WorldWideScience

Sample records for molecular electronic rectification

  1. Control of Electronic Symmetry and Rectification through Energy Level Variations in Bilayer Molecular Junctions.

    Science.gov (United States)

    Bayat, Akhtar; Lacroix, Jean-Christophe; McCreery, Richard L

    2016-09-21

    Two layers of molecular oligomers were deposited on flat carbon electrode surfaces by electrochemical reduction of diazonium reagents, then a top contact applied to complete a solid-state molecular junction containing a molecular bilayer. The structures and energy levels of the molecular layers included donor molecules with relatively high energy occupied orbitals and acceptors with low energy unoccupied orbitals. When the energy levels of the two molecular layers were similar, the device had electronic characteristics similar to a thick layer of a single molecule, but if the energy levels differed, the current voltage behavior exhibited pronounced rectification. Higher current was observed when the acceptor molecule was biased negatively in eight different bilayer combinations, and the direction of rectification was reversed if the molecular layers were also reversed. Rectification persisted at very low temperature (7 K), and was activationless between 7 and 100 K. The results are a clear example of a "molecular signature" in which electronic behavior is directly affected by molecular structure and orbital energies. The rectification mechanism is discussed, and may provide a basis for rational design of electronic properties by variation of molecular structure.

  2. Mechanisms of molecular electronic rectification through electronic levels with strong vibrational coupling

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2002-01-01

    , corresponding to the fully diabatic limit. The rectification process then reduces to a sequence of vibrationally relaxed single-electron transfer steps. In the limits where the interactions are strong, denoted as the partially and fully adiabatic limits, the character of the rectification process is different......-level transition similar to STM of large redox molecules. Recent data for rectification in hexadecyl-quinolinium tricyanodimethanide monolayers by Metzger and co-workers [J. Am. Chem. Soc. 119, 10455 (1997); Acc. Chem. Res. 32, 950 (1999)], are discussed in terms of the reported views and formalism....

  3. Gradients of Rectification: Tuning Molecular Electronic Devices by the Controlled Use of Different-Sized Diluents in Heterogeneous Self-Assembled Monolayers.

    Science.gov (United States)

    Kong, Gyu Don; Kim, Miso; Cho, Soo Jin; Yoon, Hyo Jae

    2016-08-22

    Molecular electronics has received significant attention in the last decades. To hone performance of devices, eliminating structural defects in molecular components inside devices is usually needed. We herein demonstrate this problem can be turned into a strength for modulating the performance of devices. We show the systematic dilution of a monolayer of an organic rectifier (2,2'-bipyridine-terminated n-undecanethiolate) with electronically inactive diluents (n-alkanethiolates of different lengths), gives remarkable gradients of rectification. Rectification is finely tunable in a range of approximately two orders of magnitude, retaining its polarity. Trends of rectification against the length of the diluent indicate the gradient of rectification is extremely sensitive to the molecular structure of the diluent. Further studies reveal that noncovalent intermolecular interactions within monolayers likely leads to gradients of structural defect and rectification. PMID:27443577

  4. Gradients of Rectification: Tuning Molecular Electronic Devices by the Controlled Use of Different-Sized Diluents in Heterogeneous Self-Assembled Monolayers.

    Science.gov (United States)

    Kong, Gyu Don; Kim, Miso; Cho, Soo Jin; Yoon, Hyo Jae

    2016-08-22

    Molecular electronics has received significant attention in the last decades. To hone performance of devices, eliminating structural defects in molecular components inside devices is usually needed. We herein demonstrate this problem can be turned into a strength for modulating the performance of devices. We show the systematic dilution of a monolayer of an organic rectifier (2,2'-bipyridine-terminated n-undecanethiolate) with electronically inactive diluents (n-alkanethiolates of different lengths), gives remarkable gradients of rectification. Rectification is finely tunable in a range of approximately two orders of magnitude, retaining its polarity. Trends of rectification against the length of the diluent indicate the gradient of rectification is extremely sensitive to the molecular structure of the diluent. Further studies reveal that noncovalent intermolecular interactions within monolayers likely leads to gradients of structural defect and rectification.

  5. Molecular rectification and conductance switching in carbon-based molecular junctions by structural rearrangement accompanying electron injection.

    Science.gov (United States)

    McCreery, Richard; Dieringer, Jon; Solak, Ali Osman; Snyder, Brian; Nowak, Aletha M; McGovern, William R; DuVall, Stacy

    2003-09-01

    Molecular junctions were fabricated consisting of a 3.7 nm thick layer of nitroazobenzene (NAB) molecules between a pyrolyzed photoresist substrate (PPF) and a titanium top contact which was protected from oxidation by a layer of gold. Raman spectroscopy, XPS, and AFM revealed that the NAB layer was 2-3 molecules thick and was bonded to the two conducting contacts by C-C and N-Ti covalent bonds. The current/voltage behavior of the PPF/NAB(3.7)/Ti junctions showed strong and reproducible rectification, with the current at +2 V exceeding that at -2 V by a factor of 600. The observed current density at +3 V was 0.71 A/cm(2), or about 10(5) e(-)/s/molecule. The i/V response was strongly dependent on temperature and scan rate, with the rectification ratio decreasing for lower temperature and faster scans. Junction conductivity increased with time over several seconds at room temperature in response to positive voltage pulses, with the rate of increase larger for more positive potentials. Voltage pulses to positive potentials and back to zero volts revealed that electrons are injected from the Ti to the NAB, to the extent of about 0.1-1 e(-)/molecule for a +3 V pulse. These electrons cause an activated transition of the NAB into a more conductive quinoid state, which in turn causes an increase in conductivity. The transition to the quinoid state involves nuclear rearrangement which occurs on a submillisecond to several second time scale, depending on the voltage applied. The quinoid state is stable as long as the applied electric field is present, but reverts back to NAB within several minutes after the field is relaxed. The results are interpreted in terms of a thermally activated, potential dependent electron transfer into the 3.7 nm NAB layer, which brings about a conductivity increase of several orders of magnitude.

  6. Molecular rectification in triangularly shaped graphene nanoribbons.

    Science.gov (United States)

    Liu, Hongmei; Wang, Hongbo; Zhao, Jianwei; Kiguchi, Manabu

    2013-02-15

    We present a theoretical study of electron transport in tailored zigzag graphene nanoribbons (ZGNRs) with triangular structure using density functional theory together with the nonequilibrium Green's function formalism. We find significant rectification with a favorite electron transfer direction from the vertex to the right edge. The triangular ZGNR connecting to the electrode with one thiol group at each terminal shows an average rectification ratio of 8.4 over the bias range from -1.0 to 1.0 V. This asymmetric electron transport property originates from nearly zero band gap of triangular ZGNR under negative bias, whereas a band gap opens under positive bias. When the molecule is connected to the electrode by multithiol groups, the current is enhanced due to strong interfacial coupling; however, the rectification ratio decreases. The simulation results indicate that the unique electronic states of triangular ZGNR are responsible for rectification, rather than the asymmetric anchoring groups.

  7. Anomalous rectification in a purely electronic memristor

    Science.gov (United States)

    Wang, Jingrui; Pan, Ruobing; Cao, Hongtao; Wang, Yang; Liang, Lingyan; Zhang, Hongliang; Gao, Junhua; Zhuge, Fei

    2016-10-01

    An anomalous rectification was observed in a purely electronic memristive device Ti/ZnO/Pt. It could be due to (1) an Ohmic or quasi-Ohmic contact at the ZnO/Pt interface and (2) a Schottky contact at the Ti/ZnO interface. The Ohmic contact originates from the reduction of ZnO occurring in the whole film instead of only at the Ti/ZnO interface. The Schottky contact may come from moisture adsorbed in the nanoporous ZnO. The conduction in the electroformed device is controlled by the carrier trapping/detrapping of the trap sites, inducing a poor rectification and high nonlinearity. Furthermore, a complementary resistive switching was achieved.

  8. Molecular rectifier composed of DNA with high rectification ratio enabled by intercalation.

    Science.gov (United States)

    Guo, Cunlan; Wang, Kun; Zerah-Harush, Elinor; Hamill, Joseph; Wang, Bin; Dubi, Yonatan; Xu, Bingqian

    2016-05-01

    The predictability, diversity and programmability of DNA make it a leading candidate for the design of functional electronic devices that use single molecules, yet its electron transport properties have not been fully elucidated. This is primarily because of a poor understanding of how the structure of DNA determines its electron transport. Here, we demonstrate a DNA-based molecular rectifier constructed by site-specific intercalation of small molecules (coralyne) into a custom-designed 11-base-pair DNA duplex. Measured current-voltage curves of the DNA-coralyne molecular junction show unexpectedly large rectification with a rectification ratio of about 15 at 1.1 V, a counter-intuitive finding considering the seemingly symmetrical molecular structure of the junction. A non-equilibrium Green's function-based model-parameterized by density functional theory calculations-revealed that the coralyne-induced spatial asymmetry in the electron state distribution caused the observed rectification. This inherent asymmetry leads to changes in the coupling of the molecular HOMO-1 level to the electrodes when an external voltage is applied, resulting in an asymmetric change in transmission.

  9. Molecular rectifier composed of DNA with high rectification ratio enabled by intercalation

    Science.gov (United States)

    Guo, Cunlan; Wang, Kun; Zerah-Harush, Elinor; Hamill, Joseph; Wang, Bin; Dubi, Yonatan; Xu, Bingqian

    2016-05-01

    The predictability, diversity and programmability of DNA make it a leading candidate for the design of functional electronic devices that use single molecules, yet its electron transport properties have not been fully elucidated. This is primarily because of a poor understanding of how the structure of DNA determines its electron transport. Here, we demonstrate a DNA-based molecular rectifier constructed by site-specific intercalation of small molecules (coralyne) into a custom-designed 11-base-pair DNA duplex. Measured current–voltage curves of the DNA–coralyne molecular junction show unexpectedly large rectification with a rectification ratio of about 15 at 1.1 V, a counter-intuitive finding considering the seemingly symmetrical molecular structure of the junction. A non-equilibrium Green's function-based model—parameterized by density functional theory calculations—revealed that the coralyne-induced spatial asymmetry in the electron state distribution caused the observed rectification. This inherent asymmetry leads to changes in the coupling of the molecular HOMO‑1 level to the electrodes when an external voltage is applied, resulting in an asymmetric change in transmission.

  10. Giant rectification in graphene nanoflake molecular devices with asymmetric graphene nanoribbon electrodes

    Science.gov (United States)

    Ji, Xiao-Li; Xie, Zhen; Zuo, Xi; Zhang, Guang-Ping; Li, Zong-Liang; Wang, Chuan-Kui

    2016-09-01

    By applying density functional theory based nonequilibrium Green's function method, we theoretically investigate the electron transport properties of a zigzag-edged trigonal graphene nanoflake (ZTGNF) sandwiched between two asymmetric zigzag graphene nanoribbon (zGNR) and armchair graphene nanoribbon (aGNR) electrodes with carbon atomic chains (CACs) as the anchoring groups. Significant rectifying effects have been observed for these molecular devices in low bias voltage regions. Interestingly, the rectifying performance of molecular devices can be optimized by changing the width of the aGNR electrode and the number of anchoring CACs. Especially, the molecular device displays giant rectification ratios up to the order of 104 when two CACs are used as the anchoring group between the ZTGNF and the right aGNR electrode. Further analysis indicates that the asymmetric shift of the perturbed molecular energy levels and the spatial parity of the electron wavefunctions in the electrodes around the Fermi level play key roles in determining the rectification performance. And the spatial distributions of tunneling electron wavefunctions under negative bias voltages can be modified to be very localized by changing the number of anchoring CACs, which is found to be the origin of the giant rectification ratios.

  11. Charge transport and rectification in molecular junctions formed with carbon-based electrodes.

    Science.gov (United States)

    Kim, Taekyeong; Liu, Zhen-Fei; Lee, Chulho; Neaton, Jeffrey B; Venkataraman, Latha

    2014-07-29

    Molecular junctions formed using the scanning-tunneling-microscope-based break-junction technique (STM-BJ) have provided unique insight into charge transport at the nanoscale. In most prior work, the same metal, typically Au, Pt, or Ag, is used for both tip and substrate. For such noble metal electrodes, the density of electronic states is approximately constant within a narrow energy window relevant to charge transport. Here, we form molecular junctions using the STM-BJ technique, with an Au metal tip and a microfabricated graphite substrate, and measure the conductance of a series of graphite/amine-terminated oligophenyl/Au molecular junctions. The remarkable mechanical strength of graphite and the single-crystal properties of our substrates allow measurements over few thousand junctions without any change in the surface properties. We show that conductance decays exponentially with molecular backbone length with a decay constant that is essentially the same as that for measurements with two Au electrodes. More importantly, despite the inherent symmetry of the oligophenylamines, we observe rectification in these junctions. State-of-art ab initio conductance calculations are in good agreement with experiment, and explain the rectification. We show that the highly energy-dependent graphite density of states contributes variations in transmission that, when coupled with an asymmetric voltage drop across the junction, leads to the observed rectification. Together, our measurements and calculations show how functionality may emerge from hybrid molecular-scale devices purposefully designed with different electrodes beyond the so-called "wide band limit," opening up the possibility of assembling molecular junctions with dissimilar electrodes using layered 2D materials.

  12. Electronic heat current rectification in hybrid superconducting devices

    Energy Technology Data Exchange (ETDEWEB)

    Fornieri, Antonio, E-mail: antonio.fornieri@sns.it; Giazotto, Francesco, E-mail: francesco.giazotto@sns.it [NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Martínez-Pérez, María José [Physikalisches Institut - Experimentalphysik II Universität Tübingen, D-72076 Tübingen (Germany)

    2015-05-15

    In this work, we review and expand recent theoretical proposals for the realization of electronic thermal diodes based on tunnel-junctions of normal metal and superconducting thin films. Starting from the basic rectifying properties of a single hybrid tunnel junction, we will show how the rectification efficiency can be largely increased by combining multiple junctions in an asymmetric chain of tunnel-coupled islands. We propose three different designs, analyzing their performance and their potential advantages. Besides being relevant from a fundamental physics point of view, this kind of devices might find important technological application as fundamental building blocks in solid-state thermal nanocircuits and in general-purpose cryogenic electronic applications requiring energy management.

  13. Electronic heat current rectification in hybrid superconducting devices

    Directory of Open Access Journals (Sweden)

    Antonio Fornieri

    2015-05-01

    Full Text Available In this work, we review and expand recent theoretical proposals for the realization of electronic thermal diodes based on tunnel-junctions of normal metal and superconducting thin films. Starting from the basic rectifying properties of a single hybrid tunnel junction, we will show how the rectification efficiency can be largely increased by combining multiple junctions in an asymmetric chain of tunnel-coupled islands. We propose three different designs, analyzing their performance and their potential advantages. Besides being relevant from a fundamental physics point of view, this kind of devices might find important technological application as fundamental building blocks in solid-state thermal nanocircuits and in general-purpose cryogenic electronic applications requiring energy management.

  14. Stretch or contraction induced inversion of rectification in diblock molecular junctions.

    Science.gov (United States)

    Zhang, Guang-Ping; Hu, Gui-Chao; Song, Yang; Xie, Zhen; Wang, Chuan-Kui

    2013-09-01

    Based on ab initio theory and nonequilibrium Green's function method, the effect of stretch or contraction on the rectification in diblock co-oligomer molecular diodes is investigated theoretically. Interestingly, an inversion of rectifying direction induced by stretching or contracting the molecular junctions, which is closely related to the number of the pyrimidinyl-phenyl units, is proposed. The analysis of the molecular projected self-consistent Hamiltonian and the evolution of the frontier molecular orbitals as well as transmission coefficients under external biases gives an inside view of the observed results. It reveals that the asymmetric molecular level shift and asymmetric evolution of orbital wave functions under biases are competitive mechanisms for rectification. The stretching or contracting induced inversion of the rectification is due to the conversion of the dominant mechanism. This work suggests a feasible technique to manipulate the rectification performance in molecular diodes by use of the mechanically controllable method.

  15. The effects of contact configurations on the rectification of dipyrimidinyl-diphenyl diblock molecular junctions

    Institute of Scientific and Technical Information of China (English)

    Zhang Guang-Ping; Hu Gui-Chao; Li Zong-Liang; Wang Chuan-Kui

    2011-01-01

    The transport properties of a conjugated dipyrimidinyl-diphenyl diblock oligomer sandwiched between two gold electrodes,as recently reported by [Díez-Pérez et al.Nature Chem.1 635 (2009)],are theoretically investigated using the fully self-consistent nonequilibrium Green's function method combined with density functional theory.Two kinds of symmetrical anchoring geometries are considered.Calculated current-voltage curves show that the contact structure has a strong effect on the rectification behaviour of the molecular diode.For the equilateral triangle configuration,pronounced rectification behaviour comparable to the experimental measurement is revealed,and the theoretical analysis indicates that the observed rectification characteristic results from the asymmetric shift of the perturbed molecular energy levels under bias voltage.While for the tetrahedron configuration,both rectification and negative differential conductivity behaviours are observed.The calculated results further prove the close dependence of the transporting characteristics of molecular junctions on contact configuration.

  16. Molecular Electronics

    OpenAIRE

    Heath, James R.

    2009-01-01

    Molecular electronics describes the field in which molecules are utilized as the active (switching, sensing, etc.) or passive (current rectifiers, surface passivants) elements in electronic devices. This review focuses on experimental aspects of molecular electronics that researchers have elucidated over the past decade or so and that relate to the fabrication of molecular electronic devices in which the molecular components are readily distinguished within the electronic properties of the de...

  17. Interface states, negative differential resistance, and rectification in molecular junctions with transition-metal contacts

    Science.gov (United States)

    Dalgleish, Hugh; Kirczenow, George

    2006-06-01

    We present a theory of nonlinear transport phenomena in molecular junctions where single thiolated organic molecules bridge transition metal nanocontacts whose densities of states have strong d orbital components near the Fermi level. At moderate bias, we find electron transmission between the contacts to be mediated by interface states within the molecular highest-occupied-molecular-orbital-lowest-unoccupied-molecular-orbital gap that arise from hybridization between the thiol-terminated ends of the molecules and the d orbitals of the transition metals. Because these interface states are localized mainly within the metal electrodes, we find their energies to accurately track the electrochemical potentials of the contacts when a variable bias is applied across the junction. We predict resonant enhancement and reduction of the interface state transmission as the applied bias is varied, resulting in negative differential resistance (NDR) in molecular junctions with Pd nanocontacts. We show that these nonlinear phenomena can be tailored by suitably choosing the nanocontact materials: If a Rh electrode is substituted for one Pd contact, we predict enhancement of these NDR effects. The same mechanism is also predicted to give rise to rectification in Pd/molecule/Au junctions. The dependences of the interface state resonances on the orientation of the metal interface, the adsorption site of the molecule, and the separation between the thiolated ends of the molecule and the metal contacts are also discussed.

  18. Hemichannel composition and electrical synaptic transmission: molecular diversity and its implications for electrical rectification.

    Science.gov (United States)

    Palacios-Prado, Nicolás; Huetteroth, Wolf; Pereda, Alberto E

    2014-01-01

    Unapposed hemichannels (HCs) formed by hexamers of gap junction proteins are now known to be involved in various cellular processes under both physiological and pathological conditions. On the other hand, less is known regarding how differences in the molecular composition of HCs impact electrical synaptic transmission between neurons when they form intercellular heterotypic gap junctions (GJs). Here we review data indicating that molecular differences between apposed HCs at electrical synapses are generally associated with rectification of electrical transmission. Furthermore, this association has been observed at both innexin and connexin (Cx) based electrical synapses. We discuss the possible molecular mechanisms underlying electrical rectification, as well as the potential contribution of intracellular soluble factors to this phenomenon. We conclude that asymmetries in molecular composition and sensitivity to cellular factors of each contributing hemichannel can profoundly influence the transmission of electrical signals, endowing electrical synapses with more complex functional properties.

  19. Molecular Electronics

    DEFF Research Database (Denmark)

    Jennum, Karsten Stein

    This thesis includes the synthesis and characterisation of organic compounds designed for molecular electronics. The synthesised organic molecules are mainly based on two motifs, the obigo(phenyleneethynylenes) (OPE)s and tetrathiafulvalene (TTF) as shown below. These two scaffolds (OPE and TTF......) are chemically merged together to form cruciform-like structures that are an essential part of the thesis. The cruciform molecules were subjected to molecular conductance measurements to explore their capability towards single-crystal field-effect transistors (Part 1), molecular wires, and single electron......, however, was obtained by a study of a single molecular transistor. The investigated OPE5-TTF compound was captured in a three-terminal experiment, whereby manipulation of the molecule’s electronic spin was possible in different charge states. Thus, we demonstrated how the cruciform molecules could...

  20. A Molecular Diode with a Statistically Robust Rectification Ratio of Three Orders of Magnitude.

    Science.gov (United States)

    Yuan, Li; Breuer, Rochus; Jiang, Li; Schmittel, Michael; Nijhuis, Christian A

    2015-08-12

    This paper describes a molecular diode with high, statistically robust, rectification ratios R of 1.1 × 10(3). These diodes operate with a new mechanism of charge transport based on sequential tunneling involving both the HOMO and HOMO-1 positioned asymmetrically inside the junction. In addition, the diodes are stable and withstand voltage cycling for 1500 times, and the yield in working junctions is 90%.

  1. Electrochemical Rectification of Redox Mediators Using Porphyrin-Based Molecular Multilayered Films on ITO Electrodes.

    Science.gov (United States)

    Civic, Marissa R; Dinolfo, Peter H

    2016-08-10

    Electrochemical charge transfer through multilayer thin films of zinc and nickel 5,10,15,20-tetra(4-ethynylphenyl) porphyrin constructed via copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry was examined. Current rectification toward various outer-sphere redox probes is revealed with increasing numbers of layers, as these films possess insulating properties over the neutral potential range of the porphyrin, then become conductive upon reaching its oxidation potential. Interfacial electron transfer rates of mediator-dye interactions toward [Co(bpy)3](2+), [Co(dmb)3](2+), [Co(NO2-phen)3](2+), [Fe(bpy)3](2+), and ferrocene (Fc), all outer-sphere redox species, were measured by hydrodynamic methods. The ability to modify electroactive films' interfacial electron transfer rates, as well as current rectification toward redox species, has broad applicability in a number of devices, particularly photovoltaics and photogalvanics.

  2. Large Spatially Resolved Rectification in a Donor-Acceptor Molecular Heterojunction.

    Science.gov (United States)

    Smerdon, Joseph A; Giebink, Noel C; Guisinger, Nathan P; Darancet, Pierre; Guest, Jeffrey R

    2016-04-13

    We demonstrate that rectification ratios (RR) of ≳250 (≳1000) at biases of 0.5 V (1.2 V) are achievable at the two-molecule limit for donor-acceptor bilayers of pentacene on C60 on Cu using scanning tunneling spectroscopy and microscopy. Using first-principles calculations, we show that the system behaves as a molecular Schottky diode with a tunneling transport mechanism from semiconducting pentacene to Cu-hybridized metallic C60. Low-bias RRs vary by two orders-of-magnitude at the edge of these molecular heterojunctions due to increased Stark shifts and confinement effects.

  3. Wave-packet rectification in nonlinear electronic systems: A tunable Aharonov-Bohm diode

    CERN Document Server

    Li, Yunyun; Marchesoni, Fabio; Li, Baowen

    2014-01-01

    Rectification of electron wave-packets propagating along a quasi-one dimensional chain is commonly achieved via the simultaneous action of nonlinearity and longitudinal asymmetry, both confined to a limited portion of the chain termed wave diode. However, it is conceivable that, in the presence of an external magnetic field, spatial asymmetry perpendicular to the direction of propagation suffices to ensure rectification. This is the case of a nonlinear ring-shaped lattice with different upper and lower halves (diode), which is attached to two elastic chains (leads). The resulting device is mirror symmetric with respect to the ring vertical axis, but mirror asymmetric with respect to the chain direction. Wave propagation along the two diode paths can be modeled for simplicity by a discrete Schr\\"odinger equation with cubic nonlinearities. Numerical simulations demonstrate that, thanks to the Aharonov-Bohm effect, such a diode can be operated by tuning the magnetic flux across the ring.

  4. Rectification of electronic heat current by a hybrid thermal diode

    OpenAIRE

    Martínez-Pérez, M. J.; Fornieri, A.; Giazotto, F.

    2014-01-01

    We report the realization of an ultra-efficient low-temperature hybrid heat current rectifier, thermal counterpart of the well-known electric diode. Our design is based on a tunnel junction between two different elements: a normal metal and a superconducting island. Electronic heat current asymmetry in the structure arises from large mismatch between the thermal properties of these two. We demonstrate experimentally temperature differences exceeding $60$ mK between the forward and reverse the...

  5. Nonlinear electron transport properties and rectification effects in InAs/AlGaSb ballistic devices

    International Nuclear Information System (INIS)

    The nonlinear electron transport properties and rectification effects in InAs/AlGaSb ballistic devices are reported. We fabricated InAs/AlGaSb three-terminal ballistic junction devices composed of three quantum wires, and characterised electron transport properties with scanning the voltage on the left branch while keeping the voltage on the right constant at 77 K and 300 K. In these structures, we observed clear nonlinearity in the output voltage measured at the central branch. The nonlinear characteristics agreed well with a theoretical prediction. When the left branch is biased to a finite voltage V and the right to a voltage of -V (push-pull fashion), negative voltages appeared at the central branch regardless of the polarity of V. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Electronic Modulation of the SOMO-HOMO Energy Gap in Iron(III) Complexes towards Unimolecular Current Rectification.

    Science.gov (United States)

    Wickramasinghe, Lanka D; Mazumder, Shivnath; Kpogo, Kenneth K; Staples, Richard J; Schlegel, H Bernhard; Verani, Cláudio N

    2016-07-25

    Amphiphilic five-coordinate iron(III) complexes with {N2 O2 Cl} and {N2 O3 } coordination spheres are studied to elucidate the roles of electronic structure on the mechanisms for current rectification. The presence of an apical chlorido or phenolato ligand plays a crucial role, and the [Fe(III) {N2 O2 Cl}] species supports an asymmetric mechanism while its [Fe(III) {N2 O3 }] counterpart seems to allow for unimolecular mechanism. The effects of electron-donating and electron-withdrawing substituents in the ligand frameworks are also considered.

  7. Electronic transport properties of phenylacetylene molecular junctions

    Institute of Scientific and Technical Information of China (English)

    Liu Wen; Cheng Jie; Yah Cui-Xia; Li Hai-Hong; Wang Yong-Juan; Liu De-Sheng

    2011-01-01

    Electronic transport properties of a kind of phenylacetylene compound- (4-mercaptophenyl)-phenylacetylene are calculated by the first-principles method in the framework of density functional theory and the nonequilibrium Green's function formalism.The molecular junction shows an obvious rectifying behaviour at a bias voltage larger than 1.0 V.The rectification effect is attributed to the asymmetry of the interface contacts.Moreover,at a bias voltage larger than 2.0 V,which is not referred to in a relevant experiment [Fang L,Park J Y,Ma H,Jan A K Y and Salmeron M 2007 Langmuir 23 11522],we find a negative differential resistance phenomenon.The negative differential resistance effect may originate from the change of the delocalization degree of the molecular orbitais induced by the bias.

  8. Electronic properties of organic monolayers and molecular devices

    Indian Academy of Sciences (India)

    D Vuillaume; S Lenfant; D Guerin; C Delerue; C Petit; G Salace

    2006-07-01

    We review some of our recent experimental results on charge transport in organic nanostructures such as self-assembled monolayer and monolayers of organic semiconductors. We describe a molecular rectifying junction made from a sequential self-assembly on silicon. These devices exhibit a marked current–voltage rectification behavior due to resonant transport between the Si conduction band and the molecule highest occupied molecular orbital of the molecule. We discuss the role of metal Fermi level pinning in the current–voltage behavior of these molecular junctions. We also discuss some recent insights on the inelastic electron tunneling behavior of Si/alkyl chain/metal junctions.

  9. The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations

    International Nuclear Information System (INIS)

    The thermal conductivity of single-walled and multi-walled carbon nanotubes has been investigated as a function of the tube length L, temperature and chiral index using non-equilibrium molecular dynamics simulations. In the ballistic-diffusive regime the thermal conductivity follows a Lα law. The exponent α is insensitive to the diameter of the carbon nanotube; α∼0.77 has been derived for short carbon nanotubes at room temperature. The temperature dependence of the thermal conductivity shows a peak before falling at higher temperatures (>500 K). The phenomenon of thermal rectification in nanotubes has been investigated by gradually changing the atomic mass in the tube-axial direction as well as by loading extra masses on the terminal sites of the tube. A higher thermal conductivity occurs when heat flows from the low-mass to the high-mass region.

  10. Theory of Rectification in Tour Wires: The Role of Electrode Coupling

    DEFF Research Database (Denmark)

    Taylor, Jeremy Philip; Brandbyge, Mads; Stokbro, Kurt

    2002-01-01

    We report first-principles studies of electronic transport and rectification in molecular wires attached to gold electrodes. Our ab initio calculation gives an accurate description of the voltage drop as well as the broadening and alignment of the molecular levels in the metal-molecule-metal comp......We report first-principles studies of electronic transport and rectification in molecular wires attached to gold electrodes. Our ab initio calculation gives an accurate description of the voltage drop as well as the broadening and alignment of the molecular levels in the metal......-molecule-metal complex. We find that the operation range and rectification in such strongly chemisorbed molecules is limited by the width of the transmission resonances and their proximity to the Fermi level....

  11. Measurement and understanding of single-molecule break junction rectification caused by asymmetric contacts.

    Science.gov (United States)

    Wang, Kun; Zhou, Jianfeng; Hamill, Joseph M; Xu, Bingqian

    2014-08-01

    The contact effects of single-molecule break junctions on rectification behaviors were experimentally explored by a systematic control of anchoring groups of 1,4-disubstituted benzene molecular junctions. Single-molecule conductance and I-V characteristic measurements reveal a strong correlation between rectifying effects and the asymmetry in contacts. Analysis using energy band models and I-V calculations suggested that the rectification behavior is mainly caused by asymmetric coupling strengths at the two contact interfaces. Fitting of the rectification ratio by a modified Simmons model we developed suggests asymmetry in potential drop across the asymmetric anchoring groups as the mechanism of rectifying I-V behavior. This study provides direct experimental evidence and sheds light on the mechanisms of rectification behavior induced simply by contact asymmetry, which serves as an aid to interpret future single-molecule electronic behavior involved with asymmetric contact conformation.

  12. Protonation effects on electron transport through diblock molecular junctions:A theoretical study

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Diblock oligomers are widely used in molecular electronics. Based on fully self-consistent nonequilib-rium Green’s function method and density functional theory, we study the electron transport properties of the molecular junction with a dipyrimidinyl-diphenyl (PMPH) diblock molecule sandwiched between two gold electrodes. Effects of different kinds of molecule-electrode anchoring geometry and protona-tion of the PMPH molecule are studied. Protonation leads to both conductance and rectification en-hancements. However, the experimentally observed rectifying direction inversion is not found in our calculation. The preferential current direction is always from the pyrimidinyl to the phenyl side. Our calculations indicate that the protonation of the molecular wire is not the only reason of the rectification inversion.

  13. Switching and Rectification in Carbon-Nanotube Junctions

    Science.gov (United States)

    Srivastava, Deepak; Andriotis, Antonis N.; Menon, Madhu; Chernozatonskii, Leonid

    2003-01-01

    Multi-terminal carbon-nanotube junctions are under investigation as candidate components of nanoscale electronic devices and circuits. Three-terminal "Y" junctions of carbon nanotubes (see Figure 1) have proven to be especially interesting because (1) it is now possible to synthesize them in high yield in a controlled manner and (2) results of preliminary experimental and theoretical studies suggest that such junctions could exhibit switching and rectification properties. Following the preliminary studies, current-versus-voltage characteristics of a number of different "Y" junctions of single-wall carbon nanotubes connected to metal wires were computed. Both semiconducting and metallic nanotubes of various chiralities were considered. Most of the junctions considered were symmetric. These computations involved modeling of the quantum electrical conductivity of the carbon nanotubes and junctions, taking account of such complicating factors as the topological defects (pentagons, heptagons, and octagons) present in the hexagonal molecular structures at the junctions, and the effects of the nanotube/wire interfaces. A major component of the computational approach was the use of an efficient Green s function embedding scheme. The results of these computations showed that symmetric junctions could be expected to support both rectification and switching. The results also showed that rectification and switching properties of a junction could be expected to depend strongly on its symmetry and, to a lesser degree, on the chirality of the nanotubes. In particular, it was found that a zigzag nanotube branching at a symmetric "Y" junction could exhibit either perfect rectification or partial rectification (asymmetric current-versus-voltage characteristic, as in the example of Figure 2). It was also found that an asymmetric "Y" junction would not exhibit rectification.

  14. Beyond Molecular Wires: Design Molecular Electronic Functions Based on Dipolar Effect.

    Science.gov (United States)

    Lo, Wai-Yip; Zhang, Na; Cai, Zhengxu; Li, Lianwei; Yu, Luping

    2016-09-20

    investigated the rectification effect of different types of p-n junction diodes and its modification by structural and external effects. Through a combination of structural modifications, low temperature study, and quantum mechanical calculations, we showed that the origin of the rectification in these molecules can be attributed to the effect of dipolar field. Further studies on charge transport through transition metal complexes and anchoring group effect supported this conclusion. Most recently, a model system of molecular transistor was synthesized and demonstrated by STM-BJ technique. The gating effect in the molecular wire originated from the tuning of the energy levels via dipolar field and can be turned on/off by dipolar field and chemical stimulation. This is the first example of gated charge transport in molecular electronics.

  15. Beyond Molecular Wires: Design Molecular Electronic Functions Based on Dipolar Effect.

    Science.gov (United States)

    Lo, Wai-Yip; Zhang, Na; Cai, Zhengxu; Li, Lianwei; Yu, Luping

    2016-09-20

    investigated the rectification effect of different types of p-n junction diodes and its modification by structural and external effects. Through a combination of structural modifications, low temperature study, and quantum mechanical calculations, we showed that the origin of the rectification in these molecules can be attributed to the effect of dipolar field. Further studies on charge transport through transition metal complexes and anchoring group effect supported this conclusion. Most recently, a model system of molecular transistor was synthesized and demonstrated by STM-BJ technique. The gating effect in the molecular wire originated from the tuning of the energy levels via dipolar field and can be turned on/off by dipolar field and chemical stimulation. This is the first example of gated charge transport in molecular electronics. PMID:27575979

  16. Towards graphyne molecular electronics.

    Science.gov (United States)

    Li, Zhihai; Smeu, Manuel; Rives, Arnaud; Maraval, Valérie; Chauvin, Remi; Ratner, Mark A; Borguet, Eric

    2015-01-01

    α-Graphyne, a carbon-expanded version of graphene ('carbo-graphene') that was recently evidenced as an alternative zero-gap semiconductor, remains a theoretical material. Nevertheless, using specific synthesis methods, molecular units of α-graphyne ('carbo-benzene' macrocycles) can be inserted between two anilinyl (4-NH2-C6H4)-anchoring groups that allow these fragments to form molecular junctions between gold electrodes. Here, electrical measurements by the scanning tunnelling microscopy (STM) break junction technique and electron transport calculations are carried out on such a carbo-benzene, providing unprecedented single molecule conductance values: 106 nS through a 1.94-nm N-N distance, essentially 10 times the conductance of a shorter nanographenic hexabenzocoronene analogue. Deleting a C4 edge of the rigid C18 carbo-benzene circuit results in a flexible 'carbo-butadiene' molecule that has a conductance 40 times lower. Furthermore, carbo-benzene junctions exhibit field-effect transistor behaviour when an electrochemical gate potential is applied, opening the way for device applications. All the results are interpreted on the basis of theoretical calculations. PMID:25699991

  17. A direct current rectification scheme for microwave space power conversion using traveling wave electron acceleration

    Science.gov (United States)

    Manning, Robert M.

    1993-01-01

    The formation of the Vision-21 conference held three years ago allowed the present author to reflect and speculate on the problem of converting electromagnetic energy to a direct current by essentially reversing the process used in traveling wave tubes that converts energy in the form of a direct current to electromagnetic energy. The idea was to use the electric field of the electromagnetic wave to produce electrons through the field emission process and accelerate these electrons by the same field to produce an electric current across a large potential difference. The acceleration process was that of cyclotron auto-resonance. Since that time, this rather speculative ideas has been developed into a method that shows great promise and for which a patent is pending and a prototype design will be demonstrated in a potential laser power beaming application. From the point of view of the author, a forum such as Vision-21 is becoming an essential component in the rather conservative climate in which our initiatives for space exploration are presently formed. Exchanges such as Vision-21 not only allows us to deviate from the 'by-the-book' approach and rediscover the ability and power in imagination, but provides for the discussion of ideas hitherto considered 'crazy' so that they may be given the change to transcend from the level of eccentricity to applicability.

  18. Communication: Thermal rectification in liquids by manipulating the solid-liquid interface.

    Science.gov (United States)

    Murad, Sohail; Puri, Ishwar K

    2012-08-28

    Thermal rectification, the origin of which lies in modifying the thermal resistance in a nonlinear manner, could significantly improve the thermal management of a wide range of nano-devices (both electronic and thermoelectric), thereby improving their efficiencies. Since rectification requires a material to be inhomogeneous, it has been typically associated with solids. However, the structure of solids is relatively difficult to manipulate, which makes the tuning of thermal rectification devices challenging. Since liquids are more amenable to tuning, this could open up new applications for thermal rectification. We use molecular dynamics simulations to demonstrate thermal rectification using liquid water. This is accomplished by creating an inhomogeneous water phase, either by changing the morphology of the surface in contact with the liquid or by imposing an arbitrary external force, which in practice could be through an electric or magnetic field. Our system consists of a bulk fluid that is confined in a reservoir that is bounded by two walls, one hot and the other cold. The interfacial (Kapitza) thermal resistance at the solid-fluid interface and the density gradient of the bulk fluid both influence the magnitude of the thermal rectification. However, we find that the role of the interfacial resistance is more prominent than the application of an external force on the bulk fluid.

  19. Current rectification by mediating electroactive polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ybarra, Gabriel; Moina, Carlos [Centro de Investigacion sobre Electrodeposicion y Procesos Superficiales, Instituto Nacional de Tecnologia Industrial, CC 157, (1650) San Martin (Argentina); Florit, M. Ines [INIFTA, Facultad de Ciencias Exactas, UNLP, Suc. 4, CC 16, (1900) La Plata (Argentina); Posadas, Dionisio [INIFTA, Facultad de Ciencias Exactas, UNLP, Suc. 4, CC 16, (1900) La Plata (Argentina)], E-mail: dposadas@inifta.unlp.edu.ar

    2008-04-20

    In this work we briefly review the theoretical basis for the electrochemical rectification in mediated redox reactions at redox polymer modified electrodes. Electrochemical rectification may have two distinct origins. It is either caused by a slow kinetics of the reaction between the external redox couple and the mediator or it is originated by a slow electronic transport within the film under an unfavorable thermodynamic condition. We show experimental results for the redox mediation reaction of poly(o-aminophenol) (POAP) on the Fe{sup 2+/3+} and on the Fe(CN){sub 6}{sup 3-/4-} redox couples in solution that prove the proposed mechanisms of electrochemical rectification.

  20. Molecular electronic junction transport

    DEFF Research Database (Denmark)

    Solomon, Gemma C.; Herrmann, Carmen; Ratner, Mark

    2012-01-01

    Whenasinglemolecule,oracollectionofmolecules,isplacedbetween two electrodes and voltage is applied, one has a molecular transport junction. We discuss such junctions, their properties, their description, and some of their applications. The discussion is qualitative rather than quantitative, and f...

  1. Molecular electronic-structure theory

    CERN Document Server

    Helgaker, Trygve; Jorgensen, Poul

    2013-01-01

    Ab initio quantum chemistry is increasingly paired with computational methods to solve intractable problems in chemistry and molecular physics. Now in a paperback edition, this comprehensive and technical work covers all the important aspects of modern molecular electronic-structure theory, clearly explaining quantum-mechanical methods and applications to molecular equilibrium structure, atomization energies, and reaction enthalpies. Extensive numerical examples illustrate each method described. An excellent resource for researchers in quantum chemistry and anyone interested in the theory and its applications.

  2. The Rectification of the Doped Graphene Nanoribbon Based Molecular Junctions%掺杂Graphene纳米带基分子器件的整流特性

    Institute of Scientific and Technical Information of China (English)

    崔彬; 杜威; 刘德胜

    2011-01-01

    采用紧束缚方法,研究了Zigzag型和Armchar型Graphene纳米带的能谱结构和电子态分布,得到了相应的带隙和边界态.然后,使用格林函数方法,计算了极/Graphene纳米带/电极三明治结构的分子结的输运性质,并在掺杂的纳米带分子结中得到了整流特性.%We investigate the electronic properties of Graphene Nanoribbon under a tight - binding frame, and further we get the edge state of the Zigzag Ribbon and the band gap of the Archair ribbon. Then, we calculate the transport properties of some devices based on the grapheme nanoribbon combining a Green' s function formulism, and we get a rectification in the doped nanoribon.

  3. Exploiting hydrogenation for thermal rectification in graphene nanoribbons

    Science.gov (United States)

    Melis, Claudio; Barbarino, Giuliana; Colombo, Luciano

    2015-12-01

    We present a molecular dynamics study providing evidence that it is possible to conceive efficient thermal diodes by a suitable hydrogen decoration of graphene nanoribbons. We estimate thermal rectifications at graphane/graphene interfaces with vertical, triangular, and T-shaped morphologies, and we report a significant thermal rectification up to ˜54 % for the triangular one. The dependence of the thermal rectification on the nanoribbon dimensions, vertex angle, and temperature gradient is also explored. The physical origin of the observed rectification is analyzed in terms of the different temperature dependence of the thermal conductivity in the pristine materials and the overlap of phonon densities in the different morphologies. Finally, we propose an effective continuum model to describe thermal rectification, which is only based on the steady state temperature profile rather than the actual heat flux. The model quantitatively predicts thermal rectification in very good agreement with the standard analysis based on the heat flux estimate.

  4. Molecular electronic-structure theory

    CERN Document Server

    Helgaker, Trygve; Olsen, Jeppe

    2014-01-01

    Ab initio quantum chemistry has emerged as an important tool in chemical research and is appliced to a wide variety of problems in chemistry and molecular physics. Recent developments of computational methods have enabled previously intractable chemical problems to be solved using rigorous quantum-mechanical methods. This is the first comprehensive, up-to-date and technical work to cover all the important aspects of modern molecular electronic-structure theory. Topics covered in the book include: * Second quantization with spin adaptation * Gaussian basis sets and molecular-integral evaluati

  5. Inelastic transport and low-bias rectification in a single-molecule diode.

    Science.gov (United States)

    Hihath, Joshua; Bruot, Christopher; Nakamura, Hisao; Asai, Yoshihiro; Díez-Pérez, Ismael; Lee, Youngu; Yu, Luping; Tao, Nongjian

    2011-10-25

    Designing, controlling, and understanding rectification behavior in molecular-scale devices has been a goal of the molecular electronics community for many years. Here we study the transport behavior of a single molecule diode, and its nonrectifying, symmetric counterpart at low temperatures, and at both low and high biases to help elucidate the electron-phonon interactions and transport mechanisms in the rectifying system. We find that the onset of current rectification occurs at low biases, indicating a significant change in the elastic transport pathway. However, the peaks in the inelastic electron tunneling (IET) spectrum are antisymmetric about zero bias and show no significant changes in energy or intensity in the forward or reverse bias directions, indicating that despite the change in the elastic transmission probability there is little impact on the inelastic pathway. These results agree with first principles calculations performed to evaluate the IETS, which also allow us to identify which modes are active in the single molecule junction. PMID:21932824

  6. Inelastic transport and low-bias rectification in a single-molecule diode.

    Science.gov (United States)

    Hihath, Joshua; Bruot, Christopher; Nakamura, Hisao; Asai, Yoshihiro; Díez-Pérez, Ismael; Lee, Youngu; Yu, Luping; Tao, Nongjian

    2011-10-25

    Designing, controlling, and understanding rectification behavior in molecular-scale devices has been a goal of the molecular electronics community for many years. Here we study the transport behavior of a single molecule diode, and its nonrectifying, symmetric counterpart at low temperatures, and at both low and high biases to help elucidate the electron-phonon interactions and transport mechanisms in the rectifying system. We find that the onset of current rectification occurs at low biases, indicating a significant change in the elastic transport pathway. However, the peaks in the inelastic electron tunneling (IET) spectrum are antisymmetric about zero bias and show no significant changes in energy or intensity in the forward or reverse bias directions, indicating that despite the change in the elastic transmission probability there is little impact on the inelastic pathway. These results agree with first principles calculations performed to evaluate the IETS, which also allow us to identify which modes are active in the single molecule junction.

  7. EDITORIAL: Focus on Molecular Electronics FOCUS ON MOLECULAR ELECTRONICS

    Science.gov (United States)

    Scheer, Elke; Reineker, Peter

    2008-06-01

    The notion 'molecular electronics' has been used more frequently since the 1970s and summarizes a series of physical phenomena and ideas for their application in connection with organic molecules, oligomers, polymers, organic aggregates and solids. The properties studied in this field were connected to optical and electrical phenomena, such as optical absorption, fluorescence, nonlinear optics, energy transport, charge transfer, electrical conductance, and electron and nuclear spin-resonance. The final goal was and is to build devices which can compete or surpass some aspects of inorganic semiconductor devices. For example, on the basis of organic molecules there exist rectifiers, transistors, molecular wires, organic light emitting diodes, elements for photovoltaics, and displays. With respect to applications, one aspect of the organic materials is their broad variability and the lower effort and costs for their processability. The step from microstructures to the investigation of nanostructures is a big challenge also in this field and has lead to what nowadays is called molecular electronics in its narrow sense. In this field the subjects of the studies are often single molecules, e.g. single molecule optical spectroscopy, electrical conductance, i.e. charge transport through a single molecule, the influence of vibrational degrees of freedom, etc. A challenge here is to provide the techniques for addressing in a reproducible way the molecular scale. In another approach small molecular ensembles are studied in order to avoid artefacts from particular contact situations. The recent development of the field is presented in [1-8]. In this Focus Issue we present new results in the field of 'molecular electronics', both in its broad and specialized sense. One of the basic questions is the distribution of the energy levels responsible for optical absorption on the one hand and for the transport of charge on the other. A still unanswered question is whether the Wannier

  8. Thermal rectification in graded materials.

    Science.gov (United States)

    Wang, Jiao; Pereira, Emmanuel; Casati, Giulio

    2012-07-01

    In order to identify the basic conditions for thermal rectification we investigate a simple model with nonuniform, graded mass distribution. The existence of thermal rectification is theoretically predicted and numerically confirmed, suggesting that thermal rectification is a typical occurrence in graded systems, which are likely to be natural candidates for the actual fabrication of thermal diodes. In view of practical implications, the dependence of rectification on the asymmetry and system's size is studied.

  9. Single-molecule diodes with high rectification ratios through environmental control.

    Science.gov (United States)

    Capozzi, Brian; Xia, Jianlong; Adak, Olgun; Dell, Emma J; Liu, Zhen-Fei; Taylor, Jeffrey C; Neaton, Jeffrey B; Campos, Luis M; Venkataraman, Latha

    2015-06-01

    Molecular electronics aims to miniaturize electronic devices by using subnanometre-scale active components. A single-molecule diode, a circuit element that directs current flow, was first proposed more than 40 years ago and consisted of an asymmetric molecule comprising a donor-bridge-acceptor architecture to mimic a semiconductor p-n junction. Several single-molecule diodes have since been realized in junctions featuring asymmetric molecular backbones, molecule-electrode linkers or electrode materials. Despite these advances, molecular diodes have had limited potential for applications due to their low conductance, low rectification ratios, extreme sensitivity to the junction structure and high operating voltages. Here, we demonstrate a powerful approach to induce current rectification in symmetric single-molecule junctions using two electrodes of the same metal, but breaking symmetry by exposing considerably different electrode areas to an ionic solution. This allows us to control the junction's electrostatic environment in an asymmetric fashion by simply changing the bias polarity. With this method, we reliably and reproducibly achieve rectification ratios in excess of 200 at voltages as low as 370 mV using a symmetric oligomer of thiophene-1,1-dioxide. By taking advantage of the changes in the junction environment induced by the presence of an ionic solution, this method provides a general route for tuning nonlinear nanoscale device phenomena, which could potentially be applied in systems beyond single-molecule junctions.

  10. Computational Design of Intrinsic Molecular Rectifiers Based on Asymmetric Functionalization of N-Phenylbenzamide.

    Science.gov (United States)

    Ding, Wendu; Koepf, Matthieu; Koenigsmann, Christopher; Batra, Arunabh; Venkataraman, Latha; Negre, Christian F A; Brudvig, Gary W; Crabtree, Robert H; Schmuttenmaer, Charles A; Batista, Victor S

    2015-12-01

    We report a systematic computational search of molecular frameworks for intrinsic rectification of electron transport. The screening of molecular rectifiers includes 52 molecules and conformers spanning over 9 series of structural motifs. N-Phenylbenzamide is found to be a promising framework with both suitable conductance and rectification properties. A targeted screening performed on 30 additional derivatives and conformers of N-phenylbenzamide yielded enhanced rectification based on asymmetric functionalization. We demonstrate that electron-donating substituent groups that maintain an asymmetric distribution of charge in the dominant transport channel (e.g., HOMO) enhance rectification by raising the channel closer to the Fermi level. These findings are particularly valuable for the design of molecular assemblies that could ensure directionality of electron transport in a wide range of applications, from molecular electronics to catalytic reactions.

  11. Molecular Programming Pseudo-code Representation to Molecular Electronics

    CERN Document Server

    Pradhan, Manas Ranjan

    2010-01-01

    This research paper is proposing the idea of pseudo code representation to molecular programming used in designing molecular electronics devices. Already the schematic representation of logical gates like AND, OR, NOT etc.from molecular diodes or resonant tunneling diode are available. This paper is setting a generic pseudo code model so that various logic gates can be formulated. These molecular diodes have designed from organic molecules or Bio-molecules. Our focus is on to give a scenario of molecular computation through molecular programming. We have restricted our study to molecular rectifying diode and logic device as AND gate from organic molecules only.

  12. Automatic input rectification

    OpenAIRE

    Long, Fan; Ganesh, Vijay; Carbin, Michael James; Sidiroglou, Stelios; Rinard, Martin

    2012-01-01

    We present a novel technique, automatic input rectification, and a prototype implementation, SOAP. SOAP learns a set of constraints characterizing typical inputs that an application is highly likely to process correctly. When given an atypical input that does not satisfy these constraints, SOAP automatically rectifies the input (i.e., changes the input so that it satisfies the learned constraints). The goal is to automatically convert potentially dangerous inputs into typical inputs that the ...

  13. Dipole-mediated rectification of intramolecular photoinduced charge separation and charge recombination.

    Science.gov (United States)

    Bao, Duoduo; Upadhyayula, Srigokul; Larsen, Jillian M; Xia, Bing; Georgieva, Boriana; Nuñez, Vicente; Espinoza, Eli M; Hartman, Joshua D; Wurch, Michelle; Chang, Andy; Lin, Chung-Kuang; Larkin, Jason; Vasquez, Krystal; Beran, Gregory J O; Vullev, Valentine I

    2014-09-17

    Controlling charge transfer at a molecular scale is critical for efficient light harvesting, energy conversion, and nanoelectronics. Dipole-polarization electrets, the electrostatic analogue of magnets, provide a means for "steering" electron transduction via the local electric fields generated by their permanent electric dipoles. Here, we describe the first demonstration of the utility of anthranilamides, moieties with ordered dipoles, for controlling intramolecular charge transfer. Donor-acceptor dyads, each containing a single anthranilamide moiety, distinctly rectify both the forward photoinduced electron transfer and the subsequent charge recombination. Changes in the observed charge-transfer kinetics as a function of media polarity were consistent with the anticipated effects of the anthranilamide molecular dipoles on the rectification. The regioselectivity of electron transfer and the molecular dynamics of the dyads further modulated the observed kinetics, particularly for charge recombination. These findings reveal the underlying complexity of dipole-induced effects on electron transfer and demonstrate unexplored paradigms for molecular rectifiers. PMID:25162490

  14. Aspects of simulation for rectification studies

    Science.gov (United States)

    Mikhail, E. M.; Paderes, F. D., Jr.

    1983-01-01

    The use of mathematical models and simulation is suggested as an aid to rectification. An outline of the factors affecting rectification accuracy is presented along with methods and approaches used for rectifications.

  15. Molecular Programming Pseudo-code Representation to Molecular Electronics

    OpenAIRE

    Pradhan, Manas Ranjan; E G Rajan

    2010-01-01

    This research paper is proposing the idea of pseudo code representation to molecular programming used in designing molecular electronics devices. Already the schematic representation of logical gates like AND, OR, NOT etc.from molecular diodes or resonant tunneling diode are available. This paper is setting a generic pseudo code model so that various logic gates can be formulated. These molecular diodes have designed from organic molecules or Bio-molecules. Our focus is on to give a scenario ...

  16. Electron and Phonon Transport in Molecular Junctions

    DEFF Research Database (Denmark)

    Li, Qian

    Molecular electronics provide the possibility to investigate electron and phonon transport at the smallest imaginable scale, where quantum effects can be investigated and exploited directly in the design. In this thesis, we study both electron transport and phonon transport in molecular junctions...... transmission at the Fermi energy. We propose and analyze a way of using π   stacking to design molecular junctions to control heat transport. We develop a simple model system to identify optimal parameter regimes and then use density functional theory (DFT) to extract model parameters for a number of specific...

  17. Triazatriangulene as binding group for molecular electronics

    DEFF Research Database (Denmark)

    Wei, Zhongming; Wang, Xintai; Borges, Anders;

    2014-01-01

    The triazatriangulene (TATA) ring system was investigated as a binding group for tunnel junctions of molecular wires on gold surfaces. Self-assembled monolayers (SAMs) of TATA platforms with three different lengths of phenylene wires were fabricated, and their electrical conductance was recorded ...... with its high stability and directionality make this binding group very attractive for molecular electronic measurements and devices. (Figure Presented)....

  18. Length dependence of rectification in organic co-oligomer spin rectifiers

    Science.gov (United States)

    Gui-Chao, Hu; Zhao, Zhang; Ying, Li; Jun-Feng, Ren; Chuan-Kui, Wang

    2016-05-01

    The rectification ratio of organic magnetic co-oligomer diodes is investigated theoretically by changing the molecular length. The results reveal two distinct length dependences of the rectification ratio: for a short molecular diode, the charge-current rectification changes little with the increase of molecular length, while the spin-current rectification is weakened sharply by the length; for a long molecular diode, both the charge-current and spin-current rectification ratios increase quickly with the length. The two kinds of dependence switch at a specific length accompanied with an inversion of the rectifying direction. The molecular ortibals and spin-resolved transmission analysis indicate that the dominant mechanism of rectification suffers a change at this specific length, that is, from asymmetric shift of molecular eigenlevels to asymmetric spatial localization of wave functions upon the reversal of bias. This work demonstrates a feasible way to control the rectification in organic co-oligomer spin diodes by adjusting the molecular length. Project supported by the National Natural Science Foundation of China (Grant No. 11374195), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014AM017), the Taishan Scholar Project of Shandong Province, China, and the Excellent Young Scholars Research Fund of Shandong Normal University, China.

  19. Molecular Electronics of Self-Assembled Monolayers

    DEFF Research Database (Denmark)

    Wang, Xintai

    providesa brief introduction toself-assembledmonolayers(SAMs), includingits structure, formation, and its role in molecular electronic investigations. Part II is an introduction of different molecular functions, which are interesting for designing real devices. Part III is an introduction of a novel carbon...... material: graphene, and how such material can be incorporated intothe field of molecular electronics.Chapter 3 is a brief introduction of important instruments used in this thesis.Chapter 4, 5 and 6 describe the major experimental work in this thesis. Chapter 4 introduces two novel anchoring...... with voltage triggering functions, includesthe triggering by bias voltage and electrochemical gate. Chapter 6 introduces some method thatcould enhance the reliability of data obtained from different molecular electronic measurement techniques.Chapter 7 gives a brief summary of this thesis and tentatively point...

  20. Graphitic silicon nitride: a metal-free ferromagnet with charge and spin current rectification.

    Science.gov (United States)

    Sen, Sabyasachi; Chakrabarti, Swapan

    2014-09-15

    As a first example, herein we show that g-Si(4)N(3) is expected to act as a metal-free ferromagnet featuring both charge and spin current rectification simultaneously. Such rectification is crucial for envisioning devices that contain both logic and memory functionality on a single chip. The spin coherent quantum-transport calculations on g-Si(4)N(3) reveal that the chosen system is a unique molecular spin filter, the current-voltage characteristics of which is asymmetric in nature, which can create a perfect background for synchronous charge and spin current rectification. To shed light on this highly unusual in-silico observation, we have meticulously inspected the bias-dependent modulation of the spin-polarized eigenstates. The results indicate that, whereas only the localized 2p orbitals of the outer-ring (OR) Si atoms participate in the transmission process in the positive bias, both OR Si and N atoms contribute in the reverse bias. Furthermore, we have evaluated the spin-polarized electron-transfer rate in the tunneling regime, and the results demonstrate that the transfer rates are unequal in the positive and negative bias range, leading to the possible realization of a simultaneous logic-memory device.

  1. Molecular ferroelectrics: where electronics meet biology.

    Science.gov (United States)

    Li, Jiangyu; Liu, Yuanming; Zhang, Yanhang; Cai, Hong-Ling; Xiong, Ren-Gen

    2013-12-28

    In the last several years, we have witnessed significant advances in molecular ferroelectrics, with the ferroelectric properties of molecular crystals approaching those of barium titanate. In addition, ferroelectricity has been observed in biological systems, filling an important missing link in bioelectric phenomena. In this perspective, we will present short historical notes on ferroelectrics, followed by an overview of the fundamentals of ferroelectricity. The latest developments in molecular ferroelectrics and biological ferroelectricity will then be highlighted, and their implications and potential applications will be discussed. We close by noting molecular ferroelectric as an exciting frontier between electronics and biology, and a number of challenges ahead are also described.

  2. Electron transport in molecular junctions

    DEFF Research Database (Denmark)

    Jin, Chengjun

    the lowest unoccupied molecular level (LUMO) of the 44BP molecule hybridizes strongly with Ni 3d orbitals, the gating is auxiliary by the so-called spinterface. Finally, the correlation effect of the image charge beyond the energy level renormalization has been studied. It is shown that the finite response...... groups. The failure of the DFT based description is due to the strong energy level pinning when the BDA molecule is in contact with Au contacts. The effect of contact geometries on the conductance and the thermopower has also been addressed. It is found that both GW and the DFT+∑ with a certain image...... charge position are in quantitative agreement with the experiments, while pure DFT is not. This is the consequence of the accurate energy level alignment, where the DFT+∑ method corrects the self-interaction error in the standard DFT functional and uses a static image charge model to include the image...

  3. Progress in molecular precursors for electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Buhro, W.E. [Washington Univ., St. Louis, MO (United States)

    1996-09-01

    Molecular-precursor chemistry provides an essential underpinning to all electronic-materials technologies, including photovoltaics and related areas of direct interest to the DOE. Materials synthesis and processing is a rapidly developing field in which advances in molecular precursors are playing a major role. This article surveys selected recent research examples that define the exciting current directions in molecular-precursor science. These directions include growth of increasingly complex structures and stoichiometries, surface-selective growth, kinetic growth of metastable materials, growth of size-controlled quantum dots and quantum-dot arrays, and growth at progressively lower temperatures. Continued progress in molecular-precursor chemistry will afford precise control over the crystal structures, nanostructures, and microstructures of electronic materials.

  4. Light and Redox Switchable Molecular Components for Molecular Electronics

    NARCIS (Netherlands)

    Browne, Wesley R.; Feringa, Bernard

    2010-01-01

    The field of molecular and organic electronics has seen rapid progress in recent years, developing from concept and design to actual demonstration devices in which both single molecules and self-assembled monolayers are employed as light-responsive components. Research in this field has seen numerou

  5. Determination of g-tensors of low-symmetry Nd{sup 3+} centers in LiNbO{sub 3} by rectification of angular dependence of electron paramagnetic resonance spectra

    Energy Technology Data Exchange (ETDEWEB)

    Grachev, V., E-mail: grachev@physics.montana.edu; Malovichko, G. [Physics Department, Montana State University, Bozeman, Montana 59717 (United States); Munro, M. [Quantel Laser, Bozeman, Montana 59715 (United States); Kokanyan, E. [Institute of Physical Researches, Ashtarak (Armenia)

    2015-07-28

    Two procedures for facilitation of line tracing and deciphering of complicated spectra of electron paramagnetic resonance (EPR) were developed: a correction of microwave frequencies for every orientation of external magnetic field on the base of known values of g-tensor components for a reference paramagnetic center and followed rectification of measured angular dependences using plots of effective deviation of g{sup 2}-factors of observed lines from effective g{sup 2}-factors of the reference center versus angles or squared cosines of angles describing magnetic field orientations. Their application to EPR spectra of nearly stoichiometric lithium niobate crystals doped with neodymium allowed identifying two axial and six different low-symmetry Nd{sup 3+} centers, to determine all components of their g-tensors, and to propose common divacancy models for a whole family of Nd{sup 3+} centers.

  6. Molecular Dissociation Induced by Electron Collisions

    Science.gov (United States)

    Wolf, Andreas

    2009-05-01

    Free electrons can efficiently break molecules or molecular ions in low-energy collisions by the processes of dissociative recombination or attachment. These processes make slow electrons efficient chemical agents in many environments. For dissociative recombination, in particular, studies of the underlying reaction paths and mechanisms have become possible on a uniquely elementary level in recent years both for theory and experiment. On the experimental side, collisions can be prepared at resolved collision energies down to the meV (10 Kelvin) level, increasingly gaining control also over the initial molecular quantum level, and individual events are detected and kinematically analyzed by fast-beam coincidence fragment imaging. Experiments are reported from the ion cooler ring TSR in Heidelberg. Stored beams of molecular ions cooled in their external and internal degrees of freedom are collinearly merged with intense and cold electron beams from cryogenic GaAs photocathodes, recently shown to yield fast cooling of the center-of-mass motion also for heavy and correspondingly slow molecular ion beams. To reconstruct the molecular fragmentation events multiparticle imaging can now be used systematically with collision energies set a wide range, especially aiming at specific electron capture resonances. Thus, for CF^+ it is found that the electronic state of the C fragment (^3P or ^1D) switches resonantly when the collision energy is changed by only a small fraction. As a new powerful tool, an energy-sensitive multi-strip surface-barrier detector (EMU) has been set up to measure with near-unity efficiency the masses of all fragments together with their hit positions in high-multiplicity events. Among many uses, this device allows internal molecular excitations to be derived for individual chemical channels in polyatomic fragmentation. New results will be presented in particular on the breakup of the hydronium ion (D3O^+).

  7. Giant Thermal Rectification from Polyethylene Nanofiber Thermal Diodes

    CERN Document Server

    Zhang, Teng

    2015-01-01

    The realization of phononic computing is held hostage by the lack of high performance thermal devices. Here we show through theoretical analysis and molecular dynamics simulations that unprecedented thermal rectification factors (as large as 1.20) can be achieved utilizing the phase dependent thermal conductivity of polyethylene nanofibers. More importantly, such high thermal rectifications only need very small temperature differences (< 20 oC) across the device, which is a significant advantage over other thermal diodes which need temperature biases on the order of the operating temperature. Taking this into consideration, we show that the dimensionless temperature-scaled rectification factors of the polymer nanofiber diodes range from 12 to 25 - much larger than other thermal diodes (< 8). The polymer nanofiber thermal diode consists of a crystalline portion whose thermal conductivity is highly phase-sensitive and a cross-linked portion which has a stable phase. Nanoscale size effect can be utilized t...

  8. Computational Nanotechnology Molecular Electronics, Materials and Machines

    Science.gov (United States)

    Srivastava, Deepak; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    This presentation covers research being performed on computational nanotechnology, carbon nanotubes and fullerenes at the NASA Ames Research Center. Topics cover include: nanomechanics of nanomaterials, nanotubes and composite materials, molecular electronics with nanotube junctions, kinky chemistry, and nanotechnology for solid-state quantum computers using fullerenes.

  9. Exploiting plasmon-induced hot electrons in molecular electronic devices.

    Science.gov (United States)

    Conklin, David; Nanayakkara, Sanjini; Park, Tae-Hong; Lagadec, Marie F; Stecher, Joshua T; Chen, Xi; Therien, Michael J; Bonnell, Dawn A

    2013-05-28

    Plasmonic nanostructures can induce a number of interesting responses in devices. Here we show that hot electrons can be extracted from plasmonic particles and directed into a molecular electronic device, which represents a new mechanism of transfer from light to electronic transport. To isolate this phenomenon from alternative and sometimes simultaneous mechanisms of plasmon-exciton interactions, we designed a family of hybrid nanostructure devices consisting of Au nanoparticles and optoelectronically functional porphyin molecules that enable precise control of electronic and optical properties. Temperature- and wavelength-dependent transport measurements are analyzed in the context of optical absorption spectra of the molecules, the Au particle arrays, and the devices. Enhanced photocurrent associated with exciton generation in the molecule is distinguished from enhancements due to plasmon interactions. Mechanisms of plasmon-induced current are examined, and it is found that hot electron generation can be distinguished from other possibilities. PMID:23550717

  10. Electronic continuum model for molecular dynamics simulations.

    Science.gov (United States)

    Leontyev, I V; Stuchebrukhov, A A

    2009-02-28

    A simple model for accounting for electronic polarization in molecular dynamics (MD) simulations is discussed. In this model, called molecular dynamics electronic continuum (MDEC), the electronic polarization is treated explicitly in terms of the electronic continuum (EC) approximation, while the nuclear dynamics is described with a fixed-charge force field. In such a force-field all atomic charges are scaled to reflect the screening effect by the electronic continuum. The MDEC model is rather similar but not equivalent to the standard nonpolarizable force-fields; the differences are discussed. Of our particular interest is the calculation of the electrostatic part of solvation energy using standard nonpolarizable MD simulations. In a low-dielectric environment, such as protein, the standard MD approach produces qualitatively wrong results. The difficulty is in mistreatment of the electronic polarizability. We show how the results can be much improved using the MDEC approach. We also show how the dielectric constant of the medium obtained in a MD simulation with nonpolarizable force-field is related to the static (total) dielectric constant, which includes both the nuclear and electronic relaxation effects. Using the MDEC model, we discuss recent calculations of dielectric constants of alcohols and alkanes, and show that the MDEC results are comparable with those obtained with the polarizable Drude oscillator model. The applicability of the method to calculations of dielectric properties of proteins is discussed. PMID:19256627

  11. Resonant optical rectification in bacteriorhodopsin.

    Science.gov (United States)

    Groma, Géza I; Colonna, Anne; Lambry, Jean-Christophe; Petrich, Jacob W; Váró, György; Joffre, Manuel; Vos, Marten H; Martin, Jean-Louis

    2004-05-25

    The relative role of retinal isomerization and microscopic polarization in the phototransduction process of bacteriorhodopsin is still an open question. It is known that both processes occur on an ultrafast time scale. The retinal trans-->cis photoisomerization takes place on the time scale of a few hundred femtoseconds. On the other hand, it has been proposed that the primary light-induced event is a sudden polarization of the retinal environment, although there is no direct experimental evidence for femtosecond charge displacements, because photovoltaic techniques cannot be used to detect charge movements faster than picoseconds. Making use of the known high second-order susceptibility chi(2) of retinal in proteins, we have used a nonlinear technique, interferometric detection of coherent infrared emission, to study macroscopically oriented bacteriorhodopsin-containing purple membranes. We report and characterize impulsive macroscopic polarization of these films by optical rectification of an 11-fs visible light pulse in resonance with the optical transition. This finding provides direct evidence for charge separation as a precursor event for subsequent functional processes. A simple two-level model incorporating the resonant second-order optical properties of retinal, which are known to be a requirement for functioning of bacteriorhodopsin, is used to describe the observations. In addition to the electronic response, long-lived infrared emission at specific frequencies was observed, reflecting charge movements associated with vibrational motions. The simultaneous and phase-sensitive observation of both the electronic and vibrational signals opens the way to study the transduction of the initial polarization into structural dynamics. PMID:15148391

  12. Fingerprinting Electronic Molecular Complexes in Liquid

    Science.gov (United States)

    Nirmalraj, Peter; La Rosa, Andrea; Thompson, Damien; Sousa, Marilyne; Martin, Nazario; Gotsmann, Bernd; Riel, Heike

    2016-01-01

    Predicting the electronic framework of an organic molecule under practical conditions is essential if the molecules are to be wired in a realistic circuit. This demands a clear description of the molecular energy levels and dynamics as it adapts to the feedback from its evolving chemical environment and the surface topology. Here, we address this issue by monitoring in real-time the structural stability and intrinsic molecular resonance states of fullerene (C60)-based hybrid molecules in the presence of the solvent. Energetic levels of C60 hybrids are resolved by in situ scanning tunnelling spectroscopy with an energy resolution in the order of 0.1 eV at room-temperature. An ultra-thin organic spacer layer serves to limit contact metal-molecule energy overlap. The measured molecular conductance gap spread is statistically benchmarked against first principles electronic structure calculations and used to quantify the diversity in electronic species within a standard population of molecules. These findings provide important progress towards understanding conduction mechanisms at a single-molecular level and in serving as useful guidelines for rational design of robust nanoscale devices based on functional organic molecules.

  13. Towards reproducible, scalable lateral molecular electronic devices

    Science.gov (United States)

    Durkan, Colm; Zhang, Qian

    2014-08-01

    An approach to reproducibly fabricate molecular electronic devices is presented. Lateral nanometer-scale gaps with high yield are formed in Au/Pd nanowires by a combination of electromigration and Joule-heating-induced thermomechanical stress. The resulting nanogap devices are used to measure the electrical properties of small numbers of two different molecular species with different end-groups, namely 1,4-butane dithiol and 1,5-diamino-2-methylpentane. Fluctuations in the current reveal that in the case of the dithiol molecule devices, individual molecules conduct intermittently, with the fluctuations becoming more pronounced at larger biases.

  14. Towards reproducible, scalable lateral molecular electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Durkan, Colm, E-mail: cd229@eng.cam.ac.uk; Zhang, Qian [Nanoscience Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2014-08-25

    An approach to reproducibly fabricate molecular electronic devices is presented. Lateral nanometer-scale gaps with high yield are formed in Au/Pd nanowires by a combination of electromigration and Joule-heating-induced thermomechanical stress. The resulting nanogap devices are used to measure the electrical properties of small numbers of two different molecular species with different end-groups, namely 1,4-butane dithiol and 1,5-diamino-2-methylpentane. Fluctuations in the current reveal that in the case of the dithiol molecule devices, individual molecules conduct intermittently, with the fluctuations becoming more pronounced at larger biases.

  15. Tuning molecular orbitals in molecular electronics and spintronics.

    Science.gov (United States)

    Kim, Woo Youn; Kim, Kwang S

    2010-01-19

    With the advance of nanotechnology, a variety of molecules, from single atoms to large-scale structures such as graphene or carbon nanotubes, have been investigated for possible use as molecular devices. Molecular orbitals (MOs) are a key ingredient in determining the transport properties of molecules, because they contain all the quantum mechanical information of molecular electronic structures and offer spatial conduction channels for electron transport. Therefore, the delicate modulation of the MOs enables us to tune the performance of electron transport through the molecule. Electric and magnetic fields are powerful and readily accessible means for that purpose. In this Account, we describe the effects of external fields on molecular electronic and spintronic devices. Quantum transport through a molecule that connects source and drain electrodes depends strongly on the alignment of molecular energy levels with respect to the chemical potentials at both electrodes. This dependence results from the energy levels being exploited in resonant tunneling processes when the molecule is weakly coupled to the electrodes in the molecular junction. Molecular energy levels can be shifted by the Stark effect of an external electric field. For a molecule with no permanent dipole moment, the polarizability is the primary factor determining the energy shift of each MO, according to the second-order Stark effect; more polarizable MOs undergo a larger energy shift. Interestingly, even a small shift may lead to a completely nontrivial result. For example, we show a magnetic on-off switching phenomenon of a molecule controlled by an electric field. If a molecule has a nonmagnetic ground state but a highly polarizable magnetic excited state with an energy slightly above the ground state, the magnetic excited state can have lower energy than the ground state under a sufficiently strong electric field. A magnetic field is normally used to control spin orientation in a ferromagnetic

  16. USDA registration and rectification requirements

    Science.gov (United States)

    Allen, R.

    1982-01-01

    Some of the requirements of the United States Department of Agriculture for accuracy of aerospace acquired data, and specifically, requirements for registration and rectification of remotely sensed data are discussed. Particular attention is given to foreign and domestic crop estimation and forecasting, forestry information applications, and rangeland condition evaluations.

  17. Faradaic rectification: an amended treatment

    NARCIS (Netherlands)

    Leeuwe, R. de; Sluyters-Rehbach, M.; Sluyters, J.H.

    1967-01-01

    Delahay's graphical treatment of the faradaic rectification technique is critically discussed, taking into account, without approximations, the complete cell impedance as given by Randles' equivalent circuit. As an improvement a numerical approach is proposed, as well as a technique where the freque

  18. Modeling ion sensing in molecular electronics

    Science.gov (United States)

    Chen, Caroline J.; Smeu, Manuel; Ratner, Mark A.

    2014-02-01

    We examine the ability of molecules to sense ions by measuring the change in molecular conductance in the presence of such charged species. The detection of protons (H+), alkali metal cations (M+), calcium ions (Ca2+), and hydronium ions (H3O+) is considered. Density functional theory (DFT) is used within the Keldysh non-equilibrium Green's function framework (NEGF) to model electron transport properties of quinolinedithiol (QDT, C9H7NS2), bridging Al electrodes. The geometry of the transport region is relaxed with DFT. The transport properties of the device are modeled with NEGF-DFT to determine if this device can distinguish among the M+ + QDT species containing monovalent cations, where M+ = H+, Li+, Na+, or K+. Because of the asymmetry of QDT in between the two electrodes, both positive and negative biases are considered. The electron transmission function and conductance properties are simulated for electrode biases in the range from -0.5 V to 0.5 V at increments of 0.1 V. Scattering state analysis is used to determine the molecular orbitals that are the main contributors to the peaks in the transmission function near the Fermi level of the electrodes, and current-voltage relationships are obtained. The results show that QDT can be used as a proton detector by measuring transport through it and can conceivably act as a pH sensor in solutions. In addition, QDT may be able to distinguish among different monovalent species. This work suggests an approach to design modern molecular electronic conductance sensors with high sensitivity and specificity using well-established quantum chemistry.

  19. Modeling ion sensing in molecular electronics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Caroline J.; Smeu, Manuel, E-mail: manuel.smeu@northwestern.edu; Ratner, Mark A., E-mail: ratner@northwestern.edu [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)

    2014-02-07

    We examine the ability of molecules to sense ions by measuring the change in molecular conductance in the presence of such charged species. The detection of protons (H{sup +}), alkali metal cations (M{sup +}), calcium ions (Ca{sup 2+}), and hydronium ions (H{sub 3}O{sup +}) is considered. Density functional theory (DFT) is used within the Keldysh non-equilibrium Green's function framework (NEGF) to model electron transport properties of quinolinedithiol (QDT, C{sub 9}H{sub 7}NS{sub 2}), bridging Al electrodes. The geometry of the transport region is relaxed with DFT. The transport properties of the device are modeled with NEGF-DFT to determine if this device can distinguish among the M{sup +} + QDT species containing monovalent cations, where M{sup +} = H{sup +}, Li{sup +}, Na{sup +}, or K{sup +}. Because of the asymmetry of QDT in between the two electrodes, both positive and negative biases are considered. The electron transmission function and conductance properties are simulated for electrode biases in the range from −0.5 V to 0.5 V at increments of 0.1 V. Scattering state analysis is used to determine the molecular orbitals that are the main contributors to the peaks in the transmission function near the Fermi level of the electrodes, and current-voltage relationships are obtained. The results show that QDT can be used as a proton detector by measuring transport through it and can conceivably act as a pH sensor in solutions. In addition, QDT may be able to distinguish among different monovalent species. This work suggests an approach to design modern molecular electronic conductance sensors with high sensitivity and specificity using well-established quantum chemistry.

  20. Thermal Rectification by Design in Telescopic Si Nanowires.

    Science.gov (United States)

    Cartoixà, Xavier; Colombo, Luciano; Rurali, Riccardo

    2015-12-01

    We show that thermal rectification by design is possible by joining/growing Si nanowires (SiNWs) with sections of appropriately selected diameters (i.e., telescopic nanowires). This is done, first, by showing that the heat equation can be applied at the nanoscale (NW diameters down to 5 nm). We (a) obtain thermal conductivity versus temperature, κ(T), curves from molecular dynamics (MD) simulations for SiNWs of three different diameters, then (b) we conduct MD simulations of a telescopic NW built as the junction of two segments with different diameters, and afterward (c) we verify that the MD results for thermal rectification in telescopic NWs are very well reproduced by the heat equation with κ(T) of the segments from MD. Second, we apply the heat equation to predict the amount of thermal rectification in a variety of telescopic SiNWs with segments made from SiNWs where κ(T) has been experimentally measured, obtaining r values up to 50%. This methodology can be applied to predict the thermal rectification of arbitrary heterojunctions as long as the κ(T) data of the constituents are available.

  1. Functional molecules in electronic circuits.

    Science.gov (United States)

    Weibel, Nicolas; Grunder, Sergio; Mayor, Marcel

    2007-08-01

    Molecular electronics is a fascinating field of research contributing to both fundamental science and future technological achievements. A promising starting point for molecular devices is to mimic existing electronic functions to investigate the potential of molecules to enrich and complement existing electronic strategies. Molecules designed and synthesized to be integrated into electronic circuits and to perform an electronic function are presented in this article. The focus is set in particular on rectification and switching based on molecular devices, since the control over these two parameters enables the assembly of memory units, likely the most interesting and economic application of molecular based electronics. Both historical and contemporary solutions to molecular rectification are discussed, although not exhaustively. Several examples of integrated molecular switches that respond to light are presented. Molecular switches responding to an electrochemical signal are also discussed. Finally, supramolecular and molecular systems with intuitive application potential as memory units due to their hysteretic switching are highlighted. Although a particularly attractive feature of molecular electronics is its close cooperation with neighbouring disciplines, this article is written from the point of view of a chemist. Although the focus here is largely on molecular considerations, innovative contributions from physics, electro engineering, nanotechnology and other scientific disciplines are equally important. However, the ability of the chemist to correlate function with structure, to design and to provide tailor-made functional molecules is central to molecular electronics. PMID:17637951

  2. Electron transfer through rigid organic molecular wires enhanced by electronic and electron-vibration coupling.

    Science.gov (United States)

    Sukegawa, Junpei; Schubert, Christina; Zhu, Xiaozhang; Tsuji, Hayato; Guldi, Dirk M; Nakamura, Eiichi

    2014-10-01

    Electron transfer (ET) is a fundamental process in a wide range of biological systems, photovoltaics and molecular electronics. Therefore to understand the relationship between molecular structure and ET properties is of prime importance. For this purpose, photoinduced ET has been studied extensively using donor-bridge-acceptor molecules, in which π-conjugated molecular wires are employed as bridges. Here, we demonstrate that carbon-bridged oligo-p-phenylenevinylene (COPV), which is both rigid and flat, shows an 840-fold increase in the ET rate compared with the equivalent flexible molecular bridges. A 120-fold rate enhancement is explained in terms of enhanced electronic coupling between the electron donor and the electron acceptor because of effective conjugation through the COPVs. The remainder of the rate enhancement is explained by inelastic electron tunnelling through COPV caused by electron-vibration coupling, unprecedented for organic molecular wires in solution at room temperature. This type of nonlinear effect demonstrates the versatility and potential practical utility of COPVs in molecular device applications.

  3. Radar image registration and rectification

    Science.gov (United States)

    Naraghi, M.; Stromberg, W. D.

    1983-01-01

    Two techniques for radar image registration and rectification are presented. In the registration method, a general 2-D polynomial transform is defined to accomplish the geometric mapping from one image into the other. The degree and coefficients of the polynomial are obtained using an a priori found tiepoint data set. In the second part of the paper, a rectification procedure is developed that models the distortion present in the radar image in terms of the radar sensor's platform parameters and the topographic variations of the imaged scene. This model, the ephemeris data and the digital topographic data are then used in rectifying the radar image. The two techniques are then used in registering and rectifying two examples of radar imagery. Each method is discussed as to its benefits, shortcomings and registration accuracy.

  4. Reverse rectification and negative differential resistance effects in doped armchair graphene ribbons device

    Science.gov (United States)

    Yuan, Peipei; Zheng, Yapeng; Bian, Baoan; Liao, Bin

    2016-09-01

    In the present work, we perform first-principles calculations based on density functional theory and non-equilibrium Green's function to study the electronic transport properties of the 10-armchair graphene ribbons devices doped by boron and phosphorus atoms. Two kinds of device show a strong inverse rectification and negative differential resistance (NDR) effect. The effect of doping position on rectifying phenomenon are analyzed by calculating the transmission spectra and the energy band structures of the related electrodes as well as the projected density of states for two devices at different bias. And the observed NDR effect is explained by the local density of states. The results indicate that the asymmetric doping of the impurity atom contributes to the electron transport of the device, being used to design a molecular rectifier with good performance.

  5. Ratchet rectification effect on the translocation of a flexible polyelectrolyte chain

    Science.gov (United States)

    Mondal, Debasish; Muthukumar, M.

    2016-08-01

    We report a three dimensional Langevin dynamics simulation of a uniformly charged flexible polyelectrolyte chain, translocating through an asymmetric narrow channel with periodically varying cross sections under the influence of a periodic external electric field. When reflection symmetry of the channel is broken, a rectification effect is observed with a favored direction for the chain translocation. For a given volume of the channel unit and polymer length, the rectification occurs below a threshold frequency of the external periodic driving force. We have also observed that the extent of the rectification varies non-monotonically with increasing molecular weight and the strength of geometric asymmetry of the channel. Observed non-monotonicity of the rectification performance has been interpreted in terms of a competition between two effects arising from the channel asymmetry and change in conformational entropy. An analytical model is presented with predictions consistent with the simulation results.

  6. Ratchet rectification effect on the translocation of a flexible polyelectrolyte chain.

    Science.gov (United States)

    Mondal, Debasish; Muthukumar, M

    2016-08-28

    We report a three dimensional Langevin dynamics simulation of a uniformly charged flexible polyelectrolyte chain, translocating through an asymmetric narrow channel with periodically varying cross sections under the influence of a periodic external electric field. When reflection symmetry of the channel is broken, a rectification effect is observed with a favored direction for the chain translocation. For a given volume of the channel unit and polymer length, the rectification occurs below a threshold frequency of the external periodic driving force. We have also observed that the extent of the rectification varies non-monotonically with increasing molecular weight and the strength of geometric asymmetry of the channel. Observed non-monotonicity of the rectification performance has been interpreted in terms of a competition between two effects arising from the channel asymmetry and change in conformational entropy. An analytical model is presented with predictions consistent with the simulation results.

  7. Theory of Vibrationally Inelastic Electron Transport through Molecular Bridges

    OpenAIRE

    Cizek, Martin; Thoss, Michael; Domcke, Wolfgang

    2003-01-01

    Vibrationally inelastic electron transport through a molecular bridge that is connected to two leads is investigated. The study is based on a generic model of vibrational excitation in resonant transmission of electrons through a molecular junction. Employing methods from electron-molecule scattering theory, the transmittance through the molecular bridge can be evaluated numerically exactly. The current through the junction is obtained approximately using a Landauer-type formula. Considering ...

  8. Thermal rectification in nonlinear quantum circuits

    DEFF Research Database (Denmark)

    Ruokola, T.; Ojanen, T.; Jauho, Antti-Pekka

    2009-01-01

    We present a theoretical study of radiative heat transport in nonlinear solid-state quantum circuits. We give a detailed account of heat rectification effects, i.e., the asymmetry of heat current with respect to a reversal of the thermal gradient, in a system consisting of two reservoirs at finite...... the rectification changes sign as a function of temperature....

  9. A theoretical study of faradaic rectification polarography

    NARCIS (Netherlands)

    Pol, F. van der

    1972-01-01

    The shape of faradaic rectification polarograms is calculated on the assumption of a single step charge transfer, allowing deviations from the absolute rate theory. As a result, the conditions necessary for obtaining significant information about the kinetic parameters from measured rectification si

  10. Reversal of Thermal Rectification in Quantum Systems

    OpenAIRE

    Zhang, Lifa; Yan, Yonghong; Wu, Chang-Qin; Wang, Jian-Sheng; Li, Baowen

    2009-01-01

    We study thermal transport in anisotropic Heisenberg spin chains using the quantum master equation. It is found that thermal rectification changes sign when the external homogeneous magnetic field is varied. This reversal also occurs when the magnetic field becomes inhomogeneous. Moreover, we can tune the reversal of rectification by temperatures of the heat baths, the anisotropy and size of the spin chains.

  11. Rectification in tunneling junctions: 2,2'-bipyridyl-terminated n-alkanethiolates.

    Science.gov (United States)

    Yoon, Hyo Jae; Liao, Kung-Ching; Lockett, Matthew R; Kwok, Sen Wai; Baghbanzadeh, Mostafa; Whitesides, George M

    2014-12-10

    Molecular rectification is a particularly attractive phenomenon to examine in studying structure-property relationships in charge transport across molecular junctions, since the tunneling currents across the same molecular junction are measured, with only a change in the sign of the bias, with the same electrodes, molecule(s), and contacts. This type of experiment minimizes the complexities arising from measurements of current densities at one polarity using replicate junctions. This paper describes a new organic molecular rectifier: a junction having the structure Ag(TS)/S(CH2)11-4-methyl-2,2'-bipyridyl//Ga2O3/EGaIn (Ag(TS): template-stripped silver substrate; EGaIn: eutectic gallium-indium alloy) which shows reproducible rectification with a mean r(+) = |J(+1.0 V)|/|J(-1.0 V)| = 85 ± 2. This system is important because rectification occurs at a polarity opposite to that of the analogous but much more extensively studied systems based on ferrocene. It establishes (again) that rectification is due to the SAM, and not to redox reactions involving the Ga2O3 film, and confirms that rectification is not related to the polarity in the junction. Comparisons among SAM-based junctions incorporating the Ga2O3/EGaIn top electrode and a variety of heterocyclic terminal groups indicate that the metal-free bipyridyl group, not other features of the junction, is responsible for the rectification. The paper also describes a structural and mechanistic hypothesis that suggests a partial rationalization of values of rectification available in the literature.

  12. Separation processes, I: Azeotropic rectification

    Directory of Open Access Journals (Sweden)

    Milojević Svetomir

    2005-01-01

    Full Text Available In a series of two articles, the problems of azeotrope separation (part I and the design of separation units (part II were analyzed. The basic definition and equations of vapour-liquid equilibria for ideal and non-ideal systems, the importance of the activity coefficient calculation necessary for the analysis of non-ideal equilibrium systems, as well as theoretical aspects of azeotrope rectification and the determination of the optimal third component (modifier or azeotrope agent are presented in the first part.

  13. Wave rectification in plasma sheaths surrounding electric field antennas

    Science.gov (United States)

    Boehm, M. H.; Carlson, C. W.; Mcfadden, J. P.; Clemmons, J. H.; Ergun, R. E.; Mozer, F. S.

    1994-01-01

    Combined measurements of Langmuir or broadband whistler wave intensity and lower-frequency electric field waveforms, all at 10-microsecond time resolution, were made on several recent sounding rockets in the auroral ionosphere. It is found that Langmuir and whistler waves are partically rectified in the plasma sheaths surrounding the payload and the spheres used as antennas. This sheath rectification occurs whenever the high frequency (HF) potential across the sheath becomes of the same order as the electron temperature or higher, for wave frequencies near or above the ion plasma frequency. This rectification can introduce false low-frequency waves into measurements of electric field spectra when strong high-frequency waves are present. Second harmonic signals are also generated, although at much lower levels. The effect occurs in many different plasma conditions, primarily producing false waves at frequencies that are low enough for the antenna coupling to the plasma to be resistive.

  14. Giant Thermal Rectification from Polyethylene Nanofiber Thermal Diodes.

    Science.gov (United States)

    Zhang, Teng; Luo, Tengfei

    2015-09-01

    The realization of phononic computing is held hostage by the lack of high-performance thermal devices. Here, it is shown through theoretical analysis and molecular dynamics simulations that unprecedented thermal rectification factors (as large as 1.20) can be achieved utilizing the phase-dependent thermal conductivity of polyethylene nanofibers. More importantly, such high thermal rectifications only need very small temperature differences (rectification factors of the polymer nanofiber diodes range from 12 to 25-much larger than those of other thermal diodes (<8). The polymer nanofiber thermal diode consists of a crystalline portion whose thermal conductivity is highly phase-sensitive and a cross-linked portion which has a stable phase. Nanoscale size effect can be utilized to tune the phase transition temperature of the crystalline portion, enabling thermal diodes capable of operating at different temperatures. This work will be instrumental to the design of high performance, inexpensive, and easily processible thermal devices, based on which thermal circuits can be built to ultimately enable phononic computing.

  15. Molecular-Scale Electronics: From Concept to Function.

    Science.gov (United States)

    Xiang, Dong; Wang, Xiaolong; Jia, Chuancheng; Lee, Takhee; Guo, Xuefeng

    2016-04-13

    Creating functional electrical circuits using individual or ensemble molecules, often termed as "molecular-scale electronics", not only meets the increasing technical demands of the miniaturization of traditional Si-based electronic devices, but also provides an ideal window of exploring the intrinsic properties of materials at the molecular level. This Review covers the major advances with the most general applicability and emphasizes new insights into the development of efficient platform methodologies for building reliable molecular electronic devices with desired functionalities through the combination of programmed bottom-up self-assembly and sophisticated top-down device fabrication. First, we summarize a number of different approaches of forming molecular-scale junctions and discuss various experimental techniques for examining these nanoscale circuits in details. We then give a full introduction of characterization techniques and theoretical simulations for molecular electronics. Third, we highlight the major contributions and new concepts of integrating molecular functionalities into electrical circuits. Finally, we provide a critical discussion of limitations and main challenges that still exist for the development of molecular electronics. These analyses should be valuable for deeply understanding charge transport through molecular junctions, the device fabrication process, and the roadmap for future practical molecular electronics.

  16. Progresses in organic field-effect transistors and molecular electronics

    Institute of Scientific and Technical Information of China (English)

    Wu Weiping; Xu Wei; Hu Wenping; Liu Yunqi; Zhu Daoben

    2006-01-01

    In the past years,organic semiconductors have been extensively investigated as electronic materials for organic field-effect transistors (OFETs).In this review,we briefly summarize the current status of organic field-effect transistors including materials design,device physics,molecular electronics and the applications of carbon nanotubes in molecular electronics.Future prospects and investigations required to improve the OFET performance are also involved.

  17. Electron-phonon scattering in molecular electronics: from inelastic electron tunnelling spectroscopy to heating effects

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Alessio; Frauenheim, Thomas; Niehaus, Thomas A [Bremen Center for Computational Materials Science, University of Bremen, D-28359 Bremen (Germany); Romano, Giuseppe; Pecchia, Alessandro; Di Carlo, Aldo [CNR-INFM Department of Electronics Engineering, University of Rome ' Tor Vergata' , Via del Politecnico 1, 00133 Rome (Italy)], E-mail: gagliard@bccms.uni-bremen.de, E-mail: Gagliardi@Ing.uniroma2.it

    2008-06-15

    In this paper, we investigate dissipation in molecular electronic devices. Dissipation is a crucial quantity which determines the stability and heating of the junction. Moreover, several experimental techniques which use inelastically scattered electrons as probes to investigate the geometry in the junction are becoming fundamental in the field. In order to describe such physical effects, a non-equilibrium Green's function (NEGF) method was implemented to include scattering events between electrons and molecular vibrations in current simulations. It is well known that the final heating of the molecule depends also on the ability of the molecule to relax vibrational quanta into the contact reservoirs. A semi-classical rate equation has been implemented and integrated within the NEGF formalism to include this relaxation. The model is based on two quantities: (i) the rate of emission of phonons in the junction by electron-phonon scattering and (ii) a microscopic approach for the computation of the phonon decay rate, accounting for the dynamical coupling between the vibrational modes localized on the molecule and the contact phonons. The method is applied to investigate inelastic electron tunnelling spectroscopy (IETS) signals in CO molecules on Cu(110) substrates as well as dissipation in C{sub 60} molecules on Cu(110) and Si(100) surfaces. It is found that the mechanisms of energy relaxation are highly mode-specific and depend crucially on the lead electronic structure and junction geometry.

  18. Electron-phonon scattering in molecular electronics: from inelastic electron tunnelling spectroscopy to heating effects

    International Nuclear Information System (INIS)

    In this paper, we investigate dissipation in molecular electronic devices. Dissipation is a crucial quantity which determines the stability and heating of the junction. Moreover, several experimental techniques which use inelastically scattered electrons as probes to investigate the geometry in the junction are becoming fundamental in the field. In order to describe such physical effects, a non-equilibrium Green's function (NEGF) method was implemented to include scattering events between electrons and molecular vibrations in current simulations. It is well known that the final heating of the molecule depends also on the ability of the molecule to relax vibrational quanta into the contact reservoirs. A semi-classical rate equation has been implemented and integrated within the NEGF formalism to include this relaxation. The model is based on two quantities: (i) the rate of emission of phonons in the junction by electron-phonon scattering and (ii) a microscopic approach for the computation of the phonon decay rate, accounting for the dynamical coupling between the vibrational modes localized on the molecule and the contact phonons. The method is applied to investigate inelastic electron tunnelling spectroscopy (IETS) signals in CO molecules on Cu(110) substrates as well as dissipation in C60 molecules on Cu(110) and Si(100) surfaces. It is found that the mechanisms of energy relaxation are highly mode-specific and depend crucially on the lead electronic structure and junction geometry

  19. Molecular ferroelectrics: where electronics meet biology

    OpenAIRE

    Li, Jiangyu; Liu, Yuanming; Zhang, Yanhang; Cai, Hong-Ling; Xiong, Ren-Gen

    2013-01-01

    In the last several years, we have witnessed significant advances in molecular ferroelectrics, with ferroelectric properties of molecular crystals approaching those of barium titanate. In addition, ferroelectricity has been observed in biological systems, filling an important missing link in bioelectric phenomena. In this perspective, we will present short historical notes on ferroelectrics, followed by overview on the fundamentals of ferroelectricity. Latest development in molecular ferroele...

  20. Self-assembled nanogaps for molecular electronics

    DEFF Research Database (Denmark)

    Tang, Qingxin; Tong, Yanhong; Jain, Titoo;

    2009-01-01

    A nanogap for molecular devices was realized using solution-based self-assembly. Gold nanorods were assembled to gold nanoparticle-coated conducting SnO2:Sb nanowires via thiol end-capped oligo(phenylenevinylene)s (OPVs). The molecular gap was easily created by the rigid molecule itself during se...

  1. Molecular modeling and multiscaling issues for electronic material applications

    CERN Document Server

    Iwamoto, Nancy; Yuen, Matthew; Fan, Haibo

    Volume 1 : Molecular Modeling and Multiscaling Issues for Electronic Material Applications provides a snapshot on the progression of molecular modeling in the electronics industry and how molecular modeling is currently being used to understand material performance to solve relevant issues in this field. This book is intended to introduce the reader to the evolving role of molecular modeling, especially seen through the eyes of the IEEE community involved in material modeling for electronic applications.  Part I presents  the role that quantum mechanics can play in performance prediction, such as properties dependent upon electronic structure, but also shows examples how molecular models may be used in performance diagnostics, especially when chemistry is part of the performance issue.  Part II gives examples of large-scale atomistic methods in material failure and shows several examples of transitioning between grain boundary simulations (on the atomistic level)and large-scale models including an example ...

  2. Epipolar image rectification through geometric algorithms with unknown parameters

    OpenAIRE

    Herráez Boquera, José; Denia Rios, José Luís; Navarro Esteve, Pablo José; RODRÍGUEZ PEREÑA, JAIME; MARTÍN SÁNCHEZ, MARÍA TERESA

    2013-01-01

    Herráez Boquera, J., Denia Rios, J.L., Navarro Esteve, P.J., Rodríguez Pereña, J., Martín Sánchez M.T."Epipolar image rectification through geometric algorithms with unknown parameters". JJ. Electron. Imaging. 22(4), 043021 (Dec 02, 2013). © (2013) Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or mo...

  3. Current rectification in a single molecule diode: the role of electrode coupling.

    Science.gov (United States)

    Sherif, Siya; Rubio-Bollinger, Gabino; Pinilla-Cienfuegos, Elena; Coronado, Eugenio; Cuevas, Juan Carlos; Agraït, Nicolás

    2015-07-24

    We demonstrate large rectification ratios (> 100) in single-molecule junctions based on a metal-oxide cluster (polyoxometalate), using a scanning tunneling microscope (STM) both at ambient conditions and at low temperature. These rectification ratios are the largest ever observed in a single-molecule junction, and in addition these junctions sustain current densities larger than 10(5) A cm(-2). By following the variation of the I-V characteristics with tip-molecule separation we demonstrate unambiguously that rectification is due to asymmetric coupling to the electrodes of a molecule with an asymmetric level structure. This mechanism can be implemented in other type of molecular junctions using both organic and inorganic molecules and provides a simple strategy for the rational design of molecular diodes.

  4. Current rectification in a single molecule diode: the role of electrode coupling.

    Science.gov (United States)

    Sherif, Siya; Rubio-Bollinger, Gabino; Pinilla-Cienfuegos, Elena; Coronado, Eugenio; Cuevas, Juan Carlos; Agraït, Nicolás

    2015-07-24

    We demonstrate large rectification ratios (> 100) in single-molecule junctions based on a metal-oxide cluster (polyoxometalate), using a scanning tunneling microscope (STM) both at ambient conditions and at low temperature. These rectification ratios are the largest ever observed in a single-molecule junction, and in addition these junctions sustain current densities larger than 10(5) A cm(-2). By following the variation of the I-V characteristics with tip-molecule separation we demonstrate unambiguously that rectification is due to asymmetric coupling to the electrodes of a molecule with an asymmetric level structure. This mechanism can be implemented in other type of molecular junctions using both organic and inorganic molecules and provides a simple strategy for the rational design of molecular diodes. PMID:26133791

  5. Electron Interference in Molecular Circular Polarization Attosecond XUV Photoionization

    Directory of Open Access Journals (Sweden)

    Kai-Jun Yuan

    2015-01-01

    Full Text Available Two-center electron interference in molecular attosecond photoionization processes is investigated from numerical solutions of time-dependent Schrödinger equations. Both symmetric H\\(_2^+\\ and nonsymmetric HHe\\(^{2+}\\ one electron diatomic systems are ionized by intense attosecond circularly polarized XUV laser pulses. Photoionization of these molecular ions shows signature of interference with double peaks (minima in molecular attosecond photoelectron energy spectra (MAPES at critical angles \\(\\vartheta_c\\ between the molecular \\(\\textbf{R}\\ axis and the photoelectron momentum \\(\\textbf{p}\\. The interferences are shown to be a function of the symmetry of electronic states and the interference patterns are sensitive to the molecular orientation and pulse polarization. Such sensitivity offers possibility for imaging of molecular structure and orbitals.

  6. A New Full Adder Cell for Molecular Electronics

    Directory of Open Access Journals (Sweden)

    Keivan Navi

    2012-01-01

    Full Text Available Due to high power consumption and difficulties with minimizing the CMOS transistor size, molecular electronics has been introduced as an emerging technology. Further, there have been noticeable advances in fabrication of molecular wires and switches and also molecular diodes can be used for designing different logic circuits. Considering this novel technology, we use molecules as the active components of the circuit, for transporting electric charge. In this paper, a full adder cell based on molecular electronics is presented. This full adder is consisted of resonant tunneling diodes and transistors which are implemented via molecular electronics. The area occupied by this kind of full adder would be much times smaller than the conventional designs and it can be used as the building block of more complex molecular arithmetic circuits.

  7. A New Full Adder Cell for Molecular Electronics

    Directory of Open Access Journals (Sweden)

    Mehdi Ghasemi

    2011-09-01

    Full Text Available Due to high power consumption and difficulties with minimizing the CMOS transistor size, molecular electronics has been introduced as an emerging technology. Further, there have been noticeable advances in fabrication of molecular wires and switches and also molecular diodes can be used for designing different logic circuits. Considering this novel technology, we use molecules as the active components of the circuit, for transporting electric charge. In this paper, a full adder cell based on molecular electronics is presented. This full adder is consisted of resonant tunneling diodes and transistors which are implemented via molecular electronics. The area occupied by this kind of full adder would be much times smaller than the conventional designs and it can be used as the building block of more complex molecular arithmetic circuits.

  8. Flux rectification in the quantum XXZ chain.

    Science.gov (United States)

    Landi, Gabriel T; Novais, E; de Oliveira, Mário J; Karevski, Dragi

    2014-10-01

    Thermal rectification is the phenomenon by which the flux of heat depends on the direction of the flow. It has attracted much interest in recent years due to the possibility of devising thermal diodes. In this paper, we consider the rectification phenomenon in the quantum XXZ chain subject to an inhomogeneous field. The chain is driven out of equilibrium by the contact at its boundaries with two different reservoirs, leading to a constant flow of magnetization from one bath to the other. The nonunitary dynamics of this system, which is modeled by a Lindblad master equation, is treated exactly for small sizes and numerically for larger ones. The functional dependence of the rectification coefficient on the model parameters (anisotropy, field amplitude, and out of equilibrium driving strength) is investigated in full detail. Close to the XX point and at small inhomogeneity and low driving, we have found an explicit expression for the rectification coefficient that is valid at all system sizes. In particular, it shows that the phenomenon of rectification persists even in the thermodynamic limit. Finally, we prove that in the case of the XX chain, there is no rectification.

  9. Photoelectrochemical solar conversion systems molecular and electronic aspects

    CERN Document Server

    Munoz, Andres G

    2012-01-01

    Providing new insights into the molecular and electronic processes involved in the conversion of sunlight into chemical products, Photoelectrochemical Solar Conversion Systems: Molecular and Electronic Aspects begins with an historical overview and a survey of recent developments in the electrochemistry of semiconductors and spectroscopic techniques. It then provides a comprehensive introduction to the science of conversion cells, reviews current issues and potential directions, and covers a wide range of materials from organic to inorganic cells.Employing a tutorial organization with balanced

  10. Two-electron processes in molecular collisions

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, A.K.; Wood, R.M.; Dittmann, M.W.; Browning, J.F.; Mangan, M.A. (Dept. of Physics and Astronomy, Univ. of Georgia, Athens (USA)); Ezell, R.L. (Dept. of Chemistry and Physics, Augusta Coll., GA (USA))

    1991-04-01

    Orientation effects are reported for the ionization plus excitation of H{sub 2} by electron bombardment. The yield of H{sup +}-fragment ions as a function of angle relative to the beam direction are reported for angles from 18deg to 90deg and collision energies of 408, 545, and 1089 eV. Comparisons are made between experiment and theoretical predictions based on dipole interactions between projectile and target electrons. (orig.).

  11. Electron and molecular ion collisions relevant to divertor plasma

    International Nuclear Information System (INIS)

    We introduce the concept of the multi-channel quantum defect theory (MQDT) and show the outline of the MQDT newly extended to include the dissociative states. We investigate some molecular processes relevant to the divertor plasma by using the MQDT: the dissociative recombination, dissociative excitation, and rotation-vibrational transition in the hydrogen molecular ion and electron collisions. (author)

  12. Scan-rate-dependent ion current rectification and rectification inversion in charged conical nanopores.

    Science.gov (United States)

    Momotenko, Dmitry; Girault, Hubert H

    2011-09-21

    Herein we report a theoretical study of diode-like behavior of negatively charged (e.g., glass or silica) nanopores at different potential scan rates (1-1000 V·s(-1)). Finite element simulations were used to determine current-voltage characteristics of conical nanopores at various electrolyte concentrations. This study demonstrates that significant changes in rectification behavior can be observed at high scan rates because the mass transport of ionic species appears sluggish on the time scale of the voltage scan. In particular, it explains the influence of the potential scan rate on the nanopore rectifying properties in the cases of classical rectification, rectification inversion, and the "transition" rectification domain where the rectification direction in the nanopore could be modulated according to the applied scan rate.

  13. Novel tailor-made externally triggerable single-molecular switches for molecular electronics

    OpenAIRE

    Harzmann, Gero

    2015-01-01

    Molecular electronics marks a highly interdisciplinary scientific field, in which physicists, chemists, and biologist jointly investigate electronic phenomena on a molecular level. Herein, the foremost task of the chemist is the design and synthesis of novel, tailor-made model compounds bearing externally addressable or controllable functions, which are predominantly of electronic nature. This present PhD thesis mainly focusses on the synthetic aspects towards innovative metalorga...

  14. Enhanced oscillatory rectification and negative differential resistance in pentamantane diamondoid-cumulene systems.

    Science.gov (United States)

    Tawfik, Sherif Abdulkader; Cui, X Y; Ringer, S P; Stampfl, C

    2016-02-14

    We propose a new functionality for diamondoids in nanoelectronics. Based on the nonequilibrium Green's function formalism and density functional theory, we reveal that when attached to gold electrodes, the pentamantane-cumulene molecular junction exhibits large and oscillatory rectification and negative differential resistance (NDR) - depending on the number of carbon atoms in cumulene (Cn). When n is odd rectification is greatly enhanced where the rectification ratio can reach ∼180 and a large negative differential resistance peak current of ∼3 μA. This oscillatory behavior is well rationalised in terms of the occupancy of the carbon 2p states in Cn. Interestingly, different layers of C atoms in the pentamantane molecule have different contributions to transmission. The first and third layers of C atoms in pentamantane have a slight contribution to rectification, and the fifth and sixth layers have a stronger contribution to both rectification and NDR. Thus, our results suggest potential avenues for controlling their functions by chemically manipulating various parts of the diamondoid molecule, thus extending the applications of diamondoids in nanoscale integrated circuits.

  15. Enhanced oscillatory rectification and negative differential resistance in pentamantane diamondoid-cumulene systems

    Science.gov (United States)

    Tawfik, Sherif Abdulkader; Cui, X. Y.; Ringer, S. P.; Stampfl, C.

    2016-02-01

    We propose a new functionality for diamondoids in nanoelectronics. Based on the nonequilibrium Green's function formalism and density functional theory, we reveal that when attached to gold electrodes, the pentamantane-cumulene molecular junction exhibits large and oscillatory rectification and negative differential resistance (NDR) - depending on the number of carbon atoms in cumulene (Cn). When n is odd rectification is greatly enhanced where the rectification ratio can reach ~180 and a large negative differential resistance peak current of ~3 μA. This oscillatory behavior is well rationalised in terms of the occupancy of the carbon 2p states in Cn. Interestingly, different layers of C atoms in the pentamantane molecule have different contributions to transmission. The first and third layers of C atoms in pentamantane have a slight contribution to rectification, and the fifth and sixth layers have a stronger contribution to both rectification and NDR. Thus, our results suggest potential avenues for controlling their functions by chemically manipulating various parts of the diamondoid molecule, thus extending the applications of diamondoids in nanoscale integrated circuits.

  16. Georeferencing CAMS data: Polynomial rectification and beyond

    Science.gov (United States)

    Yang, Xinghe

    The Calibrated Airborne Multispectral Scanner (CAMS) is a sensor used in the commercial remote sensing program at NASA Stennis Space Center. In geographic applications of the CAMS data, accurate geometric rectification is essential for the analysis of the remotely sensed data and for the integration of the data into Geographic Information Systems (GIS). The commonly used rectification techniques such as the polynomial transformation and ortho rectification have been very successful in the field of remote sensing and GIS for most remote sensing data such as Landsat imagery, SPOT imagery and aerial photos. However, due to the geometric nature of the airborne line scanner which has high spatial frequency distortions, the polynomial model and the ortho rectification technique in current commercial software packages such as Erdas Imagine are not adequate for obtaining sufficient geometric accuracy. In this research, the geometric nature, especially the major distortions, of the CAMS data has been described. An analytical step-by-step geometric preprocessing has been utilized to deal with the potential high frequency distortions of the CAMS data. A generic sensor-independent photogrammetric model has been developed for the ortho-rectification of the CAMS data. Three generalized kernel classes and directional elliptical basis have been formulated into a rectification model of summation of multisurface functions, which is a significant extension to the traditional radial basis functions. The preprocessing mechanism has been fully incorporated into the polynomial, the triangle-based finite element analysis as well as the summation of multisurface functions. While the multisurface functions and the finite element analysis have the characteristics of localization, piecewise logic has been applied to the polynomial and photogrammetric methods, which can produce significant accuracy improvement over the global approach. A software module has been implemented with full

  17. Collective couplings: Rectification and supertransmittance

    Science.gov (United States)

    Schaller, Gernot; Giusteri, Giulio Giuseppe; Celardo, Giuseppe Luca

    2016-09-01

    We investigate heat transport between two thermal reservoirs that are coupled via a large spin composed of N identical two-level systems. One coupling implements the dissipative Dicke superradiance. The other coupling is locally of the pure-dephasing type and requires to go beyond the standard weak-coupling limit by employing a Bogoliubov mapping in the corresponding reservoir. After the mapping, the large spin is coupled to a collective mode with the original pure-dephasing interaction, but the collective mode is dissipatively coupled to the residual oscillators. Treating the large spin and the collective mode as the system, a standard master equation approach is now able to capture the energy transfer between the two reservoirs. Assuming fast relaxation of the collective mode, we derive a coarse-grained rate equation for the large spin only and discuss how the original Dicke superradiance is affected by the presence of the additional reservoir. Our main finding is a cooperatively enhanced rectification effect due to the interplay of supertransmittant heat currents (scaling quadratically with N ) and the asymmetric coupling to both reservoirs. For large N , the system can thus significantly amplify current asymmetries under bias reversal, functioning as a heat diode. We also briefly discuss the case when the couplings of the collective spin are locally dissipative, showing that the heat-diode effect is still present.

  18. Nucleophilicity/Electrophilicity Excess in Analyzing Molecular Electronics

    OpenAIRE

    Roy, D. R.; Subramanian, V; Chattaraj, P. K.

    2005-01-01

    Intramolecular electron transfer capability of all metal aromatic and anti-aromatic aluminum cluster compounds is studied in terms of density functional theory based global and local reactivity descriptors. This study will provide important inputs towards the fabrication of the material required for molecular electronics.

  19. High electronic couplings of single mesitylene molecular junctions

    Directory of Open Access Journals (Sweden)

    Yuki Komoto

    2015-12-01

    Full Text Available We report on an experimental analysis of the charge transport properties of single mesitylene (1,3,5-trimethylbenzene molecular junctions. The electronic conductance and the current–voltage characteristics of mesitylene molecules wired into Au electrodes were measured by a scanning tunnelling microscopy-based break-junction method at room temperature in a liquid environment. We found the molecular junctions exhibited two distinct conductance states with high conductance values of ca. 10−1G0 and of more than 10−3G0 (G0 = 2e2/h in the electronic conductance measurements. We further performed a statistical analysis of the current–voltage characteristics of the molecular junctions in the two states. Within a single channel resonant tunnelling model, we obtained electronic couplings in the molecular junctions by fitting the current–voltage characteristics to the single channel model. The origin of the high conductance was attributed to experimentally obtained large electronic couplings of the direct π-bonded molecular junctions (ca. 0.15 eV. Based on analysis of the stretch length of the molecular junctions and the large electronic couplings obtained from the I–V analysis, we proposed two structural models, in which (i mesitylene binds to the Au electrode perpendicular to the charge transport direction and (ii mesitylene has tilted from the perpendicular orientation.

  20. Generalization of the electronic susceptibility for arbitrary molecular geometries

    Science.gov (United States)

    Scherrer, Arne; Dreßler, Christian; Ahlert, Paul; Sebastiani, Daniel

    2016-04-01

    We generalize the explicit representation of the electronic susceptibility χ[R](r, r') for arbitrary molecular geometries R. The electronic susceptibility is a response function that yields the response of the molecular electronic charge density at linear order to an arbitrary external perturbation. We address the dependence of this response function on the molecular geometry. The explicit representation of the molecular geometry dependence is achieved by means of a Taylor expansion in the nuclear coordinates. Our approach relies on a recently developed low-rank representation of the response function χ[R](r, r') which allows a highly condensed storage of the expansion and an efficient application within dynamical chemical environments. We illustrate the performance and accuracy of our scheme by computing the vibrationally induced variations of the response function of a water molecule and its resulting Raman spectrum.

  1. Design and Synthesis of Aviram-Ratner-Type Dyads and Rectification Studies in Langmuir-Blodgett (LB) Films.

    Science.gov (United States)

    Jayamurugan, Govindasamy; Gowri, Vijayendran; Hernández, David; Martin, Santiago; González-Orive, Alejandro; Dengiz, Cagatay; Dumele, Oliver; Pérez-Murano, Francesc; Gisselbrecht, Jean-Paul; Boudon, Corinne; Schweizer, W Bernd; Breiten, Benjamin; Finke, Aaron D; Jeschke, Gunnar; Bernet, Bruno; Ruhlmann, Laurent; Cea, Pilar; Diederich, François

    2016-07-18

    The design and synthesis of Aviram-Ratner-type molecular rectifiers, featuring an anilino-substituted extended tetracyanoquinodimethane (exTCNQ) acceptor, covalently linked by the σ-spacer bicyclo[2.2.2]octane (BCO) to a tetrathiafulvalene (TTF) donor moiety, are described. The rigid BCO spacer keeps the TTF donor and exTCNQ acceptor moieties apart, as demonstrated by X-ray analysis. The photophysical properties of the TTF-BCO-exTCNQ dyads were investigated by UV/Vis and EPR spectroscopy, electrochemical studies, and theoretical calculations. Langmuir-Blodgett films were prepared and used in the fabrication and electrical studies of junction devices. One dyad showed the asymmetric current-voltage (I-V) curve characteristic for rectification, unlike control compounds containing the TTF unit but not the exTCNQ moiety or comprising the exTCNQ acceptor moiety but lacking the donor TTF part, which both gave symmetric I-V curves. The direction of the observed rectification indicated that the preferred electron current flows from the exTCNQ acceptor to the TTF donor.

  2. Electron Scattering by biomass molecular fragments

    Science.gov (United States)

    Lima, Marco

    2015-09-01

    The replacement of fossil fuels by biofuels from renewable sources may not be a definite answer for greenhouse gas emissions problems, but it is a good step towards a sustainable energy strategy. Few per cent of ethanol is being mixed to gasoline in many countries and in some of them, like Brazil, a very aggressive program has been developed, using, in large scale, flex fuel engines that can run with any mixture of gasoline and ethanol, including 100% ethanol. Important points are how to produce ethanol in a sustainable way and with which technology? Biomass is a good candidate to enhance the first generation (produced from Corn in USA and from sugarcane in Brazil) production towards the so-called second-generation ethanol, since it has cellulose and hemicellulose as source of sugars. In order to liberate these sugars for fermentation, it is important to learn how to separate the main components. Chemical routes (acid treatment) and biological routes (enzymatic hydrolysis) are combined and used for these purposes. Atmospheric plasmas can be useful for attacking the biomass in a controlled manner and low energy electrons may have an important role in the process. Recently, we have been studying the interaction of electrons with lignin subunits (phenol, guaiacol, p-coumaryl alcohol), cellulose components, β-D-glucose and cellobiose (β(1-4) linked glucose dimer) and hemicellulose components [2] (β-D-xylose). We also obtained results for the amylose subunits α-D-glucose and maltose (α(1-4) linked glucose dimer). Altogether, the resonance spectra of lignin, cellulose and hemicellulose components establish a physical-chemical basis for electron-induced biomass pretreatment that could be applied to biofuel production. In order to describe a more realistic system (where molecules are ``wet''), we have obtained the shape resonance spectra of phenol-water clusters, as obtained previously from elastic electron scattering calculations. Our results, obtained in a simple

  3. Energy Transformation in Molecular Electronic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kasha, Michael

    1999-05-17

    This laboratory has developed many new ideas and methods in the electronic spectroscopy of molecules. This report covers the contract period 1993-1995. A number of the projects were completed in 1996, and those papers are included in the report. The DOE contract was terminated at the end of 1995 owing to a reorganizational change eliminating nationally the projects under the Office of Health and Environmental Research, U. S. Department of Energy.

  4. Laser induced electron diffraction: a tool for molecular orbital imaging

    CERN Document Server

    Peters, Michel; Charron, Eric; Keller, Arne; Atabek, Osman

    2012-01-01

    We explore the laser-induced ionization dynamics of N2 and CO2 molecules subjected to a few-cycle, linearly polarized, 800\\,nm laser pulse using effective two-dimensional single active electron time-dependent quantum simulations. We show that the electron recollision process taking place after an initial tunnel ionization stage results in quantum interference patterns in the energy resolved photo-electron signals. If the molecule is initially aligned perpendicular to the field polarization, the position and relative heights of the associated fringes can be related to the molecular geometrical and orbital structure, using a simple inversion algorithm which takes into account the symmetry of the initial molecular orbital from which the ionized electron is produced. We show that it is possible to extract inter-atomic distances in the molecule from an averaged photon-electron signal with an accuracy of a few percents.

  5. Photocurrent, Rectification, and Magnetic Field Symmetry of Induced Current Through Quantum Dots

    DEFF Research Database (Denmark)

    DiCarlo, L.; M. Marcus, C.; Harris jr, J.

    2003-01-01

    We report mesoscopic dc current generation in an open chaotic quantum dot with ac excitation applied to one of the shape-defining gates. For excitation frequencies large compared to the inverse dwell time of electrons in the dot (i.e., GHz), we find mesoscopic fluctuations of induced current that...... rectification....

  6. Electroosmotic flow rectification in conical nanopores

    CERN Document Server

    Laohakunakorn, Nadanai

    2015-01-01

    Recent experimental work has suggested that electroosmotic flows (EOF) through conical nanopores exhibit rectification in the opposite sense to the well-studied effect of ionic current rectification. A positive bias voltage generates large EOF and small current, while negative voltages generate small EOF and large current. Here we systematically investigate this effect using finite-element simulations. We find that inside the pore, the electric field and salt concentration are inversely correlated, which leads to the inverse relationship between the magnitudes of EOF and current. Rectification occurs when the pore is driven into states characterized by different salt concentrations depending on the sign of the voltage. The mechanism responsible for this behaviour is concentration polarization, which requires the pore to exhibit the properties of permselectivity and asymmetry.

  7. Energy-Saving in Brew-Rectification

    Directory of Open Access Journals (Sweden)

    N. I. Ulyanau

    2008-01-01

    Full Text Available The paper investigates dynamics of rectification process on one plate of a column. The basic channels controlling brew-rectification process are described in the paper.The paper also considers problems pertaining to synthesis of an adaptive system that controls non-stationary objects with delay. Synthesis of adaptive systems that automatically control product quality and saving on power resources and productivity with the help of the second method of Lyapunov has been carried out in the paper.Industrial introduction of the given automatic control system of technological process shall permit to increase productivity of a rectification (10–15 %, to decrease specific power consumption by (5–10 % while preserving the specified quality of rectified ethyl alcohol and decrease alcohol losses with luting water and malt-residue.

  8. Electroosmotic flow rectification in conical nanopores.

    Science.gov (United States)

    Laohakunakorn, Nadanai; Keyser, Ulrich F

    2015-07-10

    Recent experimental work has suggested that electroosmotic flows (EOFs) through conical nanopores exhibit rectification in the opposite sense to the well-studied effect of ionic current rectification. A positive bias voltage generates large EOF and small current, while negative voltages generate small EOF and large current. Here we systematically investigate this effect using finite-element simulations. We find that inside the pore, the electric field and salt concentration are inversely correlated, which leads to the inverse relationship between the magnitudes of EOF and current. Rectification occurs when the pore is driven into states characterized by different salt concentrations depending on the sign of the voltage. The mechanism responsible for this behaviour is concentration polarization, which requires the pore to exhibit the properties of permselectivity and asymmetry.

  9. Molecular electronics with single molecules in solid-state devices

    DEFF Research Database (Denmark)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-01-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule......, and how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong....

  10. Molecular Models for Conductance in Junctions and Electrochemical Electron Transfer

    Science.gov (United States)

    Mazinani, Shobeir Khezr Seddigh

    This thesis develops molecular models for electron transport in molecular junctions and intra-molecular electron transfer. The goal is to identify molecular descriptors that afford a substantial simplification of these electronic processes. First, the connection between static molecular polarizability and the molecular conductance is examined. A correlation emerges whereby the measured conductance of a tunneling junction decreases as a function of the calculated molecular polarizability for several systems, a result consistent with the idea of a molecule as a polarizable dielectric. A model based on a macroscopic extension of the Clausius-Mossotti equation to the molecular domain and Simmon's tunneling model is developed to explain this correlation. Despite the simplicity of the theory, it paves the way for further experimental, conceptual and theoretical developments in the use of molecular descriptors to describe both conductance and electron transfer. Second, the conductance of several biologically relevant, weakly bonded, hydrogen-bonded systems is systematically investigated. While there is no correlation between hydrogen bond strength and conductance, the results indicate a relation between the conductance and atomic polarizability of the hydrogen bond acceptor atom. The relevance of these results to electron transfer in biological systems is discussed. Hydrogen production and oxidation using catalysts inspired by hydrogenases provides a more sustainable alternative to the use of precious metals. To understand electrochemical and spectroscopic properties of a collection of Fe and Ni mimics of hydrogenases, high-level density functional theory calculations are described. The results, based on a detailed analysis of the energies, charges and molecular orbitals of these metal complexes, indicate the importance of geometric constraints imposed by the ligand on molecular properties such as acidity and electrocatalytic activity. Based on model calculations of

  11. First-principles modelling of molecular single-electron transistors

    OpenAIRE

    Stokbro, Kurt

    2010-01-01

    We present a first-principles method for calculating the charging energy of a molecular single-electron transistor operating in the Coulomb blockade regime. The properties of the molecule are modeled using density-functional theory, the environment is described by a continuum model, and the interaction between the molecule and the environment are included through the Poisson equation. The model is used to calculate the charge stability diagrams of a benzene and C$_{60}$ molecular single-elect...

  12. Ultrafast Molecular Imaging by Laser Induced Electron Diffraction

    CERN Document Server

    Peters, Michel; Cornaggia, Christian; Saugout, Sébastien; Charron, Eric; Keller, Arne; Atabek, Osman

    2010-01-01

    We address the feasibility of imaging geometric and orbital structure of a polyatomic molecule on an attosecond time-scale using the Laser Induced Electron Diffraction, LIED, technique [T. Zuo \\textit{et al.}, Chem. Phys. Lett. \\textbf{259}, 313 (1996)]. We present numerical results obtained for the CO$_2$ molecule using a single active electron model. The molecular geometry (bond-lengths) is determined within 3% of accuracy from a diffraction pattern which also reflects the nodal properties of the initial molecular orbital. Robustness of the structure determination is discussed with respect to vibrational and rotational motions with a complete interpretation of the laser-induced mechanisms.

  13. The molecular electronic device and the biochip computer: present status.

    OpenAIRE

    Haddon, R. C.; Lamola, A. A.

    1985-01-01

    The idea that a single molecule might function as a self-contained electronic device has been of interest for some time. However, a fully integrated version--the biochip or the biocomputer, in which both production and assembly of molecular electronic components is achieved through biotechnology-is a relatively new concept that is currently attracting attention both within the scientific community and among the general public. In the present article we draw together some of the approaches bei...

  14. A new parametrizable model of molecular electronic structure

    OpenAIRE

    Laikov, Dimitri N.

    2011-01-01

    A new electronic structure model is developed in which the ground state energy of a molecular system is given by a Hartree-Fock-like expression with parametrized one- and two-electron integrals over an extended (minimal + polarization) set of orthogonalized atom-centered basis functions, the variational equations being solved formally within the minimal basis but the effect of polarization functions being included in the spirit of second-order perturbation theory. It is designed to yield good...

  15. The Molecular Electronic Device and the Biochip Computer: Present Status

    Science.gov (United States)

    Haddon, R. C.; Lamola, A. A.

    1985-04-01

    The idea that a single molecule might function as a self-contained electronic device has been of interest for some time. However, a fully integrated version--the biochip or the biocomputer, in which both production and assembly of molecular electronic components is achieved through biotechnology--is a relatively new concept that is currently attracting attention both within the scientific community and among the general public. In the present article we draw together some of the approaches being considered for the construction of such devices and delineate the revolutionary nature of the current proposals for molecular electronic devices (MEDs) and biochip computers (BCCs). With the silicon semiconductor industry already in place and in view of the continuing successes of the lithographic process it seems appropriate to ask why the highly speculative MED or BCC has engendered such interest. In some respects the answer is paradigmatic as much as it is real. It is perhaps best stated as the promise of the realm of the molecular. Thus it is envisioned that devices will be constructed by assembly of individual molecular electronic components into arrays, thereby engineering from small upward rather than large downward as do current lithographic techniques. An important corollary of the construction technique is that the functional elements of such an array would be individual molecules rather than macroscopic ensembles. These two aspects of the MED/BCC--assembly of molecular arrays and individually accessible functional molecular units--are truly revolutionary. Both require scientific breakthroughs and the necessary principles, quite apart from the technology, remain essentially unknown. It is concluded that the advent of the MED/BCC still lies well before us. The twin criteria of utilization of individual molecules as functional elements and the assembly of such elements remains as elusive as ever. Biology engineers structures on the molecular scale but biomolecules

  16. Precision Rectification of Airborne SAR Image

    DEFF Research Database (Denmark)

    Dall, Jørgen; Liao, M.; Zhang, Zhe;

    1997-01-01

    A simple and direct procedure for the rectification of a certain class of airborne SAR data is presented. The relief displacements of SAR data are effectively removed by means of a digital elevation model and the image is transformed to the ground coordinate system. SAR data from the Danish EMISAR...

  17. Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions.

    Science.gov (United States)

    Zhang, Kun; Li, Huan-Huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-Tao; Tian, Yu-Feng; Yan, Shi-Shen; Lin, Zhao-Jun; Kang, Shi-Shou; Chen, Yan-Xue; Liu, Guo-Lei; Mei, Liang-Mo

    2015-09-21

    Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current voltage, and this rectification voltage strongly varies with the external magnetic field. We find that the rectification magnetoresistance in Al/Ge Schottky heterojunctions is as large as 250% at room temperature, which is greatly enhanced as compared with the conventional magnetoresistance of 70%. The findings of rectification magnetoresistance open the way to the new nonmagnetic Ge-based spintronics devices of large rectification magnetoresistance at ambient temperature under the alternating-current due to the simultaneous implementation of the rectification and magnetoresistance in the same devices.

  18. Fast Electron Repulsion Integrals for Molecular Coulomb Sturmians

    DEFF Research Database (Denmark)

    Avery, James Emil

    2013-01-01

    of hyperspherical harmonics. A rudimentary software library has been implemented and preliminary benchmarks indicate very good performance: On average 40 ns, or approximately 80 clock cycles, per electron repulsion integral. This makes molecular Coulomb Sturmians competitive with Gaussian type orbitals in terms...

  19. The Electron-Pair Repulsion Model for Molecular Geometry

    Science.gov (United States)

    Gillespie, R. J.

    1970-01-01

    Describes how the electron-pair repulsion model qualitatively explains the size and shape of molecular orbitals. Briefly discusses trigonal bipyramidal molecules, three-center bonds, and transition elements. Describes cluster compounds and finishes with a discussion of the exceptions to the model and effects of ligand-ligand repulsions. (RR)

  20. Fullerene-based Anchoring Groups for Molecular Electronics

    DEFF Research Database (Denmark)

    Martin, Christian A.; Ding, Dapeng; Sørensen, Jakob Kryger;

    2008-01-01

    We present results on a new fullerene-based anchoring group for molecular electronics. Using lithographic mechanically controllable break junctions in vacuum we have determined the conductance and stability of single-molecule junctions of 1,4-bis(fullero[c]pyrrolidin-1-yl)benzene. The compound can...

  1. Computational Nanotechnology of Molecular Materials, Electronics and Machines

    Science.gov (United States)

    Srivastava, D.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    This viewgraph presentation covers carbon nanotubes, their characteristics, and their potential future applications. The presentation include predictions on the development of nanostructures and their applications, the thermal characteristics of carbon nanotubes, mechano-chemical effects upon carbon nanotubes, molecular electronics, and models for possible future nanostructure devices. The presentation also proposes a neural model for signal processing.

  2. Molecular fingerprints in the electronic properties of crystalline organic semiconductors

    DEFF Research Database (Denmark)

    Ciuchi, S.; Hatch, R.C.; Höchst, H.;

    2012-01-01

    bands can be achieved in organic semiconductors provided that one properly accounts for the coupling to molecular vibrational modes and the presence of disorder. Our findings rationalize the growing experimental evidence that even the best band structure theories based on a many-body treatment...... of electronic interactions cannot reproduce the experimental photoemission data in this important class of materials....

  3. Assembling molecular electronic junctions one molecule at a time.

    Science.gov (United States)

    Bonifas, Andrew P; McCreery, Richard L

    2011-11-01

    Diffusion of metal atoms onto a molecular monolayer attached to a conducting surface permits electronic contact to the molecules with minimal heat transfer or structural disturbance. Surface-mediated metal deposition (SDMD) involves contact between "cold" diffusing metal atoms and molecules, due to shielding of the molecules from direct exposure to metal vapor. Measurement of the current through the molecular layer during metal diffusion permits observation of molecular conductance for junctions containing as few as one molecule. Discrete conductance steps were observed for 1-10 molecules within a monolayer during a single deposition run, corresponding to "recruitment" of additional molecules as the contact area between the diffusing Au layer and molecules increases. For alkane monolayers, the molecular conductance measured with SDMD exhibited an exponential dependence on molecular length with a decay constant (β) of 0.90 per CH(2) group, comparable to that observed by other techniques. Molecular conductance values were determined for three azobenzene molecules, and correlated with the offset between the molecular HOMO and the contact Fermi level, as expected for hole-mediated tunneling. Current-voltage curves were obtained during metal deposition showed no change in shape for junctions containing 1, 2, and 10 molecules, implying minimal intermolecular interactions as single molecule devices transitioned into several molecules devices. SDMD represents a "soft" metal deposition method capable of providing single molecule conductance values, then providing quantitative comparisons to molecular junctions containing 10(6) to 10(10) molecules.

  4. Photoinduced Phase Transition in Strongly Electron-Lattice and Electron–Electron Correlated Molecular Crystals

    Directory of Open Access Journals (Sweden)

    Shin-ya Koshihara

    2012-07-01

    Full Text Available Strongly electron-lattice- and electron-electron-correlated molecular crystals, such as charge transfer (CT complexes, are often sensitive to external stimuli, e.g., photoexcitation, due to the cooperative or competitive correlation of various interactions present in the crystals. These crystals are thus productive targets for studying photoinduced phase transitions (PIPTs. Recent advancements in research on the PIPT of CT complexes, especially Et2Me2Sb[Pd(dmit2]2 and (EDO-TTF2PF6, are reviewed in this report. The former exhibits a photoinduced insulator-to-insulator phase transition with clearly assigned spectral change. We demonstrate how to find the dynamics of PIPT using this system. The latter exhibits a photoinduced hidden state as an initial PIPT process. Wide energy ranged time-resolved spectroscopy can probe many kinds of photo-absorption processes, i.e., intra-molecular and inter-molecular electron excitations and intramolecular and electron-molecular vibrations. The photoinduced spectral changes in these photo-absorption processes reveal various aspects of the dynamics of PIPT, including electronic structural changes, lattice structural changes, and molecular deformations. The complexities of the dynamics of the latter system were revealed by our measurements.

  5. Bonding in Molecular Crystals from the Local Electronic Pressure Viewpoint

    CERN Document Server

    Tsirelson, Vladimir G; Tokatly, Ilya V

    2015-01-01

    The spatial distribution of the internal pressure of an electron fluid, which spontaneously arises at the formation of a molecule or a crystal, is linked to the main features of chemical bonding in molecular crystals. The local pressure is approximately expressed in terms of the experimental electron density and its derivatives using the density functional formalism and is applied to identify the bonding features in benzene, formamide and chromium hexacarbonyl. We established how the spatial regions of compression and stretching of the electron fluid in these solids reflect the typical features of chemical bonds of different types. Thus, the internal electronic pressure can serve as a bonding descriptor, which has a clear physical meaning and reveals the specific features of variety of the chemical bonds expressing them in terms of the electron density.

  6. Theory and Application of Dissociative Electron Capture in Molecular Identification

    CERN Document Server

    Havey, C D; Jones, T; Voorhees, K J; Laramee, J A; Cody, R B; Clougherty, D P; Eberhart, Mark; Voorhees, Kent J.; Laramee, James A.; Cody, Robert B.; Clougherty, Dennis P.

    2006-01-01

    The coupling of an electron monochromator (EM) to a mass spectrometer (MS) has created a new analytical technique, EM-MS, for the investigation of electrophilic compounds. This method provides a powerful tool for molecular identification of compounds contained in complex matrices, such as environmental samples. EM-MS expands the application and selectivity of traditional MS through the inclusion of a new dimension in the space of molecular characteristics--the electron resonance energy spectrum. However, before this tool can realize its full potential, it will be necessary to create a library of resonance energy scans from standards of the molecules for which EM-MS offers a practical means of detection. Here, an approach supplementing direct measurement with chemical inference and quantum scattering theory is presented to demonstrate the feasibility of directly calculating resonance energy spectra. This approach makes use of the symmetry of the transition-matrix element of the captured electron to discriminat...

  7. Spin-dependent rectification in the C59N molecule

    Indian Academy of Sciences (India)

    Mahvash Arabi Darehdor; Nasser Shahtahmasebi

    2013-02-01

    Coherent spin-dependent electron transport is investigated in three conditions: (1) a C60 molecule is connected to two ferromagnetic (FM) electrodes symmetrically, (2) a C59N molecule is connected to two FM electrodes symmetrically and (3) a C59N molecule is connected to two FM electrodes asymmetrically. This work is based on a single-band tight-binding model Hamiltonian and the Green’s function approach with the Landauer–Buttiker formalism. Electrodes used in this study are semi-infinite FM electrodes with finite cross-section. Obvious rectification effect is observed in the C59 N molecule which is connected to the FM electrodes asymmetrically. This effect is more in the P alignment of FM electrodes than in AP alignment of FM electrodes. This study indicates that the rectification behaviour is due to the asymmetry in molecule and junctions. Also in this investigation tunnel magnetoresistance (TMR) is calculated for these molecules. Asymmetry is observed in TMR of C59N which is coupled to the electrodes asymmetrically due to asymmetric junctions, but TMR of C60 is symmetric.

  8. A new parametrizable model of molecular electronic structure

    CERN Document Server

    Laikov, Dimitri N

    2011-01-01

    A new electronic structure model is developed in which the ground state energy of a molecular system is given by a Hartree-Fock-like expression with parametrized one- and two-electron integrals over an extended (minimal + polarization) set of orthogonalized atom-centered basis functions, the variational equations being solved formally within the minimal basis but the effect of polarization functions being included in the spirit of second-order perturbation theory. It is designed to yield good dipole polarizabilities and improved intermolecular potentials with dispersion terms. The molecular integrals include up to three-center one-electron and two-center two-electron terms, all in simple analytical forms. A method to extract the effective one-electron Hamiltonian of nonlocal-exchange Kohn-Sham theory from the coupled-cluster one-electron density matrix is designed and used to get its matrix representation in a molecule-intrinsic minimal basis as an input to the paramtrization procedure -- making a direct link...

  9. Electronic transmission of three-terminal pyrene molecular bridge

    Institute of Scientific and Technical Information of China (English)

    Wang Li-Guang; Zhang Xiu-Mei; Terence Kin Shun Wong; Katsunori Tagami; Masaru Tsukada

    2009-01-01

    This paper investigates theoretically the electronic transmission spectra of the three terminal pyrene molecular bridge and the quantum current distribution on each bond by the tight-binding model based on nonequilibrium Green's function and the quantum current density approach, in which one π molecular orbital is taken into account per carbon atom when the energy levels and HOMO-LUMO gap are obtained. The transmission spectra show that the electronic transmission of the three terminal pyrene molecular bridge depends obviously on the incident electronic energy and the pyrene eigenencrgy. The symmetrical and oscillation properties of the transmission spectra are illustrated. A novel plus-minus energy switching function is found. The quantum current distribution shows that the loop currents inside the pyrene are induced, and some bond currents are much larger than the input and the output currents. The reasons why the loop currents and the larger bond currents are induced are the phase difference of the atomic orbits and the degeneracy of the molecular orbits. The calculations illustrate that the quantum current distributions are in good agreement with Kirchhoff quantum current conservation law.

  10. Laser induced - tunneling, electron diffraction and molecular orbital imaging

    International Nuclear Information System (INIS)

    Full text: Multiphoton ionization in the tunneling limit is similar to tunneling in a scanning tunneling microscope. In both cases an electron wave packet tunnels from a bound (or valence) state to the continuum. I will show that multiphoton ionization provides a route to extend tunneling spectroscopy to the interior of transparent solids. Rotating the laser polarization is the analogue of scanning the STM tip - a means of measuring the crystal symmetry of a solid. In gas phase molecules the momentum spectrum of individual electrons can be measured. I will show that, as we rotate the molecule with respect to the laser polarization, the photoelectron spectrum samples a filter projection of the momentum wave function (the molecular analogue to the band structure) of the ionizing orbital. Some electrons created during multiphoton ionization re-collide with their parent ion. I will show that they diffract, revealing the scattering potential of the ion - the molecular structure. The electron can also interfere with the initial orbital from which it separated, creating attosecond XUV pulses or pulse trains. The amplitude and phase of the radiation contains all information needed to re-construct the image of the orbital (just as a sheared optical interferometer can fully characterize an optical pulse). Strong field methods provide an extensive range of new tools to apply to atomic, molecular and solid-state problems. (author)

  11. Quasi-classical theory of electronic flux density in electronically adiabatic molecular processes.

    Science.gov (United States)

    Diestler, D J

    2012-11-26

    The standard Born-Oppenheimer (BO) description of electronically adiabatic molecular processes predicts a vanishing electronic flux density (EFD). A previously proposed "coupled-channels" theory permits the extraction of the EFD from the BO wave function for one-electron diatomic systems, but attempts at generalization to many-electron polyatomic systems are frustrated by technical barriers. An alternative "quasi-classical" approach, which eliminates the explicit quantum dynamics of the electrons within a classical framework, yet retains the quantum character of the nuclear motion, appears capable of yielding EFDs for arbitrarily complex systems. Quasi-classical formulas for the EFD in simple systems agree with corresponding coupled-channels formulas. Results of the application of the new quasi-classical formula for the EFD to a model triatomic system indicate the potential of the quasi-classical scheme to elucidate the dynamical role of electrons in electronically adiabatic processes in more complex multiparticle systems.

  12. Single-molecular diodes based on opioid derivatives.

    Science.gov (United States)

    Siqueira, M R S; Corrêa, S M; Gester, R M; Del Nero, J; Neto, A M J C

    2015-12-01

    We propose an efficient single-molecule rectifier based on a derivative of opioid. Electron transport properties are investigated within the non-equilibrium Green's function formalism combined with density functional theory. The analysis of the current-voltage characteristics indicates obvious diode-like behavior. While heroin presents rectification coefficient R>1, indicating preferential electronic current from electron-donating to electron-withdrawing, 3 and 6-acetylmorphine and morphine exhibit contrary behavior, Rdiodes. In particular, the rectification rations for heroin diodes show microampere electron current with a maximum of rectification (R=9.1) at very low bias voltage of ∼0.6 V and (R=14.3)∼1.8 V with resistance varying between 0.4 and 1.5 M Ω. Once most of the current single-molecule diodes usually rectifies in nanoampere, are not stable over 1.0 V and present electrical resistance around 10 M. Molecular devices based on opioid derivatives are promising in molecular electronics.

  13. Single-molecular diodes based on opioid derivatives.

    Science.gov (United States)

    Siqueira, M R S; Corrêa, S M; Gester, R M; Del Nero, J; Neto, A M J C

    2015-12-01

    We propose an efficient single-molecule rectifier based on a derivative of opioid. Electron transport properties are investigated within the non-equilibrium Green's function formalism combined with density functional theory. The analysis of the current-voltage characteristics indicates obvious diode-like behavior. While heroin presents rectification coefficient R>1, indicating preferential electronic current from electron-donating to electron-withdrawing, 3 and 6-acetylmorphine and morphine exhibit contrary behavior, Rresonant-tunneling diodes. In particular, the rectification rations for heroin diodes show microampere electron current with a maximum of rectification (R=9.1) at very low bias voltage of ∼0.6 V and (R=14.3)∼1.8 V with resistance varying between 0.4 and 1.5 M Ω. Once most of the current single-molecule diodes usually rectifies in nanoampere, are not stable over 1.0 V and present electrical resistance around 10 M. Molecular devices based on opioid derivatives are promising in molecular electronics. PMID:26613894

  14. Patterning molecular scale paramagnets at Au Surface: A root to Magneto-Molecular-Electronics

    OpenAIRE

    Messina, Paolo

    2004-01-01

    Few examples of the exploitation of molecular magnetic properties in molecular electronics are known to date. Here we propose the realization of Self assembled monolayers (SAM) of a particular stable organic radical. This radical is meant to be used as a standard molecule on which to prove the validity of a single spin reading procedure known as ESR-STM. We also discuss a range of possible applications, further than ESR-STM, of magnetic monolayers of simple purely organic magnetic molecule.

  15. III - V semiconductor structures for biosensor and molecular electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Luber, S.M.

    2007-01-15

    The present work reports on the employment of III-V semiconductor structures to biosensor and molecular electronics applications. In the first part a sensor based on a surface-near two dimensional electron gas for a use in biological environment is studied. Such a two dimensional electron gas inherently forms in a molecular beam epitaxy (MBE) grown, doped aluminum gallium arsenide - gallium arsenide (AlGaAs-GaAs) heterostructure. Due to the intrinsic instability of GaAs in aqueous solutions the device is passivated by deposition of a monolayer of 4'-substituted mercaptobiphenyl molecules. The influence of these molecules which bind to the GaAs via a sulfur group is investigated by Kelvin probe measurements in air. They reveal a dependence of GaAs electron affinity on the intrinsic molecular dipole moment of the mercaptobiphenyls. Furthermore, transient surface photovoltage measurements are presented which demonstrate an additional influence of mercaptobiphenyl chemisorption on surface carrier recombination rates. As a next step, the influence of pH-value and salt concentration upon the sensor device is discussed based on the results obtained from sensor conductance measurements in physiological solutions. A dependence of the device surface potential on both parameters due to surface charging is deduced. Model calculations applying Poisson-Boltzmann theory reveal as possible surface charging mechanisms either the adsorption of OH- ions on the surface, or the dissociation of OH groups in surface oxides. A comparison between simulation settings and physical device properties indicate the OH- adsorption as the most probable mechanism. In the second part of the present study the suitability of MBE grown III-V semiconductor structures for molecular electronics applications is examined. In doing so, a method to fabricate nanometer separated, coplanar, metallic electrodes based on the cleavage of a supporting AlGaAs-GaAs heterostructure is presented. This is followed

  16. Design of Carborane Molecular Architectures via Electronic Structure Computations

    Directory of Open Access Journals (Sweden)

    Josep M. Oliva

    2009-01-01

    Full Text Available Quantum-mechanical electronic structure computations were employed to explore initial steps towards a comprehensive design of polycarborane architectures through assembly of molecular units. Aspects considered were (i the striking modification of geometrical parameters through substitution, (ii endohedral carboranes and proposed ejection mechanisms for energy/ion/atom/energy storage/transport, (iii the excited state character in single and dimeric molecular units, and (iv higher architectural constructs. A goal of this work is to find optimal architectures where atom/ion/energy/spin transport within carborane superclusters is feasible in order to modernize and improve future photoenergy processes.

  17. The thermal conductivity and thermal rectification in graphene nanoribbons with geometric variations of doped boron:A molecular dynamics study%不同硼掺杂几何形态下石墨烯纳米带热导率与热整流的分子动力学研究

    Institute of Scientific and Technical Information of China (English)

    黄希; 袁莉; 史经辉

    2014-01-01

    通过非平衡态分子动力学方法,研究了锯齿形石墨烯纳米带中掺杂原子硼的两种不同位置排列(三角形硼掺杂和平行硼掺杂)对热导率和热整流的影响并从理论上分析了其变化的原因。研究表明这两种硼掺杂模型在不同温度下导致石墨烯纳米带热导率大约54%-63%的下降;同时发现平行硼掺杂结构对热传递的抑制作用强于三角形硼掺杂结构;硼掺杂结构降低热导率的作用随着温度的升高逐渐减小;三角形硼掺杂结构两个方向上的热导率值具有较大差异,这种结构下的热整流随着温度的上升呈现减弱的趋势;而平行硼掺杂结构两个方向上的热导率值近乎相等,热整流现象表现不明显。%We investigated the thermal conductivity and thermal rectification of graphene nanoribbons with geo-metric variations by using classical molecular dynamics simulation, and analyzed theoretically the cause of the changes of thermal conductivity and thermal rectification.Two different structural models about boron-doped gra-phene nanoribbons were constructed by considering boron atomic arrangement:triangular single-boron-doped gra-phene nanoribbons, prarllel various-boron-doped graphene nanoribbons.It indicates that the thermal conductivi-ties of the above two different models are about 54%-63% lower than those of the pristine graphene nanorib-bons.And it was also found that the parallel boron-doped graphene nanoribbons are inhibited more strongly on the heat transfer than that of triangular boron-doped graphene nanoribbons.The reduction effect in the thermal conductivities of two different models gradually decreases with the increasing temperatures.The thermal conduc-tivities of triangular boron-doped graphene nanoribbons have a large difference in both directions, and the ther-mal rectification of this structure shows the downward trend with increasing temperature.However, the thermal conductivities

  18. Analytical techniques for characterization of organic molecular assemblies in molecular electronics devices

    Energy Technology Data Exchange (ETDEWEB)

    James, Dustin K. [Department of Chemistry and Smalley Institute for Nanoscale Science and Technology, MS 222, Rice University, 6100 Main Street, Houston, TX 77005 (United States)]. E-mail: dustin@rice.edu; Tour, James M. [Department of Chemistry and Smalley Institute for Nanoscale Science and Technology, MS 222, Rice University, 6100 Main Street, Houston, TX 77005 (United States)]. E-mail: tour@rice.edu

    2006-05-24

    The analytical techniques used for the physical characterization of organic molecular electronic-based devices are surveyed and discussed. These protocols include methods that are used to probe molecular assemblies such as single wavelength ellipsometry, water contact angle goniometry, cyclic voltammetry, infrared spectroscopy, and X-ray photoelectron spectroscopy, and methods used to measure charge transport properties of devices such as scanning tunneling microscopy, and inelastic electron tunneling spectroscopy. Examples from our laboratory and the literature are given for each of these analytical techniques.

  19. Electronic shift register memory based on molecular electron-transfer reactions

    International Nuclear Information System (INIS)

    The design of a shift register memory at the molecular level is described in detail. The memory elements are based on a chain of electron-transfer molecules incorporated on a very large scale integrated (VLSI) substrate, and the information is shifted by photoinduced electron-transfer reactions. The design requirements for such a system are discussed, and several realistic strategies for synthesizing these systems are presented. The immediate advantage of such a hybrid molecular/VLSI device would arise from the possible information storage density. The prospect of considerable savings of energy per bit processed also exists. This molecular shift register memory element design solves the conceptual problems associated with integrating molecular size components with larger (micron) size features on a chip

  20. A new parametrizable model of molecular electronic structure

    Science.gov (United States)

    Laikov, Dimitri N.

    2011-10-01

    A new electronic structure model is developed in which the ground state energy of a molecular system is given by a Hartree-Fock-like expression with parametrized one- and two-electron integrals over an extended (minimal + polarization) set of orthogonalized atom-centered basis functions, the variational equations being solved formally within the minimal basis but the effect of polarization functions being included in the spirit of second-order perturbation theory. It is designed to yield good dipole polarizabilities and improved intermolecular potentials with dispersion terms. The molecular integrals include up to three-center one-electron and two-center two-electron terms, all in simple analytical forms. A method to extract the effective one-electron Hamiltonian of nonlocal-exchange Kohn-Sham theory from the coupled-cluster one-electron density matrix is designed and used to get its matrix representation in a molecule-intrinsic minimal basis as an input to the parametrization procedure - making a direct link to the correlated wavefunction theory. The model has been trained for 15 elements (H, Li-F, Na-Cl, 720 parameters) on a set of 5581 molecules (including ions, transition states, and weakly bound complexes) whose first- and second-order properties were computed by the coupled-cluster theory as a reference, and a good agreement is seen. The model looks promising for the study of large molecular systems, it is believed to be an important step forward from the traditional semiempirical models towards higher accuracy at nearly as low a computational cost.

  1. Dihydroazulene Photochromism:Synthesis, Molecular Electronics and Hammett Correlations

    DEFF Research Database (Denmark)

    Broman, Søren Lindbæk

    This thesis describes the development of a versatile synthetic protocol for preparation of a large selection of dihydroazulenes (DHAs) with both electron withdrawing and donating groups. By UV-Vis and NMR spectroscopies and even in a single-molecule junction, their ability to undergo a light...... will be discussed in detail. The second chapter describes the design and synthesis of DHA/VHFs intended for use in molecular electronics and their solution and single-molecule junction switching properties. By the expansion of the recently reported procedure for functionalization of this system by Suzuki cross...

  2. Ultrafast Molecular Three-Electron Collective Auger Decay

    Science.gov (United States)

    Feifel, Raimund

    2016-06-01

    A new class of many-electron Auger transitions in atoms was initially proposed over 40 years ago, but the first tentative evidence for its real existence was only adduced by Lee et al. in 1993, on the basis of the resonant Auger spectrum of Kr. Using a multi-electron coincidence technique with synchrotron radiation, we unambiguously showed very recently that the transition suggested by Lee et al. in Kr really does take place, but with a rather small branching ratio. Related inter-atomic three-electron transitions in rare gas clusters were recently predicted by Averbukh and Kolorenc and demonstrated by Ouchi et al.. From consideration of the energy levels involved it seems that the basic three-electron process could occur in molecules too, wherever a double inner-valence shell vacancy lies at a higher energy than the molecular triple ionisation onset. Experiments on CH_3F reveal for the first time the existence of this new decay pathway there, and calculations show that despite its three-electron nature, its effective oscillator strength is orders of magnitudes higher than in atoms, allowing an efficient competition with both molecular dissociation and two-electron decay channels on the ultrafast time scale. The dramatic enhancement of the molecular three-electron Auger transition can be explained in terms of a partial breakdown of the molecular orbital picture of ionisation. We predict that the collective decay pathway will be significant in a wide variety of heteroatomic molecules ionised by extreme UV and soft X-rays, particularly at Free-Electron-Lasers where double inner-shell vacancies can be created efficiently by two-photon transitions. G.N. Ogurtsov et al., Sov. Phys. Tech. Phys. 15, 1656 (1971) and V.V. Afrosimov et al., JETP Lett. 21, 249 (1975). I. Lee, R. Wehlitz, U. Becker and M. Ya. Amusia, J. Phys. B: At. Mol. Opt. Phys. 26, L41 (1993). J.H.D. Eland, R.J. Squibb, M. Mucke, S. Zagorodskikh, P. Linusson, and R. Feifel, New J. Phys. 17, 122001 (2015). V

  3. Molecular design of electron transport with orbital rule: toward conductance-decay free molecular junctions.

    Science.gov (United States)

    Tada, Tomofumi; Yoshizawa, Kazunari

    2015-12-28

    In this study, we report our viewpoint of single molecular conductance in terms of frontier orbitals. The orbital rule derived from orbital phase and amplitude is a powerful guideline for the qualitative understanding of molecular conductance in both theoretical and experimental studies. The essence of the orbital rule is the phase-related quantum interference, and on the basis of this rule a constructive or destructive pathway for electron transport is easily predicted. We have worked on the construction of the orbital rule for more than ten years and recently found from its application that π-stacked molecular junctions fabricated experimentally are in line with the concept for conductance-decay free junctions. We explain the orbital rule using benzene molecular junctions with the para-, meta- and ortho-connections and discuss linear π-conjugated chains and π-stacked molecular junctions with respect to their small decay factors in this manuscript.

  4. Shape dependent synthesis and field emission induced rectification in single ZnS nanocrystals.

    Science.gov (United States)

    Thupakula, Umamahesh; Dalui, Amit; Debangshi, Anupam; Bal, Jayanta K; Kumar, Gundam S; Acharya, Somobrata

    2014-05-28

    We report on the synthesis of shape controlled ZnS nanocrystals designed into nanodots, nanorods, and nanowires retaining the same diameter and crystallographic phase. We used UHV scanning tunneling microscopy and spectroscopy to study rectification behavior from single nanocrystals. The nanorod and nanowire show large tunneling current at the negative bias in comparison to the positive bias demonstrating current rectification, while the nanodot shows symmetric current-voltage behavior. We proposed a tunneling mechanism where direct tunneling is followed by resonant tunneling mechanism through ZnS nanocrystal at lower applied bias voltages. Stimulation of field emission in Fowler-Nordheim tunneling regime at higher negative bias voltages enables the rectification behavior from the ZnS nanorod or nanowire. Absence of rectification from the ZnS nanodot is associated with spherical shape where the field emission becomes less significant. Realizing functional electronic component from such shape dependent single ZnS nanocrystal may provide a means in realizing nanocrystal based miniaturized devices.

  5. Electron densities and the excitation of CN in molecular clouds

    Science.gov (United States)

    Black, John H.; Van Dishoeck, Ewine F.

    1991-01-01

    In molecular clouds of modest density and relatively high fractional ionization, the rotational excitation of CN is controlled by a competition among electron impact, neutral impact and the interaction with the cosmic background radiation. The degree of excitation can be measured through optical absorption lines and millimeter-wave emission lines. The available, accurate data on CN in diffuse and translucent molecular clouds are assembled and used to determine electron densities. The derived values, n(e) = roughly 0.02 - 0.5/cu cm, imply modest neutral densities, which generally agree well with determinations by other techniques. The absorption- and emission-line measurements of CN both exclude densities higher than n(H2) = roughly 10 exp 3.5/cu cm on scales varying from 0.001 to 60 arcsec in these clouds.

  6. Electronic Properties of Nano and Molecular Quantum Devices

    CERN Document Server

    Al-Owaedi, Oday Arkan Abbas

    2016-01-01

    The exploring and understanding the electronic properties of molecules connected to metallic leads is a vital part of nanoscience if molecule is to have a future. This thesis documents a study for various families of organic and organometallic molecules, which offer unique concepts and new insights into the electronic properties of molecular junctions. Different families of molecules were studied using a combination of density functional theory DFT and nonequilibrium Greens function formalism of transport theory.The main results of this thesis are as follows. A quantum circuit rule for combining quantum interference effects in the conductive properties of oligo phenyleneethynylene OPE type molecules possessing three aromatic rings was investigated both theoretically and experimentally. The theoretical and experimental studies of conductance and the decay of conductance as a function of molecular length within a homologous series of oligoynes. The single molecule conductances of a series of bis-terpyridine com...

  7. Unwrapping and stereo rectification for omnidirectional images

    Institute of Scientific and Technical Information of China (English)

    Jie LEI; Xin DU; Yun-fang ZHU; Ji-lin LIU

    2009-01-01

    Omnidirectional imaging sensors have been used in more and more applications when a very large field of view is required. In this paper, we investigate the unwrapping, epipolar geometry and stereo rectification issues for omnidirectional vision when the particular mirror model and the camera parameters are unknown in priori. First, the omnidirectional camera is calibrated under the Taylor model, and the parameters related to this model are obtained. In order to make the classical computer vision algorithms of conventional perspective cameras applicable, the ring omnidirectional image is unwrapped into two kinds of panoramas: cylinder and cuboid. Then the epipolar geometry of arbitrary camera configuration is analyzed and the essential matrix is deduced with its properties being indicated for ring images. After that, a simple stereo rectification method based on the essential matrix and the conformal mapping is proposed. Simulations and real data experimental results illustrate that our methods are effective for the omnidirectional camera under the constraint of a single view point.

  8. Rectification Efficiency of Two Harmonically Coupled Particles

    Institute of Scientific and Technical Information of China (English)

    SUN Lian-Xiu

    2009-01-01

    @@ Transportation properties of two harmonically coupled particles moving in a flashing or rocking ratchet potential are investigated in terms of Langevin simulation. The efficiency for rectification of non-equilibrium fluctuation is calculated by using a new definition. The results show that both the average current and efficiency of two coupled particles in the flashing ratchet are larger than that of a single particle and these quantities are non-monotonous functions of the potential remaining time.

  9. Electronic tunneling currents at optical frequencies

    Science.gov (United States)

    Faris, S. M.; Fan, B.; Gustafson, T. K.

    1975-01-01

    Rectification characteristics of nonsuperconducting metal-barrier-metal junctions as deduced from electronic tunneling theory have been observed experimentally for optical frequency irradiation of the junction.

  10. Electronic kinetics of molecular nitrogen and molecular oxygen in high-latitude lower thermosphere and mesosphere

    Directory of Open Access Journals (Sweden)

    A. S. Kirillov

    2010-01-01

    Full Text Available Total quenching rate coefficients of Herzberg states of molecular oxygen and three triplet states of molecular nitrogen in the collisions with O2 and N2 molecules are calculated on the basis of quantum-chemical approximations. The calculated rate coefficients of electronic quenching of O2* and N2* molecules show a good agreement with available experimental data. An influence of collisional processes on vibrational populations of electronically excited N2 and O2 molecules is studied for the altitudes of high-latitude lower thermosphere and mesosphere during auroral electron precipitation. It is indicated that molecular collisions of metastable nitrogen N2(A3Σu* with O2 molecules are principal mechanism in electronic excitation of both Herzberg states c1Σu&minus, A'3Δu, A3Σu+ and high vibrational levels of singlet states a1Δg and b1Σg+ of molecular oxygen O2 at these altitudes.

  11. A molecularly based theory for electron transfer reorganization energy

    International Nuclear Information System (INIS)

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule’s permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory

  12. A molecularly based theory for electron transfer reorganization energy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Bilin; Wang, Zhen-Gang, E-mail: zgw@cheme.caltech.edu [Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-12-14

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule’s permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory.

  13. Machine Learning of Molecular Electronic Properties in Chemical Compound Space

    CERN Document Server

    Montavon, Grégoire; Gobre, Vivekanand; Vazquez-Mayagoitia, Alvaro; Hansen, Katja; Tkatchenko, Alexandre; Müller, Klaus-Robert; von Lilienfeld, O Anatole

    2013-01-01

    The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel, and predictive structure-property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning (ML) model, trained on a data base of \\textit{ab initio} calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity, and excitation energies. The ML model is based on a deep multi-task artificial neural network, exploiting underlying correlations between various molecular properties. The input is identical to \\emph{ab initio} methods, \\emph{i.e.} nucle...

  14. Growth, modification and integration of carbon nanotubes into molecular electronics

    Science.gov (United States)

    Moscatello, Jason P.

    Molecules are the smallest possible elements for electronic devices, with active elements for such devices typically a few Angstroms in footprint area. Owing to the possibility of producing ultra-high density devices, tremendous effort has been invested in producing electronic junctions by using various types of molecules. The major issues for molecular electronics include (1) developing an effective scheme to connect molecules with the present micro- and nano-technology, (2) increasing the lifetime and stabilities of the devices, and (3) increasing their performance in comparison to the state-of-the-art devices. In this work, we attempt to use carbon nanotubes (CNTs) as the interconnecting nanoelectrodes between molecules and microelectrodes. The ultimate goal is to use two individual CNTs to sandwich molecules in a cross-bar configuration while having these CNTs connected with microelectrodes such that the junction displays the electronic character of the molecule chosen. We have successfully developed an effective scheme to connect molecules with CNTs, which is scalable to arrays of molecular electronic devices. To realize this far reaching goal, the following technical topics have been investigated. (1) Synthesis of multi-walled carbon nanotubes (MWCNTs) by thermal chemical vapor deposition (T-CVD) and plasma-enhanced chemical vapor deposition (PECVD) techniques (Chapter 3). We have evaluated the potential use of tubular and bamboo-like MWCNTs grown by T-CVD and PE-CVD in terms of their structural properties. (2) Horizontal dispersion of MWCNTs with and without surfactants, and the integration of MWCNTs to microelectrodes using deposition by dielectrophoresis (DEP) (Chapter 4). We have systematically studied the use of surfactant molecules to disperse and horizontally align MWCNTs on substrates. In addition, DEP is shown to produce impurityfree placement of MWCNTs, forming connections between microelectrodes. We demonstrate the deposition density is tunable by

  15. Electronic Transport in Molecular Junction Based on C20 Cages

    Institute of Scientific and Technical Information of China (English)

    OUYANG Fang-Ping; XU Hui

    2007-01-01

    Choosing closed-ended armchair(5,5)single-wall carbon nanotubes(CCNTs)as electrodes,we investigate the electron transport properties across an all-carbon molecular junction consisting of C20 molecules suspended between two semi-infinite carbon nanotubes.It is shown that the conductances are quite sensitive to the number of C20 molecules between electrodes for both configuration CFl and double-bonded models:the conductances of C20 dimers are markedly smaller than those of monomers.The physics is that incident electrons easily pass the C20 molecules and are predominantly scattered at the C20-C20 junctions.Moreover,we study the doping effect of such molecular junction by doping nitrogen atoms substitutionally.The bonding property of the molecular junction with configuration CFl has been analysed by calculating the Mulliken atomic charges.Our results have revealed that the C atoms in N-doped junctions are more ionic than those in pure-carbon ones,leading to the fact that N-doped junctions have relatively large conductance.

  16. Electron collisions and internal excitation in stored molecular ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Buhr, H.

    2006-07-26

    In storage ring experiments the role, which the initial internal excitation of a molecular ion can play in electron collisions, and the effect of these collisions on the internal excitation are investigated. Dissociative recombination (DR) and inelastic and super-elastic collisions are studied in the system of He{sup +}{sub 2}. The DR rate coefficient at low energies depends strongly on the initial vibrational excitation in this system. Therefore changes in the DR rate coefficient are a very sensitive probe for changes in the vibrational excitation in He{sup +}{sub 2}, which is used to investigate the effects of collisions with electrons and residual gas species. The low-energy DR of HD{sup +} is rich with resonances from the indirect DR process, when certain initial rotational levels in the molecular ion are coupled to levels in neutral Rydberg states lying below the ion state. Using new procedures for high-resolution electron-ion collision spectroscopy developed here, these resonances in the DR cross section can be measured with high energy sensitivity. This allows a detailed comparison with results of a MQDT calculation in an effort to assign some or all of the resonances to certain intermediate Rydberg levels. (orig.)

  17. Electron collisions and internal excitation in stored molecular ion beams

    International Nuclear Information System (INIS)

    In storage ring experiments the role, which the initial internal excitation of a molecular ion can play in electron collisions, and the effect of these collisions on the internal excitation are investigated. Dissociative recombination (DR) and inelastic and super-elastic collisions are studied in the system of He+2. The DR rate coefficient at low energies depends strongly on the initial vibrational excitation in this system. Therefore changes in the DR rate coefficient are a very sensitive probe for changes in the vibrational excitation in He+2, which is used to investigate the effects of collisions with electrons and residual gas species. The low-energy DR of HD+ is rich with resonances from the indirect DR process, when certain initial rotational levels in the molecular ion are coupled to levels in neutral Rydberg states lying below the ion state. Using new procedures for high-resolution electron-ion collision spectroscopy developed here, these resonances in the DR cross section can be measured with high energy sensitivity. This allows a detailed comparison with results of a MQDT calculation in an effort to assign some or all of the resonances to certain intermediate Rydberg levels. (orig.)

  18. Vibrational excitations in molecular layers probed by ballistic electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kajen, Rasanayagam Sivasayan; Chandrasekhar, Natarajan [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore); Feng Xinliang; Muellen, Klaus [Max-Planck-Institut fuer Polymerforschung, Postfach 3148, D-55021 Mainz (Germany); Su Haibin, E-mail: n-chandra@imre.a-star.edu.sg, E-mail: muellen@mpip-mainz.mpg.de, E-mail: hbsu@ntu.edu.sg [Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2011-10-28

    We demonstrate the information on molecular vibrational modes via the second derivative (d{sup 2}I{sub B}/dV{sup 2}) of the ballistic electron emission spectroscopy (BEES) current. The proposed method does not create huge fields as in the case of conventional derivative spectroscopy and maintains a zero bias across the device. BEES studies carried out on three different types of large polycyclic aromatic hydrocarbon (PAH) molecular layers show that the d{sup 2}I{sub B}/dV{sup 2} spectra consist of uniformly spaced peaks corresponding to vibronic excitations. The peak spacing is found to be identical for molecules within the same PAH family though the BEES onset voltage varies for different molecules. In addition, injection into a particular orbital appears to correspond to a specific vibrational mode as the manifestation of the symmetry principle.

  19. Quantum information analysis of electronic states at different molecular structures

    CERN Document Server

    Barcza, G; Marti, K H; Reiher, M

    2010-01-01

    We have studied transition metal clusters from a quantum information theory perspective using the density-matrix renormalization group (DMRG) method. We demonstrate the competition between entanglement and interaction localization. We also discuss the application of the configuration interaction based dynamically extended active space procedure which significantly reduces the effective system size and accelerates the speed of convergence for complicated molecular electronic structures to a great extent. Our results indicate the importance of taking entanglement among molecular orbitals into account in order to devise an optimal orbital ordering and carry out efficient calculations on transition metal clusters. We propose a recipe to perform DMRG calculations in a black-box fashion and we point out the connections of our work to other tensor network state approaches.

  20. Electron-phonon interaction within classical molecular dynamics

    Science.gov (United States)

    Tamm, A.; Samolyuk, G.; Correa, A. A.; Klintenberg, M.; Aabloo, A.; Caro, A.

    2016-07-01

    We present a model for nonadiabatic classical molecular dynamics simulations that captures with high accuracy the wave-vector q dependence of the phonon lifetimes, in agreement with quantum mechanics calculations. It is based on a local view of the e -ph interaction where individual atom dynamics couples to electrons via a damping term that is obtained as the low-velocity limit of the stopping power of a moving ion in a host. The model is parameter free, as its components are derived from ab initio-type calculations, is readily extended to the case of alloys, and is adequate for large-scale molecular dynamics computer simulations. We also show how this model removes some oversimplifications of the traditional ionic damped dynamics commonly used to describe situations beyond the Born-Oppenheimer approximation.

  1. Wave packet dynamics in molecular excited electronic states

    International Nuclear Information System (INIS)

    We theoretically explore the use of UV pump – UV probe schemes to resolve in time the dynamics of nuclear wave packets in excited electronic states of the hydrogen molecule. The pump pulse ignites the dynamics in singly excited states, that will be probed after a given time delay by a second identical pulse that will ionize the molecule. The field-free molecular dynamics is first explored by analyizing the autocorrelation function for the pumped wave packet and the excitation probabilities. We investigate both energy and angle differential ionization probabilities and demonstrate that the asymmetry induced in the electron angular distributions gives a direct map of the time evolution of the pumped wave packet

  2. Resonant Laser Incisions: Molecular Targets Using the Free Electron Laser

    Science.gov (United States)

    Reinisch, Lou; Bryant, Grady; Ossoff, Robert H.

    1996-03-01

    Laser ablation of tissue for medical incisions is normally concerned with the energy absorption and the subsequent vaporization of intracellular water. Using Fourier transform infrared spectroscopy, we have identified specific non-water resonances within tissues. Then, using the Vanderbilt Free Electron Laser (wavelength tunable from 2 to 10 microns) and our Computer Assisted Surgical Techniques program (to standardize the laser delivery), we have targeted specific molecular resonances for laser incisions and tissue removal. Using both acute and chronic studies, we can map out the resonant action spectrum to improve surgical outcomes. We have modeled these ablation mechanisms and working to establish the link between these ablation mechanisms and wound healing. This work has been supported, in part, by a grant from the Department of Defense, Medical Free Electron Laser Program, ONR Grant #N000149411023.

  3. IV. Dissociative recombination of electrons and molecular ions

    International Nuclear Information System (INIS)

    The present state of the theory of the dissociative recombination of electrons and molecular ions is reviewed and its shortcomings shown. The mechanisms of direct and indirect dissociative processes are described. Several approximative methods employing the analogy with the recombination of atomic ions and electrons are used for the determination of the dissociative recombination factor. Analyzing the derived formulae the temperature dependence of the dissociative recombination factor is determined and the results are compared with experimental data obtained by several authors. The energy levels of atoms created at the dissociative recombination of He2+, Ar2+, and O2+ ions are described. Methods of measuring the recombination factor are listed. The existing experimental data are summarized and the possible explanation of the observed variations is presented. An exhaustive list of references is given. (J.U.)

  4. Ballistic thermal rectification in nanoscale three-terminal junctions

    Science.gov (United States)

    Zhang, Lifa; Wang, Jian-Sheng; Li, Baowen

    2010-03-01

    We study ballistic thermal transport in three-terminal atomic nanojunctions by the nonequilibrium Green’s function method. We find that there is ballistic thermal rectification in asymmetric three-terminal structures because of the incoherent phonon scattering from the control terminal. With spin-phonon interaction, we also find the ballistic thermal rectification even in symmetric three-terminal paramagnetic structures.

  5. From Molecular Meccano to Nano-Functional Materials for Molecular Electronics Applications

    Science.gov (United States)

    Sue, Chi-Hau

    Mechanically interlocked molecules (MIMs), such as bistable catenanes and rotaxanes, have found technological applications in fields as disparate as those involving molecular switches and machines, nanoelectromechanical systems (NEMS), and molecular electronic devices. All these multifarious applications of MIMs require that the synthesis of these molecular components be straightforward and efficient. Furthermore, the elaboration of the structural features of MIMs into metal-organic frameworks (MOFs) provides a way of bringing MIMs from solution into solid state in a systematic and hierarchical manner. This dissertation describes successful attempts in realizing such concepts. The pi-electron deficient tetracationic cyclophane, namely cyclobis(paraquat-p-phenylene) (CBQPT4+), which is a key component in the MIMs for molecular electronics applications, now can be synthesized by a new "template-trading" protocol. The time taken to synthesize CBPQT4+ has been halved as a result of using a pH-responsive derivative of 1,5-diaminonaphthalene to displace the template employed during its synthesis, instead of the time-consuming and energy-wasteful liquid-liquid extraction. By utilizing the considerable sophistication of organic synthesis methods, a series of rigid organic dicarboxylic acids containing crown ethers and [2]catenanes moieties are designed and synthesized. These novel dicarboxylic crown ethers not only retain the characteristics of their parent crown ethers since they can bind cationic guests and serve as templates for making MIMs, but they also present coordination sites to connect with secondary building units (SBUs) in MOFs, in which the organic linkers act as "edges" that bridge the metal centers which in turn act as "vertices". This strategy allows the "bottom-up" construction of crystalline MOFs, whose bulk properties in the solid state can be designed and predicted by the characteristics of the molecular building blocks and superstructures. The

  6. Fragmentation of molecular ions in slow electron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, Steffen

    2008-06-25

    The fragmentation of positively charged hydrogen molecular ions by the capture of slow electrons, the so called dissociative recombination (DR), has been investigated in storage ring experiments at the TSR, Heidelberg, where an unique twin-electron-beam arrangement was combined with high resolution fragment imaging detection. Provided with well directed cold electrons the fragmentation kinematics were measured down to meV collision energies where pronounced rovibrational Feshbach resonances appear in the DR cross section. For thermally excited HD{sup +} the fragmentation angle and the kinetic energy release were studied at variable precisely controlled electron collision energies on a dense energy grid from 10 to 80 meV. The anisotropy described for the first time by Legendre polynomials higher 2{sup nd} order and the extracted rotational state contributions were found to vary on a likewise narrow energy scale as the rotationally averaged DR rate coefficient. Ro-vibrationally resolved DR experiments were performed on H{sub 2}{sup +} produced in distinct internal excitations by a novel ion source. Both the low-energy DR rate as well as the fragmentation dynamics at selected resonances were measured individually in the lowest two vibrational and first three excited rotational states. State-specific DR rates and angular dependences are reported. (orig.)

  7. Fragmentation of molecular ions in slow electron collisions

    International Nuclear Information System (INIS)

    The fragmentation of positively charged hydrogen molecular ions by the capture of slow electrons, the so called dissociative recombination (DR), has been investigated in storage ring experiments at the TSR, Heidelberg, where an unique twin-electron-beam arrangement was combined with high resolution fragment imaging detection. Provided with well directed cold electrons the fragmentation kinematics were measured down to meV collision energies where pronounced rovibrational Feshbach resonances appear in the DR cross section. For thermally excited HD+ the fragmentation angle and the kinetic energy release were studied at variable precisely controlled electron collision energies on a dense energy grid from 10 to 80 meV. The anisotropy described for the first time by Legendre polynomials higher 2nd order and the extracted rotational state contributions were found to vary on a likewise narrow energy scale as the rotationally averaged DR rate coefficient. Ro-vibrationally resolved DR experiments were performed on H2+ produced in distinct internal excitations by a novel ion source. Both the low-energy DR rate as well as the fragmentation dynamics at selected resonances were measured individually in the lowest two vibrational and first three excited rotational states. State-specific DR rates and angular dependences are reported. (orig.)

  8. Microwave power engineering generation, transmission, rectification

    CERN Document Server

    Okress, Ernest C

    1968-01-01

    Microwave Power Engineering, Volume 1: Generation, Transmission, Rectification considers the components, systems, and applications and the prevailing limitations of the microwave power technology. This book contains four chapters and begins with an introduction to the basic concept and developments of microwave power technology. The second chapter deals with the development of the main classes of high-power microwave and optical frequency power generators, such as magnetrons, crossed-field amplifiers, klystrons, beam plasma amplifiers, crossed-field noise sources, triodes, lasers. The third

  9. Patterning molecular scale paramagnets at Au Surface: A root to Magneto-Molecular-Electronics

    CERN Document Server

    Messina, Paul C; Sorace, L; Rovai, D; Caneschi, A; Gatteschi, Dante; Messina, Paolo; Mannini, Matteo; Sorace, Lorenzo; Rovai, Donella; Caneschi, Andrea; Gatteschi, Dante

    2004-01-01

    Few examples of the exploitation of molecular magnetic properties in molecular electronics are known to date. Here we propose the realization of Self assembled monolayers (SAM) of a particular stable organic radical. This radical is meant to be used as a standard molecule on which to prove the validity of a single spin reading procedure known as ESR-STM. We demonstrate here that the radical is chemically anchored at the surface, preserves its magnetic functionality and can be imaged by STM. STM and ESR investigations of the molecular film is reported. We also discuss a range of possible applications, further than ESR-STM, of magnetic monolayers of simple purely organic magnetic molecule.

  10. Ballistic thermal rectification in asymmetric three-terminal graphene nanojunctions

    Science.gov (United States)

    Ouyang, Tao; Chen, Yuanping; Xie, Yuee; Wei, X. L.; Yang, Kaike; Yang, Ping; Zhong, Jianxin

    2010-12-01

    Graphene nanojunctions (GNJs) are important components of future nanodevices and nanocircuits. Using the nonequilibrium Green’s function method, we investigate the phononic properties of three-terminal GNJs (TGNJs). The results show that the heat flux runs preferentially along the direction from narrow to wide terminals, presenting an evident ballistic thermal rectification effect in the asymmetric TGNJs. The rectification efficiency is strongly dependent on the asymmetry of the nanojunctions, which increases rapidly with the width discrepancy between the left and right terminals. Meanwhile, the corner form of the TGNJs also plays an important role in the rectification effect. The mechanism of this thermal rectification is explained by a qualitative analysis. Compared to previous thermal rectifiers based on other materials, the asymmetric nanojunctions based on graphene possess much high rectification ratio which can approach about 200%. These indicate that asymmetric TGNJs might be a promising candidate for excellent ballistic thermal (phononic) devices.

  11. Molecular self-assembly approaches for supramolecular electronic and organic electronic devices

    Science.gov (United States)

    Yip, Hin-Lap

    Molecular self-assembly represents an efficient bottom-up strategy to generate structurally well-defined aggregates of semiconducting pi-conjugated materials. The capability of tuning the chemical structures, intermolecular interactions and nanostructures through molecular engineering and novel materials processing renders it possible to tailor a large number of unprecedented properties such as charge transport, energy transfer and light harvesting. This approach does not only benefit traditional electronic devices based on bulk materials, but also generate a new research area so called "supramolecular electronics" in which electronic devices are built up with individual supramolecular nanostructures with size in the sub-hundred nanometers range. My work combined molecular self-assembly together with several novel materials processing techniques to control the nucleation and growth of organic semiconducting nanostructures from different type of pi-conjugated materials. By tailoring the interactions between the molecules using hydrogen bonds and pi-pi stacking, semiconducting nanoplatelets and nanowires with tunable sizes can be fabricated in solution. These supramolecular nanostructures were further patterned and aligned on solid substrates through printing and chemical templating methods. The capability to control the different hierarchies of organization on surface provides an important platform to study their structural-induced electronic properties. In addition to using molecular self-assembly to create different organic nanostructures, functional self-assembled monolayer (SAM) formed by spontaneous chemisorption on surfaces was used to tune the interfacial property in organic solar cells. Devices showed dramatically improved performance when appropriate SAMs were applied to optimize the contact property for efficiency charge collection.

  12. Electronic absorption spectra and geometry of organic molecules an application of molecular orbital theory

    CERN Document Server

    Suzuki, Hiroshi

    1967-01-01

    Electronic Absorption Spectra and Geometry of Organic Molecules: An Application of Molecular Orbital Theory focuses on electronic absorption spectra of organic compounds and molecules. The book begins with the discussions on molecular spectra, electronic absorption spectra of organic compounds, and practical measures of absorption intensity. The text also focuses on molecular orbital theory and group theory. Molecular state functions; fundamental postulates of quantum theory; representation of symmetry groups; and symmetry operations and symmetry groups are described. The book also dis

  13. Automated rectification and geocoding of SAR imagery

    Science.gov (United States)

    Kwok, R.; Curlander, J. C.

    1987-01-01

    An automated post-processing system has been developed for rectification and geocoding of SAR (Synthetic Aperture Radar) imagery. The system uses as input a raw uncorrected image from the operational SAR correlator, and produces as a standard output a rectified and geocoded product. The accurate geolocation of SAR image pixels is provided by a spatial transformation model which maps the slant range-azimuth SAR image pixels into their location on a prespecified map grid. This model predicts the geodetic location of each pixel by utilizing: the sensor platform position; a geoid model; the parameters of the data collection system and the processing parameters used in the SAR correlator. Based on their geodetic locations, the pixels are mapped by using the desired cartographic projection equations. This rectification and geocoding technique has been tested with Seasat and SIR-B images. The test results demonstrate absolute location uncertainty of less than 50 m and relative distortion (scale factor and skew) of less than 0.1 percent relative to local variations from the assumed geoid.

  14. High-Conductive Organometallic Molecular Wires with Delocalized Electron Systems Strongly Coupled to Metal Electrodes

    OpenAIRE

    Schwarz, Florian; Kastlunger, Georg; Lissel, Franziska; Riel, Heike; Venkatesan, Koushik; Berke, Heinz; Stadler, Robert; Lörtscher, Emanuel

    2015-01-01

    Besides active, functional molecular building blocks such as diodes or switches, passive components as, e.g., molecular wires, are required to realize molecular-scale electronics. Incorporating metal centers in the molecular backbone enables the molecular energy levels to be tuned in respect to the Fermi energy of the electrodes. Furthermore, by using more than one metal center and sp-bridging ligands, a strongly delocalized electron system is formed between these metallic "dopants", facilita...

  15. Heterointerface effects on the nonlinear optical rectification in a laser-dressed graded quantum well

    Science.gov (United States)

    Niculescu, Ecaterina C.; Eseanu, Nicoleta; Radu, Adrian

    2013-05-01

    An investigation of the laser radiation effects on the nonlinear optical rectification in an AlGaAs inverse parabolic quantum well with asymmetrical barriers is performed within the effective mass approximation, taking into account the dielectric mismatch between the semiconductor and the surrounding medium. Using the accurate dressing effect for the confinement potential and electrostatic self-energy due to the image-charges, we prove that: (i) a spatially dependent effective mass in the laser-dressing parameter definition is required for precise calculations of the energy levels; (ii) the dielectric confinement provides a potential mechanism for controlling electronic states and optical properties of quantum wells. In addition, the laser dependence of the energy where the optical rectification reaches its maximum can be adjusted by external electric fields. The joint action of the intense high-frequency laser and static electric fields may provide tuning of the nonlinear properties in this type of dielectrically modulated heterostructures.

  16. In Vivo Demonstration of Addressable Microstimulators Powered by Rectification of Epidermically Applied Currents for Miniaturized Neuroprostheses.

    Science.gov (United States)

    Becerra-Fajardo, Laura; Ivorra, Antoni

    2015-01-01

    Electrical stimulation is used in order to restore nerve mediated functions in patients with neurological disorders, but its applicability is constrained by the invasiveness of the systems required to perform it. As an alternative to implantable systems consisting of central stimulation units wired to the stimulation electrodes, networks of wireless microstimulators have been devised for fine movement restoration. Miniaturization of these microstimulators is currently hampered by the available methods for powering them. Previously, we have proposed and demonstrated a heterodox electrical stimulation method based on electronic rectification of high frequency current bursts. These bursts can be delivered through textile electrodes on the skin. This approach has the potential to result in an unprecedented level of miniaturization as no bulky parts such as coils or batteries are included in the implant. We envision microstimulators designs based on application-specific integrated circuits (ASICs) that will be flexible, thread-like (diameters rectification of epidermically applied currents are feasible.

  17. Enhanced heat rectification effect in a quantum dot connected to ferromagnetic leads

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Feng, E-mail: chifeng@semi.ac.cn [School of Physical Science and Technology, Inner Mongolia University, Huhehaote 010023 (China); College of Engineering, Bohai University, Jinzhou 121013 (China); Sun, Lian-Liang [College of Science, North China University of Technology, Beijing 100041 (China); Zheng, Jun; Guo, Yu [College of Engineering, Bohai University, Jinzhou 121013 (China)

    2015-06-15

    We study theoretically the heat generation by electric current in an interacting single level quantum-dot connected to ferromagnetic leads. The heat is transferred between the dot and the lattice vibration of its host material (phonon reservoir). Particular attention is paid on the heat's rectification effect achieved by properly arranging the dot level and the bias voltage. We find that this effect is remarkably enhanced when the two leads' magnetic moments are in antiparallel configuration, i.e., the magnitude of the heat generation is reduced (amplified) in the negative (positive) bias regime as compared to the cases of parallel configuration and nonmagnetic leads. The rectification effect is even enhanced when one of the lead's spin polarization approaches to unit, during which the negative differential of the heat generation is weakened due to the change of the spin-dependent electron occupation numbers on the dot. The found results may be used for thermal transistor in the newly emerged research subject of phononics. - Highlights: • Heat flow between electrons and phonons is controlled by interaction between them. • A thermal diode or rectifier is proposed to work under electrical bias. • The heat rectification effect can be enhanced by the leads' ferromagnetism.

  18. Electronic transport of molecular nanowires by considering of electron hopping energy between the second neighbors

    Directory of Open Access Journals (Sweden)

    H Rabani

    2015-07-01

    Full Text Available In this paper, we study the electronic conductance of molecular nanowires by considering the electron hopping between the first and second neighbors with the help Green’s function method at the tight-binding approach. We investigate three types of structures including linear uniform and periodic chains as well as poly(p-phenylene molecule which are embedded between two semi-infinite metallic leads. The results show that in the second neighbor approximation, the resonance, anti-resonance and Fano phenomena occur in the conductance spectra of these structures. Moreover, a new gap is observed at edge of the lead energy band wich its width depends on the value of the electron hopping energy between the second neighbors. In the systems including intrinsic gap, this hopping energy shifts the gap in the energy spectra.

  19. Thermal rectification in three-dimensional asymmetric nanostructure.

    Science.gov (United States)

    Lee, Jonghoon; Varshney, Vikas; Roy, Ajit K; Ferguson, John B; Farmer, Barry L

    2012-07-11

    Previously, thermal rectification has been reported in several low-dimensional shape-asymmetric nanomaterials. In this Letter, we demonstrate that a three-dimensional crystalline material with an asymmetric shape also displays as strong thermal rectification as low-dimensional materials do. The observed rectification is attributed to the stronger temperature dependence of vibration density of states in the narrower region of the asymmetric material, resulting from the small number of atomic degrees of freedom directly interacting with the thermostat. We also demonstrate that the often reported "device shape asymmetry" is not a sufficient condition for thermal rectification. Specifically, the size asymmetry in boundary thermal contacts is equally important toward determining the magnitude of thermal rectification. When the boundary thermal contacts retain the same size asymmetry as the nanomaterial, the overall system displays notable thermal rectification, in accordance with existing literature. However, when the wider region of the asymmetric nanomaterial is partially thermostatted by a smaller sized contact, thermal rectification decreases dramatically and even changes direction.

  20. Effect of interfacial coupling on rectification in organic spin rectifiers

    Science.gov (United States)

    Hu, Gui-Chao; Zuo, Meng-Ying; Li, Ying; Zhang, Zhao; Ren, Jun-Feng; Wang, Chuan-Kui

    2015-07-01

    The effect of interfacial coupling on rectification in an organic co-oligomer spin diode is investigated theoretically by considering spin-independent and spin-resolved couplings respectively. In the case of spin-independent coupling, an optimal interfacial coupling strength with a significant enhanced rectification ratio is found, whose value depends on the structural asymmetry of the molecule. In the case of spin-resolved coupling, we found that only the variation of the interfacial coupling with specific spin is effective to modulate the rectification, which is due to the spin-filtering property of the central asymmetric magnetic molecule. A transition of the spin-current rectification between parallel spin-current rectification and antiparallel spin-current rectification may be observed with the variation of the spin-resolved interfacial coupling. The interfacial effect on rectification is further analyzed from the spin-dependent transmission spectrum at different biases. Project supported by the National Natural Science Foundation of China (Grant No. 1374195), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014AM017), and the Excellent Young Scholars Research Fund of Shandong Normal University, China.

  1. Electronic damping of molecular motion at metal surfaces

    CERN Document Server

    Trail, J R; Bird, D M

    2009-01-01

    A method for the calculation of the damping rate due to electron-hole pair excitation for atomic and molecular motion at metal surfaces is presented. The theoretical basis is provided by Time Dependent Density Functional Theory (TDDFT) in the quasi-static limit and calculations are performed within a standard plane-wave, pseudopotential framework. The artificial periodicity introduced by using a super-cell geometry is removed to derive results for the motion of an isolated atom or molecule, rather than for the coherent motion of an ordered over-layer. The algorithm is implemented in parallel, distributed across both ${\\bf k}$ and ${\\bf g}$ space, and in a form compatible with the CASTEP code. Test results for the damping of the motion of hydrogen atoms above the Cu(111) surface are presented.

  2. Platinum(II)-Based Metallo-Supramolecular Polymer with Controlled Unidirectional Dipoles for Tunable Rectification.

    Science.gov (United States)

    Chakraborty, Chanchal; Pandey, Rakesh K; Hossain, Md Delwar; Futera, Zdenek; Moriyama, Satoshi; Higuchi, Masayoshi

    2015-09-01

    A platinum(II)-based, luminescent, metallo-supramolecular polymer (PolyPtL1) having an inherent dipole moment was synthesized via complexation of Pt(II) ions with an asymmetric ligand L1, containing terpyridyl and pyridyl moieties. The synthesized ligand and polymer were well characterized by various NMR techniques, optical spectroscopy, and cyclic voltammetry studies. The morphological study by atomic force microscopy revealed the individual and assembled polymer chains of 1-4 nm height. The polymer was specifically attached on Au-electrodes to produce two types of film (films 1 and 2) in which the polymer chains were aligned with their dipoles in opposite directions. The Au-surface bounded films were characterized by UV-vis, Raman spectroscopy, cyclic voltammetry, and atomic force microscopy study. The quantum mechanical calculation determined the average dipole moment for each monomer unit in PolyPtL1 to be about 5.8 D. The precise surface derivatization permitted effective tuning of the direction dipole moment, as well as the direction of rectification of the resulting polymer-attached molecular diodes. Film 1 was more conductive in positive bias region with an average rectification ratio (RR = I(+4 V)/I(-4 V)) ≈ 20, whereas film 2 was more conducting in negative bias with an average rectification ratio (RR = I(-4 V)/I(+4 V)) ≈ 18.

  3. NEW VERSATILE CAMERA CALIBRATION TECHNIQUE BASED ON LINEAR RECTIFICATION

    Institute of Scientific and Technical Information of China (English)

    Pan Feng; Wang Xuanyin

    2004-01-01

    A new versatile camera calibration technique for machine vision using off-the-shelf cameras is described. Aimed at the large distortion of the off-the-shelf cameras, a new camera distortion rectification technology based on line-rectification is proposed. A full-camera-distortion model is introduced and a linear algorithm is provided to obtain the solution. After the camera rectification intrinsic and extrinsic parameters are obtained based on the relationship between the homograph and absolute conic. This technology needs neither a high-accuracy three-dimensional calibration block, nor a complicated translation or rotation platform. Both simulations and experiments show that this method is effective and robust.

  4. First principles modelling of contact resistance in molecular electronic devices.

    Science.gov (United States)

    Stokbro, Kurt; Taylor, Jeremy; Brandbyge, Mads

    2002-03-01

    We have used the TranSIESTA package[1,2] to investigate the contact resistance of gold-thiol bonds. The TranSIESTA package is a new density functional code employing local basis sets[3], combined with a non-equilibrium Greens function transport scheme. With this package we can calculate the selfconsistent electronic structure of a nanostructure coupled to 3-dimensional electrodes with different electrochemical potentials, using the same level of model chemistry for the electrodes as for the nanostructure. We have used the method to calculate the electron transport through DiThiol-Benzene (DTB) connected to gold electrodes. The transport properties have been calculated for a range of different molecule-electrode couplings, and I will discuss the influence of the coupling on the molecular conductance, and compare with experimental data. [1] M. Brandbyge, K. Stokbro, J. Taylor, J. L. Mozos, P. Ordejon, Material Research Society symposium proceedings volume 636, D9.25 (2000). [2] M. Brandbyge, K. Stokbro, J. Taylor, J. L. Mozos, P. Ordejon, Condmat 0110650 [3] SIESTA: D. Sanchez-Portal, P. Ordejon, E. Artacho and J. Soler, Int. J. Quantum Chem. 65, 453 (1997).

  5. Dissociative electron attachment to CO2 produces molecular oxygen

    Science.gov (United States)

    Wang, Xu-Dong; Gao, Xiao-Fei; Xuan, Chuan-Jin; Tian, Shan Xi

    2016-03-01

    Until recently, it was widely regarded that only one reaction pathway led to the production of molecular oxygen in Earth's prebiotic primitive atmosphere: a three-body recombination reaction of two oxygen atoms and a third body that removes excess energy. However, an additional pathway has recently been observed that involves the photodissociation of CO2 on exposure to ultraviolet light. Here we demonstrate a further pathway to O2 production, again from CO2, but via dissociative electron attachment (DEA). Using anion-velocity image mapping, we provide experimental evidence for a channel of DEA to CO2 that produces O2(X3Σ-g) + C-. This observed channel coexists in the same energy range as the competitive three-body dissociation of CO2 to give O + O + C-. The abundance of low-energy electrons in interstellar space and the upper atmosphere of Earth suggests that the contributions of these pathways are significant and should be incorporated into atmospheric chemistry models.

  6. Determination of molecular parameters by electron collisions and laser techniques

    International Nuclear Information System (INIS)

    In this work a general procedure to study diatomic molecules in intermediate coupling scheme has been developed. This study allows to obtain expressions to calculate molecular line strengths and rotational transition intensities. These results are used in a numerical program to synthetize vibrational and rotational band spectra of any diatomic molecule. With this technique the experimental spectra of the first negative system of N2+ and the fist positive system of N2 are reproduced theoretically and it is possible to deduce its electronic transition moments values by comparison. Also the method has been applied to compare the synthetized bands with the experimental spectra of the B Ou+-- x1Σg+ system of Au2 and the A2Σ--- x 2π system of OH. From these comparison band intensities and electronic moments can be deduced. The branching ratio method to measure the relative spectral response in the 1100-1560 Ao=wavelength range of a vacuum uv monochromator has been used. Relative intensity of rotational lines with origine in a common upper vibrational-rotational level of Warner and Lyman systems of H2, have been measured. Also in this work, the deexcitation of the B3π+(0+u), v'=14 level of I2 after pulsed laser excitation has been studied. The quenching cross sections by collisions with I2, H2, CO2 and CH4 have been determin-ed. (Author)

  7. Ionic fragmentation channels in electron collisions of small molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Jens

    2009-01-28

    Dissociative Recombination (DR) is one of the most important loss processes of molecular ions in the interstellar medium (IM). Ion storage rings allow to investigate these processes under realistic conditions. At the Heidelberg test storage ring TSR a new detector system was installed within the present work in order to study the DR sub-process of ion pair formation (IPF). The new detector expands the existing electron target setup by the possibility to measure strongly deflected negative ionic fragments. At the TSR such measurements can be performed with a uniquely high energy resolution by independently merging two electron beams with the ion beam. In this work IPF of HD{sup +}, H{sub 3}{sup +} and HF{sup +} has been studied. In the case of HD{sup +} the result of the high resolution experiment shows quantum interferences. Analysis of the quantum oscillations leads to a new understanding of the reaction dynamics. For H{sub 3}{sup +} it was for the first time possible to distinguish different IPF channels and to detect quantum interferences in the data. Finally the IPF of HF{sup +} was investigated in an energy range, where in previous experiments no conclusive results could be obtained. (orig.)

  8. A Practical Method for Image Rectification

    Institute of Scientific and Technical Information of China (English)

    CHENZezhi; WUChengke; YANYaoping

    2003-01-01

    This paper gives a new method for image rectification. The method is based on an estimation of the epipolar constraints and homography matrix H, which de-scribes the relationship of the corresponding epipolar lines.The approach makes the resampling images extremely sim-ple by using Bresenham Algorithm to extract pixels alongthe corresponding epipolar line. For a large set of cameramotions, remapping to a plane has the drawback of cre-ating rectified images that are potentially infinitely largeand presents a loss of pixel information a long the epipolar lines. In contrast, our method guarantees that the recti-fied images are bounded for all possible camera motions and minimizes the loss of pixel information along epipo-lar lines. Excellent experimental results obtained with a binocular stereovision images are presented and detailed analysis is provided.

  9. A LANDSAT digital image rectification system

    Science.gov (United States)

    Vanwie, P.; Stein, M.

    1976-01-01

    DIRS is a digital image rectification system for the geometric correction of LANDSAT multispectral scanner digital image data. DIRS removes spatial distortions from the data and brings it into conformance with the Universal Transverse Mercator (UTM) map projection. Scene data in the form of landmarks are used to drive the geometric correction algorithms. Two dimensional least squares polynominal and spacecraft attitude modeling techniques for geometric mapping are provided. Entire scenes or selected quadrilaterals may be rectified. Resampling through nearest neighbor or cubic convolution at user designated intervals is available. The output products are in the form of digital tape in band interleaved, single band or CCT format in a rotated UTM projection. The system was designed and implemented on large scale IBM 360 computers.

  10. Polaron effect on the optical rectification in spherical quantum dots with electric field

    Science.gov (United States)

    Feng, Zhen-Yu; Yan, Zu-Wei

    2016-10-01

    The polaron effect on the optical rectification in spherical quantum dots with a shallow hydrogenic impurity in the presence of electric field is theoretically investigated by taking into account the interactions of the electrons with both confined and surface optical phonons. Besides, the interaction between impurity and phonons is also considered. Numerical calculations are presented for typical Zn1-x Cd x Se/ZnSe material. It is found that the polaronic effect or electric field leads to the redshifted resonant peaks of the optical rectification coefficients. It is also found that the peak values of the optical rectification coefficients with the polaronic effect are larger than without the polaronic effect, especially for smaller Cd concentrations or stronger electric field. Project supported by the National Natural Science Foundation of China (Grant No. 11364028), the Major Projects of the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2013ZD02), and the Project of “Prairie Excellent” Engineering in Inner Mongolia Autonomous Region, China.

  11. Calibration-free sinusoidal rectification and uniform retinal irradiance in scanning light ophthalmoscopy.

    Science.gov (United States)

    Yang, Qiang; Yin, Lu; Nozato, Koji; Zhang, Jie; Saito, Kenichi; Merigan, William H; Williams, David R; Rossi, Ethan A

    2015-01-01

    Sinusoidal rectification (i.e., desinusoiding) is necessary for scanning imaging systems and is typically achieved by calculating a rectification transform from a calibration image such as a regular grid. This approach is susceptible to error due to electronic or mechanical instability that can alter the phase of the imaging window with respect to the calibration transform. Here, we show a calibration-free rectification method implemented from live video of a scanning light ophthalmoscope (SLO) with or without adaptive optics (AO). This approach, which capitalizes on positional differences in the images obtained in the forward and backward scan directions, dynamically keeps the imaging window in phase with the motion of the sinusoidal resonant scanner, preventing errors from signal drift over time. A benefit of this approach is that it allows the light power across the field-of-view (FOV) to be modulated inversely to achieve uniform irradiance on the retina, a feature desirable for functional imaging methods and light safety in SLOs.

  12. Efficient injection-type ballistic rectification in Si/SiGe cross junctions

    Science.gov (United States)

    Salloch, D.; Wieser, U.; Kunze, U.; Hackbarth, T.

    2010-09-01

    Tunable inertial-ballistic rectification is studied in a nanoscale injection-type Si/SiGe rectifier in the hot-electron regime. The rectifier consists of a cascade of two nanoscale cross junctions in series. Two pairs of opposing current injectors merge under 30∘ into a straight central voltage stem. The electron densities in the injectors and the stem can be adjusted separately by two local top-gates. The measurements reveal a substantial efficiency increase for a nearly depleted stem. The efficiency of ballistic rectifiers can be expressed by the transfer resistance RT (output voltage divided by input current), the best value we achieve is 800 Ω.

  13. Surface electron density models for accurate ab initio molecular dynamics with electronic friction

    Science.gov (United States)

    Novko, D.; Blanco-Rey, M.; Alducin, M.; Juaristi, J. I.

    2016-06-01

    Ab initio molecular dynamics with electronic friction (AIMDEF) is a valuable methodology to study the interaction of atomic particles with metal surfaces. This method, in which the effect of low-energy electron-hole (e-h) pair excitations is treated within the local density friction approximation (LDFA) [Juaristi et al., Phys. Rev. Lett. 100, 116102 (2008), 10.1103/PhysRevLett.100.116102], can provide an accurate description of both e-h pair and phonon excitations. In practice, its applicability becomes a complicated task in those situations of substantial surface atoms displacements because the LDFA requires the knowledge at each integration step of the bare surface electron density. In this work, we propose three different methods of calculating on-the-fly the electron density of the distorted surface and we discuss their suitability under typical surface distortions. The investigated methods are used in AIMDEF simulations for three illustrative adsorption cases, namely, dissociated H2 on Pd(100), N on Ag(111), and N2 on Fe(110). Our AIMDEF calculations performed with the three approaches highlight the importance of going beyond the frozen surface density to accurately describe the energy released into e-h pair excitations in case of large surface atom displacements.

  14. Epipolar rectification method for a stereovision system with telecentric cameras

    Science.gov (United States)

    Liu, Haibo; Zhu, Zhaokun; Yao, Linshen; Dong, Jin; Chen, Shengyi; Zhang, Xiaohu; Shang, Yang

    2016-08-01

    3D metrology of a stereovision system requires epipolar rectification to be performed before dense stereo matching. In this study, we propose an epipolar rectification method for a stereovision system with two telecentric lens-based cameras. Given the orthographic projection matrices of each camera, the new projection matrices are computed by determining the new camera coordinates system in affine space and imposing some constraints on the intrinsic parameters. Then, the transformation that maps the old image planes on to the new image planes is achieved. Experiments are performed to validate the performance of the proposed rectification method. The test results show that the perpendicular distance and 3D reconstructed deviation obtained from the rectified images is not significantly higher than the corresponding values obtained from the original images. Considering the roughness of the extracted corner points and calibrated camera parameters, we can conclude that the proposed method can provide sufficiently accurate rectification results.

  15. Spin rectification induced by spin Hall magnetoresistance at room temperature

    Science.gov (United States)

    Wang, P.; Jiang, S. W.; Luan, Z. Z.; Zhou, L. F.; Ding, H. F.; Zhou, Y.; Tao, X. D.; Wu, D.

    2016-09-01

    We have experimentally and theoretically investigated the dc voltage generation in the heterostructure of Pt and yttrium iron garnet under the ferromagnetic resonance. Besides a symmetric Lorenz line shape dc voltage, an antisymmetric Lorenz line shape dc voltage is observed in field scan, which can solely originate from the spin rectification effect due to the spin Hall magnetoresistance. The angular dependence of the dc voltage is theoretically analyzed by taking into account both the spin pumping and the spin rectification effects. We find that the experimental results are in excellent agreement with the theoretical model, further identifying the spin Hall magnetoresistance origin of the spin rectification effect. Moreover, the spin pumping and the spin rectification effects are quantitatively separated by their different angular dependence at particular experimental geometry.

  16. Digital image transformation and rectification of spacecraft and radar images

    Science.gov (United States)

    Wu, S.S.C.

    1985-01-01

    Digital image transformation and rectification can be described in three categories: (1) digital rectification of spacecraft pictures on workable stereoplotters; (2) digital correction of radar image geometry; and (3) digital reconstruction of shaded relief maps and perspective views including stereograms. Digital rectification can make high-oblique pictures workable on stereoplotters that would otherwise not accommodate such extreme tilt angles. It also enables panoramic line-scan geometry to be used to compile contour maps with photogrammetric plotters. Rectifications were digitally processed on both Viking Orbiter and Lander pictures of Mars as well as radar images taken by various radar systems. By merging digital terrain data with image data, perspective and three-dimensional views of Olympus Mons and Tithonium Chasma, also of Mars, are reconstructed through digital image processing. ?? 1985.

  17. Rigorous theory of molecular orientational nonlinear optics

    International Nuclear Information System (INIS)

    Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955)] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO) through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1) the derivation of rigorous tensorial components of the effective molecular hyperpolarizabilities, (2) the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect), optical Kerr effect (OKE), dc electric field induced second harmonic generation (EFISH), degenerate four wave mixing (DFWM) and third harmonic generation (THG). We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR), Pockels effect and difference frequency generation (DFG) are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR), dc electric field induced difference frequency generation (EFIDFG) and pump-probe transmission are presented

  18. Micro- and Nanostructured Materials for Active Devices and Molecular Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Peter M.; Graff, Gordon L.; Gross, Mark E.; Burrows, Paul E.; Bennett, Wendy D.; Mast, Eric S.; Hall, Michael G.; Bonham, Charles C.; Zumhoff, Mac R.; Williford, Rick E.

    2003-10-01

    Traditional single layer barrier coatings are not adequate in preventing degradation of the performance of organic molecular electronic and other active devices. Most advanced devices used in display technology now consist of micro and nanostructured small molecule, polymer and inorganic coatings with thin high reactive group 1A metals. This includes organic electronics such as organic light emitting devices (OLED). The lifetimes of these devices rapidly degrades when they are exposed to atmospheric oxygen and water vapor. Thin film photovoltaics and batteries are also susceptible to degradation by moisture and oxygen. Using in-line coating techniques we apply a composite nanostructured inorganic/polymer thin film barrier that restricts moisture and oxygen permeation to undetectable levels using conventional permeation test equipment. We describe permeation mechanisms for this encapsulation coating and flat panel display and other device applications. Permeation through the multilayer barrier coating is defect and pore limited and can be described by Knudsen diffusion involving a long and tortuous path. Device lifetime is also enhanced by the long lag times required to reach the steady state flux regime. Permeation rates in the range of 10-6 cc,g/m2/d have been achieved and OLED device lifetimes. The structure is robust, yet flexible. The resulting device performance and lifetimes will also be described. The barrier film can be capped with a thin film of transparent conductive oxide yielding an engineered nanostructured device for next generation, rugged, lightweight or flexible displays. This enables, for the first time, thin film encapsulation of emissive organic displays.

  19. Electron transport in molecular junctions with graphene as protecting layer

    Energy Technology Data Exchange (ETDEWEB)

    Hüser, Falco; Solomon, Gemma C., E-mail: gsolomon@nano.ku.dk [Nano-Science Center and Department of Chemistry, University of Copenhagen, 2100 København Ø (Denmark)

    2015-12-07

    We present ab initio transport calculations for molecular junctions that include graphene as a protecting layer between a single molecule and gold electrodes. This vertical setup has recently gained significant interest in experiment for the design of particularly stable and reproducible devices. We observe that the signals from the molecule in the electronic transmission are overlayed by the signatures of the graphene sheet, thus raising the need for a reinterpretation of the transmission. On the other hand, we see that our results are stable with respect to various defects in the graphene. For weakly physiosorbed molecules, no signs of interaction with the graphene are evident, so the transport properties are determined by offresonant tunnelling between the gold leads across an extended structure that includes the molecule itself and the additional graphene layer. Compared with pure gold electrodes, calculated conductances are about one order of magnitude lower due to the increased tunnelling distance. Relative differences upon changing the end group and the length of the molecule on the other hand, are similar.

  20. Magnetic and electronic properties of porphyrin-based molecular nanowires

    Directory of Open Access Journals (Sweden)

    Jia-Jia Zheng

    2016-01-01

    Full Text Available Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn. Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  1. Magnetic and electronic properties of porphyrin-based molecular nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jia-Jia; Li, Qiao-Zhi; Dang, Jing-Shuang; Zhao, Xiang, E-mail: xzhao@mail.xjtu.edu.cn [Institute for Chemical Physics & Department of Chemistry, MOE Key Laboratory for Non-equilibrium Condensed Matter and Quantum Engineering, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Wei-Wei [Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan)

    2016-01-15

    Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn). Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  2. Molecular shape of Lumbricus terrestris erythrocruorin studied by electron microscopy and image analysis

    NARCIS (Netherlands)

    Boekema, Egbert J.; Heel, Marin van

    1989-01-01

    The molecular structure of erythrocruorin (hemoglobin) from Lumbricus terrestris has been studied by electron microscopy of negatively stained particles. Over 1000 molecular projections were selected from a number of electron micrographs and were then classified by multivariate statistical image-pro

  3. Exploring coherent transport through π-stacked systems for molecular electronic devices

    DEFF Research Database (Denmark)

    Li, Qian; Solomon, Gemma

    2014-01-01

    Understanding electron transport across π-stacked systems can help to elucidate the role of intermolecular tunneling in molecular junctions and potentially with the design of high-efficiency molecular devices. Here we show how conjugation length and substituent groups influence the electron trans...

  4. High Throughput Ab initio Modeling of Charge Transport for Bio-Molecular-Electronics

    OpenAIRE

    Bruque, Nicolas A.

    2009-01-01

    Self-assembled nanostructures, composed of inorganic and organic materials, have multiple applications in the fields of engineering and nanotechnology. Experimental research using nanoscaled materials, such as semiconductor/metallic nanocrystals, nanowires (NW), and carbon nanotube (CNT)-molecular systems have potential applications in next generation nano electronic devices. Many of these molecular systems exhibit electronic device functionality. However, experimental analytical techniques t...

  5. Mass measurement with the electron microscope. [Application of scanning transmission electron microscopy in molecular weight determinations of fd phage

    Energy Technology Data Exchange (ETDEWEB)

    Wall, J.S.

    1979-01-01

    The use of electron scattering measurements performed in the electron microscope as a means of measurement of particle molecular weight is described. Various potential sources of errors are identified and estimated where possible. Specimen preparation and observation conditions to minimize errors are described. The fd phage is presented as an example of analysis and an illustration of the accuracy obtainable at low dose.

  6. Electronic properties of single-molecule junction: Effect of the molecular distortion

    International Nuclear Information System (INIS)

    For a model system consisting of a benzenedithio (BDT) molecule sandwiched between two Au plates, the electronic properties as a function of different BDT geometry are investigated using density functional theory. The distorted BDT structures are got through stretching the electrode distance. The corresponding electronic properties, including the spatial distribution of the frontier orbits, the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital levels and density of states at the Fermi energy are determined. It reveals that the molecular distortion essentially determines electronic structures. The result should be beneficial to understand the stress-dependent or structure-dependent transport mechanism of electrons of the BDT junction.

  7. First-Principles Based Matrix-Green's Function Approach to Molecular Electronic Devices: General Formalism

    OpenAIRE

    Xue, Yongqiang; Datta, Supriyo; Ratner, Mark A.

    2001-01-01

    Transport in molecular electronic devices is different from that in semiconductor mesoscopic devices in two important aspects: (1) the effect of the electronic structure and (2) the effect of the interface to the external contact. A rigorous treatment of molecular electronic devices will require the inclusion of these effects in the context of an open system exchanging particle and energy with the external environment. This calls for combining the theory of quantum transport with the theory o...

  8. Resonant electron heating and molecular phonon cooling in single C$_{60}$ junctions

    OpenAIRE

    SCHULZE, G.; Franke, K. J.; Gagliardi, A.; ROMANO, G; Lin, C S; Da Rosa, A.; Niehaus, T. A.; Frauenheim, Th.; A. Di Carlo; Pecchia, A; Pascual, J. I.

    2008-01-01

    We study heating and heat dissipation of a single \\c60 molecule in the junction of a scanning tunneling microscope (STM) by measuring the electron current required to thermally decompose the fullerene cage. The power for decomposition varies with electron energy and reflects the molecular resonance structure. When the STM tip contacts the fullerene the molecule can sustain much larger currents. Transport simulations explain these effects by molecular heating due to resonant electron-phonon co...

  9. Development of an electron-temperature-dependent interatomic potential for molecular dynamics simulation of tungsten under electronic excitation

    International Nuclear Information System (INIS)

    Irradiation of a metal by lasers or swift heavy ions causes the electrons to become excited. In the vicinity of the excitation, an electronic temperature is established within a thermalization time of 10-100 fs, as a result of electron-electron collisions. For short times, corresponding to less than 1 ps after excitation, the resulting electronic temperature may be orders of magnitude higher than the lattice temperature. During this short time, atoms in the metal experience modified interatomic forces as a result of the excited electrons. These forces can lead to ultrafast nonthermal phenomena such as melting, ablation, laser-induced phase transitions, and modified vibrational properties. We develop an electron-temperature-dependent empirical interatomic potential for tungsten that can be used to model such phenomena using classical molecular dynamics simulations. Finite-temperature density functional theory calculations at high electronic temperatures are used to parametrize the model potential

  10. Effect of conical nanopore diameter on ion current rectification.

    Science.gov (United States)

    Kovarik, Michelle L; Zhou, Kaimeng; Jacobson, Stephen C

    2009-12-10

    Asymmetric nanoscale conduits, such as conical track-etch pores, rectify ion current due to surface charge effects. To date, most data concerning this phenomenon have been obtained for small nanopores with diameters comparable to the electrical double layer thickness. Here, we systematically evaluate rectification for nanopores in poly(ethylene terephthalate) membranes with tip diameters of 10, 35, 85, and 380 nm. Current-voltage behavior is determined for buffer concentrations from 1 mM to 1 M and pHs 3.4 and 6.7. In general, ion current rectification increases with decreasing tip diameter, with decreasing ionic strength, and at higher pH. Surface charge contributes to increased pore conductivities compared to bulk buffer conductivities, though double layer overlap is not necessary for rectification to occur. Interestingly, the 35 nm pore exhibits a maximum rectification ratio for the 0.01 M buffer at pH 6.7, and the 380 nm pores exhibit nearly diodelike current-voltage curves when initially etched and strong rectification after the ion current has stabilized.

  11. Electron spin resonance study on lignin molecular mobility

    International Nuclear Information System (INIS)

    Molecular mobility of grinded wood lignin is studied in the wide temperature range using the recombination-kinetic method. Macroradicals formed during low-temperature γ-radiolysis of lignin, are used as a molecular probe. Analysis of curves of stage-by-stage heating of specimens confirms microheterogeneity of lignin

  12. Substrate and head group modifications for enhanced stability in molecular electronic devices

    Science.gov (United States)

    Ferrato, Michael-Anthony

    Poor Self-Assembled Monolayer (SAM) stability is a barrier which impedes the incorporation of molecular layers as functional components in electronic device architectures. Here we investigate the molecular electronic characteristics of two well established approaches to enhancing SAM stability. In Chapter 2 we investigate the electrochemical modification of Au substrates by the underpotential deposition of silver monolayers (AgUPD). In Chapter 3 we study chelating dithiophosphinic acid (DTPA) head groups to anchor SAM molecules to substrates. Based on molecular electronic characterization using EGaIn Tip testbeds, we observed that AgUPD substrates maintained the inherent electronic character of n-alkanethiolate SAMs, but reduced charge transport by almost 1 order of magnitude as compared with the same SAMs on bulk Au substrates. Similar molecular electronic characterization of (diphenyl)dithiophosphinic acid SAMs on Au substrates revealed that the DTPA head group induced a ~3 order of magnitude drop in charge transport as compared with analogous thiophenol SAMs.

  13. Electron transfer through a molecular wire: Consideration of electron-vibrational coupling within the Liouville space pathway technique

    Science.gov (United States)

    May, V.

    2002-12-01

    To fully account for electron-vibrational coupling and vibrational relaxation in the course of electron motion through a molecular wire a density operator approach is utilized. If combined with a particular projection operator technique a generalized master equation can be derived which governs the populations of the electronic wire states. The respective memory kernels are determined beyond any perturbation theory with respect to the electron-vibrational coupling and can be classified via so-called Liouville space pathways. An ordering of the different contributions to the current-voltage characteristics becomes possible by introducing an electron transmission coefficient which describes ballistic as well as inelastic electron transport through the wire. The general derivations are illustrated by numerical calculations which demonstrate the drastic influence of the electron-vibrational coupling on the wire transmission coefficient as well as on the current-voltage characteristics.

  14. Resonant electron heating and molecular phonon cooling in single C60 junctions.

    Science.gov (United States)

    Schulze, G; Franke, K J; Gagliardi, A; Romano, G; Lin, C S; Rosa, A L; Niehaus, T A; Frauenheim, Th; Di Carlo, A; Pecchia, A; Pascual, J I

    2008-04-01

    We study heating and heat dissipation of a single C(60) molecule in the junction of a scanning tunneling microscope by measuring the electron current required to thermally decompose the fullerene cage. The power for decomposition varies with electron energy and reflects the molecular resonance structure. When the scanning tunneling microscope tip contacts the fullerene the molecule can sustain much larger currents. Transport simulations explain these effects by molecular heating due to resonant electron-phonon coupling and molecular cooling by vibrational decay into the tip upon contact formation. PMID:18517981

  15. Electronic transport in fullerene C20 bridge assisted by molecular vibrations.

    Science.gov (United States)

    Yamamoto, Takahiro; Watanabe, Kazuyuki; Watanabe, Satoshi

    2005-08-01

    The effect of molecular vibrations on electronic transport is investigated with the smallest fullerene C20 bridge, utilizing the Keldysh nonequilibrium Green's function techniques combined with the tight-binding molecular-dynamics method. Large discontinuous steps appear in the differential conductance when the applied bias voltage matches particular vibrational energies. The magnitude of the step is found to vary considerably with the vibrational mode and to depend on the local electronic states besides the strength of electron-vibration coupling. On the basis of this finding, a novel way to control the molecular motion by adjusting the gate voltage is proposed.

  16. Self-assembled and electrochemically deposited mono/multilayers for molecular electronics applications

    International Nuclear Information System (INIS)

    For the development of molecular electronics, it is desirable to investigate characteristics of organic molecules with electronic device functionalities. In near future, such molecular devices could be integrated with silicon to prepare hybrid nanoelectronic devices. In this paper, we review work done in our laboratory on study of characteristics of some functional molecules. For these studies molecular mono and multilayers have been deposited on silicon surface by self-assembly and electrochemical deposition techniques. Both commercially available and specially designed and synthesized molecules have been utilized for these investigations. We demonstrate dielectric layers, memory, switching, rectifier and negative differential resistance devices based on molecular mono and multilayers.

  17. [PDCA Applied in Special Rectification of Medical Instrument Clinical Trial].

    Science.gov (United States)

    Wang, Lei; Qu, Xintao; Yu, Xiuchun

    2015-09-01

    PDCA cycle was applied in special rectification activities for medical instrument clinical trial, with quality criteria of implementation made. Completed medical instrument clinical trial from January 2011 to December 2012 was believed as control group, from January 2013 to December 2014 as PDCA group, the scores of clinical trial and the score rate of items were compared and analyzed. Results show quality scores of clinical trial in PDCA group are higher than that in control group (51 vs. 81, P rectification activities with PDCA applied in our department are feasible and effective. It significantly improves implement quality of medical instrument clinical trial.

  18. Bounds for the rectification efficiency of solar radiation

    Science.gov (United States)

    Mashaal, Heylal; Gordon, Jeffrey M.

    2013-09-01

    Efficiency bounds for the rectification (AC to DC conversion) efficiency of non-coherent broadband radiation are derived, motivated by determining a basic limit for solar rectifying antennas. The limit is shown to be 2/π for a single full-wave rectifier. We also derive the increase in rectification efficiency that is possible by cascading multiple rectifiers. The approach for deriving the broadband limit follows from an analysis of sinusoidal signals of random phase. This analysis is also germane for harvesting ambient radio-frequency radiation from multiple uncorrelated sources.

  19. Digital image transformation and rectification of spacecraft and radar images

    Science.gov (United States)

    Wu, S. S. C.

    1985-01-01

    The application of digital processing techniques to spacecraft television pictures and radar images is discussed. The use of digital rectification to produce contour maps from spacecraft pictures is described; images with azimuth and elevation angles are converted into point-perspective frame pictures. The digital correction of the slant angle of radar images to ground scale is examined. The development of orthophoto and stereoscopic shaded relief maps from digital terrain and digital image data is analyzed. Digital image transformations and rectifications are utilized on Viking Orbiter and Lander pictures of Mars.

  20. Electron loss from multiply protonated lysozyme ions in high energy collisions with molecular oxygen

    DEFF Research Database (Denmark)

    Hvelplund, P; Nielsen, SB; Sørensen, M;

    2001-01-01

    We report on the electron loss from multiply protonated lysozyme ions Lys-Hn(n)+ (n = 7 - 17) and the concomitant formation of Lys-Hn(n+1)+. in high-energy collisions with molecular oxygen (laboratory kinetic energy = 50 x n keV). The cross section for electron loss increases with the charge state...... of the precursor from n = 7 to n = 11 and then remains constant when n increases further. The absolute size of the cross section ranges from 100 to 200 A2. The electron loss is modeled as an electron transfer process between lysozyme cations and molecular oxygen....

  1. Manipulation of large molecules by low-temperature STM: model systems for molecular electronics

    International Nuclear Information System (INIS)

    The ability of the low-temperature scanning tunneling microscope to manipulate atoms and to build nanostructures with atomic precision can be extended to the manipulation of larger molecules and to selectively modify their internal degrees of freedom. Manipulation experiments on individual molecules show an exciting diversity of physical, chemical, and electronic phenomena. They permit a deeper insight into the quantum electronics of molecular systems and provide important information on the conformational and mechanical properties of single complex molecules. In this article, recent experiments on specially designed molecules will be reviewed, which investigate model systems interesting for the developing of molecular electronics. Starting from the realization of the principle of a molecular switch, going through the possibility of recording the small intramolecular changes inside a complex molecule during its movement, toward the study of the electronic contact between a single molecular wire and a metallic nanoelectrode

  2. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry

    Directory of Open Access Journals (Sweden)

    Luis R. Domingo

    2016-09-01

    Full Text Available A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT, is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT, the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through a rigorous quantum chemical analysis of the changes of the electron density as well as the energies associated with these changes along the reaction path in order to understand experimental outcomes. Studies performed using MEDT allow establishing a modern rationalisation and to gain insight into molecular mechanisms and reactivity in Organic Chemistry.

  3. An overview of the first half-century of molecular electronics.

    Science.gov (United States)

    Hush, Noel S

    2003-12-01

    The seminal ideas from which molecular electronics has developed were the theories of molecular conduction advanced in the late 1940s by Robert S. Mulliken and Albert Szent-Gyorgi. These were, respectively, the concept of donor-acceptor charge transfer complexes and the possibility that proteins might in fact not be insulators The next two decades saw a burgeoning of experimental and theoretical work on electron transfer systems, together with a lone effort by D.D. Eley on conduction in proteins. The call by Feynman in his famous 1959 lecture There's Plenty of Room at the Bottom for chemists, engineers and physicists to combine to build up structures from the molecular level was influential in turning attention to the possibility of engineering single molecules to function as elements in information-processing systems. This was made tangible by the proposal of Aviram and Ratner in 1974 to use a Mulliken-like electron donor-acceptor molecule as a molecular diode, generalizing molecular conduction into molecular electronics. In the early 1970s the remarkably visionary work of Forrest L. Carter of the U.S. Naval Research Laboratories began to appear: designs for molecular wires, switches, complex molecular logic elements, and a host of related ideas were advanced. Shortly after that, conferences on molecular electronics began to be held, and the interdisciplinary programs that Feynman envisaged. There was a surge in both experimental and theoretical work in molecular electronics, and the establishment of many research centres. The past five years or so have seen extraordinarily rapid progress in fabrication and theoretical understanding. The history of how separate lines of research emanating from fundamental insights of about 50 years ago have coalesced into a thriving international research program in what might be called the ultimate nanotechnology is the subject of this review; it concentrates on the lesser-appreciated early developments in the field.

  4. ADVANCED MATERIALS Communications Molecular Rectification in Oriented Polymer Structures""

    OpenAIRE

    Sentein, Carole; Fiorini, Céline; Lorin, André; Nunzi, Jean-Michel

    1997-01-01

    Polymeric semiconductor devices are receiving increasing attention in view of potential applications requiring low-cost processing over large areas.'"*] In this respect, unlike with evaporated molecules, the wet-processing capability of polymers offers total compatibility with other complemen-tary technologies. The concepts from which organic-semi-conductor devices are designed are mostly derived from in-organic-semiconductor physics and technology.''] In order to build efficient organic-semi...

  5. Electronic Transport in Self-organised Molecular Nanostructured Devices

    OpenAIRE

    Pecchia, A.; Movaghar, B.; Kelsall, R. W.; Bourlange, A.; S. D. Evans; Hickey, B. J.; Boden, N.

    2001-01-01

    We analyse the frequency dependent conductivity of a system which is fabricated using the combination of a quasi 2-dimensional MBE grown metal film and an ordered self-assembled overlayer of adsorbed molecules. The molecules can self-assemble to form quasi 1-dimensional conducting columns, in which electrons can be temporarily trapped. Given the short mean free path of conducting electrons, due to surface and impurity scattering, the long range transport is modelled using a diffusion scheme t...

  6. Proceedings of the 2. Latin American Meeting on Atomic, Molecular and Electronic Collisions

    International Nuclear Information System (INIS)

    Annals of the II Latin American Meeting on Atomic, Molecular and Electronic Collisions. Over than 50 people from Latin America participated on this meeting giving talks on different subjects (theoretical and experimental), related to atomic and molecular physics, as well as, nuclear physics. (A.C.A.S.)

  7. Computational Nanotechnology of Molecular Materials, Electronics, and Actuators with Carbon Nanotubes and Fullerenes

    Science.gov (United States)

    Srivastava, Deepak; Menon, Madhu; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The role of computational nanotechnology in developing next generation of multifunctional materials, molecular scale electronic and computing devices, sensors, actuators, and machines is described through a brief review of enabling computational techniques and few recent examples derived from computer simulations of carbon nanotube based molecular nanotechnology.

  8. A parity function for studying the molecular electronic structure

    DEFF Research Database (Denmark)

    Schmider, Hartmut

    1996-01-01

    Sections through the molecular Wigner function with zero momentum variable are shown to provide important information about the off-diagonal regions of the spinless one-particle reduced density matrix. Since these regions are characteristic for the bonding situation in molecules, the sections...

  9. Developer molecular size dependence of pattern formation of polymer type electron beam resists with various molecular weights

    Science.gov (United States)

    Takayama, Tomohiro; Asada, Hironori; Kishimura, Yukiko; Ochiai, Shunsuke; Hoshino, Ryoichi; Kawata, Atsushi

    2016-05-01

    The sensitivity and the resolution are affected by not only the nature of the resist such as a chemical structure and a molecular weight but also the developing process such as a developer molecular size. Exposure characteristics of positive-tone polymer resists having various molecular weights (Mw's) ranging from 60 k to 500 k are investigated using different ester solvents as a developer. The line-and-space (L/S) patterns are exposed by the electron beam writing system with an acceleration voltage of 50 kV and the samples are developed by amyl acetate, hexyl acetate and heptyl acetate. The pattern shape becomes better and the surface of the resist also becomes smoother with increasing developer molecular size, though the exposure dose required for the formation of the L/S pattern increases. The dose margin of pattern formation is also wider in all the resists having the different molecular weights. The dissolution in the unexposed portions of the 60k-Mw resist for heptyl acetate is reduced significantly compared with those for amyl acetate and hexyl acetate. The improvement of the pattern shape and the increasing of dose margin are remarkable in the low molecular weight resist. The 3σ of line width roughness tends to be smaller in the higher molecular weight resist and with the larger molecular size developer. Exposure experiment of the 35 nm pitch pattern using the 500k-Mw resist developed at the room temperature is presented.

  10. Recent advances in molecular electronics based on carbon nanotubes.

    Science.gov (United States)

    Bourgoin, Jean-Philippe; Campidelli, Stéphane; Chenevier, Pascale; Derycke, Vincent; Filoramo, Arianna; Goffman, Marcelo F

    2010-01-01

    Carbon nanotubes (CNTs) have exceptional physical properties that make them one of the most promising building blocks for future nanotechnologies. They may in particular play an important role in the development of innovative electronic devices in the fields of flexible electronics, ultra-high sensitivity sensors, high frequency electronics, opto-electronics, energy sources and nano-electromechanical systems (NEMS). Proofs of concept of several high performance devices already exist, usually at the single device level, but there remain many serious scientific issues to be solved before the viability of such routes can be evaluated. In particular, the main concern regards the controlled synthesis and positioning of nanotubes. In our opinion, truly innovative use of these nano-objects will come from: (i) the combination of some of their complementary physical properties, such as combining their electrical and mechanical properties, (ii) the combination of their properties with additional benefits coming from other molecules grafted on the nanotubes, and (iii) the use of chemically- or bio-directed self-assembly processes to allow the efficient combination of several devices into functional arrays or circuits. In this article, we outline the main issues concerning the development of carbon nanotubes based electronics applications and review our recent results in the field.

  11. Influence of electroosmotic flow on the ionic current rectification in a pH-regulated, conical nanopore

    Science.gov (United States)

    Lin, Dong-Huei; Lin, Chih-Yuan; Tseng, Shiojenn; Hsu, Jyh-Ping

    2015-08-01

    The ionic current rectification (ICR) is studied theoretically by considering a pH-regulated, conical nanopore. In particular, the effect of electroosmotic flow (EOF), which was often neglected in previous studies, is investigated by solving a set of coupled Poisson, Nernst-Planck, and Navier-Stokes equations. The behaviors of ICR under various conditions are examined by varying solution pH, bulk ionic concentration, and applied electric potential bias. We show that the EOF effect is significant when the bulk ionic concentration is medium high, the pH is far away from the iso-electric point, and the electric potential bias is high. The percentage deviation in the current rectification ratio arising from neglecting the EOF effect can be on the order of 100%. In addition, the behavior of the current rectification ratio at a high pH taking account of EOF is different both qualitatively and quantitatively from that without taking account of EOF.The ionic current rectification (ICR) is studied theoretically by considering a pH-regulated, conical nanopore. In particular, the effect of electroosmotic flow (EOF), which was often neglected in previous studies, is investigated by solving a set of coupled Poisson, Nernst-Planck, and Navier-Stokes equations. The behaviors of ICR under various conditions are examined by varying solution pH, bulk ionic concentration, and applied electric potential bias. We show that the EOF effect is significant when the bulk ionic concentration is medium high, the pH is far away from the iso-electric point, and the electric potential bias is high. The percentage deviation in the current rectification ratio arising from neglecting the EOF effect can be on the order of 100%. In addition, the behavior of the current rectification ratio at a high pH taking account of EOF is different both qualitatively and quantitatively from that without taking account of EOF. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03433g

  12. Geometric rectification of radar imagery using digital elevation models

    Science.gov (United States)

    Naraghi, M.; Stromberg, W.; Daily, M.

    1983-01-01

    Geologic analysis of radar imagery requires accurate spatial rectification to allow rock type discrimination and meaningful exploitation of multisensor data files. A procedure is described which removes distortions produced by most sources including the heretofore elusive problem of terrain induced effects. Rectified imagery is presented which displays geologic features not apparent in the distorted data.

  13. Proceedings of the NASA Workshop on Registration and Rectification

    Science.gov (United States)

    Bryant, N. A. (Editor)

    1982-01-01

    Issues associated with the registration and rectification of remotely sensed data. Near and long range applications research tasks and some medium range technology augmentation research areas are recommended. Image sharpness, feature extraction, inter-image mapping, error analysis, and verification methods are addressed.

  14. Rethinking Rectification: AC-DC Power Supply in Package

    DEFF Research Database (Denmark)

    Pejtersen, Jens; Knott, Arnold; Jørgensen, Ivan Harald Holger

    Rectification of AC mains voltage is almost exclusively implemented with passive diode bridge rectifiers for power applications below 100 W. The diode bridge rectifier is reliable, cost effective and easy to use. But it is also lossy, nonlinear and passive. Thus reducing the power conversion...

  15. Molecular shock response of explosives: electronic absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mcgrne, Shawn D [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Bolme, Cindy A [Los Alamos National Laboratory; Eakins, Daniel E [Los Alamos National Laboratory

    2009-01-01

    Electronic absorption spectroscopy in the range 400-800 nm was coupled to ultrafast laser generated shocks to begin addressing the question of the extent to which electronic excitations are involved in shock induced reactions. Data are presented on shocked polymethylmethacrylate (PMMA) thin films and single crystal pentaerythritol tetranitrate (PETN). Shocked PMMA exhibited thin film interference effects from the shock front. Shocked PETN exhibited interference from the shock front as well as broadband increased absorption. Relation to shock initiation hypotheses and the need for time dependent absorption data (future experiments) is briefly discussed.

  16. Electron sharing and anion-π recognition in molecular triangular prisms.

    Science.gov (United States)

    Schneebeli, Severin T; Frasconi, Marco; Liu, Zhichang; Wu, Yilei; Gardner, Daniel M; Strutt, Nathan L; Cheng, Chuyang; Carmieli, Raanan; Wasielewski, Michael R; Stoddart, J Fraser

    2013-12-01

    Stacking on a full belly: Triangular molecular prisms display electron sharing among their triangularly arranged naphthalenediimide (NDI) redox centers. Their electron-deficient cavities encapsulate linear triiodide anions, leading to the formation of supramolecular helices in the solid state. Chirality transfer is observed from the six chiral centers of the filled prisms to the single-handed helices. PMID:24227594

  17. Coupled electron-phonon transport from molecular dynamics with quantum baths

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Wang, J. S.

    2009-01-01

    Based on generalized quantum Langevin equations for the tight-binding wavefunction amplitudes and lattice displacements, electron and phonon quantum transport are obtained exactly using molecular dynamics (MD) in the ballistic regime. The electron-phonon interactions can be handled with a quasi-c...

  18. Coordination compounds for molecular electronics: Synthesis, characterization and electronic transport properties of copper rotaxanes and molecular complexes

    OpenAIRE

    Ponce González, Julia

    2014-01-01

    Esta tesis se centra en el estudio de compuestos de coordinación de interés en el campo de la electrónica molecular. Este campo tiene como objetivo la utilización de unidades moleculares como componentes activos en circuitos electrónicos. Los dispositivos unimoleculares presentan cualidades únicas, inherentes a la nanoescala, que no poseen equivalencia en los componentes convencionales, actualmente basados en el silicio. Además, la síntesis de moléculas dispone de un altísimo grado de control...

  19. Millisecond Coherence Time in a Tunable Molecular Electronic Spin Qubit

    OpenAIRE

    Zadrozny, Joseph M.; Niklas, Jens; Poluektov, Oleg G.; Freedman, Danna E.

    2015-01-01

    Quantum information processing (QIP) could revolutionize areas ranging from chemical modeling to cryptography. One key figure of merit for the smallest unit for QIP, the qubit, is the coherence time (T 2), which establishes the lifetime for the qubit. Transition metal complexes offer tremendous potential as tunable qubits, yet their development is hampered by the absence of synthetic design principles to achieve a long T 2. We harnessed molecular design to create a series of qubits, (Ph4P)2[V...

  20. Simple molecules as benchmark systems for molecular electronics

    NARCIS (Netherlands)

    Djukić, Darko

    2006-01-01

    In society there is a constant urge to improve existing devices and the level of success is perhaps the easiest to observe in the world of electronic devices. The complexity, functionality and reliability of these machines has increased enormously, but it approaches its limits. A new giant step whic

  1. Electron transfer flavoprotein deficiency: Functional and molecular aspects

    DEFF Research Database (Denmark)

    Schiff, M; Froissart, R; Olsen, Rikke Katrine Jentoft;

    2006-01-01

    Multiple acyl-CoA dehydrogenase deficiency (MADD) is a recessively inherited metabolic disorder that can be due to a deficiency of electron transfer flavoprotein (ETF) or its dehydrogenase (ETF-ubiquinone oxidoreductase). ETF is a mitochondrial matrix protein consisting of alpha- (30kDa) and beta...

  2. Electron transfer statistics and thermal fluctuations in molecular junctions

    Science.gov (United States)

    Goswami, Himangshu Prabal; Harbola, Upendra

    2015-02-01

    We derive analytical expressions for probability distribution function (PDF) for electron transport in a simple model of quantum junction in presence of thermal fluctuations. Our approach is based on the large deviation theory combined with the generating function method. For large number of electrons transferred, the PDF is found to decay exponentially in the tails with different rates due to applied bias. This asymmetry in the PDF is related to the fluctuation theorem. Statistics of fluctuations are analyzed in terms of the Fano factor. Thermal fluctuations play a quantitative role in determining the statistics of electron transfer; they tend to suppress the average current while enhancing the fluctuations in particle transfer. This gives rise to both bunching and antibunching phenomena as determined by the Fano factor. The thermal fluctuations and shot noise compete with each other and determine the net (effective) statistics of particle transfer. Exact analytical expression is obtained for delay time distribution. The optimal values of the delay time between successive electron transfers can be lowered below the corresponding shot noise values by tuning the thermal effects.

  3. Electron transfer statistics and thermal fluctuations in molecular junctions

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, Himangshu Prabal; Harbola, Upendra [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012 (India)

    2015-02-28

    We derive analytical expressions for probability distribution function (PDF) for electron transport in a simple model of quantum junction in presence of thermal fluctuations. Our approach is based on the large deviation theory combined with the generating function method. For large number of electrons transferred, the PDF is found to decay exponentially in the tails with different rates due to applied bias. This asymmetry in the PDF is related to the fluctuation theorem. Statistics of fluctuations are analyzed in terms of the Fano factor. Thermal fluctuations play a quantitative role in determining the statistics of electron transfer; they tend to suppress the average current while enhancing the fluctuations in particle transfer. This gives rise to both bunching and antibunching phenomena as determined by the Fano factor. The thermal fluctuations and shot noise compete with each other and determine the net (effective) statistics of particle transfer. Exact analytical expression is obtained for delay time distribution. The optimal values of the delay time between successive electron transfers can be lowered below the corresponding shot noise values by tuning the thermal effects.

  4. A quantum-defect theory of molecular electronic polarizability

    International Nuclear Information System (INIS)

    An algorithm based on the quantum defect theory is proposed for computing the dynamic polarizability tensor for polar molecules. The algorithm makes use of ab initio methods developed for ground and lowlying electronic states. The computed refractive index and scattered-light depolarization coefficient for gaseous nitric oxide are in good agreement with experiment

  5. Tunneling of electrons via rotor-stator molecular interfaces: combined ab initio and model study

    CERN Document Server

    Petreska, Irina; Pejov, Ljupco; Kocarev, Ljupco

    2015-01-01

    Tunneling of electrons through rotor-stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons' formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that confirmation dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previ...

  6. Measuring the density of a molecular cluster injector via visible emission from an electron beam

    International Nuclear Information System (INIS)

    A method to measure the density distribution of a dense hydrogen gas jet is presented. A Mach 5.5 nozzle is cooled to 80 K to form a flow capable of molecular cluster formation. A 250 V, 10 mA electron beam collides with the jet and produces Hα emission that is viewed by a fast camera. The high density of the jet, several 1016 cm-3, results in substantial electron depletion, which attenuates the Hα emission. The attenuated emission measurement, combined with a simplified electron-molecule collision model, allows us to determine the molecular density profile via a simple iterative calculation.

  7. Multimer Radical Ions and Electron/Hole Localization in Polyatomic Molecular Liquids: A critical review

    OpenAIRE

    Shkrob, Ilya A.; Sauer, Jr., Myran C.

    2004-01-01

    While ionization of some polyatomic molecular liquids (such as water and aliphatic alcohols) yields so-called "solvated electrons" in which the excess electron density is localized in the interstices between the solvent molecules, most organic and inorganic liquids yield radical anions and cations in which the electron and spin densities reside on the solvent molecule or, more commonly, a group of such molecules. The resulting multimer ions have many unusual properties, such as high rates of ...

  8. Rectification And Revival Of Muslim World

    Directory of Open Access Journals (Sweden)

    M azram

    2012-01-01

    Full Text Available The present doldrums position and state of decadence, internal differences, external aggression (geographical and ideological, lack of self-confidence and dependence, illiteracy, political instability, economic disaster, lack of knowledge and wisdom, back benchers in science and technology, education, medicine, trade and business, banking system and defensive incapability of Muslim Ummah prompted me to write this article.  Although most of the Muslim nations got their independence because of their dedicated struggle and historic events and incidents but the old masters remained active for a remote control over the Muslim Ummah.  Their intellectuals and scholars, individually as well as collectively, have propagated and advised their leadership, the tactics and approaches by which Muslim Ummah can again be enslaved.  Writings of S.P. Huntington and F. Fukuyama are clear examples.  They are actively gearing the international institutions so cleverly that Muslim Ummah does not even realize their ill motives and objectives.  They brought their leadership in a confronting position with Muslim Ummah and hence threatening the world peace.  This situation prompted us to look at our principal sources of inspiration, which are, the Qur’an, Sunnah of the Prophet (SAW, and examples of the “enlightened Caliphs” and see if we could work out a seminal guidelines for our rectification  and revival.  We have gathered together some of these impressions; these are all tentative, nothing final about them, but these are here nonetheless. ABSTRAK: Kehadiran situasi kebelungguan dan  keruntuhan, perbezaan dalaman, pencerobohan luar (geografi dan ideologi, kurang keyakinan diri dan pergantungan, buta huruf, ketidakstabilan politik, bencana ekonomi, kekurangan ilmu dan hikmah, ketinggalan dalam sains dan teknologi, pendidikan, perubatan, perdagangan dan perniagaan, sistem perbankan dan ketidakupayaan pertahanan umat Islam mendorong saya untuk menulis

  9. Probing electron-phonon excitations in molecular junctions by quantum interference.

    Science.gov (United States)

    Bessis, C; Della Rocca, M L; Barraud, C; Martin, P; Lacroix, J C; Markussen, T; Lafarge, P

    2016-02-11

    Electron-phonon coupling is a fundamental inelastic interaction in condensed matter and in molecules. Here we probe phonon excitations using quantum interference in electron transport occurring in short chains of anthraquinone based molecular junctions. By studying the dependence of molecular junction's conductance as a function of bias voltage and temperature, we show that inelastic scattering of electrons by phonons can be detected as features in conductance resulting from quenching of quantum interference. Our results are in agreement with density functional theory calculations and are well described by a generic two-site model in the framework of non-equilibrium Green's functions formalism. The importance of the observed inelastic contribution to the current opens up new ways for exploring coherent electron transport through molecular devices.

  10. Poly(3-hexylthiophene)/multiwalled carbon hybrid coaxial nanotubes: nanoscale rectification and photovoltaic characteristics.

    Science.gov (United States)

    Kim, Kihyun; Shin, Ji Won; Lee, Yong Baek; Cho, Mi Yeon; Lee, Suk Ho; Park, Dong Hyuk; Jang, Dong Kyu; Lee, Cheol Jin; Joo, Jinsoo

    2010-07-27

    We fabricate hybrid coaxial nanotubes (NTs) of multiwalled carbon nanotubes (MWCNTs) coated with light-emitting poly(3-hexylthiophene) (P3HT). The p-type P3HT material with a thickness of approximately 20 nm is electrochemically deposited onto the surface of the MWCNT. The formation of hybrid coaxial NTs of the P3HT/MWCNT is confirmed by a transmission electron microscope, FT-IR, and Raman spectra. The optical and structural properties of the hybrid NTs are characterized using ultraviolet and visible absorption, Raman, and photoluminescence (PL) spectra where, it is shown that the PL intensity of the P3HT materials decreases after the hybridization with the MWCNTs. The current-voltage (I-V) characteristics of the outer P3HT single NT show the semiconducting behavior, while ohmic behavior is observed for the inner single MWCNT. The I-V characteristics of the hybrid junction between the outer P3HT NT and the inner MWCNT, for the hybrid single NT, exhibit the characteristics of a diode (i.e., rectification), whose efficiency is clearly enhanced with light irradiation. The rectification effect of the hybrid single NT has been analyzed in terms of charge tunneling models. The quasi-photovoltaic effect is also observed at low bias for the P3HT/MWCNT hybrid single NT. PMID:20533839

  11. Poly(3-hexylthiophene)/multiwalled carbon hybrid coaxial nanotubes: nanoscale rectification and photovoltaic characteristics.

    Science.gov (United States)

    Kim, Kihyun; Shin, Ji Won; Lee, Yong Baek; Cho, Mi Yeon; Lee, Suk Ho; Park, Dong Hyuk; Jang, Dong Kyu; Lee, Cheol Jin; Joo, Jinsoo

    2010-07-27

    We fabricate hybrid coaxial nanotubes (NTs) of multiwalled carbon nanotubes (MWCNTs) coated with light-emitting poly(3-hexylthiophene) (P3HT). The p-type P3HT material with a thickness of approximately 20 nm is electrochemically deposited onto the surface of the MWCNT. The formation of hybrid coaxial NTs of the P3HT/MWCNT is confirmed by a transmission electron microscope, FT-IR, and Raman spectra. The optical and structural properties of the hybrid NTs are characterized using ultraviolet and visible absorption, Raman, and photoluminescence (PL) spectra where, it is shown that the PL intensity of the P3HT materials decreases after the hybridization with the MWCNTs. The current-voltage (I-V) characteristics of the outer P3HT single NT show the semiconducting behavior, while ohmic behavior is observed for the inner single MWCNT. The I-V characteristics of the hybrid junction between the outer P3HT NT and the inner MWCNT, for the hybrid single NT, exhibit the characteristics of a diode (i.e., rectification), whose efficiency is clearly enhanced with light irradiation. The rectification effect of the hybrid single NT has been analyzed in terms of charge tunneling models. The quasi-photovoltaic effect is also observed at low bias for the P3HT/MWCNT hybrid single NT.

  12. Tuning intermetallic electronic coupling in polyruthenium systems via molecular architecture

    Indian Academy of Sciences (India)

    Sandeep Ghumaan; Goutam Kumar Lahiri

    2006-11-01

    A large number of polynuclear ruthenium complexes encompassing selective combinations of spacer (bridging ligand, BL) and ancillary (AL) functionalities have been designed. The extent of intermetallic electronic communication in mixed-valent states and the efficacy of the ligand frameworks towards the tuning of coupling processes have been scrutinised via structural, spectroelectrochemical, EPR, magnetic and theoretical investigations. Moreover, the sensitive oxidation state features in the complexes of non-innocent quinonoid bridging moieties have also been addressed.

  13. Electron Transfer Dynamics in Efficient Molecular Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Gerald John

    2014-10-01

    This research provided new mechanistic insights into surface mediated photochemical processes relevant to solar energy conversion. In this past three years our research has focused on oxidation photo-redox chemistry and on the role surface electric fields play on basic spectroscopic properties of molecular-semiconductor interfaces. Although this research as purely fundamental science, the results and their interpretation have relevance to applications in dye sensitized and photogalvanic solar cells as well as in the storage of solar energy in the form of chemical bonds.

  14. Multiple-electron removal and molecular fragmentation of CO by fast F4+ impact

    International Nuclear Information System (INIS)

    Multiple-electron removal from and molecular fragmentation of carbon monoxide molecules caused by collisions with 1-MeV/amu F4+ ions were studied using the coincidence time-of-flight technique. In these collisions, multiple-electron removal of the target molecule is a dominant process. Cross sections for the different levels of ionization of the CO molecule during the collision were determined. The relative cross sections of ionization decrease with increasing number of electrons removed in a similar way as seen in atomic targets. This behavior is in agreement with a two-step mechanism, where first the molecule is ionized by a Franck-Condon ionization and then the molecular ion dissociates. Most of the highly charged intermediate states of the molecule dissociate rapidly. Only CO+ and CO2+ molecular ions have been seen to survive long enough to be detected as molecular ions. The relative cross sections for the different breakup channels were evaluated for collisions in which the molecule broke into two charged fragments as well as for collisions where only a single charged molecular ion or fragment were produced. The average charge state of each fragment resulting from COQ+→Ci++Oj+ breakup increases with the number of electrons removed from the molecule approximately following the relationship bar i=bar j=Q/2 as long as K-shell electrons are not removed. This does not mean that the charge-state distribution is exactly symmetric, as, in general, removing electrons from the carbon fragment is slightly more likely than removing electrons from the oxygen due to the difference in binding energy. The cross sections for molecular breakup into a charged fragment and a neutral fragment drop rapidly with an increasing number of electrons removed

  15. Intense laser effects on nonlinear optical absorption and optical rectification in single quantum wells under applied electric and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Duque, C.A., E-mail: cduque_echeverri@yahoo.es [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Kasapoglu, E. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Sakiroglu, S. [Dokuz Eyluel University, Physics Department, 35160 Buca, Izmir (Turkey); Sari, H. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Soekmen, I. [Dokuz Eyluel University, Physics Department, 35160 Buca, Izmir (Turkey)

    2011-01-01

    In this work the effects of intense laser on the electron-related nonlinear optical absorption and nonlinear optical rectification in GaAs-Ga{sub 1-x}Al{sub x}As quantum wells are studied under, applied electric and magnetic field. The electric field is applied along the growth direction of the quantum well whereas the magnetic field has been considered to be in-plane. The calculations were performed within the density matrix formalism with the use of the effective mass and parabolic band approximations. The intense laser effects are included through the Floquet method, by modifying the confining potential associated to the heterostructure. Results are presented for the nonlinear optical absorption, the nonlinear optical rectification and the resonant peak of these two optical processes. Several configurations of the dimensions of the quantum well, the applied electric and magnetic fields, and the incident intense laser radiation have been considered. The outcome of the calculation suggests that the nonlinear optical absorption and optical rectification are non-monotonic functions of the dimensions of the heterostructure and of the external perturbations considered in this work.

  16. Rectification behavior of PATP self-assembled on ZnO microrod arrays.

    Science.gov (United States)

    Fang, Shengjiang; Xu, Chunxiang; Jin, Zhulin; Sheng, Fengyu; Shi, Zengliang; Wang, Yueyue; Zhu, Gangyi

    2013-04-24

    A rectifying hybrid junction was fabricated by the self-assembly of 4-aminothiophenol (PATP) on well-aligned ZnO microrod arrays. Good rectification behavior was obtained from the device of Al/ZnO/PATP/Al. The electron transport at the ZnO/PATP interface was investigated systematically by experimental observation and theoretical simulation. X-ray photoelectron spectroscopy (XPS) analysis confirmed the strong binding between PATP and ZnO via S-Zn bonds. The effective energy barrier and ideality factor of the rectifying diode were estimated by the current-voltage (I-V) measurement and thermionic emission theory. The molecule dipole effect on work function was studied through energy band theory. Theoretical calculation results based on density functional theory (DFT) also indicated a significant dipole, caused by the anchoring effect of PATP, resulting in the changes of surface electronic characteristics of ZnO. PMID:23547711

  17. Vibration-induced inelastic effects in the electron transport through multisite molecular bridges.

    Science.gov (United States)

    Zimbovskaya, Natalya A; Kuklja, Maija M

    2009-09-21

    We theoretically analyzed inelastic effects in the electron transport through molecular junctions originating from electron-vibron interactions. The molecular bridge was simulated by a periodical chain of identical hydrogenlike atoms with the nearest neighbors interaction thus providing a set of energy states for the electron tunneling. To avoid difficulties inevitably arising when advanced computational techniques are employed to study inelastic electron transport through multilevel bridges, we propose and develop a semiphenomenological approach. The latter is based on Buttiker's dephasing model within the scattering matrix formalism. We apply the proposed approach to describe features associated with electron energy transfer to vibrational phonons that appear in the second derivative of the current in the junction with respect to the bias voltage. In the particular case of a single level bridge our results agree with those obtained by proper calculations carried out within the nonequilibrium Green's functions method indicating the usefulness of the suggested approach.

  18. Molecular and electronic structure of osmium complexes confined to Au(111) surfaces using a self-assembled molecular bridge

    Energy Technology Data Exchange (ETDEWEB)

    Llave, Ezequiel de la; Herrera, Santiago E.; Adam, Catherine; Méndez De Leo, Lucila P.; Calvo, Ernesto J.; Williams, Federico J., E-mail: fwilliams@qi.fcen.uba.ar [INQUIMAE-CONICET, Departamento de Química Inorgánica, Analítica y Química-Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA (Argentina)

    2015-11-14

    The molecular and electronic structure of Os(II) complexes covalently bonded to self-assembled monolayers (SAMs) on Au(111) surfaces was studied by means of polarization modulation infrared reflection absorption spectroscopy, photoelectron spectroscopies, scanning tunneling microscopy, scanning tunneling spectroscopy, and density functional theory calculations. Attachment of the Os complex to the SAM proceeds via an amide covalent bond with the SAM alkyl chain 40° tilted with respect to the surface normal and a total thickness of 26 Å. The highest occupied molecular orbital of the Os complex is mainly based on the Os(II) center located 2.2 eV below the Fermi edge and the LUMO molecular orbital is mainly based on the bipyridine ligands located 1.5 eV above the Fermi edge.

  19. Molecular Imaging Using X-Ray Free-Electron Lasers

    Science.gov (United States)

    Barty, Anton; Küpper, Jochen; Chapman, Henry N.

    2013-04-01

    The opening of hard X-ray free-electron laser facilities, such as the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory in the United States, has ushered in a new era in structural determination. With X-ray pulse durations down to 10 fs or shorter, and up to 1013 transversely coherent photons per pulse in a narrow spectral bandwidth, focused irradiances of 1018 to 1021 W cm-2 or higher can be produced at X-ray energies ranging from 500 eV to 10 keV. New techniques for determining the structure of systems that cannot be crystallized and for studying the time-resolved behavior of irreversible reactions at femtosecond timescales are now available.

  20. NATO Advanced Study Institute on Electronic Structure of Polymers and Molecular Crystals

    CERN Document Server

    Ladik, János

    1975-01-01

    The NATO Advanced Study Institute on "Electronic Structure of Polymers and Molecular Crystals" was held at the Facultes Universi­ taires de Namur (F.U.N.) from September 1st till September 14th, 1974. We wish to express our appreciation to the NATO Scientific Affairs Division whose generous support made this Institute possible and to the Facultes Universitaires de Namur and the Societe Chimique de Belgique which provided fellowships and travel grants to a number of students. This volume contains the main lectures about the basic principles of the field and about different recent developments of the theory of the electronic structure of polymers and molecular crystals. The school started with the presentation of the basic SCF-LCAO theory of the electronic structure of periodic polymers and molecular crystals (contributions by Ladik, Andre & Delhalle) showing how a combination of quantum chemical and solid state physical methods can provide band structures for these systems. The numerical aspects of these ...

  1. NATO Advanced Research Workshop on Vectorization of Advanced Methods for Molecular Electronic Structure

    CERN Document Server

    1984-01-01

    That there have been remarkable advances in the field of molecular electronic structure during the last decade is clear not only to those working in the field but also to anyone else who has used quantum chemical results to guide their own investiga­ tions. The progress in calculating the electronic structures of molecules has occurred through the truly ingenious theoretical and methodological developments that have made computationally tractable the underlying physics of electron distributions around a collection of nuclei. At the same time there has been consider­ able benefit from the great advances in computer technology. The growing sophistication, declining costs and increasing accessibi­ lity of computers have let theorists apply their methods to prob­ lems in virtually all areas of molecular science. Consequently, each year witnesses calculations on larger molecules than in the year before and calculations with greater accuracy and more com­ plete information on molecular properties. We can surel...

  2. Ion Flux Measurements in Electron Beam Produced Plasmas in Atomic and Molecular Gases

    Science.gov (United States)

    Walton, S. G.; Leonhardt, D.; Blackwell, D. D.; Murphy, D. P.; Fernsler, R. F.; Meger, R. A.

    2001-10-01

    In this presentation, mass- and time-resolved measurements of ion fluxes sampled from pulsed, electron beam-generated plasmas will be discussed. Previous works have shown that energetic electron beams are efficient at producing high-density plasmas (10^10-10^12 cm-3) with low electron temperatures (Te < 1.0 eV) over the volume of the beam. Outside the beam, the plasma density and electron temperature vary due, in part, to ion-neutral and electron-ion interactions. In molecular gases, electron-ion recombination plays a significant role while in atomic gases, ion-neutral interactions are important. These interactions also determine the temporal variations in the electron temperature and plasma density when the electron beam is pulsed. Temporally resolved ion flux and energy distributions at a grounded electrode surface located adjacent to pulsed plasmas in pure Ar, N_2, O_2, and their mixtures are discussed. Measurements are presented as a function of operating pressure, mixture ratio, and electron beam-electrode separation. The differences in the results for atomic and molecular gases will also be discussed and related to their respective gas-phase kinetics.

  3. Electronic transport properties of a molecular switch with carbon nanotube electrodes: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P., E-mail: ss_zhaop@ujn.edu.c [School of Science, University of Jinan, Jinan 250022 (China); School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Wang, P.J.; Zhang, Z. [School of Science, University of Jinan, Jinan 250022 (China); Liu, D.S. [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Department of Physics, Jining University, Qufu 273155 (China)

    2010-01-01

    We have studied the electronic transport properties of a new kind of optical molecular switch with two single-walled carbon nanotube (SWCNT) electrodes using first-principles transport calculations. It is shown that the enol form shows an overall higher conductance than the keto form at low-bias voltage, which is independent of the SWCNTs' chirality. Meantime, it is possible to tune the conductance of the molecular switch by changing the chirality of the SWCNTs.

  4. First-Principles Simulations of Inelastic Electron Tunneling Spectroscopyof Molecular Junctions

    OpenAIRE

    Jiang, Jun; Kula, Mathias; Lu, Wei; Luo, Yi

    2005-01-01

    A generalized Green's function theory is developed to simulate the inelastic electron tunneling spectroscopy (IETS) of molecular junctions. It has been applied to a realistic molecular junction with an octanedithiolate embedded between two gold contacts in combination with the hybrid density functional theory calculations. The calculated spectra are in excellent agreement with recent experimental results. Strong temperature dependence of the experimental IETS spectra is also reproduced. It is...

  5. Molecular fragmentation by recombination with cold electrons studied with a mass sensitive imaging detector

    OpenAIRE

    Mendes, M

    2010-01-01

    The recombination of a molecular cation with a low-energy electron, followed by fragmentation, is a fundamental reaction process in cold and dilute plasmas. For polyatomic ions, it can yield molecular fragments in ro-vibrationally excited states. The discrimination between decay channels with chemically different fragments and the measurement of their excitation energies pose an experimental challenge. This work discusses a new experimental scheme based on fast beam fragment imaging in a stor...

  6. Renormalized molecular levels in a Sc3N@C-80 molecular electronic device

    DEFF Research Database (Denmark)

    Larade, Brian; Taylor, Jeremy Philip; Zheng, Q. R.;

    2001-01-01

    We address several general questions about quantum transport through molecular systems by an ab initio analysis of a scandium-nitrogen doped C-80 metallofullerene device. Charge transfer from the Sc3N is found to drastically change the current-voltage characteristics: the current through the Sc3N...

  7. Light-Induced Ion Rectification in Zigzag Nanochannels.

    Science.gov (United States)

    Li, Chuanshuai; Hu, Shimin; Yang, Lei; Fan, Jiajie; Yao, Zhiqiang; Zhang, Yiqiang; Shao, Guosheng; Hu, Junhua

    2015-12-01

    Ion transport through nanoporous systems has attracted broad interest due to its crucial role in physiological processes in living organisms and artificial bionic devices. In this work, a nanochannel system with a zigzag inner surface was fabricated by using a two-step anodizing technique. The rectification performance of the zigzag channels was observed by I-V measurement in KCl solution. Unlike channels with asymmetric geometry, the mechanism was analyzed based on the "point effect" of charge distribution and "shape effect" of the zigzag channel. The current rectification ratio decreases from nearly 3.0 to 1.0 when the KCl concentration increased from 0.1 mM to 100 mM. The fabrication of different nanopore systems and exploration of novel mechanisms will help to develop biomimetic membranes for practical applications.

  8. Maximal rectification ratios for idealized bi-segment thermal rectifiers.

    Science.gov (United States)

    Shih, Tien-Mo; Gao, Zhaojing; Guo, Ziquan; Merlitz, Holger; Pagni, Patrick J; Chen, Zhong

    2015-08-04

    Thermal rectifiers whose forward heat fluxes are greater than reverse counterparts have been extensively studied. Here we have discovered, idealized, and derived the ultimate limit of such rectification ratios, which are partially validated by numerical simulations, experiments, and micro-scale Hamiltonian-oscillator analyses. For rectifiers whose thermal conductivities (κ) are linear with the temperature, this limit is simply a numerical value of 3. For those whose conductivities are nonlinear with temperatures, the maxima equal κmax/κmin, where two extremes denote values of the solid segment materials that can be possibly found or fabricated within a reasonable temperature range. Recommendations for manufacturing high-ratio rectifiers are also given with examples. Under idealized assumptions, these proposed rectification limits cannot be defied by any bi-segment thermal rectifiers.

  9. Rectification of energy transport in nonlinear metamaterials via ratchets

    International Nuclear Information System (INIS)

    The presence of discrete breathers (DBs) has already been described in nonlinear photonic materials, such as ferroelectrics and metamaterials (MMs) by the Klein–Gordon (K–G) approach. Rectification of energy transport in MMs in the presence of an appropriate external field is studied via symmetry breaking leading to directed energy transport or ratchet behaviour. Based on the earlier development of the K–G equation in a MM system with a split-ring resonator for antenna applications, a theoretical model for current density is worked out by symmetry analysis and its violation to characterize the ratchet effect. The time-averaged current shows interesting results against phase shift in the ac driver. These data are further related to various parameters, such as coupling and damping in the system. For MMs, this opens a new application for rectification using ratchets. (paper)

  10. Electronic absorption spectra and nonlinear optical properties of CO2 molecular aggregates: A quantum chemical study

    Indian Academy of Sciences (India)

    Tarun K Mandal; Sudipta Dutta; Swapan K Pati

    2009-09-01

    We have investigated the structural aspects of several carbon dioxide molecular aggregates and their spectroscopic and nonlinear optical properties within the quantum chemical theory framework. We find that, although the single carbon dioxide molecule prefers to be in a linear geometry, the puckering of angles occur in oligomers because of the intermolecular interactions. The resulting dipole moments reflect in the electronic excitation spectra of the molecular assemblies. The observation of significant nonlinear optical properties suggests the potential application of the dense carbon dioxide phases in opto-electronic devices.

  11. Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity.

    Science.gov (United States)

    Hao, Yajiang; Inhester, Ludger; Hanasaki, Kota; Son, Sang-Kil; Santra, Robin

    2015-07-01

    We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging. PMID:26798806

  12. Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity

    CERN Document Server

    Hao, Yajiang; Hanasaki, Kota; Son, Sang-Kil; Santra, Robin

    2015-01-01

    We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging.

  13. Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity

    Directory of Open Access Journals (Sweden)

    Yajiang Hao

    2015-07-01

    Full Text Available We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging.

  14. High-conductive organometallic molecular wires with delocalized electron systems strongly coupled to metal electrodes.

    Science.gov (United States)

    Schwarz, Florian; Kastlunger, Georg; Lissel, Franziska; Riel, Heike; Venkatesan, Koushik; Berke, Heinz; Stadler, Robert; Lörtscher, Emanuel

    2014-10-01

    Besides active, functional molecular building blocks such as diodes or switches, passive components, for example, molecular wires, are required to realize molecular-scale electronics. Incorporating metal centers in the molecular backbone enables the molecular energy levels to be tuned in respect to the Fermi energy of the electrodes. Furthermore, by using more than one metal center and sp-bridging ligands, a strongly delocalized electron system is formed between these metallic "dopants", facilitating transport along the molecular backbone. Here, we study the influence of molecule-metal coupling on charge transport of dinuclear X(PP)2FeC4Fe(PP)2X molecular wires (PP = Et2PCH2CH2PEt2); X = CN (1), NCS (2), NCSe (3), C4SnMe3 (4), and C2SnMe3 (5) under ultrahigh vacuum and variable temperature conditions. In contrast to 1, which showed unstable junctions at very low conductance (8.1 × 10(-7) G0), 4 formed a Au-C4FeC4FeC4-Au junction 4' after SnMe3 extrusion, which revealed a conductance of 8.9 × 10(-3) G0, 3 orders of magnitude higher than for 2 (7.9 × 10(-6) G0) and 2 orders of magnitude higher than for 3 (3.8 × 10(-4) G0). Density functional theory (DFT) confirmed the experimental trend in the conductance for the various anchoring motifs. The strong hybridization of molecular and metal states found in the C-Au coupling case enables the delocalized electronic system of the organometallic Fe2 backbone to be extended over the molecule-metal interfaces to the metal electrodes to establish high-conductive molecular wires. PMID:25233125

  15. Studies of Ionic Current Rectification Using Polyethyleneimines Coated Glass Nanopipettes

    OpenAIRE

    Liu, Shujuan; Dong, Yitong; Zhao, Wenbo; Xie, Xiang; Ji, Tianrong; Yin, Xiaohong; Liu, Yun; Liang, Zhongwei; Momotenko, Dmitry; Liang, Dehai; Girault, Hubert H.; Shao, Yuanhua

    2012-01-01

    The modification of glass nanopipettes with polyethyleneimines (PEIs) has been successfully achieved by a relatively simple method, and the smallest tip opening is around 3 nm. Thus, in a much wider range of glass pipettes with radii from several nanometers to a few micrometers, the ion current rectification (ICR) phenomenon has been observed. The influences of different KCl concentrations, pH values, and tip radii on the ICR are investigated in detail. The sizes of PEIs have been determined ...

  16. Participation of Low Molecular Weight Electron Carriers in Oxidative Protein Folding

    Directory of Open Access Journals (Sweden)

    József Mandl

    2009-03-01

    Full Text Available Oxidative protein folding is mediated by a proteinaceous electron relay system, in which the concerted action of protein disulfide isomerase and Ero1 delivers the electrons from thiol groups to the final acceptor. Oxygen appears to be the final oxidant in aerobic living organisms, although the existence of alternative electron acceptors, e.g. fumarate or nitrate, cannot be excluded. Whilst the protein components of the system are well-known, less attention has been turned to the role of low molecular weight electron carriers in the process. The function of ascorbate, tocopherol and vitamin K has been raised recently. In vitro and in vivo evidence suggests that these redox-active compounds can contribute to the functioning of oxidative folding. This review focuses on the participation of small molecular weight redox compounds in oxidative protein folding.

  17. Controllable thermal rectification realized in binary phase change composites.

    Science.gov (United States)

    Chen, Renjie; Cui, Yalong; Tian, He; Yao, Ruimin; Liu, Zhenpu; Shu, Yi; Li, Cheng; Yang, Yi; Ren, Tianling; Zhang, Gang; Zou, Ruqiang

    2015-03-09

    Phase transition is a natural phenomenon happened around our daily life, represented by the process from ice to water. While melting and solidifying at a certain temperature, a high heat of fusion is accompanied, classified as the latent heat. Phase change material (PCM) has been widely applied to store and release large amount of energy attributed to the distinctive thermal behavior. Here, with the help of nanoporous materials, we introduce a general strategy to achieve the binary eicosane/PEG4000 stuffed reduced graphene oxide aerogels, which has two ends with different melting points. It's successfully demonstrated this binary PCM composites exhibits thermal rectification characteristic. Partial phase transitions within porous networks instantaneously result in one end of the thermal conductivity saltation at a critical temperature, and therefore switch on or off the thermal rectification with the coefficient up to 1.23. This value can be further raised by adjusting the loading content of PCM. The uniqueness of this device lies in its performance as a normal thermal conductor at low temperature, only exhibiting rectification phenomenon when temperature is higher than a critical value. The stated technology has broad applications for thermal energy control in macroscopic scale such as energy-efficiency building or nanodevice thermal management.

  18. Origin of rectification in boron nitride heterojunctions to silicon.

    Science.gov (United States)

    Teii, Kungen; Hori, Takuro; Mizusako, Yusei; Matsumoto, Seiichiro

    2013-04-10

    Cubic and hexagonal boron nitride (cBN and hBN) heterojunctions to n-type Si are fabricated under low-energy ion bombardment by inductively coupled plasma-enhanced chemical vapor deposition using the chemistry of fluorine. The sp2-bonded BN/Si heterojunction shows no rectification, while the cBN/sp2BN/Si heterojunction has rectification properties analogue to typical p-n junction diodes despite a large thickness (∼130 nm) of the sp2BN interlayer. The current-voltage characteristics at temperatures up to 573 K are governed by thermal excitation of carriers, and mostly described with the ideal diode equation and the Frenkel-Poole emission model at low and high bias voltages, respectively. The rectification in the cBN/sp2BN/Si heterojunction is caused by a bias-dependent change in the barrier height for holes arising from stronger p-type conduction in the cBN layer and enhanced with the thick sp2BN interlayer for impeding the reverse current flow at defect levels mainly associated with grain boundaries.

  19. Light-induced self-assembly of active rectification devices.

    Science.gov (United States)

    Stenhammar, Joakim; Wittkowski, Raphael; Marenduzzo, Davide; Cates, Michael E

    2016-04-01

    Self-propelled colloidal objects, such as motile bacteria or synthetic microswimmers, have microscopically irreversible individual dynamics-a feature they share with all living systems. The incoherent behavior of individual swimmers can be harnessed (or "rectified") by microfluidic devices that create systematic motions that are impossible in equilibrium. We present a computational proof-of-concept study showing that such active rectification devices could be created directly from an unstructured "primordial soup" of light-controlled motile particles, solely by using spatially modulated illumination to control their local propulsion speed. Alongside both microscopic irreversibility and speed modulation, our mechanism requires spatial symmetry breaking, such as a chevron light pattern, and strong interactions between particles, such as volume exclusion, which cause a collisional slowdown at high density. Together, we show how these four factors create a novel, many-body rectification mechanism. Our work suggests that standard spatial light modulator technology might allow the programmable, light-induced self-assembly of active rectification devices from an unstructured particle bath.

  20. Goal-oriented rectification of camera-based document images.

    Science.gov (United States)

    Stamatopoulos, Nikolaos; Gatos, Basilis; Pratikakis, Ioannis; Perantonis, Stavros J

    2011-04-01

    Document digitization with either flatbed scanners or camera-based systems results in document images which often suffer from warping and perspective distortions that deteriorate the performance of current OCR approaches. In this paper, we present a goal-oriented rectification methodology to compensate for undesirable document image distortions aiming to improve the OCR result. Our approach relies upon a coarse-to-fine strategy. First, a coarse rectification is accomplished with the aid of a computationally low cost transformation which addresses the projection of a curved surface to a 2-D rectangular area. The projection of the curved surface on the plane is guided only by the textual content's appearance in the document image while incorporating a transformation which does not depend on specific model primitives or camera setup parameters. Second, pose normalization is applied on the word level aiming to restore all the local distortions of the document image. Experimental results on various document images with a variety of distortions demonstrate the robustness and effectiveness of the proposed rectification methodology using a consistent evaluation methodology that encounters OCR accuracy and a newly introduced measure using a semi-automatic procedure. PMID:20876019

  1. Calibration and rectification research for fish-eye lens application

    Science.gov (United States)

    Feng, Weijia; Zhang, Baofeng; Cao, Zuoliang; Zong, Xiaoning; Röning, Juha

    2011-01-01

    The purpose of this paper aims to promote the application of fish-eye lens. Accurate parameters calibration and effective distortion rectification of an imaging device is of utmost importance in machine vision. Fish-eye lens produces a hemispherical field of view of an environment, which appears definite significant since its advantage of panoramic sight with a single compact visual scene. But fish-eye lens image has an unavoidable inherent severe distortion. The precise optical center is the precondition for other parameters calibration and distortion correction. Therefore, three different optical center calibration methods have been researched for diverse applications. Support Vector Machine (SVM) and Spherical Equidistance Projection Algorithm (SEPA) are integrated to replace traditional rectification methods. SVM is a machine learning method based on the theory of statistics, which have good capabilities of imitating, regression and classification. In this research, SVM provides a mapping table between the fish-eye image and the standard image for human eyes. Two novel training models have been designed. SEPA has been applied to promote the rectification effect of the edge of fish-eye lens image. The validity and effectiveness of our achievements are demonstrated by processing the real images.

  2. Unified framework for automatic image stitching and rectification

    Science.gov (United States)

    An, Jaehyun; Kim, Beom Su; Koo, Hyung Il; Cho, Nam Ik

    2015-05-01

    Conventional image stitching methods were developed under the assumption or condition that (1) the optical center of a camera is fixed (fixed-optical-center case) or (2) the camera captures a plane target (plane-target case). Hence, users should know or test which condition is more appropriate for the given set of images and then select a right algorithm or try multiple stitching algorithms. We propose a unified framework for the image stitching and rectification problem, which can handle both cases in the same framework. To be precise, we model each camera pose with six parameters (three for the rotation and three for the translation) and develop a cost function that reflects the registration errors on a reference plane. The designed cost function is effectively minimized via the Levenberg-Marquardt algorithm. For the given set of images, when it is found that the relative camera motions between the images are large, the proposed method performs rectification of images and then composition using the rectified images; otherwise, the algorithm simply builds a visually pleasing result by selecting a viewpoint. Experimental results on synthetic and real images show that our method successfully performs stitching and metric rectification.

  3. Atomic and molecular photoelectron and Auger-electron-spectroscopy studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Electron spectroscopy, combined with synchrotron radiation, was used to measure the angular distributions of photoelectrons and Auger electrons from atoms and molecules as functions of photon energy. The branching ratios and partial cross sections were also measured in certain cases. By comparison with theoretical calculations, the experimental results are interpreted in terms of the characteristic electronic structure and ionization dynamics of the atomic or molecular sample. The time structure of the synchrotron radiation source was used to record time-of-flight (TOF) spectra of the ejected electrons. The double-angle-TOF method for the measurement of photoelectron angular distributions is discussed. This technique offers the advantages of increased electron collection efficiency and the elimination of certain systematic errors. An electron spectroscopy study of inner-shell photoexcitation and ionization of Xe, photoelectron angular distributions from H2 and D2, and photoionization cross sections and photoelectron asymmetries of the valence orbitals of NO are reported

  4. Rate coefficients for low-energy electron dissociative attachment to molecular hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Horacek, J.; Houfek, K.; Cizek, M. [Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Murakami, I.; Kato, T. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2003-02-01

    Calculation of rate constants for dissociative electron attachment to molecular hydrogen is reported. The calculation is based on an improved nonlocal resonance model of Cizek, Horacek and Domcke which takes fully into account the nonlocality of the resonance dynamics and uses potentials with correct asymptotic forms. The rate constants are calculated for all quantum numbers v and J of the target molecules and for electron temperature in the range 0-30000 K. (author)

  5. Isomorphic classical molecular dynamics model for an excess electron in a supercritical fluid

    OpenAIRE

    Miller III, Thomas F.

    2009-01-01

    Ring polymer molecular dynamics (RPMD) is used to directly simulate the dynamics of an excess electron in a supercritical fluid over a broad range of densities. The accuracy of the RPMD model is tested against numerically exact path integral statistics through the use of analytical continuation techniques. At low fluid densities, the RPMD model substantially underestimates the contribution of delocalized states to the dynamics of the excess electron. However, with increasing solvent density, ...

  6. Reduced Density Matrix Approach to the Laser-Assisted Electron Transport in Molecular Wires

    OpenAIRE

    Welack, Sven

    2006-01-01

    The electron transport through a molecular wire under the influence of an external laser field is studied using a reduced density matrix formalism. The full system is partitioned into the relevant part, i.e. the wire, electron reservoirs and a phonon bath. An earlier second-order perturbation theory approach of Meier and Tannor for bosonic environments which employs a numerical decomposition of the spectral density is used to describe the coupling to the phonon bath and is ex...

  7. Power spectrum of the rectified EMG: when and why is rectification beneficial for identifying neural connectivity?

    OpenAIRE

    Negro, Francesco; Keenan, Kevin; Farina, Dario

    2015-01-01

    OBJECTIVE: The identification of common oscillatory inputs to motor neurons in the electromyographic (EMG) signal power spectrum is often preceded by EMG rectification for enhancing the low-frequency oscillatory components. However, rectification is a nonlinear operator and its influence on the EMG signal spectrum is not fully understood. In this study, we aim at determining when EMG rectification is beneficial in the study of oscillatory inputs to motor neurons. APPROACH: We provide a f...

  8. Ballistic switching and rectification in single wall carbon nanotube Y junctions

    International Nuclear Information System (INIS)

    Transport properties of various semiconducting zig-zag carbon nanotube Y junctions are studied for the investigations of rectification and switching. Our results indicate that such junctions, when symmetric, can support both ballistic rectification and/or the ballistic switching operating modes. Although structural symmetry of the Y junction is found to be a necessary condition for rectification, it may not be sufficient in all cases

  9. Intense electron beams from GaAs photocathodes as a tool for molecular and atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Claude

    2009-10-28

    We present cesium-coated GaAs photocathodes as reliable sources of intense, quasi-monoenergetic electron beams in atomic and molecular physics experiments. In long-time operation of the Electron Target of the ion storage ring TSR in Heidelberg, cold electron beams could be realised at steadily improving intensity and reliability. Minimisation of processes degrading the quantum efficiency allowed to increase the extractable current to more than 1mA at usable cathode lifetimes of 24 h or more. The benefits of the cold electron beam with respect to its application to electron cooling and electron-ion recombination experiments are discussed. Benchmark experiments demonstrate the superior cooling force and energy resolution of the photoelectron beam compared to its thermionic counterparts. The long period of operation allowed to study the long-time behaviour of the GaAs samples during multiple usage cycles at the Electron Target and repeated in-vacuum surface cleaning by atomic hydrogen exposure. An electron emission spectroscopy setup has been implemented at the photocathode preparation chamber of the Electron Target. Among others, this new facility opened the way to a novel application of GaAs (Cs) photocathodes as robust, ultraviolet-driven electron emitters. Based on this principle, a prototype of an electron gun, designed for implementation at the HITRAP setup at GSI, has been built and taken into operation successfully. (orig.)

  10. An electron-accepting molecular unit exhibiting an orientational preference favorable for organic photovoltaic applications

    International Nuclear Information System (INIS)

    Control of molecular orientation of organic semiconductor is essential for efficient light absorption and charge-carrier transport in organic optoelectronic devices. We synthesized compound 1 as a fundamental electron-accepting building block for the design of n-type semiconductors and conducting polymers. We found that this molecule, upon evaporation onto a substrate such as SiO2 and electron-donor films, spontaneously assembles with a face-on orientation relative to the substrate surface. This orientation is favorable for thin-film organic photovoltaics. Despite relatively small π-conjugation, 1 showed strong absorption in visible-light region and an appropriate lowest unoccupied molecular orbital energy for electron transfer with electron donors including copper phthalocyanine and poly(3-hexylthiophene). Accordingly, thin-film devices, fabricated using 1 and electron donors, exhibited a clear photovoltaic response. This suggests that compound 1 provides a promising building block for the development of active materials in organic photovoltaics. - Highlights: • An electron acceptor (1) featuring an indacenetetraone core was designed. • Acceptor 1 exhibits strong electronic absorption in visible-light region. • Acceptor 1 spontaneously adopts face-on orientation on SiO2 and organic substrates. • Thin film of 1 shows an n-type semiconducting property. • Electron donor/1 bilayer films display a clear photovoltaic response

  11. Fulleropyrrolidine end-capped molecular wires for molecular electronics--synthesis, spectroscopic, electrochemical, and theoretical characterization

    DEFF Research Database (Denmark)

    Sørensen, Jakob Kryger; Fock, Jeppe; Pedersen, Anders Holmen;

    2011-01-01

    -withdrawing ester group present. The effect of extending the p-system of the central wire from 1,4-phenylenediamine to 2,7-fluorenediamine was investigated by absorption, fluorescence, and electrochemical methods. The central wire and the C(60) end-groups were found not to electronically communicate in the ground...

  12. Air-pressure tunable depletion width, rectification behavior, and charge conduction in oxide nanotubes.

    Science.gov (United States)

    Alivov, Yahya; Funke, Hans H; Singh, Vivek; Nagpal, Prashant

    2015-02-01

    Metal-oxide nanotubes provide large surface areas and functionalizable surfaces for a variety of optical and electronic applications. Here we report air-tunable rectifying behavior, depletion width modulation, and two-dimensional (2D) charge conduction in hollow titanium-dioxide nanotubes. The metal contact forms a Schottky-diode in the nanotubes, and the rectification factor (on/off ratio) can be varied by more than 3 orders of magnitude (1-2 × 10(3)) as the air pressure is increased from 2 mTorr to atmospheric pressure. This behavior is explained using a change in depletion width of these thin nanotubes by adsorption of water vapor on both surfaces of a hollow nanotube, and the resulting formation of a metal-insulator-semiconductor (MIS) junction, which controls the 2D charge conduction properties in thin oxide nanotubes.

  13. In Vivo Demonstration of Addressable Microstimulators Powered by Rectification of Epidermically Applied Currents for Miniaturized Neuroprostheses.

    Directory of Open Access Journals (Sweden)

    Laura Becerra-Fajardo

    Full Text Available Electrical stimulation is used in order to restore nerve mediated functions in patients with neurological disorders, but its applicability is constrained by the invasiveness of the systems required to perform it. As an alternative to implantable systems consisting of central stimulation units wired to the stimulation electrodes, networks of wireless microstimulators have been devised for fine movement restoration. Miniaturization of these microstimulators is currently hampered by the available methods for powering them. Previously, we have proposed and demonstrated a heterodox electrical stimulation method based on electronic rectification of high frequency current bursts. These bursts can be delivered through textile electrodes on the skin. This approach has the potential to result in an unprecedented level of miniaturization as no bulky parts such as coils or batteries are included in the implant. We envision microstimulators designs based on application-specific integrated circuits (ASICs that will be flexible, thread-like (diameters < 0.5 mm and not only with controlled stimulation capabilities but also with sensing capabilities for artificial proprioception. We in vivo demonstrate that neuroprostheses composed of addressable microstimulators based on this electrical stimulation method are feasible and can perform controlled charge-balanced electrical stimulation of muscles. We developed miniature external circuit prototypes connected to two bipolar probes that were percutaneously implanted in agonist and antagonist muscles of the hindlimb of an anesthetized rabbit. The electronic implant architecture was able to decode commands that were amplitude modulated on the high frequency (1 MHz auxiliary current bursts. The devices were capable of independently stimulating the target tissues, accomplishing controlled dorsiflexion and plantarflexion joint movements. In addition, we numerically show that the high frequency current bursts comply with

  14. Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode.

    Science.gov (United States)

    Davids, Paul S; Jarecki, Robert L; Starbuck, Andrew; Burckel, D Bruce; Kadlec, Emil A; Ribaudo, Troy; Shaner, Eric A; Peters, David W

    2015-12-01

    Direct rectification of electromagnetic radiation is a well-established method for wireless power conversion in the microwave region of the spectrum, for which conversion efficiencies in excess of 84% have been demonstrated. Scaling to the infrared or optical part of the spectrum requires ultrafast rectification that can only be obtained by direct tunnelling. Many research groups have looked to plasmonics to overcome antenna-scaling limits and to increase the confinement. Recently, surface plasmons on heavily doped Si surfaces were investigated as a way of extending surface-mode confinement to the thermal infrared region. Here we combine a nanostructured metallic surface with a heavily doped Si infrared-reflective ground plane designed to confine infrared radiation in an active electronic direct-conversion device. The interplay of strong infrared photon-phonon coupling and electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast electronic tunnelling in metal-oxide-semiconductor (MOS) structures. Infrared dispersion of SiO2 near a longitudinal optical (LO) phonon mode gives large transverse-field confinement in a nanometre-scale oxide-tunnel gap as the wavelength-dependent permittivity changes from 1 to 0, which leads to enhanced electromagnetic fields at material interfaces and a rectified displacement current that provides a direct conversion of infrared radiation into electric current. The spectral and electrical signatures of the nanoantenna-coupled tunnel diodes are examined under broadband blackbody and quantum-cascade laser (QCL) illumination. In the region near the LO phonon resonance, we obtained a measured photoresponsivity of 2.7 mA W(-1) cm(-2) at -0.1 V.

  15. Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode

    Science.gov (United States)

    Davids, Paul S.; Jarecki, Robert L.; Starbuck, Andrew; Burckel, D. Bruce; Kadlec, Emil A.; Ribaudo, Troy; Shaner, Eric A.; Peters, David W.

    2015-12-01

    Direct rectification of electromagnetic radiation is a well-established method for wireless power conversion in the microwave region of the spectrum, for which conversion efficiencies in excess of 84% have been demonstrated. Scaling to the infrared or optical part of the spectrum requires ultrafast rectification that can only be obtained by direct tunnelling. Many research groups have looked to plasmonics to overcome antenna-scaling limits and to increase the confinement. Recently, surface plasmons on heavily doped Si surfaces were investigated as a way of extending surface-mode confinement to the thermal infrared region. Here we combine a nanostructured metallic surface with a heavily doped Si infrared-reflective ground plane designed to confine infrared radiation in an active electronic direct-conversion device. The interplay of strong infrared photon-phonon coupling and electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast electronic tunnelling in metal-oxide-semiconductor (MOS) structures. Infrared dispersion of SiO2 near a longitudinal optical (LO) phonon mode gives large transverse-field confinement in a nanometre-scale oxide-tunnel gap as the wavelength-dependent permittivity changes from 1 to 0, which leads to enhanced electromagnetic fields at material interfaces and a rectified displacement current that provides a direct conversion of infrared radiation into electric current. The spectral and electrical signatures of the nanoantenna-coupled tunnel diodes are examined under broadband blackbody and quantum-cascade laser (QCL) illumination. In the region near the LO phonon resonance, we obtained a measured photoresponsivity of 2.7 mA W-1 cm-2 at -0.1 V.

  16. Recent Advances in Photoinduced Electron Transfer Processes of Fullerene-Based Molecular Assemblies and Nanocomposites

    Directory of Open Access Journals (Sweden)

    Osamu Ito

    2012-05-01

    Full Text Available Photosensitized electron-transfer processes of fullerenes hybridized with electron donating or other electron accepting molecules have been surveyed in this review on the basis of the recent results reported mainly from our laboratories. Fullerenes act as photo-sensitizing electron acceptors with respect to a wide variety of electron donors; in addition, fullerenes in the ground state also act as good electron acceptors in the presence of light-absorbing electron donors such as porphyrins. With single-wall carbon nanotubes (SWCNTs, the photoexcited fullerenes act as electron acceptor. In the case of triple fullerene/porphyrin/SWCNT architectures, the photoexcited porphyrins act as electron donors toward the fullerene and SWCNT. These mechanisms are rationalized with the molecular orbital considerations performed for these huge supramolecules. For the confirmation of the electron transfer processes, transient absorption methods have been used, in addition to time-resolved fluorescence spectral measurements. The kinetic data obtained in solution are found to be quite useful to predict the efficiencies of photovoltaic cells.

  17. Efficiency of Rectification: Reversible vs. Irreversible Regimes

    Science.gov (United States)

    Sokolov, I. M.

    2002-11-01

    Both man-made locomotive devices and molecular motors use gears to transform a reciprocating motion into a directed one. One of the most common gears is a rectifier, a mechanically irreversible appliance. The maximal energetic efficiency of an isothermic gear is bounded by unity, as a consequence of the Second Law. However, approaching this ideal efficiency does not imply approaching reversibility. We discuss what properties of a rectifier mostly influence the transduction efficiency and show that an appliance which locks under backward force is just the one which can approach the ideal efficiency either in the reversible or in the irreversible regime.

  18. Photoelectron and UV absorption spectroscopy for determination of electronic configurations of negative molecular ions: Chlorophenols

    Energy Technology Data Exchange (ETDEWEB)

    Tseplin, E.E. [Institute of Molecular and Crystal Physics, Ufa Research Centre, Russian Academy of Sciences, October Prospect 151, Ufa 450075 (Russian Federation)], E-mail: tzeplin@mail.ru; Tseplina, S.N.; Tuimedov, G.M.; Khvostenko, O.G. [Institute of Molecular and Crystal Physics, Ufa Research Centre, Russian Academy of Sciences, October Prospect 151, Ufa 450075 (Russian Federation)

    2009-04-15

    The photoelectron and UV absorption spectra of p-, m-, and o-chlorophenols in the gas phase have been obtained. On the basis of DFT B3LYP/6-311++G(d, p) calculations, the photoelectron bands have been assigned to occupied molecular orbitals. From the TDDFT B3LYP/6-311++G(d, p) calculation results, the UV absorption bands have been assigned to excited singlet states of the molecules under investigation. For each excited state a dominant transition was found. It has been shown that the energies of these singlet transitions correlate with the energy differences between the ground-state molecular orbitals participating in them. Using the UV spectra interpretation, the electronic states of molecular anions detected earlier for the same compounds by means of the resonant electron capture mass-spectrometry have been determined.

  19. Full two-electron calculations of antiproton collisions with molecular hydrogen

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Saenz, Alejandro

    2010-01-01

    Total cross sections for single ionization and excitation of molecular hydrogen by antiproton impact are presented over a wide range of impact energies from 1 keV to 6.5 MeV. A nonperturbative time-dependent close-coupling method is applied to fully treat the correlated dynamics of the electrons...... is demonstrated. The present findings provide benchmark results which might be useful for the development of molecular models........ Good agreement is obtained between the present calculations and experimental measurements of single-ionization cross sections at high energies, whereas some discrepancies with the experiment are found around the maximum. The importance of the molecular geometry and a full two-electron description...

  20. Secondary electron emission from Au by medium energy atomic and molecular ions

    CERN Document Server

    Itoh, A; Obata, F; Hamamoto, Y; Yogo, A

    2002-01-01

    Number distributions of secondary electrons emitted from a Au metal surface have been measured for atomic and molecular ions of H sup + , He sup + , C sup + , N sup + , O sup + , H sup + sub 2 , H sup + sub 3 , HeH sup + , CO sup + and O sup + sub 2 in the energy range 0.3-2.0 MeV. The emission statistics obtained are described fairly well by a Polya function. The Polya parameter b, determining the distribution shape, is found to decrease monotonously with increasing emission yield gamma, revealing a surprising relationship of b gamma approx 1 over the different projectile species and impact energies. This finding supports certainly the electron cascading model. Also we find a strong negative molecular effect for heavier molecular ions, showing a significant reduction of gamma compared to the estimated values using constituent atomic projectile data.

  1. Ultrafast Electron Transfer at Organic Semiconductor Interfaces: Importance of Molecular Orientation

    KAUST Repository

    Ayzner, Alexander L.

    2015-01-02

    © 2014 American Chemical Society. Much is known about the rate of photoexcited charge generation in at organic donor/acceptor (D/A) heterojunctions overaged over all relative arrangements. However, there has been very little experimental work investigating how the photoexcited electron transfer (ET) rate depends on the precise relative molecular orientation between D and A in thin solid films. This is the question that we address in this work. We find that the ET rate depends strongly on the relative molecular arrangement: The interface where the model donor compound copper phthalocyanine is oriented face-on with respect to the fullerene C60 acceptor yields a rate that is approximately 4 times faster than that of the edge-on oriented interface. Our results suggest that the D/A electronic coupling is significantly enhanced in the face-on case, which agrees well with theoretical predictions, underscoring the importance of controlling the relative interfacial molecular orientation.

  2. Measuring the Density of a Molecular Cluster Injector via Visible Emission from an Electron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, D. P.; Kaita, R.; Majeski, R. M.; Stotler, D. P.

    2010-06-28

    A method to measure the density distribution of a dense hydrogen gas jet is pre- sented. A Mach 5.5 nozzle is cooled to 80K to form a flow capable of molecular cluster formation. A 250V, 10mA electron beam collides with the jet and produces Hα emission that is viewed by a fast camera. The high density of the jet, several 1016cm-3, results in substantial electron depletion, which attenuates the Hα emission. The attenuated emission measurement, combined with a simplified electron-molecule collision model, allows us to determine the molecular density profile via a simple iterative calculation.

  3. Efficient electronic coupling and improved stability with dithiocarbamate-based molecular junctions

    Science.gov (United States)

    von Wrochem, Florian; Gao, Deqing; Scholz, Frank; Nothofer, Heinz-Georg; Nelles, Gabriele; Wessels, Jurina M.

    2010-08-01

    Molecular electronic devices require stable and highly conductive contacts between the metal electrodes and molecules. Thiols and amines are widely used to attach molecules to metals, but they form poor electrical contacts and lack the robustness required for device applications. Here, we demonstrate that dithiocarbamates provide superior electrical contact and thermal stability when compared to thiols on metals. Ultraviolet photoelectron spectroscopy and density functional theory show the presence of electronic states at 0.6 eV below the Fermi level of Au, which effectively reduce the charge injection barrier across the metal-molecule interface. Charge transport measurements across oligophenylene monolayers reveal that the conductance of terphenyl-dithiocarbamate junctions is two orders of magnitude higher than that of terphenyl-thiolate junctions. The stability and low contact resistance of dithiocarbamate-based molecular junctions represent a significant step towards the development of robust, organic-based electronic circuits.

  4. Synthesis and Studies of Sulfur-Containing Heterocyclic Molecules for Molecular Electronics

    DEFF Research Database (Denmark)

    Mazzanti, Virginia

    This work describes the synthesis and studies of sulfur containing π conjugated heterocycles, which are considered interesting motifs in the field of molecular electronics. The first project, which is covered in Chapter 1, concerns the functionalization of tetracycle dibenzo[bc,fg][1,4]dithiapent......This work describes the synthesis and studies of sulfur containing π conjugated heterocycles, which are considered interesting motifs in the field of molecular electronics. The first project, which is covered in Chapter 1, concerns the functionalization of tetracycle dibenzo[bc,fg][1...... the synthesis of dimeric structures of redox active system tetrathiafulvalene (TTF). Molecules with different conjugation pathways bridging two TTFs were synthesized and studied using CV and DPV in order to probe the electronic interaction between these two redox units. The last aspect of this thesis, which...

  5. When electron transfer meets electron transport in redox-active molecular nanojunctions.

    Science.gov (United States)

    Janin, Marion; Ghilane, Jalal; Lacroix, Jean-Christophe

    2013-02-13

    A scanning electrochemical microscope (SECM) was used to arrange two microelectrodes face-to-face separated by a micrometric gap. Polyaniline (PANI) was deposited electrochemically from the SECM tip side until it bridged the two electrodes. The junctions obtained were characterized by following the current through the PANI as a function of its electrochemical potential measured versus a reference electrode acting as a gate electrode in a solid-state transistor. PANI nanojunctions showed conductances below 100 nS in the oxidized state, indicating control of the charge transport within the whole micrometric gap by a limited number of PANI wires. The SECM configuration makes it possible to observe in the same experiment and in the same current range the electron-transfer and electron-transport processes. These two phenomena are distinguished here and characterized by following the variation of the current with the bias voltage and the scan rate. The electron-transfer current changes with the scan rate, while the charge-transport current varies with the bias voltage. Finally, despite the initially micrometric gap, a junction where the conductance is controlled by a single oligoaniline strand is achieved. PMID:23331168

  6. Electroosmotic flow can generate ion current rectification in nano- and micropores.

    Science.gov (United States)

    Yusko, Erik C; An, Ran; Mayer, Michael

    2010-01-26

    This paper introduces a strategy for generating ion current rectification through nano- and micropores. This method generates ion current rectification by electroosmotic-driven flow of liquids of varying viscosity (and hence varying conductance) into or out of the narrowest constriction of a pore. The magnitude of current rectification was described by a rectification factor, R(f), which is defined by the ratio of the current measured at a positive voltage divided by the current measured at a negative voltage. This method achieved rectification factors in the range of 5-15 using pores with diameters ranging from 10 nm to 2.2 microm. These R(f) values are similar to the rectification factors reported in other nanopore-based methods that did not employ segmented surface charges. Interestingly, this work showed that in cylindrical nanopores with diameters of 10 nm and a length of at least 275 nm, electroosmotic flow was present and could generate ion current rectification. Unlike previous methods for generating ion current rectification that require nanopores with diameters comparable to the Debye length, this work demonstrated ion current rectification in micropores with diameters 500 times larger than the Debye length. Thus this method extends the concept of fluidic diodes to the micropore range. Several experiments designed to alter or remove electroosmotic flow through the pore demonstrated that electroosmotic flow was required for the mode of ion current rectification reported here. Consequently, the magnitude of current rectification could be used to indicate the presence of electroosmotic flow and the breakdown of electroosmotic flow with decreasing ionic strength and hence increasing electric double layer overlap inside nanopores.

  7. VUV diagnostic of electron impact processes in low temperature molecular hydrogen plasma

    CERN Document Server

    Komppula, J

    2015-01-01

    Novel methods for diagnostics of molecular hydrogen plasma processes, such as ionization, production of high vibrational levels, dissociation of molecules via excitation to singlet and triplet states and production of metastable states, are presented for molecular hydrogen plasmas in corona equilibrium. The methods are based on comparison of rate coefficients of plasma processes and optical emission spectroscopy of lowest singlet and triplet transitions, i.e. Lyman-band ($B^1\\Sigma^+_u \\rightarrow X^1\\Sigma^+_g$) and molecular continuum ($a^3\\Sigma^+_g \\rightarrow b^3\\Sigma^+_u$), of the hydrogen molecule in VUV wavelength range. Comparison of rate coefficients of spin-allowed and/or spin-forbidden excitations reduces the uncertainty caused by the non-equilibrium distributions of electron energy and molecular vibrational level, which are typically known poorly in plasma sources. The described methods are applied to estimate the rates of various plasma processes in a filament arc discharge.

  8. Giant spatially-resolved self-assembled donor-acceptor molecular heterojunctions

    Science.gov (United States)

    Guest, Jeffrey R.; Smerdon, Joseph A.; Giebink, Noel C.; Guisinger, Nathan P.; Darancet, Pierre

    Despite theoretical models predicting that rectification ratios (RR) >1000 should be achievable in molecular rectifiers, demonstrations of this have been rare. It has also been extremely challenging to unravel the structure-function relationships on the nanometer length scales that determine their behavior. Using scanning tunneling microscopy (STM) and spectroscopy (STS), we show that RRs >1000 at biases molecule limit for self-assembled donor-acceptor bilayers of pentacene on C60 on Cu. We show that the system behaves as a molecular analog to a Schottky diode due to strong electronic coupling of C60 to the metallic substrate, and electronic transport is dominated by sequential tunneling from semiconducting pentacene to metallic C60. Furthermore, we demonstrate the extreme sensitivity of the low-bias I (V) characteristics to the molecularly-resolved structure of the heterojunction (HJ), which leads to negative differential resistance and ~ 100 × variation in the rectification ratio within 2 nm of the edge of the molecular HJ. Support was provided by the Department of Energy Office of Basic Energy Sciences (SISGR Grant DE-FG02-09ER16109).

  9. Tunneling of electrons via rotor-stator molecular interfaces: Combined ab initio and model study

    Science.gov (United States)

    Petreska, Irina; Ohanesjan, Vladimir; Pejov, Ljupčo; Kocarev, Ljupčo

    2016-07-01

    Tunneling of electrons through rotor-stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons' formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that conformation-dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previous work where we investigated the coherent transport via strongly coupled delocalized orbital by application of Non-equilibrium Green's Function Formalism.

  10. Beyond the Born-Oppenheimer approximation: a treatment of electronic flux density in electronically adiabatic molecular processes.

    Science.gov (United States)

    Diestler, D J

    2013-06-01

    Intuition suggests that a molecular system in the electronic ground state Φ0 should exhibit an electronic flux density (EFD) in response to the motion of its nuclei. If that state is described by the Born-Oppenheimer approximation (BOA), however, a straightforward calculation of the EFD yields zero, since the electrons are in a stationary state, regardless of the state of the nuclear motion. Here an alternative pathway to a nonzero EFD from a knowledge of only the BOA ground-state wave function is proposed. Via perturbation theory a complete set of approximate vibronic eigenfunctions of the whole Hamiltonian is generated. If the complete non-BOA wave function is expressed in the basis of these vibronic eigenfunctions, the ground-state contribution to the EFD is found to involve a summation over excited states. Evaluation of this sum through the so-called "average excitation energy approximation" produces a nonzero EFD. An explicit formula for the EFD for the prototypical system, namely, oriented H2+ vibrating in the electronic ground state, is derived.

  11. Theoretical investigation of intersubband nonlinear optical rectification in Al{sub x{sub l}}Ga{sub 1-x{sub l}}As/GaAs/Al{sub x{sub r}}Ga{sub 1-x{sub r}}As asymmetric rectangular quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Karabulut, Ibrahim; Atav, Uelfet; Safak, Haluk [Selcuk University, Department of Physics, Konya 42075 (Turkey); Tomak, Mehmet [Middle East Technical University, Department of Physics, Ankara 06531 (Turkey)

    2007-09-15

    In this study, a theoretical investigation of intersubband nonlinear optical rectification in Al{sub x{sub l}} Ga{sub 1-x{sub l}}As/GaAs/Al{sub x{sub r}}Ga{sub 1-x{sub r}}As asymmetric rectangular quantum wells is presented. The electronic states in the asymmetric rectangular quantum well are described within the framework of the envelope function approach including the effects of band nonparabolicity and the effective mass mismatch. The nonlinear optical rectification is calculated using the density matrix formalism. It is found that the nonlinear optical rectification in the asymmetric rectangular quantum well depends sensitively on the parameters such as the width and the asymmetry of the potential well. The adjustable parameters allow for tuning of the asymmetric rectangular quantum well system to the desired wavelength while retaining a large optical rectification coefficient. This gives a new degree of freedom in various device applications based on nonlinear optical properties. Band nonparabolicity is found to significantly influence both electronic states and nonlinear optical rectification. Moreover the resulting optical rectification coefficient is much larger than the ones for bulk GaAs and some other theoretical studies in literature. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Electrical characterization of benzenedithiolate molecular electronic devices with graphene electrodes on rigid and flexible substrates

    Science.gov (United States)

    Jang, Yeonsik; Jeong, Hyunhak; Kim, Dongku; Hwang, Wang-Taek; Kim, Jun-Woo; Jeong, Inho; Song, Hyunwook; Yoon, Jiyoung; Yi, Gyu-Chul; Jeong, Heejun; Lee, Takhee

    2016-04-01

    We investigated the electrical characteristics of molecular electronic devices consisting of benzenedithiolate self-assembled monolayers and a graphene electrode. We used the multilayer graphene electrode as a protective interlayer to prevent filamentary path formation during the evaporation of the top electrode in the vertical metal-molecule-metal junction structure. The devices were fabricated both on a rigid SiO2/Si substrate and on a flexible poly(ethylene terephthalate) substrate. Using these devices, we investigated the basic charge transport characteristics of benzenedithiolate molecular junctions in length- and temperature-dependent analyses. Additionally, the reliability of the electrical characteristics of the flexible benzenedithiolate molecular devices was investigated under various mechanical bending conditions, such as different bending radii, repeated bending cycles, and a retention test under bending. We also observed the inelastic electron tunneling spectra of our fabricated graphene-electrode molecular devices. Based on the results, we verified that benzenedithiolate molecules participate in charge transport, serving as an active tunneling barrier in solid-state graphene-electrode molecular junctions.

  13. Accelerated electronic structure-based molecular dynamics simulations of shock-induced chemistry

    Science.gov (United States)

    Cawkwell, Marc

    2015-06-01

    The initiation and progression of shock-induced chemistry in organic materials at moderate temperatures and pressures are slow on the time scales available to regular molecular dynamics simulations. Accessing the requisite time scales is particularly challenging if the interatomic bonding is modeled using accurate yet expensive methods based explicitly on electronic structure. We have combined fast, energy conserving extended Lagrangian Born-Oppenheimer molecular dynamics with the parallel replica accelerated molecular dynamics formalism to study the relatively sluggish shock-induced chemistry of benzene around 13-20 GPa. We model interatomic bonding in hydrocarbons using self-consistent tight binding theory with an accurate and transferable parameterization. Shock compression and its associated transient, non-equilibrium effects are captured explicitly by combining the universal liquid Hugoniot with a simple shrinking-cell boundary condition. A number of novel methods for improving the performance of reactive electronic structure-based molecular dynamics by adapting the self-consistent field procedure on-the-fly will also be discussed. The use of accelerated molecular dynamics has enabled us to follow the initial stages of the nucleation and growth of carbon clusters in benzene under thermodynamic conditions pertinent to experiments.

  14. Fragment-Based Electronic Structure Approach for Computing Nuclear Magnetic Resonance Chemical Shifts in Molecular Crystals.

    Science.gov (United States)

    Hartman, Joshua D; Beran, Gregory J O

    2014-11-11

    First-principles chemical shielding tensor predictions play a critical role in studying molecular crystal structures using nuclear magnetic resonance. Fragment-based electronic structure methods have dramatically improved the ability to model molecular crystal structures and energetics using high-level electronic structure methods. Here, a many-body expansion fragment approach is applied to the calculation of chemical shielding tensors in molecular crystals. First, the impact of truncating the many-body expansion at different orders and the role of electrostatic embedding are examined on a series of molecular clusters extracted from molecular crystals. Second, the ability of these techniques to assign three polymorphic forms of the drug sulfanilamide to the corresponding experimental (13)C spectra is assessed. This challenging example requires discriminating among spectra whose (13)C chemical shifts differ by only a few parts per million (ppm) across the different polymorphs. Fragment-based PBE0/6-311+G(2d,p) level chemical shielding predictions correctly assign these three polymorphs and reproduce the sulfanilamide experimental (13)C chemical shifts with 1 ppm accuracy. The results demonstrate that fragment approaches are competitive with the widely used gauge-invariant projector augmented wave (GIPAW) periodic density functional theory calculations. PMID:26584373

  15. Atomic and Molecular Photoelectron and Auger Electron SpectroscopyStudies Using Synchrotron Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, Stephen H.

    1982-01-01

    Electron spectroscopy, combined with synchrotron radiation, was used to measure the angular distributions of photoelectrons and Auger electrons from atoms and molecules as functions of photon energy. The branching ratios and partial cross sections were a 130 measured in certain cases. By comparison with theoretical calculations, the experimental results are interpreted in terms of the characteristic electronic structure and ionization dynamics of the atomic or molecular sample. The time structure of the synchrotron radiation source was used to record time-of-flight (TOF) spectra o f the ejected electrons. The ''a double-angle-TOF'' method for the measurement of photoelectron angular distributions is discussed. This technique offers the advantages of increased electron collect ion efficiency and the elimination of certain systematic errors. Several results were obtained for Xe using photon energies in the range hv {approx_equal} 60-190 eV, where excitation and ionization of the inner-subshell 4d electrons dominates. The 4d asymmetry parameter {beta} exhibits strong oscillations with energy, in agreement with several theoretical calculations. As predicted, the 5p asymmetry parameter was observed to deviate strongly from that calculated using the independent-electron model, due to intershell correlation with the 4d electrons.

  16. 27 CFR 1.82 - Acquiring or receiving distilled spirits in bulk for redistillation, processing, rectification...

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Acquiring or receiving distilled spirits in bulk for redistillation, processing, rectification, warehousing, or warehousing and... bulk for redistillation, processing, rectification, warehousing, or warehousing and bottling....

  17. Testing accelerometer rectification error caused by multidimensional composite inputs with double turntable centrifuge.

    Science.gov (United States)

    Guan, W; Meng, X F; Dong, X M

    2014-12-01

    Rectification error is a critical characteristic of inertial accelerometers. Accelerometers working in operational situations are stimulated by composite inputs, including constant acceleration and vibration, from multiple directions. However, traditional methods for evaluating rectification error only use one-dimensional vibration. In this paper, a double turntable centrifuge (DTC) was utilized to produce the constant acceleration and vibration simultaneously and we tested the rectification error due to the composite accelerations. At first, we deduced the expression of the rectification error with the output of the DTC and a static model of the single-axis pendulous accelerometer under test. Theoretical investigation and analysis were carried out in accordance with the rectification error model. Then a detailed experimental procedure and testing results were described. We measured the rectification error with various constant accelerations at different frequencies and amplitudes of the vibration. The experimental results showed the distinguished characteristics of the rectification error caused by the composite accelerations. The linear relation between the constant acceleration and the rectification error was proved. The experimental procedure and results presented in this context can be referenced for the investigation of the characteristics of accelerometer with multiple inputs.

  18. Rectification properties of conically shaped nanopores: consequences of miniaturization.

    Science.gov (United States)

    Pietschmann, J-F; Wolfram, M-T; Burger, M; Trautmann, C; Nguyen, G; Pevarnik, M; Bayer, V; Siwy, Z

    2013-10-21

    Nanopores attracted a great deal of scientific interest as templates for biological sensors as well as model systems to understand transport phenomena at the nanoscale. The experimental and theoretical analysis of nanopores has been so far focused on understanding the effect of the pore opening diameter on ionic transport. In this article we present systematic studies on the dependence of ion transport properties on the pore length. Particular attention was given to the effect of ion current rectification exhibited in conically shaped nanopores with homogeneous surface charges. We found that reducing the length of conically shaped nanopores significantly lowered their ability to rectify ion current. However, rectification properties of short pores can be enhanced by tailoring the surface charge and the shape of the narrow opening. Furthermore we analyzed the relationship of the rectification behavior and ion selectivity for different pore lengths. All simulations were performed using MsSimPore, a software package for solving the Poisson-Nernst-Planck (PNP) equations. It is based on a novel finite element solver and allows for simulations up to surface charge densities of -2 e per nm(2). MsSimPore is based on 1D reduction of the PNP model, but allows for a direct treatment of the pore with bulk electrolyte reservoirs, a feature which was previously used in higher dimensional models only. MsSimPore includes these reservoirs in the calculations, a property especially important for short pores, where the ionic concentrations and the electric potential vary strongly inside the pore as well as in the regions next to the pore entrance.

  19. Laser-Induced Electron Diffraction: Inversion of Photoelectron Spectra for Molecular Orbital Imaging

    CERN Document Server

    Puthumpally-Joseph, R; Peters, M; Nguyen-Dang, T T; Atabek, O; Charron, E

    2016-01-01

    In this paper, we discuss the possibility of imaging molecular orbitals from photoelectron spectra obtained via Laser Induced Electron Diffraction (LIED) in linear molecules. This is an extension of our work published recently in Physical Review A \\textbf{94}, 023421 (2016) to the case of the HOMO-1 orbital of the carbon dioxide molecule. We show that such an imaging technique has the potential to image molecular orbitals at different internuclear distances in a sub-femtosecond time scale and with a resolution of a fraction of an Angstr\\"om.

  20. Light quasiparticles dominate electronic transport in molecular crystal field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. Q.; Podzorov, V.; Sai, N.; Martin, Michael C.; Gershenson, M. E.; Di Ventra, M.; Basov, D. N.

    2007-03-01

    We report on an infrared spectroscopy study of mobile holes in the accumulation layer of organic field-effect transistors based on rubrene single crystals. Our data indicate that both transport and infrared properties of these transistors at room temperature are governed by light quasiparticles in molecular orbital bands with the effective masses m[small star, filled]comparable to free electron mass. Furthermore, the m[small star, filled]values inferred from our experiments are in agreement with those determined from band structure calculations. These findings reveal no evidence for prominent polaronic effects, which is at variance with the common beliefs of polaron formation in molecular solids.

  1. Rectification of nanopores in aprotic solvents - transport properties of nanopores with surface dipoles

    Science.gov (United States)

    Plett, Timothy; Shi, Wenqing; Zeng, Yuhan; Mann, William; Vlassiouk, Ivan; Baker, Lane A.; Siwy, Zuzanna S.

    2015-11-01

    Nanopores have become a model system to understand transport properties at the nanoscale. We report experiments and modeling of ionic current in aprotic solvents with different dipole moments through conically shaped nanopores in a polycarbonate film and through glass nanopipettes. We focus on solutions of the salt LiClO4, which is of great importance in modeling lithium based batteries. Results presented suggest ion current rectification observed results from two effects: (i) adsorption of Li+ ions to the pore walls, and (ii) a finite dipole moment rendered by adsorbed solvent molecules. Properties of surfaces in various solvents were probed by means of scanning ion conductance microscopy, which confirmed existence of an effectively positive surface potential in aprotic solvents with high dipole moments.Nanopores have become a model system to understand transport properties at the nanoscale. We report experiments and modeling of ionic current in aprotic solvents with different dipole moments through conically shaped nanopores in a polycarbonate film and through glass nanopipettes. We focus on solutions of the salt LiClO4, which is of great importance in modeling lithium based batteries. Results presented suggest ion current rectification observed results from two effects: (i) adsorption of Li+ ions to the pore walls, and (ii) a finite dipole moment rendered by adsorbed solvent molecules. Properties of surfaces in various solvents were probed by means of scanning ion conductance microscopy, which confirmed existence of an effectively positive surface potential in aprotic solvents with high dipole moments. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06340j

  2. Correlation between electron-irradiation defects and applied stress in graphene: A molecular dynamics study

    International Nuclear Information System (INIS)

    Molecular dynamics (MD) simulations are performed to study the correlation between electron irradiation defects and applied stress in graphene. The electron irradiation effect is introduced by the binary collision model in the MD simulation. By applying a tensile stress to graphene, the number of adatom-vacancy (AV) and Stone–Wales (SW) defects increase under electron irradiation, while the number of single-vacancy defects is not noticeably affected by the applied stress. Both the activation and formation energies of an AV defect and the activation energy of an SW defect decrease when a tensile stress is applied to graphene. Applying tensile stress also relaxes the compression stress associated with SW defect formation. These effects induced by the applied stress cause the increase in AV and SW defect formation under electron irradiation

  3. Correlation between electron-irradiation defects and applied stress in graphene: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Kida, Shogo; Yamamoto, Masaya; Kawata, Hiroaki; Hirai, Yoshihiko; Yasuda, Masaaki, E-mail: yasuda@pe.osakafu-u.ac.jp [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Tada, Kazuhiro [Department of Electrical and Control Systems Engineering, National Institute of Technology, Toyama College, Toyama 939-8630 (Japan)

    2015-09-15

    Molecular dynamics (MD) simulations are performed to study the correlation between electron irradiation defects and applied stress in graphene. The electron irradiation effect is introduced by the binary collision model in the MD simulation. By applying a tensile stress to graphene, the number of adatom-vacancy (AV) and Stone–Wales (SW) defects increase under electron irradiation, while the number of single-vacancy defects is not noticeably affected by the applied stress. Both the activation and formation energies of an AV defect and the activation energy of an SW defect decrease when a tensile stress is applied to graphene. Applying tensile stress also relaxes the compression stress associated with SW defect formation. These effects induced by the applied stress cause the increase in AV and SW defect formation under electron irradiation.

  4. Geometrical rectification of spin-scan images from Pioneer 11

    Science.gov (United States)

    Strickland, R. N.; Burke, J. J.

    1980-01-01

    Images of Saturn received from Pioneer 11 suffer from geometrical distortions due to the curvilinear scan lines and the unequal sampling intervals in orthogonal directions, which are inherent in spin-scan imaging. In this paper geometrical image rectification by polynomial transformation based on control points is discussed. Factors that affect the accuracy of reconstruction are shown to include the spatial distribution and spatial density of control points, and the order of the polynomial distortion model. A computer implementation of the technique is described.

  5. Geometric registration and rectification of spaceborne SAR imagery

    Science.gov (United States)

    Curlander, J. C.; Pang, S. N.

    1982-01-01

    This paper describes the development of automated location and geometric rectification techniques for digitally processed synthetic aperture radar (SAR) imagery. A software package has been developed that is capable of determining the absolute location of an image pixel to within 60 m using only the spacecraft ephemeris data and the characteristics of the SAR data collection and processing system. Based on this location capability algorithms have been developed that geometrically rectify the imagery, register it to a common coordinate system and mosaic multiple frames to form extended digital SAR maps. These algorithms have been optimized using parallel processing techniques to minimize the operating time. Test results are given using Seasat SAR data.

  6. Study of rectification at the metal-cadmium telluride contact

    International Nuclear Information System (INIS)

    The barrier heights at the contact between metals and N or P type cadmium telluride have been determined. Various surface treatments have been used for the semiconductor: lapping, polishing and etching in a bromine in methanol solution. Depending on these preparation differences of about 0.1 eV have been observed for the barrier height which in any case was no more than 0.9 - 1.0 eV. These results can not be explained by only considering the Schottky theory of rectification

  7. When electrons meet molecular ions and what happens next: dissociative recombination from interstellar molecular clouds to internal combustion engines.

    Science.gov (United States)

    Thomas, Richard D

    2008-01-01

    The interaction of matter with its environment is the driving force behind the evolution of 99% of the observed matter in the universe. The majority of the visible universe exists in a state of weak ionization, the so called fourth state of matter: plasma. Plasmas are ubiquitous, from those occurring naturally; interstellar molecular clouds, cometary comae, circumstellar shells, to those which are anthropic in origin; flames, combustion engines and fusion reactors. The evolution of these plasmas is driven by the interaction of the plasma constituents, the ions, and the electrons. One of the most important subsets of these reactions is electron-molecular ion recombination. This process is significant for two very important reasons. It is an ionization reducing reaction, removing two ionised species and producing neutral products. Furthermore, these products may themselves be reactive radical species which can then further drive the evolution of the plasma. The rate at which the electron reacts with the ion depends on many parameters, for examples the collision energy, the internal energy of the ion, and the structure of the ion itself. Measuring these properties together with the manner in which the system breaks up is therefore critical if the evolution of the environment is to be understood at all. Several techniques have been developed to study just such reactions to obtain the necessary information on the parameters. In this paper the focus will be on one the most recently developed of these, the Ion Storage Ring, together with the detection tools and techniques used to extract the necessary information from the reaction. PMID:18618616

  8. Applications of the Information Theory to Problems of Molecular Electronic Structure and Chemical Reactivity

    Directory of Open Access Journals (Sweden)

    Roman F. Nalewajski

    2002-04-01

    Full Text Available Abstract: Recent studies on applications of the information theoretic concepts to molecular systems are reviewed. This survey covers the information theory basis of the Hirshfeld partitioning of molecular electron densities, its generalization to many electron probabilities, the local information distance analysis of molecular charge distributions, the charge transfer descriptors of the donor-acceptor reactive systems, the elements of a “thermodynamic” description of molecular charge displacements, both “vertical” (between molecular fragments for the fixed overall density and “horizontal” (involving different molecular densities, with the entropic representation description provided by the information theory. The average uncertainty measures of bond multiplicities in molecular “communication” systems are also briefly summarized. After an overview of alternative indicators of the information distance (entropy deficiency, missing information between probability distributions the properties of the “stockholder” densities, which minimize the entropy deficiency relative to the promolecule reference, are summarized. In particular, the surprisal analysis of molecular densities is advocated as an attractive information-theoretic tool in the electronic structure theory, supplementary to the familiar density difference diagrams. The subsystem information density equalization rules satisfied by the Hirshfeld molecular fragments are emphasized: the local values of alternative information distance densities of subsystems are equal to the corresponding global value, characterizing the molecule as a whole. These local measures of the information content are semi-quantitatively related to the molecular density difference function. In the density functional theory the effective external potentials of molecular fragments are defined, for which

  9. Communication: Electrical rectification of C59N: The role of anchoring and doping sites.

    Science.gov (United States)

    Tawfik, Sherif Abdulkader; Cui, X Y; Ringer, S P; Stampfl, C

    2016-01-14

    Based on the nonequilibrium Green's function formalism and density-functional theory, we investigate the onset of electrical rectification in a single C59N molecule in conjunction with gold electrodes. Our calculations reveal that rectification is dependent upon the anchoring of the Au atom on C59N; when the Au electrode is singly bonded to a C atom (labeled here as A), the system does not exhibit rectification, whereas when the electrode is connected to the C-C bridge site between two hexagonal rings (labeled here as B), transmission asymmetry is observed, where the rectification ratio reaches up to 2.62 at ±1 V depending on the N doping site relative to the anchoring site. Our analysis of the transmission mechanism shows that N doping of the B configuration causes rectification because more transmission channels are available for transmission in the B configuration than in the A configuration.

  10. Communication: Electrical rectification of C{sub 59}N: The role of anchoring and doping sites

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, Sherif Abdulkader, E-mail: sherif.abbas@sydney.edu.au; Stampfl, C. [School of Physics, The University of Sydney, Sydney, New South Wales 2006 (Australia); Cui, X. Y.; Ringer, S. P. [Australian Centre for Microscopy and Microanalysis, and School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales 2006 (Australia)

    2016-01-14

    Based on the nonequilibrium Green’s function formalism and density-functional theory, we investigate the onset of electrical rectification in a single C{sub 59}N molecule in conjunction with gold electrodes. Our calculations reveal that rectification is dependent upon the anchoring of the Au atom on C{sub 59}N; when the Au electrode is singly bonded to a C atom (labeled here as A), the system does not exhibit rectification, whereas when the electrode is connected to the C–C bridge site between two hexagonal rings (labeled here as B), transmission asymmetry is observed, where the rectification ratio reaches up to 2.62 at ±1 V depending on the N doping site relative to the anchoring site. Our analysis of the transmission mechanism shows that N doping of the B configuration causes rectification because more transmission channels are available for transmission in the B configuration than in the A configuration.

  11. Communication: Electrical rectification of C59N: The role of anchoring and doping sites

    International Nuclear Information System (INIS)

    Based on the nonequilibrium Green’s function formalism and density-functional theory, we investigate the onset of electrical rectification in a single C59N molecule in conjunction with gold electrodes. Our calculations reveal that rectification is dependent upon the anchoring of the Au atom on C59N; when the Au electrode is singly bonded to a C atom (labeled here as A), the system does not exhibit rectification, whereas when the electrode is connected to the C–C bridge site between two hexagonal rings (labeled here as B), transmission asymmetry is observed, where the rectification ratio reaches up to 2.62 at ±1 V depending on the N doping site relative to the anchoring site. Our analysis of the transmission mechanism shows that N doping of the B configuration causes rectification because more transmission channels are available for transmission in the B configuration than in the A configuration

  12. Wave packet evolution approach to ionization of hydrogen molecular ion by fast electrons

    CERN Document Server

    Serov, V V; Joulakian, B B; Vinitsky, S I; Serov, Vladislav V.; Derbov, Vladimir L.; Joulakian, Boghos B.; Vinitsky, Sergue I.

    2000-01-01

    The multiply differential cross section of the ionization of hydrogen molecular ion by fast electron impact is calculated by a direct approach, which involves the reduction of the initial 6D Schr\\"{o}dinger equation to a 3D evolution problem followed by the modeling of the wave packet dynamics. This approach avoids the use of stationary Coulomb two-centre functions of the continuous spectrum of the ejected electron which demands cumbersome calculations. The results obtained, after verification of the procedure in the case atomic hydrogen, reveal interesting mechanisms in the case of small scattering angles.

  13. Dengue virus identification by transmission electron microscopy and molecular methods in fatal dengue hemorrhagic fever.

    Science.gov (United States)

    Limonta, D; Falcón, V; Torres, G; Capó, V; Menéndez, I; Rosario, D; Castellanos, Y; Alvarez, M; Rodríguez-Roche, R; de la Rosa, M C; Pavón, A; López, L; González, K; Guillén, G; Diaz, J; Guzmán, M G

    2012-12-01

    Dengue virus is the most significant virus transmitted by arthropods worldwide and may cause a potentially fatal systemic disease named dengue hemorrhagic fever. In this work, dengue virus serotype 4 was detected in the tissues of one fatal dengue hemorrhagic fever case using electron immunomicroscopy and molecular methods. This is the first report of dengue virus polypeptides findings by electron immunomicroscopy in human samples. In addition, not-previously-documented virus-like particles visualized in spleen, hepatic, brain, and pulmonary tissues from a dengue case are discussed.

  14. Amplified spontaneous emission of a molecular nitrogen laser excited by an intense relativistic electron beam

    International Nuclear Information System (INIS)

    Report of a study of the shape and length of the output pulse of a molecular nitrogen laser, excited by an intense relativistic electron beam, is described. The rate equations are computer solved, at first ignoring the spontaneous emission during the excitation process. Afterwards the rate equations are solved taking into account excitation functions of various shapes and lengths, related to electron-beam pulses of a few kA and a few nsec. Laser power output, energy, and peak-time, i.e., the time at which the gain reaches its saturated value, are given and discussed as functions of the intensity and rise time of the excitation functions

  15. Quantum chemistry the development of ab initio methods in molecular electronic structure theory

    CERN Document Server

    Schaefer III, Henry F

    2004-01-01

    This guide is guaranteed to prove of keen interest to the broad spectrum of experimental chemists who use electronic structure theory to assist in the interpretation of their laboratory findings. A list of 150 landmark papers in ab initio molecular electronic structure methods, it features the first page of each paper (which usually encompasses the abstract and introduction). Its primary focus is methodology, rather than the examination of particular chemical problems, and the selected papers either present new and important methods or illustrate the effectiveness of existing methods in predi

  16. On the path length of an excess electron interacted with optical phonons in a molecular chain

    Energy Technology Data Exchange (ETDEWEB)

    Lakhno, V.D. [Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region 142290 (Russian Federation)], E-mail: lak@impb.psn.ru

    2008-08-25

    We show that in a molecular chain with dispersionless phonons at zero temperature, a 'quasistationary' moving soliton state of an excess electron is possible. As the soliton velocity vanishes, the path length of the excess electron exponentially tends to infinity. It is demonstrated that in the presence of dispersion, when the soliton initial velocity exceeds the maximum group velocity of the chain, the soliton slows down until it reaches the maximum group velocity and then moves stationarily at this maximum group velocity. A conclusion is made of the fallacy of some works were the existence of moving polarons in a dispersionless medium is considered infeasible.

  17. Molecular monolayers and interfacial electron transfer of pseudomonas aeruginosa azurin on Au(111)

    DEFF Research Database (Denmark)

    Chi, Qijin; Zhang, Jingdong; Nielsen, Jens Ulrik;

    2000-01-01

    disulfide group to form a monolayer. The adsorption of this protein on Au(111) via a gold-sulfur binding mode is further supported by XPS measurements. In situ STM images with molecular resolution have been recorded and show a dense monolayer organization of adsorbed azurin molecules. Direct electron......, and long-range electrochemical electron transfer between the electrode and the copper center. Voltammetry, electrochemical impedance spectroscopy (EIS), in situ scanning tunneling microscopy (STM), and X-ray photoelectron spectroscopy (XPS) have been employed to disclose features of these issues. Zn...

  18. Diffractive imaging of a molecular rotational wavepacket with femtosecond Megaelectronvolt electron pulses

    CERN Document Server

    Yang, Jie; Vecchione, Theodore; Robinson, Matthew S; Li, Renkai; Hartmann, Nick; Shen, Xiaozhe; Coffee, Ryan; Corbett, Jeff; Fry, Alan; Gaffney, Kelly; Gorkhover, Tais; Hast, Carsten; Jobe, Keith; Makasyuk, Igor; Reid, Alexander; Robinson, Joseph; Vetter, Sharon; Wang, Fenglin; Weathersby, Stephen; Yoneda, Charles; Centurion, Martin; Wang, Xijie

    2015-01-01

    Imaging changes in molecular geometries on their natural femtosecond timescale with sub-Angstrom spatial precision is one of the critical challenges in the chemical sciences, since the nuclear geometry changes determine the molecular reactivity. For photoexcited molecules, the nuclear dynamics determine the photoenergy conversion path and efficiency. We performed a gas-phase electron diffraction experiment using Megaelectronvolt (MeV) electrons, where we captured the rotational wavepacket dynamics of nonadiabatically laser-aligned nitrogen molecules. We achieved an unprecedented combination of 100 fs root-mean-squared (RMS) temporal resolution and sub-Angstrom (0.76 {\\AA}) spatial resolution that makes it possible to resolve the position of the nuclei within the molecule. In addition, the diffraction patterns reveal the angular distribution of the molecules, which changes from prolate (aligned) to oblate (anti-aligned) in 300 fs. Our results demonstrate a significant and promising step towards making atomical...

  19. Systematics in a measurement of the electron's electric dipole moment using trapped molecular ions

    Science.gov (United States)

    Grau, Matt; Cossel, Kevin; Cairncross, William; Gresh, Dan; Zhou, Yan; Ye, Jun; Cornell, Eric

    2015-05-01

    A precision measurement of the electron's electric dipole moment (EDM) has important implications for physics beyond the Standard Model. Trapped molecular ions offer high sensitivity in such an experiment because of the large effective electric fields and long coherence times that are possible. Our experiment uses Ramsey spectroscopy of HfF+ ions in a linear RF trap with rotating bias fields, achieving coherence times beyond 1 second for 1000 trapped ions. Compared to other electron EDM experiments that use molecular beams, we will be sensitive to a different class of systematic errors. In this work we investigate systematic errors arising from all fields involved in the experiment, including the trapping and polarizing electric fields, magnetic field gradients, and motional effects such as geometric phases. This work was supported by NIST and NSF.

  20. Where Is the Electronic Oscillator Strength? Mapping Oscillator Strength across Molecular Absorption Spectra.

    Science.gov (United States)

    Zheng, Lianjun; Polizzi, Nicholas F; Dave, Adarsh R; Migliore, Agostino; Beratan, David N

    2016-03-24

    The effectiveness of solar energy capture and conversion materials derives from their ability to absorb light and to transform the excitation energy into energy stored in free carriers or chemical bonds. The Thomas-Reiche-Kuhn (TRK) sum rule mandates that the integrated (electronic) oscillator strength of an absorber equals the total number of electrons in the structure. Typical molecular chromophores place only about 1% of their oscillator strength in the UV-vis window, so individual chromophores operate at about 1% of their theoretical limit. We explore the distribution of oscillator strength as a function of excitation energy to understand this circumstance. To this aim, we use familiar independent-electron model Hamiltonians as well as first-principles electronic structure methods. While model Hamiltonians capture the qualitative electronic spectra associated with π electron chromophores, these Hamiltonians mistakenly focus the oscillator strength in the fewest low-energy transitions. Advanced electronic structure methods, in contrast, spread the oscillator strength over a very wide excitation energy range, including transitions to Rydberg and continuum states, consistent with experiment. Our analysis rationalizes the low oscillator strength in the UV-vis spectral region in molecules, a step toward the goal of oscillator strength manipulation and focusing.

  1. Molecularly Imprinted Electropolymer for a Hexameric Heme Protein with Direct Electron Transfer and Peroxide Electrocatalysis

    OpenAIRE

    Lei Peng; Aysu Yarman; Jetzschmann, Katharina J.; Jae-Hun Jeoung; Daniel Schad; Holger Dobbek; Ulla Wollenberger; Scheller, Frieder W.

    2016-01-01

    For the first time a molecularly imprinted polymer (MIP) with direct electron transfer (DET) and bioelectrocatalytic activity of the target protein is presented. Thin films of MIPs for the recognition of a hexameric tyrosine-coordinated heme protein (HTHP) have been prepared by electropolymerization of scopoletin after oriented assembly of HTHP on a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold electrodes. Cavities which should resemble the shape and size of HTHP wer...

  2. Using Markov models to simulate electron spin resonance spectra from molecular dynamics trajectories

    OpenAIRE

    Sezer, Deniz; Freed, Jack H.; Roux, Benoît

    2008-01-01

    Simulating electron spin resonance (ESR) spectra directly from molecular dynamics simulations of a spin labeled protein necessitates a large number (hundreds or thousands) of relatively long (hundreds of ns) trajectories. To meet this challenge, we explore the possibility of constructing accurate stochastic models of the spin label dynamics from atomistic trajectories. A systematic, two-step procedure, based on the probabilistic framework of hidden Markov models, is developed to build a discr...

  3. Tunneling electron induced molecular electroluminescence from individual porphyrin J-aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qiushi; Zhang, Chao; Zhang, Yang, E-mail: zhyangnano@ustc.edu.cn, E-mail: zcdong@ustc.edu.cn; Zhang, Yao; Liao, Yuan; Dong, Zhenchao, E-mail: zhyangnano@ustc.edu.cn, E-mail: zcdong@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-07-27

    We investigate molecular electroluminescence from individual tubular porphyrin J-aggregates on Au(111) by tunneling electron excitations in an ultrahigh-vacuum scanning tunneling microscope (STM). High-resolution STM images suggest a spiral tubular structure for the porphyrin J-aggregate with highly ordered “brickwork”-like arrangements. Such aggregated nanotube is found to behave like a self-decoupled molecular architecture and shows red-shifted electroluminescence characteristics of J-aggregates originated from the delocalized excitons. The positions of the emission peaks are found to shift slightly depending on the excitation sites, which, together with the changes in the observed spectral profiles with vibronic progressions, suggest a limited exciton coherence number within several molecules. The J-aggregate electroluminescence is also found unipolar, occurring only at negative sample voltages, which is presumably related to the junction asymmetry in the context of molecular excitations via the carrier injection mechanism.

  4. Electronic Transport Properties of a Naphthopyran-Based Optical Molecular Switch:an ab initio Study

    Institute of Scientific and Technical Information of China (English)

    XIA Cai-Juan; LIU De-Sheng; ZHANG Ying-Tang

    2011-01-01

    The electronic transport properties of a. Naphthopyran-based molecular optical switch are investigated by using the nonequilibrium Green's Function formalism combined with first-principles density functional theory. The molecule that comprises the switch can convert between its open and closed forms upon photoexcitation. Theoretical results show that the current through the open form is significantly larger than that through the closed form, which is different from other optical switches based on ring-opening reactions of the molecular bridge. The maximum on-off ratio (about 90) can be obtained at 1.4 V. The physical origin of the switching behavior is interpreted based on the spatial distributions of molecular orbitals and the HOMO-LUMO gap. Our result shows that the naphthopyran-based molecule is a good candidate for optical molecular switches and will be useful in the near future.%@@ ronic transport properties of a naphthopyran-based molecular optical switch are investigated by using the nonequilibrium Green's function formalism combined with first-principles density functional theory.The molecule that comprises the switch can convert between its open and closed forms upon photoexcitation.Theoretical results show that the current through the open form is significantly larger than that through the closed form,which is different from other optical switches based on ring-opening reactions of the molecular bridge.The maximum on-off ratio(about 90)can be obtained at 1.4 V.The physical origin of the switching behavior is interpreted based on the spatial distributions of molecular orbitals and the HOMO-LUMO gap.Our result shows that the naphthopyran-based molecule is a good candidate for optical molecular switches and will be useful in the near future.

  5. Molecular solution approach to synthesize electronic quality Cu2ZnSnS4 thin films.

    Science.gov (United States)

    Yang, Wenbing; Duan, Hsin-Sheng; Cha, Kitty C; Hsu, Chia-Jung; Hsu, Wan-Ching; Zhou, Huanping; Bob, Brion; Yang, Yang

    2013-05-01

    Successful implementation of molecular solution processing from a homogeneous and stable precursor would provide an alternative, robust approach to process multinary compounds compared with physical vapor deposition. Targeting deposition of chemically clear, high quality crystalline films requires specific molecular structure design and solvent selection. Hydrazine (N2H4) serves as a unique and powerful medium, particularly to incorporate selected metallic elements and chalcogens into a stable solution as metal chalcogenide complexes (MCC). However, not all the elements and compounds can be easily dissolved. In this manuscript, we demonstrate a paradigm to incorporate previously insoluble transitional-metal elements into molecular solution as metal-atom hydrazine/hydrazine derivative complexes (MHHD), as exemplified by dissolving of the zinc constituent as Zn(NH2NHCOO)2(N2H4)2. Investigation into the evolution of molecular structure reveals the hidden roadmap to significantly enrich the variety of building blocks for soluble molecule design. The new category of molecular structures not only set up a prototype to incorporate other elements of interest but also points the direction for other compatible solvent selection. As demonstrated from the molecular precursor combining Sn-/Cu-MCC and Zn-MHHD, an ultrathin film of copper zinc tin sulfide (CZTS) was deposited. Characterization of a transistor based on the CZTS channel layer shows electronic properties comparable to CuInSe2, confirming the robustness of this molecular solution processing and the prospect of earth abundant CZTS for next generation photovoltaic materials. This paradigm potentially outlines a universal pathway, from individual molecular design using selected chelated ligands and combination of building blocks in a simple and stable solution to fundamentally change the way multinary compounds are processed. PMID:23581974

  6. An analytic approach to 2D electronic PE spectra of molecular systems

    International Nuclear Information System (INIS)

    Graphical abstract: The three-pulse photon echo (3P-PE) spectra of finite molecular systems using direct calculation from electronic Hamiltonians allows peak classification from 3P-PE spectra dynamics. Display Omitted Highlights: → RWA approach to electronic photon echo. → A straightforward calculation of 2D electronic spectrograms in finite molecular systems. → Importance of population time dynamics in relation to inter-site coherent coupling. - Abstract: The three-pulse photon echo (3P-PE) spectra of finite molecular systems and simplified line broadening models is presented. The Fourier picture of a heterodyne detected three-pulse rephasing PE signal in the δ-pulse limit of the external field is derived in analytic form. The method includes contributions of one and two-excitonic states and allows direct calculation of Fourier PE spectrogram from corresponding Hamiltonian. As an illustration, the proposed treatment is applied to simple systems, e.g. 2-site two-level system (TLS) and n-site TLS model of photosynthetic unit. The importance of relation between Fourier picture of 3P-PE dynamics (corresponding to nonzero population time, T) and coherent inter-state coupling is emphasized.

  7. An analytic approach to 2D electronic PE spectra of molecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Szoecs, V., E-mail: szocs@fns.uniba.sk [Institute of Chemistry, Comenius University, Mlynska dolina CH2, 842 15 Bratislava (Slovakia)

    2011-05-26

    Graphical abstract: The three-pulse photon echo (3P-PE) spectra of finite molecular systems using direct calculation from electronic Hamiltonians allows peak classification from 3P-PE spectra dynamics. Display Omitted Highlights: {yields} RWA approach to electronic photon echo. {yields} A straightforward calculation of 2D electronic spectrograms in finite molecular systems. {yields} Importance of population time dynamics in relation to inter-site coherent coupling. - Abstract: The three-pulse photon echo (3P-PE) spectra of finite molecular systems and simplified line broadening models is presented. The Fourier picture of a heterodyne detected three-pulse rephasing PE signal in the {delta}-pulse limit of the external field is derived in analytic form. The method includes contributions of one and two-excitonic states and allows direct calculation of Fourier PE spectrogram from corresponding Hamiltonian. As an illustration, the proposed treatment is applied to simple systems, e.g. 2-site two-level system (TLS) and n-site TLS model of photosynthetic unit. The importance of relation between Fourier picture of 3P-PE dynamics (corresponding to nonzero population time, T) and coherent inter-state coupling is emphasized.

  8. Activationless charge transport across 4.5 to 22 nm in molecular electronic junctions.

    Science.gov (United States)

    Yan, Haijun; Bergren, Adam Johan; McCreery, Richard; Della Rocca, Maria Luisa; Martin, Pascal; Lafarge, Philippe; Lacroix, Jean Christophe

    2013-04-01

    In this work, we bridge the gap between short-range tunneling in molecular junctions and activated hopping in bulk organic films, and greatly extend the distance range of charge transport in molecular electronic devices. Three distinct transport mechanisms were observed for 4.5-22-nm-thick oligo(thiophene) layers between carbon contacts, with tunneling operative when d  16 nm for high temperatures and low bias, and a third mechanism consistent with field-induced ionization of highest occupied molecular orbitals or interface states to generate charge carriers when d = 8-22 nm. Transport in the 8-22-nm range is weakly temperature dependent, with a field-dependent activation barrier that becomes negligible at moderate bias. We thus report here a unique, activationless transport mechanism, operative over 8-22-nm distances without involving hopping, which severely limits carrier mobility and device lifetime in organic semiconductors. Charge transport in molecular electronic junctions can thus be effective for transport distances significantly greater than the 1-5 nm associated with quantum-mechanical tunneling.

  9. The effect of molecular mobility on electronic transport in carbon nanotube-polymer composites and networks

    International Nuclear Information System (INIS)

    A multiscale modeling approach to the prediction of electrical conductivity in carbon nanotube (CNT)–polymer composite materials is developed, which takes into account thermally activated molecular mobility of the matrix and the CNTs. On molecular level, a tight-binding density functional theory and non-equilibrium Green's function method are used to calculate the static electron transmission function in the contact between two metallic carbon nanotubes that corresponds to electron transport at 0 K. For higher temperatures, the statistical distribution of effective contact resistances is considered that originates from thermal fluctuations of intermolecular distances caused by molecular mobility of carbon nanotube and the polymer matrix. Based on this distribution and using effective medium theory, the temperature dependence of macroscopic electrical resistivity for CNT-polymer composites and CNT mats is calculated. The predicted data indicate that the electrical conductivity of the CNT-polymer composites increases linearly with temperature above 50 K, which is in a quantitative agreement with the experiments. Our model predicts a slight nonlinearity in temperature dependence of electric conductivity at low temperatures for percolated composites with small CNT loading. The model also explains the effect of glass transition and other molecular relaxation processes in the polymer matrix on the composite electrical conductivity. The developed multiscale approach integrates the atomistic charge transport mechanisms in percolated CNT-polymer composites with the macroscopic response and thus enables direct comparison of the prediction with the measurements of macroscopic material properties

  10. Asymmetry-induced electric current rectification in permselective systems.

    Science.gov (United States)

    Green, Yoav; Edri, Yaron; Yossifon, Gilad

    2015-09-01

    For a symmetric ion permselective system, in terms of geometry and bulk concentrations, the system response is also symmetric under opposite electric field polarity. In this work we derive an analytical solution for the concentration distribution, electric potential, and current-voltage response for a four-layered system comprised of two microchambers connected by two permselective regions of varying properties. It is shown that any additional asymmetry in the system, in terms of the geometry, bulk concentration, or surface charge property of the permselective regions, results in current rectification. Our work is divided into two parts: when both permselective regions have the same surface charge sign and the case of opposite signs. For the same sign case we are able to show that the system behaves as a dialytic battery while accounting for field-focusing effects. For the case of opposite signs (i.e., bipolar membrane), our system exhibits the behavior of a bipolar diode where the magnitude of the rectification can be of order 10^{2}-10^{3}.

  11. Electrical Pacing of Cardiac Tissue Including Potassium Inward Rectification.

    Science.gov (United States)

    Galappaththige, Suran; Roth, Bradley J

    2015-01-01

    In this study cardiac tissue is stimulated electrically through a small unipolar electrode. Numerical simulations predict that around an electrode are adjacent regions of depolarization and hyperpolarization. Experiments have shown that during pacing of resting cardiac tissue the hyperpolarization is often inhibited. Our goal is to determine if the inward rectifying potassium current (IK1) causes the inhibition of hyperpolarization. Numerical simulations were carried out using the bidomain model with potassium dynamics specified to be inward rectifying. In the simulations, adjacent regions of depolarization and hyperpolarization were observed surrounding the electrode. For cathodal currents the virtual anode produces a hyperpolarization that decreases over time. For long duration pulses the current-voltage curve is non-linear, with very small hyperpolarization compared to depolarization. For short pulses, the hyperpolarization is more prominent. Without the inward potassium rectification, the current voltage curve is linear and the hyperpolarization is evident for both long and short pulses. In conclusion, the inward rectification of the potassium current explains the inhibition of hyperpolarization for long duration stimulus pulses, but not for short duration pulses.

  12. Single-image rectification technique in forensic science.

    Science.gov (United States)

    González-Jorge, Higinio; Puente, Iván; Eguía, Pablo; Arias, Pedro

    2013-03-01

    Many researchers have been working in Spain to document the communal graves of those assassinated during the Spanish Civil War. This article shows the results obtained with two low-cost photogrammetric techniques for the basic documentation of forensic studies. These low-cost techniques are based on single-image rectification and the correction of the original photo displacement due to the projection and perspective distortions introduced by the lens of the camera. The capability of image rectification is tested in an excavation in the village of Loma de Montija (Burgos, Spain). The results of both techniques are compared with the more accurate data obtained from a laser scanner system RIEGL LMS-Z390i to evaluate the error in the lengths. The first technique uses a camera situated on a triangle-shaped pole at a height of 5 m and the second positions the camera over the grave using a linearly actuated device. The first technique shows measurement errors less than 6%, whereas the second shows greater errors (between 8% and 14%) owing to the positioning of the carbon-fiber cross on an uneven surface.

  13. Stereo Calibration and Rectification for Omnidirectional Multi-camera Systems

    Directory of Open Access Journals (Sweden)

    Yanchang Wang

    2012-10-01

    Full Text Available Stereo vision has been studied for decades as a fundamental problem in the field of computer vision. In recent years, computer vision and image processing with a large field of view, especially using omnidirectional vision and panoramic images, has been receiving increasing attention. An important problem for stereo vision is calibration. Although various kinds of calibration methods for omnidirectional cameras are proposed, most of them are limited to calibrate catadioptric cameras or fish‐eye cameras and cannot be applied directly to multi‐camera systems. In this work, we propose an easy calibration method with closed‐form initialization and iterative optimization for omnidirectional multi‐camera systems. The method only requires image pairs of the 2D target plane in a few different views. A method based on the spherical camera model is also proposed for rectifying omnidirectional stereo pairs. Using real data captured by Ladybug3, we carry out some experiments, including stereo calibration, rectification and 3D reconstruction. Statistical analyses and comparisons of the experimental results are also presented. As the experimental results show, the calibration results are precise and the effect of rectification is promising.

  14. Electrical Pacing of Cardiac Tissue Including Potassium Inward Rectification.

    Directory of Open Access Journals (Sweden)

    Suran Galappaththige

    Full Text Available In this study cardiac tissue is stimulated electrically through a small unipolar electrode. Numerical simulations predict that around an electrode are adjacent regions of depolarization and hyperpolarization. Experiments have shown that during pacing of resting cardiac tissue the hyperpolarization is often inhibited. Our goal is to determine if the inward rectifying potassium current (IK1 causes the inhibition of hyperpolarization. Numerical simulations were carried out using the bidomain model with potassium dynamics specified to be inward rectifying. In the simulations, adjacent regions of depolarization and hyperpolarization were observed surrounding the electrode. For cathodal currents the virtual anode produces a hyperpolarization that decreases over time. For long duration pulses the current-voltage curve is non-linear, with very small hyperpolarization compared to depolarization. For short pulses, the hyperpolarization is more prominent. Without the inward potassium rectification, the current voltage curve is linear and the hyperpolarization is evident for both long and short pulses. In conclusion, the inward rectification of the potassium current explains the inhibition of hyperpolarization for long duration stimulus pulses, but not for short duration pulses.

  15. Carbon Electrode-Molecule Junctions: A Reliable Platform for Molecular Electronics.

    Science.gov (United States)

    Jia, Chuancheng; Ma, Bangjun; Xin, Na; Guo, Xuefeng

    2015-09-15

    The development of reliable approaches to integrate individual or a small collection of molecules into electrical nanocircuits, often termed "molecular electronics", is currently a research focus because it can not only overcome the increasing difficulties and fundamental limitations of miniaturization of current silicon-based electronic devices, but can also enable us to probe and understand the intrinsic properties of materials at the atomic- and/or molecular-length scale. This development might also lead to direct observation of novel effects and fundamental discovery of physical phenomena that are not accessible by traditional materials or approaches. Therefore, researchers from a variety of backgrounds have been devoting great effort to this objective, which has started to move beyond simple descriptions of charge transport and branch out in different directions, reflecting the interdisciplinarity. This Account exemplifies our ongoing interest and great effort in developing efficient lithographic methodologies capable of creating molecular electronic devices through the combination of top-down micro/nanofabrication with bottom-up molecular assembly. These devices use nanogapped carbon nanomaterials (such as single-walled carbon nanotubes (SWCNTs) and graphene), with a particular focus on graphene, as point contacts formed by electron beam lithography and precise oxygen plasma etching. Through robust amide linkages, functional molecular bridges terminated with diamine moieties are covalently wired into the carboxylic acid-functionalized nanogaps to form stable carbon electrode-molecule junctions with desired functionalities. At the macroscopic level, to improve the contact interface between electrodes and organic semiconductors and lower Schottky barriers, we used SWCNTs and graphene as efficient electrodes to explore the intrinsic properties of organic thin films, and then build functional high-performance organic nanotransistors with ultrahigh responsivities

  16. Thermal rectification of hetero junction nanotub es%异质结碳纳米管的热整流效率∗

    Institute of Scientific and Technical Information of China (English)

    温家乐; 徐志成; 古宇; 郑冬琴; 钟伟荣

    2015-01-01

    Using non-equilibrium molecular dynamics method, we have studied the thermal rectification of heterojunction nanotubes (HCNTs). All of these HCNTs, composed of two 4 nm long carbon nanotubes (CNTs), only have a pentagon-heptagon defects pair. Here the positive direction is defined as the direction where the heat flux flows from the large diameter CNTs to the small diameter CNTs. We have found that the thermal rectification depends on the diameter, the chirality and the temperature. Diameter effect: We fix the diameter on one side and changed it on another side, i.e., the left side of the HCNTs is (3, 3) while the right side of the HCNTs is (n, n), in which n changes from 4 to 9. It is found that the thermal rectification efficiency of HCNTs increases with n (also with the diameter difference). If considering the temperature field of (3, 3)–(4, 4) HCNTs, one can find that there exists a region near the HCNT where the temperature changes sharply. This region when the flux is positive is similar to that when the flux is negative. However, if taking into consideration the (3, 3)–(9, 9) HCNTs, we find that the distribution of temperature field shows different behaviors when the directions of the heat flux are different, and the length of this region becomes longer than (3, 3)–(4, 4). It can be explained that the thermal rectification is caused by different temperature distributions in HCNTs. Chirality effect: We keep the chirality unchanged on one side of HCNTs and change the chirality of the other side, namely, the chirality of the left side of HCNTs are (3, 3) and the right side are (9, 9), (11, 7), (13, 4) and (15, 1), all of their diameters are close to 4.1 Å. We can find that the intersection angle between two CNTs decreases when the right side of HCNTs changes from (9, 9) to (15, 1), and the thermal rectification efficiency will be enhanced. It can be explained that the phonon is scattered and absorbed more effectively at the hetero-junction as the

  17. Molecular Tomography of the Quantum State by Time-Resolved Electron Diffraction

    Directory of Open Access Journals (Sweden)

    A. A. Ischenko

    2013-01-01

    Full Text Available A procedure is described that can be used to reconstruct the quantum state of a molecular ensemble from time-dependent internuclear probability density functions determined by time-resolved electron diffraction. The procedure makes use of established techniques for evaluating the density matrix and the phase-space joint probability density, that is, the Wigner function. A novel expression for describing electron diffraction intensities in terms of the Wigner function is presented. An approximate variant of the method, neglecting the off-diagonal elements of the density matrix, was tested by analyzing gas electron diffraction data for N2 in a Boltzmann distribution and TRED data obtained from the 193 nm photodissociation of CS2 to carbon monosulfide, CS, at 20, 40, and 120 ns after irradiation. The coherent changes in the nuclear subsystem by time-resolved electron diffraction method determine the fundamental transition from the standard kinetics to the dynamics of the phase trajectory of the molecule and the tomography of molecular quantum state.

  18. Coexisting Honeycomb and Kagome Characteristics in the Electronic Band Structure of Molecular Graphene.

    Science.gov (United States)

    Paavilainen, Sami; Ropo, Matti; Nieminen, Jouko; Akola, Jaakko; Räsänen, Esa

    2016-06-01

    We uncover the electronic structure of molecular graphene produced by adsorbed CO molecules on a copper (111) surface by means of first-principles calculations. Our results show that the band structure is fundamentally different from that of conventional graphene, and the unique features of the electronic states arise from coexisting honeycomb and Kagome symmetries. Furthermore, the Dirac cone does not appear at the K-point but at the Γ-point in the reciprocal space and is accompanied by a third, almost flat band. Calculations of the surface structure with Kekulé distortion show a gap opening at the Dirac point in agreement with experiments. Simple tight-binding models are used to support the first-principles results and to explain the physical characteristics behind the electronic band structures.

  19. Mapping the intramolecular contributions to the inelastic electron tunneling signal of a molecular junction

    Science.gov (United States)

    Foti, Giuseppe; Vázquez, Héctor

    2016-07-01

    We present a quantitative analysis of the intramolecular origin of the inelastic electron tunneling signal of a molecular junction. We use density-functional theory to study a representative conjugated molecule with a low degree of symmetry and calculate, for all modes, the different contributions that give rise to the vibrational spectrum. These local contributions involve products of scattering states with electron-phonon matrix elements and thus encode information on both the vibrational modes and the electronic structure. We separate these intra- and interatomic terms and draw a pattern of addition or cancellation of these partial contributions throughout the inelastic spectrum. This allows for a quantitative relation between the degree of symmetry of each vibrational mode, its inelastic signal, and the locality of selection rules.

  20. Phonon-Induced Electron-Hole Excitation and ac Conductance in Molecular Junction

    Science.gov (United States)

    Ueda, Akiko; Utsumi, Yasuhiro; Imamura, Hiroshi; Tokura, Yasuhiro

    2016-04-01

    We investigate the linear ac conductance of molecular junctions under a fixed dc bias voltage in the presence of an interaction between a transporting electron and a single local phonon in a molecule with energy ω0. The electron-phonon interaction is treated by the perturbation expansion. The ac conductance as a function of the ac frequency ωac decreases or increases compared with the noninteracting case depending on the magnitude of the dc bias voltage. Furthermore, a dip emerges at ωac ˜ 2ω0. The dip originates from the modification of electron-hole excitation by the ac field, which cannot be obtained by treating the phonon in the linear regime of a classical forced oscillation.

  1. Atomic and molecular complex resonances from real eigenvalues using standard (hermitian) electronic structure calculations

    CERN Document Server

    Landau, Arie; Kaprálová-Žďánská, Petra Ruth; Moiseyev, Nimrod

    2015-01-01

    Complex eigenvalues, resonances, play an important role in large variety of fields in physics and chemistry. For example, in cold molecular collision experiments and electron scattering experiments, autoionizing and pre-dissociative metastable resonances are generated. However, the computation of complex resonance eigenvalues is difficult, since it requires severe modifications of standard electronic structure codes and methods. Here we show how resonance eigenvalues, positions and widths, can be calculated using the standard, widely used, electronic-structure packages. Our method enables the calculations of the complex resonance eigenvalues by using analytical continuation procedures (such as Pad\\'{e}). The key point in our approach is the existence of narrow analytical passages from the real axis to the complex energy plane. In fact, the existence of these analytical passages relies on using finite basis sets. These passages become narrower as the basis set becomes more complete, whereas in the exact limit,...

  2. Electron molecular beam epitaxy: Layer-by-layer growth of complex oxides via pulsed electron-beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Comes, Ryan; Liu Hongxue; Lu Jiwei [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Gu, Man [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Khokhlov, Mikhail; Wolf, Stuart A. [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Guilford College, Greensboro, North Carolina 27410 (United States)

    2013-01-14

    Complex oxide epitaxial film growth is a rich and exciting field, owing to the wide variety of physical properties present in oxides. These properties include ferroelectricity, ferromagnetism, spin-polarization, and a variety of other correlated phenomena. Traditionally, high quality epitaxial oxide films have been grown via oxide molecular beam epitaxy or pulsed laser deposition. Here, we present the growth of high quality epitaxial films using an alternative approach, the pulsed electron-beam deposition technique. We demonstrate all three epitaxial growth modes in different oxide systems: Frank-van der Merwe (layer-by-layer); Stranski-Krastanov (layer-then-island); and Volmer-Weber (island). Analysis of film quality and morphology is presented and techniques to optimize the morphology of films are discussed.

  3. Electron molecular beam epitaxy: Layer-by-layer growth of complex oxides via pulsed electron-beam deposition

    Science.gov (United States)

    Comes, Ryan; Gu, Man; Khokhlov, Mikhail; Liu, Hongxue; Lu, Jiwei; Wolf, Stuart A.

    2013-01-01

    Complex oxide epitaxial film growth is a rich and exciting field, owing to the wide variety of physical properties present in oxides. These properties include ferroelectricity, ferromagnetism, spin-polarization, and a variety of other correlated phenomena. Traditionally, high quality epitaxial oxide films have been grown via oxide molecular beam epitaxy or pulsed laser deposition. Here, we present the growth of high quality epitaxial films using an alternative approach, the pulsed electron-beam deposition technique. We demonstrate all three epitaxial growth modes in different oxide systems: Frank-van der Merwe (layer-by-layer); Stranski-Krastanov (layer-then-island); and Volmer-Weber (island). Analysis of film quality and morphology is presented and techniques to optimize the morphology of films are discussed.

  4. Thermal rectification in a polymer-functionalized single-wall carbon nanotube.

    Science.gov (United States)

    Pal, Souvik; Puri, Ishwar K

    2014-08-29

    Thermal rectification occurs when heat current through a material is favored in one direction but not in the opposite direction. These materials, often called thermal diodes, have the potential to perform logic calculations with phonons. Rectification obtained with existing material systems is either too minor or too difficult to implement practically. Hence, we present a scheme to enable higher rectification using a single-wall carbon nanotube (SWCNT) that is covalently functionalized near one end with polyacetylene (PA) chains. This composite structure allows rectification R up to 204%, which is higher than the values reported for SWCNTs. Here, [Formula: see text], where [Formula: see text] and [Formula: see text] are the heat currents for forward and reverse bias, respectively. The interatomic interactions in the SWCNT-PA nanocomposite are nonlinear, i.e., they are anharmonic, which is a requirement for thermal rectification. Through atomistic simulations, we identify two additional conditions to accomplish thermal rectification at the nanoscale, namely, (1) structural asymmetry, and (2) that the influence of this asymmetry on thermal transport is temperature dependent. The optimum temperature difference to achieve the highest thermal rectification with the structure is 40-80 K.

  5. Enhancing rectification of a nano-swimmer system by multi-layered asymmetric barriers.

    Science.gov (United States)

    Chen, Yen-Fu; Xiao, Song; Chen, Hsuan-Yi; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2015-10-21

    The rectification of nano-swimmers in two chambers separated by a strip of funnel gates is explored by dissipative particle dynamics simulations. According to the trajectories of active colloids across the funnel zone, two rectification mechanisms are identified: geometry-assisted diffusion and trap-hindered diffusion. In general, geometry-assisted diffusion dominates at a small active force (Fa) and run time (τ) while trap-hindered diffusion governs at a large Fa and τ. The rectification ratio is affected by the funnel shape and various geometries are considered: open/closed triangular, circular and rectangular funnels. The rectification ratio of open funnels is always greater than that of closed funnels. Moreover, the open circular funnel has the best performance while the triangular one has the worst. Rectification can be enhanced as the number of funnel layers is increased. It is found that the rectification ratio of self-propelled colloids can be dramatically augmented by triple-layered funnels to be as high as 30. Our simulation study offers an efficient approach for rectification enhancement.

  6. Enhancing rectification of a nano-swimmer system by multi-layered asymmetric barriers

    Science.gov (United States)

    Chen, Yen-Fu; Xiao, Song; Chen, Hsuan-Yi; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2015-10-01

    The rectification of nano-swimmers in two chambers separated by a strip of funnel gates is explored by dissipative particle dynamics simulations. According to the trajectories of active colloids across the funnel zone, two rectification mechanisms are identified: geometry-assisted diffusion and trap-hindered diffusion. In general, geometry-assisted diffusion dominates at a small active force (Fa) and run time (τ) while trap-hindered diffusion governs at a large Fa and τ. The rectification ratio is affected by the funnel shape and various geometries are considered: open/closed triangular, circular and rectangular funnels. The rectification ratio of open funnels is always greater than that of closed funnels. Moreover, the open circular funnel has the best performance while the triangular one has the worst. Rectification can be enhanced as the number of funnel layers is increased. It is found that the rectification ratio of self-propelled colloids can be dramatically augmented by triple-layered funnels to be as high as 30. Our simulation study offers an efficient approach for rectification enhancement.

  7. Enhancing rectification of a nano-swimmer system by multi-layered asymmetric barriers.

    Science.gov (United States)

    Chen, Yen-Fu; Xiao, Song; Chen, Hsuan-Yi; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2015-10-21

    The rectification of nano-swimmers in two chambers separated by a strip of funnel gates is explored by dissipative particle dynamics simulations. According to the trajectories of active colloids across the funnel zone, two rectification mechanisms are identified: geometry-assisted diffusion and trap-hindered diffusion. In general, geometry-assisted diffusion dominates at a small active force (Fa) and run time (τ) while trap-hindered diffusion governs at a large Fa and τ. The rectification ratio is affected by the funnel shape and various geometries are considered: open/closed triangular, circular and rectangular funnels. The rectification ratio of open funnels is always greater than that of closed funnels. Moreover, the open circular funnel has the best performance while the triangular one has the worst. Rectification can be enhanced as the number of funnel layers is increased. It is found that the rectification ratio of self-propelled colloids can be dramatically augmented by triple-layered funnels to be as high as 30. Our simulation study offers an efficient approach for rectification enhancement. PMID:26394906

  8. Airborne Linear Array Image Geometric Rectification Method Based on Unequal Segmentation

    Science.gov (United States)

    Li, J. M.; Li, C. R.; Zhou, M.; Hu, J.; Yang, C. M.

    2016-06-01

    As the linear array sensor such as multispectral and hyperspectral sensor has great potential in disaster monitoring and geological survey, the quality of the image geometric rectification should be guaranteed. Different from the geometric rectification of airborne planar array images or multi linear array images, exterior orientation elements need to be determined for each scan line of single linear array images. Internal distortion persists after applying GPS/IMU data directly to geometrical rectification. Straight lines may be curving and jagged. Straight line feature -based geometrical rectification algorithm was applied to solve this problem, whereby the exterior orientation elements were fitted by piecewise polynomial and evaluated with the straight line feature as constraint. However, atmospheric turbulence during the flight is unstable, equal piecewise can hardly provide good fitting, resulting in limited precision improvement of geometric rectification or, in a worse case, the iteration cannot converge. To solve this problem, drawing on dynamic programming ideas, unequal segmentation of line feature-based geometric rectification method is developed. The angle elements fitting error is minimized to determine the optimum boundary. Then the exterior orientation elements of each segment are fitted and evaluated with the straight line feature as constraint. The result indicates that the algorithm is effective in improving the precision of geometric rectification.

  9. Electron ionization LC-MS with supersonic molecular beams--the new concept, benefits and applications.

    Science.gov (United States)

    Seemann, Boaz; Alon, Tal; Tsizin, Svetlana; Fialkov, Alexander B; Amirav, Aviv

    2015-11-01

    A new type of electron ionization LC-MS with supersonic molecular beams (EI-LC-MS with SMB) is described. This system and its operational methods are based on pneumatic spray formation of the LC liquid flow in a heated spray vaporization chamber, full sample thermal vaporization and subsequent electron ionization of vibrationally cold molecules in supersonic molecular beams. The vaporized sample compounds are transferred into a supersonic nozzle via a flow restrictor capillary. Consequently, while the pneumatic spray is formed and vaporized at above atmospheric pressure the supersonic nozzle backing pressure is about 0.15 Bar for the formation of supersonic molecular beams with vibrationally cold sample molecules without cluster formation with the solvent vapor. The sample compounds are ionized in a fly-though EI ion source as vibrationally cold molecules in the SMB, resulting in 'Cold EI' (EI of vibrationally cold molecules) mass spectra that exhibit the standard EI fragments combined with enhanced molecular ions. We evaluated the EI-LC-MS with SMB system and demonstrated its effectiveness in NIST library sample identification which is complemented with the availability of enhanced molecular ions. The EI-LC-MS with SMB system is characterized by linear response of five orders of magnitude and uniform compound independent response including for non-polar compounds. This feature improves sample quantitation that can be approximated without compound specific calibration. Cold EI, like EI, is free from ion suppression and/or enhancement effects (that plague ESI and/or APCI) which facilitate faster LC separation because full separation is not essential. The absence of ion suppression effects enables the exploration of fast flow injection MS-MS as an alternative to lengthy LC-MS analysis. These features are demonstrated in a few examples, and the analysis of the main ingredients of Cannabis on a few Cannabis flower extracts is demonstrated. Finally, the advantages of

  10. The appropriateness of density-functional theory for the calculation of molecular electronics properties.

    Science.gov (United States)

    Reimers, Jeffrey R; Cai, Zheng-Li; Bilić, Ante; Hush, Noel S

    2003-12-01

    As molecular electronics advances, efficient and reliable computation procedures are required for the simulation of the atomic structures of actual devices, as well as for the prediction of their electronic properties. Density-functional theory (DFT) has had widespread success throughout chemistry and solid-state physics, and it offers the possibility of fulfilling these roles. In its modern form it is an empirically parameterized approach that cannot be extended toward exact solutions in a prescribed way, ab initio. Thus, it is essential that the weaknesses of the method be identified and likely shortcomings anticipated in advance. We consider four known systematic failures of modern DFT: dispersion, charge transfer, extended pi conjugation, and bond cleavage. Their ramifications for molecular electronics applications are outlined and we suggest that great care is required when using modern DFT to partition charge flow across electrode-molecule junctions, screen applied electric fields, position molecular orbitals with respect to electrode Fermi energies, and in evaluating the distance dependence of through-molecule conductivity. The causes of these difficulties are traced to errors inherent in the types of density functionals in common use, associated with their inability to treat very long-range electron correlation effects. Heuristic enhancements of modern DFT designed to eliminate individual problems are outlined, as are three new schemes that each represent significant departures from modern DFT implementations designed to provide a priori improvements in at least one and possible all problem areas. Finally, fully semiempirical schemes based on both Hartree-Fock and Kohn-Sham theory are described that, in the short term, offer the means to avoid the inherent problems of modern DFT and, in the long term, offer competitive accuracy at dramatically reduced computational costs.

  11. Unoccupied electronic structure and molecular orientation of rubrene; from evaporated films to single crystals

    Science.gov (United States)

    Ueba, T.; Park, J.; Terawaki, R.; Watanabe, Y.; Yamada, T.; Munakata, T.

    2016-07-01

    Two-photon photoemission (2PPE) spectroscopy and ultraviolet photoemission spectroscopy (UPS) have been performed for rubrene single crystals and evaporated thin films on highly oriented pyrolytic graphite (HOPG). The changes in the 2PPE intensity from the single crystals by the polarization of the light and by the angle of the light incident plane against the crystalline axes indicate that the molecular arrangement on the surface is similar to that in the bulk crystal. On the other hand, in the case of evaporated films, the polarization dependence of 2PPE indicates that the tetracene backbone becomes standing upright as the thickness increases. In spite of the alignment of molecules, the broadened 2PPE spectral features for thick films suggest that the films are amorphous and molecules are in largely different environments. The film structures are confirmed by scanning tunneling microscopy (STM). The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) derived levels of the single crystal are shifted by + 0.18 and - 0.20 eV, respectively, from those of the 0.8 ML film. The shifts are attributed to the packing density of molecules. It is shown that the unoccupied electronic structure is more sensitively affected by the film structure than the occupied electronic structure.

  12. Molecular potentials and wave function mapping by high-resolution electron spectroscopy and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kimberg, Victor, E-mail: victor.kimberg@pks.mpi.de [Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden (Germany); Miron, Catalin, E-mail: miron@synchrotron-soleil.fr [Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin, BP 48, FR-91192 Gif-sur-Yvette Cedex (France)

    2014-08-15

    Highlights: • Some studies related to the vibrational wave functions mapping phenomenon are reviewed. • The core-excited vibrational wave functions were mapped using dissociative and bound final states. • High-resolution experimental data is accompanied by ab initio calculations. • The mapping phenomenon allows one to extract constants of the molecular potentials. • The mapping techniques are general and can be applied for the study of many systems. - Abstract: The recent development of high brightness 3{sup rd} generation soft X-ray sources and high energy resolution electron spectrometers made it possible to accurately trace quantum phenomena associated to the vibrational dynamics in core-excited molecules. The present paper reviews the recent results on mapping of vibrational wave functions and molecular potentials based on electron spectroscopy. We discuss and compare the mapping phenomena in various systems, stressing the advantages of the resonant X-ray scattering for studying of the nuclear dynamics and spectroscopic constants of small molecules. The experimental results discussed in the paper are most often accompanied by state-of-the-art ab initio calculations allowing for a deeper understanding of the quantum effects. Besides its fundamental interest, the vibrational wave function mapping is shown to be useful for the analysis of core- and valence-excited molecular states based on the reflection principle.

  13. Effect of concentration gradient on ionic current rectification in polyethyleneimine modified glass nano-pipettes.

    Science.gov (United States)

    Deng, Xiao Long; Takami, Tomohide; Son, Jong Wan; Kang, Eun Ji; Kawai, Tomoji; Park, Bae Ho

    2014-02-06

    Ion current rectification dependent on the concentration gradient of KCl solutions was systematically investigated in polyethyleneimine modified glass nano-pipettes with inner diameter of 105 nm. Peak shape dependence of the rectification factor on outer KCl solution concentration was observed when inner KCl solution with concentration from 1 mM to 500 mM was used. The peak shape dependence was also observed when the concentrations of the inner and outer KCl solutions were identically controlled. The peak shape in the ion current rectification could be explained by the ion conductance changes through the conical nano-pipette, which result from modulation of ion concentration.

  14. A two-step rectification algorithm for airborne linear images with POS data

    Institute of Scientific and Technical Information of China (English)

    TUO Hong-ya; LIU Yun-cai

    2005-01-01

    Rectification for airborne linear images is an indispensable preprocessing step. This paper presents in detail a two-step rectification algorithm. The first step is to establish the model of direct georeference position using the data provided by the Positioning and Orientation System (POS) and obtain the mathematical relationships between the image points and ground reference points. The second step is to apply polynomial distortion model and Bilinear Interpolation to get the final precise rectified images.In this step, a reference image is required and some ground control points (GCPs) are selected. Experiments showed that the final rectified images are satisfactory, and that our two-step rectification algorithm is very effective.

  15. Investigation of electron localization in harmonic emission from asymmetric molecular ion

    Institute of Scientific and Technical Information of China (English)

    张彩萍; 苗向阳

    2015-01-01

    We theoretically investigate the electron localization around two nuclei in harmonic emission from asymmetric molec-ular ion. The results show that the ionization process of electron localized around one nucleus competes with its transfer process to the other nucleus. By increasing the initial vibrational level, more electrons localized around the nucleus D+tend to transfer to the nucleus He2+so that the ionizations of electrons localized around the nucleus He2+increase. In this case, the difference in harmonic efficiency between HeH2+and HeD2+decreases while the difference in harmonic spectral structure increases. The evident minimum can be observed in the harmonic spectrum of HeH2+ compared with that in the spectral structure of HeD2+, which is due to the strong interference of multiple recombination channels originating from two nuclei. Time-dependent nuclear probability density, electron-nuclear probability density, double-well model, and time-frequency maps are presented to explain the underlying mechanisms.

  16. Electron scattering by biomass molecular fragments: useful data for plasma applications?*

    Science.gov (United States)

    Ridenti, Marco A.; Amorim Filho, Jayr; Brunger, Michael J.; da Costa, Romarly F.; Varella, Márcio T. do N.; Bettega, Márcio H. F.; Lima, Marco A. P.

    2016-08-01

    Recent data obtained for electron scattering by biomass molecular fragments, indicated that low-energy resonances may have an important role in the de-lignification of biomass through a plasma pre-treatment. To support these findings, we present new experimental evidence of the predicted dissociation pathways on plasma treatment of biomass. An important question is how accurate must the experimental and/or the theoretical data be in order to indicate that plasma modelings can be really useful in understanding plasma applications? In this paper, we initiate a discussion on the role of data accuracy of experimental and theoretical electron-molecule scattering cross sections in plasma modeling. First we review technological motivations for carrying out electron-molecule scattering studies. Then we point out the theoretical and experimental limitations that prevent us from obtaining more accurate cross sections. We present a few examples involving biomass molecular fragments, to illustrate theoretical inaccuracies on: resonances positions and widths, electronic excitation, superelastic cross sections from metastable states and due to multichannel effects on the momentum transfer cross sections. On the experimental side we briefly describe challenges in making absolute cross sections measurements with biomass species and radicals. And finally, through a simulation of a N2 plasma, we illustrate the impact on the simulation due to inaccuracies on the resonance positions and widths and due to multichannel effects on the momentum transfer cross sections. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.Supplementary material in the form of one pdf and two mp4 files available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-70272-8

  17. Focus: Two-dimensional electron-electron double resonance and molecular motions: The challenge of higher frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Franck, John M.; Chandrasekaran, Siddarth; Dzikovski, Boris; Dunnam, Curt R.; Freed, Jack H., E-mail: jhf3@cornell.edu [Department of Chemistry and Chemical Biology and National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York 14853 (United States)

    2015-06-07

    The development, applications, and current challenges of the pulsed ESR technique of two-dimensional Electron-Electron Double Resonance (2D ELDOR) are described. This is a three-pulse technique akin to 2D Exchange Nuclear Magnetic Resonance, but involving electron spins, usually in the form of spin-probes or spin-labels. As a result, it required the extension to much higher frequencies, i.e., microwaves, and much faster time scales, with π/2 pulses in the 2-3 ns range. It has proven very useful for studying molecular dynamics in complex fluids, and spectral results can be explained by fitting theoretical models (also described) that provide a detailed analysis of the molecular dynamics and structure. We discuss concepts that also appear in other forms of 2D spectroscopy but emphasize the unique advantages and difficulties that are intrinsic to ESR. Advantages include the ability to tune the resonance frequency, in order to probe different motional ranges, while challenges include the high ratio of the detection dead time vs. the relaxation times. We review several important 2D ELDOR studies of molecular dynamics. (1) The results from a spin probe dissolved in a liquid crystal are followed throughout the isotropic → nematic → liquid-like smectic → solid-like smectic → crystalline phases as the temperature is reduced and are interpreted in terms of the slowly relaxing local structure model. Here, the labeled molecule is undergoing overall motion in the macroscopically aligned sample, as well as responding to local site fluctuations. (2) Several examples involving model phospholipid membranes are provided, including the dynamic structural characterization of the boundary lipid that coats a transmembrane peptide dimer. Additionally, subtle differences can be elicited for the phospholipid membrane phases: liquid disordered, liquid ordered, and gel, and the subtle effects upon the membrane, of antigen cross-linking of receptors on the surface of plasma membrane

  18. Electrochemical current rectification-a novel signal amplification strategy for highly sensitive and selective aptamer-based biosensor.

    Science.gov (United States)

    Feng, Lingyan; Sivanesan, Arumugam; Lyu, Zhaozi; Offenhäusser, Andreas; Mayer, Dirk

    2015-04-15

    Electrochemical aptamer-based (E-AB) sensors represent an emerging class of recently developed sensors. However, numerous of these sensors are limited by a low surface density of electrode-bound redox-oligonucleotides which are used as probe. Here we propose to use the concept of electrochemical current rectification (ECR) for the enhancement of the redox signal of E-AB sensors. Commonly, the probe-DNA performs a change in conformation during target binding and enables a nonrecurring charge transfer between redox-tag and electrode. In our system, the redox-tag of the probe-DNA is continuously replenished by solution-phase redox molecules. A unidirectional electron transfer from electrode via surface-linked redox-tag to the solution-phase redox molecules arises that efficiently amplifies the current response. Using this robust and straight-forward strategy, the developed sensor showed a substantial signal amplification and consequently improved sensitivity with a calculated detection limit of 114nM for ATP, which was improved by one order of magnitude compared with the amplification-free detection and superior to other previous detection results using enzymes or nanomaterials-based signal amplification. To the best of our knowledge, this is the first demonstration of an aptamer-based electrochemical biosensor involving electrochemical rectification, which can be presumably transferred to other biomedical sensor systems.

  19. Photon-assisted electronic and spin transport in a junction containing precessing molecular spin

    Science.gov (United States)

    Filipović, Milena; Belzig, Wolfgang

    2016-02-01

    We study the ac charge and -spin transport through an orbital of a magnetic molecule with spin precessing in a constant magnetic field. We assume that the source and drain contacts have time-dependent chemical potentials. We employ the Keldysh nonequilibrium Green's functions method to calculate the spin and charge currents to linear order in the time-dependent potentials. The molecular and electronic spins are coupled via exchange interaction. The time-dependent molecular spin drives inelastic transitions between the molecular quasienergy levels, resulting in a rich structure in the transport characteristics. The time-dependent voltages allow us to reveal the internal precession time scale (the Larmor frequency) by a dc conductance measurement if the ac frequency matches the Larmor frequency. In the low-ac-frequency limit the junction resembles a classical electric circuit. Furthermore, we show that the setup can be used to generate dc-spin currents, which are controlled by the molecular magnetization direction and the relative phases between the Larmor precession and the ac voltage.

  20. Self-assembling monolayers of helical oligopeptides with applications in molecular electronics

    CERN Document Server

    Strong, A E

    1997-01-01

    prepared. Transformation of the two (Trt)Cys residues of the resin-bound peptide to the intramolecular disulphide by iodine was achieved in acetonitrile but not in DMF. CD suggested that the conformation of this peptide was a mixture of helix and random coil. Films of the peptide-disulphide and the peptide-dithiol adsorbed from protic solvents were characterised as multilayers by ellipsometry. However CV and ellipsometry showed that a monolayer was successfully prepared from acetonitrile. Future targets for improving and extending this method to form monolayers of linked disulphides are presented. The aim of this project was to develop a generic method of preparing a 'molecular architecture' containing functional groups on a surface at predetermined relative positions several nm apart. This would be of great utility in molecular electronics, chemical sensors and other fields. It was proposed that such an architecture could be prepared on gold using linked, helical oligopeptides that contained the components o...

  1. A morphological study of molecularly imprinted polymers using the scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Paniagua Gonzalez, Gema [Departamento de Ciencias Analiticas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), 28040 Madrid (Spain)]. E-mail: gpaniagua@pas.uned.es; Fernandez Hernando, Pilar [Departamento de Ciencias Analiticas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), 28040 Madrid (Spain); Durand Alegria, J.S. [Departamento de Ciencias Analiticas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), 28040 Madrid (Spain)

    2006-01-31

    Molecular imprinting is an emerging technique for producing polymers with applications in affinity-based separation, in biomimetic sensors, in catalysis, etc. This variety of uses relies upon the production of polymers with different affinities, specificities, sensitivities and loading capacities. Research into the development of molecular imprinted polymers (MIPs) with new or improved morphologies - which involves modification of the polymerisation process - is therefore underway. This paper reports a comparative study of non-covalent MIPs synthesised by 'bulk' polymerisation using digoxin as template. These were synthesised under different conditions, i.e., changing the functional monomers employed (methacrylic acid or 2-vinylpyridine), the porogens (acetonitrile or dichloromethane) used, and by altering the volume of the latter. The polymerisation process was allowed to proceed either under UV light or in a thermostat-controlled waterbath. The surface morphology (was determined by scanning electron microscopy) and the ability of the different polymers to selectively rebind the template was then evaluated.

  2. Electron transport through single phenylene-ethynylene molecular junctions at low temperature

    Science.gov (United States)

    Khondaker, Saiful I.; Yao, Zhen; Cheng, Long; Henderson, Jay C.; Yao, Yuxing; Tour, James M.

    2004-07-01

    We present low-temperature electron transport measurements of individual phenylene-ethynylene molecular wires, connected to nanometer-spaced gold electrodes. Low-bias current-voltage (I-V) characteristics measured at 4.2K are stable and show irregular steps. After application of a large voltage, the low-bias I -V curves switch between different stable configurations, some of which show negative differential resistance (NDR). Similar behavior, including the NDR, has been observed in molecules irrespective of whether they contain a NO2 side group or not. We suggest that different I -V curves measured, including the NDR, could be due either to conformational changes in the molecules or a change in coupling of the molecular junction.

  3. Safety considerations for low temperature rectification of fission inert gases

    International Nuclear Information System (INIS)

    In a consideration of the risks of low temperature rectification of krypton from waste gas, the main point is the radiolytic formation of ozone, whose boiling point is nearly equal to that of xenon, in which it can be enriched. The explosion limit values of ozone in oxygen or in different dilutants (He, Ar, Kr, Xe, N2 and CCl2F2) and the speed and pressure of the stationary detonation of O3 in inert gases depending on the mol fraction O3/O2 were determined. The propagation of a detonation by a typical column filler, the effect of impurities (CH4, CO, NO2) on explosion and detonation and the phase equilibrium O3/Xe were also examined. (RB)

  4. Maximal rectification ratios for bi-segment thermal rectifiers

    CERN Document Server

    Shih, Tien-Mo; Guo, Ziquan; Liu, Guangcao; Merlitz, Holger; Pagni, Patrick J; Chen, Zhong

    2014-01-01

    We study bi-segment thermal rectifiers whose forward heat fluxes are greater than reverse counterparts. Presently, a shortcoming of thermal rectifiers is that the rectification ratio, namely the forward flux divided by the reverse flux, remains too small for practical applications. In this study, we have managed to discover and theoretically derive the ultimate limit of such ratios, which are validated by numerical simulations, experiments, and micro-scale Hamiltonian-oscillator analyses. For rectifiers whose thermal conductivities are linear with the temperature, this limit is simply a numerical value of 3. For those whose conductivities are nonlinear with temperatures, the maxima equal $\\kappa_{max}/\\kappa_{min}$, where the two extremes denote values of the solid segment materials that can be possibly found or fabricated within a reasonable temperature range on earth. Recommendations for manufacturing high-ratio rectifiers are also given with examples.

  5. Large-Signal DG-MOSFET Modelling for RFID Rectification

    Directory of Open Access Journals (Sweden)

    R. Rodríguez

    2016-01-01

    Full Text Available This paper analyses the undoped DG-MOSFETs capability for the operation of rectifiers for RFIDs and Wireless Power Transmission (WPT at microwave frequencies. For this purpose, a large-signal compact model has been developed and implemented in Verilog-A. The model has been numerically validated with a device simulator (Sentaurus. It is found that the number of stages to achieve the optimal rectifier performance is inferior to that required with conventional MOSFETs. In addition, the DC output voltage could be incremented with the use of appropriate mid-gap metals for the gate, as TiN. Minor impact of short channel effects (SCEs on rectification is also pointed out.

  6. Metal–semiconductor nanojunctions and their rectification characteristics

    Indian Academy of Sciences (India)

    Anindita Bose; Kuntal Chatterjee; Dipankar Chakravorty

    2009-06-01

    Junctions of silver–copper oxide and silver–zinc oxide, respectively were prepared within the pores of diameters, 20 nm, in anodic aluminium oxide membranes. Voltage–current characteristics were measured over the temperature range 373–573 K which showed rectification behaviour. Using the standard equation the difference between the work functions of the metal and the semiconductor was calculated. This showed a variation with the temperature of measurement. This is explained as arising due to the effect of pressure generated as a result of thermal expansion of the metallic phases concerned between the electrodes. This is consistent with the theoretical prediction of Fermi level shifting of the semiconductor within the bandgap as a function of pressure.

  7. DC/DC converter with improved rectification for higher efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Maisel, Peter; Saliternig, Martin [Continental AG, Nuernberg (Germany)

    2010-07-01

    High-power dc-dc converters are an important element of the electrical system of electric vehicles and hybrid electric vehicles. These complex modular components provide the link between the high-voltage level used for the powertrain and the low-voltage bus for the lighting system, engine management and auxiliary needs in the vehicle. The essential requirements for all converters are high efficiency, compact size, lightweight and reliability. A very popular method to increase the efficiency is the synchronous rectification. Parasitic inductances in the commutation circuit and reverse recovery effects can produce a ringing with voltage overshoots at the diodes and the transistors. These spikes can cause higher average power dissipation in the seminconductors and higher EMI (electromagnetic interference).

  8. Tunable self-action of light in optical rectification

    Science.gov (United States)

    Torres, Juan P.; Torner, Lluis; Biaggio, Ivan; Segev, Mordechai

    2002-12-01

    We analyze the self-action of light waves mediated by cascaded optical rectification in a quadratic nonlinear crystal in the framework of the full local-field equations and show that the process can lead to a rich variety of self-effects. We put forward a general scheme to calculate the full nonlinear response mediated by the self-generated rectified fields and thus show that acting on the shape, the polarization of the light beam and the geometric arrangement of the nonlinear crystal allows tuning the sign, the strength, and the type of the induced nonlinearities, opening the door to the exploration of a variety of self- and cross-phase modulations, and solitary-waves. We also show configurations where even though the macroscopic rectified field vanishes, the macroscopic self-effects do not.

  9. AN INFORMATION FUSION METHOD FOR SENSOR DATA RECTIFICATION

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhen; Xu Lizhong; Harry Hua Li; Shi Aiye; Han Hua; Wang Huibin

    2012-01-01

    In the applications of water regime monitoring,incompleteness,and inaccuracy of sensor data may directly affect the reliability of acquired monitoring information.Based on the spatial and temporal correlation of water regime monitoring information,this paper addresses this issue and proposes an information fusion method to implement data rectification.An improved Back Propagation (BP) neural network is used to perform data fusion on the hardware platform of a stantion unit,which takes Field-Programmable Gate Array (FPGA) as the core component.In order to verify the effectiveness,five measurements including water level,discharge and velocity are selected from three different points in a water regime monitoring station.The simulation results show that this method can recitify random errors as well as gross errors significantly.

  10. Rectification in substituted atomic wires: a theoretical insight.

    Science.gov (United States)

    Asai, Yoshihiro

    2012-04-25

    Recently, there have been discussions that the giant diode property found experimentally in diblock molecular junctions could be enhanced by the many-body electron correlation effect beyond the mean field theory. In addition, the effect of electron-phonon scattering on an electric current through the diode molecule, measured by inelastic tunneling spectroscopy (IETS), was found to be symmetric with respect to the voltage sign change even though the current is asymmetric. The reason for this behavior is a matter of speculation. In order to clarify whether or not this feature is limited to organic molecules in the off-resonant tunneling region, we discuss the current asymmetry effect on IETS in the resonant region. We introduced heterogeneous atoms into an atomic wire and found that IETS becomes asymmetric in this substituted atomic wire case. Our conclusion gives the other example of intrinsic differences between organic molecules and metallic wires. While the contribution of electron-phonon scattering to IETS is not affected by the current asymmetry in the former case, it is affected in the latter case. The importance of the contribution of the electron-hole excitation to phonon damping in bringing about the current asymmetry effect in IETS in the latter case is discussed. PMID:22466527

  11. Ion current rectification, limiting and overlimiting conductances in nanopores.

    Directory of Open Access Journals (Sweden)

    Liesbeth van Oeffelen

    Full Text Available Previous reports on Poisson-Nernst-Planck (PNP simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be.

  12. Surface-Bound Molecular Film Structure Effects on Electronic and Magnetic Properties

    Science.gov (United States)

    Pronschinske, Alex M.

    This thesis dissertation will discuss the importance of understanding the driving forces of molecular assembly on surfaces and the need to characterize the electronic and magnetic properties of the resulting organic films. Furthermore, experimental results on model organic molecular assemblies, benzoate on Cu(110) and Fe[(H2BPz2)2bpy] ("Fe-bpy") on Au(111), and their novel film properties will be presented. The primary experimental techniques used in this work are scanning tunneling microscopy and spectroscopy (STM, STS), and so a theoretical characterization of constant current distance-voltage STS (z(V)-STS) will also be developed. Deposition of benzoic acid (C6H5COOH) on to Cu(110) will be used to create a diverse molecular environment of benzoate molecules (C6H5COO+). In this film we will utilize structural phases consisting of co-existing orientation (alpha-phase) and uniform molecular orientation (c(8x2) phase) to probe electric potential variation across the surface of the film. Using z( V)-STS find that the electron affinity level of a molecule's near-neighbor will exert a substrate-mediated influence on the energy of the molecule's image potential state; which we describe using a 1-D dielectric continuum model. Motivated by the unique utility of z(V)-STS for gentle probing of molecular electronic structure and electric potential we perform a thorough theoretical characterize of z( V)-STS. We derive a differential equation for simulating z(V)-STS spectra under the standard approximation of a square tunneling barrier. Moreover, we derive an equation for sample density of states (DOS) that is applicable for all modes of STS. The central result of this work for interpretation of z(V)-STS results is a characterization of systematic error between state energy and z(V)-STS peak location, as well we show that empirical normalization procedure for removing background distortion from constant height current-voltage STS, (V/I)dI/dV, is also applicable to z(V)-STS is

  13. Limit on electron neutrino mass from observation of the beta decay of molecular tritium

    Energy Technology Data Exchange (ETDEWEB)

    Wilkerson, J.F.; Bowles, T.J.; Friar, J.L.; Robertson, R.G.H.; Stephenson, G.J. Jr.; Wark, D.L. (Los Alamos National Lab., NM (USA)); Knapp, D.A. (Lawrence Livermore National Lab., CA (USA))

    1990-01-01

    We report the most sensitive upper limit set on the mass of the electron antineutrino. The upper limit of 9.4 eV (95% confidence level) was obtained from a study of the shape of the beta decay spectrum of free molecular tritium. Achieving such a level of sensitivity required precise determinations of all processes that modify the shape of the observed spectrum. This result is in clear disagreement with a reported value for the mass of 26(5) eV. 30 refs., 3 figs., 2 tabs.

  14. Molecular ions in ultracold atomic gases: computed electronic interactions for \\MgHion with Rb

    CERN Document Server

    Tacconi, Mario

    2007-01-01

    The electronic structures of the manifold of potential energy surfaces generated in the lower energy range by the interaction of the MgH$^+$(X$^1\\Sigma^+$) cationic molecule with Rb($^2$S), neutral atom are obtained over a broad range of Jacobi coordinates from strongly correlated \\emph{ab initio} calculations which use a Multireference (MR) wavefunction within a Complete Active Space (CAS) approach. The relative features of the lowest five surfaces are analyzed in terms of possible collisional outcomes when employed to model the ultracold dynamics of ionic molecular partners.

  15. Deep electron traps in CdTe:In films grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Zakrzewski, A.K.; Dobaczewski, L.; Karczewski, G.; Wojtowicz, T.; Kossut, J. [Institute of Physics, Polish Academy of Science, Warsaw (Poland)

    1995-12-31

    N-type indium CdTe grown on n{sup +}-GaAs molecular beam epitaxy has been studied by the standard deep level transient spectroscopy and the isothermal Laplace-transform deep level transient spectroscopy. It was found that the Cd/Te flux ratio strongly influences the deep level transient spectroscopy results. The unusual temperature dependence of the electron emission rate in films grown at nearly stoichiometric conditions may point out that the observed defect is resonant with the conduction band. (author). 5 refs, 1 fig.

  16. Reversible Photomodulation of Electronic Communication in a π-Conjugated Photoswitch-Fluorophore Molecular Dyad.

    Science.gov (United States)

    Moreno, Javier; Schweighöfer, Felix; Wachtveitl, Josef; Hecht, Stefan

    2016-01-18

    The extent of electronic coupling between a boron dipyrromethene (BODIPY) fluorophore and a diarylethene (DAE) photoswitch has been modulated in a covalently linked molecular dyad by irradiation with either UV or visible light. In the open isomer, both moieties can be regarded as individual chromophores, while in the closed form the lowest electronic (S0 →S1 ) transition of the dyad is slightly shifted, enabling photomodulation of its fluorescence. Transient spectroscopy confirms that the dyad behaves dramatically different in the two switching states: while in the open isomer it resembles an undisturbed BODIPY fluorophore, in the closed isomer no fluorescence occurs and instead a red-shifted DAE behavior prevails. PMID:26667670

  17. Electron spin resonance studies on reduction process of nitroxyl spin radicals used in molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dhas, M. Kumara; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, NMSSVN College, Nagamalai, Madurai-625019, Tamilnadu (India); Jawahar, A. [Department of Chemistry, NMSSVN College, Nagamalai, Madurai-625019, Tamilnadu (India)

    2014-04-24

    The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM {sup 14}N labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters such as signal intensity ratio, line width, g-value, hyperfine coupling constant and rotational correlation time were determined. The half life time was estimated for 1mM {sup 14}N labeled nitroxyl radicals in 1 mM concentration of ascorbic acid. The ESR study reveals that the TEMPONE has narrowest line width and fast tumbling motion compared with TEMPO and TEMPOL. From the results, TEMPONE has long half life time and high stability compared with TEMPO and TEMPOL radical. Therefore, this study reveals that the TEMPONE radical can act as a good redox sensitive spin probe for molecular imaging.

  18. Electronic processes in molecular dynamics simulations of nanoscale metal tips under electric fields

    CERN Document Server

    Parviainen, S; Djurabekova, F; Timko, H

    2011-01-01

    Electronic effects play a crucial role in the temperature evolution of metal parts which have electric currents running through them. The increase in temperature due to resistive heating can cause the melting of metal nanoscale wires creating damage in electric circuits. Likewise, electric currents are also present in sharp features on metal surfaces exposed to high electric fields. The destruction of such tips can lead to vacuum arcs, supplying the neutral species to build up plasma over the surface. To follow the temperature evolution caused by electric currents in such a tip, we developed a new model, based on an existing molecular dynamics code, to include resistive heating and electronic thermal conduction. The results given by the new simulation model are in good agreement with analytical predictions. (C) 2011 Published by Elsevier B.V.

  19. The McClelland approximation and the distribution of π-electron molecular orbital energy levels

    Directory of Open Access Journals (Sweden)

    IVAN GUTMAN

    2007-10-01

    Full Text Available The total π-electron energy E of a conjugated hydrocarbon with n carbon atoms and m carbon–carbon bonds can be approximately calculated by means of the McClelland formula E = g SQRT(2mr, where g is an empirical fitting constant, g ≈ 0.9. It was claimed that the good quality of the McClelland approximation is a consequence of the fact that the π-electron molecular orbital energy levels are distributed in a nearly uniform manner. It will now be shown that the McClelland approximation does not depend on the nature of the distribution of energy levels, i.e., that it is compatible with a large variety of such distributions.

  20. Electron spin resonance studies on reduction process of nitroxyl spin radicals used in molecular imaging

    International Nuclear Information System (INIS)

    The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM 14N labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters such as signal intensity ratio, line width, g-value, hyperfine coupling constant and rotational correlation time were determined. The half life time was estimated for 1mM 14N labeled nitroxyl radicals in 1 mM concentration of ascorbic acid. The ESR study reveals that the TEMPONE has narrowest line width and fast tumbling motion compared with TEMPO and TEMPOL. From the results, TEMPONE has long half life time and high stability compared with TEMPO and TEMPOL radical. Therefore, this study reveals that the TEMPONE radical can act as a good redox sensitive spin probe for molecular imaging

  1. Hilbert-space partitioning of the molecular one-electron density matrix with orthogonal projectors

    CERN Document Server

    Vanfleteren, Diederik; Bultinck, Patrick; Ayers, Paul W; Waroquier, Michel; 10.1063/1.3521493

    2011-01-01

    A double-atom partitioning of the molecular one-electron density matrix is used to describe atoms and bonds. All calculations are performed in Hilbert space. The concept of atomic weight functions (familiar from Hirshfeld analysis of the electron density) is extended to atomic weight matrices. These are constructed to be orthogonal projection operators on atomic subspaces, which has significant advantages in the interpretation of the bond contributions. In close analogy to the iterative Hirshfeld procedure, self-consistency is built in at the level of atomic charges and occupancies. The method is applied to a test set of about 67 molecules, representing various types of chemical binding. A close correlation is observed between the atomic charges and the Hirshfeld-I atomic charges.

  2. Electron emission and molecular fragmentation during hydrogen and deuterium ion impact on carbon surfaces

    Science.gov (United States)

    Qayyum, A.; Schustereder, W.; Mair, C.; Scheier, P.; Märk, T. D.; Cernusca, S.; Winter, HP.; Aumayr, F.

    2003-03-01

    Molecular fragmentation and electron emission during hydrogen ion impact on graphite surfaces has been investigated in the eV to keV impact energy region typical for fusion edge plasma conditions. As a target surface graphite tiles for the Tokamak experiment Tore Supra in CEA-Cadarache/France and highly oriented pyrolytic graphite (HOPG) have been used. For both surfaces studied, the experimentally observed threshold for electron emission is at about 50 eV/amu impact energy. Electron emission from the high conductivity side of the carbon tile is 15-20% less as compared to its low conductivity side, whereas results for HOPG are generally between these two cases. Deuterium and hydrogen ions are almost equally effective in liberating electrons from graphite when comparing results for the same impact velocity. Surface-induced dissociation of deuterium ions D 3+ upon impact on Tore Supra graphite tiles, in the collision energy range of 20-100 eV, produced only atomic fragment ions D +. The other possible fragment ion D 2+ could not be observed.

  3. Calculation of the spectrum of quasiparticle electron excitations in organic molecular semiconductors

    Science.gov (United States)

    Tikhonov, E. V.; Uspenskii, Yu. A.; Khokhlov, D. R.

    2015-06-01

    A quasiparticle electronic spectrum belongs to the characteristics of nanoobjects that are most important for applications. The following methods of calculating the electronic spectrum are analyzed: the Kohn-Sham equations of the density functional theory (DFT), the hybrid functional method, the GW approximation, and the Lehmann approximation used in the spectral representation of one-electron Green's function. The results of these approaches are compared with the data of photoemission measurements of benzene, PTCDA, and phthalocyanine (CuPc, H2Pc, FePc, PtPc) molecules, which are typical representatives of organic molecular semiconductors (OMS). This comparison demonstrates that the Kohn-Sham equations of DFT incorrectly reproduce the electronic spectrum of OMS. The hybrid functional method correctly describes the spectrum of the valence and conduction bands; however, the HOMO-LUMO gap width is significantly underestimated. The correct gap width is obtained in both the GW approximation and the Lehmann approach, and the total energy in this approach can be calculated in the local density approximation of DFT.

  4. Calculation of the spectrum of quasiparticle electron excitations in organic molecular semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tikhonov, E. V., E-mail: tikhonov@mig.phys.msu.ru [Moscow State University (Russian Federation); Uspenskii, Yu. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Khokhlov, D. R. [Moscow State University (Russian Federation)

    2015-06-15

    A quasiparticle electronic spectrum belongs to the characteristics of nanoobjects that are most important for applications. The following methods of calculating the electronic spectrum are analyzed: the Kohn-Sham equations of the density functional theory (DFT), the hybrid functional method, the GW approximation, and the Lehmann approximation used in the spectral representation of one-electron Green’s function. The results of these approaches are compared with the data of photoemission measurements of benzene, PTCDA, and phthalocyanine (CuPc, H{sub 2}Pc, FePc, PtPc) molecules, which are typical representatives of organic molecular semiconductors (OMS). This comparison demonstrates that the Kohn-Sham equations of DFT incorrectly reproduce the electronic spectrum of OMS. The hybrid functional method correctly describes the spectrum of the valence and conduction bands; however, the HOMO-LUMO gap width is significantly underestimated. The correct gap width is obtained in both the GW approximation and the Lehmann approach, and the total energy in this approach can be calculated in the local density approximation of DFT.

  5. Electron emission and molecular fragmentation during hydrogen and deuterium ion impact on carbon surfaces

    International Nuclear Information System (INIS)

    Molecular fragmentation and electron emission during hydrogen ion impact on graphite surfaces has been investigated in the eV to keV impact energy region typical for fusion edge plasma conditions. As a target surface graphite tiles for the Tokamak experiment Tore Supra in CEA-Cadarache/France and highly oriented pyrolytic graphite (HOPG) have been used. For both surfaces studied, the experimentally observed threshold for electron emission is at about 50 eV/amu impact energy. Electron emission from the high conductivity side of the carbon tile is 15-20% less as compared to its low conductivity side, whereas results for HOPG are generally between these two cases. Deuterium and hydrogen ions are almost equally effective in liberating electrons from graphite when comparing results for the same impact velocity. Surface-induced dissociation of deuterium ions D3+ upon impact on Tore Supra graphite tiles, in the collision energy range of 20-100 eV, produced only atomic fragment ions D+. The other possible fragment ion D2+ could not be observed

  6. Effects of electron-phonon interaction on thermal and electrical transport through molecular nano-conductors

    Energy Technology Data Exchange (ETDEWEB)

    Lü, Jing-Tao, E-mail: jtlu@hust.edu.cn [School of Physics, Huazhong University of Science and Technology, 430074 Wuhan (China); Zhou, Hangbo [Department of Physics and Center for Computational Science and Engineering, National University of Singapore, 117551 Singapore (Singapore); NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456 Singapore (Singapore); Jiang, Jin-Wu [Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, 200072 Shanghai (China); Wang, Jian-Sheng [Department of Physics and Center for Computational Science and Engineering, National University of Singapore, 117551 Singapore (Singapore)

    2015-05-15

    The topic of this review is the effects of electron-phonon interaction (EPI) on the transport properties of molecular nano-conductors. A nano-conductor connects to two electron leads and two phonon leads, possibly at different temperatures or chemical potentials. The EPI appears only in the nano-conductor. We focus on its effects on charge and energy transport. We introduce three approaches. For weak EPI, we use the nonequilibrium Green’s function method to treat it perturbatively. We derive the expressions for the charge and heat currents. For weak system-lead couplings, we use the quantum master equation approach. In both cases, we use a simple single level model to study the effects of EPI on the system’s thermoelectric transport properties. It is also interesting to look at the effect of currents on the dynamics of the phonon system. For this, we derive a semi-classical generalized Langevin equation to describe the nano-conductor’s atomic dynamics, taking the nonequilibrium electron system, as well as the rest of the atomic degrees of freedom as effective baths. We show simple applications of this approach to the problem of energy transfer between electrons and phonons.

  7. Effects of electron-phonon interaction on thermal and electrical transport through molecular nano-conductors

    International Nuclear Information System (INIS)

    The topic of this review is the effects of electron-phonon interaction (EPI) on the transport properties of molecular nano-conductors. A nano-conductor connects to two electron leads and two phonon leads, possibly at different temperatures or chemical potentials. The EPI appears only in the nano-conductor. We focus on its effects on charge and energy transport. We introduce three approaches. For weak EPI, we use the nonequilibrium Green’s function method to treat it perturbatively. We derive the expressions for the charge and heat currents. For weak system-lead couplings, we use the quantum master equation approach. In both cases, we use a simple single level model to study the effects of EPI on the system’s thermoelectric transport properties. It is also interesting to look at the effect of currents on the dynamics of the phonon system. For this, we derive a semi-classical generalized Langevin equation to describe the nano-conductor’s atomic dynamics, taking the nonequilibrium electron system, as well as the rest of the atomic degrees of freedom as effective baths. We show simple applications of this approach to the problem of energy transfer between electrons and phonons

  8. On the dissociative electron attachment as a potential source of molecular hydrogen in irradiated liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Cobut, V.; Jay-Gerin, J.-P.; Frongillo, Y. [Sherbrooke Univ., PQ (Canada). Faculte de Medecine; Patau, J.P. [Toulouse-3 Univ., 31 (France)

    1996-02-01

    In the radiolysis of liquid water, different mechanisms for the formation of molecular hydrogen (H{sub 2}) are involved at different times after the initial energy disposition. It has been suggested that the contributions of the e{sub aq}{sup -} + e{sub aq}{sup -}, H + e{sub aq}{sup -} and H + H reactions between hydrated electrons (e{sub aq}{sup -}) and hydrogen atoms in the spurs are not sufficient to account for all of the observed H{sub 2} yield (0.45 molecules/100 eV) on the microsecond time scale. Addressing the question of the origin of an unscavengeable H{sub 2} yield of 0.15 molecules/100 eV produced before spur expansion, we suggest that the dissociative capture of the so-called vibrationally-relaxing electrons by H{sub 2}O molecules is a possible pathway for the formation of part of the initial H{sub 2} yield. Comparison of recent dissociative-electron-attachment H{sup -}-anion yield-distribution measurements from amorphous H{sub 2}O films with the energy spectrum of vibrationally-relaxing electrons in irradiated liquid water, calculated by Monte Carlo simulations, plays in favor of this hypothesis. (author).

  9. High-rectification near-field thermal diode using phase change periodic nanostructure

    Science.gov (United States)

    Ghanekar, Alok; Ji, Jun; Zheng, Yi

    2016-09-01

    We theoretically demonstrate workings of a near-field thermal rectification device that uses a phase change material to achieve asymmetry in radiative heat transfer. We exploit the temperature dependent dielectric properties of VO2 due to metal-insulator transition near 341 K. Analogous to an electrical diode, heat transfer coefficient is high in one direction while it is considerably small when the polarity of temperature gradient is reversed. We show that thermal rectification can be greatly enhanced by using 1-D rectangular and triangular VO2 surface gratings. With the introduction of periodic grating, rectification ratio is dramatically enhanced in the near-field due to reduced tunneling of surface waves across the interfaces for negative polarity. Our calculations predict that for minimal temperature difference of 20 K, the rectification ratio as high as 16 can be obtained, and it is maximum in existing literature for comparable operating temperatures and separation.

  10. Thermal rectification and negative differential thermal conductance in harmonic chains with nonlinear system-bath coupling.

    Science.gov (United States)

    Ming, Yi; Li, Hui-Min; Ding, Ze-Jun

    2016-03-01

    Thermal rectification and negative differential thermal conductance were realized in harmonic chains in this work. We used the generalized Caldeira-Leggett model to study the heat flow. In contrast to most previous studies considering only the linear system-bath coupling, we considered the nonlinear system-bath coupling based on recent experiment [Eichler et al., Nat. Nanotech. 6, 339 (2011)]. When the linear coupling constant is weak, the multiphonon processes induced by the nonlinear coupling allow more phonons transport across the system-bath interface and hence the heat current is enhanced. Consequently, thermal rectification and negative differential thermal conductance are achieved when the nonlinear couplings are asymmetric. However, when the linear coupling constant is strong, the umklapp processes dominate the multiphonon processes. Nonlinear coupling suppresses the heat current. Thermal rectification is also achieved. But the direction of rectification is reversed compared to the results of weak linear coupling constant.

  11. Rectification of single and multiple frames of satellite scanner imagery using points and edges as control

    Science.gov (United States)

    Paderes, F. C., Jr.; Mikhail, E. M.; Foerstner, W.

    1984-01-01

    Rectification of single and overlapping multiple scanner frames produced by such satellite-borne scanners as the LANDSAT MSS was carried out using a newly developed comprehensive parametric model. Tests with both simulated and real image data demonstrate conclusively that this model in general is superior to the widely used polynomial model, and that the simultaneous rectification of overlapping frames using least squares techniques yields a high accuracy than sngle frame rectification due to the inclusion of tie points between the image frames. Used to control, edges or lines, whic are much more likely to be found in images, can replace conventional control points and can easily be implemented into the least squares approach. An efficient algorithm for findng corresponding points in image paris was developed which can be used for determining tie points between image frames and thus increase the ecnomy of the whole rectification procedure.

  12. Ion current rectification in funnel-shaped nanochannels: Hysteresis and inversion effects.

    Science.gov (United States)

    Rosentsvit, Leon; Wang, Wei; Schiffbauer, Jarrod; Chang, Hsueh-Chia; Yossifon, Gilad

    2015-12-14

    Ion current rectification inversion is observed in a funnel-shaped nanochannel above a threshold voltage roughly corresponding to the under-limiting to over-limiting current transition. Previous experimental studies have examined rectification at either low-voltages (under-limiting current region) for conical nanopores/funnel-shaped nanochannels or at high-voltages (over-limiting region) for straight nanochannels with asymmetric entrances or asymmetric interfacing microchannels. The observed rectification inversion occurs because the system resistance is shifted, beyond a threshold voltage, from being controlled by intra-channel ion concentration-polarization to that controlled by external concentration-polarization. Additionally, strong hysteresis effects, due to residual concentration-polarization, manifest themselves through the dependence of the transient current rectification on voltage scan rate.

  13. Food Safety Detection Methods Applied to National Special Rectification of Product Quality and Food Safety

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Afour-month period of national special rectification for product quality and food safety officially started on August 25, and was focused on eight fields, including those of agricultural products and processed foods.

  14. Thermal rectification and negative differential thermal conductance in harmonic chains with nonlinear system-bath coupling

    Science.gov (United States)

    Ming, Yi; Li, Hui-Min; Ding, Ze-Jun

    2016-03-01

    Thermal rectification and negative differential thermal conductance were realized in harmonic chains in this work. We used the generalized Caldeira-Leggett model to study the heat flow. In contrast to most previous studies considering only the linear system-bath coupling, we considered the nonlinear system-bath coupling based on recent experiment [Eichler et al., Nat. Nanotech. 6, 339 (2011), 10.1038/nnano.2011.71]. When the linear coupling constant is weak, the multiphonon processes induced by the nonlinear coupling allow more phonons transport across the system-bath interface and hence the heat current is enhanced. Consequently, thermal rectification and negative differential thermal conductance are achieved when the nonlinear couplings are asymmetric. However, when the linear coupling constant is strong, the umklapp processes dominate the multiphonon processes. Nonlinear coupling suppresses the heat current. Thermal rectification is also achieved. But the direction of rectification is reversed compared to the results of weak linear coupling constant.

  15. Gold nanoparticle assisted assembly of a heme protein for enhancement of long-range interfacial electron transfer

    DEFF Research Database (Denmark)

    Jensen, Palle Skovhus; Chi, Qijin; Grumsen, Flemming Bjerg;

    2007-01-01

    Interfacial electron transfer (ET) of biological macromolecules such as metalloproteins is the key process in bioelectrochemistry, enzymatic electrocatalysis, artificial ET chains, single-molecule electronic amplification and rectification, and other phenomena associated with the area of bioelect......Interfacial electron transfer (ET) of biological macromolecules such as metalloproteins is the key process in bioelectrochemistry, enzymatic electrocatalysis, artificial ET chains, single-molecule electronic amplification and rectification, and other phenomena associated with the area...

  16. New conjugated molecular scaffolds based on [2,2]paracyclophane as electron acceptors for organic photovoltaic cells.

    Science.gov (United States)

    Yang, Yang; Zhang, Guanxin; Yu, Chenmin; He, Chang; Wang, Jianguo; Chen, Xin; Yao, Jingjing; Liu, Zitong; Zhang, Deqing

    2014-09-01

    Two conjugated molecules with a [2,2]paracyclophane core were designed as non-fullerene electron acceptors for photovoltaic cells. Using as the donor, a high power conversion efficiency (2.69%) is achieved for the blending thin film of with , which is relatively high for solution-processed OPVs based on small molecular non-fullerene acceptors and as the electron donor.

  17. Current rectification in a single molecule diode: the role of electrode coupling

    OpenAIRE

    Sherif, Siya; Rubio-Bollinger, G.; Pinilla-Cienfuegos, E.; Coronado, E.; Cuevas, J. C.; Agrait, Nicolas

    2015-01-01

    We demonstrate large rectification ratios (> 100) in single-molecule junctions based on a metal-oxide cluster (polyoxometalate), using a scanning tunneling microscope (STM) both at ambient conditions and at low temperature. These rectification ratios are the largest ever observed in a single-molecule junction, and in addition these junctions sustain current densities larger than 10^5 A/cm^2. By following the variation of the I-V characteristics with tip-molecule separation we demonstrate unam...

  18. Molecular beam deposition and characterization of thin organic films on metals for applications in organic electronics

    Energy Technology Data Exchange (ETDEWEB)

    Witte, G.; Woell, C. [Physikalische Chemie I, Ruhr-Universitaet Bochum, 44780 Bochum (Germany)

    2008-03-15

    The deposition of organic thin films on metal substrates using molecular beam deposition will be reviewed with a special emphasis on molecules which exhibit high charge carrier mobilities and are thus suited to be used as organic semiconductors (OSCs), namely pentacene, rubrene and perylene. Special emphasis will be on aspects of organic molecular beam deposition (OMBD) relevant for the device performance in organic field effect transistors (OFETs), in particular with regard to avoiding or minimizing structural defects at support/OSC interfaces. In addition, another aspect governing - and often limiting - charge injection at electrodes into an OSC, electronic level alignment at molecule/metal interfaces, are discussed in the context of recent accurate ab-initio electronic structure calculations. Finally, we present a novel experimental approach to determine charge transport properties of defect-free, nm-sized OSCs where extrinsic contributions to e.g. charge carrier mobilities can be strictly excluded, thus opening the way towards the determination of true intrinsic OSC properties. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons

    Directory of Open Access Journals (Sweden)

    Kai Braun

    2015-05-01

    Full Text Available Here, we demonstrate a bias-driven superluminescent point light-source based on an optically pumped molecular junction (gold substrate/self-assembled molecular monolayer/gold tip of a scanning tunneling microscope, operating at ambient conditions and providing almost three orders of magnitude higher electron-to-photon conversion efficiency than electroluminescence induced by inelastic tunneling without optical pumping. A positive, steadily increasing bias voltage induces a step-like rise of the Stokes shifted optical signal emitted from the junction. This emission is strongly attenuated by reversing the applied bias voltage. At high bias voltage, the emission intensity depends non-linearly on the optical pump power. The enhanced emission can be modelled by rate equations taking into account hole injection from the tip (anode into the highest occupied orbital of the closest substrate-bound molecule (lower level and radiative recombination with an electron from above the Fermi level (upper level, hence feeding photons back by stimulated emission resonant with the gap mode. The system reflects many essential features of a superluminescent light emitting diode.

  20. Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons.

    Science.gov (United States)

    Braun, Kai; Wang, Xiao; Kern, Andreas M; Adler, Hilmar; Peisert, Heiko; Chassé, Thomas; Zhang, Dai; Meixner, Alfred J

    2015-01-01

    Here, we demonstrate a bias-driven superluminescent point light-source based on an optically pumped molecular junction (gold substrate/self-assembled molecular monolayer/gold tip) of a scanning tunneling microscope, operating at ambient conditions and providing almost three orders of magnitude higher electron-to-photon conversion efficiency than electroluminescence induced by inelastic tunneling without optical pumping. A positive, steadily increasing bias voltage induces a step-like rise of the Stokes shifted optical signal emitted from the junction. This emission is strongly attenuated by reversing the applied bias voltage. At high bias voltage, the emission intensity depends non-linearly on the optical pump power. The enhanced emission can be modelled by rate equations taking into account hole injection from the tip (anode) into the highest occupied orbital of the closest substrate-bound molecule (lower level) and radiative recombination with an electron from above the Fermi level (upper level), hence feeding photons back by stimulated emission resonant with the gap mode. The system reflects many essential features of a superluminescent light emitting diode. PMID:26171286

  1. Electronic Transport Properties of an Anthraquinone-Based Molecular Switch with Carbon Nanotube Electrodes

    Institute of Scientific and Technical Information of China (English)

    ZHAO Peng; LIU De-Sheng

    2012-01-01

    Based on the nonequilibrium Green's function method and density functional theory calculations,we theoretically investigate the electronic transport properties of an anthraquinone-based molecular switch with carbon nanotube electrodes.The molecules that comprise the switch can convert between reduced hydroquinone (HQ) and oxidized anthraquinne (AQ) states via redox reactions.Our results show that the on-off ratio is increased one order of magnitude when compared to the case of gold electrodes.Moreover,an obvious negative differential resistance behavior at much low bias (0.07 V) is observed in the HQ form.%Based on the nonequilihrium Green's function method and density functional theory calculations, we theoretically investigate the electronic transport properties of an anthraquinone-based molecular switch with carbon nanotube electrodes. The molecules that comprise the switch can convert between reduced hydroquinone (HQ) and oxidized anthraquinne (AQ) states via redox reactions. Our results show that the on-off ratio is increased one order of magnitude when compared to the case of gold electrodes. Moreover, an obvious negative differential resistance behavior at much low bias (0.07 V) is observed in the HQ form.

  2. Exploring the vibrational fingerprint of the electronic excitation energy via molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Deyne, Andy Van Yperen-De; Pauwels, Ewald; Ghysels, An; Waroquier, Michel; Van Speybroeck, Veronique; Hemelsoet, Karen, E-mail: karen.hemelsoet@ugent.be [Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium); De Meyer, Thierry [Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium); Department of Textiles, Ghent University, Technologiepark 907, 9052 Zwijnaarde (Belgium); De Clerck, Karen [Department of Textiles, Ghent University, Technologiepark 907, 9052 Zwijnaarde (Belgium)

    2014-04-07

    A Fourier-based method is presented to relate changes of the molecular structure during a molecular dynamics simulation with fluctuations in the electronic excitation energy. The method implies sampling of the ground state potential energy surface. Subsequently, the power spectrum of the velocities is compared with the power spectrum of the excitation energy computed using time-dependent density functional theory. Peaks in both spectra are compared, and motions exhibiting a linear or quadratic behavior can be distinguished. The quadratically active motions are mainly responsible for the changes in the excitation energy and hence cause shifts between the dynamic and static values of the spectral property. Moreover, information about the potential energy surface of various excited states can be obtained. The procedure is illustrated with three case studies. The first electronic excitation is explored in detail and dominant vibrational motions responsible for changes in the excitation energy are identified for ethylene, biphenyl, and hexamethylbenzene. The proposed method is also extended to other low-energy excitations. Finally, the vibrational fingerprint of the excitation energy of a more complex molecule, in particular the azo dye ethyl orange in a water environment, is analyzed.

  3. On the possibility to accelerate the thermal isomerizations of overcrowded alkene-based rotary molecular motors with electron-donating or electron-withdrawing substituents.

    Science.gov (United States)

    Oruganti, Baswanth; Durbeej, Bo

    2016-09-01

    We employ computational methods to investigate the possibility of using electron-donating or electron-withdrawing substituents to reduce the free-energy barriers of the thermal isomerizations that limit the rotational frequencies achievable by synthetic overcrowded alkene-based molecular motors. Choosing as reference systems one of the fastest motors known to date and two variants thereof, we consider six new motors obtained by introducing electron-donating methoxy and dimethylamino or electron-withdrawing nitro and cyano substituents in conjugation with the central olefinic bond connecting the two (stator and rotator) motor halves. Performing density functional theory calculations, we then show that electron-donating (but not electron-withdrawing) groups at the stator are able to reduce the already small barriers of the reference motors by up to 18 kJ mol(-1). This result outlines a possible strategy for improving the rotational frequencies of motors of this kind. Furthermore, exploring the origin of the catalytic effect, it is found that electron-donating groups exert a favorable steric influence on the thermal isomerizations, which is not manifested by electron-withdrawing groups. This finding suggests a new mechanism for controlling the critical steric interactions of these motors. Graphical Abstract The introduction of electron-donating groups in one of the fastest rotary molecular motors known to date is found to reduce the free-energy barriers of the thermal steps that limit the rotational frequencies by up to 18 kJ mol(-1). PMID:27553304

  4. Local-field effects in current transport through molecular electronic devices: Current density profiles and local non-equilibrium electron distributions

    OpenAIRE

    Xue, Yongqiang; Ratner, Mark A.

    2004-01-01

    We analyze non-equilibrium current transport in molecular electronic devices, using as an example devices formed by two terphenyl dithiol molecules attached to gold electrodes. Using a first-principles based self-consistent matrix Green's function method, we show that the spatially resolved current density profiles and local electrochemical potential drops provide valuable information regarding the local field effect on molecular transport, which depend on the internal structure of the molecu...

  5. Controlling the ionic current rectification factor of a nanofluidic/microfluidic interface with symmetric nanocapillary interconnects.

    Science.gov (United States)

    Wang, Han; Nandigana, Vishal V R; Jo, Kyoo Dong; Aluru, Narayana R; Timperman, Aaron T

    2015-04-01

    The current rectification factor can be tailored by changing the degree of asymmetry between the fluid baths on opposite sides of a nanocapillary membrane (NCM). A symmetric device with symmetric fluid baths connected to opposite sides of the NCM did not rectify ionic current; while a NCM connected between fluid baths with a 32-fold difference in cross-sectional area produced a rectification factor of 75. The data suggests that the primary mechanism for the current rectification is the change in cross-sectional area of the fluid baths and the polarity dependent propagation of the enriched and depleted concentration polarization (CP) zones into these regions. An additional contribution to the increasing rectification factor with increasing bath asymmetry appears to be a result of electroconvection in the macropore, with inside diameters (IDs) of 625 and 850-μm. Power spectral density (PSD) analysis reveals chaotic oscillations that are consistent with electroconvection in the I-t data of the 625 and 850-μm ID macropore devices. In the ON state, current rectification keeps ionic transport toward the NCM high, increasing the speed of processes like sample enrichment. A simple means is provided to fabricate fluidic diodes with tailored current rectification factors.

  6. Rectification of the EMG is an unnecessary and inappropriate step in the calculation of Corticomuscular coherence.

    Science.gov (United States)

    McClelland, Verity M; Cvetkovic, Zoran; Mills, Kerry R

    2012-03-30

    Corticomuscular coherence (CMC) estimation is a frequency domain method used to detect a linear coupling between rhythmic activity recorded from sensorimotor cortex (EEG or MEG) and the electromyogram (EMG) of active muscles. In motor neuroscience, rectification of the surface EMG is a common pre-processing step prior to calculating CMC, intended to maximize information about action potential timing, whilst suppressing information relating to motor unit action potential (MUAP) shape. Rectification is believed to produce a general shift in the EMG spectrum towards lower frequencies, including those around the mean motor unit discharge rate. However, there are no published data to support the claim that EMG rectification enhances the detection of CMC. Furthermore, performing coherence analysis after the non-linear procedure of rectification, which results in a significant distortion of the EMG spectrum, is considered fundamentally flawed in engineering and digital signal processing. We calculated CMC between sensorimotor cortex EEG and EMG of two hand muscles during a key grip task in 14 healthy subjects. CMC calculated using unrectified and rectified EMG was compared. The use of rectified EMG did not enhance the detection of CMC, nor was there any evidence that MUAP shape information had an adverse effect on the CMC estimation. EMG rectification had inconsistent effects on the power and coherence spectra and obscured the detection of CMC in some cases. We also provide a comprehensive theoretical analysis, which, along with our empirical data, demonstrates that rectification is neither necessary nor appropriate in the calculation of CMC.

  7. Accurate studies on the full vibrational energy spectra and molecular dissociation energies for some electronic states of N2 molecule

    Institute of Scientific and Technical Information of China (English)

    REN; Weiyi; SUN; Weiguo; HOU; Shilin; FENG; Hao

    2005-01-01

    It is usually very difficult to directly obtain molecular dissociation energy De and all accurate high-lying vibrational energies for most diatomic electronic states using modern experimental techniques or quantum theories, and it is also very difficult to give accurate analytical expression for diatomic molecular dissociation energy. This study proposes a new analytical formula for obtaining accurate molecular dissociation energy based on the LeRoy and Bernstein's energy expression in dissociation limit. A set of full vibrational energy spectra for some electronic states of N2 molecule are studied using the algebraic method (AM) suggested recently, and the corresponding accurate molecular dissociation energies are evaluated using the proposed new formula and high-lying AM vibrational energies. The results show that the AM spectra and the new theoretical dissociation energies agree excellently with experimental data, and thereby providing a new physical approach to generating accurate dissociation energies for electronic states of diatomic molecules.

  8. Research Update: Molecular electronics: The single-molecule switch and transistor

    Directory of Open Access Journals (Sweden)

    Kai Sotthewes

    2014-01-01

    Full Text Available In order to design and realize single-molecule devices it is essential to have a good understanding of the properties of an individual molecule. For electronic applications, the most important property of a molecule is its conductance. Here we show how a single octanethiol molecule can be connected to macroscopic leads and how the transport properties of the molecule can be measured. Based on this knowledge we have realized two single-molecule devices: a molecular switch and a molecular transistor. The switch can be opened and closed at will by carefully adjusting the separation between the electrical contacts and the voltage drop across the contacts. This single-molecular switch operates in a broad temperature range from cryogenic temperatures all the way up to room temperature. Via mechanical gating, i.e., compressing or stretching of the octanethiol molecule, by varying the contact's interspace, we are able to systematically adjust the conductance of the electrode-octanethiol-electrode junction. This two-terminal single-molecule transistor is very robust, but the amplification factor is rather limited.

  9. Contact geometry and electronic transport properties of Ag–benzene–Ag molecular junctions

    International Nuclear Information System (INIS)

    Highlights: ► We simulate Ag–benzene–Ag junctions with different contact geometries. ► Moderate benzene–Ag interactions can be realized for adsorptions through Ag adatoms. ► Molecular orbitals dominating the low-bias conductance match the contact symmetry. ► Three contact geometries deliver similar conductance consistent with the experiments. - Abstract: Contact geometry and the electronic transport properties of Ag–benzene–Ag molecular junctions have been investigated by using first-principles quantum transport simulations. Our calculations show that a moderate benzene–silver interaction can be achieved when benzene is adsorbed on the Ag(1 1 1) surface through adatoms. In this case three symmetric Ag–benzene–Ag junction models can be constructed, in which the molecule is connected to the electrodes through one or two Ag adatoms on each side. Although the contribution to the transmission around the Fermi level made by the benzene molecular orbitals depends on the number of Ag adatoms and the detailed binding configuration, the transmission coefficients at the Fermi level of the three junctions are calculated to be respectively 0.20, 0.18 and 0.16. These values are well consistent with the experimental ones of 0.24 ± 0.08. Our results thus demonstrate that the conductance of Ag–benzene–Ag junctions is rather stable regardless of the molecule/electrode contact geometry.

  10. Fundamentals of photoelectric effects in molecular electronic thin film devices: applications to bacteriorhodopsin-based devices.

    Science.gov (United States)

    Hong, F T

    1995-01-01

    This tutorial lecture focuses on the fundamental mechanistic aspects of light-induced charge movements in pigment-containing membranes. The topic is relevant to molecular electronics because many prototypes optoelectronic devices are configured as pigment-containing thin films. We use reconstituted bacteriorhodopsin membranes as an example to illustrate the underlying principle of measurements and data interpretation. Bacteriorhodopsin, a light-driven proton pump, is the only protein component in the purple membrane of Halobacterium halobium. It resembles the visual pigment rhodopsin chemically but performs the function of photosynthesis. Bacteriorhodopsin thus offers an unprecedented opportunity for us to compare the visual photoreceptor and the photosynthetic apparatus from a mechanistic point of view. Bacteriorhodopsin, well known for its exceptional chemical and mechanical stability, is also a popular advanced biomaterial for molecular device construction. The tutorial approaches the subject from two angles. First, the fundamental photoelectric properties are exploited for device construction. Second, basic design principles for photosensors and photon energy converters can be elucidated via 'reverse engineering'. The concept of molecular intelligence and the principle of biomimetic science are discussed.

  11. Molecular dynamics and simulations study on the vibrational and electronic solvatochromism of benzophenone

    International Nuclear Information System (INIS)

    Solvent plays a key role in diverse physico-chemical and biological processes. Therefore, understanding solute-solvent interactions at the molecular level of detail is of utmost importance. A comprehensive solvatochromic analysis of benzophenone (Bzp) was carried out in various solvents using Raman and electronic spectroscopy, in conjunction with Density Functional Theory (DFT) calculations of supramolecular solute-solvent clusters generated using classical Molecular Dynamics Simulations (c-MDSs). The >C=O stretching frequency undergoes a bathochromic shift with solvent polarity. Interestingly, in protic solvents this peak appears as a doublet: c-MDS and ad hoc explicit solvent ab initio calculations suggest that the lower and higher frequency peaks are associated with the hydrogen bonded and dangling carbonyl group of Bzp, respectively. Additionally, the dangling carbonyl in methanol (MeOH) solvent is 4 cm−1 blue-shifted relative to acetonitrile solvent, despite their similar dipolarity/polarizability. This suggests that the cybotactic region of the dangling carbonyl group in MeOH is very different from its bulk solvent structure. Therefore, we propose that this blue-shift of the dangling carbonyl originates in the hydrophobic solvation shell around it resulting from extended hydrogen bonding network of the protic solvents. Furthermore, the 11nπ∗ (band I) and 11ππ∗ (band II) electronic transitions show a hypsochromic and bathochromic shift, respectively. In particular, these shifts in protic solvents are due to differences in their excited state-hydrogen bonding mechanisms. Additionally, a linear relationship is obtained for band I and the >C=O stretching frequency (cm−1), which suggests that the different excitation wavelengths in band I correspond to different solvation states. Therefore, we hypothesize that the variation in excitation wavelengths in band I could arise from different solvation states leading to varying solvation dynamics. This will

  12. The Development of Molecular-Based Materials for Electrical and Electronic Applications

    Science.gov (United States)

    Babalola, P. O.; Inegbenebor, A. O.; Bolu, C. A.; Inegbenebor, A. I.

    2015-04-01

    Aluminum silicon carbide (AlSiC) metal matrix composite materials have a unique set of material properties that are ideally suited for electronics, hence the development of molecular-based materials (MBM) for the electrical and electronic industries. The low material density of AlSiC (3 g/cm3) makes it ideal for weight-sensitive applications such as portable devices over traditional thermal management materials like copper molybdenum (10 g/cm3) and copper tungsten (16 g/cm3). The aim of this work is to develop MBM for electrical and electronic industries. Aluminum (99.66% C.P.) and silicon carbide (SiC) particulates of 240 grit (45 µm), 320 grit (29 µm), 600 grit (9 µm) and 1200 grit (3 µm) at 2.5% weight fraction were used to achieve the objective. The aluminum was melted at 750°C for 25 min in a graphite crucible tilting furnace designed for this work using oil as a firing medium. After melting, a two-step mixing method of stir casting technique was adopted. The cast samples were further analyzed for mechanical and electrical properties. The electrical properties were carried out by using a 4-point probe machine. The result showed that hardness increases at lower grit level, while the electrical properties marginally increased at higher grit. It is therefore recommended that, to make AlSiC composite materials for electrical industries, the higher grit of SiC should be preferred.

  13. Collisional transfer of electrons to the continuum of atomic and molecular ions

    International Nuclear Information System (INIS)

    The aim of this study was the systematic investigation of the differences that appear in the peaks of distribution of doubly differential (in angle an energy) 'convoy' electrons, when comparing spectra obtained by bombarding thin carbon foils with atomic (H+) and molecular (H2+) projectiles of equal velocity. The measurements show that the production yield of such electrons is inversely propotional to the ion dwell time in the solid. For long times, the yield ratio fluctuates around the unity value, and the amplitude of this dispersion decreases for longer times. A higher yield is measured for (H2+), but only near the peak cusp. The double differential cross section (DDCS) for electron capture is calculated in second order Born approximation. A transition from a 1s state to the continuum of two correlated protons as a function of their internuclear distance R is considered. As R decreases from approx. 0.5 atomic units towards zero, the DDCS value increases from that corresponding to the atomic projectil (Z=1) limit to the united atom value (Z=2). It is found that, the higher the projectil velocity, the better is the DDCS value agreement with both limits. The equipment used by the author is described. (M.E.L.)

  14. Momentum imaging spectrometer for molecular fragmentation dynamics induced by pulsed electron beam

    International Nuclear Information System (INIS)

    A momentum imaging spectrometer has been built for studying the electron impact molecular fragmentation dynamics. The setup consists of a pulsed electron gun and a time of flight system as well as a two-dimensional time and position sensitive multi-hit detector. The charged fragments with kinetic energy up to 10 eV can be detected in 4π solid angles and their three-dimensional momentum vectors can be reconstructed. The apparatus is tested by electron impact ionization of Ar and dissociative ionization of CO2. By analyzing the ion-ion coincidence spectra, the complete and incomplete Coulomb fragmentation channels for CO22+ and CO23+ are identified. The kinetic energy release (KER) and angular correlation for the two-body breakup channel CO22+*→ O++ CO+ are reported. The peak value of total KER is found to be 6.8 eV which is consistent with the previous photoion-photoion coincidence studies, and the correlation angle of O+ and CO+ is also explicitly determined to be 172.5°

  15. Making hybrid [n]-rotaxanes as supramolecular arrays of molecular electron spin qubits

    Science.gov (United States)

    Fernandez, Antonio; Ferrando-Soria, Jesus; Pineda, Eufemio Moreno; Tuna, Floriana; Vitorica-Yrezabal, Iñigo J.; Knappke, Christiane; Ujma, Jakub; Muryn, Christopher A.; Timco, Grigore A.; Barran, Perdita E.; Ardavan, Arzhang; Winpenny, Richard E. P.

    2016-01-01

    Quantum information processing (QIP) would require that the individual units involved--qubits--communicate to other qubits while retaining their identity. In many ways this resembles the way supramolecular chemistry brings together individual molecules into interlocked structures, where the assembly has one identity but where the individual components are still recognizable. Here a fully modular supramolecular strategy has been to link hybrid organic-inorganic [2]- and [3]-rotaxanes into still larger [4]-, [5]- and [7]-rotaxanes. The ring components are heterometallic octanuclear [Cr7NiF8(O2CtBu)16]- coordination cages and the thread components template the formation of the ring about the organic axle, and are further functionalized to act as a ligand, which leads to large supramolecular arrays of these heterometallic rings. As the rings have been proposed as qubits for QIP, the strategy provides a possible route towards scalable molecular electron spin devices for QIP. Double electron-electron resonance experiments demonstrate inter-qubit interactions suitable for mediating two-qubit quantum logic gates.

  16. Atomic and Molecular Complex Resonances from Real Eigenvalues Using Standard (Hermitian) Electronic Structure Calculations.

    Science.gov (United States)

    Landau, Arie; Haritan, Idan; Kaprálová-Žd'ánská, Petra Ruth; Moiseyev, Nimrod

    2016-05-19

    Complex eigenvalues, resonances, play an important role in a large variety of fields in physics and chemistry. For example, in cold molecular collision experiments and electron scattering experiments, autoionizing and predissociative metastable resonances are generated. However, the computation of complex resonance requires modifications of standard electronic structure codes and methods, which are not always straightforward, in addition, application of complex codes requires more computational efforts. Here we show how resonance eigenvalues, positions and widths, can be calculated using the standard, widely used, electronic-structure packages. Our method enables the calculations of the complex resonance eigenvalues by using analytical continuation procedures (such as Padé). The key point in our approach is the existence of narrow analytical passages from the real axis to the complex energy plane. In fact, the existence of these analytical passages relies on using finite basis sets. These passages become narrower as the basis set becomes more complete, whereas in the exact limit, these passages to the complex plane are closed. As illustrative numerical examples we calculated the autoionization Feshbach resonances of helium, hydrogen anion, and hydrogen molecule. We show that our results are in an excellent agreement with the results obtained by other theoretical methods and with available experimental results. PMID:26677725

  17. Electron and nuclear dynamics of molecular clusters in ultraintense laser fields. IV. Coulomb explosion of molecular heteroclusters.

    Science.gov (United States)

    Last, Isidore; Jortner, Joshua

    2004-11-01

    In this paper we present a theoretical and computational study of the temporal dynamics and energetics of Coulomb explosion of (CD4)(n) and (CH4)(n) (n=55-4213) molecular heteroclusters in ultraintense (I=10(16)-10(19) W cm(-2)) laser fields, addressing the manifestation of electron dynamics, together with nuclear energetic and kinematic effects on the heterocluster Coulomb instability. The manifestations of the coupling between electron and nuclear dynamics were explored by molecular dynamics simulations for these heteroclusters coupled to Gaussian laser fields (pulse width tau=25 fs), elucidating outer ionization dynamics, nanoplasma screening effects (being significant for Icharges and masses. Nonuniform heterocluster Coulomb explosion (eta >1) manifests an overrun effect of the light ions relative to the heavy ions, exhibiting the expansion of two spatially separated subclusters, with the light ions forming the outer subcluster at the outer edge of the spatial distribution. Important features of the energetics of heterocluster Coulomb explosion originate from energetic triggering effects of the driving of the light ions by the heavy ions (C(4+) for I=10(17)-10(18) W cm(-2) and C(6+) for I=10(19) W cm(-2)), as well as for kinematic effects. Based on the CVI assumption, scaling laws for the cluster size (radius R(0)) dependence of the energetics of uniform Coulomb explosion of heteroclusters (eta=1) were derived, with the size dependence of the average (E(j,av)) and maximal (E(j,M)) ion energies being E(j,av)=aR(0) (2) and E(j,M)=(5a/3)R(0) (2), as well as for the ion energy distributions P(E(j)) proportional to E(j) (1/2); E(j)1) result in an isotope effect, predicting the enhancement (by 9%-11%) of E(H,av) for Coulomb explosion of (C(4+)H(4) (+))(eta) (eta=3) relative to E(D,av) for Coulomb explosion of (C(4+)D(4) (+))(eta) (eta=1.5), with the isotope effect being determined by the ratio of the kinematic parameters for the pair of Coulomb exploding clusters

  18. Electron and nuclear dynamics of molecular clusters in ultraintense laser fields. IV. Coulomb explosion of molecular heteroclusters.

    Science.gov (United States)

    Last, Isidore; Jortner, Joshua

    2004-11-01

    In this paper we present a theoretical and computational study of the temporal dynamics and energetics of Coulomb explosion of (CD4)(n) and (CH4)(n) (n=55-4213) molecular heteroclusters in ultraintense (I=10(16)-10(19) W cm(-2)) laser fields, addressing the manifestation of electron dynamics, together with nuclear energetic and kinematic effects on the heterocluster Coulomb instability. The manifestations of the coupling between electron and nuclear dynamics were explored by molecular dynamics simulations for these heteroclusters coupled to Gaussian laser fields (pulse width tau=25 fs), elucidating outer ionization dynamics, nanoplasma screening effects (being significant for Icharges and masses. Nonuniform heterocluster Coulomb explosion (eta >1) manifests an overrun effect of the light ions relative to the heavy ions, exhibiting the expansion of two spatially separated subclusters, with the light ions forming the outer subcluster at the outer edge of the spatial distribution. Important features of the energetics of heterocluster Coulomb explosion originate from energetic triggering effects of the driving of the light ions by the heavy ions (C(4+) for I=10(17)-10(18) W cm(-2) and C(6+) for I=10(19) W cm(-2)), as well as for kinematic effects. Based on the CVI assumption, scaling laws for the cluster size (radius R(0)) dependence of the energetics of uniform Coulomb explosion of heteroclusters (eta=1) were derived, with the size dependence of the average (E(j,av)) and maximal (E(j,M)) ion energies being E(j,av)=aR(0) (2) and E(j,M)=(5a/3)R(0) (2), as well as for the ion energy distributions P(E(j)) proportional to E(j) (1/2); E(j)1) result in an isotope effect, predicting the enhancement (by 9%-11%) of E(H,av) for Coulomb explosion of (C(4+)H(4) (+))(eta) (eta=3) relative to E(D,av) for Coulomb explosion of (C(4+)D(4) (+))(eta) (eta=1.5), with the isotope effect being determined by the ratio of the kinematic parameters for the pair of Coulomb exploding clusters

  19. Rectification of terahertz radiation in semiconductor superlattices in the absence of domains

    International Nuclear Information System (INIS)

    We study theoretically the dynamical rectification of a terahertz AC electric field, i.e. the DC current and voltage response to the incident radiation, in strongly coupled semiconductor superlattices. We address the problem of stability against electric field domains: a spontaneous DC voltage is known to appear exactly for parameters for which a spatially homogeneous electron distribution is unstable. We show that by applying a weak direct current bias the rectifier can be switched from a state with zero DC voltage to one with a finite voltage in full absence of domains. The switching occurs near the conditions of dynamical symmetry breaking of an unbiased semiconductor superlattice. Therefore our scheme allows for the generation of DC voltages that would otherwise be unreachable due to domain instabilities. Furthermore, for realistic, highly doped wide miniband superlattices at room temperature, the generated DC field can be nearly quantized, that is, be approximately proportional to an integer multiple of ħω/ea where a is the superlattice period and ω is the AC field frequency. (paper)

  20. A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy.

    Science.gov (United States)

    Lewis, Nicholas H C; Dong, Hui; Oliver, Thomas A A; Fleming, Graham R

    2015-09-28

    Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derive response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale. PMID:26429003

  1. A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720 (United States)

    2015-09-28

    Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derive response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.

  2. A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy

    International Nuclear Information System (INIS)

    Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derive response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale

  3. An Electronic Structure Approach to Charge Transfer and Transport in Molecular Building Blocks for Organic Optoelectronics

    Science.gov (United States)

    Hendrickson, Heidi Phillips

    technological design and development. Time dependent perturbation theory, employed by non-equilibrium Green's function formalism, is utilized to study the effect of quantum coherences on electron transport and the effect of symmetry breaking on the electronic spectra of model molecular junctions. The fourth part of this thesis presents the design of a physical chemistry course based on a pedagogical approach called Writing-to-Teach. The nature of inaccuracies expressed in student-generated explanations of quantum chemistry topics, and the ability of a peer review process to engage these inaccuracies, is explored within this context.

  4. Numerical study of electronic density of states and conductance of a molecular wire coupled with an external molecule

    Directory of Open Access Journals (Sweden)

    S. A. Ketabi

    2006-12-01

    Full Text Available   There is a great interest in the electronic properties of conjugated polymers. Numerous works on the electronic and conduction properties of single-chain conjugated polymers have been published. From an electronic conduction point of view, these systems are quasi-one dimensional. The aim of this paper is to try to investigate corresponding properties in conducting polymers in higher of one-dimension. We study the electronic properties of a polyacetylene chain connected to other molecules. The effect of the size of the molecule and the strength of the coupling to the molecular wire is investigated. The results show that with the increase of the strength of the molecular wire/molecule coupling, the band gap of the system decreases and causes high electronic conduction.

  5. Phenomenological electronic stopping-power model for molecular dynamics and Monte Carlo simulation of ion implantation into silicon

    International Nuclear Information System (INIS)

    It is crucial to have a good phenomenological model of electronic stopping power for modeling the physics of ion implantation into crystalline silicon. In the spirit of the Brandt-Kitagawa effective charge theory, we develop a model for electronic stopping power for an ion, which can be factorized into (i) a globally averaged effective charge taking into account effects of close and distant collisions by target electrons with the ion, and (ii) a local charge density dependent electronic stopping power for a proton. This phenomenological model is implemented into both molecular dynamics and Monte Carlo simulations. There is only one free parameter in the model, namely, the one electron radius r0s for unbound electrons. By fine tuning this parameter, it is shown that the model can work successfully for both boron and arsenic implants. We report that the results of the dopant profile simulation for both species are in excellent agreement with the experimental profiles measured by secondary-ion mass spectrometry (SIMS) over a wide range of energies and with different incident directions. We point out that the model has wide applicability, for it captures the correct physics of electronic stopping in ion implantation. This model also provides a good physically based damping mechanism for molecular dynamics simulations in the electronic stopping power regime, as evidenced by the striking agreement of dopant profiles calculated in our molecular dynamics simulations with the SIMS data. copyright 1996 The American Physical Society

  6. A multiscale simulation technique for molecular electronics: design of a directed self-assembled molecular n-bit shift register memory device.

    Science.gov (United States)

    Lambropoulos, Nicholas A; Reimers, Jeffrey R; Crossley, Maxwell J; Hush, Noel S; Silverbrook, Kia

    2013-12-20

    A general method useful in molecular electronics design is developed that integrates modelling on the nano-scale (using quantum-chemical software) and on the micro-scale (using finite-element methods). It is applied to the design of an n-bit shift register memory that could conceivably be built using accessible technologies. To achieve this, the entire complex structure of the device would be built to atomic precision using feedback-controlled lithography to provide atomic-level control of silicon devices, controlled wet-chemical synthesis of molecular insulating pillars above the silicon, and controlled wet-chemical self-assembly of modular molecular devices to these pillars that connect to external metal electrodes (leads). The shift register consists of n connected cells that read data from an input electrode, pass it sequentially between the cells under the control of two external clock electrodes, and deliver it finally to an output device. The proposed cells are trimeric oligoporphyrin units whose internal states are manipulated to provide functionality, covalently connected to other cells via dipeptide linkages. Signals from the clock electrodes are conveyed by oligoporphyrin molecular wires, and μ-oxo porphyrin insulating columns are used as the supporting pillars. The developed multiscale modelling technique is applied to determine the characteristics of this molecular device, with in particular utilization of the inverted region for molecular electron-transfer processes shown to facilitate latching and control using exceptionally low energy costs per logic operation compared to standard CMOS shift register technology.

  7. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Rezaee, Mohammad, E-mail: Mohammad.Rezaee@USherbrooke.ca; Hunting, Darel J.; Sanche, Léon [Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4 (Canada)

    2014-07-15

    Purpose: The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods: Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by{sup 125}I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results: For a single decay of{sup 125}I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm{sup 3} volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions: Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should

  8. Development of a model electronic Hamiltonian for understanding electronic relaxation dynamics of [Fe(bpy){sub 3}]{sup 2+} through molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Iuchi, Satoru; Koga, Nobuaki [Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

    2015-12-31

    A model electronic Hamiltonian of [Fe(bpy){sub 3}]{sup 2+}, which was recently refined for use in molecular dynamics simulations, is reviewed with some additional results. In particular, the quality of the refined model Hamiltonian is examined in terms of the vibrational frequencies and solvation structures of the lowest singlet and quintet states.

  9. Development of a model electronic Hamiltonian for understanding electronic relaxation dynamics of [Fe(bpy)3]2+ through molecular dynamics simulations

    International Nuclear Information System (INIS)

    A model electronic Hamiltonian of [Fe(bpy)3]2+, which was recently refined for use in molecular dynamics simulations, is reviewed with some additional results. In particular, the quality of the refined model Hamiltonian is examined in terms of the vibrational frequencies and solvation structures of the lowest singlet and quintet states

  10. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    Science.gov (United States)

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; Johns, Douglas G.; Charles, M. Arthur; Ren, Gang

    2015-03-01

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobic environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.

  11. Electron microscopy investigation of interface between carbon fiber and ultra high molecular weight polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Stepashkin, A.A.; Chukov, D.I., E-mail: dil_chukov@yahoo.com; Gorshenkov, M.V.; Tcherdyntsev, V.V.; Kaloshkin, S.D.

    2014-02-15

    Highlights: • Effect of the carbon fibers surface treatments on the adhesive interactions in UHMWPE composites was studied. • Air oxidation of carbon filler ensures most significant increase in adhesion interaction in UHMWPE based composites. • Nanosized UHMWPE fibers with 20–40 nm in diameter and with 6–10 μm in length, was observed on the surface of carbon fibers. -- Abstract: Scanning electron microscopy was used to investigate the surface of initial and modified high-strength and high-modulus carbon fibers as well as interfaces in the ultra high molecular weight polyethylene, filled with above-mentioned fibers. Effect of the fibers surface modifying method on the adhesive interactions in composites was studied. It was observed that interaction of matrix with a modified surface of fibers results in a formation of bonds with strength higher than the yield strength of the polymer. It results in a formation of long nanosized polymer wires at tensile fracture of composites.

  12. Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study

    Science.gov (United States)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2016-05-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg10In90, Hg30In70,. Hg50In50, Hg70In30, and Hg90Pb10) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.

  13. Efficient preconditioning of the electronic structure problem in large scale ab initio molecular dynamics simulations

    Science.gov (United States)

    Schiffmann, Florian; VandeVondele, Joost

    2015-06-01

    We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling's iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filtering small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step.

  14. Surface electronic structure and molecular orientation of poly(9-vinylcarbazole) thin film: ARUPS and NEXAFS

    CERN Document Server

    Okudaira, K K; Hasegawa, S; Ishii, H; Azuma, Y; Imamura, M; Shimada, H; Seki, K; Ueno, N

    2001-01-01

    The molecular orientation at the surfaces of poly(9-vinylcarbazole) (PvCz) thin films was studied by angle-resolved ultraviolet photoelectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The observed take-off angle (theta) dependence of photoelectron intensities from top pi band peaks clearly at larger theta than the calculated one for the three-dimensional isotropic random orientation model. The results indicate that there are more pendant groups with large tilt angles than the three-dimensional isotropic random orientation model, which is in good agreement with the result obtained from NEXAFS spectroscopy. The surface electronic states of PvCz may be rather dominated by sigma(C-H) states at the pendant carbazole group than pi states

  15. Electronic communication in tetrathiafulvalene (TTF)/C60 systems: toward molecular solar energy conversion materials?

    Science.gov (United States)

    Martín, Nazario; Sánchez, Luis; Herranz, María Angeles; Illescas, Beatriz; Guldi, Dirk M

    2007-10-01

    The covalent connection of the electron acceptor C 60 to p-quinonoid pi-extended tetrathiafulvalenes (exTTFs) has allowed for the preparation of new photo- and electroactive conjugates able to act as artificial photosynthetic systems and active molecular materials in organic photovoltaics. The gain of aromaticity undergone by the pi-extended TTF unit in the oxidation process results in highly stabilized radical ion pairs, namely, C 60 (*-)/exTTF (*+). Lifetimes for such charge-separated states, ranging from a few nanoseconds to hundreds of microseconds, have been achieved by rationally modifying the nature of the chemical spacers. These long-lived radical pairs are called to play an important role for the conversion of sunlight into chemical or electrical power.

  16. Studies on the full vibrational energy spectra for some electronic states of diatomic molecular ions XY+

    Institute of Scientific and Technical Information of China (English)

    LIU Yi-ding; SUN Wei-guo; REN Wei-yi

    2006-01-01

    The first accurate studies on the vibrational spectroscopic constants and the corresponding full vibrational energy spectra of some electronic states of diatomic molecular ions XY+ were performed using algebraic method(AM).The AM is applied on the X1Σ+ state of BeH+,the X2Σ+ state of CO+ , the X21-Π state of F2+ the A2Πu state of O2+ and theX2Σ+g Li2+.The results show that AM can generate accurate vibrational spectroscopic constants as well as accurate full vibrational energy spectra by using some accurate experimental vibrational energies,and that the AM vibrational energies are better than other theoretical data.

  17. Surface free energy of ultra-high molecular weight polyethylene modified by electron and gamma irradiation

    International Nuclear Information System (INIS)

    Surface free energy of biocompatible polymers is important factor which affects the surface properties such as wetting, adhesion and biocompatibility. In the present work, the change in the surface free energy of ultra-high molecular weight polyethylene (UHMWPE) samples, which is produced by electron beam and gamma ray irradiation were, investigated. Mechanism of the changes in surface free energy induced by irradiations of doses ranging from 25 to 500 kGy was studied. FTIR technique was applied for sample analysis. Contact angle measurements showed that wettability and surface free energy of samples have increased with increasing the irradiation dose, where the values of droplet contact angle of the samples decrease gradually with increasing the radiation dose. The increase in the wettability and surface free energy of the irradiated samples are attributed to formation of hydrophilic groups on the polymer surface by the oxidation, which apparently occurs by exposure of irradiated samples to the air.

  18. Generation of DC electric fields due to vortex rectification in superconducting films

    International Nuclear Information System (INIS)

    The introduction of the manuscript reviews different mechanisms of generation of permanent electric fields by AC driven vortex lattices in type-II superconductors due to artificial symmetry breaking. The second part shows that superconducting Pb and Nb films (strips or crosses) with or without symmetric periodic pinning centers, subject to a magnetic field perpendicular to the film plane, also exhibit magnetically tunable AC current rectification. At low drive frequencies, not far below the critical temperature, the superconducting films work as one-dimensional rectifiers (i.e. generate an uniform DC electric field along the direction of the AC current) due to unavoidable small vortex pinning asymmetry. At higher frequencies, above 105 Hz, rectification gradually becomes two-dimensional with a strongly non-uniform generated DC electric field. DC voltages, either longitudinal or transversal to the AC current are tunable with the applied magnetic field. The rectified voltage depends strongly on the temperature and the AC drive intensity. In superconductors with periodic pinning centers the rectified voltage varies periodically with the number of vortices per pinning center. Not far below T c, the generated DC electric field is nearly opposite on the opposite film sides. The unusual two-dimensional character of rectification at high frequencies close to T c could be qualitatively understood in terms of local rectification due the oppositely directed asymmetric edge barriers (Bean-Livingston type) or by slowly relaxing electric fields generated by local critical current excess. Anisotropic pinning effects represent a dominant contribution to the rectification further below T c. Since in experiments on rectification in superconductors this electric field adds to the one due to, e.g., anisotropic vortex pinning, one has to take into account its presence when interpreting the rectification experiments

  19. Efficient geometric rectification techniques for spectral analysis algorithm

    Science.gov (United States)

    Chang, C. Y.; Pang, S. S.; Curlander, J. C.

    1992-01-01

    The spectral analysis algorithm is a viable technique for processing synthetic aperture radar (SAR) data in near real time throughput rates by trading the image resolution. One major challenge of the spectral analysis algorithm is that the output image, often referred to as the range-Doppler image, is represented in the iso-range and iso-Doppler lines, a curved grid format. This phenomenon is known to be the fanshape effect. Therefore, resampling is required to convert the range-Doppler image into a rectangular grid format before the individual images can be overlaid together to form seamless multi-look strip imagery. An efficient algorithm for geometric rectification of the range-Doppler image is presented. The proposed algorithm, realized in two one-dimensional resampling steps, takes into consideration the fanshape phenomenon of the range-Doppler image as well as the high squint angle and updates of the cross-track and along-track Doppler parameters. No ground reference points are required.

  20. [CO2 Budget and Atmospheric Rectification (COBRA) Over North America

    Science.gov (United States)

    2004-01-01

    The purpose of the CO2 Budget and Rectification Airborne (COBRA) study was to assess terrestrial sources and sinks of carbon dioxide using an air-borne study. The study was designed to address the measurement gap between plot-scale direct flux measurements and background hemispheric-scale constraints and to refine techniques for measuring terrestrial fluxes at regional to continental scales. The initial funded effort (reported on here) was to involve two air-borne campaigns over North America, one in summer and one in winter. Measurements for COBRA (given the acronym C02BAR in the initial proposal) were conducted from the University of North Dakota Citation 11, a twin-engine jet aircraft capable of profiling from the surface to 12 km and cruising for up to 4 hours and 175m/s. Onboard instrumentation measured concentrations of CO2, CO, and H2O, and meteorological parameters at high rates. In addition, two separate flask sampling systems collected discrete samples for laboratory analysis of CO2,CO, CH4, N2O, SF6, H2, 13CO2, C18O16O,O2/N2, and Ar/N2. The project involved a collaboration between a number of institutions, including (but not limited to) Harvard, NOAA-CMDL, the University of North Dakota, and Scripps.

  1. Theory of High Frequency Rectification by Silicon Crystals

    Science.gov (United States)

    Bethe, H. A.

    1942-10-29

    The excellent performance of British "red dot" crystals is explained as due to the knife edge contact against a polished surface. High frequency rectification depends critically on the capacity of the rectifying boundary layer of the crystal, C. For high conversion efficiency, the product of this capacity and of the "forward" (bulk) resistance R {sub b} of the crystal must be small. For a knife edge, this product depends primarily on the breadth of the knife edge and very little upon its length. The contact can therefore have a rather large area which prevents burn-out. For a wavelength of 10 cm. the computations show that the breadth of the knife edge should be less than about 10 {sup -3} cm. For a point contact the radius must be less than 1.5 x 10 {sup -3} cm. and the resulting small area is conducive to burn-out. The effect of "tapping" is probably to reduce the area of contact. (auth)

  2. High rectification in organic diodes based on liquid crystalline phthalocyanines.

    Science.gov (United States)

    Apostol, Petru; Eccher, Juliana; Dotto, Marta Elisa Rosso; Costa, Cassiano Batesttin; Cazati, Thiago; Hillard, Elizabeth A; Bock, Harald; Bechtold, Ivan H

    2015-12-28

    The optical and electrical properties of mesogenic metal-free and metalated phthalocyanines (PCs) with a moderately sized and regioregular alkyl periphery were investigated. In solution, the individualized molecules show fluorescence lifetimes of 4-6 ns in THF. When deposited as solid thin films the materials exhibit significantly shorter fluorescence lifetimes with bi-exponential decay (1.4-1.8 ns; 0.2-0.4 ns) that testify to the formation of aggregates viaπ-π intermolecular interactions. In diode structures, their pronounced columnar order outbalances the unfavorable planar alignment and leads to excellent rectification behavior. Field-dependent charge carrier mobilities are obtained from the J-V curves in the trap-limited space-charge-limited current regime and demonstrate that the metalated PCs display an improved electrical response with respect to the metal-free homologue. The excited-state lifetime characterization suggest that the π-π intermolecular interactions are stronger for the metal-free PC, confirming that the metallic centre plays an important role in the charge transport inside these materials. PMID:26585027

  3. A new molecular rectifier device and some research in its processing

    Institute of Scientific and Technical Information of China (English)

    Lan Bijian; Liu Chunming; Yin Xiang; Zhang Hua; Xu Wei; Hua Zhongyi

    2006-01-01

    Organic materials of D-π-A type MR-X (MR-1:p-dimethylaminophenylethenetrica-rbonitrile and MR-2:p-diphenylaminophenylethene tricarbonitrile) were designed and synthesized.The device with a sandwich structure shows good rectificative phenomena.The highest rectification ratio 10000 was achieved in device Cu/MR-1/Ag,and about 100 in other device M/MR-X/M (M:Cu,Ag).It has been found that rectificative phenomena exist only in the atmosphere-liquid interface region by means of liquid adsorption,and electric field could help form the oriented molecular film.

  4. Disorder-driven nonequilibrium melting studied by electron diffraction, brillouin scattering, and molecular dynamics

    International Nuclear Information System (INIS)

    In the present paper, a brief overview of the electron diffraction, Brillouin scattering and molecular dynamics studies of radiation-induced amorphization of ordered intermetallic compounds is presented. In these studies, measured changes in the velocity of surface acoustic phonons, lattice constant, and the Bragg-Williams long-range order parameter induced by irradiation were compared with the results of computer simulations of defect-induced amorphization. The results indicate that progressive chemical disordering of the superlattice structure during irradiation is accompanied by an expansion of the lattice and a large change in sound velocity corresponding to a ∼ 50% decrease in the average shear modulus. The onset of amorphization occurs when the average shear modulus of the crystalline compound becomes equal to that of the amorphous phase. This elastic softening criterion for the onset of amorphization and the dependence of the average shear modulus on the long-range-order parameter are in excellent agreement with molecular dynamics simulations. Both the experimental observations and computer simulations confirm the predictions of the generalized Lindemann melting criterion which stipulates that thermodynamic melting of a defective crystal occurs when the sum of the dynamic and static mean-square atomic displacements reaches a critical value identical to that for melting of the defect-free crystal. In this broader view of melting, the crystal-to-glass transformation is a disorder-driven nonequilibrium melting process occurring at temperatures below the Kauzmann isentropic glass-transition temperature

  5. Molecular-Based Theory for Electron-Transfer Reorganization Energy in Solvent Mixtures.

    Science.gov (United States)

    Zhuang, Bilin; Wang, Zhen-Gang

    2016-07-01

    Using statistical-field techniques, we develop a molecular-based dipolar self-consistent-field theory (DSCFT) for charge solvation in liquid mixtures under equilibrium and nonequilibrium conditions, and apply it to compute the solvent reorganization energy of electron-transfer reactions. In addition to the nonequilibrium orientational polarization, the reorganization energy in liquid mixtures is also determined by the out-of-equilibrium solvent composition around the reacting species due to preferential solvation. Using molecular parameters that are readily available, the DSCFT naturally accounts for the dielectric saturation effect and the spatially varying solvent composition in the vicinity of the reacting species. We identify three general categories of binary solvent mixtures, classified by the relative optical and static dielectric permittivities of the solvent components. Each category of mixture is shown to produce a characteristic local solvent composition profile in the vicinity of the reacting species, which gives rise to the distinctive composition dependence of the reorganization energy that cannot be predicted using the dielectric permittivities of the homogeneous solvent mixtures. PMID:27187110

  6. Hildebrand and Hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors.

    Science.gov (United States)

    Belmares, M; Blanco, M; Goddard, W A; Ross, R B; Caldwell, G; Chou, S-H; Pham, J; Olofson, P M; Thomas, Cristina

    2004-11-30

    We introduce the Cohesive Energy Density (CED) method, a multiple sampling Molecular Dynamics computer simulation procedure that may offer higher consistency in the estimation of Hildebrand and Hansen solubility parameters. The use of a multiple sampling technique, combined with a simple but consistent molecular force field and quantum mechanically determined atomic charges, allows for the precise determination of solubility parameters in a systematic way (sigma = 0.4 hildebrands). The CED method yields first-principles Hildebrand parameter predictions in good agreement with experiment [root-mean-square (rms) = 1.1 hildebrands]. We apply the CED method to model the Caltech electronic nose, an array of 20 polymer sensors. Sensors are built with conducting leads connected through thin-film polymers loaded with carbon black. Odorant detection relies on a change in electric resistivity of the polymer film as function of the amount of swelling caused by the odorant compound. The amount of swelling depends upon the chemical composition of the polymer and the odorant molecule. The pattern is unique, and unambiguously identifies the compound. Experimentally determined changes in relative resistivity of seven polymer sensors upon exposure to 24 solvent vapors were modeled with the CED estimated Hansen solubility components. Predictions of polymer sensor responses result in Pearson R2 coefficients between 0.82 and 0.99. PMID:15389751

  7. Effect of contact interface configuration on electronic transport in (C20)2-based molecular junctions

    International Nuclear Information System (INIS)

    Using first-principles calculations, we study the electronic transport properties in Au-(C20)2-Au molecular junctions with different contact interface configurations: point contact and bond contact. We observe that the transmission through the bond contact is considerably higher than that of point contact. Furthermore, the I–V characteristics are rather different. For the bond contact, we get a metallic behavior followed by a varistor-type behavior. While as for the point contact, the current increases very slowly in a nonlinear way and is one order of magnitude smaller than that of bond contact. We attribute these obvious differences to the distinct contact configurations. -- Highlights: ► The I–V properties of (C20)2 molecular devices are affected by contact configuration. ► As for the bond contact, metallic behavior in the low bias is observed. ► Varistor-type behavior and nonlinear I–V characteristic in the high bias are found. ► As for the point contact, the Landauer conductance greatly decreases. ► The current is one order of magnitude smaller than that of bond contact.

  8. Molecular Dynamics Simulation of Strong Shock Waves Propagating in Dense Deuterium With the Effect of Excited Electrons

    CERN Document Server

    Liu, Hao; Kang, Wei; Zhang, Ping; Duan, Huiling; He, X T

    2016-01-01

    We present a molecular dynamics simulation of shock waves propagating in dense deuterium with the electron force field method [J. T. Su and W. A. Goddard, Phys. Rev. Lett. 99, 185003 (2007)], which explicitly takes the excitation of electrons into consideration. Non-equilibrium features associated with the excitation of electrons are systematically investigated. We show that chemical bonds in D$_2$ molecules lead to a more complicated shock wave structure near the shock front, compared with the results of classical molecular dynamics simulation. Charge separation can bring about accumulation of net charges on the large scale, instead of the formation of a localized dipole layer, which might cause extra energy for the shock wave to propagate. In addition, the simulations also display that molecular dissociation at the shock front is the major factor corresponding to the "bump" structure in the principal Hugoniot. These results could help to build a more realistic picture of shock wave propagation in fuel mater...

  9. Ac electronic tunneling at optical frequencies

    Science.gov (United States)

    Faris, S. M.; Fan, B.; Gustafson, T. K.

    1974-01-01

    Rectification characteristics of non-superconducting metal-barrier-metal junctions deduced from electronic tunneling have been observed experimentally for optical frequency irradiation of the junction. The results provide verification of optical frequency Fermi level modulation and electronic tunneling current modulation.

  10. Beyond Fullerenes: Designing Alternative Molecular Electron Acceptors for Solution-Processable Bulk Heterojunction Organic Photovoltaics.

    Science.gov (United States)

    Sauvé, Geneviève; Fernando, Roshan

    2015-09-17

    Organic photovoltaics (OPVs) are promising candidates for providing a low cost, widespread energy source by converting sunlight into electricity. Solution-processable active layers have predominantly consisted of a conjugated polymer donor blended with a fullerene derivative as the acceptor. Although fullerene derivatives have been the acceptor of choice, they have drawbacks such as weak visible light absorption and poor energy tuning that limit overall efficiencies. This has recently fueled new research to explore alternative acceptors that would overcome those limitations. During this exploration, one question arises: what are the important design principles for developing nonfullerene acceptors? It is generally accepted that acceptors should have high electron affinity, electron mobility, and absorption coefficient in the visible and near-IR region of the spectra. In this Perspective, we argue that alternative molecular acceptors, when blended with a conjugated polymer donor, should also have large nonplanar structures to promote nanoscale phase separation, charge separation and charge transport in blend films. Additionally, new material design should address the low dielectric constant of organic semiconductors that have so far limited their widespread application.

  11. Charge constrained density functional molecular dynamics for simulation of condensed phase electron transfer reactions

    CERN Document Server

    Oberhofer, H

    2009-01-01

    We present a plane-wave basis set implementation of charge constrained density functional molecular dynamics (CDFT-MD) for simulation of electron transfer reactions in condensed phase systems. Following earlier work of Wu et al. Phys. Rev. A 72, 024502 (2005), the density functional is minimized under the constraint that the charge difference between donor and acceptor is equal to a given value. The classical ion dynamics is propagated on the Born-Oppenheimer surface of the charge constrained state. We investigate the dependence of the constrained energy and of the energy gap on the definition of the charge, and present expressions for the constraint forces. The method is applied to the Ru2+-Ru3+ electron self-exchange reaction in aqueous solution. Sampling the vertical energy gap along CDFT-MD trajectories, and correcting for finite size effects, a reorganization free energy of 1.6 eV is obtained. This is 0.1-0.2 eV lower than a previous estimate based on a continuum model for solvation. smaller value for re...

  12. Theory for magnetic linear dichroism of electronic transitions between twofold-degenerate molecular spin levels

    Science.gov (United States)

    Bominaar, Emile L.; Achim, Catalina; Peterson, Jim

    1998-07-01

    Magnetic linear dichroism (MLD) spectroscopy is a relatively new technique which previously has been almost exclusively applied to atoms. These investigations have revealed that the study of MLD, in conjunction with electronic absorption and magnetic circular dichroism (MCD) spectroscopies, provides significant additional information concerning the electronic structure of atoms. More recent measurements have indicated that MLD is also observable from transition ions in inorganic compounds and metalloproteins. While the theory for atomic MLD has been worked out in considerable detail during the last two decades, an MLD theory of practical utility for the analysis of the spectra derived from the majority of paramagnetic molecules is not available. In the present contribution, the MLD of an electric-dipole-allowed transition between twofold-degenerate molecular spin levels is analyzed, assuming nonsaturating conditions. As for atomic systems, it is found that the MLD of a single molecule is dominated by the term G0. However, this term vanishes in the powder average evaluated for a randomly oriented ensemble of molecules, leading to a drastic reduction of the MLD differential absorption for systems with spin S=1/2 compared to that observed for systems with higher ground-state spin. It is found that MLD and MCD spectroscopies on solution samples have complementary spin-state specific sensitivities which suggest that the two methods can be used to selectively probe the individual metal sites in multicenter metalloprotein assemblies.

  13. Enhancing adverse drug event detection in electronic health records using molecular structure similarity: application to pancreatitis.

    Directory of Open Access Journals (Sweden)

    Santiago Vilar

    Full Text Available BACKGROUND: Adverse drug events (ADEs detection and assessment is at the center of pharmacovigilance. Data mining of systems, such as FDA's Adverse Event Reporting System (AERS and more recently, Electronic Health Records (EHRs, can aid in the automatic detection and analysis of ADEs. Although different data mining approaches have been shown to be valuable, it is still crucial to improve the quality of the generated signals. OBJECTIVE: To leverage structural similarity by developing molecular fingerprint-based models (MFBMs to strengthen ADE signals generated from EHR data. METHODS: A reference standard of drugs known to be causally associated with the adverse event pancreatitis was used to create a MFBM. Electronic Health Records (EHRs from the New York Presbyterian Hospital were mined to generate structured data. Disproportionality Analysis (DPA was applied to the data, and 278 possible signals related to the ADE pancreatitis were detected. Candidate drugs associated with these signals were then assessed using the MFBM to find the most promising candidates based on structural similarity. RESULTS: The use of MFBM as a means to strengthen or prioritize signals generated from the EHR significantly improved the detection accuracy of ADEs related to pancreatitis. MFBM also highlights the etiology of the ADE by identifying structurally similar drugs, which could follow a similar mechanism of action. CONCLUSION: The method proposed in this paper provides evidence of being a promising adjunct to existing automated ADE detection and analysis approaches.

  14. Electronic structures of TiN and TiC-Extension of Molecular Orbital Method into Crystals

    Institute of Scientific and Technical Information of China (English)

    Bin Song; Gaoling Zhao

    2000-01-01

    Density of states and theoretical X-ray emission spectra for the valence bands of TiN and TiC are obtained with a molecular orbital method. In order to describe electronic structures of crystals, local clusters for the molecular orbital calculations are extended, including the effects from the outside of the cluster in the crystal. The theoretical results are in good agreement with the experimental ones.

  15. Multiphoton Ionization as a clock to Reveal Molecular Dynamics with Intense Short X-ray Free Electron Laser Pulses

    OpenAIRE

    L. FANG; Osipov, T.; Murphy, B.; Tarantelli, F.; Kukk, E.; Cryan, J. P.; Glownia, M.; Bucksbaum, P. H.; Coffee, R. N.; M. Chen; Buth, C.; Berrah, N.

    2013-01-01

    We investigate molecular dynamics of multiple ionization in N2 through multiple core-level photoabsorption and subsequent Auger decay processes induced by intense, short X-ray free electron laser pulses. The timing dynamics of the photoabsorption and dissociation processes is mapped onto the kinetic energy of the fragments. Measurements of the latter allow us to map out the average internuclear separation for every molecular photoionization sequence step and obtain the average time interval b...

  16. Valence Band Dependent Charge Transport in Bulk Molecular Electronic Devices Incorporating Highly Conjugated Multi-[(Porphinato)Metal] Oligomers.

    Science.gov (United States)

    Bruce, Robert C; Wang, Ruobing; Rawson, Jeff; Therien, Michael J; You, Wei

    2016-02-24

    Molecular electronics offers the potential to control device functions through the fundamental electronic properties of individual molecules, but realization of such possibilities is typically frustrated when such specialized molecules are integrated into a larger area device. Here we utilize highly conjugated (porphinato)metal-based oligomers (PM(n) structures) as molecular wire components of nanotransfer printed (nTP) molecular junctions; electrical characterization of these "bulk" nTP devices highlights device resistances that depend on PM(n) wire length. Device resistance measurements, determined as a function of PM(n) molecular length, were utilized to evaluate the magnitude of a phenomenological β corresponding to the resistance decay parameter across the barrier; these data show that the magnitude of this β value is modulated via porphyrin macrocycle central metal atom substitution [β(PZn(n); 0.065 Å(-1)) < β(PCu(n); 0.132 Å(-1)) < β(PNi(n); 0.176 Å(-1))]. Cyclic voltammetric data, and ultraviolet photoelectron spectroscopic studies carried out at gold surfaces, demonstrate that these nTP device resistances track with the valence band energy levels of the PM(n) wire, which were modulated via porphyrin macrocycle central metal atom substitution. This study demonstrates the ability to fabricate "bulk" and scalable electronic devices in which function derives from the electronic properties of discrete single molecules, and underscores how a critical device function--wire resistance--may be straightforwardly engineered by PM(n) molecular composition. PMID:26829704

  17. Hydrated electron production by reaction of hydrogen atoms with hydroxide ions: A first-principles molecular dynamics study

    International Nuclear Information System (INIS)

    The solvated electron production by reaction between the H atom and the hydroxide anion was studied using Density Functional Theory based first-principles molecular dynamics. The simulation reveals a complex mechanism, controlled by proton transfers in the coordination sphere of the hydroxide and by the diffusion of the H atom in its solvent cavity. We formulate the hypothesis, based on a coupling between classical and first-principles molecular dynamics, that these two processes give rise to a lag time for the reaction that would explain the H atom extremely small reactivity compared to other radical species. Furthermore, the reaction observed gives an original insight in excess electron solvation. (authors)

  18. Molecular dynamics and simulations study on the vibrational and electronic solvatochromism of benzophenone

    Energy Technology Data Exchange (ETDEWEB)

    Ravi Kumar, Venkatraman; Umapathy, Siva, E-mail: umapathy@ipc.iisc.ernet.in, E-mail: chandra@bii.a-star.edu.sg [Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012 (India); Verma, Chandra, E-mail: umapathy@ipc.iisc.ernet.in, E-mail: chandra@bii.a-star.edu.sg [Bioinformatics Institute - A*STAR, 30 Biopolis Street, # 07-01 Matrix, Singapore 138671 (Singapore); School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543 (Singapore)

    2016-02-14

    Solvent plays a key role in diverse physico-chemical and biological processes. Therefore, understanding solute-solvent interactions at the molecular level of detail is of utmost importance. A comprehensive solvatochromic analysis of benzophenone (Bzp) was carried out in various solvents using Raman and electronic spectroscopy, in conjunction with Density Functional Theory (DFT) calculations of supramolecular solute-solvent clusters generated using classical Molecular Dynamics Simulations (c-MDSs). The >C=O stretching frequency undergoes a bathochromic shift with solvent polarity. Interestingly, in protic solvents this peak appears as a doublet: c-MDS and ad hoc explicit solvent ab initio calculations suggest that the lower and higher frequency peaks are associated with the hydrogen bonded and dangling carbonyl group of Bzp, respectively. Additionally, the dangling carbonyl in methanol (MeOH) solvent is 4 cm{sup −1} blue-shifted relative to acetonitrile solvent, despite their similar dipolarity/polarizability. This suggests that the cybotactic region of the dangling carbonyl group in MeOH is very different from its bulk solvent structure. Therefore, we propose that this blue-shift of the dangling carbonyl originates in the hydrophobic solvation shell around it resulting from extended hydrogen bonding network of the protic solvents. Furthermore, the 1{sup 1}nπ{sup ∗} (band I) and 1{sup 1}ππ{sup ∗} (band II) electronic transitions show a hypsochromic and bathochromic shift, respectively. In particular, these shifts in protic solvents are due to differences in their excited state-hydrogen bonding mechanisms. Additionally, a linear relationship is obtained for band I and the >C=O stretching frequency (cm{sup −1}), which suggests that the different excitation wavelengths in band I correspond to different solvation states. Therefore, we hypothesize that the variation in excitation wavelengths in band I could arise from different solvation states leading to

  19. Classification of 2-pore domain potassium channels based on rectification under quasi-physiological ionic conditions.

    Science.gov (United States)

    Chen, Haijun; Zuo, Dongchuan; Zhang, Jianing; Zhou, Min; Ma, Liqun

    2014-01-01

    It is generally expected that 2-pore domain K(+) (K2P) channels are open or outward rectifiers in asymmetric physiological K(+) gradients, following the Goldman-Hodgkin-Katz (GHK) current equation. Although cloned K2P channels have been extensively studied, their current-voltage (I-V) relationships are not precisely characterized and previous definitions are contradictory. Here we study all the functional channels from 6 mammalian K2P subfamilies in transfected Chinese hamster ovary cells with patch-clamp technique, and examine whether their I-V relationships are described by the GHK current equation. K2P channels display 2 distinct types of I-V curves in asymmetric physiological K(+) gradients. Two K2P isoforms in the TWIK subfamily conduct large inward K(+) currents and have a nearly linear I-V curve. Ten isoforms from 5 other K2P subfamilies conduct small inward K(+) currents and exhibit open rectification, but fits with the GHK current equation cannot precisely reveal the differences in rectification among K2P channels. The Rectification Index, a ratio of limiting I-V slopes for outward and inward currents, is used to quantitatively describe open rectification of each K2P isoform, which is previously qualitatively defined as strong or weak open rectification. These results systematically and precisely classify K2P channels and suggest that TWIK K(+) channels have a unique feature in regulating cellular function.

  20. pH-reversed ionic current rectification displayed by conically shaped nanochannel without any modification.

    Science.gov (United States)

    Guo, Zhijun; Wang, Jiahai; Ren, Jiangtao; Wang, Erkang

    2011-09-01

    Ion current through a nascent nanochannel with conically shaped geometry in PET (polyethylene terephthalate) membrane sandwiched between two same buffer solutions at pH ≤ 3 was routinely considered to exhibit no rectification and, if any, much weaker rectification than that for a nanochannel with a negative surface charge, since the surface charge on the membrane decreases to zero along with decreasing the pH value of the buffer solution down to the pK(a) of carboxylic acid. However, in this study, we discovered that in the buffer solution with low ionic strength at pH values below 3, the conically shaped nanochannels exhibited distinct ion current rectification, as expected for nanochannels with a positive surface charge, if voltages beyond ±2V range were scanned. We reasoned that the current rectification engendered by the positive surface charge of a conical nanochannel was due to further protonation of the hydrogen bonded hydrogel layer or neutral carboxylic acid inside the nanochannel. Therefore, our results enrich the knowledge about nanochannel technology and indicate that a nanofluidic diode based on pH-reversed ion current rectification through a conical nanochannel can be achieved without any modification of the PET membrane.