WorldWideScience

Sample records for molecular chemistry nutrient

  1. Rapid Characterization of Molecular Chemistry, Nutrient Make-Up and Microlocation of Internal Seed Tissue

    International Nuclear Information System (INIS)

    Yu, P.; Block, H.; Niu, Z.; Doiron, K.

    2007-01-01

    Wheat differs from corn in biodegradation kinetics and fermentation characteristics. Wheat exhibits a relatively high rate (23% h 01 ) and extent (78% DM) of biodegradation, which can lead to metabolic problems such as acidosis and bloat in ruminants. The objective of this study was to rapidly characterize the molecular chemistry of the internal structure of wheat (cv. AC Barrie) and reveal both its structural chemical make-up and nutrient component matrix by analyzing the intensity and spatial distribution of molecular functional groups within the intact seed using advanced synchrotron-powered Fourier transform infrared (FTIR) microspectroscopy. The experiment was performed at the U2B station of the National Synchrotron Light Source at Brookhaven National Laboratory, New York, USA. The wheat tissue was imaged systematically from the pericarp, seed coat, aleurone layer and endosperm under the peaks at ∼1732 (carbonyl C(double b ond)O ester), 1515 (aromatic compound of lignin), 1650 (amide I), 1025 (non-structural CHO), 1550 (amide II), 1246 (cellulosic material), 1160, 1150, 1080, 930, 860 (all CHO), 3350 (OH and NH stretching), 2928 (CH 2 stretching band) and 2885 cm -1 (CH 3 stretching band). Hierarchical cluster analysis and principal component analysis were applied to analyze the molecular FTIR spectra obtained from the different inherent structures within the intact wheat tissues. The results showed that, with synchrotron-powered FTIR microspectroscopy, images of the molecular chemistry of wheat could be generated at an ultra-spatial resolution. The features of aromatic lignin, structural and non-structural carbohydrates, as well as nutrient make-up and interactions in the seeds, could be revealed. Both principal component analysis and hierarchical cluster analysis methods are conclusive in showing that they can discriminate and classify the different inherent structures within the seed tissue. The wheat exhibited distinguishable differences in the

  2. Molecular biology: Self-sustaining chemistry

    Directory of Open Access Journals (Sweden)

    Wrede Paul

    2007-10-01

    Full Text Available Abstract Molecular biology is an established interdisciplinary field within biology that deals fundamentally with the function of any nucleic acid in the cellular context. The molecular biology section in Chemistry Central Journal focusses on the genetically determined chemistry and biochemistry occuring in the cell. How can thousands of chemical reactions interact smoothly to maintain the life of cells, even in a variable environment? How is this self-sustaining system achieved? These are questions that should be answered in the light of molecular biology and evolution, but with the application of biophysical, physico-chemical, analytical and preparative technologies. As the Section Editor for the molecular biology section in Chemistry Central Journal, I hope to receive manuscripts that present new approaches aimed at better answering and shedding light upon these fascinating questions related to the chemistry of livings cells.

  3. Plant species effects on soil nutrients and chemistry in arid ecological zones.

    Science.gov (United States)

    Johnson, Brittany G; Verburg, Paul S J; Arnone, John A

    2016-09-01

    The presence of vegetation strongly influences ecosystem function by controlling the distribution and transformation of nutrients across the landscape. The magnitude of vegetation effects on soil chemistry is largely dependent on the plant species and the background soil chemical properties of the site, but has not been well quantified along vegetation transects in the Great Basin. We studied the effects of plant canopy cover on soil chemistry within five different ecological zones, subalpine, montane, pinyon-juniper, sage/Mojave transition, and desert shrub, in the Great Basin of Nevada all with similar underlying geology. Although plant species differed in their effects on soil chemistry, the desert shrubs Sarcobatus vermiculatus, Atriplex spp., Coleogyne ramosissima, and Larrea tridentata typically exerted the most influence on soil chemistry, especially amounts of K(+) and total nitrogen, beneath their canopies. However, the extent to which vegetation affected soil nutrient status in any given location was not only highly dependent on the species present, and presumably the nutrient requirements and cycling patterns of the plant species, but also on the background soil characteristics (e.g., parent material, weathering rates, leaching) where plant species occurred. The results of this study indicate that the presence or absence of a plant species, especially desert shrubs, could significantly alter soil chemistry and subsequently ecosystem biogeochemistry and function.

  4. Seasonal nutrient chemistry in mountainous river systems of tropical Western Peninsular India

    Digital Repository Service at National Institute of Oceanography (India)

    Pradhan, U.K.; Wu, Y.; Shirodkar, P.V.; Zhang, J.

    Nutrient chemistry was studied in three mountainous rivers (Mandovi, Zuari and Netravati), across western peninsular India (WPI) during south-west monsoon (SWM), post-monsoon and pre-monsoon seasons of year 2011-2012. Nutrients in rainwater were...

  5. Blood chemistry, haematological indices and nutrient digestibility of ...

    African Journals Online (AJOL)

    A 56-days experiment was carried out to study the effect of replacing macaroni waste meal (MWM) with maize on nutrient digestibility and blood chemistry of indigenous turkey starter. Ninety-six indigenous turkey poults with an average weight of 52 g were randomly assigned to four dietary treatments containing macaroni ...

  6. Streamwater chemistry and nutrient budgets for forested watersheds in New England: variability and management implications

    Science.gov (United States)

    J.W. Hornbeck; S.W. Bailey; D.C. Buso; J.B. Shanley

    1997-01-01

    Chemistry of precipitation and streamwater and resulting input-output budgets for nutrient ions were determined concurrently for three years on three upland, forested watersheds located within an 80 km radius in central New England. Chemistry of precipitation and inputs of nutrients via wet deposition were similar among the three watersheds and were generally typical...

  7. Monitoring TASCC Injections Using A Field-Ready Wet Chemistry Nutrient Autoanalyzer

    Science.gov (United States)

    Snyder, L. E.; Herstand, M. R.; Bowden, W. B.

    2011-12-01

    Quantification of nutrient cycling and transport (spiraling) in stream systems is a fundamental component of stream ecology. Additions of isotopic tracer and bulk inorganic nutrient to streams have been frequently used to evaluate nutrient transfer between ecosystem compartments and nutrient uptake estimation, respectively. The Tracer Addition for Spiraling Curve Characterization (TASCC) methodology of Covino et al. (2010) instantaneously and simultaneously adds conservative and biologically active tracers to a stream system to quantify nutrient uptake metrics. In this method, comparing the ratio of mass of nutrient and conservative solute recovered in each sample throughout a breakthrough curve to that of the injectate, a distribution of spiraling metrics is calculated across a range of nutrient concentrations. This distribution across concentrations allows for both a robust estimation of ambient spiraling parameters by regression techniques, and comparison with uptake kinetic models. We tested a unique sampling strategy for TASCC injections in which samples were taken manually throughout the nutrient breakthrough curves while, simultaneously, continuously monitoring with a field-ready wet chemistry autoanalyzer. The autoanalyzer was programmed to measure concentrations of nitrate, phosphate and ammonium at the rate of one measurement per second throughout each experiment. Utilization of an autoanalyzer in the field during the experiment results in the return of several thousand additional nutrient data points when compared with manual sampling. This technique, then, allows for a deeper understanding and more statistically robust estimation of stream nutrient spiraling parameters.

  8. Molecular and risk-based approach to nutrient development for a proposed sub-surface biogasification field trial in a biogenic gas field

    Energy Technology Data Exchange (ETDEWEB)

    Lambo, Adewale J.; Strapoc, Dariusz; Pittenger, Michelle; Huizinga, Bradley [ConocoPhillips (Canada); Wood, Ladonna; Ashby, Matt [Taxon Biosciences (Canada)

    2011-07-01

    This paper presents the molecular and risk-based approach to nutrient development for a proposed sub-surface biogasification field trial in a biogenic gas field. From field sampling, variability was seen in water chemistry and environmental parameters across the field; DNA yield also varied across the field and showed distinct spatial variation. The composition of microbial populations and relative distribution of archaea populations in the Cooks Inlet water is represented using pie and bar charts. The nutrient recipe was developed using known information on nutrient requirements of mathematically correlated microbial associations. The process of on-site nutrient injection is explained. Some of the mitigation plans for the risks involved during the process include, among others, limiting biofilm prevalence and avoiding bio-plugging and bio-corrosion. Biofilm is likely to develop in the injection line but less likely in nutrient mixing due to the high nutrient concentration. From the study, it can be concluded that community composition correlates with field geochemical parameters and methane pathways.

  9. Effect of mining rejects on the nutrient chemistry of Mandovi Estuary, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    DeSousa, S.N.

    Nutrient chemistry in Mandovi Estuary, Goa, India during premonsoon in affected by the discharge of mining rejects. Concentrations of nitrate and phosphate, in general, show low levels in this season (nitate 0.3-3.3 mu M, phosphate 0.11-0.56 mu M...

  10. Molecular dynamics for irradiation driven chemistry

    DEFF Research Database (Denmark)

    Sushko, Gennady B.; Solov'yov, Ilia A.; Solov'yov, Andrey V.

    2016-01-01

    A new molecular dynamics (MD) approach for computer simulations of irradiation driven chemical transformations of complex molecular systems is suggested. The approach is based on the fact that irradiation induced quantum transformations can often be treated as random, fast and local processes...... that describe the classical MD of complex molecular systems under irradiation. The proposed irradiation driven molecular dynamics (IDMD) methodology is designed for the molecular level description of the irradiation driven chemistry. The IDMD approach is implemented into the MBN Explorer software package...... involving small molecules or molecular fragments. We advocate that the quantum transformations, such as molecular bond breaks, creation and annihilation of dangling bonds, electronic charge redistributions, changes in molecular topologies, etc., could be incorporated locally into the molecular force fields...

  11. Supramolecular chemistry: from molecular information towards self-organization and complex matter

    International Nuclear Information System (INIS)

    Lehn, Jean-Marie

    2004-01-01

    Molecular chemistry has developed a wide range of very powerful procedures for constructing ever more sophisticated molecules from atoms linked by covalent bonds. Beyond molecular chemistry lies supramolecular chemistry, which aims at developing highly complex chemical systems from components interacting via non-covalent intermolecular forces. By the appropriate manipulation of these interactions, supramolecular chemistry became progressively the chemistry of molecular information, involving the storage of information at the molecular level, in the structural features, and its retrieval, transfer, and processing at the supramolecular level, through molecular recognition processes operating via specific interactional algorithms. This has paved the way towards apprehending chemistry also as an information science. Numerous receptors capable of recognizing, i.e. selectively binding, specific substrates have been developed, based on the molecular information stored in the interacting species. Suitably functionalized receptors may perform supramolecular catalysis and selective transport processes. In combination with polymolecular organization, recognition opens ways towards the design of molecular and supramolecular devices based on functional (photoactive, electroactive, ionoactive, etc) components. A step beyond preorganization consists in the design of systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined supramolecular architectures by self-assembly from their components. Self-organization processes, directed by the molecular information stored in the components and read out at the supramolecular level through specific interactions, represent the operation of programmed chemical systems. They have been implemented for the generation of a variety of discrete functional architectures of either organic or inorganic nature. Self-organization processes also give access to advanced supramolecular materials, such as

  12. Carbon Isotope Chemistry in Molecular Clouds

    Science.gov (United States)

    Robertson, Amy N.; Willacy, Karen

    2012-01-01

    Few details of carbon isotope chemistry are known, especially the chemical processes that occur in astronomical environments like molecular clouds. Observational evidence shows that the C-12/C-13 abundance ratios vary due to the location of the C-13 atom within the molecular structure. The different abundances are a result of the diverse formation pathways that can occur. Modeling can be used to explore the production pathways of carbon molecules in an effort to understand and explain the chemical evolution of molecular clouds.

  13. ICE CHEMISTRY IN STARLESS MOLECULAR CORES

    Energy Technology Data Exchange (ETDEWEB)

    Kalvans, J., E-mail: juris.kalvans@venta.lv [Engineering Research Institute “Ventspils International Radio Astronomy Center” of Ventspils University College, Inzenieru 101, Ventspils, LV-3601 (Latvia)

    2015-06-20

    Starless molecular cores are natural laboratories for interstellar molecular chemistry research. The chemistry of ices in such objects was investigated with a three-phase (gas, surface, and mantle) model. We considered the center part of five starless cores, with their physical conditions derived from observations. The ice chemistry of oxygen, nitrogen, sulfur, and complex organic molecules (COMs) was analyzed. We found that an ice-depth dimension, measured, e.g., in monolayers, is essential for modeling of chemistry in interstellar ices. Particularly, the H{sub 2}O:CO:CO{sub 2}:N{sub 2}:NH{sub 3} ice abundance ratio regulates the production and destruction of minor species. It is suggested that photodesorption during the core-collapse period is responsible for the high abundance of interstellar H{sub 2}O{sub 2} and O{sub 2}H and other species synthesized on the surface. The calculated abundances of COMs in ice were compared to observed gas-phase values. Smaller activation barriers for CO and H{sub 2}CO hydrogenation may help explain the production of a number of COMs. The observed abundance of methyl formate HCOOCH{sub 3} could be reproduced with a 1 kyr, 20 K temperature spike. Possible desorption mechanisms, relevant for COMs, are gas turbulence (ice exposure to interstellar photons) or a weak shock within the cloud core (grain collisions). To reproduce the observed COM abundances with the present 0D model, 1%–10% of ice mass needs to be sublimated. We estimate that the lifetime for starless cores likely does not exceed 1 Myr. Taurus cores are likely to be younger than their counterparts in most other clouds.

  14. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry.

    Science.gov (United States)

    Domingo, Luis R

    2016-09-30

    A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT), is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT), the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through a rigorous quantum chemical analysis of the changes of the electron density as well as the energies associated with these changes along the reaction path in order to understand experimental outcomes. Studies performed using MEDT allow establishing a modern rationalisation and to gain insight into molecular mechanisms and reactivity in Organic Chemistry.

  15. Repeat synoptic sampling reveals drivers of change in carbon and nutrient chemistry of Arctic catchments

    Science.gov (United States)

    Zarnetske, J. P.; Abbott, B. W.; Bowden, W. B.; Iannucci, F.; Griffin, N.; Parker, S.; Pinay, G.; Aanderud, Z.

    2017-12-01

    Dissolved organic carbon (DOC), nutrients, and other solute concentrations are increasing in rivers across the Arctic. Two hypotheses have been proposed to explain these trends: 1. distributed, top-down permafrost degradation, and 2. discrete, point-source delivery of DOC and nutrients from permafrost collapse features (thermokarst). While long-term monitoring at a single station cannot discriminate between these mechanisms, synoptic sampling of multiple points in the stream network could reveal the spatial structure of solute sources. In this context, we sampled carbon and nutrient chemistry three times over two years in 119 subcatchments of three distinct Arctic catchments (North Slope, Alaska). Subcatchments ranged from 0.1 to 80 km2, and included three distinct types of Arctic landscapes - mountainous, tundra, and glacial-lake catchments. We quantified the stability of spatial patterns in synoptic water chemistry and analyzed high-frequency time series from the catchment outlets across the thaw season to identify source areas for DOC, nutrients, and major ions. We found that variance in solute concentrations between subcatchments collapsed at spatial scales between 1 to 20 km2, indicating a continuum of diffuse- and point-source dynamics, depending on solute and catchment characteristics (e.g. reactivity, topography, vegetation, surficial geology). Spatially-distributed mass balance revealed conservative transport of DOC and nitrogen, and indicates there may be strong in-stream retention of phosphorus, providing a network-scale confirmation of previous reach-scale studies in these Arctic catchments. Overall, we present new approaches to analyzing synoptic data for change detection and quantification of ecohydrological mechanisms in ecosystems in the Arctic and beyond.

  16. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry

    Directory of Open Access Journals (Sweden)

    Luis R. Domingo

    2016-09-01

    Full Text Available A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT, is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT, the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through a rigorous quantum chemical analysis of the changes of the electron density as well as the energies associated with these changes along the reaction path in order to understand experimental outcomes. Studies performed using MEDT allow establishing a modern rationalisation and to gain insight into molecular mechanisms and reactivity in Organic Chemistry.

  17. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry

    OpenAIRE

    Luis R. Domingo

    2016-01-01

    A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT), is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT), the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through ...

  18. Molecular dynamics for irradiation driven chemistry: application to the FEBID process*

    Science.gov (United States)

    Sushko, Gennady B.; Solov'yov, Ilia A.; Solov'yov, Andrey V.

    2016-10-01

    A new molecular dynamics (MD) approach for computer simulations of irradiation driven chemical transformations of complex molecular systems is suggested. The approach is based on the fact that irradiation induced quantum transformations can often be treated as random, fast and local processes involving small molecules or molecular fragments. We advocate that the quantum transformations, such as molecular bond breaks, creation and annihilation of dangling bonds, electronic charge redistributions, changes in molecular topologies, etc., could be incorporated locally into the molecular force fields that describe the classical MD of complex molecular systems under irradiation. The proposed irradiation driven molecular dynamics (IDMD) methodology is designed for the molecular level description of the irradiation driven chemistry. The IDMD approach is implemented into the MBN Explorer software package capable to operate with a large library of classical potentials, many-body force fields and their combinations. IDMD opens a broad range of possibilities for modelling of irradiation driven modifications and chemistry of complex molecular systems ranging from radiotherapy cancer treatments to the modern technologies such as focused electron beam deposition (FEBID). As an example, the new methodology is applied for studying the irradiation driven chemistry caused by FEBID of tungsten hexacarbonyl W(CO)6 precursor molecules on a hydroxylated SiO2 surface. It is demonstrated that knowing the interaction parameters for the fragments of the molecular system arising in the course of irradiation one can reproduce reasonably well experimental observations and make predictions about the morphology and molecular composition of nanostructures that emerge on the surface during the FEBID process.

  19. Dynamic combinatorial libraries: from exploring molecular recognition to systems chemistry.

    Science.gov (United States)

    Li, Jianwei; Nowak, Piotr; Otto, Sijbren

    2013-06-26

    Dynamic combinatorial chemistry (DCC) is a subset of combinatorial chemistry where the library members interconvert continuously by exchanging building blocks with each other. Dynamic combinatorial libraries (DCLs) are powerful tools for discovering the unexpected and have given rise to many fascinating molecules, ranging from interlocked structures to self-replicators. Furthermore, dynamic combinatorial molecular networks can produce emergent properties at systems level, which provide exciting new opportunities in systems chemistry. In this perspective we will highlight some new methodologies in this field and analyze selected examples of DCLs that are under thermodynamic control, leading to synthetic receptors, catalytic systems, and complex self-assembled supramolecular architectures. Also reviewed are extensions of the principles of DCC to systems that are not at equilibrium and may therefore harbor richer functional behavior. Examples include self-replication and molecular machines.

  20. Combinatorial chemistry approach to development of molecular plastic solar cells

    NARCIS (Netherlands)

    Godovsky, Dmitri; Inganäs, Olle; Brabec, Christoph J.; Sariciftci, N. Serdar; Hummelen, Jan C.; Janssen, Rene A.J.; Prato, M.; Maggini, M.; Segura, Jose; Martin, Nazario

    1999-01-01

    We used a combinatorial chemistry approach to develop the molecular plastic solar cells based on soluble fullerene derivatives or solubilized TCNQ molecules in combination with conjugated polymers. Profiles, formed by the diffusion of low molecular weight component in the spin-cast polymer host were

  1. Bioscience methodologies in physical chemistry an engineering and molecular approach

    CERN Document Server

    D'Amore, Alberto

    2013-01-01

    The field of bioscience methodologies in physical chemistry stands at the intersection of the power and generality of classical and quantum physics with the minute molecular complexity of chemistry and biology. This book provides an application of physical principles in explaining and rationalizing chemical and biological phenomena. It does not stick to the classical topics that are conventionally considered as part of physical chemistry; instead it presents principles deciphered from a modern point of view, which is the strength of this book.

  2. Computational Exploration of Molecular Scaffolds in Medicinal Chemistry.

    Science.gov (United States)

    Hu, Ye; Stumpfe, Dagmar; Bajorath, Jürgen

    2016-05-12

    The scaffold concept is widely applied in medicinal chemistry. Scaffolds are mostly used to represent core structures of bioactive compounds. Although the scaffold concept has limitations and is often viewed differently from a chemical and computational perspective, it has provided a basis for systematic investigations of molecular cores and building blocks, going far beyond the consideration of individual compound series. Over the past 2 decades, alternative scaffold definitions and organization schemes have been introduced and scaffolds have been studied in a variety of ways and increasingly on a large scale. Major applications of the scaffold concept include the generation of molecular hierarchies, structural classification, association of scaffolds with biological activities, and activity prediction. This contribution discusses computational approaches for scaffold generation and analysis, with emphasis on recent developments impacting medicinal chemistry. A variety of scaffold-based studies are discussed, and a perspective on scaffold methods is provided.

  3. Extraterrestrial Radiation Chemistry and Molecular Astronomy

    Science.gov (United States)

    Hudson, Reggie L.; Moore, Marla H.

    2009-01-01

    Astronomical observations of both solar system and interstellar regions have revealed a rich chemical inventory that includes most classes of organic molecules and selected inorganics. For example, gas-phase ethylene glycol and SOz have been observed by astronomers, while solidphase detections include OCS, H2O2 , and the cyanate anion.' All of these are found in environments that are, by earthly standards, exceedingly hostile: temperatures of 10 - 100 K, miniscule densities, and near-ubiquitous ionizing-radiation fields. Beyond the simplest chemical species, these conditions have made it difficult-to-impassible to account for the observed molecular abundances using gas-phase chemistry, suggesting solid-phase reactions play an important role. In extraterrestrial environments, cosmic rays, UV photons, and magnetospheric radiation all drive chemical reactions, even at cryogenic temperatures. To study this chemistry, radiation astrochemists conduct experiments on icy materials, frozen under vacuum and exposed to sources such as keV electrons and MeV protons. Compositional changes usually are followed with IR spectroscopy and, in selected cases, more-sensitive mass-spectral techniques. This talk will review some recent results on known and suspected extraterrestrial molecules and ions. Spectra and reaction pathways will be presented, and predictions made for interstellar chemistry and the chemistry of selected solar system objects. Some past radiation-chemical contributions, and future needs, will be explored.

  4. Carbon chemistry in dense molecular clouds: Theory and observational constraints

    International Nuclear Information System (INIS)

    Blake, G.A.

    1990-01-01

    For the most part, gas phase models of the chemistry of dense molecular clouds predict the abundances of simple species rather well. However, for larger molecules and even for small systems rich in carbon these models often fail spectacularly. Researchers present a brief review of the basic assumptions and results of large scale modeling of the carbon chemistry in dense molecular clouds. Particular attention is to the influence of the gas phase C/O ratio in molecular clouds, and the likely role grains play in maintaining this ratio as clouds evolve from initially diffuse objects to denser cores with associated stellar and planetary formation. Recent spectral line surveys at centimeter and millimeter wavelengths along with selected observations in the submillimeter have now produced an accurate inventory of the gas phase carbon budget in several different types of molecular clouds, though gaps in our knowledge clearly remain. The constraints these observations place on theoretical models of interstellar chemistry can be used to gain insights into why the models fail, and show also which neglected processes must be included in more complete analyses. Looking toward the future, larger molecules are especially difficult to study both experimentally and theoretically in such dense, cold regions, and some new methods are therefore outlined which may ultimately push the detectability of small carbon chains and rings to much heavier species

  5. Molecular basis of structural make-up of feeds in relation to nutrient absorption in ruminants, revealed with advanced molecular spectroscopy: A review on techniques and models

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Md. Mostafizar [Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Yu, Peiqiang [Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

    2017-01-31

    Progress in ruminant feed research is no more feasible only based on wet chemical analysis, which is merely able to provide information on chemical composition of feeds regardless of their digestive features and nutritive value in ruminants. Studying internal structural make-up of functional groups/feed nutrients is often vital for understanding the digestive behaviors and nutritive values of feeds in ruminant because the intrinsic structure of feed nutrients is more related to its overall absorption. In this article, the detail information on the recent developments in molecular spectroscopic techniques to reveal microstructural information of feed nutrients and the use of nutrition models in regards to ruminant feed research was reviewed. The emphasis of this review was on (1) the technological progress in the use of molecular spectroscopic techniques in ruminant feed research; (2) revealing spectral analysis of functional groups of biomolecules/feed nutrients; (3) the use of advanced nutrition models for better prediction of nutrient availability in ruminant systems; and (4) the application of these molecular techniques and combination of nutrient models in cereals, co-products and pulse crop research. The information described in this article will promote better insight in the progress of research on molecular structural make-up of feed nutrients in ruminants.

  6. Chemistry Teacher Candidates' Acceptance and Opinions about Virtual Reality Technology for Molecular Geometry

    Science.gov (United States)

    Saritas, M. T.

    2015-01-01

    The meaningful knowledge creation about molecular geometry has always been the challenge of chemistry learning. In particular, microscopic world of chemistry science (example, atoms, molecules, structures) used in traditional two dimensional way of chemistry teaching can lead to such problem as students create misconceptions. In recent years,…

  7. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    Science.gov (United States)

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  8. Nonequilibrium chemistry in shocked molecular clouds

    International Nuclear Information System (INIS)

    Iglesias, E.R.; Silk, J.

    1978-01-01

    The gas phase chemistry is studied behind a 10 km s -1 shock propagating into a dense molecular cloud. Our principal conclusions are that the concentrations of certain molecules (CO, NH 3 , HCN, N 2 ) are unperturbed by the shock; other molecules (H 2 CO, CN, HCO + ) are greatly decreased in abundance; and substantial amounts of H 2 O, HCO, and CH 4 are produced. Approximately 10 6 yr (independent of the density) must elapse after shock passage before chemical equilibrium is attained

  9. Olefin Metathesis in Peptidomimetics, Dynamic Combinatorial Chemistry, and Molecular Imprinting

    National Research Council Canada - National Science Library

    Low, Tammy K

    2006-01-01

    .... Our research goals consisted of employing olefin metathesis in the synthesis of peptidomimetics, and studying the feasibility of this method in dynamic combinatorial chemistry and molecular imprinting of nerve agents...

  10. Growth, allocation and tissue chemistry of Picea abies seedlings affected by nutrient supply during the second growing season.

    Science.gov (United States)

    Kaakinen, Seija; Jolkkonen, Annika; Iivonen, Sari; Vapaavuori, Elina

    2004-06-01

    One-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were grown hydroponically in a growth chamber to investigate the effects of low and high nutrient availability (LN; 0.25 mM N and HN; 2.50 mM N) on growth, biomass allocation and chemical composition of needles, stem and roots during the second growing season. Climatic conditions in the growth chamber simulated the mean growing season from May to early October in Flakaliden, northern Sweden. In the latter half of the growing season, biomass allocation changed in response to nutrient availability: increased root growth and decreased shoot growth led to higher root/shoot ratios in LN seedlings than in HN seedlings. At high nutrient availability, total biomass, especially stem biomass, increased, as did total nonstructural carbohydrate and nitrogen contents per seedling. Responses of stem chemistry to nutrient addition differed from those of adult trees of the same provenance. In HN seedlings, concentrations of alpha-cellulose, hemicellulose and lignin decreased in the secondary xylem. Our results illustrate the significance of retranslocation of stored nutrients to support new growth early in the season when root growth and nutrient uptake are still low. We conclude that nutrient availability alters allocation patterns, thereby influencing the success of 2-year-old Norway spruce seedlings at forest planting sites.

  11. Molecular Twister: A Game for Exploring Solution Chemistry

    Directory of Open Access Journals (Sweden)

    Sawyer R. Masonjones

    2014-02-01

    Full Text Available pH is an essential biological concept with critical importance at various scales, from the molecular level, dealing with blood buffers, homeostasis, and proton gradients, all the way up to the ecosystem level, with soil chemistry and acid rain. However, pH is also a concept that spawns student misconceptions and misunderstanding in terms of what is happening in a solution on the atomic level. The Molecular Twister game, created for a Florida Department of Education funded professional development workshop for Florida high school teachers hosted at the University of Tampa  (Science Math Masters, seeks to model pH in such a way that students can visually and kinesthetically learn the concept in a few minutes. In addition, the basic design of the game pieces allow for teaching extensions to include more complex acid-base reactions. Challenge questions are provided to allow teachers to bring relevancy to the game, using examples of acid-base chemistry pulled from cases in human health and the environment.

  12. Molecular Studies of Complex Soil Organic Matter Interactions with Metal Ions and Mineral Surfaces using Classical Molecular Dynamics and Quantum Chemistry Methods

    Science.gov (United States)

    Andersen, A.; Govind, N.; Laskin, A.

    2017-12-01

    Mineral surfaces have been implicated as potential protectors of soil organic matter (SOM) against decomposition and ultimate mineralization to small molecules which can provide nutrients for plants and soil microbes and can also contribute to the Earth's elemental cycles. SOM is a complex mixture of organic molecules of biological origin at varying degrees of decomposition and can, itself, self-assemble in such a way as to expose some biomolecule types to biotic and abiotic attack while protecting other biomolecule types. The organization of SOM and SOM with mineral surfaces and solvated metal ions is driven by an interplay of van der Waals and electrostatic interactions leading to partitioning of hydrophilic (e.g. sugars) and hydrophobic (e.g., lipids) SOM components that can be bridged with amphiphilic molecules (e.g., proteins). Classical molecular dynamics simulations can shed light on assemblies of organic molecules alone or complexation with mineral surfaces. The role of chemical reactions is also an important consideration in potential chemical changes of the organic species such as oxidation/reduction, degradation, chemisorption to mineral surfaces, and complexation with solvated metal ions to form organometallic systems. For the study of chemical reactivity, quantum chemistry methods can be employed and combined with structural insight provided by classical MD simulations. Moreover, quantum chemistry can also simulate spectroscopic signatures based on chemical structure and is a valuable tool in interpreting spectra from, notably, x-ray absorption spectroscopy (XAS). In this presentation, we will discuss our classical MD and quantum chemistry findings on a model SOM system interacting with mineral surfaces and solvated metal ions.

  13. Molecular Twister: A Game for Exploring Solution Chemistry

    OpenAIRE

    Masonjones, Sawyer R.; Masonjones, Heather D.; Malone, Megan C.; Williams, Ann H.; Beemer, Margaret M.; Waggett, Rebecca J.

    2014-01-01

    pH is an essential biological concept with critical importance at various scales, from the molecular level, dealing with blood buffers, homeostasis, and proton gradients, all the way up to the ecosystem level, with soil chemistry and acid rain. However, pH is also a concept that spawns student misconceptions and misunderstanding in terms of what is happening in a solution on the atomic level. The Molecular Twister game, created for a Florida Department of Education funded professional develop...

  14. The Irminger Sea and the Iceland Sea time series measurements of sea water carbon and nutrient chemistry 1983–2008

    Directory of Open Access Journals (Sweden)

    J. Olafsson

    2010-03-01

    Full Text Available This paper describes the ways and means of assembling and quality controling the Irminger Sea and Iceland Sea time-series biogeochemical data which are included in the CARINA data set. The Irminger Sea and the Iceland Sea are hydrographically different regions where measurements of sea water carbon and nutrient chemistry were started in 1983. The sampling is seasonal, four times a year. The carbon chemistry is studied with measurements of the partial pressure of carbon dioxide in seawater, pCO2, and total dissolved inorganic carbon, TCO2. The carbon chemistry data are for surface waters only until 1991 when water column sampling was initiated. Other measured parameters are salinity, dissolved oxygen and the inorganic nutrients nitrate, phosphate and silicate. Because of the CARINA criteria for secondary quality control, depth >1500 m, the IRM-TS could not be included in the routine QC and the IS-TS only in a limited way. However, with the information provided here, the quality of the data can be assessed, e.g. on the basis of the results obtained with the use of reference materials.

  15. Ultrafast phenomena in molecular sciences femtosecond physics and chemistry

    CERN Document Server

    Bañares, Luis

    2014-01-01

    This book presents the latest developments in Femtosecond Chemistry and Physics for the study of ultrafast photo-induced molecular processes. Molecular systems, from the simplest H2 molecule to polymers or biological macromolecules, constitute central objects of interest for Physics, Chemistry and Biology, and despite the broad range of phenomena that they exhibit, they share some common behaviors. One of the most significant of those is that many of the processes involving chemical transformation (nuclear reorganization, bond breaking, bond making) take place in an extraordinarily short time, in or around the femtosecond temporal scale (1 fs = 10-15 s). A number of experimental approaches - very particularly the developments in the generation and manipulation of ultrashort laser pulses - coupled with theoretical progress, provide the ultrafast scientist with powerful tools to understand matter and its interaction with light, at this spatial and temporal scale. This book is an attempt to reunite some of the ...

  16. Molecular Tools for Facilitative Carbohydrate Transporters (Gluts).

    Science.gov (United States)

    Tanasova, Marina; Fedie, Joseph R

    2017-09-19

    Facilitative carbohydrate transporters-Gluts-have received wide attention over decades due to their essential role in nutrient uptake and links with various metabolic disorders, including diabetes, obesity, and cancer. Endeavors directed towards understanding the mechanisms of Glut-mediated nutrient uptake have resulted in a multidisciplinary research field spanning protein chemistry, chemical biology, organic synthesis, crystallography, and biomolecular modeling. Gluts became attractive targets for cancer research and medicinal chemistry, leading to the development of new approaches to cancer diagnostics and providing avenues for cancer-targeting therapeutics. In this review, the current state of knowledge of the molecular interactions behind Glut-mediated sugar uptake, Glut-targeting probes, therapeutics, and inhibitors are discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Designing an educative curriculum unit for teaching molecular geometry in high school chemistry

    Science.gov (United States)

    Makarious, Nader N.

    Chemistry is a highly abstract discipline that is taught and learned with the aid of various models. Among the most challenging, yet a fundamental topic in general chemistry at the high school level, is molecular geometry. This study focused on developing exemplary educative curriculum materials pertaining to the topic of molecular geometry. The methodology used in this study consisted of several steps. First, a diverse set of models were analyzed to determine to what extent each model serves its purpose in teaching molecular geometry. Second, a number of high school teachers and college chemistry professors were asked to share their experiences on using models in teaching molecular geometry through an online questionnaire. Third, findings from the comparative analysis of models, teachers’ experiences, literature review on models and students’ misconceptions, the curriculum expectations of the Next Generation Science Standards and their emphasis on three-dimensional learning and nature of science (NOS) contributed to the development of the molecular geometry unit. Fourth, the developed unit was reviewed by fellow teachers and doctoral-level science education experts and was revised to further improve its coherence and clarity in support of teaching and learning of the molecular geometry concepts. The produced educative curriculum materials focus on the scientific practice of developing and using models as promoted in the Next Generations Science Standards (NGSS) while also addressing nature of science (NOS) goals. The educative features of the newly developed unit support teachers’ pedagogical knowledge (PK) and pedagogical content knowledge (PCK). The unit includes an overview, teacher’s guide, and eight detailed lesson plans with inquiry oriented modeling activities replete with models and suggestions for teachers, as well as formative and summative assessment tasks. The unit design process serves as a model for redesigning other instructional units in

  18. The chemistry of molecular anions in circumstellar sources

    Energy Technology Data Exchange (ETDEWEB)

    Agúndez, Marcelino [LUTH, Observatoire de Paris-Meudon, 5 Place Jules Janssen, 92190 Meudon (France); Cernicharo, José [Departamento de Astrofísica, CAB, CSIC-INTA, Ctra. de Torrejón a Ajalvir km 4, 28850 Madrid (Spain); Guélin, Michel [Institut de Radioastronomie Millimétrique, 300 rue de la Piscine, 38406 Saint Martin d' Héres (France)

    2015-01-22

    The detection of negatively charged molecules in the interstellar and circumstellar medium in the past four years has been one of the most impacting surprises in the area of molecular astrophysics. It has motivated the interest of astronomers, physicists, and chemists on the study of the spectroscopy, chemical kinetics, and prevalence of molecular anions in the different astronomical regions. Up to six different molecular anions have been discovered in space to date, the last one being the small ion CN{sup −}, which has been observed in the envelope of the carbon star IRC +10216 and which contrary to the other larger anions is not formed by electron attachment to CN, but through reactions of large carbon anions with nitrogen atoms. Here we briefly review the current status of our knowledge of the chemistry of molecular anions in space, with particular emphasis on the circumstellar source IRC +10216, which to date is the astronomical source harboring the largest variety of anions.

  19. Essential concepts and underlying theories from physics, chemistry, and mathematics for "biochemistry and molecular biology" majors.

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry, and Mathematics that all Biochemistry or Molecular Biology majors must understand to complete their major coursework. The allied fields working group created a survey to validate foundational concepts from Physics, Chemistry, and Mathematics identified from participant feedback at various workshops. One-hundred twenty participants responded to the survey and 68% of the respondents answered yes to the question: "We have identified the following as the core concepts and underlying theories from Physics, Chemistry, and Mathematics that Biochemistry majors or Molecular Biology majors need to understand after they complete their major courses: 1) mechanical concepts from Physics, 2) energy and thermodynamic concepts from Physics, 3) critical concepts of structure from chemistry, 4) critical concepts of reactions from Chemistry, and 5) essential Mathematics. In your opinion, is the above list complete?" Respondents also delineated subcategories they felt should be included in these broad categories. From the results of the survey and this analysis the allied fields working group constructed a consensus list of allied fields concepts, which will help inform Biochemistry and Molecular Biology educators when considering the ASBMB recommended curriculum for Biochemistry or Molecular Biology majors and in the development of appropriate assessment tools to gauge student understanding of how these concepts relate to biochemistry and molecular biology. © 2013 by The International Union of Biochemistry and Molecular Biology.

  20. Molecular materials and devices: developing new functional systems based on the coordination chemistry approach

    Directory of Open Access Journals (Sweden)

    Toma Henrique E.

    2003-01-01

    Full Text Available At the onset of the nanotechnology age, molecular designing of materials and single molecule studies are opening wide possibilities of using molecular systems in electronic and photonic devices, as well as in technological applications based on molecular switching or molecular recognition. In this sense, inorganic chemists are privileged by the possibility of using the basic strategies of coordination chemistry to build up functional supramolecular materials, conveying the remarkable chemical properties of the metal centers and the characteristics of the ancillary ligands. Coordination chemistry also provides effective self-assembly strategies based on specific metal-ligand affinity and stereochemistry. Several molecular based materials, derived from inorganic and metal-organic compounds are focused on this article, with emphasis on new supramolecular porphyrins and porphyrazines, metal-clusters and metal-polyimine complexes. Such systems are also discussed in terms of their applications in catalysis, sensors and molecular devices.

  1. Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Johansen, Lars Dan; Bräuner-Osborne, Hans

    2009-01-01

    drug targets, to treat, for example, type II diabetes by mimicking food intake by potent agonists or positive allosteric modulators. The ligand-receptor interactions of the promiscuous receptors of organic nutrients thus remain an interesting subject of emerging functional importance....... in taste tissue, the gastrointestinal tract, endocrine glands, adipose tissue, and/or kidney. These receptors thus hold the potential to act as sensors of food intake, regulating, for example, release of incretin hormones from the gut, insulin/glucagon from the pancreas, and leptin from adipose tissue....... The promiscuous tendency in ligand recognition of these receptors is in contrast to the typical specific interaction with one physiological agonist seen for most receptors, which challenges the classic "lock-and-key" concept. We here review the molecular mechanisms of nutrient sensing of the calcium...

  2. Chemistry and structure of giant molecular clouds in energetic environments

    Science.gov (United States)

    Anderson, Crystal Nicole

    2016-09-01

    Throughout the years many studies on Galactic star formation have been conducted. This resulted in the idea that giant molecular clouds (GMCs) are hierarchical in nature with substructures spanning a large range of sizes. The physical processes that determine how molecular clouds fragment, form clumps/cores and then stars depends strongly on both recent radiative and mechanical feed- back from massive stars and, on longer term, from enhanced cooling due to the buildup of metals. Radiative and mechanical energy input from stellar populations can alter subsequent star formation over a large part of a galaxy and hence is relevant to the evolution of galaxies. Much of our knowledge of star formation on galaxy wide scales is based on scaling laws and other parametric descriptions. But to understand the overall evolution of star formation in galaxies we need to watch the feedback processes at work on giant molecular cloud (GMC) scales. By doing this we can begin to answer how strong feedback environments change the properties of the substructure in GMCs. Tests of Galactic star formation theory to other galaxies has been a challenging process due to the lack of resolution with current instruments. Thus, only the nearest galaxies allow us to resolve GMCs and their substructures. The Large Magellanic Cloud (LMC), is one of the closest low metallicity dwarf galaxies (D˜ 50 kpc) and is close enough that current instruments can resolve the sub- structure of its GMCs to molecular gas tracers (e.g. HCO+, HCN, HNC, CS, C2H, N2H+) detected in the LMC at 1.5-40 pc scales and in NGC 5253 at 40 pc scales. I then compare the molecular gas detections to the Central Molecular Zone in our Galaxy. Dense molecular gas was detected in all of the sources. For the regions in the LMC, molecular lines of CS, N2H+, C 2H, HNC, HCO+ and HCN were all detected in N159W and N113 while only HCN, HCO+, HNC, and C2H were detected in 30Dor-10. Toward NGC 5253 only HCO+, HCN, C2H and CS were detected. I

  3. Molecular phylogeny, morphology, pigment chemistry and ecology in Hygrophoraceae (Agaricales)

    Science.gov (United States)

    D. Jean Lodge; Mahajabeen Padamsee; P. Brandon Matheny; M. Catherine Aime; Sharon A. Cantrell; David Boertmann; Alexander Kovalenko; Alfredo Vizzini; Bryn T.M. Dentinger; Paul M. Kirk; A. Martin Ainsworth; Jean-Marc Moncalvo; Rytas Vilgalys; Ellen Larsson; Robert Lucking; Gareth W. Griffith; Matthew E. Smith; Lorilei L. Norvell; Dennis E. Desjardin; Scott A. Redhead; Clark L. Ovrebo; Edgar B. Lickey; Enrico Ercole; Karen W. Hughes; Regis Courtecuisse; Anthony Young; Manfred Binder; Andrew M. Minnis; Daniel L. Lindner; Beatriz Ortiz-Santana; John Haight; Thomas Laessoe; Timothy J. Baroni; Jozsef Geml; Tsutomu Hattori

    2013-01-01

    Molecular phylogenies using 1–4 gene regions and information on ecology, morphology and pigment chemistry were used in a partial revision of the agaric family Hygrophoraceae. The phylogenetically supported genera we recognize here in the Hygrophoraceae based on these and previous analyses are: Acantholichen, Ampulloclitocybe, Arrhenia, Cantharellula, Cantharocybe,...

  4. Combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, John

    1994-01-01

    An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds.......An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds....

  5. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research

  6. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  7. Carbon Stable Isotope Values in Plankton and Mussels Reflect Changes in Carbonate Chemistry Associated with Nutrient Enhanced Net Production

    Directory of Open Access Journals (Sweden)

    Autumn Oczkowski

    2018-02-01

    Full Text Available Coastal ecosystems are inherently complex and potentially adaptive as they respond to changes in nutrient loads and climate. We documented the role that carbon stable isotope (δ13C measurements could play in understanding that adaptation with a series of three Ecostat (i.e., continuous culture experiments. We quantified linkages among δ13C, nutrients, carbonate chemistry, primary, and secondary production in temperate estuarine waters. Experimental culture vessels (9.1 L containing 33% whole and 67% filtered (0.2 μm seawater were amended with dissolved inorganic nitrogen (N and phosphorous (P in low (3 vessels; 5 μM N, 0.3 μM P, moderate (3 vessels; 25 μM N, 1.6 μM P, and high amounts (3 vessels; 50 μM N, 3.1 μM P. The parameters necessary to calculate carbonate chemistry, chlorophyll-a concentrations, and particulate δ13C values were measured throughout the 14 day experiments. Outflow lines from the experimental vessels fed 250 ml containers seeded with juvenile blue mussels (Mytilus edulis. Mussel subsamples were harvested on days 0, 7, and 14 and their tissues were analyzed for δ13C values. We consistently observed that particulate δ13C values were positively correlated with chlorophyll-a, carbonate chemistry, and to changes in the ratio of bicarbonate to dissolved carbon dioxide (HCO3-:CO2. While the relative proportion of HCO3- to CO2 increased over the 14 days, concentrations of each declined, reflecting the drawdown of carbon associated with enhanced production. Plankton δ13C values, like chlorophyll-a concentrations, increased over the course of each experiment, with the greatest increases in the moderate and high treatments. Trends in δ13C over time were also observed in the mussel tissues. Despite ecological variability and different plankton abundances the experiments consistently demonstrated how δ13C values in primary producers and consumers reflected nutrient availability, via its impact on carbonate chemistry. We

  8. Molecular methods to evaluate effects of feed additives and nutrients in poultry gut microflora Metodologias moleculares para avaliar efeitos de aditivos e nutrientes na microflora intestinal das aves

    Directory of Open Access Journals (Sweden)

    Edgar O. Oviedo-Rondón

    2009-07-01

    Full Text Available Intestines of each animal are the niche of a complex and dynamic ecosystem with important effects to the host. The members or final products of this ecosystem influence nutrient digestion, absorption, mucosa metabolism, general physiology, and local and systemic immunological responses of avian hosts. Better understanding of the avian gut microbial ecosystem may lead to improvements on poultry productivity, health, welfare, and reduction of food borne pathogens and the environmental impact of poultry production for a more sustainable industry. Molecular methods of microbial ecology are key tools to gain this knowledge. The objective of this presentation is to outline the basic concepts, applications, advantages, limitations, and evolution of these molecular methods used to study intestinal microbial ecology. The final goal is to stimulate their application in poultry applied research and development of new feed additives. Some practical examples in poultry research will be described to illustrate their relevance to advance in control methods for pathogens, avoid or manage disbiosis or subclinical intestinal diseases, reduce environmental impact, elucidate effects of nutrients in gut mucosa, microflora, and in general to improve poultry performance.O intestino de cada animal é o nicho de um ecossistema complexo e dinâmico com efeitos importantes para o hospedeiro. As comunidades microbianas componentes deste ecossistema e/ou os produtos finais do metabolismo influenciam a digestão e absorção de nutrientes, o metabolismo das mucosas, a fisiologia geral e as respostas imunitárias locais e gerais da ave hospedeira. A melhor compreensão do ecossistema microbiano do intestino das aves pode levar a melhorias na produtividade, saúde, bem estar, e redução de agente patogênicos dos alimentos e do impacto ambiental da produção avícola para uma indústria mais sustentável. Os métodos moleculares da ecologia microbiana são ferramentas chaves

  9. A New Radio Spectral Line Survey of Planetary Nebulae: Exploring Radiatively Driven Heating and Chemistry of Molecular Gas

    Science.gov (United States)

    Bublitz, Jesse

    Planetary nebulae contain shells of cold gas and dust whose heating and chemistry is likely driven by UV and X-ray emission from their central stars and from wind-collision-generated shocks. We present the results of a survey of molecular line emissions in the 88 - 235 GHz range from nine nearby (Radioastronomie Millimetrique. Rotational transitions of nine molecules, including the well-studied CO isotopologues and chemically important trace species, were observed and the results compared with and augmented by previous studies of molecular gas in PNe. Lines of the molecules HCO+, HNC, HCN, and CN, which were detected in most objects, represent new detections for five planetary nebulae in our study. Flux ratios were analyzed to identify correlations between the central star and/or nebular ultraviolet/X-ray luminosities and the molecular chemistries of the nebulae. Analysis reveals the apparent dependence of the HNC/HCN line ratio on PN central star UV luminosity. There exists no such clear correlation between PN X-rays and various diagnostics of PN molecular chemistry. The correlation between HNC/HCN ratio and central star UV luminosity hints at the potential of molecular emission line studies of PNe for improving our understanding of the role that high-energy radiation plays in the heating and chemistry of photodissociation regions.

  10. Ice Chemistry in Interstellar Dense Molecular Clouds, Protostellar Disks, and Comets

    Science.gov (United States)

    Sandford, Scott A.

    2015-01-01

    Despite the low temperatures (T less than 20K), low pressures, and low molecular densities found in much of the cosmos, considerable chemistry is expected to occur in many astronomical environments. Much of this chemistry happens in icy grain mantles on dust grains and is driven by ionizing radiation. This ionizing radiation breaks chemical bonds of molecules in the ices and creates a host of ions and radicals that can react at the ambient temperature or when the parent ice is subsequently warmed. Experiments that similar these conditions have demonstrated a rich chemistry associated with these environments that leads to a wide variety of organic products. Many of these products are of considerable interest to astrobiology. For example, the irradiation of simple ices has been shown to abiotically produce amino acids, nucleobases, quinones, and amphiphiles, all compounds that play key roles in modern biochemistry. This suggests extraterrestrial chemistry could have played a role in the origin of life on Earth and, by extension, do so on planets in other stellar systems.

  11. Modelling nutrient cycling in forest ecosystems; Modellering av naeringssyklus i skogoekosystemer

    Energy Technology Data Exchange (ETDEWEB)

    Kvindesland, Sheila H.S.B.

    1997-12-31

    Acid deposition`s threat to fresh water and forest environments became an issue in the late 1960s. Acid deposition and forest nutrient cycling then began to be researched in greater co-operation. This thesis studies nutrient cycling processes in Norway spruce forests, emphasizing the effects on soil chemical properties, soil solution chemistry and streamwater chemistry. It investigates the effects of different aged stands on nutrient cycling and sets up nutrient budgets of the base cations and nitrogen at two sites in Norway. It also selects, documents, calibrates, tests and improves nutrient cycling models for use in Norwegian forests. 84 refs., 44 figs., 46 tabs.

  12. Determination of Quantum Chemistry Based Force Fields for Molecular Dynamics Simulations of Aromatic Polymers

    Science.gov (United States)

    Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).

  13. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research

  14. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  15. Using Biocatalysis to Integrate Organic Chemistry into a Molecular Biology Laboratory Course

    Science.gov (United States)

    Beers, Mande; Archer, Crystal; Feske, Brent D.; Mateer, Scott C.

    2012-01-01

    Current cutting-edge biomedical investigation requires that the researcher have an operational understanding of several diverse disciplines. Biocatalysis is a field of science that operates at the crossroads of organic chemistry, biochemistry, microbiology, and molecular biology, and provides an excellent model for interdisciplinary research. We…

  16. A New Radio Spectral Line Survey of Planetary Nebulae: Exploring Radiatively-driven Heating and Chemistry of Molecular Gas

    Science.gov (United States)

    Bublitz, Jesse; Kastner, Joel H.; Santander-García, Miguel; Montez, Rodolfo; Alcolea, Javier; Balick, Bruce; Bujarrabal, Valentín

    2018-01-01

    We report the results of a survey of mm-wave molecular line emission from nine nearby (Radioastronomie Millimétrique (IRAM) 30 m telescope. Our sample comprises molecule-rich PNe spanning a wide range of central star UV luminosities as well as central star and nebular X-ray emission properties. Nine molecular line frequencies were chosen to investigate the molecular chemistry of these nebulae. New detections of one or more of five molecules -- the molecular mass tracer 13CO and the chemically important trace species HCO+, CN, HCN, and HNC -- were made in at least one PN. We present analysis of emission line flux ratios that are potential diagnostics of the influence that ultraviolet and X-ray radiation have on the chemistry of residual molecular gas in PNe.

  17. Molecular beam studies and hot atom chemistry

    International Nuclear Information System (INIS)

    Continetti, R.E.; Lee, Y.T.

    1993-01-01

    The application of the crossed molecular beam technique to the study of hot atom chemistry has provided significant insights into the dynamics of hot atom reaction. To illustrate this, two recent studies are discussed. Those are the study on the influence of translational energy in 0.6 to 1.5 eV range on endoergic reaction, and the experimental study on the detailed dynamics of elementary reaction at translational energy of 0.53 and 1.01 eV. The first example illustrates the contribution that molecular beam experiment can make in the understanding of the dynamics of endoergic substitution reaction. The second example illustrates the role that such studies can play in evaluating exact three-dimensional quantum scattering calculation and ab initio potential energy surfaces for chemical reaction. In the case of endoergic reaction of halogen substitution, it was observed that the reactive collision involved short lived collision complexes. It is suggested that energetic effect alone cannot account for the difference in cross sections, and dynamic effect most play a large role. In atom-diatom reaction, the differential cross section measurement of D+H 2 →DH+H reaction was carried out, and the results are discussed. (K.I.)

  18. Relativistic quantum chemistry the fundamental theory of molecular science

    CERN Document Server

    Reiher, Markus

    2014-01-01

    Einstein proposed his theory of special relativity in 1905. For a long time it was believed that this theory has no significant impact on chemistry. This view changed in the 1970s when it was realized that (nonrelativistic) Schrödinger quantum mechanics yields results on molecular properties that depart significantly from experimental results. Especially when heavy elements are involved, these quantitative deviations can be so large that qualitative chemical reasoning and understanding is affected. For this to grasp the appropriate many-electron theory has rapidly evolved. Nowadays relativist

  19. Evaluation of the molecular level visualisation approach for teaching and learning chemistry in Thailand

    Science.gov (United States)

    Phenglengdi, Butsari

    This research evaluates the use of a molecular level visualisation approach in Thai secondary schools. The goal is to obtain insights about the usefulness of this approach, and to examine possible improvements in how the approach might be applied in the future. The methodology used for this research used both qualitative and quantitative approaches. Data were collected in the form of pre- and post-intervention multiple choice questions, open-ended-questions, drawing exercises, one-to-one interviews and video recordings of class activity. The research was conducted in two phases, involving a total of 261 students from the 11th Grade in Thailand. The use of VisChem animations in three studies was evaluated in Phase I. Study 1 was a pilot study exploring the benefits of incorporating VisChem animations to portray the molecular level. Study 2 compared test results between students exposed to these animations of molecular level events, and those not. Finally, in Study 3, test results were gathered from different types of schools (a rural school, a city school, and a university school). The results showed that students (and teachers) had misconceptions at the molecular level, and VisChem animations could help students understand chemistry concepts at the molecular level across all three types of schools. While the animation treatment group had a better score on the topic of states of water, the non-animation treatment group had a better score on the topic of dissolving sodium chloride in water than the animation group. The molecular level visualisation approach as a learning design was evaluated in Phase II. This approach involved a combination of VisChem animations, pictures, and diagrams together with the seven-step VisChem learning design. The study involved three classes of students, each with a different treatment, described as Class A - Traditional approach; Class B - VisChem animations with traditional approach; and Class C - Molecular level visualisation approach

  20. Medicinal Chemistry and Molecular Modeling: An Integration to Teach Drug Structure-Activity Relationship and the Molecular Basis of Drug Action

    Science.gov (United States)

    Carvalho, Ivone; Borges, Aurea D. L.; Bernardes, Lilian S. C.

    2005-01-01

    The use of computational chemistry and the protein data bank (PDB) to understand and predict the chemical and molecular basis involved in the drug-receptor interactions is discussed. A geometrical and chemical overview of the great structural similarity in the substrate and inhibitor is provided.

  1. Ethers on Si(001): A prime example for the common ground between surface science and molecular organic chemistry

    KAUST Repository

    Pecher, Lisa

    2017-09-15

    Using computational chemistry, we show that the adsorption of ether molecules on Si(001) under ultra-high vacuum conditions can be understood with textbook organic chemistry. The two-step reaction mechanism of (1) dative bond formation between the ether oxygen and a Lewis acidic surface atom and (2) a nucleophilic attack of a nearby Lewis basic surface atom is analysed in detail and found to mirror the acid-catalysed ether cleavage in solution. The O-Si dative bond is found to be the strongest of its kind and reactivity from this state defies the Bell-Evans-Polanyi principle. Electron rearrangement during the C-O bond cleavage is visualized using a newly developed bonding analysis method, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular chemistry SN2 reactions. Our findings thus illustrate how the fields of surface science and molecular chemistry can mutually benefit and unexpected insight can be gained.

  2. Ethers on Si(001): A prime example for the common ground between surface science and molecular organic chemistry

    KAUST Repository

    Pecher, Lisa; Laref, Slimane; Raupach, Marc; Tonner, Ralf Ewald

    2017-01-01

    Using computational chemistry, we show that the adsorption of ether molecules on Si(001) under ultra-high vacuum conditions can be understood with textbook organic chemistry. The two-step reaction mechanism of (1) dative bond formation between the ether oxygen and a Lewis acidic surface atom and (2) a nucleophilic attack of a nearby Lewis basic surface atom is analysed in detail and found to mirror the acid-catalysed ether cleavage in solution. The O-Si dative bond is found to be the strongest of its kind and reactivity from this state defies the Bell-Evans-Polanyi principle. Electron rearrangement during the C-O bond cleavage is visualized using a newly developed bonding analysis method, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular chemistry SN2 reactions. Our findings thus illustrate how the fields of surface science and molecular chemistry can mutually benefit and unexpected insight can be gained.

  3. Relationship of carbohydrates and lignin molecular structure spectral profiles to nutrient profile in newly developed oats cultivars and barley grain

    Science.gov (United States)

    Prates, Luciana Louzada; Refat, Basim; Lei, Yaogeng; Louzada-Prates, Mariana; Yu, Peiqiang

    2018-01-01

    The objectives of this study were to quantify the chemical profile and the magnitude of differences in the oat and barley grain varieties developed by Crop Development Centre (CDC) in terms of Cornell Net Carbohydrate Protein System (CNCPS) carbohydrate sub-fractions: CA4 (sugars), CB1 (starch), CB2 (soluble fibre), CB3 (available neutral detergent fibre - NDF), and CC (unavailable carbohydrate); to estimate the energy values; to detect the lignin and carbohydrate (CHO) molecular structure profiles in CDC Nasser and CDC Seabiscuit oat and CDC Meredith barley grains by using Fourier transform infrared attenuated total reflectance (FTIR-ATR); to develop a model to predict nutrient supply based on CHO molecular profile. Results showed that NDF, ADF and CHO were greater (P 0.05) for oat and barley grains as well as non-structural CHO. However, cellulosic compounds peak area and height were greater (P < 0.05) in oat than barley grains. Multiple regressions were determined to predict nutrient supply by using lignin and CHO molecular profiles. It was concluded that although there were some differences between oat and barley grains, CDC Nasser and CDC Meredith presented similarities related to chemical and molecular profiles, indicating that CDC Meredith barley could be replaced for CDC Nasser as ruminant feed. The FTIR was able to identify functional groups related to CHO molecular spectral in oat and barley grains and FTIR-ATR results could be used to predict nutrient supply in ruminant livestock systems.

  4. Recent contributions of flame-sampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Nils [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Cool, Terrill A. [School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 (United States); Westmoreland, Phillip R. [Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003 (United States); Kohse-Hoeinghaus, Katharina [Department of Chemistry, Bielefeld University, D-33615 Bielefeld (Germany)

    2009-04-15

    Flame-sampling molecular-beam mass spectrometry of premixed, laminar, low-pressure flat flames has been demonstrated to be an efficient tool to study combustion chemistry. In this technique, flame gases are sampled through a small opening in a quartz probe, and after formation of a molecular beam, all flame species are separated using mass spectrometry. The present review focuses on critical aspects of the experimental approach including probe sampling effects, different ionization processes, and mass separation procedures. The capability for isomer-resolved flame species measurements, achievable by employing tunable vacuum-ultraviolet radiation for single-photon ionization, has greatly benefited flame-sampling molecular-beam mass spectrometry. This review also offers an overview of recent combustion chemistry studies of flames fueled by hydrocarbons and oxygenates. The identity of a variety of intermediates in hydrocarbon flames, including resonantly stabilized radicals and closed-shell intermediates, is described, thus establishing a more detailed understanding of the fundamentals of molecular-weight growth processes. Finally, molecular-beam mass-spectrometric studies of reaction paths in flames of alcohols, ethers, and esters, which have been performed to support the development and validation of kinetic models for bio-derived alternative fuels, are reviewed. (author)

  5. Effects of wood chip ash fertilization on soil chemistry in a Norway spruce plantation on a nutrient-poor soil

    DEFF Research Database (Denmark)

    Ingerslev, Morten; Hansen, Mette; Pedersen, Lars Bo

    2014-01-01

    of wood chip ash application on soil chemistry in a 44-year-old Norway spruce (Picea abies) plantation on a nutrient-poor soil in Denmark and to investigate the effect of applying different ash types and doses. Soil samples were collected and analyzed 2.5years (3 growing seasons) after ash application....... This study shows that, regardless of ash formulation, preparation or dose, application of wood ash to forest soil has a liming effect in the O-horizon manifested as an increase in CECe, BS and pH. This effect was not seen in the mineral soil within the time frame of this study. At the same time, an increase...... in Cd was found in the O-horizon, corresponding to the amount added in the ashes. Generally, no other increase in soil contents of the heavy metals was seen. Hardening of the wood ash did not decrease the chemical impact on the soil chemistry as compared to non-treated ash whereas an increase in ash...

  6. Biocorrosion and biofilm formation in a nutrient limited heating system subjected to alternating microaerophilic conditions.

    Science.gov (United States)

    Kjellerup, B V; Kjeldsen, K U; Lopes, F; Abildgaard, L; Ingvorsen, K; Frølund, B; Sowers, K R; Nielsen, P H

    2009-11-01

    Severe biofilm formation and biocorrosion have been observed in heating systems even when the water quality complied with existing standards. The coupling between water chemistry, biofilm formation, species composition, and biocorrosion in a heating system was investigated by adding low concentrations of nutrients and oxygen under continuous and alternating dosing regimes. Molecular analysis of 16S rRNA gene fragments demonstrated that the amendments did not cause changes in the overall bacterial community composition. The combined alternating dosing of nutrients and oxygen caused increased rates of pitting (bio-) corrosion. Detection of bacteria involved in sulfide production and oxidation by retrieval of the functional dsrAB and apsA genes revealed the presence of Gram-positive sulfate- and sulfite-reducers and an unknown sulfur-oxidizer. Therefore, to control biocorrosion, sources of oxygen and nutrients must be limited, since the effect of the alternating operational conditions apparently is more important than the presence of potentially corrosive biofilm bacteria.

  7. Introduction to Computational Chemistry: Teaching Hu¨ckel Molecular Orbital Theory Using an Excel Workbook for Matrix Diagonalization

    Science.gov (United States)

    Litofsky, Joshua; Viswanathan, Rama

    2015-01-01

    Matrix diagonalization, the key technique at the heart of modern computational chemistry for the numerical solution of the Schrödinger equation, can be easily introduced in the physical chemistry curriculum in a pedagogical context using simple Hückel molecular orbital theory for p bonding in molecules. We present details and results of…

  8. Introductory Molecular Orbital Theory: An Honors General Chemistry Computational Lab as Implemented Using Three-Dimensional Modeling Software

    Science.gov (United States)

    Ruddick, Kristie R.; Parrill, Abby L.; Petersen, Richard L.

    2012-01-01

    In this study, a computational molecular orbital theory experiment was implemented in a first-semester honors general chemistry course. Students used the GAMESS (General Atomic and Molecular Electronic Structure System) quantum mechanical software (as implemented in ChemBio3D) to optimize the geometry for various small molecules. Extended Huckel…

  9. Extended Lagrangian Born-Oppenheimer molecular dynamics simulations of the shock-induced chemistry of phenylacetylene

    Energy Technology Data Exchange (ETDEWEB)

    Cawkwell, M. J., E-mail: cawkwell@lanl.gov; Niklasson, Anders M. N. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Dattelbaum, Dana M. [Weapons Experiments Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-02-14

    The initial chemical events that occur during the shock compression of liquid phenylacetylene have been investigated using self-consistent tight binding molecular dynamics simulations. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism enabled us to compute microcanonical trajectories with precise conservation of the total energy. Our simulations revealed that the first density-increasing step under shock compression arises from the polymerization of phenylacetylene molecules at the acetylene moiety. The application of electronic structure-based molecular dynamics with long-term conservation of the total energy enabled us to identify electronic signatures of reactivity via monitoring changes in the HOMO-LUMO gap, and to capture directly adiabatic shock heating, transient non-equilibrium states, and changes in temperature arising from exothermic chemistry in classical molecular dynamics trajectories.

  10. Extended Lagrangian Born-Oppenheimer molecular dynamics simulations of the shock-induced chemistry of phenylacetylene.

    Science.gov (United States)

    Cawkwell, M J; Niklasson, Anders M N; Dattelbaum, Dana M

    2015-02-14

    The initial chemical events that occur during the shock compression of liquid phenylacetylene have been investigated using self-consistent tight binding molecular dynamics simulations. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism enabled us to compute microcanonical trajectories with precise conservation of the total energy. Our simulations revealed that the first density-increasing step under shock compression arises from the polymerization of phenylacetylene molecules at the acetylene moiety. The application of electronic structure-based molecular dynamics with long-term conservation of the total energy enabled us to identify electronic signatures of reactivity via monitoring changes in the HOMO-LUMO gap, and to capture directly adiabatic shock heating, transient non-equilibrium states, and changes in temperature arising from exothermic chemistry in classical molecular dynamics trajectories.

  11. Scientific report 1998-2000. Service of molecular chemistry

    International Nuclear Information System (INIS)

    2000-01-01

    The Service of Molecular Chemistry (SCM) constitutes a significant part of fundamental chemistry at the Direction for the Science of Matter (DSM). Furthermore, its scientific programmes benefit from the contact with teams of CEA who carry out applied research relevant to nuclear energy as well as to new technologies and industrial innovation. Several cooperative actions (which involve, among other persons, PhDs and post-docs) with the other operational Directions of CEA (DO) illustrate this will of SCM to establish its fundamental research within the frame of the broader CEA missions acknowledged by the French government. The scientific report is organized as follows: as simplified organization chart relates the SCM to the Department and the Direction to which it is bound, and states the personnel (CEA, CNRS, University, PhDs, post-docs, etc). The organization chart of the SCM then brings to the fore the relationship between thematic Groups and teams. A general presentation of the main guidelines of the researches of the Service, organized by Groups, precedes a detailed description of the results obtained for each of the scientific themes tackled by the teams with mention of the involved scientists. Publications and patents appear at the end. Finally the research perspectives of SCM emphasize the inflexion to our activities which will be given in the next two years. (author)

  12. Scientific report 1998-2000. Service of molecular chemistry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The Service of Molecular Chemistry (SCM) constitutes a significant part of fundamental chemistry at the Direction for the Science of Matter (DSM). Furthermore, its scientific programmes benefit from the contact with teams of CEA who carry out applied research relevant to nuclear energy as well as to new technologies and industrial innovation. Several cooperative actions (which involve, among other persons, PhDs and post-docs) with the other operational Directions of CEA (DO) illustrate this will of SCM to establish its fundamental research within the frame of the broader CEA missions acknowledged by the French government. The scientific report is organized as follows: as simplified organization chart relates the SCM to the Department and the Direction to which it is bound, and states the personnel (CEA, CNRS, University, PhDs, post-docs, etc). The organization chart of the SCM then brings to the fore the relationship between thematic Groups and teams. A general presentation of the main guidelines of the researches of the Service, organized by Groups, precedes a detailed description of the results obtained for each of the scientific themes tackled by the teams with mention of the involved scientists. Publications and patents appear at the end. Finally the research perspectives of SCM emphasize the inflexion to our activities which will be given in the next two years. (author)

  13. Medicinal Chemistry/Pharmacology in Sophomore Organic Chemistry.

    Science.gov (United States)

    Harrison, Aline M.

    1989-01-01

    Discussed is a series of lectures designed to illustrate the use of general organic chemical principles in molecular biology, introduce current research in interdisciplinary areas to the beginner, increase interest in organic chemistry, and bridge the gap between traditional organic chemistry, biology, and the consumer. An outline is presented.…

  14. The Use of Molecular Modeling as "Pseudoexperimental" Data for Teaching VSEPR as a Hands-On General Chemistry Activity

    Science.gov (United States)

    Martin, Christopher B.; Vandehoef, Crissie; Cook, Allison

    2015-01-01

    A hands-on activity appropriate for first-semester general chemistry students is presented that combines traditional VSEPR methods of predicting molecular geometries with introductory use of molecular modeling. Students analyze a series of previously calculated output files consisting of several molecules each in various geometries. Each structure…

  15. European analytical column No. 36 from the Division of Analytical Chemistry (DAC) of the European Association for Chemical and Molecular Sciences (EuCheMS)

    DEFF Research Database (Denmark)

    Karlberg, Bo; Emons, Hendrik; Andersen, Jens Enevold Thaulov

    2008-01-01

    European analytical column no. 36 from the division of analytical chemistry (DAC) of the European association for chemical and molecular sciences (EuCheMS)......European analytical column no. 36 from the division of analytical chemistry (DAC) of the European association for chemical and molecular sciences (EuCheMS)...

  16. A qualitative inquiry into the effects of visualization on high school chemistry students' learning process of molecular structure

    Science.gov (United States)

    Deratzou, Susan

    This research studies the process of high school chemistry students visualizing chemical structures and its role in learning chemical bonding and molecular structure. Minimal research exists with high school chemistry students and more research is necessary (Gabel & Sherwood, 1980; Seddon & Moore, 1986; Seddon, Tariq, & Dos Santos Veiga, 1984). Using visualization tests (Ekstrom, French, Harman, & Dermen, 1990a), a learning style inventory (Brown & Cooper, 1999), and observations through a case study design, this study found visual learners performed better, but needed more practice and training. Statistically, all five pre- and post-test visualization test comparisons were highly significant in the two-tailed t-test (p > .01). The research findings are: (1) Students who tested high in the Visual (Language and/or Numerical) and Tactile Learning Styles (and Social Learning) had an advantage. Students who learned the chemistry concepts more effectively were better at visualizing structures and using molecular models to enhance their knowledge. (2) Students showed improvement in learning after visualization practice. Training in visualization would improve students' visualization abilities and provide them with a way to think about these concepts. (3) Conceptualization of concepts indicated that visualizing ability was critical and that it could be acquired. Support for this finding was provided by pre- and post-Visualization Test data with a highly significant t-test. (4) Various molecular animation programs and websites were found to be effective. (5) Visualization and modeling of structures encompassed both two- and three-dimensional space. The Visualization Test findings suggested that the students performed better with basic rotation of structures as compared to two- and three-dimensional objects. (6) Data from observations suggest that teaching style was an important factor in student learning of molecular structure. (7) Students did learn the chemistry concepts

  17. An Integrated Visualization and Basic Molecular Modeling Laboratory for First-Year Undergraduate Medicinal Chemistry

    Science.gov (United States)

    Hayes, Joseph M.

    2014-01-01

    A 3D model visualization and basic molecular modeling laboratory suitable for first-year undergraduates studying introductory medicinal chemistry is presented. The 2 h practical is embedded within a series of lectures on drug design, target-drug interactions, enzymes, receptors, nucleic acids, and basic pharmacokinetics. Serving as a teaching aid…

  18. Chemistry of the sea-surface microlayer. 3. Studies on the nutrient chemistry of the northern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Singbal, S.Y.S.; Narvekar, P.V.; Nagarajan, R.

    Nutrients showed enrichment in the surface microlayer compared to those in sub-surface water and there was a decreasing trend in the enrichment factor from nearshore to offshore in Northern Arabian Sea. The nutrient concentrations were correlated...

  19. Supramolecular chemistry-general principles and selected examples from anion recognition and metallosupramolecular chemistry.

    Science.gov (United States)

    Albrecht, Markus

    2007-12-01

    This review gives an introduction into supramolecular chemistry describing in the first part general principles, focusing on terms like noncovalent interaction, molecular recognition, self-assembly, and supramolecular function. In the second part those will be illustrated by simple examples from our laboratories. Supramolecular chemistry is the science that bridges the gap between the world of molecules and nanotechnology. In supramolecular chemistry noncovalent interactions occur between molecular building blocks, which by molecular recognition and self-assembly form (functional) supramolecular entities. It is also termed the "chemistry of the noncovalent bond." Molecular recognition is based on geometrical complementarity based on the "key-and-lock" principle with nonshape-dependent effects, e.g., solvatization, being also highly influential. Self-assembly leads to the formation of well-defined aggregates. Hereby the overall structure of the target ensemble is controlled by the symmetry features of the certain building blocks. Finally, the aggregates can possess special properties or supramolecular functions, which are only found in the ensemble but not in the participating molecules. This review gives an introduction on supramolecular chemistry and illustrates the fundamental principles by recent examples from our group.

  20. Towards 'selection rules' in the radiation chemistry of molecular materials

    International Nuclear Information System (INIS)

    Feldman, V.I.; Inst. of Synthetic Polymetric Materials, Moscow; Moscow State Univ.

    2002-01-01

    Complete text of publication follows. There are a lot of experimental evidences suggesting that the primary radiation-induced events in organic solids and polymers are highly selective and sensitive to conformation, molecular packing, matrix environment, etc. Nevertheless, specific 'selection rules' in the radiation chemistry of molecules in solids are still not established. This contribution presents a review of our recent studies of the radiation damage in organic molecules in low-temperature matrices and polymers aimed at elucidation of basic physical factors controlling selectivity of the primary chemical events. The following aspects will be analyzed: 1. 'Fine tuning' effects in positive hole trapping in rigid systems containing molecular 'traps' with close ionization energy. 2. Selective chemical bond weakening in ionized molecules: experimental and theoretical results. 3. Matrix-assisted and matrix-controlled chemical reactions of ionized molecules in solid media (including the effect of 'matrix-catalysis'). 4. Effect of excess energy on the fate of ionized molecules in solid matrices: the role of intramolecular and intermolecular relaxation. Finally, the problem of experimental and theoretical simulation of the distribution of the radiation-induced events in complex molecular systems and polymers will be addressed

  1. Molecular Dynamics Studies of Thermal Induced Chemistry in Tatb

    Science.gov (United States)

    Quenneville, J.; Germann, T. C.; Thompson, A. P.; Kober, E. M.

    2007-12-01

    A reactive force field (ReaxFF) is used with molecular dynamics to probe the chemistry induced by intense heating (`accelerated cook-off') of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Large-system simulations are desired for TATB because of the high degree of carbon clustering expected in this material. Using small, 32-molecule simulations, we calculate the reaction rate as a function of temperature and compare the Arrhenius-predicted activation energy with experiment. Decomposition product evolution (mainly N2, H2O, CO2 and graphitic carbon clusters) is followed using a 576-molecule larger simulation, which also illustrates the effect of system size on both carbon clustering and reaction rate.

  2. Physical Chemistry '98: Fourth International Conference on Fundamental and Applied Aspects of Physical Chemistry - Papers

    International Nuclear Information System (INIS)

    Ribnikar, S.; Anic, S.

    1998-01-01

    The proceedings has following chapters: Plenary lectures; Chemical Thermodynamics; Spectroscopy, Molecular Structures, Physical Chemistry of Plasma; Kinetics, Catalysis, Nonlinear Dynamics; Electrochemistry; Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry; Solid State Physical Chemistry, Material Science; Macromolecular Physical Chemistry; Environmental Protection; Phase Boundaries; Complex Compounds; General Physical Chemistry. A separated abstract was prepared for each of the 20 papers selected from the three chapters: Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry. and Environmental Protection. Refs and figs

  3. Nutrient depletion from rhizosphere solution by maize grown in soil with long-term compost amendment

    Science.gov (United States)

    Improved understanding of rhizosphere chemistry will enhance our ability to model nutrient dynamics and on a broader scale, to develop effective management strategies for applied plant nutrients. With a controlled-climate study, we evaluated in situ changes in macro-nutrient concentrations in the rh...

  4. Multiscale methods framework: self-consistent coupling of molecular theory of solvation with quantum chemistry, molecular simulations, and dissipative particle dynamics.

    Science.gov (United States)

    Kovalenko, Andriy; Gusarov, Sergey

    2018-01-31

    In this work, we will address different aspects of self-consistent field coupling of computational chemistry methods at different time and length scales in modern materials and biomolecular science. Multiscale methods framework yields dramatically improved accuracy, efficiency, and applicability by coupling models and methods on different scales. This field benefits many areas of research and applications by providing fundamental understanding and predictions. It could also play a particular role in commercialization by guiding new developments and by allowing quick evaluation of prospective research projects. We employ molecular theory of solvation which allows us to accurately introduce the effect of the environment on complex nano-, macro-, and biomolecular systems. The uniqueness of this method is that it can be naturally coupled with the whole range of computational chemistry approaches, including QM, MM, and coarse graining.

  5. Fundamental molecular physics and chemistry. Radiological and Environmental Research Division annual report, October 1981-December 1982. Pt. 1

    International Nuclear Information System (INIS)

    1983-12-01

    This document is the twelfth Annual Report of our Fundamental Molecular Physics and Chemistry Program. Scientifically, the work of the program deals with aspects of the physics and chemistry of molecules related to their interactions with photons, electrons, and other external agents. We chose these areas of study in view of our matic goals; that is to say, we chose them so that the eventual outcome of our work meets some of the needs of the US Department of Energy (DOE) and of other government agencies that support our research. First, we endeavor to determine theoretically and experimentally cross sections for electron and photon interactions with molecules, because those cross sections are indispensable for detailed microscopic analyses of the earliest processes of radiation action on any molecular substance, including biological materials. Those analyses in turn provide a sound basis for radiology and radiation dosimetry. Second, we study the spectroscopy of certain molecules and of small clusters of molecules because this topic is fundamental to the full understanding of atmospheric-pollutant chemistry

  6. Fundamental molecular physics and chemistry. Radiological and Environmental Research Division annual report, October 1981-December 1982. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-01

    This document is the twelfth Annual Report of our Fundamental Molecular Physics and Chemistry Program. Scientifically, the work of the program deals with aspects of the physics and chemistry of molecules related to their interactions with photons, electrons, and other external agents. We chose these areas of study in view of our matic goals; that is to say, we chose them so that the eventual outcome of our work meets some of the needs of the US Department of Energy (DOE) and of other government agencies that support our research. First, we endeavor to determine theoretically and experimentally cross sections for electron and photon interactions with molecules, because those cross sections are indispensable for detailed microscopic analyses of the earliest processes of radiation action on any molecular substance, including biological materials. Those analyses in turn provide a sound basis for radiology and radiation dosimetry. Second, we study the spectroscopy of certain molecules and of small clusters of molecules because this topic is fundamental to the full understanding of atmospheric-pollutant chemistry.

  7. Ethers on Si(001): A Prime Example for the Common Ground between Surface Science and Molecular Organic Chemistry.

    Science.gov (United States)

    Pecher, Lisa; Laref, Slimane; Raupach, Marc; Tonner, Ralf

    2017-11-20

    By using computational chemistry it has been shown that the adsorption of ether molecules on Si(001) under ultrahigh vacuum conditions can be understood with classical concepts of organic chemistry. Detailed analysis of the two-step reaction mechanism-1) formation of a dative bond between the ether oxygen atom and a Lewis acidic surface atom and 2) nucleophilic attack of a nearby Lewis basic surface atom-shows that it mirrors acid-catalyzed ether cleavage in solution. The O-Si dative bond is the strongest of its kind, and the reactivity in step 2 defies the Bell-Evans-Polanyi principle. Electron rearrangement during C-O bond cleavage has been visualized with a newly developed method for analyzing bonding, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular S N 2 reactions. Our findings illustrate how surface science and molecular chemistry can mutually benefit from each other and unexpected insight can be gained. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Surface chemistry and growth mechanisms studies of homo epitaxial (1 0 0) GaAs by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yan Dawei; Wu Weidong; Zhang Hong; Wang Xuemin; Zhang Hongliang; Zhang Weibin; Xiong Zhengwei; Wang Yuying; Shen Changle; Peng Liping; Han Shangjun; Zhou Minjie

    2011-01-01

    In this paper, GaAs thin film has been deposited on thermally desorbed (1 0 0) GaAs substrate using laser molecular beam epitaxy. Scanning electron microscopy, in situ reflection high energy electron diffraction and in situ X-ray photoelectron spectroscopy are applied for evaluation of the surface morphology and chemistry during growth process. The results show that a high density of pits is formed on the surface of GaAs substrate after thermal treatment and the epitaxial thin film heals itself by a step flow growth, resulting in a smoother surface morphology. Moreover, it is found that the incorporation of As species into GaAs epilayer is more efficient in laser molecular beam epitaxy than conventional molecular beam epitaxy. We suggest the growth process is impacted by surface chemistry and morphology of GaAs substrate after thermal treatment and the growth mechanisms are discussed in details.

  9. Molecularly imprinted polymers--potential and challenges in analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mahony, J.O. [Dublin City University, School of Chemical Sciences, Glasnevin, Dublin 9 (Ireland); Nolan, K. [Dublin City University, School of Chemical Sciences, Glasnevin, Dublin 9 (Ireland); Smyth, M.R. [Dublin City University, School of Chemical Sciences, Glasnevin, Dublin 9 (Ireland); Mizaikoff, B. [Georgia Institute of Technology, School of Chemistry and Biochemistry, 770 State Street, Boggs Building, Atlanta, GA 30332-0400 (United States)]. E-mail: boris.mizaikoff@chemistry.gatech.edu

    2005-04-04

    Among the variety of biomimetic recognition schemes utilizing supramolecular approaches molecularly imprinted polymers (MIPs) have proven their potential as synthetic receptors in numerous applications ranging from liquid chromatography to assays and sensor technology. Their inherent advantages compared to biochemical/biological recognition systems include robustness, storage endurance and lower costs. However, until recently only few contributions throughout the relevant literature describe quantitative analytical applications of MIPs for practically relevant analyte molecules and real-world samples. Increased motivation to thoroughly evaluate the true potential of MIP technology is clearly attributed to the demands of modern analytical chemistry, which include enhanced sensitivity, selectivity and applicability of molecular recognition building blocks at decreasing costs. In particular, the areas of environmental monitoring, food and beverage analysis and industrial process surveillance require analytical tools capable of discriminating chemicals with high molecular specificity considering increasing numbers of complex environmental contaminants, pollution of raw products and rigorous quality control requested by legislation and consumer protection. Furthermore, efficient product improvement and development of new products requires precise qualitative and quantitative analytical methods. Finally, environmental, food and process safety control issues favor the application of on-line in situ analytical methods with high molecular selectivity. While biorecognition schemes frequently suffer from degrading bioactivity and long-term stability when applied in real-world sample environments, MIPs serving as synthetic antibodies have successfully been applied as stationary phase separation matrix (e.g. HPLC and SPE), recognition component in bioassays (e.g. ELISA) or biomimetic recognition layer in chemical sensor systems. Examples such as MIP-based selective analysis of

  10. Molecularly imprinted polymers--potential and challenges in analytical chemistry

    International Nuclear Information System (INIS)

    Mahony, J.O.; Nolan, K.; Smyth, M.R.; Mizaikoff, B.

    2005-01-01

    Among the variety of biomimetic recognition schemes utilizing supramolecular approaches molecularly imprinted polymers (MIPs) have proven their potential as synthetic receptors in numerous applications ranging from liquid chromatography to assays and sensor technology. Their inherent advantages compared to biochemical/biological recognition systems include robustness, storage endurance and lower costs. However, until recently only few contributions throughout the relevant literature describe quantitative analytical applications of MIPs for practically relevant analyte molecules and real-world samples. Increased motivation to thoroughly evaluate the true potential of MIP technology is clearly attributed to the demands of modern analytical chemistry, which include enhanced sensitivity, selectivity and applicability of molecular recognition building blocks at decreasing costs. In particular, the areas of environmental monitoring, food and beverage analysis and industrial process surveillance require analytical tools capable of discriminating chemicals with high molecular specificity considering increasing numbers of complex environmental contaminants, pollution of raw products and rigorous quality control requested by legislation and consumer protection. Furthermore, efficient product improvement and development of new products requires precise qualitative and quantitative analytical methods. Finally, environmental, food and process safety control issues favor the application of on-line in situ analytical methods with high molecular selectivity. While biorecognition schemes frequently suffer from degrading bioactivity and long-term stability when applied in real-world sample environments, MIPs serving as synthetic antibodies have successfully been applied as stationary phase separation matrix (e.g. HPLC and SPE), recognition component in bioassays (e.g. ELISA) or biomimetic recognition layer in chemical sensor systems. Examples such as MIP-based selective analysis of

  11. Carbon-11 and fluorine-18 chemistry devoted to molecular probes for imaging the brain with positron emission tomography.

    Science.gov (United States)

    Dollé, Frédéric

    2013-01-01

    Exploration of the living human brain in real-time and in a noninvasive way was for centuries only a dream, made, however, possible today with the remarkable development during the four last decades of powerful molecular imaging techniques, and especially positron emission tomography (PET). Molecular PET imaging relies, from a chemical point of view, on the use and preparation of a positron-emitting radiolabelled probe or radiotracer, notably compounds incorporating one of two short-lived radionuclides fluorine-18 (T1/2 : 109.8 min) and carbon-11 (T1/2 : 20.38 min). The growing availability and interest for the radiohalogen fluorine-18 in radiopharmaceutical chemistry undoubtedly results from its convenient half-life and the successful use in clinical oncology of 2-[(18) F]fluoro-2-deoxy-d-glucose ([(18) F]FDG). The special interest of carbon-11 is not only that carbon is present in virtually all biomolecules and drugs allowing therefore for isotopic labelling of their chemical structures but also that a given molecule could be radiolabelled at different functions or sites, permitting to explore (or to take advantage of) in vivo metabolic pathways. PET chemistry includes production of these short-lived radioactive isotopes via nuclear transmutation reactions using a cyclotron, and is directed towards the development of rapid synthetic methods, at the trace level, for the introduction of these nuclides into a molecule, as well as the use of fast purification, analysis and formulation techniques. PET chemistry is the driving force in molecular PET imaging, and this special issue of the Journal of Labelled Compounds and Radiopharmaceuticals, which is strongly chemistry and radiochemistry-oriented, aims at illustrating, be it in part only, the state-of-the-art arsenal of reactions currently available and its potential for the research and development of specific molecular probes labelled with the positron emitters carbon-11 and fluorine-18, with optimal imaging

  12. Combining research in physical chemistry and chemical education: Part A. The femtosecond molecular dynamics of small gas-phase anion clusters. Part B. Surveying student beliefs about chemistry and the development of physical chemistry learning tutorials

    Science.gov (United States)

    Barbera, Jack

    2007-12-01

    This dissertation combines work in the areas of experimental physical chemistry and chemical education. In the area of physical chemistry, femtosecond pump-probe spectroscopy is used to interrogate the time-dependence for energy redistribution, solvent reorientation, and dissociation dynamics in small gas-phase anion clusters. The chemical education research addressed in this manuscript include the development and validation of a survey to measure students' beliefs about chemistry and the learning of chemistry and the development and testing of learning tutorials for use in undergraduate physical chemistry courses in thermodynamics and kinetics. In the first part of this dissertation, the Cu(CD3OD) dynamics are investigated using a combination of femtosecond pump-probe experiments and ab initio calculations. Dissociation of this complex into Cu and CD3OD occurs on two distinct time scales: 3 and 30 ps, which arise, respectively, from the coupling of intermolecular solvent rotations and excited methyl rotor rotation into the Cu-O dissociation component upon electron photodetachment of the precursor anion. In the second part of this dissertation, the time-resolved recombination of photodissociated IBr-(CO2)n (n = 5 - 10) cluster anions is investigated. Upon excitation to the A' 2pi 1/2 state of the chromophore, the bare anion results in I- and Br products, upon solvation with CO2, the IBr- chromophore regains near-IR absorption after recombination and vibrational relaxation on the ground electronic state. The recombination times vary with the number of solvent molecules from 12 ps for n = 5 to 900 ps for n = 10. Extensive electronic structure and non-adiabatic molecular dynamic simulations provide a framework to understand this behavior. In the third part of this dissertation, the modification and validation of the Colorado Learning Attitudes about Science Survey (CLASS) for use in chemistry is presented in detail. The CLASS survey is designed to measure student

  13. Study of Barley Grain Molecular Structure for Ruminants Using DRIFT, FTIR-ATR and Synchrotron Radiation Infrared Microspectroscopy (SR-IMS): A Review

    International Nuclear Information System (INIS)

    Yu Peiqiang

    2012-01-01

    Barley inherent structures are highly associated with nutrient utilization and availability in both humans and animals. Barley has different degradation kinetics compared with other cereal grains. It has a relatively higher degradation rate and extent, which often cause digestive disorder in the rumen. Therefore understanding barley inherent structure at cellular and molecular levels and processing-induced structure changes is important, because we can manipulate barley inherent structures and digestive behaviors. Several molecular spectroscopy techniques can be used to detect barley inherent structures at cellular and molecular levels. This article reviews several applications of the IR molecular spectral bioanalytical techniques - DRIFT, FT/IR-ATR and SR-IMS for barley chemistry, molecular structure and molecular nutrition research

  14. Plant response to nutrient availability across variable bedrock geologies

    Science.gov (United States)

    Castle, S.C.; Neff, J.C.

    2009-01-01

    We investigated the role of rock-derived mineral nutrient availability on the nutrient dynamics of overlying forest communities (Populus tremuloides and Picea engelmanni-Abies lasiocarpa v. arizonica) across three parent materials (andesite, limestone, and sandstone) in the southern Rocky Mountains of Colorado. Broad geochemical differences were observed between bedrock materials; however, bulk soil chemistries were remarkably similar between the three different sites. In contrast, soil nutrient pools were considerably different, particularly for P, Ca, and Mg concentrations. Despite variations in nutrient stocks and nutrient availability in soils, we observed relatively inflexible foliar concentrations and foliar stoichiometries for both deciduous and coniferous species. Foliar nutrient resorption (P and K) in the deciduous species followed patterns of nutrient content across substrate types, with higher resorption corresponding to lower bedrock concentrations. Work presented here indicates a complex plant response to available soil nutrients, wherein plant nutrient use compensates for variations in supply gradients and results in the maintenance of a narrow range in foliar stoichiometry. ?? 2008 Springer Science+Business Media, LLC.

  15. Thermodynamics of Small Alkali Metal Halide Cluster Ions: Comparison of Classical Molecular Simulations with Experiment and Quantum Chemistry

    Czech Academy of Sciences Publication Activity Database

    Vlček, L.; Uhlík, F.; Moučka, F.; Nezbeda, Ivo; Chialvo, L.

    2015-01-01

    Roč. 119, č. 3 (2015), s. 488-500 ISSN 1089-5639 Institutional support: RVO:67985858 Keywords : monte-carlo simulations * molecular-dynamic simulations * classical drude oscillators Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.883, year: 2015

  16. Nutrient limitation and microbially mediated chemistry: studies using tuff inoculum obtained from the Exploratory Studies Facility, Yucca Mountain

    International Nuclear Information System (INIS)

    Chen, C. I.; Chuu, Y. J.; Meike, A.; Ringelberg, D.; Sawvel, A.

    1998-01-01

    Flow-through bioreactors are used to investigate the relationship between the supply (and limitation) of major nutrients required by microorganisms (C, N, P, S) and effluent chemistry to obtain data that can be useful to develop models of microbially mediated aqueous chemistry. The bioreactors were inoculated with crushed tuff from Yucca Mountain. Six of the 14 bioreactor experiments currently in operation have shown growth, which occurred in as few as 5 days and as much as a few months after initiation of the experiment. All of the bioreactors exhibiting growth contained glucose as a carbon source, but other nutritional components varied. Chemical signatures of each bioreactor were compared to each other and selected results were compared to computer simulations of the equivalent abiotic chemical reactions. At 21 C, the richest medium formulation produced a microbial community that lowered the effluent pH from 6.4 to as low as 3.9. The same medium formulation at 50 C produced no significant change in pH but caused a significant increase in Cl after a period of 200 days. Variations in concentrations of other elements, some of which appear to be periodic (Ca, Mg, etc.) also occur. Bioreactors fed with low C, N, P, S media showed growth, but had stabilized at lower cell densities. The room temperature bioreactor in this group exhibited a phospholipid fatty acid (PLFA) signature of sulfur- or iron-reducing bacteria, which produced a significant chemical signature in the effluent from that bioreactor. Growth had not been observed yet in the alkaline bioreactors, even in those containing glucose. The value of combining detailed chemical and community (e.g., ester-linked PLFA) analyses, long-duration experiments, and abiotic chemical models to distinguish chemical patterns is evident. Although all of the bioreactors contain the same initial microorganisms and mineral constituents, PLFA analysis demonstrates that both input chemistry and temperature determine the

  17. Comet Halley and interstellar chemistry

    International Nuclear Information System (INIS)

    Snyder, L.E.

    1989-01-01

    How complex is the chemistry of the interstellar medium? How far does it evolve and how has it interacted with the chemistry of the solar system? Are the galactic chemical processes destroyed, preserved, or even enhanced in comets? Are biogenic molecules formed in space and have the formation mechanisms interacted in any way with prebiotic organic chemical processes on the early earth? Radio molecular studies of comets are important for probing deep into the coma and nuclear region and thus may help answer these questions. Comets are believed to be pristine samples of the debris left from the formation of the solar system and may have been the carrier between interstellar and terrestrial prebiotic chemistries. Recent observations of Comet Halley and subsequent comets have given the author an excellent opportunity to study the relationship between interstellar molecular chemistry and cometary chemistry

  18. Essential Concepts and Underlying Theories from Physics, Chemistry, and Mathematics for "Biochemistry and Molecular Biology" Majors

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A.; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry,…

  19. The Breath of Chemistry

    DEFF Research Database (Denmark)

    Josephsen, Jens

    The present preliminary text is a short thematic presentation in biological inorganic chemistry meant to illustrate general and inorganic (especially coordination) chemistry in biochemistry. The emphasis is on molecular models to explain features of the complicated mechanisms essential to breathing...

  20. Ab initio valence calculations in chemistry

    CERN Document Server

    Cook, D B

    1974-01-01

    Ab Initio Valence Calculations in Chemistry describes the theory and practice of ab initio valence calculations in chemistry and applies the ideas to a specific example, linear BeH2. Topics covered include the Schrödinger equation and the orbital approximation to atomic orbitals; molecular orbital and valence bond methods; practical molecular wave functions; and molecular integrals. Open shell systems, molecular symmetry, and localized descriptions of electronic structure are also discussed. This book is comprised of 13 chapters and begins by introducing the reader to the use of the Schrödinge

  1. Molecular Structure of Salt Solutions: A New View of the Interface with Implications for Heterogeneous Atmospheric Chemistry

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Pavel; Tobias, D. J.

    2001-01-01

    Roč. 105, č. 43 (2001), s. 10468-10472 ISSN 1089-5647 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : air-solution interface * salt solutions * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.379, year: 2001

  2. Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients.

    Science.gov (United States)

    Wellendorph, Petrine; Johansen, Lars Dan; Bräuner-Osborne, Hans

    2009-09-01

    A number of highly promiscuous seven transmembrane (7TM) receptors have been cloned and characterized within the last few years. It is noteworthy that many of these receptors are activated broadly by amino acids, proteolytic degradation products, carbohydrates, or free fatty acids and are expressed in taste tissue, the gastrointestinal tract, endocrine glands, adipose tissue, and/or kidney. These receptors thus hold the potential to act as sensors of food intake, regulating, for example, release of incretin hormones from the gut, insulin/glucagon from the pancreas, and leptin from adipose tissue. The promiscuous tendency in ligand recognition of these receptors is in contrast to the typical specific interaction with one physiological agonist seen for most receptors, which challenges the classic "lock-and-key" concept. We here review the molecular mechanisms of nutrient sensing of the calcium-sensing receptor, the G protein-coupled receptor family C, group 6, subtype A (GPRC6A), and the taste1 receptor T1R1/T1R3, which are sensing L-alpha-amino acids, the carbohydrate-sensing T1R2/T1R3 receptor, the proteolytic degradation product sensor GPR93 (also termed GPR92), and the free fatty acid (FFA) sensing receptors FFA1, FFA2, FFA3, GPR84, and GPR120. The involvement of the individual receptors in sensing of food intake has been validated to different degrees because of limited availability of specific pharmacological tools and/or receptor knockout mice. However, as a group, the receptors represent potential drug targets, to treat, for example, type II diabetes by mimicking food intake by potent agonists or positive allosteric modulators. The ligand-receptor interactions of the promiscuous receptors of organic nutrients thus remain an interesting subject of emerging functional importance.

  3. Exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology.

    Science.gov (United States)

    Ojima, Iwao

    2013-07-05

    Over the last three decades, my engagement in "fluorine chemistry" has evolved substantially because of the multidisciplinary nature of the research programs. I began my research career as a synthetic chemist in organometallic chemistry and homogeneous catalysis directed toward organic synthesis. Then, I was brought into a very unique world of "fluorine chemistry" in the end of 1970s. I started exploring the interface of fluorine chemistry and transition metal homogeneous catalysis first, which was followed by amino acids, peptides, and peptidomimetics for medicinal chemistry. Since then, I have been exploring the interfaces of fluorine chemistry and multidisciplinary fields of research involving medicinal chemistry, chemical biology, cancer biology, and molecular imaging. This perspective intends to cover my fruitful endeavor in the exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology in a chronological order to show the evolution of my research interest and strategy.

  4. Effects of Gravel Bars on Nutrient Spiraling in Bedrock-Alluvium Streams

    Science.gov (United States)

    Iobst, B. R.; Carroll, E. P.; Furbish, D. J.

    2007-05-01

    The importance of the connection between nutrient transport and local stream geomorphology is becoming increasingly important. Studies have shown that the interconnectivity of nutrient cycles in the downstream direction is in part controlled by the distribution and size of gravel bars in low order streams, as hyporheic flow occurs dominantly through alternate and mid-channel gravel bars. For this investigation multiple gravel bars in a 3rd order bedrock-alluvium stream were studied to determine general relationships between nutrient spiraling and hyporheic flow. The first goal was to understand (1) the extent to which water moves through hyporheic zones and (2) the basic chemistry of the hyporheic water. The second part of the study was to understand how nutrients, notably nitrogen, are affected in their cycling by the relatively long residence times encountered in gravel bars during hyporheic flow. Wells were installed along a 600 m reach of Panther Creek, KY in selected bars, as well as in a secondary location involving a grid installation pattern in one large bar. Results have shown that hyporheic flow through gravel bars is an important factor in influencing stream chemistry. Background water chemistry surveys have shown that certain parameters, specifically ammonium and nitrogen concentrations vary downstream, and that the dominant control over these changes is gravel bar location. Rhodamine WT was used in field tracer tests to track the travel times of water through bars as well as partitioning of water between the open channel and hyporheic flows. Further tests will be conducted utilizing a stable isotope study to determine how nitrogen is affected by hyporheic flow, and what implications this has for nutrient transport. We expect results to show that the spacing and size of gravel bars is a dominant control in key nutrient spiraling parameters, namely uptake lengths and overall nitrogen cycling rates. This has implications for how natural systems will

  5. Transuranic Computational Chemistry.

    Science.gov (United States)

    Kaltsoyannis, Nikolas

    2018-02-26

    Recent developments in the chemistry of the transuranic elements are surveyed, with particular emphasis on computational contributions. Examples are drawn from molecular coordination and organometallic chemistry, and from the study of extended solid systems. The role of the metal valence orbitals in covalent bonding is a particular focus, especially the consequences of the stabilization of the 5f orbitals as the actinide series is traversed. The fledgling chemistry of transuranic elements in the +II oxidation state is highlighted. Throughout, the symbiotic interplay of experimental and computational studies is emphasized; the extraordinary challenges of experimental transuranic chemistry afford computational chemistry a particularly valuable role at the frontier of the periodic table. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Formation of molecular bromine from the reaction of ozone with deliquesced NaBr aerosol: Evidence for interface chemistry

    Czech Academy of Sciences Publication Activity Database

    Hunt, S. W.; Roeselová, Martina; Wang, W.; Wingen, L. M.; Knipping, E. M.; Tobias, D. J.; Dabdub, D.; Finlayson-Pitts, B. J.

    2004-01-01

    Roč. 108, - (2004), s. 11559-11572 ISSN 1089-5639 Grant - others:NSF(US) 0209719; NSF(US) 0431512 Institutional research plan: CEZ:AV0Z4055905 Keywords : ozone * sea-salt aerosol * molecular dynamics simulation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.639, year: 2004

  7. Bottom Sediment Chemistry, Nutrient Balance, and Water Birds in ...

    African Journals Online (AJOL)

    Water bird characteristics, nutrient loadings, and the levels of bottom sediment silicon oxide (SiO2), aluminium oxide (Al2O3), ferric oxide (Fe2O3), calcium oxide (CaO), copper (Cu), phosphorus (P) and organic carbon (C) was studied in eight high altitude (2040-2640m) small shallow (0.065-0.249 km2; 0.9-3.1 m) ...

  8. Annual progress report of the physical chemistry department. Basic research 1987

    International Nuclear Information System (INIS)

    1988-01-01

    Basic research for 1987 in physical chemistry of the French Atomic Energy Commission are reviewed. Topics include molecular chemistry, isotopic geochemistry, molecular photophysics, laser photochemistry, solid and surface physical chemistry. A list of publications and thesis is given [fr

  9. Groundwater age and chemistry, and future nutrient loads for selected Rotorua Lakes catchments

    International Nuclear Information System (INIS)

    Morgenstern, U.; Reevers, R.R.; Daugney, C.J.; Cameron, S.; Gordon, D.

    2005-01-01

    Hydrochemical analysis and age dating of groundwater and groundwater-fed streams were carried out in the Lake Rotorua and Okareka catchments to assess the past and current states, and future trends in groundwater chemistry. The study was undertaken because of declining lake water quality due to observed increases in nutrient loads entering these lakes. THe hydrogeology of the Rotorua Lakes area can be described as a permeable pumiceous surface tephra layer that allows easy penetration of rainwater recharge to deeper rhyolite and ignimbrite aquifers. These aquifers are essentially unconfined and yield high volumes of groundwater that discharges to spring-fed streams or directly to the lake. The hydrochemistry of groundwaters is characterised by much lower concentrations of Ca, Mg and SO 4 and much higher concentrations of PO 4 -P and SiO 2 than other groundwaters in New Zealand. This chemical signature reflects the volcanic origin of the aquifer lithology. Because the aquifers in the Rotorua area have large water storage capacity there is a long residence time for nutrient-laden groundwater. It takes decades for the water after being recharged to reach the spring-fed streams and the lakes. The large groundwater bodies have therefore 'silently' been contaminated over decades, with the old pristine groundwater being progressively replaced by younger nutrient-laden water that will discharge to the spring-fed streams and finally to the lakes. This study involved age dating of springs, wells, and groundwater-fed streams to assess how long it takes for nutrient-enriched groundwater to travel from pastoral land to springs and streams, and to the lakes. Most of the springs and wells in the Lake Rotorua and Okareka catchments contained relatively old groundwaters, with mean residence times between 40 and >170 years (only two wells have younger water of 26 and 31 years mean residence time). This corresponds to young water fractions (water recharged within the last 55 years

  10. Urbanization Changes the Temporal Dynamics of Nutrients and Water Chemistry

    Science.gov (United States)

    Steele, M.; Badgley, B.

    2017-12-01

    Recent studies find that urban development alters the seasonal dynamics of nutrient concentrations, where the highest concentrations of nitrogen occurred during the winter in urban watersheds, rather than the summer. However, the effects of urbanization on the seasonal concentrations of other nutrients and chemical components is unknown. Therefore, to determine how urbanization changes the seasonal dynamics, once a week we measured concentrations of dissolved organic carbon (DOC), nutrients (NO3, DON, TN, PO4), base cations (Ca, Mg, Na, K), anions (F, Cl, SO4), pH, sediment, temperature, conductivity, and dissolved oxygen (DO) of nine urban, agricultural, and minimally developed watersheds in southwest Virginia, USA. We found that urbanization disrupted the seasonal dynamics of all metrics, except DON, PO4, Ca, sediment, and DO, where some shifted to high concentrations during the winter (Cl, conductivity), highs during late winter or spring (DOC, Na), a season low (TN, SO4, NO3) or high (NH4) during the summer, or remained more constant throughout the year compared to the reference watersheds (Mg, K, pH). The complex changes in seasonal dynamics coincide with a decoupling of common correlations between constituents; for example, DO and NO3 are negatively correlated in reference watersheds (NO3 increases, DO decreases), but positively correlated in urban watersheds. These results suggest that as watersheds become more intensely developed, the influence of natural drivers like temperature and vegetation become steadily overcome by the influence of urban drivers like deicing salts and wastewater leakage, which exert increasing control of seasonal water quality and aquatic habitat.

  11. FPS scientific and supercomputers computers in chemistry

    International Nuclear Information System (INIS)

    Curington, I.J.

    1987-01-01

    FPS Array Processors, scientific computers, and highly parallel supercomputers are used in nearly all aspects of compute-intensive computational chemistry. A survey is made of work utilizing this equipment, both published and current research. The relationship of the computer architecture to computational chemistry is discussed, with specific reference to Molecular Dynamics, Quantum Monte Carlo simulations, and Molecular Graphics applications. Recent installations of the FPS T-Series are highlighted, and examples of Molecular Graphics programs running on the FPS-5000 are shown

  12. Effects of mountain agriculture on nutrient cycling at upstream watersheds

    Science.gov (United States)

    Lin, T.-C.; Shaner, P. L.; Wang, L.-J.; Shih, Y.-T.; Wang, C.-P.; Huang, G.-H.; Huang, J.-C.

    2015-05-01

    The expansion of agriculture to rugged mountains can exacerbate negative impacts of agriculture activities on ecosystem function. In this study, we monitored streamwater chemistry of four watersheds with varying proportions of agricultural lands (0.4, 3, 17, 22%) and rainfall chemistry of two of the four watersheds at Feitsui Reservoir Watershed in northern Taiwan to examine the effects of agriculture on watershed nutrient cycling. We found that the greater the proportions of agricultural lands, the higher the ion concentrations, which is evident for fertilizer-associated ions (NO3-, K+) but not for ions that are rich in soils (SO42-, Ca2+, Mg2+), suggesting that agriculture enriched fertilizer-associated nutrients in streamwater. The watershed with the highest proportion of agricultural lands had higher concentrations of ions in rainfall and lower nutrient retention capacity (i.e. higher output-input ratio of ions) compared to the relatively pristine watershed, suggesting that agriculture can influence atmospheric deposition of nutrients and a system's ability to retain nutrients. Furthermore, we found that a forested watershed downstream of agricultural activities can dilute the concentrations of fertilizer-associated ions (NO3-, K+) in streamwater by more than 70%, indicating that specific landscape configurations help mitigate nutrient enrichment to aquatic systems. We estimated that agricultural lands at our study site contributed approximately 400 kg ha-1 yr-1 of NO3-N and 260 kg ha-1 yr-1 of PO4-P output via streamwater, an order of magnitude greater than previously reported around the globe and can only be matched by areas under intense fertilizer use. Furthermore, we re-constructed watershed nutrient fluxes to show that excessive leaching of N and P, and additional loss of N to the atmosphere via volatilization and denitrification, can occur under intense fertilizer use. In summary, this study demonstrated the pervasive impacts of agriculture activities

  13. Radiological and Environmental Research Division annual report: Fundamental Molecular Physics and Chemistry, October 1977-September 1978. [Summary of research activities at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, R. E.; Inokuti, Mitio [eds.

    1978-01-01

    Research presented includes 32 papers, six of which have appeared previously in ERA, and 26 appear in this issue of ERA. Molecular physics and chemistry including photoionization, molecular properties, oscillator strengths, scattering, shape resonances, and photoelectrons are covered. A list of publications is included. (JFP)

  14. Automated chemical kinetic modeling via hybrid reactive molecular dynamics and quantum chemistry simulations.

    Science.gov (United States)

    Döntgen, Malte; Schmalz, Felix; Kopp, Wassja A; Kröger, Leif C; Leonhard, Kai

    2018-06-13

    An automated scheme for obtaining chemical kinetic models from scratch using reactive molecular dynamics and quantum chemistry simulations is presented. This methodology combines the phase space sampling of reactive molecular dynamics with the thermochemistry and kinetics prediction capabilities of quantum mechanics. This scheme provides the NASA polynomial and modified Arrhenius equation parameters for all species and reactions that are observed during the simulation and supplies them in the ChemKin format. The ab initio level of theory for predictions is easily exchangeable and the presently used G3MP2 level of theory is found to reliably reproduce hydrogen and methane oxidation thermochemistry and kinetics data. Chemical kinetic models obtained with this approach are ready-to-use for, e.g., ignition delay time simulations, as shown for hydrogen combustion. The presented extension of the ChemTraYzer approach can be used as a basis for methodologically advancing chemical kinetic modeling schemes and as a black-box approach to generate chemical kinetic models.

  15. Computational quantum chemistry website

    International Nuclear Information System (INIS)

    1997-01-01

    This report contains the contents of a web page related to research on the development of quantum chemistry methods for computational thermochemistry and the application of quantum chemistry methods to problems in material chemistry and chemical sciences. Research programs highlighted include: Gaussian-2 theory; Density functional theory; Molecular sieve materials; Diamond thin-film growth from buckyball precursors; Electronic structure calculations on lithium polymer electrolytes; Long-distance electronic coupling in donor/acceptor molecules; and Computational studies of NOx reactions in radioactive waste storage

  16. Matched molecular pair-based data sets for computer-aided medicinal chemistry

    Science.gov (United States)

    Bajorath, Jürgen

    2014-01-01

    Matched molecular pairs (MMPs) are widely used in medicinal chemistry to study changes in compound properties including biological activity, which are associated with well-defined structural modifications. Herein we describe up-to-date versions of three MMP-based data sets that have originated from in-house research projects. These data sets include activity cliffs, structure-activity relationship (SAR) transfer series, and second generation MMPs based upon retrosynthetic rules. The data sets have in common that they have been derived from compounds included in the ChEMBL database (release 17) for which high-confidence activity data are available. Thus, the activity data associated with MMP-based activity cliffs, SAR transfer series, and retrosynthetic MMPs cover the entire spectrum of current pharmaceutical targets. Our data sets are made freely available to the scientific community. PMID:24627802

  17. The physical basis of chemistry

    CERN Document Server

    Warren, Warren S

    2000-01-01

    If the text you're using for general chemistry seems to lack sufficient mathematics and physics in its presentation of classical mechanics, molecular structure, and statistics, this complementary science series title may be just what you're looking for. Written for the advanced lower-division undergraduate chemistry course, The Physical Basis of Chemistry, Second Edition, offers students an opportunity to understand and enrich the understanding of physical chemistry with some quantum mechanics, the Boltzmann distribution, and spectroscopy. Posed and answered are questions concerning eve

  18. Molecular sciences

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The research in molecular sciences summarized includes photochemistry, radiation chemistry, geophysics, electromechanics, heavy-element oxidizers , heavy element chemistry collisions, atoms, organic solids. A list of publications is included

  19. NUCLEAR CHEMISTRY ANNUAL REPORT 1970

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1971-05-01

    Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.

  20. Molecular Elucidation of Disease Biomarkers at the Interface of Chemistry and Biology.

    Science.gov (United States)

    Zhang, Liqin; Wan, Shuo; Jiang, Ying; Wang, Yanyue; Fu, Ting; Liu, Qiaoling; Cao, Zhijuan; Qiu, Liping; Tan, Weihong

    2017-02-22

    Disease-related biomarkers are objectively measurable molecular signatures of physiological status that can serve as disease indicators or drug targets in clinical diagnosis and therapy, thus acting as a tool in support of personalized medicine. For example, the prostate-specific antigen (PSA) biomarker is now widely used to screen patients for prostate cancer. However, few such biomarkers are currently available, and the process of biomarker identification and validation is prolonged and complicated by inefficient methods of discovery and few reliable analytical platforms. Therefore, in this Perspective, we look at the advanced chemistry of aptamer molecules and their significant role as molecular probes in biomarker studies. As a special class of functional nucleic acids evolved from an iterative technology termed Systematic Evolution of Ligands by Exponential Enrichment (SELEX), these single-stranded oligonucleotides can recognize their respective targets with selectivity and affinity comparable to those of protein antibodies. Because of their fast turnaround time and exceptional chemical properties, aptamer probes can serve as novel molecular tools for biomarker investigations, particularly in assisting identification of new disease-related biomarkers. More importantly, aptamers are able to recognize biomarkers from complex biological environments such as blood serum and cell surfaces, which can provide direct evidence for further clinical applications. This Perspective highlights several major advancements of aptamer-based biomarker discovery strategies and their potential contribution to the practice of precision medicine.

  1. Nutrient cycling in a strongly acidified mesotrophic lake

    Czech Academy of Sciences Publication Activity Database

    Kopáček, Jiří; Brzáková, Martina; Hejzlar, Josef; Nedoma, Jiří; Porcal, Petr; Vrba, Jaroslav

    2004-01-01

    Roč. 49, č. 4 (2004), s. 1202-1213 ISSN 0024-3590 R&D Projects: GA ČR(CZ) GA206/00/0063; GA ČR(CZ) GA206/03/1583 Institutional research plan: CEZ:AV0Z6017912 Keywords : acidification * nutrients * water chemistry Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.024, year: 2004

  2. Molecular-level chemistry of model single-crystal oxide surfaces with model halogenated compounds

    Science.gov (United States)

    Adib, Kaveh

    Synchrotron-based X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption (TPD) and low energy electron diffraction (LEED) have been used to investigate, at a molecular level, the chemistry of different terminations of single crystal iron-oxide surfaces with probe molecules (CCl4 and D2O). Comparisons of the reactivity of these surfaces towards CCl4, indicate that the presence of an uncapped surface Fe cation (strong Lewis acid site) and an adjacent oxygen site capped by that cation can effect the C-Cl bond cleavage in CCl4, resulting in dissociatively adsorbed Cl-adatoms and carbon-containing fragments. If in addition to these sites, an uncapped surface oxygen (Lewis base) site is also available, the carbon-containing moiety can then move that site, coordinate itself with that uncapped oxygen, and stabilize itself. At a later step, the carbon-containing fragment may form a strong covalent bond with the uncapped oxygen and may even abstract that surface oxygen. On the other hand, if an uncapped oxygen is not available to stabilize the carbon-containing fragment, the surface coordination will not occur and upon the subsequent thermal annealing of the surface the Cl-adatoms and the carbon-containing fragments will recombine and desorb as CCl4. Finally, the presence of surface deuteroxyls blocking the strong Lewis acid and base sites of the reactive surface, passivates this surface. Such a deuteroxylated surface will be unreactive towards CCl 4. Such a molecular level understanding of the surface chemistry of metal-oxides will have applications in the areas of selective catalysis, including environmental catalysis, and chemical sensor technology.

  3. Solid state chemistry an introduction

    CERN Document Server

    Smart, Lesley E

    2012-01-01

    ""Smart and Moore are engaging writers, providing clear explanations for concepts in solid-state chemistry from the atomic/molecular perspective. The fourth edition is a welcome addition to my bookshelves. … What I like most about Solid State Chemistry is that it gives simple clear descriptions for a large number of interesting materials and correspondingly clear explanations of their applications. Solid State Chemistry could be used for a solid state textbook at the third or fourth year undergraduate level, especially for chemistry programs. It is also a useful resource for beginning graduate

  4. Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments

    Science.gov (United States)

    Thomas, Zahra; Abbott, Benjamin W.; Troccaz, Olivier; Baudry, Jacques; Pinay, Gilles

    2016-03-01

    Direct and indirect effects from human activity have dramatically increased nutrient loading to aquatic inland and estuarine ecosystems. Despite an abundance of studies investigating the impact of agricultural activity on water quality, our understanding of what determines the capacity of a watershed to remove or retain nutrients remains limited. The goal of this study was to identify proximate and ultimate controls on dissolved organic carbon and nutrient dynamics in small agricultural catchments by investigating the relationship between catchment characteristics, stream discharge, and water chemistry. We analyzed a 5-year, high-frequency water chemistry data set from three catchments in western France ranging from 2.3 to 10.8 km2. The relationship between hydrology and solute concentrations differed between the three catchments and was associated with hedgerow density, agricultural activity, and geology. The catchment with thicker soil and higher surface roughness had relatively invariant carbon and nutrient chemistry across hydrologic conditions, indicating high resilience to human disturbance. Conversely, the catchments with smoother, thinner soils responded to both intra- and interannual hydrologic variation with high concentrations of phosphate (PO43-) and ammonium (NH4+) in streams during low flow conditions and strong increases in dissolved organic carbon (DOC), sediment, and particulate organic matter during high flows. Despite contrasting agricultural activity between catchments, the physical context (geology, topography, and land-use configuration) appeared to be the most important determinant of catchment solute dynamics based on principle components analysis. The influence of geology and accompanying topographic and geomorphological factors on water quality was both direct and indirect because the distribution of agricultural activity in these catchments is largely a consequence of the geologic and topographic context. This link between inherent

  5. Eleventh international symposium on radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    1995-01-01

    This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry

  6. Eleventh international symposium on radiopharmaceutical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry.

  7. What Lurks in ULIRGs?—Probing the Chemistry and Excitation of Molecular Gas in the Nuclei of Arp 220 and NGC 6240

    Energy Technology Data Exchange (ETDEWEB)

    Manohar, Swarnima; Scoville, Nick [California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

    2017-02-01

    We have imaged the dense star-forming regions of Arp 220 and NGC 6240 in the 3 mm band transitions of CO, HCN, HCO{sup +}, HNC, and CS at 0.″5–0.″8 resolution using CARMA. Our data set images all these lines at similar resolutions and high sensitivity, and can be used to derive line ratios of faint high excitation lines. In both the nuclei of Arp 220, the HCN/HNC ratios suggest chemistry of X-ray Dominated Regions (XDRs)—a likely signature of an active galactic nucleus. In NGC 6240, there is no evidence of XDR type chemistry, but there the bulk of the molecular gas is concentrated between the nuclei rather than on them. We calculated molecular H{sub 2} densities from excitation analysis of each of the molecular species. It appears that the abundances of HNC and HCO{sup +} in Ultra Luminous Infrared Galaxies may be significantly different from those in galactic molecular clouds. The derived H{sub 2} volume densities are ∼5 × 10{sup 4} cm{sup −3} in the Arp 220 nuclei and ∼10{sup 4} cm{sup −3} in NGC 6240.

  8. Continental-scale effects of nutrient pollution on stream ecosystem functioning.

    Science.gov (United States)

    Woodward, Guy; Gessner, Mark O; Giller, Paul S; Gulis, Vladislav; Hladyz, Sally; Lecerf, Antoine; Malmqvist, Björn; McKie, Brendan G; Tiegs, Scott D; Cariss, Helen; Dobson, Mike; Elosegi, Arturo; Ferreira, Verónica; Graça, Manuel A S; Fleituch, Tadeusz; Lacoursière, Jean O; Nistorescu, Marius; Pozo, Jesús; Risnoveanu, Geta; Schindler, Markus; Vadineanu, Angheluta; Vought, Lena B-M; Chauvet, Eric

    2012-06-15

    Excessive nutrient loading is a major threat to aquatic ecosystems worldwide that leads to profound changes in aquatic biodiversity and biogeochemical processes. Systematic quantitative assessment of functional ecosystem measures for river networks is, however, lacking, especially at continental scales. Here, we narrow this gap by means of a pan-European field experiment on a fundamental ecosystem process--leaf-litter breakdown--in 100 streams across a greater than 1000-fold nutrient gradient. Dramatically slowed breakdown at both extremes of the gradient indicated strong nutrient limitation in unaffected systems, potential for strong stimulation in moderately altered systems, and inhibition in highly polluted streams. This large-scale response pattern emphasizes the need to complement established structural approaches (such as water chemistry, hydrogeomorphology, and biological diversity metrics) with functional measures (such as litter-breakdown rate, whole-system metabolism, and nutrient spiraling) for assessing ecosystem health.

  9. Entering the 'big data' era in medicinal chemistry: molecular promiscuity analysis revisited.

    Science.gov (United States)

    Hu, Ye; Bajorath, Jürgen

    2017-06-01

    The 'big data' concept plays an increasingly important role in many scientific fields. Big data involves more than unprecedentedly large volumes of data that become available. Different criteria characterizing big data must be carefully considered in computational data mining, as we discuss herein focusing on medicinal chemistry. This is a scientific discipline where big data is beginning to emerge and provide new opportunities. For example, the ability of many drugs to specifically interact with multiple targets, termed promiscuity, forms the molecular basis of polypharmacology, a hot topic in drug discovery. Compound promiscuity analysis is an area that is much influenced by big data phenomena. Different results are obtained depending on chosen data selection and confidence criteria, as we also demonstrate.

  10. Spatially Resolved Artificial Chemistry

    DEFF Research Database (Denmark)

    Fellermann, Harold

    2009-01-01

    Although spatial structures can play a crucial role in chemical systems and can drastically alter the outcome of reactions, the traditional framework of artificial chemistry is a well-stirred tank reactor with no spatial representation in mind. Advanced method development in physical chemistry has...... made a class of models accessible to the realms of artificial chemistry that represent reacting molecules in a coarse-grained fashion in continuous space. This chapter introduces the mathematical models of Brownian dynamics (BD) and dissipative particle dynamics (DPD) for molecular motion and reaction...

  11. Spatially Resolved Artificial Chemistry

    DEFF Research Database (Denmark)

    Fellermann, Harold

    2009-01-01

    made a class of models accessible to the realms of artificial chemistry that represent reacting molecules in a coarse-grained fashion in continuous space. This chapter introduces the mathematical models of Brownian dynamics (BD) and dissipative particle dynamics (DPD) for molecular motion and reaction......Although spatial structures can play a crucial role in chemical systems and can drastically alter the outcome of reactions, the traditional framework of artificial chemistry is a well-stirred tank reactor with no spatial representation in mind. Advanced method development in physical chemistry has...

  12. Physical chemistry and the environment

    International Nuclear Information System (INIS)

    Dunning, T.H. Jr.; Garrett, B.C.; Kolb, C.E. Jr.; Shaw, R.W.; Choppin, G.R.; Wagner, A.F.

    1994-08-01

    From the ozone hole and the greenhouse effect to plastics recycling and hazardous waste disposal, society faces a number of issues, the solutions to which require an unprecedented understanding of the properties of molecules. We are coming to realize that the environment is a coupled set of chemical systems, its dynamics determining the welfare of the biosphere and of humans in particular. These chemical systems are governed by fundamental molecular interactions, and they present chemists with an unparalleled challenge. The application of current concepts of molecular behavior and of up-to-date experimental and computational techniques can provide us with insights into the environment that are needed to mitigate past damage, to anticipate the impact of current human activity, and to avoid future insults to the environment. Environmental chemistry encompasses a number of separate, yet interlocking, areas of research. In all of these areas progress is limited by an inadequate understanding of the underlying chemical processes involved. Participation of all chemical approaches -- experimental, theoretical and computational -- and of all disciplines of chemistry -- organic, inorganic, physical, analytical and biochemistry -- will be required to provide the necessary fundamental understanding. The Symposium on ''Physical Chemistry and the Environment'' was designed to bring the many exciting and challenging physical chemistry problems involved in environmental chemistry to the attention of a larger segment of the physical chemistry community

  13. Bioorthogonal chemistry in bioluminescence imaging.

    Science.gov (United States)

    Godinat, Aurélien; Bazhin, Arkadiy A; Goun, Elena A

    2018-05-18

    Bioorthogonal chemistry has developed significant over the past few decades, to the particular benefit of molecular imaging. Bioluminescence imaging (BLI) along with other imaging modalities have significantly benefitted from this chemistry. Here, we review bioorthogonal reactions that have been used to signific antly broaden the application range of BLI. Copyright © 2018. Published by Elsevier Ltd.

  14. Observational constraints on interstellar chemistry

    International Nuclear Information System (INIS)

    Winnewisser, G.

    1984-01-01

    The author points out presently existing observational constraints in the detection of interstellar molecular species and the limits they may cast on our knowledge of interstellar chemistry. The constraints which arise from the molecular side are summarised and some technical difficulties encountered in detecting new species are discussed. Some implications for our understanding of molecular formation processes are considered. (Auth.)

  15. Using Computational Chemistry Activities to Promote Learning and Retention in a Secondary School General Chemistry Setting

    Science.gov (United States)

    Ochterski, Joseph W.

    2014-01-01

    This article describes the results of using state-of-the-art, research-quality software as a learning tool in a general chemistry secondary school classroom setting. I present three activities designed to introduce fundamental chemical concepts regarding molecular shape and atomic orbitals to students with little background in chemistry, such as…

  16. Selective host molecules obtained by dynamic adaptive chemistry.

    Science.gov (United States)

    Matache, Mihaela; Bogdan, Elena; Hădade, Niculina D

    2014-02-17

    Up till 20 years ago, in order to endow molecules with function there were two mainstream lines of thought. One was to rationally design the positioning of chemical functionalities within candidate molecules, followed by an iterative synthesis-optimization process. The second was the use of a "brutal force" approach of combinatorial chemistry coupled with advanced screening for function. Although both methods provided important results, "rational design" often resulted in time-consuming efforts of modeling and synthesis only to find that the candidate molecule was not performing the designed job. "Combinatorial chemistry" suffered from a fundamental limitation related to the focusing of the libraries employed, often using lead compounds that limit its scope. Dynamic constitutional chemistry has developed as a combination of the two approaches above. Through the rational use of reversible chemical bonds together with a large plethora of precursor libraries, one is now able to build functional structures, ranging from quite simple molecules up to large polymeric structures. Thus, by introduction of the dynamic component within the molecular recognition processes, a new perspective of deciphering the world of the molecular events has aroused together with a new field of chemistry. Since its birth dynamic constitutional chemistry has continuously gained attention, in particular due to its ability to easily create from scratch outstanding molecular structures as well as the addition of adaptive features. The fundamental concepts defining the dynamic constitutional chemistry have been continuously extended to currently place it at the intersection between the supramolecular chemistry and newly defined adaptive chemistry, a pivotal feature towards evolutive chemistry. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Predicting the profile of nutrients available for absorption: from nutrient requirement to animal response and environmental impact.

    Science.gov (United States)

    Dijkstra, J; Kebreab, E; Mills, J A N; Pellikaan, W F; López, S; Bannink, A; France, J

    2007-02-01

    Current feed evaluation systems for dairy cattle aim to match nutrient requirements with nutrient intake at pre-defined production levels. These systems were not developed to address, and are not suitable to predict, the responses to dietary changes in terms of production level and product composition, excretion of nutrients to the environment, and nutrition related disorders. The change from a requirement to a response system to meet the needs of various stakeholders requires prediction of the profile of absorbed nutrients and its subsequent utilisation for various purposes. This contribution examines the challenges to predicting the profile of nutrients available for absorption in dairy cattle and provides guidelines for further improved prediction with regard to animal production responses and environmental pollution.The profile of nutrients available for absorption comprises volatile fatty acids, long-chain fatty acids, amino acids and glucose. Thus the importance of processes in the reticulo-rumen is obvious. Much research into rumen fermentation is aimed at determination of substrate degradation rates. Quantitative knowledge on rates of passage of nutrients out of the rumen is rather limited compared with that on degradation rates, and thus should be an important theme in future research. Current systems largely ignore microbial metabolic variation, and extant mechanistic models of rumen fermentation give only limited attention to explicit representation of microbial metabolic activity. Recent molecular techniques indicate that knowledge on the presence and activity of various microbial species is far from complete. Such techniques may give a wealth of information, but to include such findings in systems predicting the nutrient profile requires close collaboration between molecular scientists and mathematical modellers on interpreting and evaluating quantitative data. Protozoal metabolism is of particular interest here given the paucity of quantitative data

  18. Medicinal electrochemistry: integration of electrochemistry, medicinal chemistry and computational chemistry.

    Science.gov (United States)

    Almeida, M O; Maltarollo, V G; de Toledo, R A; Shim, H; Santos, M C; Honorio, K M

    2014-01-01

    Over the last centuries, there were many important discoveries in medicine that were crucial for gaining a better understanding of several physiological processes. Molecular modelling techniques are powerful tools that have been successfully used to analyse and interface medicinal chemistry studies with electrochemical experimental results. This special combination can help to comprehend medicinal chemistry problems, such as predicting biological activity and understanding drug action mechanisms. Electrochemistry has provided better comprehension of biological reactions and, as a result of many technological improvements, the combination of electrochemical techniques and biosensors has become an appealing choice for pharmaceutical and biomedical analyses. Therefore, this review will briefly outline the present scope and future advances related to the integration of electrochemical and medicinal chemistry approaches based on various applications from recent studies.

  19. Interstellar chemistry.

    Science.gov (United States)

    Klemperer, William

    2006-08-15

    In the past half century, radioastronomy has changed our perception and understanding of the universe. In this issue of PNAS, the molecular chemistry directly observed within the galaxy is discussed. For the most part, the description of the molecular transformations requires specific kinetic schemes rather than chemical thermodynamics. Ionization of the very abundant molecular hydrogen and atomic helium followed by their secondary reactions is discussed. The rich variety of organic species observed is a challenge for complete understanding. The role and nature of reactions involving grain surfaces as well as new spectroscopic observations of interstellar and circumstellar regions are topics presented in this special feature.

  20. Nutrient analysis explained for non-chemists by using interactive e-learning material

    NARCIS (Netherlands)

    Busstra, M.C.; Hulshof, P.J.M.; Houwen, J.; Elburg, L.; Hollman, P.C.H.

    2012-01-01

    The diverse educational and professional background of individuals involved in food composition data work presents challenges in their training. In particular, it is difficult to explain chemical analysis of nutrients to individuals lacking a background in chemistry. Therefore an interactive

  1. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 7. Electrostatics in Chemistry - Molecular Electrostatic Potential: Visualization and Topography. Shridhar R Gadre Pravin K Bhadane. Series Article Volume 4 Issue 7 July 1999 pp 14-23 ...

  2. Actin Immobilization on Chitin for Purifying Myosin II: A Laboratory Exercise That Integrates Concepts of Molecular Cell Biology and Protein Chemistry

    Science.gov (United States)

    de Souza, Marcelle Gomes; Grossi, Andre Luiz; Pereira, Elisangela Lima Bastos; da Cruz, Carolina Oliveira; Mendes, Fernanda Machado; Cameron, Luiz Claudio; Paiva, Carmen Lucia Antao

    2008-01-01

    This article presents our experience on teaching biochemical sciences through an innovative approach that integrates concepts of molecular cell biology and protein chemistry. This original laboratory exercise is based on the preparation of an affinity chromatography column containing F-actin molecules immobilized on chitin particles for purifying…

  3. Molecular recognition of nucleotides in micelles and the development and expansion of a chemistry outreach program

    Science.gov (United States)

    Schechinger, Linda Sue

    I. To investigate the delivery of nucleotide-based drugs, we are studying molecular recognition of nucleotide derivatives in environments that are similar to cell membranes. The Nowick group previously discovered that membrane-like surfactant micelles tetradecyltrimethylammonium bromide (TTAB) micelle facilitate molecular of adenosine monophosphate (AMP) recognition. The micelles bind nucleotides by means of electrostatic interactions and hydrogen bonding. We observed binding by following 1H NMR chemical shift changes of unique hexylthymine protons upon addition of AMP. Cationic micelles are required for binding. In surfactant-free or sodium dodecylsulfate solutions, no hydrogen bonding is observed. These observations suggest that the cationic surfactant headgroups bind the nucleotide phosphate group, while the intramicellar base binds the nucleotide base. The micellar system was optimized to enhance binding and selectivity for adenosine nucleotides. The selectivity for adenosine and the number of phosphate groups attached to the adenosine were both investigated. Addition of cytidine, guanidine, or uridine monophosphates, results in no significant downfield shifting of the NH resonance. Selectivity for the phosphate is limited, since adenosine mono-, di-, and triphosphates all have similar binding constants. We successfully achieved molecular recognition of adenosine nucleotides in micellar environments. There is significant difference in the binding interactions between the adenosine nucleotides and three other natural nucleotides. II. The UCI Chemistry Outreach Program (UCICOP) addresses the declining interest of the nations youth for science. UCICOP brings fun and exciting chemistry experiments to local high schools, to remind students that science is fun and has many practical uses. Volunteer students and alumni of UCI perform the demonstrations using scripts and material provided by UCICOP. The preparation of scripts and materials is done by two coordinators

  4. Integrating Computational Chemistry into a Course in Classical Thermodynamics

    Science.gov (United States)

    Martini, Sheridan R.; Hartzell, Cynthia J.

    2015-01-01

    Computational chemistry is commonly addressed in the quantum mechanics course of undergraduate physical chemistry curricula. Since quantum mechanics traditionally follows the thermodynamics course, there is a lack of curricula relating computational chemistry to thermodynamics. A method integrating molecular modeling software into a semester long…

  5. Supramolecular systems chemistry

    NARCIS (Netherlands)

    Mattia, Elio; Otto, Sijbren

    The field of supramolecular chemistry focuses on the non-covalent interactions between molecules that give rise to molecular recognition and self-assembly processes. Since most non-covalent interactions are relatively weak and form and break without significant activation barriers, many

  6. Gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R]: molecular design, synthetic organic chemistry reactions, and antineoplastic cytotoxic potency in populations of pulmonary adenocarcinoma (A549).

    Science.gov (United States)

    Coyne, Cody P; Narayanan, Lakshmi

    2017-03-01

    One molecular-based approach that increases potency and reduces dose-limited sequela is the implementation of selective 'targeted' delivery strategies for conventional small molecular weight chemotherapeutic agents. Descriptions of the molecular design and organic chemistry reactions that are applicable for synthesis of covalent gemcitabine-monophosphate immunochemotherapeutics have to date not been reported. The covalent immunopharmaceutical, gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R] was synthesized by reacting gemcitabine with a carbodiimide reagent to form a gemcitabine carbodiimide phosphate ester intermediate which was subsequently reacted with imidazole to create amine-reactive gemcitabine-(5'-phosphorylimidazolide) intermediate. Monoclonal anti-IGF-1R immunoglobulin was combined with gemcitabine-(5'-phosphorylimidazolide) resulting in the synthetic formation of gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R]. The gemcitabine molar incorporation index for gemcitabine-(5'-phosphoramidate)-[anti-IGF-R1] was 2.67:1. Cytotoxicity Analysis - dramatic increases in antineoplastic cytotoxicity were observed at and between the gemcitabine-equivalent concentrations of 10 -9  M and 10 -7  M where lethal cancer cell death increased from 0.0% to a 93.1% maximum (100.% to 6.93% residual survival), respectively. Advantages of the organic chemistry reactions in the multistage synthesis scheme for gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R] include their capacity to achieve high chemotherapeutic molar incorporation ratios; option of producing an amine-reactive chemotherapeutic intermediate that can be preserved for future synthesis applications; and non-dedicated organic chemistry reaction scheme that allows substitutions of either or both therapeutic moieties, and molecular delivery platforms. © 2016 The Authors Chemical Biology & Drug Design Published by John Wiley & Sons Ltd.

  7. On a Molecular Basis, Investigate Association of Molecular Structure with Bioactive Compounds, Anti-Nutritional Factors and Chemical and Nutrient Profiles of Canola Seeds and Co-Products from Canola Processing: Comparison Crusher Plants within Canada and within China as well as between Canada and China.

    Science.gov (United States)

    Gomaa, Walaa M S; Mosaad, Gamal M; Yu, Peiqiang

    2018-04-21

    The objectives of this study were to: (1) Use molecular spectroscopy as a novel technique to quantify protein molecular structures in relation to its chemical profiles and bioenergy values in oil-seeds and co-products from bio-oil processing. (2) Determine and compare: (a) protein molecular structure using Fourier transform infrared (FT/IR-ATR) molecular spectroscopy technique; (b) bioactive compounds, anti-nutritional factors, and chemical composition; and (c) bioenergy values in oil seeds (canola seeds), co-products (meal or pellets) from bio-oil processing plants in Canada in comparison with China. (3) Determine the relationship between protein molecular structural features and nutrient profiles in oil-seeds and co-products from bio-oil processing. Our results showed the possibility to characterize protein molecular structure using FT/IR molecular spectroscopy. Processing induced changes between oil seeds and co-products were found in the chemical, bioenergy profiles and protein molecular structure. However, no strong correlation was found between the chemical and nutrient profiles of oil seeds (canola seeds) and their protein molecular structure. On the other hand, co-products were strongly correlated with protein molecular structure in the chemical profile and bioenergy values. Generally, comparisons of oil seeds (canola seeds) and co-products (meal or pellets) in Canada, in China, and between Canada and China indicated the presence of variations among different crusher plants and bio-oil processing products.

  8. Entering the ‘big data’ era in medicinal chemistry: molecular promiscuity analysis revisited

    Science.gov (United States)

    Hu, Ye; Bajorath, Jürgen

    2017-01-01

    The ‘big data’ concept plays an increasingly important role in many scientific fields. Big data involves more than unprecedentedly large volumes of data that become available. Different criteria characterizing big data must be carefully considered in computational data mining, as we discuss herein focusing on medicinal chemistry. This is a scientific discipline where big data is beginning to emerge and provide new opportunities. For example, the ability of many drugs to specifically interact with multiple targets, termed promiscuity, forms the molecular basis of polypharmacology, a hot topic in drug discovery. Compound promiscuity analysis is an area that is much influenced by big data phenomena. Different results are obtained depending on chosen data selection and confidence criteria, as we also demonstrate. PMID:28670471

  9. General Chemistry for Engineers.

    Science.gov (United States)

    Kybett, B. D.

    1982-01-01

    Discusses the relationship between molecular structure, intermolecular forces, and tensile strengths of a polymer and suggests that this is a logical way to introduce polymers into a general chemistry course. (Author/JN)

  10. Spins in chemistry

    CERN Document Server

    McWeeny, Roy

    2004-01-01

    Originally delivered as a series of lectures, this volume systematically traces the evolution of the ""spin"" concept from its role in quantum mechanics to its assimilation into the field of chemistry. Author Roy McWeeny presents an in-depth illustration of the deductive methods of quantum theory and their application to spins in chemistry, following the path from the earliest concepts to the sophisticated physical methods employed in the investigation of molecular structure and properties. Starting with the origin and development of the spin concept, the text advances to an examination of sp

  11. Eighteenth annual West Coast theoretical chemistry conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    Abstracts are presented from the eighteenth annual west coast theoretical chemistry conference. Topics include molecular simulations; quasiclassical simulations of reactions; photodissociation reactions; molecular dynamics;interface studies; electronic structure; and semiclassical methods of reactive systems.

  12. Chemistry in T Tauri winds

    Energy Technology Data Exchange (ETDEWEB)

    Rawlings, J M.C.; Williams, D A; Canto, J

    1988-02-15

    The chemistry occurring in the winds of T Tauri stars is investigated. On the assumption that the wind is dust-free, then routes to H/sub 2/ are inhibited under the conditions in the wind, and subsequent chemistry does not produce substantial molecular abundances. The major losses to the chemical network lie in the geometrical dilution and collisional dissociation rather than in chemical destruction and photodissociation. Mass loading of the wind with dust and H/sub 2/ may, however, occur. This stimulates the chemistry and may in some circumstances lead to a conversion of approx.1-10 per cent of carbon into CO. This gives a column density of CO which is marginally detectable. A positive detection of CO at high wind velocities would imply that the winds must be cool and that mixing of molecular material from a disc, which may play a role in collimating the wind, or the remnants of a disc, must occur.

  13. Throughfall and stemflow chemistry in a northern hardwood forest

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, J S; Likens, G E; Bormann, F H

    1973-01-01

    The contribution of throughfall and stemflow as pathways of the intrasystem nutrient cycle within the forested Hubbard Brook ecosystem was investigated. Nutrients followed were Ca, Mg, K, Na, NO/sub 3/, SO/sub 4/, NH/sub 4/, Fl, PO/sub 4/, H, organic N, and organic matter. Variation in throughfall and stemflow chemistry were determined under American beech, sugar maple, and yellow birch, the three major species comprising the forest studied. Nutrients generally recognized as being associated with organic molecules (e.g. P, N) moved more slowly from the forest canopy to the forest floor. These nutrients moved out of the canopy primarily via litterfall. Nutrients more commonly found in an ionic form (e.g. K) were found to move very rapidly from the forest canopy to the available nutrient pool in throughfall and stemflow. A comparison is made between the amount of each nutrient present in the forest canopy and the amount of these nutrients found in the throughfall and stemflow. The importance of hydrogen ion exchange in the removal of cations from the forest canopy is shown. Precipitation of low pH probably acts to accelerate the intrasystem cycling of nutrients within forested ecosystems. Total nutrient removal from the forest canopy by throughfall and stemflow is presented along with a comparison with the removal by litterfall.

  14. Molecular similarity measures.

    Science.gov (United States)

    Maggiora, Gerald M; Shanmugasundaram, Veerabahu

    2011-01-01

    Molecular similarity is a pervasive concept in chemistry. It is essential to many aspects of chemical reasoning and analysis and is perhaps the fundamental assumption underlying medicinal chemistry. Dissimilarity, the complement of similarity, also plays a major role in a growing number of applications of molecular diversity in combinatorial chemistry, high-throughput screening, and related fields. How molecular information is represented, called the representation problem, is important to the type of molecular similarity analysis (MSA) that can be carried out in any given situation. In this work, four types of mathematical structure are used to represent molecular information: sets, graphs, vectors, and functions. Molecular similarity is a pairwise relationship that induces structure into sets of molecules, giving rise to the concept of chemical space. Although all three concepts - molecular similarity, molecular representation, and chemical space - are treated in this chapter, the emphasis is on molecular similarity measures. Similarity measures, also called similarity coefficients or indices, are functions that map pairs of compatible molecular representations that are of the same mathematical form into real numbers usually, but not always, lying on the unit interval. This chapter presents a somewhat pedagogical discussion of many types of molecular similarity measures, their strengths and limitations, and their relationship to one another. An expanded account of the material on chemical spaces presented in the first edition of this book is also provided. It includes a discussion of the topography of activity landscapes and the role that activity cliffs in these landscapes play in structure-activity studies.

  15. Handbook of computational quantum chemistry

    CERN Document Server

    Cook, David B

    2005-01-01

    Quantum chemistry forms the basis of molecular modeling, a tool widely used to obtain important chemical information and visual images of molecular systems. Recent advances in computing have resulted in considerable developments in molecular modeling, and these developments have led to significant achievements in the design and synthesis of drugs and catalysts. This comprehensive text provides upper-level undergraduates and graduate students with an introduction to the implementation of quantum ideas in molecular modeling, exploring practical applications alongside theoretical explanations.Wri

  16. Medicinal chemistry for 2020

    Science.gov (United States)

    Satyanarayanajois, Seetharama D; Hill, Ronald A

    2011-01-01

    Rapid advances in our collective understanding of biomolecular structure and, in concert, of biochemical systems, coupled with developments in computational methods, have massively impacted the field of medicinal chemistry over the past two decades, with even greater changes appearing on the horizon. In this perspective, we endeavor to profile some of the most prominent determinants of change and speculate as to further evolution that may consequently occur during the next decade. The five main angles to be addressed are: protein–protein interactions; peptides and peptidomimetics; molecular diversity and pharmacological space; molecular pharmacodynamics (significance, potential and challenges); and early-stage clinical efficacy and safety. We then consider, in light of these, the future of medicinal chemistry and the educational preparation that will be required for future medicinal chemists. PMID:22004084

  17. The spectroscopy and chemistry of muonium

    International Nuclear Information System (INIS)

    Cox, S.F.J.

    1983-12-01

    The spectroscopy and chemistry of muonium is divided into two parts. Part I deals with muonium and the Breit-Rabi diagram, and explains the significance of muonium in atomic, molecular and solid state physics, as well as in chemistry. The identification of atomic muonium is described with reference to the Breit-Rabi diagram. Part II concerns muonic chemistry in gases and liquids, and deals with the physical processes by which implanted muons become thermalised in liquid and gaseous media. (U.K.)

  18. Determination of the algal growth-limiting nutrients in strip mine ponds

    International Nuclear Information System (INIS)

    Bucknavage, M.J.; Aharrah, E.C.

    1984-01-01

    Using both a test organism, Ankistrodesmus falcatus, and natural phytoplankton, the Printz Algal Assay Bottle Test was used to determine the algal growth limiting nutrients in two strip mine ponds. Nitrogen, phosphorus, and iron were investigated, singly and in combination, as possible limiting nutrients. A synthetic chelator, Na 2 EDTA, was also used in the assay to test for the presence of metal toxicants and/or trace metal limitation. Because bacteria have a major influence on water chemistry, a separate assay incorporating the natural bacteria population was performed. In both ponds, assay results using test alga indicate phosphorus to be the primary limiting nutrient and nitrogen as a secondary factor. The presence of EDTA in combination with phosphate containing treatment promoted a higher algal concentration in both ponds. Iron was determined to be a secondary limiting nutrient in only one of the ponds. Natural phytoplankton of the two ponds responded in a similar manner to nutrient increases. Only one pond had the same results produced by both assays. Nutrient availability was influenced by the presence of bacteria in one pond but not in the other

  19. Introductory quantum chemistry

    International Nuclear Information System (INIS)

    Chandra, A.K.

    1974-01-01

    This book on quantum chemistry is primarily intended for university students at the senior undergraduate level. It serves as an aid to the basic understanding of the important concepts of quantum mechanics introduced in the field of chemistry. Various chapters of the book are devoted to the following : (i) Waves and quanta, (ii) Operator concept in quantum chemistry, (iii) Wave mechanics of some simple systems, (iv) Perturbation theory, (v) Many-electron atoms and angular momenta (vi) Molecular orbital theory and its application to the electronic structure of diatomic molecules, (vii) Chemical bonding in polyatomic molecules and (viii) Chemical applications of Hellmann-Feynman theorem. At the end of each chapter, a set of problems is given and the answers to these problems are given at the end of the book. (A.K.)

  20. Effects of mountain tea plantations on nutrient cycling at upstream watersheds

    Science.gov (United States)

    Lin, T.-C.; Shaner, P.-J. L.; Wang, L.-J.; Shih, Y.-T.; Wang, C.-P.; Huang, G.-H.; Huang, J.-C.

    2015-11-01

    The expansion of agriculture to rugged mountains can exacerbate negative impacts of agricultural activities on ecosystem function. In this study, we monitored streamwater and rainfall chemistry of mountain watersheds at the Feitsui Reservoir Watershed in northern Taiwan to examine the effects of agriculture on watershed nutrient cycling. We found that the greater the proportion of tea plantation cover, the higher the concentrations of fertilizer-associated ions (NO3-, K+) in streamwater of the four mountain watersheds examined; on the other hand, the concentrations of the ions that are rich in soils (SO42-, Ca2+, Mg2+) did not increase with the proportion of tea plantation cover, suggesting that agriculture enriched fertilizer-associated nutrients in streamwater. Of the two watersheds for which rainfall chemistry was available, the one with higher proportion of tea plantation cover had higher concentrations of ions in rainfall and retained less nitrogen in proportion to input compared to the more pristine watershed, suggesting that agriculture can influence atmospheric deposition of nutrients and a system's ability to retain nutrients. As expected, we found that a forested watershed downstream of agricultural activities can dilute the concentrations of NO3- in streamwater by more than 70 %, indicating that such a landscape configuration helps mitigate nutrient enrichment in aquatic systems even for watersheds with steep topography. We estimated that tea plantation at our study site contributed approximately 450 kg ha-1 yr-1 of NO3-N via streamwater, an order of magnitude greater than previously reported for agricultural lands around the globe, which can only be matched by areas under intense fertilizer use. Furthermore, we constructed watershed N fluxes to show that excessive leaching of N, and additional loss to the atmosphere via volatilization and denitrification can occur under intense fertilizer use. In summary, this study demonstrated the pervasive impacts of

  1. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  2. Fundamentals of quantum chemistry

    CERN Document Server

    House, J E

    2004-01-01

    An introduction to the principles of quantum mechanics needed in physical chemistry. Mathematical tools are presented and developed as needed and only basic calculus, chemistry, and physics is assumed. Applications include atomic and molecular structure, spectroscopy, alpha decay, tunneling, and superconductivity. New edition includes sections on perturbation theory, orbital symmetry of diatomic molecules, the Huckel MO method and Woodward/Hoffman rules as well as a new chapter on SCF and Hartree-Fock methods. * This revised text clearly presents basic q

  3. Reaction chemistry of cerium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    It is truly ironic that a synthetic organic chemist likely has far greater knowledge of the reaction chemistry of cerium(IV) than an inorganic colleague. Cerium(IV) reagents have long since been employed as oxidants in effecting a wide variety of organic transformations. Conversely, prior to the late 1980s, the number of well characterized cerium(IV) complexes did not extend past a handful of known species. Though in many other areas, interest in the molecular chemistry of the 4f-elements has undergone an explosive growth over the last twenty years, the chemistry of cerium(IV) has for the most part been overlooked. This report describes reactions of cerium complexes and structure.

  4. Fluorine in medicinal chemistry.

    Science.gov (United States)

    Swallow, Steven

    2015-01-01

    Since its first use in the steroid field in the late 1950s, the use of fluorine in medicinal chemistry has become commonplace, with the small electronegative fluorine atom being a key part of the medicinal chemist's repertoire of substitutions used to modulate all aspects of molecular properties including potency, physical chemistry and pharmacokinetics. This review will highlight the special nature of fluorine, drawing from a survey of marketed fluorinated pharmaceuticals and the medicinal chemistry literature, to illustrate key concepts exploited by medicinal chemists in their attempts to optimize drug molecules. Some of the potential pitfalls in the use of fluorine will also be highlighted. © 2015 Elsevier B.V. All rights reserved.

  5. An ab initio molecular

    Indian Academy of Sciences (India)

    mechanisms of two molecular crystals: An ab initio molecular dynamics ... for Computation in Molecular and Materials Science and Department of Chemistry, School of ..... NSAF Foundation of National Natural Science Foun- ... Matter 14 2717.

  6. Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties

    OpenAIRE

    Astitha, M.; Lelieveld, J.; Kader, M. Abdel; Pozzer, A.; de Meij, A.

    2012-01-01

    Airborne desert dust influences radiative transfer, atmospheric chemistry and dynamics, as well as nutrient transport and deposition. It directly and indirectly affects climate on regional and global scales. Two versions of a parameterization scheme to compute desert dust emissions are incorporated into the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry). One uses a global...

  7. Solvent effects in chemistry

    CERN Document Server

    Buncel, Erwin

    2015-01-01

    This book introduces the concepts, theory and experimental knowledge concerning solvent effects on the rate and equilibrium of chemical reactions of all kinds.  It begins with basic thermodynamics and kinetics, building on this foundation to demonstrate how a more detailed understanding of these effects may be used to aid in determination of reaction mechanisms, and to aid in planning syntheses. Consideration is given to theoretical calculations (quantum chemistry, molecular dynamics, etc.), to statistical methods (chemometrics), and to modern day concerns such as ""green"" chemistry, where ut

  8. The Royal Society of Chemistry and the delivery of chemistry data repositories for the community

    Science.gov (United States)

    Williams, Antony; Tkachenko, Valery

    2014-10-01

    Since 2009 the Royal Society of Chemistry (RSC) has been delivering access to chemistry data and cheminformatics tools via the ChemSpider database and has garnered a significant community following in terms of usage and contribution to the platform. ChemSpider has focused only on those chemical entities that can be represented as molecular connection tables or, to be more specific, the ability to generate an InChI from the input structure. As a structure centric hub ChemSpider is built around the molecular structure with other data and links being associated with this structure. As a result the platform has been limited in terms of the types of data that can be managed, and the flexibility of its searches, and it is constrained by the data model. New technologies and approaches, specifically taking into account a shift from relational to NoSQL databases, and the growing importance of the semantic web, has motivated RSC to rearchitect and create a more generic data repository utilizing these new technologies. This article will provide an overview of our activities in delivering data sharing platforms for the chemistry community including the development of the new data repository expanding into more extensive domains of chemistry data.

  9. Handbook of relativistic quantum chemistry

    International Nuclear Information System (INIS)

    Liu, Wenjian

    2017-01-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  10. Radiation chemistry of biologically compatible polymers

    International Nuclear Information System (INIS)

    Hill, D.J. T.; Pomery, P.J.; Saadat, G.; Whittaker, A.K.

    1996-01-01

    Full text: Poly (2-hydroxy ethyl methacrylate) [PHEMA] and poly (2-ethoxy ethyl methacrylate) [PEEMA] are of biomedical and industrial interest due to their biocompatibility with living tissue. In this paper the effect of high energy radiation on these polymers is reported. PHEMA and PEEMA have similar molecular structures to poly (methyl methacrylate)[PMMA], and the γ irradiation of this polymer is well understood. Hence the radiation chemistry of PMMA is used as model system for the the analysis of the radiation chemistry of these polymers. The mechanism of the radiation induced chemistry of the polymers has been investigated using a range of techniques including electron spin resonance spectroscopy (ESR) to establish free radical pathways, GC to identify small molecule volatile products, NMR to identify small molecule radiation products and Gel Permeation Chromatography (GPC) to determine molecular weight changes. Whilst much of the major part of the radiation chemistry can be attributed to similar reactions which can be observed in PMMA, there are a number of new radicals which are present as a result of the influence of the side chain interactions which reduces the mobility of the polymer chain

  11. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Electrostatics in Chemistry. 3. Molecular Electrostatic Potential: Visualization and Topography. Shridhar R Gadre and Pravin K Bhadane. 1 1. Basic Principles, Resona- nce, Vol.4, No.2, 11-19, 1999. 2. Electrostatic Potentials of. Atoms, Ions and Molecules,. Resonance, Vol.4, No.5, 40-51,. 1999. Topographical features of the ...

  12. Collection Development: Celebrating Chemistry, February 1, 2011

    Science.gov (United States)

    Hamm, Susannah

    2011-01-01

    A hundred years after Marie Curie received her Nobel Prize in Chemistry, this arm of science is pointing the way to a more sustainable future. Growing movements like green chemistry, which strives to create alternative and new chemical reactions that produce no harmful waste products, and molecular engineering hold great potential for industry,…

  13. Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computing.

    Science.gov (United States)

    Clemente-Juan, Juan M; Coronado, Eugenio; Gaita-Ariño, Alejandro

    2012-11-21

    In this review we discuss the relevance of polyoxometalate (POM) chemistry to provide model objects in molecular magnetism. We present several potential applications in nanomagnetism, in particular, in molecular spintronics and quantum computing.

  14. Nutrient utilisation and blood chemistry of Red Sokoto bucks fed on diets with different inclusion levels of raw and soaked roselle (Hibiscus sabdariffa L. seeds

    Directory of Open Access Journals (Sweden)

    Taofik Adam Ibrahim

    2018-04-01

    Full Text Available This study evaluated nutrient utilisation and blood chemistry of Red Sokoto bucks fed a 10 and 20 % inclusion level of raw, water- and lime-soaked Hibiscus sabdariffa L. seeds in rice bran based diets. 21 Red Sokoto bucks aged 8–10 months and weighing 9–13 kg were randomly allotted into six treatments with three bucks each, while a seventh dietary treatment with zero inclusion of seeds served as control in a 2 × 3 factorial arrangement using a complete randomised design. The results indicated that increase in dietary inclusion levels of soaked H. sabdariffa seeds increased (P < 0.05 the nutrient utilisation of bucks as compared to the control, while a decrease was observed with increasing dietary inclusion levels of raw seeds. Dietary inclusion of both raw and water-soaked H. sabdariffa seeds increased (P < 0.05 the packed cell volume. Soaking also influenced the white blood cell value which increased with increasing inclusion levels of H. sabdariffa seeds. However, values of haemoglobin and red blood cells were only affected by 20 % inclusion of raw and water-soaked H. sabdariffa seeds (P < 0.05 compared to control. Inclusion of H. sabdariffa seeds furthermore reduced serum protein, albumin, globulin, glucose and urea levels compared to control. It is therefore concluded that H. sabdariffa seeds support haematopoiesis in Red Sokoto bucks. While both inclusion levels of water-soaked and 10 % raw H. sabdariffa seeds improved nutrient utilisation compared to control and 20 % inclusion of raw seeds, the 20 % inclusion of water-soaked H. sabdariffa seeds recorded the best nitrogen utilisation efficiency.

  15. Environmental status of the Lake Michigan region. Volume 3. Chemistry of Lake Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Torrey, M S

    1976-05-01

    The report is a synoptic review of data collected over the past twenty years on the chemistry of Lake Michigan. Changes in water quality and sediment chemistry, attributable to cultural and natural influences, are considered in relation to interacting processes and factors controlling the distribution and concentration of chemical substances within the Lake. Temperature, light, and mixing processes are among the important natural influences that affect nutrient cycling, dispersal of pollutants, and fate of materials entering the Lake. Characterization of inshore-offshore and longitudinal differences in chemical concentrations and sediment chemistry for the main body of the Lake is supplemented by discussion of specific areas such as Green Bay and Grand Traverse Bay. Residues, specific conductance, dissolved oxygen, major and trace nutrients, and contaminants are described in the following context: biological essentiality and/or toxicity, sources to the Lake, concentrations in the water column and sediments, chemical forms, seasonal variations and variation with depth. A summary of existing water quality standards, statutes, and criteria applicable to Lake Michigan is appended.

  16. Physical Chemistry Chemical Kinetics and Reaction Mechanism

    CERN Document Server

    Trimm, Harold H

    2011-01-01

    Physical chemistry covers diverse topics, from biochemistry to materials properties to the development of quantum computers. Physical chemistry applies physics and math to problems that interest chemists, biologists, and engineers. Physical chemists use theoretical constructs and mathematical computations to understand chemical properties and describe the behavior of molecular and condensed matter. Their work involves manipulations of data as well as materials. Physical chemistry entails extensive work with sophisticated instrumentation and equipment as well as state-of-the-art computers. This

  17. Green chemistry applied to corrosion and scale inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Darling, D.; Rakshpal, R. [Environmental Protection Agency, Washington, DC (United States)

    1998-12-31

    Numerous breakthroughs in environmental protection and pollution prevention have been realized in recent years by both industry and academia through the application of green chemistry principles. Green chemistry, or pollution prevention at the molecular level, is chemistry designed to reduce or eliminate the use or generation of hazardous materials associated with the manufacture and application of chemicals. The application of the green chemistry principles to the areas of corrosion and scale inhibitors has resulted in the reduction/elimination of many of the more toxic inhibitors and the development of newer, more environmentally friendly ones.

  18. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  19. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matries; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  20. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matrices; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  1. Design of Molecular Materials: Supramolecular Engineering

    Science.gov (United States)

    Simon, Jacques; Bassoul, Pierre

    2001-02-01

    This timely and fascinating book is destined to be recognised as THE book on supramolecular engineering protocols. It covers this sometimes difficult subject in an approachable form, gathering together information from many sources. Supramolecular chemistry, which links organic chemistry to materials science, is one of the fastest growth areas of chemistry research. This book creates a correlation between the structure of single molecules and the physical and chemical properties of the resulting materials. By making systematic changes to the component molecules, the resulting solid can be engineered for optimum performance. There is a clearly written development from synthesis of designer molecules to properties of solids and further on to devices and complex materials systems, providing guidelines for mastering the organisation of these systems. Topics covered include: Systemic chemistry Molecular assemblies Notions of symmetry Supramolecular engineering Principe de Curie Organisation in molecular media Molecular semiconductors Industrial applications of molecular materials This superb book will be invaluable to researchers in the field of supramolecular materials and also to students and teachers of the subject.

  2. Institute of Bioinorganic and Radiopharmaceutical Chemistry. Annual report 2001

    International Nuclear Information System (INIS)

    Johannsen, B.; Seifert, S.

    2002-01-01

    In 2001 the Forschungszentrum Rossendorf e.V. continued and further developed its basic and application-oriented research. Research at the Institute of Bioinorganic and Radiopharmaceutical Chemistry, one of five institutes in the Research Centre, was focused on radiotracers as molecular probes to make the human body biochemically transparent with regard to individual molecular reactions. As illustrated by the large number of contributions in this report, the Institute is predominantly engaged in the coordination chemistry and radiopharmacology of technetium and rhenium. (orig.)

  3. Understanding molecular structure from molecular mechanics.

    Science.gov (United States)

    Allinger, Norman L

    2011-04-01

    Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.

  4. The Discourse of Chemistry (and Beyond)

    OpenAIRE

    Jesper Sjöström

    2007-01-01

    This paper discusses the mainstream discourse of chemistry and suggests a complementary discourse. On a disciplinary level, the discourse of chemistry is based on objectivism, rationalism, and molecular reductionism. On a societal level, the discourse is based on modernism. The aims of chemical research and education are often unclear, which nowadays often leads to an emphasis on the needs from industry. Integrating meta-perspectives (philosophical, historical, and socio-cultural) within chem...

  5. Dynamic combinatorial chemistry at the phospholipid bilayer interface

    NARCIS (Netherlands)

    Mansfeld, Friederike M.; Au-Yeung, Ho Yu; Sanders, Jeremy K.M.; Otto, Sijbren

    2010-01-01

    Background: Molecular recognition at the environment provided by the phospholipid bilayer interface plays an important role in biology and is subject of intense investigation. Dynamic combinatorial chemistry is a powerful approach for exploring molecular recognition, but has thus far not been

  6. Can nutrient enrichment influence the invasion of Phragmites australis?

    Science.gov (United States)

    Uddin, Md Nazim; Robinson, Randall William

    2018-02-01

    Plant invasion and nutrient enrichment because of anthropogenic landscape modifications seriously threaten native plant community diversity in aquatic and wetland ecosystems. It is poorly understood, however, whether these two disturbances interact with the functional identity of recipient native plants to drive community change. We performed combined studies in the fields and greenhouse to examine whether nutrient enrichment may trigger the invasion of Phragmites australis in wetlands through competitive advantage over native Melaleuca ericifolia. Chemical characterizations of rhizosphere water were distinguished in two different nutrient enriched wetlands associated with and without Phragmites over the seasons. Significant changes in rhizosphere water were observed in invaded area compared to uninvaded area at both sites. High nitrogen (NO 3 - ), phosphorous (PO 4 3- ), dissolved organic carbon, phenolics contents, with low pH were found in invaded areas compared to uninvaded areas. Total biomass of Phragmites was positively regressed with rhizosphere water nitrogen (NO 3 - ) and phosphorous (PO 4 3- ) content. Nutrient addition significantly enhanced the growth and competitive ability of Phragmites over Melaleuca. In contrast, Melaleuca was significantly less competitive than Phragmites. There was a significantly positive correlation between the growth of Phragmites grown alone and its competitive ability. The findings in greenhouse studies coupled with characteristics of Phragmites and its' rhizosphere chemistry in the nutrient enriched fields suggest that nutrient enrichment may enhance Phragmites invasion through correspondingly increasing growth and maintaining inherent competitive advantages of Phragmites. Nutrient management could limit the vigorous growth of Phragmites in wetlands and thereby reduce invasion through competitive advantages over natives, which might have important management implications for wetland managers. Copyright © 2017. Published by

  7. Contributions to advances in blend pellet products (BPP) research on molecular structure and molecular nutrition interaction by advanced synchrotron and globar molecular (Micro)spectroscopy.

    Science.gov (United States)

    Guevara-Oquendo, Víctor H; Zhang, Huihua; Yu, Peiqiang

    2018-04-13

    To date, advanced synchrotron-based and globar-sourced techniques are almost unknown to food and feed scientists. There has been little application of these advanced techniques to study blend pellet products at a molecular level. This article aims to provide recent research on advanced synchrotron and globar vibrational molecular spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction. How processing induced molecular structure changes in relation to nutrient availability and utilization of the blend pellet products. The study reviews Utilization of co-product components for blend pellet product in North America; Utilization and benefits of inclusion of pulse screenings; Utilization of additives in blend pellet products; Application of pellet processing in blend pellet products; Conventional evaluation techniques and methods for blend pellet products. The study focus on recent applications of cutting-edge vibrational molecular spectroscopy for molecular structure and molecular structure association with nutrient utilization in blend pellet products. The information described in this article gives better insight on how advanced molecular (micro)spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction.

  8. Physical-chemical processes of astrophysical interest: nitrogen chemistry

    International Nuclear Information System (INIS)

    Loison, Jean-Christophe; Hickson, Kevin; Hily-Blant, Pierre; Faure, Alexandre; Vuitton, Veronique; Bacmann, A.; Maret, Sebastien; Legal, Romane; Rist, Claire; Roncero, Octavio; Larregaray, Pascal; Hochlaf, Majdi; Senent, M. L.; Capron, Michael; Biennier, Ludovic; Carles, Sophie; Bourgalais, Jeremy; Le Picard, Sebastien; Cordier, Daniel; Guillemin, Jean-Claude; Trolez, Yann; Bertin, M.; Poderoso, H.A.M.; Michaut, X.; Jeseck, P.; Philippe, L.; Fillion, J.H.; Fayolle, E.C.; Linnartz, H.; Romanzin, C.; Oeberg, K.I.; Roueff, Evelyne; Pagani, Laurent; Padovani, Marco; Wakelam, Veronique; Honvault, Beatrice; Zvereva-Loete, Natalia; Ouk, Chanda-Malis; Scribano, Yohann; Hartmann, J.M.; Pineau des Forets, Guillaume; Hernandez, Mario; Lique, Francois; Kalugina, Yulia N.; Stoecklin, T.; Hochlaf, M.; Crespos, C.; Larregaray, P.; Martin-Gondre, L.; Petuya, R.; Quintas Sanchez, E.L.; Zanchet, Alexandre; Rodriguez-Lazcano, Yamilet; Mate, Belen

    2013-06-01

    This document contains the programme and abstracts of contributions to a workshop on nitrogen chemistry within an astrophysical perspective. These contributions have been presented in sessions: Introduction (opening lecture, experimental approaches to molecular astrophysics, theoretical approaches to astrophysics, observations in molecular astrophysics), Physical-chemical theory of the gas phase (time-dependent approach in elementary activity, statistic approach in elementary activity in the case of the N+H_2 reaction, potential energy surfaces for inelastic and reactive collisions, collision rate for N_2H"+, ortho/para selection rules in the chemistry of nitrogen hydrides, cyanides/iso-cyanides excitation in the ISM, CN excitation, radiative association with N_2H as new interstellar anion, ro-vibratory excitation of HCN) Laboratory astrophysics (measurement of reaction products in the CRESUSOL project, reactivity of the CN- anion, N_2 photo-desorption in ices, CRESU study of nitrogen chemistry, chemistry of nitrogen complex molecules), Observations and chemistry of astrophysical media (the problem of interstellar nitrogen fractioning, abundance of N_2 in proto-stellar cores, HNC in Titan atmosphere and nitrogen-related mechanisms in hot Jupiters, HCN and HNC in dark clouds or how theoretical modelling helps in interpreting observations, nitrogen chemistry in cold clouds, deuteration of nitrogen hydrides, nitrogen in interstellar ices, biochemical molecules on Titan, coupling between excitation and chemistry, radiative transfer of nitrogen hydrides, ortho/para chemistry of nitrogen hydrides), Physical-chemical theory of gas-grain interactions (nitrogen reactivity on surfaces, IR spectra of ices of NH_3 and NH_3/N_2 mixtures)

  9. Introducing NMR to a General Chemistry Audience: A Structural-Based Instrumental Laboratory Relating Lewis Structures, Molecular Models, and [superscript 13]C NMR Data

    Science.gov (United States)

    Pulliam, Curtis R.; Pfeiffer, William F.; Thomas, Alyssa C.

    2015-01-01

    This paper describes a first-year general chemistry laboratory that uses NMR spectroscopy and model building to emphasize molecular shape and structure. It is appropriate for either a traditional or an atoms-first curriculum. Students learn the basis of structure and the use of NMR data through a cooperative learning hands-on laboratory…

  10. Physical chemistry: Molecular motion watched

    Science.gov (United States)

    Siwick, Bradley; Collet, Eric

    2013-04-01

    A laser pulse can switch certain crystals from an insulating phase to a highly conducting phase. The ultrafast molecular motions that drive the transition have been directly observed using electron diffraction. See Letter p.343

  11. Bioactive Nutrients and Nutrigenomics in Age-Related Diseases

    Directory of Open Access Journals (Sweden)

    Tania Rescigno

    2017-01-01

    Full Text Available The increased life expectancy and the expansion of the elderly population are stimulating research into aging. Aging may be viewed as a multifactorial process that results from the interaction of genetic and environmental factors, which include lifestyle. Human molecular processes are influenced by physiological pathways as well as exogenous factors, which include the diet. Dietary components have substantive effects on metabolic health; for instance, bioactive molecules capable of selectively modulating specific metabolic pathways affect the development/progression of cardiovascular and neoplastic disease. As bioactive nutrients are increasingly identified, their clinical and molecular chemopreventive effects are being characterized and systematic analyses encompassing the “omics” technologies (transcriptomics, proteomics and metabolomics are being conducted to explore their action. The evolving field of molecular pathological epidemiology has unique strength to investigate the effects of dietary and lifestyle exposure on clinical outcomes. The mounting body of knowledge regarding diet-related health status and disease risk is expected to lead in the near future to the development of improved diagnostic procedures and therapeutic strategies targeting processes relevant to nutrition. The state of the art of aging and nutrigenomics research and the molecular mechanisms underlying the beneficial effects of bioactive nutrients on the main aging-related disorders are reviewed herein.

  12. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient

    Science.gov (United States)

    Anderson, T. Michael; Griffith, Daniel M.; Grace, James B.; Lind, Eric M.; Adler, Peter B.; Biederman, Lori A.; Blumenthal, Dana M.; Daleo, Pedro; Firn, Jennifer; Hagenah, Nicole; Harpole, W. Stanley; MacDougall, Andrew S.; McCulley, Rebecca L.; Prober, Suzanne M.; Risch, Anita C.; Sankaran, Mahesh; Schütz, Martin; Seabloom, Eric W.; Stevens, Carly J.; Sullivan, Lauren; Wragg, Peter; Borer, Elizabeth T.

    2018-01-01

    Plant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot‐level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, but results were contingent on soil fertility and the proportion of grass biomass relative to other functional types. Total plant nutrient pools diverged strongly in response to herbivore exclusion when fertilized; responses were largest in ungrazed plots at low rainfall, whereas herbivore grazing dampened the plant community nutrient responses to fertilization. Our study highlights (1) the importance of climate in determining plant nutrient concentrations mediated through effects on plant biomass, (2) that eutrophication affects grassland nutrient pools via both soil and atmospheric pathways and (3) that interactions among soils, herbivores and eutrophication drive plant nutrient responses at small scales, especially at water‐limited sites.

  13. New trends and developments in radiation chemistry

    International Nuclear Information System (INIS)

    1989-10-01

    Radiation chemistry is a branch of chemistry that studies chemical transformations in materials exposed to high-energy radiations. It uses radiation as the initiator of chemical reactions. Practical applications of radiation chemistry today extend to many fields, including health care, food and agriculture, manufacturing, industrial pollution abatement, biotechnology and telecommunications. The important advantage of radiation chemistry lies in its ability to be used to produce, and study, almost any reactive atomic and molecular species playing a part in chemical reactions, synthesis, industrial processes, or in biological systems. The techniques are applicable to gaseous, liquid, solid, and heterogeneous systems. By combining different techniques of radiation chemistry with analytical chemistry, the reaction mechanism and kinetics of chemical reactions are studied. In November 1988 in Bologna, Italy, the IAEA convened an advisory group meeting to assess new trends and developments in radiation chemistry. The present publication includes most of the contributions presented at the meeting. Refs, figs and tabs

  14. Advances in computational actinide chemistry in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongqi; Wu, Jingyi; Chai, Zhifang [Chinese Academy of Sciences, Beijing (China). Multidisciplinary Initiative Center; Su, Jing [Chinese Academy of Sciences, Shanghai (China). Div. of Nuclear Materials Science and Engineering; Li, Jun [Tsinghua Univ., Beijing (China). Dept. of Chemistry and Laboratory of Organic Optoelectronics and Molecular Engineering

    2014-04-01

    The advances in computational actinide chemistry made in China are reviewed. Several areas relevant to chemistry of actinides in gas, liquid, and solid phases have been explored. However, we limit the scope to selected contributions in the chemistry of molecular actinide systems in gas and liquid phases. These studies may be classified into two categories: treatment of relativistic effects, which cover the development of two- and four-component Hamiltonians and the optimization of relativistic pseudopotentials, and the applications of theoretical methods in actinide chemistry. The applications include (1) the electronic structures of actinocene, noble gas complexes, An-C multiple bonding compounds, uranyl and its isoelectronic species, fluorides and oxides, molecular systems with metal-metal bonding in their isolated forms (U{sub 2}, Pu{sub 2}) and in fullerene (U{sub 2} rate at C{sub 60}), and the excited states of actinide complexes; (2) chemical reactions, including oxidation, hydrolysis of UF{sub 6}, ligand exchange, reactivities of thorium oxo and sulfido metallocenes, CO{sub 2}/CS{sub 2} functionalization promoted by trivalent uranium complex; and (3) migration of actinides in the environment. A future outlook is discussed. (orig.)

  15. Neuronal Calcium Signaling in Metabolic Regulation and Adaptation to Nutrient Stress.

    Science.gov (United States)

    Jayakumar, Siddharth; Hasan, Gaiti

    2018-01-01

    All organisms can respond physiologically and behaviorally to environmental fluxes in nutrient levels. Different nutrient sensing pathways exist for specific metabolites, and their inputs ultimately define appropriate nutrient uptake and metabolic homeostasis. Nutrient sensing mechanisms at the cellular level require pathways such as insulin and target of rapamycin (TOR) signaling that integrates information from different organ systems like the fat body and the gut. Such integration is essential for coordinating growth with development. Here we review the role of a newly identified set of integrative interneurons and the role of intracellular calcium signaling within these neurons, in regulating nutrient sensing under conditions of nutrient stress. A comparison of the identified Drosophila circuit and cellular mechanisms employed in this circuit, with vertebrate systems, suggests that the identified cell signaling mechanisms may be conserved for neural circuit function related to nutrient sensing by central neurons. The ideas proposed are potentially relevant for understanding the molecular basis of metabolic disorders, because these are frequently linked to nutritional stress.

  16. Assessment of Molecular Modeling & Simulation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  17. Quantum-chemistry based calibration of the alkali metal cation series (Li(+)-Cs(+)) for large-scale polarizable molecular mechanics/dynamics simulations.

    Science.gov (United States)

    Dudev, Todor; Devereux, Mike; Meuwly, Markus; Lim, Carmay; Piquemal, Jean-Philip; Gresh, Nohad

    2015-02-15

    The alkali metal cations in the series Li(+)-Cs(+) act as major partners in a diversity of biological processes and in bioinorganic chemistry. In this article, we present the results of their calibration in the context of the SIBFA polarizable molecular mechanics/dynamics procedure. It relies on quantum-chemistry (QC) energy-decomposition analyses of their monoligated complexes with representative O-, N-, S-, and Se- ligands, performed with the aug-cc-pVTZ(-f) basis set at the Hartree-Fock level. Close agreement with QC is obtained for each individual contribution, even though the calibration involves only a limited set of cation-specific parameters. This agreement is preserved in tests on polyligated complexes with four and six O- ligands, water and formamide, indicating the transferability of the procedure. Preliminary extensions to density functional theory calculations are reported. © 2014 Wiley Periodicals, Inc.

  18. Hydrogen Bond Basicity Prediction for Medicinal Chemistry Design.

    Science.gov (United States)

    Kenny, Peter W; Montanari, Carlos A; Prokopczyk, Igor M; Ribeiro, Jean F R; Sartori, Geraldo Rodrigues

    2016-05-12

    Hydrogen bonding is discussed in the context of medicinal chemistry design. Minimized molecular electrostatic potential (Vmin) is shown to be an effective predictor of hydrogen bond basicity (pKBHX), and predictive models are presented for a number of hydrogen bond acceptor types relevant to medicinal chemistry. The problems posed by the presence of nonequivalent hydrogen bond acceptor sites in molecular structures are addressed by using nonlinear regression to fit measured pKBHX to calculated Vmin. Predictions are made for hydrogen bond basicity of fluorine in situations where relevant experimental measurements are not available. It is shown how predicted pKBHX can be used to provide insight into the nature of bioisosterism and to profile heterocycles. Examples of pKBHX prediction for molecular structures with multiple, nonequivalent hydrogen bond acceptors are presented.

  19. Chirality in molecular collision dynamics

    Science.gov (United States)

    Lombardi, Andrea; Palazzetti, Federico

    2018-02-01

    Chirality is a phenomenon that permeates the natural world, with implications for atomic and molecular physics, for fundamental forces and for the mechanisms at the origin of the early evolution of life and biomolecular homochirality. The manifestations of chirality in chemistry and biochemistry are numerous, the striking ones being chiral recognition and asymmetric synthesis with important applications in molecular sciences and in industrial and pharmaceutical chemistry. Chiral discrimination phenomena, due to the existence of two enantiomeric forms, very well known in the case of interaction with light, but still nearly disregarded in molecular collision studies. Here we review some ideas and recent advances about the role of chirality in molecular collisions, designing and illustrating molecular beam experiments for the demonstration of chiral effects and suggesting a scenario for a stereo-directional origin of chiral selection.

  20. Astronomical chemistry.

    Science.gov (United States)

    Klemperer, William

    2011-01-01

    The discovery of polar polyatomic molecules in higher-density regions of the interstellar medium by means of their rotational emission detected by radioastronomy has changed our conception of the universe from essentially atomic to highly molecular. We discuss models for molecule formation, emphasizing the general lack of thermodynamic equilibrium. Detailed chemical kinetics is needed to understand molecule formation as well as destruction. Ion molecule reactions appear to be an important class for the generally low temperatures of the interstellar medium. The need for the intrinsically high-quality factor of rotational transitions to definitively pin down molecular emitters has been well established by radioastronomy. The observation of abundant molecular ions both positive and, as recently observed, negative provides benchmarks for chemical kinetic schemes. Of considerable importance in guiding our understanding of astronomical chemistry is the fact that the larger molecules (with more than five atoms) are all organic.

  1. Chemistry between the stars

    International Nuclear Information System (INIS)

    Kroto, H.W.

    1986-01-01

    During the past 15 years the techniques used by chemists to determine accurate molecular structures have combined with those of radio astronomers to probe the space between the stars. Together they paint a new picture of interstellar space, a picture which shows that vast clouds of gas and dust are continually collapsing to form stars and planets and that the main constituents of these clouds are molecules, some of which are quite complex organic species. It is now known that many of the organic building blocks, useful in the evolution of biologically significant macromolecules, existed long before the Earth was formed. These findings present a challenge to previous widely-accepted theories that such molecules were first generated in the Earth's primaeval atmosphere. In this paper certain aspects of these discoveries are considered with particular emphasis on the contributions made by techniques of use in general chemistry. After a brief astronomical introduction to the Interstellar Medium (ISM) the interaction between chemistry and radioastronomy is discussed. This is followed by details of some exciting, new and quite unexpected advances in our understanding of carbon chemistry, discovered during experiments aimed at understanding some of the more perplexing radioastronomy results. Finally an overview is given of the present knowledge of the molecular composition of the ISM and the resulting implications in so far as the origins of life are concerned. (author)

  2. Chemistry between the stars

    Energy Technology Data Exchange (ETDEWEB)

    Kroto, H W

    1986-01-01

    During the past 15 years the techniques used by chemists to determine accurate molecular structures have combined with those of radio astronomers to probe the space between the stars. Together they paint a new picture of interstellar space, a picture which shows that vast clouds of gas and dust are continually collapsing to form stars and planets and that the main constituents of these clouds are molecules, some of which are quite complex organic species. It is now known that many of the organic building blocks, useful in the evolution of biologically significant macromolecules, existed long before the Earth was formed. These findings present a challenge to previous widely-accepted theories that such molecules were first generated in the Earth's primaeval atmosphere. In this paper certain aspects of these discoveries are considered with particular emphasis on the contributions made by techniques of use in general chemistry. After a brief astronomical introduction to the Interstellar Medium (ISM) the interaction between chemistry and radioastronomy is discussed. This is followed by details of some exciting, new and quite unexpected advances in our understanding of carbon chemistry, discovered during experiments aimed at understanding some of the more perplexing radioastronomy results. Finally an overview is given of the present knowledge of the molecular composition of the ISM and the resulting implications in so far as the origins of life are concerned.

  3. A new theory of plant-microbe nutrient competition resolves inconsistencies between observations and model predictions.

    Science.gov (United States)

    Zhu, Qing; Riley, William J; Tang, Jinyun

    2017-04-01

    Terrestrial plants assimilate anthropogenic CO 2 through photosynthesis and synthesizing new tissues. However, sustaining these processes requires plants to compete with microbes for soil nutrients, which therefore calls for an appropriate understanding and modeling of nutrient competition mechanisms in Earth System Models (ESMs). Here, we survey existing plant-microbe competition theories and their implementations in ESMs. We found no consensus regarding the representation of nutrient competition and that observational and theoretical support for current implementations are weak. To reconcile this situation, we applied the Equilibrium Chemistry Approximation (ECA) theory to plant-microbe nitrogen competition in a detailed grassland 15 N tracer study and found that competition theories in current ESMs fail to capture observed patterns and the ECA prediction simplifies the complex nature of nutrient competition and quantitatively matches the 15 N observations. Since plant carbon dynamics are strongly modulated by soil nutrient acquisition, we conclude that (1) predicted nutrient limitation effects on terrestrial carbon accumulation by existing ESMs may be biased and (2) our ECA-based approach may improve predictions by mechanistically representing plant-microbe nutrient competition. © 2016 by the Ecological Society of America.

  4. Research for the advancement of green chemistry practice: Studies in atmospheric and educational chemistry

    Science.gov (United States)

    Cullipher, Steven Gene

    Green chemistry is a philosophy of chemistry that emphasizes a decreasing dependence on limited non-renewable resources and an increasing focus on preventing pollution byproducts of the chemical industry. In short, it is the discipline of chemistry practiced through the lens of environmental stewardship. In an effort to advance the practice of green chemistry, three studies will be described that have ramifications for the practice. The first study examines the atmospheric oxidation of a hydrofluorinated ether, a third-generation CFC replacement compound with primarily unknown atmospheric degradation products. Determination of these products has the potential to impact decisions on refrigerant usage in the future. The second study examines chemistry students' development of understanding benefits-costs-risks analysis when presented with two real-world scenarios: refrigerant choice and fuel choice. By studying how benefits-costs-risks thinking develops, curricular materials and instructional approaches can be designed to better foster the development of an ability that is both necessary for green chemists and important in daily decision-making for non-chemists. The final study uses eye tracking technology to examine students' abilities to interpret molecular properties from structural information in the context of global warming. Such abilities are fundamental if chemists are to appropriately assess risks and hazards of chemistry practice.

  5. Grain surface chemistry in protoplanetary disks

    International Nuclear Information System (INIS)

    Reboussin, Laura

    2015-01-01

    Planetary formation occurs in the protoplanetary disks of gas and dust. Although dust represents only 1% of the total disk mass, it plays a fundamental role in disk chemical evolution since it acts as a catalyst for the formation of molecules. Understanding this chemistry is therefore essential to determine the initial conditions from which planets form. During my thesis, I studied grain-surface chemistry and its impact on the chemical evolution of molecular cloud, initial condition for disk formation, and protoplanetary disk. Thanks to numerical simulations, using the gas-grain code Nautilus, I showed the importance of diffusion reactions and gas-grain interactions for the abundances of gas-phase species. Model results combined with observations also showed the effects of the physical structure (in temperature, density, AV) on the molecular distribution in disks. (author)

  6. Physics and Its Interfaces with Medicinal Chemistry and Drug Design

    Science.gov (United States)

    Santos, Ricardo N.; Andricopulo, Adriano D.

    2013-08-01

    Medicinal chemistry is a multidisciplinary subject that integrates knowledge from a variety of fields of science, including, but not limited to, chemistry, biology, and physics. The area of drug design involves the cooperative work of scientists with a diverse range of backgrounds and technical skills, trying to tackle complex problems using an integration of approaches and methods. One important contribution to this field comes from physics through studies that attempt to identify and quantify the molecular interactions between small molecules (drugs) and biological targets (receptors), such as the forces that govern the interactions, the thermodynamics of the drug-receptor interactions, and so on. In this context, the interfaces of physics, medicinal chemistry, and drug design are of vital importance for the development of drugs that not only have the right chemistry but also the right intermolecular properties to interact at the macromolecular level, providing useful information about the principles and molecular mechanisms underlying the therapeutic action of drugs. This article highlights some of the most important connections between physics and medicinal chemistry in the design of new drugs.

  7. Ideal and saturated soil fertility as bench marks in nutrient management; 1 outline of the framework

    NARCIS (Netherlands)

    Janssen, B.H.; Willigen, de P.

    2006-01-01

    This paper presents a framework for nutrient management that takes sustainable soil fertility, environmental protection and balanced plant nutrition as starting points, and integrates concepts from plant physiology, soil chemistry and agronomy. The framework is meant as a tool that can be applied

  8. Photon Upconversion and Molecular Solar Energy Storage by Maximizing the Potential of Molecular Self-Assembly.

    Science.gov (United States)

    Kimizuka, Nobuo; Yanai, Nobuhiro; Morikawa, Masa-Aki

    2016-11-29

    The self-assembly of functional molecules into ordered molecular assemblies and the fulfillment of potentials unique to their nanotomesoscopic structures have been one of the central challenges in chemistry. This Feature Article provides an overview of recent progress in the field of molecular self-assembly with the focus on the triplet-triplet annihilation-based photon upconversion (TTA-UC) and supramolecular storage of photon energy. On the basis of the integration of molecular self-assembly and photon energy harvesting, triplet energy migration-based TTA-UC has been achieved in varied molecular systems. Interestingly, some molecular self-assemblies dispersed in solution or organogels revealed oxygen barrier properties, which allowed TTA-UC even under aerated conditions. The elements of molecular self-assembly were also introduced to the field of molecular solar thermal fuel, where reversible photoliquefaction of ionic crystals to ionic liquids was found to double the molecular storage capacity with the simultaneous pursuit of switching ionic conductivity. A future prospect in terms of innovating molecular self-assembly toward molecular systems chemistry is also discussed.

  9. Chemistry and Star Formation: A Love-Hate Relationship

    Science.gov (United States)

    Jiménez-Serra, Izaskun; Zhang, Qizhou; Patel, Nimesh; Lu, Xing; Wang, Ke; Testi, Leonardo; Caselli, Paola; Martin-Pintado, Jesus

    2014-06-01

    The development of the broad bandwidth receivers at the Submillimeter Array (SMA) a decade ago opened up the possibility to observe tens of molecular lines at high angular resolution simultaneously. The unprecedented wealth of molecular line data provided by the SMA allowed for the first time detailed studies of the chemistry in star-forming regions. These studies have revealed that chemistry is a useful tool to pin down the internal physical structure and the physical processes involved in the process of low-mass and high-mass star formation. In this talk, I will review the most important advances in our understanding of the star-formation process through chemistry thanks to the SMA, and I will present the challenges that will be faced in the next decade in this field of research thanks to the advent of new instrumentation such as the Atacama Large Millimeter/Submillimeter Array and the Square Kilometer Array.

  10. Open source molecular modeling.

    Science.gov (United States)

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-09-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. An updated online version of this catalog can be found at https://opensourcemolecularmodeling.github.io. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Density functional representation of quantum chemistry. II. Local quantum field theories of molecular matter in terms of the charge density operator do not work

    International Nuclear Information System (INIS)

    Primas, H.; Schleicher, M.

    1975-01-01

    A comprehensive review of the attempts to rephrase molecular quantum mechanics in terms of the particle density operator and the current density or phase density operator is given. All pertinent investigations which have come to attention suffer from severe mathematical inconsistencies and are not adequate to the few-body problem of quantum chemistry. The origin of the failure of these attempts is investigated, and it is shown that a realization of a local quantum field theory of molecular matter in terms of observables would presuppose the solution of many highly nontrivial mathematical problems

  12. Nutrient fluxes across sediment-water interface in Bohai Bay Coastal Zone, China.

    Science.gov (United States)

    Mu, Di; Yuan, Dekui; Feng, Huan; Xing, Fangwei; Teo, Fang Yenn; Li, Shuangzhao

    2017-01-30

    Sediment cores and overlying water samples were collected at four sites in Tianjin Coastal Zone, Bohai Bay, to investigate nutrient (N, P and Si) exchanges across the sediment-water interface. The exchange fluxes of each nutrient species were estimated based on the porewater profiles and laboratory incubation experiments. The results showed significant differences between the two methods, which implied that molecular diffusion alone was not the dominant process controlling nutrient exchanges at these sites. The impacts of redox conditions and bioturbation on the nutrient fluxes were confirmed by the laboratory incubation experiments. The results from this study showed that the nutrient fluxes measured directly from the incubation experiment were more reliable than that predicted from the porewater profiles. The possible impacts causing variations in the nutrient fluxes include sewage discharge and land reclamation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Noncovalent Molecular Electronics.

    Science.gov (United States)

    Gryn'ova, G; Corminboeuf, C

    2018-05-03

    Molecular electronics covers several distinctly different conducting architectures, including organic semiconductors and single-molecule junctions. The noncovalent interactions, abundant in the former, are also often found in the latter, i.e., the dimer junctions. In the present work, we draw the parallel between the two types of noncovalent molecular electronics for a range of π-conjugated heteroaromatic molecules. In silico modeling allows us to distill the factors that arise from the chemical nature of their building blocks and from their mutual arrangement. We find that the same compounds are consistently the worst and the best performers in the two types of electronic assemblies, emphasizing the universal imprint of the underlying chemistry of the molecular cores on their diverse charge transport characteristics. The interplay between molecular and intermolecular factors creates a spectrum of noncovalent conductive architectures, which can be manipulated using the design strategies based upon the established relationships between chemistry and transport.

  14. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Learning Organic Chemistry Through Natural Products - Architectural Designs in Molecular Constructions. N R Krishnaswamy. Volume 16 Issue 12 December 2011 pp 1287-1293 ...

  15. Dictionary of chemistry. English/German

    International Nuclear Information System (INIS)

    Wenske, G.

    1992-01-01

    This English/German dictionary covers more than 100.000 terms from chemistry, chemical engineering and related fields. It also contains molecular formulas, as well as numerous synonyms and areas of application. IUPAC terminology is emphasized, and outdated or rare terminology is indicated. (MM) [de

  16. Impact of harvesting and atmospheric pollution on nutrient depletion of eastern US hardwood forests

    Science.gov (United States)

    M.B. Adams; J.A. Burger; A.B. Jenkins; L. Zelazny

    2000-01-01

    The eastern hardwood forests of the US may be threatened by the changing atmospheric chemistry and by changes in harvesting levels. Many studies have documented accelerated base cation losses with intensive forest harvesting. Acidic deposition can also alter nutrient cycling in these forests. The combination of increased harvesting, shorter rotations, and more...

  17. Saclay Center of Nuclear Studies, Direction of Materials and Nuclear Fuels, Department of Physico-Chemistry, Division of Physical Chemistry. 1968 Annual report

    International Nuclear Information System (INIS)

    Schmidt, M.; Clerc, M.; Le Calve, J.; Bourene, M.; Lesigne, B.; Gillois, M.; Devillers, C.; Arvis, M.; Gilles, L.; Moreau, M.; Sutton, J.; Faraggi, M.; Desalos, J.; Tran Dinh Son; Barat, F.; Hickel, B.; Chachaty, C.; Forchioni, A.; Shiotani, M.; Larher, Y.; Maurice, P.; Le Bail, H.; Nenner, T.

    1969-03-01

    This document is the 1968 annual report of research activities at the Physico-Chemistry Department (Physical Chemistry Division), part of the Directorate of Materials and Nuclear Fuels of the CEA Saclay center of nuclear studies. The report is divided into two main parts: radiolysis and photolysis studies (gaseous phase, condensed phase), and general physico-chemical studies (sorption, molecular jets)

  18. First principles molecular dynamics insight into acid-base chemistry of clay minerals

    International Nuclear Information System (INIS)

    Liu, Xiandong; Lu, Xiancai; Wang, Rucheng; Meijer, Evert Jan

    2012-01-01

    Document available in extended abstract form only. Microscopic knowledge on the interfaces between clay minerals (2:1- and 1:1-type) and water is critical for both understanding natural processes and guiding development of advanced hybrid materials. Due to the unique layered structures of clay minerals, their surfaces are usually grouped into basal surfaces and edge surfaces (i.e. broken surfaces). Thanks to previous studies, structures and properties of basal surfaces have been well recognized: these surfaces are terminated with siloxanes and surface Si-O six-member rings normally act as the adsorbing sites of cations. In contrast, edge surfaces are more complicated structures and have more subtle chemical properties. On these surfaces, there are a lot of dangling bonds and under ambient conditions they are usually saturated by chemically adsorbed waters. These edge groups are usually amphoteric, which is responsible to the pH dependent behaviors of many interfacial processes, such as cations complexing. For example, adsorption of heavy metal cations (e.g. Ni 2+ , Co 2+ , Zn 2+ , Cd 2+ ) on clay basal surfaces is through cation exchange mechanism and that is hardly influenced by environmental pH. In contrast, it has been well accepted that the adsorption on edge surfaces is pH-dependent. The ubiquitous isomorphic substitutions further increase the complexity of their interfacial chemistry. Due to the high heterogeneity and rather small sizes, it is quite difficult to reveal the complex interfacial chemistry with experiments alone. FPMD method (first principles molecular dynamics), a combination of density functional theory and molecular dynamics, can provide valuable information. With FPMD [1, 2] and free-energy calculation techniques [3, 4], we investigated the microscopic structures and acid chemistry of these clay-water interfaces [5, 6]. According to systematic simulations, the following has been achieved. (1) Acidity of interlayer waters. The simulations show

  19. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 10. Learning Organic Chemistry Through Natural Products Architectural Designs in Molecular Constructions. N R Krishnaswamy. Series Article Volume 1 Issue 10 October 1996 pp 37-43 ...

  20. The Logical and Psychological Structure of Physical Chemistry and Its Relevance to the Organization/Sequencing of the Major Areas Covered in Physical Chemistry Textbooks

    Science.gov (United States)

    Tsaparlis, Georgios

    2014-01-01

    Jensen's scheme for the logical structure of chemistry is taken as reference to study the logical structure of physical chemistry. The scheme distinguishes three dimensions (composition and structure, energy, and time), with each dimension treated at one of the three levels (molar, molecular, and electrical). Such a structure places the outer…

  1. Molecular knots in biology and chemistry

    International Nuclear Information System (INIS)

    Lim, Nicole C H; Jackson, Sophie E

    2015-01-01

    Knots and entanglements are ubiquitous. Beyond their aesthetic appeal, these fascinating topological entities can be either useful or cumbersome. In recent decades, the importance and prevalence of molecular knots have been increasingly recognised by scientists from different disciplines. In this review, we provide an overview on the various molecular knots found in naturally occurring biological systems (DNA, RNA and proteins), and those created by synthetic chemists. We discuss the current knowledge in these fields, including recent developments in experimental and, in some cases, computational studies which are beginning to shed light into the complex interplay between the structure, formation and properties of these topologically intricate molecules. (paper)

  2. Surveys of research in the Chemistry Division, Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grazis, B.M. [ed.

    1992-11-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  3. Surveys of research in the Chemistry Division, Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grazis, B.M. (ed.)

    1992-01-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  4. Spectroscopy and chemistry of uranium IV

    International Nuclear Information System (INIS)

    Folcher, G.; Rigny, P.

    1980-06-01

    Different fundamental research papers on uranium IV are presented, some were never edited. Molecular spectroscopy was used for identification and structural study of uranium IV in aqueous or organic solutions. The fields studied are: coordination, stereochemistry, electronic structure and chemical properties. For interpretation of results some studies were made with solid compounds or with thorium compounds or thorium complexes. Knowledge of actinides chemistry is improved, uranium and thorium being models for 5 f ions, extractive chemistry is better understood and new applications are possible [fr

  5. Comprehensive understanding of mole concept subject matter according to the tetrahedral chemistry education (empirical study on the first-year chemistry students of Technische Universität Dresden)

    Science.gov (United States)

    Prabowo, D. W.; Mulyani, S.; van Pée, K.-H.; Indriyanti, N. Y.

    2018-05-01

    This research aims to apprehend: (1) the shape of tetrahedral chemistry education which is called the future of chemistry education, (2) comprehensive understanding of chemistry first-year students of Technische Universität Dresden according to the chemistry education’s tetrahedral shape on mole concept subject matter. This research used quantitative and qualitative; paper and pencil test and interview. The former was conducted in the form of test containing objective test instrument. The results of this study are (1) learning based on tetrahedral shape of chemistry education put the chemical substance (macroscopic), symbolic representation (symbol), and its process (molecular) in the context of human beings (human element) by integrating content and context, without emphasis on one thing and weaken another, (2) first-year chemistry students of Technische Universität Dresden have comprehensively understood the mole concept associated with the context of everyday life, whereby students are able to find out macroscopic information from statements that are contextual to human life and then by using symbols and formulas are able to comprehend the molecular components as well as to interpret and analyse problems effectively.

  6. Radiation chemistry of the liquid state

    International Nuclear Information System (INIS)

    Buxton, G.V.

    1987-01-01

    More is known about the radiation chemistry of water than any other liquid. From a practical viewpoint out knowledge is virtually complete, and water radiolysis now provides a very convenient way of generating an enormous variety of unstable species under well-defined conditions. This facility, coupled with the techniques of pulse radiolysis, has opened up new areas in aqueous inorganic, organic, and biochemistry that cannot be readily studied by thermal or photochemical methods. This chapter is aimed, therefore, at those who wish to use radiolytic methods to generate and study unstable species in aqueous solution. The basic features of the radiation chemistry of water are described first to show how the primary radical and molecular products evolve with time and to delineate the bounds of useful experimental conditions. Next, the properties of the primary radicals are summarized, and examples are given to show how the primary radicals can be converted into secondary radicals, often of a single kind. This is an important aspect of the radiation chemistry of aqueous solutions. Lastly, the impact of our knowledge of the radiation chemistry of water on advances in general chemistry is illustrated by examples from the fields of inorganic and organic chemistry

  7. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Learning Organic Chemistry Through Natural Products From Molecular and Electronic Structures to Reactivity. N R Krishnaswamy. Series Article Volume 1 Issue 5 May 1996 pp 12-18 ...

  8. Final Report - Low Temperature Combustion Chemistry And Fuel Component Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, Margaret [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-02-24

    Recent research into combustion chemistry has shown that reactions at “low temperatures” (700 – 1100 K) have a dramatic influence on ignition and combustion of fuels in virtually every practical combustion system. A powerful class of laboratory-scale experimental facilities that can focus on fuel chemistry in this temperature range is the rapid compression facility (RCF), which has proven to be a versatile tool to examine the details of fuel chemistry in this important regime. An RCF was used in this project to advance our understanding of low temperature chemistry of important fuel compounds. We show how factors including fuel molecular structure, the presence of unsaturated C=C bonds, and the presence of alkyl ester groups influence fuel auto-ignition and produce variable amounts of negative temperature coefficient behavior of fuel ignition. We report new discoveries of synergistic ignition interactions between alkane and alcohol fuels, with both experimental and kinetic modeling studies of these complex interactions. The results of this project quantify the effects of molecular structure on combustion chemistry including carbon bond saturation, through low temperature experimental studies of esters, alkanes, alkenes, and alcohols.

  9. The Effect of Catchment Urbanization on Nutrient Uptake and Biofilm Enzyme Activity in Lake Superior (USA) Tributary Streams

    Science.gov (United States)

    We used landscape, habitat, and chemistry variables, along with nutrient spiraling metrics and biofilm extracellular enzyme activity (EEA), to assess the response of streams to the level of urbanization within their catchments. For this study nine streams of similar catchment are...

  10. Synchrotron-Based Microspectroscopic Analysis of Molecular and Biopolymer Structures Using Multivariate Techniques and Advanced Multi-Components Modeling

    International Nuclear Information System (INIS)

    Yu, P.

    2008-01-01

    More recently, advanced synchrotron radiation-based bioanalytical technique (SRFTIRM) has been applied as a novel non-invasive analysis tool to study molecular, functional group and biopolymer chemistry, nutrient make-up and structural conformation in biomaterials. This novel synchrotron technique, taking advantage of bright synchrotron light (which is million times brighter than sunlight), is capable of exploring the biomaterials at molecular and cellular levels. However, with the synchrotron RFTIRM technique, a large number of molecular spectral data are usually collected. The objective of this article was to illustrate how to use two multivariate statistical techniques: (1) agglomerative hierarchical cluster analysis (AHCA) and (2) principal component analysis (PCA) and two advanced multicomponent modeling methods: (1) Gaussian and (2) Lorentzian multi-component peak modeling for molecular spectrum analysis of bio-tissues. The studies indicated that the two multivariate analyses (AHCA, PCA) are able to create molecular spectral corrections by including not just one intensity or frequency point of a molecular spectrum, but by utilizing the entire spectral information. Gaussian and Lorentzian modeling techniques are able to quantify spectral omponent peaks of molecular structure, functional group and biopolymer. By application of these four statistical methods of the multivariate techniques and Gaussian and Lorentzian modeling, inherent molecular structures, functional group and biopolymer onformation between and among biological samples can be quantified, discriminated and classified with great efficiency.

  11. Web-Based Job Submission Interface for the GAMESS Computational Chemistry Program

    Science.gov (United States)

    Perri, M. J.; Weber, S. H.

    2014-01-01

    A Web site is described that facilitates use of the free computational chemistry software: General Atomic and Molecular Electronic Structure System (GAMESS). Its goal is to provide an opportunity for undergraduate students to perform computational chemistry experiments without the need to purchase expensive software.

  12. Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms.

    Science.gov (United States)

    Ohkama-Ohtsu, Naoko; Wasaki, Jun

    2010-08-01

    Mineral nutrients taken up from the soil become incorporated into a variety of important compounds with structural and physiological roles in plants. We summarize how plant nutrients are linked to many metabolic pathways, plant hormones and other biological processes. We also focus on nutrient uptake, describing plant-microbe interactions, plant exudates, root architecture, transporters and their applications. Plants need to survive in soils with mineral concentrations that vary widely. Describing the relationships between nutrients and biological processes will enable us to understand the molecular basis for signaling, physiological damage and responses to mineral stresses.

  13. Calcium binding to low molecular weight compounds and health promoting products

    DEFF Research Database (Denmark)

    Vavrusova, Martina

    absorption. Therefore, calcium as an essential nutrient should not be underestimated in our diet. Milk and dairy products are good sources of bioavailable calcium due to specific protein binding. Other sources of calcium, apart from a balanced and healthy diet, are calcium supplements and calcium fortified...... food. Therefore, an understanding of the basic chemistry of calcium binding to low molecular weight compounds can contribute to a general knowledge about calcium bioavailability and also to product improvement. Calcium precipitation with palmitate was described by a first-order reaction for conditions...... of excess calcium in neutral aqueous solutions with a stoichiometry Ca:Pal lower than 1:2. Increasing pH during aging of the precipitate and solubility product determination lead to a suggestion of an initial precipitation of calcium hydroxy palmitate as a possible precursor phase. The binding of calcium...

  14. Combinatorial computational chemistry approach of tight-binding quantum chemical molecular dynamics method to the design of the automotive catalysts

    International Nuclear Information System (INIS)

    Ito, Yuki; Jung, Changho; Luo, Yi; Koyama, Michihisa; Endou, Akira; Kubo, Momoji; Imamura, Akira; Miyamoto, Akira

    2006-01-01

    Recently, we have developed a new tight-binding quantum chemical molecular dynamics program 'Colors' for combinatorial computational chemistry approach. This methodology is based on our original tight-binding approximation and realized over 5000 times acceleration compared to the conventional first-principles molecular dynamics method. In the present study, we applied our new program to the simulations on various realistic large-scale models of the automotive three-way catalysts, ultrafine Pt particle/CeO 2 (111) support. Significant electron transfer from the Pt particle to the CeO 2 (111) surface was observed and it was found to strongly depend on the size of the Pt particle. Furthermore, our simulation results suggest that the reduction of the Ce atom due to the electron transfer from the Pt particle to the CeO 2 surface is a main reason for the strong interaction of the Pt particle and CeO 2 (111) support

  15. Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis.

    Science.gov (United States)

    Stark, Romana; Reichenbach, Alex; Andrews, Zane B

    2015-12-15

    The maintenance of energy homeostasis requires the hypothalamic integration of nutrient feedback cues, such as glucose, fatty acids, amino acids, and metabolic hormones such as insulin, leptin and ghrelin. Although hypothalamic neurons are critical to maintain energy homeostasis research efforts have focused on feedback mechanisms in isolation, such as glucose alone, fatty acids alone or single hormones. However this seems rather too simplistic considering the range of nutrient and endocrine changes associated with different metabolic states, such as starvation (negative energy balance) or diet-induced obesity (positive energy balance). In order to understand how neurons integrate multiple nutrient or hormonal signals, we need to identify and examine potential intracellular convergence points or common molecular targets that have the ability to sense glucose, fatty acids, amino acids and hormones. In this review, we focus on the role of carnitine metabolism in neurons regulating energy homeostasis. Hypothalamic carnitine metabolism represents a novel means for neurons to facilitate and control both nutrient and hormonal feedback. In terms of nutrient regulation, carnitine metabolism regulates hypothalamic fatty acid sensing through the actions of CPT1 and has an underappreciated role in glucose sensing since carnitine metabolism also buffers mitochondrial matrix levels of acetyl-CoA, an allosteric inhibitor of pyruvate dehydrogenase and hence glucose metabolism. Studies also show that hypothalamic CPT1 activity also controls hormonal feedback. We hypothesis that hypothalamic carnitine metabolism represents a key molecular target that can concurrently integrate nutrient and hormonal information, which is critical to maintain energy homeostasis. We also suggest this is relevant to broader neuroendocrine research as it predicts that hormonal signaling in the brain varies depending on current nutrient status. Indeed, the metabolic action of ghrelin, leptin or insulin

  16. Inorganic nutrients, sulfide and oxygen profiles from R/V KNORR in the Black Sea from 19880514 to 19880725 (NODC Accession 9400101)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data collection contains inorganic nutrient chemistry, sulfide and oxygen data collected during cruises 2 through 5 of the 1988 Black Sea Oceanographic...

  17. A spatial and seasonal assessment of river water chemistry across North West England.

    Science.gov (United States)

    Rothwell, J J; Dise, N B; Taylor, K G; Allott, T E H; Scholefield, P; Davies, H; Neal, C

    2010-01-15

    This paper presents information on the spatial and seasonal patterns of river water chemistry at approximately 800 sites in North West England based on data from the Environment Agency regional monitoring programme. Within a GIS framework, the linkages between average water chemistry (pH, sulphate, base cations, nutrients and metals) catchment characteristics (topography, land cover, soil hydrology, base flow index and geology), rainfall, deposition chemistry and geo-spatial information on discharge consents (point sources) are examined. Water quality maps reveal that there is a clear distinction between the uplands and lowlands. Upland waters are acidic and have low concentrations of base cations, explained by background geological sources and land cover. Localised high concentrations of metals occur in areas of the Cumbrian Fells which are subjected to mining effluent inputs. Nutrient concentrations are low in the uplands with the exception sites receiving effluent inputs from rural point sources. In the lowlands, both past and present human activities have a major impact on river water chemistry, especially in the urban and industrial heartlands of Greater Manchester, south Lancashire and Merseyside. Over 40% of the sites have average orthophosphate concentrations >0.1mg-Pl(-1). Results suggest that the dominant control on orthophosphate concentrations is point source contributions from sewage effluent inputs. Diffuse agricultural sources are also important, although this influence is masked by the impact of point sources. Average nitrate concentrations are linked to the coverage of arable land, although sewage effluent inputs have a significant effect on nitrate concentrations. Metal concentrations in the lowlands are linked to diffuse and point sources. The study demonstrates that point sources, as well as diffuse sources, need to be considered when targeting measures for the effective reduction in river nutrient concentrations. This issue is clearly important

  18. Accessing Specific Peptide Recognition by Combinatorial Chemistry

    DEFF Research Database (Denmark)

    Li, Ming

    Molecular recognition is at the basis of all processes for life, and plays a central role in many biological processes, such as protein folding, the structural organization of cells and organelles, signal transduction, and the immune response. Hence, my PhD project is entitled “Accessing Specific...... Peptide Recognition by Combinatorial Chemistry”. Molecular recognition is a specific interaction between two or more molecules through noncovalent bonding, such as hydrogen bonding, metal coordination, van der Waals forces, π−π, hydrophobic, or electrostatic interactions. The association involves kinetic....... Combinatorial chemistry was invented in 1980s based on observation of functional aspects of the adaptive immune system. It was employed for drug development and optimization in conjunction with high-throughput synthesis and screening. (chapter 2) Combinatorial chemistry is able to rapidly produce many thousands...

  19. The 2016 Nobel Prize: Chemistry and Physics

    Directory of Open Access Journals (Sweden)

    José Maria Filardo Bassalo

    2017-08-01

    Full Text Available In this article, we will deal with the 2016 Nobel Prizes: Chemistry and Physics, since they are related to the same theme: nanostructures / molecular machines (conception, fabrication and topological theoretical explanation.

  20. Host-guest chemistry of dendrimer-drug complexes. 2. Effects of molecular properties of guests and surface functionalities of dendrimers.

    Science.gov (United States)

    Hu, Jingjing; Cheng, Yiyun; Wu, Qinglin; Zhao, Libo; Xu, Tongwen

    2009-08-06

    The host-guest chemistry of dendrimer-drug complexes is investigated by NMR techniques, including (1)H NMR and 2D-NOESY studies. The effects of molecular properties of drug molecules (protonation ability and spatial steric hindrance of charged groups) and surface functionalities of dendrimers (positively charged amine groups and negatively charged carboxylate groups) on the host-guest interactions are discussed. Different interaction mechanisms between dendrimers and drug molecules are proposed on the basis of NMR results. Primary amine- and secondary amine-containing drugs preferentially bind to negatively charged dendrimers by strong electrostatic interactions, whereas tertiary amine and quaternary ammonium-containing drugs have weak binding ability with dendrimers due to relatively low protonation ability of the tertiary amine group and serious steric hindrance of the quaternary ammonium group. Positively charged drugs locate only on the surface of negatively charged dendrimers, whereas negatively charged drugs locate both on the surface and in the interior cavities of positively charged dendrimers. The host-guest chemistry of dendrimer-drug complexes is promising for the development of new drug delivery systems.

  1. Nanoparticle growth by particle-phase chemistry

    Science.gov (United States)

    Apsokardu, Michael J.; Johnston, Murray V.

    2018-02-01

    The ability of particle-phase chemistry to alter the molecular composition and enhance the growth rate of nanoparticles in the 2-100 nm diameter range is investigated through the use of a kinetic growth model. The molecular components included are sulfuric acid, ammonia, water, a non-volatile organic compound, and a semi-volatile organic compound. Molecular composition and growth rate are compared for particles that grow by partitioning alone vs. those that grow by a combination of partitioning and an accretion reaction in the particle phase between two organic molecules. Particle-phase chemistry causes a change in molecular composition that is particle diameter dependent, and when the reaction involves semi-volatile molecules, the particles grow faster than by partitioning alone. These effects are most pronounced for particles larger than about 20 nm in diameter. The modeling results provide a fundamental basis for understanding recent experimental measurements of the molecular composition of secondary organic aerosol showing that accretion reaction product formation increases linearly with increasing aerosol volume-to-surface-area. They also allow initial estimates of the reaction rate constants for these systems. For secondary aerosol produced by either OH oxidation of the cyclic dimethylsiloxane (D5) or ozonolysis of β-pinene, oligomerization rate constants on the order of 10-3 to 10-1 M-1 s-1 are needed to explain the experimental results. These values are consistent with previously measured rate constants for reactions of hydroperoxides and/or peroxyacids in the condensed phase.

  2. Molecularly targeted therapeutic radiopharmaceuticals

    International Nuclear Information System (INIS)

    Saw, M.M.

    2007-01-01

    Full text: It is generally agreed that current focus of nuclear medicine development should be on molecular imaging and therapy. Though, the widespread use of the terminology 'molecular imaging' is quite recent, nuclear medicine has used molecular imaging techniques for more than 20 years ago. A variety of radiopharmaceuticals have been introduced for the internal therapy of malignant and inflammatory lesions in nuclear medicine. In the field of bio/medical imaging, nuclear medicine is one of the disciplines which has the privilege of organized and well developed chemistry/ pharmacy section; radio-chemistry/radiopharmacy. Fundamental principles have been developed more than 40 years ago and advanced research is going well into postgenomic era. The genomic revolution and dramatically increased insight in the molecular mechanisms underlying pathology have led to paradigm shift in drug development. Likewise does in the nuclear medicine. Here, the author will present current clinical and pre-clinical therapeutic radiopharmaceuticals based on molecular targets such as membrane-bound receptors, enzymes, nucleic acids, sodium iodide symporter, etc, in correlation with fundamentals of radiopharmacy. (author)

  3. 2016 Nobel Prize in Chemistry: Conferring Molecular Machines as ...

    Indian Academy of Sciences (India)

    The Nobel Prize in Chemistry for the year 2016 was awardedto three illustrious chemists, Professors Jean-Pierre Sauvage,Sir Fraser Stoddart, and Ben Feringa. Pioneering works ofthese chemists on designing molecules, chemically synthesizingthem, and extracting a work out of such designedmoleculesopen-up a new ...

  4. Physics and chemistry of irradiated protostars

    DEFF Research Database (Denmark)

    Lindberg, Johan

    not resemble so-called hot corinos or warm carbon-chain chemistry sources (the previously known types of low-mass Class 0 objects as defined by their chemistry). The absence of complex organic molecules in combination with high abundances of radicals such as cyanide (CN) and hydroxyl (OH) suggest...... that the chemistry is dominated by radiation from R CrA. In the high-resolution interferometry data we also detect signs of a 100 AU Keplerian disc around the Class 0/I object IRS7B. The disc may be responsible for the lack of detections of complex organic molecules on the smaller scales as it may have flattened......) and chemistry (such as molecular abundances) in low-mass protostellar envelopes is studied. The work studies the nearby low-mass star-forming region Corona Australis, in which a large proportion of the youngest low-mass protostars (so-called Class 0 and Class I objects) are located in a dense cloud situated...

  5. An Unprecedented Blue Chromophore Found in Nature using a "Chemistry First" and Molecular Networking Approach: Discovery of Dactylocyanines A-H.

    Science.gov (United States)

    Bonneau, Natacha; Chen, Guanming; Lachkar, David; Boufridi, Asmaa; Gallard, Jean-François; Retailleau, Pascal; Petek, Sylvain; Debitus, Cécile; Evanno, Laurent; Beniddir, Mehdi A; Poupon, Erwan

    2017-10-17

    Guided by a "chemistry first" approach using molecular networking, eight new bright-blue colored natural compounds, namely dactylocyanines A-H (3-10), were isolated from the Polynesian marine sponge Dactylospongia metachromia. Starting from ilimaquinone (1), an hemisynthetic phishing probe (2) was prepared for annotating and matching structurally related natural substances in D. metachromia crude extract network. This strategy allowed characterizing for the first time in Nature the blue zwitterionic quinonoid chromophore. The solvatochromic properties of the latter are reported. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Dynamic vertical profiles of peat porewater chemistry in a northern peatland

    Science.gov (United States)

    Natalie A. Griffiths; Stephen D. Sebestyen

    2016-01-01

    We measured pH, cations, nutrients, and total organic carbon (TOC) over 3 years to examine weekly to monthly variability in porewater chemistry depth profiles (0–3.0 m) in an ombrotrophic bog in Minnesota, USA. We also compared temporal variation at one location to spatial variation in depth profiles at 16 locations across the bog. Most solutes exhibited large...

  7. Computer-Based Molecular Modelling: Finnish School Teachers' Experiences and Views

    Science.gov (United States)

    Aksela, Maija; Lundell, Jan

    2008-01-01

    Modern computer-based molecular modelling opens up new possibilities for chemistry teaching at different levels. This article presents a case study seeking insight into Finnish school teachers' use of computer-based molecular modelling in teaching chemistry, into the different working and teaching methods used, and their opinions about necessary…

  8. Research on condensed matter and atomic physics, using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 1. 1. Atomic and molecular physics. 2. Physics and chemistry of surfaces and interfaces

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  9. From wave mechanics to quantum chemistry

    International Nuclear Information System (INIS)

    Daudel, R.

    1996-01-01

    The origin of wave mechanics, which is now called quantum mechanics, is evoked. The main stages of the birth of quantum chemistry are related as resulting from the application of quantum mechanics to the study of molecular properties and chemical reactions. (author). 14 refs

  10. The EPIC nutrient database project (ENDB): a first attempt to standardize nutrient databases across the 10 European countries participating in the EPIC study

    DEFF Research Database (Denmark)

    Slimani, N.; Deharveng, G.; Unwin, I.

    2007-01-01

    because there is currently no European reference NDB available. Design: A large network involving national compilers, nutritionists and experts on food chemistry and computer science was set up for the 'EPIC Nutrient DataBase' ( ENDB) project. A total of 550-1500 foods derived from about 37 000...... standardized EPIC 24-h dietary recalls (24-HDRS) were matched as closely as possible to foods available in the 10 national NDBs. The resulting national data sets ( NDS) were then successively documented, standardized and evaluated according to common guidelines and using a DataBase Management System...

  11. Knot theory in modern chemistry.

    Science.gov (United States)

    Horner, Kate E; Miller, Mark A; Steed, Jonathan W; Sutcliffe, Paul M

    2016-11-21

    Knot theory is a branch of pure mathematics, but it is increasingly being applied in a variety of sciences. Knots appear in chemistry, not only in synthetic molecular design, but also in an array of materials and media, including some not traditionally associated with knots. Mathematics and chemistry can now be used synergistically to identify, characterise and create knots, as well as to understand and predict their physical properties. This tutorial review provides a brief introduction to the mathematics of knots and related topological concepts in the context of the chemical sciences. We then survey the broad range of applications of the theory to contemporary research in the field.

  12. Progress in molecular precursors for electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Buhro, W.E. [Washington Univ., St. Louis, MO (United States)

    1996-09-01

    Molecular-precursor chemistry provides an essential underpinning to all electronic-materials technologies, including photovoltaics and related areas of direct interest to the DOE. Materials synthesis and processing is a rapidly developing field in which advances in molecular precursors are playing a major role. This article surveys selected recent research examples that define the exciting current directions in molecular-precursor science. These directions include growth of increasingly complex structures and stoichiometries, surface-selective growth, kinetic growth of metastable materials, growth of size-controlled quantum dots and quantum-dot arrays, and growth at progressively lower temperatures. Continued progress in molecular-precursor chemistry will afford precise control over the crystal structures, nanostructures, and microstructures of electronic materials.

  13. Institute of Bioinorganic and Radiopharmaceutical Chemistry. Annual report 2000

    International Nuclear Information System (INIS)

    Johannsen, B.; Seifert, S.

    2001-01-01

    In 2000 the Rossendorf research centre continued and further developed its basic and application-oriented research. Research at the Institute of Bioinorganic and Radiopharmaceutical Chemistry, one of five institutes in the Research Centre, was focused on radiotracers as molecular probes to make the human body biochemically transparent with regard to individual molecular reactions. In this respect the potential for diagnostic application depends on the quality and versatility of radiopharmaceutical chemistry, which is the main discipline in our Institute. Areas in which the Institute was particularly active were the design of new radiotracers, both radiometal-based and natural organic molecules, the elaboration of radiolabelling concepts and procedures and the chemical and pharmacological evaluation of new tracers. This was complemented by more clinically oriented activities in the Positron Emission Tomography Centre Rossendorf. With numerous contributions in the fields of radiopharmaceutical chemistry, tumour agents, tumour diagnosis and brain biochemistry this Annual Report will document the scientific progress made in 2000. (orig.)

  14. From transistor to trapped-ion computers for quantum chemistry.

    Science.gov (United States)

    Yung, M-H; Casanova, J; Mezzacapo, A; McClean, J; Lamata, L; Aspuru-Guzik, A; Solano, E

    2014-01-07

    Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.

  15. Radiochemistry at the University of Missouri-Columbia. A joint venture with chemistry, nuclear engineering, molecular biology, biochemistry, and the Missouri University Research Reactor (MURR)

    International Nuclear Information System (INIS)

    Miller, W.H.; Duval, P.; Jurisson, S.S.; Robertson, J.D.; Wall, J.D.; Quinn, T.P.; Volkert, W.A.; Neumeyer, G.M.

    2005-01-01

    Missouri University, a recipient of a U.S. Department of Energy Radiochemistry Education Award Program (REAP) grant in 1999, has significantly expanded its education and research mission in radiochemistry. While MU had a viable radiochemistry program through existing faculty expertise and the utilization of the Missouri University Research Reactor, the REAP award allowed MU to leverage its resources in significantly expanding capabilities in radiochemistry. Specifically, the grant enabled the: (1) hiring of a new faculty member in actinide radiochemistry (Dr. Paul Duval); (2) support of six graduate students in radiochemistry; (3) purchase of new radiochemistry laboratory equipment; (4) more extensive collaboration with DOE scientists through interactions with faculty and graduate students, and (5) revised radiochemical curriculum (joint courses across disciplines and new courses in actinide chemistry). The most significant impact of this award has been in encouraging interdisciplinary education and research. The proposal was initiated by a joint effort between Nuclear Engineering and Chemistry, but also included faculty in biochemistry, radiology, and molecular biology. Specific outcomes of the REAP grant thus far are: (1) increased educational and research capabilities in actinide chemistry (faculty hire and equipment acquisition); (2) increased integration of biochemistry and radiochemistry (e.g., radiochemical analysis of uranium speciation in biological systems); (3) stronger interdisciplinary integration of molecular biology and radiochemical sciences (alpha-emitters for treating cancer); (4) new and more extensive interactions with national laboratory facilities (e.g., student internships at LANL and LLBL, faculty and lab scientist exchange visits, analytical measurements and collaboration with the Advanced Photon Source), and (7) new research funding opportunities based on REAP partnership. (author)

  16. Advanced radiation chemistry research: Current status

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Radiation chemistry is a branch of chemistry that studies chemical transformations in materials exposed to high-energy radiations. It is based on the use of ionizing radiation as the initiator or catalyst in chemical reactions. The most significant advantage of radiation chemistry lies in its ability to be used in the production and study of almost any reactive atomic and molecular species playing a part in chemical reaction, synthesis, industrial processes, or in biological systems. Over the the last few years a number of meetings have taken place, under the auspices of the IAEA, in order to evaluate recent developments in radiation chemistry as well as the trends indicated by the results obtained. Radiation chemists from different countries have participated at these meetings. The present publication, a companion to the previous publication - New Trends and Development in Radiation Chemistry, IAEA-TECDOC-527 (1989) - includes some of the important contributions presented at these meetings. It is hoped that it will provide a useful overview of current activities and of emerging trends in this field, thus promoting better understanding of potential contributions of radiation chemistry to other fields of knowledge as well as to practical applications in industry, medicine and agriculture. Refs, figs and tabs.

  17. Advanced radiation chemistry research: Current status

    International Nuclear Information System (INIS)

    1995-10-01

    Radiation chemistry is a branch of chemistry that studies chemical transformations in materials exposed to high-energy radiations. It is based on the use of ionizing radiation as the initiator or catalyst in chemical reactions. The most significant advantage of radiation chemistry lies in its ability to be used in the production and study of almost any reactive atomic and molecular species playing a part in chemical reaction, synthesis, industrial processes, or in biological systems. Over the the last few years a number of meetings have taken place, under the auspices of the IAEA, in order to evaluate recent developments in radiation chemistry as well as the trends indicated by the results obtained. Radiation chemists from different countries have participated at these meetings. The present publication, a companion to the previous publication - New Trends and Development in Radiation Chemistry, IAEA-TECDOC-527 (1989) - includes some of the important contributions presented at these meetings. It is hoped that it will provide a useful overview of current activities and of emerging trends in this field, thus promoting better understanding of potential contributions of radiation chemistry to other fields of knowledge as well as to practical applications in industry, medicine and agriculture. Refs, figs and tabs

  18. The link between physics and chemistry in track modelling

    International Nuclear Information System (INIS)

    Green, N.J.B.; Bolton, C.E.; Spencer-Smith, R.D.

    1999-01-01

    The physical structure of a radiation track provides the initial conditions for the modelling of radiation chemistry. These initial conditions are not perfectly understood, because there are important gaps between what is provided by a typical track structure model and what is required to start the chemical model. This paper addresses the links between the physics and chemistry of tracks, with the intention of identifying those problems that need to be solved in order to obtain an accurate picture of the initial conditions for the purposes of modelling chemistry. These problems include the reasons for the increased yield of ionisation relative to homolytic bond breaking in comparison with the gas phase. A second area of great importance is the physical behaviour of low-energy electrons in condensed matter (including thermolisation and solvation). Many of these processes are not well understood, but they can have profound effects on the transient chemistry in the track. Several phenomena are discussed, including the short distance between adjacent energy loss events, the molecular nature of the underlying medium, dissociative attachment resonances and the ability of low-energy electrons to excite optically forbidden molecular states. Each of these phenomena has the potential to modify the transient chemistry substantially and must therefore be properly characterised before the physical model of the track can be considered to be complete. (orig.)

  19. Using digital technologies to enhance chemistry students' understanding and representational skills

    DEFF Research Database (Denmark)

    Hilton, Annette

    Abstract Chemistry students need to understand chemistry on molecular, symbolic and macroscopic levels. Students find it difficult to use representations on these three levels to interpret and explain data. One approach is to encourage students to use writing-to-learn strategies in inquiry settings...... to present and interpret their laboratory results. This paper describes findings from a study on the effects on students’ learning outcomes of creating multimodal texts to report on laboratory inquiries. The study involved two senior secondary school chemistry classes (n = 22, n = 27). Both classes completed...... representations to make explanations on the molecular level. Student interviews and classroom video-recordings suggested that using digital resources to create multimodal texts promoted knowledge transformation and hence deeper reflection on the meaning of data and representations. The study has implications...

  20. Macro- and micro-nutrient concentration in leaf, woody, and root tissue of Populus irrigated with landfill leachate

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Bart T. Sexton; Richard B. Hall

    2007-01-01

    Landfill leachate offers an opportunity to supply water and plant nutritional benefits at a lower cost than traditional sources. Information about nutrient uptake and distribution into tissues of Populus irrigated with landfill leachate helps increase biomass production along with evaluating the impacts of leachate chemistry on tree health.

  1. Molecular origin of urea driven hydrophobic polymer collapse and unfolding depending on side chain chemistry.

    Science.gov (United States)

    Nayar, Divya; Folberth, Angelina; van der Vegt, Nico F A

    2017-07-19

    Osmolytes affect hydrophobic collapse and protein folding equilibria. The underlying mechanisms are, however, not well understood. We report large-scale conformational sampling of two hydrophobic polymers with secondary and tertiary amide side chains using extensive molecular dynamics simulations. The calculated free energy of unfolding increases with urea for the secondary amide, yet decreases for the tertiary amide, in agreement with experiment. The underlying mechanism is rooted in opposing entropic driving forces: while urea screens the hydrophobic macromolecular interface and drives unfolding of the tertiary amide, urea's concomitant loss in configurational entropy drives collapse of the secondary amide. Only at sufficiently high urea concentrations bivalent urea hydrogen bonding interactions with the secondary amide lead to further stabilisation of its collapsed state. The observations provide a new angle on the interplay between side chain chemistry, urea hydrogen bonding, and the role of urea in attenuating or strengthening the hydrophobic effect.

  2. Prediction of Log "P": ALOGPS Application in Medicinal Chemistry Education

    Science.gov (United States)

    Kujawski, Jacek; Bernard, Marek K.; Janusz, Anna; Kuzma, Weronika

    2012-01-01

    Molecular hydrophobicity (lipophilicity), usually quantified as log "P" where "P" is the partition coefficient, is an important molecular characteristic in medicinal chemistry and drug design. The log "P" coefficient is one of the principal parameters for the estimation of lipophilicity of chemical compounds and pharmacokinetic properties. The…

  3. Chemistry explained by topology: an alternative approach.

    Science.gov (United States)

    Galvez, Jorge; Villar, Vincent M; Galvez-Llompart, Maria; Amigó, José M

    2011-05-01

    Molecular topology can be considered an application of graph theory in which the molecular structure is characterized through a set of graph-theoretical descriptors called topological indices. Molecular topology has found applications in many different fields, particularly in biology, chemistry, and pharmacology. The first topological index was introduced by H. Wiener in 1947 [1]. Although its very first application was the prediction of the boiling points of the alkanes, the Wiener index has demonstrated since then a predictive capability far beyond that. Along with the Wiener index, in this paper we focus on a few pioneering topological indices, just to illustrate the connection between physicochemical properties and molecular connectivity.

  4. Chemistry and biology by new multiple choice

    International Nuclear Information System (INIS)

    Seo, Hyeong Seok; Kim, Seong Hwan

    2003-02-01

    This book is divided into two parts, the first part is about chemistry, which deals with science of material, atom structure and periodic law, chemical combination and power between molecule, state of material and solution, chemical reaction and an organic compound. The second part give description of biology with molecule and cell, energy in cells and chemical synthesis, molecular biology and heredity, function on animal, function on plant and evolution and ecology. This book has explanation of chemistry and biology with new multiple choice.

  5. Supramolecular chemistry at interfaces: host-guest interactions for fabricating multifunctional biointerfaces.

    Science.gov (United States)

    Yang, Hui; Yuan, Bin; Zhang, Xi; Scherman, Oren A

    2014-07-15

    CONSPECTUS: Host-guest chemistry can greatly improve the selectivity of biomolecule-ligand binding on account of recognition-directed interactions. In addition, functional structures and the actuation of supramolecular assemblies in molecular systems can be controlled efficiently through various host-guest chemistry. Together, these highly selective, strong yet dynamic interactions can be exploited as an alternative methodology for applications in the field of programmable and controllable engineering of supramolecular soft materials through the reversible binding between complementary components. Many processes in living systems such as biotransformation, transportation of matter, and energy transduction begin with interfacial molecular recognition, which is greatly influenced by various external stimuli at biointerfaces. Detailed investigations about the molecular recognition at interfaces can result in a better understanding of life science, and further guide us in developing new biomaterials and medicines. In order to mimic complicated molecular-recognition systems observed in nature that adapt to changes in their environment, combining host-guest chemistry and surface science is critical for fabricating the next generation of multifunctional biointerfaces with efficient stimuli-responsiveness and good biocompatibility. In this Account, we will summarize some recent progress on multifunctional stimuli-responsive biointerfaces and biosurfaces fabricated by cyclodextrin- or cucurbituril-based host-guest chemistry and highlight their potential applications including drug delivery, bioelectrocatalysis, and reversible adsorption and resistance of peptides, proteins, and cells. In addition, these biointerfaces and biosurfaces demonstrate efficient response toward various external stimuli, such as UV light, pH, redox chemistry, and competitive guests. All of these external stimuli can aid in mimicking the biological stimuli evident in complex biological environments

  6. Polyhedral boron-containing cluster chemistry: Aspects of architecture beyond the icosahedron

    Czech Academy of Sciences Publication Activity Database

    Shea, S. L.; Bould, J.; Londesborough, M. G. S.; Perea, S. D.; Franken, A.; Ormsby, D. L.; Jelínek, Tomáš; Štíbr, Bohumil; Holub, Josef; Kilner, C. A.; Thorton-Pett, M.; Kennedy, J. D.

    2003-01-01

    Roč. 75, č. 9 (2003), s. 1239-1248 ISSN 0033-4545 R&D Projects: GA MŠk LN00A028 Grant - others:UK EPRC(GB) J56929 Institutional research plan: CEZ:AV0Z4032918 Keywords : molecular chemistry * carbon hydrides Subject RIV: CA - Inorganic Chemistry Impact factor: 1.471, year: 2003

  7. Nanoparticle growth by particle-phase chemistry

    Directory of Open Access Journals (Sweden)

    M. J. Apsokardu

    2018-02-01

    Full Text Available The ability of particle-phase chemistry to alter the molecular composition and enhance the growth rate of nanoparticles in the 2–100 nm diameter range is investigated through the use of a kinetic growth model. The molecular components included are sulfuric acid, ammonia, water, a non-volatile organic compound, and a semi-volatile organic compound. Molecular composition and growth rate are compared for particles that grow by partitioning alone vs. those that grow by a combination of partitioning and an accretion reaction in the particle phase between two organic molecules. Particle-phase chemistry causes a change in molecular composition that is particle diameter dependent, and when the reaction involves semi-volatile molecules, the particles grow faster than by partitioning alone. These effects are most pronounced for particles larger than about 20 nm in diameter. The modeling results provide a fundamental basis for understanding recent experimental measurements of the molecular composition of secondary organic aerosol showing that accretion reaction product formation increases linearly with increasing aerosol volume-to-surface-area. They also allow initial estimates of the reaction rate constants for these systems. For secondary aerosol produced by either OH oxidation of the cyclic dimethylsiloxane (D5 or ozonolysis of β-pinene, oligomerization rate constants on the order of 10−3 to 10−1 M−1 s−1 are needed to explain the experimental results. These values are consistent with previously measured rate constants for reactions of hydroperoxides and/or peroxyacids in the condensed phase.

  8. Chemistry of supramolecular systems containing porphyrins and metal complexes

    OpenAIRE

    Araki, Koiti; Toma, Henrique Eisi

    2002-01-01

    Supramolecular chemistry is expected to keep a high developing pace in the next years, giving support to the advancement of molecular devices and nanotechnology. In this sense, porphyrins and their analogues should play a significant role as a consequence of their catalytic, electrocatalytic, photochemical and photoelectrochemical properties. In this review we focused on our own strategy based on coordination chemistry for the design and build-up of supermolecules and supramolecular structure...

  9. Soil chemistry and nutrition of North American spruce-fir stands: Evidence of recent change

    International Nuclear Information System (INIS)

    Joslin, J.D.; Kelly, J.M.; Van Miegroet, H.

    1992-01-01

    One set of hypotheses offered to explain the decline of red spruce (Picea rubens Sarg.) in eastern North America focuses on the effect of acidic deposition on soil chemistry changes that may affect nutrient availability and root function. Long-term soils data suggests that soil acidification has occurred in some spruce stands over the past 50 yr, with plant uptake and cation leaching both contributing to the loss of cations. Studies of tree ring chemistry also have indicated changes in Ca/Al and Mg/Al ratios in red spruce wood, suggesting increases in the ionic strength of soil solution. Irrigation studies using strong acid inputs have demonstrated accelerated displacement of base cations from upper horizons. Spruce-fir (Abies spp.) nutrient budgets indicate that current net Ca and Mg leaching loss rates are of the same order of magnitude as losses to whole tree harvest removals, spread out over a 50-yr rotation. For most cations, red spruce foliar nutrient levels decline with elevation, but it is difficult to assess the contribution of the elevational gradient in atmospheric deposition to this pattern. Compared to northeastern sites, spruce-fir soil solutions in the southern Appalachians have higher nitrate levels and higher Al concentrations, which at times approach the Al toxicity threshold for red spruce seedlings and frequently are at levels known to interfere with cation uptake. There is little evidence that either nutrient deficiencies or Al toxicity are primary causes of red spruce decline in the Northeast, though both may play a role in the Southeast

  10. Laboratory Sequence in Computational Methods for Introductory Chemistry

    Science.gov (United States)

    Cody, Jason A.; Wiser, Dawn C.

    2003-07-01

    A four-exercise laboratory sequence for introductory chemistry integrating hands-on, student-centered experience with computer modeling has been designed and implemented. The progression builds from exploration of molecular shapes to intermolecular forces and the impact of those forces on chemical separations made with gas chromatography and distillation. The sequence ends with an exploration of molecular orbitals. The students use the computers as a tool; they build the molecules, submit the calculations, and interpret the results. Because of the construction of the sequence and its placement spanning the semester break, good laboratory notebook practices are reinforced and the continuity of course content and methods between semesters is emphasized. The inclusion of these techniques in the first year of chemistry has had a positive impact on student perceptions and student learning.

  11. Maternal–Fetal Nutrient Transport in Pregnancy Pathologies: The Role of the Placenta

    Directory of Open Access Journals (Sweden)

    Kendra Elizabeth Brett

    2014-09-01

    Full Text Available Appropriate in utero growth is essential for offspring development and is a critical contributor to long-term health. Fetal growth is largely dictated by the availability of nutrients in maternal circulation and the ability of these nutrients to be transported into fetal circulation via the placenta. Substrate flux across placental gradients is dependent on the accessibility and activity of nutrient-specific transporters. Changes in the expression and activity of these transporters is implicated in cases of restricted and excessive fetal growth, and may represent a control mechanism by which fetal growth rate attempts to match availability of nutrients in maternal circulation. This review provides an overview of placenta nutrient transport with an emphasis on macro-nutrient transporters. It highlights the changes in expression and activity of these transporters associated with common pregnancy pathologies, including intrauterine growth restriction, macrosomia, diabetes and obesity, as well as the potential impact of maternal diet. Molecular signaling pathways linking maternal nutrient availability and placenta nutrient transport are discussed. How sexual dimorphism affects fetal growth strategies and the placenta’s response to an altered intrauterine environment is considered. Further knowledge in this area may be the first step in the development of targeted interventions to help optimize fetal growth.

  12. Investigation of Galactosylated Low Molecular Weight Chitosan ...

    African Journals Online (AJOL)

    was coupled with low molecular weight chitosan (LMWC) using carbodiimide chemistry. .... High molecular weight chitosan (minimum 85% ..... membrane permeability of drug and mutual repulsion ... coating thickness and the lower solubility of.

  13. WERF Nutrient Challenge investigates limits of nutrient removal technologies.

    Science.gov (United States)

    Neethling, J B; Clark, D; Pramanik, A; Stensel, H D; Sandino, J; Tsuchihashi, R

    2010-01-01

    The WERF Nutrient Challenge is a multi-year collaborative research initiative established in 2007 to develop and provide current information about wastewater treatment nutrients (specifically nitrogen and phosphorus in wastewater), their characteristics, and bioavailability in aquatic environments to help regulators make informed decisions. The Nutrient Challenge will also provide data on nutrient removal so that treatment facilities can select sustainable, cost-effective methods and technologies to meet permit limits. To meet these goals, the Nutrient Challenge has teamed with a wide array of utilities, agencies, consultants, universities and other researchers and practitioners to collaborate on projects that advance these goals. The Nutrient Challenge is focusing on a different approach to collaborating and leveraging resources (financial and intellectual) on research projects by targeting existing projects and research that correspond with its goals and funding those aspects that the Nutrient Challenge identified as a priority. Because the Nutrient Challenge is focused on collaboration, outreach is an absolutely necessary component of its effectiveness. Through workshops, webinars, a web portal and online compendium, published papers, and conference lectures, the Nutrient Challenge is both presenting important new information, and soliciting new partnerships.

  14. E.C.C.C.1 Computational Chemistry: F.E.C.S. Conference. Proceedings

    International Nuclear Information System (INIS)

    Bernardi, F.; Rivail, J.; Cernusak, I.; Gasteiger, J.; Robb, M.; Soulie, E.; Troyanowsky, C.; Varmuza, K.

    1995-01-01

    These proceedings represent the papers presented at the First European Conference on Computational Chemistry held in Nancy, France. The papers presented fall into three groups:1. Methods and applications of quantum molecular modeling, 2. Classical molecular modeling, 3. Methods and applications in the treatment of chemical information. The papers represent a fair and balanced survey of the present trends of European research in computational chemistry. There were 237 papers presented and 10 have been abstracted for the Energy Science and Technology database

  15. Illustrating Concepts in Physical Organic Chemistry with 3D Printed Orbitals

    Science.gov (United States)

    Robertson, Michael J.; Jorgensen, William L.

    2015-01-01

    Orbital theory provides a powerful tool for rationalizing and understanding many phenomena in chemistry. In most introductory chemistry courses, students are introduced to atomic and molecular orbitals in the form of two-dimensional drawings. In this work, we describe a general method for producing 3D printing files of orbital models that can be…

  16. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package

    Science.gov (United States)

    Shao, Yihan; Gan, Zhengting; Epifanovsky, Evgeny; Gilbert, Andrew T. B.; Wormit, Michael; Kussmann, Joerg; Lange, Adrian W.; Behn, Andrew; Deng, Jia; Feng, Xintian; Ghosh, Debashree; Goldey, Matthew; Horn, Paul R.; Jacobson, Leif D.; Kaliman, Ilya; Khaliullin, Rustam Z.; Kuś, Tomasz; Landau, Arie; Liu, Jie; Proynov, Emil I.; Rhee, Young Min; Richard, Ryan M.; Rohrdanz, Mary A.; Steele, Ryan P.; Sundstrom, Eric J.; Woodcock, H. Lee, III; Zimmerman, Paul M.; Zuev, Dmitry; Albrecht, Ben; Alguire, Ethan; Austin, Brian; Beran, Gregory J. O.; Bernard, Yves A.; Berquist, Eric; Brandhorst, Kai; Bravaya, Ksenia B.; Brown, Shawn T.; Casanova, David; Chang, Chun-Min; Chen, Yunqing; Chien, Siu Hung; Closser, Kristina D.; Crittenden, Deborah L.; Diedenhofen, Michael; DiStasio, Robert A., Jr.; Do, Hainam; Dutoi, Anthony D.; Edgar, Richard G.; Fatehi, Shervin; Fusti-Molnar, Laszlo; Ghysels, An; Golubeva-Zadorozhnaya, Anna; Gomes, Joseph; Hanson-Heine, Magnus W. D.; Harbach, Philipp H. P.; Hauser, Andreas W.; Hohenstein, Edward G.; Holden, Zachary C.; Jagau, Thomas-C.; Ji, Hyunjun; Kaduk, Benjamin; Khistyaev, Kirill; Kim, Jaehoon; Kim, Jihan; King, Rollin A.; Klunzinger, Phil; Kosenkov, Dmytro; Kowalczyk, Tim; Krauter, Caroline M.; Lao, Ka Un; Laurent, Adèle D.; Lawler, Keith V.; Levchenko, Sergey V.; Lin, Ching Yeh; Liu, Fenglai; Livshits, Ester; Lochan, Rohini C.; Luenser, Arne; Manohar, Prashant; Manzer, Samuel F.; Mao, Shan-Ping; Mardirossian, Narbe; Marenich, Aleksandr V.; Maurer, Simon A.; Mayhall, Nicholas J.; Neuscamman, Eric; Oana, C. Melania; Olivares-Amaya, Roberto; O'Neill, Darragh P.; Parkhill, John A.; Perrine, Trilisa M.; Peverati, Roberto; Prociuk, Alexander; Rehn, Dirk R.; Rosta, Edina; Russ, Nicholas J.; Sharada, Shaama M.; Sharma, Sandeep; Small, David W.; Sodt, Alexander; Stein, Tamar; Stück, David; Su, Yu-Chuan; Thom, Alex J. W.; Tsuchimochi, Takashi; Vanovschi, Vitalii; Vogt, Leslie; Vydrov, Oleg; Wang, Tao; Watson, Mark A.; Wenzel, Jan; White, Alec; Williams, Christopher F.; Yang, Jun; Yeganeh, Sina; Yost, Shane R.; You, Zhi-Qiang; Zhang, Igor Ying; Zhang, Xing; Zhao, Yan; Brooks, Bernard R.; Chan, Garnet K. L.; Chipman, Daniel M.; Cramer, Christopher J.; Goddard, William A., III; Gordon, Mark S.; Hehre, Warren J.; Klamt, Andreas; Schaefer, Henry F., III; Schmidt, Michael W.; Sherrill, C. David; Truhlar, Donald G.; Warshel, Arieh; Xu, Xin; Aspuru-Guzik, Alán; Baer, Roi; Bell, Alexis T.; Besley, Nicholas A.; Chai, Jeng-Da; Dreuw, Andreas; Dunietz, Barry D.; Furlani, Thomas R.; Gwaltney, Steven R.; Hsu, Chao-Ping; Jung, Yousung; Kong, Jing; Lambrecht, Daniel S.; Liang, WanZhen; Ochsenfeld, Christian; Rassolov, Vitaly A.; Slipchenko, Lyudmila V.; Subotnik, Joseph E.; Van Voorhis, Troy; Herbert, John M.; Krylov, Anna I.; Gill, Peter M. W.; Head-Gordon, Martin

    2015-01-01

    A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller-Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube.

  17. Chemistry in protoplanetary disks

    Science.gov (United States)

    Semenov, D. A.

    2012-01-01

    In this lecture I discuss recent progress in the understanding of the chemical evolution of protoplanetary disks that resemble our Solar system during the first ten million years. At the verge of planet formation, strong variations of temperature, density, and radiation intensities in these disks lead to a layered chemical structure. In hot, dilute and heavily irradiated atmosphere only simple radicals, atoms, and atomic ions can survive, formed and destroyed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex (organic) species are synthesized.

  18. Surface Chemistry and Spectroscopy of Chromium in Inorganic Oxides

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.; Schoonheydt, R.A.

    1996-01-01

    Focuses on the surface chemistry and spectroscopy of chromium in inorganic oxides. Characterization of the molecular structures of chromium; Mechanics of hydrogenation-dehydrogenation reactions; Mobility and reactivity on oxidic surfaces.

  19. Postdiagnostic intake of one-carbon nutrients and alcohol in relation to colorectal cancer survival.

    Science.gov (United States)

    Lochhead, Paul; Nishihara, Reiko; Qian, Zhi Rong; Mima, Kosuke; Cao, Yin; Sukawa, Yasutaka; Kim, Sun A; Inamura, Kentaro; Zhang, Xuehong; Wu, Kana; Giovannucci, Edward; Meyerhardt, Jeffrey A; Chan, Andrew T; Fuchs, Charles S; Ogino, Shuji

    2015-11-01

    Observational data have suggested that intakes of nutrients involved in one-carbon metabolism are inversely associated with risk of colorectal carcinoma and adenomas. In contrast, results from some preclinical studies and cardiovascular and chemoprevention trials have raised concerns that high folate intake may promote carcinogenesis by facilitating the progression of established neoplasia. We tested the hypothesis that higher total folate intake (including food folate and folic acid from fortified foods and supplements) or other one-carbon nutrient intakes might be associated with poorer survival after a diagnosis of colorectal cancer. We used rectal and colon cancer cases within the following 2 US prospective cohort studies: the Nurses' Health Study and the Health Professionals Follow-Up Study. Biennial questionnaires were used to gather information on medical history and lifestyle factors, including smoking and alcohol consumption. B-vitamin and methionine intakes were derived from food-frequency questionnaires. Data on tumor molecular characteristics (including microsatellite instability, CpG island methylator phenotype, KRAS, BRAF, and PIK3CA mutations, and long interspersed nucleotide element 1 methylation level) were available for a subset of cases. We assessed colorectal cancer-specific mortality according to postdiagnostic intakes of one-carbon nutrients with the use of multivariable Cox proportional hazards regression models. In 1550 stage I-III colorectal cancer cases with a median follow-up of 14.9 y, we documented 641 deaths including 176 colorectal cancer-specific deaths. No statistically significant associations were observed between postdiagnostic intakes of folate or other one-carbon nutrients and colorectal cancer-specific mortality (multivariate P-trend ≥ 0.21). In an exploratory molecular pathologic epidemiology survival analysis, there was no significant interaction between one-carbon nutrients or alcohol and any of the tumor molecular

  20. Decoupling the direct and indirect effects of climate on plant litter decomposition: Accounting for stress-induced modifications in plant chemistry.

    Science.gov (United States)

    Suseela, Vidya; Tharayil, Nishanth

    2018-04-01

    Decomposition of plant litter is a fundamental ecosystem process that can act as a feedback to climate change by simultaneously influencing both the productivity of ecosystems and the flux of carbon dioxide from the soil. The influence of climate on decomposition from a postsenescence perspective is relatively well known; in particular, climate is known to regulate the rate of litter decomposition via its direct influence on the reaction kinetics and microbial physiology on processes downstream of tissue senescence. Climate can alter plant metabolism during the formative stage of tissues and could shape the final chemical composition of plant litter that is available for decomposition, and thus indirectly influence decomposition; however, these indirect effects are relatively poorly understood. Climatic stress disrupts cellular homeostasis in plants and results in the reprogramming of primary and secondary metabolic pathways, which leads to changes in the quantity, composition, and organization of small molecules and recalcitrant heteropolymers, including lignins, tannins, suberins, and cuticle within the plant tissue matrix. Furthermore, by regulating metabolism during tissue senescence, climate influences the resorption of nutrients from senescing tissues. Thus, the final chemical composition of plant litter that forms the substrate of decomposition is a combined product of presenescence physiological processes through the production and resorption of metabolites. The changes in quantity, composition, and localization of the molecular construct of the litter could enhance or hinder tissue decomposition and soil nutrient cycling by altering the recalcitrance of the lignocellulose matrix, the composition of microbial communities, and the activity of microbial exo-enzymes via various complexation reactions. Also, the climate-induced changes in the molecular composition of litter could differentially influence litter decomposition and soil nutrient cycling. Compared

  1. Balancing an accurate representation of the molecular surface in generalized Born formalisms with integrator stability in molecular dynamics simulations

    Czech Academy of Sciences Publication Activity Database

    Chocholoušová, Jana; Feig, M.

    2006-01-01

    Roč. 27, č. 6 (2006), s. 719-729 ISSN 0192-8651 Keywords : molecular surface * generalized Born formalisms * molecular dynamic simulations Subject RIV: CC - Organic Chemistry Impact factor: 4.893, year: 2006

  2. A coastal surface seawater analyzer for nitrogenous nutrient mapping

    Science.gov (United States)

    Masserini, Robert T.; Fanning, Kent A.; Hendrix, Steven A.; Kleiman, Brittany M.

    2017-11-01

    Satellite-data-based modeling of chlorophyll indicates that ocean waters in the mesosphere category are responsible for the majority of oceanic net primary productivity. Coastal waters, which frequently have surface chlorophyll values in the mesosphere range and have strong horizontal chlorophyll gradients and large temporal variations. Thus programs of detailed coastal nutrient surveys are essential to the study of the dynamics of oceanic net primary productivity, along with land use impacts on estuarine and coastal ecosystems. The degree of variability in these regions necessitates flexible instrumentation capable of near real-time analysis to detect and monitor analytes of interest. This work describes the development of a portable coastal surface seawater analyzer for nutrient mapping that can simultaneously elucidate with high resolution the distribution of nitrate, nitrite, and ammonium - the three principal nitrogenous inorganic nutrients in coastal systems. The approach focuses on the use of pulsed xenon flash lamps to construct an analyzer which can be adapted to any automated chemistry with fluorescence detection. The system has two heaters, on-the-fly standardization, on-board data logging, an independent 24 volt direct current power supply, internal local operating network, a 12 channel peristaltic pump, four rotary injection/selection valves, and an intuitive graphical user interface. Using the methodology of Masserini and Fanning (2000) the detection limits for ammonium, nitrite, and nitrate plus nitrite were 11, 10, and 22 nM, respectively. A field test of the analyzer in Gulf of Mexico coastal waters demonstrated its ability to monitor and delineate the complexity of inorganic nitrogen nutrient enrichments within a coastal system.

  3. Neurogenetics and Nutrigenomics of Neuro-Nutrient Therapy for Reward Deficiency Syndrome (RDS): Clinical Ramifications as a Function of Molecular Neurobiological Mechanisms

    Science.gov (United States)

    Blum, Kenneth; Oscar-Berman, Marlene; Stuller, Elizabeth; Miller, David; Giordano, John; Morse, Siobhan; McCormick, Lee; Downs, William B; Waite, Roger L; Barh, Debmalya; Neal, Dennis; Braverman, Eric R; Lohmann, Raquel; Borsten, Joan; Hauser, Mary; Han, David; Liu, Yijun; Helman, Manya; Simpatico, Thomas

    2013-01-01

    In accord with the new definition of addiction published by American Society of Addiction Medicine (ASAM) it is well-known that individuals who present to a treatment center involved in chemical dependency or other documented reward dependence behaviors have impaired brain reward circuitry. They have hypodopaminergic function due to genetic and/or environmental negative pressures upon the reward neuro-circuitry. This impairment leads to aberrant craving behavior and other behaviors such as Substance Use Disorder (SUD). Neurogenetic research in both animal and humans revealed that there is a well-defined cascade in the reward site of the brain that leads to normal dopamine release. This cascade has been termed the “Brain Reward Cascade” (BRC). Any impairment due to either genetics or environmental influences on this cascade will result in a reduced amount of dopamine release in the brain reward site. Manipulation of the BRC has been successfully achieved with neuro-nutrient therapy utilizing nutrigenomic principles. After over four decades of development, neuro-nutrient therapy has provided important clinical benefits when appropriately utilized. This is a review, with some illustrative case histories from a number of addiction professionals, of certain molecular neurobiological mechanisms which if ignored may lead to clinical complications. PMID:23926462

  4. Neurogenetics and Nutrigenomics of Neuro-Nutrient Therapy for Reward Deficiency Syndrome (RDS): Clinical Ramifications as a Function of Molecular Neurobiological Mechanisms.

    Science.gov (United States)

    Blum, Kenneth; Oscar-Berman, Marlene; Stuller, Elizabeth; Miller, David; Giordano, John; Morse, Siobhan; McCormick, Lee; Downs, William B; Waite, Roger L; Barh, Debmalya; Neal, Dennis; Braverman, Eric R; Lohmann, Raquel; Borsten, Joan; Hauser, Mary; Han, David; Liu, Yijun; Helman, Manya; Simpatico, Thomas

    2012-11-27

    In accord with the new definition of addiction published by American Society of Addiction Medicine (ASAM) it is well-known that individuals who present to a treatment center involved in chemical dependency or other documented reward dependence behaviors have impaired brain reward circuitry. They have hypodopaminergic function due to genetic and/or environmental negative pressures upon the reward neuro-circuitry. This impairment leads to aberrant craving behavior and other behaviors such as Substance Use Disorder (SUD). Neurogenetic research in both animal and humans revealed that there is a well-defined cascade in the reward site of the brain that leads to normal dopamine release. This cascade has been termed the "Brain Reward Cascade" (BRC). Any impairment due to either genetics or environmental influences on this cascade will result in a reduced amount of dopamine release in the brain reward site. Manipulation of the BRC has been successfully achieved with neuro-nutrient therapy utilizing nutrigenomic principles. After over four decades of development, neuro-nutrient therapy has provided important clinical benefits when appropriately utilized. This is a review, with some illustrative case histories from a number of addiction professionals, of certain molecular neurobiological mechanisms which if ignored may lead to clinical complications.

  5. Development of tight-binding, chemical-reaction-dynamics simulator for combinatorial computational chemistry

    International Nuclear Information System (INIS)

    Kubo, Momoji; Ando, Minako; Sakahara, Satoshi; Jung, Changho; Seki, Kotaro; Kusagaya, Tomonori; Endou, Akira; Takami, Seiichi; Imamura, Akira; Miyamoto, Akira

    2004-01-01

    Recently, we have proposed a new concept called 'combinatorial computational chemistry' to realize a theoretical, high-throughput screening of catalysts and materials. We have already applied our combinatorial, computational-chemistry approach, mainly based on static first-principles calculations, to various catalysts and materials systems and its applicability to the catalysts and materials design was strongly confirmed. In order to realize more effective and efficient combinatorial, computational-chemistry screening, a high-speed, chemical-reaction-dynamics simulator based on quantum-chemical, molecular-dynamics method is essential. However, to the best of our knowledge, there is no chemical-reaction-dynamics simulator, which has an enough high-speed ability to perform a high-throughput screening. In the present study, we have succeeded in the development of a chemical-reaction-dynamics simulator based on our original, tight-binding, quantum-chemical, molecular-dynamics method, which is more than 5000 times faster than the regular first-principles, molecular-dynamics method. Moreover, its applicability and effectiveness to the atomistic clarification of the methanol-synthesis dynamics at reaction temperature were demonstrated

  6. Uses of neutron scattering in supramolecular chemistry

    International Nuclear Information System (INIS)

    Lindoy, L.F.

    1998-01-01

    Full text: A major thrust in recent chemical research has been the development of supramolecular chemistry 1 - broadly the chemistry of large multicomponent molecular assemblies in which the component structural units are held together by either covalent linkages or by a variety of weaker (non-covalent) interactions that include hydrogen bonding, dipole stacking, π-stacking, van der Waals q forces and favourable hydrophobic interactions. Much of the activity in the area has been motivated by the known behaviour of biological molecules (such as enzymes). Thus molecular assemblies are ubiquitous in natural systems but, with a limited number of exceptions, have only recently been the subject of increasing investigation by chemists. A feature of much of this recent work has been its focus on molecular design for achieving complementarity between single molecule hosts and guests. The use of single crystal neutron diffraction coupled with molecular modelling and a range of other techniques to investigate the nature of individual supramolecular systems will be discussed. By way of example, in one such study the supramolecular array formed by co-crystallisation of 1,2- diaminoethane and benzoic acid has been investigated; the system self-assembles into an unusual layered structure composed of two-dimensional hydrogen bonded networks sandwiched between layers of edge-to-face stacked aromatic systems. The number of hydrogen-bond donors and acceptors is balanced in this structure

  7. Horizons of organic and organoelemental chemistry. 7. All-Russian conference on organometallic chemistry. Summaries of reports. V. 2

    International Nuclear Information System (INIS)

    1999-01-01

    Abstracts of the seventh All-Russian conference on organometallic chemistry are presented. The main part of reports are devoted to the synthesis of organometallic compounds with assigned properties of rare earths, transition elements and other metals. Data on molecular structure, chemical and electrochemical properties of these compounds are presented

  8. Present status and future trend of radiation chemistry and its application

    International Nuclear Information System (INIS)

    Tabata, Yoneho

    1977-01-01

    The recent reports or reviews on the results of basic study of radiation chemistry were introduced. Especially, vapor-phase radiation chemistry, electron behavior in liquid glass and molecular crystal were reviewed. The basic study of radiation chemistry which has attracted much attention contains the short-life pico-second pulse radiolysis, the study on the effect of LET and the study by ESR in the various fields. The present status of these studies were explained as well as the chemistry of positron e + and positronium Ps. As the studies of radiation chemistry in the field of macromolecules, radiation polymerization, degradation of polymer and the graft-polymerization were reviewed to discuss the prospective development and problem for its industrial application. (Kobatake, H.)

  9. Liquid crystals beyond displays chemistry, physics, and applications

    CERN Document Server

    Li, Quan

    2012-01-01

    The chemistry, physics, and applications of liquid crystals beyond LCDs Liquid Crystals (LCs) combine order and mobility on a molecular and supramolecular level. But while these remarkable states of matter are most commonly associated with visual display technologies, they have important applications for a variety of other fields as well. Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications considers these, bringing together cutting-edge research from some of the most promising areas of LC science. Featuring contributions from respected researchers from around the globe, th

  10. A study of how precursor key concepts for organic chemistry success are understood by general chemistry students

    Science.gov (United States)

    Meyer, Patrick Gerard

    This study examines college student understanding of key concepts that will support future organic chemistry success as determined by university instructors. During four one-hour individual interviews the sixteen subjects attempted to solve general chemistry problems. A think-aloud protocol was used along with a whiteboard where the students could draw and illustrate their ideas. The protocols for the interviews were adapted from the Covalent Structure and Bonding two-tiered multiple choice diagnostic instrument (Peterson, Treagust, & Garnett, 1989) and augmented by the Geometry and Polarity of Molecules single-tiered multiple choice instrument (Furio & Calatayud, 1996). The interviews were videotaped, transcribed, and coded for analysis to determine the subjects' understanding of the key ideas. The subjects displayed many misconceptions that were summarized into nine assertions about student conceptualization of chemistry. (1) Many students misunderstand the location and nature of intermolecular forces. (2) Some think electronegativity differences among atoms in a molecule are sufficient to make the molecule polar, regardless of spatial arrangement. (3) Most know that higher phase change temperatures imply stronger intermolecular attractions, but many do not understand the difference between covalent molecular and covalent network substances. (4) Many have difficulty deciding whether a molecule is polar or non-polar, often confusing bilateral symmetry with spatial symmetry in all three dimensions. (5) Many cannot reliably draw correct Lewis structures due to carelessness and overuse of flawed algorithms. (6) Many are confused by how electrons can both repel one other and facilitate bonding between atoms via orbitals---this seems oxymoronic to them. (7) Many cannot explain why the atoms of certain elements do not follow the octet rule and some believe the octet rule alone can determine the shape of a molecule. (8) Most do know that electronegativity and polarity

  11. Advances in the understanding of nutrient dynamics and management in UK agriculture.

    Science.gov (United States)

    Dungait, Jennifer A J; Cardenas, Laura M; Blackwell, Martin S A; Wu, Lianhai; Withers, Paul J A; Chadwick, David R; Bol, Roland; Murray, Philip J; Macdonald, Andrew J; Whitmore, Andrew P; Goulding, Keith W T

    2012-09-15

    Current research on macronutrient cycling in UK agricultural systems aims to optimise soil and nutrient management for improved agricultural production and minimise effects on the environment and provision of ecosystem services. Nutrient use inefficiencies can cause environmental pollution through the release of greenhouse gases into the atmosphere and of soluble and particulate forms of N, P and carbon (C) in leachate and run-off into watercourses. Improving nutrient use efficiencies in agriculture calls for the development of sustainable nutrient management strategies: more efficient use of mineral fertilisers, increased recovery and recycling of waste nutrients, and, better exploitation of the substantial inorganic and organic reserves of nutrients in the soil. Long-term field experimentation in the UK has provided key knowledge of the main nutrient transformations in agricultural soils. Emerging analytical technologies, especially stable isotope labelling, that better characterise macronutrient forms and bioavailability and improve the quantification of the complex relationships between the macronutrients in soils at the molecular scale, are augmenting this knowledge by revealing the underlying processes. The challenge for the future is to determine the relationships between the dynamics of N, P and C across scales, which will require both new modelling approaches and integrated approaches to macronutrient cycling. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Nutrient-dependent/pheromone-controlled adaptive evolution: a model

    Directory of Open Access Journals (Sweden)

    James Vaughn Kohl

    2013-06-01

    Full Text Available Background: The prenatal migration of gonadotropin-releasing hormone (GnRH neurosecretory neurons allows nutrients and human pheromones to alter GnRH pulsatility, which modulates the concurrent maturation of the neuroendocrine, reproductive, and central nervous systems, thus influencing the development of ingestive behavior, reproductive sexual behavior, and other behaviors. Methods: This model details how chemical ecology drives adaptive evolution via: (1 ecological niche construction, (2 social niche construction, (3 neurogenic niche construction, and (4 socio-cognitive niche construction. This model exemplifies the epigenetic effects of olfactory/pheromonal conditioning, which alters genetically predisposed, nutrient-dependent, hormone-driven mammalian behavior and choices for pheromones that control reproduction via their effects on luteinizing hormone (LH and systems biology. Results: Nutrients are metabolized to pheromones that condition behavior in the same way that food odors condition behavior associated with food preferences. The epigenetic effects of olfactory/pheromonal input calibrate and standardize molecular mechanisms for genetically predisposed receptor-mediated changes in intracellular signaling and stochastic gene expression in GnRH neurosecretory neurons of brain tissue. For example, glucose and pheromones alter the hypothalamic secretion of GnRH and LH. A form of GnRH associated with sexual orientation in yeasts links control of the feedback loops and developmental processes required for nutrient acquisition, movement, reproduction, and the diversification of species from microbes to man. Conclusion: An environmental drive evolved from that of nutrient ingestion in unicellular organisms to that of pheromone-controlled socialization in insects. In mammals, food odors and pheromones cause changes in hormones such as LH, which has developmental affects on pheromone-controlled sexual behavior in nutrient-dependent reproductively

  13. Research advancements and applications of carboranes in nuclear medicinal chemistry

    International Nuclear Information System (INIS)

    Chen Wen; Wei Hongyuan; Luo Shunzhong

    2011-01-01

    Because of their uniquely high thermal and chemical stabilities, carboranes have become a subject of study with high interest in the chemistry of supra molecules, catalysts and radiopharmaceuticals. In recent years, the role of carboranes in nuclear medicinal chemistry has been diversified, from the traditional use in boron neutron capture therapy (BNCT), to the clinical applications in molecular radio imaging and therapy. This paper provides an overview of the synthesis and characterization of carboranes and their applications in nuclear medicinal chemistry, with highlights of recent key advancements in the re- search areas of BNCT and radio imaging. (authors)

  14. Coal-related research, organic chemistry, and catalysis

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Coal chemistry research topics included: H exchange at 400 0 C, breaking C-C bonds in coal, molecular weight estimation using small-angle neutron scattering, 13 C NMR spectra of coals, and tunneling during H/D isotope effects. Studies of coal conversion chemistry included thermolysis of bibenzyl and 1-naphthol, heating of coals in phenol, advanced indirect liquefaction based on Koelbel slurry Fischer-Tropsch reactor, and plasma oxidation of coal minerals. Reactions of PAHs in molten SbCl 3 , a hydrocracking catalyst, were studied. Finally, heterogeneous catalysis (desulfurization etc.) was studied using Cu, Au, and Ni surfaces. 7 figures, 6 tables

  15. Students' Learning with the Connected Chemistry (CC1) Curriculum: Navigating the Complexities of the Particulate World

    Science.gov (United States)

    Levy, Sharona T.; Wilensky, Uri

    2009-01-01

    The focus of this study is students' learning with a Connected Chemistry unit, CC1 (denotes Connected Chemistry, chapter 1), a computer-based environment for learning the topics of gas laws and kinetic molecular theory in chemistry (Levy and Wilensky 2009). An investigation was conducted into high-school students' learning with Connected…

  16. Postdiagnostic intake of one-carbon nutrients and alcohol in relation to colorectal cancer survival123

    Science.gov (United States)

    Lochhead, Paul; Nishihara, Reiko; Qian, Zhi Rong; Mima, Kosuke; Cao, Yin; Sukawa, Yasutaka; Kim, Sun A; Inamura, Kentaro; Zhang, Xuehong; Wu, Kana; Giovannucci, Edward; Meyerhardt, Jeffrey A; Chan, Andrew T; Fuchs, Charles S; Ogino, Shuji

    2015-01-01

    Background: Observational data have suggested that intakes of nutrients involved in one-carbon metabolism are inversely associated with risk of colorectal carcinoma and adenomas. In contrast, results from some preclinical studies and cardiovascular and chemoprevention trials have raised concerns that high folate intake may promote carcinogenesis by facilitating the progression of established neoplasia. Objective: We tested the hypothesis that higher total folate intake (including food folate and folic acid from fortified foods and supplements) or other one-carbon nutrient intakes might be associated with poorer survival after a diagnosis of colorectal cancer. Design: We used rectal and colon cancer cases within the following 2 US prospective cohort studies: the Nurses’ Health Study and the Health Professionals Follow-Up Study. Biennial questionnaires were used to gather information on medical history and lifestyle factors, including smoking and alcohol consumption. B-vitamin and methionine intakes were derived from food-frequency questionnaires. Data on tumor molecular characteristics (including microsatellite instability, CpG island methylator phenotype, KRAS, BRAF, and PIK3CA mutations, and long interspersed nucleotide element 1 methylation level) were available for a subset of cases. We assessed colorectal cancer–specific mortality according to postdiagnostic intakes of one-carbon nutrients with the use of multivariable Cox proportional hazards regression models. Results: In 1550 stage I–III colorectal cancer cases with a median follow-up of 14.9 y, we documented 641 deaths including 176 colorectal cancer–specific deaths. No statistically significant associations were observed between postdiagnostic intakes of folate or other one-carbon nutrients and colorectal cancer–specific mortality (multivariate P-trend ≥ 0.21). In an exploratory molecular pathologic epidemiology survival analysis, there was no significant interaction between one

  17. Molecular Star

    Indian Academy of Sciences (India)

    In molecular self-assembly, molecules put themselves together in a predefined way ... work has been already published in Chemistry- A European Jour- nal in the September ... prevalent in matter ranging from atoms to molecules to biomolecules; it is also ... erate chemical forces are reversible and dynamic in nature mean-.

  18. Analysis of Dissolved Organic Nutrients in the Interstitial Water of Natural Biofilms.

    Science.gov (United States)

    Tsuchiya, Yuki; Eda, Shima; Kiriyama, Chiho; Asada, Tomoya; Morisaki, Hisao

    2016-07-01

    In biofilms, the matrix of extracellular polymeric substances (EPSs) retains water in the interstitial region of the EPS. This interstitial water is the ambient environment for microorganisms in the biofilms. The nutrient condition in the interstitial water may affect microbial activity in the biofilms. In the present study, we measured the concentrations of dissolved organic nutrients, i.e., saccharides and proteins, contained in the interstitial water of biofilms formed on the stones. We also analyzed the molecular weight distribution, chemical species, and availability to bacteria of some saccharides in the interstitial water. Colorimetric assays showed that the concentrations of saccharides and proteins in the biofilm interstitial water were significantly higher (ca. 750 times) than those in the surrounding lake waters (p Chromatographic analyses demonstrated that the saccharides in the interstitial waters were mainly of low molecular-weight saccharides such as glucose and maltose, while proteins in the interstitial water were high molecular-weight proteins (over 7000 Da). Bacterial growth and production of EPS occurred simultaneously with the decrease in the low molecular-weight saccharide concentrations when a small portion of biofilm suspension was inoculated to the collected interstitial water, suggesting that the dissolved saccharides in the interstitial water support bacterial growth and formation of biofilms.

  19. Computational chemistry reviews of current trends v.4

    CERN Document Server

    1999-01-01

    This volume presents a balanced blend of methodological and applied contributions. It supplements well the first three volumes of the series, revealing results of current research in computational chemistry. It also reviews the topographical features of several molecular scalar fields. A brief discussion of topographical concepts is followed by examples of their application to several branches of chemistry.The size of a basis set applied in a calculation determines the amount of computer resources necessary for a particular task. The details of a common strategy - the ab initio model potential

  20. Rotational laser cooling of vibrationally and translationally cold molecular ions

    DEFF Research Database (Denmark)

    Staanum, Peter; Højbjerre, Klaus; Skyt, Peter Sandegaard

    2010-01-01

    Stationary molecules in well-defined internal states are of broad interest for physics and chemistry. In physics, this includes metrology 1, 2, 3 , quantum computing 4, 5 and many-body quantum mechanics 6, 7 , whereas in chemistry, state-prepared molecular targets are of interest for uni......-molecular reactions with coherent light fields 8, 9 , for quantum-state-selected bi-molecular reactions 10, 11, 12 and for astrochemistry 12 . Here, we demonstrate rotational ground-state cooling of vibrationally and translationally cold MgH+ ions, using a laser-cooling scheme based on excitation of a single...

  1. Current developments in radiation chemistry

    International Nuclear Information System (INIS)

    Cooper, R.

    2000-01-01

    Full text: The theme of the 2000 Gordon Conference on Radiation Chemistry was 'diversity'. The range of topics covered was heralded by the opening presentations which went from the galactic to molecular biology, radiation chemistry and non thermal surface processes in the outer solar system to achievements and open challenges in DNA research. The rest of the conference reflected the extended usage of radiation chemistry -its processes and techniques - applied to a panorama of topics. The ability to generate either oxidising or reducing free radicals in known quantities has been the foundation stone on which all applications are based. In particular it is noticeable that biological systems have been attempted by an increasing number of workers, such as studies of biological ageing and also reactions of nitric oxide in biological environments. Electron transfer processes in proteins are straightforward applications of solvated electron chemistry even if the results are not straightforward in their interpretation. Other topics presented include, radiation chemical processes induced in: supercritical CO 2 , treatment of contaminated materials, 3-dimensional Fullerenes, zeolites and radiation catalysis. In material science, aspects of ions and excited states in polymers, conducting polymers, donor acceptor processes in photo curing, enhancement of photo-electron yields in doped silver halides- improvement of the photographic process, radiation chemistry in cages and bubbles are discussed. The fundamental aspects of radiation chemistry are not yet all worked out. Subpicosecond pulsed electron beam sources, some of them 'tabletop', are still being planned to probe the early events in radiation chemistry both in water and in organic solvents. There is still an interest in the chemistry produced by pre-solvated electrons and the processes induced by heavy ion radiolysis. The description of the relaxation of an irradiated system which contains uneven distributions of ions

  2. National survey of molecular bacterial diversity of New Zealand groundwater: relationships between biodiversity, groundwater chemistry and aquifer characteristics.

    Science.gov (United States)

    Sirisena, Kosala A; Daughney, Christopher J; Moreau-Fournier, Magali; Ryan, Ken G; Chambers, Geoffrey K

    2013-12-01

    Groundwater is a vital component of rural and urban water supplies in New Zealand. Although extensive monitoring of chemical and physical properties is conducted due to the high demand for this valuable resource, current information on its bacterial content is limited. However, bacteria provide an immense contribution to drive the biogeochemical processes in the groundwater ecosystem as in any other ecosystem. Therefore, a proper understanding of bacterial diversity is crucial to assess the effectiveness of groundwater management policies. In this study, we investigated the bacterial community structure in NZ groundwater at a national scale using the terminal restriction fragment length polymorphism (T-RFLP) molecular profiling tool and determined the relationships between bacterial diversity and groundwater chemistry, geological parameters and human impact. Considerable bacterial diversity was present and the community structures were strongly related to groundwater chemistry, and in particular to redox potential and human impact, reflecting their potential influence on determination of bacterial diversity. Further, the mean residence time of groundwater also showed relationships with bacterial community structure. These novel findings pertaining to community composition and its relationships with environmental parameters will provide a strong foundation for qualitative exploration of the bacterial diversity in NZ groundwater in relation to sustainable management of this valuable resource. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behavior and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.

  4. Nutrient cycling strategies.

    NARCIS (Netherlands)

    Breemen, van N.

    1995-01-01

    This paper briefly reviews pathways by which plants can influence the nutrient cycle, and thereby the nutrient supply of themselves and of their competitors. Higher or lower internal nutrient use efficiency positively feeds back into the nutrient cycle, and helps to increase or decrease soil

  5. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    Science.gov (United States)

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    -support bonding and structure, which identify the supports as ligands with electron-donor properties that influence reactivity and catalysis. Each of the catalyst design variables has been varied independently, illustrated by mononuclear and tetranuclear iridium on zeolite HY and on MgO and by isostructural rhodium and iridium (diethylene or dicarbonyl) complexes on these supports. The data provide examples resolving the roles of the catalyst design variables and place the catalysis science on a firm foundation of organometallic chemistry linked with surface science. Supported molecular catalysts offer the advantages of characterization in the absence of solvents and with surface-science methods that do not require ultrahigh vacuum. Families of supported metal complexes have been made by replacement of ligands with others from the gas phase. Spectroscopically identified catalytic reaction intermediates help to elucidate catalyst performance and guide design. The methods are illustrated for supported complexes and clusters of rhodium, iridium, osmium, and gold used to catalyze reactions of small molecules that facilitate identification of the ligands present during catalysis: alkene dimerization and hydrogenation, H-D exchange in the reaction of H2 with D2, and CO oxidation. The approach is illustrated with the discovery of a highly active and selective MgO-supported rhodium carbonyl dimer catalyst for hydrogenation of 1,3-butadiene to give butenes.

  6. Welcome to Inorganics: A New Open Access, Inclusive Forum for Inorganic Chemistry

    Directory of Open Access Journals (Sweden)

    Duncan H. Gregory

    2013-06-01

    Full Text Available One of the beauties of inorganic chemistry is its sheer diversity. Just as chemistry sits at the centre of the sciences, inorganic chemistry sits at the centre of chemistry itself. Inorganic chemists are fortunate in having the entire periodic table at their disposal, providing a palette for the creation of a multitude of rich and diverse compounds and materials from the simplest salts to the most complex of molecular species. It follows that the language of inorganic chemistry can thus be a demanding one, accommodating sub-disciplines with very different perspectives and frames of reference. One could argue that it is the unequivocal breadth of inorganic chemistry that empowers inorganic chemists to work at the interfaces, not just between the traditional Inorganic-Organic-Physical boundaries of the discipline, but in the regions where chemistry borders the other physical and life sciences, engineering and socio-economics. [...

  7. The semantics of Chemical Markup Language (CML for computational chemistry : CompChem

    Directory of Open Access Journals (Sweden)

    Phadungsukanan Weerapong

    2012-08-01

    Full Text Available Abstract This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications.

  8. The semantics of Chemical Markup Language (CML) for computational chemistry : CompChem.

    Science.gov (United States)

    Phadungsukanan, Weerapong; Kraft, Markus; Townsend, Joe A; Murray-Rust, Peter

    2012-08-07

    : This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML) by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications.

  9. Soil Carbon Chemistry and Greenhouse Gas Production in Global Peatlands

    Science.gov (United States)

    Normand, A. E.; Turner, B. L.; Lamit, L. J.; Smith, A. N.; Baiser, B.; Clark, M. W.; Hazlett, C.; Lilleskov, E.; Long, J.; Grover, S.; Reddy, K. R.

    2017-12-01

    Peatlands play a critical role in the global carbon cycle because they contain approximately 30% of the 1500 Pg of carbon stored in soils worldwide. However, the stability of these vast stores of carbon is under threat from climate and land-use change, with important consequences for global climate. Ecosystem models predict the impact of peatland perturbation on carbon fluxes based on total soil carbon pools, but responses could vary markedly depending on the chemical composition of soil organic matter. Here we combine experimental and observational studies to quantify the chemical nature and response to perturbation of soil organic matter in peatlands worldwide. We quantified carbon functional groups in a global sample of 125 freshwater peatlands using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to determine the drivers of molecular composition of soil organic matter. We then incubated a representative subset of the soils under aerobic and anaerobic conditions to determine how organic matter composition influences carbon dioxide (CO2) and methane (CH4) emissions following drainage or flooding. The functional chemistry of peat varied markedly at large and small spatial scales, due to long-term land use change, mean annual temperature, nutrient status, and vegetation, but not pH. Despite this variation, we found predictable responses of greenhouse gas production following drainage based on soil carbon chemistry, defined by a novel Global Peat Stability Index, with greater CO2 and CH4 fluxes from soils enriched in oxygen-containing organic carbon (O-alkyl C) and depleted in aromatic and hydrophobic compounds. Incorporation of the Global Peat Stability Index of peatland organic matter into earth system models and management strategies, which will improve estimates of GHG fluxes from peatlands and ultimately advance management to reduce carbon loss from these sensitive ecosystems.

  10. International Journal of Molecular Science 2017 Best Paper Award.

    Science.gov (United States)

    2017-11-02

    The Editors of the International Journal of Molecular Sciences have established the Best Paper Award to recognize the most outstanding articles published in the areas of molecular biology, molecular physics and chemistry that have been published in the International Journal of Molecular Sciences. The prizes have been awarded annually since 2012 [...].

  11. Advances in the understanding of nutrient dynamics and management in UK agriculture

    International Nuclear Information System (INIS)

    Dungait, Jennifer A.J.; Cardenas, Laura M.; Blackwell, Martin S.A.; Wu, Lianhai; Withers, Paul J.A.; Chadwick, David R.; Bol, Roland; Murray, Philip J.; Macdonald, Andrew J.; Whitmore, Andrew P.; Goulding, Keith W.T.

    2012-01-01

    Current research on macronutrient cycling in UK agricultural systems aims to optimise soil and nutrient management for improved agricultural production and minimise effects on the environment and provision of ecosystem services. Nutrient use inefficiencies can cause environmental pollution through the release of greenhouse gases into the atmosphere and of soluble and particulate forms of N, P and carbon (C) in leachate and run-off into watercourses. Improving nutrient use efficiencies in agriculture calls for the development of sustainable nutrient management strategies: more efficient use of mineral fertilisers, increased recovery and recycling of waste nutrients, and, better exploitation of the substantial inorganic and organic reserves of nutrients in the soil. Long-term field experimentation in the UK has provided key knowledge of the main nutrient transformations in agricultural soils. Emerging analytical technologies, especially stable isotope labelling, that better characterise macronutrient forms and bioavailability and improve the quantification of the complex relationships between the macronutrients in soils at the molecular scale, are augmenting this knowledge by revealing the underlying processes. The challenge for the future is to determine the relationships between the dynamics of N, P and C across scales, which will require both new modelling approaches and integrated approaches to macronutrient cycling. -- Highlights: ► Major advances in the knowledge of macronutrient cycling in agricultural soils are reviewed in the context of management. ► Novel analytical techniques and innovative modelling approaches that enhance understanding of nutrient cycling are explored. ► Knowledge gaps are identified, and the potential to improve comprehension of the integrated nutrient cycles is considered.

  12. MOLECULAR CLOUD CHEMISTRY AND THE IMPORTANCE OF DIELECTRONIC RECOMBINATION

    International Nuclear Information System (INIS)

    Bryans, P.; Kreckel, H.; Savin, D. W.; Roueff, E.; Wakelam, V.

    2009-01-01

    Dielectronic recombination (DR) of singly charged ions is a reaction pathway that is commonly neglected in chemical models of molecular clouds. In this study we include state-of-the-art DR data for He + , C + , N + , O + , Na + , and Mg + in chemical models used to simulate dense molecular clouds, protostars, and diffuse molecular clouds. We also update the radiative recombination (RR) rate coefficients for H + , He + , C + , N + , O + , Na + , and Mg + to the current state-of-the-art values. The new RR data have little effect on the models. However, the inclusion of DR results in significant differences in gas-grain models of dense, cold molecular clouds for the evolution of a number of surface and gas-phase species. We find differences of a factor of 2 in the abundance for 74 of the 655 species at times of 10 4 -10 6 yr in this model when we include DR. Of these 74 species, 16 have at least a factor of 10 difference in abundance. We find the largest differences for species formed on the surface of dust grains. These differences are due primarily to the addition of C + DR, which increases the neutral C abundance, thereby enhancing the accretion of C onto dust. These results may be important for the warm-up phase of molecular clouds when surface species are desorbed into the gas phase. We also note that no reliable state-of-the-art RR or DR data exist for Si + , P + , S + , Cl + , and Fe + . Modern calculations for these ions are needed to better constrain molecular cloud models.

  13. Two tales of legacy effects on stream nutrient behaviour

    Science.gov (United States)

    Bieroza, M.; Heathwaite, A. L.

    2017-12-01

    Intensive agriculture has led to large-scale land use conversion, shortening of flow pathways and increased loads of nutrients in streams. This legacy results in gradual build-up of nutrients in agricultural catchments: in soil for phosphorus (biogeochemical legacy) and in the unsaturated zone for nitrate (hydrologic legacy), controlling the water quality in the long-term. Here we investigate these effects on phosphorus and nitrate stream concentrations using high-frequency (10-5 - 100 Hz) sampling with in situ wet-chemistry analysers and optical sensors. Based on our 5 year study, we observe that storm flow responses differ for both nutrients: phosphorus shows rapid increases (up to 3 orders of magnitude) in concentrations with stream flow, whereas nitrate shows both dilution and concentration effects with increasing flow. However, the range of nitrate concentrations change is narrow (up to 2 times the mean) and reflects chemostatic behaviour. We link these nutrient responses with their dominant sources and flow pathways in the catchment. Nitrate from agriculture (with the peak loading in 1983) is stored in the unsaturated zone of the Penrith Sandstone, which can reach up to 70 m depth. Thus nitrate legacy is related to a hydrologic time lag with long travel times in the unsaturated zone. Phosphorus is mainly sorbed to soil particles, therefore it is mobilised rapidly during rainfall events (biogeochemical legacy). The phosphorus stream response will however depend on how well connected is the stream to the catchment sources (driven by soil moisture distribution) and biogeochemical activity (driven by temperature), leading to both chemostatic and non-chemostatic responses, alternating on a storm-to-storm and seasonal basis. Our results also show that transient within-channel storage is playing an important role in delivery of phosphorus, providing an additional time lag component. These results show, that consistent agricultural legacy in the catchment (high

  14. Influence of radiolytic products on the chemistry of uranium VI in brines

    International Nuclear Information System (INIS)

    Lucchini, J-F.; Reed, D.T.; Borkowski, M.; Rafalski, A.; Conca, J.

    2004-01-01

    In the near field of a salt repository of nuclear waste, ionizing radiations can strongly affect the chemistry of concentrated saline solutions. Radiolysis can locally modify the redox conditions, speciation, solubility and mobility of the actinide compounds. In the case of uranium VI, radiolytic products can not only reduce U(VI), but also react with uranium species. The net effect on the speciation of uranyl depends on the relative kinetics of the reactions and the buildup of molecular products in brine solutions. The most important molecular products in brines are expected to be hypochlorite ion, hypochlorous acid and hydrogen peroxide. Although U(VI) is expected not to be significantly affected by radiolysis, the combined effects of the major molecular radiolytic products on the chemistry of U(VI) in brines have not been experimentally established previously. (authors)

  15. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    Science.gov (United States)

    Yu, Liang; Rozemeijer, Joachim; van Breukelen, Boris M.; Ouboter, Maarten; van der Vlugt, Corné; Broers, Hans Peter

    2018-01-01

    The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN), total phosphorus (TP), NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type) for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban-agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs) in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88) between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate from the decomposition of

  16. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    Directory of Open Access Journals (Sweden)

    L. Yu

    2018-01-01

    Full Text Available The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN, total phosphorus (TP, NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban–agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88 between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate

  17. Radiation chemistry and its application

    International Nuclear Information System (INIS)

    Majima, Tetsuro

    2013-01-01

    Effects of radiation to human body have been seriously discussed nowadays. These are important issues for the realization of sustainable society. It should be emphasized that various reactive intermediates generated by radiation play important roles in each cases. Radiation chemical studies will provide various reaction-mechanistic aspects on these important issues. Our research group has continuously carried out reaction-mechanistic studies using radiation chemical methods. From these studies, we have obtained a variety of results on basic molecular systems, reactions, materials that are close to practical application, biological systems and so on. Reactive species are generated from the radiation reactions in solution, and can be used as one-electron oxidative and reductive reagent to give selectively radical cation and anion of solute molecules such as various organic and inorganic molecules. Therefore, the radiation chemistry has contributed significantly to chemistry in which one-electron oxidation and reduction play the important role. The kinetics of such redox processes and the following reduction play the important role. The kinetics of such redox processes and the following reactions can be studied in real time with the transition absorption measurement by the pulse radiolysis technique. Even though the target compounds cannot be oxidized and reduced in chemical or electrochemical oxidation and reduction, their one-electron redox can be performed by the electron beam radiation. Therefore, radiation chemistry is very useful technique for basic science. Moreover, application potentials of radiation chemistry are so high for various research subjects. Moreover, application potentials of radiation chemistry are so high for various research subjects

  18. Multi-scale multi-physics computational chemistry simulation based on ultra-accelerated quantum chemical molecular dynamics method for structural materials in boiling water reactor

    International Nuclear Information System (INIS)

    Miyamoto, Akira; Sato, Etsuko; Sato, Ryo; Inaba, Kenji; Hatakeyama, Nozomu

    2014-01-01

    In collaboration with experimental experts we have reported in the present conference (Hatakeyama, N. et al., “Experiment-integrated multi-scale, multi-physics computational chemistry simulation applied to corrosion behaviour of BWR structural materials”) the results of multi-scale multi-physics computational chemistry simulations applied to the corrosion behaviour of BWR structural materials. In macro-scale, a macroscopic simulator of anode polarization curve was developed to solve the spatially one-dimensional electrochemical equations on the material surface in continuum level in order to understand the corrosion behaviour of typical BWR structural material, SUS304. The experimental anode polarization behaviours of each pure metal were reproduced by fitting all the rates of electrochemical reactions and then the anode polarization curve of SUS304 was calculated by using the same parameters and found to reproduce the experimental behaviour successfully. In meso-scale, a kinetic Monte Carlo (KMC) simulator was applied to an actual-time simulation of the morphological corrosion behaviour under the influence of an applied voltage. In micro-scale, an ultra-accelerated quantum chemical molecular dynamics (UA-QCMD) code was applied to various metallic oxide surfaces of Fe 2 O 3 , Fe 3 O 4 , Cr 2 O 3 modelled as same as water molecules and dissolved metallic ions on the surfaces, then the dissolution and segregation behaviours were successfully simulated dynamically by using UA-QCMD. In this paper we describe details of the multi-scale, multi-physics computational chemistry method especially the UA-QCMD method. This method is approximately 10,000,000 times faster than conventional first-principles molecular dynamics methods based on density-functional theory (DFT), and the accuracy was also validated for various metals and metal oxides compared with DFT results. To assure multi-scale multi-physics computational chemistry simulation based on the UA-QCMD method for

  19. Molecular codes in biological and chemical reaction networks.

    Directory of Open Access Journals (Sweden)

    Dennis Görlich

    Full Text Available Shannon's theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio- chemical systems able to process "meaningful" information from those that do not. Here, we present a formal method to assess a system's semantic capacity by analyzing a reaction network's capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries, biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades, an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems possess different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life.

  20. Reconstruction and analysis of nutrient-induced phosphorylation networks in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Guangyou eDuan

    2013-12-01

    Full Text Available Elucidating the dynamics of molecular processes in living organisms in response to external perturbations is a central goal in modern systems biology. We investigated the dynamics of protein phosphorylation events in Arabidopsis thaliana exposed to changing nutrient conditions. Phosphopeptide expression levels were detected at five consecutive time points over a time interval of 30 minutes after nutrient resupply following prior starvation. The three tested inorganic, ionic nutrients NH4+, NO3-, PO43- elicited similar phosphosignaling responses that were distinguishable from those invoked by the sugars mannitol, sucrose. When embedded in the protein-protein interaction network of Arabidopsis thaliana, phosphoproteins were found to exhibit a higher degree compared to average proteins. Based on the time-series data, we reconstructed a network of regulatory interactions mediated by phosphorylation. The performance of different network inference methods was evaluated by the observed likelihood of physical interactions within and across different subcellular compartments and based on gene ontology semantic similarity. The dynamic phosphorylation network was then reconstructed using a Pearson correlation method with added directionality based on partial variance differences. The topology of the inferred integrated network corresponds to an information dissemination architecture, in which the phosphorylation signal is passed on to an increasing number of phosphoproteins stratified into an initiation, processing, and effector layer. Specific phosphorylation peptide motifs associated with the distinct layers were identified indicating the action of layer-specific kinases. Despite the limited temporal resolution, combined with information on subcellular location, the available time-series data proved useful for reconstructing the dynamics of the molecular signaling cascade in response to nutrient stress conditions in the plant Arabidopsis thaliana.

  1. Nutrients, neurogenesis and brain ageing: From disease mechanisms to therapeutic opportunities.

    Science.gov (United States)

    Fidaleo, Marco; Cavallucci, Virve; Pani, Giovambattista

    2017-10-01

    Appreciation of the physiological relevance of mammalian adult neurogenesis has in recent years rapidly expanded from a phenomenon of homeostatic cell replacement and brain repair to the current view of a complex process involved in high order cognitive functions. In parallel, an array of endogenous or exogenous triggers of neurogenesis has also been identified, among which metabolic and nutritional cues have drawn significant attention. Converging evidence from animal and in vitro studies points to nutrient sensing and energy metabolism as major physiological determinants of neural stem cell fate, and modulators of the whole neurogenic process. While the cellular and molecular circuitries underlying metabolic regulation of neurogenesis are still incompletely understood, the key role of mitochondrial activity and dynamics, and the importance of autophagy have begun to be fully appreciated; moreover, nutrient-sensitive pathways and transducers such as the insulin-IGF cascade, the AMPK/mTOR axis and the transcription regulators CREB and Sirt-1 have been included, beside more established "developmental" signals like Notch and Wnt, in the molecular networks that dictate neural-stem-cell self-renewal, migration and differentiation in response to local and systemic inputs. Many of these nutrient-related cascades are deregulated in the contest of metabolic diseases and in ageing, and may contribute to impaired neurogenesis and thus to cognition defects observed in these conditions. Importantly, accumulating knowledge on the metabolic control of neurogenesis provides a theoretical framework for the trial of new or repurposed drugs capable of interfering with nutrient sensing as enhancers of neurogenesis in the context of neurodegeneration and brain senescence. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Dynamics of forest soil chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Alveteg, M

    1998-11-01

    Acidification caused by emissions of nitrogen and sulphur and associated adverse effects on forest ecosystems has been an issue on the political agenda for decades. Temporal aspects of soil acidification and/or recovery can be investigated using the soil chemistry model SAFE, a dynamic version of the steady-state model PROFILE used in critical loads assessment on the national level, e.g. for Sweden. In this thesis, possibilities to replace the use of apparent gibbsite solubility coefficients with a more mechanistic Al sub-model are investigated and a reconstruction model, MAKEDEP, is presented which makes hindcasts and forecasts of atmospheric deposition and nutrient uptake and cycling. A regional application of SAFE/MAKEDEP based on 622 sites in Switzerland is also presented. It is concluded that the quantitative information on pools and fluxes of Al in forest ecosystems is very limited and that there currently exists no mechanistic alternative in modelling soil solution Al. MAKEDEP is a valuable and operational tool for deriving input to dynamic soil chemistry models such as SMART, MAGIC and SAFE. For multi-layer models, e.g. the SAFE model, including nutrient cycling in MAKEDEP is shown to be important. The strength of the regional assessment strategy presented in this thesis lies in its transparency and modularity. All sub-modules, including models, transfer functions, assumptions in the data acquisition strategy, etc., can be checked and replaced individually. As the presented assessment strategy is based on knowledge and data from a wide range of scientists and fields it is of vital importance that the research community challenge the assumptions made. The many measurable intermediate results produced by the included models will hopefully encourage scientists to challenge the models through additional measurements at the calculation sites. It is concluded that current reduction plans are not sufficient for all forest ecosystems in Switzerland to recover from

  3. Molecular ferromagnetism

    International Nuclear Information System (INIS)

    Epstein, A.J.

    1990-01-01

    This past year has been one of substantial advancement in both the physics and chemistry of molecular and polymeric ferromagnets. The specific heat studies of (DMeFc)(TCNE) have revealed a cusp at the three-dimensional ferromagnetic transition temperature with a crossover to primarily 1-D behavior at higher temperatures. This paper discusses these studies

  4. Effects of the hippopotamus on the chemistry and ecology of a changing watershed.

    Science.gov (United States)

    Stears, Keenan; McCauley, Douglas J; Finlay, Jacques C; Mpemba, James; Warrington, Ian T; Mutayoba, Benezeth M; Power, Mary E; Dawson, Todd E; Brashares, Justin S

    2018-05-29

    Cross-boundary transfers of nutrients can profoundly shape the ecology of recipient systems. The common hippopotamus, Hippopotamus amphibius , is a significant vector of such subsidies from terrestrial to river ecosystems. We compared river pools with high and low densities of H. amphibius to determine how H. amphibius subsidies shape the chemistry and ecology of aquatic communities. Our study watershed, like many in sub-Saharan Africa, has been severely impacted by anthropogenic water abstraction reducing dry-season flow to zero. We conducted observations for multiple years over wet and dry seasons to identify how hydrological variability influences the impacts of H. amphibius During the wet season, when the river was flowing, we detected no differences in water chemistry and nutrient parameters between pools with high and low densities of H. amphibius Likewise, the diversity and abundance of fish and aquatic insect communities were indistinguishable. During the dry season, however, high-density H. amphibiu s pools differed drastically in almost all measured attributes of water chemistry and exhibited depressed fish and insect diversity and fish abundance compared with low-density H. amphibius pools. Scaled up to the entire watershed, we estimate that H. amphibius in this hydrologically altered watershed reduces dry-season fish abundance and indices of gamma-level diversity by 41% and 16%, respectively, but appears to promote aquatic invertebrate diversity. Widespread human-driven shifts in hydrology appear to redefine the role of H. amphibius , altering their influence on ecosystem diversity and functioning in a fashion that may be more severe than presently appreciated.

  5. Friction in Carborane-Based Molecular Rotors Driven by Gas Flow or Electric Field: Classical Molecular Dynamics

    Czech Academy of Sciences Publication Activity Database

    Prokop, Alexandr; Vacek, Jaroslav; Michl, Josef

    2012-01-01

    Roč. 6, č. 3 (2012), s. 1901-1914 ISSN 1936-0851 R&D Projects: GA ČR GA203/09/1802; GA MŠk ME09020 Institutional research plan: CEZ:AV0Z40550506 Keywords : molecular rotors * molecular dynamics * potential energy barriers * friction * intramolecular vibrational redistribution Subject RIV: CC - Organic Chemistry Impact factor: 12.062, year: 2012

  6. Advances in the understanding of nutrient dynamics and management in UK agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Dungait, Jennifer A.J., E-mail: jennifer.dungait@rothamsted.ac.uk [Department of Sustainable Soils and Grassland Systems, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB (United Kingdom); Cardenas, Laura M.; Blackwell, Martin S.A.; Wu, Lianhai [Department of Sustainable Soils and Grassland Systems, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB (United Kingdom); Withers, Paul J.A. [School of Environment, Natural Resources and Geography, Bangor University, Bangor, Gwynedd, LL57 2UW (United Kingdom); Chadwick, David R.; Bol, Roland; Murray, Philip J. [Department of Sustainable Soils and Grassland Systems, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB (United Kingdom); Macdonald, Andrew J.; Whitmore, Andrew P. [Department of Sustainable Soils and Grassland Systems, Rothamsted Research, Harpenden, Hertfordshire, AL5 2LQ (United Kingdom); Goulding, Keith W.T. [Department of Sustainable Soils and Grassland Systems, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB (United Kingdom); Department of Sustainable Soils and Grassland Systems, Rothamsted Research, Harpenden, Hertfordshire, AL5 2LQ (United Kingdom)

    2012-09-15

    Current research on macronutrient cycling in UK agricultural systems aims to optimise soil and nutrient management for improved agricultural production and minimise effects on the environment and provision of ecosystem services. Nutrient use inefficiencies can cause environmental pollution through the release of greenhouse gases into the atmosphere and of soluble and particulate forms of N, P and carbon (C) in leachate and run-off into watercourses. Improving nutrient use efficiencies in agriculture calls for the development of sustainable nutrient management strategies: more efficient use of mineral fertilisers, increased recovery and recycling of waste nutrients, and, better exploitation of the substantial inorganic and organic reserves of nutrients in the soil. Long-term field experimentation in the UK has provided key knowledge of the main nutrient transformations in agricultural soils. Emerging analytical technologies, especially stable isotope labelling, that better characterise macronutrient forms and bioavailability and improve the quantification of the complex relationships between the macronutrients in soils at the molecular scale, are augmenting this knowledge by revealing the underlying processes. The challenge for the future is to determine the relationships between the dynamics of N, P and C across scales, which will require both new modelling approaches and integrated approaches to macronutrient cycling. -- Highlights: Black-Right-Pointing-Pointer Major advances in the knowledge of macronutrient cycling in agricultural soils are reviewed in the context of management. Black-Right-Pointing-Pointer Novel analytical techniques and innovative modelling approaches that enhance understanding of nutrient cycling are explored. Black-Right-Pointing-Pointer Knowledge gaps are identified, and the potential to improve comprehension of the integrated nutrient cycles is considered.

  7. Decomposition and nutrient release of leguminous plants in coffee agroforestry systems

    Directory of Open Access Journals (Sweden)

    Eduardo da Silva Matos

    2011-02-01

    Full Text Available Leguminous plants used as green manure are an important nutrient source for coffee plantations, especially for soils with low nutrient levels. Field experiments were conducted in the Zona da Mata of Minas Gerais State, Brazil to evaluate the decomposition and nutrient release rates of four leguminous species used as green manures (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum and Stylosanthes guianensis in a coffee agroforestry system under two different climate conditions. The initial N contents in plant residues varied from 25.7 to 37.0 g kg-1 and P from 2.4 to 3.0 g kg-1. The lignin/N, lignin/polyphenol and (lignin+polyphenol/N ratios were low in all residues studied. Mass loss rates were highest in the first 15 days, when 25 % of the residues were decomposed. From 15 to 30 days, the decomposition rate decreased on both farms. On the farm in Pedra Dourada (PD, the decomposition constant k increased in the order C. mucunoides < S. aterrimum < S. guianensis < A. pintoi. On the farm in Araponga (ARA, there was no difference in the decomposition rate among leguminous plants. The N release rates varied from 0.0036 to 0.0096 d-1. Around 32 % of the total N content in the plant material was released in the first 15 days. In ARA, the N concentration in the S. aterrimum residues was always significantly higher than in the other residues. At the end of 360 days, the N released was 78 % in ARA and 89 % in PD of the initial content. Phosphorus was the most rapidly released nutrient (k values from 0.0165 to 0.0394 d-1. Residue decomposition and nutrient release did not correlate with initial residue chemistry and biochemistry, but differences in climatic conditions between the two study sites modified the decomposition rate constants.

  8. Diagnosis & Correction of Soil Nutrient Limitations in Intensively managed southern pine forests

    Energy Technology Data Exchange (ETDEWEB)

    University of Florida

    2002-10-25

    Forest productivity is one manner to sequester carbon and it is a renewable energy source. Likewise, efficient use of fertilization can be a significant energy savings. To date, site-specific use of fertilization for the purpose of maximizing forest productivity has not been well developed. Site evaluation of nutrient deficiencies is primarily based on empirical approaches to soil testing and plot fertilizer tests with little consideration for soil water regimes and contributing site factors. This project uses mass flow diffusion theory in a modeling context, combined with process level knowledge of soil chemistry, to evaluate nutrient bioavailability to fast-growing juvenile forest stands growing on coastal plain Spodosols of the southeastern U.S. The model is not soil or site specific and should be useful for a wide range of soil management/nutrient management conditions. In order to use the model, field data of fast-growing southern pine needed to be measured and used in the validation of the model. The field aspect of the study was mainly to provide data that could be used to verify the model. However, we learned much about the growth and development of fast growing loblolly. Carbon allocation patterns, root shoot relationships and leaf area root relationships proved to be new, important information. The Project Objectives were to: (1) Develop a mechanistic nutrient management model based on the COMP8 uptake model. (2) Collect field data that could be used to verify and test the model. (3) Model testing.

  9. Early root overproduction not triggered by nutrients decisive for competitive success belowground.

    Directory of Open Access Journals (Sweden)

    Francisco M Padilla

    Full Text Available Theory predicts that plant species win competition for a shared resource by more quickly preempting the resource in hotspots and by depleting resource levels to lower concentrations than its competitors. Competition in natural grasslands largely occurs belowground, but information regarding root interactions is limited, as molecular methods quantifying species abundance belowground have only recently become available.In monoculture, the grass Festuca rubra had higher root densities and a faster rate of soil nitrate depletion than Plantago lanceolata, projecting the first as a better competitor for nutrients. However, Festuca lost in competition with Plantago. Plantago not only replaced the lower root mass of its competitor, but strongly overproduced roots: with only half of the plants in mixture than in monoculture, Plantago root densities in mixture were similar or higher than those in its monocultures. These responses occurred equally in a nutrient-rich and nutrient-poor soil layer, and commenced immediately at the start of the experiment when root densities were still low and soil nutrient concentrations high.Our results suggest that species may achieve competitive superiority for nutrients by root growth stimulation prior to nutrient depletion, induced by the presence of a competitor species, rather than by a better ability to compete for nutrients per se. The root overproduction by which interspecific neighbors are suppressed independent of nutrient acquisition is consistent with predictions from game theory. Our results emphasize that root competition may be driven by other mechanisms than is currently assumed. The long-term consequences of these mechanisms for community dynamics are discussed.

  10. Effects of liming on forage availability and nutrient content in a forest impacted by acid rain.

    Directory of Open Access Journals (Sweden)

    Sarah E Pabian

    Full Text Available Acidic deposition and subsequent forest soil acidification and nutrient depletion can affect negatively the growth, health and nutrient content of vegetation, potentially limiting the availability and nutrient content of forage for white-tailed deer (Odocoileus virginianus and other forest herbivores. Liming is a mitigation technique that can be used to restore forest health in acidified areas, but little is known about how it affects the growth or nutrient content of deer forage. We examined the effects of dolomitic limestone application on the growth and chemical composition of understory plants in an acidified forest in central Pennsylvania, with a focus on vegetative groups included as white-tailed deer forage. We used a Before-After-Control-Impact study design with observations 1 year before liming and up to 5 years post-liming on 2 treated and 2 untreated 100-ha sites. Before liming, forage availability and several nutrients were below levels considered optimal for white-tailed deer, and many vegetative characteristics were related to soil chemistry. We observed a positive effect of liming on forb biomass, with a 2.7 fold increase on limed sites, but no biomass response in other vegetation groups. We observed positive effects of liming on calcium and magnesium content and negative effects on aluminum and manganese content of several plant groups. Responses to liming by forbs and plant nutrients show promise for improving vegetation health and forage quality and quantity for deer.

  11. Molecular quantum dynamics. From theory to applications

    International Nuclear Information System (INIS)

    Gatti, Fabien

    2014-01-01

    An educational and accessible introduction to the field of molecular quantum dynamics. Illustrates the importance of the topic for broad areas of science: from astrophysics and the physics of the atmosphere, over elementary processes in chemistry, to biological processes. Presents chosen examples of striking applications, highlighting success stories, summarized by the internationally renowned experts. Including a foreword by Lorenz Cederbaum (University Heidelberg, Germany). This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book ''Molecular Quantum Dynamics'' offers them an accessible introduction. Although the

  12. Molecular quantum dynamics. From theory to applications

    Energy Technology Data Exchange (ETDEWEB)

    Gatti, Fabien (ed.) [Montpellier 2 Univ. (France). Inst. Charles Gerhardt - CNRS 5253

    2014-09-01

    An educational and accessible introduction to the field of molecular quantum dynamics. Illustrates the importance of the topic for broad areas of science: from astrophysics and the physics of the atmosphere, over elementary processes in chemistry, to biological processes. Presents chosen examples of striking applications, highlighting success stories, summarized by the internationally renowned experts. Including a foreword by Lorenz Cederbaum (University Heidelberg, Germany). This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book ''Molecular Quantum Dynamics'' offers them an accessible

  13. OH+ IN DIFFUSE MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Porras, A. J.; Federman, S. R.; Welty, D. E.; Ritchey, A. M.

    2014-01-01

    Near ultraviolet observations of OH + and OH in diffuse molecular clouds reveal a preference for different environments. The dominant absorption feature in OH + arises from a main component seen in CH + (that with the highest CH + /CH column density ratio), while OH follows CN absorption. This distinction provides new constraints on OH chemistry in these clouds. Since CH + detections favor low-density gas with small fractions of molecular hydrogen, this must be true for OH + as well, confirming OH + and H 2 O + observations with the Herschel Space Telescope. Our observed correspondence indicates that the cosmic ray ionization rate derived from these measurements pertains to mainly atomic gas. The association of OH absorption with gas rich in CN is attributed to the need for a high enough density and molecular fraction before detectable amounts are seen. Thus, while OH + leads to OH production, chemical arguments suggest that their abundances are controlled by different sets of conditions and that they coexist with different sets of observed species. Of particular note is that non-thermal chemistry appears to play a limited role in the synthesis of OH in diffuse molecular clouds

  14. The Urban Watershed as a Transformer of DOM Chemistry

    Science.gov (United States)

    Gabor, R. S.; Smith, R. M.; Follstad Shah, J.; Kelso, J. E.; Baker, M. A.; Brooks, P. D.

    2017-12-01

    Growing urban systems stress watersheds, resulting in water quality impacts downstream. Urban stresses can include nutrient runoff from fertilizer, effluent from wastewater treatment plants, and changes in hydrologic routing. Synoptic surveys were performed at two rivers in Salt Lake City, Utah to identify how urbanization drives dissolved organic matter (DOM) chemistry. Red Butte Creek, a small third order stream, flows from a protected mountain environment directly into a highly urbanized mountain area. The organic matter chemistry, as measured by fluorescence, changed dynamics in the urban system, with organic matter demonstrating greater aromaticity and different seasonal patterns than observed in the canyon. Several kilometers downstream of the start of urbanization, the C:N ratio of the organic matter changes from 12.5 to 17.7, at a location where the stream is fed by urban-impacted groundwater, suggesting that subsurface DOC is utilized for microbial respiration in denitrification of urban nitrate inputs. This also corresponds with a shift in the chemistry of the DOM, as measured by fluorescence. Red Butte Creek terminates at the Jordan River, which flows from a highly eutrophic lake and is fed by seven tributaries and five wastewater treatment plants before ending at the Great Salt Lake. The Jordan River is heavily contaminated, with low dissolved oxygen and high nutrient content. The fluorescence index (FI) of DOM in the Jordan River indicates a dominant microbial contribution to the fluorescent organic material, particularly in areas where the dissolved oxygen is low, with the FI becoming less microbial as the DO sag lessens. This corresponds to increasing fluorescence signal in the protein-like area of the fluorescence excitation-emission matrices. Additionally, effluent from four wastewater treatment plants, each with different technologies, had distinct organic matter fluorescence, corresponding with differences in the nitrogen and microbial dynamics

  15. The rhythm of feeding : Effect of nutrients on metabolism and the molecular clock

    NARCIS (Netherlands)

    Oosterman, J.E.

    2017-01-01

    This thesis describes studies we performed to assess the relationship between nutrients and the circadian clock. We assessed the effects of sugar and fatty acids on the daily rhythmicity of hepatic clock genes and whole-body metabolism in vivo, and on circadian rhythmicity of clock genes in vitro.

  16. An Integrated Limnology, Microbiology & Chemistry Exercise for Teaching Summer Lake Stratification, Nutrient Consumption & Chemical Thermodynamics

    Science.gov (United States)

    Dunnivant, Frank M.

    2006-01-01

    Most chemistry and biology teachers will agree that students have a "disconnect" between these two disciplines. This likely results from the categorization of the topics into two classes or two separate years of study. In this article, the author provides one example of how the two disciplines can be related in an environmental application that…

  17. Patterns in foliar nutrient resorption stoichiometry at multiple scales: controlling factors and ecosystem consequences (Invited)

    Science.gov (United States)

    Reed, S.; Cleveland, C. C.; Davidson, E. A.; Townsend, A. R.

    2013-12-01

    During leaf senescence, nutrient rich compounds are transported to other parts of the plant and this 'resorption' recycles nutrients for future growth, reducing losses of potentially limiting nutrients. Variations in leaf chemistry resulting from nutrient resorption also directly affect litter quality, in turn, regulating decomposition rates and soil nutrient availability. Here we investigated stoichiometric patterns of nitrogen (N) and phosphorus (P) resorption efficiency at multiple spatial scales. First, we assembled a global database to explore nutrient resorption among and within biomes and to examine potential relationships between resorption stoichiometry and ecosystem nutrient status. Next, we used a forest regeneration chronosequence in Brazil to assess how resorption stoichiometry linked with a suite of other nutrient cycling measures and with ideas of how nutrient limitation may change over secondary forest regrowth. Finally, we measured N:P resorption ratios of six canopy tree species in a Costa Rican tropical forest. We calculated species-specific resorption ratios and compared them with patterns in leaf litter and topsoil nutrient concentrations. At the global scale, N:P resorption ratios increased with latitude and decreased with mean annual temperature (MAT) and precipitation (MAP; P1 in latitudes >23°. Focusing on tropical sites in our global dataset we found that, despite fewer data and a restricted latitudinal range, a significant relationship between latitude and N:P resorption ratios persisted (PAmazon Basin chronosequence of regenerating forests, where previous work reported a transition from apparent N limitation in younger forests to P limitation in mature forests, we found N resorption was highest in the youngest forest, whereas P resorption was greatest in the mature forest. Over the course of succession, N resorption efficiency leveled off but P resorption continued to increase with forest age. In Costa Rica, though we found species

  18. Plant-based food and feed protein structure changes induced by gene-transformation, heating and bio-ethanol processing: a synchrotron-based molecular structure and nutrition research program.

    Science.gov (United States)

    Yu, Peiqiang

    2010-11-01

    Unlike traditional "wet" analytical methods which during processing for analysis often result in destruction or alteration of the intrinsic protein structures, advanced synchrotron radiation-based Fourier transform infrared microspectroscopy has been developed as a rapid and nondestructive and bioanalytical technique. This cutting-edge synchrotron-based bioanalytical technology, taking advantages of synchrotron light brightness (million times brighter than sun), is capable of exploring the molecular chemistry or structure of a biological tissue without destruction inherent structures at ultra-spatial resolutions. In this article, a novel approach is introduced to show the potential of the advanced synchrotron-based analytical technology, which can be used to study plant-based food or feed protein molecular structure in relation to nutrient utilization and availability. Recent progress was reported on using synchrotron-based bioanalytical technique synchrotron radiation-based Fourier transform infrared microspectroscopy and diffused reflectance infrared Fourier transform spectroscopy to detect the effects of gene-transformation (Application 1), autoclaving (Application 2), and bio-ethanol processing (Application 3) on plant-based food and feed protein structure changes on a molecular basis. The synchrotron-based technology provides a new approach for plant-based protein structure research at ultra-spatial resolutions at cellular and molecular levels.

  19. Olefin Metathesis in Peptidomimetics, Dynamic Combinatorial Chemistry, and Molecular Imprinting

    Science.gov (United States)

    2006-08-01

    organic, and biochemistry, lectured in chemistry of weapons, and researched on ionic liquids and nucleic acid derivatives. She discovered her joy of...Products from oligomerization of the dimer scaffold or olefin isomerization are excluded from these projected numbers.97,98 The number of...Figure 3-8). This is excluding any olefin isomerization products or oligomerization of the cyclic scaffold. If stereoisomers are considered, then

  20. Third Chemistry Conference on Recent Trends in Chemistry

    International Nuclear Information System (INIS)

    Saeed, M.M.; Wheed, S.

    2011-01-01

    The third chemistry conference 2011 on recent trends in chemistry was held from October 17-19, 2001 at Islamabad, Pakistan. More than 65 papers and oral presentation. The scope of the conference was wide open and provides and opportunity for participation of broad spectrum of chemists. This forum provided a platform for the dissemination of the latest research followed by discussion pertaining to new trends in chemistry. This con fence covered different aspects of subjects including analytical chemistry, environmental chemistry, polymer chemistry, industrial chemistry, biochemistry and nano chemistry etc. (A.B.)

  1. Representational Technologies and Learner Problem-Solving Strategies in Chemistry

    Science.gov (United States)

    McCollum, Brett; Sepulveda, Ana; Moreno, Yuritzel

    2016-01-01

    Learning within the sciences is often considered through a quantitative lens, but acquiring proficiency with the symbolic representations in chemistry is arguably more akin to language learning. Representational competencies are central to successful communication of chemical information including molecular composition, structure, and properties.…

  2. Molecular self-assembly advances and applications

    CERN Document Server

    Dequan, Alex Li

    2012-01-01

    In the past several decades, molecular self-assembly has emerged as one of the main themes in chemistry, biology, and materials science. This book compiles and details cutting-edge research in molecular assemblies ranging from self-organized peptide nanostructures and DNA-chromophore foldamers to supramolecular systems and metal-directed assemblies, even to nanocrystal superparticles and self-assembled microdevices

  3. Molecular modeling

    Directory of Open Access Journals (Sweden)

    Aarti Sharma

    2009-01-01

    Full Text Available The use of computational chemistry in the development of novel pharmaceuticals is becoming an increasingly important tool. In the past, drugs were simply screened for effectiveness. The recent advances in computing power and the exponential growth of the knowledge of protein structures have made it possible for organic compounds to be tailored to decrease the harmful side effects and increase the potency. This article provides a detailed description of the techniques employed in molecular modeling. Molecular modeling is a rapidly developing discipline, and has been supported by the dramatic improvements in computer hardware and software in recent years.

  4. Synthetic Approach to biomolecular science by cyborg supramolecular chemistry.

    Science.gov (United States)

    Kurihara, Kensuke; Matsuo, Muneyuki; Yamaguchi, Takumi; Sato, Sota

    2018-02-01

    To imitate the essence of living systems via synthetic chemistry approaches has been attempted. With the progress in supramolecular chemistry, it has become possible to synthesize molecules of a size and complexity close to those of biomacromolecules. Recently, the combination of precisely designed supramolecules with biomolecules has generated structural platforms for designing and creating unique molecular systems. Bridging between synthetic chemistry and biomolecular science is also developing methodologies for the creation of artificial cellular systems. This paper provides an overview of the recently expanding interdisciplinary research to fuse artificial molecules with biomolecules, that can deepen our understanding of the dynamical ordering of biomolecules. Using bottom-up approaches based on the precise chemical design, synthesis and hybridization of artificial molecules with biological materials have been realizing the construction of sophisticated platforms having the fundamental functions of living systems. The effective hybrid, molecular cyborg, approaches enable not only the establishment of dynamic systems mimicking nature and thus well-defined models for biophysical understanding, but also the creation of those with highly advanced, integrated functions. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The Nutrient Density of Snacks: A Comparison of Nutrient Profiles of Popular Snack Foods Using the Nutrient-Rich Foods Index.

    Science.gov (United States)

    Hess, Julie; Rao, Goutham; Slavin, Joanne

    2017-01-01

    Background: Although Americans receive almost a quarter of their daily energy from snacks, snacking remains a poorly defined and understood eating occasion. However, there is little dietary guidance about choosing snacks. Families, clinicians, and researchers need a comprehensive approach to assessing their nutritional value. Objective: To quantify and compare the nutrient density of commonly consumed snacks by their overall nutrient profiles using the Nutrient-Rich Foods (NRF) Index 10.3. Methods: NRF Index scores were calculated for the top 3 selling products (based on 2014 market research data) in different snack categories. These NRF scores were averaged to provide an overall nutrient-density score for each category. Results: Based on NRF scores, yogurt (55.3), milk (52.5), and fruit (30.1) emerged as the most nutrient-dense snacks. Ice cream (-4.4), pies and cakes (-11.1), and carbonated soft drinks (-17.2) emerged as the most nutrient-poor snacks. Conclusions: The NRF Index is a useful tool for assessing the overall nutritional value of snacks based on nutrients to limit and nutrients to encourage.

  6. Effects of golf course construction and operation on water chemistry of headwater streams on the Precambrian Shield

    International Nuclear Information System (INIS)

    Winter, Jennifer G.; Dillon, Peter J.

    2005-01-01

    To investigate the effects of golf course construction and operation on the water chemistry of Shield streams, we compared the water chemistry in streams draining golf courses under construction (2) and in operation (5) to streams in forested reference locations and to upstream sites where available. Streams were more alkaline and higher in base cation and nitrate concentrations downstream of operational golf courses. Levels of these parameters and total phosphorus increased over time in several streams during golf course construction through to operation. There was evidence of inputs of mercury to streams on two of the operational courses. Nutrient (phosphorus and nitrogen) concentrations were significantly related to the area of unmanaged vegetation in a 30 x 30 m area on either side of the sampling sites, and to River Bank Quality Index scores, suggesting that maintaining vegetated buffers along the stream on golf courses will reduce in-stream nutrient concentrations. - Golf course construction and operation had a significant impact on alkalinity, nitrogen and base cation concentrations of streams

  7. Polyhedral monocarbaborane chemistry. Some C-phenylated seven, eight, nine, ten, eleven and twelve-vertex species

    Czech Academy of Sciences Publication Activity Database

    Franken, A.; Jelínek, Tomáš; Taylor, R.G.; Ormsby, D. L.; Kilner, C. A.; Clegg, W.; Kennedy, D. J.

    -, č. 48 (2006), s. 5733-5769 ISSN 1477-9226 Grant - others:EPSRC(GB) J/56929; EPSRC(GB) GR/L/49505; EPSRC(GB) R/61949 Institutional research plan: CEZ:AV0Z40320502 Keywords : magnetic-resonance spectroscopy * anion chemistry * molecular structure Subject RIV: CA - Inorganic Chemistry Impact factor: 3.012, year: 2006

  8. Automated quantum chemistry based molecular dynamics simulations of electron ionization induced fragmentations of the nucleobases Uracil, Thymine, Cytosine, and Guanine.

    Science.gov (United States)

    Grimme, Stefan; Bauer, Christopher Alexander

    2015-01-01

    The gas-phase decomposition pathways of electron ionization (EI)-induced radical cations of the nucleobases uracil, thymine, cytosine, and guanine are investigated by means of mixed quantum-classical molecular dynamics. No preconceived fragmentation channels are used in the calculations. The results compare well to a plethora of experimental and theoretical data for these important biomolecules. With our combined stochastic and dynamic approach, one can access in an unbiased way the energetically available decomposition mechanisms. Additionally, we are able to separate the EI mass spectra of different tautomers of cytosine and guanine. Our method (previously termed quantum chemistry electron ionization mass spectra) reproduces free nucleobase experimental mass spectra well and provides detailed mechanistic in-sight into high-energy unimolecular decomposition processes.

  9. Primordial chemistry: an overview

    International Nuclear Information System (INIS)

    Signore, Monique; Puy, Denis

    1999-01-01

    In the standard Big Bang model, the light elements in the cosmos -hydrogen and helium but also deuterium and lithium- were created in the very early Universe. The main problem is to connect what we can actually observe to day with the standard Big Bang nucleosynthesis predictions essentially because of uncertainties in modeling their evolution since the Big Bang. After a brief review of the primordial nucleosynthesis -predictions and observations of the primordial abundances- we present the preliminary studies of the primordial chemistry: molecular formation and evolution in the early Universe

  10. Radiochemistry and nuclear chemistry

    CERN Document Server

    Choppin, Gregory; RYDBERG, JAN; Ekberg, Christian

    2013-01-01

    Radiochemistry or nuclear chemistry is the study of radiation from an atomic and molecular perspective, including elemental transformation and reaction effects, as well as physical, health and medical properties. This revised edition of one of the earliest and best-known books on the subject has been updated to bring into teaching the latest developments in research and the current hot topics in the field. To further enhance the functionality of this text, the authors have added numerous teaching aids, examples in MathCAD with variable quantities and options, hotlinks to relevant text secti

  11. New approaches to chemical reaction mechanisms by means of radiation chemistry

    International Nuclear Information System (INIS)

    Fujitsuka, Mamoru; Majima, Tetsuro

    2009-01-01

    Since active species generated during radiolysis can be used as oxidative or reductive regents of various organic and inorganic compounds, radiation chemistry has been applied to wide range of research fields. We have studied charge-delocalization process in molecular systems, properties of intermediates in the excited states, mechanism of light emitting device, photo-catalyst for degradation of toxic compounds and so on by means of radiation chemistry. In the present paper, we summarize our recent research results. (author)

  12. A General Method for Determining Molecular Interfaces and Layers.

    Czech Academy of Sciences Publication Activity Database

    Škvor, J.; Škvára, J.; Jirsák, Jan; Nezbeda, Ivo

    2017-01-01

    Roč. 76, SEP 2017 (2017), s. 17-35 ISSN 1093-3263 R&D Projects: GA ČR GA15-19542S Institutional support: RVO:67985858 Keywords : interface * molecular layers * percolating cluster Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.754, year: 2016

  13. Inorganic Chemistry in Hydrogen Storage and Biomass Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Thorn, David [Los Alamos National Laboratory

    2012-06-13

    Making or breaking C-H, B-H, C-C bonds has been at the core of catalysis for many years. Making or breaking these bonds to store or recover energy presents us with fresh challenges, including how to catalyze these transformations in molecular systems that are 'tuned' to minimize energy loss and in molecular and material systems present in biomass. This talk will discuss some challenging transformations in chemical hydrogen storage, and some aspects of the inorganic chemistry we are studying in the development of catalysts for biomass utilization.

  14. Alterações no teores de nutrientes em dois solos alagados, com e sem plantas de arroz Nutrients concentration changes in two flooded soils during the rice cycle

    Directory of Open Access Journals (Sweden)

    Leandro Souza da Silva

    2003-06-01

    Full Text Available O alagamento e a presença de plantas alteram as propriedades biológicas e químicas do solo em relação ao ambiente anteriormente oxidado, influenciando a disponibilidade de nutrientes. Foi conduzido um experimento com o objetivo de avaliar as alterações dos teores de alguns nutrientes na solução de um Planossolo e um Gleissolo durante o ciclo do arroz. Os solos foram acondicionados em vasos (50 litros contendo dispositivos para coleta da solução em diferentes profundidades, mantidos sem ou com plantas de arroz. A solução foi coletada aos 10, 19, 44, 77 e 113 dias de alagamento e determinados os teores de P, K, Ca, Mg, Fe e Mn. A concentração dos nutrientes na solução, especialmente o K, variou com a profundidade de coleta e com a presença de plantas, demonstrando a influência desses fatores na disponibilidade dos nutrientes em solos alagados.Flooding a soil and growing plant on it can change its biological and chemistry properties, in comparison with a non-flooded environment. An experiment was conducted in order to study the nutrients dynamics in the solution of two soils (Planossolo and Gleissolo during the rice cycle. Rice plants were cultivated in 50L containers having devices to collect soil solution at several depths (2.5, 5.0, 7.5 and 31cm. In the soil solution, with and without plant, P, K, Ca, Mg, Fe and Mn, were measured at 10, 19, 44, 77, and 113 days after the flooding. Potassium was especially sensible to the rice plant and depth of sampling

  15. The Complex Chemistry of Embedded Protostars

    DEFF Research Database (Denmark)

    Lykke, Julie Maria

    - or molecular astrophysics - has evolved fast in recent years, due to major technological advancements for radio telescopes. But some of the most central questions still remain unanswered: how, where and when are complex organic molecules formed around young stars? How complex can these molecules become......? Is there a difference in the chemistry for high- and low-mass protostars? The work in this thesis aim to provide answer for these questions by searching for molecules where they have not been detected before and by comparing the relative abundance of different molecules to models and laboratory work as well as between......- and low-mass sources. Modified models and laboratory work as well as more observations are therefore needed to further develop our understanding of the chemistry occurring in star-forming regions....

  16. The Chemistry of Extragalactic Carbon Stars

    Science.gov (United States)

    Woods, Paul; Walsh, C.; Cordiner, M. A.; Kemper, F.

    2013-01-01

    Prompted by the ongoing interest in Spitzer Infrared Spectrometer spectra of carbon stars in the Large Magellanic Cloud, we have investigated the circumstellar chemistry of carbon stars in low-metallicity environments. Consistent with observations, our models show that acetylene is particularly abundant in the inner regions of low metallicity carbon-rich asymptotic giant branch stars - more abundant than carbon monoxide. As a consequence, larger hydrocarbons have higher abundances at the metallicities of the Magellanic Clouds than in stars with solar metallicity. We also find that the oxygen and nitrogen chemistry is suppressed at lower metallicity, as expected. Finally, we calculate molecular line emission from carbon stars in the Large and Small Magellanic Cloud and find that several molecules should be readily detectable with the Atacama Large Millimeter Array at Full Science operations.

  17. Increased nutrient concentrations in Lake Erie tributaries influenced by greenhouse agriculture.

    Science.gov (United States)

    Maguire, Timothy J; Wellen, Christopher; Stammler, Katie L; Mundle, Scott O C

    2018-08-15

    Greenhouse production of vegetables is a growing global trade. While greenhouses are typically captured under regulations aimed at farmland, they may also function as a point source of effluent. In this study, the cumulative impacts greenhouse effluents have on riverine macronutrient and trace metal concentrations were examined. Water samples were collected Bi-weekly for five years from 14 rivers in agriculturally dominated watersheds in southwestern Ontario. Nine of the watersheds contained greenhouses with their boundaries. Greenhouse influenced rivers had significantly higher concentrations of macronutrients (nitrogen, phosphorus, and potassium) and trace metals (copper, molybdenum, and zinc). Concentrations within greenhouse influenced rivers appeared to decrease over the 5-year study while concentrations within non-greenhouse influenced river remained constant. The different temporal pattern between river types was attributed to increased precipitation during the study period. Increases in precipitation diluted concentrations in greenhouse influenced rivers; however, non-influenced river runoff proportionally increased nutrient mobility and flow, stabilizing the observed concentrations of non-point sources. Understanding the dynamic nature of environmental releases of point and non-point sources of nutrients and trace metals in mixed agricultural systems using riverine water chemistry is complicated by changes in climatic conditions, highlighting the need for long-term monitoring of nutrients, river flows and weather data in assessing these agricultural sectors. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Radiation chemistry

    International Nuclear Information System (INIS)

    Rodgers, F.; Rodgers, M.A.

    1987-01-01

    The contents of this book include: Interaction of ionizing radiation with matter; Primary products in radiation chemistry; Theoretical aspects of radiation chemistry; Theories of the solvated electron; The radiation chemistry of gases; Radiation chemistry of colloidal aggregates; Radiation chemistry of the alkali halides; Radiation chemistry of polymers; Radiation chemistry of biopolymers; Radiation processing and sterilization; and Compound index

  19. New insights into the molecular mechanism of intestinal fatty acid absorption.

    Science.gov (United States)

    Wang, Tony Y; Liu, Min; Portincasa, Piero; Wang, David Q-H

    2013-11-01

    Dietary fat is one of the most important energy sources of all the nutrients. Fatty acids, stored as triacylglycerols (also called triglycerides) in the body, are an important reservoir of stored energy and derived primarily from animal fats and vegetable oils. Although the molecular mechanisms for the transport of water-insoluble amphipathic fatty acids across cell membranes have been debated for many years, it is now believed that the dominant means for intestinal fatty acid uptake is via membrane-associated fatty acid-binding proteins, that is, fatty acid transporters on the apical membrane of enterocytes. These findings indicate that intestinal fatty acid absorption is a multistep process that is regulated by multiple genes at the enterocyte level, and intestinal fatty acid absorption efficiency could be determined by factors influencing intraluminal fatty acid molecules across the brush border membrane of enterocytes. To facilitate research on intestinal, hepatic and plasma triacylglycerol metabolism, it is imperative to establish standard protocols for precisely and accurately measuring the efficiency of intestinal fatty acid absorption in humans and animal models. In this review, we will discuss the chemical structure and nomenclature of fatty acids and summarize recent progress in investigating the molecular mechanisms underlying the intestinal absorption of fatty acids, with a particular emphasis on the physical chemistry of intestinal lipids and the molecular physiology of intestinal fatty acid transporters. A better understanding of the molecular mechanism of intestinal fatty acid absorption should lead to novel approaches to the treatment and the prevention of fatty acid-related metabolic diseases that are prevalent worldwide. © 2013 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.

  20. Uptake of macro- and micro-nutrients into leaf, woody, and root tissue of Populus after irrigation with landfill leachate

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Bart T. Sexton; Richard B. Hall

    2008-01-01

    Information about macro- and micro-nutrient uptake and distribution into tissues of Populus irrigated with landfill leachate helps to maximize biomass production and understand impacts of leachate chemistry on tree health. We irrigated eight Populus clones (NC 13460, NCI4O18, NC14104, NC14106, DM115, DN5, NM2, NM6) with fertilized (N, P, K) well...

  1. Numerical simulations of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay, Indonesia

    International Nuclear Information System (INIS)

    Wulp, Simon A. van der; Damar, Ario; Ladwig, Norbert; Hesse, Karl-J.

    2016-01-01

    The present application of numerical modelling techniques provides an overview of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay. A hydrological model simulated river discharges with a total of 90 to 377 m 3 s −1 entering Jakarta Bay. Daily total nitrogen and total phosphorus loads ranged from 40 to 174 tons and 14 to 60 tons, respectively. Flow model results indicate that nutrient gradients are subject to turbulent mixing by tides and advective transport through circulation driven by wind, barotropic and baroclinic pressure gradients. The bulk of nutrient loads originate from the Citarum and Cisadane rivers flowing through predominantly rural areas. Despite lower nutrient loads, river discharges from the urban area of Jakarta exhibit the highest impact of nutrient concentrations in the near shore area of Jakarta Bay and show that nutrient concentrations were not only regulated by nutrient loads but were strongly regulated by initial river concentrations and local flow characteristics. - Highlights: • Full overview of river discharges, nutrient flux and nutrient levels in Jakarta Bay • Important overview of nutrient flux from individual rivers • Simulations identify the principal drivers of water circulation and nutrient gradient. • Nutrient dispersion model includes the local effects of the Java Sea current system.

  2. Dynamical processes in atomic and molecular physics

    CERN Document Server

    Ogurtsov, Gennadi

    2012-01-01

    Atomic and molecular physics underlie a basis for our knowledge of fundamental processes in nature and technology and in such applications as solid state physics, chemistry and biology. In recent years, atomic and molecular physics has undergone a revolutionary change due to great achievements in computing and experimental techniques. As a result, it has become possible to obtain information both on atomic and molecular characteristics and on dynamics of atomic and molecular processes. This e-book highlights the present state of investigations in the field of atomic and molecular physics. Rece

  3. Approaches and uncertainties in nutrient budgets; Implications for nutrient management and environmental policies

    NARCIS (Netherlands)

    Oenema, O.; Kros, J.; Vries, de W.

    2003-01-01

    Nutrient budgets of agroecosystems are constructed either (i) to increase the understanding of nutrient cycling, (ii) as performance indicator and awareness raiser in nutrient management and environmental policy, or (iii) as regulating policy instrument to enforce a certain nutrient management

  4. Interface tuning of current-induced cooling in molecular circuits

    Czech Academy of Sciences Publication Activity Database

    Foti, Giuseppe; Vázquez, Héctor

    2017-01-01

    Roč. 121, č. 2 (2017), s. 1082-1088 ISSN 1932-7447 R&D Projects: GA ČR GA15-19672S Institutional support: RVO:68378271 Keywords : current-induced heating and cooling * molecular junction * Carbene Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.536, year: 2016

  5. Box Model of Freshwater, Salinity and Nutrient in the Delta Mahakam, East Kalimantan

    Directory of Open Access Journals (Sweden)

    Marojahan Simanjuntak

    2011-04-01

    Full Text Available Box Model of Freshwater, Salinity and Nutrient in the Delta Mahakam, East Kalimantan. Research has been conducted in the southern part of the Mahakam Delta, East Kalimantan. Method of measuring temperature, salinity, light transmission and turbidity by using CTD model 603 SBE and current measurement and bathymetry by using ADCP model RDI. Measurement parameters on the nutrient chemistry are based of water samples taken using Nansen bottles from two depths. The purpose of this study to determine the mechanism of freshwater, salinity and nutrient transport from the land of the Mahakam River which interact with seawater by using box models. The results illustrate that the vertical distribution of salinity in the Mahakam Delta has obtained a high stratification, where the freshwater salinity 12.30 psu at the surface of a river flowing toward the sea, and seawater of high salinity 30.07 psu flowing in the direction river under the surface that are separated by a layer of mixture. Freshwater budget of the sea (VSurf obtained for 0,0306 x 109 m3 day-1, and the sea water salinity budget is going into the bottom layer system (VDeep.SOcn-d obtained for 20,727 x 109 psu day-1. While time dilution (Syst obtained for 0.245 day-1 or 5.87 hours. Nutrient budget in the surface layer obtained by the system is autotrophic while in layers near the bottom tend to be heterotrophic

  6. Theoretical chemistry periodicities in chemistry and biology

    CERN Document Server

    Eyring, Henry

    1978-01-01

    Theoretical Chemistry: Periodicities in Chemistry and Biology, Volume 4 covers the aspects of theoretical chemistry. The book discusses the stably rotating patterns of reaction and diffusion; the chemistry of inorganic systems exhibiting nonmonotonic behavior; and population cycles. The text also describes the mathematical modeling of excitable media in neurobiology and chemistry; oscillating enzyme reactions; and oscillatory properties and excitability of the heart cell membrane. Selected topics from the theory of physico-chemical instabilities are also encompassed. Chemists, mechanical engin

  7. Estudio de usabilidad de visualización molecular educativa en un teléfono inteligente

    Directory of Open Access Journals (Sweden)

    Miguel A. García-Ruiz

    2012-01-01

    Full Text Available Chemistry students have difficulty understanding molecular structures and their functions. To aide their comprehension, molecular visualization software has been developed to run on smart phones, but in order to positively influence learning it must have a high degree of usability (usability measures how software is used in terms of efficiency, efficacy and satisfaction. This paper describes a usability study of molecular visualization software running on a smart phone, where chemistry students analyzed molecular models. Results showed very good usability and 95% of students wanted to use it in further classes.

  8. Nutrient restriction induces failure of reproductive function and molecular changes in hypothalamus-pituitary-gonadal axis in postpubertal gilts.

    Science.gov (United States)

    Zhou, Dongsheng; Zhuo, Yong; Che, Lianqiang; Lin, Yan; Fang, Zhengfeng; Wu, De

    2014-07-01

    People on a diet to lose weight may be at risk of reproductive failure. To investigate the effects of nutrient restriction on reproductive function and the underlying mechanism, changes of reproductive traits, hormone secretions and gene expressions in hypothalamus-pituitary-gonadal axis were examined in postpubertal gilts at anestrus induced by nutrient restriction. Gilts having experienced two estrus cycles were fed a normal (CON, 2.86 kg/d) or nutrient restricted (NR, 1 kg/d) food regimens to expect anestrus. NR gilts experienced another three estrus cycles, but did not express estrus symptoms at the anticipated fourth estrus. Blood samples were collected at 5 days' interval for consecutive three times for measurement of hormone concentrations at the 23th day of the fourth estrus cycle. Individual progesterone concentrations of NR gilts from three consecutive blood samples were below 1.0 ng/mL versus 2.0 ng/mL in CON gilts, which was considered anestrus. NR gilts had impaired development of reproductive tract characterized by absence of large follicles (diameter ≥ 6 mm), decreased number of corepus lutea and atrophy of uterus and ovary tissues. Circulating concentrations of IGF-I, kisspeptin, estradiol, progesterone and leptin were significantly lower in NR gilts than that in CON gilts. Nutrient restriction down-regulated gene expressions of kiss-1, G-protein coupled protein 54, gonadotropin-releasing hormone, estrogen receptor α, progesterone receptor, leptin receptor, follicle-stimulating hormone and luteinizing hormone and insulin-like growth factor I in hypothalamus-pituitary-gonadal axis of gilts. Collectively, nutrient restriction resulted in impairment of reproductive function and changes of hormone secretions and gene expressions in hypothalamus-pituitary-gonadal axis, which shed light on the underlying mechanism by which nutrient restriction influenced reproductive function.

  9. Modeling farm nutrient flows in the North China Plain to reduce nutrient losses

    NARCIS (Netherlands)

    Zhao, Zhanqing; Bai, Zhaohai; Wei, Sha; Ma, Wenqi; Wang, Mengru; Kroeze, Carolien; Ma, Lin

    2017-01-01

    Years of poor nutrient management practices in the agriculture industry in the North China Plain have led to large losses of nutrients to the environment, causing severe ecological consequences. Analyzing farm nutrient flows is urgently needed in order to reduce nutrient losses. A farm-level

  10. Charles J. Pedersen's legacy to chemistry.

    Science.gov (United States)

    Izatt, Reed M

    2017-05-09

    The serendipitous discovery in 1961 of dibenzo-18-crown-6 by Charles J. Pedersen marked the beginning of research on cyclic polyether macrocyclic compounds. These compounds have a remarkably selective affinity for certain metal ions and provide a framework for studying molecular recognition processes. Pedersen's work excited much interest in the scientific community and fueled important advances in macrocyclic and supramolecular chemistry. Born in Korea of a Japanese mother and a Norwegian engineer father, he was educated in Japan and later graduated from the University of Dayton (BS, chemical engineering) and Massachusetts Institute of Technology (MS, chemistry). He worked at du Pont for 42 years as a research chemist. His research talent at du Pont earned him an appointment as a Research Associate allowing him to pursue research as he chose. This freedom served him well making it possible for him to devote all his efforts following his discovery of dibenzo-18-crown-6 until his retirement to synthesis of cyclic polyethers and evaluation of their metal ion complexation properties. His influence on macrocyclic and supramolecular chemistry has been pervasive. He was co-recipient of the 1987 Nobel Prize in chemistry for development and use of molecules with structure-specific interactions of high selectivity. The year 2017 marks the fiftieth anniversary of the publication of his first paper describing his synthesis of over 50 crown ethers.

  11. Chemistry of natural products: A veritable approach to the ...

    African Journals Online (AJOL)

    Even with the advent of newer technologies such as combinatorial chemistry, robotics, high throughput screening (HTS), bioinformatics, and in silico molecular modelling, natural products still play a crucial role in drug discovery. This is because they provide an unparalleled range of chemical diversity on which the newer ...

  12. Emerging trends at the interface of chemistry and biology ...

    Indian Academy of Sciences (India)

    Administrator

    Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012. 2. Molecular ... cussed. Methods for gene and siRNA delivery are presented along with challenges and opportunities for ..... to engineer mutations in the Fc region of an anti- ... potentially be applied to design immunogens and vaccines for ...

  13. Molecular physics. Theoretical principles and experimental methods

    International Nuclear Information System (INIS)

    Demtroeder, W.

    2005-01-01

    This advanced textbook comprehensively explains important principles of diatomic and polyatomic molecules and their spectra in two separate, distinct parts. The first part concentrates on the theoretical aspects of molecular physics, whereas the second part of the book covers experimental techniques, i.e. laser, Fourier, NMR, and ESR spectroscopies, used in the fields of physics, chemistry, biolog, and material science. Appropriate for undergraduate and graduate students in physics and chemistry with a knowledge of atomic physics and familiar with the basics of quantum mechanics. From the contents: - Electronic States of Molecules, - Rotation, Oscillation and Potential Curves of Diatomic Molecules, - The Spectra of Diatomic Molecules, - Molecule Symmetries and Group Theory, - Rotation and Oscillations of Polyatomic Molecules, - Electronic States of Polyatomic Molecules, - The Spectra of Polyatomic Molecules, - Collapse of the Born-Oppenheimer-Approximation, Disturbances in Molecular Spectra, - Molecules in Disturbing Fields, - Van-der-Waals-Molecules and Cluster, - Experimental Techniques in Molecular Physics. (orig.)

  14. Fascinating serendipity some adventures in fullerene chemistry

    International Nuclear Information System (INIS)

    Braun, T.; Rauch, H.

    2001-01-01

    The lecture is divided to four chapters. Chapter one gives a short overview on the notion of serendipity and the serendipitous discovery of the fullerenes, the third allotropic form of carbon and will try to highlight why this discovery can be considered a revolution in chemistry. The second and third chapters present some results of the author's research group. Neutron irradiation of C 60 in a nuclear reactor has also made possible the serendipitous discovery of a new procedure for synthesis of endohedral C 60 compounds exemplified by the synthesis of many endohedral radio-fullerenes of * X at C 60 type. The fourth chapter of the lecture deals with 'Capture-captive chemistry' as a new typology for molecular containers including fullerenes. (author)

  15. Comparison of Chain Conformation of Poly(vinyl alcohol) in Solutions and Melts from Quantum Chemistry Based Molecular Dynamics Simulations

    Science.gov (United States)

    Jaffe, Richard; Han, Jie; Matsuda, Tsunetoshi; Yoon, Do; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Confirmations of 2,4-dihydroxypentane (DHP), a model molecule for poly(vinyl alcohol), have been studied by quantum chemistry (QC) calculations and molecular dynamics (MD) simulations. QC calculations at the 6-311G MP2 level show the meso tt conformer to be lowest in energy followed by the racemic tg, due to intramolecular hydrogen bond between the hydroxy groups. The Dreiding force field has been modified to reproduce the QC conformer energies for DHP. MD simulations using this force field have been carried out for DHP molecules in the gas phase, melt, and CHCl3 and water solutions. Extensive intramolecular hydrogen bonding is observed for the gas phase and CHCl3 solution, but not for the melt or aqueous solution, Such a condensed phase effect due to intermolecular interactions results in a drastic change in chain conformations, in agreement with experiments.

  16. Impact of managed moorland burning on peat nutrient and base cation status

    Science.gov (United States)

    Palmer, Sheila; Gilpin, Martin; Wearing, Catherine; Johnston, Kerrylyn; Holden, Joseph; Brown, Lee

    2013-04-01

    Controlled 'patch' burning of moorland vegetation has been used for decades in the UK to stimulate growth of heather (Calluna vulgaris) for game bird habitat and livestock grazing. Typically small patches (300-900 m2) are burned in rotations of 8-25 years. However, our understanding of the short-to-medium term environmental impacts of the practice on these sensitive upland areas has so far been limited by a lack of scientific data. In particular the effect of burning on concentrations of base cations and acid-base status of these highly organic soils has implications both for ecosystem nutrient status and for buffering of acidic waters. As part of the EMBER project peat chemistry data were collected in ten upland blanket peat catchments in the UK. Five catchments were subject to a history of prescribed rotational patch burning. The other five catchments acted as controls which were not subject to burning, nor confounded by other detrimental activities such as drainage or forestry. Soil solution chemistry was also monitored at two intensively studied sites (one regularly burned and one control). Fifty-centimetre soil cores, sectioned into 5-cm intervals, were collected from triplicate patches of four burn ages at each burned site, and from twelve locations at similar hillslope positions at each control site. At the two intensively monitored sites, soil solution chemistry was monitored at four depths in each patch. Across all sites, burned plots had significantly smaller cation exchange capacities, lower concentrations of exchangeable base cations and increased concentrations of exchangeable H+ and Al3+ in near-surface soil. C/N ratios were also lower in burned compared to unburned surface soils. There was no consistent trend between burn age and peat chemistry across all burned sites, possibly reflecting local controls on post-burn recovery rates or external influences on burn management decisions. At the intensively monitored site, plots burned less than two years

  17. Microbial enzyme activity, nutrient uptake and nutrient limitation in forested streams

    Science.gov (United States)

    Brian H. Hill; Frank H. McCormick; Bret C. Harvey; Sherri L. Johnson; Melvin L. Warren; Colleen M. Elonen

    2010-01-01

    The flow of organic matter and nutrients from catchments into the streams draining them and the biogeochemical transformations of organic matter and nutrients along flow paths are fundamental processes instreams (Hynes,1975; Fisher, Sponseller & Heffernan, 2004). Microbial biofilms are often the primary interface for organic matter and nutrient uptake and...

  18. How Dynamic Visualization Technology Can Support Molecular Reasoning

    Science.gov (United States)

    Levy, Dalit

    2013-01-01

    This paper reports the results of a study aimed at exploring the advantages of dynamic visualization for the development of better understanding of molecular processes. We designed a technology-enhanced curriculum module in which high school chemistry students conduct virtual experiments with dynamic molecular visualizations of solid, liquid, and…

  19. Gas-grain chemistry in cold interstellar cloud cores with a microscopic Monte Carlo approach to surface chemistry

    Science.gov (United States)

    Chang, Q.; Cuppen, H. M.; Herbst, E.

    2007-07-01

    Aims:We have recently developed a microscopic Monte Carlo approach to study surface chemistry on interstellar grains and the morphology of ice mantles. The method is designed to eliminate the problems inherent in the rate-equation formalism to surface chemistry. Here we report the first use of this method in a chemical model of cold interstellar cloud cores that includes both gas-phase and surface chemistry. The surface chemical network consists of a small number of diffusive reactions that can produce molecular oxygen, water, carbon dioxide, formaldehyde, methanol and assorted radicals. Methods: The simulation is started by running a gas-phase model including accretion onto grains but no surface chemistry or evaporation. The starting surface consists of either flat or rough olivine. We introduce the surface chemistry of the three species H, O and CO in an iterative manner using our stochastic technique. Under the conditions of the simulation, only atomic hydrogen can evaporate to a significant extent. Although it has little effect on other gas-phase species, the evaporation of atomic hydrogen changes its gas-phase abundance, which in turn changes the flux of atomic hydrogen onto grains. The effect on the surface chemistry is treated until convergence occurs. We neglect all non-thermal desorptive processes. Results: We determine the mantle abundances of assorted molecules as a function of time through 2 × 105 yr. Our method also allows determination of the abundance of each molecule in specific monolayers. The mantle results can be compared with observations of water, carbon dioxide, carbon monoxide, and methanol ices in the sources W33A and Elias 16. Other than a slight underproduction of mantle CO, our results are in very good agreement with observations.

  20. Molecular Modelling

    Directory of Open Access Journals (Sweden)

    Aarti Sharma

    2009-12-01

    Full Text Available

    The use of computational chemistry in the development of novel pharmaceuticals is becoming an increasingly important
    tool. In the past, drugs were simply screened for effectiveness. The recent advances in computing power and
    the exponential growth of the knowledge of protein structures have made it possible for organic compounds to tailored to
    decrease harmful side effects and increase the potency. This article provides a detailed description of the techniques
    employed in molecular modeling. Molecular modelling is a rapidly developing discipline, and has been supported from
    the dramatic improvements in computer hardware and software in recent years.

  1. Molecular physics and chemistry applications of quantum Monte Carlo

    International Nuclear Information System (INIS)

    Reynolds, P.J.; Barnett, R.N.; Hammond, B.L.; Lester, W.A. Jr.

    1985-09-01

    We discuss recent work with the diffusion quantum Monte Carlo (QMC) method in its application to molecular systems. The formal correspondence of the imaginary time Schroedinger equation to a diffusion equation allows one to calculate quantum mechanical expectation values as Monte Carlo averages over an ensemble of random walks. We report work on atomic and molecular total energies, as well as properties including electron affinities, binding energies, reaction barriers, and moments of the electronic charge distribution. A brief discussion is given on how standard QMC must be modified for calculating properties. Calculated energies and properties are presented for a number of molecular systems, including He, F, F - , H 2 , N, and N 2 . Recent progress in extending the basic QMC approach to the calculation of ''analytic'' (as opposed to finite-difference) derivatives of the energy is presented, together with an H 2 potential-energy curve obtained using analytic derivatives. 39 refs., 1 fig., 2 tabs

  2. Complex chemistry

    International Nuclear Information System (INIS)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-01

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  3. Physics and Chemistry of Star and Planet Formation in the Alma ERA

    Science.gov (United States)

    Bergin, Edwin

    2014-06-01

    ALMA will open up new avenues of exploration encompassing the wide range of star formation in our galaxy and peering into the central heart of planet-forming circumstellar disks. As we seek to explore the origins of stars and planets molecular emission will be at the front and center of many studies probing gas physics and chemistry. In this talk I will discus some of the areas where we can expect significant advances due to the increased sensitivity and superb spatial resolution of ALMA. In star-forming cores, a rich chemistry is revealed that may be the simpler molecular precursors to more complex organics, such as amino acids, seen within primitive rocks in our own solar system. ALMA will provide new information regarding the relative spatial distribution within a given source for a host of organics, sampling tens to hundreds of transitions of a variety of molecules, including presumably new ones. In this area there is a rich synergy with existing ground and space-based data, including Herschel/Spitzer. Here the increased sampling of sources to be enabled by ALMA should bring greater clarity toward the key products of interstellar chemistry and further constrain processes. On smaller Solar System scales, for over a decade most observations of planet-forming disks focused on the dust thermal continuum emission as a probe of the gas content and structure. ALMA will enable reliable and direct studies of gas to explore the evolving physics of planet-formation, the gas dissipation timescales (i.e. the upper limit to the timescale for giant planet birth), and also the chemistry. It is this chemistry that sets the composition of gas giants and also influences the ultimate composition of water and organic materials that are delivered to terrestrial worlds. Here I will show how we can use molecular emission to determine the gas thermal structure of a disk system and the total gas content - key astrophysical quantities. This will also enable more constrained chemical

  4. A New Approach To Soil Sampling For Risk Assessment Of Nutrient Mobilisation.

    Science.gov (United States)

    Jonczyk, J. C.; Owen, G. J.; Snell, M. A.; Barber, N.; Benskin, C.; Reaney, S. M.; Haygarth, P.; Quinn, P. F.; Barker, P. A.; Aftab, A.; Burke, S.; Cleasby, W.; Surridge, B.; Perks, M. T.

    2016-12-01

    Traditionally, risks of nutrient and sediment losses from soils are assessed through a combination of field soil nutrient values on soil samples taken over the whole field and the proximity of the field to water courses. The field average nutrient concentration of the soil is used by farmers to determine fertiliser needs. These data are often used by scientists to assess the risk of nutrient losses to water course, though are not really `fit' for this purpose. The Eden Demonstration Test Catchment (http://www.edendtc.org.uk/) is a research project based in the River Eden catchment, NW UK, with the aim of cost effectively mitigating diffuse pollution from agriculture whilst maintaining agricultural productivity. Three instrumented focus catchments have been monitored since 2011, providing high resolution in-stream chemistry and ecological data, alongside some spatial data on soils, land use and nutrient inputs. An approach to mitigation was demonstrated in a small sub-catchment, where surface runoff was identified as the key drivers of nutrient losses, using a suite of runoff attenuation features. Other issues identified were management of hard- standings and soil compaction. A new approach for evaluating nutrient losses from soils is assessed in the Eden DTC project. The Sensitive Catchment Integrated Modelling and Prediction (SCIMAP) model is a risk-mapping framework designed to identify where in the landscape diffuse pollution is most likely to be originating (http://www.scimap.org.uk) and was used to look at the spatial pattern of erosion potential. The aim of this work was to assess if erosion potential identified through the model could be used to inform a new soil sampling strategy, to better assess risk of erosion and risk of transport of sediment-bound phosphorus. Soil samples were taken from areas with different erosion potential. The chemical analysis of these targeted samples are compared to those obtained using more traditional sampling approaches

  5. Integrating Symmetry in Stereochemical Analysis in Introductory Organic Chemistry

    Science.gov (United States)

    Taagepera, Mare; Arasasingham, Ramesh D.; King, Susan; Potter, Frank; Martorell, Ingrid; Ford, David; Wu, Jason; Kearney, Aaron M.

    2011-01-01

    We report a comparative study using "knowledge space theory" (KAT) to assess the impact of a hands-on laboratory exercise that used molecular model kits to emphasize the connections between a plane of symmetry, Charity, and isomerism in an introductory organic chemistry course. The experimental design compared three groups of…

  6. AutoClickChem: click chemistry in silico.

    Directory of Open Access Journals (Sweden)

    Jacob D Durrant

    Full Text Available Academic researchers and many in industry often lack the financial resources available to scientists working in "big pharma." High costs include those associated with high-throughput screening and chemical synthesis. In order to address these challenges, many researchers have in part turned to alternate methodologies. Virtual screening, for example, often substitutes for high-throughput screening, and click chemistry ensures that chemical synthesis is fast, cheap, and comparatively easy. Though both in silico screening and click chemistry seek to make drug discovery more feasible, it is not yet routine to couple these two methodologies. We here present a novel computer algorithm, called AutoClickChem, capable of performing many click-chemistry reactions in silico. AutoClickChem can be used to produce large combinatorial libraries of compound models for use in virtual screens. As the compounds of these libraries are constructed according to the reactions of click chemistry, they can be easily synthesized for subsequent testing in biochemical assays. Additionally, in silico modeling of click-chemistry products may prove useful in rational drug design and drug optimization. AutoClickChem is based on the pymolecule toolbox, a framework that may facilitate the development of future python-based programs that require the manipulation of molecular models. Both the pymolecule toolbox and AutoClickChem are released under the GNU General Public License version 3 and are available for download from http://autoclickchem.ucsd.edu.

  7. AutoClickChem: click chemistry in silico.

    Science.gov (United States)

    Durrant, Jacob D; McCammon, J Andrew

    2012-01-01

    Academic researchers and many in industry often lack the financial resources available to scientists working in "big pharma." High costs include those associated with high-throughput screening and chemical synthesis. In order to address these challenges, many researchers have in part turned to alternate methodologies. Virtual screening, for example, often substitutes for high-throughput screening, and click chemistry ensures that chemical synthesis is fast, cheap, and comparatively easy. Though both in silico screening and click chemistry seek to make drug discovery more feasible, it is not yet routine to couple these two methodologies. We here present a novel computer algorithm, called AutoClickChem, capable of performing many click-chemistry reactions in silico. AutoClickChem can be used to produce large combinatorial libraries of compound models for use in virtual screens. As the compounds of these libraries are constructed according to the reactions of click chemistry, they can be easily synthesized for subsequent testing in biochemical assays. Additionally, in silico modeling of click-chemistry products may prove useful in rational drug design and drug optimization. AutoClickChem is based on the pymolecule toolbox, a framework that may facilitate the development of future python-based programs that require the manipulation of molecular models. Both the pymolecule toolbox and AutoClickChem are released under the GNU General Public License version 3 and are available for download from http://autoclickchem.ucsd.edu.

  8. Soil Chemical Weathering and Nutrient Budgets along an Earthworm Invasion Chronosequence in a Northern Minnesota Forest

    Science.gov (United States)

    Resner, K. E.; Yoo, K.; Sebestyen, S. D.; Aufdenkampe, A. K.; Lyttle, A.; Weinman, B. A.; Blum, A.; Hale, C. M.

    2011-12-01

    We are investigating the impact of exotic earthworms on the rate of nutrient and ion release from soil chemical weathering along an ~200 m invasion chronosequence in a northern Minnesota sugar maple forest. The earthworms belong to three ecological groups that represent different feeding and burrowing behaviors, all of which were introduced from Europe to the previously earthworm-free Great Lakes Region through fishing and agricultural activities. As earthworms digest and mix the soil, we hypothesize that they significantly alter chemical weathering processes by incorporating mineral surfaces to new geochemical environments in their intestines and at different soil depths. The effect of mixing on soil morphology is dramatic, but biogeochemical changes remain largely unknown and therefore are poorly coupled to the current and potential changes in forest ecosystems under the threat of exotic earthworms. We analyze the activities of short-lived isotopes 137-Cs and 210-Pb along with the inorganic chemistry of soil, water, and leaf litter across an invasion transect and link these measurements to the biomass and species composition of exotic earthworms. Earthworms vertically relocate minerals and organic matter largely within the top ~10 cm, which is reflected in the depth profiles of the short-lived isotopes. Among the inorganic nutrients analyzed, Ca is of particular interest due to sugar maple's aptitude for recycling Ca. Fractional mass loss values (tau) of Ca, relative to the soil's parent material, show an enrichment factor of 14 in the least invaded A horizon soils. However, such a high enrichment factor declines dramatically in the heavily invaded soils, suggesting that earthworm activities contribute to leaching Ca. In contrast, the enrichment factor of Fe increases with greater degrees of earthworm invasion, which is consistent with the extraction chemistry data showing greater quantities of pedogenic crystalline iron oxides and greater mineral specific

  9. Atomic and molecular processes with lithium in peripheral plasmas

    International Nuclear Information System (INIS)

    Murakami, I.; Kato, D.; Hirooka, Y.; Sawada, K.

    2010-01-01

    Atomic and molecular processes for Li chemistry are examined for low temperature plasma such as peripheral plasmas in fusion research laboratory devices. Particle abundances of Li, Li ions, LiH and LiH ion are calculated by solving rate equations in which all reactions of the Li chemistry are considered for low temperature plasma.

  10. Physics and Chemistry of Earth Materials

    Science.gov (United States)

    Navrotsky, Alexandra

    1994-11-01

    Stressing the fundamental solid state behavior of minerals, and emphasizing both theory and experiment, this text surveys the physics and chemistry of earth materials. The author begins with a systematic tour of crystal chemistry of both simple and complex structures (with completely new structural drawings) and discusses how to obtain structural and thermodynamic information experimentally. Dr. Navrotsky also reviews the quantitative concepts of chemical bonding--band theory, molecular orbit and ionic models. She then covers physical properties and relates microscopic features to macroscopic thermodynamic behavior and treats high pressure phase transitions, amorphous materials and solid state reactions. The author concludes with a look at the interface between mineral physics and materials science. Highly illustrated throughout, this book fills the gap between undergraduate texts and specialized review volumes and is appropriate for students and researchers in earth science and materials science.

  11. Relativistic quantum chemistry on quantum computers

    DEFF Research Database (Denmark)

    Veis, L.; Visnak, J.; Fleig, T.

    2012-01-01

    The past few years have witnessed a remarkable interest in the application of quantum computing for solving problems in quantum chemistry more efficiently than classical computers allow. Very recently, proof-of-principle experimental realizations have been reported. However, so far only...... the nonrelativistic regime (i.e., the Schrodinger equation) has been explored, while it is well known that relativistic effects can be very important in chemistry. We present a quantum algorithm for relativistic computations of molecular energies. We show how to efficiently solve the eigenproblem of the Dirac......-Coulomb Hamiltonian on a quantum computer and demonstrate the functionality of the proposed procedure by numerical simulations of computations of the spin-orbit splitting in the SbH molecule. Finally, we propose quantum circuits with three qubits and nine or ten controlled-NOT (CNOT) gates, which implement a proof...

  12. Laser experiments for chemistry and physics

    CERN Document Server

    Compton, Robert N

    2016-01-01

    Lasers are employed throughout science and technology, in fundamental research, the remote sensing of atmospheric gases or pollutants, communications, medical diagnostics and therapies, and the manufacturing of microelectronic devices. Understanding the principles of their operation, which underlie all of these areas, is essential for a modern scientific education. This text introduces the characteristics and operation of lasers through laboratory experiments designed for the undergraduate curricula in chemistry and physics. Introductory chapters describe the properties of light, the history of laser invention, the atomic, molecular, and optical principles behind how lasers work, and the kinds of lasers available today. Other chapters include the basic theory of spectroscopy and computational chemistry used to interpret laser experiments. Experiments range from simple in-class demonstrations to more elaborate configurations for advanced students. Each chapter has historical and theoretical background, as well...

  13. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  14. Pattern recognition in molecular dynamics. [FORTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Zurek, W H; Schieve, W C [Texas Univ., Austin (USA)

    1977-07-01

    An algorithm for the recognition of the formation of bound molecular states in the computer simulation of a dilute gas is presented. Applications to various related problems in physics and chemistry are pointed out. Data structure and decision processes are described. Performance of the FORTRAN program based on the algorithm in cooperation with the molecular dynamics program is described and the results are presented.

  15. Organic chemistry and biology of the interstellar medium

    Science.gov (United States)

    Sagan, C.

    1973-01-01

    Interstellar organic chemistry is discussed as the field of study emerging from the discovery of microwave lines of formaldehyde and of hydrogen cyanide in the interstellar medium. The reliability of molecular identifications and comparisons of interstellar and cometary compounds are considered, along with the degradational origin of simple organics. It is pointed out that the contribution of interstellar organic chemistry to problems in biology is not substantive but analogical. The interstellar medium reveals the operation of chemical processes which, on earth and perhaps on vast numbers of planets throughout the universe, led to the origin of life, but the actual molecules of the interstellar medium are unlikely to play any significant biological role.

  16. River Metabolism and Nutrient Cycling at the Point Scale: Insights from In Situ Sensors in Benthic Chambers

    Science.gov (United States)

    Cohen, M. J.; Reijo, C. J.; Hensley, R. T.

    2017-12-01

    Riverine processing of nutrients and carbon is a local process, subject to heterogeneity in sediment, biotic, insolation, and flow velocity drivers. Measurements at the reach scale aggregate across riverscapes, limiting their utility for enumerating these drivers, and thus for scaling to river networks. Using a combination of in situ sensors that sample water chemistry at high temporal resolution and open benthic chambers that isolate the biogeochemical impacts of a small footprint of benthic surface area, we explored controls on metabolism and nutrient cycling. We specifically sought to answer two questions. First, what are the controls on primary production, with a particular emphasis on the relative roles of light vs. nutrient limitation? Second, what are the pathways of nutrient retention, and do the reaction kinetics of these different pathways differ? We demonstrate the considerable utility of these benthic chambers, reasoning that they provide experimental units for river processes that are not attainable at the reach or network scale. Specifically, in addition to their ability to sample the heterogeneity of the river bed as well as observe nutrient depletion to create concentrations well below ambient levels, they enable manipulative experiments (e.g., nutrient enrichment, light reduction, grazer adjustments) while retaining key elements of the natural system. Across several of Florida's spring-fed river sites, our results strongly support the primacy of light limitation of primary production, with very little evidence of any incremental effects of nutrient enrichment. Nutrient depletion assays further support the dominance of two N retention mechanisms (denitrification and assimilation), the kinetics of which differ markedly, with denitrification exhibiting nearly first-order reactions, and assimilation following zero-order or Michaelis-Menten kinetics over the range of observed concentrations. This latter result helps explain the absence of strong

  17. Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and Improved Grassland Biomass

    Directory of Open Access Journals (Sweden)

    Fengge Zhang

    2018-04-01

    Full Text Available In grasslands, forage and livestock production results in soil nutrient deficits as grasslands typically receive no nutrient inputs, leading to a loss of grassland biomass. The application of mature compost has been shown to effectively increase grassland nutrient availability. However, research on fertilization regime influence and potential microbial ecological regulation mechanisms are rarely conducted in grassland soil. We conducted a two-year experiment in meadow steppe grasslands, focusing on above- and belowground consequences of organic or Trichoderma biofertilizer applications and potential soil microbial ecological mechanisms underlying soil chemistry and microbial community responses. Grassland biomass significantly (p = 0.019 increased following amendment with 9,000 kg ha−1 of Trichoderma biofertilizer (composted cattle manure + inoculum compared with other assessed organic or biofertilizer rates, except for BOF3000 (fertilized with 3,000 kg ha−1 biofertilizer. This rate of Trichoderma biofertilizer treatment increased soil antifungal compounds that may suppress pathogenic fungi, potentially partially responsible for improved grassland biomass. Nonmetric multidimensional scaling (NMDS revealed soil chemistry and fungal communities were all separated by different fertilization regime. Trichoderma biofertilizer (9,000 kg ha−1 increased relative abundances of Archaeorhizomyces and Trichoderma while decreasing Ophiosphaerella. Trichoderma can improve grassland biomass, while Ophiosphaerella has the opposite effect as it may secrete metabolites causing grass necrosis. Correlations between soil properties and microbial genera showed plant-available phosphorus may influence grassland biomass by increasing Archaeorhizomyces and Trichoderma while reducing Ophiosphaerella. According to our structural equation modeling (SEM, Trichoderma abundance was the primary contributor to aboveground grassland biomass. Our results suggest Trichoderma

  18. Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and Improved Grassland Biomass.

    Science.gov (United States)

    Zhang, Fengge; Huo, Yunqian; Cobb, Adam B; Luo, Gongwen; Zhou, Jiqiong; Yang, Gaowen; Wilson, Gail W T; Zhang, Yingjun

    2018-01-01

    In grasslands, forage and livestock production results in soil nutrient deficits as grasslands typically receive no nutrient inputs, leading to a loss of grassland biomass. The application of mature compost has been shown to effectively increase grassland nutrient availability. However, research on fertilization regime influence and potential microbial ecological regulation mechanisms are rarely conducted in grassland soil. We conducted a two-year experiment in meadow steppe grasslands, focusing on above- and belowground consequences of organic or Trichoderma biofertilizer applications and potential soil microbial ecological mechanisms underlying soil chemistry and microbial community responses. Grassland biomass significantly ( p = 0.019) increased following amendment with 9,000 kg ha -1 of Trichoderma biofertilizer (composted cattle manure + inoculum) compared with other assessed organic or biofertilizer rates, except for BOF3000 (fertilized with 3,000 kg ha -1 biofertilizer). This rate of Trichoderma biofertilizer treatment increased soil antifungal compounds that may suppress pathogenic fungi, potentially partially responsible for improved grassland biomass. Nonmetric multidimensional scaling (NMDS) revealed soil chemistry and fungal communities were all separated by different fertilization regime. Trichoderma biofertilizer (9,000 kg ha -1 ) increased relative abundances of Archaeorhizomyces and Trichoderma while decreasing Ophiosphaerella . Trichoderma can improve grassland biomass, while Ophiosphaerella has the opposite effect as it may secrete metabolites causing grass necrosis. Correlations between soil properties and microbial genera showed plant-available phosphorus may influence grassland biomass by increasing Archaeorhizomyces and Trichoderma while reducing Ophiosphaerella . According to our structural equation modeling (SEM), Trichoderma abundance was the primary contributor to aboveground grassland biomass. Our results suggest Trichoderma

  19. Impact of wildfire on stream nutrient chemistry and ecosystem metabolism in boreal forest catchments of interior Alaska

    Science.gov (United States)

    Emma F. Betts; Jeremy B. Jones

    2009-01-01

    With climatic warming, wildfire occurrence is increasing in the boreal forest of interior Alaska. Loss of catchment vegetation during fire can impact streams directly through altered solute and debris inputs and changed light and temperature regimes. Over longer time scales, fire can accelerate permafrost degradation, altering catchment hydrology and stream nutrient...

  20. Implementing and Operating Computer Graphics in the Contemporary Chemistry Education

    Directory of Open Access Journals (Sweden)

    Olga Popovska

    2017-11-01

    Full Text Available Technology plays a crucial role in modern teaching, providing both, educators and students fundamental theoretical insights as well as supporting the interpretation of experimental data. In the long term it gives students a clear stake in their learning processes. Advancing in education furthermore largely depends on providing valuable experiences and tools throughout digital and computer literacy. Here and after, the computer’s benefit makes no exception in the chemistry as a science. The major part of computer revolutionizing in the chemistry laboratory is with the use of images, diagrams, molecular models, graphs and specialized chemistry programs. In the sense of this, the teacher provides more interactive classes and numerous dynamic teaching methods along with advanced technology. All things considered, the aim of this article is to implement interactive teaching methods of chemistry subjects using chemistry computer graphics. A group of students (n = 30 at the age of 18–20 were testing using methods such as brainstorming, demonstration, working in pairs, and writing laboratory notebooks. The results showed that demonstration is the most acceptable interactive method (95%. This article is expected to be of high value to teachers and researchers of chemistry, implementing interactive methods, and operating computer graphics.

  1. Aquatic chemistry of flood events

    Science.gov (United States)

    Klavins, Maris; Rodinov, Valery

    2015-04-01

    During flood events a major discharge of water and dissolved substances happens. However flood waters very much differs from water composition during low-water events. Aquatic chemistry of flood waters also is of importance at the calculation of loadings as well as they might have major impact on water quality in receiving water bodies (lakes, coastal waters and seas). Further flood regime of rivers is subjected to changes due to climate change and growing impact of human activities. The aim of this study is to analyse water chemical composition changes during flood events in respect to low water periods, character of high-water events and characteristics of the corresponding basin. Within this study, the concentrations of major dissolved substances in the major rivers of Latvia have been studied using monitoring data as well as field studies during high water/ low water events. As territories of studies flows of substances in river basins/subbasins with different land-use character and different anthropogenic impacts has been studied to calculate export values depending on the land-use character. Impact of relations between dissolved substances and relations in respect to budgets has been calculated. The dynamics of DOC, nutrient and major dissolved substance flows depending on landuse pattern and soil properties in Latvia has been described, including emissions by industrial and agricultural production. In these changes evidently climate change signals can be identified. The water chemistry of a large number of rivers during flood events has been determined and the possible impact of water chemical composition on DOC and nutrient flows has been evaluated. Long-term changes (1977-2013) of concentrations of dissolved substances do not follow linear trends but rather show oscillating patterns, indicating impact of natural factors, e.g. changing hydrological and climatic conditions. There is a positive correlation between content of inert dissolved substances and

  2. Art, auto-mechanics, and supramolecular chemistry. A merging of hobbies and career.

    Science.gov (United States)

    Anslyn, Eric V

    2016-01-01

    While the strict definition of supramolecular chemistry is "chemistry beyond the molecule", meaning having a focus on non-covalent interactions, the field is primarily associated with the creation of synthetic receptors and self-assembly. For synthetic ease, the receptors and assemblies routinely possess a high degree of symmetry, which lends them an aspect of aesthetic beauty. Pictures of electron orbitals similarly can be seen as akin to works of art. This similarity was an early draw for me to the fields of supramolecular chemistry and molecular orbital theory, because I grew up in a household filled with art. In addition to art, my childhood was filled with repairing and constructing mechanical entities, such as internal combustion motors, where many components work together to achieve a function. Analogously, the field of supramolecular chemistry creates systems of high complexity that achieve functions or perform tasks. Therefore, in retrospect a career in supramolecular chemistry appears to be simply an extension of childhood hobbies involving art and auto-mechanics.

  3. Forschungszentrum Rossendorf, Institute of Bioinorganic and Radiopharmaceutical Chemistry. Annual report 1995

    International Nuclear Information System (INIS)

    Johannsen, B.

    1996-02-01

    Research at the Institute of Bioinorganic and Radiopharmaceutical Chemistry of the Research Center Rossendorf is focused on radiotracers as molecular probes for diagnosis of disease. The research effort has two main components: -Positron emission tomography (PET) - technetium chemistry and radiopharmacology. The research activities of the Institute have been performed in three administratively classified groups. A PET tracer group is engaged in the chemistry and radiopharmacy of 11 C and 18 F compounds and in the setup of the PET center. A SPECT tracer group deals with the design, synthesis and chemical characterization of metal coordination compounds, primarily rhenium and technetium complexes. A biochemical group is working on SPECT and PET-relevant biochemical and biological projects. This includes the characterization and assessment of new compounds developed in the two synthetically oriented groups. The annual report presented here covers the research activities of the Institute of Bioinorganic and Radiopharmaceutical Chemistry in 1995. (orig.)

  4. Investigating the Effectiveness of Computer Simulations for Chemistry Learning

    Science.gov (United States)

    Plass, Jan L.; Milne, Catherine; Homer, Bruce D.; Schwartz, Ruth N.; Hayward, Elizabeth O.; Jordan, Trace; Verkuilen, Jay; Ng, Florrie; Wang, Yan; Barrientos, Juan

    2012-01-01

    Are well-designed computer simulations an effective tool to support student understanding of complex concepts in chemistry when integrated into high school science classrooms? We investigated scaling up the use of a sequence of simulations of kinetic molecular theory and associated topics of diffusion, gas laws, and phase change, which we designed…

  5. Teaching Chemistry with Electron Density Models

    Science.gov (United States)

    Shusterman, Gwendolyn P.; Shusterman, Alan J.

    1997-07-01

    Linus Pauling once said that a topic must satisfy two criteria before it can be taught to students. First, students must be able to assimilate the topic within a reasonable amount of time. Second, the topic must be relevant to the educational needs and interests of the students. Unfortunately, the standard general chemistry textbook presentation of "electronic structure theory", set as it is in the language of molecular orbitals, has a difficult time satisfying either criterion. Many of the quantum mechanical aspects of molecular orbitals are too difficult for most beginning students to appreciate, much less master, and the few applications that are presented in the typical textbook are too limited in scope to excite much student interest. This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, which we have developed and used for several years in general chemistry (G.P.S.) and organic chemistry (A.J.S.) courses, relies on computer-generated three-dimensional models of electron density distributions, and largely satisfies Pauling's two criteria. Students find electron density models easy to understand and use, and because these models are easily applied to a broad range of topics, they successfully convey to students the importance of electronic structure. In addition, when students finally learn about orbital concepts they are better prepared because they already have a well-developed three-dimensional picture of electronic structure to fall back on. We note in this regard that the types of models we use have found widespread, rigorous application in chemical research (1, 2), so students who understand and use electron density models do not need to "unlearn" anything before progressing to more advanced theories.

  6. chemf: A purely functional chemistry toolkit.

    Science.gov (United States)

    Höck, Stefan; Riedl, Rainer

    2012-12-20

    Although programming in a type-safe and referentially transparent style offers several advantages over working with mutable data structures and side effects, this style of programming has not seen much use in chemistry-related software. Since functional programming languages were designed with referential transparency in mind, these languages offer a lot of support when writing immutable data structures and side-effects free code. We therefore started implementing our own toolkit based on the above programming paradigms in a modern, versatile programming language. We present our initial results with functional programming in chemistry by first describing an immutable data structure for molecular graphs together with a couple of simple algorithms to calculate basic molecular properties before writing a complete SMILES parser in accordance with the OpenSMILES specification. Along the way we show how to deal with input validation, error handling, bulk operations, and parallelization in a purely functional way. At the end we also analyze and improve our algorithms and data structures in terms of performance and compare it to existing toolkits both object-oriented and purely functional. All code was written in Scala, a modern multi-paradigm programming language with a strong support for functional programming and a highly sophisticated type system. We have successfully made the first important steps towards a purely functional chemistry toolkit. The data structures and algorithms presented in this article perform well while at the same time they can be safely used in parallelized applications, such as computer aided drug design experiments, without further adjustments. This stands in contrast to existing object-oriented toolkits where thread safety of data structures and algorithms is a deliberate design decision that can be hard to implement. Finally, the level of type-safety achieved by Scala highly increased the reliability of our code as well as the productivity of

  7. Theoretical Molecular Biophysics

    CERN Document Server

    Scherer, Philipp

    2010-01-01

    "Theoretical Molecular Biophysics" is an advanced study book for students, shortly before or after completing undergraduate studies, in physics, chemistry or biology. It provides the tools for an understanding of elementary processes in biology, such as photosynthesis on a molecular level. A basic knowledge in mechanics, electrostatics, quantum theory and statistical physics is desirable. The reader will be exposed to basic concepts in modern biophysics such as entropic forces, phase separation, potentials of mean force, proton and electron transfer, heterogeneous reactions coherent and incoherent energy transfer as well as molecular motors. Basic concepts such as phase transitions of biopolymers, electrostatics, protonation equilibria, ion transport, radiationless transitions as well as energy- and electron transfer are discussed within the frame of simple models.

  8. High Temperature Chemistry of Aromatic Hydrocarbons. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Lawrence T. [Boston College, Chestnut Hill, MA (United States). Merkert Chemistry Center, Dept. of Chemistry

    2017-05-15

    The primary goal of this research was to uncover the principal reaction channels available to polycyclic aromatic hydrocarbons (PAHs) at high temperatures in the gas phase and to establish the factors that determine which channels will be followed in varying circumstances. New structure-property relationships for PAHs were also studied. The efficient production of clean energy from fossil fuels will remain a major component of the DOE mission until alternative sources of energy eventually displace coal and petroleum. Hydrocarbons constitute the most basic class of compounds in all of organic chemistry, and as the dominant species in fossil fuels, they figure prominently into the programs of the DOE. Much is already known about the normal chemistry of hydrocarbons under ambient conditions, but far less is known about their intrinsic chemistry at temperatures close to those reached during combustion. An understanding of the fundamental molecular transformations, rearrangements, and interconversions of PAHs at high temperatures in the gas phase, as revealed by careful studies on small, well-designed, molecular systems, provides insights into the underlying chemistry of many important processes that are more complex, such as the generation of energy by the combustion of fossil fuels, the uncatalyzed gasification and liquefaction of coal, the production of fullerenes in fuel-rich flames, and the formation of soot and carcinogenic pollutants in smoke (e.g., benzo[a]pyrene). The rational control of any of these processes, whether it be the optimization of a desirable process or the minimization of an undesirable one, requires a clear knowledge of the basic chemistry that governs the fate of the species involved. Advances in chemistry at the most fundamental level come about primarily from the discovery of new reactions and from new insights into how reactions occur. Harnessing that knowledge is the key to new technologies. The recent commercialization of a combustion

  9. Disequilibrium Chemistry in the Solar Nebula and Early Solar System: Implications for the Chemistry of Comets

    Science.gov (United States)

    Fegley, Bruce, Jr.

    1997-12-01

    A growing body of observations demonstrates that comets, like the chondritic meteorites, are disequilibrium assemblages, whose chemistry and molecular composition cannot be explained solely on the basis of models of equilibrium condensation in the solar nebula. These observations include: (1) The coexistence of reduced (e.g., CH4 and organics) and oxidized (e.g., CO, CO2, and H2CO) carbon compounds observed in the gas and dust emitted by comet P/Halley; (2) The coexistence of reduced (e.g., NH3) and oxidized (e.g., N2) nitrogen compounds in the gas emitted by comet P/Halley; (3) The observation of large amounts of formaldehyde in the gas emitted by comet P/Halley (H2CO/H2O approx. 1.5 - 4%) and by comet Machholz (1988j). Formaldehyde would be rapidly destroyed by thermal processing in the solar nebula and must be formed by some disequilibrating process either in the solar nebula or in some presolar environment. (4) The observation of large amounts of the oxidized carbon gases CO and CO2 in comet P/Halley at levels far exceeding those predicted by chemical equilibrium models of solar nebula carbon chemistry. In fact, oxidized carbon gases (CO+ C02 + H2CO) are the most abundant volatile (after water vapor) emitted by comet P/Halley. (5) The observation of HCN, which is not a predicted low temperature condensate in the solar nebula (e.g., Lewis 1972), in comet P/Halley (e.g., Schloerb et al. 1987) and in comet Kohoutek. (6) The observation of S2, which is argued to be a parent molecule vaporized from the nucleus, in comet IRAS-Araki-Alcock (1983d) by A'Hearn et aL (1983) and Feldman et al. (1984). This molecule is not an equilibrium condensate in the solar nebula and must result from disequilibrium chemistry. (7) The deduction that organic grains (C-H-O-N particles) comprise about 30% of the dust emitted by comet P/Halley and that about 75% of the total carbon inventory of Halley is in these grains also implies substantial disequilibrium chemistry. (8) The deductions

  10. A nutrient dependant switch explains mutually exclusive existence of meiosis and mitosis initiation in budding yeast.

    Science.gov (United States)

    Wannige, C T; Kulasiri, D; Samarasinghe, S

    2014-01-21

    Nutrients from living environment are vital for the survival and growth of any organism. Budding yeast diploid cells decide to grow by mitosis type cell division or decide to create unique, stress resistant spores by meiosis type cell division depending on the available nutrient conditions. To gain a molecular systems level understanding of the nutrient dependant switching between meiosis and mitosis initiation in diploid cells of budding yeast, we develop a theoretical model based on ordinary differential equations (ODEs) including the mitosis initiator and its relations to budding yeast meiosis initiation network. Our model accurately and qualitatively predicts the experimentally revealed temporal variations of related proteins under different nutrient conditions as well as the diverse mutant studies related to meiosis and mitosis initiation. Using this model, we show how the meiosis and mitosis initiators form an all-or-none type bistable switch in response to available nutrient level (mainly nitrogen). The transitions to and from meiosis or mitosis initiation states occur via saddle node bifurcation. This bidirectional switch helps the optimal usage of available nutrients and explains the mutually exclusive existence of meiosis and mitosis pathways. © 2013 Elsevier Ltd. All rights reserved.

  11. Plant nutrient supply and movement. Report of a panel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-11-01

    Despite the emphasis given by the Agency to the more practical field experimentation in agriculture like soil fertility and fertilizer utilization, it is obvious that any long-term programme of soil fertility research must also take into account the fundamentals of plant nutrient supply and movement. Thus a large gap exists between the present methods used for predicting the response of a crop to fertilizer on any given soil and fundamental knowledge in soil physics, chemistry and biology. Only when precise determinations can be made of the quantity of ions in the soil solution, the adsorption complex, and the rate at which the exchange processes occur, will it be possible to develop a scientific basis for the evaluation of the nutrient status of soils and to make efficient fertilizer recommendations. Study of these processes, and others, such as ion movement as affected by water flow and diffusion phenomena, have been carried out on a very limited scale by individual scientists in widely separated institutes. Comparative lack of progress in this field is, at least in part, due to the absence of co-ordinated planning and exchange of information among scientists working on these problems, and it is for this reason that this meeting has been organized by the Agency. From the research point of view a co-ordinated research contract programme on plant nutrient supply and movement has already been initiated and at present there are six contractors. An essential feature of the programme is co-ordination, and this Panel partly represents the second planning meeting of these contractors. The discussions will, however, have wider scope, as other acknowledged specialists in the subject are participating in this Panel.

  12. Numerical simulations of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay, Indonesia.

    Science.gov (United States)

    van der Wulp, Simon A; Damar, Ario; Ladwig, Norbert; Hesse, Karl-J

    2016-09-30

    The present application of numerical modelling techniques provides an overview of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay. A hydrological model simulated river discharges with a total of 90 to 377m(3)s(-1) entering Jakarta Bay. Daily total nitrogen and total phosphorus loads ranged from 40 to 174tons and 14 to 60tons, respectively. Flow model results indicate that nutrient gradients are subject to turbulent mixing by tides and advective transport through circulation driven by wind, barotropic and baroclinic pressure gradients. The bulk of nutrient loads originate from the Citarum and Cisadane rivers flowing through predominantly rural areas. Despite lower nutrient loads, river discharges from the urban area of Jakarta exhibit the highest impact of nutrient concentrations in the near shore area of Jakarta Bay and show that nutrient concentrations were not only regulated by nutrient loads but were strongly regulated by initial river concentrations and local flow characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Machine learning of single molecule free energy surfaces and the impact of chemistry and environment upon structure and dynamics.

    Science.gov (United States)

    Mansbach, Rachael A; Ferguson, Andrew L

    2015-03-14

    The conformational states explored by polymers and proteins can be controlled by environmental conditions (e.g., temperature, pressure, and solvent) and molecular chemistry (e.g., molecular weight and side chain identity). We introduce an approach employing the diffusion map nonlinear machine learning technique to recover single molecule free energy landscapes from molecular simulations, quantify changes to the landscape as a function of external conditions and molecular chemistry, and relate these changes to modifications of molecular structure and dynamics. In an application to an n-eicosane chain, we quantify the thermally accessible chain configurations as a function of temperature and solvent conditions. In an application to a family of polyglutamate-derivative homopeptides, we quantify helical stability as a function of side chain length, resolve the critical side chain length for the helix-coil transition, and expose the molecular mechanisms underpinning side chain-mediated helix stability. By quantifying single molecule responses through perturbations to the underlying free energy surface, our approach provides a quantitative bridge between experimentally controllable variables and microscopic molecular behavior, guiding and informing rational engineering of desirable molecular structure and function.

  14. The role of diatom nanostructures in biasing diffusion to improve uptake in a patchy nutrient environment.

    Directory of Open Access Journals (Sweden)

    James G Mitchell

    Full Text Available BACKGROUND: Diatoms are important single-celled autotrophs that dominate most lit aquatic environments and are distinguished by surficial frustules with intricate designs of unknown function. PRINCIPAL FINDINGS: We show that some frustule designs constrain diffusion to positively alter nutrient uptake. In nutrient gradients of 4 to 160 times over <5 cm, the screened-chambered morphology of Coscincodiscus sp. biases the nutrient diffusion towards the cell by at least 3.8 times the diffusion to the seawater. In contrast, the open-chambers of Thalassiosira eccentrica produce at least a 1.3 times diffusion advantage to the membrane over Coscincodiscus sp. when nutrients are homogeneous. SIGNIFICANCE: Diffusion constraint explains the success of particular diatom species at given times and the overall success of diatoms. The results help answer the unresolved question of how adjacent microplankton compete. Furthermore, diffusion constraint by supramembrane nanostructures to alter molecular diffusion suggests that microbes compete via supramembrane topology, a competitive mechanism not considered by the standard smooth-surface equations used for nutrient uptake nor in microbial ecology and cell physiology.

  15. Models of gas-grain chemistry in interstellar cloud cores with a stochastic approach to surface chemistry

    Science.gov (United States)

    Stantcheva, T.; Herbst, E.

    2004-08-01

    We present a gas-grain model of homogeneous cold cloud cores with time-independent physical conditions. In the model, the gas-phase chemistry is treated via rate equations while the diffusive granular chemistry is treated stochastically. The two phases are coupled through accretion and evaporation. A small network of surface reactions accounts for the surface production of the stable molecules water, formaldehyde, methanol, carbon dioxide, ammonia, and methane. The calculations are run for a time of 107 years at three different temperatures: 10 K, 15 K, and 20 K. The results are compared with those produced in a totally deterministic gas-grain model that utilizes the rate equation method for both the gas-phase and surface chemistry. The results of the different models are in agreement for the abundances of the gaseous species except for later times when the surface chemistry begins to affect the gas. The agreement for the surface species, however, is somewhat mixed. The average abundances of highly reactive surface species can be orders of magnitude larger in the stochastic-deterministic model than in the purely deterministic one. For non-reactive species, the results of the models can disagree strongly at early times, but agree to well within an order of magnitude at later times for most molecules. Strong exceptions occur for CO and H2CO at 10 K, and for CO2 at 20 K. The agreement seems to be best at a temperature of 15 K. As opposed to the use of the normal rate equation method of surface chemistry, the modified rate method is in significantly better agreement with the stochastic-deterministic approach. Comparison with observations of molecular ices in dense clouds shows mixed agreement.

  16. Magnetismo Molecular (Molecular Magentism)

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Mario S [Universidade Federal Fluminense, Brasil; Moreira Dos Santos, Antonio F [ORNL

    2010-07-01

    The new synthesis processes in chemistry open a new world of research, new and surprising materials never before found in nature can now be synthesized and, as a wonderful result, observed a series of physical phenomena never before imagined. Among these are many new materials the molecular magnets, the subject of this book and magnetic properties that are often reflections of the quantum behavior of these materials. Aside from the wonderful experience of exploring something new, the theoretical models that describe the behavior these magnetic materials are, in most cases, soluble analytically, which allows us to know in detail the physical mechanisms governing these materials. Still, the academic interest in parallel this subject, these materials have a number of properties that are promising to be used in technological devices, such as in computers quantum magnetic recording, magnetocaloric effect, spintronics and many other devices. This volume will journey through the world of molecular magnets, from the structural description of these materials to state of the art research.

  17. Sketching the Invisible to Predict the Visible: From Drawing to Modeling in Chemistry.

    Science.gov (United States)

    Cooper, Melanie M; Stieff, Mike; DeSutter, Dane

    2017-10-01

    Sketching as a scientific practice goes beyond the simple act of inscribing diagrams onto paper. Scientists produce a wide range of representations through sketching, as it is tightly coupled to model-based reasoning. Chemists in particular make extensive use of sketches to reason about chemical phenomena and to communicate their ideas. However, the chemical sciences have a unique problem in that chemists deal with the unseen world of the atomic-molecular level. Using sketches, chemists strive to develop causal mechanisms that emerge from the structure and behavior of molecular-level entities, to explain observations of the macroscopic visible world. Interpreting these representations and constructing sketches of molecular-level processes is a crucial component of student learning in the modern chemistry classroom. Sketches also serve as an important component of assessment in the chemistry classroom as student sketches give insight into developing mental models, which allows instructors to observe how students are thinking about a process. In this paper we discuss how sketching can be used to promote such model-based reasoning in chemistry and discuss two case studies of curricular projects, CLUE and The Connected Chemistry Curriculum, that have demonstrated a benefit of this approach. We show how sketching activities can be centrally integrated into classroom norms to promote model-based reasoning both with and without component visualizations. Importantly, each of these projects deploys sketching in support of other types of inquiry activities, such as making predictions or depicting models to support a claim; sketching is not an isolated activity but is used as a tool to support model-based reasoning in the discipline. Copyright © 2017 Cognitive Science Society, Inc.

  18. Molecular environmental geochemistry

    Science.gov (United States)

    O'Day, Peggy A.

    1999-05-01

    The chemistry, mobility, and bioavailability of contaminant species in the natural environment are controlled by reactions that occur in and among solid, aqueous, and gas phases. These reactions are varied and complex, involving changes in chemical form and mass transfer among inorganic, organic, and biochemical species. The field of molecular environmental geochemistry seeks to apply spectroscopic and microscopic probes to the mechanistic understanding of environmentally relevant chemical processes, particularly those involving contaminants and Earth materials. In general, empirical geochemical models have been shown to lack uniqueness and adequate predictive capability, even in relatively simple systems. Molecular geochemical tools, when coupled with macroscopic measurements, can provide the level of chemical detail required for the credible extrapolation of contaminant reactivity and bioavailability over ranges of temperature, pressure, and composition. This review focuses on recent advances in the understanding of molecular chemistry and reaction mechanisms at mineral surfaces and mineral-fluid interfaces spurred by the application of new spectroscopies and microscopies. These methods, such as synchrotron X-ray absorption and scattering techniques, vibrational and resonance spectroscopies, and scanning probe microscopies, provide direct chemical information that can elucidate molecular mechanisms, including element speciation, ligand coordination and oxidation state, structural arrangement and crystallinity on different scales, and physical morphology and topography of surfaces. Nonvacuum techniques that allow examination of reactions in situ (i.e., with water or fluids present) and in real time provide direct links between molecular structure and reactivity and measurements of kinetic rates or thermodynamic properties. Applications of these diverse probes to laboratory model systems have provided fundamental insight into inorganic and organic reactions at

  19. NATO Advanced Study Institute on Fundamental and Technological Aspects of Organo-f-Element Chemistry

    CERN Document Server

    Fragalà, Ignazio

    1985-01-01

    The past decade has seen a dramatic acceleration of activity and interest in phenomena surrounding lanthanide and actinide organo­ metallic compounds. Around the world, active research in organo-f­ element synthesis, chemistry, catalysis, crystallography, and quantum chemistry is in progress. This activity has spanned a remarkably wide range of disciplines, from synthetic/mechanistic inorganic and organic chemistry to radiochemistry, catalytic chemistry, spectroscopy (vibra­ tional, optical, magnetic resonance, photoelectron, Mossbauer), X-ray and neutron diffraction structural analysis, as well as to crystal field and molecular orbital theoretical studies at the interface of chemistry and physics. These investigations have been motivated both by fundamental and applied goals. The evidence that f-element organo­ metallic compounds have unique chemical and physical properties which cannot be duplicated by organometallic compounds of d-block elements has suggested many new areas of endeavor and application....

  20. Molecular Iodine Fluorescence Using a Green Helium-Neon Laser

    Science.gov (United States)

    Williamson, J. Charles

    2011-01-01

    Excitation of molecular iodine vapor with a green (543.4 nm) helium-neon laser produces a fluorescence spectrum that is well suited for the upper-level undergraduate physical chemistry laboratory. Application of standard evaluation techniques to the spectrum yields ground electronic-state molecular parameters in good agreement with literature…

  1. THE DISSOCIATIVE RECOMBINATION OF PROTONATED ACRYLONITRILE, CH2CHCNH+, WITH IMPLICATIONS FOR THE NITRILE CHEMISTRY IN DARK MOLECULAR CLOUDS AND THE UPPER ATMOSPHERE OF TITAN

    International Nuclear Information System (INIS)

    Vigren, E.; Hamberg, M.; Zhaunerchyk, V.; Kaminska, M.; Thomas, R. D.; Larsson, M.; Geppert, W. D.; Millar, T. J.; Walsh, C.

    2009-01-01

    Measurements on the dissociative recombination (DR) of protonated acrylonitrile, CH 2 CHCNH + , have been performed at the heavy ion storage ring CRYRING located in the Manne Siegbahn Laboratory in Stockholm, Sweden. It has been found that at ∼2 meV relative kinetic energy about 50% of the DR events involve only ruptures of X-H bonds (where X = C or N) while the rest leads to the production of a pair of fragments each containing two heavy atoms (alongside H and/or H 2 ). The absolute DR cross section has been investigated for relative kinetic energies ranging from ∼1 meV to 1 eV. The thermal rate coefficient has been determined to follow the expression k(T) = 1.78 x 10 -6 (T/300) - 0.80 cm 3 s -1 for electron temperatures ranging from ∼10 to 1000 K. Gas-phase models of the nitrile chemistry in the dark molecular cloud TMC-1 have been run and results are compared with observations. Also, implications of the present results for the nitrile chemistry of Titan's upper atmosphere are discussed.

  2. Laboratory studies on tropospheric iodine chemistry: bridging the atomic, molecular and particle scale

    Science.gov (United States)

    Gomez Martin, J.; Saunders, R. W.; Blitz, M. A.; Mahajan, A. S.; Plane, J. M.

    2008-12-01

    High mixing ratios of the iodine oxides IO and OIO have been observed in the polar, mid-latitude and tropical marine boundary layer (MBL). The impact of the iodine chemistry on the oxidizing capacity of the MBL is well documented. Moreover, there is evidence showing that the bursts of new particles measured in coastal regions are produced by the biogenic emission of iodine containing precursors, followed by the photochemical production and condensation of iodine oxide vapours. Airborne measurements of particle growth rates show that these particles can reach significant sizes where they can contribute to the regional aerosol loading, thus suggesting a potential impact on climate on a regional or global scale. Within the frame of the INSPECT project (INorganic Secondary Particle Evolution, Chemistry and Transport) we wish to understand at a fundamental level the tendency for the iodine oxides formed from IO and OIO recombination to condense into particles. Elemental analysis of iodine oxide particles (IOP) made in the laboratory shows that they have the empirical formula I2O5. The major question is how this happens: through formation of I2O5 in the gas phase, followed by polymerization, or by condensation of various IxOy to form amorphous iodine oxides, which subsequently rearrange to I2O5. We are studying the gas phase photochemistry leading to nucleation of IOP, their growth kinetics, aspects of their heterogeneous chemistry, and their properties as ice condensation nuclei. In order to bridge the molecular and the particle scales, a wide variety of techniques are being used, including CRDS, ARAS, LIF, UV-VIS spectroscopy, PI-TOF-MS and mobility particle size scanning. The results obtained so far provide new and interesting insights to the problem. From the gas phase point of view, a unit iodine atom quantum yield from OIO photolysis has been now established across its strong visible spectral bands. This result implies a short lifetime of OIO and explains why in

  3. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography - Part II: 2-Methylfuran.

    Science.gov (United States)

    Tran, Luc-Sy; Togbé, Casimir; Liu, Dong; Felsmann, Daniel; Oßwald, Patrick; Glaude, Pierre-Alexandre; Fournet, René; Sirjean, Baptiste; Battin-Leclerc, Frédérique; Kohse-Höinghaus, Katharina

    2014-03-01

    This is Part II of a series of three papers which jointly address the combustion chemistry of furan and its alkylated derivatives 2-methylfuran (MF) and 2,5-dimethylfuran (DMF) under premixed low-pressure flame conditions. Some of them are considered to be promising biofuels. With furan as a common basis studied in Part I of this series, the present paper addresses two laminar premixed low-pressure (20 and 40 mbar) flat argon-diluted (50%) flames of MF which were studied with electron-ionization molecular-beam mass spectrometry (EI-MBMS) and gas chromatography (GC) for equivalence ratios φ=1.0 and 1.7, identical conditions to those for the previously reported furan flames. Mole fractions of reactants, products as well as stable and reactive intermediates were measured as a function of the distance above the burner. Kinetic modeling was performed using a comprehensive reaction mechanism for all three fuels given in Part I and described in the three parts of this series. A comparison of the experimental results and the simulation shows reasonable agreement, as also seen for the furan flames in Part I before. This set of experiments is thus considered to be a valuable additional basis for the validation of the model. The main reaction pathways of MF consumption have been derived from reaction flow analyses, and differences to furan combustion chemistry under the same conditions are discussed.

  4. Kraft lignin chain extension chemistry via propargylation, oxidative coupling, and Claisen rearrangement.

    Science.gov (United States)

    Sen, Sanghamitra; Sadeghifar, Hasan; Argyropoulos, Dimitris S

    2013-10-14

    Despite its aromatic and polymeric nature, the heterogeneous, stochastic, and reactive characteristics of softwood kraft lignin seriously limit its potential for thermoplastic applications. Our continuing efforts toward creating thermoplastic lignin polymers are now focused at exploring propargylation derivatization chemistry and its potential as a versatile novel route for the eventual utilization of technical lignins with a significant amount of molecular control. To do this, we initially report the systematic propargylation of softwood kraft lignin. The synthesized derivatives were extensively characterized with thermal methods (DSC, TGA), (1)H, (13)C, and quantitative (31)P NMR and IR spectroscopies. Further on, we explore the versatile nature of the lignin pendant propargyl groups by demonstrating two distinct chain extension chemistries; the solution-based, copper-mediated, oxidative coupling and the thermally induced, solid-state, Claissen rearrangement polymerization chemistries. Overall, we show that it is possible to modulate the reactivity of softwood kraft lignin via a combination of methylation and chain extension providing a rational means for the creation of higher molecular weight polymers with the potential for thermoplastic materials and carbon fibers with the desired control of structure-property relations.

  5. Radiation Chemistry and Photochemistry of Ionic Liquids

    International Nuclear Information System (INIS)

    Wishart, J.F.; Takahaski, K.

    2010-01-01

    As our understanding of ionic liquids and their tunable properties has grown, it is possible to see many opportunities for ionic liquids to contribute to the sustainable use of energy. The potential safety and environmental benefits of ionic liquids, as compared to conventional solvents, have attracted interest in their use as processing media for the nuclear fuel cycle. Therefore, an understanding of the interactions of ionizing radiation and photons with ionic liquids is strongly needed. However, the radiation chemistry of ionic liquids is still a relatively unexplored topic although there has been a significant increase in the number of researchers in the field recently. This article provides a brief introduction to ionic liquids and their interesting properties, and recent advances in the radiation chemistry and photochemistry of ionic liquids. In this article, we will mainly focus on excess electron dynamics and radical reaction dynamics. Because solvation dynamics processes in ionic liquids are much slower than in molecular solvents, one of the distinguishing characteristics is that pre-solvated electrons play an important role in ionic liquid radiolysis. It will be also shown that the reaction dynamics of radical ions is significantly different from that observed in molecular solvents because of the Coulombic screening effects and electrostatic interactions in ionic liquids.

  6. Lee Pedersen’s work in theoretical and computational chemistry and biochemistry

    OpenAIRE

    Pedersen, Lee G

    2011-01-01

    Nature at the lab level in biology and chemistry can be described by the application of quantum mechanics. In many cases, a reasonable approximation to quantum mechanics is classical mechanics realized through Newton’s equations of motion. Dr. Pedersen began his career using quantum mechanics to describe the properties of small molecular complexes that could serve as models for biochemical systems. To describe large molecular systems required a drop-back to classical means and this led surpri...

  7. Complex Protostellar Chemistry

    Science.gov (United States)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2012-01-01

    Two decades ago, our understanding of the chemistry in protostars was simple-matter either fell into the central star or was trapped in planetary-scale objects. Some minor chemical changes might occur as the dust and gas fell inward, but such effects were overwhelmed by the much larger scale processes that occurred even in bodies as small as asteroids. The chemistry that did occur in the nebula was relatively easy to model because the fall from the cold molecular cloud into the growing star was a one-way trip down a well-known temperature-pressure gradient; the only free variable was time. However, just over 10 years ago it was suggested that some material could be processed in the inner nebula, flow outward, and become incorporated into comets (1, 2). This outward flow was confirmed when the Stardust mission returned crystalline mineral fragments (3) from Comet Wild 2 that must have been processed close to the Sun before they were incorporated into the comet. In this week's Science Express, Ciesla and Sandford (4) demonstrate that even the outermost regions of the solar nebula can be a chemically active environment. Their finding could have consequences for the rest of the nebula.

  8. Spatially controlled immobilisation of biomolecules: A complete approach in green chemistry

    Science.gov (United States)

    Grinenval, Eva; Nonglaton, Guillaume; Vinet, Françoise

    2014-01-01

    The development of 'green' sensors is a challenging task in the field of biomolecule sensing, for example in the detection of cardiac troponin-I (cTnI). In the present work a complete approach in green chemistry was developed to create chemically active patterns for the immobilisation of biological probes. This key technology is discussed on the basis of the twelve green chemistry principles, and is a combination of surface patterning by spotting and surface chemistries modified by molecular vapour deposition. The (1H,1H,2H,2H)-perfluorodecyltrichlorosilane (FDTS) was used as a novel anti-adsorption layer while the 3,4-epoxybutyltrimethoxysilane (EBTMOS) was used to immobilise probes. Oligonucleotides and the anti-cTnI antibody were studied. The spatially controlled immobilisation of probes was characterised by fluorescence. The demonstrated surface modification has broad applications in areas such as diagnostics and bio-chemical sensing. Moreover, the environmental impacts of surface patterning and surface chemistry were discussed from a 'greenness' point of view.

  9. Visualizing Molecular Chirality in the Organic Chemistry Laboratory Using Cholesteric Liquid Crystals

    Science.gov (United States)

    Popova, Maia; Bretz, Stacey Lowery; Hartley, C. Scott

    2016-01-01

    Although stereochemistry is an important topic in second-year undergraduate organic chemistry, there are limited options for laboratory activities that allow direct visualization of macroscopic chiral phenomena. A novel, guided-inquiry experiment was developed that allows students to explore chirality in the context of cholesteric liquid crystals.…

  10. An Insight into Flotation Chemistry of Pyrite with Isomeric Xanthates: A Combined Experimental and Computational Study

    Directory of Open Access Journals (Sweden)

    Guihong Han

    2018-04-01

    Full Text Available The flotation chemistry between pyrite and isomeric xanthates (butyl xanthate and isobutyl xanthate was investigated by means of adsorption experiments, surface tension tests, and molecular dynamic simulations in this work. The flotation chemical results were confirmed and further interpreted by quantum chemical calculations. The experiment results demonstrated that the isobutyl xanthate exhibited superior adsorption capacity and surface activity than those of butyl xanthate in flotation chemistry. In addition, molecular dynamic simulations were simultaneously performed in constant number, constant volume and temperature (NVT, and constant number, constant volume, and pressure (NPT ensemble, indicating that the NPT ensemble was more suitable to the flotation system and the isobutyl xanthate was easier to be adsorbed on pyrite surface compared with butyl xanthate during an appropriate range of concentrations. Furthermore, the quantum chemical calculations elucidated that the isobutyl xanthate presented higher reactivity than that of the corresponding butyl xanthate based on the frontier molecular orbital theory of chemical reactivity, which was consistent with experimental and simulation results obtained. This work can provide theoretical guidance for an in-depth study of the flotation chemistry of pyrite with isomeric xanthates.

  11. Chemistry and physics

    International Nuclear Information System (INIS)

    Broerse, J.J.; Barendsen, G.W.; Kal, H.B.; Kogel, A.J. van der

    1983-01-01

    This book contains the extended abstracts of the contributions of the poster workshop sessions on chemistry and physics of the 7th international congress of radiation research. They cover the following main topics: primary processes in radiation physics and chemistry, general chemistry in radiation chemistry, DNA and model systems in radiation chemistry, molecules of biological interest in radiation chemistry, techniques in radiation chemistry, hot atom chemistry. refs.; figs.; tabs

  12. Molecular Force Spectroscopy on Cells

    Science.gov (United States)

    Liu, Baoyu; Chen, Wei; Zhu, Cheng

    2015-04-01

    Molecular force spectroscopy has become a powerful tool to study how mechanics regulates biology, especially the mechanical regulation of molecular interactions and its impact on cellular functions. This force-driven methodology has uncovered a wealth of new information of the physical chemistry of molecular bonds for various biological systems. The new concepts, qualitative and quantitative measures describing bond behavior under force, and structural bases underlying these phenomena have substantially advanced our fundamental understanding of the inner workings of biological systems from the nanoscale (molecule) to the microscale (cell), elucidated basic molecular mechanisms of a wide range of important biological processes, and provided opportunities for engineering applications. Here, we review major force spectroscopic assays, conceptual developments of mechanically regulated kinetics of molecular interactions, and their biological relevance. We also present current challenges and highlight future directions.

  13. Development of monograph titled "augmented chemistry aldehida & keton" with 3 dimensional (3D) illustration as a supplement book on chemistry learning

    Science.gov (United States)

    Damayanti, Latifah Adelina; Ikhsan, Jaslin

    2017-05-01

    Integration of information technology in education more rapidly performed in a medium of learning. Three-dimensional (3D) molecular modeling was performed in Augmented Reality as a tangible manifestation of increasingly modern technology utilization. Based on augmented reality, three-dimensional virtual object is projected in real time and the exact environment. This paper reviewed the uses of chemical learning supplement book of aldehydes and ketones which are equipped with three-dimensional molecular modeling by which students can inspect molecules from various viewpoints. To plays the 3D illustration printed on the book, smartphones with the open-source software of the technology based integrated Augmented Reality can be used. The aims of this research were to develop the monograph of aldehydes and ketones with 3 dimensional (3D) illustrations, to determine the specification of the monograph, and to determine the quality of the monograph. The quality of the monograph is evaluated by experiencing chemistry teachers on the five aspects of contents/materials, presentations, language and images, graphs, and software engineering, resulted in the result that the book has a very good quality to be used as a chemistry learning supplement book.

  14. Molecular Networking As a Drug Discovery, Drug Metabolism, and Precision Medicine Strategy.

    Science.gov (United States)

    Quinn, Robert A; Nothias, Louis-Felix; Vining, Oliver; Meehan, Michael; Esquenazi, Eduardo; Dorrestein, Pieter C

    2017-02-01

    Molecular networking is a tandem mass spectrometry (MS/MS) data organizational approach that has been recently introduced in the drug discovery, metabolomics, and medical fields. The chemistry of molecules dictates how they will be fragmented by MS/MS in the gas phase and, therefore, two related molecules are likely to display similar fragment ion spectra. Molecular networking organizes the MS/MS data as a relational spectral network thereby mapping the chemistry that was detected in an MS/MS-based metabolomics experiment. Although the wider utility of molecular networking is just beginning to be recognized, in this review we highlight the principles behind molecular networking and its use for the discovery of therapeutic leads, monitoring drug metabolism, clinical diagnostics, and emerging applications in precision medicine. Copyright © 2016. Published by Elsevier Ltd.

  15. Atomic molecular and optical physics

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Laser-assisted manufacturing and fiber-optics communications are but two of the products of atomic, molecular, and optical physics, (AMO) research. AMO physics provides theoretical and experimental methods and essential data to neighboring areas of science such as chemistry, astrophysics, condensed-matter physics, plasma physics, surface science, biology, and medicine. This book addresses advances in atomic, molecular, and optical fields and provides recommendations for further research. It also looks at scientific applications in national security, manufacturing, medicine, and other fields

  16. Role of Translocted Signals in Regulating Root Development and Nutrient Uptake in Legumes

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, C. A. [School of Plant Biology, University of Western Australia, Crawley, WA (Australia)

    2013-11-15

    Uptake of nutrients is achieved through the expression and activity of specific carrier/transporter mechanisms localized in the root system and distributed as a consequence of the development of the architecture of the system. Both root system development and the nutrient transport mechanisms are responsive to environmental factors that include nutrient supply and availability, water supply, salinity, soil acidity and compaction together with a wide range of biotic stresses. The response to each may be regulated at the molecular level by both local and systemic signals. These signals include the classical plant growth regulators but also low molecular weight compounds such as sugars and amino acids as well as macromolecules, including peptides, proteins and nucleic acids. Among the latter, recent research has shown that small RNA species and especially small interfering RNAs (siRNA) and microRNAs (miRNA) are potent and effective regulators of gene expression which, in the context of root development as well as nutrient uptake, have central and critical roles. Systemic (translocated) signals that specifically regulate root development and function are less well defined but analyses of phloem exudate in species of lupin (Lupinus albus and L. angustifolius) and species of Brassica and cucurbits have demonstrated that a wide range of macromolecules, including miRNAs, are present and potentially translocated from source organs (principally leaves) to sinks (shoot apical meristems, developing fruits and seeds, roots and nodules). While specific signaling roles for many of these macromolecules are yet to be discovered there are some that have been documented and their regulatory activity in organ development and functioning, as well as in nutrition, confirmed. The following article provides an up to date review and presents the results of recent research using lupin with emphasis on the analysis of small RNAs and their likely role(s) in regulation of root development and

  17. Using computer-aided drug design and medicinal chemistry strategies in the fight against diabetes.

    Science.gov (United States)

    Semighini, Evandro P; Resende, Jonathan A; de Andrade, Peterson; Morais, Pedro A B; Carvalho, Ivone; Taft, Carlton A; Silva, Carlos H T P

    2011-04-01

    The aim of this work is to present a simple, practical and efficient protocol for drug design, in particular Diabetes, which includes selection of the illness, good choice of a target as well as a bioactive ligand and then usage of various computer aided drug design and medicinal chemistry tools to design novel potential drug candidates in different diseases. We have selected the validated target dipeptidyl peptidase IV (DPP-IV), whose inhibition contributes to reduce glucose levels in type 2 diabetes patients. The most active inhibitor with complex X-ray structure reported was initially extracted from the BindingDB database. By using molecular modification strategies widely used in medicinal chemistry, besides current state-of-the-art tools in drug design (including flexible docking, virtual screening, molecular interaction fields, molecular dynamics, ADME and toxicity predictions), we have proposed 4 novel potential DPP-IV inhibitors with drug properties for Diabetes control, which have been supported and validated by all the computational tools used herewith.

  18. Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida

    Science.gov (United States)

    Feller, Ilka C.; Whigham, D.F.; McKee, K.L.; Lovelock, C.E.

    2003-01-01

    The objectives of this study were to determine effects of nutrient enrichment on plant growth, nutrient dynamics, and photosynthesis in a disturbed mangrove forest in an abandoned mosquito impoundment in Florida. Impounding altered the hydrology and soil chemistry of the site. In 1997, we established a factorial experiment along a tree-height gradient with three zones, i.e., fringe, transition, dwarf, and three fertilizer treatment levels, i.e., nitrogen (N), phosphorus (P), control, in Mosquito Impoundment 23 on the eastern side of Indian River. Transects traversed the forest perpendicular to the shoreline, from a Rhizophora mangle-dominated fringe through an Avicennia germinans stand of intermediate height, and into a scrub or dwarf stand of A. germinans in the hinterland. Growth rates increased significantly in response to N fertilization. Our growth data indicated that this site is N-limited along the tree-height gradient. After 2 years of N addition, dwarf trees resembled vigorously growing saplings. Addition of N also affected internal dynamics of N and P and caused increases in rates of photosynthesis. These findings contrast with results for a R. mangle-dominated forest in Belize where the fringe is N-limited, but the dwarf zone is P-limited and the transition zone is co-limited by N and P. This study demonstrated that patterns of nutrient limitation in mangrove ecosystems are complex, that not all processes respond similarly to the same nutrient, and that similar habitats are not limited by the same nutrient when different mangrove forests are compared.

  19. Molecular dynamics simulations of RNA motifs

    Czech Academy of Sciences Publication Activity Database

    Csaszar, K.; Špačková, Naďa; Šponer, Jiří; Leontis, N. B.

    2002-01-01

    Roč. 223, - (2002), s. 154 ISSN 0065-7727. [Annual Meeting of the American Chemistry Society /223./. 07.04.2002-11.04.2002, Orlando ] Institutional research plan: CEZ:AV0Z5004920 Keywords : molecular dynamics * RNA * hydration Subject RIV: BO - Biophysics

  20. Intracellular Chemistry: Integrating Molecular Inorganic Catalysts with Living Systems.

    Science.gov (United States)

    Ngo, Anh H; Bose, Sohini; Do, Loi H

    2018-03-23

    This concept article focuses on the rapid growth of intracellular chemistry dedicated to the integration of small-molecule metal catalysts with living cells and organisms. Although biological systems contain a plethora of biomolecules that can deactivate inorganic species, researchers have shown that small-molecule metal catalysts could be engineered to operate in heterogeneous aqueous environments. Synthetic intracellular reactions have recently been reported for olefin hydrogenation, hydrolysis/oxidative cleavage, azide-alkyne cycloaddition, allylcarbamate cleavage, C-C bond cross coupling, and transfer hydrogenation. Other promising targets for new biocompatible reaction discovery will also be discussed, with a special emphasis on how such innovations could lead to the development of novel technologies and chemical tools. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Physics and Chemistry of the Interstellar Medium. General Colloquium, 19-21 November 2012, Paris

    International Nuclear Information System (INIS)

    Aguillon, Francois; Alata, Ivan; Alcaraz, Christian; Alves, Marta; Andre, Philippe; Bachiller, Rafael; Bacmann, Aurore; Baklouti, Donia; Bernard, Jean-Philippe; Berne, Olivier; Beroff, Karine; Bertin, Mathieu; Biennier, Ludovic; Bocchio, Marco; Bonal, Lydie; Bontemps, Sylvain; Bouchez Giret, Aurelia; Boulanger, Francois; Bracco, Andrea; Bron, Emeric; Brunetto, Rosario; Cabrit, Sylvie; Canosa, Andre; Capron, Michael; Ceccarelli, Cecilia; Cernicharo, Jose; Chaabouni, Henda; Chabot, Marin; Chen, Hui-Chen; Chiavassa, Thierry; Cobut, Vincent; Commercon, Benoit; Congiu, Emanuele; Coutens, Audrey; Danger, Gregoire; Daniel, Fabien; Dartois, Emmanuel; Demyk, Karine; Denis, Alpizar; Despois, Didier; D'hendecourt, Louis; Dontot, Leo; Doronin, Mikhail; Dubernet, Marie-Lise; Dulieu, Francois; Dumouchel, Fabien; Duvernay, Fabrice; Ellinger, Yves; Falgarone, Edith; Falvo, Cyril; Faure, Alexandre; Fayolle, Edith; Feautrier, Nicole; Feraud, Geraldine; Fillion, Jean-Hugues; Gamboa, Antonio; Gardez, Aline; Gavilan, Lisseth; Gerin, Maryvonne; Ghesquiere, Pierre; Godard, Benjamin; Godard, Marie; Gounelle, Matthieu; Gratier, Pierre; Grenier, Isabelle; Gruet, Sebastien; Gry, Cecile; Guillemin, Jean-Claude; Guilloteau, Stephane; Gusdorf, Antoine; Guzman, Viviana; Habart, Emilie; Hennebelle, Patrick; Herrera, Cinthya; Hily-Blant, Pierre; Hincelin, Ugo; Hochlaf, Majdi; Huet, Therese; Iftner, Christophe; Jallat, Aurelie; Joblin, Christine; Kahane, Claudine; Kalugina, Yulia; Kleiner, Isabelle; Koehler, Melanie; Kokkin, Damian; Koutroumpa, Dimitra; Krim, Lahouari; Lallement, Rosine; Lanza, Mathieu; Lattelais, Marie; Le Bertre, Thibaut; Le Gal, Romane; Le Petit, Franck; Le Picard, Sebastien; Lefloch, Bertrand; Lemaire, Jean Louis; Lesaffre, Pierre; Lique, Francois; Loison, Jean-Christophe; Lopez Sepulcre, Ana; Maillard, Jean-Pierre; Margules, Laurent; Martin, Celine; Mascetti, Joelle; Michaut, Xavier; Minissale, Marco; Miville-Deschenes, Marc-Antoine; Mokrane, Hakima; Momferratos, Georgios; Montillaud, Julien; Montmerle, Thierry; Moret-Bailly, Jacques; Motiyenko, Roman; Moudens, Audrey; Noble, Jennifer; Padovani, Marco; Pagani, Laurent; Pardanaud, Cedric; Parisel, Olivier; Pauzat, Francoise; Pernet, Amelie; Pety, Jerome; Philippe, Laurent; Piergiorgio, Casavecchia; Pilme, Julien; Pinto, Cecilia; Pirali, Olivier; Pirim, Claire; Puspitarini, Lucky; Rist, Claire; Ristorcelli, Isabelle; Romanzin, Claire; Roueff, Evelyne; Rousseau, Patrick; Sabbah, Hassan; Saury, Eleonore; Schneider, Ioan; Schwell, Martin; Sims, Ian; Spielfiedel, Annie; Stoecklin, Thierry; Talbi, Dahbia; Taquet, Vianney; Teillet-Billy, Dominique; Theule, Patrice; Thi, Wing-Fai; Trolez, Yann; Valdivia, Valeska; Van Dishoeck, Ewine; Verstraete, Laurent; Vinogradoff, Vassilissa; Wiesenfeld, Laurent; Ysard, Nathalie; Yvart, Walter; Zicler Eleonore

    2012-11-01

    This document publishes the oral contributions and the 66 posters presented during a colloquium on physics and chemistry of interstellar medium. The following themes have been addressed: New views on the interstellar medium with Herschel, Planck and Alma, Cycle of interstellar dusts, Physics and Dynamics of the interstellar medium, Molecular complexifying and the link towards pre-biotic chemistry. More precisely, the oral contributions addressed the following topics: Interstellar medium with Herschel and Planck; The anomalous microwave emission: a new window on the physics of small grains; Sub-millimetre spectroscopy of complex molecules and of radicals for ALMA and Herschel missions; Analysing observations of molecules in the ISM: theoretical and experimental studies of energy transfer; Unravelling the labyrinth of star formation with Herschel; Star formation regions with Herschel and Alma: astro-chemistry in the Netherlands; Physical structure of gas and dust in photo-dissociation regions observed with Herschel; Photo-desorption of analogues of interstellar ices; Formation of structures in the interstellar medium: theoretical and numerical aspects; Towards a 3D mapping of the galactic ISM by inversion of absorption individual measurements; Low velocity shocks as signatures of turbulent dissipation in diffuse irradiated gas; Early phases of solar system formation: 3D physical and chemical modelling of the collapse of pre-stellar dense core; Cosmic-ray propagation in molecular clouds; Protostellar shocks in the time of Herschel; A new PDR model of the physics and chemistry of the interstellar gas; Molecular spectroscopy in the ALMA era and laboratory Astrophysics in Spain; Which molecules to be searched for in the interstellar medium; Physics and chemistry of UV illuminated neutral gas: the Horsehead case; Nitrogen fractionation in dark clouds; Molecular spectral surveys from millimetre range to far infrared; Mechanisms and synthesis at the surface of cold grains

  2. Nutrient synchrony in preruminant calves

    NARCIS (Netherlands)

    Borne, van den J.J.G.C.

    2006-01-01

    In animal nutrition, the nutrient composition of the daily feed supply is composed to match the nutrient requirements for the desired performance. The time of nutrient availability within a day is usually considered not to affect the fate of nutrients. The aim of this thesis was to evaluate effects

  3. Research directions in plant protection chemistry

    Directory of Open Access Journals (Sweden)

    Andras Szekacs

    2017-09-01

    Full Text Available This Opinion paper briefly summarizes the views of the authors on the directions of research in the area of plant protection chemistry. We believe these directions need to focus on (1 the discovery of new pesticide active ingredients, and (2 the protection of human health and the environment. Research revenues are discussed thematically in topics of target site identification, pesticide discovery, environmental aspects, as well as keeping track with the international trends. The most fundamental approach, target site identification, covers both computer-aided molecular design and research on biochemical mechanisms. The discovery of various classes of pesticides is reviewed including classes that hold promise to date, as well as up-to-date methods of innovation, e.g. utilization of plant metabolomics in identification of novel target sites of biological activity. Environmental and ecological aspects represent a component of increasing importance in pesticide development by emphasizing the need to improve methods of environmental analysis and assess ecotoxicological side-effects, but also set new directions for future research. Last, but not least, pesticide chemistry and biochemistry constitute an integral part in the assessment of related fields of plant protection, e.g. agricultural biotechnology, therefore, issues of pesticide chemistry related to the development and cultivation of genetically modified crops are also discussed.

  4. From hot atom chemistry to epithermal chemistry

    International Nuclear Information System (INIS)

    Roessler, K.

    2004-01-01

    The rise and fall of hot atom chemistry (HAC) over the years from 1934 to 2004 is reviewed. Several applications are discussed, in particular to astrophysics and the interaction of energetic ions and atoms in space. Epithermal chemistry (ETC) is proposed to substitute the old name, since it better fits the energy range as well as the non-thermal and non-equilibrium character of the reactions. ETC also avoids the strong connexion of HAC to nuclear chemistry and stands for the opening of the field to physical chemistry and astrophysics. (orig.)

  5. Mathematical Chemistry

    OpenAIRE

    Trinajstić, Nenad; Gutman, Ivan

    2002-01-01

    A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...

  6. On-Surface Synthesis by Click Chemistry Investigated by STM and XPS

    DEFF Research Database (Denmark)

    Vadapoo, Sundar Raja

    2014-01-01

    Molecular synthesis is essential in the bottom-up approach of achieving highly stable nanostructures. On-surface synthesis is highly interesting from the basic science of view to improve the understanding of molecular behavior adsorbed on metal surfaces, and has potential applications such as mol......Molecular synthesis is essential in the bottom-up approach of achieving highly stable nanostructures. On-surface synthesis is highly interesting from the basic science of view to improve the understanding of molecular behavior adsorbed on metal surfaces, and has potential applications...... such as molecular electronics and surface functionalization. In this thesis, a well-defined click chemistry approach is followed, with the study of azide-alkyne cycloaddition on Cu(111) surface in UHV environment. A successful achievement of the click reaction product via on-surface synthesis has been shown, which...

  7. Art, auto-mechanics, and supramolecular chemistry. A merging of hobbies and career

    Directory of Open Access Journals (Sweden)

    Eric V. Anslyn

    2016-02-01

    Full Text Available While the strict definition of supramolecular chemistry is “chemistry beyond the molecule”, meaning having a focus on non-covalent interactions, the field is primarily associated with the creation of synthetic receptors and self-assembly. For synthetic ease, the receptors and assemblies routinely possess a high degree of symmetry, which lends them an aspect of aesthetic beauty. Pictures of electron orbitals similarly can be seen as akin to works of art. This similarity was an early draw for me to the fields of supramolecular chemistry and molecular orbital theory, because I grew up in a household filled with art. In addition to art, my childhood was filled with repairing and constructing mechanical entities, such as internal combustion motors, where many components work together to achieve a function. Analogously, the field of supramolecular chemistry creates systems of high complexity that achieve functions or perform tasks. Therefore, in retrospect a career in supramolecular chemistry appears to be simply an extension of childhood hobbies involving art and auto-mechanics.

  8. Recent progress in understanding activity cliffs and their utility in medicinal chemistry.

    Science.gov (United States)

    Stumpfe, Dagmar; Hu, Ye; Dimova, Dilyana; Bajorath, Jürgen

    2014-01-09

    The activity cliff concept is of high relevance for medicinal chemistry. Recent studies are discussed that have further refined our understanding of activity cliffs and suggested different ways of exploiting activity cliff information. These include alternative approaches to define and classify activity cliffs in two and three dimensions, data mining investigations to systematically detect all possible activity cliffs, the introduction of computational methods to predict activity cliffs, and studies designed to explore activity cliff progression in medicinal chemistry. The discussion of these studies is complemented with new findings revealing the frequency of activity cliff formation when different molecular representations are used and the distribution of activity cliffs across different targets. Taken together, the results have a number of implications for the practice of medicinal chemistry.

  9. Comparing Classical Water Models Using Molecular Dynamics to Find Bulk Properties

    Science.gov (United States)

    Kinnaman, Laura J.; Roller, Rachel M.; Miller, Carrie S.

    2018-01-01

    A computational chemistry exercise for the undergraduate physical chemistry laboratory is described. In this exercise, students use the molecular dynamics package Amber to generate trajectories of bulk liquid water for 4 different water models (TIP3P, OPC, SPC/E, and TIP4Pew). Students then process the trajectory to calculate structural (radial…

  10. Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach.

    Science.gov (United States)

    Ramakrishnan, Raghunathan; Dral, Pavlo O; Rupp, Matthias; von Lilienfeld, O Anatole

    2015-05-12

    Chemically accurate and comprehensive studies of the virtual space of all possible molecules are severely limited by the computational cost of quantum chemistry. We introduce a composite strategy that adds machine learning corrections to computationally inexpensive approximate legacy quantum methods. After training, highly accurate predictions of enthalpies, free energies, entropies, and electron correlation energies are possible, for significantly larger molecular sets than used for training. For thermochemical properties of up to 16k isomers of C7H10O2 we present numerical evidence that chemical accuracy can be reached. We also predict electron correlation energy in post Hartree-Fock methods, at the computational cost of Hartree-Fock, and we establish a qualitative relationship between molecular entropy and electron correlation. The transferability of our approach is demonstrated, using semiempirical quantum chemistry and machine learning models trained on 1 and 10% of 134k organic molecules, to reproduce enthalpies of all remaining molecules at density functional theory level of accuracy.

  11. 1st Joint European Conference on Therapeutic Targets and Medicinal Chemistry (TTMC 2015)

    Science.gov (United States)

    Le Borgne, Marc; Haidar, Samer; Duval, Olivier; Wünsch, Bernhard; Jose, Joachim

    2015-01-01

    The European Conference on Therapeutic Targets and Medicinal Chemistry is a new two-day meeting on drug discovery that is focused on therapeutic targets and the use of tools to explore all fields of drug discovery and drug design such as molecular modelling, bioorganic chemistry, NMR studies, fragment screening, in vitro assays, in vivo assays, structure activity relationships, autodisplay. Abstracts of keynote lectures, plenary lectures, junior lectures, flash presentations, and posters presented during the meeting are collected in this report. PMID:26712767

  12. Colloquium on Atomic, Molecular and Optical Physics of the French Physics Society. Days of Molecular Spectroscopy, Lille, 7-10 July 2008

    International Nuclear Information System (INIS)

    Balcou, Philippe; Aspect, Alain; Merkt, Frederic; Haroche, Serge; Hendecourt, Louis d'; Dereux, Alain; Bloch, Daniel; Courty, Jean-Michel; Demaison, Jean; Hynes, James T.; Lievin, Jacky; Billy, J.; Josse, V.; Zuo, Z.; Bernard, A.; Hambrecht, B.; Lugan, P.; Clement, D.; Sanchez-Palencia, L.; Bouyer, P.; Aspect, A.; Garreau, Jean-Claude; Chabe, Julien; Szriftgiser, Pascal; Lemarie, Gabriel; Gremaud, Benoit; Delande, Dominique; Simoni, Andrea; Browaeys, Antoine; Kasparian, Jerome; Boutou, Veronique; Guyon, Laurent; Courvoisier, Francois; Roth, Matthias; Roslund, Jon; Rabitz, Herschel; Bonacina, Luigi; Rondi, Ariana; Extermann, Jerome; Wolf, Jean-Pierre; Maitre, Philippe; Zehnacker, Anne; Le Barbu-Debus, Katia; Sidis, Victor; Aguillon, Francois; Sizun, Muriel; Rougeau, Nathalie; Teillet-Billy, Dominique; Bachellerie, Damien; Jeloaica, Leonard; Morisset, Sabine; Picaud, Sylvain; Cacciani, Patrice; Grosliere, Marie-Christine; Joly, Gilles; Joly, Nicolas; Kudlinsky, Alexandre; Martinelli, Gilbert; Buchard, Virginie; Tudorie, Marcela; Khelkhal, Mohamed; Cosleou, Jean; Hennequin, Daniel; Beaugeois, Maxime; Lebrun, Nathalie; Droz, Daniel; El Aydam, Mohamed; Gama, Marie-Jose; Ferri, Sandrine; Schyns, Bernadette; Courty, Jean Michel

    2008-07-01

    This colloquium of the French Physics Society on atomic, molecular and optical physics (and more particularly on molecular spectroscopy) comprised several mini-colloquia: methane and its applications in planetology, moving mirrors and Casimir, atoms and molecules in interaction with surfaces, electronic properties of small molecules, molecular spectroscopy for atmospheric applications, quantum memories in atomic sets, methods and applications of reaction dynamics, dynamics of super-excited molecular statuses, mass spectrometry, quantum spectroscopy and chemistry, spectroscopy and reactivity of of confined molecules, electronic and molecular dynamics, dipolar quantum gases. It also comprised plenary sessions: atto-second optics, the atomic Hanbury-Brown-Twiss effect with fermions and bosons, atom and molecule slowing down by Zeeman effect and by Stark effect on Rydberg levels, non destructive counting of photons trapped in a cavity, interstellar chemistry, atom-surface van der Waals interaction noticed in the exotic regime of short distances, communication, vulgarisation and education (the multiple lives of a scientific result), the actual precision of molecular parameters, towards the formation of an amine acid precursor in the interstellar medium via proton transfer, prediction of the ionized and excited molecular electronic structure by Quantum Chemistry (from bi-atomic to bio-molecules), direct observation of Anderson location of matter waves in a controlled disordered potential, experimental observation of the Anderson transition of cold atoms, ultra-cold collisions as a key towards the quantum world, Quantum physics with a single atom, Teramobile or plasma filaments to study the atmosphere, optimal control or how to discriminate two almost identical bio-molecules, infrared spectroscopy as a new dimension for mass spectrometry, chiral recognition in gaseous phase, interactions and reactions between H atoms and graphite surfaces, modelling of gas

  13. Role of Biocatalysis in Sustainable Chemistry

    DEFF Research Database (Denmark)

    Sheldon, Roger A; Woodley, John M.

    2018-01-01

    Based on the principles and metrics of green chemistry and sustainable development, biocatalysis is both a green and sustainable technology. This is largely a result of the spectacular advances in molecular biology and biotechnology achieved in the past two decades. Protein engineering has enabled...... successfully been applied, for example, in the industrial synthesis of active pharmaceutical ingredients. In addition to the use of protein engineering, other aspects of biocatalysis engineering, such as substrate, medium, and reactor engineering, can be utilized to improve the efficiency and cost...

  14. Ab initio molecular crystal structures, spectra, and phase diagrams.

    Science.gov (United States)

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling

  15. Turbulence-chemistry interactions in reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, R.S.; Carter, C.D. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Interactions between turbulence and chemistry in nonpremixed flames are investigated through multiscalar measurements. Simultaneous point measurements of major species, NO, OH, temperature, and mixture fraction are obtained by combining spontaneous Raman scattering, Rayleigh scattering, and laser-induced fluorescence (LIF). NO and OH fluorescence signals are converted to quantitative concentrations by applying shot-to-shot corrections for local variations of the Boltzmann fraction and collisional quenching rate. These measurements of instantaneous thermochemical states in turbulent flames provide insights into the fundamental nature of turbulence-chemistry interactions. The measurements also constitute a unique data base for evaluation and refinement of turbulent combustion models. Experimental work during the past year has focused on three areas: (1) investigation of the effects of differential molecular diffusion in turbulent combustion: (2) experiments on the effects of Halon CF{sub 3}Br, a fire retardant, on the structure of turbulent flames of CH{sub 4} and CO/H{sub 2}/N{sub 2}; and (3) experiments on NO formation in turbulent hydrogen jet flames.

  16. The Nutrient Density of Snacks

    Directory of Open Access Journals (Sweden)

    Julie Hess BA

    2017-03-01

    Full Text Available Background: Although Americans receive almost a quarter of their daily energy from snacks, snacking remains a poorly defined and understood eating occasion. However, there is little dietary guidance about choosing snacks. Families, clinicians, and researchers need a comprehensive approach to assessing their nutritional value. Objective: To quantify and compare the nutrient density of commonly consumed snacks by their overall nutrient profiles using the Nutrient-Rich Foods (NRF Index 10.3. Methods: NRF Index scores were calculated for the top 3 selling products (based on 2014 market research data in different snack categories. These NRF scores were averaged to provide an overall nutrient-density score for each category. Results: Based on NRF scores, yogurt (55.3, milk (52.5, and fruit (30.1 emerged as the most nutrient-dense snacks. Ice cream (−4.4, pies and cakes (−11.1, and carbonated soft drinks (−17.2 emerged as the most nutrient-poor snacks. Conclusions: The NRF Index is a useful tool for assessing the overall nutritional value of snacks based on nutrients to limit and nutrients to encourage.

  17. Synergistic effects of pCO2 and iron availability on nutrient consumption ratio of the Bering Sea phytoplankton community

    Directory of Open Access Journals (Sweden)

    K. Sugie

    2013-10-01

    Full Text Available Little is known concerning the effect of CO2 on phytoplankton ecophysiological processes under nutrient and trace element-limited conditions, because most CO2 manipulation experiments have been conducted under elements-replete conditions. To investigate the effects of CO2 and iron availability on phytoplankton ecophysiology, we conducted an experiment in September 2009 using a phytoplankton community in the iron limited, high-nutrient, low-chlorophyll (HNLC region of the Bering Sea basin . Carbonate chemistry was controlled by the bubbling of the several levels of CO2 concentration (180, 380, 600, and 1000 ppm controlled air, and two iron conditions were established, one with and one without the addition of inorganic iron. We demonstrated that in the iron-limited control conditions, the specific growth rate and the maximum photochemical quantum efficiency (Fv/Fm of photosystem (PS II decreased with increasing CO2 levels, suggesting a further decrease in iron bioavailability under the high-CO2 conditions. In addition, biogenic silica to particulate nitrogen and biogenic silica to particulate organic carbon ratios increased from 2.65 to 3.75 and 0.39 to 0.50, respectively, with an increase in the CO2 level in the iron-limited controls. By contrast, the specific growth rate, Fv/Fm values and elemental compositions in the iron-added treatments did not change in response to the CO2 variations, indicating that the addition of iron canceled out the effect of the modulation of iron bioavailability due to the change in carbonate chemistry. Our results suggest that high-CO2 conditions can alter the biogeochemical cycling of nutrients through decreasing iron bioavailability in the iron-limited HNLC regions in the future.

  18. Soluble organic nutrient fluxes

    Science.gov (United States)

    Robert G. Qualls; Bruce L. Haines; Wayne Swank

    2014-01-01

    Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...

  19. Extending Halogen-based Medicinal Chemistry to Proteins: IODO-INSULIN AS A CASE STUDY.

    Science.gov (United States)

    El Hage, Krystel; Pandyarajan, Vijay; Phillips, Nelson B; Smith, Brian J; Menting, John G; Whittaker, Jonathan; Lawrence, Michael C; Meuwly, Markus; Weiss, Michael A

    2016-12-30

    Insulin, a protein critical for metabolic homeostasis, provides a classical model for protein design with application to human health. Recent efforts to improve its pharmaceutical formulation demonstrated that iodination of a conserved tyrosine (Tyr B26 ) enhances key properties of a rapid-acting clinical analog. Moreover, the broad utility of halogens in medicinal chemistry has motivated the use of hybrid quantum- and molecular-mechanical methods to study proteins. Here, we (i) undertook quantitative atomistic simulations of 3-[iodo-Tyr B26 ]insulin to predict its structural features, and (ii) tested these predictions by X-ray crystallography. Using an electrostatic model of the modified aromatic ring based on quantum chemistry, the calculations suggested that the analog, as a dimer and hexamer, exhibits subtle differences in aromatic-aromatic interactions at the dimer interface. Aromatic rings (Tyr B16 , Phe B24 , Phe B25 , 3-I-Tyr B26 , and their symmetry-related mates) at this interface adjust to enable packing of the hydrophobic iodine atoms within the core of each monomer. Strikingly, these features were observed in the crystal structure of a 3-[iodo-Tyr B26 ]insulin analog (determined as an R 6 zinc hexamer). Given that residues B24-B30 detach from the core on receptor binding, the environment of 3-I-Tyr B26 in a receptor complex must differ from that in the free hormone. Based on the recent structure of a "micro-receptor" complex, we predict that 3-I-Tyr B26 engages the receptor via directional halogen bonding and halogen-directed hydrogen bonding as follows: favorable electrostatic interactions exploiting, respectively, the halogen's electron-deficient σ-hole and electronegative equatorial band. Inspired by quantum chemistry and molecular dynamics, such "halogen engineering" promises to extend principles of medicinal chemistry to proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Synthesis of liquid crystals derived from nitroazobenzene: a proposed multistep synthesis applied to organic chemistry laboratory classes

    International Nuclear Information System (INIS)

    Cristiano, Rodrigo; Cabral, Marilia Gabriela B.; Aquino, Rafael B. de; Cristiano, Claudia M.Z.

    2014-01-01

    We describe a synthetic route consisting of five steps from aniline to obtain liquid crystal compounds derived from nitroazobenzene. Syntheses were performed during the second half of the semester in organic chemistry laboratory classes. Students characterized the liquid crystal phase by the standard melting point techniques, differential scanning calorimetry and polarized optical microscopy. These experiments allow undergraduate students to explore fundamentally important reactions in Organic Chemistry, as well as modern concepts in Chemistry such as self-assembly and self-organization, nanostructured materials and molecular electronics. (author)

  1. Industrial chemistry engineering

    International Nuclear Information System (INIS)

    1993-01-01

    This book on industrial chemistry engineering is divided in two parts. The first part deals with industrial chemistry, inorganic industrial chemistry, organic industrial chemistry, analytical chemistry and practical questions. The last parts explain the chemical industry, a unit parts and thermodynamics in chemical industry and reference. It reveals the test subjects for the industrial chemistry engineering with a written examination and practical skill.

  2. Advanced chemistry management system to optimize BWR chemistry control

    International Nuclear Information System (INIS)

    Maeda, K.; Nagasawa, K.

    2002-01-01

    BWR plant chemistry control has close relationships among nuclear safety, component reliability, radiation field management and fuel integrity. Advanced technology is required to improve chemistry control [1,3,6,7,10,11]. Toshiba has developed TACMAN (Toshiba Advanced Chemistry Management system) to support BWR chemistry control. The TACMAN has been developed as response to utilities' years of requirements to keep plant operation safety, reliability and cost benefit. The advanced technology built into the TACMAN allows utilities to make efficient chemistry control and to keep cost benefit. TACMAN is currently being used in response to the needs for tools those plant chemists and engineers could use to optimize and identify plant chemistry conditions continuously. If an incipient condition or anomaly is detected at early stage, root causes evaluation and immediate countermeasures can be provided. Especially, the expert system brings numerous and competitive advantages not only to improve plant chemistry reliability but also to standardize and systematize know-how, empirical knowledge and technologies in BWR chemistry This paper shows detail functions of TACMAN and practical results to evaluate actual plant. (authors)

  3. Visualizing Chemistry: The Progess and Promise of Advanced Chemical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Committee on Revealing Chemistry Through Advanced Chemical Imaging

    2006-09-01

    The field of chemical imaging can provide detailed structural, functional, and applicable information about chemistry and chemical engineering phenomena that have enormous impacts on medicine, materials, and technology. In recognizing the potential for more research development in the field of chemical imaging, the National Academies was asked by the National Science Foundation, Department of Energy, U.S. Army, and National Cancer Institute to complete a study that would review the current state of molecular imaging technology, point to promising future developments and their applications, and suggest a research and educational agenda to enable breakthrough improvements in the ability to image molecular processes simultaneously in multiple physical dimensions as well as time. The study resulted in a consensus report that provides guidance for a focused research and development program in chemical imaging and identifies research needs and possible applications of imaging technologies that can provide the breakthrough knowledge in chemistry, materials science, biology, and engineering for which we should strive. Public release of this report is expected in early October.

  4. Evaluation of stream chemistry trends in US Geological Survey reference watersheds, 1970-2010.

    Science.gov (United States)

    Mast, M Alisa

    2013-11-01

    The Hydrologic Benchmark Network (HBN) is a long-term monitoring program established by the US Geological Survey in the 1960s to track changes in the streamflow and stream chemistry in undeveloped watersheds across the USA. Trends in stream chemistry were tested at 15 HBN stations over two periods (1970-2010 and 1990-2010) using the parametric Load Estimator (LOADEST) model and the nonparametric seasonal Kendall test. Trends in annual streamflow and precipitation chemistry also were tested to help identify likely drivers of changes in stream chemistry. At stations in the northeastern USA, there were significant declines in stream sulfate, which were consistent with declines in sulfate deposition resulting from the reductions in SO₂ emissions mandated under the Clean Air Act Amendments. Sulfate declines in stream water were smaller than declines in deposition suggesting sulfate may be accumulating in watershed soils and thereby delaying the stream response to improvements in deposition. Trends in stream chemistry at stations in other part of the country generally were attributed to climate variability or land disturbance. Despite declines in sulfate deposition, increasing stream sulfate was observed at several stations and appeared to be linked to periods of drought or declining streamflow. Falling water tables might have enhanced oxidation of organic matter in wetlands or pyrite in mineralized bedrock thereby increasing sulfate export in surface water. Increasing sulfate and nitrate at a station in the western USA were attributed to release of soluble salts and nutrients from soils following a large wildfire in the watershed.

  5. Evaluation of stream chemistry trends in US Geological Survey reference watersheds, 1970-2010

    Science.gov (United States)

    Mast, M. Alisa

    2013-01-01

    The Hydrologic Benchmark Network (HBN) is a long-term monitoring program established by the US Geological Survey in the 1960s to track changes in the streamflow and stream chemistry in undeveloped watersheds across the USA. Trends in stream chemistry were tested at 15 HBN stations over two periods (1970–2010 and 1990–2010) using the parametric Load Estimator (LOADEST) model and the nonparametric seasonal Kendall test. Trends in annual streamflow and precipitation chemistry also were tested to help identify likely drivers of changes in stream chemistry. At stations in the northeastern USA, there were significant declines in stream sulfate, which were consistent with declines in sulfate deposition resulting from the reductions in SO2 emissions mandated under the Clean Air Act Amendments. Sulfate declines in stream water were smaller than declines in deposition suggesting sulfate may be accumulating in watershed soils and thereby delaying the stream response to improvements in deposition. Trends in stream chemistry at stations in other part of the country generally were attributed to climate variability or land disturbance. Despite declines in sulfate deposition, increasing stream sulfate was observed at several stations and appeared to be linked to periods of drought or declining streamflow. Falling water tables might have enhanced oxidation of organic matter in wetlands or pyrite in mineralized bedrock thereby increasing sulfate export in surface water. Increasing sulfate and nitrate at a station in the western USA were attributed to release of soluble salts and nutrients from soils following a large wildfire in the watershed.

  6. Molecular shape and medicinal chemistry: a perspective.

    Science.gov (United States)

    Nicholls, Anthony; McGaughey, Georgia B; Sheridan, Robert P; Good, Andrew C; Warren, Gregory; Mathieu, Magali; Muchmore, Steven W; Brown, Scott P; Grant, J Andrew; Haigh, James A; Nevins, Neysa; Jain, Ajay N; Kelley, Brian

    2010-05-27

    The eight contributions here provide ample evidence that shape as a volume or as a surface is a vibrant and useful concept when applied to drug discovery. It provides a reliable scaffold for "decoration" with chemical intuition (or bias) for virtual screening and lead optimization but also has its unadorned uses, as in library design, ligand fitting, pose prediction, or active site description. Computing power has facilitated this evolution by allowing shape to be handled precisely without the need to reduce down to point descriptors or approximate metrics, and the diversity of resultant applications argues for this being an important step forward. Certainly, it is encouraging that as computation has enabled our intuition, molecular shape has consistently surprised us in its usefulness and adaptability. The first Aurelius question, "What is the essence of a thing?", seems well answered, however, the third, "What do molecules do?", only partly so. Are the topics covered here exhaustive, or is there more to come? To date, there has been little published on the use of the volumetric definition of shape described here as a QSAR variable, for instance, in the prediction or classification of activity, although other shape definitions have been successful applied, for instance, as embodied in the Compass program described above in "Shape from Surfaces". Crystal packing is a phenomenon much desired to be understood. Although powerful models have been applied to the problem, to what degree is this dominated purely by the shape of a molecule? The shape comparison described here is typically of a global nature, and yet some importance must surely be placed on partial shape matching, just as the substructure matching of chemical graphs has proved useful. The approach of using surfaces, as described here, offers some flavor of this, as does the use of metrics that penalize volume mismatch less than the Tanimoto, e.g., Tversky measures. As yet, there is little to go on as to how

  7. Sensitivity analysis of a pulse nutrient addition technique for estimating nutrient uptake in large streams

    Science.gov (United States)

    Laurence Lin; J.R. Webster

    2012-01-01

    The constant nutrient addition technique has been used extensively to measure nutrient uptake in streams. However, this technique is impractical for large streams, and the pulse nutrient addition (PNA) has been suggested as an alternative. We developed a computer model to simulate Monod kinetics nutrient uptake in large rivers and used this model to evaluate the...

  8. Molecular biology in studies of oceanic primary production

    International Nuclear Information System (INIS)

    LaRoche, J.; Falkowski, P.G.; Geider, R.

    1992-01-01

    Remote sensing and the use of moored in situ instrumentation has greatly improved our ability to measure phytoplankton chlorophyll and photosynthesis on global scales with high temporal resolution. However, the interpretation of these measurements and their significance with respect to the biogeochemical cycling of carbon relies on their relationship with physiological and biochemical processes in phytoplankton. For example, the use of satellite images of surface chlorophyll to estimate primary production is often based on the functional relationship between photosynthesis and irradiance. A variety of environmental factors such as light, temperature, nutrient availability affect the photosynthesis/irradiance (P vs I) relationship in phytoplankton. We present three examples showing how molecular biology can be used to provide basic insight into the factors controlling primary productivity at three different levels of complexity: 1. Studies of light intensity regulation in unicellular alga show how molecular biology can help understand the processing of environmental cues leading to the regulation of photosynthetic gene expression. 2. Probing of the photosynthetic apparatus using molecular techniques can be used to test existing mechanistic models derived from the interpretation of physiological and biophysical measurements. 3. Exploratory work on the expression of specific proteins during nutrient-limited growth of phytoplankton may lead to the identification and production of molecular probes for field studies

  9. Radiation Chemistry and Physical Chemistry of Chitosan and Other Polysaccharides. Fundamental Studies and Practical Applications

    International Nuclear Information System (INIS)

    Rosiak, Janusz M.; Czechowska-Biskup, Renata; Rokita, Bożena; Olejnik, Alicja K.

    2010-01-01

    This report summarizes the second year of activities performed at the Institute of Applied Radiation Chemistry (IARC) within the framework of the CRP project. It consists of two parts. Part I is a brief account of the activities related to design, tests, sample procurement and characterization and formulation of “Protocol for determination of intrinsic viscosity of chitosan” designed to be the basis of the interlaboratory study on viscometric determination of chitosan molecular weight as well as on radiation degradation of chitosan in controlled conditions. Part II contains the text of the Protocol, and is given in the Annex. (author)

  10. Immersive virtual reality in computational chemistry: Applications to the analysis of QM and MM data.

    Science.gov (United States)

    Salvadori, Andrea; Del Frate, Gianluca; Pagliai, Marco; Mancini, Giordano; Barone, Vincenzo

    2016-11-15

    The role of Virtual Reality (VR) tools in molecular sciences is analyzed in this contribution through the presentation of the Caffeine software to the quantum chemistry community. Caffeine, developed at Scuola Normale Superiore, is specifically tailored for molecular representation and data visualization with VR systems, such as VR theaters and helmets. Usefulness and advantages that can be gained by exploiting VR are here reported, considering few examples specifically selected to illustrate different level of theory and molecular representation.

  11. Current organic chemistry

    National Research Council Canada - National Science Library

    1997-01-01

    Provides in depth reviews on current progress in the fields of asymmetric synthesis, organometallic chemistry, bioorganic chemistry, heterocyclic chemistry, natural product chemistry, and analytical...

  12. Aquatic Chemistry

    International Nuclear Information System (INIS)

    Kim, Dong Yeun; Kim, Oh Sik; Kim, Chang Guk; Park, Cheong Gil; Lee, Gwi Hyeon; Lee, Cheol Hui

    1987-07-01

    This book deals aquatic chemistry, which treats water and environment, chemical kinetics, chemical balance like dynamical characteristic, and thermodynamics, acid-base chemistry such as summary, definition, kinetics, and PH design for mixture of acid-base chemistry, complex chemistry with definition, and kinetics, precipitation and dissolution on summary, kinetics of precipitation and dissolution, and balance design oxidation and resolution with summary, balance of oxidation and resolution.

  13. The role of water chemistry and geomorphic control in the presence of Didymosphenia geminata in Quebec

    Science.gov (United States)

    Gillis, C.; Gabor, R. S.; Cullis, J. D.; Ran, L.; Hassan, M. A.

    2010-12-01

    Didymosphenia geminata (didymo), an invasive diatom, was first officially observed and identified in the Matapedia River in Eastern Quebec in July 2006. This Atlantic salmon fishing river has several characteristics shown to favor didymo's ability to form thick, extensive benthic mats, including stable flow and oligotrophic nutrient conditions. Since the incursion, rapid colonization and inter-catchment transfer processes were observed, notably in surrounding watersheds on the Gaspé Peninsula as well as in northern New-Brunswick. All affected watersheds share favorable characteristics for didymo growth, including high light, low nutrient waters, and stable substrate. The nearby North Shore of the St. Lawrence, which also contains rivers with conditions that would favor didymo growth, has not yet shown didymo presence. This system provides a comparison to identify necessary parameters for didymo growth, with differences primarily due to geology-driven water chemistry. Pre-incursion water chemistry was compared between the two regions. Rivers in the region where didymo is present displayed a high alkalinity and corresponding higher pH, due to increases concentrations of magnesium and calcium, than rivers in regions where didymo has not appeared. Also, rivers with didymo show a lower amount of color-causing compounds, such as organic carbon, and clearer water, which supports the theory that high light levels encourage didymo growth. In addition to water chemistry, channel morphology, bed stability and flow patterns are also believed to be key elements in determining the presence of this benthic diatom. In 2007, channel morphology, bed texture, bankfull depth and width, local bed slope and didymo presence were surveyed on a 65 km stretch of the Matapedia River. Relative frequency of didymo presence showed that didymo blooms are most likely to appear in cobble-riffles than in any other morphologies. In fact, cobble riffles promote didymo establishment due to shallow

  14. Forensic Chemistry

    Science.gov (United States)

    Bell, Suzanne

    2009-07-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  15. Atomdroid: a computational chemistry tool for mobile platforms.

    Science.gov (United States)

    Feldt, Jonas; Mata, Ricardo A; Dieterich, Johannes M

    2012-04-23

    We present the implementation of a new molecular mechanics program designed for use in mobile platforms, the first specifically built for these devices. The software is designed to run on Android operating systems and is compatible with several modern tablet-PCs and smartphones available in the market. It includes molecular viewer/builder capabilities with integrated routines for geometry optimizations and Monte Carlo simulations. These functionalities allow it to work as a stand-alone tool. We discuss some particular development aspects, as well as the overall feasibility of using computational chemistry software packages in mobile platforms. Benchmark calculations show that through efficient implementation techniques even hand-held devices can be used to simulate midsized systems using force fields.

  16. Measurements of canopy chemistry with 1992 AVIRIS data at Blackhawk Island and Harvard Forest

    Science.gov (United States)

    Martin, Mary E.; Aber, John D.

    1993-01-01

    The research described in this paper was designed to determine if high spectral resolution imaging spectrometer data can be used to measure the chemical composition of forest foliage, specifically nitrogen and lignin concentration. Information about the chemical composition of forest canopies can be used to determine nutrient cycling rates and carbon balances in forest ecosystems. This paper will describe the results relating data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) to field measured canopy chemistry at Blackhawk Island, WI and Harvard Forest, MA.

  17. Chemistry and biology of insect bioluminescence

    International Nuclear Information System (INIS)

    Colepicolo Neto, P.; Bechara, E.J.H.

    1984-01-01

    Basic aspects on the Chemistry and Biology of bioluminescence are reviewed, with emphasis on insects. Data from the investigation of Lampyridae (fireflies) are collected from literature. With regard to Elateridae (click beetles) and Phengodidae (rail road worms), the least explored families of luminescent insects, new data are presented on the following aspects: (i) 'in vivo' emission spectra, (ii) chemical nature of the luciferin, (iii) conection between bioluminescence and 'oxygen toxicity' as a result of molecular oxygen storage and (iv) the role of light emission by larvae and pupae. (Author) [pt

  18. The Brazilian medicinal chemistry from 1998 to 2008 in the Journal of Medicinal Chemistry, Bioorganic and Medicinal Chemistry, Bioorganic and Medicinal Chemistry Letters and European Journal of Medicinal Chemistry [A química medicinal brasileira de 1998 a 2008 nos periódicos Journal of Medicinal Chemistry, Bioorganic and Medicinal Chemistry, Bioorganic and Medicinal Chemistry Letters e European Journal of Medicinal Chemistry

    OpenAIRE

    Bárbara Vasconcellos da Silva; Renato Saldanha Bastos; Angelo da Cunha Pinto

    2009-01-01

    In this article we present the Brazilian publications, the research groups involved, the contributions per states and the main diseases studied from 1998 to 2008 in the following periodicals: Journal of Medicinal Chemistry, Bioorganic and Medicinal Chemistry, Bioorganic and Medicinal Chemistry Letters and European Journal of Medicinal Chemistry.

  19. Trophic State Evolution and Nutrient Trapping Capacity in a Transboundary Subtropical Reservoir: A 25-Year Study.

    Science.gov (United States)

    Cunha, Davi Gasparini Fernandes; Benassi, Simone Frederigi; de Falco, Patrícia Bortoletto; Calijuri, Maria do Carmo

    2016-03-01

    Artificial reservoirs have been used for drinking water supply, other human activities, flood control and pollution abatement worldwide, providing overall benefits to downstream water quality. Most reservoirs in Brazil were built during the 1970s, but their long-term patterns of trophic status, water chemistry, and nutrient removal are still not very well characterized. We aimed to evaluate water quality time series (1985-2010) data from the riverine and lacustrine zones of the transboundary Itaipu Reservoir (Brazil/Paraguay). We examined total phosphorus and nitrogen, chlorophyll a concentrations, water transparency, and phytoplankton density to look for spatial and temporal trends and correlations with trophic state evolution and nutrient retention. There was significant temporal and spatial water quality variation (P water quality and structure of the reservoir were mainly affected by one internal force (hydrodynamics) and one external force (upstream cascading reservoirs). Nutrient and chlorophyll a concentrations tended to be lower in the lacustrine zone and decreased over the 25-year timeframe. Reservoir operational features seemed to be limiting primary production and phytoplankton development, which exhibited a maximum density of 6050  org/mL. The relatively small nutrient concentrations in the riverine zone were probably related to the effect of the cascade reservoirs upstream of Itaipu and led to relatively low removal percentages. Our study suggested that water quality problems may be more pronounced immediately after the filling phase of the artificial reservoirs, associated with the initial decomposition of drowned vegetation at the very beginning of reservoir operation.

  20. Life is physics and chemistry and communication.

    Science.gov (United States)

    Witzany, Guenther

    2015-04-01

    Manfred Eigen extended Erwin Schroedinger's concept of "life is physics and chemistry" through the introduction of information theory and cybernetic systems theory into "life is physics and chemistry and information." Based on this assumption, Eigen developed the concepts of quasispecies and hypercycles, which have been dominant in molecular biology and virology ever since. He insisted that the genetic code is not just used metaphorically: it represents a real natural language. However, the basics of scientific knowledge changed dramatically within the second half of the 20th century. Unfortunately, Eigen ignored the results of the philosophy of science discourse on essential features of natural languages and codes: a natural language or code emerges from populations of living agents that communicate. This contribution will look at some of the highlights of this historical development and the results relevant for biological theories about life. © 2014 New York Academy of Sciences.

  1. Nutrient acquisition strategies of mammalian cells.

    Science.gov (United States)

    Palm, Wilhelm; Thompson, Craig B

    2017-06-07

    Mammalian cells are surrounded by diverse nutrients, such as glucose, amino acids, various macromolecules and micronutrients, which they can import through transmembrane transporters and endolysosomal pathways. By using different nutrient sources, cells gain metabolic flexibility to survive periods of starvation. Quiescent cells take up sufficient nutrients to sustain homeostasis. However, proliferating cells depend on growth-factor-induced increases in nutrient uptake to support biomass formation. Here, we review cellular nutrient acquisition strategies and their regulation by growth factors and cell-intrinsic nutrient sensors. We also discuss how oncogenes and tumour suppressors promote nutrient uptake and thereby support the survival and growth of cancer cells.

  2. The multiple roles of computational chemistry in fragment-based drug design

    Science.gov (United States)

    Law, Richard; Barker, Oliver; Barker, John J.; Hesterkamp, Thomas; Godemann, Robert; Andersen, Ole; Fryatt, Tara; Courtney, Steve; Hallett, Dave; Whittaker, Mark

    2009-08-01

    Fragment-based drug discovery (FBDD) represents a change in strategy from the screening of molecules with higher molecular weights and physical properties more akin to fully drug-like compounds, to the screening of smaller, less complex molecules. This is because it has been recognised that fragment hit molecules can be efficiently grown and optimised into leads, particularly after the binding mode to the target protein has been first determined by 3D structural elucidation, e.g. by NMR or X-ray crystallography. Several studies have shown that medicinal chemistry optimisation of an already drug-like hit or lead compound can result in a final compound with too high molecular weight and lipophilicity. The evolution of a lower molecular weight fragment hit therefore represents an attractive alternative approach to optimisation as it allows better control of compound properties. Computational chemistry can play an important role both prior to a fragment screen, in producing a target focussed fragment library, and post-screening in the evolution of a drug-like molecule from a fragment hit, both with and without the available fragment-target co-complex structure. We will review many of the current developments in the area and illustrate with some recent examples from successful FBDD discovery projects that we have conducted.

  3. XI International conference Problems of solvation and complex formation in solutions, and VI Conference of young scientists Theoretical and experimental chemistry of liquid-phase systems (Krestovsky readings). Summary of reports

    International Nuclear Information System (INIS)

    2011-01-01

    The collection contains materials of plenary, sectional and poster sessions, presented at the XI International conference Problems of solvation and complex formation in solutions, and VI Conference of young scientists Theoretical and experimental chemistry of liquid-phase systems (Krestovsky readings). Theoretical questions and new experimental methods of chemistry of solutions, structure and dynamics of molecular and ion-molecular systems in solution and at the phase boundary; modern aspects of applied chemistry of solutions are discussed [ru

  4. A molecular dynamics study of the effects of fast molecular motions on solid-state NMR parameters

    Czech Academy of Sciences Publication Activity Database

    Dračínský, Martin; Hodgkinson, P.

    2013-01-01

    Roč. 15, č. 43 (2013), s. 8705-8712 ISSN 1466-8033 Grant - others:Seventh Framework Programme of the European Union(XE) FP7-299242 People Institutional support: RVO:61388963 Keywords : molecular dynamics * DFT calculations * NMR spectroscopy Subject RIV: CC - Organic Chemistry Impact factor: 3.858, year: 2013

  5. Principles of Chemistry (by Michael Munowitz)

    Science.gov (United States)

    Kovac, Reviewed By Jeffrey

    2000-05-01

    At a time when almost all general chemistry textbooks seem to have become commodities designed by marketing departments to offend no one, it is refreshing to find a book with a unique perspective. Michael Munowitz has written what I can only describe as a delightful chemistry book, full of conceptual insight, that uses a novel and interesting pedagogic strategy. This is a book that has much to recommend it. This is the best-written general chemistry book I have ever read. An editor with whom I have worked recently remarked that he felt his job was to help authors make their writing sing. Well, the writing in Principles of Chemistry sings with the full, rich harmonies and creative inventiveness of the King's Singers or Chanticleer. Here is the first sentence of the introduction: "Central to any understanding of the physical world is one discovery of paramount importance, a truth disarmingly simple yet profound in its implications: matter is not continuous." This is prose to be savored and celebrated. Principles of Chemistry has a distinct perspective on chemistry: the perspective of the physical chemist. The focus is on simplicity, what is common about molecules and reactions; begin with the microscopic and build bridges to the macroscopic. The author's perspective is clear from the organization of the book. After three rather broad introductory chapters, there are four chapters that develop the quantum mechanical theory of atoms and molecules, including a strong treatment of molecular orbital theory. Unlike many books, Principles of Chemistry presents the molecular orbital approach first and introduces valence bond theory later only as an approximation for dealing with more complicated molecules. The usual chapters on descriptive inorganic chemistry are absent (though there is an excellent chapter on organic and biological molecules and reactions as well as one on transition metal complexes). Instead, descriptive chemistry is integrated into the development of

  6. Carbon Stable Isotope Values in Plankton and Mussels Reflect Changes in Carbonate Chemistry Associated with Nutrient Enhanced Net Production

    Science.gov (United States)

    Coastal ecosystems are inherently complex and potentially adaptive as they respond to changes in nutrient loads and climate. We documented the role that carbon stable isotope (δ13C) measurements could play in understanding that adaptation with a series of three Ecostat (i.e...

  7. Bad chemistry

    OpenAIRE

    Petsko, Gregory A

    2004-01-01

    General chemistry courses haven't changed significantly in forty years. Because most basic chemistry students are premedical students, medical schools have enormous influence and could help us start all over again to create undergraduate chemistry education that works.

  8. Spiers Memorial Lecture. Quantum chemistry: the first seventy years.

    Science.gov (United States)

    McWeeny, Roy

    2007-01-01

    Present-day theoretical chemistry is rooted in Quantum Mechanics. The aim of the opening lecture is to trace the evolution of Quantum Chemistry from the Heitler-London paper of 1927 up to the end of the last century, emphasizing concepts rather than calculations. The importance of symmetry concepts became evident in the early years: one thinks of the necessary anti-symmetry of the wave function under electron permutations, the Pauli principle, the aufbau scheme, and the classification of spectroscopic states. But for chemists perhaps the key concept is embodied in the Hellmann-Feynman theorem, which provides a pictorial interpretation of chemical bonding in terms of classical electrostatic forces exerted on the nuclei by the electron distribution. Much of the lecture is concerned with various electron distribution functions--the electron density, the current density, the spin density, and other 'property densities'--and with their use in interpreting both molecular structure and molecular properties. Other topics touched upon include Response theory and propagators; Chemical groups in molecules and the group function approach; Atoms in molecules and Bader's theory; Electron correlation and the 'pair function'. Finally, some long-standing controversies, in particular the EPR paradox, are re-examined in the context of molecular dissociation. By admitting the concept of symmetry breaking, along with the use of the von Neumann-Dirac statistical ensemble, orthodox quantum mechanics can lead to a convincing picture of the dissociation mechanism.

  9. Protein Redox Dynamics During Light-to-Dark Transitions in Cyanobacteria and Impacts Due to Nutrient Limitation

    Directory of Open Access Journals (Sweden)

    Aaron T Wright

    2014-07-01

    Full Text Available Protein redox chemistry constitutes a major void in knowledge pertaining to photoautotrophic system regulation and signaling processes. We have employed a chemical biology approach to analyze redox sensitive proteins in live Synechococcus sp. PCC 7002 cells in both light and dark periods, and to understand how cellular redox balance is disrupted during nutrient perturbation. The present work identified 300 putative redox-sensitive proteins that are involved in the generation of reductant, macromolecule synthesis, and carbon flux through central metabolic pathways, and may be involved in cell signaling and response mechanisms. Furthermore, our research suggests that dynamic redox changes in response to specific nutrient limitations, including carbon and nitrogen limitations, contribute to the regulatory changes driven by a shift from light to dark. Taken together, these results contribute to a high-level understanding of post-translational mechanisms regulating flux distributions and suggest potential metabolic engineering targets for redirecting carbon towards biofuel precursors.

  10. Geometry optimization of zirconium sulfophenylphosphonate layers by molecular simulation methods

    Czech Academy of Sciences Publication Activity Database

    Škoda, J.; Pospíšil, M.; Kovář, P.; Melánová, Klára; Svoboda, J.; Beneš, L.; Zima, Vítězslav

    2018-01-01

    Roč. 24, č. 1 (2018), s. 1-12, č. článku 10. ISSN 1610-2940 R&D Projects: GA ČR(CZ) GA14-13368S; GA ČR(CZ) GA17-10639S Institutional support: RVO:61389013 Keywords : zirconium sulfophenylphosphonate * intercalation * molecular simulation Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.425, year: 2016

  11. Wood-ash addition on a drained forest peatland in Southern Sweden - Effects on water chemistry; Tillfoersel av biobra ensleaska i tallskog paa en dikad torvmark i soedra Sverige - Effekter paa vattenkemin

    Energy Technology Data Exchange (ETDEWEB)

    Ring, Eva; Broemssen, Claudia von; Losjoe, Katarina; Sikstroem Ulf

    2012-02-15

    Wood ash can be used for forest fertilization on peatlands or for nutrient compensation following intensive harvesting. This project was performed in order to investigate effects on water chemistry of applying wood ash to a Scots pine stand on a drained peatland. Ditch-water chemistry was monitored before and after the application of wood ash. Furthermore, groundwater was collected and chemically analyzed both from the ash-treated peatland and from an adjacent untreated reference peatland. Both short term (a few months) and more long term effects (up to three years after application) were detected on water chemistry

  12. The impact of agricultural land use on stream chemistry in the Middle Hills of the Himalayas, Nepal

    Science.gov (United States)

    Collins, Robert; Jenkins, Alan

    1996-11-01

    The chemistry of streams draining agricultural and forested catchments in the Middle Hills of Nepal is described. Differences between mean streamwater chemistry are attributable to the effects of the terraced agriculture and land management practices. The agricultural catchments were found to exhibit higher mean concentrations of base cations (Na, Mg, K), bicarbonate, acid anions (SO 4, Cl), metals (Al, Fe) and nutrients (NO 3, PO 4). Increased base cations apparently result from tillage practices exposing fresh soil material to weathering. Increased acid anions result from inputs of inorganic fertiliser, notably ammonium sulphate, and from an apparent increase in evapotranspiration from the flooded terraces in the agricultural catchments. Increased metal concentrations may be promoted by increased weathering and erosion rates, and this is further supported by observations of dramatically higher turbidity in the streamwater draining the agricultural catchments. Higher levels of nutrients are the direct result of fertiliser input but concentrations are generally low from all catchments as a result of denitrification, indicating that eutrophication downstream is not a likely consequence of land use change. The major dynamics of water chemistry occur during the monsoon, which is also the main season for agricultural production. Mean wet season concentrations of base cations tend to be lower than in the dry season at all catchments as higher flow dilutes the relatively constant weathering input. Ammonium concentrations are higher from the agricultural catchments in the wet season as a result of direct washout of fertiliser. Detailed monitoring through storm periods at one agricultural catchment indicates that the chemistry responds very rapidly to changing flow, with cations decreasing and acid anions increasing followed by equally rapid recovery as flow recedes. Bicarbonate concentrations also decline markedly but are still sufficiently high to maintain pH near

  13. Positronium chemistry

    CERN Document Server

    Green, James

    1964-01-01

    Positronium Chemistry focuses on the methodologies, reactions, processes, and transformations involved in positronium chemistry. The publication first offers information on positrons and positronium and experimental methods, including mesonic atoms, angular correlation measurements, annihilation spectra, and statistical errors in delayed coincidence measurements. The text then ponders on positrons in gases and solids. The manuscript takes a look at the theoretical chemistry of positronium and positronium chemistry in gases. Topics include quenching, annihilation spectrum, delayed coincidence

  14. Nutrient sequestration in Aquitaine lakes (SW France) limits nutrient flux to the coastal zone

    Science.gov (United States)

    Buquet, Damien; Anschutz, Pierre; Charbonnier, Céline; Rapin, Anne; Sinays, Rémy; Canredon, Axel; Bujan, Stéphane; Poirier, Dominique

    2017-12-01

    Oligotrophic coastal zones are disappearing from increased nutrient loading. The quantity of nutrients reaching the coast is determined not only by their original source (e.g. fertilizers used in agriculture, waste water discharges) and the land use, but also by the pathways through which nutrients are cycled from the source to the river mouth. In particular, lakes sequester nutrients and, hence, reduce downstream transfer of nutrients to coastal environments. Here, we quantify the impact of Aquitaine great lakes on the fluxes of dissolved macro-nutrients (N, P, Si) to the Bay of Biscay. For that, we have measured nutrient concentrations and fluxes in 2014 upstream and downstream lakes of Lacanau and Carcans-Hourtin, which belongs to the catchment of the Arcachon Bay, which is the largest coastal lagoon of the Bay of Biscay French coast. Data were compared to values obtained from the Leyre river, the main freshwater and nutrient source for the lagoon. Results show that processes in lakes greatly limit nutrient flux to the lagoon compared to fluxes from Leyre river, although the watershed is similar in terms of land cover. In lakes, phosphorus and silicon are trapped for long term in the sediment, silicon as amorphous biogenic silica and phosphorus as organic P and P associated with Fe-oxides. Nitrogen that enters lakes mostly as nitrate is used for primary production. N is mineralized in the sediment; a fraction diffuses as ammonium. N2 production through benthic denitrification extracts only 10% of dissolved inorganic nitrogen from the aquatic system. The main part is sequestered in organic-rich sediment that accumulates below 5 m depth in both lakes.

  15. Stochasticity in processes fundamentals and applications to chemistry and biology

    CERN Document Server

    Schuster, Peter

    2016-01-01

    This book has developed over the past fifteen years from a modern course on stochastic chemical kinetics for graduate students in physics, chemistry and biology. The first part presents a systematic collection of the mathematical background material needed to understand probability, statistics, and stochastic processes as a prerequisite for the increasingly challenging practical applications in chemistry and the life sciences examined in the second part. Recent advances in the development of new techniques and in the resolution of conventional experiments at nano-scales have been tremendous: today molecular spectroscopy can provide insights into processes down to scales at which current theories at the interface of physics, chemistry and the life sciences cannot be successful without a firm grasp of randomness and its sources. Routinely measured data is now sufficiently accurate to allow the direct recording of fluctuations. As a result, the sampling of data and the modeling of relevant processes are doomed t...

  16. Testing the Vibrational Theory of Olfaction: A Bio-Organic Chemistry Laboratory Experiment Using Hooke's Law and Chirality

    Science.gov (United States)

    Muthyala, Rajeev S.; Butani, Deepali; Nelson, Michelle; Tran, Kiet

    2017-01-01

    Sense of smell is one of the important senses that enables us to interact with our environment. The molecular basis of olfactory signal transduction is a fascinating area for organic chemistry educators to explore in terms of developing undergraduate laboratory activities at the interface of chemistry and biology. In this paper, a guided-inquiry…

  17. Morphology-dependent water budgets and nutrient fluxes in arctic thaw ponds

    Science.gov (United States)

    Koch, Joshua C.; Gurney, Kirsty; Wipfli, Mark S.

    2014-01-01

    Thaw ponds on the Arctic Coastal Plain of Alaska are productive ecosystems, providing habitat and food resources for many fish and bird species. Permafrost in this region creates unique pond morphologies: deep troughs, shallow low-centred polygons (LCPs) and larger coalescent ponds. By monitoring seasonal trends in pond volume and chemistry, we evaluated whether pond morphology and size affect water temperature and desiccation, and nitrogen (N) and phosphorus (P) fluxes. Evaporation was the largest early-summer water flux in all pond types. LCPs dried quickly and displayed high early-summer nutrient concentrations and losses. Troughs consistently received solute-rich subsurface inflows, which accounted for 12 to 42 per cent of their volume and may explain higher P in the troughs. N to P ratios increased and ammonium concentrations decreased with pond volume, suggesting that P and inorganic N availability may limit ecosystem productivity in older, larger ponds. Arctic summer temperatures will likely increase in the future, which may accelerate mid-summer desiccation. Given their morphology, troughs may remain wet, become warmer and derive greater nutrient loads from their thawing banks. Overall, seasonal- to decadal-scale warming may increase ecosystem productivity in troughs relative to other Arctic Coastal Plain ponds. 

  18. Media optimization for elevated molecular weight and mass production of pigment-free pullulan.

    Science.gov (United States)

    Yu, Xiaoliu; Wang, Yulei; Wei, Gongyuan; Dong, Yingying

    2012-07-01

    In this study, an Aureobasidium pullulans SZU 1001 mutant, deficient in pigment production, was screened by complex UV and γ-ray mutagenesis. Medium composition optimization for increased pullulan molecular weight and production was conducted using this mutant. Six nutrients: yeast extract, (NH4)2SO4, K2HPO4, NaCl, MgSO4·7H2O and CaCl2 were detected within pullulan production in flasks. It is shown that NaCl and K2HPO4 have significant influences on molecular weight of pullulan, while yeast extract and (NH4)2SO4 significantly affect pullulan yield. To achieve a higher molecular weight and more efficient pullulan production, a response surface methodology approach was introduced to predict an optimal nutrient combination. A molecular weight of 5.74 × 10(6) and pullulan yield on glucose of 51.30% were obtained under batch pullulan fermentation with the optimized media, which increased molecular weight and pullulan production by 97.25% and 11.04%, respectively compared with the control media. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Non-thermally activated chemistry

    International Nuclear Information System (INIS)

    Stiller, W.

    1987-01-01

    The subject is covered under the following headings: state-of-the art of non-thermally activated chemical processes; basic phenomena in non-thermal chemistry including mechanochemistry, photochemistry, laser chemistry, electrochemistry, photo-electro chemistry, high-field chemistry, magneto chemistry, plasma chemistry, radiation chemistry, hot-atom chemistry, and positronium and muonium chemistry; elementary processes in non-thermal chemistry including nuclear chemistry, interactions of electromagnetic radiations, electrons and heavy particles with matter, ionic elementary processes, elementary processes with excited species, radicalic elementary processes, and energy-induced elementary processes on surfaces and interfaces; and comparative considerations. An appendix with historical data and a subject index is given. 44 figs., 41 tabs., and 544 refs

  20. A química orgânica na consolidação dos conceitos de átomo e molécula Organic chemistry in the consolidation of the concepts of atom and molecule

    Directory of Open Access Journals (Sweden)

    Tânia de Oliveira Camel

    2009-01-01

    Full Text Available The present work discusses the appearance of the concepts of valence and molecular structure, and describes the appropriation and evolution of the concept of molecule in the period following the publication of Avogadro's Hypothesis. The point of reference is the development of what became known as Organic Chemistry, which encompassed Pharmacy, Physiological Chemistry, Animal and Plant Chemistry, Chemistry of Dyestuffs, Agricultural Chemistry, and the fledgling Organic Synthesis industry in the early 19th century. The theories formulated in these areas and the quest for accurate atomic weights led to those concepts of valence and molecular structure and to a precise differentiation between atom and molecule.