensile stresses result in cracking of the matrix.Cracking and coalescence of the matrix elements in the neighborhood of pores resulted from the high transverse tensile stress or tensile strain which exceeded the threshold values.The simulation results of stress wave propagation,deformation and failure mechanisms and energy dissipation in porous rock media were in good agreement with the physical tests.The present study provides a reference for analyzing the intrinsic mechanisms of the complex dynamic response,stress transit mode,deformation and failure mechanisms and the disaster

  2. The Energy Dissipation Rate Per Unit Mass of Jet Pump Mixture%射流泵混合的单位质量能量耗散率

    Institute of Scientific and Technical Information of China (English)

    李廷浩; 陆宏圻

    2000-01-01

    The formula of jet pump energy dissipation rate per unit mass is derived in this paper related to jet pump axis dimension with energy dissipation rote. Thereby replenishes the lack of basic capability equation only referred to section dimension. By comparing and analyzing the formula of jet pump energy dissipation rate per unit mass with beater and static, it comes to the conclusion that jet pump has great capability of liquid-liquid mixing. Although the efficiency of jet pump is lower, but it can get high intensity when it used for mixing%推导出射流泵单位质量能量耗散率公式,涉及到射流泵轴向尺寸与能耗率,弥补了基本性能方程只涉及截面尺寸的不足。将射流泵的单位质量能量耗散率公式与搅拌器和静态混合器比较,进而分析得出射流泵有较强液一液混合性能的本质。虽然射流泵效率低,但将其用作混合时却强度高。

  3. A Research on the Energy Dissipation of Underwater Explosion%水下爆炸能量耗散特性分析研究

    Institute of Scientific and Technical Information of China (English)

    安丰江; 吴成; 王宁飞

    2011-01-01

    The energy dissipation and entropy at the shock wave front of underwater explosion are theoretically analyzed. First, the propagation of underwater shock wave in space is obtained by using the characteristics of shock wave velocity trajectory. Then the theoretical model of the entropy and energy dissipation during the propagation of underwater shock wave is established. For the explosives of TNT and RS211, the analysis of the entropy and energy dissipation in the near field of underwater explosion was carried out with presented theoretical model. The research results predict in theory that the entropy and energy dissipation occurs mainly in near field of the interface of water and explosive charge about 10 times of explosive charge radius. For the explosives of TNT and RS211, the value of total energy dissipation is about 34%and 32% of the total energy released from the explosives at the 20 times of explosive charge radii, respectively. Above conclusion is basically corresponding with the underwater explosion experimental results.%基于特征线理论得到了水中冲击波的近似传播规律,提出了炸药水下爆炸冲击波传播过程中的熵变及能量耗散特性的近似评估方法.使用该评估方法,对TNT和RS211两种炸药水下爆炸近场冲击波传播过程中的能量耗散进行了计算.研究表明,水下爆炸近场的冲击波超压峰值迅速衰减,熵增与能量损失主要发生在水下爆炸近场的10倍装药半径范围内.对于TNT和RS211两种炸药,20倍装药半径处水中冲击波的能量耗散分别约为水下爆炸总能量的34%和32%,与水下爆炸试验结果基本一致.

  4. The Vertical-current Approximation Nonlinear Force-free Field Code—Description, Performance Tests, and Measurements of Magnetic Energies Dissipated in Solar Flares

    Science.gov (United States)

    Aschwanden, Markus J.

    2016-06-01

    In this work we provide an updated description of the Vertical-Current Approximation Nonlinear Force-Free Field (VCA-NLFFF) code, which is designed to measure the evolution of the potential, non-potential, free energies, and the dissipated magnetic energies during solar flares. This code provides a complementary and alternative method to existing traditional NLFFF codes. The chief advantages of the VCA-NLFFF code over traditional NLFFF codes are the circumvention of the unrealistic assumption of a force-free photosphere in the magnetic field extrapolation method, the capability to minimize the misalignment angles between observed coronal loops (or chromospheric fibril structures) and theoretical model field lines, as well as computational speed. In performance tests of the VCA-NLFFF code, by comparing with the NLFFF code of Wiegelmann, we find agreement in the potential, non-potential, and free energy within a factor of ≲ 1.3, but the Wiegelmann code yields in the average a factor of 2 lower flare energies. The VCA-NLFFF code is found to detect decreases in flare energies in most X, M, and C-class flares. The successful detection of energy decreases during a variety of flares with the VCA-NLFFF code indicates that current-driven twisting and untwisting of the magnetic field is an adequate model to quantify the storage of magnetic energies in active regions and their dissipation during flares. The VCA-NLFFF code is also publicly available in the Solar SoftWare.

  5. Induction of efficient energy dissipation in the isolated light-harvesting complex of Photosystem II in the absence of protein aggregation.

    Science.gov (United States)

    Ilioaia, Cristian; Johnson, Matthew P; Horton, Peter; Ruban, Alexander V

    2008-10-24

    Under excess illumination, the Photosystem II light-harvesting antenna of higher plants has the ability to switch into an efficient photoprotective mode, allowing safe dissipation of excitation energy into heat. In this study, we show induction of the energy dissipation state, monitored by chlorophyll fluorescence quenching, in the isolated major light-harvesting complex (LHCII) incorporated into a solid gel system. Removal of detergent caused strong fluorescence quenching, which was totally reversible. Singlet-singlet annihilation and gel electrophoresis experiments suggested that the quenched complexes were in the trimeric not aggregated state. Both the formation and recovery of this quenching state were inhibited by a cross-linker, implying involvement of conformational changes. Absorption and CD measurements performed on the samples in the quenched state revealed specific alterations in the spectral bands assigned to the red forms of chlorophyll a, neoxanthin, and lutein 1 molecules. The majority of these alterations were similar to those observed during LHCII aggregation. This suggests that not the aggregation process as such but rather an intrinsic conformational transition in the complex is responsible for establishment of quenching. 77 K fluorescence measurements showed red-shifted chlorophyll a fluorescence in the 690-705 nm region, previously observed in aggregated LHCII. The fact that all spectral changes associated with the dissipative mode observed in the gel were different from those of the partially denatured complex strongly argues against the involvement of protein denaturation in the observed quenching. The implications of these findings for proposed mechanisms of energy dissipation in the Photosystem II antenna are discussed.

  6. Variation in energy stored and dissipated in type-II superconductor in applied ac magnetic field with relative phase of two sinusoidal components of the field

    Science.gov (United States)

    Janů, Zdeněk; Chagovets, Tymofiy

    2017-01-01

    We show that both the energy stored and dissipated by a system with hysteretic nonlinearity in an applied field varies with the relative phase of the sinusoidal components of the field, even if the magnitude of these components, and thus an effective value of the field, are kept constant. The explored system is a type-II superconductor in the critical state subjected to a time varying applied magnetic field. Complete analytical expressions for hysteresis loops, determined from basic physical phenomena, are known for this system. A theoretically predicted variation in the energy is in good agreement with our experimental measurements.

  7. Optimizing the microstructure of dissipative materials

    DEFF Research Database (Denmark)

    Andreassen, Erik; Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard

    The aim of this work is to present a method to design material microstructures with high dissipation using topology optimization. In order to compute the macroscopic energy dissipation in periodic structures, we focus both on capturing the physical dissipation mechanism and to find the effective...

  8. boundary dissipation

    Directory of Open Access Journals (Sweden)

    Mehmet Camurdan

    1998-01-01

    are coupled by appropriate trace operators. This overall model differs from those previously studied in the literature in that the elastic chamber floor is here more realistically modeled by a hyperbolic Kirchoff equation, rather than by a parabolic Euler-Bernoulli equation with Kelvin-Voight structural damping, as in past literature. Thus, the hyperbolic/parabolic coupled system of past literature is replaced here by a hyperbolic/hyperbolic coupled model. The main result of this paper is a uniform stabilization of the coupled PDE system by a (physically appealing boundary dissipation.

  9. The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 2: single-crystal plasticity

    Science.gov (United States)

    Reddy, B. D.

    2011-11-01

    Variational formulations are constructed for rate-independent problems in small-deformation single-crystal strain-gradient plasticity. The framework, based on that of Gurtin (J Mech Phys Solids 50: 5-32, 2002), makes use of the flow rule expressed in terms of the dissipation function. Provision is made for energetic and dissipative microstresses. Both recoverable and non-recoverable defect energies are incorporated into the variational framework. The recoverable energies include those that depend smoothly on the slip gradients, the Burgers tensor, or on the dislocation densities (Gurtin et al. J Mech Phys Solids 55:1853-1878, 2007), as well as an energy proposed by Ohno and Okumura (J Mech Phys Solids 55:1879-1898, 2007), which leads to excellent agreement with experimental results, and which is positively homogeneous and therefore not differentiable at zero slip gradient. Furthermore, the variational formulation accommodates a non-recoverable energy due to Ohno et al. (Int J Mod Phys B 22:5937-5942, 2008), which is also positively homogeneous, and a function of the accumulated dislocation density. Conditions for the existence and uniqueness of solutions are established for the various examples of defect energy, with or without the presence of hardening or slip resistance.

  10. Seasonal response of photosynthetic electron transport and energy dissipation in the eighth year of exposure to elevated atmospheric CO{sub 2} (FACE) in Pinus taeda (loblolly pine)

    Energy Technology Data Exchange (ETDEWEB)

    Logan, B.A.; Combs, A.; Kent, R.; Stanley, L. [Bowdoin College, Brunswick, ME (United States). Dept. of Biology; Myers, K. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Biological Sciences; Tissue, D.T. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Biological Sciences; Western Sydney Univ., Richmond, NSW (Australia). Centre for Plant and Food Science

    2009-06-15

    This study investigated the biological adaptation of loblolly pine following long-term seasonal exposure to elevated carbon dioxide (CO{sub 2}) partial pressures (pCO{sub 2}). Exposure to elevated atmospheric CO{sub 2} (pCO{sub 2}) usually results in significant stimulation in light-saturated rates of photosynthetic CO{sub 2} assimilation. Plants are protected against photoinhibition by biochemical processes known as photoprotection, including energy dissipation, which converts excess absorbed light energy into heat. This study was conducted in the eighth year of exposure to elevated pCO{sub 2} at the Duke FACE site. The effect of elevated pCO{sub 2} on electron transport and energy dissipation in the pine trees was examined by coupling the analyses of the capacity for photosynthetic oxygen (O{sub 2}) evolution, chlorophyll fluorescence emission and photosynthetic pigment composition with measurements of net photosynthetic CO{sub 2} assimilation (Asat). During the summer growing season, Asat was 50 per cent higher in current-year needles and 24 per cent higher in year-old needles in elevated pCO{sub 2} in comparison with needles of the same age cohort in ambient pCO{sub 2}. Thus, older needles exhibited greater photosynthetic down-regulation than younger needles in elevated pCO{sub 2}. In the winter, Asat was not significantly affected by growth pCO{sub 2}. Asat was lower in winter than in summer. Growth at elevated pCO{sub 2} had no significant effect on the capacity for photosynthetic oxygen evolution, photosystem 2 efficiencies, chlorophyll content or the size and conversion state of the xanthophyll cycle, regardless of season or needle age. There was no evidence that photosynthetic electron transport or photoprotective energy dissipation responded to compensate for the effects of elevated pCO{sub 2} on Calvin cycle activity. 73 refs., 4 figs.

  11. Shoreline dissipation of infragravity waves

    Science.gov (United States)

    de Bakker, A. T. M.; Tissier, M. F. S.; Ruessink, B. G.

    2014-01-01

    Infragravity waves (0.005-0.05 Hz) have recently been observed to dissipate a large part of their energy in the short-wave (0.05-1 Hz) surf zone, however, the underlying mechanism is not well understood. Here, we analyse two new field data sets of near-bed pressure and velocity at up to 13 cross-shore locations in ≲2.5 m depth on a ≈1:80 and a ≈1:30 sloping beach to quantify infragravity-wave dissipation close to the shoreline and to identify the underlying dissipation mechanism. A frequency-domain Complex Eigenfunction analysis demonstrated that infragravity-wave dissipation was frequency dependent. Infragravity waves with a frequency larger than ≈0.0167-0.0245 Hz were predominantly onshore progressive, indicative of strong dissipation of the incoming infragravity waves. Instead, waves with a lower frequency showed the classic picture of cross-shore standing waves with minimal dissipation. Bulk infragravity reflection coefficients at the shallowest position (water depth ≈0.7 m) were well below 1 (≈0.20), implying that considerable dissipation took place close to the shoreline. We hypothesise that for our data sets infragravity-wave breaking is the dominant dissipation mechanism close to the shoreline, because the reflection coefficient depends on a normalised bed slope, with the higher infragravity frequencies in the mild-sloping regime where breaking is known to dominate dissipation. Additional numerical modelling indicates that, close to the shoreline of a 1:80 beach, bottom friction contributes to infragravity-wave dissipation to a limited extent, but that non-linear transfer of infragravity energy back to sea-swell frequencies is unimportant.

  12. Mechanisms of reaction and energy dissipation in the nucleus-nucleus symmetric collisions at 25 to 74 MeV/u: contribution of exclusive measurements of the INDRA multidetector; Mecanismes de reaction et de dissipation de l`energie dans les collisions symetriques noyau-noyau de 25 a 74 MeV/u: apport des mesures exclusives du multidetecteur INDRA

    Energy Technology Data Exchange (ETDEWEB)

    Metivier, V. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire

    1995-04-01

    This work is about the first experimental results obtained with the INDRA multidetector. First, the characterization of reaction mechanisms is performed. For complete events, global description of the collision is performed and compared with theoretical calculations. Dissipative binary mechanisms represent the largest part of the cross section for violent collisions whatever the bombarding energy (from 25 to 74 MeV/u) for the studied systems (Ar + KCl and Xe + Sn). The two outgoing products decay takes place through light charged particle and fragment emission. The reconstruction of the two primary sources is achieved, allowing thus the study of the evolution of the energy dissipation. Excitation energies exceeding 10 MeV/u are reached. The decay of the primary outgoing partners can be understood in a statistical model approach and the role of collective modes like expansion energy seems to be negligible. The study of the angular distributions points out angular momentum effects, `proximity effect` and a dynamical ternary process corresponding to the emission of a light fragment in between the two heavier products. For the most violent collisions, events can also be interpreted in terms of the multifragmentation of a single source, at least for the Xe + Sn system at 50 MeV/u (80 m barn). For the lower incident energies, fusion residues associated to the largest dissipations are recognized, but the cross sections is small (35 m barn for the Ar + KCl system at 32 MeV/u). (author) 91 refs.

  13. Molecular Dynamics Studies of Energy Transfer Processes in Crystal Systems.

    Science.gov (United States)

    1984-11-30

    Computer molecular dynamics studies have been carried out on the problem of attaining a fundamental understanding of shock-induced initiation of...intramolecular energy exchange in shock-loaded systems are presented. Originator-supplied keywords include: Molecular dynamics , Energy transfer, Shock front, Shock wave, Explosives, Shock structure.

  14. Coexistence of two dissipative mechanisms in two-dimensional turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Romain Nguyen van [FB Mathematik und Informatik, Freie Universitaet, Berlin (Germany); Farge, Marie [LMD-CNRS-IPSL, ENS Paris (France); Schneider, Kai, E-mail: rnguyen@zedat.fu-berlin.de [M2P2-CNRS, Universite d' Aix-Marseille (France)

    2011-12-22

    Two distinct dissipative mechanisms occurring in two-dimensional fully developed turbulent flows in the limit of vanishing viscosity have been highlighted by means of direct numerical simulation. First, molecular energy dissipation is triggered by the production of localized vortices at the walls. Second, instabilities intrinsic to the flow itself generate a noisy component which can be quantified by wavelet analysis. The possibilities of competition and coexistence of the two mechanisms are discussed.

  15. 减震结构非线性时程分析的研究%Research on energy dissipation-seismic reduction structure with nonlinear time history analysis

    Institute of Scientific and Technical Information of China (English)

    黎超敏; 崔荣乐

    2013-01-01

    This paper researched on energy dissipation - seismic reduction structure (with nonlinear viscous liquid damper) with the nonlinear time history analysis. Authors mainly discussed the research background, current research at home and aboard, the relevant provisions of the current regulation and standards, several problems and difficulties of the theory and its practical applications, social significance and economic benefits of the energy dissipation - seismic reduction. And take a brief introduction to the nonlinear time history analysis. At last, authors made an example of engineering to make a contrast between the original structure and the energy dissipation - seismic reduction focusing mainly on the axial force of the column, top displacement, displacement angle between layers, and get some useful conclusion which can be used in the practical engineering.%本文对减震结构(附设阻尼器的消能减震结构)进行了非线性时程分析的研究.探讨了减震结构的研究背景、国内外的研究现状、现行规范对减震结构的相关规定、减震结构在理论、实际应用上的问题和难点、减震结构的社会意义和经济效益以及对非线性时程分析进行了简要介绍.最后通过一个工程案例,对减震结构和无控结构进行了比较(柱轴力、顶点位移、层间位移角),得出了一些可以用于工程实际的结论.

  16. Dissipation, energy transfer, and spin-down luminosity in 2.5D PIC simulations of the pulsar magnetosphere

    Science.gov (United States)

    Belyaev, Mikhail A.

    2015-05-01

    We perform 2.5D axisymmetric simulations of the pulsar magnetosphere (aligned dipole rotator) using the charge conservative, relativistic, electromagnetic particle in cell code PICSAR. Particle in cell codes are a powerful tool to use for studying the pulsar magnetosphere, because they can handle the force-free and vacuum limits and provide a self-consistent treatment of magnetic reconnection. In the limit of dense plasma throughout the magnetosphere, our solutions are everywhere in the force-free regime except for dissipative regions at the polar caps, in the current layers, and at the Y-point. These dissipative regions arise self-consistently, since we do not have any explicit dissipation in the code. A minimum of ≈15-20 per cent of the electromagnetic spin-down luminosity is transferred to the particles inside 5 light cylinder radii. However, the particles can carry as much as ≳ 50 per cent of the spin-down luminosity if there is insufficient plasma in the outer magnetosphere to screen the component of electric field parallel to the magnetic field. In reality, the component of the spin-down luminosity carried by the particles could be radiated as gamma-rays, but high-frequency synchrotron emission would need to be implemented as a sub-grid process in our simulations and is not present for the current suite of runs. The value of the spin-down luminosity in our simulations is within ≈10 per cent of the force-free value, and the structure of the electromagnetic fields in the magnetosphere is on the whole consistent with the force-free model.

  17. Curvature-induced dissipation

    CERN Document Server

    Debus, J -D; Succi, S; Herrmann, H J

    2015-01-01

    By inspecting the effect of curvature on a moving fluid, we find that local sources of curvature not only exert inertial forces on the flow, but also generate viscous stresses as a result of the departure of streamlines from the idealized geodesic motion. The curvature-induced viscous forces are shown to cause an indirect and yet appreciable energy dissipation. As a consequence, the flow converges to a stationary equilibrium state solely by virtue of curvature-induced dissipation. In addition, we show that flow through randomly-curved media satisfies a non-linear transport law, resembling Darcy-Forchheimer's law, due to the viscous forces generated by the spatial curvature. It is further shown that the permeability can be characterized in terms of the average metric perturbation.

  18. Resonance Energy Transfer Molecular Imaging Application in Biomedicine

    Directory of Open Access Journals (Sweden)

    NIE Da-hong1,2;TANG Gang-hua1,3

    2016-11-01

    Full Text Available Resonance energy transfer molecular imaging (RETI can markedly improve signal intensity and tissue penetrating capacity of optical imaging, and have huge potential application in the deep-tissue optical imaging in vivo. Resonance energy transfer (RET is an energy transition from the donor to an acceptor that is in close proximity, including non-radiative resonance energy transfer and radiative resonance energy transfer. RETI is an optical imaging technology that is based on RET. RETI mainly contains fluorescence resonance energy transfer imaging (FRETI, bioluminescence resonance energy transfer imaging (BRETI, chemiluminescence resonance energy transfer imaging (CRETI, and radiative resonance energy transfer imaging (RRETI. RETI is the hot field of molecular imaging research and has been widely used in the fields of biology and medicine. This review mainly focuses on RETI principle and application in biomedicine.

  19. Molecular Dynamics of Materials Possessing High Energy Content.

    Science.gov (United States)

    1988-01-26

    I -RI90 634 MOLECULAR DYNAMICS OF MATERIALS POSSESSING HIGH ENERGY 1/1 r CONTENTCU) COLUMBIA UNIV MENd YORK N J TURRO 26 JAN GO I RFOSR-TR-88-0168...Bolling Air Force Base, D.C. 2 61102F_ 2303 I B2 11 T,TL.E (Inciuoe Security Classification) Molecular Dynamics of Materials Possessing High Energy...York 10027 (212) 280-2175 TITLE: MOLECULAR DYNAMICS OF MATERIALS POSSESSING HIGH ENERGY CONTENT .. 0 0 88 2 ... "" ’% ,i u , . .. .. ....... ŝ" ;! ,i

  20. Indentation hardness: A simple test that correlates with the dissipated-energy predictor for fatigue-life in bovine pericardium membranes for bioprosthetic heart valves.

    Science.gov (United States)

    Tobaruela, Almudena; Rojo, Francisco Javier; García Paez, José María; Bourges, Jean Yves; Herrero, Eduardo Jorge; Millán, Isabel; Alvarez, Lourdes; Cordon, Ángeles; Guinea, Gustavo V

    2016-08-01

    The aim of this study was to evaluate the variation of hardness with fatigue in calf pericardium, a biomaterial commonly used in bioprosthetic heart valves, and its relationship with the energy dissipated during the first fatigue cycle that has been shown to be a predictor of fatigue-life (García Páez et al., 2006, 2007; Rojo et al., 2010). Fatigue tests were performed in vitro on 24 pericardium specimens cut in a root-to-apex direction. The specimens were subjected to a maximum stress of 1MPa in blocks of 10, 25, 50, 100, 250, 500, 1000 and 1500 cycles. By means of a modified Shore A hardness test procedure, the hardness of the specimen was measured before and after fatigue tests. Results showed a significant correlation of such hardness with fatigue performance and with the energy dissipated in the first cycle of fatigue, a predictor of pericardium durability. The study showed indentation hardness as a simple and reliable indicator of mechanical performance, one which could be easily implemented in improving tissue selection.

  1. Normal mode analysis of the spectral density of the Fenna-Matthews-Olson light-harvesting protein: how the protein dissipates the excess energy of excitons.

    Science.gov (United States)

    Renger, Thomas; Klinger, Alexander; Steinecker, Florian; Schmidt am Busch, Marcel; Numata, Jorge; Müh, Frank

    2012-12-20

    We report a method for the structure-based calculation of the spectral density of the pigment-protein coupling in light-harvesting complexes that combines normal-mode analysis with the charge density coupling (CDC) and transition charge from electrostatic potential (TrEsp) methods for the computation of site energies and excitonic couplings, respectively. The method is applied to the Fenna-Matthews-Olson (FMO) protein in order to investigate the influence of the different parts of the spectral density as well as correlations among these contributions on the energy transfer dynamics and on the temperature-dependent decay of coherences. The fluctuations and correlations in excitonic couplings as well as the correlations between coupling and site energy fluctuations are found to be 1 order of magnitude smaller in amplitude than the site energy fluctuations. Despite considerable amplitudes of that part of the spectral density which contains correlations in site energy fluctuations, the effect of these correlations on the exciton population dynamics and dephasing of coherences is negligible. The inhomogeneous charge distribution of the protein, which causes variations in local pigment-protein coupling constants of the normal modes, is responsible for this effect. It is seen thereby that the same building principle that is used by nature to create an excitation energy funnel in the FMO protein also allows for efficient dissipation of the excitons' excess energy.

  2. Dissipation and Heating in Supersonic Hydrodynamic and MHD Turbulence

    CERN Document Server

    Lemaster, M Nicole

    2008-01-01

    We study energy dissipation and heating by supersonic MHD turbulence in molecular clouds using Athena, a new higher-order Godunov code. We analyze the dependence of the saturation amplitude, energy dissipation characteristics, power spectra, sonic scaling, and indicators of intermittency in the turbulence on factors such as the magnetic field strength, driving scale, energy injection rate, and numerical resolution. While convergence in the energies is reached at moderate resolutions, we find that the power spectra require much higher resolutions that are difficult to obtain. In a 1024^3 hydro run, we find a power law relationship between the velocity dispersion and the spatial scale on which it is measured, while for an MHD run at the same resolution we find no such power law. The time-variability and temperature intermittency in the turbulence both show a dependence on the driving scale, indicating that numerically driving turbulence by an arbitrary mechanism may not allow a realistic representation of these...

  3. Localization of energy on the molecular scale

    Energy Technology Data Exchange (ETDEWEB)

    Lindenberg, K.; Brown, D.W. [Univ. of California, San Diego, CA (United States)

    1997-12-31

    We discuss the spontaneous localization of vibrational energy in translationally invariant anharmonic chains at finite temperatures. In addition to the familiar energy-driven coherent mechanisms, which are rapidly degraded by thermal fluctuations, we identify the entropy-driven phenomenon we call {open_quotes}stochastic localization{close_quotes}, within which we include a number of characteristics of soft anharmonic oscillators in thermal equilibrium. Principal among these are a tendency for soft oscillators to spend more time at higher energies than comparable harmonic oscillators, and for high-energy fluctuations in soft oscillators to persist for longer times than lower-energy fluctuations, leading to a tendency for energy fluctuations to be organized into {open_quotes}bursts{close_quotes} separated by intervals of relative quiet. We illustrate the effects of stochastic localization on a bistable impurity embedded in a chain of soft oscillators by comparing it to an impurity embedded in a harmonic chain. Effects on transition rates at a given system energy can be quite dramatic.

  4. Distribution of Vibrational Energy Levels of Protein Molecular Chains

    Institute of Scientific and Technical Information of China (English)

    PANG Xiao-Feng; CHEN Xiang-Rong

    2001-01-01

    The distributions of the quantum vibrational energy levels of the protein molecular chain are found by the discretely nonlinear Schrodinger equation appropriate to protein obtained from the Davydov theory. The results calculated by this method are basically consistent with the experimental values. Furthermore, the energy spectra at high excited states have also been obtained for the molecular chain which is helpful in researching the properties of infrared absorption and Raman scattering of the protein molecules.

  5. 岩石试件SHPB劈裂拉伸试验中能量耗散分析%Energy dissipation analysis of stone specimens in SHPB tensile test

    Institute of Scientific and Technical Information of China (English)

    平琦; 马芹永; 袁璞

    2013-01-01

      利用直径50 mm变截面分离式Hopkinson压杆(SHPB)试验装置,对厚径比0.5的煤矿砂岩巴西圆盘试件进行对径加载,采取改变驱动气压的方法实施不同加载速率的动态劈裂拉伸试验。研究了砂岩试件动态劈裂拉伸破坏过程中的能量构成和耗散特征;尝试从能量角度出发,对砂岩试件动态劈裂拉伸破坏形态、平均应变率效应和动态拉伸应力强度进行能耗分析;发现试件吸收能量绝大部分耗散于岩石的损伤演化和变形破坏,可以较好地反映砂岩试件在冲击载荷作用下的抗拉性能变化。结果表明:砂岩试件拉伸应力强度与吸收能量随平均应变率增加近似对数关系增加,表现出显著的应变率相关性。研究成果可为岩石类脆性材料动态拉伸力学性能研究提供参考。%Variable cross-section split Hopkinson pressure bar (SHPB) with a diameter of 50 mm is adopted to implement radial loading to the mine sandstone Brazilian disc, which has a thick-ness-diameter ratio of 0.5. Dynamic tensile tests at various loading rates are obtained by altering impact loading pressures. Through investigating energy composition and dissipation characteristics of sand-stone specimens during the dynamic tensile failure process, this paper tries to analyze the failure forms, average strain rate effect and dynamic tensile strength from energy dissipation perspective. It is found that energy absorbed by specimen mostly dissipates in the damage evolution and deformation failure process, which corresponds well to the tensile performance of sandstone under dynamic loads. The re-sults showed that tensile strength and absorbed energy increase logarithmically with the average strain rate, a remarkable strain rate correlation. The results can provide some reference for dynamic tensile performance research of rocklike brittle materials.

  6. Quantum dissipative Higgs model

    Energy Technology Data Exchange (ETDEWEB)

    Amooghorban, Ehsan, E-mail: Ehsan.amooghorban@sci.sku.ac.ir; Mahdifar, Ali, E-mail: mahdifar_a@sci.sku.ac.ir

    2015-09-15

    By using a continuum of oscillators as a reservoir, we present a classical and a quantum-mechanical treatment for the Higgs model in the presence of dissipation. In this base, a fully canonical approach is used to quantize the damped particle on a spherical surface under the action of a conservative central force, the conjugate momentum is defined and the Hamiltonian is derived. The equations of motion for the canonical variables and in turn the Langevin equation are obtained. It is shown that the dynamics of the dissipative Higgs model is not only determined by a projected susceptibility tensor that obeys the Kramers–Kronig relations and a noise operator but also the curvature of the spherical space. Due to the gnomonic projection from the spherical space to the tangent plane, the projected susceptibility displays anisotropic character in the tangent plane. To illuminate the effect of dissipation on the Higgs model, the transition rate between energy levels of the particle on the sphere is calculated. It is seen that appreciable probabilities for transition are possible only if the transition and reservoir’s oscillators frequencies to be nearly on resonance.

  7. Surface Immobilization of Molecular Electrocatalysts for Energy Conversions.

    Science.gov (United States)

    Bullock, Morris; Das, Atanu K; Appel, Aaron M

    2017-02-08

    Electrocatalysts are critically important for a secure energy future, as they facilitate the conversion between electrical and chemical energy. Molecular catalysts offer precise control of structure that enables understanding of structure-reactivity relationships, which can be difficult to achieve with heterogeneous catalysts. Molecular electrocatalysts can be immobilized on surfaces by covalent bonds or through non-covalent interactions. Advantages of surface immobilization include the need for less catalyst, avoidance of bimolecular decomposition pathways, and easier determination of catalyst lifetime. This mini-review highlights surface immobilization of molecular electrocatalysts for reduction of O2, oxidation of H2O, production of H2, and reduction of CO2.

  8. Sleep stage classification based on average energy dissipation%基于平均能量耗散的睡眠分期研究

    Institute of Scientific and Technical Information of China (English)

    焦东来; 冯昊; 姚凤华; 孟浩; 井晓茹; 王俊

    2013-01-01

    Objective The quality of sleep has a great relationship with health. The result of sleep stage classification is an important indicator to measure the quality of sleep and treat sleep disorders. Methods The EEG signals about wake and the first stage of non-rapid eye movement sleep we used in this paper are extracted from the same person at the same time. After the symbolization, we compute the average energy dissipations and make the statistical analysis and multi-sample analysis. Results The average energy dissipation reflects the changes of sleep stages, which is higher in wake stage than in the first stage of non-rapid eye movement sleep, and is confirmed by statistical analysis and multi-sample experiments. Conclusions The average energy dissipation can be applied into automatic sleep stage classification. Multi-parameter analysis could achieve a higher accuracy of sleep stage classification.%目的 睡眠质量影响身体健康与工作效率,睡眠分期结果是衡量睡眠质量的重要指标和诊治睡眠障碍性疾病的重要途径.方法 通过提取相同个体相同时刻的清醒期和非快速眼动睡眠Ⅰ期的EEG信号,分别符号化后计算平均能量耗散,对两个睡眠阶段的相对熵进行统计分析及多样本验证.结果 研究结果表明,平均能量耗散很好地反映了睡眠状态的变化,在清醒期较大,在非快速眼动睡眠Ⅰ期较小,并通过差异显著性检验和多样本验证.结论 平均能量耗散可以作为睡眠自动化分期参数补充到睡眠分期研究中来,在临床上可通过多参数分析,提高睡眠分期的准确性.

  9. Design research on flood discharge and energy dissipation of Wudongde Hydropower Station%乌东德水电站泄洪消能设计研究

    Institute of Scientific and Technical Information of China (English)

    胡清义; 廖仁强; 郭艳阳; 周赤

    2014-01-01

    乌东德水电站泄洪消能建筑物规模大、布置难度高,挖除覆盖层后坝址消能区天然水垫深厚。针对上述特点,对该电站泄洪消能方案进行了比较和研究,选用坝身表、中孔与岸边泄洪洞联合泄洪的方案,坝身布置5个表孔、6个中孔,坝下设置“护岸不护底”水垫塘消能。水垫塘末端设立混凝土重力式二道坝,左岸靠山侧布置3条泄洪洞,并采用封闭抽排水垫塘消能。水工模型试验表明,该方案合理可行,安全可靠。%Wudongde Hydropower Station is characterized as large scaled flood discharge and energy dissipation structure, dif-ficult structure layout. After the excavation of the overburden, the natural water cushion in the energy dissipation zone was thick. Multiple schemes of flood discharge and energy dissipation were compared and studied by consideration of the above features. The combined flood discharge scheme using surface outlet, middle outlet at dam body and spillway tunnel at bank was determined. 5 surface outlets and 6 middle outlets are arranged on the dam body, and the plunge pool with bank protected but without bed pro-tected is at downstream of the dam. The concrete gravity subsidiary dam was designed at the end of the plunge pool. 3 spillway tunnels were arranged at left bank near the mountain side and the closed pumping and drainage was adopted. The hydraulic model test showed that the scheme is feasible, safe and reliable.

  10. Observational Quantification of the Energy Dissipated by Alfv\\'en Waves in a Polar Coronal Hole: Evidence that Waves Drive the Fast Solar Wind

    CERN Document Server

    Hahn, Michael

    2013-01-01

    We present a measurement of the energy carried and dissipated by Alfv\\'en waves in a polar coronal hole. Alfv\\'en waves have been proposed as the energy source that heats the corona and drives the solar wind. Previous work has shown that line widths decrease with height in coronal holes, which is a signature of wave damping, but have been unable to quantify the energy lost by the waves. This is because line widths depend on both the non-thermal velocity v_nt and the ion temperature T_i. We have implemented a means to separate the T_i and v_nt contributions using the observation that at low heights the waves are undamped and the ion temperatures do not change with height. This enables us to determine the amount of energy carried by the waves at low heights, which is proportional to v_nt. We find the initial energy flux density present was 6.7 +/- 0.7 x 10^5 erg cm^-2 s^-1, which is sufficient to heat the coronal hole and acccelerate the solar wind during the 2007 - 2009 solar minimum. Additionally, we find tha...

  11. Power Dissipation in Division

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2008-01-01

    A few classes of algorithms to implement division in hardware have been used over the years: division by digit-recurrence, by reciprocal approximation by iterative methods and by polynomial approximation. Due to the differences in the algorithms, a comparison among their implementation in terms...... of performance and precision is sometimes hard to make. In this work, we use power dissipation and energy consumption as metrics to compare among those different classes of algorithms. There are no previous works in the literature presenting such a comparison....

  12. Conserving the linear momentum in stochastic dynamics: Dissipative particle dynamics as a general strategy to achieve local thermostatization in molecular dynamics simulations.

    Science.gov (United States)

    Passler, Peter P; Hofer, Thomas S

    2017-02-15

    Stochastic dynamics is a widely employed strategy to achieve local thermostatization in molecular dynamics simulation studies; however, it suffers from an inherent violation of momentum conservation. Although this short-coming has little impact on structural and short-time dynamic properties, it can be shown that dynamics in the long-time limit such as diffusion is strongly dependent on the respective thermostat setting. Application of the methodically similar dissipative particle dynamics (DPD) provides a simple, effective strategy to ensure the advantages of local, stochastic thermostatization while at the same time the linear momentum of the system remains conserved. In this work, the key parameters to employ the DPD thermostats in the framework of periodic boundary conditions are investigated, in particular the dependence of the system properties on the size of the DPD-region as well as the treatment of forces near the cutoff. Structural and dynamical data for light and heavy water as well as a Lennard-Jones fluid have been compared to simulations executed via stochastic dynamics as well as via use of the widely employed Nose-Hoover chain and Berendsen thermostats. It is demonstrated that a small size of the DPD region is sufficient to achieve local thermalization, while at the same time artifacts in the self-diffusion characteristic for stochastic dynamics are eliminated. © 2016 Wiley Periodicals, Inc.

  13. Surface Immobilization of Molecular Electrocatalysts for Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Bullock, R. Morris [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland WA 99352 USA; Das, Atanu K. [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland WA 99352 USA; Appel, Aaron M. [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-03-22

    Electrocatalysts are critically important for a secure energy future, as they facilitate the conversion between electrical energy and chemical energy. Molecular catalysts offer precise control of their structure, and the ability to modify the substituents to understand structure-reactivity relationships that are more difficult to achieve with heterogeneous catalysts. Molecular electrocatalysts can be immobilized on surfaces by covalent bonds or through non-covalent interactions. Advantages of surface immobilization include the need for less catalyst, avoidance of bimolecular decomposition pathways, and easier determination of catalyst lifetime. Copper-catalyzed click reactions are often used to form covalent bonds to surfaces, and pi-pi stacking of pyrene substituents appended to the ligand of a molecular complex is a frequently used method to achieve non-covalent surface immobilization. This mini-review highlights surface confinement of molecular electrocatalysts for reduction of O2, oxidation of H2O, production of H2, and reduction of CO2.

  14. Energy conservation in molecular dynamics simulations of classical systems

    DEFF Research Database (Denmark)

    Toxværd, Søren; Heilmann, Ole; Dyre, J. C.

    2012-01-01

    Classical Newtonian dynamics is analytic and the energy of an isolated system is conserved. The energy of such a system, obtained by the discrete “Verlet” algorithm commonly used in molecular dynamics simulations, fluctuates but is conserved in the mean. This is explained by the existence...

  15. Photon Upconversion and Molecular Solar Energy Storage by Maximizing the Potential of Molecular Self-Assembly.

    Science.gov (United States)

    Kimizuka, Nobuo; Yanai, Nobuhiro; Morikawa, Masa-Aki

    2016-11-29

    The self-assembly of functional molecules into ordered molecular assemblies and the fulfillment of potentials unique to their nanotomesoscopic structures have been one of the central challenges in chemistry. This Feature Article provides an overview of recent progress in the field of molecular self-assembly with the focus on the triplet-triplet annihilation-based photon upconversion (TTA-UC) and supramolecular storage of photon energy. On the basis of the integration of molecular self-assembly and photon energy harvesting, triplet energy migration-based TTA-UC has been achieved in varied molecular systems. Interestingly, some molecular self-assemblies dispersed in solution or organogels revealed oxygen barrier properties, which allowed TTA-UC even under aerated conditions. The elements of molecular self-assembly were also introduced to the field of molecular solar thermal fuel, where reversible photoliquefaction of ionic crystals to ionic liquids was found to double the molecular storage capacity with the simultaneous pursuit of switching ionic conductivity. A future prospect in terms of innovating molecular self-assembly toward molecular systems chemistry is also discussed.

  16. Energy Transformation in Molecular Electronic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kasha, Michael

    1999-05-17

    This laboratory has developed many new ideas and methods in the electronic spectroscopy of molecules. This report covers the contract period 1993-1995. A number of the projects were completed in 1996, and those papers are included in the report. The DOE contract was terminated at the end of 1995 owing to a reorganizational change eliminating nationally the projects under the Office of Health and Environmental Research, U. S. Department of Energy.

  17. Machine Learning of Accurate Energy-Conserving Molecular Force Fields

    CERN Document Server

    Chmiela, Stefan; Sauceda, Huziel E; Poltavsky, Igor; Schütt, Kristof; Müller, Klaus-Robert

    2016-01-01

    Using conservation of energy -- a fundamental property of closed classical and quantum mechanical systems -- we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential-energy surfaces of intermediate-size molecules with an accuracy of 0.3 kcal/mol for energies and 1 kcal/mol/{\\AA} for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations...

  18. Molecular Slater Integrals for Electronic Energy Calculations

    Science.gov (United States)

    2010-10-15

    Facultad de Ciencias . Departamento de Quı́mica Fı́sica Aplicada. C-XIV. Abstract The algorithms for computing molecular integrals with Slater functions...ζ + ζ ′) 2 ) (90) Defining α = ζ + ζ ′ and α′ = ζ − ζ ′, and taking into account that: ( − ∂ ∂ζ )n ( − ∂ ∂ζ ′ )n′ = (−1)n+n′ n+n′∑ p=0 cnn ′ p ( ∂ ∂α...p+ p′ + 1)! p! p′! ∫ 1 0 du up (1− u)p′ (ζ2 u+ ζ ′2 (1− u) + k2)p+p′+2 (116) changing the order of the integrals and taking into account that

  19. A proposal to the dissipated energy budget in the auroral ionosphere at the substorm recovery phase: Challenge from thermospheric wind variations in the pulsating aurora

    Science.gov (United States)

    Oyama, S. I.; Hosokawa, K.; Miyoshi, Y.; Shiokawa, K.; Kurihara, J.; Tsuda, T. T.; Watkins, B. J.

    2014-12-01

    Pulsating aurora is a typical phenomenon of the recovery phase of magnetic substorm and is frequently observed in the morning sector. The widely accepted generation mechanism of pulsations in precipitating electrons is related to wave-particle interactions around the equatorial plane in the magnetospheric tail. This mechanism is completely different from the discrete-arc case, which generates high-energy auroral electrons by the inverted-V type potential structure in the magnetospheric acceleration region. This potential structure induces the perpendicular electric field. The electric field is mapped down to the ionosphere, and enhances the Pedersen current as the ionospheric closure current. Since the perpendicular electric field directly relates to the Joule heating rate and the Lorentz force, thermal and kinetic energies in the thermosphere are locally increased in the vicinity of the arc rather than the inside, resulting in wind variations in the thermosphere. However, this scenario cannot be simply applied to the pulsating-auroral case because of the completely different mechanism of the auroral-electron generation, and we have believed that large energies are not dissipated in the pulsating aurora and there should be no obvious wind variations in the thermosphere. However, we found thermospheric-wind variations in the pulsating aurora during simultaneous observations with a Fabry-Perot Interferometer (557.7 nm), several cameras, and incoherent-scatter radars. This is a significantly important finding in evaluating our understanding of the energy budget in the substorm recovery phase. As mentioned above, the Joule heating process and the Lorentz force play important roles for thermospheric-wind variations. While the both cases need enhancements of the perpendicular electric field, we well know that a typical level of the convection electric field is too low to generate the wind variations in a same level as the observed in the pulsating aurora. Thus the

  20. Seasonal response of photosynthetic electron transport and energy dissipation in the eighth year of exposure to elevated atmospheric CO2 (FACE) in Pinus taeda (loblolly pine).

    Science.gov (United States)

    Logan, Barry A; Combs, Andrew; Myers, Kalisa; Kent, Rose; Stanley, Lela; Tissue, David T

    2009-06-01

    To determine the effect of growth under elevated CO(2) partial pressures (pCO(2)) on photosynthetic electron transport and photoprotective energy dissipation, we examined light-saturated net photosynthetic CO(2) assimilation (A(sat)), the capacity for photosynthetic O(2) evolution, chlorophyll fluorescence emission and the pigment composition of upper-canopy loblolly pine needles in the eighth year of exposure to elevated pCO(2) (20 Pa above ambient) at the free-air CO(2) enrichment facility in the Duke Forest. During the summer growing season, A(sat) was 50% higher in current-year needles and 24% higher in year-old needles in elevated pCO(2) in comparison with needles of the same age cohort in ambient pCO(2). Thus, photosynthetic down-regulation at elevated pCO(2) was observed in the summer in year-old needles. In the winter, A(sat) was not significantly affected by growth pCO(2). Reductions in A(sat), the capacity for photosynthetic O(2) evolution and photosystem II (PSII) efficiency in the light-acclimated and fully-oxidized states were observed in the winter when compared to summer. Growth at elevated pCO(2) had no significant effect on the capacity for photosynthetic O(2) evolution, PSII efficiencies in the light-acclimated and fully-oxidized states, chlorophyll content or the size and conversion state of the xanthophyll cycle, regardless of season or needle age cohort. Therefore, we observed no evidence that photosynthetic electron transport or photoprotective energy dissipation responded to compensate for the effects of elevated pCO(2) on Calvin cycle activity.

  1. Evaporation residue cross sections for the {sup 100}Mo + {sup 116}Cd reaction -- energy dissipation in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Blumenthal, D.J.; Davids, C.N. [and others

    1995-08-01

    In this experiment we tried to measure the evaporation residue cross section over a wide range of beam energies for the {sup 100}Mo + {sup 116}Cd reaction using the FMA. However, because of longer-than-estimated runs needed at each beam energy, and the difficulty of bending evaporation residues at the higher energies in the FMA, data were taken only at beam energies of E{sub beam} = 460, 490, and 521 MeV, which correspond to excitation energies of E{sub exc} = 62, 78, and 95 MeV, respectively. By comparing to results for the {sup 32}S + {sup 184}W reactions measured recently, we expect to demonstrate a strong entrance channel effect related to the hindrance of complete fusion in near-symmetric heavy systems (a fusion hindrance factor of the order 7-10 is expected on the basis of the Extra-Push Model). The data are being analyzed.

  2. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar-Thermal Energy Storage.

    Science.gov (United States)

    Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl; Moth-Poulsen, Kasper

    2016-09-05

    Molecular solar-thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193-260 g mol(-1) ) norbornadiene-quadricyclane systems. The molecules feature cyano acceptor and ethynyl-substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo-thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396-629 kJ kg(-1) ). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules.

  3. Quantum bouncer with quadratic dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, G. [NanoScience Technology Center, University of Central Florida, Orlando, FL 32826 (United States)]. e-mail: ggonzalez@physics.ucf.edu

    2008-07-01

    The energy loss due to a quadratic velocity-dependent force on a quantum particle bouncing off a perfectly reflecting surface is obtained for a full cycle of motion. We approach this problem by means of a new, effective, phenomenological Hamiltonian which corresponds to the actual energy of the system and obtain the correction to the eigenvalues of the energy in first-order quantum perturbation theory for the case of weak dissipation. (Author)

  4. Quantum bouncer with quadratic dissipation

    Science.gov (United States)

    González, G.

    2008-02-01

    The energy loss due to a quadratic velocity dependent force on a quantum particle bouncing on a perfectly reflecting surface is obtained for a full cycle of motion. We approach this problem by means of a new effective phenomenological Hamiltonian which corresponds to the actual energy of the system and obtained the correction to the eigenvalues of the energy in first order quantum perturbation theory for the case of weak dissipation.

  5. Storage functions for dissipative linear systems are quadratic state functions

    NARCIS (Netherlands)

    Trentelman, Harry L.; Willems, Jan C.

    1997-01-01

    This paper deals with dissipative dynamical systems. Dissipative dynamical systems can be used as models for physical phenomena in which energy exchange with their environment plays a role. In a dissipative dynamical system, the book-keeping of energy is done via the supply rate and a storage functi

  6. Numerical Simulation on Improve Energy-dissipating Capacity of lnfilled Wall by Use of A Simple Passive Energy Dissipation Device%利用简易耗能装置提高填充墙耗能减震能力的数值模拟

    Institute of Scientific and Technical Information of China (English)

    杜永峰; 耿继芳

    2011-01-01

    The influences of infilled walls on structural seismic capacity have dual characters, ( 1 ) infilled walls increase the rigid and earthquake force on structure; (2) on a certain degree, infilled walls become the first defendant line to consume seismic energy.Infilled walls become an auxiliary element for frame structure passive energy dissipation. It is always an important problem that coordinates the ability of them and strengthens the energy-dissipating capacity. The seismic of masonry structure has been researched and a method that using cross diagonal steel strengthen masonry structure has been proposed. Through further observation and thinking after 5. 12 earthquake occurrence, the mean of cross diagonal steel is improved. Considering low cost and convenient installation, the ability of anti-collapse and dissipation of infilled walls can be advanced by this method. The numerical simulation is used to analysis this system, and the results show the device can improve energy-dissipating capacity of infilled wall.%填充墙对框架结构抗震性能的影响具有两面性:一方面,填充墙的存在增加了结构的总刚度,提高了作用在结构上的地震力;另一方面,填充墙的存在又从某种程度上成为耗散地震能量的第一道防线.如何协调两者的能力,使填充墙的耗能能力更强一些,使填充墙成为协助框架结构耗能减震的辅助元件,是研究人员一直感兴趣的问题.针对砌体结构房屋抗震的需要,本文提出了在砌体墙片中增加交叉斜拉钢筋加固的方案.5.12地震发生后,根据进一步观察填充墙在地震中的表现,并对交叉斜拉筋加固砌体的方案做了改进,使其在保持造价低廉、安装方便的前提下,提高填充墙的抗倒塌和耗能能力.本文就这一体系进行了数值模拟分析,结果表明这种简易装置有助于提高填充墙体的耗能能力.

  7. The Vertical Current Approximation Nonlinear Force-Free Field Code - Description, Performance Tests, and Measurements of Magnetic Energies Dissipated in Solar Flares

    CERN Document Server

    Aschwanden, Markus J

    2016-01-01

    In this work we provide an updated description of the Vertical Current Approximation Nonlinear Force-Free Field (VCA-NLFFF) code, which is designed to measure the evolution of the potential, nonpotential, free energies, and the dissipated magnetic energies during solar flares. This code provides a complementary and alternative method to existing traditional NLFFF codes. The chief advantages of the VCA-NLFFF code over traditional NLFFF codes are the circumvention of the unrealistic assumption of a force-free photosphere in the magnetic field extrapolation method, the capability to minimize the misalignment angles between observed coronal loops (or chromospheric fibril structures) and theoretical model field lines, as well as computational speed. In performance tests of the VCA-NLFFF code, by comparing with the NLFFF code of Wiegelmann (2004), we find agreement in the potential, nonpotential, and free energy within a factor of about 1.3, but the Wiegelmann code yields in the average a factor of 2 lower flare en...

  8. Probing energy dissipation, γ-ray and neutron multiplicity in the thermal neutron-induced fission of {sup 239}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Pahlavani, M.R.; Mirfathi, S.M. [University of Mazandaran, Department of Nuclear Physics, Faculty of Basic Science, Babolsar (Iran, Islamic Republic of)

    2016-04-15

    The incorporation of the four-dimensional Langevin equations led to an integrative description of fission cross-section, fragment mass distribution and the multiplicity and energy distribution of prompt neutrons and γ-rays in the thermal neutron-induced fission of {sup 239}Pu. The dynamical approach presented in this paper thoroughly reproduces several experimental observables of the fission process at low excitation energy. (orig.)

  9. Energy corrugation in atomic-scale friction on graphite revisited by molecular dynamics simulations

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yu Sun; Yi-Zhou Qi; Wengen Ouyang; Xi-Qiao Feng; Qunyang Li

    2016-01-01

    Although atomic stick–slip friction has been extensively studied since its first demonstration on graphite, the physical understanding of this dissipation-dominated phenomenon is still very limited. In this work, we perform molecular dynamics (MD) simulations to study the frictional behavior of a diamond tip sliding over a graphite surface. In contrast to the common wisdom, our MD results suggest that the energy barrier associated lateral sliding (known as energy corrugation) comes not only from interaction between the tip and the top layer of graphite but also from interactions among the deformed atomic layers of graphite. Due to the competi-tion of these two subentries, friction on graphite can be tuned by controlling the relative adhesion of different interfaces. For relatively low tip-graphite adhesion, friction behaves nor-mally and increases with increasing normal load. However, for relatively high tip-graphite adhesion, friction increases unusually with decreasing normal load leading to an effec-tively negative coefficient of friction, which is consistent with the recent experimental observations on chemically modified graphite. Our results provide a new insight into the physical origins of energy corrugation in atomic scale friction.

  10. Energy corrugation in atomic-scale friction on graphite revisited by molecular dynamics simulations

    Science.gov (United States)

    Sun, Xiao-Yu; Qi, Yi-Zhou; Ouyang, Wengen; Feng, Xi-Qiao; Li, Qunyang

    2016-08-01

    Although atomic stick-slip friction has been extensively studied since its first demonstration on graphite, the physical understanding of this dissipation-dominated phenomenon is still very limited. In this work, we perform molecular dynamics (MD) simulations to study the frictional behavior of a diamond tip sliding over a graphite surface. In contrast to the common wisdom, our MD results suggest that the energy barrier associated lateral sliding (known as energy corrugation) comes not only from interaction between the tip and the top layer of graphite but also from interactions among the deformed atomic layers of graphite. Due to the competition of these two subentries, friction on graphite can be tuned by controlling the relative adhesion of different interfaces. For relatively low tip-graphite adhesion, friction behaves normally and increases with increasing normal load. However, for relatively high tip-graphite adhesion, friction increases unusually with decreasing normal load leading to an effectively negative coefficient of friction, which is consistent with the recent experimental observations on chemically modified graphite. Our results provide a new insight into the physical origins of energy corrugation in atomic scale friction.

  11. State-to-state dynamics of molecular energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, W.R.; Giese, C.F. [Univ. of Minnesota, Minneapolis (United States)

    1993-12-01

    The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.

  12. Quantum bouncer with dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, G.; Gonzalez, G. [Departamento de Fisica de la Universidad de Guadalajara, AP 4-137, 44410 Guadalajara, Jalisco (Mexico)

    2006-07-01

    Effects on the spectra of the quantum bouncer due to dissipation are given when a linear o quadratic dissipation in the velocity of the particle is taken into account. Classical constants of motion and Hamiltonians are deduced for these systems and their quantized eigenvalues are estimated through perturbation theory. Differences were found comparing the eigenvalues of the constants of motion and the eigenvalues of the Hamiltonians. The cases when the dissipation parameters go to zero are compared with the non dissipative cases. (Author)

  13. NONLINEARLY VIBRATIONAL ENERGY-SPECTRA OF MOLECULAR CRYSTALS

    Institute of Scientific and Technical Information of China (English)

    PANG XIAO-FENG; CHEN XIANG-RONG

    2000-01-01

    The nonlinear quantum vibrational energy spectra of amide-I in the molecular crystals acetanilide are calculatedby using the discrete nonlinear Schrodinger equation appropriate to this kind of crystals. The numerical results obtainedby this method are in good agreement with the experimental values. Meanwhile, the energy levels at high excited stateshave also been obtained for the acetanilide, which is helpful in researching the Raman scattering and infrared absorptionproperties of the this kind of crystals.

  14. Force Analysis of Frame Core-tube Structure Added RC Fraction Energy Dissipation Braced%钢筋混凝土摩擦耗能支撑框架-核心筒结构内力分析

    Institute of Scientific and Technical Information of China (English)

    黄婧; 周立超; 潘文; 徐卫宾

    2012-01-01

    The energy dissipation braces are added in two different parts of a frame-tube structure in this paper, the internal forces of the RC fraction energy dissipation braced frame-tube structure are calculated by ETABS, and the effect of energy dissipation under earthquake is analyzed. The results show that dampers couldn' t start under the action of earthquake, and could start-up under the action of severe earthquake. The RC fraction energy dissipation braced frame-tube structure can better improve the seismic performance.%对某框架-核心筒结构实际工程在两个不同的部位加设耗能支撑,采用ETABS软件,计算钢筋混凝土摩擦耗能支撑框架-核心筒结构在地震作用下的内力,分析了耗能器在地震作用下能否启动耗能和其耗能效果.结果表明,在多遇地震下耗能器不启动,在罕遇地震下耗能器启动耗能,能够较好的改善结构的抗震性能.

  15. Energy storage and dissipation in deformed protein-based networks on seconds time scale is controlled by submicron length scales /

    NARCIS (Netherlands)

    Munialo, C.D.

    2015-01-01

    Summary

    In-depth understanding of the ability of networks to store energy is of prime importance in tailoring and engineering of food products. In this thesis structural aspects of stranded networks and how they affect the ability of protein-based gel networks to store

  16. The effect of polysaccharides on the ability of whey protein gels to either store or dissipate energy upon mechanical deformation

    NARCIS (Netherlands)

    Darizu Munialo, C.; Linden, E. van der; Ako, K.; Nieuwland, M.; As, H. van; Jongh, H.H.J. de

    2016-01-01

    The addition of polysaccharides to proteins during gel formation can alter the mechanical and textural properties of the resultant gels. However, the effect of addition of different polymers on mechanical properties of whey protein (WP) gels including their ability to elastically store energy, often

  17. The effect of polysaccharides on the ability of whey protein gels to either store or dissipate energy upon mechanical deformation

    NARCIS (Netherlands)

    Munialo, C.D.; Linden, van der E.; Ako, K.; Nieuwland, M.; As, van H.; Jongh, de H.H.J.

    2016-01-01

    The addition of polysaccharides to proteins during gel formation can alter the mechanical and textural properties of the resultant gels. However, the effect of addition of different polymers on mechanical properties of whey protein (WP) gels including their ability to elastically store energy, often

  18. Dissipative time-dependent quantum transport theory.

    Science.gov (United States)

    Zhang, Yu; Yam, Chi Yung; Chen, GuanHua

    2013-04-28

    A dissipative time-dependent quantum transport theory is developed to treat the transient current through molecular or nanoscopic devices in presence of electron-phonon interaction. The dissipation via phonon is taken into account by introducing a self-energy for the electron-phonon coupling in addition to the self-energy caused by the electrodes. Based on this, a numerical method is proposed. For practical implementation, the lowest order expansion is employed for the weak electron-phonon coupling case and the wide-band limit approximation is adopted for device and electrodes coupling. The corresponding hierarchical equation of motion is derived, which leads to an efficient and accurate time-dependent treatment of inelastic effect on transport for the weak electron-phonon interaction. The resulting method is applied to a one-level model system and a gold wire described by tight-binding model to demonstrate its validity and the importance of electron-phonon interaction for the quantum transport. As it is based on the effective single-electron model, the method can be readily extended to time-dependent density functional theory.

  19. Photoswitchable Molecular Rings for Solar-Thermal Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Durgun, E; Grossman, JC

    2013-03-21

    Solar-thermal fuels reversibly store solar energy in the chemical bonds of molecules by photoconversion, and can release this stored energy in the form of heat upon activation. Many conventional photoswichable molecules could be considered as solar thermal fuels, although they suffer from low energy density or short lifetime in the photoinduced high-energy metastable state, rendering their practical use unfeasible. We present a new approach to the design of chemistries for solar thermal fuel applications, wherein well-known photoswitchable molecules are connected by different linker agents to form molecular rings. This approach allows for a significant increase in both the amount of stored energy per molecule and the stability of the fuels. Our results suggest a range of possibilities for tuning the energy density and thermal stability as a function of the type of the photoswitchable molecule, the ring size, or the type of linkers.

  20. Photoswitchable Molecular Rings for Solar-Thermal Energy Storage.

    Science.gov (United States)

    Durgun, E; Grossman, Jeffrey C

    2013-03-21

    Solar-thermal fuels reversibly store solar energy in the chemical bonds of molecules by photoconversion, and can release this stored energy in the form of heat upon activation. Many conventional photoswichable molecules could be considered as solar thermal fuels, although they suffer from low energy density or short lifetime in the photoinduced high-energy metastable state, rendering their practical use unfeasible. We present a new approach to the design of chemistries for solar thermal fuel applications, wherein well-known photoswitchable molecules are connected by different linker agents to form molecular rings. This approach allows for a significant increase in both the amount of stored energy per molecule and the stability of the fuels. Our results suggest a range of possibilities for tuning the energy density and thermal stability as a function of the type of the photoswitchable molecule, the ring size, or the type of linkers.

  1. A molecularly based theory for electron transfer reorganization energy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Bilin; Wang, Zhen-Gang, E-mail: zgw@cheme.caltech.edu [Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-12-14

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule’s permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory.

  2. Cafeteria diet induce changes in blood flow that are more related with heat dissipation than energy accretion.

    Science.gov (United States)

    Sabater, David; Agnelli, Silvia; Arriarán, Sofía; Romero, María Del Mar; Fernández-López, José Antonio; Alemany, Marià; Remesar, Xavier

    2016-01-01

    Background. A "cafeteria" diet is a self-selected high-fat diet, providing an excess of energy, which can induce obesity. Excess of lipids in the diet hampers glucose utilization eliciting insulin resistance, which, further limits amino acid oxidation for energy. Methods. Male Wistar rats were exposed for a month to "cafeteria" diet. Rats were cannulated and fluorescent microspheres were used to determine blood flow. Results. Exposure to the cafeteria diet did not change cardiac output, but there was a marked shift in organ irrigation. Skin blood flow decreased to compensate increases in lungs and heart. Blood flow through adipose tissue tended to increase in relation to controls, but was considerably increased in brown adipose tissue (on a weight basis). Discussion. The results suggest that the cafeteria diet-induced changes were related to heat transfer and disposal.

  3. Cafeteria diet induce changes in blood flow that are more related with heat dissipation than energy accretion

    Directory of Open Access Journals (Sweden)

    David Sabater

    2016-08-01

    Full Text Available Background. A “cafeteria” diet is a self-selected high-fat diet, providing an excess of energy, which can induce obesity. Excess of lipids in the diet hampers glucose utilization eliciting insulin resistance, which, further limits amino acid oxidation for energy. Methods. Male Wistar rats were exposed for a month to “cafeteria” diet. Rats were cannulated and fluorescent microspheres were used to determine blood flow. Results. Exposure to the cafeteria diet did not change cardiac output, but there was a marked shift in organ irrigation. Skin blood flow decreased to compensate increases in lungs and heart. Blood flow through adipose tissue tended to increase in relation to controls, but was considerably increased in brown adipose tissue (on a weight basis. Discussion. The results suggest that the cafeteria diet-induced changes were related to heat transfer and disposal.

  4. On the physical interpretation of the nuclear molecular orbital energy.

    Science.gov (United States)

    Charry, Jorge; Pedraza-González, Laura; Reyes, Andrés

    2017-06-07

    Recently, several groups have extended and implemented molecular orbital (MO) schemes to simultaneously obtain wave functions for electrons and selected nuclei. Many of these schemes employ an extended Hartree-Fock approach as a first step to find approximate electron-nuclear wave functions and energies. Numerous studies conducted with these extended MO methodologies have explored various effects of quantum nuclei on physical and chemical properties. However, to the best of our knowledge no physical interpretation has been assigned to the nuclear molecular orbital energy (NMOE) resulting after solving extended Hartree-Fock equations. This study confirms that the NMOE is directly related to the molecular electrostatic potential at the position of the nucleus.

  5. Derivation of turbulent energy dissipation rate with the Middle Atmosphere Alomar Radar System (MAARSY) and radiosondes at Andøya, Norway

    Science.gov (United States)

    Li, Qiang; Rapp, Markus; Schrön, Anne; Schneider, Andreas; Stober, Gunter

    2016-12-01

    We present the derivation of turbulent energy dissipation rate ɛ from a total of 522 days of observations with the Middle Atmosphere Alomar Radar SYstem (MAARSY) mesosphere-stratosphere-troposphere (MST) radar running tropospheric experiments during the period of 2010-2013 as well as with balloon-borne radiosondes based on a campaign in the summer 2013. Spectral widths are converted to ɛ after the removal of the broadening effects due to the finite beam width of the radar. With the simultaneous in situ measurements of ɛ with balloon-borne radiosondes at the MAARSY radar site, we compare the ɛ values derived from both techniques and reach an encouraging agreement between them. Using all the radar data available, we present a preliminary climatology of atmospheric turbulence in the UTLS (upper troposphere and lower stratosphere) region above the MAARSY site showing a variability of more than 5 orders of magnitude inherent in turbulent energy dissipation rates. The derived ɛ values reveal a log-normal distribution with a negative skewness, and the ɛ profiles show an increase with height which is also the case for each individual month. Atmospheric turbulence based on our radar measurements reveals a seasonal variation but no clear diurnal variation in the UTLS region. Comparison of ɛ with the gradient Richardson number Ri shows that only 1.7 % of all the data with turbulence occur under the condition of Ri 1. Further, there is a roughly negative correlation between ɛ and Ri that is independent of the scale dependence of Ri. Turbulence under active dynamical conditions (velocity of horizontal wind U > 10 m s-1) is significantly stronger than under quiet conditions (U < 10 m s-1). Last but not least, the derived ɛ values are compared with the corresponding vertical shears of background wind velocity showing a linear relation with a corresponding correlation coefficient r = 58 % well above the 99.9 % significance level. This implies that wind shears play an

  6. Exploring the free-energy landscapes of biological systems with steered molecular dynamics.

    Science.gov (United States)

    Chen, L Y

    2011-04-01

    We perform steered molecular dynamics (SMD) simulations and use the Brownian dynamics fluctuation-dissipation-theorem (BD-FDT) to accurately compute the free-energy profiles for several biophysical processes of fundamental importance: hydration of methane and cations, binding of benzene to T4-lysozyme L99A mutant, and permeation of water through aquaglyceroporin. For each system, the center-of-mass of the small molecule (methane, ion, benzene, and water, respectively) is steered (pulled) at a given speed over a period of time, during which the system transitions from one macroscopic state/conformation (State A) to another one (State B). The mechanical work of pulling the system is measured during the process, sampling a forward pulling path. Then the reverse pulling is conducted to sample a reverse path from B back to A. Sampling a small number of forward and reverse paths, we are able to accurately compute the free-energy profiles for all the afore-listed systems that represent various important aspects of biological physics. The numerical results are in excellent agreement with the experimental data and/or other computational studies available in the literature.

  7. Investigations about the dissipated energy by partial discharges based on their measurements; Sobre la medida de energia de las descargas parciales basada en la medicion de estas resuelstas en fase

    Energy Technology Data Exchange (ETDEWEB)

    Valdenegro, Ariel; Navarrete, Luis; Asenjo, Efrain [Universidad de Chile, Santiago (Chile). Dept. de Ingenieria Electrica

    2001-07-01

    In this work, it is approached the possibility of calculating the dissipated energy by partial discharges(PD) of a insulation according to their measurements by means of a MPDP(Meter of Partial Discharges in Phase) digital equipment. The energy estimate is made by the comparison of the following methods: the demanded energy to the source due to PD and energy estimative according to Kreuger. The PD spectrum results were the expected ones and the calculated energy at different times of the process presented normal results (always growing). Both the calculation alternatives presented similar results.

  8. Analysis of the fatigue strength under two load levels of a stainless steel based on energy dissipation

    Directory of Open Access Journals (Sweden)

    Ricotta M.

    2010-06-01

    Full Text Available In this paper the fatigue behaviour of a stainless steel AISI 304L is analysed. In the first part of the work the results obtained under constant amplitude fatigue are presented and synthesised in terms of both stress amplitude and energy released to the surroundings as heat by a unit volume of material per cycle, Q. Then some specimens have been fatigued in variable amplitude, two different load level tests: the first level was set higher while the second was lower than the constant amplitude fatigue limit. The Q values, evaluated during the second part of the fatigue test, have been compared with those calculated under constant amplitude fatigue at the same load level. The comparison allowed us to notice that the Q parameter is sensitive to the fatigue damage accumulated by the material during the first part of the fatigue test.

  9. Analysis of the fatigue strength under two load levels of a stainless steel based on energy dissipation

    Directory of Open Access Journals (Sweden)

    M. Ricotta

    2011-07-01

    Full Text Available In this paper the fatigue behaviour of a stainless steel AISI 304L is analysed. In the first part of the work the results obtained under constant amplitude fatigue are presented and synthesised in terms of both stress amplitude and energy released to the surroundings as heat by a unit volume of material per cycle, Q. Then some specimens have been fatigued in variable amplitude, two different load level tests: the first level was set higher while the second was lower than the constant amplitude fatigue limit. The Q values, evaluated during the second part of the fatigue test, have been compared with those calculated under constant amplitude fatigue at the same load level. The comparison allowed us to notice that the Q parameter is sensitive to the fatigue damage accumulated by the material during the first part of the fatigue test.

  10. Collision Induced Dissociation and Energy Transfer in Molecular Hydroge

    Science.gov (United States)

    Mandy, Margot E.

    2006-06-01

    Molecular hydrogen is a significant constituent in giant molecular clouds in the interstellar medium. Shocks in these clouds are associated with star formation. The cooling of the shocks is governed by competition of collisional energy transfer and dissociation with radiative cooling by quadrupole emission. Thus a detailed understanding of collisional behaviour of molecular hydrogen is needed. Work in this group has examined energy transfer and dissociation in molecular energy transfer as the result of collisions with H, D, He, and H2. Using quasiclassical trajectories and chemically accurate ab initio potentials state-to-state rate coefficients have been determined. The uncertainties of the cross sections are propagated rigourously to give uncertainties of the rate coefficients and the rate coefficients are parameterized as a function of temperature. Comparisons with quantum calculations are discussed and the proposed website is described.This work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada. The calculations were carried out using the high performance computing facility jointly supported by the Canadian Foundation for Innovation, the British Columbia Knowledge Development Fund, and Silicon Graphics at the University of Northern British Columbia.

  11. A chlorophyll fluorescence analysis of photosynthetic efficiency, quantum yield and photon energy dissipation in PSII antennae of Lactuca sativa L. leaves exposed to cinnamic acid.

    Science.gov (United States)

    Hussain, M Iftikhar; Reigosa, Manuel J

    2011-11-01

    This study investigated the effects of cinnamic acid (CA) on growth, biochemical and physiological responses of Lactuca sativa L. CA (0.1, 0.5, 1.0 and 1.5 mM) treatments decreased plant height, root length, leaf and root fresh weight, but it did not affect the leaf water status. CA treatment (1.5 mM) significantly reduced F(v), F(m), photochemical efficiency of PSII (F(v)/F(m)) and quantum yield of PSII (ΦPSII) photochemistry in L. sativa. The photochemical fluorescence quenching (qP) and non-photochemical quenching (NPQ) were reduced after treatment with 1.5 mM CA. Fraction of photon energy absorbed by PS II antennae trapped by "open" PS II reaction centers (P) was reduced by CA (1.5 mM) while, portion of absorbed photon energy thermally dissipated (D) and photon energy absorbed by PSII antennae and trapped by "closed" PSII reaction centers (E) was increased. Carbon isotope composition ratios (δ(13)C) was less negative (-27.10) in CA (1.5 mM) treated plants as compared to control (-27.61). Carbon isotope discrimination (Δ(13)C) and ratio of intercellular CO(2) concentration (ci/ca) from leaf to air were also less in CA treated plants. CA (1.5 mM) also decreased the leaf protein contents of L. sativa as compared to control.

  12. Dissipation function in a magnetic field (Review)

    Science.gov (United States)

    Gurevich, V. L.

    2015-07-01

    The dissipation function is introduced to describe the behavior of the system of harmonic oscillations interacting with the environment (thermostat). This is a quadratic function of generalized velocities, which determines the rate of dissipation of the mechanical energy in the system. It was assumed earlier (Landau, Lifshitz) that the dissipation function can be introduced only in the absence of magnetic field. In the present review based on the author's studies, it has been shown how the dissipation function can be introduced in the presence of a magnetic field B. In a magnetic field, both dissipative and nondissipative responses arise as a response to perturbation and are expressed in terms of kinetic coefficients. The matrix of nondissipative coefficients can be obtained to determine an additional term formally including it into the equations of motion, which still satisfy the energy conservation law. Then, the dissipative part of the matrix can be considered in exactly the same way as without magnetic field, i.e., it defines the dissipation loss. As examples, the propagation and absorption of ultrasound in a metal or a semiconductor in a magnetic field have been considered using two methods: (i) the method based on the phenomenological theory using the equations of the theory of elasticity and (ii) the method based on the microscopic approach by analyzing and solving the kinetic equation. Both examples are used to illustrate the approach with the dissipation function.

  13. Phononic dissipation during "hot" adatom motion: A QM/Me study of O2 dissociation at Pd surfaces

    Science.gov (United States)

    Bukas, Vanessa J.; Reuter, Karsten

    2017-01-01

    We augment ab initio molecular dynamics simulations with a quantitative account of phononic dissipation to study the non-equilibrium aftermath of the exothermic oxygen dissociation at low-index (111), (100), and (110) Pd surfaces. Comparing the hyperthermal diffusion arising from a non-instantaneous dissipation of the released chemical energy, we find a striking difference in the resulting "hot" adatom lifetime that is not overall reflected in experimentally recorded product end distances. We rationalize this finding through a detailed mode-specific phonon analysis and identify the dominant dissipation channels as qualitatively different groups of localized surface modes that ultimately lead to intrinsically different rates of dissipation to the Pd bulk. The thus obtained first-principles perspective on non-equilibrium adsorbate-phonon dynamics thereby underscores the sensitive dependence on details of the phononic fine structure, while questioning prevalent assumptions about energy sinks made in commonly used model bath Hamiltonians.

  14. Molecular partitioning based on the kinetic energy density

    Science.gov (United States)

    Noorizadeh, Siamak

    2016-05-01

    Molecular partitioning based on the kinetic energy density is performed to a number of chemical species, which show non-nuclear attractors (NNA) in their gradient maps of the electron density. It is found that NNAs are removed using this molecular partitioning and although the virial theorem is not valid for all of the basins obtained in the being used AIM, all of the atoms obtained using the new approach obey this theorem. A comparison is also made between some atomic topological parameters which are obtained from the new partitioning approach and those calculated based on the electron density partitioning.

  15. A heat dissipating model for water cooling garments

    Directory of Open Access Journals (Sweden)

    Yang Kai

    2013-01-01

    Full Text Available A water cooling garment is a functional clothing used to dissipate human body’s redundant energy in extravehicular environment or other hot environment. Its heat dissipating property greatly affects body’s heat balance. In this paper, a heat dissipating model for the water cooling garment is established and verified experimentally using the experimental thermal-manikin.

  16. Reflection and dissipation of Alfv\\'en waves in interstellar clouds

    CERN Document Server

    Pinto, C; Galli, D; Velli, M

    2012-01-01

    Context: Supersonic nonthermal motions in molecular clouds are often interpreted as long-lived magnetohydrodynamic (MHD) waves. The propagation and amplitude of these waves is affected by local physical characteristics, most importantly the gas density and the ionization fraction. Aims: We study the propagation, reflection and dissipation of Alfv\\'en waves in molecular clouds deriving the behavior of observable quantities such as the amplitudes of velocity fluctuations and the rate of energy dissipation. Methods: We formulated the problem in terms of Els\\"asser variables for transverse MHD waves propagating in a one-dimensional inhomogeneous medium, including the dissipation due to collisions between ions and neutrals and to a nonlinear turbulent cascade treated in a phenomenological way. We considered both steady-state and time-dependent situations and solved the equations of the problem numerically with an iterative method and a Lax-Wendroff scheme, respectively. Results: Alfv\\'en waves incident on overdens...

  17. Characterization of xanthophyll pigments, photosynthetic performance, photon energy dissipation, reactive oxygen species generation and carbon isotope discrimination during artemisinin-induced stress in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    M Iftikhar Hussain

    Full Text Available Artemisinin, a potent antimalarial drug, is phytotoxic to many crops and weeds. The effects of artemisinin on stress markers, including fluorescence parameters, photosystem II photochemistry, photon energy dissipation, lipid peroxidation, reactive oxygen species generation and carbon isotope discrimination in Arabidopsis thaliana were studied. Arabidopsis ecotype Columbia (Col-0 seedlings were grown in perlite and watered with 50% Hoagland nutrient solution. Adult plants of Arabidopsis were treated with artemisinin at 0, 40, 80, 160 μM for one week. Artemisinin, in the range 40-160 μM, decreased the fresh biomass, chl a, b and leaf mineral contents. Photosynthetic efficiency, yield and electron transport rate in Arabidopsis were also reduced following exposure to 80 and 160 μM artemisinin. The ΦNPQ and NPQ were less than control. Artemisinin treatment caused an increase in root oxidizability and lipid peroxidation (MDA contents of Arabidopsis. Calcium and nitrogen contents decreased after 80 and 160 μM artemisinin treatment compared to control. δ13C values were less negative following treatment with artemisinin as compared to the control. Artemisinin also decreased leaf protein contents in Arabidopsis. Taken together, these data suggest that artemisinin inhibits many physiological and biochemical processes in Arabidopsis.

  18. Generation Mechanism and Prediction Model for Low Frequency Noise Induced by Energy Dissipating Submerged Jets during Flood Discharge from a High Dam

    Directory of Open Access Journals (Sweden)

    Jijian Lian

    2016-06-01

    Full Text Available As flood water is discharged from a high dam, low frequency (i.e., lower than 10 Hz noise (LFN associated with air pulsation is generated and propagated in the surrounding areas, causing environmental problems such as vibrations of windows and doors and discomfort of residents and construction workers. To study the generation mechanisms and key influencing factors of LFN induced by energy dissipation through submerged jets at a high dam, detailed prototype observations and analyses of LFN are conducted. The discharge flow field is simulated using a gas-liquid turbulent flow model, and the vorticity fluctuation characteristics are then analyzed. The mathematical model for the LFN intensity is developed based on vortex sound theory and a turbulent flow model, verified by prototype observations. The model results reveal that the vorticity fluctuation in strong shear layers around the high-velocity submerged jets is highly correlated with the on-site LFN, and the strong shear layers are the main regions of acoustic source for the LFN. In addition, the predicted and observed magnitudes of LFN intensity agree quite well. This is the first time that the LFN intensity has been shown to be able to be predicted quantitatively.

  19. Dissipation of excess photosynthetic energy contributes to salinity tolerance: a comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas.

    Science.gov (United States)

    Lima Neto, Milton C; Lobo, Ana K M; Martins, Marcio O; Fontenele, Adilton V; Silveira, Joaquim Albenisio G

    2014-01-01

    The relationships between salt tolerance and photosynthetic mechanisms of excess energy dissipation were assessed using two species that exhibit contrasting responses to salinity, Ricinus communis (tolerant) and Jatropha curcas (sensitive). The salt tolerance of R. communis was indicated by unchanged electrolyte leakage (cellular integrity) and dry weight in leaves, whereas these parameters were greatly affected in J. curcas. The leaf Na+ content was similar in both species. Photosynthesis was intensely decreased in both species, but the reduction was more pronounced in J. curcas. In this species biochemical limitations in photosynthesis were more prominent, as indicated by increased C(i) values and decreased Rubisco activity. Salinity decreased both the V(cmax) (in vivo Rubisco activity) and J(max) (maximum electron transport rate) more significantly in J. curcas. The higher tolerance in R. communis was positively associated with higher photorespiratory activity, nitrate assimilation and higher cyclic electron flow. The high activity of these alternative electron sinks in R. communis was closely associated with a more efficient photoprotection mechanism. In conclusion, salt tolerance in R. communis, compared with J. curcas, is related to higher electron partitioning from the photosynthetic electron transport chain to alternative sinks. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Quantitative evaluation of residual torque of a loose bolt based on wave energy dissipation and vibro-acoustic modulation: A comparative study

    Science.gov (United States)

    Zhang, Zhen; Liu, Menglong; Su, Zhongqing; Xiao, Yi

    2016-11-01

    A wave energy dissipation (WED)-based linear acoustic approach and a vibro-acoustic modulation (VM)-based nonlinear method were developed comparatively, for detecting bolt loosening in bolted joints and subsequently evaluating the residual torque of the loose bolt. For WED-based, an analytical model residing on the Hertzian contact theory was established, whereby WED was linked to the residual torque of a loose bolt, contributing to a linear index. For VM-based, contact acoustic nonlinearity (CAN) engendered at the joining interface, when a pumping vibration perturbs a probing wave, was interrogated, and the nonlinear contact stiffness was described in terms of a Taylor series, on which basis a nonlinear index was constructed to associate spectral features with the residual torque. Based respectively on a linear and a nonlinear premise, the two indices were validated experimentally, and the results well coincided with theoretical predication. Quantitative comparison of the two indices surmises that the VM-based nonlinear method outperforms the WED-based linear approach in terms of sensitivity and accuracy, and particularly when the bolt loosening is in its embryo stage. In addition, the detectability of the nonlinear index is not restricted by the type of the joint, against a high dependence of its linear counterpart on the joint type.

  1. Turbulent energy dissipation rates observed by Doppler MST Radar and by rocket-borne instruments during the MIDAS/MaCWAVE campaign 2002

    Directory of Open Access Journals (Sweden)

    N. Engler

    2005-06-01

    Full Text Available During the MIDAS/MaCWAVE campaign in summer 2002 we have observed turbulence using Doppler beam steering measurements obtained from the ALWIN VHF radar at Andøya/Northern Norway. This radar was operated in the Doppler beam steering mode for turbulence investigations during the campaign, as well as in spaced antenna mode, for continuously measuring the background wind field. The real-time data analysis of the Doppler radar backscattering provided the launch conditions for the sounding rockets. The spectral width data observed during the occurrence of PMSE were corrected for beam and shear broadening caused by the background wind field to obtain the turbulent part of the spectral width. The turbulent energy dissipation rates determined from the turbulent spectral width vary between 5 and 100mW kg-1 in the altitude range of 80-92km and increase with altitude. These estimations agree well with the in-situ measurements using the CONE sensor which was launched on 3 sounding rockets during the campaign.

  2. Splitting of the zero-energy Landau level and universal dissipative conductivity at critical points in disordered graphene.

    Science.gov (United States)

    Ortmann, Frank; Roche, Stephan

    2013-02-22

    We report on robust features of the longitudinal conductivity (σ(xx)) of the graphene zero-energy Landau level in the presence of disorder and varying magnetic fields. By mixing an Anderson disorder potential with a low density of sublattice impurities, the transition from metallic to insulating states is theoretically explored as a function of Landau-level splitting, using highly efficient real-space methods to compute the Kubo conductivities (both σ(xx) and Hall σ(xy)). As long as valley degeneracy is maintained, the obtained critical conductivity σ(xx) =/~ 1.4e(2)/h is robust upon an increase in disorder (by almost 1 order of magnitude) and magnetic fields ranging from about 2 to 200 T. When the sublattice symmetry is broken, σ(xx) eventually vanishes at the Dirac point owing to localization effects, whereas the critical conductivities of pseudospin-split states (dictating the width of a σ(xy) = 0 plateau) change to σ(xx) =/~ e(2)/h, regardless of the splitting strength, superimposed disorder, or magnetic strength. These findings point towards the nondissipative nature of the quantum Hall effect in disordered graphene in the presence of Landau level splitting.

  3. Energy dissipation and p erio dic segregation of vibrated binary granular mixtures%振动颗粒混合物中的周期性分聚现象与能量耗散∗

    Institute of Scientific and Technical Information of China (English)

    何菲菲; 彭政; 颜细平; 蒋亦民

    2015-01-01

    For a vertically vibrating column filled with binary mixtures consisting of big copper beads and small glass beads, the phenomenon of periodic segregation (PS) is observed experimentally, in which distinct segregation patterns of Brazil nut effect (BNE), reversed Brazil nut (RBN) and sandwich (SW) are emerged successively under a certain vibration condition. The periodic time increases with increasing vibration frequency or decreasing acceleration, and the SW pattern holds 90% duration of a cycle. Since the three segregation patterns emerging sequentially in a cycle are all well defined, the energy dissipation power for each segregation pattern is measured under the same vibration condition. It is found that the dissipation power is the largest in RBN pattern and the smallest in BNE pattern during a cycle. Moreover, in the periodic segregation region the same patterns (BNE, RBN or SW) emerging at different vibration accelerations have almost the same dissipation power within the experimental error. Based on the viewpoint of competition between condensation and percolation from Hong, the periodic segregation phenomenon can be explained qualitatively by combining with our measurements of energy dissipation power.

  4. Combining configurational energies and forces for molecular force field optimization

    Science.gov (United States)

    Vlcek, Lukas; Sun, Weiwei; Kent, Paul R. C.

    2017-10-01

    While quantum chemical simulations have been increasingly used as an invaluable source of information for atomistic model development, the high computational expenses typically associated with these techniques often limit thorough sampling of the systems of interest. It is therefore of great practical importance to use all available information as efficiently as possible, and in a way that allows for consistent addition of constraints that may be provided by macroscopic experiments. Here we propose a simple approach that combines information from configurational energies and forces generated in a molecular dynamics simulation to increase the effective number of samples. Subsequently, this information is used to optimize a molecular force field by minimizing the statistical distance similarity metric. We illustrate the methodology on an example of a trajectory of configurations generated in equilibrium molecular dynamics simulations of argon and water and compare the results with those based on the force matching method.

  5. Light-induced energetic decoupling as a mechanism for phycobilisome-related energy dissipation in red algae: a single molecule study.

    Directory of Open Access Journals (Sweden)

    Lu-Ning Liu

    Full Text Available BACKGROUND: Photosynthetic organisms have developed multiple protective mechanisms to prevent photodamage in vivo under high-light conditions. Cyanobacteria and red algae use phycobilisomes (PBsomes as their major light-harvesting antennae complexes. The orange carotenoid protein in some cyanobacteria has been demonstrated to play roles in the photoprotective mechanism. The PBsome-itself-related energy dissipation mechanism is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here, single-molecule spectroscopy is applied for the first time on the PBsomes of red alga Porphyridium cruentum, to detect the fluorescence emissions of phycoerythrins (PE and PBsome core complex simultaneously, and the real-time detection could greatly characterize the fluorescence dynamics of individual PBsomes in response to intense light. CONCLUSIONS/SIGNIFICANCE: Our data revealed that strong green-light can induce the fluorescence decrease of PBsome, as well as the fluorescence increase of PE at the first stage of photobleaching. It strongly indicated an energetic decoupling occurring between PE and its neighbor. The fluorescence of PE was subsequently observed to be decreased, showing that PE was photobleached when energy transfer in the PBsomes was disrupted. In contrast, the energetic decoupling was not observed in either the PBsomes fixed with glutaraldehyde, or the mutant PBsomes lacking B-PE and remaining b-PE. It was concluded that the energetic decoupling of the PBsomes occurs at the specific association between B-PE and b-PE within the PBsome rod. Assuming that the same process occurs also at the much lower physiological light intensities, such a decoupling process is proposed to be a strategy corresponding to PBsomes to prevent photodamage of the photosynthetic reaction centers. Finally, a novel photoprotective role of gamma-subunit-containing PE in red algae was discussed.

  6. Kolmogorov Dissipation scales in Weakly Ionized Plasmas

    CERN Document Server

    Krishan, V

    2009-01-01

    In a weakly ionized plasma, the evolution of the magnetic field is described by a "generalized Ohm's law" that includes the Hall effect and the ambipolar diffusion terms. These terms introduce additional spatial and time scales which play a decisive role in the cascading and the dissipation mechanisms in magnetohydrodynamic turbulence. We determine the Kolmogorov dissipation scales for the viscous, the resistive and the ambipolar dissipation mechanisms. The plasma, depending on its properties and the energy injection rate, may preferentially select one of the these dissipation scales. thus determining the shortest spatial scale of the supposedly self-similar spectral distribution of the magnetic field. The results are illustrated taking the partially ionized part of the solar atmosphere as an example. Thus the shortest spatial scale of the supposedly self-similar spectral distribution of the solar magnetic field is determined by any of the four dissipation scales given by the viscosity, the Spizer resistivity...

  7. Machine learning of accurate energy-conserving molecular force fields

    Science.gov (United States)

    Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E.; Poltavsky, Igor; Schütt, Kristof T.; Müller, Klaus-Robert

    2017-01-01

    Using conservation of energy—a fundamental property of closed classical and quantum mechanical systems—we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules with an accuracy of 0.3 kcal mol−1 for energies and 1 kcal mol−1 Å̊−1 for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods. PMID:28508076

  8. Fluctuation-dissipation theorem and quantum tunneling with dissipation at finite temperature

    CERN Document Server

    Fujikawa, K; Fujikawa, Kazuo; Terashima, Hiroaki

    1998-01-01

    A reformulation of the fluctuation-dissipation theorem of Callen and Welton is presented in such a manner that the basic idea of Feynman-Vernon and Caldeira -Leggett of using an infinite number of oscillators to simulate the dissipative medium is realized manifestly without actually introducing oscillators. If one assumes the existence of a well defined dissipative coefficient $R(\\omega)$ which little depends on the temperature in the energy region we are interested in, the spontanous and induced emissions as well as induced absorption of these effective oscillators with correct Bose distribution automatically appears. Combined with a dispersion relation, we reproduce the tunneling formula in the presence of dissipation at finite temperature without referring to an explicit model Lagrangian. The fluctuation-dissipation theorem of Callen-Welton is also generalized to the fermionic dissipation (or fluctuation) which allows a transparent physical interpretation in terms of second quantized fermionic oscillators....

  9. Thermodynamic geometry of minimum-dissipation driven barrier crossing

    Science.gov (United States)

    Sivak, David A.; Crooks, Gavin E.

    2016-11-01

    We explore the thermodynamic geometry of a simple system that models the bistable dynamics of nucleic acid hairpins in single molecule force-extension experiments. Near equilibrium, optimal (minimum-dissipation) driving protocols are governed by a generalized linear response friction coefficient. Our analysis demonstrates that the friction coefficient of the driving protocols is sharply peaked at the interface between metastable regions, which leads to minimum-dissipation protocols that drive rapidly within a metastable basin, but then linger longest at the interface, giving thermal fluctuations maximal time to kick the system over the barrier. Intuitively, the same principle applies generically in free energy estimation (both in steered molecular dynamics simulations and in single-molecule experiments), provides a design principle for the construction of thermodynamically efficient coupling between stochastic objects, and makes a prediction regarding the construction of evolved biomolecular motors.

  10. Shoreline dissipation of infragravity waves

    NARCIS (Netherlands)

    de Bakker, A.T.M.; Tissier, M.F.S.; Ruessink, B.G.

    2014-01-01

    Infragravity waves (0.005–0.05 Hz) have recently been observed to dissipate a large part of their energy in the short-wave (0.05–1 Hz) surf zone, however, the underlying mechanism is not well understood. Here, we analyse two new field data sets of near-bed pressure and velocity at up to 13 cross-sho

  11. Shoreline dissipation of infragravity waves

    NARCIS (Netherlands)

    de Bakker, A.T.M.|info:eu-repo/dai/nl/371573734; Tissier, M.F.S.|info:eu-repo/dai/nl/36447887X; Ruessink, B.G.|info:eu-repo/dai/nl/169093360

    2014-01-01

    Infragravity waves (0.005–0.05 Hz) have recently been observed to dissipate a large part of their energy in the short-wave (0.05–1 Hz) surf zone, however, the underlying mechanism is not well understood. Here, we analyse two new field data sets of near-bed pressure and velocity at up to 13 cross-sho

  12. Energy conservation in molecular dynamics simulations of classical systems.

    Science.gov (United States)

    Toxvaerd, Søren; Heilmann, Ole J; Dyre, Jeppe C

    2012-06-14

    Classical Newtonian dynamics is analytic and the energy of an isolated system is conserved. The energy of such a system, obtained by the discrete "Verlet" algorithm commonly used in molecular dynamics simulations, fluctuates but is conserved in the mean. This is explained by the existence of a "shadow Hamiltonian" H [S. Toxvaerd, Phys. Rev. E 50, 2271 (1994)], i.e., a Hamiltonian close to the original H with the property that the discrete positions of the Verlet algorithm for H lie on the analytic trajectories of H. The shadow Hamiltonian can be obtained from H by an asymptotic expansion in the time step length. Here we use the first non-trivial term in this expansion to obtain an improved estimate of the discrete values of the energy. The investigation is performed for a representative system with Lennard-Jones pair interactions. The simulations show that inclusion of this term reduces the standard deviation of the energy fluctuations by a factor of 100 for typical values of the time step length. Simulations further show that the energy is conserved for at least one hundred million time steps provided the potential and its first four derivatives are continuous at the cutoff. Finally, we show analytically as well as numerically that energy conservation is not sensitive to round-off errors.

  13. 新型耗能辅助墩抗震性能的参数研究%PARAMETRIC STUDIES OF SEISMIC PERFORMANCE ON ENERGY DISSIPATION SUBSIDIARY PIERS

    Institute of Scientific and Technical Information of China (English)

    魏俊; 孙利民

    2012-01-01

    基于地震损伤控制设计的思想,作者提出了一种耗能型辅助墩结构形式.为了研究辅助墩的抗震性能,保护强震作用下超大跨斜拉桥的主塔,该文采用非线性静力分析方法对辅助墩的各种参数进行了分析,探讨了墩柱尺寸及间距,软钢剪力连杆尺寸、布置道数及间距等参数变化对辅助墩抗震性能的影响.结果表明:混凝土墩柱和剪力连杆的刚度需要一个合适的比例,墩柱间距应满足剪力连杆发生剪切型屈服的要求,剪力连杆布置方式的影响可以忽略.%Based on seismic damage control design strategies, a kind of new energy dissipation subsidiary piers is proposed. In order to investigate the seismic performance of subsidiary piers and protect the towers of long span cable-stayed bridges under a strong earthquake, various parameters of subsidiary piers are analyzed employing a nonlinear static analysis method in this paper. The influences of the parameters which include dimensions and spacing of columns, dimensions, numbers and spacing of shear links on the seismic performance of subsidiary piers are discussed. The results show that appropriate stiffness ratio of columns and shear links is needed, and the distance between columns satisfies the requirement of the shear yield of shear links, and the influence of the layout fashion of shear links is ignored.

  14. A Predictive Framework for Thermomechanical Fatigue Life of High Silicon Molybdenum Ductile Cast Iron Based on Considerations of Strain Energy Dissipation

    Science.gov (United States)

    Avery, Katherine R.

    Isothermal low cycle fatigue (LCF) and anisothermal thermomechanical fatigue (TMF) tests were conducted on a high silicon molybdenum (HiSiMo) cast iron for temperatures up to 1073K. LCF and out-of-phase (OP) TMF lives were significantly reduced when the temperature was near 673K due to an embrittlement phenomenon which decreases the ductility of HiSiMo at this temperature. In this case, intergranular fracture was predominant, and magnesium was observed at the fracture surface. When the thermal cycle did not include 673K, the failure mode was predominantly transgranular, and magnesium was not present on the fracture surface. The in-phase (IP) TMF lives were unaffected when the thermal cycle included 673K, and the predominant failure mode was found to be transgranular fracture, regardless of the temperature. No magnesium was present on the IP TMF fracture surfaces. Thus, the embrittlement phenomenon was found to contribute to fatigue damage only when the temperature was near 673K and a tensile stress was present. To account for the temperature- and stress-dependence of the embrittlement phenomenon on the TMF life of HiSiMo cast iron, an original model based on the cyclic inelastic energy dissipation is proposed which accounts for temperature-dependent differences in the rate of fatigue damage accumulation in tension and compression. The proposed model has few empirical parameters. Despite the simplicity of the model, the predicted fatigue life shows good agreement with more than 130 uniaxial low cycle and thermomechanical fatigue tests, cyclic creep tests, and tests conducted at slow strain rates and with hold times. The proposed model was implemented in a multiaxial formulation and applied to the fatigue life prediction of an exhaust manifold subjected to severe thermal cycles. The simulation results show good agreement with the failure locations and number of cycles to failure observed in a component-level experiment.

  15. Dissipative Boussinesq equations

    CERN Document Server

    Dutykh, D; Dias, Fr\\'{e}d\\'{e}ric; Dutykh, Denys

    2007-01-01

    The classical theory of water waves is based on the theory of inviscid flows. However it is important to include viscous effects in some applications. Two models are proposed to add dissipative effects in the context of the Boussinesq equations, which include the effects of weak dispersion and nonlinearity in a shallow water framework. The dissipative Boussinesq equations are then integrated numerically.

  16. Molecular ion sources for low energy semiconductor ion implantation (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, A., E-mail: hershcovitch@bnl.gov [Brookhaven National Laboratory, Upton, New York 11973 (United States); Gushenets, V. I.; Bugaev, A. S.; Oks, E. M.; Vizir, A.; Yushkov, G. Yu. [High Current Electronics Institute, Siberian Branch of Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Seleznev, D. N.; Kulevoy, T. V.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S. [Institute for Theoretical and Experimental Physics, Moscow 117218 (Russian Federation); Dugin, S.; Alexeyenko, O. [State Scientific Center of the Russian Federation State Research Institute for Chemistry and Technology of Organoelement Compounds, Moscow (Russian Federation)

    2016-02-15

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described.

  17. Research on Spillway Energy Dissipation Problems and Hydraulic Model Test Method%溢洪道消能问题及水工模型试验方法研究

    Institute of Scientific and Technical Information of China (English)

    赵津霆

    2016-01-01

    Spillway is the important facility to ensure the flood carrying capacity of the reservoir. High speed flow from the spillway has a strong impact force, therefore the energy dissipation problems have attracted extensive attention. In this paper, it introduced several common energy dissipation methods in the project at present, and expounded the theoretical basis of experimental study with hydraulic model so as to put forward some references for the research on the problems of spillway energy dissipation.%溢洪道是保证水库泄洪能力的重要设施,因其泄下的高速水流具有很强的冲击力,所以其消能问题备受关注。介绍目前工程中常用的几种消能方法,阐述利用水工模型进行试验研究的理论基础,以期为溢洪道消能问题的研究提供参考。

  18. Calculating Free Energies Using Scaled-Force Molecular Dynamics Algorithm

    Science.gov (United States)

    Darve, Eric; Wilson, Micahel A.; Pohorille, Andrew

    2000-01-01

    One common objective of molecular simulations in chemistry and biology is to calculate the free energy difference between different states of the system of interest. Examples of problems that have such an objective are calculations of receptor-ligand or protein-drug interactions, associations of molecules in response to hydrophobic, and electrostatic interactions or partition of molecules between immiscible liquids. Another common objective is to describe evolution of the system towards a low energy (possibly the global minimum energy), 'native' state. Perhaps the best example of such a problem is folding of proteins or short RNA molecules. Both types of problems share the same difficulty. Often, different states of the system are separated by high energy barriers, which implies that transitions between these states are rare events. This, in turn, can greatly impede exploration of phase space. In some instances this can lead to 'quasi non-ergodicity', whereby a part of phase space is inaccessible on timescales of the simulation. A host of strategies has been developed to improve efficiency of sampling the phase space. For example, some Monte Carlo techniques involve large steps which move the system between low-energy regions in phase space without the need for sampling the configurations corresponding to energy barriers (J-walking). Most strategies, however, rely on modifying probabilities of sampling low and high-energy regions in phase space such that transitions between states of interest are encouraged. Perhaps the simplest implementation of this strategy is to increase the temperature of the system. This approach was successfully used to identify denaturation pathways in several proteins, but it is clearly not applicable to protein folding. It is also not a successful method for determining free energy differences. Finally, the approach is likely to fail for systems with co-existing phases, such as water-membrane systems, because it may lead to spontaneous

  19. Dissipation effects in mechanics and thermodynamics

    CERN Document Server

    Guemez, Julio

    2016-01-01

    With the discussion of three examples, we aim at clarifying the concept of energy transfer associated with dissipation in mechanics and in thermodynamics. The dissipation effects due to dissipative forces, such as the friction force between solids or the drag force in motions in fluids, lead to an internal energy increase of the system and/or to a heat transfer to the surrounding. This heat flow is consistent with the second law, which states that the entropy of the universe should increase when those forces are present because of the irreversibility always associated with their actions. As far as mechanics is concerned the effects of the dissipative forces are include in the Newton's equations as impulses and pseudo-works.

  20. Dissipation effects in mechanics and thermodynamics

    Science.gov (United States)

    Güémez, J.; Fiolhais, M.

    2016-07-01

    With the discussion of three examples, we aim at clarifying the concept of energy transfer associated with dissipation in mechanics and in thermodynamics. The dissipation effects due to dissipative forces, such as the friction force between solids or the drag force in motions in fluids, lead to an internal energy increase of the system and/or to heat transfer to the surroundings. This heat flow is consistent with the second law, which states that the entropy of the universe should increase when those forces are present because of the irreversibility always associated with their actions. As far as mechanics is concerned, the effects of the dissipative forces are included in Newton’s equations as impulses and pseudo-works.

  1. Quantum mechanics/molecular mechanics dual Hamiltonian free energy perturbation.

    Science.gov (United States)

    Polyak, Iakov; Benighaus, Tobias; Boulanger, Eliot; Thiel, Walter

    2013-08-14

    The dual Hamiltonian free energy perturbation (DH-FEP) method is designed for accurate and efficient evaluation of the free energy profile of chemical reactions in quantum mechanical/molecular mechanical (QM/MM) calculations. In contrast to existing QM/MM FEP variants, the QM region is not kept frozen during sampling, but all degrees of freedom except for the reaction coordinate are sampled. In the DH-FEP scheme, the sampling is done by semiempirical QM/MM molecular dynamics (MD), while the perturbation energy differences are evaluated from high-level QM/MM single-point calculations at regular intervals, skipping a pre-defined number of MD sampling steps. After validating our method using an analytic model potential with an exactly known solution, we report a QM/MM DH-FEP study of the enzymatic reaction catalyzed by chorismate mutase. We suggest guidelines for QM/MM DH-FEP calculations and default values for the required computational parameters. In the case of chorismate mutase, we apply the DH-FEP approach in combination with a single one-dimensional reaction coordinate and with a two-dimensional collective coordinate (two individual distances), with superior results for the latter choice.

  2. Electronic excitation of molecular hydrogen by low-energy electrons

    Science.gov (United States)

    Hargreaves, Leigh

    2016-09-01

    Molecular hydrogen is the most abundant element in the universe, particularly in interstellar plasmas such as atmospheres of gas giant planets and stars. Electron collision data for hydrogen is critical to interpreting the spectroscopy of interstellar objects, as well as being of applied value for modelling technological plasmas. Hydrogen is also fundamentally interesting, as while highly accurate wave functions for this simple molecule are available, providing an accurate, ab initio, treatment the collision dynamics has proven challenging, on account of the need to have a complete description of channel coupling and polarization effects. To date, no single theoretical approach has been able to replicate experimental results across all transitions and incident energies, while the experimental database that is available is far from complete and not all available measurements are in satisfactory agreement. In this talk, we present differential and integral cross section measurements for electronic excitation cross sections for molecular hydrogen by low-energy electron impact. The data were measured at incident energies below 20eV, using a well-tested crossed beam apparatus and employing a moveable gas source approach to ensure that background contributions to the scattering are accurately accounted for. These measurements are compared with new theoretical results employing the convergent close coupling approach.

  3. Quantum Computing Resource Estimate of Molecular Energy Simulation

    CERN Document Server

    Whitfield, James D; Aspuru-Guzik, Alán

    2010-01-01

    Over the last century, ingenious physical and mathematical insights paired with rapidly advancing technology have allowed the field of quantum chemistry to advance dramatically. However, efficient methods for the exact simulation of quantum systems on classical computers do not exist. The present paper reports an extension of one of the authors' previous work [Aspuru-Guzik et al., Science {309} p. 1704, (2005)] where it was shown that the chemical Hamiltonian can be efficiently simulated using a quantum computer. In particular, we report in detail how a set of molecular integrals can be used to create a quantum circuit that allows the energy of a molecular system with fixed nuclear geometry to be extracted using the phase estimation algorithm proposed by Abrams and Lloyd [Phys. Rev. Lett. {83} p. 5165, (1999)]. We extend several known results related to this idea and present numerical examples of the state preparation procedure required in the algorithm. With future quantum devices in mind, we provide a compl...

  4. Accurate studies on the full vibrational energy spectra and molecular dissociation energies for some electronic states of N2 molecule

    Institute of Scientific and Technical Information of China (English)

    REN; Weiyi; SUN; Weiguo; HOU; Shilin; FENG; Hao

    2005-01-01

    It is usually very difficult to directly obtain molecular dissociation energy De and all accurate high-lying vibrational energies for most diatomic electronic states using modern experimental techniques or quantum theories, and it is also very difficult to give accurate analytical expression for diatomic molecular dissociation energy. This study proposes a new analytical formula for obtaining accurate molecular dissociation energy based on the LeRoy and Bernstein's energy expression in dissociation limit. A set of full vibrational energy spectra for some electronic states of N2 molecule are studied using the algebraic method (AM) suggested recently, and the corresponding accurate molecular dissociation energies are evaluated using the proposed new formula and high-lying AM vibrational energies. The results show that the AM spectra and the new theoretical dissociation energies agree excellently with experimental data, and thereby providing a new physical approach to generating accurate dissociation energies for electronic states of diatomic molecules.

  5. Spatial Inhomogeneity of Kinetic and Magnetic Dissipations in Thermal Convection

    Science.gov (United States)

    Hotta, H.

    2017-08-01

    We investigate the inhomogeneity of kinetic and magnetic dissipations in thermal convection using high-resolution calculations. In statistically steady turbulence, the injected and dissipated energies are balanced. This means that a large amount of energy is continuously converted into internal energy via dissipation. As in thermal convection, downflows are colder than upflows and the inhomogeneity of the dissipation potentially changes the convection structure. Our investigation of the inhomogeneity of the dissipation shows the following. (1) More dissipation is seen around the bottom of the calculation domain, and this tendency is promoted with the magnetic field. (2) The dissipation in the downflow is much larger than that in the upflow. The dissipation in the downflow is more than 80% of the total at maximum. This tendency is also promoted with the magnetic field. (3) Although 2D probability density functions of the kinetic and magnetic dissipations versus the vertical velocity are similar, the kinetic and magnetic dissipations are not well correlated. Our result suggests that the spatial inhomogeneity of the dissipation is significant and should be considered when modeling a small-scale strong magnetic field generated with an efficient small-scale dynamo for low-resolution calculations.

  6. Computing Equilibrium Free Energies Using Non-Equilibrium Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Christoph Dellago

    2013-12-01

    Full Text Available As shown by Jarzynski, free energy differences between equilibrium states can be expressed in terms of the statistics of work carried out on a system during non-equilibrium transformations. This exact result, as well as the related Crooks fluctuation theorem, provide the basis for the computation of free energy differences from fast switching molecular dynamics simulations, in which an external parameter is changed at a finite rate, driving the system away from equilibrium. In this article, we first briefly review the Jarzynski identity and the Crooks fluctuation theorem and then survey various algorithms building on these relations. We pay particular attention to the statistical efficiency of these methods and discuss practical issues arising in their implementation and the analysis of the results.

  7. 基于BP网络的混凝土耗能器骨架曲线拟合%Based on BP Neural Network of Concrete Energy Dissipator Skeleton Curve Fitting

    Institute of Scientific and Technical Information of China (English)

    王文娟; 陈继光

    2012-01-01

    结合5种混凝土延性柱耗能器在低周期反复荷载作用下的试验数据研究,利用神经网络的工作原理,通过建立神经网络的输入层、隐含层、输出层,确定输入单元、输出单元和隐含层节点数,从而建立了BP神经网络的模型,并根据已有的部分试验数据数据.对网络进行训练,对各种混凝土延性柱耗能器骨架曲线进行了预测拟合,实现混凝土延性柱耗能器骨架曲线的数字化,使其成为具有分析和判断的拟合曲线功能,完整的描绘混凝土延性柱耗能器的骨架曲线,为后续混凝土延性柱耗能器性能研究的仿真模拟提供了可靠的数据模型.结果表明,这种方法是可行的.%Combined with 5 kinds of concrete ductility column energy dissipator at low cycle load test data research, the working principle of neural network, and by establishing a neural network's input layer, hidden and output layer, determine inputs unit, output unit and hidden node number, and to establish the BP neural network model, and part of the test data according to the existing data. Networks are trained to of all kinds of concrete ductility column energy dissipator skeleton curve fitting, forecast the realization concrete ductility column energy dissipator skeleton curve digital, make it become with analysis and judgment of the fitting curve function, complete description of concrete column energy dissipator ductility of skeleton curves, for the subsequent concrete ductility column energy dissipator performance simulation study provides the reliable data model. The results show that the method is feasible.

  8. Numerical and theoretical analysis of dissipation energy capacity of ring net impacted by rockfall%落石冲击作用下环形网耗能性能的理论及数值模拟研究

    Institute of Scientific and Technical Information of China (English)

    汪敏; 石少卿; 康建功

    2011-01-01

    推导了环形网中单个圆环耗散能量的计算公式,建立两种不同约束条件下环形网受落石冲击的计算模型,讨论了环形网耗能的计算方法.采用LS-DYNA软件对两种模型上环形网受到落石冲击作用的力学性能进行了数值模拟分析,对比分析了两种模型对环形网耗能性能的影响,同时对模型2中影响环形网耗能性能的因素进行了参数分析,并与理论计算结果进行了比较,理论计算结果能较好地预测环形网吸收的最大能量,可为环形网耗能性能的评价及应用提供一定的参考依据.%The formula to consider the dissipation energy capacity of single ring was deduced, two models of the ring net with different restraint impacted by rockfall were established and the dissipation energy capacity of the ring net in two models was discussed. Based on the LS-DANY program, the mechanical performance of the ring net in the two models impacted by rockfall was investigated, and the result of model one was validated by the experiment. The parameters which influence the dissipation energy capacity of the ring net in the model two were analyzed, and the result was compared with the theoretical one. The research shows that the theoretical computation can well evaluate the dissipation energy capacity of the ring net. The way to evaluate the dissipation energy capacity of the ring net was also presented.

  9. Loose mechanochemical coupling of molecular motors

    CERN Document Server

    Zhang, Yunxin

    2011-01-01

    In living cells, molecular motors convert chemical energy into mechanical work. Its thermodynamic energy efficiency, i.e. the ratio of output mechanical work to input chemical energy, is usually high. However, using two-state models, we found the motion of molecular motors is loosely coupled to the chemical cycle. Only part of the input energy can be converted into mechanical work. Others is dissipated into environment during substeps without contributions to the macro scale unidirectional movement.

  10. Dissipative Axial Inflation

    CERN Document Server

    Notari, Alessio

    2016-01-01

    We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term $\\frac{\\phi}{f_\\gamma} F \\tilde{F}$, such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density $\\rho_R$, which which can lead to inflation without the need of a flat potential. We analyze the system, for momenta $k$ smaller than the cutoff $f_\\gamma$, including numerically the backreaction. We consider the evolution from a given static initial condition and explicitly show that, if $f_\\gamma$ is smaller than the field excursion $\\phi_0$ by about a factor of at least ${\\cal O} (20)$, there is a friction effect which turns on before that the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of...

  11. Molecular Tracers of Turbulent Shocks in Giant Molecular Clouds

    CERN Document Server

    Pon, A; Kaufman, M J

    2012-01-01

    Giant molecular clouds contain supersonic turbulence and simulations of MHD turbulence show that these supersonic motions decay in roughly a crossing time, which is less than the estimated lifetimes of molecular clouds. Such a situation requires a significant release of energy. We run models of C-type shocks propagating into gas with densities around 10^3 cm^(-3) at velocities of a few km / s, appropriate for the ambient conditions inside of a molecular cloud, to determine which species and transitions dominate the cooling and radiative energy release associated with shock cooling of turbulent molecular clouds. We find that these shocks dissipate their energy primarily through CO rotational transitions and by compressing pre-existing magnetic fields. We present model spectra for these shocks and by combining these models with estimates for the rate of turbulent energy dissipation, we show that shock emission should dominate over emission from unshocked gas for mid to high rotational transitions (J >5) of CO. ...

  12. Core-Shell Fibers Electrospun from Phase-Separated Blend Solutions: Fiber Formation Mechanism and Unique Energy Dissipation for Synergistic Fiber Toughness.

    Science.gov (United States)

    Wang, Chi; Hsiue, Ting-Ting

    2017-09-11

    Through single-tube electrospinning, the biodegradable core-shell fibers of poly(3-hydroxybutyrate) (PHB) and poly(d,l-lactic acid) (PDLLA) were obtained from blend solutions with different compositions at a total polymer concentration of 7 wt %. Regardless whether PHB is the major or minor component (PHB/PDLLA = 90/10, 75/25, 50/50, and 25/75 wt. ratio), these phase-separated solutions all yielded core-shell fibers with PHB as core and PDLLA as shell. A new scenario of core-shell fiber formation was proposed on the basis of the relative magnitude of the intrinsic relaxation rate of fluids and external extension rate during electrospinning. The effects of blend compositions on the morphologies of the Taylor cone, whipping jet, and as-spun fibers were investigated. The diameters of core-shell fibers can be tailored by simply varying the PHB/PDLLA ratios. Two scaling laws describing the apparent viscosity (ηo) dependence of the outer fiber diameter (dfo) and core fiber diameter (dfc) were derived. That is, dfo ∼ ηo(0.38) and dfc ∼ ηo(0.86). The microstructures of the as-spun fibers were determined by differential scanning calorimetry, Fourier transform infrared spectroscopy, and synchrotron wide-angle and small-angle X-ray scatterings. Results showed that the PDLLA component was in the amorphous state, and the crystallizability of PHB component remained unchanged, except the amorphous 10/90 fibers electrospun from a miscible solution state. The synergistic mechanical properties of the core-shell fibers were obtained, along with the ductile PDLLA shell enclosing the brittle PHB core. The enhanced toughness was attributed to the fragmentation of the brittle PHB core and necking fracture of the ductile PDLLA shell, which served as an effective route for energy dissipation. Compared with the neat PHB fiber, the 90/10 and 75/25 core-shell fibers possessed larger elastic moduli, which was attributed to the high PHB crystal orientation in their core sections despite

  13. Enhanced heat transfer through filler-polymer interface by surface-coupling agent in heat-dissipation material: A non-equilibrium molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Kouichi [DENSO CORPORATION, Kariya, Aichi 448-8661 (Japan); Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Ogata, Shuji; Kobayashi, Ryo; Tamura, Tomoyuki [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Kitsunezuka, Masashi; Shinma, Atsushi [DENSO CORPORATION, Kariya, Aichi 448-8661 (Japan)

    2013-11-21

    Developing a composite material of polymers and micrometer-sized fillers with higher heat conductance is crucial to realize modular packaging of electronic components at higher densities. Enhancement mechanisms of the heat conductance of the polymer-filler interfaces by adding the surface-coupling agent in such a polymer composite material are investigated through the non-equilibrium molecular dynamics (MD) simulation. A simulation system is composed of α-alumina as the filler, bisphenol-A epoxy molecules as the polymers, and model molecules for the surface-coupling agent. The inter-atomic potential between the α-alumina and surface-coupling molecule, which is essential in the present MD simulation, is constructed to reproduce the calculated energies with the electronic density-functional theory. Through the non-equilibrium MD simulation runs, we find that the thermal resistance at the interface decreases significantly by increasing either number or lengths of the surface-coupling molecules and that the effective thermal conductivity of the system approaches to the theoretical value corresponding to zero thermal-resistance at the interface. Detailed analyses about the atomic configurations and local temperatures around the interface are performed to identify heat-transfer routes through the interface.

  14. Buckling Restraint Conditions for Innovative Aluminum Alloy Energy Dissipation Braces%新型铝合金耗能支撑屈曲约束条件研究

    Institute of Scientific and Technical Information of China (English)

    贾斌; 张其林; 罗晓群; 陈远军

    2014-01-01

    在国外已进行的相关铝合金材料及其屈曲约束支撑(BRB)试验基础上,对铝合金耗能支撑(ALBRB)的受力性能进行了进一步的数值分析。主要目的是对 ALBRB 进行参数化研究,找出影响其整体及局部屈曲的关键因素。结果发现利用约束比设计 BRB 的传统方法不能充分考虑偏心距、初始缺陷的影响,采用安全系数法能克服这一问题。为开发适用于空间结构减震的新型 AL-BRB,设计了一种质量更轻、构造更简单、性能更稳定的 ALBRB,并对其防屈曲性能进行了理论推导和数值模拟。结果表明新型 ALBRB 单调加载下稳定性能良好,循环加载下其滞回曲线饱满稳定具备良好的耗能能力,对于大跨空间结构抗震应用具有积极意义。%The concept of structural damage control,introduced in the seismic retrofitting area in the late 1 980s,has become popular in its applications for engineering bridges and buildings.Under strong or severe earthquake excitations,plans are made such that damage is expected to take place in energy dissipation devices and the primary structure can be kept away from the damage.Among many types of damping devices,increasing attention is being paid to hysteretic dampers,because the inelastic deformation capacity of metallic substances presents an effective approach in trans-ferring seismic energy to other forms of energy at a low cost.Buckling-restrained braces (BRBs), as an axial-type hysteretic damper,are widely studied through their component behavior and sys-tem applications in civil engineering.Aluminum has drawn our attention for improving the dura-bility of high-performance BRBs.Usually,aluminum and its alloys need no protection against at-mospheric or chemical corrosive agents,because aluminum oxide,which is naturally generated on the surface of the metal,protects the body of the metal against corrosion.Because of the advanta-ges of aluminum and its alloys,such as its light weight

  15. Entanglement generated by dissipation

    CERN Document Server

    Krauter, Hanna; Jensen, Kasper; Wasilewski, Wojciech; Petersen, Jonas M; Cirac, J Ignacio; Polzik, Eugene S

    2010-01-01

    Entanglement is not only one of the most striking features of Quantum Mechanics but also an essential ingredient in most applications in the field of Quantum Information. Unfortunately, this property is very fragile. In experiments conducted so far, coupling of the system to a quantum mechanical environment, commonly referred to as dissipation, either inhibits entanglement or prevents its generation. In this Letter, we report on an experiment in which dissipation induces entanglement between two atomic objects rather than impairing it. This counter-intuitive effect is achieved by engineering the dissipation by means of laser- and magnetic fields, and leads to entanglement which is very robust and therefore long-lived. Our system consists of two distant macroscopic ensembles containing about 10^{12} atoms coupled to the environment composed of the vacuum modes of the electromagnetic field. The two atomic objects are kept entangled by dissipation at room temperature for about 0.015s. The prospects of using this...

  16. Molecular spinless energies of the modified Rosen-Morse potential energy model in higher spatial dimensions

    Science.gov (United States)

    Jia, Chun-Sheng; Dai, Jian-Wei; Zhang, Lie-Hui; Liu, Jian-Yi; Zhang, Guang-Dong

    2015-01-01

    We solve the Klein-Gordon equation with the modified Rosen-Morse potential energy model in D spatial dimensions. The bound state energy equation has been obtained by using the supersymmetric WKB approximation approach. We find that the inter-dimensional degeneracy symmetry exists for the molecular system represented by the modified Rosen-Morse potential. For fixed vibrational and rotational quantum numbers, the relativistic energies for the 61Πu state of the 7Li2 molecule and the X3Π state of the SiC radical increase as D increases. We observe that the behavior of the relativistic vibrational energies in higher dimensions remains similar to that of the three-dimensional system.

  17. Characterizing the Free-Energy Landscape of MDM2 Protein-Ligand Interactions by Steered Molecular Dynamics Simulations.

    Science.gov (United States)

    Hu, Guodong; Xu, Shicai; Wang, Jihua

    2015-12-01

    Inhibition of p53-MDM2 interaction by small molecules is considered to be a promising approach to re-activate wild-type p53 for tumor suppression. Several inhibitors of the MDM2-p53 interaction were designed and studied by the experimental methods and the molecular dynamics simulation. However, the unbinding mechanism was still unclear. The steered molecular dynamics simulations combined with Brownian dynamics fluctuation-dissipation theorem were employed to obtain the free-energy landscape of unbinding between MDM2 and their four ligands. It was shown that compounds 4 and 8 dissociate faster than compounds 5 and 7. The absolute binding free energies for these four ligands are in close agreement with experimental results. The open movement of helix II and helix IV in the MDM2 protein-binding pocket upon unbinding is also consistent with experimental MDM2-unbound conformation. We further found that different binding mechanisms among different ligands are associated with H-bond with Lys51 and Glu25. These mechanistic results may be useful for improving ligand design.

  18. Correlation between and dissipated energy of electromagnetic radiation coal rock duringcyclic loading%煤岩循环加载破坏电磁辐射能与耗散能的关系

    Institute of Scientific and Technical Information of China (English)

    宋大钊; 王恩元; 刘晓斐; 马镭蚺; 晋明月

    2012-01-01

    Electromagnetic radiation (EMR) and dissipated energy were measured during the stress loading of coal rock. The mechanism of energy conversion during damage to the rock was studied. A relationship between EMR and dissipated energy was established that involved the hysteresis loop seen between loading and unloading of the material. Laboratory experiments on Xinlu and Junde coal samples were.performed. The cumulative EMR energy is related to the ar- ea of the hysteresis loop, which corresponds to the dissipated energy, by an equation of the form :y = aln sc+b. The correlation coefficient for the fit of the data to this equation was grea- ter than 0.90. Using EMR signals of different frequencies have little effect On the relationship. Adjacent samples from a mine show different total EMR release and dissipated energy. Never- the-less, these are positively correlated overall.%研究了煤岩体损伤破坏过程中的能量转化机制,以煤岩体加卸载循环过程中产生的滞回环为桥梁建立了受载煤岩体电磁辐射能与耗散能之间的关系,并利用龙煤集团新陆及峻德煤矿煤样进行了实验室实验验证.结果表明:煤样电磁辐射能累计与对应的耗散能累计(滞回环面积累计)很好的服从y—aln.72+b形式的关系,正相关系数多在0.90以上,不同频率天线接收的电磁辐射信号不会对此关系产生实质影响;由于煤岩体内部结构的强离散性,相同矿区相邻取样点的煤样在整个破坏过程中产生的电磁辐射累计能量存在一定的差异,对应的耗散能也有所不同,但总体上两者呈正相关关系.

  19. Understanding of the dissipation mechanism in ternary fission for the system 197Au+197Au

    Science.gov (United States)

    Tian, Jun-Long; Li, Xian; Wu, Xi-Zhen; Li, Zhu-Xia; Yan, Shi-Wei

    2009-03-01

    The mass number distributions of three fragments from the ternary fission of the system 197Au+197Au are reproduced rather well by using the improved quantum molecular dynamics (ImQMD) model without any adjusting parameter. It is found that the probability of ternary fission evidently depends on the incident energy and the impact parameter, and the two-body dissipation is the main mechanism responsible for the formation of the third fragment with comparable mass.

  20. Calculations of Solvation Free Energy through Energy Reweighting from Molecular Mechanics to Quantum Mechanics.

    Science.gov (United States)

    Jia, Xiangyu; Wang, Meiting; Shao, Yihan; König, Gerhard; Brooks, Bernard R; Zhang, John Z H; Mei, Ye

    2016-02-09

    In this work, the solvation free energies of 20 organic molecules from the 4th Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL4) have been calculated. The sampling of phase space is carried out at a molecular mechanical level, and the associated free energy changes are estimated using the Bennett Acceptance Ratio (BAR). Then the quantum mechanical (QM) corrections are computed through the indirect Non-Boltzmann Bennett's acceptance ratio (NBB) or the thermodynamics perturbation (TP) method. We show that BAR+TP gives a minimum analytic variance for the calculated solvation free energy at the Gaussian limit and performs slightly better than NBB in practice. Furthermore, the expense of the QM calculations in TP is only half of that in NBB. We also show that defining the biasing potential as the difference of the solute-solvent interaction energy, instead of the total energy, can converge the calculated solvation free energies much faster but possibly to different values. Based on the experimental solvation free energies which have been published before, it is discovered in this study that BLYP yields better results than MP2 and some other later functionals such as B3LYP, M06-2X, and ωB97X-D.