WorldWideScience

Sample records for molecular bound state

  1. Formation of bound states in expanded metal studied via path integral molecular dynamics

    Science.gov (United States)

    Deymier, P. A.; Oh, Ki-Dong

    2004-03-01

    The usefulness of the restricted path integral molecular dynamics method for the study of strongly correlated electrons is demonstrated by studying the formation of bound electronic states in a half-filled expanded three-dimensional hydrogenoid body-centred cubic lattice at finite temperature. Starting from a metallic state with one-component plasma character, we find that bound electrons form upon expansion of the lattice. The bound electrons are spatially localized with their centre for the motion of gyration located at ionic positions. The number of bound electrons increases monotonically with decreasing density.

  2. Cruising through molecular bound-state manifolds with radiofrequency

    NARCIS (Netherlands)

    Lang, F.; van der Straten, P.; Brandstätter, B.; Thalhammer, G.; Winkler, K.; Julienne, P.S.; Grimm, R.; Hecker Denschlag, J.

    2008-01-01

    The production of ultracold molecules with their rich internal structure is currently attracting considerable interest1, 2, 3, 4. For future experiments, it will be important to efficiently transfer these molecules from their initial internal quantum state at production to other quantum states of in

  3. Lectures on Bound states

    CERN Document Server

    Hoyer, Paul

    2016-01-01

    Even a first approximation of bound states requires contributions of all powers in the coupling. This means that the concept of "lowest order bound state" needs to be defined. In these lectures I discuss the "Born" (no loop, lowest order in $\\hbar$) approximation. Born level states are bound by gauge fields which satisfy the classical field equations. As a check of the method, Positronium states of any momentum are determined as eigenstates of the QED Hamiltonian, quantized at equal time. Analogously, states bound by a strong external field $A^\\mu(\\xv)$ are found as eigenstates of the Dirac Hamiltonian. Their Fock states have dynamically created $e^+e^-$ pairs, whose distribution is determined by the Dirac wave function. The linear potential of $D=1+1$ dimensions confines electrons but repels positrons. As a result, the mass spectrum is continuous and the wave functions have features of both bound states and plane waves. The classical solutions of Gauss' law are explored for hadrons in QCD. A non-vanishing bo...

  4. Regularity of Bound States

    DEFF Research Database (Denmark)

    Faupin, Jeremy; Møller, Jacob Schach; Skibsted, Erik

    2011-01-01

    We study regularity of bound states pertaining to embedded eigenvalues of a self-adjoint operator H, with respect to an auxiliary operator A that is conjugate to H in the sense of Mourre. We work within the framework of singular Mourre theory which enables us to deal with confined massless Pauli–......–Fierz models, our primary example, and many-body AC-Stark Hamiltonians. In the simpler context of regular Mourre theory, our results boil down to an improvement of results obtained recently in [8, 9]....

  5. Unified theory of bound and scattering molecular Rydberg states as quantum maps

    Science.gov (United States)

    Dietz, Barbara; Lombardi, Maurice; Seligman, Thomas H.

    2004-08-01

    Using a representation of multichannel quantum defect theory in terms of a quantum Poincaré map for bound Rydberg molecules, we apply Jung's scattering map to derive a generalized quantum map, that includes the continuum. We show that this representation not only simplifies the understanding of the method, but moreover produces considerable numerical advantages. Finally we show under what circumstances the usual semi-classical approximations yield satisfactory results. In particular we see that singularities that cause problems in semi-classics are irrelevant to the quantum map.

  6. Bound anionic states of adenine

    Energy Technology Data Exchange (ETDEWEB)

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  7. Bound states in string nets

    Science.gov (United States)

    Schulz, Marc Daniel; Dusuel, Sébastien; Vidal, Julien

    2016-11-01

    We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.

  8. Bound states in string nets

    CERN Document Server

    Schulz, M D; Vidal, J

    2016-01-01

    We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.

  9. Effect of temperature on the formation of electronic bound states in an expanded bcc hydrogenoid crystal: A restricted path-integral molecular dynamics simulation

    Science.gov (United States)

    Oh, Ki-Dong; Deymier, P. A.

    2004-04-01

    We have used the restricted path-integral molecular dynamics method to study the correlated electronic structure of a half-filled expanded three-dimensional hydrogenoid body-centered cubic lattice at finite temperatures. Starting from a paramagnetic metallic state with electron gas character, we find that bound electrons form upon expansion of the lattice. The bound electrons are spatially localized with their center for the motion of gyration located on ionic positions. The region of coexistence of bound and unbound states in the temperature-density plane is reminiscent of that associated with a first-order transition. At constant temperature, the number of bound electrons increases monotonously with decreasing density. The width of the region of coexistence narrows with increasing temperature.

  10. Eta nuclear bound states revisited

    CERN Document Server

    Friedman, E; Mareš, J

    2013-01-01

    The strong energy dependence of the s-wave eta-N scattering amplitude at and below threshold, as evident in coupled-channels K-matrix fits and chiral models that incorporate the S11 N*(1535) resonance, is included self consistently in eta-nuclear bound state calculations. This approach, applied recently in calculations of kaonic atoms and Kbar-nuclear bound states, is found to impose stronger constraints than ever on the onset of eta-nuclear binding, with a minimum value of Re a_{eta N} approximately 0.9 fm required to accommodate an eta-4He bound state. Binding energies and widths of eta-nuclear states are calculated within several underlying eta-N models for nuclei across the periodic table, including eta-25Mg for which some evidence was proposed in a recent COSY experiment.

  11. Wronskian Method for Bound States

    Science.gov (United States)

    Fernandez, Francisco M.

    2011-01-01

    We propose a simple and straightforward method based on Wronskians for the calculation of bound-state energies and wavefunctions of one-dimensional quantum-mechanical problems. We explicitly discuss the asymptotic behaviour of the wavefunction and show that the allowed energies make the divergent part vanish. As illustrative examples we consider…

  12. Wronskian method for bound states

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Francisco M, E-mail: fernande@quimica.unlp.edu.ar [INIFTA (UNLP, CONICET), Division Quimica Teorica, Boulevard 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)

    2011-05-15

    We propose a simple and straightforward method based on Wronskians for the calculation of bound-state energies and wavefunctions of one-dimensional quantum-mechanical problems. We explicitly discuss the asymptotic behaviour of the wavefunction and show that the allowed energies make the divergent part vanish. As illustrative examples we consider an exactly solvable model, the Gaussian potential well, and a two-well potential proposed earlier for the interpretation of the infrared spectrum of ammonia.

  13. Effect of bound state of water on hydronium ion mobility in hydrated Nafion using molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mabuchi, Takuya, E-mail: mabuchi@nanoint.ifs.tohoku.ac.jp [Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Tokumasu, Takashi [Institute of Fluid Science, Tohoku University, Sendai, Miyagi 980-8577 (Japan)

    2014-09-14

    We have performed a detailed analysis of the structural properties of the sulfonate groups in terms of isolated and overlapped solvation shells in the nanostructure of hydrated Nafion membrane using classical molecular dynamics simulations. Our simulations have demonstrated the correlation between the two different areas in bound water region, i.e., the first solvation shell, and the vehicular transport of hydronium ions at different water contents. We have employed a model of the Nafion membrane using the improved force field, which is newly modified and validated by comparing the density and water diffusivity with those obtained experimentally. The first solvation shells were classified into the two types, the isolated area and the overlapped area. The mean residence times of solvent molecules explicitly showed the different behaviors in each of those areas in terms of the vehicular transport of protons: the diffusivity of classical hydronium ions in the overlapped area dominates their total diffusion at lower water contents while that in the isolated area dominates for their diffusion at higher water contents. The results provided insights into the importance role of those areas in the solvation shells for the diffusivity of vehicular transport of hydronium ions in hydrated Nafion membrane.

  14. Bound entangled states invariant under Ux

    Institute of Scientific and Technical Information of China (English)

    Wang Zhen; Wang Zhi-Xi

    2008-01-01

    This paper obtains an entangled condition for isotropic-like states by using an atomic map. It constructs a class of bound entangled states from the entangled condition and shows that the partial transposition of the state from the constructed bound entangled class is an edge bound entangled state by using range criterion.

  15. Boosting equal time bound states

    CERN Document Server

    Dietrich, Dennis D; Jarvinen, Matti

    2012-01-01

    We present an explicit and exact boost of a relativistic bound state defined at equal time of the constituents in the Born approximation (lowest order in hbar). To this end, we construct the Poincar\\'e generators of QED and QCD in D=1+1 dimensions, using Gauss' law to express A^0 in terms of the fermion fields in A^1=0 gauge. We determine the fermion-antifermion bound states in the Born approximation as eigenstates of the time and space translation generators P^0 and P^1. The boost operator is combined with a gauge transformation so as to maintain the gauge condition A^1=0 in the new frame. We verify that the boosted state remains an eigenstate of P^0 and P^1 with appropriately transformed eigenvalues and determine the transformation law of the equal-time, relativistic wave function. The shape of the wave function is independent of the CM momentum when expressed in terms of a variable, which is quadratically related to the distance x between the fermions. As a consequence, the Lorentz contraction of the wave ...

  16. Asymmetric dark matter bound state

    Science.gov (United States)

    Bi, Xiao-Jun; Kang, Zhaofeng; Ko, P.; Li, Jinmian; Li, Tianjun

    2017-02-01

    We propose an interesting framework for asymmetric scalar dark matter (ADM), which has novel collider phenomenology in terms of an unstable ADM bound state (ADMonium) produced via Higgs portals. ADMonium is a natural consequence of the basic features of ADM: the (complex scalar) ADM is charged under a dark local U (1 )d symmetry which is broken at a low scale and provides a light gauge boson X . The dark gauge coupling is strong and then ADM can annihilate away into X -pair effectively. Therefore, the ADM can form a bound state due to its large self-interaction via X mediation. To explore the collider signature of ADMonium, we propose that ADM has a two-Higgs doublet portal. The ADMonium can have a sizable mixing with the heavier Higgs boson, which admits a large cross section of ADMonium production associated with b b ¯. The resulting signature at the LHC depends on the decays of X . In this paper we consider a case of particular interest: p p →b b ¯ +ADMonium followed by ADMonium→2 X →2 e+e- where the electrons are identified as (un)converted photons. It may provide a competitive explanation to heavy di-photon resonance searches at the LHC.

  17. Bound states in the continuum

    Science.gov (United States)

    Hsu, Chia Wei; Zhen, Bo; Stone, A. Douglas; Joannopoulos, John D.; Soljačić, Marin

    2016-09-01

    Bound states in the continuum (BICs) are waves that remain localized even though they coexist with a continuous spectrum of radiating waves that can carry energy away. Their very existence defies conventional wisdom. Although BICs were first proposed in quantum mechanics, they are a general wave phenomenon and have since been identified in electromagnetic waves, acoustic waves in air, water waves and elastic waves in solids. These states have been studied in a wide range of material systems, such as piezoelectric materials, dielectric photonic crystals, optical waveguides and fibres, quantum dots, graphene and topological insulators. In this Review, we describe recent developments in this field with an emphasis on the physical mechanisms that lead to BICs across seemingly very different materials and types of waves. We also discuss experimental realizations, existing applications and directions for future work.

  18. Instanton bound states in ABJM theory

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [DESY Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst. and Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics

    2013-06-15

    The partition function of the ABJM theory receives non-perturbative corrections due to instanton effects. We study these non-perturbative corrections, including bound states of worldsheet instantons and membrane instantons, in the Fermi-gas approach. We require that the total non-perturbative correction should be always finite for arbitrary Chern-Simons level. This finiteness is realized quite non-trivially because each bound state contribution naively diverges at some levels. The poles of each contribution should be canceled out in total. We use this pole cancellation mechanism to find unknown bound state corrections from known ones. We conjecture a general expression of the bound state contribution. Summing up all the bound state contributions, we find that the effect of bound states is simply incorporated into the worldsheet instanton correction by a redefinition of the chemical potential in the Fermi-gas system. Analytic expressions of the 3- and 4-membrane instanton corrections are also proposed.

  19. Quantum path-integral molecular dynamics calculations of the dipole-bound state of the water dimer anion

    Science.gov (United States)

    Shiga, Motoyuki; Takayanagi, Toshiyuki

    2003-09-01

    The equilibrium structure of the negatively charged water dimer (H 2O) 2- has been studied using the path-integral molecular dynamics simulation. All the atomic motions as well as the excess electron were treated quantum mechanically, employing a semi-empirical model combining a water-water interatomic potential with an electron-water pseudopotential. It is demonstrated that the molecular structure of (H 2O) 2- is more flexible than that of (H 2O) 2; both the donor switching and donor-acceptor interchange can more effectively occur in (H 2O) 2- than in (H 2O) 2. We conclude that this floppy character is a result of the breakdown of the adiabatic Born-Oppenheimer picture.

  20. How entangled are bound entangled states?

    CERN Document Server

    Wei, T C; Goldbart, P M; Munro, W J; Wei, Tzu-Chieh; Altepeter, Joseph B.; Goldbart, Paul M.; Munro, William J.

    2003-01-01

    Bound entangled states are states that are entangled but from which no entanglement can be distilled if all parties are allowed only local operations and classical communication. However, in creating these states one needs nonzero entanglement to start with. To date, no analytic results reveal the entanglement content of these strange states. Here, the entanglement of two distinct multipartite bound entangled states is determined analytically in terms of geometric measure of entanglement and a related quantity. The results are compared with those for the relative entropy of entanglement and the negativity, and plausible lower bounds on the entanglement of formation are given. Along the way, an intriguing example emerges, in which a bipartite mixed state, associated with Smolin's bound entangled state, can be reversibly converted into a bipartite Bell state, and vice versa. Furthermore, for any N-qubit state that is PPT for all bipartite partitionings, there is no violation of the two-setting, three-setting, a...

  1. Elastic scattering, muon transfer, bound states and resonances in the three-body mesic molecular systems in the reduced adiabatic hyperspherical approach

    Science.gov (United States)

    Abramov, D. I.; Gusev, V. V.; Ponomarev, L. I.

    1999-06-01

    The uniform method of numerical investigation of bound states and scattering processes 2→ 2 (including resonance states) in the Coulomb three-body (CTB) systems is developed. It is based on the adiabatic hyperspherical approach (AHSA) and includes the numerical realization and applications to the three-body mesic atomic systems. The results of calculations of bound states of these systems (including the local characteristics of the wave functions) and the scattering processes 2→ 2 (including the characteristics of the resonance states) are presented.

  2. Elastic scattering, muon transfer, bound states and resonances in the three-body mesic molecular systems in the reduced adiabatic hyperspherical approach

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, D.I. [St.-Petersburg State University (Russian Federation); Gusev, V.V. [Institute for High Energy Physics (Russian Federation); Ponomarev, L.I. [Russian Research Center ' Kurchatov Institute' (Russian Federation)

    1999-06-15

    The uniform method of numerical investigation of bound states and scattering processes 2{sup {yields}} 2 (including resonance states) in the Coulomb three-body (CTB) systems is developed. It is based on the adiabatic hyperspherical approach (AHSA) and includes the numerical realization and applications to the three-body mesic atomic systems. The results of calculations of bound states of these systems (including the local characteristics of the wave functions) and the scattering processes 2{sup {yields}} 2 (including the characteristics of the resonance states) are presented.

  3. On the reflection of magnon bound states

    CERN Document Server

    MacKay, Niall

    2010-01-01

    We investigate the reflection of two-particle bound states of a free open string in the light-cone AdS_5 x S^5 string sigma model, for large angular momentum J=J_56 and ending on a D7 brane which wraps the entire AdS_5 and a maximal S^3 of S^5. We use the superspace formalism to analyse fundamental and two-particle bound states in the cases of supersymmetry-preserving and broken-supersymmetry boundaries. We find the boundary S-matrices corresponding to bound states both in the bulk and on the boundary.

  4. Lower Bounds of Concurrence for Multipartite States

    CERN Document Server

    Zhu, Xue-Na; Fei, Shao-Ming

    2012-01-01

    We study the entanglement of multipartite quantum states. Some lower bounds of the multipartite concurrence are reviewed. We further present more effective lower bounds for detecting and qualifying entanglement, by establishing functional relations between the concurrence and the generalized partial transpositions of the multipartite systems.

  5. Infrared spectroscopy of weakly bound molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Lisa I-Ching

    1988-11-01

    The infrared spectra of a series of hydrated hydronium cluster ions and of protonated ethane ion are presented. A tandem mass spectrometer is ideally suited to obtaining the spectra of such weakly bound molecular ions. Traditional absorption spectroscopy is not feasible in these situations, so the techniques described in this thesis make use of some consequence of photon absorption with higher sensitivity than simply attenuation of laser power. That consequence is dissociation. By first mass selecting the parent ion under study and then mass selecting the fragment ion formed from dissociation, the near unit detection efficiency of ion counting methods has been used to full advantage.

  6. Irreversibility for all bound entangled states

    CERN Document Server

    Yang, D; Horodecki, R; Synak-Radtke, B; Yang, Dong; Horodecki, Michal; Horodecki, Ryszard; Synak-Radtke, Barbara

    2005-01-01

    We derive a new inequality for entanglement for a mixed four-partite state. Employing this inequality, we present a one-shot lower bound for entanglement cost and prove that entanglement cost is strictly larger than zero for any entangled state. We demonstrate that irreversibility occurs in the process of formation for all non-distillable entangled states. In this way we solve a long standing problem, of how "real" is entanglement of bound entangled states. Using the new inequality we also prove impossibility of local-cloning and local-deleting of a known entangled state.

  7. Bound States in Boson Impurity Models

    Science.gov (United States)

    Shi, Tao; Wu, Ying-Hai; González-Tudela, A.; Cirac, J. I.

    2016-04-01

    The formation of bound states involving multiple particles underlies many interesting quantum physical phenomena, such as Efimov physics or superconductivity. In this work, we show the existence of an infinite number of such states for some boson impurity models. They describe free bosons coupled to an impurity and include some of the most representative models in quantum optics. We also propose a family of wave functions to describe the bound states and verify that it accurately characterizes all parameter regimes by comparing its predictions with exact numerical calculations for a one-dimensional tight-binding Hamiltonian. For that model, we also analyze the nature of the bound states by studying the scaling relations of physical quantities, such as the ground-state energy and localization length, and find a nonanalytical behavior as a function of the coupling strength. Finally, we discuss how to test our theoretical predictions in experimental platforms, such as photonic crystal structures and cold atoms in optical lattices.

  8. Family of nonlocal bound entangled states

    Science.gov (United States)

    Yu, Sixia; Oh, C. H.

    2017-03-01

    Bound entanglement, being entangled yet not distillable, is essential to our understanding of the relations between nonlocality and entanglement besides its applications in certain quantum information tasks. Recently, bound entangled states that violate a Bell inequality have been constructed for a two-qutrit system, disproving a conjecture by Peres that bound entanglement is local. Here we construct this kind of nonlocal bound entangled state for all finite dimensions larger than two, making possible their experimental demonstration in most general systems. We propose a Bell inequality, based on a Hardy-type argument for nonlocality, and a steering inequality to identify their nonlocality. We also provide a family of entanglement witnesses to detect their entanglement beyond the Bell inequality and the steering inequality.

  9. η-nuclear bound states revisited

    Science.gov (United States)

    Friedman, E.; Gal, A.; Mareš, J.

    2013-10-01

    The strong energy dependence of the s-wave ηN scattering amplitude at and below threshold, as evident in coupled-channels K-matrix fits and chiral models that incorporate the S11N* (1535) resonance, is included self-consistently in η-nuclear bound-state calculations. This approach, applied recently in calculations of kaonic atoms and Kbar-nuclear bound states, is found to impose stronger constraints than ever on the onset of η-nuclear binding, with a minimum value of ReaηN ≈ 0.9 fm required to accommodate an η-4He bound state. Binding energies and widths of η-nuclear states are calculated within several underlying ηN models for nuclei across the periodic table, including Mg25η for which some evidence was proposed in a recent COSY experiment.

  10. Narrow deeply bound K- atomic states

    Science.gov (United States)

    Friedman, E.; Gal, A.

    1999-07-01

    Using optical potentials fitted to a comprehensive set of strong interaction level shifts and widths in K- atoms, we predict that the K- atomic levels which are inaccessible in the atomic cascade process are generally narrow, spanning a range of widths about 50-1500 keV over the entire periodic table. The mechanism for this narrowing is different from the mechanism for narrowing of pionic atom levels. Examples of such `deeply bound' K- atomic states are given, showing that in many cases these states should be reasonably well resolved. Several reactions which could be used to form these `deeply bound' states are mentioned. Narrow deeply bound states are expected also in overlinep atoms.

  11. Introduction to QCD - a bound state perspective

    CERN Document Server

    Hoyer, Paul

    2011-01-01

    These lecture notes focus on the bound state sector of QCD. Motivated by data which suggests that the strong coupling \\alpha_s(Q) freezes at low Q, and by similarities between the spectra of hadrons and atoms, I discuss if and how QCD bound states may be treated perturbatively. I recall the basic principles of perturbative gauge theory bound states at lowest order in the \\hbar expansion. Born level amplitudes are insensitive to the i\\epsilon prescription of propagators, which allows to eliminate the Z-diagrams of relativistic, time-ordered Coulomb interactions. The Dirac wave function thus describes a single electron which propagates forward in time only, even though the bound state has any number of pair constituents when Feynman propagators are used. In the absence of an external potential, states that are bound by the Coulomb attraction of their constituents can be analogously described using only their valence degrees of freedom. The instantaneous A^0 field is determined by Gauss' law for each wave functi...

  12. Universal bound on the efficiency of molecular motors

    Science.gov (United States)

    Pietzonka, Patrick; Barato, Andre C.; Seifert, Udo

    2016-12-01

    The thermodynamic uncertainty relation provides an inequality relating any mean current, the associated dispersion and the entropy production rate for arbitrary non-equilibrium steady states. Applying it here to a general model of a molecular motor running against an external force or torque, we show that the thermodynamic efficiency of such motors is universally bounded by an expression involving only experimentally accessible quantities. For motors pulling cargo through a viscous fluid, a universal bound for the corresponding Stokes efficiency follows as a variant. A similar result holds if mechanical force is used to synthesize molecules of high chemical potential. Crucially, no knowledge of the detailed underlying mechano-chemical mechanism is required for applying these bounds.

  13. Bound States Of Supersymmetric Black Holes

    CERN Document Server

    Britto-Pacumio, R A

    2002-01-01

    The quantum mechanics of N slowly-moving supersymmetric black holes in five dimensions is considered. A divergent continuum of states describing arbitrarily closely bound black holes with arbitrarily small excitation energies is found. A superconformal structure appears at low energies and can be used to define a topological index counting the weighted number of supersymmetric bound states. It is shown that the index is determined from the dimensions of certain cohomology classes on the symmetric product of N copies of R4. This bound state index is computed exactly for two and three black holes. The required regulator for the infrared continuum of near-coincident black holes is chosen in accord with the enhanced superconformal symmetry.

  14. Force-producing ADP state of myosin bound to actin.

    Science.gov (United States)

    Wulf, Sarah F; Ropars, Virginie; Fujita-Becker, Setsuko; Oster, Marco; Hofhaus, Goetz; Trabuco, Leonardo G; Pylypenko, Olena; Sweeney, H Lee; Houdusse, Anne M; Schröder, Rasmus R

    2016-03-29

    Molecular motors produce force when they interact with their cellular tracks. For myosin motors, the primary force-generating state has MgADP tightly bound, whereas myosin is strongly bound to actin. We have generated an 8-Å cryoEM reconstruction of this state for myosin V and used molecular dynamics flexed fitting for model building. We compare this state to the subsequent state on actin (Rigor). The ADP-bound structure reveals that the actin-binding cleft is closed, even though MgADP is tightly bound. This state is accomplished by a previously unseen conformation of the β-sheet underlying the nucleotide pocket. The transition from the force-generating ADP state to Rigor requires a 9.5° rotation of the myosin lever arm, coupled to a β-sheet rearrangement. Thus, the structure reveals the detailed rearrangements underlying myosin force generation as well as the basis of strain-dependent ADP release that is essential for processive myosins, such as myosin V.

  15. Nuclear internal conversion between bound atomic states

    Science.gov (United States)

    Chemin, J. F.; Harston, M. R.; Karpeshin, F. F.; Carreyre, J.; Attallah, F.; Aleonard, M. M.; Scheurer, J. N.; Boggaert, G.; Grandin, J. R.; Trzhaskovskaya, M. B.

    2003-01-01

    We present experimental and theoretical results for rate of decay of the (3/2)+ isomeric state in 125Te versus the ionic charge state. For charge state larger than 44 the nuclear transition lies below the threshold for emission of a K-shell electron into the continuum with the result that normal internal conversion is energetically forbiden. Rather surprisingly, for the charge 45 and 46 the lifetime of the level was found to have a value close to that in neutral atoms. We present direct evidence that the nuclear transition could still be converted but without the emission of the electron into the continuum, the electron being promoted from the K-shell to an other empty bound state lying close to the continuum. We called this process BIC. The experimental results agree whith theoretical calculations if BIC resonances are taken into account. This leads to a nuclear decay constant that is extremely sensitive to the precise initial state and simple specification of the charge state is no longer appropriate. The contribution to decay of the nucleus of BIC has recently been extended to the situation in which the electron is promoted to an intermediate filled bound state (PFBIC) with an apparent violation of the Pauli principle. Numerical results of the expected dependence of PFBIC on the charge state will be presented for the decay of the 77.351 keV level in 197Au.

  16. Analytic continuation of bound states to solve resonance states

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Norimichi; Arai, Koji [Niigata Univ. (Japan); Suzuki, Yoshiyuki; Varga, K.

    1997-05-01

    As a method to determine the parameters of the resonance state, a method is proposed using analytic continuation on bound constants of correlation. The characteristics of this method consists in probability of prediction of the parameters of the resonance state only by calculation of the bound state. Owing to conducting the analytic continuation on square root of energy in the bound state as a function relating to the bound constant, energy and width in the bound state was determined. Here was reported on a result of application of this method to three systems. Some partial wave on two systems showing correlation at a simple potential and a resonance state of zero of all orbital angular motion quality in three boson system were determined using the analytic continuation method. These results agreed well with one used a method of integrating Schroedinger equation directly and one used the complex scaling method, and this method was found to be much efficient for the study of the resonance state. Under a background of becoming applicable to the method of analytic continuation, there was development of calculating method for the recent small number multi system. As the characteristics of the analytic continuation method is used for only calculation of the bound state, it is convenient at a point applicable to the method to obtain conventional bound state and then is much efficient in a point of applicability of calculus of variations. However, in order to obtain coefficient of Pade approximation correctly, the bound state must be solved correctly, which is difficult for more complex system and is not always applicable to every systems. (G.K.)

  17. Andreev bound states. Some quasiclassical reflections

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y., E-mail: yiriolin@illinois.edu; Leggett, A. J. [University of Illinois at Urhana-Champaign, Dept. of Physics (United States)

    2014-12-15

    We discuss a very simple and essentially exactly solvable model problem which illustrates some nice features of Andreev bound states, namely, the trapping of a single Bogoliubov quasiparticle in a neutral s-wave BCS superfluid by a wide and shallow Zeeman trap. In the quasiclassical limit, the ground state is a doublet with a splitting which is proportional to the exponentially small amplitude for “normal” reflection by the edges of the trap. We comment briefly on a prima facie paradox concerning the continuity equation and conjecture a resolution to it.

  18. Nuclear dynamics of K¯ bound states

    Science.gov (United States)

    Mareš, J.; Friedman, E.; Gal, A.

    2006-07-01

    K¯ nuclear bound states were generated dynamically within a relativistic mean field (RMF) model. Substantial polarization of the core nucleus was found for light nuclei. The behavior of the dynamically calculated width ΓK¯ as function of the K¯ binding energy was studied. A lower limit of ΓK¯ ˜ 35 - 45 MeV for 1s K¯ nuclear states in light nuclei such as 12C was placed on the width expected for deep binding in the range B K¯ ˜ 100 - 200 MeV.

  19. Quasi-bound states in strained graphene

    Science.gov (United States)

    Bahamon, Dario; Qi, Zenan; Park, Harold; Pareira, Vitor; Campbell, David

    In this work, we explore the possibility of manipulating electronic states in graphene nanostructures by mechanical means. Specifically, we use molecular dynamics and tight-binding models to access the electronic and transport properties of strained graphene nanobubbles and graphene kirigami. We establish that low energy electrons can be confined in the arms of the kirigami and within the nanobubbles; under different load conditions the coupling between confined states and continuous states is modified creating different conductance line-shapes.

  20. Is there an quasi-bound state?

    CERN Document Server

    Wilkin, C; Chiladze, D; Dymov, S; Hanhart, C; Hartmann, M; Hejny, V; Kacharava, A K; Keshelashvili, I; Khoukaz, A; Maeda, Y; Mersmann, T; Mielke, M; Mikirtychiants, S; Papenbrock, M; Rathmann, F; Rausmann, T; Schleichert, R; Ströher, H; Täschner, A; Valdau, Yu; Wronska, A

    2007-01-01

    The observed variation of the total cross section for the dp -> 3He eta reaction near threshold means that the magnitude of the s--wave amplitude falls very rapidly with the eta centre--of--mass momentum. It is shown here that recent measurements of the momentum dependence of the angular distribution imply a strong variation also in the phase of this amplitude. Such a behaviour is that expected from a quasi--bound or virtual eta-3He state. The interpretation can be investigated further through measurements of the deuteron or proton analysing powers and/or spin--correlations.

  1. Novel Bound States in Graphene with Impurities

    CERN Document Server

    Gupta, Kumar S

    2008-01-01

    We obtain a novel bound state spectrum of the low energy excitations near the Fermi points of graphene in the presence of a charge impurity. The effects of possible short range interactions induced by the impurity are modelled by suitable boundary conditions. The spectrum in the subcritical region of the effective Coulomb coupling is labelled by a parameter which characterizes the boundary conditions and determines the inequivalent quantizations of the system. In the supercritical region we obtain a renormalization group flow for the effective Coulomb coupling.

  2. Engineering the coupling between Majorana bound states

    Science.gov (United States)

    Shi, Z. C.; Shao, X. Q.; Xia, Y.; Yi, X. X.

    2017-09-01

    We study the coupling between Majorana bound states (CMBS), which is mediated by a topologically trivial chain in the presence of pairing coupling and long-range coupling. The results show that CMBS can be enhanced by the pairing coupling and long-range coupling of the trivial chain. When driving the trivial chain by periodic driving field, we deduce the analytical expressions of CMBS in the high-frequency limit, and demonstrate that CMBS can be modulated by the frequency and amplitude of driving field. Finally we exhibit the application of tunable CMBS in realizing quantum logic gates.

  3. Fermionic bound states in distinct kinklike backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil); Mohammadi, A. [Universidade Federal de Campina Grande, Departamento de Fisica, Caixa Postal 10071, Campina Grande, Paraiba (Brazil)

    2017-04-15

    This work deals with fermions in the background of distinct localized structures in the two-dimensional spacetime. Although the structures have a similar topological character, which is responsible for the appearance of fractionally charged excitations, we want to investigate how the geometric deformations that appear in the localized structures contribute to the change in the physical properties of the fermionic bound states. We investigate the two-kink and compact kinklike backgrounds, and we consider two distinct boson-fermion interactions, one motivated by supersymmetry and the other described by the standard Yukawa coupling. (orig.)

  4. Bound states -- from QED to QCD

    CERN Document Server

    Hoyer, Paul

    2014-01-01

    These lectures are divided into two parts. In Part 1 I discuss bound state topics at the level of a basic course in field theory: The derivation of the Schr\\"odinger and Dirac equations from the QED Lagrangian, by summing Feynman diagrams and in a Hamiltonian framework. Less well known topics include the equal-time wave function of Positronium in motion and the properties of the Dirac wave function for a linear potential. The presentation emphasizes physical aspects and provides the framework for Part 2, which discusses the derivation of relativistic bound states at Born level in QED and QCD. A central aspect is the maintenance of Poincar\\'e invariance. The transformation of the wave function under boosts is studied in detail in D=1+1 dimensions, and its generalization to D=3+1 is indicated. Solving Gauss' law for $A^0$ with a non-vanishing boundary condition leads to a linear potential for QCD mesons, and an analogous confining potential for baryons.

  5. On Aharonov-Casher bound states

    Science.gov (United States)

    Silva, E. O.; Andrade, F. M.; Filgueiras, C.; Belich, H.

    2013-04-01

    In this work bound states for the Aharonov-Casher problem are considered. According to Hagen's work on the exact equivalence between spin-1/2 Aharonov-Bohm and Aharonov-Casher effects, is known that the ∇ṡ E term cannot be neglected in the Hamiltonian if the spin of particle is considered. This term leads to the existence of a singular potential at the origin. By modeling the problem by boundary conditions at the origin which arises by the self-adjoint extension of the Hamiltonian, we derive for the first time an expression for the bound state energy of the Aharonov-Casher problem. As an application, we consider the Aharonov-Casher plus a two-dimensional harmonic oscillator. We derive the expression for the harmonic oscillator energies and compare it with the expression obtained in the case without singularity. At the end, an approach for determination of the self-adjoint extension parameter is given. In our approach, the parameter is obtained essentially in terms of physics of the problem.

  6. On Aharonov-Casher bound states

    Energy Technology Data Exchange (ETDEWEB)

    Silva, E.O. [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, MA (Brazil); Andrade, F.M. [Universidade Estadual de Ponta Grossa, Departamento de Matematica e Estatistica, Ponta Grossa, PR (Brazil); Filgueiras, C. [Universidade Federal de Campina Grande, Departamento de Fisica, Caixa Postal 10071, Campina Grande, PB (Brazil); Belich, H. [Universidade Federal do Espirito Santo, Departamento de Fisica e Quimica, Vitoria, ES (Brazil)

    2013-04-15

    In this work bound states for the Aharonov-Casher problem are considered. According to Hagen's work on the exact equivalence between spin-1/2 Aharonov-Bohm and Aharonov-Casher effects, is known that the {nabla}.E term cannot be neglected in the Hamiltonian if the spin of particle is considered. This term leads to the existence of a singular potential at the origin. By modeling the problem by boundary conditions at the origin which arises by the self-adjoint extension of the Hamiltonian, we derive for the first time an expression for the bound state energy of the Aharonov-Casher problem. As an application, we consider the Aharonov-Casher plus a two-dimensional harmonic oscillator. We derive the expression for the harmonic oscillator energies and compare it with the expression obtained in the case without singularity. At the end, an approach for determination of the self-adjoint extension parameter is given. In our approach, the parameter is obtained essentially in terms of physics of the problem. (orig.)

  7. A balance for Dark Matter bound states

    CERN Document Server

    Nozzoli, F

    2016-01-01

    Massive particles with self interactions of the order of 0.2 barn/GeV are intriguing Dark Matter candidates from an astrophysical point of view. Direct detection searches for very massive particles, with relatively high cross sections with ordinary matter, cannot rule out $\\sigma/M > 0.01$ barn/GeV, due to atmosphere and material shielding. Here, the possibility of the existence of bound states with ordinary matter, for Dark Matter candidates with not negligible interactions, is considered. The existence of bound states, with binding energy larger than $\\sim$1 meV, would offer the possibility to test in laboratory capture cross sections of the order of a barn (or larger). The signature of the detection of a mass increasing of cryogenic samples, due to the possible Dark Matter accumulation, would allow the investigation of Dark Matter particles with mass up to the GUT scale. A proof of concept for a possible detection set-up and the evaluation of some noise sources are described.

  8. ADMonium: Asymmetric Dark Matter Bound State

    CERN Document Server

    Bi, Xiao-Jun; Ko, P; Li, Jinmian; Li, Tianjun

    2016-01-01

    We propose a novel framework for asymmetric scalar dark matter (ADM), which has interesting collider phenomenology in terms of an unstable ADM bound state (ADMonium) produced via Higgs portals. ADMonium is a natural consequence of the basic features of ADM: the (complex scalar) ADM is charged under a dark local $U(1)_d$ symmetry which is broken at a low scale and provides a light gauge boson $X$. The dark gauge coupling is strong and then ADM can annihilate away into $X$-pair effectively. Therefore, the ADM can form bound state due to its large self-interaction via $X$ mediation. To explore the collider signature of ADMonium, we propose that ADM has a two-Higgs doublet portal. The ADMonium can have a sizable mixing with the heavier Higgs boson, which admits a large cross section of ADMonium production associated with $b\\bar b$. Of particular interest, our setup nicely explains the recent di-photon anomaly at 750 GeV via the events from ${\\rm ADMonium}\\ra 2X(\\ra e^+e^-)$, where the electrons are identified as ...

  9. The approach to chaos in ultracold atomic and molecular physics: statistics of near-threshold bound states for Li+CaH and Li+CaF

    CERN Document Server

    Frye, Matthew D; Vaillant, Christophe L; Green, Dermot G; Hutson, Jeremy M

    2015-01-01

    We calculate near-threshold bound states for the highly anisotropic systems Li+CaH and Li+CaF and perform statistical analysis on the resulting level positions to compare with the predictions of random matrix theory. For Li+CaH with total angular momentum $J=0$ we find fully chaotic behavior in both the nearest-neighbor spacing distribution and the level number variance. However, for $J>0$ we find different behavior due to the presence of a nearly conserved quantum number. Li+CaF ($J=0$) also shows apparently reduced levels of chaotic behavior despite its stronger effective coupling. We suggest this may indicate the development of another good quantum number relating to a bending motion of the complex. However, continuously varying the rotational constant over a wide range shows unexpected structure in the degree of chaotic behavior, including a dramatic reduction around the rotational constant of CaF. This demonstrates the complexity of the relationship between coupling and chaotic behaviour.

  10. Approach to chaos in ultracold atomic and molecular physics: Statistics of near-threshold bound states for Li+CaH and Li+CaF

    Science.gov (United States)

    Frye, Matthew D.; Morita, Masato; Vaillant, Christophe L.; Green, Dermot G.; Hutson, Jeremy M.

    2016-05-01

    We calculate near-threshold bound states and Feshbach resonance positions for atom-rigid-rotor models of the highly anisotropic systems Li+CaH and Li+CaF. We perform statistical analysis on the resonance positions to compare with the predictions of random matrix theory. For Li+CaH with total angular momentum J =0 we find fully chaotic behavior in both the nearest-neighbor spacing distribution and the level number variance. However, for J >0 we find different behavior due to the presence of a nearly conserved quantum number. Li+CaF (J =0 ) also shows apparently reduced levels of chaotic behavior despite its stronger effective coupling. This may indicate the development of another good quantum number relating to a bending motion of the complex. However, continuously varying the rotational constant over a wide range shows unexpected structure in the degree of chaotic behavior, including a dramatic reduction around the rotational constant of CaF. This demonstrates the complexity of the relationship between coupling and chaotic behavior.

  11. Hyperquarks and bosonic preon bound states

    Science.gov (United States)

    Schmid, Michael L.; Buchmann, Alfons J.

    2009-11-01

    In a model in which leptons, quarks, and the recently introduced hyperquarks are built up from two fundamental spin-(1)/(2) preons, the standard model weak gauge bosons emerge as preon bound states. In addition, the model predicts a host of new composite gauge bosons, in particular, those responsible for hyperquark and proton decay. Their presence entails a left-right symmetric extension of the standard model weak interactions and a scheme for a partial and grand unification of nongravitational interactions based on, respectively, the effective gauge groups SU(6)P and SU(9)G. This leads to a prediction of the Weinberg angle at low energies in good agreement with experiment. Furthermore, using evolution equations for the effective coupling strengths, we calculate the partial and grand unification scales, the hyperquark mass scale, as well as the mass and decay rate of the lightest hyperhadron.

  12. Hyperquarks and bosonic preon bound states

    CERN Document Server

    Schmid, Michael L

    2013-01-01

    In a model in which leptons, quarks, and the recently introduced hyperquarks are built up from two fundamental spin 1/2 preons, the standard model weak gauge bosons emerge as preon bound states. In addition, the model predicts a host of new composite gauge bosons, in particular those responsible for hyperquark and proton decay. Their presence entails a left-right symmetric extension of the standard model weak interactions and a scheme for a partial and grand unification of nongravitational interactions based on respectively the effective gauge groups SU(6)_P and SU(9)_G. This leads to a prediction of the Weinberg angle at low energies in good agreement with experiment. Furthermore, using evolution equations for the effective coupling strengths, we calculate the partial and grand unification scales, the hyperquark mass scale, as well as the mass and decay rate of the lightest hyperhadron.

  13. Topological magnon bound-states in quantum Heisenberg chains

    CERN Document Server

    Qin, Xizhou; Ke, Yongguan; Zhang, Li; Lee, Chaohong

    2016-01-01

    It is still an outstanding challenge to characterize and understand the topological features of strongly correlated states such as bound-states in interacting multi-particle quantum systems. Recently, bound states of elementary spin waves (magnons) in quantum magnets have been experimentally observed in quantum Heisenberg chains comprising ultracold Bose atoms in optical lattices. Here, we explore an unprecedented topological state called topological magnon bound-state in the quantum Heisenberg chain under cotranslational symmetry. We find that the cotranslational symmetry allows us to formulate a direct topological invariant for the multi-particle quantum states, which can be used to characterize the topological features of multi-magnon excitations. We calculate energy spectra, density distributions, correlations and topological invariants of the two-magnon bound-states and show the existence of topological magnon bound-states. Our study not only opens a new prospect to pursue topological bound-states, but a...

  14. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold

    Science.gov (United States)

    Casida, Mark E.; Jamorski, Christine; Casida, Kim C.; Salahub, Dennis R.

    1998-03-01

    This paper presents an evaluation of the performance of time-dependent density-functional response theory (TD-DFRT) for the calculation of high-lying bound electronic excitation energies of molecules. TD-DFRT excitation energies are reported for a large number of states for each of four molecules: N2, CO, CH2O, and C2H4. In contrast to the good results obtained for low-lying states within the time-dependent local density approximation (TDLDA), there is a marked deterioration of the results for high-lying bound states. This is manifested as a collapse of the states above the TDLDA ionization threshold, which is at -ɛHOMOLDA (the negative of the highest occupied molecular orbital energy in the LDA). The -ɛHOMOLDA is much lower than the true ionization potential because the LDA exchange-correlation potential has the wrong asymptotic behavior. For this reason, the excitation energies were also calculated using the asymptotically correct potential of van Leeuwen and Baerends (LB94) in the self-consistent field step. This was found to correct the collapse of the high-lying states that was observed with the LDA. Nevertheless, further improvement of the functional is desirable. For low-lying states the asymptotic behavior of the exchange-correlation potential is not critical and the LDA potential does remarkably well. We propose criteria delineating for which states the TDLDA can be expected to be used without serious impact from the incorrect asymptotic behavior of the LDA potential.

  15. Real weights, bound states and duality orbits

    CERN Document Server

    Marrani, Alessio; Romano, Luca

    2015-01-01

    We show that the duality orbits of extremal black holes in supergravity theories with symmetric scalar manifolds can be derived by studying the stabilizing subalgebras of suitable representatives, realized as bound states of specific weight vectors of the corresponding representation of the duality symmetry group. The weight vectors always correspond to weights that are real, where the reality properties are derived from the Tits-Satake diagram that identifies the real form of the Lie algebra of the duality symmetry group. Both N=2 magic Maxwell-Einstein supergravities and the semisimple infinite sequences of N=2 and N=4 theories in D=4 and 5 are considered, and various results, obtained over the years in the literature using different methods, are retrieved. In particular, we show that the stratification of the orbits of these theories occurs because of very specific properties of the representations: in the case of the theory based on the real numbers, whose symmetry group is maximally non-compact and there...

  16. Precision Study of Positronium: Testing Bound State QED Theory

    OpenAIRE

    Karshenboim, Savely G.

    2003-01-01

    As an unstable light pure leptonic system, positronium is a very specific probe atom to test bound state QED. In contrast to ordinary QED for free leptons, the bound state QED theory is not so well understood and bound state approaches deserve highly accurate tests. We present a brief overview of precision studies of positronium paying special attention to uncertainties of theory as well as comparison of theory and experiment. We also consider in detail advantages and disadvantages of positro...

  17. Review of the N-quantum Approach to Bound States

    CERN Document Server

    Greenberg, O W

    2010-01-01

    We describe a method of solving quantum field theories using operator techniques based on the expansion of interacting fields in terms of asymptotic fields. For bound states, we introduce an asymptotic field for each (stable) bound state. We choose the nonrelativistic hydrogen atom as an example to illustrate the method. Future work will apply this N-quantum approach to relativistic theories that include bound states in motion.

  18. X(3872) and Bound State Problem of D~0(D)*~0((D)~0D*~0)

    Institute of Scientific and Technical Information of China (English)

    LIU Tan-rui; LIU Xiang; DENG Wei-zhen

    2009-01-01

    We have performed a dynamical calculation of the bound state problem of D~0(D)~(*0) by considering the pion and sigma meson exchange potential.Our preliminary analysis disfavors the molecular interpretation of X(3872) if we use the experimental D~* Dπ coupling constant g=0.59 and a reasonable cutoff around 1 GeV,which is the typical hadronic scale.In contrast,there probably exists a loosely bound S-wave B (-B)~* molecular state.Such a molecular state would be rather stable since its dominant decay mode is the radiative decay through B~*→Bγ.

  19. Bound states in a hyperbolic asymmetric double-well

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, R. R., E-mail: richard.hartmann@dlsu.edu.ph [Physics Department, De La Salle University, 2401 Taft Avenue, Manila (Philippines)

    2014-01-15

    We report a new class of hyperbolic asymmetric double-well whose bound state wavefunctions can be expressed in terms of confluent Heun functions. An analytic procedure is used to obtain the energy eigenvalues and the criterion for the potential to support bound states is discussed.

  20. Relativistic bound-state equations for fermions with instantaneous interactions

    NARCIS (Netherlands)

    Suttorp, L.G.

    1979-01-01

    Three types of relativistic bound-state equations for a fermion pair with instantaneous interaction are studied, viz., the instantaneous Bethe-Salpeter equation, the quasi-potential equation, and the two-particle Dirac equation. General forms for the equations describing bound states with arbitrary

  1. Asymptotic-bound-state model for Feshbach resonances

    NARCIS (Netherlands)

    Tiecke, T.G.; Goosen, M.R.; Walraven, J.T.M.; Kokkelmans, S.J.J.M.F.

    2010-01-01

    We present an asymptotic-bound-state model which can be used to accurately describe all Feshbach resonance positions and widths in a two-body system. With this model we determine the coupled bound states of a particular two-body system. The model is based on analytic properties of the two-body

  2. Ultrarelativistic bound states in the shallow spherical well

    CERN Document Server

    Zaba, Mariusz

    2016-01-01

    We determine approximate eigenvalues and eigenfunctions shapes for bound states in the $3D$ shallow spherical ultrarelativistic well. Existence thresholds for the ground state and first excited states are identified, both in the purely radial and orbitally nontrivial cases. This contributes to an understanding of how energy may be stored or accumulated in the form of bound states of Schr\\"odinger - type quantum systems that are devoid of any mass.

  3. Second Bound State of Biexcitons in Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Eang

    2003-01-01

    The second bound state of the biexcitons in a quantum dot, with orbital angular momentum L = 1, is reported. By using the method of few-body physics, the binding energy spectra of the second bound state of a biexciton in a GaAs quantum dot with a parabolic confinement have been calculated as a function of the electron-to-hole mass ratio and the quantum dot size. The fact that the biexcitons have a second bound state may aid in the better understanding of their binding mechanism.

  4. Mass spectrum bound state systems with relativistic corrections

    Energy Technology Data Exchange (ETDEWEB)

    Dineykhan, M; Zhaugasheva, S A [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Toinbaeva, N Sh; Jakhanshir, A [al-Farabi Kazak National University, 480012 Almaty (Kazakhstan)

    2009-07-28

    Based on the investigation of the asymptotic behaviour of the polarization loop function for charged n scalar particles in an external gauge field, we determine the interaction Hamiltonian including relativistic corrections. The mass spectrum of the bound state is analytically derived. The mechanism for arising of the constituent mass of the relativistic bound-state forming particles is explained. The mass and the constituent mass of the two-, three- and n-body relativistic bound states are calculated taking into account relativistic corrections. The corrections arising due to the one- and two-loop electron polarization to the energy spectrum of muonic hydrogen with orbital and radial excitations are calculated.

  5. Bound states of spinning black holes in five dimensions

    CERN Document Server

    Crichigno, P Marcos; Vandoren, Stefan

    2016-01-01

    We find and study supergravity BPS bound states of five-dimensional spinning black holes in asymptotically flat spacetime. These solutions follow from multi-string solutions in six-dimensional minimal supergravity and can be uplifted to F-theory or M-theory. We analyze the regularity conditions and work out the example of a bound state of two black holes in detail. The bound state is supported by fluxes through nontrivial topologies exterior to the horizons and KK momentum. Furthermore, we determine the entropy and compare with other macroscopic BPS solutions.

  6. Entanglement bounds for squeezed non-symmetric thermal state

    CERN Document Server

    Jiang, L

    2003-01-01

    I study the three parameters bipartite quantum Gaussian state called squeezed asymmetric thermal state, calculate Gaussian entanglement of formation analytically and the up bound of relative entropy of entanglement, compare them with coherent information of the state. Based on the result obtained, it is anticipated that hashing inequality is not violated for squeezed non-symmetric thermal state.

  7. On the bound states for the Aharonov-Casher systems

    CERN Document Server

    Silva, E O; Belich, H; Filgueiras, C

    2012-01-01

    The bound states for the Aharonov-Casher problem is considered. According to the Hagen's work on the exact equivalence between spin-1/2 Aharonov-Bohm and Aharonov-Casher effects, is known that the $\\boldsymbol{\

  8. Bound states of two-dimensional relativistic harmonic oscillators

    Institute of Scientific and Technical Information of China (English)

    Qiang Wen-Chao

    2004-01-01

    We give the exact normalized bound state wavefunctions and energy expressions of the Klein-Gordon and Dirac equations with equal scalar and vector harmonic oscillator potentials in the two-dimensional space.

  9. Higgs interchange and bound states of superheavy fermions

    Indian Academy of Sciences (India)

    M De Sanctis

    2013-09-01

    Hypothetical superheavy fourth-generation fermions with a very small coupling with the rest of the Standard Model can give rise to long enough lived bound states. The production and the detection of these bound states would be experimentally feasible at the LHC. Extending, in the present study, the analysis of other authors, a semirelativistic wave equation is solved using an accurate numerical method to determine the binding energies of these possible superheavy fermion-bound states. The interaction given by the Yukawa potential of the Higgs boson exchange is considered; the corresponding relativistic corrections are calculated by means of a model based on the covariance properties of the Hamiltonian. We study the effects given by the Coulomb force. Moreover, we calculate the contributions given by the Coulombic and confining terms of the strong interaction in the case of superheavy quark bound states. The results of the model are critically analysed.

  10. Rotationally invariant bipartite states and bound entanglement

    CERN Document Server

    Augusiak, R; Augusiak, Remigiusz; Stasi\\'{n}ska, Julia

    2007-01-01

    We consider rotationally invariant states in $\\mathbb{C}^{N_{1}}\\ot \\mathbb{C}^{N_{2}}$ Hilbert space with even $N_{1}\\geq 4$ and arbitrary $N_{2}\\geq N_{1}$, and show that in such case there always exist states which are inseparable and remain positive after partial transposition, and thus the PPT criterion does not suffice to prove separability of such systems. We demonstrate it applying a map developed recently by Breuer [H.-P. Breuer, Phys. Rev. Lett {\\bf 97}, 080501 (2006)] to states that remain invariant after partial time reversal.

  11. Narrow deeply bound K- and p atomic states

    Science.gov (United States)

    Friedman, E.; Gal, A.

    2000-01-01

    Examples of recently predicted narrow `deeply bound' K- and p atomic states are shown. The saturation of widths for strong absorptive potentials due to the induced repulsion, and the resulting suppression of atomic wave functions within the nucleus, are demonstrated. Production reactions for K- atomic states using φ(1020) decay, and the (p,p) reaction for p atomic states, are discussed.

  12. NOON states via a quantum walk of bound particles

    Science.gov (United States)

    Compagno, Enrico; Banchi, Leonardo; Gross, Christian; Bose, Sougato

    2017-01-01

    Tight-binding lattice models allow the creation of bound composite objects which, in the strong-interacting regime, are protected against dissociation. We show that a local impurity in the lattice potential can generate a coherent split of an incoming bound particle wave packet which consequently produces a NOON state between the endpoints. This is nontrivial because, when finite lattices are involved, edge-localization effects render challenging their use for nonclassical state generation and information transfer. We derive an effective model to describe the propagation of bound particles in a Bose-Hubbard chain. We introduce local impurities in the lattice potential to inhibit localization effects and to split the propagating bound particle, thus enabling the generation of distant NOON states. We analyze how minimal engineering transfer schemes improve the transfer fidelity and we quantify the robustness to typical decoherence effects in optical lattice implementations. Our scheme potentially has an impact on quantum-enhanced atomic interferometry in a lattice.

  13. Effects of QCD bound states on dark matter relic abundance

    Science.gov (United States)

    Liew, Seng Pei; Luo, Feng

    2017-02-01

    We study scenarios where there exists an exotic massive particle charged under QCD in the early Universe. We calculate the formation and dissociation rates of bound states formed by pairs of these particles, and apply the results in dark matter (DM) coannihilation scenarios, including also the Sommerfeld effect. We find that on top of the Sommerfeld enhancement, bound-state effects can further significantly increase the largest possible DM masses which can give the observed DM relic abundance, by ˜ 30-100% with respect to values obtained by considering the Sommerfeld effect only, for the color triplet or octet exotic particles we consider. In particular, it indicates that the Bino DM mass in the right-handed stop-Bino coannihilation scenario in the Minimal Supersymmetric extension of the Standard Model (MSSM) can reach ˜ 2.5 TeV, even though the potential between the stop and antistop prior to forming a bound state is repulsive. We also apply the bound-state effects in the calculations of relic abundance of long-lived or metastable massive colored particles, and discuss the implications on the BBN constraints and the abundance of a super-weakly interacting DM. The corrections for the bound-state effect when the exotic massive colored particles also carry electric charges, and the collider bounds are also discussed.

  14. Bound and continuum vibrational states of the bifluoride anion

    Science.gov (United States)

    Špirko, V.; Šindelka, M.; Shirsat, R. N.; Leszczynski, J.

    2003-07-01

    The energies of the bound vibrational states and energy density spectra of the continuum vibrational states of FHF - are calculated, 'exactly' and 'adiabatically', using a new ab initio (CCSD(T)) potential energy surface. Statistical properties of the bound states are probed in terms of the density of states and nearest neighbor level spacing distributions (NNSD). Importantly, the approximate 'adiabatic' densities coincide nearly quantitatively with their 'exact' counterparts. A quantitative fitting of the NNSDs is achieved with a new empirical modification of the Wigner distribution.

  15. Floquet bound states around defects and adatoms in graphene

    Science.gov (United States)

    Lovey, D. A.; Usaj, Gonzalo; Foa Torres, L. E. F.; Balseiro, C. A.

    2016-06-01

    Recent studies have focused on laser-induced gaps in graphene which have been shown to have a topological origin, thereby hosting robust states at the sample edges. While the focus has remained mainly on these topological chiral edge states, the Floquet bound states around defects lack a detailed study. In this paper we present such a study covering large defects of different shape and also vacancy-like defects and adatoms at the dynamical gap at ℏ Ω /2 (ℏ Ω being the photon energy). Our results, based on analytical calculations as well as numerics for full tight-binding models, show that the bound states are chiral and appear in a number which grows with the defect size. Furthermore, while the bound states exist regardless of the type of the defect's edge termination (zigzag, armchair, mixed), the spectrum is strongly dependent on it. In the case of top adatoms, the bound state quasienergies depend on the adatoms energy. The appearance of such bound states might open the door to the presence of topological effects on the bulk transport properties of dirty graphene.

  16. Bound States of a Ferromagnetic Wire in a Superconductor.

    Science.gov (United States)

    Sau, Jay D; Brydon, P M R

    2015-09-18

    We consider the problem of bound states in strongly anisotropic ferromagnetic impurities in a superconductor, motivated by recent experiments that claim to observe Majorana modes at the ends of ferromagnetic wires on a superconducting substrate [S. Nadj-Perge et al., Science 346, 602 (2014)]. Generalizing the successful theory of bound states of spherically symmetric impurities, we consider a wirelike potential using both analytical and numerical approaches. We find that away from the ends of the wire the bound states form bands with pronounced van Hove singularities, giving rise to subgap peaks in the local density of states. For sufficiently strong magnetization of the wire, we show that this process generically produces a sharp peak at zero energy in the local density of states near the ends of the wire. This zero-energy peak has qualitative similarities to the claimed signature of a Majorana mode observed in the aforementioned experiment.

  17. Internal conversion to bound final states in 125Te

    Science.gov (United States)

    Harston, M. R.; Carreyre, T.; Chemin, J. F.; Karpeshin, F.; Trzhaskovskaya, M. B.

    2000-08-01

    Theoretical results are presented for rate of decay of the 3/2+ isomeric nuclear state of 125Te by excitation of atomic electrons to bound states in the ions Te 45+ and Te 46+. In these ions the nuclear transition energy lies just below the threshold for emission of a K-shell electron to the continuum with the result that normal K-shell internal conversion is energetically forbidden. However recent experimental results indicate that excitation of K-shell electrons is still significant in these ions. The theoretical results presented here for internal conversion to bound final states are in quantitative agreement with experiment and thereby confirm the contribution of near-resonant electron-nucleus transitions involving a bound final state.

  18. Boson bound states in the -Fermi–Pasta–Ulam model

    Indian Academy of Sciences (India)

    Xin-Guang Hu; Ju Xiang; Zheng Jiao; Yang Liu; Guo-Qiu Xie; Ke Hu

    2013-11-01

    The bound states of four bosons in the quantum -Fermi–Pasta–Ulam model are investigated and some interesting results are presented using the number conserving approximation combined with the number state method. We find that the relative magnitude of anharmonic coefficient has a significant effect on forming localized energy in the model, and the wave number plays an important role in forming different bound states. The signature of the quantum breather is also set up by the square of the amplitudes of the corresponding eigenvectors in real space.

  19. Two-body bound states in quantum electrodynamics. [Rate

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, G.P.

    1978-07-01

    Novel formulations of the two-body bound state problem in quantum field theory are examined. While equal in rigor, these have several calculational advantages over the traditional Bethe-Salpeter formalism. In particular there exist exact solutions of the bound state equations for a Coulomb-like interaction in quantum electrodynamics. The corrections to such zeroth-order solutions can be systematically computed in a simple perturbation theory. These methods are illustrated by computing corrections to the orthopositronium decay rate and to the ground state splittings in positronium and muonium.

  20. Study of BB ¯*/DD ¯* bound states in a Bethe-Salpeter approach

    Science.gov (United States)

    He, Jun

    2014-10-01

    In this work the BB ¯*/DD ¯* system is studied in the Bethe-Salpeter approach with quasipotential approximation. In our calculation both direct and cross diagrams are included in the one-boson-exchange potential. The numerical results indicate the existence of an isoscalar bound state DD ¯* with JPC=1++, which may be related to the X(3872). In the isovector sector, no bound state is produced from the interactions of DD ¯* and BB ¯*, which suggests the molecular state explanations for Zb(10610) and Zc(3900) are excluded.

  1. Bound states in open coupled asymmetrical waveguides and quantum wires

    CERN Document Server

    Amore, Paolo; Terrero-Escalante, Cesar A

    2011-01-01

    The behavior of bound states in asymmetric cross, T and L shaped configurations is considered. Because of the symmetries of the wavefunctions, the analysis can be reduced to the case of an electron localized at the intersection of two orthogonal crossed wires of different width. Numerical calculations show that the fundamental mode of this system remains bound for the widths that we have been able to study directly; moreover, the extrapolation of the results obtained for finite widths suggests that this state remains bound even when the width of one arm becomes infinitesimal. We provide a qualitative argument which explains this behavior and that can be generalized to the lowest energy states in each symmetry class. In the case of odd-odd states of the cross we find that the lowest mode is bounded when the width of the two arms is the same and stays bound up to a critical value of the ratio between the widths; in the case of the even-odd states we find that the lowest mode is unbound up to a critical value of...

  2. Two-body bound state problem and nonsingular scattering equations

    Energy Technology Data Exchange (ETDEWEB)

    Bartnik, E.A.; Haberzettl, H.; Sandhas, W.

    1986-11-01

    We present a new momentum space approach to the two-body problem in partial waves. In contrast to the usual momentum space approaches, we treat the bound state case with the help of an inhomogeneous integral equation which possesses solutions for all (negative) energies. The bound state energies and corresponding wave functions are identified by an additional condition. This procedure straightforwardly leads to a nonsingular formulation of the scattering problem in terms of essentially the same equation and thus unifies the descriptions of both energy regimes. We show that the properties of our momentum-space approach can be understood in terms of the so-called regular solution of the Schroedinger equation in position space. The unified description of the bound state and scattering energy regimes in terms of one single, real, and manifestly nonsingular equation allows us to construct an exact representation of the two-body off-shell T matrix in which all the bound state pole and scattering cut information is contained in one single separable term, the remainder being real, nonsingular, and vanishing half on-shell. Such a representation may be of considerable advantage as input in three-body Faddeev-type integral equations. We demonstrate the applicability of our method by calculating bound state and scattering data for the two-nucleon system with the s-wave Malfliet--Tjon III potential.

  3. Photodisintegration of a Bound State on the Torus

    CERN Document Server

    Meyer, Harvey B

    2012-01-01

    In this article the cross-section for the photodisintegration of a bound state is expressed, order by order in the multipole expansion, in terms of matrix elements between states living on the three-dimensional torus. The motivation is to make the process amenable to Monte-Carlo simulations. The case of the deuteron is discussed.

  4. Search for bound-state electron+positron pair decay

    Science.gov (United States)

    Bosch, F.; Hagmann, S.; Hillenbrand, P.-M.; Lane, G. J.; Litvinov, Yu. A.; Reed, M. W.; Sanjari, M. S.; Stöhlker, Th.; Torilov, S. Yu.; Tu, X. L.; Walke, P. M.

    2016-09-01

    The heavy ion storage rings coupled to in-flight radioactive-ion beam facilities, namely the ability to produce and store for extended periods of time radioactive nuclides in high atomic charge states, for the searchof yet unobserved decay mode - bound-state electron-positron pair decay.

  5. Molecular States and 1^-+ Exotic Mesons

    CERN Document Server

    Zhang, R; Li Xue Qian; Page, P R; Zhang, Rui; Ding, Yi-Bing; Li, Xue-Qian; Page, Philip R.

    2002-01-01

    This work investigates whether the observed 1^-+ exotic mesons are molecular states. We first use a potential model to calculate the spectra and lifetimes of the f_0(980) and a_0(980), taken to be loosely bound molecular states of K Kbar, then apply the same scenario to the 1^-+ exotic states pi_1(1400) and pi_1(1600), assuming them to be pi eta(1295) and pi eta(1440) molecules respectively. We derive the effective potential in the framework of field theory at the hadronic level. Our results indicate that the present data on pi_1(1400) and pi_1(1600) rule out the specific molecular ansatz. We show that the lifetime of a loosely bound heavy-light molecule with enough angular momentum is fully determined by the lifetimes of its constituent mesons.

  6. Relativistic bound state approach to fundamental forces including gravitation

    Directory of Open Access Journals (Sweden)

    Morsch H.P.

    2012-06-01

    Full Text Available To describe the structure of particle bound states of nature, a relativistic bound state formalism is presented, which requires a Lagrangian including scalar coupling of two boson fields. The underlying mechanisms are quite complex and require an interplay of overlapping boson fields and fermion-antifermion production. This gives rise to two potentials, a boson-exchange potential and one identified with the long sought confinement potential in hadrons. With minimal requirements, two elementary massless fermions (quantons - with and without charge - and one gauge boson, hadrons and leptons but also atoms and gravitational systems are described by bound states with electric and magnetic coupling between the charges and spins of quantons. No need is found for colour, Higgs-coupling and supersymmetry.

  7. Bound state techniques to solve the multiparticle scattering problem

    CERN Document Server

    Carbonell, J; Fonseca, A C; Lazauskas, R

    2013-01-01

    Solution of the scattering problem turns to be very difficult task both from the formal as well as from the computational point of view. If the last two decades have witnessed decisive progress in ab initio bound state calculations, rigorous solution of the scattering problem remains limited to A$\\leq$4 case. Therefore there is a rising interest to apply bound-state-like methods to handle non-relativistic scattering problems. In this article the latest theoretical developments in this field are reviewed. Five fully rigorous methods will be discussed, which address the problem of nuclear collisions in full extent (including the break-up problem) at the same time avoiding treatment of the complicate boundary conditions or integral kernel singularities. These new developments allows to use modern bound-state techniques to advance significantly rigorous solution of the scattering problem.

  8. Bounding the persistency of the nonlocality of W states

    Science.gov (United States)

    Diviánszky, Péter; Trencsényi, Réka; Bene, Erika; Vértesi, Tamás

    2016-04-01

    The nonlocal properties of the W states are investigated under particle loss. By removing all but two particles from an N -qubit W state, the resulting two-qubit state is still entangled. Hence, the W state has high persistency of entanglement. We ask an analogous question regarding the persistency of nonlocality [see N. Brunner and T. Vértesi, Phys. Rev. A 86, 042113 (2012), 10.1103/PhysRevA.86.042113]. Namely, we inquire what is the minimal number of particles that must be removed from the W state so that the resulting state becomes local. We bound this value in function of N qubits by considering Bell nonlocality tests with two alternative settings per site. In particular, we find that this value is between 2 N /5 and N /2 for large N . We also develop a framework to establish bounds for more than two settings per site.

  9. Flow Equations for N Point Functions and Bound States

    CERN Document Server

    Ellwanger, Ulrich

    1994-01-01

    We discuss the exact renormalization group or flow equation for the effective action and its decomposition into one particle irreducible N point functions. With the help of a truncated flow equation for the four point function we study the bound state problem for scalar fields. A combination of analytic and numerical methods is proposed, which is applied to the Wick-Cutkosky model and a QCD-motivated interaction. We present results for the bound state masses and the Bethe-Salpeter wave function. (Figs. 1-4 attached as separate uuencoded post-script files.)

  10. Parity lifetime of bound states in a proximitized semiconductor nanowire

    DEFF Research Database (Denmark)

    Higginbotham, Andrew Patrick; Albrecht, Sven Marian; Kirsanskas, Gediminas

    2015-01-01

    superconductors but remain relatively unexplored in semiconductor-superconductor structures, which are now being intensely pursued in the context of topological superconductivity. To this end, we introduce a new physical system comprised of a gate-confined semiconductor nanowire with an epitaxially grown...... superconductor layer, yielding an isolated, proximitized nanowire segment. We identify Andreev-like bound states in the semiconductor via bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound...... state in the semiconductor exceeding 10 ms....

  11. First direct proof of internal conversion between bound states

    Science.gov (United States)

    Carreyre, T.; Harston, M. R.; Aiche, M.; Bourgine, F.; Chemin, J. F.; Claverie, G.; Goudour, J. P.; Scheurer, J. N.; Attallah, F.; Bogaert, G.; Kiener, J.; Lefebvre, A.; Durell, J.; Grandin, J. P.; Meyerhof, W. E.; Phillips, W.

    2000-08-01

    We present direct evidence for the process of internal conversion between bound atomic states (BIC) when the binding energy of the converted electron becomes larger than the nuclear transition energy. This process has been proposed as an explanation of the measured, unexpectedly short lifetime of the first excited state of 125Te with charge state larger than 44+. We have detected the Kα x rays emitted in flight which follow the filling of the K-shell vacancy created by the bound internal conversion process, together with γ rays from Te ions in charge states ranging between 44+ and 48+. For Te45+ and Te46+, the comparison of the x-ray to γ-ray ratios with the theoretical calculations of the internal conversion coefficients including decay to bound atomic states, assuming Te ions in their ground electronic state, show poor agreement. The agreement becomes good if account is taken of BIC decay of excited initial states with different occupancies of the 2p1/2 and 2p3/2 subshells. In this situation, the half-life becomes sensitive to the precise initial state and simple specification of the charge state alone is no longer appropriate.

  12. Helical bound states in the continuum of the edge states in two dimensional topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Sablikov, Vladimir A., E-mail: sablikov@gmail.com; Sukhanov, Aleksei A.

    2015-09-04

    We study bound states embedded into the continuum of edge states in two-dimensional topological insulators. These states emerge in the presence of a short-range potential of a structural defect coupled to the boundary. In this case the edge states flow around the defect and have two resonances in the local density of states. The bound state in continuum (BIC) arises due to an interference of the resonances when they are close to the degeneracy. We find the condition under which the BIC appears, study the spacial distribution of the electron density, and show that the BIC has a helical structure with an electron current circulating around the defect. - Highlights: • We find bound states in the continuum of edge states in 2D topological insulators. • The bound states are induced by an impurity potential and topological order. • The bound state in the continuum has a helical structure of spin and current density.

  13. Quadrupole transitions in the bound rotational-vibrational spectrum of the deuterium molecular ion

    CERN Document Server

    Pilón, Horacio Olivares

    2013-01-01

    After the study of the three body molecular system H$_2^+$ ({\\it J. Phys. B: At. Mol. Opt. Phys.} {\\bf 45} 065101), their isotope, the deuterium molecular ion D$_2^+$ is studied. The three-body Schr\\"odinger equation is solved using the Lagrange-mesh method in perimetric coordinates. Energies and wave functions for four vibrational states $v=0-3$ and bound or quasibound states for total orbital momenta from 0 to 56 are calculated. The 1986 fundamental constant $m_d=3670.483014\\,m_e$ is used. The obtained energies have an accuracy from about 13 digits for the lowest vibrational state to at least 9 digits for the third vibrational excited state. Quadrupole transition probabilities per time unit between those states over the whole rotational bands were calculated. Extensive results are presented with six significant figures.

  14. Directional detection of dark matter in universal bound states

    CERN Document Server

    Laha, Ranjan

    2015-01-01

    It has been suggested that several small-scale structure anomalies in $\\Lambda$CDM cosmology can be solved by strong self-interaction between dark matter particles. It was shown by Braaten and Hammer that the presence of a near threshold S-wave resonance can make the scattering cross section at nonrelativistic speeds come close to saturating the unitarity bound. This can result in the formation of a stable bound state of two asymmetric dark matter particles (which we call darkonium). Laha and Braaten studied the nuclear recoil energy spectrum in dark matter direct detection experiments due to this incident bound state. Here we study the angular recoil spectrum, and show that it is uniquely determined up to normalization by the S-wave scattering length. Observing this angular recoil spectrum in a dark matter directional detection experiment will uniquely determine many of the low-energy properties of dark matter independent of the underlying dark matter microphysics.

  15. Andreev and Majorana bound states in single and double quantum dot structures

    Science.gov (United States)

    Silva, Joelson F.; Vernek, E.

    2016-11-01

    We present a numerical study of the emergence of Majorana and Andreev bound states in a system composed of two quantum dots, one of which is coupled to a conventional superconductor, SC1, and the other connects to a topological superconductor, SC2. By controlling the interdot coupling we can drive the system from two single (uncoupled) quantum dots to double (coupled) dot system configurations. We employ a recursive Green’s function technique that provides us with numerically exact results for the local density of states of the system. We first show that in the uncoupled dot configuration (single dot behavior) the Majorana and the Andreev bound states appear in an individual dot in two completely distinct regimes. Therefore, they cannot coexist in the single quantum dot system. We then study the coexistence of these states in the coupled double dot configuration. In this situation we show that in the trivial phase of SC2, the Andreev states are bound to an individual quantum dot in the atomic regime (weak interdot coupling) or extended over the entire molecule in the molecular regime (strong interdot coupling). More interesting features are actually seen in the topological phase of SC2. In this case, in the atomic limit, the Andreev states appear bound to one of the quantum dots while a Majorana zero mode appears in the other one. In the molecular regime, on the other hand, the Andreev bound states take over the entire molecule while the Majorana state remains always bound to one of the quantum dots.

  16. ɛ-bounded state estimation for time-delay systems with bounded disturbances

    Science.gov (United States)

    Nam, P. T.; Pathirana, P. N.; Trinh, H.

    2014-09-01

    A new problem on ε-bounded functional state estimation for time-delay systems with unknown bounded disturbances is studied in this paper. In the presence of unknown bounded disturbances, the common assumption regarding the observer's matching condition is no longer required. In this regard, instead of achieving asymptotic convergence for the observer error, the error is now required to converge exponentially within a ball with a small radius ε > 0. This means that the estimate converges exponentially within an ε-bound of the true value. A general observer that utilises multiple-delayed output and input information is proposed. Sufficient conditions for the existence of the proposed observer are first given. We then employ an extended Lyapunov-Krasovskii functional which combines the delay-decomposition technique with a triple-integral term to study the ε-convergence problem of the observer error system. Moreover, the obtained results are shown to be more effective than the existing results for the cases with no disturbances and/or no time delay. Three numerical examples are given to illustrate the obtained results.

  17. The S-matrix of string bound states

    Energy Technology Data Exchange (ETDEWEB)

    Arutyunov, Gleb [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)], E-mail: g.arutyunov@phys.uu.nl; Frolov, Sergey [School of Mathematics, Trinity College, Dublin 2 (Ireland)], E-mail: frolovs@maths.tcd.ie

    2008-11-21

    We find the S-matrix which describes the scattering of two-particle bound states of the light-cone string sigma model on AdS{sub 5}xS{sup 5}. We realize the M-particle bound state representation of the centrally extended su(2|2) algebra on the space of homogeneous (super)symmetric polynomials of degree M depending on two bosonic and two fermionic variables. The scattering matrix S{sup MN} of M- and N-particle bound states is a differential operator of degree M+N acting on the product of the corresponding polynomials. We require this operator to obey the invariance condition and the Yang-Baxter equation, and we determine it for the two cases M=1,N=2 and M=N=2. We show that the S-matrices found satisfy generalized physical unitarity, CPT invariance, parity transformation rule and crossing symmetry. Although the dressing factor as a function of four parameters x{sub 1}{sup +},x{sub 1}{sup -},x{sub 2}{sup +},x{sub 2}{sup -} is universal for scattering of any bound states, it obeys a crossing symmetry equation which depends on M and N.

  18. Calculation of size for bound-state constituents

    CERN Document Server

    Glazek, Stanislaw D

    2014-01-01

    Elements are given of a calculation that identifies the size of a proton in the Schroedinger equation for lepton-proton bound states, using the renormalization group procedure for effective particles (RGPEP) in quantum field theory, executed only up to the second order of expansion in powers of the coupling constant. Already in this crude approximation, the extraction of size of a proton from bound-state observables is found to depend on the lepton mass, so that the smaller the lepton mass the larger the proton size extracted from the same observable bound-state energy splitting. In comparison of Hydrogen and muon-proton bound-state dynamics, the crude calculation suggests that the difference between extracted proton sizes in these two cases can be a few percent. Such values would match the order of magnitude of currently discussed proton-size differences in leptonic atoms. Calculations using the RGPEP of higher order than second are required for a precise interpretation of the energy splittings in terms of t...

  19. Towards flavored bound states beyond rainbows and ladders

    CERN Document Server

    El-Bennich, B; Paracha, M A; de Melo, J P B C

    2013-01-01

    We give a snapshot of recent progress in solving the Dyson-Schwinger equation with a beyond rainbow-ladder ansatz for the dressed quark-gluon vertex which includes ghost contributions. We discuss the motivations for this approach with regard to heavy-flavored bound states and form factors and briefly describe future steps to be taken.

  20. In-medium K̄ interactions and bound states

    Directory of Open Access Journals (Sweden)

    Gal Avraham

    2014-01-01

    Full Text Available Correct treatment of subthreshold K̄ N dynamics is mandatory in K− -atom and K̄ -nuclear bound-state calculations, as demonstrated by using in-medium chirally-based models of K̄ N interactions. Recent studies of kaonic atom data reveal appreciable multi-nucleon contributions. K̄ -nuclear widths larger than 50 MeV are anticipated.

  1. A Lorentz covariant approach to the bound state problem

    CERN Document Server

    Micu, L

    2000-01-01

    The relativistic equivalent of the Schr\\"odinger equation for a two particle bound state having the total angular momentum $S$ is written in the form of a Lorentz covariant set of equations (p_1^mu+p_2^mu+Omega^mu)Psi(p_1,p_2;P) chi_S(\\vec{p}_1,\\vec{p}_2)=P^mu Psi(p_1,p_2;P) chi_S(\\vec{p}_1,\\vec{p}_2) where the operators Omega^mu are the components of a 4-vector quasipotential. The solution of this set is a stationary function representing the distribution of spins and internal momenta in a reference frame where the momentum of the bound system is P^\\mu. The contribution of the operators Omega^mu to the bound state momentum is assumed to be the 4-momentum of a vacuum-like effective field entering the bound system as an independent component. It is shown that a state made of free quarks and of the effective field has definite mass and can be normalized like a single particle state. The generalization to the case of three or more particles is immediate.

  2. Towards flavored bound states beyond rainbows and ladders

    Energy Technology Data Exchange (ETDEWEB)

    El-Bennich, B.; Rojas, E.; Melo, J. P. B. C. de [Laboratório de Física Teórica e Computacional, Universidade Cruzeiro do Sul, São Paulo 01506-000 SP (Brazil); Paracha, M. A. [Laboratorio de Fisica Teorica e Computacional, Universidade Cruzeiro do Sul, Sao Paulo 01506-000 SP, Brazil and Centre for Advanced Mathematics and Physics, National University of Science and Technology, Islamabad (Pakistan)

    2014-11-11

    We give a snapshot of recent progress in solving the Dyson-Schwinger equation with a beyond rainbow-ladder ansatz for the dressed quark-gluon vertex which includes ghost contributions. We discuss the motivations for this approach with regard to heavy-flavored bound states and form factors and briefly describe future steps to be taken.

  3. The S-matrix of String Bound States

    CERN Document Server

    Arutyunov, Gleb

    2008-01-01

    We find the S-matrix which describes the scattering of two-particle bound states of the light-cone string sigma model on AdS5xS5. We realize the M-particle bound state representation of the centrally extended su(2|2) algebra on the space of homogeneous (super)symmetric polynomials of degree M depending on two bosonic and two fermionic variables. The scattering matrix S^{MN} of M- and N-particle bound states is a differential operator of degree M+N acting on the product of the corresponding polynomials. We require this operator to obey the invariance condition and the Yang-Baxter equation, and we determine it for the two cases M=1,N=2 and M=N=2. We show that the S-matrices found satisfy generalized physical unitarity, CPT invariance, parity transformation rule and crossing symmetry. Although the dressing factor as a function of four parameters x_1^+,x_1^-,x_2^+,x_2^- is universal for scattering of any bound states, it obeys a crossing symmetry equation which depends on M and N.

  4. The local characteristics of the bound states of muonic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, D.I. [Sankt Peterburgskij Univ., St. Petersburg (Russian Federation); Bogdanova, L.N. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Gusev, V.V. [Institut Fiziki Vysokikh Ehnergij, Protvino (Russian Federation); Ponomarev, L.I. [Rossijskij Nauchnyj Tsentr ``Kurchatovskij Inst.``, Moscow (Russian Federation)

    1996-10-01

    The sticking probabilities {omega}{sup Jv}, G- and {gamma}-factors for all bound states of mesic molecules HH{mu}, HD{mu}, HT{mu}, DD{mu}, DT{mu}, and TT{mu} with J = 0 and v = 0, 1 have been calculated in the adiabatic hyperspherical approach (AHSA). (orig.). 6 refs.

  5. Nonradiative formation of the positron-helium triplet bound state

    Science.gov (United States)

    di Rienzi, Joseph; Drachman, Richard J.

    2007-02-01

    We have previously calculated the cross section for radiative formation of the interesting bound state consisting of a positron bound to helium, where the atomic electrons are in the triplet spin state. That process uses the metastable triplet helium system as target, and, as expected, it has a very small cross section. In this paper we examine a more probable process in which the state of interest is produced in an exchange rearrangement collision between a positronium atom and the singlet helium ground state: Ps+He(Se1)→PsHe+(Se3)+e- . The present calculation is done in the plane-wave Born approximation, using simple initial and final wave functions and compares post and prior forms.

  6. Does \\Sigma -\\Sigma -\\alpha Form a Quasi-Bound State?

    CERN Document Server

    Htun Oo, H; Kamada, H; Glöckle, W

    2004-01-01

    We have investigated the possible existence of a quasi-bound state for the \\Sigma -\\Sigma -\\alpha system in the framework of Faddeev calculations. We are particularly interested in the state of total iso-spin T=2, since for an inert \\alpha particle there is no strong conversion to \\Xi -N-\\alpha or \\Lambda -\\Lambda -\\alpha possible. A \\Sigma -\\alpha optical potential based on Nijmegen model D and original \\Sigma -\\Sigma interactions of the series of Nijmegen potentials NSC97 as well a simulated Gaussian type versions thereof are used. Our investigation of the \\Sigma -\\Sigma -\\alpha system leads to a quasi bound state where, depending on the potential parameters, the energy ranges between -1.4 and -2.4 MeV and the level width is about 0.2MeV.

  7. Probing Andreev bound states in one-atom superconducting contacts

    Energy Technology Data Exchange (ETDEWEB)

    Pothier, Hugues; Janvier, Camille; Tosi, Leandro; Girit, Caglar; Goffman, Marcelo; Esteve, Daniel; Urbina, Cristian [Quantronics Group, SPEC, CEA-Saclay (France)

    2015-07-01

    Superconductors are characterized by a dissipationless current. Since the work of Josephson 50 years ago, it is known that a supercurrent can even flow through tunnel junctions between superconductors. This Josephson effect also occurs through any type of ''weak links'' between superconductors: non-superconducting materials, constrictions,.. A unified understanding of the Josephson effect has emerged from a mesoscopic description of weak links. It relies on the existence of doublets of localized states that have energies below the superconducting gap: the Andreev bound states. I will present experiments performed on the simplest conductor possible, a single-atom contact between superconductors, that illustrate these concepts. The most recent work demonstrates time-domain manipulation of quantum superpositions of Andreev bound states.

  8. How quantum bound states bounce and the structure it reveals

    CERN Document Server

    Lee, Dean

    2010-01-01

    We investigate how quantum bound states bounce from a hard surface. Our analysis has applications to ab initio calculations of nuclear structure and elastic deformation, energy levels of excitons in semiconductor quantum dots and wells, and cold atomic few-body systems on optical lattices with sharp boundaries. We develop the general theory of elastic reflection for a composite body from a hard wall. On the numerical side we present universal results for two-body states and discuss ab initio calculations for general few-body systems. On the analytical side we derive a universal effective potential that gives the reflection scattering length for shallow two-body states.

  9. Observation of Andreev bound states at spin-active interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, Detlef; Wolf, Michael Johannes [KIT, Institut fuer Nanotechnologie (Germany); Huebler, Florian [KIT, Institut fuer Nanotechnologie (Germany); KIT, Institut fuer Festkoerperphysik (Germany); Loehneysen, Hilbert von [KIT, Institut fuer Festkoerperphysik (Germany); KIT, Physikalisches Institut (Germany)

    2013-07-01

    We report on high-resolution differential conductance experiments on nanoscale superconductor/ferromagnet tunnel junctions with ultra-thin oxide tunnel barriers. We observe subgap conductance features which are symmetric with respect to bias, and shift according to the Zeeman energy with an applied magnetic field. These features can be explained by resonant transport via Andreev bound states induced by spin-active scattering at the interface. From the energy and the Zeeman shift of the bound states, both the magnitude and sign of the spin-dependent interfacial phase shifts between spin-up and spin-down electrons can be determined. These results contribute to the microscopic insight into the triplet proximity effect at spin-active interfaces.

  10. Parity lifetime of bound states in a proximitized semiconductor nanowire

    Science.gov (United States)

    Higginbotham, A. P.; Albrecht, S. M.; Kiršanskas, G.; Chang, W.; Kuemmeth, F.; Krogstrup, P.; Jespersen, T. S.; Nygård, J.; Flensberg, K.; Marcus, C. M.

    2015-12-01

    Quasiparticle excitations can compromise the performance of superconducting devices, causing high-frequency dissipation, decoherence in Josephson qubits, and braiding errors in proposed Majorana-based topological quantum computers. Quasiparticle dynamics have been studied in detail in metallic superconductors but remain relatively unexplored in semiconductor-superconductor structures, which are now being intensely pursued in the context of topological superconductivity. To this end, we use a system comprising a gate-confined semiconductor nanowire with an epitaxially grown superconductor layer, yielding an isolated, proximitized nanowire segment. We identify bound states in the semiconductor by means of bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound state in the semiconductor exceeding 10 ms.

  11. Radial sensitivity of kaonic atoms and strongly boundstates

    Science.gov (United States)

    Barnea, N.; Friedman, E.

    2007-02-01

    The strength of the low-energy K--nucleus real potential has recently received renewed attention in view of experimental evidence for the possible existence of strongly bound K- states. Previous fits to kaonic atom data led to either “shallow” or “deep” potentials, where only the former are in agreement with chiral approaches but only the latter can produce strongly bound states. Here we explore the uncertainties of the K--nucleus optical potentials, obtained from fits to kaonic atom data, using the functional derivatives of the best-fit χ2 values with respect to the potential. We find that only the deep type of potential provides information that is applicable to the K- interaction in the nuclear interior.

  12. Understanding the nucleon as a Borromean bound-state

    Directory of Open Access Journals (Sweden)

    Jorge Segovia

    2015-11-01

    Full Text Available Analyses of the three valence-quark bound-state problem in relativistic quantum field theory predict that the nucleon may be understood primarily as a Borromean bound-state, in which binding arises mainly from two separate effects. One originates in non-Abelian facets of QCD that are expressed in the strong running coupling and generate confined but strongly-correlated colour-antitriplet diquark clusters in both the scalar–isoscalar and pseudovector–isotriplet channels. That attraction is magnified by quark exchange associated with diquark breakup and reformation. Diquark clustering is driven by the same mechanism which dynamically breaks chiral symmetry in the Standard Model. It has numerous observable consequences, the complete elucidation of which requires a framework that also simultaneously expresses the running of the coupling and masses in the strong interaction. Planned experiments are capable of validating this picture.

  13. R-matrix calculations for few-quark bound states

    Science.gov (United States)

    Shalchi, M. A.; Hadizadeh, M. R.

    2016-10-01

    The R-matrix method is implemented to study the heavy charm and bottom diquark, triquark, tetraquark, and pentaquarks in configuration space, as the bound states of quark-antiquark, diquark-quark, diquark-antidiquark, and diquark-antitriquark systems, respectively. The mass spectrum and the size of these systems are calculated for different partial wave channels. The calculated masses are compared with recent theoretical results obtained by other methods in momentum and configuration spaces and also by available experimental data.

  14. SWKB Quantization Rules for Bound States in Quantum Wells

    CERN Document Server

    Sinha, A K; Sinha, Anjana; Roychoudhury, Rajkumar

    2000-01-01

    In a recent paper by Gomes and Adhikari (J.Phys B30 5987(1997)) a matrix formulation of the Bohr-Sommerfield quantization rule has been applied to the study of bound states in one dimension quantum wells. Here we study these potentials in the frame work of supersymmetric WKB (SWKB) quantization approximation and find that SWKB quantization rule is superior to the modified Bohr-Sommerfield or WKB rules as it exactly reproduces the eigenenergies.

  15. Fermion Bound States Around Skyrmions in Doped Antiferromagnets

    Institute of Scientific and Technical Information of China (English)

    寇谡鹏

    2003-01-01

    We show the skyrmion effects in doped antiferromagnets for the uniform flux phase. The low-energy effective theory of the t′-J model can be mapped onto the massive quantum electrodynamics. There exist Fermion bound states around skyrmions. For each sublattice, there exist induced fractional fermion numbers around the skyrmions. The total induced fermion number is zero due to the "cancelling effect" between two sublattices with opposite charges.

  16. R-matrix calculations for few-quark bound states

    Energy Technology Data Exchange (ETDEWEB)

    Shalchi, M.A. [Instituto de Fisica Teorica, UNESP, Sao Paulo, SP (Brazil); Hadizadeh, M.R. [Ohio University, Institute of Nuclear and Particle Physics and Department of Physics and Astronomy, Athens, OH (United States); Central State University, College of Science and Engineering, Wilberforce, OH (United States)

    2016-10-15

    The R-matrix method is implemented to study the heavy charm and bottom diquark, triquark, tetraquark, and pentaquarks in configuration space, as the bound states of quark-antiquark, diquark-quark, diquark-antidiquark, and diquark-antitriquark systems, respectively. The mass spectrum and the size of these systems are calculated for different partial wave channels. The calculated masses are compared with recent theoretical results obtained by other methods in momentum and configuration spaces and also by available experimental data. (orig.)

  17. K¯ nuclear bound states in a dynamical model

    Science.gov (United States)

    Mareš, J.; Friedman, E.; Gal, A.

    2006-05-01

    A comprehensive data base of K-atom level shifts and widths is re-analyzed in order to study the density dependence of the K¯-nuclear optical potential. Significant departure from a tρ form is found only for ρ(r)/ρ ≲ 0.2 and extrapolation to nuclear-matter density ρ yields an attractive potential, about 170 MeV deep. Partial restoration of chiral symmetry compatible with pionic atoms and low-energy pion-nuclear data plays no role at the relevant low-density regime, but this effect is not ruled out at densities of order ρ and beyond. K¯-nuclear bound states are generated across the periodic table self consistently, using a relativistic mean-field model Lagrangian which couples the K¯ to the scalar and vector meson fields mediating the nuclear interactions. The reduced phase space available for K¯ absorption from these bound states is taken into account by adding an energy-dependent imaginary term which underlies the corresponding K¯-nuclear level widths, with a strength required by fits to the atomic data. Substantial polarization of the core nucleus is found for light nuclei, and the binding energies and widths calculated in this dynamical model differ appreciably from those calculated for a static nucleus. A wide range of binding energies is spanned by varying the K¯ couplings to the meson fields. Our calculations provide a lower limit of Γ=50±10 MeV on the width of nuclear bound states for K¯-binding energy in the range B˜100-200 MeV. Comments are made on the interpretation of the FINUDA experiment at DAΦNE which claimed evidence for deeply bound Kpp states in light nuclei.

  18. Hyperons in the bound state approach with vector mesons

    CERN Document Server

    Schat, C L

    1994-01-01

    We investigate a model for hyperons based on the bound state approach in which vector mesons are explicitly incorporated. We show that for empirical values of the mesonic parameters the strange hyperon spectrum is well reproduced. We also discuss the extension of the model to heavier flavors. We show that the explicit presence of the heavy vectors leads to good predictions for the heavy baryon masses.

  19. Lambda(1405) in the bound state soliton model

    CERN Document Server

    Schat, C L; Gobbi, C; Schat, C L; Scoccola, N N; Gobbi, C

    1994-01-01

    The strong and electromagnetic properties of the Lambda(1405) hyperon are studied in the framework of the bound state soliton model. We explicitly evaluate the strong coupling constant g(Lambda^*-N-K), the Lambda^* magnetic moment, mean square radii and radiative decay amplitudes. The results are shown to be in general agreement with available empirical data. A comparison with results of other models is also presented.

  20. Detecting positron-atom bound states through resonant annihilation.

    Science.gov (United States)

    Dzuba, V A; Flambaum, V V; Gribakin, G F

    2010-11-12

    A method is proposed for detecting positron-atom bound states by observing enhanced positron annihilation due to electronic Feshbach resonances at electron-volt energies. The method is applicable to a range of open-shell transition-metal atoms which are likely to bind the positron: Fe, Co, Ni, Tc, Ru, Rh, Sn, Sb, Ta, W, Os, Ir, and Pt. Estimates of their binding energies are provided.

  1. Detecting Positron-Atom Bound States through Resonant Annihilation

    OpenAIRE

    Dzuba, V. A.; Flambaum, V. V.; Gribakin, G. F.

    2010-01-01

    A method is proposed for detecting positron-atom bound states by observing enhanced positron annihilation due to electronic Feshbach resonances at electron-volt energies. The method is applicable to a range of open-shell transition metal atoms which are likely to bind the positron: Fe, Co, Ni, Tc, Ru, Rh, Sn, Sb, Ta, W, Os, Ir, and Pt. Estimates of their binding energies are provided.

  2. Effects of QCD bound states on dark matter relic abundance

    CERN Document Server

    Liew, Seng Pei

    2016-01-01

    We study scenarios where there exists an exotic massive particle charged under QCD in the early Universe. We calculate the formation and dissociation rates of bound states formed by pairs of these particles, and apply the results in dark matter (DM) coannihilation scenarios, including also the Sommerfeld effect. We find that on top of the Sommerfeld enhancement, bound-state effects can further significantly increase the largest possible DM masses which can give the observed DM relic abundance, by $\\sim 30 - 100\\%$ with respect to values obtained by considering the Sommerfeld effect only, for the color triplet or octet exotic particles we consider. In particular, it indicates that the Bino DM mass in the right-handed stop-Bino coannihilation scenario in the Minimal Supersymmetric extension of the Standard Model (MSSM) can reach $\\sim 2.5$ TeV. We also apply the bound-state effects in the calculations of relic abundance of long-lived or metastable massive colored particles, and discuss the implications on the B...

  3. Search for a bound state of kaon and pion

    CERN Document Server

    Kishimoto, T; Hayakawa, T; Ajimura, S; Itabashi, T; Matsuoka, K; Minami, S; Mitoma, Y; Sakaguchi, A; Shimizu, Y; Terai, K; Sato, T; Noumi, H; Sekimoto, M; Takahashi, H; Fukuda, T; Imoto, W; Mizoi, Y

    2012-01-01

    We have searched for a bound state of kaon and pion denoted by $X$. The $X$ was conjectured to explain the so-called $\\Theta^+$ resonance as a bound state of kaon, pion and nucleon. This model explains almost all properties of the $\\Theta^+$, however, the model works only if the $K \\pi$ interaction is strongly attractive. It is so strong that it could make a bound state $X$. Here we report a result of the search for the $X$ by using the $K^+ + N \\rightarrow X^+ + N$ reaction at P$_K\\sim$ 1.2 GeV/c. The $X^+ \\rightarrow K^+ \\gamma \\gamma$ decay produces $K^+$ in momentum region where other processes cannot fill. We observed signature of the $X^+$ with statistical significance of 2 $\\sigma$. Production cross section of $X$ with respect to that of $\\pi^0$ is 1$\\pm$0.5% if we take it as an evidence and 1.5% if we set an upper limit.

  4. Matrix algorithms for solving (in)homogeneous bound state equations.

    Science.gov (United States)

    Blank, M; Krassnigg, A

    2011-07-01

    In the functional approach to quantum chromodynamics, the properties of hadronic bound states are accessible via covariant integral equations, e.g. the Bethe-Salpeter equation for mesons. In particular, one has to deal with linear, homogeneous integral equations which, in sophisticated model setups, use numerical representations of the solutions of other integral equations as part of their input. Analogously, inhomogeneous equations can be constructed to obtain off-shell information in addition to bound-state masses and other properties obtained from the covariant analogue to a wave function of the bound state. These can be solved very efficiently using well-known matrix algorithms for eigenvalues (in the homogeneous case) and the solution of linear systems (in the inhomogeneous case). We demonstrate this by solving the homogeneous and inhomogeneous Bethe-Salpeter equations and find, e.g. that for the calculation of the mass spectrum it is as efficient or even advantageous to use the inhomogeneous equation as compared to the homogeneous. This is valuable insight, in particular for the study of baryons in a three-quark setup and more involved systems.

  5. Rapid thermal co-annihilation through bound states in QCD

    Science.gov (United States)

    Kim, Seyong; Laine, M.

    2016-07-01

    The co-annihilation rate of heavy particles close to thermal equilibrium, which plays a role in many classic dark matter scenarios, can be "simulated" in QCD by considering the pair annihilation rate of a heavy quark and antiquark at a temperature of a few hundred MeV. We show that the so-called Sommerfeld factors, parameterizing the rate, can be defined and measured non-perturbatively within the NRQCD framework. Lattice measurements indicate a modest suppression in the octet channel, in reasonable agreement with perturbation theory, and a large enhancement in the singlet channel, much above the perturbative prediction. The additional enhancement is suggested to originate from bound state formation and subsequent decay. Making use of a Green's function based method to incorporate thermal corrections in perturbative co-annihilation rate computations, we show that qualitative agreement with lattice data can be found once thermally broadened bound states are accounted for. We suggest that our formalism may also be applicable to specific dark matter models which have complicated bound state structures.

  6. Bounds for State Degeneracies in 2D Conformal Field Theory

    CERN Document Server

    Hellerman, Simeon

    2010-01-01

    In this note we explore the application of modular invariance in 2-dimensional CFT to derive universal bounds for quantities describing certain state degeneracies, such as the thermodynamic entropy, or the number of marginal operators. We show that the entropy at inverse temperature 2 pi satisfies a universal lower bound, and we enumerate the principal obstacles to deriving upper bounds on entropies or quantum mechanical degeneracies for fully general CFTs. We then restrict our attention to infrared stable CFT with moderately low central charge, in addition to the usual assumptions of modular invariance, unitarity and discrete operator spectrum. For CFT in the range c_left + c_right < 48 with no relevant operators, we are able to prove an upper bound on the thermodynamic entropy at inverse temperature 2 pi. Under the same conditions we also prove that a CFT can have a number of marginal deformations no greater than ((c_left + c_right) / (48 - c_left - c_right)) e^(4 Pi) - 2.

  7. Encrypting Majorana fermion qubits as bound states in the continuum

    Science.gov (United States)

    Guessi, L. H.; Dessotti, F. A.; Marques, Y.; Ricco, L. S.; Pereira, G. M.; Menegasso, P.; de Souza, M.; Seridonio, A. C.

    2017-07-01

    We theoretically investigate a topological Kitaev chain connected to a double quantum-dot (QD) setup hybridized with metallic leads. In this system we observe the emergence of two striking phenomena: (i) a decrypted Majorana fermion (MF) qubit recorded over a single QD, which is detectable by means of conductance measurements due to the asymmetrical MF-qubit leaked state into the QDs; (ii) an encrypted qubit recorded in both QDs when the leakage is symmetrical. In such a regime, we have a cryptographylike manifestation, since the MF qubit becomes bound states in the continuum, which is not detectable in conductance experiments.

  8. Two-body bound states & the Bethe-Salpeter equation

    Energy Technology Data Exchange (ETDEWEB)

    Pichowsky, M. [Argonne National Lab., IL (United States); Kennedy, M. [Univ. of New Hampshire, Durham, NH (United States). Physics Dept.; Strickland, M. [Duke Univ., Durham, NC (United States)

    1995-01-18

    The Bethe-Salpeter formalism is used to study two-body bound states within a scalar theory: two scalar fields interacting via the exchange of a third massless scalar field. The Schwinger-Dyson equation is derived using functional and diagrammatic techniques, and the Bethe-Salpeter equation is obtained in an analogous way, showing it to be a two-particle generalization of the Schwinger-Dyson equation. The authors also present a numerical method for solving the Bethe-Salpeter equation without three-dimensional reduction. The ground and first excited state masses and wavefunctions are computed within the ladder approximation and space-like form factors are calculated.

  9. Computational approach for calculating bound states in quantum field theory

    Science.gov (United States)

    Lv, Q. Z.; Norris, S.; Brennan, R.; Stefanovich, E.; Su, Q.; Grobe, R.

    2016-09-01

    We propose a nonperturbative approach to calculate bound-state energies and wave functions for quantum field theoretical models. It is based on the direct diagonalization of the corresponding quantum field theoretical Hamiltonian in an effectively discretized and truncated Hilbert space. We illustrate this approach for a Yukawa-like interaction between fermions and bosons in one spatial dimension and show where it agrees with the traditional method based on the potential picture and where it deviates due to recoil and radiative corrections. This method permits us also to obtain some insight into the spatial characteristics of the distribution of the fermions in the ground state, such as the bremsstrahlung-induced widening.

  10. Phonon dilatation, dressed vibrons and two-vibron bound states localization in an adsorbed nanowire

    OpenAIRE

    Pouthier, Vincent,

    2006-01-01

    A special attention is paid to characterize the two-vibron bound state dynamics of an anharmonic molecular nanostructure coupled with a set of optical phonons. It is shown that the vibron-phonon coupling is responsible for a new dressing mechanism. The vibrons are accompanied by virtual phonons which account for the scaling of each phonon coordinate and for the dilatation of the corresponding wave function. As a result, the dynamics of the dressed vibrons is governed by an effective Hamiltoni...

  11. Photo-production of Bound States with Hidden Charms

    CERN Document Server

    Wu, Jia-Jun

    2012-01-01

    The photo-production of $J/\\Psi$-$^3He$ bound state ($[^3He]_{J/\\Psi}$) on a $^4He$ target has been investigated using the impulse approximation. The calculations have been performed using several $\\gamma+N \\rightarrow J/\\Psi +N$ models based on the Pomeron-exchange and accounting for the pion-exchange mechanism at low energies. The $J/\\Psi$ wavefunctions in $[^3He]_{J/\\Psi}$ are generated from various $J/\\Psi$-nucleus potentials which are constructed by either using a procedure based on the Pomeron-quark coupling mechanism or folding a $J/\\Psi$-N potential ($v_{J/\\Psi,N}$) into the nuclear densities. We consider $v_{J/\\Psi,N}$ derived from the effective field theory approach, Lattice QCD, and Pomeron-quark coupling mechanism. The upper bound of the predicted total cross sections is about $0.1 - 0.3$ pico-barn. We also consider the possibility of photo-production of a six quark-$J/\\Psi$ bound state ($[q^6]_{J/\\Psi})$ on the $^3He$ target. The Compound Bag Model of $NN$ scattering and the quark cluster model o...

  12. Quadrupole transitions in the bound rotational-vibrational spectrum of the hydrogen molecular ion

    CERN Document Server

    Pilón, Horacio Olivares

    2013-01-01

    The three-body Schr\\"odinger equation of the H$_2^+$ hydrogen molecular ion with Coulomb potentials is solved in perimetric coordinates using the Lagrange-mesh method. The Lagrange-mesh method is an approximate variational calculation with variational accuracy and the simplicity of a calculation on a mesh. Energies and wave functions of up to four of the lowest vibrational bound or quasibound states for total orbital momenta from 0 to 40 are calculated. The obtained energies have an accuracy varying from about 13 digits for the lowest vibrational state to at least 9 digits for the third vibrational excited state. With the corresponding wave functions, a simple calculation using the associated Gauss quadrature provides accurate quadrupole transition probabilities per time unit between those states over the whole rotational bands. Extensive results are presented with six significant figures.

  13. K- and p¯ deeply bound atomic states

    Science.gov (United States)

    Friedman, E.; Gal, A.

    1999-12-01

    The strongly absorptive optical potentials Vopt which have been deduced from the strong-interaction level shifts and widths in X-ray spectra of K- and p¯ atoms produce effective repulsion leading to substantial suppression of the atomic wave functions within the nucleus. The width of atomic levels then saturates as function of the strength of Im Vopt. We find that `deeply bound' atomic states, which are inaccessible in the atomic cascade process, are generally narrow, due to this mechanism, over the entire periodic table and should be reasonably well resolved. These predictions are insensitive to Vopt, provided it was fitted to the observed X-ray spectra. In contrast, the nuclear states bound by Vopt are very broad and their spectrum depends sensitively on details of Vopt. We discuss production reactions for K- atomic states using slow K- mesons from the decay of the φ(1020) vector meson, and the ( p¯,p ) reaction for p¯ atomic states. Rough cross section estimates are given.

  14. Static and dynamic properties of QCD bound states

    Energy Technology Data Exchange (ETDEWEB)

    Kubrak, Stanislav

    2015-07-01

    The QCD phenomenology can be faced with the framework of the coupled quark DSE, meson BSE and baryon Faddeev equation, providing non-perturbative, continuum and Poincare invariant scientific approach. The research performed throughout this thesis is twofold. From one perspective we focus on the investigation of mass spectra for mesons with total spin quantum number J=3 and arising Regge-trajectory for natural parity states J{sup PC}=1{sup --},2{sup ++},3{sup --} within rainbow-ladder single gluon exchange model. The other findings are concerning the impact of the pion cloud effect on J>2 meson states, baryon masses, namely on Nucleon and Delta three-body bound states and meson dynamical properties like the pion form factor.

  15. The relativistic bound states of a non-central potential

    Indian Academy of Sciences (India)

    MAHDI ESHGHI; HOSSEIN MEHRABAN; SAMEER MIKHDAIR

    2017-04-01

    We investigate the relativistic effects of a moving particle in the field of a pseudoharmonic oscillatory ring-shaped potential under the spin and pseudospin symmetric Dirac wave equation. We obtain the bound-state energy eigenvalue equation and the corresponding two-components spinor wave functions by using the formalism of supersymmetric quantum mechanics (SUSYQM). Furthermore, the non-relativistic limits are obtained by simply making a proper replacement of parameters. The thermodynamic properties are also studied. Our numerical results for the energy eigenvalues are also presented.

  16. Resonantly Trapped Bound State in the Continuum Laser

    CERN Document Server

    Lepetit, Thomas; Kodigala, Ashok; Bahari, Babak; Fainman, Yeshaiahu; Kanté, Boubacar

    2015-01-01

    Cavities play a fundamental role in wave phenomena from quantum mechanics to electromagnetism and dictate the spatiotemporal physics of lasers. In general, they are constructed by closing all "doors" through which waves can escape. We report, at room temperature, a bound state in the continuum laser that harnesses optical modes residing in the radiation continuum but nonetheless may possess arbitrarily high quality factors. These counterintuitive cavities are based on resonantly trapped symmetry-compatible modes that destructively interfere. Our experimental demonstration opens exciting avenues towards coherent sources with intriguing topological properties for optical trapping, biological imaging, and quantum communication.

  17. R-Matrix Calculations for Few-Quark Bound States

    CERN Document Server

    Shalchi, M A

    2016-01-01

    The R-matrix method is implemented to study the heavy charm and bottom diquark, triquark, tetraquark and pentaquarks in configuration space, as the bound states of quark-antiquark, diquark-quark, diquark-antidiquark and diquark-antitriquark systems, respectively. The mass spectrum and the size of these systems are calculated for different partial wave channels. The calculated masses are compared with recent theoretical results obtained by %the solution of Lippmann-Schwinger equation other methods in momentum and configuration spaces and also by available experimental data.

  18. Diquark bound states at far beyond ladder truncation

    CERN Document Server

    Jinno, Ryusuke; Mishima, Go

    2015-01-01

    The Bethe-Salpeter equation in the diquark channel is investigated by employing the Dyson-Schwinger method together with the Munczek-Nemirovsky model. The novelty of our study is a resummation of completely-crossed ladder diagrams in the Bethe-Salpeter kernel. These diagrams are enhanced due to their color factors in the diquark channel, but not in the meson channel. As a result of our analysis, it is suggested that diquark bound-state solutions exist in the Bethe-Salpeter equation, which have been thought to be absent.

  19. Stieltjes electrostatic model interpretation for bound state problems

    Indian Academy of Sciences (India)

    K V S Shiv Chaitanya

    2014-07-01

    In this paper, it is shown that Stieltjes electrostatic model and quantum Hamilton Jacobi formalism are analogous to each other. This analogy allows the bound state problem to mimic as unit moving imaginary charges $i\\hbar$, which are placed in between the two fixed imaginary charges arising due to the classical turning points of the potential. The interaction potential between unit moving imaginary charges $i\\hbar$ is given by the logarithm of the wave function. For an exactly solvable potential, this system attains stable equilibrium position at the zeros of the orthogonal polynomials depending upon the interval of the classical turning points.

  20. Scattering and Bound States of a Deformed Quantum Mechanics

    CERN Document Server

    Ching, Chee-Leong

    2012-01-01

    We construct the exact position representation of a deformed quantum mechanics which exhibits an intrinsic maximum momentum and use it to study problems such as a particle in a box and scattering from a step potential, among others. In particular, we show that unlike usual quantum mechanics, the present deformed case delays the formation of bound states in a finite potential well. In the process we also highlight some limitations and pit-falls of low-momentum or perturbative treatments and thus resolve two puzzles occurring in the literature.

  1. Quarkonium-nucleus bound states from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Beane, S.  R. [Univ. of Washington, Seattle, WA (United States); Chang, E. [Univ. of Washington, Seattle, WA (United States); Cohen, S.  D. [Univ. of Washington, Seattle, WA (United States); Detmold, W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lin, H. -W. [Univ. of Washington, Seattle, WA (United States); Orginos, K. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Parreño, A. [Univ., de Barcelona, Marti Franques (Spain); Savage, M.  J. [Univ. of Washington, Seattle, WA (United States)

    2015-06-11

    Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.

  2. Are $\\eta$- and $\\omega$-nuclear states bound ?

    CERN Document Server

    Tsushima, K; Thomas, A W; Saitô, K

    1998-01-01

    We investigate theoretically whether it is feasible to detect $\\eta$- and $^{40}$Ca, $^{90}$Zr and $^{208}$Pb, we also investigate $^6$He, $^{11}$B and $^{26}$Mg, which are the final nuclei in the proposed experiment involving the (d,$^3$He) reaction at GSI. Potentials for the $\\eta$ and $\\omega$ mesons in these nuclei are calculated in local density approximation, embedding the mesons in the nucleus described by solving the mean-field equations of motion in the QMC model. Our results suggest that one should expect to find $\\eta$- and $\\omega$-nucleus bound states in all these nuclei.

  3. Exotic Hadron Bound State Production at Hadronic Colliders

    CERN Document Server

    Jin, Yi; Liu, Yan-Rui; Meng, Lu; Si, Zon-Guo; Zhang, Xiao-Feng

    2016-01-01

    The non-relativistic wave function framework is applied to study the production and decay of the exotic hadrons which can be effectively described as bound states of other hadrons. The ingredient hadron production can be calculated by event generators. We investigate the production of exotic hadrons in the multiproduction processes at high energy hadronic colliders with the help of the event generators. We illustrate the crucial information such as their momentum distributions and production rate for the measurements at the large hadron collider. This study provides crucial information for the measurements of the relevant exotic hadrons.

  4. Fingerprints of Majorana Bound States in Aharonov-Bohm Geometry

    Science.gov (United States)

    Tripathi, Krashna Mohan; Das, Sourin; Rao, Sumathi

    2016-04-01

    We study a ring geometry, coupled to two normal metallic leads, which has a Majorana bound state (MBS) embedded in one of its arms and is threaded by Aharonov-Bohm (A B ) flux ϕ . We show that by varying the A B flux, the two leads go through resonance in an anticorrelated fashion while the resonance conductance is quantized to 2 e2/h . We further show that such anticorrelation is completely absent when the MBS is replaced by an Andreev bound state (ABS). Hence this anti-correlation in conductance when studied as a function of ϕ provides a unique signature of the MBS which cannot be faked by an ABS. We contrast the phase sensitivity of the MBS and ABS in terms of tunneling conductances. We argue that the relative phase between the tunneling amplitude of the electrons and holes from either lead to the level (MBS or ABS), which is constrained to 0 ,π for the MBS and unconstrained for the ABS, is responsible for this interesting contrast in the A B effect between the MBS and ABS.

  5. Free energy barrier for melittin reorientation from a membrane-bound state to a transmembrane state

    CERN Document Server

    Irudayam, Sheeba J; Berkowitz, Max L

    2013-01-01

    An important step in a phospholipid membrane pore formation by melittin antimicrobial peptide is a reorientation of the peptide from a surface into a transmembrane conformation. In this work we perform umbrella sampling simulations to calculate the potential of mean force (PMF) for the reorientation of melittin from a surface-bound state to a transmembrane state and provide a molecular level insight into understanding peptide and lipid properties that influence the existence of the free energy barrier. The PMFs were calculated for a peptide to lipid (P/L) ratio of 1/128 and 4/128. We observe that the free energy barrier is reduced when the P/L ratio increased. In addition, we study the cooperative effect; specifically we investigate if the barrier is smaller for a second melittin reorientation, given that another neighboring melittin was already in the transmembrane state. We observe that indeed the barrier of the PMF curve is reduced in this case, thus confirming the presence of a cooperative effect.

  6. Conformation-Selective Resonant Photoelectron Spectroscopy via Dipole-Bound States of Cold Anions.

    Science.gov (United States)

    Huang, Dao-Ling; Liu, Hong-Tao; Ning, Chuan-Gang; Wang, Lai-Sheng

    2015-06-18

    Molecular conformation is important in chemistry and biochemistry. Conformers connected by low energy barriers can only be observed at low temperatures and are difficult to be separated. Here we report a new method to obtain conformation-selective spectroscopic information about dipolar molecular radicals via dipole-bound excited states of the corresponding anions cooled in a cryogenic ion trap. We observed two conformers of cold 3-hydroxyphenoxide anions [m-HO(C6H4)O(-)] in high-resolution photoelectron spectroscopy and measured different electron affinities, 18,850(8) and 18,917(5) cm(-1), for the syn and anti 3-hydroxyphenoxy radicals, respectively. We also observed dipole-bound excited states for m-HO(C6H4)O(-) with different binding energies for the two conformers due to the different dipole moments of the corresponding 3-hydroxyphenoxy radicals. Excitations to selected vibrational levels of the dipole-bound states result in conformation-selective photoelectron spectra. This method should be applicable to conformation-selective spectroscopic studies of any anions with dipolar neutral cores.

  7. Lower Bound for entanglement cost of antisymmetric states

    CERN Document Server

    Shimono, T

    2002-01-01

    This report gives a lower bound of entanglement cost for antisymmetric states of bipartite d-level systems to be log_2 (d/(d-1)) ebit (for d=3, E_c >= 0.585...). The paper quant-ph/0112131 claims that the value is equal to one ebit for d=3, since all of the eigenvalues of reduced matrix of any pure states living in N times tensor product of antisymmetric space is not greater than 2^(-N) thus the von Neumann entropy is not less than N, but the proof is not true. Hence whether the value is equal to or less than one ebit is not clear at this moment.

  8. Bound states for non-symmetric evolution Schroedinger potentials

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Gulmaro Corona [Area de Analisis Matematico y sus Aplicaciones, Universidad Autonoma Metropolitana-Azcapotalco, Atzcapotzalco, DF (Mexico)). E-mail: ccg@correo.azc.uam.mx

    2001-09-14

    We consider the spectral problem associated with the evolution Schroedinger equation, (D{sup 2}+ k{sup 2}){phi}=u{phi}, where u is a matrix-square-valued function, with entries in the Schwartz class defined on the real line. The solution {phi}, called the wavefunction, consists of a function of one real variable, matrix-square-valued with entries in the Schwartz class. This problem has been dealt for symmetric potentials u. We found for the present case that the bound states are localized similarly to the scalar and symmetric cases, but by the zeroes of an analytic matrix-valued function. If we add an extra condition to the potential u, we can determine these states by an analytic scalar function. We do this by generalizing the scalar and symmetric cases but without using the fact that the Wronskian of a pair of wavefunction is constant. (author)

  9. Three-nucleon bound states using realistic potential models

    Science.gov (United States)

    Nogga, A.; Kievsky, A.; Kamada, H.; Glöckle, W.; Marcucci, L. E.; Rosati, S.; Viviani, M.

    2003-03-01

    The bound states of 3H and 3He have been calculated by using the Argonne v18 plus the Urbana IX three-nucleon potential. The isospin T=3/2 state have been included in the calculations as well as the n-p mass difference. The 3H-3He mass difference has been evaluated through the charge-dependent terms explicitly included in the two-body potential. The calculations have been performed using two different methods: the solution of the Faddeev equations in momentum space and the expansion on the correlated hyperspherical harmonic basis. The results are in agreement within 0.1% and can be used as benchmark tests. Results for the charge-dependent Bonn interaction in conjunction with the Tucson-Melbourne three-nucleon force are also presented. It is shown that the 3H and 3He binding energy difference can be predicted model independently.

  10. The three-nucleon bound state using realistic potential models

    CERN Document Server

    Nogga, A; Kamada, H; Glöckle, W; Marcucci, L E; Rosati, S; Viviani, M

    2003-01-01

    The bound states of $^3$H and $^3$He have been calculated using the Argonne $v_{18}$ plus the Urbana three-nucleon potential. The isospin $T=3/2$ state have been included in the calculations as well as the $n$-$p$ mass difference. The $^3$H-$^3$He mass difference has been evaluated through the charge dependent terms explicitly included in the two-body potential. The calculations have been performed using two different methods: the solution of the Faddeev equations in momentum space and the expansion on the correlated hyperspherical harmonic basis. The results are in agreement within 0.1% and can be used as benchmark tests. Results for the CD-Bonn interaction are also presented. It is shown that the $^3$H and $^3$He binding energy difference can be predicted model independently.

  11. Quantum state discrimination bounds for finite sample size

    CERN Document Server

    Audenaert, Koenraad M R; Verstraete, Frank

    2012-01-01

    In the problem of quantum state discrimination, one has to determine by measurements the state of a quantum system, based on the a priori side information that the true state is one of two given and completely known states, rho or sigma. In general, it is not possible to decide the identity of the true state with certainty, and the optimal measurement strategy depends on whether the two possible errors (mistaking rho for sigma, or the other way around) are treated as of equal importance or not. Recent results on the quantum Chernoff and Hoeffding bounds show that, if several copies of the system are available then the optimal error probabilities decay exponentially in the number of copies, and the decay rate is given by a certain statistical distance between rho and sigma (the Chernoff distance and the Hoeffding distances, respectively). While these results provide a complete solution for the asymptotic problem, they are not completely satisfying from a practical point of view. Indeed, in realistic scenarios ...

  12. Lasing action from photonic bound states in continuum

    Science.gov (United States)

    Kodigala, Ashok; Lepetit, Thomas; Gu, Qing; Bahari, Babak; Fainman, Yeshaiahu; Kanté, Boubacar

    2017-01-01

    In 1929, only three years after the advent of quantum mechanics, von Neumann and Wigner showed that Schrödinger’s equation can have bound states above the continuum threshold. These peculiar states, called bound states in the continuum (BICs), manifest themselves as resonances that do not decay. For several decades afterwards the idea lay dormant, regarded primarily as a mathematical curiosity. In 1977, Herrick and Stillinger revived interest in BICs when they suggested that BICs could be observed in semiconductor superlattices. BICs arise naturally from Feshbach’s quantum mechanical theory of resonances, as explained by Friedrich and Wintgen, and are thus more physical than initially realized. Recently, it was realized that BICs are intrinsically a wave phenomenon and are thus not restricted to the realm of quantum mechanics. They have since been shown to occur in many different fields of wave physics including acoustics, microwaves and nanophotonics. However, experimental observations of BICs have been limited to passive systems and the realization of BIC lasers has remained elusive. Here we report, at room temperature, lasing action from an optically pumped BIC cavity. Our results show that the lasing wavelength of the fabricated BIC cavities, each made of an array of cylindrical nanoresonators suspended in air, scales with the radii of the nanoresonators according to the theoretical prediction for the BIC mode. Moreover, lasing action from the designed BIC cavity persists even after scaling down the array to as few as 8-by-8 nanoresonators. BIC lasers open up new avenues in the study of light-matter interaction because they are intrinsically connected to topological charges and represent natural vector beam sources (that is, there are several possible beam shapes), which are highly sought after in the fields of optical trapping, biological sensing and quantum information.

  13. Universal bounds on charged states in 2d CFT and 3d gravity

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, Nathan; Dyer, Ethan [Stanford Institute for Theoretical Physics, Via Pueblo, Stanford, CA, 94305 (United States); Fitzpatrick, A. Liam [Boston University Physics Department, Commonwealth Avenue, Boston, MA, 02215 (United States); Kachru, Shamit [Stanford Institute for Theoretical Physics, Via Pueblo, Stanford, CA, 94305 (United States)

    2016-08-04

    We derive an explicit bound on the dimension of the lightest charged state in two dimensional conformal field theories with a global abelian symmetry. We find that the bound scales with c and provide examples that parametrically saturate this bound. We also prove that any such theory must contain a state with charge-to-mass ratio above a minimal lower bound. We comment on the implications for charged states in three dimensional theories of gravity.

  14. Universal Bounds on Charged States in 2d CFT and 3d Gravity

    CERN Document Server

    Benjamin, Nathan; Fitzpatrick, A Liam; Kachru, Shamit

    2016-01-01

    We derive an explicit bound on the dimension of the lightest charged state in two dimensional conformal field theories with a global abelian symmetry. We find that the bound scales with $c$ and provide examples that parametrically saturate this bound. We also prove than any such theory must contain a state with charge-to-mass ratio above a minimal lower bound. We comment on the implications for charged states in three dimensional theories of gravity.

  15. Weakly bound states with spin-isospin symmetry

    Science.gov (United States)

    Kievsky, A.; Gattobigio, M.

    2016-03-01

    We discuss weakly bound states of a few-fermion system having spin-isospin symmetry. This corresponds to the nuclear physics case in which the singlet, a0, and triplet, a1, n - p scattering lengths are large with respect to the range of the nuclear interaction. The ratio of the two is about a0/a1 ≈ -4.31. This value defines a plane in which a0 and a1 can be varied up to the unitary limit, 1/a0 = 0 and 1/a1 = 0, maintaining its ratio fixed. Using a spin dependant potential model we estimate the three-nucleon binding energy along that plane. This analysis can be considered an extension of the Efimov plot for three bosons to the case of three 1/2-spin-isospin fermions.

  16. Weakly bound states with spin-isospin symmetry

    CERN Document Server

    Kievsky, A

    2015-01-01

    We discuss weakly bound states of a few-fermion system having spin-isospin symmetry. This corresponds to the nuclear physics case in which the singlet, $a_0$, and triplet, $a_1$, $n-p$ scattering lengths are large with respect to the range of the nuclear interaction. The ratio of the two is about $a_0/a_1\\approx-4.31$. This value defines a plane in which $a_0$ and $a_1$ can be varied up to the unitary limit, $1/a_0=0$ and $1/a_1=0$, maintaining its ratio fixed. Using a spin dependant potential model we estimate the three-nucleon binding energy along that plane. This analysis can be considered an extension of the Efimov plot for three bosons to the case of three $1/2$-spin-isospin fermions.

  17. Weakly bound states with spin-isospin symmetry

    Directory of Open Access Journals (Sweden)

    Kievsky A.

    2016-01-01

    Full Text Available We discuss weakly bound states of a few-fermion system having spin-isospin symmetry. This corresponds to the nuclear physics case in which the singlet, a0, and triplet, a1, n − p scattering lengths are large with respect to the range of the nuclear interaction. The ratio of the two is about a0/a1 ≈ −4.31. This value defines a plane in which a0 and a1 can be varied up to the unitary limit, 1/a0 = 0 and 1/a1 = 0, maintaining its ratio fixed. Using a spin dependant potential model we estimate the three-nucleon binding energy along that plane. This analysis can be considered an extension of the Efimov plot for three bosons to the case of three 1/2-spin-isospin fermions.

  18. Baryons as relativistic three-quark bound states

    CERN Document Server

    Eichmann, Gernot; Williams, Richard; Alkofer, Reinhard; Fischer, Christian S

    2016-01-01

    We review the spectrum and electromagnetic properties of baryons described as relativistic three-quark bound states within QCD. The composite nature of baryons results in a rich excitation spectrum, whilst leading to highly non-trivial structural properties explored by the coupling to external (electromagnetic and other) currents. Both present many unsolved problems despite decades of experimental and theoretical research. We discuss the progress in these fields from a theoretical perspective, focusing on nonperturbative QCD as encoded in the functional approach via Dyson-Schwinger and Bethe-Salpeter equations. We give a systematic overview as to how results are obtained in this framework and explain technical connections to lattice QCD. We also discuss the mutual relations to the quark model, which still serves as a reference to distinguish 'expected' from 'unexpected' physics. We confront recent results on the spectrum of non-strange and strange baryons, their form factors and the issues of two-photon proce...

  19. Rapid thermal co-annihilation through bound states

    CERN Document Server

    Kim, Seyong

    2016-01-01

    The co-annihilation rate of heavy particles close to thermal equilibrium, which plays a role in many classic dark matter scenarios, can be "simulated" in QCD by considering the pair annihilation rate of a heavy quark and antiquark at a temperature of a few hundred MeV. We show that the so-called Sommerfeld factors, parameterizing the rate, can be defined and measured non-perturbatively within the NRQCD framework. Lattice measurements indicate a modest suppression in the octet channel, in reasonable agreement with perturbation theory, and a large enhancement in the singlet channel, much above the perturbative prediction. We suggest that the additional enhancement originates from bound state formation and subsequent decay, omitted in previous estimates of thermal Sommerfeld factors, which were based on Boltzmann equations governing single-particle phase space distributions.

  20. Three-boson bound states in finite volume with EFT

    Science.gov (United States)

    Kreuzer, S.; Hammer, H.-W.

    2010-04-01

    The universal properties of a three-boson system with large scattering length are well understood within the framework of Effective Field Theory. They include a geometric spectrum of shallow three-body bound states called “Efimov states” and log-periodic dependence of scattering observables on the scattering length. We investigate the modification of this spectrum in a finite cubic box using a partial wave expansion. The dependence of the binding energies on the box size is calculated for systems with positive and negative two-body scattering length. We compare the full results to results obtained using an expansion around the infinite volume binding energy. The renormalization of the Effective Field Theory in the finite volume is verified explicitly.

  1. Bound states in the continuum in open acoustic resonators

    CERN Document Server

    Lyapina, A A; Pilipchuk, A S; Sadreev, A F

    2015-01-01

    We consider bound states in the continuum (BSC) or embedded trapped modes in two- and three-dimensional acoustic axisymmetric duct-cavity structures. We demonstrate numerically that under variation of the length of the cavity multiple BSCs occur due to the Friedrich-Wintgen two-mode full destructive interference mechanism. The BSCs are detected by tracing the resonant widths to the points of the collapse of Fano resonances where one of the two resonant modes acquires infinite life-time. It is shown that the approach of the acoustic coupled mode theory cast in the truncated form of a two-mode approximation allows us to analytically predict the BSC frequencies and shape functions to a good accuracy in both two and three dimensions.

  2. Tunable magnetic textures: From Majorana bound states to braiding

    Science.gov (United States)

    Matos-Abiague, Alex; Shabani, Javad; Kent, Andrew D.; Fatin, Geoffrey L.; Scharf, Benedikt; Žutić, Igor

    2017-08-01

    A versatile control of magnetic systems, widely used to store information, can also enable manipulating Majorana bounds states (MBS) and implementing fault-tolerant quantum information processing. The proposed platform relies on the proximity-induced superconductivity in a two-dimensional electron gas placed next to an array of magnetic tunnel junctions (MTJs). A change in the magnetization configuration in the MTJ array creates tunable magnetic textures thereby removing several typical requirements for MBS: strong spin-orbit coupling, applied magnetic field, and confinement by one-dimensional structures which complicates demonstrating non-Abelian statistics through braiding. Recent advances in fabricating two-dimensional epitaxial superconductor/semiconductor heterostructures and designing tunable magnetic textures support the feasibility of this novel platform for MBS.

  3. Probing the Dark Sector with Dark Matter Bound States.

    Science.gov (United States)

    An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue

    2016-04-15

    A model of the dark sector where O(few  GeV) mass dark matter particles χ couple to a lighter dark force mediator V, m_{V}≪m_{χ}, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ, such as 0^{-+} and 1^{--} states, η_{D} and ϒ_{D}, is an important search channel. We show that e^{+}e^{-}→η_{D}+V or ϒ_{D}+γ production at B factories for α_{D}>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via η_{D}→2V→2(l^{+}l^{-}) and ϒ_{D}→3V→3(l^{+}l^{-}) (l=e,μ,π). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e^{+}e^{-}→χχ[over ¯]+nV, resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.

  4. Bounds for entanglement of formation of two mode squeezed thermal states

    CERN Document Server

    Chen, X Y; Chen, Xiao-Yu; Qiu, Pei-liang

    2003-01-01

    The upper and lower bounds of entanglement of formation are given for two mode squeezed thermal state. The bounds are compared with other entanglement measure or bounds. The entanglement distillation and the relative entropy of entanglement of infinitive squeezed state are obtained at the postulation of hashing inequality.

  5. Two-vibron bound states in the β-Fermi-Pasta-Ulam model

    Institute of Scientific and Technical Information of China (English)

    Hu Xin-Guang; Tang Yi

    2008-01-01

    This paper studies the two-vibron bound states in the β-Fermi-Pasta-Ulam model by means of the number conserving approximation combined with the number state method.The results indicate that on-site,adjacent-site and mixed two-vibron bound states may exist in the model.Specially,wave number has a significant effect on such bound states,which may be considered as the quantum effects of the localized states in quantum systems.

  6. Bound state spectra of the 3D rational potential

    CERN Document Server

    Roy, Amlan K; Proynov, Emil I

    2010-01-01

    We present bound state spectra of the 3D rational potential, $V(r)=r^2 + \\lambda r^2/(1+gr^2)$, $g>0$, by means of the generalized pseudospectral method. All the thirty states corresponding to $n$=0--9 are considered for the first time for a broad range of coupling parameters. These results surpass the accuracy of \\emph{all} other existing calculations published so far except the finite-difference method, which yields similar accuracy as ours. Variation of energies and radial distribution functions is followed with respect to the interaction parameters. Special emphasis has been laid on \\emph{higher} excitations and \\emph{negative} values of the interaction, where relatively less work has been reported. The energy sequence is found to be different for positive and negative interaction; numerically following a mirror-image relationship \\emph{usually}, if not always. Additionally, twenty energy splittings arising from certain levels belonging to $n$=0--9 are systematically studied as functions of the potential ...

  7. Differential dynamics of RAS isoforms in GDP- and GTP-bound states.

    Science.gov (United States)

    Kapoor, Abhijeet; Travesset, Alex

    2015-06-01

    RAS subfamily proteins regulates cell growth promoting signaling processes by cycling between active (GTP-bound) and inactive (GDP-bound) states. Different RAS isoforms, though structurally similar, exhibit functional specificity and are associated with different types of cancers and developmental disorders. Understanding the dynamical differences between the isoforms is crucial for the design of inhibitors that can selectively target a particular malfunctioning isoform. In this study, we provide a comprehensive comparison of the dynamics of all the three RAS isoforms (HRAS, KRAS, and NRAS) using extensive molecular dynamics simulations in both the GDP- (total of 3.06 μs) and GTP-bound (total of 2.4 μs) states. We observed significant differences in the dynamics of the isoforms, which rather interestingly, varied depending on the type of the nucleotide bound and the simulation temperature. Both SwitchI (Residues 25-40) and SwitchII (Residues 59-75) differ significantly in their flexibility in the three isoforms. Furthermore, Principal Component Analysis showed that there are differences in the conformational space sampled by the GTP-bound RAS isoforms. We also identified a previously unreported pocket, which opens transiently during MD simulations, and can be targeted to regulate nucleotide exchange reaction or possibly interfere with membrane localization. Further, we present the first simulation study showing GDP destabilization in the wild-type RAS protein. The destabilization of GDP/GTP occurred only in 1/50 simulations, emphasizing the need of guanine nucleotide exchange factors (GEFs) to accelerate such an extremely unfavorable process. This observation along with the other results presented in this article further support our previously hypothesized mechanism of GEF-assisted nucleotide exchange. © 2015 Wiley Periodicals, Inc.

  8. Is the exotic X(5568) a bound state?

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaoyun; Ping, Jialun [Nanjing Normal University, Department of Physics and Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing (China)

    2016-06-15

    Stimulated by the recent observation of the exotic X(5568) state by the D0 Collaboration, we study the four-quark system us anti b anti d with quantum numbers J{sup P} = 0{sup +} in the framework of the chiral quark model. Two structures, diquark-antidiquark and meson-meson, with all possible color configurations are investigated by using the Gaussian expansion method. The results show that the energies of the tetraquark states with diquark-antiquark structure are too high to be candidates of X(5568), and no molecular structure can be formed in our calculations. The calculation is also extended to the four-quark system us anti c anti d and the same results as that of us anti b anti d are obtained. (orig.)

  9. Baryons as relativistic three-quark bound states

    Science.gov (United States)

    Eichmann, Gernot; Sanchis-Alepuz, Hèlios; Williams, Richard; Alkofer, Reinhard; Fischer, Christian S.

    2016-11-01

    We review the spectrum and electromagnetic properties of baryons described as relativistic three-quark bound states within QCD. The composite nature of baryons results in a rich excitation spectrum, whilst leading to highly non-trivial structural properties explored by the coupling to external (electromagnetic and other) currents. Both present many unsolved problems despite decades of experimental and theoretical research. We discuss the progress in these fields from a theoretical perspective, focusing on nonperturbative QCD as encoded in the functional approach via Dyson-Schwinger and Bethe-Salpeter equations. We give a systematic overview as to how results are obtained in this framework and explain technical connections to lattice QCD. We also discuss the mutual relations to the quark model, which still serves as a reference to distinguish 'expected' from 'unexpected' physics. We confront recent results on the spectrum of non-strange and strange baryons, their form factors and the issues of two-photon processes and Compton scattering determined in the Dyson-Schwinger framework with those of lattice QCD and the available experimental data. The general aim is to identify the underlying physical mechanisms behind the plethora of observable phenomena in terms of the underlying quark and gluon degrees of freedom.

  10. Coexistence of bound and virtual-bound states in shallow-core to valence x-ray spectroscopies

    Science.gov (United States)

    Sen Gupta, Subhra; Bradley, J. A.; Haverkort, M. W.; Seidler, G. T.; Tanaka, A.; Sawatzky, G. A.

    2011-08-01

    With the example of the non-resonant inelastic x-ray scattering (NIXS) at the O45 edges (5d→5f) of the actinides, we develop the theory for shallow-core to valence excitations, where the multiplet spread is larger than the core-hole attraction, such as if the core and valence orbitals have the same principal quantum number. This involves very strong final state configuration interaction (CI), which manifests itself as huge reductions in the Slater-Condon integrals, needed to explain the spectral shapes within a simple renormalized atomic multiplet theory. But more importantly, this results in a cross-over from bound (excitonic) to virtual-bound excited states with increasing energy, within the same core-valance multiplet structure, and in large differences between the dipole and high-order multipole transitions, as observed in NIXS. While the bound states (often higher multipole allowed) can still be modeled using local cluster-like models, the virtual-bound resonances (often dipole-allowed) cannot be interpreted within such local approaches. This is in stark contrast to the more familiar core-valence transitions between different principal quantum number shells, where all the final excited states almost invariably form bound core-hole excitons and can be modeled using local approaches. The possibility of observing giant multipole resonances for systems with high angular momentum ground states is also predicted. The theory is important to obtain ground state information from core-level x-ray spectroscopies of strongly correlated transition metal, rare-earth, and actinide systems.

  11. Bound states and critical behavior of the Yukawa potential

    Institute of Scientific and Technical Information of China (English)

    LI; Yongyao

    2006-01-01

    [1]Yukawa,H.,On the interaction of elementary particles,Proc.Phys.Math Soc.Jap.,1935,17:48-57.[2]Sachs,R.,Goeppert-Mayer,M.,Calculations on a new neutron-proton interaction potential,Phys.Rev.,1938,53:991-993.[3]Harris,G.,Attractive two-body interactions in partially ionized plasmas,Phys.Rev.,1962,125:1131-1140.[4]Schey,H.,Schwartz,J.,Counting the bound states in short-range central potentials,Phys.Rev.B,1965,139:1428-1432.[5]Rogers,J.,Graboske,H.,Harwood,E.,Bound eigenstates of the static screened Coulomb poten-tial,Phys.Rev.A,1970,1:1577-1586.[6]McEnnan,J.,Kissel,L.,Pratt,R.,Analytic perturbation theory for screened Coulomb potentials:non-relativistic case,Phys.Rev.A,1976,13:532-559.[7]Gerry,C.,Estimates of the ground states of the Yukawa potential from the Bogoliubov inequality,J.Phys.A,1984,17:L313-L315.[8]Kr(o)ger,H.,Girard,R.,Dufour,G.,Direct calculation of the S matrix in coordinate space,Phys.Rev.C,1988,37:486-496.[9]Girard,R.,Kr(o)ger,H.,Labelle,P.et al.,Computation of a long time evolution in a Schr(o)dinger system,Phys.Rev.A,1988,37:3195-3200.[10]Garavelli,S.,Oliveira,F.,Analytical solution for a Yukawa-type potential,Phys.Rev.Lett.,1991,66:1310-1313.[11]Gomes,O.,Chacham,H.,Mohallem,J.,Variational calculations for the bound-unbound transition of the Yukawa potential,Phys.Rev.A,1994,50:228-231.[12]Yukalov,V.,Yukalova,E.,Oliveira,F.,Renormalization-group solutions for Yukawa potential,J.Phys.A,1998,31:4337-4348.[13]Brau,F.,Necessary and sufficient conditions for existence of bound states in a central potential,J.Phys.A,2003,36:9907-9913.[14]Bertini,L.,Mella,M.,Bressanini,D.et al.,Borromean binding in H-2 with Yukawa potential:a nonadiabatic quantum Monte Carlo study,Phys.Rev.A,2004,69:042504.[15]Dean,D.,Drummond,I.,Horgan,R.,Effective diffusion constant in a two-dimensional medium of charged point scatterers,J.Phys.A,2004,37:2039-2046.[16]De-Leo,S.,Rotelli,P.,Amplification of coupling for Yukawa potentials,Phys.Rev.D,2004,69:034006.[17]Khrapak

  12. String Models for the Heavy Quark-Antiquark Bound States.

    Science.gov (United States)

    Tse, Sze-Man

    1988-12-01

    The heavy quark-antiquark bound state is examined in the phenomenological string models. Specifically, the Nambu-Goto model and the Polyakov's smooth string model are studied in the large-D limit, D being the number of transverse space-time dimensions. The static potential V(R) is extracted in both models in the large-D limit. In the former case, this amounts to the usual saddle point calculation. In the latter case, the renormalized, physical string tension is expressed in terms of the bare string tension and the extrinsic curvature coupling. A systematic loop expansion of V(R) is developed and carried out explicitly to one loop order, with the two loops result presented without detail. For large separations R, the potential is linear in R with corrections of order 1/R. The coefficient of the 1/R Luscher term has the universal value -piD/24 to any finite order in the loop expansion. For very small separations R, the potential V(R) is also proportional to 1/R with a coefficient twice that of Luscher's term. The corrections are logarithmically small. Polyakov's smooth string model is extended to the finite temperature situation. The temperature dependence of the string tension is investigated in the large-D limit. The effective string tension is calculated to the second order in the loop expansion. At low temperature, it differs from that of the Nambu-Goto model only by terms that fall exponentially with inverse temperature. Comparison of the potential V(R) in the smooth string model with lattice gauge calculation and hadron spectroscopy data yields a consistent result.

  13. State-Dependent Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Ciann-Dong Yang

    2014-10-01

    Full Text Available This paper proposes a new mixed quantum mechanics (QM—molecular mechanics (MM approach, where MM is replaced by quantum Hamilton mechanics (QHM, which inherits the modeling capability of MM, while preserving the state-dependent nature of QM. QHM, a single mechanics playing the roles of QM and MM simultaneously, will be employed here to derive the three-dimensional quantum dynamics of diatomic molecules. The resulting state-dependent molecular dynamics including vibration, rotation and spin are shown to completely agree with the QM description and well match the experimental vibration-rotation spectrum. QHM can be incorporated into the framework of a mixed quantum-classical Bohmian method to enable a trajectory interpretation of orbital-spin interaction and spin entanglement in molecular dynamics.

  14. Metastable Innershell Molecular State (MIMS)

    CERN Document Server

    Bae, Young K

    2008-01-01

    We propose that the existence of Metastable Innershell Molecular State (MIMS) was experimentally discovered by Bae et al. in hypervelocity (v>100km/s) impact of nanoparticles. The decay of MIMS resulted in the observed intense soft x-rays in the range of 75 - 100 eV in agreement with Winterberg's recent prediction.

  15. Metastable innershell molecular state (MIMS)

    Science.gov (United States)

    Bae, Young K.

    2008-07-01

    We propose that the existence of Metastable innershell molecular state (MIMS) was experimentally discovered by Bae et al. in hypervelocity ( v>100 km/s) impact of nanoparticles. The decay of MIMS resulted in the observed intense soft x-rays in the range of 75-100 eV in agreement with Winterberg's recent prediction.

  16. Bound states for fermions in the gauge Aharonov-Bohm field

    Energy Technology Data Exchange (ETDEWEB)

    Voropaev, S.A.; Galtsov, D.V.; Spasov, D.A. (Dept. of Theoretical Physics, Moscow State Univ. (USSR))

    1991-09-05

    In this paper we discuss some interesting properties of the Aharonov-Bohm interaction for relativistic spin-one-half particles. We will show that the AB potential is powerful enough to create bound states. We will then discuss the wave function, spin-coefficients and the energy level for the bound states of the fermions in the gauge AB field. (orig.).

  17. The bound state S-matrix for AdS5×S5 superstring

    NARCIS (Netherlands)

    Arutyunov, G.E.; de Leeuw, M.; Torrielli, A.

    2009-01-01

    We determine the S-matrix that describes scattering of arbitrary bound states in the light-cone string theory in AdS5×S5. The corresponding construction relies on the Yangian symmetry and the superspace formalism for the bound state representations. The basic analytic structure supporting the S-matr

  18. Trilinear couplings and scalar bound states in supersymmetric extensions of the standard model

    CERN Document Server

    Hernández, Pilar; Sanz, V

    2001-01-01

    The trilinear terms in minimal supersymmetric extensions of the standard model can be responsible of forming a bound state of scalars. In this talk we outline our results on the study of this bound state using a non-perturbative method, the exact renormalization group. We focus on the trilinear term between the Higgs and stop fields. (4 refs).

  19. The Bethe ansatz for AdS5 × S5 bound states

    NARCIS (Netherlands)

    de Leeuw, M.

    2009-01-01

    We reformulate the nested coordinate Bethe ansatz in terms of coproducts of Yangian symmetry generators. This allows us to derive the nested Bethe equations for arbitrary bound state string S-matrices. The bound state number dependence in the Bethe equations appears through the parameters x± and the

  20. Improved lower bounds on the ground-state entropy of the antiferromagnetic Potts model.

    Science.gov (United States)

    Chang, Shu-Chiuan; Shrock, Robert

    2015-05-01

    We present generalized methods for calculating lower bounds on the ground-state entropy per site, S(0), or equivalently, the ground-state degeneracy per site, W=e(S(0)/k(B)), of the antiferromagnetic Potts model. We use these methods to derive improved lower bounds on W for several lattices.

  1. Ensemble-based characterization of unbound and bound states on protein energy landscape

    CERN Document Server

    Ruvinsky, Anatoly M; Tuzikov, Alexander V; Vakser, Ilya A

    2012-01-01

    Characterization of protein energy landscape and conformational ensembles is important for understanding mechanisms of protein folding and function. We studied ensembles of bound and unbound conformations of six proteins to explore their binding mechanisms and characterize the energy landscapes in implicit solvent. First, results show that bound and unbound spectra often significantly overlap. Moreover, the larger the overlap the smaller the RMSD between bound and unbound conformational ensembles. Second, the analysis of the unbound-to-bound changes points to conformational selection as the binding mechanism for four of the proteins. Third, the center of the unbound spectrum has a higher energy than the center of the corresponding bound spectrum of the dimeric and multimeric states for most of the proteins. This suggests that the unbound states often have larger entropy than the bound states considered outside of the complex. Fourth, the exhaustively long minimization, making small intra-rotamer adjustments, ...

  2. Electromagnetic bound states in the radiation continuum for periodic double arrays of subwavelength dielectric cylinders

    CERN Document Server

    Ndangali, Friends R

    2010-01-01

    Electromagnetic bound states in the radiation continuum are studied for periodic double arrays of subwavelength dielectric cylinders in TM polarization. They are similar to localized waveguide mode solutions of Maxwell's equations for metal cavities or defects of photonic crystals, but, in contrast to the latter, their spectrum lies in the radiation continuum. The phenomenon is identical to the existence of bound sates in the radiation continuum in quantum mechanics, discovered by von Neumann and Wigner. In the formal scattering theory, these states appear as resonances with the vanishing width. For the system studied, the bound states are shown to exist at specific distances between the arrays in the spectral region where one or two diffraction channels are open. Analytic solutions are obtained for all bound states (below the radiation continuum and in it) in the limit of thin cylinders (the cylinder radius is much smaller than the wavelength). The existence of bound states is also established in the spectra...

  3. Interacting quantum walkers: two-body bosonic and fermionic bound states

    Science.gov (United States)

    Krapivsky, P. L.; Luck, J. M.; Mallick, K.

    2015-11-01

    We investigate the dynamics of bound states of two interacting particles, either bosons or fermions, performing a continuous-time quantum walk on a one-dimensional lattice. We consider the situation where the distance between both particles has a hard bound, and the richer situation where the particles are bound by a smooth confining potential. The main emphasis is on the velocity characterizing the ballistic spreading of these bound states, and on the structure of the asymptotic distribution profile of their center-of-mass coordinate. The latter profile generically exhibits many internal fronts.

  4. Quasi-bound states, resonance tunnelling, and tunnelling times generated by twin symmetric barriers

    Indian Academy of Sciences (India)

    A Uma Maheswari; P Prema; S Mahadevan; C S Shastry

    2009-12-01

    In analogy with the definition of resonant or quasi-bound states used in three-dimensional quantal scattering, we define the quasi-bound states that occur in one-dimensional transmission generated by twin symmetric potential barriers and evaluate their energies and widths using two typical examples: (i) twin rectangular barrier and (ii) twin Gaussian-type barrier. The energies at which reflectionless transmission occurs correspond to these states and the widths of the transmission peaks are also the same as those of quasi-bound states. We compare the behaviour of the magnitude of wave functions of quasi-bound states with those for bound states and with the above-barrier state wave function. We deduce a Breit–Wigner-type resonance formula which neatly describes the variation of transmission coefficient as a function of energy at below-barrier energies. Similar formula with additional empirical term explains approximately the peaks of transmission coefficients at above-barrier energies as well. Further, we study the variation of tunnelling time as a function of energy and compare the same with transmission, reflection time and Breit–Wigner delay time around a quasi-bound state energy. We also find that tunnelling time is of the same order of magnitude as lifetime of the quasi-bound state, but somewhat larger.

  5. Cyclophilin A inhibition: targeting transition-state-bound enzyme conformations for structure-based drug design.

    Science.gov (United States)

    Nagaraju, Mulpuri; McGowan, Lauren C; Hamelberg, Donald

    2013-02-25

    Human Cyclophilin A (CypA) catalyzes cis-trans isomerization of the prolyl peptide ω-bond in proteins and is involved in many subcellular processes. CypA has, therefore, been identified as a potential drug target in many diseases, and the development of potent inhibitors with high selectivity is a key objective. In computer-aided drug design, selectivity is improved by taking into account the inherent flexibility of the receptor. However, the relevant receptor conformations to focus on in order to develop highly selective inhibitors are not always obvious from available X-ray crystal structures or ensemble of conformations generated using molecular dynamics simulations. Here, we show that the conformation of the active site of CypA varies as the substrate configuration changes during catalytic turnover. We have analyzed the principal modes of the active site dynamics of CypA from molecular dynamics simulations to show that similar ensembles of enzyme conformations recognize diverse inhibitors and bind the different configurations of the peptide substrate. Small nonpeptidomimetic inhibitors with varying activity are recognized by enzyme ensembles that are similar to those that tightly bind the transition state and cis configurations of the substrate. Our results suggest that enzyme-substrate ensembles are more relevant in structure-based drug design for CypA than free enzyme. Of the vast conformational space of the free enzyme, the enzyme conformations of the tightly bound enzyme-substrate complexes are the most important for catalysis. Therefore, functionalizing lead compounds to optimize their interactions with the enzyme's conformational ensemble bound to the substrate in the cis or the transition state could lead to more potent inhibitors.

  6. Bound states of Dipolar Bosons in One-dimensional Systems

    DEFF Research Database (Denmark)

    G. Volosniev, A.; R. Armstrong, J.; V. Fedorov, D.;

    2013-01-01

    -body structures in this geometry are determined as function of polarization angles and dipole strength by using both essentially exact stochastic variational methods and the harmonic approximation. The main focus is on the three, four, and five-body problems in two or more tubes. Our results indicate...... that in the weakly-coupled limit the inter-tube interaction is similar to a zero-range term with a suitable rescaled strength. This allows us to address the corresponding many-body physics of the system by constructing a model where bound chains with one molecule in each tube are the effective degrees of freedom...

  7. Photon-assisted tunneling through a topological superconductor with Majorana bound states

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Han-Zhao; Zhang, Ying-Tao, E-mail: zhangyt@mail.hebtu.edu.cn [College of Physics, Hebei Normal University, Shijiazhuang 050024 (China); Liu, Jian-Jun, E-mail: liujj@mail.hebtu.edu.cn [College of Physics, Hebei Normal University, Shijiazhuang 050024 (China); Department of Physics, Shijiazhuang University, Shijiazhuang 050035 (China)

    2015-12-15

    Employing the Keldysh Nonequilibrium Green’s function method, we investigate time-dependent transport through a topological superconductor with Majorana bound states in the presence of a high frequency microwave field. It is found that Majorana bound states driven by photon-assisted tunneling can absorb(emit) photons and the resulting photon-assisted tunneling side band peaks can split the Majorana bound state that then appears at non-zero bias. This splitting breaks from the current opinion that Majorana bound states appear only at zero bias and thus provides a new experimental method for detecting Majorana bound states in the Non-zero-energy mode. We not only demonstrate that the photon-assisted tunneling side band peaks are due to Non-zero-energy Majorana bound states, but also that the height of the photon-assisted tunneling side band peaks is related to the intensity of the microwave field. It is further shown that the time-varying conductance induced by the Majorana bound states shows negative values for a certain period of time, which corresponds to a manifestation of the phase coherent time-varying behavior in mesoscopic systems.

  8. Ion-Pair States in Triplet Molecular Hydrogen

    Science.gov (United States)

    Setzer, W.; Baker, B. C.; Ashman, S.; Morgan, T. J.

    2016-05-01

    An experimental search is underway to observe the long range triplet ionic states H+ H- of molecular hydrogen. Resonantly enhanced multi-photon ionization of the metastable c 3∏u- 2 pπ state is used access to the R(1)nd1 n = 21 Rydberg state that serves as an intermediate stepping stone state to probe the energy region above the ionization limit with a second tunable laser photon. The metastable state is prepared by electron capture of 6 keV H2+ions in potassium in a molecular beam. Formation of the H+ H- triplet configuration involves triplet excited states of the H- ion, especially the 2p23Pe state, the second bound state of H- predicted to exist with a lifetime long compared to typical auto ionization lifetimes but not yet observed experimentally. Details of the experiment and preliminary results to date will be presented at the conference.

  9. Binding Energy of Quantum Bound States in X-shaped Nanowire Intersection

    Science.gov (United States)

    2014-01-01

    that with non-zero magnetic field new structures are associated with virtual and resonant states located at the junction that becomes 2D Landau ...results of our model system (cross-wire intersecting at an arbitrary angle) not only supplement the theory of quantum bound state in a classically unbound...geometries has been a long standing problem in quantum theory . Knowledge of quantum bound states in crossed nanowire system is very important in

  10. A stable recursive state estimation filter for models with nonlinear dynamics subject to bounded disturbances

    OpenAIRE

    Becis-Aubry, Yasmina; Boutayeb, Mohamed; Darouach, Mohamed

    2006-01-01

    International audience; This contribution proposes a recursive and easily implementable online algorithm for state estimation of multi-output discrete-time systems with nonlinear dynamics and linear measurements in presence of unknown but bounded disturbances corrupting both the state and measurement equations. The proposed algorithm is based on state bounding techniques and is decomposed into two steps : time update and observation update that uses a switching estimation Kalman-like gain mat...

  11. On accurate computations of bound state properties in three- and four-electron atomic systems

    CERN Document Server

    Frolov, Alexei M

    2016-01-01

    Results of accurate computations of bound states in three- and four-electron atomic systems are discussed. Bound state properties of the four-electron lithium ion Li$^{-}$ in its ground $2^{2}S-$state are determined from the results of accurate, variational computations. We also consider a closely related problem of accurate numerical evaluation of the half-life of the beryllium-7 isotope. This problem is of paramount importance for modern radiochemistry.

  12. Taming the Yukawa potential singularity: improved evaluation of bound states and resonance energies

    CERN Document Server

    Alhaidari, A D; Abdelmonem, M S

    2007-01-01

    Using the tools of the J-matrix method, we absorb the 1/r singularity of the Yukawa potential in the reference Hamiltonian, which is handled analytically. The remaining part, which is bound and regular everywhere, is treated by an efficient numerical scheme in a suitable basis using Gauss quadrature approximation. Analysis of resonance energies and bound states spectrum is performed using the complex scaling method, where we show their trajectories in the complex energy plane and demonstrate the remarkable fact that bound states cross over into resonance states by varying the potential parameters.

  13. The ρ(ω/B*(B system and bound states in the unitary local Hidden Gauge approach

    Directory of Open Access Journals (Sweden)

    Fernandez-Soler P.

    2016-01-01

    Full Text Available In this work, we study systems composed of a ρ/ω and B* meson pair. We find three bound states in isospin, spin-parity channels (1/2, 0+, (1/2, 1+ and (1/2, 2+. The state with J = 2 can be a good candidate for the B*2(5747. We also study the ρB system, and a bound state with mass 5728 MeV and width around 20 MeV is obtained, which can be identified with the B1(5721 resonance. In the case of I = 3/2, one obtains repulsion and thus, no exotic (molecular mesons in this sector are generated in the approach.

  14. Tetraquark bound states and resonances in a unitary microscopic quark model: A case study of bound states of two light quarks and two heavy antiquarks

    Science.gov (United States)

    Bicudo, P.; Cardoso, M.

    2016-11-01

    We address q q Q ¯Q ¯ exotic tetraquark bound states and resonances with a fully unitarized and microscopic quark model. We propose a triple string flip-flop potential, inspired by lattice QCD tetraquark static potentials and flux tubes, combining meson-meson and double Y potentials. Our model includes the color excited potential, but neglects the spin-tensor potentials, as well as all the other relativistic effects. To search for bound states and resonances, we first solve the two-body mesonic problem. Then we develop fully unitary techniques to address the four-body tetraquark problem. We fold the four-body Schrödinger equation with the mesonic wave functions, transforming it into a two-body meson-meson problem with nonlocal potentials. We find bound states for some quark masses, including the one reported in lattice QCD. Moreover, we also find resonances and calculate their masses and widths, by computing the T matrix and finding its pole positions in the complex energy plane, for some quantum numbers. However, a detailed analysis of the quantum numbers where binding exists shows a discrepancy with recent lattice QCD results for the l l b ¯ b ¯ tetraquark bound states. We conclude that the string flip-flop models need further improvement.

  15. Efficiency bounds of molecular motors under a trade-off figure of merit

    Science.gov (United States)

    Zhang, Yanchao; Huang, Chuankun; Lin, Guoxing; Chen, Jincan

    2017-05-01

    On the basis of the theory of irreversible thermodynamics and an elementary model of the molecular motors converting chemical energy by ATP hydrolysis to mechanical work exerted against an external force, the efficiencies of the molecular motors at two different optimization configurations for trade-off figure of merit representing a best compromise between the useful energy and the lost energy are calculated. The upper and lower bounds for the efficiency at two different optimization configurations are determined. It is found that the optimal efficiencies at the two different optimization configurations are always larger than 1 / 2.

  16. Topological superconducting phase and Majorana bound states in Shiba chains

    Science.gov (United States)

    Pientka, Falko; Peng, Yang; Glazman, Leonid; von Oppen, Felix

    2015-12-01

    Chains of magnetic adatoms on a conventional superconducting substrate constitute a promising venue for realizing topological superconductivity and Majorana end states. Here, we give a brief overview over recent attempts to describe these systems theoretically, emphasizing how the topological phase emerges from the physics of individual magnetic impurities and their associated Shiba states.

  17. An Improved Lower Bound Limit State Optimisation Algorithm

    DEFF Research Database (Denmark)

    Frier, Christian; Damkilde, Lars

    2010-01-01

    Limit State analysis has been used in manual design methods for decades e.g. the yield line theory for concrete slabs.......Limit State analysis has been used in manual design methods for decades e.g. the yield line theory for concrete slabs....

  18. The dynamical gluon mass in the massless bound-state formalism

    CERN Document Server

    Ibanez, David

    2014-01-01

    We describe the phenomenon of dynamical gluon mass generation within the massless bound-state formalism, which constitutes the general framework for the systematic implementation of the Schwinger mechanism in non-Abelian gauge theories. The main ingredient of this formalism is the dynamical formation of bound states with vanishing mass, which gives rise to effective vertices containing massless poles; these vertices, in turn, trigger the Schwinger mechanism, and allow for the gauge-invariant generation of an effective gluon mass. In this particular approach, the gluon mass is directly related to quantities that are intrinsic to the bound-state formation itself, such as the "transition amplitude" and the corresponding "bound-state wave-function". Specifically, a set of powerful relations discussed in the text, allows one to determine the dynamical evolution of the gluon mass through a Bethe-Salpeter equation, which controls the dynamics of the relevant wave-function. In addition, it is possible to demonstrate ...

  19. Reply to Comment on `Formation of bound states of electrons in spherically symmetric oscillations of plasma'

    CERN Document Server

    Dvornikov, Maxim

    2011-01-01

    I reply here to the comment of Dr Shmatov on my recent work and demonstrate the invalidity of his criticism of the classical physics description of the formation of bound states of electrons participating in spherically symmetric oscillations of plasma.

  20. Quark-antiquark bound-state spectroscopy and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, E.D.

    1982-11-01

    The discussion covers quarks as we know them, the classification of ordinary mesons in terms of constituent quarks, hidden charm states and charmed mesons, bottom quarks, positronium as a model for quarti q, quantum chromodynamics and its foundation in experiment, the charmonium model, the mass of states, fine structure and hyperfine structure, classification, widths of states, rate and multipolarity of gamma transitions, questions about bottom, leptonic widths and the determination of Q/sub b/, the mass splitting of the n/sup 3/S/sub 1/ states, the center of gravity of the masses of the n/sup 3/P; states, n/sup 3/ P; fine structure and classification, branching ratios for upsilon' ..-->.. tau chi/sub 6j/ and the tau cascade reactions, hyperfine splitting, and top. (GHT)

  1. Impurity bound states in fully gapped d-wave superconductors with subdominant order parameters

    Science.gov (United States)

    Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica M.

    2017-01-01

    Impurities in superconductors and their induced bound states are important both for engineering novel states such as Majorana zero-energy modes and for probing bulk properties of the superconducting state. The high-temperature cuprates offer a clear advantage in a much larger superconducting order parameter, but the nodal energy spectrum of a pure d-wave superconductor only allows virtual bound states. Fully gapped d-wave superconducting states have, however, been proposed in several cuprate systems thanks to subdominant order parameters producing d + is- or d + id′-wave superconducting states. Here we study both magnetic and potential impurities in these fully gapped d-wave superconductors. Using analytical T-matrix and complementary numerical tight-binding lattice calculations, we show that magnetic and potential impurities behave fundamentally different in d + is- and d + id′-wave superconductors. In a d + is-wave superconductor, there are no bound states for potential impurities, while a magnetic impurity produces one pair of bound states, with a zero-energy level crossing at a finite scattering strength. On the other hand, a d + id′-wave symmetry always gives rise to two pairs of bound states and only produce a reachable zero-energy level crossing if the normal state has a strong particle-hole asymmetry. PMID:28281570

  2. Impurity bound states in fully gapped d-wave superconductors with subdominant order parameters.

    Science.gov (United States)

    Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica M

    2017-03-10

    Impurities in superconductors and their induced bound states are important both for engineering novel states such as Majorana zero-energy modes and for probing bulk properties of the superconducting state. The high-temperature cuprates offer a clear advantage in a much larger superconducting order parameter, but the nodal energy spectrum of a pure d-wave superconductor only allows virtual bound states. Fully gapped d-wave superconducting states have, however, been proposed in several cuprate systems thanks to subdominant order parameters producing d + is- or d + id'-wave superconducting states. Here we study both magnetic and potential impurities in these fully gapped d-wave superconductors. Using analytical T-matrix and complementary numerical tight-binding lattice calculations, we show that magnetic and potential impurities behave fundamentally different in d + is- and d + id'-wave superconductors. In a d + is-wave superconductor, there are no bound states for potential impurities, while a magnetic impurity produces one pair of bound states, with a zero-energy level crossing at a finite scattering strength. On the other hand, a d + id'-wave symmetry always gives rise to two pairs of bound states and only produce a reachable zero-energy level crossing if the normal state has a strong particle-hole asymmetry.

  3. Raman scattering from a superconductivity-induced bound state in MgB2.

    Science.gov (United States)

    Zeyher, R

    2003-03-14

    It is shown that the sharp peak in the E(2g) Raman spectrum of superconducting MgB2 is due to a bound state caused by the electron-phonon coupling. Our theory explains why this peak appears only in the spectra with E(2g) symmetry and only in the sigma but not the pi bands. The properties of the bound state and the Raman spectrum are investigated, also in the presence of impurity scattering.

  4. Bound States and Band Structure - a Unified Treatment through the Quantum Hamilton - Jacobi Approach

    CERN Document Server

    Ranjani, S S; Panigrahi, P K

    2005-01-01

    We analyze the Scarf potential, which exhibits both discrete energy bound states and energy bands, through the quantum Hamilton-Jacobi approach. The singularity structure and the boundary conditions in the above approach, naturally isolate the bound and periodic states, once the problem is mapped to the zero energy sector of another quasi-exactly solvable quantum problem. The energy eigenvalues are obtained without having to solve for the corresponding eigenfunctions explicitly. We also demonstrate how to find the eigenfunctions through this method.

  5. Spectroscopy of eta'-nucleus bound states at GSI-SIS

    CERN Document Server

    Fujioka, Hiroyuki; Geissel, Hans; Hayano, Ryugo S; Hirenzaki, Satoru; Itoh, Satoshi; Jido, Daisuke; Metag, Volker; Nagahiro, Hideko; Nanova, Mariana; Nishi, Takahiro; Okochi, Kota; Outa, Haruhiko; Suzuki, Ken; Suzuki, Takatoshi; Tanaka, Yoshiki K; Weick, Helmut

    2012-01-01

    The eta' meson mass may be reduced due to partial restoration of chiral symmetry. If this is the case, an eta'-nucleus system may form a nuclear bound state. We plan to carry out a missing-mass spectroscopy with the 12C(p,d) reaction at GSI-SIS. Peak structures corresponding to such a bound state may be observed even in an inclusive measurement, if the decay width is narrow enough.

  6. Spectroscopy of η′-nucleus bound states at GSI-SIS

    Directory of Open Access Journals (Sweden)

    Outa Haruhiko

    2012-12-01

    Full Text Available The η′ meson mass may be reduced due to partial restoration of chiral symmetry. If this is the case, an η′-nucleus system may form a nuclear bound state.We plan to carry out a missing-mass spectroscopy experiment with the 12C(p,d reaction at GSI-SIS. Peak structures corresponding to such a bound state may be observed even in an inclusive measurement, if the decay width is narrow enough.

  7. Eta bound states in nuclei: a probe of flavour-singlet dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Steven D. Bass; Anthony W. Thomas

    2005-07-01

    We argue that eta bound states in nuclei are sensitive to the singlet component in the eta. The bigger the singlet component, the more attraction and the greater the binding. Thus, measurements of eta bound states will yield new information about axial U(1) dynamics and glue in mesons. Eta - etaprime mixing plays an important role in understanding the value of the eta-nucleon scattering length.

  8. Oscillatory Behavior of In-medium Interparticle Potential in Hot Gauge System with Scalar Bound States

    Institute of Scientific and Technical Information of China (English)

    LIU Hui; HOU De-Fu; LI Jia-Rong

    2009-01-01

    We investigate the in-medium interparticle potential of hot gauge system with bound states by employing the QED and scalar QED coupling. At the finite temperature an oscillatory behavior of the potential has been found as well as its variation in terms of different free parameters. We expect the competition among the parameters will lead to an appropriate interparticle potential, which could be extended to discuss the fluid properties of QGP with scalar bound states.

  9. Exact bound state solutions of the Klein-Gordon particle in Hulthén potential

    Institute of Scientific and Technical Information of China (English)

    Zhang Min-Cang

    2008-01-01

    In this paper,the Klein-Gordon equation with the spherical symmetric Hulthén potential is turned into a hypergeometric equation and is solved in the framework of function analysis exactly.The corresponding bound state solutions are expressed in terms of the hypergeometric function,and the energy spectrum of the bound states is obtained as a solution to a given equation by boundary constraints.

  10. Calculations of bar K-nuclear quasi-bound states using chiral bar KN amplitudes

    Science.gov (United States)

    Mareš, J.; Barnea, N.; Cieplý, A.; Friedman, E.; Gal, A.; Gazda, D.

    2014-03-01

    We review our recent calculations of K- quasi-bound states in nuclear systems using subthreshold energy dependent chiral bar KN amplitudes. Strong energy dependence of the scattering amplitudes requires self-consistent evaluation of the involved bar KN interactions. In view of sizable widths predicted by our calculations, an unambiguous identification of K--nuclear quasi-bound states in ongoing experimental searches would be difficult.

  11. Transfer Function Bounds for Partial-unit-memory Convolutional Codes Based on Reduced State Diagram

    Science.gov (United States)

    Lee, P. J.

    1984-01-01

    The performance of a coding system consisting of a convolutional encoder and a Viterbi decoder is analytically found by the well-known transfer function bounding technique. For the partial-unit-memory byte-oriented convolutional encoder with m sub 0 binary memory cells and (k sub 0 m sub 0) inputs, a state diagram of 2(K) (sub 0) was for the transfer function bound. A reduced state diagram of (2 (m sub 0) +1) is used for easy evaluation of transfer function bounds for partial-unit-memory codes.

  12. Bound Electron States in Skew-symmetric Quantum Wire Intersections

    Science.gov (United States)

    2014-01-01

    dots is that they lie far beneath the surface of the surround- ing material whose associated states are potentially meddlesome. Colloidal chemistry ... textbooks have posed problems dealing with these states, but the approaches used in these problems involved variational methods or limiting cases, which are...of the Introductory Quantum Mechanics textbook by D.J.Griffith (Pearson, 2005). My trial function that has been developed in this the- sis, has an

  13. The variational-relaxation algorithm for finding quantum bound states

    Science.gov (United States)

    Schroeder, Daniel V.

    2017-09-01

    I describe a simple algorithm for numerically finding the ground state and low-lying excited states of a quantum system. The algorithm is an adaptation of the relaxation method for solving Poisson's equation, and is fundamentally based on the variational principle. It is especially useful for two-dimensional systems with nonseparable potentials, for which simpler techniques are inapplicable yet the computation time is minimal.

  14. Scaling and universality in two dimensions: three-body bound states with short-ranged interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bellotti, F F; Frederico, T [Instituto Tecnologico de Aeronautica, DCTA, 12.228-900 Sao Jose dos Campos, SP (Brazil); Yamashita, M T [Instituto de Fisica Teorica, UNESP-Univ Estadual Paulista, CP 70532-2, CEP 01156-970, Sao Paulo, SP (Brazil); Fedorov, D V; Jensen, A S; Zinner, N T, E-mail: zinner@phys.au.dk [Department of Physics and Astronomy-Aarhus University, Ny Munkegade, bygn. 1520, DK-8000 Arhus C (Denmark)

    2011-10-28

    The momentum space zero-range model is used to investigate universal properties of three interacting particles confined to two dimensions. The pertinent equations are first formulated for a system of two identical and one distinct particle and the two different two-body subsystems are characterized by two-body energies and masses. The three-body energy in units of one of the two-body energies is a universal function of the other two-body energy and the mass ratio. We derive convenient analytical formulae for calculations of the three-body energy as a function of these two independent parameters and exhibit the results as universal curves. In particular, we show that the three-body system can have any number of stable bound states. When the mass ratio of the distinct to identical particles is greater than 0.22, we find that at most two stable bound states exist, while for two heavy and one light mass an increasing number of bound states is possible. The specific number of stable bound states depends on the ratio of two-body bound state energies and on the mass ratio, and we map out an energy-mass phase diagram of the number of stable bound states. Realizable systems of both fermions and bosons are discussed in this framework.

  15. QQqq Four-Quark Bound States in Chiral SU(3) Quark Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming; ZHANG Hai-Xia; ZHANG Zong-Ye

    2008-01-01

    The possibility of QQqq heavy-light four-quark bound states has been analyzed by means of the chiral SU(3) quark model, where Q is the heavy quark (c or b) and q is the light quark (u, d, or s). We obtain a bound state for the bbnn configuration with quantum number JP=1+, I=0 and for the ccnn (JP=1+, I=0) configuration, which is not bound but slightly above the D*D* threshold (n is u or d quark). Meanwhile, we also conclude that a weakly bound state in bbnn system can also be found without considering the chiral quark interactions between the two light quarks, yet its binding energy is weaker than that with the chiral quark interactions.

  16. An Improved Lower Bound Limit State Optimisation Algorithm

    DEFF Research Database (Denmark)

    Frier, Christian; Damkilde, Lars

    2010-01-01

    Limit State analysis has been used in engineering practice for many years e.g. the yield-line method for concrete slabs and slip-line solutions in geotechnics. In the recent years there has been an increased interest in numerical Limit State analysis, and today algorithms take into account the non......-linear yield criteria. The aim of the paper is to refine an earlier presented effective method which reduces the number of optimisation variables considerably by eliminating the equilibrium equations a priori and improvements are made on the interior point optimisation algorithm....

  17. Bose-Einstein condensation of heteronuclear bound states formed in a Fermi gas of two atomic species: a microscopic approach

    Science.gov (United States)

    Peletminskii, A. S.; Peletminskii, S. V.; Slyusarenko, Yu V.

    2017-07-01

    We study a many-body system of interacting fermionic atoms of two species that are in thermodynamic equilibrium with their condensed heteronuclear bound states (molecules). In order to describe such an equilibrium state, we use a microscopic approach that involves the Bogoliubov model for a weakly interacting Bose gas and approximate formulation of the second quantization method in the presence of bound states of particles elaborated earlier by the authors. This microscopic approach is valid at low temperatures, when the average kinetic energy of all the components in the system is small in comparison with the bound state energy. The coupled equations, which relate the chemical potentials of fermionic components and molecular condensate density, are obtained within the proposed theory. At zero temperature, these equations are analyzed both analytically and numerically, attracting the relevant experimental data. We find the conditions at which a condensate of heteronuclear molecules coexists in equilibrium with degenerate components of a Fermi gas. The ground state energy and single-particle excitation spectrum are found. The boundaries of the applicability of the developed microscopic approach are analyzed.

  18. Positron-molecule interactions: resonant attachment, annihilation, and bound states

    CERN Document Server

    Gribakin, G F; Surko, C M; 10.1103/RevModPhys.82.2557

    2010-01-01

    This article presents an overview of current understanding of the interaction of low-energy positrons with molecules with emphasis on resonances, positron attachment and annihilation. Annihilation rates measured as a function of positron energy reveal the presence of vibrational Feshbach resonances (VFR) for many polyatomic molecules. These resonances lead to strong enhancement of the annihilation rates. They also provide evidence that positrons bind to many molecular species. A quantitative theory of VFR-mediated attachment to small molecules is presented. It is tested successfully for selected molecules (e.g., methyl halides and methanol) where all modes couple to the positron continuum. Combination and overtone resonances are observed and their role is elucidated. In larger molecules, annihilation rates from VFR far exceed those explicable on the basis of single-mode resonances. These enhancements increase rapidly with the number of vibrational degrees of freedom. While the details are as yet unclear, intr...

  19. Predictions of the hidden-charm molecular states with four-quark component

    CERN Document Server

    Chen, Rui; Liu, Yan-Rui; Zhu, Shi-Lin

    2015-01-01

    In this work, we study the $T\\bar{T}$-type molecular systems systematically via one pion exchange model. With the effective potentials, we try to find the bound state solutions of the corresponding systems, which provide crucial information of whether there exist the $T\\bar{T}$-type molecular states. According to our analysis, we predict some $T\\bar{T}$-type molecular states which may be accessible at future experiments like LHCb and forthcoming BelleII.

  20. Bethe-Salpeter bound-state structure in Minkowski space

    CERN Document Server

    Gutierrez, C; Frederico, T; Salmè, G; Viviani, M; Tomio, Lauro

    2016-01-01

    The quantitative investigation of the scalar Bethe-Salpeter equation in Minkowski space, within the ladder-approximation framework, is extended to include the excited states. This study has been carried out for an interacting system composed by two massive bosons exchanging a massive scalar, by adopting (i) the Nakanishi integral representation of the Bethe-Salpeter amplitude, and (ii) the formally exact projection onto the null plane. Our analysis, on one hand, confirms the reliability of the method already applied to the ground state and, on the other one, extends the investigation from the valence distribution in momentum space to the corresponding quantity in the impact-parameter space, pointing out some relevant features, like (i) the equivalence between Minkowski and Euclidean transverse-momentum amplitudes, and (ii) the leading exponential fall-off of the valence wave function in the impact-parameter space.

  1. Bethe–Salpeter bound-state structure in Minkowski space

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, C. [Instituto de Física Teórica, Universidade Estadual Paulista, 01156-970 São Paulo, SP (Brazil); Gigante, V.; Frederico, T. [Instituto Tecnológico de Aeronáutica, DCTA, 12.228-900 São José dos Campos, SP (Brazil); Salmè, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma, P.le A. Moro 2, 00185 Roma (Italy); Viviani, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo Pontecorvo 3, 56100 Pisa (Italy); Tomio, Lauro, E-mail: tomio@ift.unesp.br [Instituto de Física Teórica, Universidade Estadual Paulista, 01156-970 São Paulo, SP (Brazil); Instituto Tecnológico de Aeronáutica, DCTA, 12.228-900 São José dos Campos, SP (Brazil)

    2016-08-10

    The quantitative investigation of the scalar Bethe–Salpeter equation in Minkowski space, within the ladder-approximation framework, is extended to include the excited states. This study has been carried out for an interacting system composed by two massive bosons exchanging a massive scalar, by adopting (i) the Nakanishi integral representation of the Bethe–Salpeter amplitude, and (ii) the formally exact projection onto the null plane. Our analysis, on one hand, confirms the reliability of the method already applied to the ground state and, on the other one, extends the investigation from the valence distribution in momentum space to the corresponding quantity in the impact-parameter space, pointing out some relevant features, like (i) the equivalence between Minkowski and Euclidean transverse-momentum amplitudes, and (ii) the leading exponential fall-off of the valence wave function in the impact-parameter space.

  2. Andreev Spectra and Subgap Bound States in Multiband Superconductors

    OpenAIRE

    Golubov, A. A.; Brinkman, A.; Tanaka, Yukio; Mazin, I.I.; Dolgov, O. V.

    2009-01-01

    The theory of Andreev conductance is formulated for junctions involving normal metals (N) and multiband superconductors (S) and applied to the case of superconductors with nodeless extended $s_{\\pm}$-wave order parameter symmetry, as possibly realized in the recently discovered ferro pnictides. We find qualitative differences from tunneling into s-wave or d-wave superconductors that may help to identify such a state. First, interband interference leads to a suppression of Andreev reflection i...

  3. POLYMER BOUND TRANSITION METAL COMPLEXES FOR CATALYTIC OXIDATION OF CYCLOHEXENE WITH MOLECULAR OXYGEN

    Institute of Scientific and Technical Information of China (English)

    HAO Chengjun; ZhAO Ganqing

    2007-01-01

    Polymer-bound Schiff-base ligand (PS-Sal-Cys) was prepared from the polystyrene-bound salicylaldehyde and L-cysteine, its complex (PS-Sal-Cys-Mn) was also synthesized. The polymer ligand and its complex were characterized by infrared spectra (IR), small area X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma-atomic emission spectro (ICP-AES). In the presence of complex, cyclohexane can be effectively oxidized by molecular oxygen without a reductant. The major products of the reaction are 2-cyclohexen-1-ol, 2-cyclohexen-1-one, and 2-cyclohexen-1-hydroperoxide, which is different from the typical oxidation of cyclohexene. The mechanism of cyclohexene oxidation is also discussed.

  4. Emergent gauge field for a chiral bound state on curved surface

    Science.gov (United States)

    Shi, Zhe-Yu; Zhai, Hui

    2017-09-01

    Emergent physics is one of the most important concepts in modern physics, and one of the most intriguing examples is the emergent gauge field. Here we show that a gauge field emerges for a chiral bound state formed by two attractively interacting particles on a curved surface. We demonstrate explicitly that the center-of-mass wave function of such a deeply bound state is monopole harmonic instead of spherical harmonic, which means that the bound state experiences a magnetic monopole at the center of the sphere. This emergent gauge field is due to the coupling between the center-of-mass and the relative motion on a curved surface, and our results can be generalized to an arbitrary curved surface. This result establishes an intriguing connection between the space curvature and gauge field, and paves an alternative way to engineer a topological state with space curvature, and may be observed in a cold atom system.

  5. Fingerprint of topological Andreev bound states in phase-dependent heat transport

    Science.gov (United States)

    Sothmann, Björn; Hankiewicz, Ewelina M.

    2016-08-01

    We demonstrate that phase-dependent heat currents through superconductor-topological insulator Josephson junctions provide a useful tool to probe the existence of topological Andreev bound states, even for multichannel surface states. We predict that in the tunneling regime topological Andreev bound states lead to a minimum of the thermal conductance for a phase difference ϕ =π , in clear contrast to a maximum of the thermal conductance at ϕ =π that occurs for trivial Andreev bound states in superconductor-normal-metal tunnel junctions. This opens up the possibility that phase-dependent heat transport can distinguish between topologically trivial and nontrivial 4 π modes. Furthermore, we propose a superconducting quantum interference device geometry where phase-dependent heat currents can be measured using available experimental technology.

  6. Tunable Plasmonic Reflection by Bound 1D Electron States in a 2D Dirac Metal

    Science.gov (United States)

    Jiang, B.-Y.; Ni, G. X.; Pan, C.; Fei, Z.; Cheng, B.; Lau, C. N.; Bockrath, M.; Basov, D. N.; Fogler, M. M.

    2016-08-01

    We show that the surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected by linelike perturbations hosting one-dimensional electron states. The reflection originates from a strong enhancement of the local optical conductivity caused by optical transitions involving these bound states. We propose that the bound states can be systematically created, controlled, and liquidated by an ultranarrow electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally enhanced conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical concept.

  7. Tunable Plasmonic Reflection by Bound 1D Electron States in a 2D Dirac Metal.

    Science.gov (United States)

    Jiang, B-Y; Ni, G X; Pan, C; Fei, Z; Cheng, B; Lau, C N; Bockrath, M; Basov, D N; Fogler, M M

    2016-08-19

    We show that the surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected by linelike perturbations hosting one-dimensional electron states. The reflection originates from a strong enhancement of the local optical conductivity caused by optical transitions involving these bound states. We propose that the bound states can be systematically created, controlled, and liquidated by an ultranarrow electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally enhanced conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical concept.

  8. In-medium mathaccent "7016relax K- and eta -meson Interactions and Bound States

    Science.gov (United States)

    Gal, A.; Friedman, E.; Barnea, N.; Cieplý, A.; Mareš, J.; Gazda, D.

    The role played by subthreshold meson-baryon dynamics is demonstrated in kaonic-atom, Kbar-nuclear and eta-nuclear bound-state calculations within in-medium models of Kbar-N and eta-N interactions. New analyses of kaonic atom data reveal appreciable multi-nucleon contributions. Calculations of eta-nuclear bound states show, in particular, that the eta-N scattering length is not a useful indicator of whether or not eta mesons bind in nuclei nor of the widths anticipated for such states.

  9. The systematic study of deeply bound kaonic nuclei with antisymmetrized molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dote, Akinobu; Akaishi, Yoshinori [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Horiuchi, Hisashi [Kyoto Univ. (Japan). Dept. of Physics; Yamazaki, Toshimitsu [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    2002-09-01

    We have investigated systematically kaonic nuclei which are ppnK{sup -}, pppK{sup -}, pppnK{sup -} and {sup 6}BeK{sup -}. In the present study we have improved the framework of antisymmetrized molecular dynamics (AMD) so that we can treat K{sup -} - K-bar{sup 0} mixing and perform not only angular-momentum projection but also isospin projection. As a result of our calculation with a new framework of AMD, all kaonic nuclei we calculated are deeply bound by about 100 MeV. We found interesting structures in pppK{sup -} and {sup 6}BeK{sup -}. (author)

  10. Algorithms for polynomial spectral factorization and bounded-real balanced state space representations

    NARCIS (Netherlands)

    Rapisarda, P.; Trentelman, H.L.; Minh, H.B.

    2013-01-01

    We illustrate an algorithm that starting from the image representation of a strictly bounded-real system computes a minimal balanced state variable, from which a minimal balanced state realization is readily obtained. The algorithm stems from an iterative procedure to compute a storage function, bas

  11. Normalization and perturbation theory for tightly bound states of the spinor Bethe-Salpeter equation

    NARCIS (Netherlands)

    L.G. Suttorp

    1976-01-01

    The normalisation integrals for the tightly-bound-state solutions of the spinor Bethe-Salpeter equation that have been derived recently are evaluated. Ghost states are found to appear when the continuous parameters characterising the type of fermion-boson interaction reach a critical value. Perturba

  12. Normalization and perturbation theory for tightly bound states of the spinor Bethe-Salpeter equation

    NARCIS (Netherlands)

    Suttorp, L.G.

    1976-01-01

    The normalisation integrals for the tightly-bound-state solutions of the spinor Bethe-Salpeter equation that have been derived recently are evaluated. Ghost states are found to appear when the continuous parameters characterising the type of fermion-boson interaction reach a critical value. Perturba

  13. Search for $\\eta$'(958)-nucleus bound states by (p,d) reaction at GSI and FAIR

    CERN Document Server

    Fujioka, H; Benlliure, J; Brinkmann, K -T; Friedrich, S; Geissel, H; Gellanki, J; Guo, C; Gutz, E; Haettner, E; Harakeh, M N; Hayano, R S; Higashi, Y; Hirenzaki, S; Hornung, C; Igarashi, Y; Ikeno, N; Itahashi, K; Iwasaki, M; Jido, D; Kalantar-Nayestanaki, N; Kanungo, R; Knoebel, R; Kurz, N; Metag, V; Mukha, I; Nagae, T; Nagahiro, H; Nanova, M; Nishi, T; Ong, H J; Pietri, S; Prochazka, A; Rappold, C; Reiter, M P; Rodríguez-Sánchez, J L; Scheidenberger, C; Simon, H; Sitar, B; Strmen, P; Sun, B; Suzuki, K; Szarka, I; Takechi, M; Tanaka, Y K; Tanihata, I; Terashima, S; Watanabe, Y N; Weick, H; Widmann, E; Winfield, J S; Xu, X; Yamakami, H; Zhao, J

    2015-01-01

    The mass of the {\\eta}' meson is theoretically expected to be reduced at finite density, which indicates the existence of {\\eta}'-nucleus bound states. To investigate these states, we perform missing-mass spectroscopy for the (p, d) reaction near the {\\eta}' production threshold. The overview of the experimental situation is given and the current status is discussed.

  14. Explicit formula for the Holevo bound for two-parameter qubit-state estimation problem

    Science.gov (United States)

    Suzuki, Jun

    2016-04-01

    The main contribution of this paper is to derive an explicit expression for the fundamental precision bound, the Holevo bound, for estimating any two-parameter family of qubit mixed-states in terms of quantum versions of Fisher information. The obtained formula depends solely on the symmetric logarithmic derivative (SLD), the right logarithmic derivative (RLD) Fisher information, and a given weight matrix. This result immediately provides necessary and sufficient conditions for the following two important classes of quantum statistical models; the Holevo bound coincides with the SLD Cramér-Rao bound and it does with the RLD Cramér-Rao bound. One of the important results of this paper is that a general model other than these two special cases exhibits an unexpected property: the structure of the Holevo bound changes smoothly when the weight matrix varies. In particular, it always coincides with the RLD Cramér-Rao bound for a certain choice of the weight matrix. Several examples illustrate these findings.

  15. The Properties of Bound and Unbound Molecular Cloud Populations Formed in Galactic Disc Simulations

    CERN Document Server

    Ward, Rachel L; Wadsley, James; Sills, Alison; Couchman, H M P

    2015-01-01

    We explore the effect of galactic environment on properties of molecular clouds. Using clouds formed in a large-scale galactic disc simulation, we measure the observable properties from synthetic column density maps. We confirm that a significant fraction of unbound clouds forms naturally in a galactic disc environment and that a mixed population of bound and unbound clouds can match observed scaling relations and distributions for extragalactic molecular clouds. By dividing the clouds into inner and outer disc populations, we compare their distributions of properties and test whether there are statistically significant differences between them. We find that clouds in the outer disc have lower masses, sizes, and velocity dispersions as compared to those in the inner disc for reasonable choices of the inner/outer boundary. We attribute the differences to the strong impact of galactic shear on the disc stability at large galactocentric radii. In particular, our Toomre analysis of the disc shows a narrowing enve...

  16. Bound entanglement and entanglement bounds

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, Simeon [Physikalisch-Astronomische Fakultaet, Friedrich-Schiller-Univesitaet Jena (Germany)]|[Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg (Germany); Melo, Fernando de; Mintert, Florian; Buchleitner, Andreas [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg (Germany)]|[Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str.38, D-01187 Dresden (Germany); Bae, Joonwoo [School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012 (Korea); Hiesmayr, Beatrix [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria)

    2008-07-01

    We investigate the separability of Bell-diagonal states of two qutrits. By using lower bounds to algebraically estimate concurrence, we find convex regions of bound entangled states. Some of these regions exactly coincide with the obtained results when employing optimal entanglement witnesses, what shows that the lower bound can serve as a precise detector of entanglement. Some hitherto unknown regions of bound entangled states were discovered with this approach, and delimited efficiently.

  17. Majorana bound state in a coupled quantum-dot hybrid-nanowire system

    Science.gov (United States)

    Deng, M. T.; Vaitiekėnas, S.; Hansen, E. B.; Danon, J.; Leijnse, M.; Flensberg, K.; Nygård, J.; Krogstrup, P.; Marcus, C. M.

    2016-12-01

    Hybrid nanowires combining semiconductor and superconductor materials appear well suited for the creation, detection, and control of Majorana bound states (MBSs). We demonstrate the emergence of MBSs from coalescing Andreev bound states (ABSs) in a hybrid InAs nanowire with epitaxial Al, using a quantum dot at the end of the nanowire as a spectrometer. Electrostatic gating tuned the nanowire density to a regime of one or a few ABSs. In an applied axial magnetic field, a topological phase emerges in which ABSs move to zero energy and remain there, forming MBSs. We observed hybridization of the MBS with the end-dot bound state, which is in agreement with a numerical model. The ABS/MBS spectra provide parameters that are useful for understanding topological superconductivity in this system.

  18. Short-lived two-soliton bound states in weakly perturbed nonlinear Schrodinger equation.

    Science.gov (United States)

    Dmitriev, Sergey V.; Shigenari, Takeshi

    2002-06-01

    Resonant soliton collisions in the weakly discrete nonlinear Schrodinger equation are studied numerically. The fractal nature of the soliton scattering, described in our previous works, is investigated in detail. We demonstrate that the fractal scattering pattern is related to the existence of the short-lived two-soliton bound states. The bound state can be regarded as a two-soliton quasiparticle of a new type, different from the breather. We establish that the probability P of a bound state with the lifetime L follows the law P approximately L(-3). In the frame of a simple two-particle model, we derive the nonlinear map, which generates the fractal pattern similar to that observed in the numerical study of soliton collisions. (c) 2002 American Institute of Physics.

  19. Widths of K¯-nuclear deeply bound states in a dynamical model

    Science.gov (United States)

    Mareš, J.; Friedman, E.; Gal, A.

    2005-01-01

    The relativistic mean field (RMF) model is applied to a system of nucleons and a Kbar meson, interacting via scalar and vector boson fields. The model incorporates the standard RMF phenomenology for bound nucleons and, for the Kbar meson, it relates to low-energy Kbar N and K- atom phenomenology. Deeply bound Kbar nuclear states are generated dynamically across the periodic table and are exhibited for 12C and 16O over a wide range of binding energies. Substantial polarization of the core nucleus is found for these light nuclei. Absorption modes are also included dynamically, considering explicitly both the resulting compressed nuclear density and the reduced phase space for Kbar absorption from deeply bound states. The behavior of the calculated width as function of the Kbar binding energy is studied in order to explore limits on the possible existence of narrow Kbar nuclear states.

  20. The Equilibrium State of Molecular Regions in the Outer Galaxy

    CERN Document Server

    Heyer, M H; Snell, R L

    2001-01-01

    A summary of global properties and an evaluation of the equilibrium state of molecular regions in the outer Galaxy are presented from the decomposition of the FCRAO Outer Galaxy Survey and targeted 12CO and 13CO observations of four giant molecular cloud complexes. The ensemble of identified objects includes both small, isolated clouds and clumps within larger cloud complexes. 12CO velocity dispersions show little variation with cloud sizes for radii less than 10 pc. It is demonstrated that the internal motions of regions with molecular masses greater than 10**4 msuns are bound by self gravity, yet, the constituent clumps of cloud complexes and isolated molecular clouds with M < 10**3 msuns are not in self gravitational equilibrium. The required external pressures to maintain the equilibrium of this population are (1-2)x10**4 cm-3-K.

  1. Hybridization Efficiency of Molecular Beacons Bound to Gold Nanowires: Effect of Surface Coverage and Target Length

    Science.gov (United States)

    2010-01-01

    Surface-bound nucleic acid probes designed to adopt specific secondary structures are becoming increasingly important in a range of biosensing applications but remain less well characterized than traditional single-stranded probes, which are typically designed to avoid secondary structure. We report the hybridization efficiency for surface-immobilized hairpin DNA probes. Our probes are molecular beacons, carrying a 3′ dye moiety and a 5′ thiol for attachment to gold nanowires, which serve as both scaffolds for probe attachment and quenchers. Hybridization efficiency was dependent on probe surface coverage, reaching a maximum of ∼90% at intermediate coverages of (1−2) × 1012 probes/cm2 and dropping to ≤20% at higher or lower coverages. Fluorescence intensity did not track with the number of target molecules bound, and was highest for high probe coverage despite the lower bound targets per square centimeter. Backfilling with short thiolated oligoethylene glycol spacers increased hybridization efficiency at low hairpin probe coverages (∼(3−4) × 1011 probes/cm2), but not at higher probe coverages (1 × 1012/cm2). We also evaluated the effect of target length by adding up to 50 nonhybridizing nucleotides to the 3′ or 5′ end of the complementary target sequence. Additional nucleotides on the 3′ end of the complementary target sequence (i.e., the end near the nanowire surface) had a much greater impact on hybridization efficiency as compared to nucleotides added to the 5′ end. This work provides guidance in designing sensors in which surface-bound probes designed to adopt secondary structures are used to detect target sequences from solution. PMID:21038880

  2. Interaction of solitons and the formation of bound states in the generalized Lugiato-Lefever equation

    Science.gov (United States)

    Parra-Rivas, Pedro; Gomila, Damia; Colet, Pere; Gelens, Lendert

    2017-07-01

    Bound states, also called soliton molecules, can form as a result of the interaction between individual solitons. This interaction is mediated through the tails of each soliton that overlap with one another. When such soliton tails have spatial oscillations, locking or pinning between two solitons can occur at fixed distances related with the wavelength of these oscillations, thus forming a bound state. In this work, we study the formation and stability of various types of bound states in the Lugiato-Lefever equation by computing their interaction potential and by analyzing the properties of the oscillatory tails. Moreover, we study the effect of higher order dispersion and noise in the pump intensity on the dynamics of bound states. In doing so, we reveal that perturbations to the Lugiato-Lefever equation that maintain reversibility, such as fourth order dispersion, lead to bound states that tend to separate from one another in time when noise is added. This separation force is determined by the shape of the envelope of the interaction potential, as well as an additional Brownian ratchet effect. In systems with broken reversibility, such as third order dispersion, this ratchet effect continues to push solitons within a bound state apart. However, the force generated by the envelope of the potential is now such that it pushes the solitons towards each other, leading to a null net drift of the solitons. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  3. Bound states of the $\\phi^4$ model via the Non-Perturbative Renormalization Group

    CERN Document Server

    Rose, F; Leonard, F; Delamotte, B

    2016-01-01

    Using the nonperturbative renormalization group, we study the existence of bound states in the symmetry-broken phase of the scalar $\\phi^4$ theory in all dimensions between two and four and as a function of the temperature. The accurate description of the momentum dependence of the two-point function, required to get the spectrum of the theory, is provided by means of the Blaizot--M\\'endez-Galain--Wschebor approximation scheme. We confirm the existence of a bound state in dimension three, with a mass within 1% of previous Monte-Carlo and numerical diagonalization values.

  4. The Relativistic Three-Body Bound State in Three-Dimensions

    Directory of Open Access Journals (Sweden)

    Hadizadeh M. R.

    2016-01-01

    Full Text Available Studying of the relativistic three-body bound state in a three-dimensional (3D approach is a necessary first step in a process to eventually perform scattering calculations at GeV energies, where partial-wave expansions are not useful. To this aim we recently studied relativistic effects in the binding energy and for the first time, obtained the relativistic 3B wave function [1]. The relativistic Faddeev integral equations for the bound state are formulated in terms of momentum vectors, and relativistic invariance is incorporated within the framework of Poincaré invariant quantum mechanics.

  5. The Analogue of the Aharonov-Bohm Effect for Bound States for Neutral Particles

    Science.gov (United States)

    Bakke, Knut; Furtado, C.

    We study the analogue of the Aharonov-Bohm effect for bound states for a neutral particle with a permanent magnetic dipole moment interacting with an external field. We consider a neutral particle confined to moving between two coaxial cylinders and show the dependence of the energy levels on the Aharonov-Casher quantum flux. Moreover, we show that the same flux dependence of the bound states can be found when the neutral particle is confined to a one-dimensional quantum ring and a quantum dot, and we also calculate the persistent currents in each case.

  6. Lorentz contraction of bound states in 1+1 dimensional gauge theory

    Science.gov (United States)

    Järvinen, M.

    2004-09-01

    We consider the Lorentz contraction of a fermion-antifermion bound state in 1+1 dimensional QED. In 1+1 dimensions the absence of physical, propagating photons allows us to explicitly solve the weak coupling limit α≪m2 of the Bethe-Salpeter bound state equation in any Lorentz frame. In a time-ordered formalism it is seen that all pair production is suppressed in this limit. The wave function is shown to contract while the mass spectrum is invariant under boosts.

  7. Bound and Scattering State of Position Dependent Mass Klein-Gordon Equation with Hulthen Plus Deformed-Type Hyperbolic Potential

    Science.gov (United States)

    Ikot, A. N.; Obong, H. P.; Abbey, T. M.; Zare, S.; Ghafourian, M.; Hassanabadi, H.

    2016-09-01

    In this article we use supersymmetry quantum mechanics and factorization methods to study the bound and scattering state of Klein-Gordon equation with deformed Hulthen plus deformed hyperbolical potential for arbitrary state in D-dimensions. The analytic relativistic bound state eigenvalues and the scattering phase factor are found in closed form. We report on the numerical results for the bound state energy in D-dimensions.

  8. Study of hyperfine structure in simple atoms and precision tests of the bound state QED

    Energy Technology Data Exchange (ETDEWEB)

    Karshenboim, S.G. [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany); D.I. Mendeleev Institute for Metrology (VNIIM), St. Petersburg 190005 (Russian Federation); Eidelman, S.I. [Budker Institute for Nuclear Physics and Novosibirsk State University, Novosibirsk, 630090 (Russian Federation); Fendel, P. [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany); Ivanov, V.G. [Pulkovo Observatory, St. Petersburg 196140 (Russian Federation); Kolachevsky, N.N. [P.N. Lebedev Physics Institute, Moscow, 119991 (Russian Federation); Shelyuto, V.A. [D.I. Mendeleev Institute for Metrology (VNIIM), St. Petersburg 190005 (Russian Federation); Haensch, T.W. [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany)

    2006-12-15

    We consider the most accurate tests of bound state QED, precision theory of simple atoms, related to the hyperfine splitting in light hydrogen-like atoms. We discuss the HFS interval of the 1s state in muonium and positronium and of the 2s state in hydrogen, deuterium and helium-3 ion. We summarize their QED theory and pay attention to involved effects of strong interactions. We also consider recent optical measurements of the 2s HFS interval in hydrogen and deuterium.

  9. Study of hyperfine structure in simple atoms and precision tests of the bound state QED

    CERN Document Server

    Karshenboim, S G; Fendel, P; Ivanov, V G; Kolachevsky, N N; Shelyuto, V A; Hänsch, T W

    2006-01-01

    We consider the most accurate tests of bound state QED, precision theory of simple atoms, related to the hyperfine splitting in light hydrogen-like atoms. We discuss the HFS interval of the 1s state in muonium and positronium and of the 2s state in hydrogen, deuterium and helium-3 ion. We summarize their QED theory and pay attention to involved effects of strong interactions. We also consider recent optical measurements of the 2s HFS interval in hydrogen and deuterium.

  10. Upper Bounds on the Degeneracy of the Ground State in Quantum Field Models

    Directory of Open Access Journals (Sweden)

    Asao Arai

    2016-01-01

    Full Text Available Axiomatic abstract formulations are presented to derive upper bounds on the degeneracy of the ground state in quantum field models including massless ones. In particular, given is a sufficient condition under which the degeneracy of the ground state of the perturbed Hamiltonian is less than or equal to the degeneracy of the ground state of the unperturbed one. Applications of the abstract theory to models in quantum field theory are outlined.

  11. On the lipid head group hydration of floating surface monolayers bound to self-assembled molecular protein layers

    DEFF Research Database (Denmark)

    Lösche, M.; Erdelen, C.; Rump, E.

    1994-01-01

    with molecular resolution. Emphasis here is placed on the hydration of the lipid head groups in the bound state. For three functionalized lipids with spacers of different lengths between the biotin and their chains it was observed that the head groups were dehydrated in monolayers of the pure lipids, which were...... kept at low surface pressure before protein adsorption. The introduction of dipole moments at the interface by the admixture of phospholipids or the application of lateral pressure on the lipid monolayer before protein adsorption were found to impose an extension of the spacer moieties. The biotin...... groups were thus presented further away from the interface, and a hydration layer between the protein and the functionalized interface was observed in the self-assembled supramolecular structures....

  12. Formation of deeply bound LiRb molecules via photoassociation to near asymptotic states

    Science.gov (United States)

    Lorenz, John D.

    We present the results of a spectroscopic study LiRb molecules created via photoassociation (PA) to vibration levels of the 4(1) potential. Atoms are first cooled and trapped in a dual species 7Li/ 85Rb magneto-optical trap (MOT) at temperatures of ≈ 1 mK or less. In a cold sample of sufficient density, PA occurs when a resonant laser field induces a free-bound transition to create molecules in an excited electronic potential. After spontaneous emission the molecules decay to a mixture of free atoms and bound molecules depending on the Franck-Condon factors (FCFs) of the excited and ground state vibrational wavefunctions. While excited LiRb * has been previously detected by trap loss fluorescence detection, ionization spectroscopy is required to determine the population of ground state levels after decay. We detect ground state molecules via resonantly enhanced multiphoton ionization (REMPI) where a two photon ionization transition is enhanced by an intermediate resonance. The intermediate resonances match progressions from the D1pi and possibly B1Π potentials, many of which have known energies obtained from previous heat pipe experiments. This is contrary to the expectation that weakly bound LiRb * should primarily decay to weakly bound levels of the ground state and could point to a possible path for creating molecules in the rovibronic ground state.

  13. Investigation of the $nn\\Lambda$ bound state in pionless effective theory

    CERN Document Server

    Ando, Shung-Ichi; Oh, Yongseok

    2015-01-01

    The possibility of an $nn\\Lambda$ bound state is investigated in the framework of pionless effective field theory at leading order. A system of coupled integral equations are constructed in the spin-isospin basis, of which numerical solutions are investigated. In particular, we make use of the limit cycle behavior, i.e., cyclic singularities of coupled integral equations of the system, which would be associated with the formation of a three-body bound state, so-called the Efimov state, in the unitary limit. Furthermore, we find that, when the sharp momentum cutoff introduced in the integral equations is taken significantly larger than the hard scale of the effective theory, the coupling of a three-body contact interaction becomes cyclically singular indicating the onset of Efimov-like bound state formation. However, the paucity of empirical information to determine the parameters of the theory precludes a definitive conclusion on the existence of such a bound state. As a simple test of the feasibility of the ...

  14. Spatial imaging of the movement of bound atoms to reveal the Rydberg molecular bond via electromagnetically induced transparency

    OpenAIRE

    Huo, Mingxia

    2016-01-01

    We propose an approach to detect individual Rydberg molecules with each molecule consisting of two atoms in different Rydberg states. The scheme exploits the movement of atoms in the presence of an external force that exerts only on atoms in one Rydberg state. Since the movement of atoms in the other Rydberg state depends on whether they are bound with atoms directly driven by the applied force, bound atoms can be distinguished from unbound atoms. By utilizing electromagnetically induced tran...

  15. Manipulation of Squeezed Two-Phonon Bound States using Femtosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Nakamura Kazutaka G.

    2013-03-01

    Full Text Available Two-phonon bound states have been excited exclusively in ZnTe(110 via impulsive stimulated second-order Raman scattering, essentially being squeezed states due to phase coherent excitation of two identical components anticorrelated in the wave vector. By using coherent control technique with a pair of femtosecond laser pulses, the manipulation of squeezed states has been demonstrated in which both the amplitude and lifetime of coherent oscillations of squeezed states are modulated, indicating the feasibility to control the quantum noise and the quantum nature of phonon squeezed states, respectively.

  16. Backbone resonance assignments for G protein α(i3) subunit in the GDP-bound state.

    Science.gov (United States)

    Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio

    2014-10-01

    Guanine-nucleotide binding proteins (G proteins) serve as molecular switches in signaling pathways, by coupling the activation of G protein-coupled receptors (GPCRs) at the cell surface to intracellular responses. In the resting state, G protein forms a heterotrimer, consisting of the G protein α subunit with GDP (Gα·GDP) and the G protein βγ subunit (Gβγ). Ligand binding to GPCRs promotes the GDP-GTP exchange on Gα, leading to the dissociation of the GTP-bound form of Gα (Gα·GTP) and Gβγ. Then, Gα·GTP and Gβγ bind to their downstream effector enzymes or ion channels and regulate their activities, leading to a variety of cellular responses. Finally, Gα hydrolyzes the bound GTP to GDP and returns to the resting state by re-associating with Gβγ. The G proteins are classified with four major families based on the amino acid sequences of Gα: i/o, s, q/11, and 12/13. Here, we established the backbone resonance assignments of human Gαi3, a member of the i/o family with a molecular weight of 41 K, in complex with GDP. The chemical shifts were compared with those of Gα(i3) in complex with a GTP-analogue, GTPγS, which we recently reported, indicating that the residues with significant chemical shift differences are mostly consistent with the regions with the structural differences between the GDP- and GTPγS-bound states, as indicated in the crystal structures. The assignments of Gα(i3)·GDP would be useful for the analyses of the dynamics of Gα(i3) and its interactions with various target molecules.

  17. Aspects of Majorana Bound States in One-Dimensional Systems with and without Time-Reversal Symmetry

    DEFF Research Database (Denmark)

    Wölms, Konrad Udo Hannes

    bound states in the measurement still has to be understood better. And example would be the frequently performed tunnel probe measurement on Majorana bound states [26, 40, 41]. A second reason why Majorana bound states are interesting is their potential application to a certain quantum computation...... scheme. This scheme, called topological quantum computation, relies on the braiding of so-called non-abelian anyons in order to perform computations [18]. Majorana bound states are the simplest example of such non-abelian anyons. No other non-abelian anyons have been realized experimentally yet, which...... puts further focus on the study of Majorana bound states. Additionally to probing Majorana bound states, their use in topological quantum computation also requires them to be manipulated. This also poses an interesting problem for both experimentalists and theorists [25, 27]. We can summarize...

  18. Resonances from QCD bound states and the 750 GeV diphoton excess

    Science.gov (United States)

    Kats, Yevgeny; Strassler, Matthew J.

    2016-05-01

    Pair production of colored particles is in general accompanied by production of QCD bound states (onia) slightly below the pair-production threshold. Bound state annihilation leads to resonant signals, which in some cases are easier to see than the decays of the pair-produced constituents. In a previous paper ( arXiv:1204.1119 URL"/> ) we estimated the bound state signals, at leading order and in the Coulomb approximation, for particles with various spins, color representations and electric charges, and used 7 TeV ATLAS and CMS resonance searches to set rough limits. Here we update our results to include 8 and 13 TeV data. We find that the recently reported diphoton excesses near 750 GeV could indeed be due to a bound state of this kind. A narrow resonance of the correct size could be obtained for a color-triplet scalar with electric charge -4/3 and mass near 375GeV, if (as a recent lattice computation suggests) the wave function at the origin is somewhat larger than anticipated. Pair production of this particle could have evaded detection up to now. Other candidates may include a triplet scalar of charge 5/3, a triplet fermion of charge -4/3, and perhaps a sextet scalar of charge -2/3.

  19. On the energy of bound states for magnetic Schrödinger operators

    DEFF Research Database (Denmark)

    Fournais, Søren; Kachmar, Ayman

    2009-01-01

    We provide a leading order semiclassical asymptotics of the energy of bound states for magnetic Neumann Schrödinger operators in two-dimensional (exterior) domains with smooth boundaries. The asymptotics is valid all the way up to the bottom of the essential spectrum. When the spectral parameter...

  20. Bound state transfer matrix for AdS5 × S5 superstring

    NARCIS (Netherlands)

    Arutyunov, G.E.; de Leeuw, M.; Suzuki, R.; Torrielli, A.

    2009-01-01

    We apply the algebraic Bethe ansatz technique to compute the eigenvalues of the transfer matrix constructed from the general bound state S-matrix of the light-cone AdS5 × S5 superstring. This allows us to verify certain conjectures on the quantum characteristic function, and to extend them to the ge

  1. Bound states of the Dirac equation with some physical potentials by the Nikiforov-Uvarov method

    Energy Technology Data Exchange (ETDEWEB)

    Setare, Mohammad R; Haidari, S [Department of Physics, University of Kurdistan, Pasdaran Avenue, Sanandaj (Iran, Islamic Republic of)], E-mail: rezakord@ipm.ir, E-mail: heidary.somayeh@gmail.com

    2010-01-15

    Exact analytical solutions for the s-wave Dirac equation with the reflectionless-type, Rosen-Morse and Manning-Rosen potentials are obtained, under the condition of spin symmetry. We obtained bound state energy eigenvalues and corresponding spinor wave function in the framework of the Nikiforov-Uvarov (NU) method.

  2. Light Fermion Finite Mass Effects in Non-relativistic Bound States

    CERN Document Server

    Eiras, D; Eiras, Dolors; Soto, Joan

    2000-01-01

    We present analytic expressions for the vacuum polarization effects due to a light fermion with finite mass in the binding energy and in the wave function at the origin of QED and (weak coupling) QCD non-relativistic bound states. Applications to exotic atoms, \\Upsilon (1s) and t\\bar{t} production near threshold are briefly discussed.

  3. Applying the relativistic quantization condition to a three-particle bound state in a periodic box

    CERN Document Server

    Hansen, Maxwell T

    2016-01-01

    Using our recently developed relativistic three-particle quantization condition, we study the finite-volume energy shift of a three-particle bound state. We reproduce the result obtained using non-relativistic quantum mechanics by Mei{\\ss}ner, R{\\'i}os and Rusetsky, and generalize the result to a moving frame.

  4. The Need for an Upward Bound Project at Bowie State College.

    Science.gov (United States)

    Gill, Wanda E.

    Reasons that Bowie State College in Maryland should participate in the Upward Bound Project are discussed, with attention to geographic and demographic characteristics of the area, school characteristics, and needed services. The college historically has provided educational opportunities for black, disadvantaged students and has been successful…

  5. Numerical Implementation of Three-Body Forces in Bound State Faddeev Calculations in Three Dimensions

    CERN Document Server

    Liu, H; Glöckle, W; Elster, Ch.

    2002-01-01

    The Faddeev equations for the three-body bound state are solved directly as thre e-dimensional integral equations without employing partial wave decomposition. Two-body forces of the Malfliet-Tjon type and simple spin independent genuine three-body forces are considered for the calculation of the three-body binding energy.

  6. Relativistic bounds states for a neutral particle confined to a parabolic potential induced by noninertial effects

    Science.gov (United States)

    Bakke, K.

    2010-10-01

    We obtain the solutions of the Dirac equation when the noninertial effects of the Fermi-Walker reference frame break the relativistic Landau-Aharonov-Casher quantization, but they provide bound states in an analogous way to a Dirac neutral particle subject to Tan-Inkson quantum dot potential [W.-C. Tan, J.C. Inkson, Semicond. Sci. Technol. 11 (1996) 1635].

  7. Exact solutions of the spinor Bethe-Salpeter equation for tightly bound states

    NARCIS (Netherlands)

    Suttorp, L.G.

    1975-01-01

    Exact solutions are obtained for the spinor Bethe-Salpeter equation that describes tightly bound states of spin-/sup 1///sub 2/ fermions with massless-boson exchange. The corresponding coupling constants form a discrete spectrum that depends continuously on the parameters characterizing the type of

  8. The Bound State S-matrix of the Deformed Hubbard Chain

    CERN Document Server

    de Leeuw, Marius; Matsumoto, Takuya

    2011-01-01

    In this work we use the q-oscillator formalism to construct the atypical (short) supersymmetric representations of the centrally extended Uq (su(2|2)) algebra. We then determine the S-matrix describing the scattering of arbitrary bound states. The crucial ingredient in this derivation is the affine extension of the aforementioned algebra.

  9. Exact solutions of the spinor Bethe-Salpeter equation for tightly bound states

    NARCIS (Netherlands)

    Suttorp, L.G.

    1975-01-01

    Exact solutions are obtained for the spinor Bethe-Salpeter equation that describes tightly bound states of spin-/sup 1///sub 2/ fermions with massless-boson exchange. The corresponding coupling constants form a discrete spectrum that depends continuously on the parameters characterizing the type of

  10. Bound State Solutions of Klein-Gordon Equation with the Kratzer Potential

    Institute of Scientific and Technical Information of China (English)

    M. Ko(c)ak

    2007-01-01

    The relativistic problem of spinless particle subject to a Kratzer potential is analysed. Bound state solutions for s-waves are found by separating the Klein-Gordon equation into two parts. Unlike the similar works in the literature, the separation make it possible to see explicitly the relativistic contributions, if any, to the solution in the non-relativistic limit.

  11. Precision study of positronium and precision tests of the bound state QED

    OpenAIRE

    Karshenboim, Savely G.

    2002-01-01

    Despite its very short lifetime positronium provides us with a number of accurate tests of the bound state QED. In this note a brief overview of QED theory and precision experiments on the spectrum and annihilation decay of the positronium atom is presented. Special attention is paid to the accuracy of theoretical predictions.

  12. Resonances from QCD bound states and the 750 GeV diphoton excess

    CERN Document Server

    Kats, Yevgeny

    2016-01-01

    Pair production of colored particles is in general accompanied by production of QCD bound states (onia) slightly below the pair-production threshold. Bound state annihilation leads to resonant signals, which in some cases are easier to see than the decays of the pair-produced constituents. In a previous paper (arXiv:1204.1119) we estimated the bound state signals, at leading order and in the Coulomb approximation, for particles with various spins, color representations and electric charges, and used 7 TeV ATLAS and CMS resonance searches to set rough limits. Here we update our results to include 8 and 13 TeV data. We find that the recently reported diphoton excesses near 750 GeV could indeed be due to a bound state of this kind. A narrow resonance of the correct size could be obtained for a color-triplet scalar with electric charge -4/3 and mass near 375 GeV, if (as a recent lattice computation suggests) the wave function at the origin is somewhat larger than anticipated. Pair production of this particle coul...

  13. Scattering and Bound States of Klein-Gordon Particle with Hylleraas Potential Within Effective Mass Formalism

    Science.gov (United States)

    Onyeaju, M. C.; Ikot, A. N.; Chukwuocha, E. O.; Obong, H. P.; Zare, S.; Hassanabadi, H.

    2016-09-01

    Scattering and bound states solution for the one-dimensional Klein-Gordon particle with Hylleraas potential is presented within the frame work of position dependent effective mass formalism. We calculate in detail the reflection and transmission coefficients using the properties of hypergeometric functions and the equation of continuity of the wave functions.

  14. Bound States of the S-Wave Equation with Equal Scalar and Vector Standard Eckart Potential

    Institute of Scientific and Technical Information of China (English)

    Eser Ol(g)ar; Ramazan Ko(c); Hayriye Tütüncüler

    2006-01-01

    @@ A supersymmetric technique for the bound-state solutions of the s-wave Klein-Gordon equation with equal scalar and vector standard Eckart-type potential is proposed. Its exact solutions are obtained. Possible generalization of our approach is outlined.

  15. Spin(p+1, p+1) covariant Dp-brane bound states

    NARCIS (Netherlands)

    Sundell, P

    2001-01-01

    We construct Spin(p + 1, p + 1) covariant Dp-brane bound states by using the fact that the potentials in the RR sector of toroidically compactified type Ii supergravity transform as a chiral spinor of the T duality group. As an application, we show the invariance of the zero-force condition for a pr

  16. Charmed mesic nuclei Bound D and over D states with 208Pb

    CERN Document Server

    Tsushima, K; Thomas, A W; Saitô, K; Landau, Rubin H

    1999-01-01

    We show that the $D^-$ meson will inevitably form narrow bound states with $^{208}$Pb. The experimental confirmation and comparison with the $\\bar{D}^0$ and $D^0$ will provide distinctive information on the nature of the interaction between the charmed meson and matter.

  17. ηN interactions in the nuclear medium. η-nuclear bound states

    Science.gov (United States)

    Mareš, J.; Barnea, N.; Cieplý, A.; Friedman, E.; Gal, A.

    2016-11-01

    We report on our recent study of in-medium ηN interactions and η-nuclear quasi-bound states. The ηN scattering amplitudes considered in the calculations are constructed within coupled-channel models that incorporate the S11 N*(1535) resonance. The implications of self-consistent treatment and the role played by subthreshold dynamics are discussed.

  18. A new interpretation of the proton-neutron bound state The calculation of the binding energy

    CERN Document Server

    Mandache, N

    1996-01-01

    We treat the old problem of the proton-neutron bound state (the deuteron). Using a new concept of incomplete (partial) annihilation process we derive a formula for the binding energy of the deuteron, which does not contain any new constant. Some implications of this new approach are discussed.

  19. Quasi bound states in the continuum with few unit cells of photonic crystal slab

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Chung, Il-Sug

    2017-01-01

    Bound states in the continuum (BICs) in photonic crystal slabs represent the resonances with an infinite quality (Q)-factor, occurring above the light line for an infinitely periodic structure. We show that a set of BICs can turn into quasi-BICs with a very high Q-factor even for two or three unit...

  20. The possible Bπ molecular state and its radiative decay

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Hong-Wei; Gao, Lei [Tianjin University, School of Science, Tianjin (China); Li, Xue-Qian [Nankai University, School of Physics, Tianjin (China)

    2017-05-15

    Recently, several exotic bosons have been confirmed as multi-quark states. However, there are violent disputes about their inner structures, namely if they are molecular states or tetraquarks, or even mixtures of the two structures. It would be interesting to search experimentally for non-strange four-quark states with open charm or bottom which are lighter than Λ{sub c} or Λ{sub b}. Reasonable arguments indicate that they are good candidates of pure molecular states Dπ or Bπ because pions are the lightest boson. Both Bπ and Dπ bound states do not decay via the strong interaction. The Bπ molecule may decay into B* by radiating a photon, whereas the Dπ molecule can only decay via weak interaction. In this paper we explore the mass spectra of the Bπ molecular states by solving the corresponding instantaneous B-S equation. Then the rate of radiative decay vertical stroke (3)/(2), (1)/(2) right angle → B*γ is calculated and our numerical results indicate that the processes can be measured by the future experiment. We also briefly discuss the Dπ case. Due to the constraint of the final state phase space it can only decay via weak interaction. (orig.)

  1. Quasiparticle parity lifetime of bound states in a hybrid superconductor-semiconductor quantum dot

    Science.gov (United States)

    Higginbotham, Andrew; Albrecht, Sven; Kirsanskas, Gediminas; Chang, Willy; Kuemmeth, Ferdinand; Krogstrup, Peter; Jespersen, Thomas; Nygård, Jesper; Flensberg, Karsten; Marcus, Charles

    2015-03-01

    We measure quasiparticle transport in an InAs nanowire that is half-covered with epitaxial superconducting aluminum, then locally gated to form a quantum dot. We observe negative differential conductance at finite source-drain bias, and temperature dependent even-odd alternations in the Coulomb blockade peak spacings at zero bias. These observations can be understood in terms of a mid-gap semiconductor discrete state and a continuum of BCS quasiparticle states. Comparing with simple models, we bound the discrete state's parity lifetime and the quasiparticle temperature. These results indicate that parity fluctuations are slow, and imply Majorana qubit poisoning times on the order of a millisecond. Additional results indicate that the bound states move to zero energy in a magnetic field, qualitatively consistent with expectations for Majorana fermions in a finite system. Research supported by Microsoft Station Q, Danish National Research Foundation, Villum Foundation, Lundbeck Foundation, and the European Commission.

  2. Gate-tunable Andreev bound states in InSb nanowire Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ning; Li, Sen; Fan, Dingxun; Xu, Hongqi [Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China); Caroff, Philippe [Division of Solid State Physics, Lund University, P. O. Box 118, S-221 00 Lund (Sweden)

    2016-07-01

    Hybrid InSb nanowire-superconductor devices are promising candidates for investigating Majorana modes in solid-state devices and future technologies of topological quantum manipulation. Here, we report low-temperature transport measurements on an individual InSb nanowire quantum dot coupled to superconducting contacts that exhibit an interplay between the Kondo effects and superconductivity. We observed two types of subgap resonance states within the superconducting gap, which can be attributed to gate-tunable Andreev bound states in Coulomb valleys with different Kondo temperatures. The presence of the gate-tunable 0 and pi junction allow us to investigate the fundamental 0- pi transition. Detailed magnetic field and temperature evolution of level spectroscopy demonstrate different behavior of two types of the Andreev bound states. Our results exhibit that the InSb nanowires can provide a promising platform for exploring phase coherence transport and the effect of spin-orbit coupling in semiconductor nanowire-superconductor hybrid device.

  3. Vibrational Spectroscopy of Transient Dipolar Radicals via Autodetachment of Dipole-Bound States of Cold Anions

    Science.gov (United States)

    Huang, Dao-Ling; Liu, Hong-Tao; Dau, Phuong Diem; Wang, Lai-Sheng

    2014-06-01

    High-resolution vibrational spectroscopy of transient species is important for determining their molecular structures and understanding their chemical reactivity. However, the low abundance and high reactivity of molecular radicals pose major challenges to conventional absorption spectroscopic methods. The observation of dipole-bound states (DBS) in anions extend autodetachment spectroscopy to molecular anions whose corresponding neutral radicals possess a large enough dipole moment (>2.5 D).1,2 However, due to the difficulty of assigning the congested spectra at room temperature, there have been only a limited number of autodetachment spectra via DBS reported. Recently, we have built an improved version of a cold trap3 coupled with high-resolution photoelectron imaging.4 The first observation of mode-specific auotodetachment of DBS of cold phenoxide have shown that not only vibrational hot bands were completely suppressed, but also rotational profile was observed.5 The vibrational frequencies of the DBS were found to be the same as those of the neutral radical, suggesting that vibrational structures of dipolar radicals can be probed via DBS.5 More significantly, the DBS resonances allowed a number of vibrational modes with very weak Frank-Condon factors to be "lightened" up via vibrational autodetachment.5 Recently, our first high-resolution vibrational spectroscopy of the dehydrogenated uracil radical, with partial rotational resolution, via autodetachment from DBS of cold deprotonated uracil anions have been reported.6 Rich vibrational information is obtained for this important radical species. The resolved rotational profiles also allow us to characterize the rotational temperature of the trapped anions for the first time.6 1 K. R. Lykke, D. M. Neumark, T. Andersen, V. J. Trapa, and W. C. Lineberger, J. Chem. Phys. 87, 6842 (1987). 2 D. M. Wetzel, and J. I. Brauman, J. Chem. Phys. 90, 68 (1989). 3 P. D. Dau, H. T. Liu, D. L. Huang, and L. S. Wang, J. Chem. Phys

  4. Bounds on probability of state transfer with respect to readout time and edge weight

    Science.gov (United States)

    Gordon, Whitney; Kirkland, Steve; Li, Chi-Kwong; Plosker, Sarah; Zhang, Xiaohong

    2016-02-01

    We analyze the sensitivity of a spin chain modeled by an undirected weighted connected graph exhibiting perfect state transfer to small perturbations in readout time and edge weight in order to obtain physically relevant bounds on the probability of state transfer. At the heart of our analysis is the concept of the numerical range of a matrix; our analysis of edge weight errors additionally makes use of the spectral and Frobenius norms.

  5. Reflection algebra, Yangian symmetry and bound-states in AdS/CFT

    CERN Document Server

    MacKay, Niall

    2011-01-01

    We present the `Heisenberg picture' of the reflection algebra by explicitly constructing the boundary Yangian symmetry of the AdS/CFT superstring ending on a boundary with degrees of freedom and preserving all of the bulk symmetry algebra. This enables us to present the bound-state reflection matrices in a more elegant, rapidity-difference form. We also consider the spectrum of bulk and boundary states and some automorphisms of the underlying algebras.

  6. Scattering resonances and two-particle bound states of the extended Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Valiente, M; Petrosyan, D [Institute of Electronic Structure and Laser, FORTH, 71110 Heraklion, Crete (Greece)

    2009-06-28

    We present a complete derivation of two-particle states of the one-dimensional extended Bose-Hubbard model involving attractive or repulsive on-site and nearest-neighbour interactions. We find that this system possesses scattering resonances and two families of energy-dependent interaction-bound states which are not present in the Hubbard model with the on-site interaction alone. (fast track communication)

  7. Reduced adiabatic hyperspherical basis in the Coulomb three-body bound state problem

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, D.I. [Sankt Peterburgskij Univ., St. Petersburg (Russian Federation); Gusev, V.V. [Institut Fiziki Vysokikh Ehnergij, Protvino (Russian Federation); Ponomarev, L.I. [Rossijskij Nauchnyj Tsentr ``Kurchatovskij Inst.``, Moscow (Russian Federation)

    1996-10-01

    A new version of the adiabatic hyperspherical approach (AHSA) is suggested which has significant advantages for the calculation of three-body states with total angular momentum J > 0. The binding energies of all bound states of mesic molecules with normal parity are calculated by the suggested method. Comparison with results of variational calculations and the fast convergence of the method confirm its high efficiency. (orig.). 13 refs.

  8. Delayed birth of distillable entanglement in the evolution of bound entangled states

    CERN Document Server

    Derkacz, Łukasz

    2010-01-01

    The dynamical creation of entanglement between three-level atoms coupled to the common vacuum is investigated. For the class of bound entangled initial states we show that the dynamics of closely separated atoms generates stationary distillable entanglement of asymptotic states. We also find that the effect of delayed sudden birth of distillable entanglement occurs in the case of atoms separated by a distance comparable with the radiation wavelength.

  9. Tight bound on coherent-state-based entanglement generation over lossy channels

    CERN Document Server

    Azuma, Koji; Koashi, Masato; Imoto, Nobuyuki

    2009-01-01

    The first stage of the hybrid quantum repeaters is entanglement generation based on transmission of pulses in coherent states over a lossy channel. Protocols to make entanglement with only one type of error are favorable for rendering subsequent entanglement distillation efficient. Here we provide the tight upper bound on performances of these protocols that is determined only by the channel loss. In addition, we show that this bound is achievable by utilizing a proposed protocol [arXiv:0811.3100] composed of a simple combination of linear optical elements and photon-number-resolving detectors.

  10. Molecular cloning and characterization of growth factor receptor bound-protein in Clonorchis sinensis.

    Directory of Open Access Journals (Sweden)

    Xuelian Bai

    Full Text Available BACKGROUND: Clonorchis sinensis causes clonorchiasis, a potentially serious disease. Growth factor receptor-bound protein 2 (Grb2 is a cytosolic protein conserved among animals and plays roles in cellular functions such as meiosis, organogenesis and energy metabolism. In the present study, we report first molecular characters of growth factor receptor bound-protein (CsGrb2 from C. sinensis as counter part of Grb2 from animals and its possible functions in development and organogenesis of C. sinensis. METHODOLOGY/PRINCIPAL FINDINGS: A CsGrb2 cDNA clone retrieved from the C. sinensis transcriptome encoded a polypeptide with a SH3-SH2-SH3 structure. Recombinant CsGrb2 was bacterially produced and purified to homogeneity. Native CsGrb2 with estimated molecular weight was identified from C. sinensis adult extract by western blotting using a mouse immune serum to recombinant CsGrb2. CsGrb2 transcripts was more abundant in the metacercariae than in the adults. Immunohistochemical staining showed that CsGrb2 was localized to the suckers, mesenchymal tissues, sperms in seminal receptacle and ovary in the adults, and abundantly expressed in most organs of the metacercariae. Recombinant CsGrb2 was evaluated to be little useful as a serodiagnostic reagent for C. sinesis human infections. CONCLUSION: Grb2 protein found in C. sinensis was conserved among animals and suggested to play a role in the organogenesis, energy metabolism and mitotic spermatogenesis of C. sinensis. These findings from C. sinensis provide wider understanding on diverse function of Grb2 in lower animals such as platyhelminths.

  11. Bound states of massive fermions in Aharonov-Bohm-like fields

    Energy Technology Data Exchange (ETDEWEB)

    Khalilov, V.R. [Moscow State University, Faculty of Physics, Moscow (Russian Federation)

    2014-01-15

    Bound states of massive fermions in Aharonov-Bohm (AB)-like fields have analytically been studied. The Hamiltonians with the (AB)-like potentials are essentially singular and therefore require specification of a one-parameter self-adjoint extension. We construct self-adjoint Dirac Hamiltonians with the AB potential in 2+1 dimensions that are specified by boundary conditions at the origin. It is of interest that for some range of the extension parameter the AB potential can bind relativistic charged massive fermions. The bound-state energy is determined by the AB magnetic flux and depends upon the fermion spin and extension parameter; it is a periodical function of the magnetic flux. We also construct self-adjoint Hamiltonians for the so-called Aharonov-Casher (AC) problem, show that nonrelativistic neutral massive fermions can be bound by the (AC) background, determine the range of the extension parameter in which fermion bound states exist, and find their energies as well as wave functions. (orig.)

  12. Lower bounds for ballistic current and noise in non-equilibrium quantum steady states

    Directory of Open Access Journals (Sweden)

    Benjamin Doyon

    2015-03-01

    Full Text Available Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.

  13. Lower bounds for the ground-state degeneracies of frustrated systems on fractal lattices

    Science.gov (United States)

    Curado; Nobre

    2000-12-01

    The total number of ground states for nearest-neighbor-interaction Ising systems with frustrations, defined on hierarchical lattices, is investigated. A simple method is presented, which allows one to factorize the ground-state degeneracy, at a given hierarchy level n, in terms of contributions due to all hierarchy levels. Such a method may yield the exact ground-state degeneracy of uniformly frustrated systems, whereas it works as an approximation for randomly frustrated models. In the latter cases, it is demonstrated that such an approximation yields lower-bound estimates for the ground-state degeneracies.

  14. Ionization and bound-state relativistic quantum dynamics in laser-driven multiply charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Hetzheim, Henrik

    2009-01-14

    The interaction of ultra-strong laser fields with multiply charged hydrogen-like ions can be distinguished in an ionization and a bound dynamics regime. Both are investigated by means of numerically solving the Dirac equation in two dimensions and by a classical relativistic Monte-Carlo simulation. For a better understanding of highly nonlinear physical processes the development of a well characterized ultra-intense relativistic laser field strength has been driven forward, capable of studying e.g. the magnetic field effects of the laser resulting in an additional electron motion in the laser propagation direction. A novel method to sensitively measure these ultra-strong laser intensities is developed and employed from the optical via the UV towards the XUV frequency regime. In the bound dynamics field, the determination of multiphoton transition matrixelements has been investigated between different bound states via Rabi oscillations. (orig.)

  15. Ghost-gluon and ghost-quark bound states and their role in BRST quartets

    CERN Document Server

    Alkofer, Natalia

    2011-01-01

    A non-perturbative version of the BRST quartet mechanism in infrared Landau gauge QCD is proposed for transverse gluons and quarks. Based on the positivity violation for transverse gluons the content of the respective non-perturbative BRST quartet is derived. To identify the gluon's BRST-daughter and second parent state, a truncated Bethe-Salpeter equation for the gluon-(anti-)ghost bound state is investigated. We comment shortly on several equivalent forms of this equation. Repeating the same construction for quarks leads to a truncated Bethe-Salpeter equation for a fundamentally charged quark-(anti-)ghost bound state. It turns out that a cardinal input to this equation is given by the fully dressed quark-gluon vertex, and that it is indispensable to dress the quark-gluon vertex in this equation in order to obtain a consistent truncation.

  16. Three-body bound states with zero-range interaction in the Bethe-Salpeter approach

    Science.gov (United States)

    Ydrefors, E.; Alvarenga Nogueira, J. H.; Gigante, V.; Frederico, T.; Karmanov, V. A.

    2017-07-01

    The Bethe-Salpeter equation for three bosons with zero-range interaction is solved for the first time. For comparison the light-front equation is also solved. The input is the two-body scattering length and the outputs are the three-body binding energies, Bethe-Salpeter amplitudes and light-front wave functions. Three different regimes are analyzed: (i) For weak enough two-body interaction the three-body system is unbound. (ii) For stronger two-body interaction a three-body bound state appears. It provides an interesting example of a deeply bound Borromean system. (iii) For even stronger two-body interaction this state becomes unphysical with a negative mass squared. However, another physical (excited) state appears, found previously in light-front calculations. The Bethe-Salpeter approach implicitly incorporates three-body forces of relativistic origin, which are attractive and increase the binding energy.

  17. Effect of bound-state dressing in laser-assisted radiative recombination

    Science.gov (United States)

    Müller, Robert A.; Seipt, Daniel; Fritzsche, Stephan; Surzhykov, Andrey

    2015-11-01

    We present a theoretical study on the recombination of a free electron into the ground state of a hydrogenlike ion in the presence of an external laser field. Emphasis is placed on the effects caused by the laser dressing of the residual ionic bound state. To investigate how this dressing affects the total and angle-differential cross section of laser-assisted radiative recombination (LARR) we apply first-order perturbation theory and the separable Coulomb-Volkov continuum ansatz. Using this approach, detailed calculations are performed for low-Z hydrogenlike ions and laser intensities in the range from IL=1012 to 1013W/cm2 . It is seen that the total cross section as a function of the laser intensity is remarkably affected by the bound-state dressing. Moreover, the laser dressing becomes manifest as asymmetries in the angular distribution and the (energy) spectrum of the emitted recombination photons.

  18. Impact of electron–vibron interaction on the bound states in the continuum

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez, C. [GISC, Departamento de Física de Materiales, Universidad Complutense, E-28040 Madrid (Spain); Domínguez-Adame, F., E-mail: adame@fis.ucm.es [GISC, Departamento de Física de Materiales, Universidad Complutense, E-28040 Madrid (Spain); Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Orellana, P.A. [Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110 V, Valparaíso (Chile); Díaz, E. [GISC, Departamento de Física de Materiales, Universidad Complutense, E-28040 Madrid (Spain)

    2015-06-12

    We investigate the nonequilibrium transport properties of a coupled quantum dot system connected in parallel to two leads, including electron–vibron interaction. It is known that in the absence of interaction the system supports a bound state in the continuum. This state is revealed as a Fano antiresonance in the transmission when the energy levels of the dots are detuned. Using the Keldysh nonequilibrium Green's function formalism, we find that the occurrence of the Fano antiresonance arises even if the electron–vibration interaction is taken into account. We also examine the impact of the coupling to the leads in the linear response of the system. We conclude that the existence of bound states in the continuum in coupled quantum dot systems is a robust phenomenon, opening the possibility of its observation in experiments.

  19. Structural characterization of two metastable ATP-bound states of P-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Megan L O'Mara

    Full Text Available ATP Binding Cassette (ABC transporters couple the binding and hydrolysis of ATP to the transport of substrate molecules across the membrane. The mechanism by which ATP binding and/or hydrolysis drives the conformational changes associated with substrate transport has not yet been characterized fully. Here, changes in the conformation of the ABC export protein P-glycoprotein on ATP binding are examined in a series of molecular dynamics simulations. When one molecule of ATP is placed at the ATP binding site associated with each of the two nucleotide binding domains (NBDs, the membrane-embedded P-glycoprotein crystal structure adopts two distinct metastable conformations. In one, each ATP molecule interacts primarily with the Walker A motif of the corresponding NBD. In the other, the ATP molecules interacts with both Walker A motif of one NBD and the Signature motif of the opposite NBD inducing the partial dimerization of the NBDs. This interaction is more extensive in one of the two ATP binding site, leading to an asymmetric structure. The overall conformation of the transmembrane domains is not altered in either of these metastable states, indicating that the conformational changes associated with ATP binding observed in the simulations in the absence of substrate do not lead to the outward-facing conformation and thus would be insufficient in themselves to drive transport. Nevertheless, the metastable intermediate ATP-bound conformations observed are compatible with a wide range of experimental cross-linking data demonstrating the simulations do capture physiologically important conformations. Analysis of the interaction between ATP and its cofactor Mg(2+ with each NBD indicates that the coordination of ATP and Mg(2+ differs between the two NBDs. The role structural asymmetry may play in ATP binding and hydrolysis is discussed. Furthermore, we demonstrate that our results are not heavily influenced by the crystal structure chosen for initiation

  20. Supersymmetrically bounding of asymmetric states and quantum phase transitions by anti-crossing of symmetric states

    CERN Document Server

    Afzal, Muhammad Imran; Lee, Yong Tak

    2016-01-01

    Von Neumann and Wigner theorized bounding of asymmetric eigenstates and anti-crossing of symmetric eigenstates. Experiments have shown that owing to anti-crossing and similar radiation rates, graphene-like resonance of inhomogeneously strained photonic eigenstates can generate pseudomagnetic field, bandgaps and Landau levels, while dissimilar rates induce non-Hermicity. Here, we showed experimentally higher-order supersymmetry and quantum phase transitions by resonance between similar one dimensional lattices. The lattices consisted of inhomgeneously strain-like phases of triangular solitons. The resonance created two dimensional inhomogeneously deformed photonic graphene. All parent eigenstates are annihilated. Where eigenstates of mildly strained solitons are annihilated with similar (power law) rates through one tail only and generated Hermitianally bounded eigenstates. The strongly strained solitons, positive defects are annihilated exponentially through both tails with dissimilar rates. Which bounded eig...

  1. Bounds and phase diagram of efficiency at maximum power for tight-coupling molecular motors.

    Science.gov (United States)

    Tu, Z C

    2013-02-01

    The efficiency at maximum power (EMP) for tight-coupling molecular motors is investigated within the framework of irreversible thermodynamics. It is found that the EMP depends merely on the constitutive relation between the thermodynamic current and force. The motors are classified into four generic types (linear, superlinear, sublinear, and mixed types) according to the characteristics of the constitutive relation, and then the corresponding ranges of the EMP for these four types of molecular motors are obtained. The exact bounds of the EMP are derived and expressed as the explicit functions of the free energy released by the fuel in each motor step. A phase diagram is constructed which clearly shows how the region where the parameters (the load distribution factor and the free energy released by the fuel in each motor step) are located can determine whether the value of the EMP is larger or smaller than 1/2. This phase diagram reveals that motors using ATP as fuel under physiological conditions can work at maximum power with higher efficiency (> 1/2) for a small load distribution factor (< 0.1).

  2. The properties of bound and unbound molecular cloud populations formed in galactic disc simulations

    Science.gov (United States)

    Ward, Rachel L.; Benincasa, Samantha M.; Wadsley, James; Sills, Alison; Couchman, H. M. P.

    2016-01-01

    We explore the effect of galactic environment on properties of molecular clouds. Using clouds formed in a large-scale galactic disc simulation, we measure the observable properties from synthetic column density maps. We confirm that a significant fraction of unbound clouds forms naturally in a galactic disc environment and that a mixed population of bound and unbound clouds can match observed scaling relations and distributions for extragalactic molecular clouds. By dividing the clouds into inner and outer disc populations, we compare their distributions of properties and test whether there are statistically significant differences between them. We find that clouds in the outer disc have lower masses, sizes, and velocity dispersions as compared to those in the inner disc for reasonable choices of the inner/outer boundary. We attribute the differences to the strong impact of galactic shear on the disc stability at large galactocentric radii. In particular, our Toomre analysis of the disc shows a narrowing envelope of unstable masses as a function of radius, resulting in the formation of smaller, lower mass fragments in the outer disc. We also show that the star formation rate is affected by the environment of the parent cloud, and is particularly influenced by the underlying surface density profile of the gas throughout the disc. Our work highlights the strengths of using galaxy-scale simulations to understand the formation and evolution of cloud properties - and the star formation within them - in the context of their environment.

  3. The double radiative annihilation of the heavy-light fermion bound states

    CERN Document Server

    Eeg, Jan O; Picek, I

    2001-01-01

    We consider the double-radiative decays of heavy-light QED and QCD atoms, $\\mu^+ e^- \\to \\gamma\\gamma$ and $\\bar{B}^{0}_s \\to \\gamma\\gamma$. Especially, we take under scrutiny contributions coming from operators that vanish on the free-quark mass shell. We show that by field redefinitions these operators are converted into contact terms attached to the bound state dynamics. A net off-shell contribution is suppressed with respect to the effect of the well known flavour-changing magnetic-moment operator by the bound-state binding factor. The negligible off-shellness of the weakly bound QED atoms becomes more relevant for strongly bound QCD atoms. We analyze this off-shellness in model-approaches to QCD, one of them enabling us to keep close contact to the related effect in QED. We also comment on the off-shell effect in the corresponding process $\\bar{B}_d \\to K^* \\gamma$, and discuss possible hindering of the claimed beyond-standard-model discovery in this decay mode.

  4. A Density Matrix Renormalization Group Approach to an Asymptotically Free Model with Bound States

    CERN Document Server

    Martín-Delgado, M A

    1999-01-01

    We apply the DMRG method to the 2 dimensional delta function potential which is a simple quantum mechanical model with asymptotic freedom and formation of bound states. The system block and the environment block of the DMRG contain the low energy and high energy degrees of freedom, respectively. The ground state energy and the lowest excited states are obtained with an unprecedent accuracy. We compare the DMRG method with the Similarity RG method and propose its generalization to field theoretical models in high energy physics.

  5. Spectrum of Andreev bound states in Josephson junctions with a ferromagnetic insulator

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, Shiro, E-mail: s-kawabata@aist.go.jp [Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); CREST, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 332-0012 (Japan); Tanaka, Yukio [Department of Applied Physics, Nagoya University, Nagoya 464-8603 (Japan); Golubov, Alexander A. [Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Vasenko, Andrey S. [Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble (France); Asano, Yasuhiro [Department of Applied Physics, Hokkaido University, Sapporo 060-8628 (Japan)

    2012-10-15

    Ferromagnetic-insulator (FI) based Josephson junctions are promising candidates for a coherent superconducting quantum bit as well as a classical superconducting logic circuit. Recently the appearance of an intriguing atomic-scale 0-{pi} transition has been theoretically predicted. In order to uncover the mechanism of this phenomena, we numerically calculate the spectrum of Andreev bound states in a FI barrier by diagonalizing the Bogoliubov-de Gennes equation. We show that Andreev spectrum drastically depends on the parity of the FI-layer number L and accordingly the {pi}(0) state is always more stable than the 0 ({pi}) state if L is odd (even).

  6. Two qubits of a W state violate Bell's inequality beyond Cirel'son's bound

    CERN Document Server

    Cabello, A

    2002-01-01

    It is shown that the correlations between two qubits selected from a trio prepared in a W state violate the Clauser-Horne-Shimony-Holt inequality more than the correlations between two qubits in any quantum state. Such a violation beyond Cirel'son's bound is smaller than the one achieved by two qubits selected from a trio in a Greenberger-Horne-Zeilinger state [A. Cabello, Phys. Rev. Lett. 88, 060403 (2002)]. However, it has the advantage that all local observers can know from their own measurements whether their qubits belongs or not to the selected pair.

  7. Vibron-polaron in alpha-helices. II. Two-vibron bound states

    CERN Document Server

    Falvo, C; Falvo, Cyril; Pouthier, Vincent

    2005-01-01

    The two-vibron dynamics associated to amide-I vibrations in a 3D $\\alpha$-helix is described according to a generalized Davydov model. The helix is modeled by three spines of hydrogen-bonded peptide units linked via covalent bonds. It is shown that the two-vibron energy spectrum supports both a two-vibron free states continuum and two kinds of bound states, called TVBS-I and TVBS-II, connected to the trapping of two vibrons onto the same amide-I mode and onto two nearest neighbor amide-I modes belonging to the same spine, respectively. At low temperature, non vanishing interspine hopping constants yield a three dimensional nature of both TVBS-I and TVBS-II which the wave functions extend over the three spines of the helix. At biological temperature, the pairs are confined in a given spine and exhibit the same features as the bound states described within a one-dimensional model. The interplay between the temperature and the 3D nature of the helix is also responsible for the occurrence of a third bound state c...

  8. Gauge invariant formulation of 3 γ decay of particle-antiparticle bound states

    Science.gov (United States)

    Blankleider, B.; Kvinikhidze, A. N.; Silagadze, Z. K.

    2015-08-01

    We construct the gauge invariant three-photon decay amplitude of particle-antiparticle bound states modeled by the Dyson-Schwinger and Bethe-Salpeter equations. Application to the quark-antiquark (q q ¯ ) bound states is emphasized. An essential aspect of our formulation is that it applies to any underlying quantum field theoretic model of the q q ¯ system, and not just to models, like exact QCD, where the quark self-energy Σ couples to the electromagnetic field solely via dressed quark propagators. In this way, applications to effective field theories and other QCD motivated models are envisioned. The three-photon decay amplitude is constructed by attaching currents to all possible places in the Feynman diagrams contributing to the dressed quark propagator. The gauge invariance of our construction is thus a direct consequence of respecting the underlying structure of the quantum field theory determining the dynamics. In the resultant expression for the three-photon decay amplitude, all the basic ingredients consisting of the bound-state wave function, the final-state interaction q q ¯ t matrix, the dressed quark propagator, and dressed quark currents, are determined by a universal Bethe-Salpeter kernel.

  9. Gauge invariant formulation of 3$\\gamma$ decay of particle-antiparticle bound states

    CERN Document Server

    Blankleider, B; Silagadze, Z K

    2014-01-01

    We construct the gauge invariant three-photon decay amplitude of particle-antiparticle bound states modeled by the Dyson-Schwinger and Bethe-Salpeter equations. Application to the quark-antiquark ($q\\bar{q}$) bound states is emphasized. An essential aspect of our approach is that photons are allowed to couple to the $q\\bar{q}$ system in any way allowed by the given model, i.e., not just via the dressed quark propagator as in exact QCD. In this way, applications to effective field theories and other QCD motivated models are envisioned. The three-photon decay amplitude is constructed by attaching currents to all possible places in the Feynman diagrams contributing to the dressed quark propagator. The gauge invariance of our construction is thus a direct consequence of respecting the underlying structure of the quantum field theory determining the dynamics. In the resultant expression for the three-photon decay amplitude, all the basic ingredients consisting of the bound state wave function, the final-state inte...

  10. Andreev reflection and bound states in topological insulator based planar and step Josephson junctions

    Science.gov (United States)

    Choudhari, Tarun; Deo, Nivedita

    2017-01-01

    A superconductor-topological insulator-superconductor (S/TI/S) junction having normal region at angle θ is studied theoretically to investigate the junction angle dependency of the Andreev reflection and the formation of the Andreev bound states in the step and planar S/TI/S structures. It is found that the Andreev reflection becomes θ dependent only in the presence of the potential barrier at the TI/S interface. In particular, the step and planar TI/S junction have totally different conductive behavior with bias voltage and potential barrier in the regime of retro and specular Andreev reflection. Interestingly, we find that the elliptical cross section of Dirac cone, an important feature of topological insulator with step surface defect, affects the Fabry-Perot resonance of the Andreev reflection induced Andreev bound states (which become Majorana zero energy states at low chemical potential) in the step S/TI/S structure. Unlike the usual planar S/TI/S structures, we find these ellipticity affected Andreev bound states lead to non-monotonic Josephson super-current in the step S/TI/S structure whose non-monotonicity can be controlled with the use of the potential barrier, which may find applications in nanoelectronics.

  11. Transport through a quantum dot coupled to two Majorana bound states

    Science.gov (United States)

    Zeng, Qi-Bo; Chen, Shu; You, L.; Lü, Rong

    2017-08-01

    We investigate electron transport inside a ring system composed of a quantum dot (QD) coupled to two Majorana bound states confined at the ends of a one-dimensional topological superconductor nanowire. By tuning the magnetic flux threading through the ring, the model system we consider can be switched into states with or without zero-energy modes when the nanowire is in its topological phase. We find that the Fano profile in the conductance spectrum due to the interference between bound and continuum states exhibits markedly different features for these two different situations, which consequently can be used to detect the Majorana zero-energy mode. Most interestingly, as a periodic function of magnetic flux, the conductance shows 2 π periodicity when the two Majorana bound states are nonoverlapping (as in an infinitely long nanowire) but displays 4 π periodicity when the overlapping becomes nonzero (as in a finite length nanowire). We map the model system into a QD-Kitaev ring in the Majorana fermion representation and affirm these different characteristics by checking the energy spectrum.

  12. Bound-State Solution of s-Wave Klein-Gordon Equation for Woods-Saxon Potential

    Directory of Open Access Journals (Sweden)

    Eser Olğar

    2015-01-01

    Full Text Available The bound-state solution of s-wave Klein-Gordon equation is calculated for Woods-Saxon potential by using the asymptotic iteration method (AIM. The energy eigenvalues and eigenfunctions are obtained for the required condition of bound-state solutions.

  13. Energy spectrum of the two-magnon bound states in the Heisenberg-Ising antiferromagnet on the square lattice

    Science.gov (United States)

    Hamer, C. J.

    2009-06-01

    The energy spectra of the two-magnon bound states in the Heisenberg-Ising antiferromagnet on the square lattice are calculated using series expansion methods. The results confirm an earlier spin-wave prediction of Oguchi and Ishikawa that the bound states vanish into the continuum before the isotropic Heisenberg limit is reached.

  14. The quark-gluon vertex in Landau gauge bound-state studies

    Science.gov (United States)

    Williams, Richard

    2015-05-01

    We present a practical method for the solution of the quark-gluon vertex for use in Bethe-Salpeter and Dyson-Schwinger calculations. The efficient decomposition into the necessary covariants is detailed, with the numerical algorithm outlined for both real and complex Euclidean momenta. A truncation of the quark-gluon vertex, that neglects explicit back-coupling to enable the application to bound-state calculations, is given together with results for the quark propagator and quark-gluon vertex for different quark flavours. The relative impact of the various components of the quark-gluon vertex is highlighted with the flavour dependence of the effective quark-gluon interaction obtained, thus providing insight for the construction of phenomenological models within the rainbow ladder. Finally, we solve the corresponding Green's functions for complex Euclidean momenta as required in future bound-state calculations.

  15. Radiative bound-state-formation cross-sections for dark matter interacting via a Yukawa potential

    CERN Document Server

    Petraki, Kalliopi; de Vries, Jordy

    2016-01-01

    We calculate the cross-sections for the radiative formation of bound states by dark matter whose interactions are described in the non-relativistic regime by a Yukawa potential. These cross-sections are important for cosmological and phenomenological studies of dark matter with long-range interactions, residing in a hidden sector, as well as for TeV-scale WIMP dark matter. We provide the leading-order contributions to the cross-sections for the dominant capture processes occurring via emission of a vector or a scalar boson. We offer a detailed inspection of their features, including their velocity dependence within and outside the Coulomb regime, and their resonance structure. For pairs of annihilating particles, we compare bound-state formation with annihilation.

  16. Vertical D4-D2-D0 bound states on K3 fibrations and modularity

    DEFF Research Database (Denmark)

    Bouchard, Vincent; Creutzig, Thomas; Diaconescu, Duiliu-Emanuel;

    2016-01-01

    An explicit formula is derived for the generating function of vertical D4-D2-D0 bound states on smooth K3 fibered Calabi-Yau threefolds, generalizing previous results of Gholampour and Sheshmani. It is also shown that this formula satisfies strong modularity properties, as predicted by string the...... theory. This leads to a new construction of vector valued modular forms which exhibits some of the features of a generalized Hecke transform.......An explicit formula is derived for the generating function of vertical D4-D2-D0 bound states on smooth K3 fibered Calabi-Yau threefolds, generalizing previous results of Gholampour and Sheshmani. It is also shown that this formula satisfies strong modularity properties, as predicted by string...

  17. Bound States Energies of a Harmonic Oscillator Perturbed by Point Interactions

    Science.gov (United States)

    Ferkous, N.; Boudjedaa, T.

    2017-03-01

    We determine explicitly the exact transcendental bound states energies equation for a one-dimensional harmonic oscillator perturbed by a single and a double point interactions via Green’s function techniques using both momentum and position space representations. The even and odd solutions of the problem are discussed. The corresponding limiting cases are recovered. For the harmonic oscillator with a point interaction in more than one dimension, divergent series appear. We use to remove this divergence an exponential regulator and we obtain a transcendental equation for the energy bound states. The results obtained here are consistent with other investigations using different methods. Supported by the Algerian Ministry of Higher Education and Scientific Research under the CNEPRU project No. D01720140001

  18. Bound-state field theory approach to proton structure effects in muonic hydrogen

    CERN Document Server

    Mohr, Peter J; Sapirstein, J

    2013-01-01

    A bound-state field theory approach to muonic hydrogen is set up using a variant of the Furry representation in which the lowest-order Hamiltonian describes a muon in the presence of a point Coulomb field, but the origin of the binding field is taken to be three charged quarks in the proton which are modeled as Dirac particles that move freely within a spherical well. Bound-state field theory techniques are used to evaluate one- and two-photon effects. Particular attention is paid to two-photon exchange diagrams, which include the effect of proton polarizability. In addition the modification of the electromagnetic self energy of the proton by the electric field of the muon is examined. Finally, the model is used to carry out a calculation of the static electric polarizability of the proton.

  19. The quark-gluon vertex in Landau gauge bound-state studies

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Richard [Justus-Liebig University of Giessen, Institute of Theoretical Physics, Giessen (Germany)

    2015-05-15

    We present a practical method for the solution of the quark-gluon vertex for use in Bethe-Salpeter and Dyson-Schwinger calculations. The efficient decomposition into the necessary covariants is detailed, with the numerical algorithm outlined for both real and complex Euclidean momenta. A truncation of the quark-gluon vertex, that neglects explicit back-coupling to enable the application to bound-state calculations, is given together with results for the quark propagator and quark-gluon vertex for different quark flavours. The relative impact of the various components of the quark-gluon vertex is highlighted with the flavour dependence of the effective quark-gluon interaction obtained, thus providing insight for the construction of phenomenological models within the rainbow ladder. Finally, we solve the corresponding Green's functions for complex Euclidean momenta as required in future bound-state calculations. (orig.)

  20. Baryon-baryon bound states in a (2+1)-dimensional lattice QCD model

    Science.gov (United States)

    Faria da Veiga, Paulo A.; O'Carroll, Michael; Schor, Ricardo

    2003-08-01

    We consider bound states of two baryons (antibaryons) in lattice QCD in a Euclidean formulation. For simplicity, we analyze an SU(3) theory with a single flavor in 2+1 dimensions and two-dimensional Dirac matrices. For a small hopping parameter 0<κ≪1 and large glueball mass, we recently showed the existence of a (anti)baryonlike particle, with an asymptotic mass of the order of -3 ln κ and with an isolated dispersion curve, i.e., an upper gap property persisting up to near the meson-baryon threshold, which is of order -5 ln κ. Here, we show that there is no baryon-baryon (or antibaryon-antibaryon) bound state solution to the Bethe-Salpeter equation up to the two-baryon threshold, which is approximately -6 ln κ.

  1. Instantaneous Formulation for Transitions Between Two Instantaneous Bound States and Its Gauge Invariance

    Institute of Scientific and Technical Information of China (English)

    CHANG Chao-Hsi; CHEN Jiao-Kai; WANG Guo-Li

    2006-01-01

    We have precisely derived a "rigorous instantaneous formulation" for transitions between two bound states when the bound states are well-described by instantaneous Bethe-Salpeter (BS) equation (i.e. the kernel of the equation is instantaneous"occasionally"). The obtained rigorous instantaneous formulation, in fact, is expressed as an operator sandwiched by two "reduced BS wave functions" properly, while the reduced BS wave functions appearing in the formulation are the rigorous solutions of the instantaneous BS equation, and they may relate to Schr(o)dinger wave functions straightforwardly. We also show that the rigorous instantaneous formulation is gauge-invariant with respect to the Uem(1) transformation precisely, if the concerned transitions are radiative. Some applications of the formulation are outlined.

  2. Optical bound states in the continuum in a single slab with zero refractive index

    Science.gov (United States)

    Li, LiangSheng; Zhang, Jing; Wang, Chong; Zheng, Ning; Yin, Hongcheng

    2017-07-01

    We have investigated theoretically the reflectivity, quality factor, and eigenfrequency for a single slab with zero refractive index. We demonstrate that optical bound states in the continuum can be achieved by the various zero-refractive-index slabs made of epsilon-near-zero, impedance-machted zero-index, or mu-near-zero materials. Moreover, by analytically investigating the frequency of the resonant reflection and resonant transmission, when the quality factor becomes infinity, these two frequencies are precisely equal. For the mu-near-zero slab, the bound states in the continuum are observed at arbitrary incident angles by analyzing the behaviors of complex eigenfrequencies. Our findings may lead to unprecedented high-quality resonators in metamaterials.

  3. Lower Bounds on the Capacity of the Relay Channel with States at the Source

    Directory of Open Access Journals (Sweden)

    Abdellatif Zaidi

    2009-01-01

    Full Text Available We consider a state-dependent three-terminal full-duplex relay channel with the channel states noncausally available at only the source, that is, neither at the relay nor at the destination. This model has application to cooperation over certain wireless channels with asymmetric cognition capabilities and cognitive interference relay channels. We establish lower bounds on the channel capacity for both discrete memoryless (DM and Gaussian cases. For the DM case, the coding scheme for the lower bound uses techniques of rate-splitting at the source, decode-and-forward (DF relaying, and a Gel'fand-Pinsker-like binning scheme. In this coding scheme, the relay decodes only partially the information sent by the source. Due to the rate-splitting, this lower bound is better than the one obtained by assuming that the relay decodes all the information from the source, that is, full-DF. For the Gaussian case, we consider channel models in which each of the relay node and the destination node experiences on its link an additive Gaussian outside interference. We first focus on the case in which the links to the relay and to the destination are corrupted by the same interference; and then we focus on the case of independent interferences. We also discuss a model with correlated interferences. For each of the first two models, we establish a lower bound on the channel capacity. The coding schemes for the lower bounds use techniques of dirty paper coding or carbon copying onto dirty paper, interference reduction at the source and decode-and-forward relaying. The results reveal that, by opposition to carbon copying onto dirty paper and its root Costa's initial dirty paper coding (DPC, it may be beneficial in our setup that the informed source uses a part of its power to partially cancel the effect of the interference so that the uninformed relay benefits from this cancellation, and so the source benefits in turn.

  4. Vertical D4-D2-D0 Bound States on K3 Fibrations and Modularity

    Science.gov (United States)

    Bouchard, Vincent; Creutzig, Thomas; Diaconescu, Duiliu-Emanuel; Doran, Charles; Quigley, Callum; Sheshmani, Artan

    2017-03-01

    An explicit formula is derived for the generating function of vertical D4-D2-D0 bound states on smooth K3 fibered Calabi-Yau threefolds, generalizing previous results of Gholampour and Sheshmani. It is also shown that this formula satisfies strong modularity properties, as predicted by string theory. This leads to a new construction of vector valued modular forms which exhibit some of the features of a generalized Hecke transform.

  5. Study of -nucleus interaction through the formation of -nucleus bound state

    Indian Academy of Sciences (India)

    V Jha; B J Roy; A Chatterjee; H Machner

    2006-05-01

    The question of possible existence of -mesic nuclei is quite intriguing. Answer to this question will deeply enrich our understanding of -nucleus interaction which is not so well-understood. We review the experimental efforts for the search of -mesic nuclei and describe the physics motivation behind it. We present the description of an experiment for the search of -nucleus bound state using the GeV proton beam, currently being performed at COSY.

  6. Vertical D4-D2-D0 bound states on K3 fibrations and modularity

    CERN Document Server

    Bouchard, Vincent; Diaconescu, Duiliu-Emanuel; Doran, Charles; Quigley, Callum; Sheshmani, Artan

    2016-01-01

    An explicit formula is derived for the generating function of vertical D4-D2-D0 bound states on smooth K3 fibered Calabi-Yau threefolds, generalizing previous results of Gholampour and Sheshmani. It is also shown that this formula satisfies strong modularity properties, as predicted by string theory. This leads to a new construction of vector valued modular forms which exhibits some of the features of a generalized Hecke transform.

  7. Vertical D4-D2-D0 bound states on K3 fibrations and modularity

    DEFF Research Database (Denmark)

    Bouchard, Vincent; Creutzig, Thomas; Diaconescu, Duiliu-Emanuel;

    2016-01-01

    An explicit formula is derived for the generating function of vertical D4-D2-D0 bound states on smooth K3 fibered Calabi-Yau threefolds, generalizing previous results of Gholampour and Sheshmani. It is also shown that this formula satisfies strong modularity properties, as predicted by string...... theory. This leads to a new construction of vector valued modular forms which exhibits some of the features of a generalized Hecke transform....

  8. Dissecting zero modes and bound states on BPS vortices in Ginzburg-Landau superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, A. Alonso [Departamento de Matematica Aplicada, Universidad de Salamanca,Facultad de Ciencias Agrarias y Ambientales,Av. Filiberto Villalobos 119, E-37008 Salamanca (Spain); Fuertes, W. Garcia [Departamento de Fisica, Universidad de Oviedo, Facultad de Ciencias,Calle Calvo Sotelo s/n, E-33007 Oviedo (Spain); Guilarte, J. Mateos [Departamento de Fisica Fundamental, Universidad de Salamanca, Facultad de Ciencias,Plaza de la Merced, E-37008 Salamanca (Spain)

    2016-05-12

    In this paper the zero modes of fluctuation of cylindrically symmetric self-dual vortices are analyzed and described in full detail. These BPS topological defects arise at the critical point between Type II and Type I superconductors, or, equivalently, when the masses of the Higgs particle and the vector boson in the Abelian Higgs model are equal. In addition, novel bound states of Higss and vector bosons trapped by the self-dual vortices at their core are found and investigated.

  9. Dissecting zero modes and bound states on BPS vortices in Ginzburg-Landau superconductors

    CERN Document Server

    Alonso-Izquierdo, Alberto; Guilarte, Juan Mateos

    2016-01-01

    In this paper the zero modes of fluctuation of cylindrically symmetric self-dual vortices are analyzed and described in full detail. These BPS topological defects arise at the critical point between Type II and Type I superconductors, or, equivalently, when the masses of the Higgs particle and the vector boson in the Abelian Higgs model are equal. In addition, novel bound states of Higss and vector bosons trapped by the self-dual vortices at their core are found and investigated.

  10. F(750), We Miss You, as Bound State of 6 Top and 6 Anti top

    CERN Document Server

    Nielsen, Holger Frits Bech

    2016-01-01

    We collect and estimate support for our long speculated "multiple point principle" saying that there should be several vacua all having (compared to the scales of high energy physics) very low energy densities. In pure Standard Model we suggest there being three by "multiple point principle" low energy density vacua, "present", "condensate" and "high field" vacuum. We fit the mass of the in our picture since long speculated bound state of six top and six anti top quarks in three quite {\\em independent ways} and get remarkably within our crude accuracy the {\\em same} mass in all three fits! The new point of the present article is to estimate the bound state mass in what we could call a bag model estimation. The two other fits, which we review, obtain the mass of the bound state by fitting to the multiple point principle prediction of degenerate vacua. Our remarkable agreement of our three mass-fits can be interpreted to mean, that we have calculated at the end the energy densities of the two extra speculated v...

  11. Bound state, phase separation and superconductivity in presence of Rashba spin-orbit coupling

    Science.gov (United States)

    Kapri, Priyadarshini; Basu, Saurabh

    2017-06-01

    We have investigated the phase diagram for the t - J model at low electronic densities in presence of Rashba spin-orbit coupling (RSOC). We have rigorously derived a bound state criterion which arises out of a competition between the kinetic energy of the electrons and the exchange coupling between them. Further, we have obtained that the phase diagram consists of three phases, namely, a gas of electrons, a gas of bound pairs, and a fully phase separated state. Subsequently an extension of the pairing scenario is done at finite densities by solving a BCS gap equation. Finite superconducting correlations are observed for J values much lower than that required for the formation of a single bound pair, thereby indicating that pairing in a many particle environment requires weaker interaction strengths than that in the dilute case. We have further obtained that the RSOC increases the transition temperature for a p-wave pairing state, while it diminishes the same for an s-wave pairing correlations.

  12. Meson-baryon bound states in a (2+1)-dimensional strongly coupled lattice QCD model

    Science.gov (United States)

    Neto, Antônio Francisco

    2004-08-01

    We consider bound states of a meson and a baryon (meson and antibaryon) in lattice QCD in a Euclidean formulation. For simplicity, considering the + parity sector we analyze an SU(3) theory with a single flavor in 2+1 dimensions and two-dimensional Dirac matrices. We work in the strong coupling regime, i.e., in a region of parameters such that the hopping parameter κ is sufficiently small and κ≫g-20, where g-20 is the pure gauge coupling. There is a meson (baryon) particle with asymptotic mass -2 ln κ (-3 ln κ) and an isolated dispersion curve. Here, in a ladder approximation, we show that there is no meson baryon (or meson-antibaryon) bound state solution to the Bethe-Salpeter equation up to the meson-baryon threshold (˜-5 ln κ). The absence of such a bound state is an effect of a spatial range-one repulsive potential that is local in space at order κ3, i.e., the leading order in the hopping parameter κ.

  13. Meson-meson bound states in a (2+1)-dimensional strongly coupled lattice QCD model

    Science.gov (United States)

    Faria da Veiga, Paulo A.; O'Carroll, Michael; Neto, Antônio Francisco

    2004-05-01

    We consider bound states of two mesons (antimesons) in lattice quantum chromodynamics in an Euclidean formulation. For simplicity, we analyze an SU(3) theory with a single flavor in 2+1 dimensions and two-dimensional Dirac matrices. For a small hopping parameter κ and small plaquette coupling g-20, such that 0bound state solution to the Bethe-Salpeter equation up to the two-meson threshold. Remarkably the absence of such a bound state is an effect of a potential which is nonlocal in space at order κ2, i.e., the leading order in the hopping parameter κ. A local potential appears only at order κ4 and is repulsive. The relevant spectral properties for our model are unveiled by considering the correspondence between the lattice Bethe-Salpeter equation and a lattice Schrödinger resolvent equation with a nonlocal potential.

  14. Gluon bound state and asymptotic freedom derived from the Bethe--Salpeter equation

    CERN Document Server

    Fukamachi, Hitoshi; Nishino, Shogo; Shinohara, Toru

    2016-01-01

    In this paper we study the two-body bound states for gluons and ghosts in a massive Yang-Mills theory which is obtained by generalizing the ordinary massless Yang-Mills theory in a manifestly Lorentz covariant gauge. First, we give a systematic derivation of the coupled Bethe-Salpeter equations for gluons and ghosts by using the Cornwall-Jackiw-Tomboulis effective action of the composite operators within the framework of the path integral quantization. Then, we obtain the numerical solutions for the Bethe-Salpeter amplitude representing the simultaneous bound states of gluons and ghosts by solving the homogeneous Bethe-Salpeter equation in the ladder approximation. We study how the inclusion of ghosts affects the two-gluon bound states in the cases of the standing and running gauge coupling constant. Moreover, we show explicitly that the approximate solutions obtained for the gluon-gluon amplitude are consistent with the ultraviolet asymptotic freedom signaled by the negative $\\beta$ function.

  15. Quantization of the Closed Mini-Superspace Models as Bound States

    CERN Document Server

    Kung, J H

    1995-01-01

    Wheeler-DeWitt equation is applied to $k > 0$ Friedmann Robertson Walker metric with various types of matter. It is shown that if the Universe ends in the matter dominated era (e.g., radiation or pressureless gas) with zero cosmological constant, then the resulting Wheeler-DeWitt equation describes a bound state problem. As solutions of a non-degenerate bound state system, the eigen-wave functions are real (Hartle-Hawking) and the usual issue associated with the ambiguity in the boundary conditions for the wave functions is resolved. Furthermore, as a bound state problem, there exists a quantization condition that relates the curvature of the three space with the energy density of the Universe. Incorporating a cosmological constant in the early Universe (inflation) is given as a natural explanation for the large quantum number associated with our Universe, which resulted from the quantization condition. It is also shown that if there is a cosmological constant $\\Lambda > 0$ in our Universe that persists for a...

  16. Finite state projection based bounds to compare chemical master equation models using single-cell data

    Science.gov (United States)

    Fox, Zachary; Neuert, Gregor; Munsky, Brian

    2016-08-01

    Emerging techniques now allow for precise quantification of distributions of biological molecules in single cells. These rapidly advancing experimental methods have created a need for more rigorous and efficient modeling tools. Here, we derive new bounds on the likelihood that observations of single-cell, single-molecule responses come from a discrete stochastic model, posed in the form of the chemical master equation. These strict upper and lower bounds are based on a finite state projection approach, and they converge monotonically to the exact likelihood value. These bounds allow one to discriminate rigorously between models and with a minimum level of computational effort. In practice, these bounds can be incorporated into stochastic model identification and parameter inference routines, which improve the accuracy and efficiency of endeavors to analyze and predict single-cell behavior. We demonstrate the applicability of our approach using simulated data for three example models as well as for experimental measurements of a time-varying stochastic transcriptional response in yeast.

  17. Upper bound for SL-invariant entanglement measures of mixed states

    Science.gov (United States)

    Osterloh, Andreas

    2016-05-01

    An algorithm is proposed that serves to handle full-rank density matrices when coming from a lower-rank method to compute the convex roof. This is in order to calculate an upper bound for any polynomial SL-invariant multipartite entanglement measure E . This study exemplifies how this algorithm works based on a method for calculating convex roofs of rank-2 density matrices. It iteratively considers the decompositions of the density matrix into two states each, exploiting the knowledge for the rank-2 case. The algorithm is therefore quasiexact as far as the rank-2 case is concerned, and it also hints where it should include more states in the decomposition of the density matrix. Focusing on the measure of three-way entanglement of qubits (called three-tangle), I show the results the algorithm gives for two states, one of which is the Greenberger-Horne-Zeilinger-Werner (GHZ-W ) state, for which the exact convex roof is known. It overestimates the three-tangle in the state, thereby giving insight into the optimal decomposition the GHZ-W state has. As a proof of principle, I have run the algorithm for the three-tangle on the transverse quantum Ising model. I give qualitative and quantitative arguments why the convex roof should be close to the upper bound found here.

  18. Supersymmetrical bounding of asymmetric states and quantum phase transitions by anti-crossing of symmetric states

    Science.gov (United States)

    Afzal, Muhammad Imran; Lee, Yong Tak

    2016-12-01

    Von Neumann and Wigner theorized the bounding and anti-crossing of eigenstates. Experiments have demonstrated that owing to anti-crossing and similar radiation rates, the graphene-like resonance of inhomogeneously strained photonic eigenstates can generate a pseudomagnetic field, bandgaps and Landau levels, whereas exponential or dissimilar rates induce non-Hermicity. Here, we experimentally demonstrate higher-order supersymmetry and quantum phase transitions by resonance between similar one-dimensional lattices. The lattices consisted of inhomogeneous strain-like phases of triangular solitons. The resonance created two-dimensional, inhomogeneously deformed photonic graphene. All parent eigenstates were annihilated. Eigenstates of mildly strained solitons were annihilated at similar rates through one tail and generated Hermitian bounded eigenstates. The strongly strained solitons with positive phase defects were annihilated at exponential rates through one tail, which bounded eigenstates through non-Hermitianally generated exceptional points. Supersymmetry was evident, with preservation of the shapes and relative phase differences of the parent solitons. Localizations of energies generated from annihilations of mildly and strongly strained soliton eigenstates were responsible for geometrical (Berry) and topological phase transitions, respectively. Both contributed to generating a quantum Zeno phase, whereas only strong twists generated topological (Anderson) localization. Anti-bunching-like condensation was also observed.

  19. Why bound-state calculations of tetraquarks should be met with scepticism

    CERN Document Server

    Rupp, George

    2016-01-01

    Recent experimental signals have led to a revival of tetraquarks, the hypothetical $q^2\\bar{q}^2$ hadronic states proposed by Jaffe in 1976 to explain the light scalar mesons. Mesonic structures with exotic quantum numbers have indeed been observed recently, though a controversy persists whether these are true resonances and not merely kinematical threshold enhancements, or otherwise states not of a true $q^2\\bar{q}^2$ nature. Moreover, puzzling non-exotic mesons are also often claimed to have a tetraquark configuration. However, the corresponding model calculations are practically always carried out in pure bound-state approaches, ignoring completely the coupling to asymptotic two-meson states and unitarity, especially the dynamical effects thereof. In this short paper we argue that such static predictions of real tetraquark masses are highly unreliable and provide little evidence of the very existence of such states.

  20. Decay of Bethe-Salpeter kernel and bound states for the lattice four Fermi model

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, Petrus Henrique Ribeiro dos [Universidade Federal de Goias (UFG), Goiania, GO (Brazil)

    2012-07-01

    Full text: We consider an imaginary-time functional integral formulation of the the lattice four-Fermi or Gross-Neveu model in d + 1 space-time dimensions (d = 1, 2, 3) and with N-component fermions. Let 0 < {kappa} << 1 be the hopping parameter, {lambda} > 0 the four-fermion coupling, m > 0 the bare fermion mass and take s x s spin matrices (s = 2,4). In a previous work, we derive spectral representations for two- and four- point correlation functions and use this result to show that the low-lying energy-momentum spectrum of this model exhibits isolated dispersion curves which are identified as single particles, multi-particle bands and bound states. In this previous analysis, the one-particle energy-momentum spectrum is obtained rigorously and is manifested by sN/2 isolated and identical dispersion curves, and the mass of particles has asymptotic value order of order 1n {kappa}. The existence of two-particle bound states above or below the two-particle band depends on whether Gaussian domination does hold or does not, respectively. Two-particle bound states emerge from solutions to a lattice Bethe-Salpeter equation that we solve in a ladder approximation. Within this approximation, the bound states have O({kappa}{sup 0}) binding energies at zero system momentum and their masses are all equal, with value {approx} -2 1n {kappa}. In this work, using the hyperplane decoupling method, we provide a detailed analysis of the decay of the Bethe-Salpeter kernel and show how to use this decay to extend the spectral result obtained in the ladder approximation to the full model. In particular, we prove that if the two-point function decays faster than the four-point function (Gaussian subjugation) then the only point in the mass spectrum above the one-particle mass and below the two-particle band is the bound state mass. (author)

  1. Bound states in a model of interaction of Dirac field with material plane

    Directory of Open Access Journals (Sweden)

    Pismak Yu. M.

    2016-01-01

    Full Text Available In the framework of the Symanzik approach model of the interaction of the Dirac spinor field with the material plane in the 3 + 1-dimensional space is constructed. The model contains eight real parameters characterizing the properties of the material plane. The general solution of the Euler-Lagrange equations of the model and dispersion equations for bound states are analyzed. It is shown that there is a choice of parameters of the model in which the connected states are characterized by dispersion law of a mass-less particle moving along the material plane with the dimensionless Fermi velocity not exceeding one.

  2. Evidence for a Possible Proton-Antiproton Bound State from Lattice QCD

    CERN Document Server

    Loan, M

    2006-01-01

    We have used standard techniques of lattice quantum chromodynamics to look for evidence of the spin-zero six quark flavour singlet state ($J^{PC}=0^{-+}$) observed by BES Collaboration, and to determine the splitting between the mass of the possible proton-antiproton and the mass of two protons, its threshold. Ignoring quark loops and quark annihilation, we find indications that for sufficiently light quarks proton- antiproton is below the $2m_{p}$ threshold, making it a possible six-quark bound state.

  3. Formation Mechanism of Guided Resonances and Bound States in the Continuum in Photonic Crystal Slabs

    CERN Document Server

    Gao, Xingwei; Zhen, Bo; Lin, Xiao; Joannopoulos, John D; Soljačić, Marin; Chen, Hongsheng

    2016-01-01

    We develop a formalism, based on the mode expansion method, to describe the guided resonances and bound states in the continuum (BICs) in photonic crystal slabs with one-dimensional periodicity. This approach provides analytic insights to the formation mechanisms of these states: the guided resonances arise from the transverse Fabry-P\\'erot condition, and the divergence of the resonance lifetimes at the BICs is explained by a destructive interference of radiation from different propagating components inside the slab. We show BICs at the center and on the edge of the Brillouin zone protected by symmetry, as well as BICs at generic wave vectors not protected by symmetry.

  4. NN S-Wave Elastic Cross Section and Possible Bound States in a Constituent Quark Model

    Institute of Scientific and Technical Information of China (English)

    PANG Hou-Rong; PING Jia-Lun; WANG Fan

    2008-01-01

    In the framework of a chiral constituent quark model, considering the contributions of π annihilation and one-gluon annihilation, the proton-antiproton s-wave elastic scattering cross section experimental data can be reproduced by adjusting properly one-gluon annihilation coupling constant. After fixing the model parameters, we perform a dynamical calculation for all possible s-wave nucleon-antinucleon states. The results show that there is no s-wave bound state as indicated by a strong enhancement at threshold of pp in J/ψ and B decay.

  5. Variational approach to bound states in scalar-gluon field theory

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, K.; Romer, H.

    1976-10-15

    Two variational approaches are employed to attack the bound-state problem of a charged scalar field interacting with an Abelian gauge field. The resulting variational equations allow for a qualitative discussion of all possible physical situations. Boundary conditions play a crucial role in their interpretation. A specially developed perturbation scheme yields hydrogenlike spectra. ''Self-trapping'' solutions and configurations with complete screening of the long-range force are discussed and are shown not to be obtainable by perturbation for small coupling. Metastable states appear for strong coupling. (AIP)

  6. State-to-state dynamics of molecular energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, W.R.; Giese, C.F. [Univ. of Minnesota, Minneapolis (United States)

    1993-12-01

    The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.

  7. Bounded-Error Quantum State Identification and Exponential Separations in Communication Complexity

    CERN Document Server

    Gavinsky, D; Kempe, J; Regev, O; Gavinsky, Dmitry; Kempe, Julia; Regev, Oded; Wolf, Ronald de

    2005-01-01

    We consider the problem of bounded-error quantum state identification: given either state \\alpha_0 or state \\alpha_1, we are required to output `0', `1' or `?' ("don't know"), such that conditioned on outputting `0' or `1', our guess is correct with high probability. The goal is to maximize the probability of not outputting `?'. We prove a direct product theorem: if we're given two such problems, with optimal probabilities a and b, respectively, and the states in the first problem are pure, then the optimal probability for the joint bounded-error state identification problem is O(ab). Our proof is based on semidefinite programming duality and may be of wider interest. Using this result, we present two exponential separations in the simultaneous message passing model of communication complexity. Both are shown in the strongest possible sense. First, we describe a relation that can be computed with O(log n) classical bits of communication in the presence of shared randomness, but needs Omega(n^{1/3}) communicat...

  8. Bound states and Cooper pairs of molecules in 2D optical lattices bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Guardian, A.; Dominguez-Castro, G.A.; Paredes, R. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico (Mexico)

    2016-08-15

    We investigate the formation of Cooper pairs, bound dimers and the dimer-dimer elastic scattering of ultracold dipolar Fermi molecules confined in a 2D optical lattice bilayer configuration. While the energy and their associated bound states are determined in a variational way, the correlated two-molecule pair is addressed as in the original Cooper formulation. We demonstrate that the 2D lattice confinement favors the formation of zero center mass momentum bound states. Regarding the Cooper pairs binding energy, this depends on the molecule populations in each layer. Maximum binding energies occur for non-zero (zero) pair momentum when the Fermi system is polarized (unpolarized). We find an analytic expression for the dimer-dimer effective interaction in the deep BEC regime. The present analysis represents a route for addressing the BCS-BEC crossover in dipolar Fermi gases confined in 2D optical lattices within the current experimental panorama. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Predictions of the hidden-charm molecular states with the four quark components

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Rui; Liu, Xiang [Lanzhou University, School of Physical Science and Technology, Lanzhou (China); Lanzhou University and Institute of Modern Physics of CAS, Research Center for Hadron and CSR Physics, Lanzhou (China); Liu, Yan-Rui [Shandong University, School of Physics and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Jinan (China); Institute of Theoretical Physics, CAS, Key Laboratory of Theoretical Physics, Beijing (China); Zhu, Shi-Lin [Peking University, School of Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Peking University, Center for High Energy Physics, Beijing (China)

    2016-06-15

    In this work, we study the T anti T-type molecular systems systematically via the one pion exchange model, where T denotes the narrow J{sup P} = 1{sup +} D{sub 1} meson or 2{sup +} D{sub 2}{sup *} meson and anti T is its antiparticle.With the effective potentials, we try to find the bound-state solutions of the corresponding systems, which provide crucial information of whether T anti T-type molecular states exist. By our analysis, we predict some T anti T-type molecular states which may be accessible at future experiments like LHCb and forthcoming BelleII. (orig.)

  10. First Density Correction to the Transport Coefficients for a Square Well Gas: Temperature Dependence and Bound State Effects

    Science.gov (United States)

    Garland, Gregory Ellis

    The temperature dependence of transport properties of a moderately dense square well gas is studied in order to understand the effects of attractive forces (particularly bound states). The quantum cluster expansions of the Green -Kubo time correlation functions for the thermal conductivity, shear viscosity, and self-diffusion coefficients are given, and exact expressions to zeroth (Boltzmann level) and first order in the density are obtained. Specializing to Boltzmann statistics and the classical square well potential allows calculations of the kinetic potential parts of the first density correction; the important contributions to the remaining triple collision parts are discussed. Good agreement with molecular dynamics results is found; quantitative difference from real fluids are observed, however. Possible reasons for the discrepancies are discussed. A brief description of the ultility and limitations of the hard sphere model is given for comparison. The dynamics structure factor is calculated for a dense fluid of hard spheres and compared with recent neutron scattering data for Krypton.

  11. Theoretical study of the low-lying bound states of O2

    Science.gov (United States)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1991-01-01

    It is demonstrated that a complete-active-space self-consistent-field (CASSCF) (2p)/MRCI + Q (multireference configuration interaction with a Davidson correction) description in a (13s8p6d 4f2g)/((5s4p3d 2f1g) atomic natural orbits (ANO) basis set supplemented with diffuse functions provides a quantitative description of the six lowest states of O2. The calculated potentials are within 0.05 eV (1.2 kilocal/mol) of accurate experimental results. The importance of substantially expanding the primitive basis set has been investigated, and it is demonstrated that such expansions yield insignificant improvement in the spectroscopic constants. Potential energy curves have also been reported for the weakly bound states of O2. The 5Pi(g) state is estimated to have a D(e) of 0.16 +/- 0.03 eV. The upper bound of D(e) is found to be sufficiently large that the importance of this state as a precursor for the formation of O2 (b 1Sigma(t)(+)) and O(1S) should be reconsidered.

  12. Nonlinear stability of pulsational mode of gravitational collapse in self-gravitating hydrostatically bounded dust molecular cloud

    Indian Academy of Sciences (India)

    P K Karmakar

    2011-06-01

    The pulsational mode of gravitational collapse (PMGC) in a hydrostatically bounded dust molecular cloud is responsible for the evolution of tremendous amount of energy during star formation. The source of free energy for this gravito-electrostatic instability lies in the associated self-gravity of the dispersed phase of relatively huge dust grains of solid matter over the gaseous phase of background plasma. The nonlinear stability of the same PMGC in an infinite dusty plasma model (plane geometry approximation for large wavelength fluctuation in the absence of curvature effects) is studied in a hydrostatic kind of homogeneous equilibrium configuration. By the standard reductive perturbation technique, a Korteweg–de Vries (KdV) equation for investigating the nonlinear evolution of the lowest order perturbed self-gravitational potential is developed in a time-stationary (steady-state) form, which is studied analytically as well as numerically. Different nonlinear structures (soliton-like and soliton chain-like) are found to exist in different situations. Astrophysical situations, relevant to it, are briefly discussed.

  13. Bound States of the q-Deformed AdS5 x S5 Superstring S-matrix

    CERN Document Server

    Hoare, Ben; Miramontes, J Luis

    2012-01-01

    The investigation of the q deformation of the S-matrix for excitations on the string world sheet in AdS5 x S5 is continued. We argue that due to the lack of Lorentz invariance the situation is more subtle than in a relativistic theory in that the nature of bound states depends on their momentum. At low enough momentum |p|1. This subtlety fixes a problem involving the consistency of crossing symmetry with the relativistic limit found in earlier work. With mirror kinematics, obtained after a double Wick rotation, the bound state structure is simpler and there are no marginally unstable bound states.

  14. Full-potential multiple scattering theory with space-filling cells for bound and continuum states.

    Science.gov (United States)

    Hatada, Keisuke; Hayakawa, Kuniko; Benfatto, Maurizio; Natoli, Calogero R

    2010-05-12

    We present a rigorous derivation of a real-space full-potential multiple scattering theory (FP-MST) that is free from the drawbacks that up to now have impaired its development (in particular the need to expand cell shape functions in spherical harmonics and rectangular matrices), valid both for continuum and bound states, under conditions for space partitioning that are not excessively restrictive and easily implemented. In this connection we give a new scheme to generate local basis functions for the truncated potential cells that is simple, fast, efficient, valid for any shape of the cell and reduces to the minimum the number of spherical harmonics in the expansion of the scattering wavefunction. The method also avoids the need for saturating 'internal sums' due to the re-expansion of the spherical Hankel functions around another point in space (usually another cell center). Thus this approach provides a straightforward extension of MST in the muffin-tin (MT) approximation, with only one truncation parameter given by the classical relation l(max) = kR(b), where k is the electron wavevector (either in the excited or ground state of the system under consideration) and R(b) is the radius of the bounding sphere of the scattering cell. Moreover, the scattering path operator of the theory can be found in terms of an absolutely convergent procedure in the l(max) --> ∞ limit. Consequently, this feature provides a firm ground for the use of FP-MST as a viable method for electronic structure calculations and makes possible the computation of x-ray spectroscopies, notably photo-electron diffraction, absorption and anomalous scattering among others, with the ease and versatility of the corresponding MT theory. Some numerical applications of the theory are presented, both for continuum and bound states.

  15. Quantum Zeno and anti-Zeno effects in an unstable system with two bound states

    Energy Technology Data Exchange (ETDEWEB)

    Modi, Kavan [Department of Physics, Center for Complex Quantum Systems, University of Texas at Austin, Austin, TX 78712-1081 (United States)], E-mail: modik@physics.utexas.edu; Shaji, Anil [Department of Physics, Center for Complex Quantum Systems, University of Texas at Austin, Austin, TX 78712-1081 (United States)

    2007-08-20

    We analyze the experimental observations reported by Fischer et al. [M.C. Fischer, B. Gutierrez-Medina, M.G. Raizen, Phys. Rev. Lett. 87 (2001) 040402] by considering a system of coupled unstable bound quantum states |A> and |B>. The state |B> is coupled to a set of continuum states |C{theta}({omega})>. We investigate the time evolution of |A> when it decays into |C{theta}({omega})> via |B>, and find that frequent measurements on |A> leads to both the quantum Zeno effect and the anti-Zeno effects depending on the frequency of measurements. We show that it is the presence of |B> which allows for the anti-Zeno effect.

  16. Studies on bound-state spectra of Manning-Rosen potential

    CERN Document Server

    Roy, Amlan K

    2014-01-01

    Accurate ro-vibrational energies, eigenfunctions, radial densities, expectation values are presented for the exponential-type Manning-Rosen (MR) potential. Bound states accurate up to ten significant figure are obtained by employing a simple, reliable generalized pseudospectral method. \\emph{All} 55 eigenstates with $n \\leq 10$ are treated for arbitrary values of potential parameters, covering a wide range of interaction, through a \\emph{non-uniform, optimal} spatial radial discretization. A detailed investigation has been made on energy changes with respect to \\emph{screening and other} potential parameters. A systematic estimation of \\emph{critical} screening parameters are given for these eigenstates. Special emphasis has been given to \\emph{higher} states and in the vicinity of \\emph{critical screening} region. A thorough comparison with literature results is made wherever possible. This \\emph{surpasses} the accuracy of \\emph{all} other existing methods currently available. Several \\emph{new} states are r...

  17. Three-body bound states in dipole-dipole interacting Rydberg atoms

    CERN Document Server

    Kiffner, Martin; Jaksch, Dieter

    2013-01-01

    We show that the dipole-dipole interaction between three identical Rydberg atoms can give rise to bound trimer states. The microscopic origin of these states is fundamentally different from Efimov physics. Two stable trimer configurations exist where the atoms form the vertices of an equilateral triangle in a plane perpendicular to a static electric field. The triangle edge length typically exceeds $R\\approx 2\\,\\mu\\text{m}$, and each configuration is two-fold degenerate due to Kramers' degeneracy. The depth of the potential wells and the triangle edge length can be controlled by external parameters. We establish the Borromean nature of the trimer states, analyze the quantum dynamics in the potential wells and describe methods for their production and detection.

  18. Controlling Directionality and Dimensionality of Radiation by Perturbing Separable Bound States in the Continuum

    Science.gov (United States)

    Rivera, Nicholas; Hsu, Chia Wei; Zhen, Bo; Buljan, Hrvoje; Joannopoulos, John D.; Soljačić, Marin

    2016-09-01

    A bound state in the continuum (BIC) is an unusual localized state that is embedded in a continuum of extended states. Here, we present the general condition for BICs to arise from wave equation separability. Then we show that by exploiting perturbations of certain symmetry such BICs can be turned into resonances that radiate with a tailorable directionality and dimensionality. Using this general framework, we construct new examples of separable BICs and resonances that can exist in optical potentials for ultracold atoms, photonic systems, and systems described by tight binding. Such resonances with easily reconfigurable radiation allow for applications such as the storage and release of waves at a controllable rate and direction, as well systems that switch between different dimensions of confinement.

  19. Application of supersymmetric quantum mechanics to study bound state properties of exotic hypernuclei

    CERN Document Server

    Khan, Md Abdul

    2015-01-01

    Bound state properties of few single and double-$\\Lambda$ hypernuclei is critically examined in the framework of core-$\\Lambda$ and core+$\\Lambda+\\Lambda$ few-body model applying hyperspherical harmonics expansion method (HHEM). The $\\Lambda\\Lambda$ potential is chosen phenomenologically while the core-$\\Lambda$ potential is obtained by folding a phenomenological $\\Lambda N$ interaction into the density distribution of the core. The depth of the effective $\\Lambda N$ potential is adjusted to reproduce the experimental data for the core-$\\Lambda$ subsystem. The three-body Schr\\"odinger equation is solved by hyperspherical adiabatic approximation (HAA) to get the ground state energy and wave function. The ground state wavefunction is used to construct the supersymmetric partner potential following prescription of supersymmetric quantum mechanics (SSQM) algebra. The newly constructed supersymmetric partner potential is used to solve the three-body Schr\\"odinger equation to get the energy and wavefunction for the...

  20. In-medium ηN interactions and η nuclear bound states

    Science.gov (United States)

    Cieplý, A.; Friedman, E.; Gal, A.; Mareš, J.

    2014-05-01

    The in-medium ηN interaction near and below threshold is constructed from a free-space chirally-inspired meson-baryon coupled-channel model that captures the physics of the N*(1535) baryon resonance. Nucleon Pauli blocking and hadron self-energies are accounted for. The resulting energy-dependent in-medium interaction is used in self-consistent dynamical calculations of η nuclear bound states. Narrow states of width Γη≲2 MeV are found across the periodic table, beginning with A⩾10, for this in-medium coupled-channel interaction model. The binding energy of the 1sη state increases with A, reaching a value of B1s(η)≈15 MeV. The implications of our self-consistency procedure are discussed with respect to procedures used in other works.

  1. Spinon and bound-state excitation light cones in Heisenberg XXZ chains

    Science.gov (United States)

    de Paula, A. L.; Bragança, H.; Pereira, R. G.; Drumond, R. C.; Aguiar, M. C. O.

    2017-01-01

    We investigate the out-of-equilibrium dynamics after a local quench that connects two spin-1/2 XXZ chains prepared in the ground state of the Hamiltonian in different phases, one in the ferromagnetic phase and the other in the critical phase. We analyze the time evolution of the on-site magnetization and bipartite entanglement entropy via adaptive time-dependent density matrix renormalization group. In systems with short-range interactions, such as the one we consider, the velocity of information transfer is expected to be bounded, giving rise to a light-cone effect. Interestingly, our results show that, when the anisotropy parameter of the critical chain is sufficiently close to that of the isotropic ferromagnet, the light cone is determined by the velocity of spin-wave bound states that propagate faster than single-particle ("spinon") excitations. Furthermore, we investigate how the system approaches equilibrium in the inhomogeneous ground state of the connected system, in which the ferromagnetic chain induces a nonzero magnetization in the critical chain in the vicinity of the interface.

  2. The effect of bound state dressing in laser assisted radiative recombination

    CERN Document Server

    Müller, Robert Alexander; Fritzsche, Stephan; Surzhykov, Andrey

    2015-01-01

    We present a theoretical study on the recombination of a free electron into the ground state of a hydrogen-like ion in the presence of an external laser field. Emphasis is placed on the effects caused by the laser dressing of the residual ionic bound state. To investigate how this dressing affects the total and angle-differential cross section of laser assisted radiative recombination (LARR) we apply first-order perturbation theory and the separable Coulomb-Volkov-continuum ansatz. Using this approach detailed calculations were performed for low-$Z$ hydrogen like ions and laser intensities in the range from $I_L=10^{11}\\text{W/cm}^2$ to $I_L=10^{13}\\text{W/cm}^2$. It is seen that the total cross section as a function of the laser intensity is remarkably affected by the bound state dressing. Moreover the laser dressing becomes manifest as asymmetries in the angular distribution and the (energy) spectrum of the emitted recombination photons.

  3. Universal three-body bound states in mixed dimensions beyond the Efimov paradigm

    Science.gov (United States)

    Zhang, Pengfei; Yu, Zhenhua

    2017-09-01

    The Efimov effect was first predicted for three particles interacting at an s -wave resonance in three dimensions. A subsequent study showed that the same effect can be realized by considering two-body and three-body interactions in mixed dimensions. In this work, we consider the three-body problem of two bosonic A atoms interacting with another single B atom in mixed dimensions: The A atoms are confined in a space of dimension dA and the B atom in a space of dimension dB, and there is an interspecies s -wave interaction in a dint-codimensional space accessible to both species. We find that when the s -wave interaction is tuned on resonance, there emerge an infinite series of universal three-body bound states for {dA,dB,dint} ={2 ,2 ,0 } and {2 ,3 ,1 } . Going beyond the Efimov paradigm, the binding energies of these states follow the scaling ln| En|˜-s(n π -θ ) 2/4 , with the scaling factor s being unity for the former case and √{mB(2 mA+mB) }/(mA+mB) for the latter. We discuss the possibility of realizing our mixed-dimensional systems in a cold-atom experiment and how the effects of these universal three-body bound states may be detected.

  4. A search for deeply-bound kaonic nuclear states at J-PARC

    Directory of Open Access Journals (Sweden)

    Sakaguchi A.

    2010-04-01

    Full Text Available The J-PARC E15 experiment will be performed to search for the simplest kaonic nuclear bound state, K− pp, by the in-flight 3He(K−,n reaction. The exclusive measurement can be performed by a simultaneous measurement of the missing mass using the primary neutron and the invariant mass via the expected decay, K− pp → Λp → pπ− p. In this report, an overview of the experiment and the preparation status are presented.

  5. Numerical approach to the lowest bound state of muonic three-body systems

    CERN Document Server

    Khan, Md Abdul

    2015-01-01

    In this paper, calculated energies of the lowest bound state of Coulomb three-body systems containing an electron ($e^-$), a negatively charged muon ($\\mu^-$) and a nucleus ($N^{Z+}$) of charge number Z are reported. The 3-body relative wave function in the resulting Schr\\"odinger equation is expanded in the complete set of hyperspherical harmonics (HH). Use of the orthonormality of HH leads to an infinite set of coupled differential equations (CDE) which are solved numerically to get the energy E.

  6. Observation of Supercurrent Enhancement in SNS Junctions by Nonequilibrium Injection into Supercurrent Carrying Bound Andreev States

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Taboryski, Rafael; Sørensen, Claus B.

    1999-01-01

    We report for the first time enhancement of the supercurrent by means of injection in a mesoscopic three terminal planar SN-SNS device made of Al on GaAs. When a current is injected from one of the superconducting Al electrodes at an injection bias V = Δ(T)/e, the dc Josephson current between the...... the other two superconducting electrodes has a maximum, giving evidence for an enhancement due to a nonequilibrium injection into bound Andreev states of the underlying semiconductor. The effect persists to temperatures where the equilibrium supercurrent has vanished....

  7. Applying the relativistic quantization condition to a three-particle bound state in a periodic box

    Science.gov (United States)

    Hansen, Maxwell T.; Sharpe, Stephen R.

    2017-02-01

    Using our recently developed relativistic three-particle quantization condition [Phys. Rev. D 90, 116003 (2014), 10.1103/PhysRevD.90.116003; Phys. Rev. D 92, 114509 (2015), 10.1103/PhysRevD.92.114509], we study the finite-volume energy shift of a spin-zero three-particle bound state. We reproduce the result obtained using nonrelativistic quantum mechanics by Meißner et al. in [Phys. Rev. Lett. 114, 091602 (2015), 10.1103/PhysRevLett.114.091602] and generalize the result to a moving frame.

  8. Andreev reflection properties in a parallel mesoscopic circuit with Majorana bound states

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Jin-Tao; Han, Yu [Physics Department, Liaoning University, Shenyang 110036 (China); Gong, Wei-Jiang, E-mail: gwj@mail.neu.edu.cn [College of Sciences, Northeastern University, Shenyang 110819 (China)

    2017-03-15

    We investigate the Andreev reflection in a parallel mesoscopic circuit with Majorana bound states (MBSs). It is found that in such a structure, the Andreev current can be manipulated in a highly efficient way, by the adjustment of bias voltage, dot levels, inter-MBS coupling, and the applied magnetic flux. Besides, the dot-MBS coupling manner is an important factor to modulate the Andreev current, because it influences the period of the conductance oscillation. By discussing the underlying quantum interference mechanism, the Andreev-reflection property is explained in detail. We believe that all the results can assist to understand the nontrivial role of the MBSs in driving the Andreev reflection.

  9. Electron-electron bound states in parity-preserving QED{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H.; Helayel-Neto, J.A. [Universidade Catolica do Petropolis, RJ (Brazil). Grupo de Fisica Teorica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas; Cima, O.M. del [Universidade Catolica do Petropolis, RJ (Brazil). Grupo de Fisica Teorica; Ferreira Junior, M.M. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]|[Maranhao Univ., Sao Luis, MA (Brazil). Dept. de Fisica

    2002-04-01

    By considering the Higgs mechanism in the framework of a parity-preserving Planar Quantum Electrodynamics, one shows that an attractive electron-electron interaction may dominate. The e{sup -}e{sup -} interaction potential emerges as the non-relativistic limit of the Moeller scattering amplitude and it results attractive with a suitable choice of parameters. Numerically values of the e{sup -}e{sup -} binding energy are obtained by solving the two-dimensional Schroedinger equation. The existence of bound states is a strong indicative that this model may be adopted to address the pairing mechanism of high-T{sub c} superconductivity. (author)

  10. Search for the eta-mesic Helium bound state with the WASA-at-COSY facility

    CERN Document Server

    Skurzok, M; Rundel, O; Moskal, P

    2015-01-01

    We performed a search for 4He-eta bound state with high statistics and high acceptance with the WASA-at-COSY facility using a ramped beam technique. The signature of eta-mesic nuclei is searched for in dd -> 3Henpi0 and dd -> 3Heppi- reactions by the measurement of the excitation functions in the vicinity of the {\\eta} production threshold. This paper presents the experimental method and the preliminary results of the data analysis for dd -> 3Henpi0 process.

  11. Formation of bound states of electrons in spherically symmetric oscillations of plasma

    CERN Document Server

    Dvornikov, Maxim

    2010-01-01

    We study spherically symmetric oscillations of electrons in plasma in frames of the classical electrodynamics. First we analyze the electromagnetic potentials for the system of radially oscillating charged particles. Then we consider both free and forced spherically symmetric oscillations of electrons. Finally we discuss the interaction between radially oscillating electrons through the exchange of ion acoustic waves. It is obtained that the effective potential of this interaction can be attractive and can transcend the Debye-Hueckel potential. We suggest that oscillating electrons can form bound states at the initial staged of the spherical plasma structure evolution. The application of the obtained results to the theory of natural plasmoids are considered.

  12. Cygnus X-3: A source of highly symmetric quark bound states. [Cyg X-3

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, J.E.; Benvenuto, O.G. (Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 49 y 115, Casilla de Correo 67, 1900 La Plata (Argentina) Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata (Argentina))

    1990-06-01

    The point source Cygnus X-3 continues to show puzzling features related to underground modulated muon signals and also an excess of hadron groups recently reported. We propose that the neutral particle responsible for these unusual facts could be a highly symmetric bound QCD state (quark-alpha) recently hypothesized. Interactions of these primaries with ordinary matter and astrophysical expectations are addressed and it is concluded that this proposal is in principle capable of providing some desirable ingredients for an explanation of the data.

  13. The beauty of impurities: Two revivals of Friedel's virtual bound-state concept

    Science.gov (United States)

    Georges, Antoine

    2016-03-01

    Jacques Friedel pioneered the theoretical study of impurities and magnetic impurities in metals. He discovered Friedel oscillations, introduced the concept of virtual bound-state, and demonstrated that the charge on the impurity is related to the scattering phase-shift at the Fermi level (Friedel sum-rule). After a brief review of some of these concepts, I describe how they proved useful in two new contexts. The first one concerns the Coulomb blockade in quantum dots, and its suppression by the Kondo effect. The second one is the dynamical mean-field theory of strong electronic correlations. xml:lang="fr"

  14. Analytical perspective for bound states in the continuum in photonic crystal slabs.

    Science.gov (United States)

    Yang, Yi; Peng, Chao; Liang, Yong; Li, Zhengbin; Noda, Susumu

    2014-07-18

    We investigate the formation of photonic bound states in the continuum (BICs) in photonic crystal slabs from an analytical perspective. Unlike the stationary at-Γ BICs which originate from the geometric symmetry, the tunable off-Γ BICs are due to the weighted destructive via the continuum interference in the vicinity of accidental symmetry when the majority of the radiation is precanceled. The symmetric compatible nature of the off-Γ BICs leads to a trapping of light that can be tuned through continuously varying the wave vector. With the analytical approach, we explain a reported experiment and predict the existence of a new BIC at an unrevealed symmetry.

  15. Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues

    Institute of Scientific and Technical Information of China (English)

    O.Bayrak; A.Soylu; I.Boztosun

    2011-01-01

    We investigate the effect of isotropic velocity-dependent potentials on the bound state energy eigenvalues for the first time for any quantum states of the Coulomb and harmonic oscillator potentials within the framework of the asymptotic iteration method. When the velocity-dependent term is selected as a constant parameter po, we present that the energy eigenvalues can be obtained analytically for both Coulomb and harmonic oscillator potentials. However, when the velocity-dependent term is considered as a harmonic oscillator type poΥ2, taking the velocity-dependent term as a perturbation, we present how to obtain the energy eigenvalues of the Coulomb and harmonic oscillator potentials for any n and (e) quantum states by using perturbation expansion and numerical calculations in the asymptotic iteration method procedure.%@@ We investigate the effect of isotropic velocity-dependent potentials on the bound state energy eigenvalues for the first time for any quantum states of the Coulomb and harmonic oscillator potentials within the framework of the asymptotic iteration method.When the velocity-dependent term is selected as a constant parameter po,we present that the energy eigenvalues can be obtained analytically for both Coulomb and harmonic oscillator potentials.However, when the velocity-dependent term is considered as a harmonic oscillator type por2, taking the velocity-dependent term as a perturbation, we present how to obtain the energy eigenvalues of the Coulomb and harmonic oscillator potentials for any n and e quantum states by using perturbation expansion and numerical calculations in the asymptotic iteration method procedure.

  16. Class of PPT bound entangled states associated to almost any set of pure entangled states

    CERN Document Server

    Piani, M

    2006-01-01

    We analyze a class of entangled states for bipartite $d \\otimes d$ systems, with $d$ non-prime. The entanglement of such states is revealed by the construction of canonically associated entanglement witnesses. The structure of the states is very simple and similar to the one of isotropic states: they are a mixture of a separable and a pure entangled state whose supports are orthogonal. Despite such simple structure, in an opportune interval of the mixing parameter their entanglement is not revealed by partial transposition nor by the realignment criterion, i.e. by any permutational criterion in the bipartite setting. In the range in which the states are Positive under Partial Transposition (PPT), they are not distillable; on the other hand, the states in the considered class are provably distillable as soon as they are Nonpositive under Partial Transposition (NPT). The states are associated to any set of more than two pure states. The analysis is extended to the multipartite setting. By an opportune selection...

  17. K− absorption on two nucleons and ppK− bound state search in the Σ0p final state

    Directory of Open Access Journals (Sweden)

    O. Vázquez Doce

    2016-07-01

    Full Text Available We report the measurement of K− absorption processes in the Σ0p final state and the first exclusive measurement of the two nucleon absorption (2NA with the KLOE detector. The 2NA process without further interactions is found to be 9% of the sum of all other contributing processes, including absorption on three and more nucleons or 2NA followed by final state interactions with the residual nucleons. We also determine the possible contribution of the ppK− bound state to the Σ0p final state. The yield of ppK−/Kstop− is found to be (0.044±0.009stat−0.005+0.004syst⋅10−2 but its statistical significance based on an F-test is only 1σ.

  18. Relativistic two-body bound states in scalar QFT: variational basis-state approach

    Energy Technology Data Exchange (ETDEWEB)

    Emami-Razavi, Mohsen [Centre for Research in Earth and Space Science, York University, Toronto, Ontario, M3J 1P3 (Canada); Darewych, Jurij W [Department of Physics and Astronomy, York University, Toronto, Ontario, M3J 1P3 (Canada)

    2006-08-15

    We use the Hamiltonian formalism of quantum field theory and the variational basis-state method to derive relativistic coupled-state wave equations for scalar particles interacting via a massive or massless mediating scalar field (the scalar Yukawa model). A variational trial state comprised of two and four Fock-space states is used to derive coupled wave equations for a relativistic two (and four) body system. Approximate, variational two-body ground-state solutions of the relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields. The results show that the inclusion of virtual pairs has a large effect on the two-body binding energy at strong coupling. A comparison of the two-body binding energies with other calculations is presented.

  19. State reconstruction of molecular spatial rotation

    Institute of Scientific and Technical Information of China (English)

    Qin Xiao; Gao Jun-Yi

    2012-01-01

    We establish a reconstruction approach for the rotational quantum state of linear molecules possessing a magnetic manifold.Our approximate method contains an iteration with generalized matrix inverses,processing the tomographic integral of the time-dependent molecular-axis distribution in a polar angle.As shown in a simulated example for an alignment state,the density matrix is determined in a high fidelity.An analytic tomographic formula is also derived for the symmetric top rotation.The state coherent in the quantun space of both the angular momentum and its magnetic projection can be approximately retrieved from the observable time-resolved solid-angle distribution of the molecular.

  20. Note: Parameter-independent bounding of the stochastic Michaelis-Menten steady-state intrinsic noise variance.

    Science.gov (United States)

    Widmer, L A; Stelling, J; Doyle, F J

    2013-10-28

    Using the (slow-scale) linear noise approximation, we give parameter-independent bounds to the substrate and product intrinsic noise variance for the stochastic Michaelis-Menten approximation at steady state.

  1. Majorana fermions and exotic surface Andreev bound states in topological superconductors: application to Cu(x)Bi2Se3.

    Science.gov (United States)

    Hsieh, Timothy H; Fu, Liang

    2012-03-09

    The recently discovered superconductor Cu(x)Bi2Se3 is a candidate for three-dimensional time-reversal-invariant topological superconductors, which are predicted to have robust surface Andreev bound states hosting massless Majorana fermions. In this work, we analytically and numerically find the linearly dispersing Majorana fermions at k=0, which smoothly evolve into a new branch of gapless surface Andreev bound states near the Fermi momentum. The latter is a new type of Andreev bound states resulting from both the nontrivial band structure and the odd-parity pairing symmetry. The tunneling spectra of these surface Andreev bound states agree well with a recent point-contact spectroscopy experiment [S. Sasaki et al., Phys. Rev. Lett. 107, 217001 (2011)] and yield additional predictions for low temperature tunneling and photoemission experiments.

  2. Collective sliding states for colloidal molecular crystals

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia [Los Alamos National Laboratory

    2008-01-01

    We study the driving of colloidal molecular crystals over periodic substrates such as those created with optical traps. The n-merization that occurs in the colloidal molecular crystal states produces a remarkably rich variety of distinct dynamical behaviors, including polarization effects within the pinned phase and the formation of both ordered and disordered sliding phases. Using computer simulations, we map the dynamic phase diagrams as a function of substrate strength for dimers and trimers on a triangular substrate, and correlate features on the phase diagram with transport signatures.

  3. Low energy behavior of astrophysical S factor in radiative captures to loosely bound final states

    CERN Document Server

    Mukhamedzhanov, A M

    2002-01-01

    The low-energy behavior of the astrophysical S-factor for E1 direct radiative captures a(p,gamma)b leading to loosely bound final states (b=a+p) is investigated. We derive a first-order integral representation for S(E) and focus on the properties around zero energy. We show that it is the competition between various effects, namely the remnant Coulomb barrier, the initial and final centrifugal barriers and the binding energy, that defines the behavior of the S(E->0). Contrary to previous findings, we prove that S(E->0) is not determined by the pole corresponding to the bound state. The derivative S'(0) increases with the increase of the centrifugal barrier, while it decreases with the charge of the target. For l_i=l_f+1 the increase of the binding energy of the final nucleus increases the derivative S'(0) while for l_i=l_f-1 the opposite effect is found. We make use of our findings to explain the low energy behavior of the S-factors related to some notorious capture reactions: 7Be(p, gamma)8B, 14N(p,gamma)15O...

  4. Efficient method for calculating electronic bound states in arbitrary one-dimensional quantum wells

    Science.gov (United States)

    de Aquino, V. M.; Iwamoto, H.; Dias, I. F. L.; Laureto, E.; da Silva, M. A. T.; da Silva, E. C. F.; Quivy, A. A.

    2017-01-01

    In the present paper it is demonstrated that the bound electronic states of multiple quantum wells structures may be calculated very efficiently by expanding their eigenstates in terms of the eigenfunctions of a particle in a box. The bound states of single and multiple symmetric or nonsymmetric wells are calculated within the single-band effective mass approximation. A comparison is then made between the results obtained for simple cases with exact calculations. We also apply our approach to a GaAs/AlGaAs multiple quantum well structure composed of forty periods each one with seven quantum wells. The method may be very useful to design narrow band quantum cascade photodetectors to work without applied bias in a photovoltaic mode. With the presented method the effects of a electric field may also be easily included which is very important if one desires study quantum well structures for application to the development of quantum cascade lasers. The advantages of the method are also presented.

  5. Stationary bound-state scalar configurations supported by rapidly-spinning exotic compact objects

    Science.gov (United States)

    Hod, Shahar

    2017-07-01

    Some quantum-gravity theories suggest that the absorbing horizon of a classical black hole should be replaced by a reflective surface which is located a microscopic distance above the would-be classical horizon. Instead of an absorbing black hole, the resulting horizonless spacetime describes a reflective exotic compact object. Motivated by this intriguing prediction, in the present paper we explore the physical properties of exotic compact objects which are linearly coupled to stationary bound-state massive scalar field configurations. In particular, solving the Klein-Gordon wave equation for a stationary scalar field of proper mass μ and spheroidal harmonic indices (l , m) in the background of a rapidly-rotating exotic compact object of mass M and angular momentum J = Ma, we derive a compact analytical formula for the discrete radii {rc (μ , l , m , M , a ; n) } of the exotic compact objects which can support the stationary bound-state massive scalar field configurations. We confirm our analytical results by direct numerical computations.

  6. Wino dark matter annihilation through the radiative formation of bound states

    CERN Document Server

    Johnson, Evan; Zhang, Hong

    2016-01-01

    The most dramatic "Sommerfeld enhancements" of neutral-wino-pair annihilation occur when the wino mass is tuned to near critical values where there is a zero-energy S-wave resonance at the neutral-wino-pair threshold. If the wino mass is larger than the critical value, the resonance is a wino-pair bound state. If the wino mass is near a critical value, low-energy winos can be described by a zero-range effective field theory in which the winos interact nonperturbatively through a contact interaction. The parameters of the zero-range effective field theory can be determined by matching wino scattering amplitudes calculated by solving the Schr\\"odinger equation for a nonrelativistic effective field theory in which the winos interact through a potential due to the exchange of electroweak gauge bosons. The utility of the zero-range effective field theory is illustrated by calculating the rate for formation of an S-wave bound state in the collision of two neutral winos through the emission of two soft photons.

  7. Isospin and particle representations for quasi-bound state of kaonic clusters

    Science.gov (United States)

    Filikhin, Igor; Kezerashvili, Roman; Vlahovic, Branislav

    2017-01-01

    In the framework of the method of the Faddeev equations in configuration space, the NNK (I = 0) (and KK) kaonic cluster system including two identical particles is considered. We use the formalism of isospin and particle representations to describe the systems. The treatment of I = 1 and I = 0 isospin KN channels is discussed. The presence of the Coulomb force in ppK- channel violates the isospin symmetry of the NNK (I = 0) system. According to the particle representation, NNK is a two-level system of coupled ppK- and ppnl channels with and without the Coulomb energy, respectively. The results of calculations for the bound states with the phenomenological and chiral motivated KN potentials are given for different representations. In particular, new single channel calculations for the ppK- (and K-K- p) cluster are presented. It is shown that the exchange of identical particles plays an important role in the formation of a bound state of the systems. The relation of the exchange and the three-body mass rearrangement effects is discussed. This work is supported by the National Science Foundation grant Supplement to the NSF grant HRD-1345219 and NASA (NNX09AV07A).

  8. Extended bound states and resonances of two fermions on a periodic lattice

    CERN Document Server

    Blaer, A S; Chernyshov, O

    1997-01-01

    The high-$T_c$ cuprates are possible candidates for d-wave superconductivity, with the Cooper pair wave function belonging to a non-trivial irreducible representation of the lattice point group. We argue that this d-wave symmetry is related to a special form of the fermionic kinetic energy and does not require any novel pairing mechanism. In this context, we present a detailed study of the bound states and resonances formed by two lattice fermions interacting via a non-retarded potential that is attractive for nearest neighbors but repulsive for other relative positions. In the case of strong binding, a pair formed by fermions on adjacent lattice sites can have a small effective mass, thereby implying a high condensation temperature. For a weakly bound state, a pair with non-trivial symmetry tends to be smaller in size than an s-wave pair. These and other findings are discussed in connection with the properties of high-$T_c$ cuprate superconductors.

  9. Nonlocal entanglement and noise between spin qubits induced by Majorana bound states

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Sha-Sha [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Lü, Hai-Feng, E-mail: lvhf81@gmail.com [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Yang, Hua-Jun [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Guo, Yong [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Zhang, Huai-Wu [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-01-23

    We propose a scheme to create nonlocal entanglement between two spatially separated electron spin qubits by coupling them with a pair of Majorana bound states (MBSs). The spin qubits are based on the spins of electrons confined in quantum dots. It is shown that spin entanglement between two dots could be generated by the nonlocality of MBSs. We also demonstrate that in the transport regime, the current noise cross correlation can serve as a good indicator of spin entanglement. The Majorana-dot coupling not only induces an indirect interaction between qubits, but also produces spin localization in the strong coupling limit. These two competing effects lead to a nonmonotonic dependence of current cross-correlation and entanglement on the Majorana-qubit coupling strength. - Highlights: • We propose a scheme to create nonlocal entanglement between two spatially separated electron spin qubits by coupling them with a pair of Majorana bound states. • Spin entanglement between two dots could be generated by the nonlocality of MBSs. • The current noise cross correlation can serve as a good indicator of spin entanglement.

  10. Three-Nucleon Bound States and the Wigner-SU(4) Limit

    Science.gov (United States)

    Vanasse, Jared; Phillips, Daniel R.

    2017-03-01

    We examine the extent to which the properties of three-nucleon bound states are well-reproduced in the limit that nuclear forces satisfy Wigner's SU(4) (spin-isospin) symmetry. To do this we compute the charge radii up to next-to-leading order (NLO) in an effective field theory that is an expansion in powers of R/ a, with R the range of the nuclear force and a the nucleon-nucleon (N N) scattering lengths. In the Wigner-SU(4) limit, the triton and helium-3 point charge radii are equal. At NLO in the range expansion both are 1.66 fm. Adding the first-order corrections due to the breaking of Wigner symmetry in the N N scattering lengths gives a ^3{H} point charge radius of 1.58 fm, which is remarkably close to the experimental number, 1.5978± 0.040 fm (Angeli and Marinova in At Data Nucl Data Tables 99:69-95, 2013). For the ^3{He} point charge radius we find 1.70 fm, about 4% away from the experimental value of 1.77527± 0.0054 fm (Angeli and Marinova 2013). We also examine the Faddeev components that enter the tri-nucleon wave function and find that an expansion of them in powers of the symmetry-breaking parameter converges rapidly. Wigner's SU(4) symmetry is thus a useful starting point for understanding tri-nucleon bound-state properties.

  11. Multiple-Pulse Operation and Bound States of Solitons in Passive Mode-Locked Fiber Lasers

    Directory of Open Access Journals (Sweden)

    A. Komarov

    2012-01-01

    Full Text Available We present results of our research on a multiple-pulse operation of passive mode-locked fiber lasers. The research has been performed on basis of numerical simulation. Multihysteresis dependence of both an intracavity energy and peak intensities of intracavity ultrashort pulses on pump power is found. It is shown that the change of a number of ultrashort pulses in a laser cavity can be realized by hard as well as soft regimes of an excitation and an annihilation of new solitons. Bound steady states of interacting solitons are studied for various mechanisms of nonlinear losses shaping ultrashort pulses. Possibility of coding of information on basis of soliton trains with various bonds between neighboring pulses is discussed. The role of dispersive wave emitted by solitons because of lumped intracavity elements in a formation of powerful soliton wings is analyzed. It is found that such powerful wings result in large bounding energies of interacting solitons in steady states. Various problems of a soliton interaction in passive mode-locked fiber lasers are discussed.

  12. Fano resonances in Majorana bound states-quantum dot hybrid systems

    Science.gov (United States)

    Schuray, Alexander; Weithofer, Luzie; Recher, Patrik

    2017-08-01

    We consider a quantum wire containing two Majorana bound states (MBS) at its ends that are tunnel-coupled to a current lead on one side and to a quantum dot (QD) on the other side. Using the method of full counting statistics we calculate the conductance and the zero-frequency noise. Using an effective low-energy model, we analyze in detail the Andreev reflection probability as a function of the various system parameters and show that it exhibits a Fano resonance (FR) line shape in the case of a weakly coupled QD as a function of the QD energy level when the two MBS overlap. The asymmetry parameter changes sign as the bias voltage is tuned through the MBS overlap energy. The FR is mirrored as a function of the QD level energy as long as tunneling from the dot to the more distant MBS is negligible. However, if both MBS are coupled to the lead and the QD, the height as well as the asymmetry of the line shapes cease to respect this symmetry. These two exclusive cases uniquely distinguish the coupling to a MBS from the coupling to a fermionic bound state that is shared between the two MBS. We complement the analysis by employing a discretized one-dimensional p -wave superconductor (Kitaev chain) for the quantum wire and show that the features of the effective low-energy model are robust towards a more complete Hamiltonian and also persist at finite temperature.

  13. Observation of the spatial distribution of gravitationally bound quantum states of ultracold neutrons and its derivation using the Wigner function.

    Science.gov (United States)

    Ichikawa, G; Komamiya, S; Kamiya, Y; Minami, Y; Tani, M; Geltenbort, P; Yamamura, K; Nagano, M; Sanuki, T; Kawasaki, S; Hino, M; Kitaguchi, M

    2014-02-21

    Ultracold neutrons (UCNs) can be bound by the potential of terrestrial gravity and a reflecting mirror. The wave function of the bound state has characteristic modulations. We carried out an experiment to observe the vertical distribution of the UCNs above such a mirror at the Institut Laue-Langevin in 2011. The observed modulation is in good agreement with that prediction by quantum mechanics using the Wigner function. The spatial resolution of the detector system is estimated to be 0.7  μm. This is the first observation of gravitationally bound states of UCNs with submicron spatial resolution.

  14. Examination of experimental evidence of chaos in the bound states of 208Pb

    Science.gov (United States)

    Muñoz, L.; Molina, R. A.; Gómez, J. M. G.; Heusler, A.

    2017-01-01

    We study the spectral fluctuations of the 208Pb nucleus using the complete experimental spectrum of 151 states up to excitation energies of 6.20 MeV recently identified at the Maier-Leibnitz Laboratorium at Garching, Germany. For natural parity states the results are very close to the predictions of random matrix theory (RMT) for the nearest-neighbor spacing distribution. A quantitative estimate of the agreement is given by the Brody parameter ω , which takes the value ω =0 for regular systems and ω ≃1 for chaotic systems. We obtain ω =0.85 which is, to our knowledge, the closest value to chaos ever observed in experimental bound states of nuclei. By contrast, the results for unnatural parity states are far from RMT behavior. We interpret these results as a consequence of the strength of the residual interaction in 208Pb, which, according to experimental data, is much stronger for natural than for unnatural parity states. In addition, our results show that chaotic and nonchaotic nuclear states coexist in the same energy region of the spectrum.

  15. Collider Bounds on Indirect Dark Matter Searches: The $WW$ Final State

    CERN Document Server

    Lopez, Nicolas; Cotta, Randel; Frate, Meghan; Zhou, Ning; Whiteson, Daniel

    2014-01-01

    We describe an effective theory of interaction between pairs of dark matter particles (denoted $\\chi$) and pairs of $W$ bosons. Such an interaction could accommodate $\\chi\\bar{\\chi}\\rightarrow WW$ processes, which are a major focus of indirect dark matter experiments, as well as $pp \\rightarrow W\\rightarrow W\\chi\\bar{\\chi}$ processes, which would predict excesses at the LHC in the $W$+MET final-state. We reinterpret an ATLAS $W$+MET analysis in the hadronic mode and translate the bounds to the space of indirect detection signals. We also reinterpret the $W$+MET analysis in terms of graviton theory through the processes $W\\rightarrow WG$ and $Z\\rightarrow ZG$ in which $G$ is invisible. Finally, the final state is interpreted in terms of a $W'$ model where $W'\\rightarrow WZ$, where $W$ decays hadronically and $Z$ decays to neutrinos.

  16. Simulated Annealing for Ground State Energy of Ionized Donor Bound Excitons in Semiconductors

    Institute of Scientific and Technical Information of China (English)

    YANHai-Qing; TANGChen; LIUMing; ZHANGHao; ZHANGGui-Min

    2004-01-01

    We present a global optimization method, called the simulated annealing, to the ground state energies of excitons. The proposed method does not require the partial derivatives with respect to each variational parameter or solving an eigenequation, so the present method is simpler in software programming than the variational method,and overcomes the major difficulties. The ground state energies of ionized-donor-bound excitons (D+,X) have beencal culated variationally for all values of effective electron-to-hole mass ratio σ. They are compared with those obtained by the variational method. The results obtained demonstrate that the proposed method is simple, accurate, and has more advantages than the traditional methods in calculation.

  17. Simulated Annealing for Ground State Energy of Ionized Donor Bound Excitons in Semiconductors

    Institute of Scientific and Technical Information of China (English)

    YAN Hai-Qing; TANG Chen; LIU Ming; ZHANG Hao; ZHANG Gui-Min

    2004-01-01

    We present a global optimization method, called the simulated annealing, to the ground state energies of excitons. The proposed method does not require the partial derivatives with respect to each variational parameter or solving an eigenequation, so the present method is simpler in software programming than the variational method,and overcomes the major difficulties. The ground state energies of ionized-donor-bound excitons (D+, X) have been calculated variationally for all values of effective electron-to-hole mass ratio σ. They are compared with those obtained by the variational method. The results obtained demonstrate that the proposed method is simple, accurate, and has more advantages than the traditional methods in calculation.

  18. Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs.

    Science.gov (United States)

    Gao, Xingwei; Hsu, Chia Wei; Zhen, Bo; Lin, Xiao; Joannopoulos, John D; Soljačić, Marin; Chen, Hongsheng

    2016-08-25

    We develop a formalism, based on the mode expansion method, to describe the guided resonances and bound states in the continuum (BICs) in photonic crystal slabs with one-dimensional periodicity. This approach provides analytic insights to the formation mechanisms of these states: the guided resonances arise from the transverse Fabry-Pérot condition, and the divergence of the resonance lifetimes at the BICs is explained by a destructive interference of radiation from different propagating components inside the slab. We show BICs at the center and on the edge of the Brillouin zone protected by symmetry, BICs at generic wave vectors not protected by symmetry, and the annihilation of BICs at low-symmetry wave vectors.

  19. Bound states of a negative test charge due to many-body effects in the two-dimensional electron gas

    Science.gov (United States)

    Ghazali, A.; Gold, A.

    1995-12-01

    Bound states of a negative test electron in the low-density regime of the two-dimensional electron gas are obtained when many-body effects (exchange and correlation) are incorporated in the screening function via the local-field correction. Using the Green's-function method and a variational method we determine the energies and the wave functions of the ground state and the excited states as functions of the electron density. For high electron density no bound state is found. Below a critical density the number and the energy of bound states increase with decreasing electron density. The ground state is described by the wave function ψ2s~r exp(-r/α).

  20. First clear evidence of quantum chaos in the bound states of an atomic nucleus

    CERN Document Server

    Muñoz, L; Gómez, J M G; Heusler, A

    2016-01-01

    We study the spectral fluctuations of the $^{208}$Pb nucleus using the complete experimental spectrum of 151 states up to excitation energies of $6.20$ MeV recently identified at the Maier-Leibnitz-Laboratorium at Garching, Germany. For natural parity states the results are very close to the predictions of Random Matrix Theory (RMT) for the nearest-neighbor spacing distribution. A quantitative estimate of the agreement is given by the Brody parameter $\\omega$, which takes the value $\\omega=0$ for regular systems and $\\omega \\simeq 1$ for chaotic systems. We obtain $\\omega=0.85 \\pm 0.02$ which is, to our knowledge, the closest value to chaos ever observed in experimental bound states of nuclei. By contrast, the results for unnatural parity states are far from RMT behavior. We interpret these results as a consequence of the strength of the residual interaction in $^{208}$Pb, which, according to experimental data, is much stronger for natural than for unnatural parity states. In addition our results show that ch...

  1. Urinary Microvesicle-Bound Uromodulin: A Potential Molecular Biomarker in Diabetic Kidney Disease

    Science.gov (United States)

    Lou, Neng-jun; Ni, Yi-hong; Jia, Hong-ying; Deng, Jing-ti; Jiang, Lu; Zheng, Feng-jie

    2017-01-01

    This study was designed to investigate the changes of urinary microvesicle-bound uromodulin and total urinary uromodulin levels in human urine and the correlations with the severity of diabetic kidney disease (DKD). 31 healthy subjects without diabetes and 100 patients with type 2 diabetes mellitus (T2DM) were included in this study. The patients with T2DM were divided into three groups based on the urinary albumin/creatinine ratio (UACR): normoalbuminuria group (DM, n = 46); microalbuminuria group (DN1, n = 32); and macroalbuminuria group (DN2, n = 22). We use a specific monoclonal antibody AD-1 to capture the urinary microvesicles. Urinary microvesicle-bound uromodulin and total urinary uromodulin levels were determined by enzyme-linked immunosorbent assay (ELISA). Our results showed that the levels of urinary microvesicle-bound uromodulin in DN1 and DN2 groups were significantly higher than those in control group and DM group (P < 0.01). Multiple stepwise linear regression analysis showed that UACR was independent determinant for urinary microvesicle-bound uromodulin (P < 0.05) but not for total urinary uromodulin. These findings suggest that the levels of urinary microvesicle-bound uromodulin are associated with the severity of DKD. The uromodulin in urinary microvesicles may be a specific marker of DKD and potentially may be used to predict the onset and/or monitor the progression of DKD. PMID:28182086

  2. Topological Defects in Topological Insulators and Bound States at Topological Superconductor Vortices

    Directory of Open Access Journals (Sweden)

    Vincenzo Parente

    2014-03-01

    Full Text Available The scattering of Dirac electrons by topological defects could be one of the most relevant sources of resistance in graphene and at the boundary surfaces of a three-dimensional topological insulator (3D TI. In the long wavelength, continuous limit of the Dirac equation, the topological defect can be described as a distortion of the metric in curved space, which can be accounted for by a rotation of the Gamma matrices and by a spin connection inherited with the curvature. These features modify the scattering properties of the carriers. We discuss the self-energy of defect formation with this approach and the electron cross-section for intra-valley scattering at an edge dislocation in graphene, including corrections coming from the local stress. The cross-section contribution to the resistivity, ρ, is derived within the Boltzmann theory of transport. On the same lines, we discuss the scattering of a screw dislocation in a two-band 3D TI, like Bi1-xSbx, and we present the analytical simplified form of the wavefunction for gapless helical states bound at the defect. When a 3D TI is sandwiched between two even-parity superconductors, Dirac boundary states acquire superconductive correlations by proximity. In the presence of a magnetic vortex piercing the heterostructure, two Majorana states are localized at the two interfaces and bound to the vortex core. They have a half integer total angular momentum each, to match with the unitary orbital angular momentum of the vortex charge.

  3. In-situ measurement of bound states in the continuum in photonic crystal slabs (Conference Presentation)

    Science.gov (United States)

    Kalchmair, Stefan; Gansch, Roman; Genevet, Patrice; Zederbauer, Tobias; MacFarland, Donald; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried; Capasso, Federico; Loncar, Marko

    2016-04-01

    Photonic crystal slabs have been subject to research for more than a decade, yet the existence of bound states in the radiation continuum (BICs) in photonic crystals has been reported only recently [1]. A BIC is formed when the radiation from all possible channels interferes destructively, causing the overall radiation to vanish. In photonic crystals, BICs are the result of accidental phase matching between incident, reflected and in-plane waves at seemingly random wave vectors [2]. While BICs in photonic crystals have been discussed previously using reflection measurements, we reports for the first time in-situ measurements of the bound states in the continuum in photonic crystal slabs. By embedding a photodetector into a photonic crystal slab we were able to directly observe optical BICs. The photonic crystal slabs are processed from a GaAs/AlGaAs quantum wells heterostructure, providing intersubband absorption in the mid-infrared wavelength range. The generated photocurrent is collected via doped contact layers on top and bottom of the suspended photonic crystal slab. We were mapping out the photonic band structure by rotating the device and by acquiring photocurrent spectra every 5°. Our measured photonic bandstructure revealed several BICs, which was confirmed with a rigorously coupled-wave analysis simulation. Since coupling to external fields is suppressed, the photocurrent measured by the photodetector vanishes at the BIC wave vector. To confirm the relation between the measured photocurrent and the Q-factor we used temporal coupled mode theory, which yielded an inverse proportional relation between the photocurrent and the out-coupling loss from the photonic crystal. Implementing a plane wave expansion simulation allowed us to identify the corresponding photonic crystal modes. The ability to directly measure the field intensity inside the photonic crystal presents an important milestone towards integrated opto-electronic BIC devices. Potential

  4. Lattice and momentum space approach to bound states and excitonic condensation via user friendly interfaces

    Science.gov (United States)

    Jamell, Christopher Ray

    In this thesis, we focus on two broad categories of problems, exciton condensation and bound states, and two complimentary approaches, real and momentum space, to solve these problems. In chapter 2 we begin by developing the self-consistent mean field equations, in momentum space, used to calculate exciton condensation in semiconductor heterostructures/double quantum wells and graphene. In the double quantum well case, where we have one layer containing electrons and the other layer with holes separated by a distance d, we extend the analytical solution to the two dimensional hydrogen atom in order to provide a semi-quantitative measure of when a system of excitons can be considered dilute. Next we focus on the problem of electron-electron screening, using the random phase approximation, in double layer graphene. The literature contains calculations showing that when screening is not taken into account the temperature at which excitons in double layer graphene condense is approximately room temperature. Also in the literature is a calculation showing that under certain assumptions the transition temperature is approximately mK. The essential result is that the condensate is exponentially suppressed by the number of electron species in the system. Our mean field calculations show that the condensate, is in fact, not exponentially suppressed. Next, in chapter 3, we show the use of momentum space to solve the Schrodinger equation for a class of potentials that are not usually a part of a quantum mechanics courses. Our approach avoids the typical pitfalls that exist when one tries to discretize the real space Schrodinger equation. This technique widens the number of problems that can presented in an introductory quantum mechanics course while at the same time, because of the ease of its implementation, provides a simple introduction to numerical techniques and programming in general to students. We have furthered this idea by creating a modular program that allows

  5. The quark-gluon vertex in Landau gauge bound-state studies

    CERN Document Server

    Williams, Richard

    2014-01-01

    We present a practical method for the solution of the quark-gluon vertex for use in Bethe--Salpeter and Dyson--Schwinger calculations. The efficient decomposition into the necessary covariants is detailed, with the numerical algorithm outlined for both real and complex Euclidean momenta. A model suitable for bound-state calculations is given together with results for the quark propagator and quark-gluon vertex for different quark flavours. The relative impact of the various components of the quark-gluon vertex is highlighted with the flavour dependence of the effective quark-gluon interaction obtained, thus providing insight for the construction of phenomenological models within Rainbow-Ladder. Finally, we solve the corresponding Green's functions for complex Euclidean momenta as required for practical calculations.

  6. Detecting the Exchange Phase of Majorana Bound States in a Corbino Geometry Topological Josephson Junction.

    Science.gov (United States)

    Park, Sunghun; Recher, Patrik

    2015-12-11

    A phase from an adiabatic exchange of Majorana bound states (MBS) reveals their exotic anyonic nature. For detecting this exchange phase, we propose an experimental setup consisting of a Corbino geometry Josephson junction on the surface of a topological insulator, in which two MBS at zero energy can be created and rotated. We find that if a metallic tip is weakly coupled to a point on the junction, the time-averaged differential conductance of the tip-Majorana coupling shows peaks at the tip voltages eV=±(α-2πl)ℏ/T_{J}, where α=π/2 is the exchange phase of the two circulating MBS, T_{J} is the half rotation time of MBS, and l an integer. This result constitutes a clear experimental signature of Majorana fermion exchange.

  7. Macroscopic manipulation of high-order-harmonic generation through bound-state coherent control.

    Science.gov (United States)

    Hadas, Itai; Bahabad, Alon

    2014-12-19

    We propose a paradigm for macroscopic control of high-order harmonic generation by modulating the bound-state population of the medium atoms. A unique result of this scheme is that apart from regular spatial quasi-phase-matching (QPM), also purely temporal QPM of the emitted radiation can be established. Our simulations demonstrate temporal QPM by inducing homogenous Rabi oscillations in the medium and also spatial QPM by creating a grating of population inversion using the process of rapid adiabatic passage. In the simulations a scaled version of high-order harmonic generation is used: a far off-resonance 2.6  μm source generates UV-visible high-order harmonics from alkali-metal-atom vapor, while a resonant near IR source is used to coherently control the medium.

  8. Toward the Application of Three-Dimensional Approach to Few-body Atomic Bound States

    CERN Document Server

    Hadizadeh, M R

    2010-01-01

    The first step toward the application of an effective non partial wave (PW) numerical approach to few-body atomic bound states has been taken. The two-body transition amplitude which appears in the kernel of three-dimensional Faddeev-Yakubovsky integral equations is calculated as function of two-body Jacobi momentum vectors, i.e. as a function of the magnitude of initial and final momentum vectors and the angle between them. For numerical calculation the realistic interatomic interactions HFDHE2, HFD-B, LM2M2 and TTY are used. The angular and momentum dependence of the fully off-shell transition amplitude is studied at negative energies. It has been numerically shown that, similar to the nuclear case, the transition amplitude exhibits a characteristic angular behavior in the vicinity of 4He dimer pole.

  9. Computational method for the quantum Hamilton-Jacobi equation: bound states in one dimension.

    Science.gov (United States)

    Chou, Chia-Chun; Wyatt, Robert E

    2006-11-07

    An accurate computational method for the one-dimensional quantum Hamilton-Jacobi equation is presented. The Mobius propagation scheme, which can accurately pass through singularities, is used to numerically integrate the quantum Hamilton-Jacobi equation for the quantum momentum function. Bound state wave functions are then synthesized from the phase integral using the antithetic cancellation technique. Through this procedure, not only the quantum momentum functions but also the wave functions are accurately obtained. This computational approach is demonstrated through two solvable examples: the harmonic oscillator and the Morse potential. The excellent agreement between the computational and the exact analytical results shows that the method proposed here may be useful for solving similar quantum mechanical problems.

  10. Photonic Bound State in the Continuum for Strong Light-matter Interaction

    CERN Document Server

    Zou, Chang-Ling; Sun, Fang-Wen; Xiong, Xiao; Zou, Xu-Bo; Han, Zheng-Fu; Guo, Guang-Can

    2013-01-01

    The photonic bound state in the continuum (BIC) is discovered in a hybrid photonic circuit with low refractive index waveguide on a high refractive index thin membrane, where the optical dissipation is forbidden because of the destructive interference of different leakage channels. Based on the photonic BIC, the low mode area in a hybrid waveguide and high quality factor in a microresonator can be applied to enhance the light-matter interaction. Taking the fabrication-friendly polymer structure on diamond membrane as an example, those excellent optical performances can exist in a wide range of structure parameters with large fabrication tolerance and induce the strong coupling between photon and nitrogen-vacancy center in the diamond for scalable quantum information processors and networks. Such a fabrication-friendly structure with photonic BIC is also very promising in laser, nonlinear optical and quantum optical applications.

  11. Toward the Application of Three-Dimensional Approach to Few-body Atomic Bound States

    Directory of Open Access Journals (Sweden)

    Hadizadeh M.R.

    2010-04-01

    Full Text Available The first step toward the application of an effective non partial wave (PW numerical approach to few-body atomic bound states has been taken. The two-body transition amplitude which appears in the kernel of three-dimensional Faddeev-Yakubovsky integral equations is calculated as function of two-body Jacobi momentum vectors, i.e. as a function of the magnitude of initial and final momentum vectors and the angle between them. For numerical calculation the realistic interatomic interactions HFDHE2, HFD-B, LM2M2 and TTY are used. The angular and momentum dependence of the fully off-shell transition amplitude is studied at negative energies. It has been numerically shown that, similar to the nuclear case, the transition amplitude exhibits a characteristic angular behavior in the vicinity of 4He dimer pole.

  12. Model Study of Three-Body Forces in the Three-Body Bound State

    CERN Document Server

    Liu, H; Glöckle, W; Elster, Ch.

    2003-01-01

    The Faddeev equations for the three-body bound state with two- and three-body forces are solved directly as three-dimensional integral equation. The numerical feasibility and stability of the algorithm, which does not employ partial wave decomposition is demonstrated. The three-body binding energy and the full wave function are calculated with Malfliet-Tjon-type two-body potentials and scalar Fujita-Miyazawa type three-body forces. The influence of the strength and range of the three-body force on the wave function, single particle momentum distributions and the two-body correlation functions are studied in detail. The extreme case of pure three-body forces is investigated as well.

  13. Ultraheavy Yukawa-bound states of fourth-generation at Large Hadron Collider

    Indian Academy of Sciences (India)

    Ts Enkhbat

    2012-10-01

    A study of bound states of the fourth-generation quarks in the range of 500–700 GeV is presented, where the binding energies are expected to be mainly of Yukawa origin, with QCD subdominant. Near degeneracy of their masses exhibits a new `isospin'. The production of a colour- octet, isosinglet vector meson via $q\\bar{q} → g$ is the most interesting. Its leading decay modes are $_{8}^{±} W^{\\mp}$, $_{8}^{0} Z^{0}$, and constituent quark decay, with $q\\bar{q}$ and $t\\bar{t'}$ and $b\\bar{b'}$ subdominant. The colour octet, isovector pseudoscalar 8 meson decays via constituent quark decay, or to $W g$. This work calls for more detailed study of fourth-generation phenomena at LHC.

  14. Numerical methods for spin-dependent transport calculations and spin bound states analysis in Rashba waveguides

    CERN Document Server

    Xie, Hang; Sha, Wei E I

    2015-01-01

    Numerical methods are developed in the quantum transport calculations for electron in the waveguides with spin-orbital (Rashba) interaction. The methods are based on a hybrid mode-matching scheme in which the wavefunctions are expressed as the superposition of eigenmodes in the lead regions and in the device region the wavefunction is expressed on the discrete basis. Two versions are presented for the lead without and with the Rashba interaction. In the latter case the eigenmodes are obtained from a quadratic eigenproblem calculation. These methods are suitable for the systems with variable geometries or arbitrary potential profiles. The computation can be effectively accelerated by the sparse matrix technique. We also investigate the Fano-Rashba bound states in the Rashba waveguides by some nonlinear eigenstate calculation. This calculation is based on a mode-matching method and self-consistent results are obtained in our calculations.

  15. Variational Worldline Approximation for the Relativistic Two-Body Bound State in a Scalar Model

    CERN Document Server

    Barro-Bergfl"odt, K; Stingl, M

    2006-01-01

    We use the worldline representation of field theory together with a variational approximation to determine the lowest bound state in the scalar Wick-Cutkosky model where two equal-mass constituents interact via the exchange of mesons. Self-energy and vertex corrections are included approximately in a consistent way as well as crossed diagrams. Only vacuum-polarization effects of the heavy particles are neglected. In a path integral description of an appropriate current-current correlator an effective, retarded action is obtained by integrating out the meson field. As in the polaron problem we employ a quadratic trial action with variational functions to describe retardation and binding effects through multiple meson exchange.The variational equations for these functions are derived, discussed qualitatively and solved numerically. We compare our results with the ones from traditional approaches based on the Bethe-Salpeter equation and find an enhanced binding. For weak coupling this is worked out analytically ...

  16. Logarithms of alpha in QED bound states from the renormalization group

    Science.gov (United States)

    Manohar; Stewart

    2000-09-11

    The velocity renormalization group is used to determine lnalpha contributions to QED bound state energies. The leading-order anomalous dimension for the potential gives the alpha(5)lnalpha Lamb shift. The next-to-leading-order anomalous dimension determines the alpha(6)lnalpha, alpha(7)ln (2)alpha, and alpha(8)ln (3)alpha corrections to the energy. These are used to obtain the alpha(8)ln (3)alpha Lamb shift and alpha(7)ln (2)alpha hyperfine splitting for hydrogen, muonium, and positronium, as well as the alpha(2)lnalpha and alpha(3)ln (2)alpha corrections to the ortho- and parapositronium lifetimes. This shows for the first time that these logarithms can be computed from the renormalization group.

  17. Three-boson bound states in finite volume with EFT

    Directory of Open Access Journals (Sweden)

    Hammer H.-W.

    2010-04-01

    Full Text Available The universal properties of a three-boson system with large scattering length are well understood within the framework of Effective Field Theory. They include a geometric spectrum of shallow three-body bound states called “Efimov states” and log-periodic dependence of scattering observables on the scattering length. We investigate the modification of this spectrum in a finite cubic box using a partial wave expansion. The dependence of the binding energies on the box size is calculated for systems with positive and negative two-body scattering length. We compare the full results to results obtained using an expansion around the infinite volume binding energy. The renormalization of the Effective Field Theory in the finite volume is verified explicitly.

  18. Bloch bound states in the radiation continuum in a periodic array of dielectric rods

    CERN Document Server

    Bulgakov, Evgeny N

    2014-01-01

    We consider an infinite periodic array of dielectric rods in vacuum with the aim to demonstrate three types of a Bloch bound states in the continuum (BSC), symmetry protected with a zero Bloch vector, embedded into one diffraction channel with nonzero Bloch vector, and embedded into two and three diffraction channels. The first and second types of the BSC exist in a wide range of material parameters of the rods, while the third occurs only at a specific value of the radius of the rods. We show that the second type supports the power flux along the array. In order to find BSC we put forward an approach based on the expansion over the Hankel functions. We show how the BSC reveals itself in the scattering function when the singular BSC point is approached along a specific path in the parametric space.

  19. Robust bound states in the continuum in Kerr microcavity embedded in photonic crystal waveguide

    CERN Document Server

    Bulgakov, Evgeny N

    2014-01-01

    We present a two-dimensional photonic crystal design with a microcavity of four defect dielectric rods with eigenfrequencies residing in the propagating band of directional waveguide. In the linear case for tuning of material parameters of defect rods the nonrobust bound state in the continuum (BSC) might occur. The BSC is a result of full destructive interference of resonant monopole and quadrupole modes with the same parity. % to trap light interior of the microcavity. A robust BSC arises in a self-adaptive way without necessity to tune the parameters of the microcavity with the Kerr effect. Lack of the superposition principle in nonlinear systems gives rise to coupling of the BSC with injecting light. That forms a peculiar shape of isolated transmittance resonance around BSC frequency. We show if injecting light is switched off the BSC storages light that opens a way for light accumulation.

  20. Tunable optical bound states in the continuum beyond in-plane symmetry protection

    Science.gov (United States)

    Ni, Liangfu; Wang, Zhixin; Peng, Chao; Li, Zhengbin

    2016-12-01

    The formation of tunable bound states in the continuum (BICs) within photonic crystal (PC) slabs has been investigated by using a semianalytical coupled-wave theory framework. An analytic expression of the radiative wave has been derived in order to depict the condition of BICs. As a result, in addition to well-known symmetry-protected BICs, a novel type of vertical-cancellation BIC can be realized through continuously varying a given parameter to eliminate radiative waves at the boundaries. We investigated one-dimensional and two-dimensional (2D) periodic structures, and found that such tunable BICs can occur for a wide range of wave vectors by the selection of appropriate slab thicknesses. For a 2D PC slab, a ring of high-Q modes is predicted and confirmed by numerical simulation.

  1. Search for deeply bound pionic states in 208Pb via radiative atomic capture of negative pions

    Science.gov (United States)

    Raywood, K. J.; Lange, J. B.; Jones, G.; Pavan, M.; Sevior, M. E.; Hutcheon, D. A.; Olin, A.; Ottewell, D.; Yen, S.; Lee, S. J.; Sim, K. S.; Altman, A.; Friedman, E.; Trudel, A.

    1997-05-01

    A search for narrow, deeply bound pionic atom states via atomic radiative capture of negative pions in a target of 208Pb was carried out for pion kinetic energies of 20 and 25 MeV. Although no clear signature of any such gamma ray emission could be observed in the data, fits of the gamma ray spectra between the energies of 12 and 42 MeV involving a quadratic background together with a pair of peaks (1s, 2p) whose relative intensity was taken from theory yielded an overall strength for the peaks which are consistent (to a 67% confidence level) with radiative capture whose integrated cross section is 20.0 +/- 10.0 μb/sr at 90° for 20 MeV incident pions. A lower probability (40% confidence level) result was obtained when the fit was carried out without the peaks included, just the continuum background.

  2. Relativistic Three-Quark Bound States in Separable Two-Quark Approximation

    CERN Document Server

    Öttel, M; Alkofer, R

    2002-01-01

    Baryons as relativistic bound states in 3-quark correlations are described by an effective Bethe-Salpeter equation when irreducible 3-quark interactions are neglected and separable 2-quark correlations are assumed. We present an efficient numerical method to calculate the nucleon mass and its covariant wave function in this quantum field theoretic quark-diquark model with quark-exchange interaction. Expanding the components of the spinorial wave function in terms of Chebyshev polynomials, the four-dimensional integral equations are in a first step reduced to a coupled set of one-dimensional ones. This set of linear and homogeneous equations defines a generalised eigenvalue problem. Representing the eigenvector corresponding to the largest eigenvalue, the Chebyshev moments are then obtained by iteration. The nucleon mass is implicitly determined by the eigenvalue, and its covariant wave function is reconstructed from the moments within the Chebyshev approximation.

  3. Improved Lower Bounds on the Compatibility of Multi-State Characters

    CERN Document Server

    Shutters, Brad; Fernández-Baca, David

    2012-01-01

    We study a long standing conjecture on the necessary and sufficient conditions for the compatibility of multi-state characters: There exists a function $f(r)$ such that, for any set $C$ of $r$-state characters, $C$ is compatible if and only if every subset of $f(r)$ characters of $C$ is compatible. We show that for every $r \\ge 2$, there exists an incompatible set $C$ of $\\lfloor\\frac{r}{2}\\rfloor\\cdot\\lceil\\frac{r}{2}\\rceil + 1$ $r$-state characters such that every proper subset of $C$ is compatible. Thus, $f(r) \\ge \\lfloor\\frac{r}{2}\\rfloor\\cdot\\lceil\\frac{r}{2}\\rceil + 1$ for every $r \\ge 2$. This improves the previous lower bound of $f(r) \\ge r$ given by Meacham (1983), and generalizes the construction showing that $f(4) \\ge 5$ given by Habib and To (2011). We prove our result via a result on quartet compatibility that may be of independent interest: For every integer $n \\ge 4$, there exists an incompatible set $Q$ of $\\lfloor\\frac{n-2}{2}\\rfloor\\cdot\\lceil\\frac{n-2}{2}\\rceil + 1$ quartets over $n$ labels...

  4. Bounded H∞ synchronization and state estimation for discrete time-varying stochastic complex networks over a finite horizon.

    Science.gov (United States)

    Shen, Bo; Wang, Zidong; Liu, Xiaohui

    2011-01-01

    In this paper, new synchronization and state estimation problems are considered for an array of coupled discrete time-varying stochastic complex networks over a finite horizon. A novel concept of bounded H(∞) synchronization is proposed to handle the time-varying nature of the complex networks. Such a concept captures the transient behavior of the time-varying complex network over a finite horizon, where the degree of bounded synchronization is quantified in terms of the H(∞)-norm. A general sector-like nonlinear function is employed to describe the nonlinearities existing in the network. By utilizing a time-varying real-valued function and the Kronecker product, criteria are established that ensure the bounded H(∞) synchronization in terms of a set of recursive linear matrix inequalities (RLMIs), where the RLMIs can be computed recursively by employing available MATLAB toolboxes. The bounded H(∞) state estimation problem is then studied for the same complex network, where the purpose is to design a state estimator to estimate the network states through available output measurements such that, over a finite horizon, the dynamics of the estimation error is guaranteed to be bounded with a given disturbance attenuation level. Again, an RLMI approach is developed for the state estimation problem. Finally, two simulation examples are exploited to show the effectiveness of the results derived in this paper.

  5. Excited triplet state photophysics of the sulphonated aluminium phthalocyanines bound to human serum albumin.

    Science.gov (United States)

    Foley, M S; Beeby, A; Parker, A W; Bishop, S M; Phillips, D

    1997-03-01

    The binding of the sulphonated aluminum phthalocyanines to human serum albumin (HSA) in aqueous phosphate buffer solution at 25 degrees C has been studied by measuring the properties of the triplet excited states of these dyes. The triplet lifetimes were measured by triplet-triplet absorption flash photolysis. The triplet lifetime of the disulphonated AlS2Pc (2.5 microM) varies from 500 +/- 30 microseconds in the absence of protein to 1.100 microseconds and longer with HSA concentrations above 100 microM. Under identical conditions, the maximum triplet lifetimes of the mono-, tri- and tetrasulphonated compounds bound to HSA are shorter than those for the disulphonated species. The increase in the triplet state lifetimes is attributed to the ability of the bulk aqueous phase to interact with the sensitizer at the site of binding; the site of binding being dependent on the degree of sulphonation. For AlS2Pc and AlS3Pc at all HSA concentrations, and regardless of the degree of sulphonation, all the triplet state decay profiles follow simple pseudo-first-order kinetics. The exponential decay of the triplet phthalocyanine at all HSA concentrations is ascribed to the rapid association and dissociation of the phthalocyanine-HSA complex on the time-scales of the triplet state lifetimes. A simplified one-step binding model is utilized to describe the results. The association of AlS1Pc with HSA results in substantial quenching of the triplet state quantum yield, and a more complex model is required to analyze the results. The tetrasulphonated compound (AlS4Pc) binds to the protein at a site where it experiences some protection from the aqueous phase.

  6. Photoabsorption of Acridine Yellow and Proflavin Bound to Human Serum Albumin Studied by Means of Quantum Mechanics/Molecular Dynamics

    DEFF Research Database (Denmark)

    Aidas, Kestutis; Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob

    2013-01-01

    Attempting to unravel mechanisms in optical probing of proteins, we have performed pilot calculations of two cationic chromophores—acridine yellow and proflavin—located at different binding sites within human serum albumin, including the two primary drug binding sites as well as a heme binding site....... The computational scheme adopted involves classical molecular dynamics simulations of the ligands bound to the protein and subsequent linear response polarizable embedding density functional theory calculations of the excitation energies. A polarizable embedding potential consisting of point charges fitted...

  7. Variational Mass Perturbation Theory for Light-Front Bound-State Equations

    CERN Document Server

    Harada, K; Stern, C; Harada, Koji; Heinzl, Thomas; Stern, Christian

    1998-01-01

    We investigate the mesonic light-front bound-state equations of the 't Hooft and Schwinger model in the two-particle, i.e. valence sector, for small fermion mass. We perform a high precision determination of the mass and light-cone wave function of the lowest lying meson by combining fermion mass perturbation theory with a variational approach. All calculations are done entirely in the fermionic representation without using any bosonization scheme. In a step-by-step procedure we enlarge the space of variational parameters. For the first two steps, the results are obtained analytically. Beyond that we use computer algebraic and numerical methods. We achieve good convergence so that the calculation of the meson mass squared can be extended to third order in the fermion mass. Within the numerical treatment we include higher Fock states up to six particles. Our results are consistent with all previous numerical investigations, in particular lattice calculations. For the massive Schwinger model, we find a small di...

  8. Electron-electron bound states in Maxwell-Chern-Simons-Proca QED{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H.; Helayel-Neto, J.A. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]. E-mail: belich@cbpf.br; helayel@gft.ucp.br; Del Cima, O.M. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]. E-mail: delcima@gft.ucp.br; Ferreira, M.M. Jr. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]|[Maranhao Univ., Sao Luis, MA (Brazil). Dept. de Fisica]. E-mail: manojr@cbpf.br

    2002-10-01

    We start from a parity-breaking MCS QED{sub 3} model with spontaneous breaking of the gauge symmetry as a framework for evaluation of the electron-electron interaction potential and for attainment of numerical values for the e{sup -}e{sup -} - bound state. Three expressions (V{sub eff{down_arrow}}{sub {down_arrow}}, V{sub eff{down_arrow}}{sub {up_arrow}}, V{sub eff{down_arrow}}{sub {down_arrow}}) are obtained according to the polarization state of the scattered electrons. In an energy scale compatible with condensed matter electronic excitations, these potentials become degenerated. The resulting potential is implemented in the Schroedinger equation and the variational method is applied to carry out the electronic binding energy. The resulting binding energies in the scale of 10-100 meV and a correlation length in the scale of 10 - 30 Angstrom are possible indications that the MCS-QED{sub 3} model adopted may be suitable to address an eventual case of e{sup -}e{sup -} pairing in the presence of parity-symmetry breakdown. The data analyzed here suggest an energy scale of 10-100 meV to fix the breaking of the U(1)-symmetry. (author)

  9. Bound states via Higgs exchanging and heavy resonant di-Higgs

    Science.gov (United States)

    Kang, Zhaofeng

    2017-08-01

    The existence of Higgs boson h predicted by the standard model (SM) was established and hunting for clues to new physics (NP) hidden in h has become the top priority in particle physics. In this paper we explore an intriguing phenomenon that prevails in NP associated with h, bound state (Bh, referring to the ground state only) of relatively heavy particles ϕ out of NP via interchanging h. This is well-motivated due to the intrinsic properties of h: It has zero spin and light mass, capable of mediating Yukawa interactions; moreover, it may be strongly coupled to ϕ in several important contexts, from addressing the naturalness problem by compositeness/supersymmetry (SUSY)/classical scale invariance to understanding neutrino mass origin radiatively and matter asymmetry by electroweak baryogensis. The new resonance Bh, being a neutral scalar boson, has important implications to the large hadron collider (LHC) di-Higgs search because it yields a clear resonant di-Higgs signature at the high mass region (≳ 1 TeV). In other words, searching for Bh offers a new avenue to probe the hidden sector with a Higgs-portal. For illustration in this paper we concentrate on two examples, the stop sector in SUSY and an inert Higgs doublet from a radiative neutrino model. In particular, h-mediation opens a new and wide window to probe the conventional stoponium and the current date begins to have sensitivity to stoponium around TeV.

  10. Fano effect and Andreev bound states in a hybrid superconductor–ferromagnetic nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, E.C., E-mail: ezcostta@gmail.com [Departamento de Física, Universidade Tecnológica Federal do Paraná – UTFPR, 84016210, Ponta Grossa, PR (Brazil); Orellana, P.A. [Departamento de Física, Universidad Técnica Federico Santa Maria, Av. Vicuña Mackenna 3939, Santiago (Chile); Cestari, R.C. [Departamento de Física e Química, Universidade Estadual Paulista – UNESP, 15385-000, Ilha Solteira, SP (Brazil); Figueira, M.S. [Instituto de Física, Universidade Federal Fluminense, 24210-340, Niterói, RJ (Brazil); Cabrera, G.G. [Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas – UNICAMP, Campinas 13083-859, SP (Brazil)

    2015-10-16

    In this work, it is considered a hybrid nanostructure composed by a quantum dot coupled to two ferromagnetic leads and a superconductor lead. It is shown that the zero-bias transmittance for the co-tunneling between the ferromagnetic leads presents Fano anti-resonances due to the destructive interference between the two spin channels mixing by the relative orientation of the magnetizations in the leads. When the superconductor is coupled to the system, electron–hole correlations between different spin states lead to a resonance in the place of the dip appearing in the transmittance. Such an effect is accompanied by two Fano anti-resonances explained by a “leakage” of conduction channels from the co-tunneling to the Andreev transport. In the non-equilibrium regime, correlations within the quantum dot introduce a dependence of the resonance condition on the finite bias applied to the ferromagnetic leads. However, it is still possible to observe signatures of the same interference effect in the electrical current. - Highlights: • We have studied an hybrid nanostructure composed by quantum dot coupled to a superconductor and two ferromagnets. • The interplay between spin polarization and Andreev bound states leads to a Fano-like effect. • The Fano-like effect manifests as a resonance in the transmittance for the transport between the ferromagnets.

  11. Search for the kaonic bound state ppK- in pp→ pK +Λ

    Science.gov (United States)

    Münzer, Robert; Epple, Eliane; Fabbietti, Laura

    2015-08-01

    The investigation of the kaon-nucleon interaction has been intensified in the last years due to new measurements of the Λ(1405) resonance and indications on the existence of the ppK- bound state. Such results are heavily discussed, since they can lead to new knowledge about the -Nucleon interaction. In the last years, the reaction p+p →p+ K+ + Λ has been measured at the GSI Helmholtzcentre in Darmstadt with the FOPI and the HADES spectrometers at beam energies of 3.1 GeV and 3.5 GeV, respectively. New analyses methods have been developed to understand quantitatively all the processes contributing to the pK+Λ final state. At the FOPI experiment a set of around 1.000 events and in the HADES experiment around 22.000 events of the exclusive reaction p+p →p+ K+ + Λ could be extracted. These reconstructed exclusive events were analyzed within the Bonn Gatchina Partial Wave Analysis (BG-PWA) framework, which provides a coherent description of the data including several resonant and non-resonant production channels. The results have shown that the inclusion of interferences between different channels has to be considered in the analysis. Based on the description of the data with the Partial Wave Analysis an upper limit on the cross-section for the production of the ppK- could be determined.

  12. Atomic bound state and scattering properties of effective momentum-dependent potentials

    Science.gov (United States)

    Dharuman, Gautham; Verboncoeur, John; Christlieb, Andrew; Murillo, Michael S.

    2016-10-01

    Effective classical dynamics provide a potentially powerful avenue for modeling large-scale dynamical quantum systems. We have examined the accuracy of a Hamiltonian-based approach that employs effective momentum-dependent potentials (MDPs) within a molecular-dynamics framework through studies of atomic ground states, excited states, ionization energies, and scattering properties of continuum states. Working exclusively with the Kirschbaum-Wilets (KW) formulation with empirical MDPs [C. L. Kirschbaum and L. Wilets, Phys. Rev. A 21, 834 (1980), 10.1103/PhysRevA.21.834], optimization leads to very accurate ground-state energies for several elements (e.g., N, F, Ne, Al, S, Ar, and Ca) relative to Hartree-Fock values. The KW MDP parameters obtained are found to be correlated, thereby revealing some degree of transferability in the empirically determined parameters. We have studied excited-state orbits of electron-ion pair to analyze the consequences of the MDP on the classical Coulomb catastrophe. From the optimized ground-state energies, we find that the experimental first- and second-ionization energies are fairly well predicted. Finally, electron-ion scattering was examined by comparing the predicted momentum transfer cross section to a semiclassical phase-shift calculation; optimizing the MDP parameters for the scattering process yielded rather poor results, suggesting a limitation of the use of the KW MDPs for plasmas.

  13. The bound state S-matrix for AdS{sub 5}xS{sup 5} superstring

    Energy Technology Data Exchange (ETDEWEB)

    Arutyunov, G. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)], E-mail: g.e.arutyunov@uu.nl; Leeuw, M. de [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)], E-mail: m.deleeuw@uu.nl; Torrielli, A. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)], E-mail: a.torrielli@uu.nl

    2009-10-01

    We determine the S-matrix that describes scattering of arbitrary bound states in the light-cone string theory in AdS{sub 5}xS{sup 5}. The corresponding construction relies on the Yangian symmetry and the superspace formalism for the bound state representations. The basic analytic structure supporting the S-matrix entries turns out to be the hypergeometric function {sub 4}F{sub 3}. We show that for particular bound state numbers it reproduces all the scattering matrices previously obtained in the literature. Our findings should be relevant for the TBA and Luescher approaches to the finite-size spectral problem. They also shed some light on the construction of the universal R-matrix for the centrally-extended psu(2|2) superalgebra.

  14. On Possible S-Wave Bound States for an N-(N) System Within a Constituent Quark Model

    Institute of Scientific and Technical Information of China (English)

    CHANG Chao-Hsi; PANG Hou-Rong

    2005-01-01

    We try to apply a constituent quark model (a variety chiral constituent quark model) and the resonating group approach for the multi-quark problems to compute the effective potential between the NN- in S-wave (the quarks in the nucleons N and N-, and the two nucleons relatively as well, are in S wave) so as to see the possibility if there may be a tight bound state of six quarks as indicated by a strong enhancement at threshold of pp- in J/ψ and B decays. The effective potential which we obtain in terms of the model and approach shows if the experimental enhancement is really caused by a tight S-wave bound state of six quarks, then the quantum number of the bound state is very likely to be I = 1, JPC= 0-+.

  15. Bound states in the 3d Ising model and implications for QCD at finite temperature and density

    CERN Document Server

    Caselle, M; Provero, P; Zarembo, K

    2002-01-01

    We study the spectrum of bound states of the three dimensional Ising model in the (h,beta) plane near the critical point. We show the existence of an unbinding line, defined as the boundary of the region where bound states exist. Numerical evidence suggests that this line coincides with the beta=beta_c axis. When the 3D Ising model is considered as an effective description of hot QCD at finite density, we conjecture the correspondence between the unbinding line and the line that separates the quark-gluon plasma phase from the superconducting phase. The bound states of the Ising model are conjectured to correspond to the diquarks of the latter phase of QCD.

  16. Generation of bound states of pulses in a soliton laser with complex relaxation of a saturable absorber

    Energy Technology Data Exchange (ETDEWEB)

    Zolotovskii, I O; Korobko, D A; Okhotnikov, O G [Ulyanovsk State University, Ulyanovsk (Russian Federation); Gumenyuk, R V [Optoelectronics Research Center, Tampere University of Technology, Tampere (Finland)

    2015-01-31

    A numerical model of a soliton fibre laser with a semiconductor saturable absorber mirror (SESAM), characterised by the complex dynamics of absorption relaxation, is considered. It is shown that stationary bound states of pulses can be formed in this laser as a result of their interaction via the dispersion-wave field. The stability of stationary bound states of several pulses is analysed. It is shown that an increase in the number of pulses in a stationary bound state leads eventually to its decay and formation of a random bunch. It is found that the bunch stability is caused by the manifestation of nonlinear self-phase modulation, which attracts pulses to the bunch centre. The simulation results are in qualitative agreement with experimental data. (nonlinear optical phenomena)

  17. Single-molecule folding mechanisms of the apo- and Mg2+-bound states of human neuronal calcium sensor-1

    DEFF Research Database (Denmark)

    Naqvi, Mohsin M; Heiðarsson, Pétur Orri; Otazo, Mariela R;

    2015-01-01

    in a variety of cellular processes in which it has been linked to a number of disorders such as schizophrenia and autism. Despite extensive studies on the Ca(2+)-activated state of NCS proteins, little is known about the conformational dynamics of the Mg(2+)-bound and apo states, both of which are populated...... by populating one intermediate state consisting of a folded C-domain and an unfolded N-domain. The interconversion at equilibrium between the different molecular states populated by NCS-1 was monitored in real time through constant-force measurements and the energy landscapes underlying the observed transitions......Neuronal calcium sensor-1 (NCS-1) is the primordial member of a family of proteins responsible primarily for sensing changes in neuronal Ca(2+) concentration. NCS-1 is a multispecific protein interacting with a number of binding partners in both calcium-dependent and independent manners, and acting...

  18. Molecular heat pump for rotational states

    CERN Document Server

    Lazarou, C; Garraway, B M

    2010-01-01

    In this work we investigate the theory for three different uni-directional population transfer schemes in trapped multilevel systems which can be utilized to cool molecular ions. The approach we use exploits the laser-induced coupling between the internal and motional degrees of freedom so that the internal state of a molecule can be mapped onto the motion of that molecule in an external trapping potential. By sympathetically cooling the translational motion back into its ground state the mapping process can be employed as part of a cooling scheme for molecular rotational levels. This step is achieved through a common mode involving a laser-cooled atom trapped alongside the molecule. For the coherent mapping we will focus on adiabatic passage techniques which may be expected to provide robust and efficient population transfers. By applying far-detuned chirped adiabatic rapid passage pulses we are able to achieve an efficiency of better than 98% for realistic parameters and including spontaneous emission. Even...

  19. Bound states emerging from below the continuum in a solvable PT -symmetric discrete Schrödinger equation

    Science.gov (United States)

    Znojil, Miloslav

    2017-07-01

    The phenomenon of the birth of an isolated quantum bound state at the lower edge of the continuum is studied for a particle moving along a discrete real line of coordinates x ∈Z . The motion is controlled by a weakly nonlocal 2 J -parametric external potential V which is non-Hermitian but P T symmetric. The model is found exactly solvable. The bound states are interpreted as Sturmians. Their closed-form definitions are presented and discussed up to J =7 .

  20. Optical bound state in the continuum in the one-dimensional photonic crystal slab: Theory and experiment

    DEFF Research Database (Denmark)

    Sadrieva, Z. F.; Sinev, I. S.; Samusev, A. K.;

    2016-01-01

    In this work, we implement CMOS-compatible one-dimensional photonic structure based on silicon-on-insulator wafer supporting optical bound states in the continuum at telecommunication wavelengths — localized optical state with energy lying above the light line of the surrounding space. Such high-......-Q states are very promising for many potential applications ranging from on-chip photonics and optical communications to biological sensing and photovoltaics....

  1. An Investigation Into the Molecular and Isotopic Composition of Diatom Frustule-Bound Organic Matter: Method Development for New Proxies

    Science.gov (United States)

    Bridoux, M. C.; Ingalls, A. E.

    2009-12-01

    Diatoms are single cell phytoplankton that are ubiquitous in marine ecosystems and are responsible for up to 40% of the carbon fixed annually in the ocean. Their intricately nanopatterned siliceous frustules are formed under the control of template organic molecules, some of which are incorporated into the frustule during growth. Several diatom frustule-based paleoproxies have been developed to exploit these microfossils because they are from a known phytoplankton source that is relatively unaltered from diagenesis. Among these proxies, diatom frustule-bound organic matter (OM) is recognized as a potentially important material for use in paleoreconstructions of past productivity (13C/12C), nutrient utilization (15N/14N) as well as to determine the radiocarbon age of sedimentary frustules (Δ14C). Despite numerous advances, diatom frustule-bound OM remains poorly characterized. Here we focus on the chemical characterization of diatom frustule-bound OM with the goal of developing molecular and compound-specific isotope methods to better reconstruct the past environments of diatom rich regions such as the Southern Ocean and the North Pacific. To do this, we 1) chemically cleaned diatom frustules, 2) dissolve them in HF to release organic compounds embedded in the frustules and 3) unambiguously characterized this organic matter by ion pairing reversed phase liquid chromatography coupled to diode array, electrospray ionization - ion trap mass spectrometry (ESI/IT-MSn) and accurate mass quadrupole time of flight mass spectrometry (Q-TOF). These analyses reveal the presence of low molecular weight, UV light absorbing compounds called mycosporine-like amino acids (MAAs) and a series of long chain polyamines (LCPAs) consisting of N-methylated derivatives of polypropyleneimine units attached to putrescine. LCPAs are known to direct silicification, while MAAs are thought to provide sunscreen to many marine organisms. The presence of these specific biomarkers in sediment

  2. Diphoton decay of the Higgs boson and new bound states of top and anti-top quarks

    CERN Document Server

    Froggatt, C D; Laperashvili, L V; Nielsen, H B

    2015-01-01

    We consider the constraints, provided by the LHC results on Higgs boson decay into 2 photons and its production via gluon fusion, on the previously proposed Standard Model (SM) strongly bound state $S$ of 6 top quarks and 6 anti-top quarks. A correlation is predicted between the ratios $\\kappa_{\\gamma}$ and $\\kappa_g$ of the Higgs diphoton decay and gluon production amplitudes respectively to their SM values. We estimate the contribution to these amplitudes from one loop diagrams involving the 12 quark bound state $S$ and related excited states using an atomic physics based model. We find two regions of parameter space consistent with the ATLAS and CMS data on ($\\kappa_{\\gamma}$, $\\kappa_g$) at the 3 sigma level: a region close to the SM values ($\\kappa_{\\gamma}=1$, $\\kappa_g =1$) with the mass of the bound state $m_S > 400$ GeV and a region with ($\\kappa_{\\gamma} \\sim 3/2$, $\\kappa_g \\sim -3/4$) corresponding to a bound state mass of $m_S \\sim 220$ GeV.

  3. Screened test-charge - test-charge interaction in the two-dimensional electron gas: bound states

    Science.gov (United States)

    Gold, A.; Ghazali, A.

    1997-08-01

    We study the test-charge - test-charge interaction when screening effects of a two-dimensional electron gas are taken into account. The Schrödinger equation is solved in the momentum space by diagonalizing the corresponding matrix and the results are compared with variational calculations. For two positive (or negative) test-charges bound states are obtained for low electron densities when many-body effects are incorporated in the screening function. For a density larger than a critical density, 0953-8984/9/32/011/img5 (0953-8984/9/32/011/img6 is the Wigner - Seitz parameter), no bound states are found. Below the critical density, 0953-8984/9/32/011/img7, the number of bound states and their energy increase with decreasing density and the ground-state binding energy saturates near 0953-8984/9/32/011/img8. Finite-width effects for quantum wells are also discussed. We present new results for bound states between a positive and a negative test charge and we discuss effects of exchange and correlation on the binding energies.

  4. The g-factor of the electron bound in {sup 28}Si{sup 13+}. The most stringent test of bound-state quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, Sven

    2012-09-06

    This thesis describes the ultra-precise determination of the g-factor of the electron bound to hydrogenlike {sup 28}Si{sup 13+}. The experiment is based on the simultaneous determination of the cyclotron- and Larmor frequency of a single ion, which is stored in a triple Penning-trap setup. The continuous Stern-Gerlach effect is used to couple the spin of the bound electron to the motional frequencies of the ion via a magnetic bottle, which allows the non-destructive determination of the spin state. To this end, a highly sensitive, cryogenic detection system was developed, which allowed the direct, non-destructive detection of the eigenfrequencies with the required precision. The development of a novel, phase sensitive detection technique finally allowed the determination of the g-factor with a relative accuracy of 4 . 10{sup -11}, which was previously inconceivable. The comparison of the hereby determined value with the value predicted by quantumelectrodynamics (QED) allows the verification of the validity of this fundamental theory under the extreme conditions of the strong binding potential of a highly charged ion. The exact agreement of theory and experiment is an impressive demonstration of the exactness of QED. The experimental possibilities created in this work will allow in the near future not only further tests of theory, but also the determination of the mass of the electron with a precision that exceeds the current literature value by more than an order of magnitude.

  5. Experimental study of bound states in $^{12}$Be through low-energy $^{11}$Be($d,p$)-transfer reactions

    CERN Document Server

    Johansen, J G; Borge, M J G; Cubero, M; Diriken, J; Elsevier, J; Fraile, L M; Fynbo, H O U; Gaffney, L P; Gernhäuser, R; Jonson, B; Koldste, G T; Konki, J; Kröll, T; Krücken, R; Mücher, D; Nilsson, T; Nowak, K; Pakarinen, J; Pesudo, V; Raabe, R; Riisager, K; Seidlitz, M; Tengblad, O; Törnqvist, H; Voulot, D; Warr, N; Wenander, F; Wimmer, K; De Witte, H

    2013-01-01

    The bound states of $^{12}$Be have been studied through a $^{11}$Be$(d,p)^{12}$Be transfer reaction experiment in inverse kinematics. A 2.8 MeV/u beam of $^{11}$Be was produced using the REX-ISOLDE facility at CERN. The outgoing protons were detected with the T-REX silicon detector array. The MINIBALL germanium array was used to detect $\\gamma$-rays from the excited states in $^{12}$Be. The $\\gamma$-ray detection enabled a clear identification of the four known bound states in $^{12}$Be, and each of the states has been studied individually. Differential cross sections over a large angular range have been extracted. Spectroscopic factors for each of the states have been determined from DWBA calculations and have been compared to previous experimental and theoretical results.

  6. Pseudoscalar mesons with symmetric bound state vertex functions on the light front

    CERN Document Server

    Yabusaki, George H S; Paracha, M Ali; de Melo, J P B C; El-Bennich, Bruno

    2015-01-01

    We study the electromagnetic form factors, decay constants and charge radii of the pion and kaon within the framework of light-front field theory formalism where we use an ansatz for the quark-meson interaction bound-state function which is symmetric under exchange of quark and antiquark momentum. The above mentioned observables are evaluated for the $+$ component of the electromagnetic current, $J^+$, in the Breit frame. We also check the invariance of these observables in other frames, whereby both the valance and the non-valence contributions have to be taken into account, and study the sensitivity of the electromagnetic form factors and charge radius to the model's parameters; namely, the quark masses, $m_u=m_d$, $m_{\\bar s}$, and the regulator mass, $m_R$. It is found that after a fine tuning of the regulator mass, i.e. $m_R=0.6$ GeV, the model is suitable to fit the available experimental data within the theoretical uncertainties of both the pion and kaon.

  7. Formation and condensation of excitonic bound states in the generalized Falicov-Kimball model

    Science.gov (United States)

    Farkašovský, Pavol

    2017-01-01

    The density-matrix-renormalization-group method and the Hartree-Fock approximation with the charge-density-wave instability are used to study a formation and condensation of excitonic bound states in the generalized Falicov-Kimball model. In particular, we examine effects of various factors, such as the f -electron hopping, the local and nonlocal hybridizations, as well as the increasing dimension of the system on the excitonic momentum distribution N (q ) and especially on the number of zero-momentum excitons N0=N (q =0 ) in the condensate. It is found that the negative values of the f -electron hopping integrals tf support the formation of a zero-momentum condensate, whereas the positive values of tf have the fully opposite effect. The opposite effects on the formation of the condensate exhibit also the local and nonlocal hybridizations. The first one strongly supports the formation of the condensate, whereas the second one destroys it completely. Moreover, it was shown that the zero-momentum condensate remains robust with increasing dimension of the system.

  8. Bound state structure and electromagnetic form factor beyond the ladder approximation

    CERN Document Server

    Gigante, V; Ydrefors, E; Gutierrez, C; Karmanov, V A; Frederico, T

    2016-01-01

    We investigate the response of the bound state structure of a two-boson system, within a Yukawa model with a scalar boson exchange, to the inclusion of the cross-ladder contribution to the ladder kernel of the Bethe-Salpeter equation. The equation is solved by means of the Nakanishi integral representation and light-front projection. The valence light-front wave function and the elastic electromagnetic form factor beyond the impulse approximation, with the inclusion of the two-body current, generated by the cross-ladder kernel, are computed. The valence wave function and electromagnetic form factor, considering both ladder and ladder plus cross-ladder kernels, are studied in detail. Their asymptotic forms are found to be quite independent of the inclusion of the cross-ladder kernel, for a given binding energy. The asymptotic decrease of form factor agrees with the counting rules. This analysis can be generalized to fermionic systems, with a wide application in the study of the meson structure.

  9. Black hole bound states in AdS_3 x S^2

    CERN Document Server

    de Boer, Jan; El-Showk, Sheer; Messamah, Ilies; Bleeken, Dieter Van den

    2008-01-01

    We systematically construct the geometries dual to the 1+1 dimensional (0,4) conformal field theories that arise in the low-energy description of wrapped M5-branes in S^1 x CY_3 compactifications of M-theory. This includes a large number of multicentered black hole bound states asymptotic to AdS_3 x S^2. In addition, we find many geometries that develop multiple, mutually decoupled AdS_3 x S^2 throats. We argue there is a useful one to one correspondence between the connected components of the space of solutions and particular limits of type IIA attractor flow trees. We point out that there is a thermodynamic instability of small supersymmetric BTZ black holes to localization on the S^2, a supersymmetric and exactly solvable analog of the well known AdS-Schwarzschild localization instability, and identify this with the ``Entropy Enigma'' in four dimensions. We discuss the phase transition this suggests, and initiate the CFT interpretation of these results.

  10. Shot noise as a measure of the lifetime and energy splitting of Majorana bound states

    Energy Technology Data Exchange (ETDEWEB)

    Lü, Hai-Feng; Guo, Zhen; Ke, Sha-Sha; Zhang, Huai-Wu [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Guo, Yong [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China)

    2015-04-28

    We propose a scheme to measure the lifetime and energy splitting of a pair of Majorana bound states at the ends of a superconducting nanowire by using the shot noise in a dynamical channel blockade system. A quantum dot is coupled to one end of the wire and connected with two electron reservoirs. It is found that a finite Majorana energy splitting tends to produce a super-Poissonian shot noise, while Majorana relaxation process relieves the dynamical channel blockade and suppresses the noise Fano factor. When the dot energy level locates in the middle of the gap of topological superconductor, the Fano factor is independent on Majorana lifetime and Majorana energy splitting is thus extracted. For a finite energy splitting, we could evaluate the Majorana relaxation rate from the suppression of Fano factor. Under a realistic condition, the expected resolution of Majorana energy splitting and its relaxation rate calculated from our model are about 1μeV and 0.01−1μeV, respectively.

  11. Three-nucleon bound states and the Wigner-SU(4) limit

    CERN Document Server

    Vanasse, Jared

    2016-01-01

    We examine the extent to which the properties of three-nucleon bound states are well-reproduced in the limit that nuclear forces satisfy Wigner's SU(4) (spin-isospin) symmetry. To do this we compute the charge radii up to next-to-leading order (NLO) in an effective field theory (EFT) that is an expansion in powers of $R/a$, with $R$ the range of the nuclear force and $a$ the nucleon-nucleon ($N\\!N$) scattering lengths. In the Wigner-SU(4) limit, the triton and Helium-3 point charge radii are equal. At NLO in the range expansion both are $1.66$ fm. Adding the first-order corrections due to the breaking of Wigner symmetry in the $N\\!N$ scattering lengths gives a ${}^3\\mathrm{H}$ point charge radius of $1.58$ fm, which is remarkably close to the experimental number, $1.5978\\pm0.040$ fm. For the ${}^3\\mathrm{He}$ point charge radius we find $1.70$ fm, about 4% away from the experimental value of $1.77527\\pm0.0054$ fm. We also examine the Faddeev components that enter the tri-nucleon wave function and find that an...

  12. Ab initio potential energy surface and bound states for the Kr-OCS complex.

    Science.gov (United States)

    Feng, Eryin; Sun, Chunyan; Yu, Chunhua; Shao, Xi; Huang, Wuying

    2011-09-28

    The first ab initio potential energy surface of the Kr-OCS complex is developed using the coupled-cluster singles and doubles with noniterative inclusion of connected triples [CCSD(T)]. The mixed basis sets, aug-cc-pVTZ for the O, C, and S atom, and aug-cc-pVQZ-PP for the Kr atom, with an additional (3s3p2d1f) set of midbond functions are used. A potential model is represented by an analytical function whose parameters are fitted numerically to the single point energies computed at 228 configurations. The potential has a T-shaped global minimum and a local linear minimum. The global minimum occurs at R = 7.146 a(0), θ = 105.0° with energy of -270.73 cm(-1). Bound state energies up to J = 9 are calculated for three isotopomers (82)Kr-OCS, (84)Kr-OCS, and (86)Kr-OCS. Analysis of the vibrational wavefunctions and energies suggests the complex can exist in two isomeric forms: T-shaped and quasi-linear. The calculated transition frequencies and spectroscopic constants of the three isotopomers are in good agreement with the experimental values.

  13. Spectra of Lorentz-violating Dirac bound states in a cylindrical well

    Science.gov (United States)

    Xiao, Zhi

    2016-12-01

    In the presence of the Lorentz-violating bμ coefficient, the spectra of bound states for a Dirac particle in a cylindric well are changed. Compared to the Lorentz invariant (LI) spectrum, the Lorentz violation deviation becomes significant when eigenenergy E is sufficiently close to the critical values ±m , where m is the particle's mass. The detailed profile of the deviation depends on the observer Lorentz nature of bμ. We discussed three types of bμ configuration. When bμ=(0 ,0 ,0 ,bZ) is parallel to the well axis, the would be degenerate LI spectra split into two subspectra, reminiscent of the Zeeman splitting in the presence of a weak magnetic field. Depending on the relative sign of bZ accompanying mass m in the dispersion relation, the spectrum extends or shrinks in the allowed eigenenergy region. When bμ is a radial [bμ=(0 ,b cos ϕ ,b sin ϕ ,0 ) ] or purely timelike vector [bμ=(bT,0 →)], the spin-up and down components are coupled together, and there is no splitting. However, the monotonic increasing behavior of well depth V0 with the decrease of eigenenergy E is slightly changed when E is sufficiently close to -m .

  14. Bound states in the three-dimensional electron gas with repulsive or attractive test charges: many-body effects

    Science.gov (United States)

    Gold, A.; Ghazali, A.

    1996-09-01

    In the low-density regime bound states between negative (repulsive) test charges are obtained when many-body effects (exchange and correlation) are incorporated in the screening function of the three-dimensional electron gas via the local-field correction. The Schrödinger equation is solved in the momentum space by diagonalizing the corresponding matrix. We also perform variational calculations and find good agreement between the two methods. For high electron density 0953-8984/8/40/006/img5 (0953-8984/8/40/006/img6 is the density parameter) no bound states are found. Below a critical density 0953-8984/8/40/006/img7 the number and the energy of bound states increase with decreasing electron density. For large 0953-8984/8/40/006/img6 the binding energy for the ground state saturates near 0953-8984/8/40/006/img9. We discuss the wave functions of the ground state and of the lowest excited states. We also present results for the effects of exchange and correlation for a positive (attractive) test charge and we discuss results for the ground state and excited states.

  15. Bounds on the Number and Size of Extra Dimensions from Molecular Spectroscopy

    Science.gov (United States)

    Salumbides, Edcel John; Schellekens, Bert; Gato-Rivera, Beatriz; Ubachs, Wim

    2015-06-01

    Modern string theories, which seek to produce a consistent description of physics beyond the Standard Model that also includes the gravitational interaction, appear to be most consistent if a large number of dimensions are postulated. For example the mysterious M-theory, which generalizes all consistent versions of superstring theories, require 11 dimensions. We demonstrate that investigations of quantum level energies in simple molecular systems provide a testing ground to constrain the size of compactified extra dimensions, for example those proposed in the ADD [1] and RS scenarios [2]. This is made possible by the recent progress in precision metrology with ultrastable lasers on energy levels in neutral molecular hydrogen (H_2, HD and D_2) [3] and the molecular hydrogen ions (H_2^+, HD^+ and D_2^+) [4]. Comparisons between experiment and quantum electrodynamics calculations for these molecular systems can be interpreted in terms of probing large extra dimensions, under which conditions gravity will become much stronger. Molecules are a probe of space-time geometry at typical distances where chemical bonds are effective, i.e. at length scales of an Å. [1] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B 429, 263 (1998) [2] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999). [3] G. Dickenson et al., Phys. Rev. Lett. 110, 193601 (2013). [4] J. C. J. Koelemeij et al., Phys. Rev. Lett. 98, 173002 (2007).

  16. In situ control of polymer helicity with a non-covalently bound photoresponsive molecular motor dopant.

    Science.gov (United States)

    van Leeuwen, Thomas; Heideman, G Henrieke; Zhao, Depeng; Wezenberg, Sander J; Feringa, Ben L

    2017-06-13

    The transfer of chirality from a molecular motor to a dynamic helical polymer via ionic interactions was investigated. A dopant with photoswitchable chirality was able to induce a preferred helicity in a poly(phenylacetylene) polymer and the helicity is inverted upon irradiation. The findings described herein will advance the development of functional and responsive polymeric systems.

  17. Does the Higgs mechanism favour electron-electron bound states in Maxwell-Chern-Simons $QED_{3}$?

    CERN Document Server

    Belich, H; Helayël-Neto, José A

    2000-01-01

    The low-energy electron-electron scattering potential is derived and discussed for the Maxwell-Chern-Simons model coupled to QED_3 with spontaneous symmetry breaking. One shows that the Higgs mechanism might favour electron-electron bound states.

  18. Weakly bound states of two- and three-boson systems in the crossover from two to three dimensions

    DEFF Research Database (Denmark)

    Yamashita, Marcelo; Bellotti, Filipe Furlan; Frederico, Tobias

    2015-01-01

    The spectrum and properties of quantum bound states is strongly dependent on the dimensionality of space. How this comes about and how one may theoretically and experimentally study the interpolation between different dimensions is a topic of great interest in different fields of physics. In this...

  19. Relativistic Bound States in 2+1 and 1+1 Dimensions in the Null-Plane

    CERN Document Server

    Pacheco-Bicudo-Cabral de Melo, J; Tomio, L; Frederico, T; Tomio, Lauro

    1998-01-01

    The Relativistic formulation of the three-boson model interacting via a zero-range two-body force in the null-plane is given in 2+1 and 1+1 space-time dimension. The bound state energy is calculed as function of the two-body boson binding energy.

  20. Bound States of the Klein-Gordon and Dirac equations for potential V0 tanh2(r/d)

    Institute of Scientific and Technical Information of China (English)

    Qiang Wen-Chao

    2004-01-01

    The exact bound state wavefunctions and energy equations of Klein-Gordon and Dirac equations are given with equal scalar and vector potential s(r) = v(r) = V(r)/2 = V0 tanh2(r/d). The relation between the energy equation and that of relativistic harmonic is discussed.

  1. Bound states of the Klein-Gordon and Dirac equation for scalar and vector pseudoharmonic oscillator potentials

    Institute of Scientific and Technical Information of China (English)

    Chen Gang; Chen Zi-Dong; Lou Zhi-Mei

    2004-01-01

    The exact bound state solutions of the Klein-Gordon equation and Dirac equation with scalar and vector pseudoharmonic oscillator potentials are obtained in this paper. Furthermore, we have used the supersymmetric quantum mechanics, shape invariance and alternative method to obtain the required results.

  2. The hyperon-nucleon interaction potential in the bound-state soliton model: the {lambda} N case

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.L.; Herscovitz, V.E. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Schat, C.L. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Scoccola, N.N. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Dept. de Fisica

    1999-05-01

    We develop the formalism the study the hyperon-nucleon interaction potential within the bound state approach to the SU (3) Skyrme model. The general framework is illustratedby applying it to the diagonal {lambda} N potential. The central, spin-spin and tensor components of this interaction are obtained and compared with those derived using alternative schemes. (author)

  3. Estimation problem for impulsive control systems under ellipsoidal state bounds and with cone constraint on the control

    Science.gov (United States)

    Matviychuk, Oksana G.

    2012-11-01

    The paper deals with the state estimation problem for the linear control system containing impulsive control terms (or measures). The problem is studied here under uncertainty conditions when the initial system state is unknown but bounded, with given bound. It is assumed also that the system states should belong to the given ellipsoid in the state space. So the main problem of estimating the reachable set of the control system is studied here under more complicated assumption related to the case of state constraints. It is assumed additionally that impulsive controls in the dynamical system must belong to the intersection of a special cone with a generalized ellipsoid both taken in the space of functions of bounded variation. The last constraint is motivated by problems of impulsive control theory and by models from applied areas when not every direction of control impulses is acceptable in the system. We present here the state estimation algorithms that use the special structure of the control system and take into account additional restrictions on states and controls. The algorithms are based on ellipsoidal techniques for estimating the trajectory tubes of uncertain dynamical systems. Numerical simulation results related to proposed procedures are also given.

  4. Existence and Concentration of Ground States of Coupled Nonlinear Schr(o)dinger Equations with Bounded Potentials

    Institute of Scientific and Technical Information of China (English)

    Gongming WEI

    2008-01-01

    A 2-coupled nonlinear Schr(o)dinger equations with bounded varying potentials and strongly attractive interactions is considered.When the attractive interaction is strong enough,the existence of a ground state for sufficiently small Planck constant is proved.As the Planck constant approaches zero,it is proved that one of the components concentrates at a minimum point of the ground state energy function which is defined in Section 4.

  5. Molecular Dynamics of Organophosphorous Hydrolases Bound to the Nerve Agent Soman

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Thereza A.; Osman, Mohamed A.; Straatsma, TP

    2007-07-01

    The organophosphorous hydrolase (OPH) from Pseudomonas diminuta is capable of degrading extremely toxic organophosphorous compounds with a high catalytic turnover and broad substrate specificity. The potential use of this enzyme for the detection and detoxification of warfare nerve agents has spurred efforts to engineer mutants of enhanced catalytic activity and modified stereospecificity towards the most toxic forms of organophosphate nerve agents. Molecular dynamics simulations of the wild-type OPH and the complexes between the wild-type and the triple-mutant H254G/H257W/L303R forms and the substrate SpSc-soman have been carried out to enhance our molecular level understanding of its reaction mechanism. Comparison of the three simulations indicate that substrate binding induces conformational changes of the loops near the active site, suggesting an induced-fit mechanism. Likewise, the coordination of the zinc cations in the active site of the enzyme differs between the free enzyme and the complexes. In the absence of the substrate, the more exposed b-zinc is hexa-coordinated and the less exposed a-zinc is penta-coordinated. In the presence of the substrate, the b- zinc atom can be both penta- or hexa-coordinated while the a-zinc atom is tetra-coordinated. In addition, binding energies were calculated from electrostatic properties obtained by solution of the Poisson-Boltzmann equation combined with a surface area-dependent apolar contribution. The calculations indicate that the binding of SpSc-soman to OPH is driven by nonpolar interactions while electrostatic interactions determine binding specificity. These results provide a qualitative, molecular-level explanation for 2 the three-fold increase in catalytic efficiency of the triple-mutant towards SpSc-soman. Keywords: organophosphorous hydrolase, phosphotriesterase, nerve agents, soman, molecular dynamics, Poisson-Boltzmann equation, continuum electrostatics, metalloprotein.

  6. On the nonlocal Fisher-KPP equation: steady states, spreading speed and global bounds

    Science.gov (United States)

    Hamel, François; Ryzhik, Lenya

    2014-11-01

    We consider the Fisher-KPP (for Kolmogorov-Petrovsky-Piskunov) equation with a nonlocal interaction term. We establish a condition on the interaction that allows for existence of non-constant periodic solutions, and prove uniform upper bounds for the solutions of the Cauchy problem, as well as upper and lower bounds on the spreading rate of the solutions with compactly supported initial data.

  7. Sulfur Atom in its Bound State Is a Unique Element Involved in Physiological Functions in Mammals

    Directory of Open Access Journals (Sweden)

    Shin Koike

    2016-12-01

    Full Text Available It was in the 1950s that the term polysulfide or persulfide was introduced in biological studies. The unfamiliar term “sulfane sulfur” sometimes appeared in papers published in the 1970s, and was defined in the review article by Westley in 1983. In the article, sulfane sulfur is described as sulfur atoms that are covalently bound only with sulfur atoms, and as this explanation was somewhat difficult to comprehend, it was not generally accepted. Thus, in the early 1990s, we redefined these sulfur species as “bound sulfur”, which easily converts to hydrogen sulfide on reduction with a thiol reducing agent. In other words, bound sulfur refers to a sulfur atom that exists in a zero to divalent form (0 to −2. The first part of this review focuses on the fluorescent derivatization HPLC method—which we developed for measurement of bound sulfur—and explains the distribution of bound sulfur and the hydrogen sulfide-producing ability of various tissues, as clarified by this method. Next, we discuss diverse physiological functions and involvement of polysulfide, a typical type of bound sulfur, in the redox regulation system. Additionally, we also address its possible physiological role in the central nervous system, based on its action of scavenging reactive carbonyl compounds.

  8. Quantum Transport through a Triple Quantum Dot System in the Presence of Majorana Bound States

    Science.gov (United States)

    Jiang, Zhao-Tan; Cao, Zhi-Yuan; Zhong, Cheng-Cheng

    2016-05-01

    We study the electron transport through a special quantum-dot (QD) structure composed of three QDs and two Majorana bound states (MBSs) using the nonequilibrium Green's function technique. This QD-MBS ring structure includes two channels with the two coupled MBSs being Channel 1 and one QD being Channel 2, and three types of transport processes such as the electron transmission (ET), the Andreev reflection (AR), and the crossed Andreev reflection (CAR). By comparing the ET, AR, and CAR processes through Channels 1 and 2, we make a systematic study on the transport properties of the QD-MBS ring. It is shown that there appear two kinds of characteristic transport patterns for Channels 1 and 2, as well as the interplay between the two patterns. Of particular interest is that there exists an AR-assisted ET process in Channel 2, which is different from that in Channel 1. Thus a clear “X” pattern due to the ET and AR processes appears in the ET, AR, and CAR transmission coefficients. Moreover, we study how Channel 2 affects the three transport processes when Channel 1 is tuned in the ET and CAR regimes. It is shown that the transport properties of the ET, AR and CAR processes can be adjusted by tuning the energy level of the QD embedded in Channel 2. We believe this research should be a helpful reference for understanding the transport properties in the QD-MBS coupled systems. Supported by National Natural Science Foundation of China under Grant No. 11274040, and by the Program for New Century Excellent Talents in University under Grant No. NCET-08-0044

  9. Molecular characterization of soluble and membrane-bound trehalases of the whitefly, Bemisia tabaci.

    Science.gov (United States)

    Wang, Jia; He, Wen-Bo; Su, Yun-Lin; Bing, Xiao-Li; Liu, Shu-Sheng

    2014-04-01

    Trehalases (Tres) have been demonstrated to be the key enzymes that are involved in various trehalose-associated physiological processes in insects. However, little attention has been devoted to the Tres in the whitefly, Bemisia tabaci. In this study, a soluble Tre (BtTre-1) and a membrane-bound Tre (BtTre-2) were cloned in the invasive cryptic species Middle East-Asia Minor 1 (MEAM1) of the whitefly B. tabaci complex. Alignment of deduced amino acids sequences of both BtTres revealed that they share common consensus regions and residues with Tres of other insect species. Levels of BtTres expression in various stages and tissues of the whitefly suggested that BtTre-2 may play a key role in trehalose catabolism during development of the whitefly, especially for oocyte development, while BtTre-1 may prevent trehalose in salivary gland from leaking and entering into plants along with saliva. Potential roles of trehalose catabolism in response to direct and/or plant-mediated indirect effects of Tomato Yellow Leaf Curl China Virus (TYLCCNV) were also detected. Whiteflies feeding on virus-infected tobacco plants showed higher BtTres expressions and accordingly higher BtTres activity but lower trehalose content than those feeding on uninfected plants. The enhanced trehalose catabolism may be beneficial to oocyte development in ovary and attenuate plant defensive responses induced by trehalose in saliva. Viruliferous and nonviruliferous whiteflies feeding on cotton, a nonhost plant for TYLCCNV, differed significantly only in trehalose content. The higher trehalose content in viruliferous whiteflies may be conducive to resisting the stress inflicted by TYLCCNV.

  10. Solution NMR refinement of a metal ion bound protein using metal ion inclusive restrained molecular dynamics methods

    Energy Technology Data Exchange (ETDEWEB)

    Chakravorty, Dhruva K.; Wang Bing [University of Florida, Department of Chemistry and the Quantum Theory Project (United States); Lee, Chul Won [Chonnam National University, Department of Chemistry (Korea, Republic of); Guerra, Alfredo J.; Giedroc, David P., E-mail: giedroc@indiana.edu [Indiana University, Department of Chemistry (United States); Merz, Kenneth M., E-mail: kmerz1@gmail.com [University of Florida, Department of Chemistry and the Quantum Theory Project (United States)

    2013-06-15

    Correctly calculating the structure of metal coordination sites in a protein during the process of nuclear magnetic resonance (NMR) structure determination and refinement continues to be a challenging task. In this study, we present an accurate and convenient means by which to include metal ions in the NMR structure determination process using molecular dynamics (MD) simulations constrained by NMR-derived data to obtain a realistic and physically viable description of the metal binding site(s). This method provides the framework to accurately portray the metal ions and its binding residues in a pseudo-bond or dummy-cation like approach, and is validated by quantum mechanical/molecular mechanical (QM/MM) MD calculations constrained by NMR-derived data. To illustrate this approach, we refine the zinc coordination complex structure of the zinc sensing transcriptional repressor protein Staphylococcus aureus CzrA, generating over 130 ns of MD and QM/MM MD NMR-data compliant sampling. In addition to refining the first coordination shell structure of the Zn(II) ion, this protocol benefits from being performed in a periodically replicated solvation environment including long-range electrostatics. We determine that unrestrained (not based on NMR data) MD simulations correlated to the NMR data in a time-averaged ensemble. The accurate solution structure ensemble of the metal-bound protein accurately describes the role of conformational sampling in allosteric regulation of DNA binding by zinc and serves to validate our previous unrestrained MD simulations of CzrA. This methodology has potentially broad applicability in the structure determination of metal ion bound proteins, protein folding and metal template protein-design studies.

  11. In-medium bound-state formation and inhomogeneous condensation in Fermi gases in a hard-wall box

    CERN Document Server

    Roscher, Dietrich

    2016-01-01

    The formation of bosonic bound states underlies the formation of a superfluid ground state in the many-body phase diagram of ultracold Fermi gases. We study bound-state formation in a spin- and mass-imbalanced ultracold Fermi gas confined in a box with hard-wall boundary conditions. Because of the presence of finite Fermi spheres, the center-of-mass momentum of the potentially formed bound states can be finite, depending on the parameters controlling mass and spin imbalance as well as the coupling strength. We exploit this observation to estimate the potential location of inhomogeneous phases in the many-body phase diagram as a function of spin- and mass imbalance as well as the box size. Our results suggest that a hard-wall box does not alter substantially the many-body phase diagram calculated in the thermodynamic limit. Therefore, such a box may serve as an ideal trap potential to bring experiment and theory closely together and facilitate the search for exotic inhomogeneous ground states.

  12. Bubble-bound state of triple-stranded DNA: Efimov physics in DNA with repulsion

    Science.gov (United States)

    Maji, Jaya; Seno, Flavio; Trovato, Antonio; Bhattacharjee, Somendra M.

    2017-07-01

    The presence of a thermodynamic phase of a three-stranded DNA, namely, a mixed phase of bubbles of two bound strands and a single one, is established for large dimensions (d≥slant 5 ) by using exact real space renormalization group transformations and exact computations of specific heat for finite length chains. Similar exact computations for the fractal Sierpinski gasket of dimension d  <  2 establish the stability of the phase in the presence of a repulsive three chain interaction. Although, for d  <  2, cooperativity factors for bubbles or noncrossing conditions are needed for the melting transition, the mixed phase may exist even in absence of those. In contrast to the Efimov DNA, where three strands are bound though no two are bound, the mixed phase appears at temperatures less than the two chain melting temperature. Both the Efimov-DNA and the mixed phase are formed essentially due to the strand exchange mechanism.

  13. On 1/4 BPS ((F, D1), (NS5, D5)) bound states of type IIB string theory

    Science.gov (United States)

    Jia, Qiang; Lu, J. X.; Roy, Shibaji

    2017-08-01

    We construct two new SL(2, ℤ) invariant vacua of type IIB string theory which are bound states of ( p, q) strings with ( m, n) 5-branes, written as ((F, D1), (NS5, D5)) and preserve 1/4 of the full space-time supersymmetries. For the first case, the strings live inside the 5-brane world-volume and in the second case the strings are perpendicular to the 5-brane world-volume. In the first case, naively one would expect an attractive interaction between the strings and the 5-branes due to attractive force between F and D5 and also between D1 and NS5. We find that 1/4 BPS bound state exists only when the vacuum moduli satisfy certain condition which is found to be consistent with the no-force condition between the branes. No such complication arises for the second case. The tension formulae and the various other descendant states which can be obtained by the application of T-duality for both these bound states are discussed.

  14. Energy of the low-lying bound S-states of exotic two-muon three-body systems

    CERN Document Server

    Khan, Md Abdul

    2014-01-01

    Energies of the low-lying bound S-states (L=0) of exotic three-body systems, consisting a nuclear core of charge +Ze (Z being atomic number of the core) and two negatively charged valence muons, have been calculated by hyperspherical harmonics expansion method (HHEM). The three-body Schr\\H{o}dinger equation is solved assuming purely Coulomb interaction among the binary pairs of the three-body systems X$^{Z+}\\mu^-\\mu^-$ for Z=1 to 54. Convergence pattern of the energies have been checked with respect to the increasing number of partial waves $K_{max}$. For available computer facilities, calculations are feasible up to $K_{max}=28$ partial waves, however, calculation for still higher partial waves have been achieved through an appropriate extrapolation scheme. The dependence of bound state energies has been checked against increasing nuclear charge Z and finally, the calculated energies have been compared with the ones of the literature.

  15. Derivation of a Closed Expression of the B-S Interaction Kernel for Quark-Antiquark Bound States

    Institute of Scientific and Technical Information of China (English)

    SU Jun-Chen

    2002-01-01

    The interaction kernel in the Bethe-Salpeter (B-S) equation for quark-antiquark bound states is derivedfrom B-S equations satisfied by the quark-antiquark four-point Green's function. The latter equations are establishedbased on the equations of motion obeyed by the quark and antiquark propagators, the four-point Green's function andsome other kinds of Green's functions, which follow directly from the QCD generating functional. The derived B-Skernel is given by a closed and explicit expression which contains only a few types of Green's functions. This expressionis not only convenient for perturbative calculations, but also applicable for nonperturbative investigations. Since thekernel contains all the interactions taking place in the quark-antiquark bound states, it actually appears to be the mostsuitable starting point of studying the QCD nonperturbative effect and quark confinement.

  16. Bound state solution of Dirac equation for Hulthen plus trigonometric Rosen Morse non-central potential using Romanovski polynomial

    Energy Technology Data Exchange (ETDEWEB)

    Suparmi, A., E-mail: suparmiuns@gmail.com; Cari, C., E-mail: suparmiuns@gmail.com [Physics Department, Post Graduate Study, Sebelas Maret University (Indonesia); Angraini, L. M. [Physics Department, Mataram University (Indonesia)

    2014-09-30

    The bound state solutions of Dirac equation for Hulthen and trigonometric Rosen Morse non-central potential are obtained using finite Romanovski polynomials. The approximate relativistic energy spectrum and the radial wave functions which are given in terms of Romanovski polynomials are obtained from solution of radial Dirac equation. The angular wave functions and the orbital quantum number are found from angular Dirac equation solution. In non-relativistic limit, the relativistic energy spectrum reduces into non-relativistic energy.

  17. (p,q)-Five Brane and (p,q)-String Solutions, their Bound State and its Near Horizon Limit

    CERN Document Server

    Kluson, J

    2016-01-01

    We determine (p,q)-string and (p,q)-five brane solutions of type IIB supergravity using SL(2,Z)-symmetry of the full type IIB superstring theory. We also determine SL(2,Z)-transformed solution corresponding to the bound state of NS5-branes and fundamental strings. Then we analyze its near horizon limit and we show that it leads to the AdS(3)xS(3) with mixed fluxes.

  18. Bound states of Klein-Gordon equation for double ring-shaped oscillator scalar and vector potentials

    Institute of Scientific and Technical Information of China (English)

    Lu Fa-Lin; Chen Chang-Yuan; Sun Dong-Sheng

    2005-01-01

    In Spherical polar coordinates, double ring-shaped oscillator potentials have supersymmetry and shape invariance for θ and τ coordinates. Exact bound state solutions of Klein-gordon equation with equal double ring-shaped oscillator scalar and vector potentials are obtained. The normalized angular wavefunction expressed in terms of Jacobi polynomials and the normalized radial wavefunction expressed in terms of the Laguerre polynomials are presented. Energy spectrum equations are obtained.

  19. Spectroscopy of $\\eta'$-nucleus bound states at GSI and FAIR --- very preliminary results and future prospects ---

    CERN Document Server

    Fujioka, H; Benlliure, J; Brinkmann, K -T; Friedrich, S; Geissel, H; Gellanki, J; Guo, C; Gutz, E; Haettner, E; Harakeh, M N; Hayano, R S; Higashi, Y; Hirenzaki, S; Hornung, C; Igarashi, Y; Ikeno, N; Itahashi, K; Iwasaki, M; Jido, D; Kalantar-Nayestanaki, N; Kanungo, R; Knoebel, R; Kurz, N; Metag, V; Mukha, I; Nagae, T; Nagahiro, H; Nanova, M; Nishi, T; Ong, H J; Pietri, S; Prochazka, A; Rappold, C; Reiter, M P; Rodríguez-Sánchez, J L; Scheidenberger, C; Simon, H; Sitar, B; Strmen, P; Sun, B; Suzuki, K; Szarka, I; Takechi, M; Tanaka, Y K; Tanihata, I; Terashima, S; Watanabe, Y N; Weick, H; Widmann, E; Winfield, J S; Xu, X; Yamakami, H; Zhao, J

    2015-01-01

    The possible existence of \\eta'-nucleus bound states has been put forward through theoretical and experimental studies. It is strongly related to the \\eta' mass at finite density, which is expected to be reduced because of the interplay between the $U_A(1)$ anomaly and partial restoration of chiral symmetry. The investigation of the C(p,d) reaction at GSI and FAIR, as well as an overview of the experimental program at GSI and future plans at FAIR are discussed.

  20. Simple mass estimates for resonance(s) being 6 top + 6 antitop bound states and combinations thereof

    Science.gov (United States)

    Nielsen, H. B.

    2016-11-01

    We have long speculated,2,12,50-62 that 6 top + 6 antitop quarks due to the relatively large size of the top-Yukawa coupling would bind exceptionally strongly by mainly Higgs exchange. Here we present a surprisingly simple “calculation” of the mass of this speculated bound state. Even a possible resonance in scattering of two such bound states is speculated. For the “calculation” of the masses it is crucial to assume, that our since long speculated principle “multiple point principle,”5-18 is true. This principle says: there are several vacua all having almost zero energy density. Further, we make an approximation of the Higgs Yukawa potential essentially replacing the exponential in it by a step-function. The new result means that there are now two independent calls for our bound state having the mass around 750 GeV required by our “new law of nature” the Multiple Point Principle. It should be remarked that in our picture there is no new physics in the sense of new fundamental particles, but the “multiple point principle” is new in the sense of being not yet accepted. Further, we get the same mass within uncertainties as earlier2 but now from a completely different assumption, except for being from our “multiple point principle.” But the two masses are gotten from using different (speculative) vacua occurring in the pure Standard Model.

  1. Towards Using Molecular States as Qubits

    Science.gov (United States)

    Goswami, Debabrata; Goswami, Tapas; Kumar, S. K. Karthick; Das, Dipak K.

    2013-01-01

    Molecular systems are presented as possible qubit systems by exploring non-resonant molecular fragmentation of n-propyl benzene with femtosecond laser pulses as a model case. We show that such laser fragmentation process is dependent on the phase and polarization characteristics of the laser. The effect of the chirp and polarization of the femtosecond pulse when applied simultaneously is mutually independent of each other, which makes chirp and polarization as useful ‘logic’ implementing parameters for such molecular qubits. PMID:23814323

  2. Channel Capacity Bounds in the Presence of Quantized Channel State Information

    Directory of Open Access Journals (Sweden)

    Makki Behrooz

    2010-01-01

    Full Text Available The goal of this paper is to investigate the effect of channel side information on increasing the achievable rates of continuous power-limited non-Gaussian channels. We focus on the case where (1 there is imperfect channel quality information available to the transmitter and the receiver and (2 while the channel gain is continuously varying, there are few cross-region changes, and the noise characteristics remain in each detection region for a long time. The results are presented for two scenarios, namely, reliable and unreliable region detection. Considering short- and long-term power constraints, the capacity bounds are found for log-normal and two different Nakagami-based channel distributions, and for both Max-Lloyd and equal probability quantization approaches. Then, the optimal gain partitioning approach, maximizing the achievable rates, is determined. Finally, general equations for the channel capacity bounds and optimal channel partitioning in the case of unreliable region detection are presented. Interestingly, the results show that, for high SNR's, it is possible to determine a power-independent optimal gain partitioning approach maximizing the capacity lower bound which, in both scenarios, is identical for both short- and long-term power constraints.

  3. Suppressing the weakly bound states in the photoassociation dynamics by using a frequency cut-off laser pulse

    Institute of Scientific and Technical Information of China (English)

    Lin Feng; Zhang Wei; Zhao Ze-Yu; Cong Shu-Lin

    2012-01-01

    The photoassociation dynamics of ultracold lithium atoms controlled by a cut-off pulse has been investigated theoretically by solving numerically the time-dependent Schr(o)dinger equation using the mapped Fourier grid method.The frequency components of the laser pulse close to the atomic resonance are partly cut off.Compared with the typical Gauss-type pulses,the cut-off pulse is helpful to suppress efficiently the weakly bound states and prepare the associated molecules in the lower vibrational states.Especially,the dependence of photoassociation probability on the cut-off position of the laser pulse is explored.

  4. Molecular characterization of organically bound sulphur in crude oils. A feasibility study for the application of Raney Ni desulphurization as a new method to characterize crude oils

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Rijpstra, W.I.C.; Leeuw, J.W. de; Lijmbach, G.W.M.

    1994-01-01

    Five crude oils with varying sulfur contents (0.1 – 4.7%) were characterized on a molecular level for organically-bound sulfur. Aromatic fractions were analyzed by GC-(MS) and asphaltene and polar fractions were analyzed by flash pyrolysis-GC-(MS). The polar fractions were also desulfurized with Ran

  5. Molecular pop-up toy: a molecular machine based on folding/unfolding motion of alkyl chains bound to a host.

    Science.gov (United States)

    Ko, Young Ho; Hwang, Ilha; Kim, Hyunuk; Kim, Youngkook; Kim, Kimoon

    2015-01-01

    We have designed and synthesized a new type of molecular machine based on the folding/unfolding motion of an alkyl chain bound to a host, triggered by a redox stimulus. A guest molecule containing a viologen unit with a long alkyl chain 1(2+) and its one-electron reduced species 1 + . form very stable 1:1 host-guest complexes 2(2+) and 2 + ., respectively, with cucurbit[8]uril (CB[8]), where the long alkyl chain of the guests is in a folded conformation inside the host cavity. Upon addition of 2,6-dihydroxynaphthalene as an electron donor, the binary complex 2(2+) turns into a ternary complex 3(2+) through host-stabilized charge-transfer complex formation with the alkyl chain extended into the solution outside the host cavity. The ternary complex behaves like a molecular machine reminiscent of a pop-up toy, as it shows reversible folding/unfolding motion of the alkyl chain of the guest in response to a redox stimulus. For example, one-electron reduction of 3(2+) results in the rapid generation of the 2 + . complex, accompanied by a dramatic conformational change of the alkyl chain from an extended to a folded conformation, and the process can be reversed by oxidation.

  6. Probing the Vibrational Spectroscopy of the Deprotonated Thymine Radical by Photodetachment and State-Selective Autodetachment Photoelectron Spectroscopy via Dipole-Bound States

    Science.gov (United States)

    Huang, Dao-Ling; Zhu, Guo-Zhu; Wang, Lai-Sheng

    2016-06-01

    Deprotonated thymine can exist in two different forms, depending on which of its two N sites is deprotonated: N1[T-H]^- or N3[T-H]^-. Here we report a photodetachment study of the N1[T-H]^- isomer cooled in a cryogenic ion trap and the observation of an excited dipole-bound state. Eighteen vibrational levels of the dipole-bound state are observed, and its vibrational ground state is found to be 238 ± 5 wn below the detachment threshold of N1[T-H]^-. The electron affinity of the deprotonated thymine radical (N1[T-H]^.) is measured accruately to be 26 322 ± 5 wn (3.2635 ± 0.0006 eV). By tuning the detachment laser to the sixteen vibrational levels of the dipole-bound state that are above the detachment threshold, highly non-Franck-Condon resonant-enhanced photoelectron spectra are obtained due to state- and mode-selective vibrational autodetachment. Much richer vibrational information is obtained for the deprotonated thymine radical from the photodetachment and resonant-enhanced photoelectron spectroscopy. Eleven fundamental vibrational frequencies in the low-frequency regime are obtained for the N1[T-H]^. radical, including the two lowest-frequency internal rotational modes of the methyl group at 70 ± 8 wn and 92 ± 5 wn. D. L. Huang, H. T. Liu, C. G. Ning, G. Z. Zhu and L. S. Wang, Chem. Sci., 6, 3129-3138 (2015)

  7. Tracking the Interplay between Bound Peptide and the Lid Domain of DnaK, Using Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Yossi Tsfadia

    2013-06-01

    Full Text Available Hsp70 chaperones consist of two functional domains: the 44 kDa Nucleotide Binding Domain (NBD, that binds and hydrolyses ATP, and the 26 kDa Substrate Binding Domain (SBD, which binds unfolded proteins and reactivates them, utilizing energy obtained from nucleotide hydrolysis. The structure of the SBD of the bacterial Hsp70, DnaK, consists of two sub-domains: A β-sandwich part containing the hydrophobic cavity to which the hepta-peptide NRLLLTG (NR is bound, and a segment made of 5 α-helices, called the “lid” that caps the top of the β-sandwich domain. In the present study we used the Escherichia coli Hsp70, DnaK, as a model for Hsp70 proteins, focusing on its SBD domain, examining the changes in the lid conformation. We deliberately decoupled the NBD from the SBD, limiting the study to the structure of the SBD section, with an emphasis on the interaction between the charges of the peptide with the residues located in the lid. Molecular dynamics simulations of the complex revealed significant mobility within the lid structure; as the structure was released from the forces operating during the crystallization process, the two terminal helices established a contact with the positive charge at the tip of the peptide. This contact is manifested only in the presence of electrostatic attraction. The observed internal motions within the lid provide a molecular role for the function of this sub-domain during the reaction cycle of Hsp 70 chaperones.

  8. A method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kreuz, M. [ILL, 6 rue Jules Horowitz, Grenoble F-38042 (France); Nesvizhevsky, V.V., E-mail: nesvizhevsky@ill.f [ILL, 6 rue Jules Horowitz, Grenoble F-38042 (France); Schmidt-Wellenburg, P.; Soldner, T.; Thomas, M. [ILL, 6 rue Jules Horowitz, Grenoble F-38042 (France); Boerner, H.G. [ILL (France); Naraghi, F.; Pignol, G.; Protasov, K.V.; Rebreyend, D.; Vezzu, F. [LPSC/UJF-IN2P3-INPG, 53, rue des Martyrs, Grenoble F-38026 (France); Flaminio, R.; Michel, C.; Morgado, N.; Pinard, L. [LMA, 7 avenue Pierre de Coubertin, Villeurbanne F-69622 (France); Baessler, S. [Virginia University, 1101 Millmont Street, Charlottesville 22904 (United States); Gagarski, A.M.; Grigorieva, L.A. [PNPI, Orlova Roscha, Gatchina, Leningrad Reg. 188350 (Russian Federation); Kuzmina, T.M. [Khlopin Institute, 28 Vtoroi Murinsky Per., St. Peterburg 194021 (Russian Federation); Meyerovich, A.E. [University of Rhode Island, Kingston RI-02881 (United States)

    2009-12-11

    We present a method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer. The purpose of GRANIT is to improve the accuracy of measurement of the quantum states parameters by several orders of magnitude, taking advantage of long storage of ultracold neutrons at specular trajectories. The transitions could be excited using a periodic spatial variation of a magnetic field gradient. If the frequency of such a perturbation (in the frame of a moving neutron) coincides with a resonance frequency defined by the energy difference of two quantum states, the transition probability will sharply increase. The GRANIT experiment is motivated by searches for short-range interactions (in particular spin-dependent interactions), by studying the interaction of a quantum system with a gravitational field, by searches for extensions of the Standard model, by the unique possibility to check the equivalence principle for an object in a quantum state and by studying various quantum optics phenomena.

  9. Quasiparticle Scattering off Defects and Possible Bound States in Charge-Ordered YBa2 Cu3 Oy

    Science.gov (United States)

    Zhou, R.; Hirata, M.; Wu, T.; Vinograd, I.; Mayaffre, H.; Krämer, S.; Horvatić, M.; Berthier, C.; Reyes, A. P.; Kuhns, P. L.; Liang, R.; Hardy, W. N.; Bonn, D. A.; Julien, M.-H.

    2017-01-01

    We report the NMR observation of a skewed distribution of 17O Knight shifts when a magnetic field quenches superconductivity and induces long-range charge-density-wave (CDW) order in YBa2Cu3Oy . This distribution is explained by an inhomogeneous pattern of the local density of states N (EF) arising from quasiparticle scattering off, yet unidentified, defects in the CDW state. We argue that the effect is most likely related to the formation of quasiparticle bound states, as is known to occur, under specific circumstances, in some metals and superconductors (but not in the CDW state, in general, except for very few cases in 1D materials). These observations should provide insight into the microscopic nature of the CDW, especially regarding the reconstructed band structure and the sensitivity to disorder.

  10. Andreev reflection and bound state formation in a ballistic two-dimensional electron gas probed by a quantum point contact

    Science.gov (United States)

    Irie, Hiroshi; Todt, Clemens; Kumada, Norio; Harada, Yuichi; Sugiyama, Hiroki; Akazaki, Tatsushi; Muraki, Koji

    2016-10-01

    We study coherent transport and bound state formation of Bogoliubov quasiparticles in a high-mobility I n0.75G a0.25As two-dimensional electron gas (2DEG) coupled to a superconducting Nb electrode by means of a quantum point contact (QPC) as a tunable single-mode probe. Below the superconducting critical temperature of Nb, the QPC shows a single-channel conductance greater than the conductance quantum 2 e2/h at zero bias, which indicates the presence of Andreev-reflected quasiparticles, time-reversed states of the injected electron, returning back through the QPC. The marked sensitivity of the conductance enhancement to voltage bias and perpendicular magnetic field suggests a mechanism analogous to reflectionless tunneling—a hallmark of phase-coherent transport, with the boundary of the 2DEG cavity playing the role of scatterers. When the QPC transmission is reduced to the tunneling regime, the differential conductance vs bias voltage probes the single-particle density of states in the proximity area. Measured conductance spectra show a double peak within the superconducting gap of Nb, demonstrating the formation of Andreev bound states in the 2DEG. Both of these results, obtained in the open and closed geometries, underpin the coherent nature of quasiparticles, i.e., phase-coherent Andreev reflection at the InGaAs/Nb interface and coherent propagation in the ballistic 2DEG.

  11. Spin-orbit force, recoil corrections, and possible BB¯* and DD¯* molecular states

    Science.gov (United States)

    Zhao, Lu; Ma, Li; Zhu, Shi-Lin

    2014-05-01

    In the framework of the one-boson exchange model, we have calculated the effective potentials between two heavy mesons BB¯* and DD¯* from the t- and u-channel π-, η-, ρ-, ω-, and σ-meson exchanges with four kinds of quantum number: I=0, JPC=1++; I =0, JPC=1+-; I =1, JPC=1++; I =1, JPC=1+-. We keep the recoil corrections to the BB¯* and DD¯* systems up to O(1/M2). The spin-orbit force appears at O(/1M), which turns out to be important for the very loosely bound molecular states. Our numerical results show that the momentum-related corrections are unfavorable to the formation of the molecular states in the I =0, JPC=1++ and I =1, JPC=1+- channels in the DD¯* system.

  12. Modelling excited states of weakly bound complexes with density functional theory.

    Science.gov (United States)

    Briggs, Edward A; Besley, Nicholas A

    2014-07-28

    The binding within the ethene-argon and formaldehyde-methane complexes in the ground and electronically excited states is studied with equation of motion coupled cluster theory (EOM-CCSD), second-order Møller-Plesset perturbation theory (MP2) and density functional theory with dispersion corrections (DFT-D). Electronically excited states are studied within MP2 and Kohn-Sham DFT formalisms by exploiting a procedure called the maximum overlap method that allows convergence of the relevant self-consistent field equations to higher energy (or excited state) solutions. Potential energy curves computed using MP2 are in good agreement with the EOM-CCSD calculations for both the valence and Rydberg excited states studied. For the DFT-D approach, B3LYP-D3/aug-cc-pVTZ calculations are found to be in agreement with EOM-CCSD for the ground and valence excited states. However, for the π3s Rydberg state of ethene-argon and the n3s Rydberg state of formaldehyde-methane significant deviation is observed, and this disagreement with EOM-CCSD is present for a variety of DFT-D based approaches. Variation of the parameters within the D2 dispersion correction results in closer agreement with EOM-CCSD for the Rydberg states but demonstrates that a different parameterisation from the ground state is required for these states. This indicates that time-dependent density functional theory calculations based upon a DFT-D reference may be satisfactory for excitations to valence states, but will potentially be inaccurate for excitations to Rydberg states, or more generally states where the nature of the electron density is significantly different from the ground state.

  13. {sup 12}C(0{sub 2}{sup +})+α molecular states in a microscopic four α model

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, M., E-mail: mdufour@iphc.cnrs.fr [IPHC Bat27, IN2P3–CNRS/Université Louis Pasteur BP28, F-67037 Strasbourg Cedex 2 (France); Descouvemont, P., E-mail: pdesc@ulb.ac.be [Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium)

    2014-07-15

    The {sup 16}O nucleus is investigated within a {sup 12}C+α four α multicluster model. The generator coordinate method combined with the microscopic R-matrix method is used to determine bound and resonant states. The {sup 12}C nucleus is described by 3 α clusters located at the apexes of isosceles triangles. We optimize the generator coordinates to get a reasonable description of the 0{sub 2}{sup +}–0{sub 1}{sup +} energy gap, where the 0{sub 2}{sup +} is the so-called Hoyle state, considered as a 3 α state. Our calculations mainly focus on resonances located near the {sup 12}C(0{sub 2}{sup +})+α threshold. We emphasize the difficulty to interpret broad resonant states and we show that bound state approximation methods are not well adapted in the context of our study. An R-matrix analysis suggests the existence of 0{sup +}, 2{sup +} and 4{sup +} molecular states which present a significant {sup 12}C(0{sub 2}{sup +})+α structure, and which may form a rotational band.

  14. WKB formalism and a lower limit for the energy eigenstates of bound states for some potentials

    CERN Document Server

    Barragan-Gil, L F; Barragan-Gil, Luis F.; Camacho, Abel

    2007-01-01

    In the present work the conditions appearing in the WKB approximation formalism of quantum mechanics are analyzed. It is shown that, in general, a careful definition of an approximation method requires the introduction of two length parameters, one of them always considered in the text books on quantum mechanics, whereas the second one is usually neglected. Afterwards we define a particular family of potentials and prove, resorting to the aforementioned length parameters, that we may find an energy which is a lower bound to the ground energy of the system. The idea is applied to the case of a harmonic oscillator and also to a particle freely falling in a homogeneous gravitational field, and in both cases the consistency of our method is corroborated. This approach, together with the Rayleigh--Ritz formalism, allows us to define an energy interval in which the ground energy of any potential, belonging to our family, must lie.

  15. Search for the He-{\\eta} bound states with the WASA-at-COSY facility

    CERN Document Server

    Skurzok, M; Moskal, P

    2012-01-01

    The eta-mesic nuclei in which the {\\eta} meson is bound with nucleus via strong interaction was postulated already in 1986, however till now no experiment confirmed empirically its existence. The discovery of this new kind of an exotic nuclear matter would be very important for better understanding of the {\\eta} meson structure and its interaction with nucleons. The search for {\\eta}-mesic helium is carried out with high statistic and high acceptance with the WASA-at-COSY detection setup in the Research Center Juelich. The search is conducted via the measurement of the excitation function for the chosen decay channels of the 4He-{\\eta} system. Till now two reactions dd --> (4He-{\\eta})_bs --> 3Hep\\pi- and dd --> (4He-{\\eta})_bs --> 3 Hen{\\pi}0 were measured with the beam momentum ramped around the eta production threshold. This report includes the description of experimental method and status of the analysis.

  16. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED

    Science.gov (United States)

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-01

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  17. Theoretical investigation of potential energy surface and bound states for the van der Waals complex Ar–BrCl dimer

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Rui [School of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou (China); Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan (China); Li, Song, E-mail: lsong@yangtzeu.edu.cn [School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou (China); Chen, Shan-Jun; Chen, Yan [School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou (China); Zheng, Li-Min [Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan (China)

    2015-09-08

    Highlights: • A two-dimensional potential for Ar–BrCl is constructed at the CCSD(T) level. • The PES is characterized by three minima and two saddle points between them. • Bound state calculations were carried out for the complex. - Abstract: The intermolecular potential energy surface (PES) of the ground electronic state for the Ar–BrCl dimer is constructed at the CCSD(T) level with the aug-cc-pVQZ basis set and mid-bond functions. The PES is characterized by three minima and two saddle points. The global minimum corresponding to a collinear Ar–BrCl configuration, which has been observed experimentally, is located at R = 4.10 Å and θ = 2.5° with a well depth of −285.207 cm{sup −1}. A nearly T-shaped structure and an anti-linear Ar–ClBr geometry is also predicted. The bound state calculations are preformed to study intermolecular vibrational modes, rotational levels and average structures for the complex. Our transition frequencies, spectroscopic constants and average structures for all isotopomers of the collinear isomer agree well with experimental data. We have also provided pure rotational transitional frequencies for both nearly T-shaped and anti-linear isomers. These results are significant for further experimental investigations of the Ar–BrCl dimer.

  18. Heavy Fermion Bound States for Diphoton Excess at 750GeV $\\sim$ Collider and Cosmological Constraints $\\sim$

    CERN Document Server

    Han, Chengcheng; Matsumoto, Shigeki; Nojiri, Mihoko M; Takeuchi, Michihisa

    2016-01-01

    A colored heavy particle with sufficiently small width may form non-relativistic bound states when they are produced at the large hadron collider\\,(LHC), and they can annihilate into a diphoton final state. The invariant mass of the diphoton would be around twice of the colored particle mass. In this paper, we study if such bound state can be responsible for the 750 GeV diphoton excess reported by ATLAS and CMS. We found that the best-fit signal cross section is obtained for the SU(2)$_L$ singlet colored fermion $X$ with $Y_X=4/3$. Having such an exotic hypercharge, the particle is expected to decay through some higher dimensional operators, consistent with the small width assumption. The decay of $X$ may involve a stable particle $\\chi$, if both $X$ and $\\chi$ are odd under some conserved $Z_2$ symmetry. In that case, the particle $X$ suffers from the constraints of jets + missing $E_T$ searches by ATLAS and CMS at 8 TeV and 13 TeV. We found that such a scenario still survives if the mass difference between ...

  19. Spectroscopy of η′-nucleus bound states at GSI and FAIR — very preliminary results and future prospects —

    Energy Technology Data Exchange (ETDEWEB)

    Fujioka, H., E-mail: fujioka@scphys.kyoto-u.ac.jp [Kyoto University (Japan); Ayyad, Y. [Osaka University, RCNP (Japan); Benlliure, J. [Universidade de Santiago de Compostela (Spain); Brinkmann, K.-T.; Friedrich, S.; Geissel, H. [Universität Giessen (Germany); Gellanki, J. [University of Groningen, KVI-CART (Netherlands); Guo, C. [Beihang University (China); Gutz, E. [Universität Giessen (Germany); Haettner, E. [GSI (Germany); Harakeh, M. N. [University of Groningen, KVI-CART (Netherlands); Hayano, R. S. [The University of Tokyo (Japan); Higashi, Y.; Hirenzaki, S. [Nara Women’s University (Japan); Hornung, C. [Universität Giessen (Germany); Igarashi, Y. [KEK (Japan); Ikeno, N. [Tohoku University (Japan); Itahashi, K.; Iwasaki, M. [Nishina Center, RIKEN (Japan); Jido, D. [Tokyo Metropolitan University (Japan); Collaboration: for the Super-FRS Collaboration; and others

    2015-08-15

    The possible existence of η′-nucleus bound states has been put forward through theoretical and experimental studies. It is strongly related to the η′ mass at finite density, which is expected to be reduced because of the interplay between the U{sub A}(1) anomaly and partial restoration of chiral symmetry. The investigation of the C(p,d) reaction at GSI and FAIR, as well as an overview of the experimental program at GSI and future plans at FAIR are discussed.

  20. Quasi-bound states of massive scalar fields in the Kerr black-hole spacetime: Beyond the hydrogenic approximation

    Directory of Open Access Journals (Sweden)

    Shahar Hod

    2015-10-01

    Full Text Available Rotating black holes can support quasi-stationary (unstable bound-state resonances of massive scalar fields in their exterior regions. These spatially regular scalar configurations are characterized by instability timescales which are much longer than the timescale M set by the geometric size (mass of the central black hole. It is well-known that, in the small-mass limit α≡Mμ≪1 (here μ is the mass of the scalar field, these quasi-stationary scalar resonances are characterized by the familiar hydrogenic oscillation spectrum: ωR/μ=1−α2/2n¯02, where the integer n¯0(l,n;α→0=l+n+1 is the principal quantum number of the bound-state resonance (here the integers l=1,2,3,… and n=0,1,2,… are the spheroidal harmonic index and the resonance parameter of the field mode, respectively. As it depends only on the principal resonance parameter n¯0, this small-mass (α≪1 hydrogenic spectrum is obviously degenerate. In this paper we go beyond the small-mass approximation and analyze the quasi-stationary bound-state resonances of massive scalar fields in rapidly-spinning Kerr black-hole spacetimes in the regime α=O(1. In particular, we derive the non-hydrogenic (and, in general, non-degenerate resonance oscillation spectrum ωR/μ=1−(α/n¯2, where n¯(l,n;α=(l+1/22−2mα+2α2+1/2+n is the generalized principal quantum number of the quasi-stationary resonances. This analytically derived formula for the characteristic oscillation frequencies of the composed black-hole-massive-scalar-field system is shown to agree with direct numerical computations of the quasi-stationary bound-state resonances.