Covalently bound molecular states in beryllium and carbon isotopes
International Nuclear Information System (INIS)
Wolfram von, Oertzen; Hans-Gerhard, Bohlen; Wolfram von, Oertzen
2003-01-01
Nuclear clustering in N=Z nuclei has been studied since many decades. States close to the decay thresholds, as described by the Ikeda diagram, are of particular interest. Recent studies in loosely bound systems, as observed with neutron-rich nuclei has revived the interest in cluster structures in nuclei, with additional valence neutrons, which give rise to pronounced covalent molecular structures. The Beryllium isotopes represent the first example of such unique states in nuclear physics with extreme deformations. In the deformed shell model these are referred to as super- and hyper-deformation. These states can be described explicitly by molecular concepts, with neutrons in covalent binding orbits. Examples of recent experiments performed at the HMI-Berlin demonstrating the molecular structure of the rotational bands in Beryllium isotopes are presented. Further work on chain states (nuclear polymers) in the carbon isotopes is in progress, these are the first examples of deformed structures in nuclei with an axis ratio of 3:1. A threshold diagram with clusters bound via neutrons in covalent molecular configurations can be established, which can serve as a guideline for future work. (authors)
Bound states and molecular structure of systems with hyperons
International Nuclear Information System (INIS)
Akaishi, Y.
1992-01-01
Microscopic calculations are done for Σ-hypernuclear few-body systems by a method named ATMS. Among two- to five-body systems, only the Σ 4 He(0 + ) and Σ 4 H(0 + ) hypernuclei are expected to be bound: The binding energy and the width of the former are calculated to be 3.7 ∼ 4.6 MeV and 4.5 ∼ 7.9 MeV, respectively. The observation of Σ 4 He at KEK is in good agreement with the above prediction. The nucleus-Σ potential has a strong Lane term and a repulsive bump at short distance. The Lane term makes the system bound and the bump suppresses the ΣN → ΛN conversion. X-ray measurement of level shifts in the 4 He-Σ - , 3 He-Σ - and 3 H-Σ - atoms can provide another information on the Lane term. In 208 Pb, there may exist a peculiar state, Coulomb-assisted (atomnucleus) hybrid state, where Σ - is trapped in the surface region by the strong interaction with the aid of the inner centrifugal repulsion and the outer Coulomb attraction. An analysis is given for new data of Ξ -.12 C atomic or nuclear systems from the emulsion-counter experiment at KEK. The double-Λ hypernucleus formation rate is calculated for a stopped Ξ - on 4 He. A high branching ratio of 37% is obtained for the ΛΛ 4 H formation from a Ξ -.4 He atom. The detection of about 2.3 MeV neutron is proposed to search for lightest double-Λ hypernucleus ΛΛ 4 H. (author)
International Nuclear Information System (INIS)
Jackson, J.D.
1994-01-01
The Born-Oppenheimer approximation is used as an exploratory tool to study bound states, quasibound states, and scattering resonances in muon (μ)--hydrogen (x)--hydrogen (y) molecular ions. Our purpose is to comment on the existence and nature of the narrow states reported in three-body calculations, for L=0 and 1, at approximately 55 eV above threshold and the family of states in the same partial waves reported about 1.9 keV above threshold. We first discuss the motivation for study of excited states beyond the well-known and well-studied bound states. Then we reproduce the energies and other properties of these well-known states to show that, despite the relatively large muon mass, the Born-Oppenheimer approximation gives a good, semiquantitative description containing all the essential physics. Born-Oppenheimer calculations of the s- and p-wave scattering of d-(dμ), d-(tμ), and t-(tμ) are compared with the accurate three-body results, again with general success. The places of disagreement are understood in terms of the differences in location of slightly bound (or unbound) states in the Born-Oppenheimer approximation compared to the accurate three-body calculations
International Nuclear Information System (INIS)
Inoue, J.; Ohtaka, K.
2004-01-01
We study virtual bound states in photonics, which are a vectorial extension of electron virtual bound states. The condition for these states is derived. It is found that the Mie resonant state which satisfies the condition that the size parameter is less than the angular momentum should be interpreted as a photon virtual bound state. In order to confirm the validity of the concept, we compare the photonic density of states, the width of which represents the lifetime of the photon virtual bound states, with numerical results
Efimov states and bound state properties in selected nuclear and molecular three-body systems
International Nuclear Information System (INIS)
Huber, H.S.
1978-01-01
The search is made among selected three-body systems for possible Efimov state behavior. In order to carry out this analysis of phenomenological potentials a new mathematical approach, the FCM (Faddeev-coordinate-momentum) technique, is developed. The analysis then proceeds through the framework of the Faddeev equations by employing the UPE (unitary pole expansion) to reduce these equations to numerically feasible form. The systems chosen for analysis are the 4 He trimer and the three-α model of 12 C. Efimov states are not found in 12 C, thus answering speculation among nuclear theorists. The 4 He trimer, on the other hand, manifests Efimov states for each potential considered and the characteristics of these states are extensively analyzed. Since Efimov states are predicted by all of the phenomenological potentials considered, these states would seem to be a realistically fundamental property of the 4 He trimer system
International Nuclear Information System (INIS)
Orzalesi, C.A.
1979-01-01
In relativistic quantum theory, bound states generate forces in the crossed channel; such forces can affect the binding and self-consistent solutions should be sought for the bound-state problem. The author investigates how self-consistency can be achieved by successive approximations, in a simple scalar model and with successive relativistic eikonal approximations (EAs). Within the generalized ladder approximation, some exact properties of the resulting ''first generation'' bound states are discussed. The binding energies in this approximation are rather small even for rather large values of the primary coupling constant. The coupling of the constituent particles to the first-generation reggeon is determined by a suitable EA and a new generalized ladder amplitude is constructed with rungs given either by the primary gluons or by the first-generation reggeons. The resulting new (second-generation) bound states are found in a reggeized EA. The size of the corrections to the binding energies due to the rebinding effects is surprisingly large. The procedure is then iterated, so as to find - again in an EA - the third-generation bound states. The procedure is found to be self-consistent already at this stage: the third-generation bound states coincide with those of second generation, and no further rebinding takes place in the higher iterations of the approximation method. Features - good and bad - of the model are discussed, as well as the possible relevance of rebinding mechanisms in hadron dynamics. (author)
International Nuclear Information System (INIS)
Ritchie, Burke
2006-01-01
The Hamiltonian for Dirac's second-order equation depends nonlinearly on the potential V and the energy E. For this reason the magnetic contribution to the Hamiltonian for s-waves, which has a short range, is attractive for a repulsive Coulomb potential (V>0) and repulsive for an attractive Coulomb potential (V 2 . Usually solutions are found in the regime E=mc 2 +ε , where except for high Z, ε 2 . Here it is shown that for V>0 the attractive magnetic term and the linear repulsive term combine to support a bound state near E=0.5mc 2 corresponding to a binding energy E b =-ε =0.5mc 2
International Nuclear Information System (INIS)
Li Rui; Zhang Jiaxing; Hou Shimin; Qian Zekan; Shen Ziyong; Zhao Xingyu; Xue Zengquan
2007-01-01
We discuss two problems in the conventional approach for studying charge transport in molecular electronic devices that is based on the non-equilibrium Green's function formalism and density functional theory, i.e., the bound states and the numerical integration of the non-equilibrium density matrix. A scheme of filling the bound states in the bias window and a method of patching the non-equilibrium integration are proposed, both of which are referred to as the non-equilibrium correction. The discussion is illustrated by means of calculations on a model system consisting of a 4,4 bipyridine molecule connected to two semi-infinite gold monatomic chains
Schulz, Marc Daniel; Dusuel, Sébastien; Vidal, Julien
2016-11-01
We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.
International Nuclear Information System (INIS)
Zouzou, S.
1986-01-01
In the framework of simple non-relativistic potential models, we examine the system consisting of two quarks and two antiquarks with equal or unequal masses. We search for possible bound states below the threshold for the spontaneous dissociation into two mesons. We solve the four body problem by empirical or systematic variational methods and we include the virtual meson-meson components of the wave function. With standard two-body potentials, there is no proliferation of multiquarks. With unequal quark masses, we obtain however exotic (anti Qanti Qqq) bound states with a baryonic antidiquark-quark-quark structure very analogous to the heavy flavoured (Q'qq) baryons. (orig.)
Bound states of 'dressed' particles
International Nuclear Information System (INIS)
Shirokov, M.I.
1994-01-01
A new approach to the problem of bound states in relativistic quantum field theories is suggested. It uses the creation - destruction operators of 'dresses' particles which have been granted by Faddeev's (1963) 'dressing' formalism. Peculiarities of the proposed approach as compared to the known ones are discussed. 8 refs. (author)
Relativistic bound state wave functions
International Nuclear Information System (INIS)
Micu, L.
2005-01-01
A particular method of writing the bound state wave functions in relativistic form is applied to the solutions of the Dirac equation with confining potentials in order to obtain a relativistic description of a quark antiquark bound system representing a given meson. Concerning the role of the effective constituent in the present approach we first observe that without this additional constituent we couldn't expand the bound state wave function in terms of products of free states. Indeed, we notice that if the wave function depends on the relative coordinates only, all the expansion coefficients would be infinite. Secondly we remark that the effective constituent enabled us to give a Lorentz covariant meaning to the potential energy of the bound system which is now seen as the 4th component of a 4-momentum. On the other side, by relating the effective constituent to the quantum fluctuations of the background field which generate the binding, we provided a justification for the existence of some spatial degrees of freedom accompanying the interaction potential. These ones, which are quite unusual in quantum mechanics, in our model are the natural consequence of the the independence of the quarks and can be seen as the effect of the imperfect cancellation of the vector momenta during the quantum fluctuations. Related with all these we remark that the adequate representation for the relativistic description of a bound system is the momentum representation, because of the transparent and easy way of writing the conservation laws and the transformation properties of the wave functions. The only condition to be fulfilled is to find a suitable way to take into account the potential energy of the bound system. A particular feature of the present approach is that the confining forces are due to a kind of glue where both quarks are embedded. This recalls other bound state models where the wave function is factorized in terms of constituent wave functions and the confinement is
Binding energies of two deltas bound states
International Nuclear Information System (INIS)
Sato, Hiroshi; Saito, Koichi.
1982-06-01
Bound states of the two-deltas system are investigated by employing the realistic one boson exchange potential. It is found that there exist many bound states in each isospin channel and also found that the tensor interaction plays important role in producing these bound states. Relationship between these bound states and dibaryon resonances is discussed. (J.P.N.)
Spectrum of gluino bound states
International Nuclear Information System (INIS)
Chanowitz, M.; Sharpe, S.; California Univ., Berkeley
1983-01-01
Using the bag model to first order in αsub(s) we find that if light gluinos exist they will appear as constituents of electrically charged bound states which are stable against strong interaction decay. We review the present experimental constraints and conclude that light, long-lived charged hadrons containing gluinos might exist with lifetimes between 2x10 - 8 and 10 - 14 s. (orig.)
Instanton bound states in ABJM theory
Energy Technology Data Exchange (ETDEWEB)
Hatsuda, Yasuyuki [DESY Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst. and Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics
2013-06-15
The partition function of the ABJM theory receives non-perturbative corrections due to instanton effects. We study these non-perturbative corrections, including bound states of worldsheet instantons and membrane instantons, in the Fermi-gas approach. We require that the total non-perturbative correction should be always finite for arbitrary Chern-Simons level. This finiteness is realized quite non-trivially because each bound state contribution naively diverges at some levels. The poles of each contribution should be canceled out in total. We use this pole cancellation mechanism to find unknown bound state corrections from known ones. We conjecture a general expression of the bound state contribution. Summing up all the bound state contributions, we find that the effect of bound states is simply incorporated into the worldsheet instanton correction by a redefinition of the chemical potential in the Fermi-gas system. Analytic expressions of the 3- and 4-membrane instanton corrections are also proposed.
Quasi-bound states in continuum
International Nuclear Information System (INIS)
Nakamura, Hiroaki; Hatano, Naomichi; Garmon, Sterling; Petrosky, Tomio
2007-08-01
We report the prediction of quasi-bound states (resonant states with very long lifetimes) that occur in the eigenvalue continuum of propagating states for a wide region of parameter space. These quasi-bound states are generated in a quantum wire with two channels and an adatom, when the energy bands of the two channels overlap. A would-be bound state that lays just below the upper energy band is slightly destabilized by the lower energy band and thereby becomes a resonant state with a very long lifetime (a second QBIC lays above the lower energy band). (author)
Kaushik, Aman Chandra; Sahi, Shakti
2018-05-01
G protein coupled receptors (GPCRs) are source machinery in signal transduction pathways and being one of the major therapeutic targets play a significant in drug discovery. GPR142, an orphan GPCR, has been implicated in the regulation of insulin, thereby having a crucial role in Type II diabetes management. Deciphering of the structures of orphan, GPCRs (O-GPCRs) offer better prospects for advancements in research in ion translocation and transduction of extracellular signals. As the crystallographic structure of GPR142 is not available in PDB, therefore, threading and ab initio-based approaches were used for 3D modeling of GPR142. Molecular dynamic simulations (900 ns) were performed on the 3D model of GPR142 and complexes of GPR142 with top five hits, obtained through virtual screening, embedded in lipid bilayer with aqueous system using OPLS force field. Compound 1, 3, and 4 may act as scaffolds for designing potential lead agonists for GPR142. The finding of GPR142 MD simulation study provides more comprehensive representation of the functional properties. The concern for Type II diabetes is increasing worldwide and successful treatment of this disease demands novel drugs with better efficacy.
The bound state problem and quark confinement
International Nuclear Information System (INIS)
Chaichian, M.; Demichev, A.P.; Nelipa, N.F.
1980-01-01
A quantum field-theoretic model in which quark is confined is considered. System of equations for the Green functions of colour singlet and octet bound states is obtained. The method is based on the nonperturbative Schwinger-Dyson equations with the use of Slavnov-Taylor identities. It is shown that in the framework of the model if there exist singlet, then also exist octet bound states of the quark-antiquark system. Thus in general, confinement of free quarks does not mean absence of their coloured bound states. (author)
Frolov, Alexei M.
2018-03-01
The universal variational expansion for the non-relativistic three-body systems is explicitly constructed. This universal expansion can be used to perform highly accurate numerical computations of the bound state spectra in various three-body systems, including Coulomb three-body systems with arbitrary particle masses and electric charges. Our main interest is related to the adiabatic three-body systems which contain one bound electron and two heavy nuclei of hydrogen isotopes: the protium p, deuterium d and tritium t. We also consider the analogous (model) hydrogen ion ∞H2+ with the two infinitely heavy nuclei.
Bound States in the Mirror TBA
Arutyunov, G.E.; Frolov, S.; van Tongeren, S.J.
2012-01-01
The spectrum of the light-cone AdS_5 \\times S^5 superstring contains states composed of particles with complex momenta including in particular those which turn into bound states in the decompactification limit. We propose the mirror TBA description for these states. We focus on a three-particle
Yukawa Bound States and Their LHC Phenomenology
Directory of Open Access Journals (Sweden)
Enkhbat Tsedenbaljir
2013-01-01
Full Text Available We present the current status on the possible bound states of extra generation quarks. These include phenomenology and search strategy at the LHC. If chiral fourth-generation quarks do exist their strong Yukawa couplings, implied by current experimental lower bound on their masses, may lead to formation of bound states. Due to nearly degenerate 4G masses suggested by Precision Electroweak Test one can employ “heavy isospin” symmetry to classify possible spectrum. Among these states, the color-octet isosinglet vector ω 8 is the easiest to be produced at the LHC. The discovery potential and corresponding decay channels are covered in this paper. With possible light Higgs at ~125 GeV two-Higgs doublet version is briefly discussed.
Cosmological implications of Dark Matter bound states
Energy Technology Data Exchange (ETDEWEB)
Mitridate, Andrea [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa (Italy); Redi, Michele; Smirnov, Juri [INFN, Sezione di Firenze, and Dipartimento di Fisica e Astronomia, Università di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Strumia, Alessandro, E-mail: andrea.mitridate@gmail.com, E-mail: michele.redi@fi.infn.it, E-mail: juri.smirnov@mpi-hd.mpg.de, E-mail: alessandro.strumia@cern.ch [Dipartimento di Fisica dell' Università di Pisa and INFN, Pisa (Italy)
2017-05-01
We present generic formulæ for computing how Sommerfeld corrections together with bound-state formation affects the thermal abundance of Dark Matter with non-abelian gauge interactions. We consider DM as a fermion 3plet (wino) or 5plet under SU(2) {sub L} . In the latter case bound states raise to 11.5 TeV the DM mass required to reproduce the cosmological DM abundance and give indirect detection signals such as (for this mass) a dominant γ-line around 70 GeV. Furthermore, we consider DM co-annihilating with a colored particle, such as a squark or a gluino, finding that bound state effects are especially relevant in the latter case.
A note on BPS vortex bound states
Directory of Open Access Journals (Sweden)
A. Alonso-Izquierdo
2016-02-01
Full Text Available In this note we investigate bound states, where scalar and vector bosons are trapped by BPS vortices in the Abelian Higgs model with a critical ratio of the couplings. A class of internal modes of fluctuation around cylindrically symmetric BPS vortices is characterized mathematically, analyzing the spectrum of the second-order fluctuation operator when the Higgs and vector boson masses are equal. A few of these bound states with low values of quantized magnetic flux are described fully, and their main properties are discussed.
A note on BPS vortex bound states
Energy Technology Data Exchange (ETDEWEB)
Alonso-Izquierdo, A., E-mail: alonsoiz@usal.es [Departamento de Matematica Aplicada, Universidad de Salamanca (Spain); Garcia Fuertes, W., E-mail: wifredo@uniovi.es [Departamento de Fisica, Universidad de Oviedo (Spain); Mateos Guilarte, J., E-mail: guilarte@usal.es [Departamento de Fisica Fundamental, Universidad de Salamanca (Spain)
2016-02-10
In this note we investigate bound states, where scalar and vector bosons are trapped by BPS vortices in the Abelian Higgs model with a critical ratio of the couplings. A class of internal modes of fluctuation around cylindrically symmetric BPS vortices is characterized mathematically, analyzing the spectrum of the second-order fluctuation operator when the Higgs and vector boson masses are equal. A few of these bound states with low values of quantized magnetic flux are described fully, and their main properties are discussed.
Scattering theory methods for bound state problems
International Nuclear Information System (INIS)
Raphael, R.B.; Tobocman, W.
1978-01-01
For the analysis of the properties of a bound state system one may use in place of the Schroedinger equation the Lippmann-Schwinger (LS) equation for the wave function or the LS equation for the reactance operator. Use of the LS equation for the reactance operator constrains the solution to have correct asymptotic behaviour, so this approach would appear to be desirable when the bound state wave function is to be used to calculate particle transfer form factors. The Schroedinger equation based N-level analysis of the s-wave bound states of a square well is compared to the ones based on the LS equation. It is found that the LS equation methods work better than the Schroedinger equation method. The method that uses the LS equation for the wave function gives the best results for the wave functions while the method that uses the LS equation for the reactance operator gives the best results for the binding energies. The accuracy of the reactance operator based method is remarkably insensitive to changes in the oscillator constant used for the harmonic oscillator function basis set. It is also remarkably insensitive to the number of nodes in the bound state wave function. (Auth.)
Bound states in curved quantum waveguides
International Nuclear Information System (INIS)
Exner, P.; Seba, P.
1987-01-01
We study free quantum particle living on a curved planar strip Ω of a fixed width d with Dirichlet boundary conditions. It can serve as a model for electrons in thin films on a cylindrical-type substrate, or in a curved quantum wire. Assuming that the boundary of Ω is infinitely smooth and its curvature decays fast enough at infinity, we prove that a bound state with energy below the first transversal mode exists for all sufficiently small d. A lower bound on the critical width is obtained using the Birman-Schwinger technique. (orig.)
On the basis of molecular orbitals for relativistic bound systems of many bodies
International Nuclear Information System (INIS)
Cook, A.H.
1987-09-01
The quasi-relativistic Hamiltonian for bound states of many bodies proposed in previous articles (Cook, 1986, 1987a) is shown to provide a basis for the molecular orbital scheme of constructing wavefunctions and calculating eigenenergies. (author). 5 refs
Quarks as quasiparticles of bound states
International Nuclear Information System (INIS)
Tyapkin, A.A.
1977-01-01
Interpretation of quarks as strongly bound subsystems of the baryon structure, being in various states with integer the quantum numbers Q and B, is considered. Three original quark states, distinguished by Q, B, and J, are unambiguously determined from the condition that the quarks have the corresponding fractional quantum numbers while the integer quantum numbers for the whole system are known. With this in view the new quantum number ''colour'' is interpreted as a quantity, specifying the appearance of the subsystems in various eigen-states. Basing on the generalized Sakata model, the self-consistency of change of the colour states in the three-quark system is explained
Bound states in weakly disordered spin ladders
Energy Technology Data Exchange (ETDEWEB)
Arlego, M. [Departamento de Fisica, Universidad Nacional de La Plata, CC 67 (1900) La Plata (Argentina)]. E-mail: arlego@venus.fisica.unlp.edu.ar; Brenig, W. [Institut fuer Theoretische Physik, Technische Universitaet Braunschweig (Germany); Cabra, D.C. [Laboratoire de Physique Theorique, Universite Louis Pasteur Strasbourg (France); Heidrich-Meisner, F. [Institut fuer Theoretische Physik, Technische Universitaet Braunschweig (Germany); Honecker, A. [Institut fuer Theoretische Physik, Technische Universitaet Braunschweig (Germany); Rossini, G. [Departamento de Fisica, Universidad Nacional de La Plata, CC 67 (1900) La Plata (Argentina)
2005-04-30
We study the appearance of bound states in the spin gap of spin-12 ladders induced by weak bond disorder. Starting from the strong-coupling limit, i.e., the limit of weakly coupled dimers, we perform a projection on the single-triplet subspace and derive the position of bound states for the single impurity problem of one modified coupling as well as for small impurity clusters. The case of a finite concentration of impurities is treated with the coherent-potential approximation (CPA) in the strong-coupling limit and compared with numerical results. Further, we analyze the details in the structure of the density of states and relate their origin to the influence of impurity clusters.
Closed form bound-state perturbation theory
Directory of Open Access Journals (Sweden)
Ollie J. Rose
1980-01-01
Full Text Available The perturbed Schrödinger eigenvalue problem for bound states is cast into integral form using Green's Functions. A systematic algorithm is developed and applied to the resulting equation giving rise to approximate solutions expressed as functions of the given perturbation parameter. As a by-product, convergence radii for the traditional Rayleigh-Schrödinger and Brillouin-Wigner perturbation theories emerge in a natural way.
New approach to calculate bound state eigenvalues
International Nuclear Information System (INIS)
Gerck, E.; Gallas, J.A.C.
1983-01-01
A method of solving the radial Schrodinger equation for bound states is discussed. The method is based on a new piecewise representation of the second derivative operator on a set of functions that obey the boundary conditions. This representation is trivially diagonalised and leads to closed form expressions of the type E sub(n)=E(ab+b+c/n+...) for the eigenvalues. Examples are given for the power-law and logarithmic potentials. (Author) [pt
Andreev bound states. Some quasiclassical reflections
International Nuclear Information System (INIS)
Lin, Y.; Leggett, A. J.
2014-01-01
We discuss a very simple and essentially exactly solvable model problem which illustrates some nice features of Andreev bound states, namely, the trapping of a single Bogoliubov quasiparticle in a neutral s-wave BCS superfluid by a wide and shallow Zeeman trap. In the quasiclassical limit, the ground state is a doublet with a splitting which is proportional to the exponentially small amplitude for “normal” reflection by the edges of the trap. We comment briefly on a prima facie paradox concerning the continuity equation and conjecture a resolution to it
Andreev bound states. Some quasiclassical reflections
Energy Technology Data Exchange (ETDEWEB)
Lin, Y., E-mail: yiriolin@illinois.edu; Leggett, A. J. [University of Illinois at Urhana-Champaign, Dept. of Physics (United States)
2014-12-15
We discuss a very simple and essentially exactly solvable model problem which illustrates some nice features of Andreev bound states, namely, the trapping of a single Bogoliubov quasiparticle in a neutral s-wave BCS superfluid by a wide and shallow Zeeman trap. In the quasiclassical limit, the ground state is a doublet with a splitting which is proportional to the exponentially small amplitude for “normal” reflection by the edges of the trap. We comment briefly on a prima facie paradox concerning the continuity equation and conjecture a resolution to it.
Unexpected strong attraction in the presence of continuum bound state
International Nuclear Information System (INIS)
Delfino, A.; Frederico, T.
1992-06-01
The result of few-particle ground-state calculation employing a two-particle non-local potential supporting a continuum bound state in addition to a negative-energy bound state has occasionally revealed unexpected large attraction in producing a very strongly bound ground state. In the presence of the continuum bound state the difference of phase shift between zero and infinite energies has an extra jump of φ as in the presence of an additional bound state. The wave function of the continuum bound state is identical with that of a strongly bound negative-energy state, which leads us to postulate a pseudo bound state in the two-particle system in order to explain the unexpected attraction. The role of the Pauli forbidden states is expected to be similar to these pseudo states. (author)
Surface-bound states in nanodiamonds
Han, Peng; Antonov, Denis; Wrachtrup, Jörg; Bester, Gabriel
2017-05-01
We show via ab initio calculations and an electrostatic model that the notoriously low, but positive, electron affinity of bulk diamond becomes negative for hydrogen passivated nanodiamonds and argue that this peculiar situation (type-II offset with a vacuum level at nearly midgap) and the three further conditions: (i) a surface dipole with positive charge on the outside layer, (ii) a spherical symmetry, and (iii) a dielectric mismatch at the surface, results in the emergence of a peculiar type of surface state localized just outside the nanodiamond. These states are referred to as "surface-bound states" and have consequently a strong environmental sensitivity. These type of states should exist in any nanostructure with negative electron affinity. We further quantify the band offsets of different type of nanostructures as well as the exciton binding energy and contrast the results with results for "conventional" silicon quantum dots.
International Nuclear Information System (INIS)
Oset, E.; Cabrera, D.; Li, Q.B.; Magas, V.K.; Vicente Vacas, M.J.
2005-01-01
We study the binding energy and the width of the Θ + in nuclei, associated to the KN and KπN components. The first one leads to negligible contributions while the second one leads to a sizeable attraction, enough to bind the Θ + in nuclei. Pauli blocking and binding effects on the KN decay reduce considerably the Θ + decay width in nuclei and medium effects associated to the KπN component also lead to a very small width, as a consequence of which one finds separation between the bound levels considerably larger than the width of the states
Fermionic bound states in distinct kinklike backgrounds
Energy Technology Data Exchange (ETDEWEB)
Bazeia, D. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil); Mohammadi, A. [Universidade Federal de Campina Grande, Departamento de Fisica, Caixa Postal 10071, Campina Grande, Paraiba (Brazil)
2017-04-15
This work deals with fermions in the background of distinct localized structures in the two-dimensional spacetime. Although the structures have a similar topological character, which is responsible for the appearance of fractionally charged excitations, we want to investigate how the geometric deformations that appear in the localized structures contribute to the change in the physical properties of the fermionic bound states. We investigate the two-kink and compact kinklike backgrounds, and we consider two distinct boson-fermion interactions, one motivated by supersymmetry and the other described by the standard Yukawa coupling. (orig.)
Kuusk, Silja; Sørlie, Morten; Väljamäe, Priit
2015-05-01
Processive enzymes are major components of the efficient enzyme systems that are responsible for the degradation of the recalcitrant polysaccharides cellulose and chitin. Despite intensive research, there is no consensus on which step is rate-limiting for these enzymes. Here, we performed a comparative study of two well characterized enzymes, the cellobiohydrolase Cel7A from Hypocrea jecorina and the chitinase ChiA from Serratia marcescens. Both enzymes were inhibited by their disaccharide product, namely chitobiose for ChiA and cellobiose for Cel7A. The products behaved as noncompetitive inhibitors according to studies using the (14)C-labeled crystalline polymeric substrates (14)C chitin nanowhiskers and (14)C-labeled bacterial microcrystalline cellulose for ChiA and Cel7A, respectively. The resulting observed Ki (obs) values were 0.45 ± 0.08 mm for ChiA and 0.17 ± 0.02 mm for Cel7A. However, in contrast to ChiA, the Ki (obs) of Cel7A was an order of magnitude higher than the true Ki value governed by the thermodynamic stability of the enzyme-inhibitor complex. Theoretical analysis of product inhibition suggested that the inhibition strength and pattern can be accounted for by assuming different rate-limiting steps for ChiA and Cel7A. Measuring the population of enzymes whose active site was occupied by a polymer chain revealed that Cel7A was bound predominantly via its active site. Conversely, the active-site-mediated binding of ChiA was slow, and most ChiA exhibited a free active site, even when the substrate concentration was saturating for the activity. Collectively, our data suggest that complexation with the polymer chain is rate-limiting for ChiA, whereas Cel7A is limited by dissociation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Entanglement negativity bounds for fermionic Gaussian states
Eisert, Jens; Eisler, Viktor; Zimborás, Zoltán
2018-04-01
The entanglement negativity is a versatile measure of entanglement that has numerous applications in quantum information and in condensed matter theory. It can not only efficiently be computed in the Hilbert space dimension, but for noninteracting bosonic systems, one can compute the negativity efficiently in the number of modes. However, such an efficient computation does not carry over to the fermionic realm, the ultimate reason for this being that the partial transpose of a fermionic Gaussian state is no longer Gaussian. To provide a remedy for this state of affairs, in this work, we introduce efficiently computable and rigorous upper and lower bounds to the negativity, making use of techniques of semidefinite programming, building upon the Lagrangian formulation of fermionic linear optics, and exploiting suitable products of Gaussian operators. We discuss examples in quantum many-body theory and hint at applications in the study of topological properties at finite temperature.
Systematic assignment of Feshbach resonances via an asymptotic bound state model
Goosen, M.; Kokkelmans, SJ.J.M.F.
2008-01-01
We present an Asymptotic Bound state Model (ABM), which is useful to predict Feshbach resonances. The model utilizes asymptotic properties of the interaction potentials to represent coupled molecular wavefunctions. The bound states of this system give rise to Feshbach resonances, localized at the
Models for light QCD bound states
International Nuclear Information System (INIS)
LaCourse, D.P.
1992-01-01
After a brief overview of Regge, tower, and heavy-quark experimental data, this thesis examines two massless wave equations relevant to quark bound states. We establish general conditions on the Lorentz scalar and Lorentz vector potentials which yield arbitrary leading Regge trajectories for the case of circular classical motion. A semi-classical approximation which includes radial motion reproduces remarkably well the exact solutions. Conditions for tower structure are examined, and found to be incompatible with conditions which give a Nambu stringlike Regge slope. The author then proposes a generalization of the usual potential model of quark bound states in which the confining flux tube is a dynamical object carrying both angular momentum and energy. The Q bar Q-string system with spinless quarks is quantized using an implicit operator technique and the resulting relativistic wave equation is solved. For heavy quarks the usual Schroedinger valence-quark model is recovered. The Regge slope with light quarks agree with the classical rotating-string result and is significantly larger and the effects of short-range forces are also considered. A relativistic generalization of the quantized flux tube model predicts the glueball ground state mass to be √3/α' ≅ 1.9 GeV where α' is the normal Regge slope. The groundstate as well as excited levels like considerably above the expectations of previous models and also above various proposed experimental candidates. The glueball Regge slope is only about three-eighths that for valence quark hadrons. A semi-classical calculation of the Regge slope is in good agreement with a numerically exact value
Hyperquarks and bosonic preon bound states
International Nuclear Information System (INIS)
Schmid, Michael L.; Buchmann, Alfons J.
2009-01-01
In a model in which leptons, quarks, and the recently introduced hyperquarks are built up from two fundamental spin-(1/2) preons, the standard model weak gauge bosons emerge as preon bound states. In addition, the model predicts a host of new composite gauge bosons, in particular, those responsible for hyperquark and proton decay. Their presence entails a left-right symmetric extension of the standard model weak interactions and a scheme for a partial and grand unification of nongravitational interactions based on, respectively, the effective gauge groups SU(6) P and SU(9) G . This leads to a prediction of the Weinberg angle at low energies in good agreement with experiment. Furthermore, using evolution equations for the effective coupling strengths, we calculate the partial and grand unification scales, the hyperquark mass scale, as well as the mass and decay rate of the lightest hyperhadron.
Crossover from bound to free states in plasmas
International Nuclear Information System (INIS)
Lankin, Alexander V; Norman, Genri E
2009-01-01
A self-consistent joint description of free and weakly bound electron states in strongly coupled plasmas is presented. The existence of two problems is emphasized. The first one is a well-known restriction of the number of atomic excited states. Another one is a description of the smooth crossover from bound pair electron-ion excited states to collective excitations of free electrons. The fluctuation approach is developed to study the spectrum domain intermediate between low-lying excited atoms and free electron continuous energy levels. The molecular dynamics method is applied to study the plasma model since the method is able to distinguish all kinds of fluctuations. The electron-ion interaction is described by the temperature-independent cut-off Coulomb potential. The diagnostics of pair electron-ion fluctuations is developed. The concept of pair fluctuations elucidates the smooth vanishing of atomic states near the ionization limit. The approach suggested removes the artificial break of the electron state density at the ionization limit: atomic state density divergent at the negative energy side and free electron state density starting from zero density at the positive energy side
Entropic Lower Bound for Distinguishability of Quantum States
Directory of Open Access Journals (Sweden)
Seungho Yang
2015-01-01
Full Text Available For a system randomly prepared in a number of quantum states, we present a lower bound for the distinguishability of the quantum states, that is, the success probability of determining the states in the form of entropy. When the states are all pure, acquiring the entropic lower bound requires only the density operator and the number of the possible states. This entropic bound shows a relation between the von Neumann entropy and the distinguishability.
Charged boson bound states in the kerr-newman metric
International Nuclear Information System (INIS)
Li Yuanjie; Zhang Duanming
1986-01-01
Charged boson bound states in Kerr-Newman metric are discussed. It is found that massless boson cannot be attracted by Kerr-Newman black hole to form bound states. For the massive boson, the condition of the nonbound states when 0 2 - Q 2 and both the condition and wave functions of the bound states when a = √M 2 - Q 2 are obtained. The energy mode of the bound states is single, E = (m√M 2 - Q 2 + eQM)/(2M 2 - Q 2 ). When Q = 0 or e = 0, the conclusion is in agreement with that of Zhang Shiwei and Su Rukeng
Bound entangled states violate a nonsymmetric local uncertainty relation
International Nuclear Information System (INIS)
Hofmann, Holger F.
2003-01-01
As a consequence of having a positive partial transpose, bound entangled states lack many of the properties otherwise associated with entanglement. It is therefore interesting to identify properties that distinguish bound entangled states from separable states. In this paper, it is shown that some bound entangled states violate a nonsymmetric class of local uncertainty relations [H. F. Hofmann and S. Takeuchi, Phys. Rev. A 68, 032103 (2003)]. This result indicates that the asymmetry of nonclassical correlations may be a characteristic feature of bound entanglement
International Nuclear Information System (INIS)
Yu, Yafei; Zhan, Mingsheng; Feng, Jian
2003-01-01
We compare remote quantum information concentration by a Greenberger-Horne-Zeilinger (GHZ) state with an unlockable bound entangled state. We find that in view of communication security the bound entangled state works better than the GHZ state
Dark-matter bound states from Feynman diagrams
Petraki, K.; Postma, M.; Wiechers, M.
2015-01-01
If dark matter couples directly to a light force mediator, then it may form bound states in the early universe and in the non-relativistic environment of haloes today. In this work, we establish a field-theoretic framework for the computation of bound-state formation cross-sections, de-excitation
Proximity effect tunneling into virtual bound state alloys
International Nuclear Information System (INIS)
Tang, I.M.; Roongkkeadsakoon, S.
1984-01-01
The effects of a narrow virtual bound state formed by transition metal impurities dissolved in the normal layer of a superconducting proximity effect sandwich are studied. Using standard renormalization techniques, we obtain the changes in the transition temperatures and the jumps in the specific heat at T/sub c/ as a function of the thickness of the normal layer, of the widths of the virtual bound states, and of the impurity concentrations. It is seen that narrow virtual bound states lead to decrease in the transition temperatures, while broad virtual bound states do not. It if further seen that the narrow virtual bound state causes the reduced specific heat jump at T/sub c/ to deviate from the BCS behavior expected of the pure sandwich
Recent advances in bound state quantum electrodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.; Lepage, G.P.
1977-06-01
Recent developments are reviewed in four areas of computational quantum electrodynamics: a new relativistic two-body formalism equal in rigor to the Bethe-Salpeter formalism but with strong calculational advantages is discussed; recent work on the computation of the decay rate of bound systems (positronium in particular) is presented; limits on possible composite structure of leptons are discussed; a new multidimensional integration program ('VEGAS') suitable for higher order calculations is presented
Two-phonon bound states in imperfect crystals
International Nuclear Information System (INIS)
Behera, S.N.; Samsur, Sk.
1980-01-01
The question of the occurrence of two-phonon bound states in imperfect crystals is investigated. It is shown that the anharmonicity mediated two-phonon bound state which is present in perfect crystals gets modified due to the presence of impurities. Moreover, the possibility of the occurrence of a purely impurity mediated two-phonon bound state is demonstrated. The bound state frequencies are calculated using the simple Einstein oscillator model for the host phonons. The two-phonon density of states for the imperfect crystal thus obtained has peaks at the combination and difference frequencies of two host phonons besides the peaks at the bound state frequencies. For a perfect crystal the theory predicts a single peak at the two-phonon bound state frequency in conformity with experimental observations and other theoretical calculations. Experimental data on the two-phonon infrared absorption and Raman scattering from mixed crystals of Gasub(1-c)Alsub(c)P and Gesub(1-c)Sisub(c) are analysed to provide evidence in support of impurity-mediated two-phonon bound states. The relevance of the zero frequency (difference spectrum) peak to the central peak, observed in structural phase transitions, is conjectured. (author)
Relativistic bound states: a mass formula for vector mesons
International Nuclear Information System (INIS)
Richard, J.L.; Sorba, P.
1975-07-01
In the framework of a relativistic description of two particles bound states, a mass formula for vector mesons considered as quark-antiquark systems bound by harmonic oscillator like forces is proposed. Results in good agreement with experimental values are obtained [fr
Effect of Bound Entanglement on the Convertibility of Pure States
International Nuclear Information System (INIS)
Ishizaka, Satoshi
2004-01-01
I show that bound entanglement strongly influences the quantum entanglement processing of pure states: If N distant parties share appropriate bound entangled states with positive partial transpose, all N-partite pure entangled states become inter-convertible by stochastic local operations and classical communication (SLOCC) at the single copy level. This implies that the Schmidt rank of a bipartite pure entangled state can be increased, and that two incomparable tripartite entanglement of the GHZ and W type can be inter-converted by the assistance of bound entanglement. Further, I propose the simplest experimental scheme for the demonstration of the corresponding bound-entanglement-assisted SLOCC. This scheme does not need quantum gates and is feasible for the current experimental technology of linear optics
Deeply bound pionic states and modifications of hadrons
International Nuclear Information System (INIS)
Hirenzaki, S.
2000-01-01
We have studied the structure and formation of mesic atoms and mesic nuclei theoretically. The latest results on the deeply bound pionic atoms, the kaonic atoms and the sigma states are reported. (author)
Exchange interaction in scattering on the bound state
International Nuclear Information System (INIS)
Arkhipov, A.A.; Savrin, V.I.
1975-01-01
In the framework of the one-time formulation of three-body problem in quantum field theory, the problem of scattering on the bound state is considered for the case when one of the incident particles is identical to one of the particles of the target. It is shown that due to the identical nature of these particles the exchange interaction takes place which can be connected with the mechanism of scattering on the bound state with the rearrangement
Improved Rosen's conditions on bound states of Schroedinger operators
International Nuclear Information System (INIS)
Exner, P.
1984-01-01
We derive a necessary condition on a Schroedinger operator H=-Δ+V on Lsup(2)(Rsup(d)), d>=3 to have a bound state below a given energy epsilon, and a lower bound to the ground-state energy of H. These conditions are expressed in terms of the potential V alone, and generalize the recent results of Rosen to the dimensions d>3 and to the potentials that are not necessarily rapidly decreasing. Some examples are given
Microscopic observation of magnon bound states and their dynamics.
Fukuhara, Takeshi; Schauß, Peter; Endres, Manuel; Hild, Sebastian; Cheneau, Marc; Bloch, Immanuel; Gross, Christian
2013-10-03
The existence of bound states of elementary spin waves (magnons) in one-dimensional quantum magnets was predicted almost 80 years ago. Identifying signatures of magnon bound states has so far remained the subject of intense theoretical research, and their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting in which to find such bound states by tracking the spin dynamics with single-spin and single-site resolution following a local excitation. Here we use in situ correlation measurements to observe two-magnon bound states directly in a one-dimensional Heisenberg spin chain comprising ultracold bosonic atoms in an optical lattice. We observe the quantum dynamics of free and bound magnon states through time-resolved measurements of two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single-magnon excitations. We also determine the decay time of bound magnons, which is probably limited by scattering on thermal fluctuations in the system. Our results provide a new way of studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems.
Effects of QCD bound states on dark matter relic abundance
Energy Technology Data Exchange (ETDEWEB)
Liew, Seng Pei [Department of Physics, The University of Tokyo,Bunkyo-ku, Tokyo 113-0033 (Japan); Luo, Feng [Kavli IPMU (WPI), UTIAS, The University of Tokyo,Kashiwa, Chiba 277-8583 (Japan)
2017-02-17
We study scenarios where there exists an exotic massive particle charged under QCD in the early Universe. We calculate the formation and dissociation rates of bound states formed by pairs of these particles, and apply the results in dark matter (DM) coannihilation scenarios, including also the Sommerfeld effect. We find that on top of the Sommerfeld enhancement, bound-state effects can further significantly increase the largest possible DM masses which can give the observed DM relic abundance, by ∼30–100% with respect to values obtained by considering the Sommerfeld effect only, for the color triplet or octet exotic particles we consider. In particular, it indicates that the Bino DM mass in the right-handed stop-Bino coannihilation scenario in the Minimal Supersymmetric extension of the Standard Model (MSSM) can reach ∼2.5 TeV, even though the potential between the stop and antistop prior to forming a bound state is repulsive. We also apply the bound-state effects in the calculations of relic abundance of long-lived or metastable massive colored particles, and discuss the implications on the BBN constraints and the abundance of a super-weakly interacting DM. The corrections for the bound-state effect when the exotic massive colored particles also carry electric charges, and the collider bounds are also discussed.
Do bound color octet states of liberated quarks exist
International Nuclear Information System (INIS)
Lipkin, H.J.
1979-01-01
In models where quarks are liberated and color can be excited, the three-quark color-octet state is shown to be unbound and unstable against breakup into free quarks and diquarks. The signature for color excitation in deep inelastic processes will not be a bound three-quark state which decays electromagnetically but a final state containing free quarks. (author)
Quasi-bound states, resonance tunnelling, and tunnelling times ...
Indian Academy of Sciences (India)
analysis of bound states below the threshold energy E = 0 and continuum above the threshold .... p are time reversal states of each other. Similarly, the ... are occurring at above-barrier energies and we do not treat them as QB states. They can ...
Three-body Coulomb bound states
Bhatia, A. K.; Drachman, Richard J.
1987-01-01
The binding energies of three-particle systems containing two electrons and one positive particle of mass M are reexamined in an attempt to understand the approximate proportionality of the 1Se ground-state binding energies of the reduced masses, as pointed out by Botero and Green (1986). The contribution to the energy of the mass-polarization term is evaluated. No fundamental principle is involved, since the mass polarization merely decreases somewhat as the mass of the positive particle is reduced below the proton mass. In the case of the excited 3Pe state, this reduction is not sufficient to allow binding when M approaches the electron mass. Some properties of the recently observed negative muonium ion (e/-/ mu/+/ e/-/) are also computed.
Parity lifetime of bound states in a proximitized semiconductor nanowire
DEFF Research Database (Denmark)
Higginbotham, Andrew Patrick; Albrecht, Sven Marian; Kirsanskas, Gediminas
2015-01-01
Quasiparticle excitations can compromise the performance of superconducting devices, causing high frequency dissipation, decoherence in Josephson qubits, and braiding errors in proposed Majorana-based topological quantum computers. Quasiparticle dynamics have been studied in detail in metallic...... superconductor layer, yielding an isolated, proximitized nanowire segment. We identify Andreev-like bound states in the semiconductor via bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound...
Two-nucleon bound states in quenched lattice QCD
International Nuclear Information System (INIS)
Yamazaki, T.; Kuramashi, Y.; Ukawa, A.
2011-01-01
We address the issue of bound state in the two-nucleon system in lattice QCD. Our study is made in the quenched approximation at the lattice spacing of a=0.128 fm with a heavy quark mass corresponding to m π =0.8 GeV. To distinguish a bound state from an attractive scattering state, we investigate the volume dependence of the energy difference between the ground state and the free two-nucleon state by changing the spatial extent of the lattice from 3.1 fm to 12.3 fm. A finite energy difference left in the infinite spatial volume limit leads us to the conclusion that the measured ground states for not only spin triplet but also singlet channels are bounded. Furthermore the existence of the bound state is confirmed by investigating the properties of the energy for the first excited state obtained by a 2x2 diagonalization method. The scattering lengths for both channels are evaluated by applying the finite volume formula derived by Luescher to the energy of the first excited states.
Three-nucleon forces and the trinucleon bound states
International Nuclear Information System (INIS)
Friar, J.L.; Frois, B.
1986-04-01
A summary of the bound-state working group session of the ''International Symposium on the Three-Body Force in the Three-Nucleon System'' is presented. The experimental evidence for three-nucleon forces has centered on two ground state properties: the tritium binding energy and the trinucleon form factors. Both are discussed
Maximum and minimum entropy states yielding local continuity bounds
Hanson, Eric P.; Datta, Nilanjana
2018-04-01
Given an arbitrary quantum state (σ), we obtain an explicit construction of a state ρɛ * ( σ ) [respectively, ρ * , ɛ ( σ ) ] which has the maximum (respectively, minimum) entropy among all states which lie in a specified neighborhood (ɛ-ball) of σ. Computing the entropy of these states leads to a local strengthening of the continuity bound of the von Neumann entropy, i.e., the Audenaert-Fannes inequality. Our bound is local in the sense that it depends on the spectrum of σ. The states ρɛ * ( σ ) and ρ * , ɛ (σ) depend only on the geometry of the ɛ-ball and are in fact optimizers for a larger class of entropies. These include the Rényi entropy and the minimum- and maximum-entropies, providing explicit formulas for certain smoothed quantities. This allows us to obtain local continuity bounds for these quantities as well. In obtaining this bound, we first derive a more general result which may be of independent interest, namely, a necessary and sufficient condition under which a state maximizes a concave and Gâteaux-differentiable function in an ɛ-ball around a given state σ. Examples of such a function include the von Neumann entropy and the conditional entropy of bipartite states. Our proofs employ tools from the theory of convex optimization under non-differentiable constraints, in particular Fermat's rule, and majorization theory.
Relativistic bound state approach to fundamental forces including gravitation
Directory of Open Access Journals (Sweden)
Morsch H.P.
2012-06-01
Full Text Available To describe the structure of particle bound states of nature, a relativistic bound state formalism is presented, which requires a Lagrangian including scalar coupling of two boson fields. The underlying mechanisms are quite complex and require an interplay of overlapping boson fields and fermion-antifermion production. This gives rise to two potentials, a boson-exchange potential and one identified with the long sought confinement potential in hadrons. With minimal requirements, two elementary massless fermions (quantons - with and without charge - and one gauge boson, hadrons and leptons but also atoms and gravitational systems are described by bound states with electric and magnetic coupling between the charges and spins of quantons. No need is found for colour, Higgs-coupling and supersymmetry.
Universal extra dimensions and Kaluza-Klein bound states
International Nuclear Information System (INIS)
Carone, Christopher D.; Conroy, Justin M.; Sher, Marc; Turan, Ismail
2004-01-01
We study the bound states of the Kaluza-Klein (KK) excitations of quarks in certain models of universal extra dimensions. Such bound states may be detected at future lepton colliders in the cross section for the pair production of KK quarks near threshold. For typical values of model parameters, we find that 'KK quarkonia' have widths in the 10-100 MeV range, and production cross sections of the order of a few picobarns for the lightest resonances. Two body decays of the constituent KK quarks lead to distinctive experimental signatures. We point out that such KK resonances may be discovered before any of the higher KK modes
Usefulness of bound-state approximations in reaction theory
International Nuclear Information System (INIS)
Adhikari, S.K.
1981-01-01
A bound-state approximation when applied to certain operators, such as the many-body resolvent operator for a two-body fragmentation channel, in many-body scattering equations, reduces such equations to equivalent two-body scattering equations which are supposed to provide a good description of the underlying physical process. In this paper we test several variants of bound-state approximations in the soluble three-boson Amado model and find that such approximations lead to weak and unacceptable kernels for the equivalent two-body scattering equations and hence to a poor description of the underlying many-body process
Majorana bound states in a disordered quantum dot chain
International Nuclear Information System (INIS)
Zhang, P; Nori, Franco
2016-01-01
We study Majorana bound states in a disordered chain of semiconductor quantum dots proximity-coupled to an s -wave superconductor. By calculating its topological quantum number, based on the scattering-matrix method and a tight-binding model, we can identify the topological property of such an inhomogeneous one-dimensional system. We study the robustness of Majorana bound states against disorder in both the spin-independent terms (including the chemical potential and the regular spin-conserving hopping) and the spin-dependent term, i.e., the spin-flip hopping due to the Rashba spin–orbit coupling. We find that the Majorana bound states are not completely immune to the spin-independent disorder, especially when the latter is strong. Meanwhile, the Majorana bound states are relatively robust against spin-dependent disorder, as long as the spin-flip hopping is of uniform sign (i.e., the varying spin-flip hopping term does not change its sign along the chain). Nevertheless, when the disorder induces sign-flip in spin-flip hopping, the topological-nontopological phase transition takes place in the low-chemical-potential region. (paper)
Hyperon polarizabilities in the bound-state soliton model
International Nuclear Information System (INIS)
Gobbi, C.; Scoccola, N.N.
1996-01-01
A detailed calculation of electric and magnetic static polarizabilities of octet hyperons is presented in the framework of the bound-state soliton model. Both seagull and dispersive contributions are considered, and the results are compared with different model predictions. (orig.)
Stieltjes electrostatic model interpretation for bound state problems
Indian Academy of Sciences (India)
In this paper, it is shown that Stieltjes electrostatic model and quantum Hamilton Jacobi formalism are analogous to each other. This analogy allows the bound state problem to mimic as unit moving imaginary charges i ℏ , which are placed in between the two fixed imaginary charges arising due to the classical turning ...
On resonances and bound states of Smilansky Hamiltonian
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Lotoreichik, Vladimir; Tater, Miloš
2016-01-01
Roč. 7, č. 5 (2016), s. 789-802 ISSN 2220-8054 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : Smilansky Hamiltonian * resonances * resonance free region * weak coupling asymptotics * Riemann surface * bound states Subject RIV: BE - Theoretical Physics
K-nuclear bound states in a dynamical model
Czech Academy of Sciences Publication Activity Database
Mareš, Jiří; Friedman, E.; Gal, A.
2006-01-01
Roč. 770, 1/2 (2006), s. 84-105 ISSN 0375-9474 Institutional research plan: CEZ:AV0Z10480505 Keywords : kaonic atoms * K-nuclear bound states * K-nucleus interaction Subject RIV: BE - Theoretical Physics Impact factor: 2.155, year: 2006
New approximation to the bound states of Schroedinger operators with coulomb interaction
International Nuclear Information System (INIS)
Nunez, M.A.; Izquierdo B., G.
1994-01-01
In this work, the authors present a mathematical formulation of the physical fact that the bound states of a quantum system confined into a box Ω (with impenetrable walls) are similar to those of the unconfined system, if the box Ω is sufficiently large, and it is shown how the bound states of atomic and molecular Hamiltonians can be approximated by those of the system confined for a box Ω large enough (Dirichlet eigenproblem in Ω). Thus, a method for computing bound states is obtained which has the advantage of reducing the problem to the case of compact operators. This implies that a broad class of numerical and analytic techniques used for solving the Dirichlet problem, may be applied in full strength to obtain accurate computations of energy levels, wave functions, and other physical properties of interest
First observation of bound-state β-decay
International Nuclear Information System (INIS)
Jung, M.; Bosch, F.; Beckert, K.; Eickhoff, H.; Folger, H.; Franzke, B.; Kienle, P.; Klepper, O.; Koenig, W.; Kozhuharov, C.; Mann, R.; Moshammer, R.; Nolden, F.; Schaaf, U.; Soff, G.; Spaedtke, P.; Steck, M.; Stoehlker, T.; Suemmerer, K.
1992-06-01
Bound-state Β - decay was observed for the first time by storing bare 66 163 Dy 66+ ions in a heavy-ion storage ring. From the number of 67 163 Ho 66+ daughter ions, measured as a function of the storage time, a half-life of 47 4 +5 - d was derived. By comparing this result with reported half-lives for electron capture (EC) from the M 1 and M 2 shells of neutral 67 163 Ho, bounds for both the Q EC value of neutral 67 163 Ho and for the electron neutrino mass were set. (orig.)
Localized bound states of fermions interacting via massive vector bosons
International Nuclear Information System (INIS)
Ionescu, D.C.; Reinhardt, J.; Mueller, B.; Greiner, W.; Soff, G.
1988-11-01
A model for composite consisting of fermions with internal degrees of freedom interacting via intermediate vector bosons (IVB) is constructed. We find highly localized, low-mass bound states in the Hartree-Fock approximation. We investigate the dependence of these states as function of the coupling constant and vector boson mass. In the limit of infinite vector boson mass the interaction is described by Fermi-type contact forces. (orig.)
Volume dependence of N-body bound states
König, Sebastian; Lee, Dean
2018-04-01
We derive the finite-volume correction to the binding energy of an N-particle quantum bound state in a cubic periodic volume. Our results are applicable to bound states with arbitrary composition and total angular momentum, and in any number of spatial dimensions. The only assumptions are that the interactions have finite range. The finite-volume correction is a sum of contributions from all possible breakup channels. In the case where the separation is into two bound clusters, our result gives the leading volume dependence up to exponentially small corrections. If the separation is into three or more clusters, there is a power-law factor that is beyond the scope of this work, however our result again determines the leading exponential dependence. We also present two independent methods that use finite-volume data to determine asymptotic normalization coefficients. The coefficients are useful to determine low-energy capture reactions into weakly bound states relevant for nuclear astrophysics. Using the techniques introduced here, one can even extract the infinite-volume energy limit using data from a single-volume calculation. The derived relations are tested using several exactly solvable systems and numerical examples. We anticipate immediate applications to lattice calculations of hadronic, nuclear, and cold atomic systems.
Reduced conservatism in stability robustness bounds by state transformation
Yedavalli, R. K.; Liang, Z.
1986-01-01
This note addresses the issue of 'conservatism' in the time domain stability robustness bounds obtained by the Liapunov approach. A state transformation is employed to improve the upper bounds on the linear time-varying perturbation of an asymptotically stable linear time-invariant system for robust stability. This improvement is due to the variance of the conservatism of the Liapunov approach with respect to the basis of the vector space in which the Liapunov function is constructed. Improved bounds are obtained, using a transformation, on elemental and vector norms of perturbations (i.e., structured perturbations) as well as on a matrix norm of perturbations (i.e., unstructured perturbations). For the case of a diagonal transformation, an algorithm is proposed to find the 'optimal' transformation. Several examples are presented to illustrate the proposed analysis.
Classical molecular dynamics simulation of weakly-bound projectile heavy-ion reactions
Directory of Open Access Journals (Sweden)
Morker Mitul R.
2015-01-01
Full Text Available A 3-body classical molecular dynamics approach for heavy-ion reactions involving weakly bound projectiles is developed. In this approach a weakly bound projectile is constructed as a two-body cluster of the constituent tightly bound nuclei in a configuration corresponding to the observed breakup energy. This 3-body system with their individual nucleon configuration in their ground state is dynamically evolved for given initial conditions using the three-stage classical molecular dynamics approach (3S-CMD. Various levels of rigidbody constraints on the projectile constituents and the target are considered at appropriate stages. This 3-dimensional approach explicitly takes into account not only the long range Coulomb reorientation of the deformed collision partner but internal excitations and breakup probabilities at distances close to the barrier also. Dynamical simulations of 6Li+209Bi show all the possible reaction mechanism like complete fusion, incomplete fusion, scattering and breakup scattering. Complete fusion cross sections of 6Li+209Bi and 7Li+209Bi reactions are calculated in this approach with systematic relaxations of the rigid-body constraints on one or more constituent nuclei.
Probing Andreev bound states in one-atom superconducting contacts
Energy Technology Data Exchange (ETDEWEB)
Pothier, Hugues; Janvier, Camille; Tosi, Leandro; Girit, Caglar; Goffman, Marcelo; Esteve, Daniel; Urbina, Cristian [Quantronics Group, SPEC, CEA-Saclay (France)
2015-07-01
Superconductors are characterized by a dissipationless current. Since the work of Josephson 50 years ago, it is known that a supercurrent can even flow through tunnel junctions between superconductors. This Josephson effect also occurs through any type of ''weak links'' between superconductors: non-superconducting materials, constrictions,.. A unified understanding of the Josephson effect has emerged from a mesoscopic description of weak links. It relies on the existence of doublets of localized states that have energies below the superconducting gap: the Andreev bound states. I will present experiments performed on the simplest conductor possible, a single-atom contact between superconductors, that illustrate these concepts. The most recent work demonstrates time-domain manipulation of quantum superpositions of Andreev bound states.
Shooting quasiparticles from Andreev bound states in a superconducting constriction
Energy Technology Data Exchange (ETDEWEB)
Riwar, R.-P.; Houzet, M.; Meyer, J. S. [University of Grenoble Alpes, INAC-SPSMS (France); Nazarov, Y. V., E-mail: Y.V.Nazarov@tudelft.nl [Delft University of Technology, Kavli Institute of NanoScience (Netherlands)
2014-12-15
A few-channel superconducting constriction provides a set of discrete Andreev bound states that may be populated with quasiparticles. Motivated by recent experimental research, we study the processes in an a.c. driven constriction whereby a quasiparticle is promoted to the delocalized states outside the superconducting gap and flies away. We distinguish two processes of this kind. In the process of ionization, a quasiparticle present in the Andreev bound state is transferred to the delocalized states leaving the constriction. The refill process involves two quasiparticles: one flies away while another one appears in the Andreev bound state. We notice an interesting asymmetry of these processes. The electron-like quasiparticles are predominantly emitted to one side of the constriction while the hole-like ones are emitted to the other side. This produces a charge imbalance of accumulated quasiparticles, that is opposite on opposite sides of the junction. The imbalance may be detected with a tunnel contact to a normal metal lead.
International Nuclear Information System (INIS)
Abe, Y.
1975-01-01
The effects of polarization on the stability of α-cluster structures in 8 Be and 12 C nuclei are studied in the intrinsic states. The extent of the polarization of α-clusters is investigated by employing a molecular-orbital model. Two α-cluster structure of 8 Be is shown to be extremely stable, and a triangular configuration of three α-clusters is also shown to be stable, but the polarizations of α-clusters are found rather large. Gruemmer--Faessler's method is discussed and their results are shown to be trivial
Error bounds for molecular Hamiltonians inverted from experimental data
International Nuclear Information System (INIS)
Geremia, J.M.; Rabitz, Herschel
2003-01-01
Inverting experimental data provides a powerful technique for obtaining information about molecular Hamiltonians. However, rigorously quantifying how laboratory error propagates through the inversion algorithm has always presented a challenge. In this paper, we develop an inversion algorithm that realistically treats experimental error. It propagates the distribution of observed laboratory measurements into a family of Hamiltonians that are statistically consistent with the distribution of the data. This algorithm is built upon the formalism of map-facilitated inversion to alleviate computational expense and permit the use of powerful nonlinear optimization algorithms. Its capabilities are demonstrated by identifying inversion families for the X 1 Σ g + and a 3 Σ u + states of Na 2 that are consistent with the laboratory data
Bound states and scattering in four-body systems
International Nuclear Information System (INIS)
Narodetsky, I.M.
1979-01-01
It is the purpose of this review to provide the clear and elementary introduction in the integral equation method and to demonstrate explicitely its usefulness for the physical applications. The existing results concerning the application of the integral equation technique for the four-nucleon bound states and scattering are reviewed.The treatment is based on the quasiparticle approach that permits the simple interpretation of the equations in terms of quasiparticle scattering. The mathematical basis for the quasiparticle approach is the Hilbert-Schmidt theorem of the Fredholm integral equation theory. This paper contains the detailed discussion of the Hilbert-Schmidt expansion as applied to the 2-particle amplitudes and to the 3 + 1 and 2 + 2 amplitudes which are the kernels of the four-body equations. The review contains essentially the discussion of the four-body quasiparticle equations and results obtained for bound states and scattering
Possible Existence of (cc¯)–Nucleus Bound States
International Nuclear Information System (INIS)
Yokota, Akira; Oka, Makoto; Hiyama, Emiko
2014-01-01
Charmonium (cc¯) bound states in few-nucleon systems, 2 H, 4 He and 8 Be, are studied via Gaussian Expansion Method (GEM). We adopt a Gaussian potential as an effective (cc¯)–nucleon (N) interaction. The relation between two-body (cc¯)–N scattering length a cc¯−N and the binding energies B of (cc¯)–nucleus bound states are given. Recent lattice QCD data of a cc¯−N corresponds to B≃0.5 MeV for (cc¯)− 4 He and 2 MeV for (cc¯)− 8 Be in our results. (author)
Bound states in strongly correlated magnetic and electronic systems
International Nuclear Information System (INIS)
Trebst, S.
2002-02-01
A novel strong coupling expansion method to calculate two-particle spectra of quantum lattice models is developed. The technique can be used to study bosonic and fermionic models and in principle it can be applied to systems in any dimension. A number of strongly correlated magnetic and electronic systems are examined including the two-leg spin-half Heisenberg ladder, the dimerized Heisenberg chain with a frustrating next-nearest neighbor interaction, coupled Heisenberg ladders, and the one-dimensional Kondo lattice model. In the various models distinct bound states are found below the two-particle continuum. Quantitative calculations of the dispersion, coherence length and binding energy of these bound states are used to describe spectroscopic experiments on (Ca,La) 14 Cu 24 O 41 and NaV 2 O 5 . (orig.)
R-matrix calculations for few-quark bound states
International Nuclear Information System (INIS)
Shalchi, M.A.; Hadizadeh, M.R.
2016-01-01
The R-matrix method is implemented to study the heavy charm and bottom diquark, triquark, tetraquark, and pentaquarks in configuration space, as the bound states of quark-antiquark, diquark-quark, diquark-antidiquark, and diquark-antitriquark systems, respectively. The mass spectrum and the size of these systems are calculated for different partial wave channels. The calculated masses are compared with recent theoretical results obtained by other methods in momentum and configuration spaces and also by available experimental data. (orig.)
Bound and resonant states in Coulomb-like potentials
International Nuclear Information System (INIS)
Papp, Z.
1985-12-01
The potential separable expansion method was generalized for calculating bound and resonant states in Coulomb-like potentials. The complete set of Coulomb-Sturmian functions was taken as the basis to expand the short-range potential. On this basis the matrix elements of the Coulomb-Green functions were given in closed form as functions of the (complex) energy. The feasibility of the method is demonstrated by a numerical example. (author)
QCD bound states at finite temperature and baryon number
International Nuclear Information System (INIS)
Kalinovsky, Yu.L.; Muenchow, L.
1991-04-01
Quark-antiquark bound states are described within the Bethe-Salpeter equation for a class of quark models with instantaneous 4-quark interaction at finite temperature. Thereby decompositions of the Bethe-Salpeter vertex and wave functions according to their Lorentz structures and the particles content are used. As an application of general scheme, we determine the mass spectrum of low-lying mesons for a special Nambu-Jona-Lasinio model inspired by QCD for hadrons. (orig.)
Relativistic treatment of fermion-antifermion bound states
International Nuclear Information System (INIS)
Lucha, W.; Rupprecht, H.; Schoeberl, F.F.
1990-01-01
We discuss the relativistic treatment of fermion-antifermion bound states by an effective-Hamiltonian method which imitates their description in terms of nonrelativistic potential models: the effective interaction potential, to be used in a Schroedinger equation which incorporates relativistic kinematics, is derived from the underlying quantum field theory. This approach is equivalent to the instantaneous approximation to the Bethe-Salpeter equation called Salpeter equation but comes closer to physical intuition than the latter one. (Author) 14 refs
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2017-01-01
Roč. 96, č. 1 (2017), č. článku 012127. ISSN 2469-9926 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : non-Hermitian * PT symmetric * bound states Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.925, year: 2016
Bound states in continuum: Quantum dots in a quantum well
Energy Technology Data Exchange (ETDEWEB)
Prodanović, Nikola, E-mail: elnpr@leeds.ac.uk [Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Milanović, Vitomir [School of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade (Serbia); Ikonić, Zoran; Indjin, Dragan; Harrison, Paul [Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom)
2013-11-01
We report on the existence of a bound state in the continuum (BIC) of quantum rods (QR). QRs are novel elongated InGaAs quantum dot nanostructures embedded in the shallower InGaAs quantum well. BIC appears as an excited confined dot state and energetically above the bottom of a well subband continuum. We prove that high height-to-diameter QR aspect ratio and the presence of a quantum well are indispensable conditions for accommodating the BIC. QRs are unique semiconductor nanostructures, exhibiting this mathematical curiosity predicted 83 years ago by Wigner and von Neumann.
Bound-state perturbation theory and annihilation effects in positronium
International Nuclear Information System (INIS)
Abbasabadi, A.; Repko, W.W.
1987-01-01
Working in Coulomb gauge and using the lowest-order equation proposed by Barbieri and Remiddi it is calculated, in the one-loop order of perturbation theory, the decay rate and the energy shift of the ground states of parapositronium and orthopositronium, respectively. Our result for the decay rate agrees with that of Harris and Brown. For contribution of one-photon-annihilation channel to the energy shift, it is confirmed the result of Karplus and Klein. These results are derived completely within the bound-state formalism and avoid the necessity of performing on-mass-shell wave function and vertex renormalization subtractions
Hunt for the 11P1 bound state of charmonium
International Nuclear Information System (INIS)
Porter, F.C.
1982-02-01
Using the Crystal Ball detector at SPEAR, we have looked for evidence of the isospin-violating decay psi' → π 01 P 1 , where 1 P 1 is the predicted spin-singlet p-wave bound state of charmonium. For a 1 P 1 state at the predicted mass (approx. 3520 MeV), we obtain the 95% confidence level limits: BR(psi' → π 01 P 1 ) 01 P 1 )BR( 1 P 1 → γn/sub c/ < 0.14%. These limits are compared with simple theoretical predictions
Pair condensation and bound states in fermionic systems
International Nuclear Information System (INIS)
Sedrakian, Armen; Clark, John W.
2006-01-01
We study the finite temperature-density phase diagram of an attractive fermionic system that supports two-body (dimer) and three-body (trimer) bound states in free space. Using interactions characteristic for nuclear systems, we obtain the critical temperature T c2 for the superfluid phase transition and the limiting temperature T c3 for the extinction of trimers. The phase diagram features a Cooper-pair condensate in the high-density, low-temperature domain which, with decreasing density, crosses over to a Bose condensate of strongly bound dimers. The high-temperature, low-density domain is populated by trimers whose binding energy decreases toward the density-temperature domain occupied by the superfluid and vanishes at a critical temperature T c3 >T c2
Accurate calculations of bound rovibrational states for argon trimer
Energy Technology Data Exchange (ETDEWEB)
Brandon, Drew; Poirier, Bill [Department of Chemistry and Biochemistry, and Department of Physics, Texas Tech University, Box 41061, Lubbock, Texas 79409-1061 (United States)
2014-07-21
This work presents a comprehensive quantum dynamics calculation of the bound rovibrational eigenstates of argon trimer (Ar{sub 3}), using the ScalIT suite of parallel codes. The Ar{sub 3} rovibrational energy levels are computed to a very high level of accuracy (10{sup −3} cm{sup −1} or better), and up to the highest rotational and vibrational excitations for which bound states exist. For many of these rovibrational states, wavefunctions are also computed. Rare gas clusters such as Ar{sub 3} are interesting because the interatomic interactions manifest through long-range van der Waals forces, rather than through covalent chemical bonding. As a consequence, they exhibit strong Coriolis coupling between the rotational and vibrational degrees of freedom, as well as highly delocalized states, all of which renders accurate quantum dynamical calculation difficult. Moreover, with its (comparatively) deep potential well and heavy masses, Ar{sub 3} is an especially challenging rare gas trimer case. There are a great many rovibrational eigenstates to compute, and a very high density of states. Consequently, very few previous rovibrational state calculations for Ar{sub 3} may be found in the current literature—and only for the lowest-lying rotational excitations.
Dipole-bound states as doorways in (dissociative) electron attachment
International Nuclear Information System (INIS)
Sommerfeld, Thomas
2005-01-01
This communication starts with a comparison of dissociative recombination and dissociative attachment placing emphasis on the role of resonances as reactive intermediates. The main focus is then the mechanism of electron attachment to polar molecules at very low energies (100 meV). The scheme considered consists of two steps: First, an electron is captured in a diffuse dipole-bound state depositing its energy in the vibrational degrees of freedom, in other words, a vibrational Feshbach resonance is formed. Then, owing to the coupling with a valence state, the electron is transferred into a compact valence orbital, and depending on the electron affinities of the valence state and possible dissociation products, as well as on the details of the intramolecular redistribution of vibrational energy, long-lived anions can be generated or dissociation reactions can be initiated. The key property in this context is the electronic coupling strength between the diffuse dipole-bound and the compact valence states. We describe how the coupling strength can be extracted from ab initio data, and present results for Nitromethane, Uracil and Cyanoacetylene
A narrow quasi-bound state of the DNN system
International Nuclear Information System (INIS)
Doté, A.; Bayar, M.; Xiao, C.W.; Hyodo, T.; Oka, M.; Oset, E.
2013-01-01
We have investigated a charmed system of DNN (composed of two nucleons and a D meson) by a complementary study with a variational calculation and a Faddeev calculation with fixed-center approximation (Faddeev-FCA). In the present study, we employ a DN potential based on a vector–meson exchange picture in which a resonant Λ c (2595) is dynamically generated as a DN quasi-bound state, similarly to the Λ(1405) as a K ¯ N one in the strange sector. As a result of the study of variational calculation with an effective DN potential and three kinds of NN potentials, the DNN(J π =0 − ,I=1/2) is found to be a narrow quasi-bound state below Λ c (2595)N threshold: total binding energy ∼225 MeV and mesonic decay width ∼25 MeV. On the other hand, the J π =1 − state is considered to be a scattering state of Λ c (2595) and a nucleon. These results are essentially supported by the Faddeev-FCA calculation. By the analysis of the variational wave function, we have found a unique structure in the DNN(J π =0 − ,I=1/2) such that the D meson stays around the center of the total system due to the heaviness of the D meson
Organically bound sulphur in coal: A molecular approach
Sinninghe Damsté, J.S.; Leeuw, J.W. de
1992-01-01
A critical review of literature concerning the molecular characterization of low and high molecular weight organosulphur constitutents present in coal as well as a detailed analysis of organic sulphur compounds present in flash evaporates and pyrolysates of a suite of coals ranging in sulphur
Influence of low-energy scattering on loosely bound states
International Nuclear Information System (INIS)
Sparenberg, Jean-Marc; Capel, Pierre; Baye, Daniel
2010-01-01
Compact algebraic equations are derived that connect the binding energy and the asymptotic normalization constant (ANC) of a subthreshold bound state with the effective-range expansion of the corresponding partial wave. These relations are established for positively charged and neutral particles, using the analytic continuation of the scattering (S) matrix in the complex wave-number plane. Their accuracy is checked on simple local potential models for the 16 O+n, 16 O+p, and 12 C+α nuclear systems, with exotic nuclei and nuclear astrophysics applications in mind.
Bound states on the lattice with partially twisted boundary conditions
International Nuclear Information System (INIS)
Agadjanov, D.; Guo, F.-K.; Ríos, G.; Rusetsky, A.
2015-01-01
We propose a method to study the nature of exotic hadrons by determining the wave function renormalization constant Z from lattice simulations. It is shown that, instead of studying the volume-dependence of the spectrum, one may investigate the dependence of the spectrum on the twisting angle, imposing twisted boundary conditions on the fermion fields on the lattice. In certain cases, e.g., the case of the DK bound state which is addressed in detail, it is demonstrated that the partial twisting is equivalent to the full twisting up to exponentially small corrections.
Static and dynamic properties of QCD bound states
International Nuclear Information System (INIS)
Kubrak, Stanislav
2015-01-01
The QCD phenomenology can be faced with the framework of the coupled quark DSE, meson BSE and baryon Faddeev equation, providing non-perturbative, continuum and Poincare invariant scientific approach. The research performed throughout this thesis is twofold. From one perspective we focus on the investigation of mass spectra for mesons with total spin quantum number J=3 and arising Regge-trajectory for natural parity states J PC =1 -- ,2 ++ ,3 -- within rainbow-ladder single gluon exchange model. The other findings are concerning the impact of the pion cloud effect on J>2 meson states, baryon masses, namely on Nucleon and Delta three-body bound states and meson dynamical properties like the pion form factor.
The search for deeply bound kaonic states with FOPI
International Nuclear Information System (INIS)
Schmid, P.; Buehler, P.; Cargnelli, M.; Marton, J.; Widmann, E.; Zmeskal, J.
2006-01-01
Full text: New formation mechanisms for the creation of dense, exotic nuclear systems involving strangeness were recently proposed by Y. Akaishi and T. Yamazaki. Their calculations show that a K - might form deeply bound states in light nuclei - so called kaonic clusters - with central densities of several times the normal nuclear density. In the presentation a short overview of these exotic nuclear systems will be given and a new experiment with FOPI at GSI will be discussed. The aim of this experiment was to search for the simplest cluster - a ppK - state. This state is produced at GSI in the following high energy reaction: p + ''d'' → ppK - + K + + n'' with incident energies of 3.5 GeV. The experimental set-up will be presented in detail. (author)
Meson bound states and inclusive hardon scattering in quantum chromodynamics
International Nuclear Information System (INIS)
Beavis, D.R.
1980-01-01
In the first part we study the charmonium and UPSILON systems with a simple Coulomb plus linear potential. The parameters of the potential are determined by the charmonium states other than 1 S 0 states. We successfully predict that the states X(2830) and x(3450) are not the 1 S 0 partners of J/psi and psi'. The same effective potential also gives a good description of the UPSILON system. The Lorentz nature of the confinement potential is determined to be an equal mixture of vector and scalar. In the second part we extend a method for obtaining bound states and wavefunctions for relativistic confined systems. The important aspect of this treatment is the input of the asymptotic expansion of the two-point functions. We test the bound state approximation for a system defined by an equivalent potential V(r) = lambda 2 tanh 2 (g 2 r/lambda). Excellent results are obtained, even though a threshold is present. Finally, in the third section, we analyze the 100 GeV/c π - p→π 0 X data of Barnes et al. for moderate t, 1.5 less than or equal to -t less than or equal to 4.0 (GeV/c) 2 with the constituent scattering models. We obtain very good agreement in normalization and the x and t behavior of dsigma/dtdx using the FF1 model. The analysis of π - p→etaX gives additional support to this interpretation. The predictions of perturbative QCD and FF1 for π - p→π 0 X are given
Bound states for non-symmetric evolution Schroedinger potentials
Energy Technology Data Exchange (ETDEWEB)
Corona, Gulmaro Corona [Area de Analisis Matematico y sus Aplicaciones, Universidad Autonoma Metropolitana-Azcapotalco, Atzcapotzalco, DF (Mexico)). E-mail: ccg@correo.azc.uam.mx
2001-09-14
We consider the spectral problem associated with the evolution Schroedinger equation, (D{sup 2}+ k{sup 2}){phi}=u{phi}, where u is a matrix-square-valued function, with entries in the Schwartz class defined on the real line. The solution {phi}, called the wavefunction, consists of a function of one real variable, matrix-square-valued with entries in the Schwartz class. This problem has been dealt for symmetric potentials u. We found for the present case that the bound states are localized similarly to the scalar and symmetric cases, but by the zeroes of an analytic matrix-valued function. If we add an extra condition to the potential u, we can determine these states by an analytic scalar function. We do this by generalizing the scalar and symmetric cases but without using the fact that the Wronskian of a pair of wavefunction is constant. (author)
Bound states in quantum field theory and coherent states: A fresh look
International Nuclear Information System (INIS)
Misra, S.P.
1986-09-01
We consider here bound state equations in quantum field theory where the state explicitly includes radiation quanta as constituents with the number of such quanta not fixed. The fully interacting system is dealt with through equal time commutators/anticommutators of field operators. The multiparticle channel for the radiation field is approximated through coherent state representations. (author)
What can Andreev bound states tell us about superconductors?
Millo, Oded; Koren, Gad
2018-08-06
Zero-energy Andreev bound states, which manifest themselves in the tunnelling spectra as zero-bias conductance peaks (ZBCPs), are abundant at interfaces between superconductors and other materials and on the nodal surface of high-temperature superconductors. In this review, we focus on the information such excitations can provide on the properties of superconductor systems. First, a general introduction to the physics of Andreev bound states in superconductor/normal metal interfaces is given with a particular emphasis on why they appear at zero energy in d -wave superconductors. Then, specific spectroscopic tunnelling studies of thin films, bilayers and junctions are described, focusing on the corresponding ZBCP features. Scanning tunnelling spectroscopy (STS) studies show that the ZBCPs on the c -axis YBa 2 Cu 3 O 7- δ (YBCO) films are correlated with the surface morphology and appear only in proximity to (110) facets. STS on c -axis La 1.88 Sr 0.12 CuO 4 (LSCO) films exhibiting the 1/8 anomaly shows spatially modulated peaks near zero bias associated with the anti-phase ordering of the d -wave order parameter predicted at this doping level. ZBCPs were also found in micrometre-size edge junctions of YBCO/SrRuO 3 /YBCO, where SrRuO 3 is ferromagnetic. Here, the results are consistent with a crossed Andreev reflection effect (CARE) at the narrow domain walls of the SrRuO 3 ZBCPs measured in STS studies of manganite/cuprate bilayers could not be attributed to CARE because the manganite's domain wall is much larger than the coherence length in YBCO, and instead are attributed to proximity-induced triplet-pairing superconductivity with non-conventional symmetry. And finally, ZBCPs found in junctions of non-intentionally doped topological insulator films of Bi 2 Se 3 and the s -wave superconductor NbN are attributed to proximity-induced p x + ip y triplet order parameter in the topological material.This article is part of the theme issue 'Andreev bound states'.
Impurity bound states in mesoscopic topological superconducting loops
Jin, Yan-Yan; Zha, Guo-Qiao; Zhou, Shi-Ping
2018-06-01
We study numerically the effect induced by magnetic impurities in topological s-wave superconducting loops with spin-orbit interaction based on spin-generalized Bogoliubov-de Gennes equations. In the case of a single magnetic impurity, it is found that the midgap bound states can cross the Fermi level at an appropriate impurity strength and the circulating spin current jumps at the crossing point. The evolution of the zero-energy mode can be effectively tuned by the located site of a single magnetic impurity. For the effect of many magnetic impurities, two independent midway or edge impurities cannot lead to the overlap of zero modes. The multiple zero-energy modes can be effectively realized by embedding a single Josephson junction with impurity scattering into the system, and the spin current displays oscillatory feature with increasing the layer thickness.
Probing the Dark Sector with Dark Matter Bound States.
An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue
2016-04-15
A model of the dark sector where O(few GeV) mass dark matter particles χ couple to a lighter dark force mediator V, m_{V}≪m_{χ}, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ, such as 0^{-+} and 1^{--} states, η_{D} and ϒ_{D}, is an important search channel. We show that e^{+}e^{-}→η_{D}+V or ϒ_{D}+γ production at B factories for α_{D}>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via η_{D}→2V→2(l^{+}l^{-}) and ϒ_{D}→3V→3(l^{+}l^{-}) (l=e,μ,π). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e^{+}e^{-}→χχ[over ¯]+nV, resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.
Covariant equations for the three-body bound state
International Nuclear Information System (INIS)
Stadler, A.; Gross, F.; Frank, M.
1997-01-01
The covariant spectator (or Gross) equations for the bound state of three identical spin 1/2 particles, in which two of the three interacting particles are always on shell, are developed and reduced to a form suitable for numerical solution. The equations are first written in operator form and compared to the Bethe-Salpeter equation, then expanded into plane wave momentum states, and finally expanded into partial waves using the three-body helicity formalism first introduced by Wick. In order to solve the equations, the two-body scattering amplitudes must be boosted from the overall three-body rest frame to their individual two-body rest frames, and all effects which arise from these boosts, including Wigner rotations and p-spin decomposition of the shell-particle, are treated exactly. In their final form, the equations reduce to a coupled set of Faddeev-like double integral equations with additional channels arising from the negative p-spin states of the off-shell particle
Gravitationally self-bound quantum states in unstable potentials
Jääskeläinen, Markku
2018-04-01
Quantum mechanics at present cannot be unified with the theory of gravity at the deepest level, and to guide research towards the solution of this fundamental problem, we need to look for ways to observe or refute predictions originating from attempts to combine quantum theory with gravity. The influence of the gravitational field created by the material density given by the wave function itself gives rise to nontrivial phenomena. In this study I consider the wave function for the center-of-mass coordinate of a spherical mass distribution under the influence of the self-interaction of Newtonian gravity. I solve numerically for the ground state in the presence of an unstable potential and find that the energy of the free-space bound state can be lowered despite the nontrapping character of the potential. The center-of-mass ground state becomes increasingly localized for the used unstable potentials, although only in a limited parameter regime. The feebleness of the energy shift makes the observation of these effects demanding and requires further developments in the cooling of material particles. In addition, the influence of gravitational perturbations that are present in typical laboratory settings necessitates the use of extremely quiet and controlled environments such as those provided by recently proposed space-borne experiments.
Large impedances and Majorana bound states in superconducting circuits
International Nuclear Information System (INIS)
Ulrich, Jascha
2017-01-01
Superconducting circuits offer the opportunity to study quantum mechanics on mesoscopic scales unimpeded by dissipation. This fact and the nonlinearity of the Josephson inductance make it possible to use superconducting circuits as artificial atoms whose long-lived states can be selectively addressed and studied. A pronounced nonlinearity of the energy spectrum, however, requires quantum fluctuations of the flux across the Josephson junction which are large on the scale of the superconducting flux quantum Φ Q =h/2e. This implies charge fluctuations below the single Cooper-pair limit via flux-charge duality. The localization of charge leads to a strong susceptibility to interactions with charges in the environment which has motivated the search for schemes to decouple charges from their environment. This thesis is concerned with theoretical challenges arising from two complementary approaches to this problem: the realization of large impedances and the fractionalization of electrons by means of Majorana bound states. In recent years, the decoupling of charges from the environment through reactive large impedances, so-called ''superinductances'' L, has attracted much interest. These inductances feature small parasitic capacitance C such that the characteristic impedance √(L/C) is much larger than the superconducting resistance quantum R Q =h/4e 2 . Superinductances have various applications ranging from qubit designs such as the 0-π qubit or the fluxonium to impedance matching, Bloch oscillations and the stabilization of phase slips in superconducting nanowires. Although there exists a well-established formalism for the quantization of superconducting circuits in terms of node fluxes, this formalism is ill-suited for the description of fast flux transport with localized charges in large-impedance environments. In particular, the nonlinear capacitive behavior of phase slip junctions cannot be modeled in a straightforward way using node fluxes
Andreev bound states probed in three-terminal quantum dots
Gramich, J.; Baumgartner, A.; Schönenberger, C.
2017-11-01
Andreev bound states (ABSs) are well-defined many-body quantum states that emerge from the hybridization of individual quantum dot (QD) states with a superconductor and exhibit very rich and fundamental phenomena. We demonstrate several electron transport phenomena mediated by ABSs that form on three-terminal carbon nanotube (CNT) QDs, with one superconducting (S) contact in the center and two adjacent normal-metal (N) contacts. Three-terminal spectroscopy allows us to identify the coupling to the N contacts as the origin of the Andreev resonance (AR) linewidths and to determine the critical coupling strengths to S, for which a ground state (or quantum phase) transition in such S-QD systems can occur. In addition, we ascribe replicas of the lowest-energy ABS resonance to transitions between the ABS and odd-parity excited QD states, a process we call excited state ABS resonances. In the conductance between the two N contacts we find a characteristic pattern of positive and negative differential subgap conductance, which we explain by considering two nonlocal processes, the creation of Cooper pairs in S by electrons from both N terminals, and a transport mechanism we call resonant ABS tunneling, possible only in multiterminal QD devices. In the latter process, electrons are transferred via the ABS without effectively creating Cooper pairs in S. The three-terminal geometry also allows spectroscopy experiments with different boundary conditions, for example by leaving S floating. Surprisingly, we find that, depending on the boundary conditions and the device parameters, the experiments either show single-particle Coulomb blockade resonances, ABS characteristics, or both in the same measurements, seemingly contradicting the notion of ABSs replacing the single-particle states as eigenstates of the QD. We qualitatively explain these results as originating from the finite time scale required for the coherent oscillations between the superposition states after a single
Is the exotic X(5568) a bound state?
Energy Technology Data Exchange (ETDEWEB)
Chen, Xiaoyun; Ping, Jialun [Nanjing Normal University, Department of Physics and Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing (China)
2016-06-15
Stimulated by the recent observation of the exotic X(5568) state by the D0 Collaboration, we study the four-quark system us anti b anti d with quantum numbers J{sup P} = 0{sup +} in the framework of the chiral quark model. Two structures, diquark-antidiquark and meson-meson, with all possible color configurations are investigated by using the Gaussian expansion method. The results show that the energies of the tetraquark states with diquark-antiquark structure are too high to be candidates of X(5568), and no molecular structure can be formed in our calculations. The calculation is also extended to the four-quark system us anti c anti d and the same results as that of us anti b anti d are obtained. (orig.)
Detection of a π-μ coulomb bound states
International Nuclear Information System (INIS)
Coombes, R.; Flexer, R.; Hall, A.
1977-01-01
The detection of hydrogen-like atoms is reported consisting of a negative (or positive) pion and a positive (or negative) muon in a coulomb bound state. These π-μ atoms are formed when the PI and μ from the decay have sufficiently small relative momentum to bind. Only the evidence related to the detection of these atoms is discussed. The Ksub(L)sup(0) particles which give rise to ''atomic beam'' are produced by 30 GeV proton beam striking a 10 cm beryllium target. From analysis of data 33 events are chosen. For each of these events the parameter α = Psub(π)-Psub(μ)/Psub(π)+Psub(μ) is plotted, where PPI is the pion momentum, and Pμ is the muon momentum. A study of this parameter through an examination of e + e - pairs indicates that the acceptance of apparatus is flat within 30%. The data shows a clear peak at the predicted point containing a total of 21 events with an estimated background of 3 events. The width of the peak is consistent with that expected from measurement errors
Nucleon Viewed as a Borromean Bound-State
Segovia, Jorge; Mezrag, Cédric; Chang, Lei; Roberts, Craig D.
2018-05-01
We explain how the emergent phenomenon of dynamical chiral symmetry breaking ensures that Poincaré covariant analyses of the three valence-quark scattering problem in continuum quantum field theory yield a picture of the nucleon as a Borromean bound-state, in which binding arises primarily through the sum of two separate contributions. One involves aspects of the non-Abelian character of Quantum Chromodynamics that are expressed in the strong running coupling and generate tight, dynamical color-antitriplet quark-quark correlations in the scalar-isoscalar and pseudovector-isotriplet channels. This attraction is magnified by quark exchange associated with diquark breakup and reformation, which is required in order to ensure that each valence-quark participates in all diquark correlations to the complete extent allowed by its quantum numbers. Combining these effects, we arrive at a properly antisymmetrised Faddeev wave function for the nucleon and calculate, e.g. the flavor-separated versions of the Dirac and Pauli form factors and the proton's leading-twist parton distribution amplitude. We conclude that available data and planned experiments are capable of validating the proposed picture.
Recoil effects in the hyperfine structure of QED bound states
International Nuclear Information System (INIS)
Bodwin, G.T.; Yennie, D.R.; Gregorio, M.A.
1985-01-01
The authors give a general discussion of the derivation from field theory of a formalism for the perturbative solution of the relativistic two-body problem. The lowest-order expression for the four-point function is given in terms of a two-particle three-dimensional propagator in a static potential. It is obtained by fixing the loop energy in the four-dimensional formalism at a point which is independent of the loop momentum and is symmetric in the two particle variables. This method avoids awkward positive- and negative-energy projectors, with their attendant energy square roots, and allows one to recover the Dirac equation straightforwardly in the nonrecoil limit. The perturbations appear as a variety of four-dimensional kernels which are rearranged and regrouped into convenient sets. In particular, they are transformed from the Coulomb to the Feynman gauge, which greatly simplifies the expressions that must be evaluated. Although the approach is particularly convenient for the precision analysis of QED bound states, it is not limited to such applications. The authors use it to give the first unified treatment of all presently known recoil corrections to the muonium hyperfine structure and also to verify the corresponding contributions through order α 2 lnαE/sub F/ in positronium. The required integrals are evaluated analytically
On the problem of bound states of pions and neutrons
International Nuclear Information System (INIS)
Gudima, K.K.; Karnaukhov, V.A.
1992-01-01
The problem of existence of the bound states of negative pions and neutrons has been widely discussed for the last years. It is considered possibilities of the experimental observation of pion-neutron clusters, if they do exist, in nucleus-nucleus collisions. The yields of exotic fragments π -Z n A in the interactions of 12 C and 56 Fe with 208 Pb at the energies from 0.3 to 3.7 GeV per nucleon are calculated. For 40 Ar+ 238 U and 139 La+ 238 U collisions the calculations were performed at the energied of 1.8 GeV and 1.3 GeV per nucleon, respectively. These calculations were performed in the framework of the coalescence mechanism with the differential cross sections for pion and neutron production generated by firestreak model. The differential cross sections for production of π -1 n -2 , π -2 N 2 , π - n 4 , π -4 n 6 , and π -12 n 6 were calculated. It is shown that the use of very heavy projectiles like 56 Fe and 139 La has a great advantage in the experimental search for the exotic clusters. 20 refs.; 8 figs
Variational energy for Θ+ - 2H bound state
International Nuclear Information System (INIS)
Shoeb, Mohammad; Naz, Tabassum; Siddiqah, Mariyah
2015-01-01
Pentaquark is considered to be a exotic particle with valency structure of four quarks and antiquark. Diakonov et. al. have made a prediction for the existence of strangeness S= +1 and isospin zero pentaquark Θ + (uudds¯) of mass 1.54 GeV with a narrow width and j p = 1/2 + which is a member of an antidecuplet. Small width is assumed to be a consequence of even parity. We may point out that many experimental searches for the existence of Θ + that have been made in the past have remained inconclusive. Miller has proposed a schematic model where coherent interaction of us¯ and ds¯ pairs leads to very large attractive residual interaction which in turn produces a strongly attractive Θ-nucleon spin-independent local potential, sufficient to produce a bound state of Θ-nuclear matter that is stable against strong decay. In the model under discussion the Θ has been regarded as a collective vibration of nucleon
Unified description of bound, resonant and scattering states
International Nuclear Information System (INIS)
Konya, B.; Levai, G.; Papp, Z.
2000-01-01
Recently we have introduced a general method for calculating the discrete Hilbert-space basis representation of the Green's operators of those Hamiltonians which have infinite symmetric tridiagonal matrix forms. The elements of this matrix are used in the calculation of the Green's matrix in terms of a three-term recurrence relation and continued fractions. We specified our general approach to the case of the Coulomb problem and the Coulomb-Sturmian basis associated with it. As a further step, we can combine this new way of calculating the Coulomb-Green's matrix with a technique of solving integral equations in discrete Hilbert-space-basis representations. This provides us with a quantum mechanical approximation method which is rather general in the sense that it is equally applicable to solving bound-, resonant- and scattering-state problems with practically any potential of physical relevance. The method is especially suited to problems where Coulomb-like asymptotics have to be treated, but the formalism also contains the case of the free Green's operator as a special case. (author)
Threshold energy dependence as a function of potential strength and the nonexistence of bound states
International Nuclear Information System (INIS)
Aronson, I.; Kleinman, C.J.; Spruch, L.
1975-01-01
The difficulty in attempting to prove that a given set of particles cannot form a bound state is the absence of a margin of error; the possibility of a bound state of arbitrarily small binding energy must be ruled out. At the sacrifice of rigor, one can hope to bypass the difficulty by studying the ground-state energy E(lambda) associated with H(lambda) identical with H/sub true/ + lambda/sub ν/, where H/sub true/ is the true Hamiltonian, ν is an artificial attractive potential, and lambda greater than 0. E(lambda) can be estimated via a Rayleigh-Ritz calculation. If H/sub true/ falls just short of being able to support a bound state, H(lambda) for lambda ''not too small'' will support a bound state of some significant binding. A margin of error is thereby created; the inability to find a bound state for lambda ''not too small'' suggests not only that H(lambda) can support at best a weakly bound state but that H/sub true/ cannot support a bound state at all. To give the argument real substance, one studies E(lambda) in the neighborhood of lambda = lambda 0 , the (unknown) smallest value for lambda for which H(lambda) can support a bound state. A comparison of E(lambda) determined numerically with the form of E(lambda) obtained with the use of a crude bound-state wave function in the Feynman theorem gives a rough self-consistency check. One thereby obtains a believable lower bound on the energy of a possible bound state of H/sub true/ or a believable argument that no such bound state exists. The method is applied to the triplet state of H -
Molecular mechanism and structure of Trigger Factor bound to the translating ribosome
Merz, Frieder; Boehringer, Daniel; Schaffitzel, Christiane; Preissler, Steffen; Hoffmann, Anja; Maier, Timm; Rutkowska, Anna; Lozza, Jasmin; Ban, Nenad; Bukau, Bernd; Deuerling, Elke
2008-01-01
Ribosome-associated chaperone Trigger Factor (TF) initiates folding of newly synthesized proteins in bacteria. Here, we pinpoint by site-specific crosslinking the sequence of molecular interactions of Escherichia coli TF and nascent chains during translation. Furthermore, we provide the first full-length structure of TF associated with ribosome–nascent chain complexes by using cryo-electron microscopy. In its active state, TF arches over the ribosomal exit tunnel accepting nascent chains in a protective void. The growing nascent chain initially follows a predefined path through the entire interior of TF in an unfolded conformation, and even after folding into a domain it remains accommodated inside the protective cavity of ribosome-bound TF. The adaptability to accept nascent chains of different length and folding states may explain how TF is able to assist co-translational folding of all kinds of nascent polypeptides during ongoing synthesis. Moreover, we suggest a model of how TF's chaperoning function can be coordinated with the co-translational processing and membrane targeting of nascent polypeptides by other ribosome-associated factors. PMID:18497744
Bound state and localization of excitation in many-body open systems
Cui, H. T.; Shen, H. Z.; Hou, S. C.; Yi, X. X.
2018-04-01
We study the exact bound state and time evolution for single excitations in one-dimensional X X Z spin chains within a non-Markovian reservoir. For the bound state, a common feature is the localization of single excitations, which means the spontaneous emission of excitations into the reservoir is prohibited. Exceptionally, the pseudo-bound state can be found, for which the single excitation has a finite probability of emission into the reservoir. In addition, a critical energy scale for bound states is also identified, below which only one bound state exists, and it is also the pseudo-bound state. The effect of quasirandom disorder in the spin chain is also discussed; such disorder induces the single excitation to locate at some spin sites. Furthermore, to display the effect of bound state and disorder on the preservation of quantum information, the time evolution of single excitations in spin chains is studied exactly. An interesting observation is that the excitation can stay at its initial location with high probability only when the bound state and disorder coexist. In contrast, when either one of them is absent, the information of the initial state can be erased completely or becomes mixed. This finding shows that the combination of bound state and disorder can provide an ideal mechanism for quantum memory.
Majorana bound states in a coupled quantum-dot hybrid-nanowire system
DEFF Research Database (Denmark)
Deng, M. T.; Vaitiekenas, S.; Hansen, E. B.
2016-01-01
Hybrid nanowires combining semiconductor and superconductor materials appear well suited for the creation, detection, and control of Majorana bound states (MBSs). We demonstrate the emergence of MBSs from coalescing Andreev bound states (ABSs) in a hybrid InAs nanowire with epitaxial Al, using...... with the end-dot bound state, which is in agreement with a numerical model. The ABS/MBS spectra provide parameters that are useful for understanding topological superconductivity in this system....
Observations of bound and unbound states of Ce−
International Nuclear Information System (INIS)
Walter, C W; Li, Y-G; Matyas, D J; Alton, R M; Lou, S E; III, R L Field; Gibson, N D; Hanstorp, D
2012-01-01
The negative ion of cerium has been investigated with tunable infrared laser photodetachment spectroscopy over selected photon energy ranges between 0.56 − 0.70 eV. The spectrum reveals several sharp peaks due to negative ion resonances and possible bound-bound transitions in Ce − . The newly observed transitions, together with our previous measurements, provide insight into the rich near-threshold spectrum of this lanthanide negative ion.
Bounds on the Capacity of ASK Molecular Communication Channels with ISI
Ghavami, Siavash; Adve, Raviraj; Lahouti, Farshad
2015-01-01
There are now several works on the use of the additive inverse Gaussian noise (AIGN) model for the random transit time in molecular communication~(MC) channels. The randomness invariably causes inter-symbol interference (ISI) in MC, an issue largely ignored or simplified. In this paper we derive an upper bound and two lower bounds for MC based on amplitude shift keying (ASK) in presence of ISI. The Blahut-Arimoto algorithm~(BAA) is modified to find the input distribution of transmitted symbol...
DEFF Research Database (Denmark)
Naqvi, Mohsin M; Heiðarsson, Pétur Orri; Otazo, Mariela R
2015-01-01
, at least transiently, at resting Ca(2+) conditions. Here, we used optical tweezers to study the folding behavior of individual NCS-1 molecules in the presence of Mg(2+) and in the absence of divalent ions. Under tension, the Mg(2+)-bound state of NCS-1 unfolds and refolds in a three-state process...... in a variety of cellular processes in which it has been linked to a number of disorders such as schizophrenia and autism. Despite extensive studies on the Ca(2+)-activated state of NCS proteins, little is known about the conformational dynamics of the Mg(2+)-bound and apo states, both of which are populated...... by populating one intermediate state consisting of a folded C-domain and an unfolded N-domain. The interconversion at equilibrium between the different molecular states populated by NCS-1 was monitored in real time through constant-force measurements and the energy landscapes underlying the observed transitions...
Liang, Wei-Hong; Dias, J. M.; Debastiani, V. R.; Oset, E.
2018-05-01
Motivated by the recent finding of five Ωc states by the LHCb collaboration, and the successful reproduction of three of them in a recent approach searching for molecular states of meson-baryon with the quantum numbers of Ωc, we extend these ideas and make predictions for the interaction of meson-baryon in the beauty sector, searching for poles in the scattering matrix that correspond to physical states. We find several Ωb states: two states with masses 6405 MeV and 6465 MeV for JP = 1/2-; two more states with masses 6427 MeV and 6665 MeV for 3/2-; and three states between 6500 and 6820 MeV, degenerate with JP = 1/2-, 3/2-, stemming from the interaction of vector-baryon in the beauty sector.
Bound states and scattering coefficients of the -aδ(x)+bδ'(x) potential
International Nuclear Information System (INIS)
Gadella, M.; Negro, J.; Nieto, L.M.
2009-01-01
We show that a one-dimensional Schroedinger equation in which the potential is a delta well plus a δ ' interaction at the same point has a bound state, and we obtain the energy of this bound state in terms of the parameters. In addition, the expression of the reflection and transmission coefficients is also fully determined
A study of the bound states for square potential wells with position-dependent mass
International Nuclear Information System (INIS)
Ganguly, A.; Kuru, S.; Negro, J.; Nieto, L.M.
2006-01-01
A potential well with position-dependent mass is studied for bound states. Applying appropriate matching conditions, a transcendental equation is derived for the energy eigenvalues. Numerical results are presented graphically and the variation of the energy of the bound states are calculated as a function of the well-width and mass
Two-vibron bound states in the β–Fermi–Pasta–Ulam model
International Nuclear Information System (INIS)
Hu Xinguang; Tang Yi
2008-01-01
This paper studies the two-vibron bound states in the β–Fermi–Pasta–Ulam model by means of the number conserving approximation combined with the number state method. The results indicate that on-site, adjacent-site and mixed two-vibron bound states may exist in the model. Specially, wave number has a significant effect on such bound states, which may be considered as the quantum effects of the localized states in quantum systems. (condensed matter: structure, thermal and mechanical properties)
Interband type-II miniband-to-bound state diode lasers for the midinfrared
International Nuclear Information System (INIS)
Mermelstein, C.; Schmitz, J.; Kiefer, R.; Walther, M.; Wagner, J.
2004-01-01
A design for midinfrared diode lasers based on interband type-II miniband-to-bound state transitions is proposed and has been demonstrated experimentally. Type-II miniband-to-bound state laser structures emitting at 3.25 μm with active regions consisting of 5 and 10 W periods were grown by solid-source molecular-beam epitaxy and processed into ridge waveguide lasers. Substrate-side down mounted devices with a 10 period active region and uncoated facets could be operated in continuous-wave (cw) mode up to 185 K and as high as 260 K in pulsed mode. A high characteristic temperature of 100 K has been achieved for heat-sink temperatures below 140 K, decreasing to 33 K for the 140 to 185 K interval. At 110 K, a 5 period laser structure exhibited a threshold current density of 177 A/cm 2 and a slope efficiency of 61 mW/A. Single-ended output powers of 144 mW in cw mode and exceeding 330 mW in pulsed operation were obtained for a substrate-side down mounted 5 period diode laser with high-reflection/antireflection coated mirror facets, operated at 110 K
En route to surface-bound electric field-driven molecular motors.
Jian, Huahua; Tour, James M
2003-06-27
Four caltrop-shaped molecules that might be useful as surface-bound electric field-driven molecular motors have been synthesized. The caltrops are comprised of a pair of electron donor-acceptor arms and a tripod base. The molecular arms are based on a carbazole or oligo(phenylene ethynylene) core with a strong net dipole. The tripod base uses a silicon atom as its core. The legs of the tripod bear sulfur-tipped bonding units, as acetyl-protected benzylic thiols, for bonding to a gold surface. The geometry of the tripod base allows the caltrop to project upward from a metallic surface after self-assembly. Ellipsometric studies show that self-assembled monolayers of the caltrops are formed on Au surfaces with molecular thicknesses consistent with the desired upright-shaft arrangement. As a result, the zwitterionic molecular arms might be controllable when electric fields are applied around the caltrops, thereby constituting field-driven motors.
X(3872) and other possible heavy molecular states
International Nuclear Information System (INIS)
Liu, Xiang; Luo, Zhi-Gang; Zhu, Shi-Lin; Liu, Yan-Rui
2009-01-01
We perform a systematic study of the possible molecular states composed of a pair of heavy mesons such as D anti D,D * anti D,D * anti D * in the framework of the meson exchange model. The exchanged mesons include the pseudoscalar, scalar and vector mesons. Through our investigation, we find the following results. (1) The structure X(3764) is not a molecular state. (2) There exists strong attraction in the range r * anti D * system with J=0,1. If future experiments confirm Z + (4051) as a loosely bound molecular state, its quantum number is probably J P =0 + . Its partner state Φ **0 may be searched for in the π 0 χ c1 channel. (3) Vector meson exchange provides strong attraction in the D * anti D channel together with pion exchange. A bound state solution may exist with a reasonable cutoff parameter Λ∝1.4 GeV. X(3872) may be accommodated as a molecular state dynamically although drawing a very definite conclusion needs further investigation. (4) The B * anti B molecular state may exist. (orig.)
Prediction of new tightly bound-states of H2+(d2+) and ''cold fusion''-experiments
International Nuclear Information System (INIS)
Barut, A.O.
1989-06-01
It is suggested that in the ''cold-fusion'' experiments of Fleischmann and Pons new tightly-bound molecular states of D 2 + are formed with binding energies predicted to be of the order of 50 keV accounting for the heat released without appreciable fusion. Other tests of the suggested mechanism are proposed and the derivation of the new energy levels is given. (author). 3 refs
Bound states embedded into continuous spectrum as 'gathered' (compactified) scattering waves
International Nuclear Information System (INIS)
Zakhar'ev, B.N.; Chabanov, V.M.
1995-01-01
It is shown that states of continuous spectrum (the half-line case) can be considered as bound states normalized by unity but distributed on the infinite interval with vanishing density. Then the algorithms of shifting the range of primary localization of a chosen bound state in potential well of finite width appear to be applicable to scattering functions. The potential perturbations of the same type (but now on half-axis) concentrate the scattering wave in near vicinity of the origin, which leads to creation of bound state embedded into continuous spectrum. (author). 8 refs., 7 figs
Bardhan, Jaydeep P; Knepley, Matthew G; Anitescu, Mihai
2009-03-14
The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.
Energy Technology Data Exchange (ETDEWEB)
Bardhan, J. P.; Knepley, M. G.; Anitescu, M. (Biosciences Division); ( MCS); (Rush Univ.)
2009-03-01
The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.
Fano-type coupling of a bound paramagnetic state with 2D continuum
International Nuclear Information System (INIS)
Rozhansky, I. V.; Averkiev, N. S.; Lähderanta, E.
2013-01-01
We analyze an effect of a bound impurity state located at a tunnel distance from a quantum well (QW). The study is focused on the resonance case when the bound state energy lies within the continuum of the QW states. Using the developed theory we calculate spin polarization of 2D holes induced by paramagnetic (Mn) delta-layer in the vicinity of the QW and indirect exchange interaction between two impurities located at a tunnel distance from electron gas
A nonlinear programming approach to lower bounds for the ground-state energy of helium
International Nuclear Information System (INIS)
Porras, I.; Feldmann, D.M.; King, F.W.
1999-01-01
Lower-bound estimates for the ground-state energy of the helium atom are determined using nonlinear programming techniques. Optimized lower bounds are determined for single-particle, radially correlated, and general correlated wave functions. The local nature of the method employed makes it a very severe test of the accuracy of the wave function
International Nuclear Information System (INIS)
Lee, Hwasung; Lee, Y J
2007-01-01
We derive analytic expressions of the recursive solutions to Schroedinger's equation by means of a cutoff-potential technique for one-dimensional piecewise-constant potentials. These solutions provide a method for accurately determining the transmission probabilities as well as the wavefunction in both classically accessible regions and inaccessible regions for any barrier potentials. It is also shown that the energy eigenvalues and the wavefunctions of bound states can be obtained for potential-well structures by exploiting this method. Calculational results of illustrative examples are shown in order to verify this method for treating barrier and potential-well problems
Accidental bound states in the continuum in an open Sinai billiard
Energy Technology Data Exchange (ETDEWEB)
Pilipchuk, A.S. [Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk (Russian Federation); Siberian Federal University, 660080 Krasnoyarsk (Russian Federation); Sadreev, A.F., E-mail: almas@tnp.krasn.ru [Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk (Russian Federation)
2017-02-19
The fundamental mechanism of the bound states in the continuum is the full destructive interference of two resonances when two eigenlevels of the closed system are crossing. There is, however, a wide class of quantum chaotic systems which display only avoided crossings of eigenlevels. As an example of such a system we consider the Sinai billiard coupled with two semi-infinite waveguides. We show that notwithstanding the absence of degeneracy bound states in the continuum occur due to accidental decoupling of the eigenstates of the billiard from the waveguides. - Highlights: • Bound states in the continuum in open chaotic billiards occur to accidental vanishing of coupling of eigenstate of billiard with waveguides.
Relativistic bound-state problem of a one-dimensional system
International Nuclear Information System (INIS)
Sato, T.; Niwa, T.; Ohtsubo, H.; Tamura, K.
1991-01-01
A Poincare-covariant description of the two-body bound-state problem in one-dimensional space is studied by using the relativistic Schrodinger equation. We derive the many-body Hamiltonian, electromagnetic current and generators of the Poincare group in the framework of one-boson exchange. Our theory satisfies Poincare algebra within the one-boson-exchange approximation. We numerically study the relativistic effects on the bound-state wavefunction and the elastic electromagnetic form factor. The Lorentz boost of the bound-state wavefunction and the two-body exchange current are shown to play an important role in guaranteeing the Lorentz invariance of the form factor. (author)
International Nuclear Information System (INIS)
Fortescue, Ben; Lo, H.-K.
2005-01-01
We derive lower limits on the inefficiency and classical communication costs of dilution between two-term bipartite pure states that are partially entangled. We first calculate explicit relations between the allowable error and classical communication costs of entanglement dilution using a previously described protocol, then consider a two-stage dilution from singlets with this protocol followed by some unknown protocol for conversion between partially entangled states. Applying overall lower bounds on classical communication and inefficiency to this two-stage protocol, we derive bounds for the unknown protocol. In addition we derive analogous (but looser) bounds for general pure states
Tunable hybridization of Majorana bound states at the quantum spin Hall edge
Keidel, Felix; Burset, Pablo; Trauzettel, Björn
2018-02-01
Confinement at the helical edge of a topological insulator is possible in the presence of proximity-induced magnetic (F) or superconducting (S) order. The interplay of both phenomena leads to the formation of localized Majorana bound states (MBS) or likewise (under certain resonance conditions) the formation of ordinary Andreev bound states (ABS). We investigate the properties of bound states in junctions composed of alternating regions of F or S barriers. Interestingly, the direction of magnetization in F regions and the relative superconducting phase between S regions can be exploited to hybridize MBS or ABS at will. We show that the local properties of MBS translate into a particular nonlocal superconducting pairing amplitude. Remarkably, the symmetry of the pairing amplitude contains information about the nature of the bound state that it stems from. Hence this symmetry can in principle be used to distinguish MBS from ABS, owing to the strong connection between local density of states and nonlocal pairing in our setup.
Bound states of Dipolar Bosons in One-dimensional Systems
DEFF Research Database (Denmark)
G. Volosniev, A.; R. Armstrong, J.; V. Fedorov, D.
2013-01-01
that in the weakly-coupled limit the inter-tube interaction is similar to a zero-range term with a suitable rescaled strength. This allows us to address the corresponding many-body physics of the system by constructing a model where bound chains with one molecule in each tube are the effective degrees of freedom......We consider one-dimensional tubes containing bosonic polar molecules. The long-range dipole-dipole interactions act both within a single tube and between different tubes. We consider arbitrary values of the externally aligned dipole moments with respect to the symmetry axis of the tubes. The few....... This model can be mapped onto one-dimensional Hamiltonians for which exact solutions are known....
International Nuclear Information System (INIS)
O’Carroll, Michael
2012-01-01
We consider the interaction of particles in weakly correlated lattice quantum field theories. In the imaginary time functional integral formulation of these theories there is a relative coordinate lattice Schroedinger operator H which approximately describes the interaction of these particles. Scalar and vector spin, QCD and Gross-Neveu models are included in these theories. In the weakly correlated regime H=H o +W where H o =−γΔ l , 0 l is the d-dimensional lattice Laplacian: γ=β, the inverse temperature for spin systems and γ=κ 3 where κ is the hopping parameter for QCD. W is a self-adjoint potential operator which may have non-local contributions but obeys the bound ‖W(x, y)‖⩽cexp ( −a(‖x‖+‖y‖)), a large: exp−a=β/β o (1/2) (κ/κ o ) for spin (QCD) models. H o , W, and H act in l 2 (Z d ), d⩾ 1. The spectrum of H below zero is known to be discrete and we obtain bounds on the number of states below zero. This number depends on the short range properties of W, i.e., the long range tail does not increase the number of states.
Fano effect and Andreev bound states in T-shape double quantum dots
International Nuclear Information System (INIS)
Calle, A.M.; Pacheco, M.; Orellana, P.A.
2013-01-01
In this Letter, we investigate the transport through a T-shaped double quantum dot coupled to two normal metal leads left and right and a superconducting lead. Analytical expressions of Andreev transmission and local density of states of the system at zero temperature have been obtained. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot. We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. Our results show that as a consequence of quantum interference and proximity effect, the transmission from normal to normal lead exhibits Fano resonances due to Andreev bound states. We find that this interference effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. - Highlights: • Transport properties of a double quantum dot coupled in T-shape configuration to conducting and superconducting leads are studied. • We report Fano antiresonances in the normal transmission due to the Andreev reflections in the superconducting lead. • We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. • Fano effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. • Andreev bound states survives even for strong dot-superconductor coupling
Applications of the infinite momentum method to quantum electrodynamics and bound state problem
International Nuclear Information System (INIS)
Brodsky, S.J.
1973-01-01
It is shown that the infinite momentum method is a valid and useful calculational alternative to standard perturbation theory methods. The most exciting future applications may be in bound state problems in quantum electrodynamics
Contribution of Bound States to the Harmonic Generation in Hydrogen at Moderate Laser Intensities
National Research Council Canada - National Science Library
Davis, Jack
2002-01-01
.... The disappearance of bound parabolic states with large electric dipole moments in moderately strong fields leads to the simplification of the expression for the total time-dependent dipole moment of the atom...
The generalized pseudospectral approach to the bound states of the ...
Indian Academy of Sciences (India)
physics [6,7], solid-state physics [8,9], chemical physics [10], etc. ... coupling region and for the lower states, there is a lack of good quality ... relativistic framework for solving the radial Schrödinger equation (SE) of a single- ... throughout this article. ... the usual radial and angular momentum quantum numbers respectively.
Connection between bound-states of bosons moving in one dimension
International Nuclear Information System (INIS)
Coutinho, F.A.B.
1982-06-01
It is shown that when a system of two identical bosons moving in one dimension have a bound state of energy ν sub(o), then the N body system will also have a bound state at a specific energy given by equation W(N+1) = 2N/1-N ]W(N)] - N+1/1-N ]W(N-1)]. (Author) [pt
On bound states of photons in noncommutative U(1) gauge theory
International Nuclear Information System (INIS)
Fatollahi, A.H.; Jafari, A.
2006-01-01
We consider the possibility that photons of noncommutative U(1) gauge theory can make bound states. Using the potential model, developed based on the constituent gluon picture of QCD glue-balls, arguments are presented in favor of the existence of these bound states. The basic ingredient of the potential model is that the self-interacting massless gauge particles may get mass by the inclusion of non-perturbative effects. (orig.)
Bound states in the two-dimension massive quantum electrodynamics (Qed2)
International Nuclear Information System (INIS)
Alves, V.S.; Gomes, M.
1994-01-01
This work studies the fermion-antifermion bound states in the (1+1)D two-dimension massive quantum electrodynamic in the 1/N expansion. The scattering matrices in the non-relativistic approximation have been calculated through TQC, and compared with the cross section in the Born approximation, and therefore the potential responsible by the interactions in the scattering processes have been obtained. Using Schroedinger equation, the existence of possible bound states have been investigated
Σ hypernuclear bound state observed in stopped K- reaction on 4He
International Nuclear Information System (INIS)
Hayano, R.S.; Ishikawa, T.; Iwasaki, M.; Outa, H.; Takada, E.; Tamura, H.; Sakaguchi, A.; Aoki, M.; Yamazaki, T.
1988-12-01
Results are presented of inclusive measurements of π ± momentum spectra from K - absorption at rest in liquid helium. We found a peak in the π - spectrum. The (K - , π + ) spectrum does not exhibit a clear peak in the Σ - bound region. Comparison of these two spectra suggests that the peak in the π - spectrum is due to the formation of the S = 0, I = 1/2 ground state of Σ-nucleus bound state. (J.P.N.)
Coexistence of a bound state and scattering at the same energy value: a quantum paradox
International Nuclear Information System (INIS)
Chabanov, V.M.; Zakhar'ev, B.N.
1998-01-01
The example of a multi-channel system which possesses both bound (not quasi-bound !) and scattering states at the same energy value E is demonstrated. A special interaction has ability to confine waves near the origin and simultaneously admit scattering (even with transparency) at the fixed spectral point. These interaction matrices and wave functions can be continued to the whole axis. As another multi-channel peculiarity having no one-channel analogues was found a class of absolutely transparent interaction matrices without bound states
Quantum Bocce: Magnon–magnon collisions between propagating and bound states in 1D spin chains
International Nuclear Information System (INIS)
Longo, Paolo; Greentree, Andrew D.; Busch, Kurt; Cole, Jared H.
2013-01-01
The dynamics of two magnons in a Heisenberg spin chain under the influence of a non-uniform magnetic field is investigated by means of a numerical wave-function-based approach using a Holstein–Primakoff transformation. The magnetic field is localized in space such that it supports exactly one single-particle bound state. We study the interaction of this bound mode with an incoming spin wave and the interplay between transmittance, energy and momentum matching. We find analytic criteria for maximizing the interconversion between propagating single-magnon modes and true propagating two-magnon states. The manipulation of bound and propagating magnons is an essential step towards quantum magnonics.
Quark-antiquark bound-state spectroscopy and QCD
International Nuclear Information System (INIS)
Bloom, E.D.
1982-11-01
The discussion covers quarks as we know them, the classification of ordinary mesons in terms of constituent quarks, hidden charm states and charmed mesons, bottom quarks, positronium as a model for quarti q, quantum chromodynamics and its foundation in experiment, the charmonium model, the mass of states, fine structure and hyperfine structure, classification, widths of states, rate and multipolarity of gamma transitions, questions about bottom, leptonic widths and the determination of Q/sub b/, the mass splitting of the n 3 S 1 states, the center of gravity of the masses of the n 3 P; states, n 3 P; fine structure and classification, branching ratios for upsilon' → tau chi/sub 6j/ and the tau cascade reactions, hyperfine splitting, and top
Quark-antiquark bound-state spectroscopy and QCD
Energy Technology Data Exchange (ETDEWEB)
Bloom, E.D.
1982-11-01
The discussion covers quarks as we know them, the classification of ordinary mesons in terms of constituent quarks, hidden charm states and charmed mesons, bottom quarks, positronium as a model for quarti q, quantum chromodynamics and its foundation in experiment, the charmonium model, the mass of states, fine structure and hyperfine structure, classification, widths of states, rate and multipolarity of gamma transitions, questions about bottom, leptonic widths and the determination of Q/sub b/, the mass splitting of the n/sup 3/S/sub 1/ states, the center of gravity of the masses of the n/sup 3/P; states, n/sup 3/ P; fine structure and classification, branching ratios for upsilon' ..-->.. tau chi/sub 6j/ and the tau cascade reactions, hyperfine splitting, and top. (GHT)
Fluid phases of hydrogen-bound states and thermodynamical properties
International Nuclear Information System (INIS)
Ebeling, W.; Kraeft, W.D.
1985-08-01
The fluid phases of hydrogen and especially the existence of two critical points, the density dependence of the two - particle states and the effective interactions are discussed. An effective Schroedinger equation and a Saha equation are given. (author)
Bound-state quark and gluon contributions to structure functions in QCD
International Nuclear Information System (INIS)
Brodsky, S.J.
1990-08-01
One can distinguish two types of contributions to the quark and gluon structure functions of hadrons in quantum chromodynamics: ''intrinsic'' contributions, which are due to the direct scattering on the bound-state constituents, and ''extrinsic'' contributions, which are derived from particles created in the collision. In this talk, I discussed several aspects of deep inelastic structure functions in which the bound-state structure of the proton plays a crucial role: the properties of the intrinsic gluon distribution associated with the proton bound-state wavefunction; the separation of the quark structure function of the proton onto intrinsic ''bound-valence'' and extrinsic ''non-valence'' components which takes into account the Pauli principle; the properties and identification of intrinsic heavy quark structure functions; and a theory of shadowing and anti-shadowing of nuclear structure functions, directly related to quark-nucleon interactions and the gluon saturation phenomenon. 49 refs., 5 figs
Bound-state quark and gluon contributions to structure functions in QCD
International Nuclear Information System (INIS)
Brodsky, S.J.
1991-01-01
One can distinguish two types of contributions to the quark and gluon structure functions of hadrons in quantum chromodynamics: 'intrinsic' contributions, which are due to the direct scattering on the bound-state constituents, and 'extrinsic' contributions, which are derived from particles created in the collision. In this talk, I discuss several aspects of deep inealstic structure functions in which the bound-state structure of the proton plays a crucial role: (1) the properties of the intrinsic gluon distribution associated with the proton bound-state wavefunction; (2) the separation of the quark structure function of the proton into intrinsic 'bound-valence' and extrinsic 'non-valence' components which takes into account the Pauli principle; (3) the properties and identification of intrinsic heavy quark structure functions; and (4) a theory of shadowing and anti-shadowing of nuclear structure functions, directly related to quark-nucleon interactions and the gluon saturation phenomenon. (orig.)
Proof of the insecurity of quantum secret sharing based on the Smolin bound entangled states
International Nuclear Information System (INIS)
Ya-Fei, Yu; Zhi-Ming, Zhang
2009-01-01
This paper reconsiders carefully the possibility of using the Smolin bound entangled states as the carrier for sharing quantum secret. It finds that the process of quantum secret sharing based on Smolin states has insecurity though the Smolin state was reported to violate maximally the two-setting Bell-inequality. The general proof is given. (general)
International Nuclear Information System (INIS)
Yu, Terri M.; Brown, Kenneth R.; Chuang, Isaac L.
2005-01-01
The role of mixed-state entanglement in liquid-state nuclear magnetic resonance (NMR) quantum computation is not yet well understood. In particular, despite the success of quantum-information processing with NMR, recent work has shown that quantum states used in most of those experiments were not entangled. This is because these states, derived by unitary transforms from the thermal equilibrium state, were too close to the maximally mixed state. We are thus motivated to determine whether a given NMR state is entanglable - that is, does there exist a unitary transform that entangles the state? The boundary between entanglable and nonentanglable thermal states is a function of the spin system size N and its temperature T. We provide bounds on the location of this boundary using analytical and numerical methods; our tightest bound scales as N∼T, giving a lower bound requiring at least N∼22 000 proton spins to realize an entanglable thermal state at typical laboratory NMR magnetic fields. These bounds are tighter than known bounds on the entanglability of effective pure states
Amplification of non-Markovian decay due to bound state absorption into continuum
International Nuclear Information System (INIS)
Garmon, S.; Simine, L.; Segal, D.; Petrosky, T.
2013-01-01
It is known that quantum systems yield non-exponential (power law) decay on long time scales, associated with continuum threshold effects contributing to the survival probability for a prepared initial state. For an open quantum system consisting of a discrete state coupled to continuum, we study the case in which a discrete bound state of the full Hamiltonian approaches the energy continuum as the system parameters are varied. We find in this case that at least two regions exist yielding qualitatively different power law decay behaviors; we term these the long time 'near zone' and long time 'far zone'. In the near zone the survival probability falls off according to a t -1 power law, and in the far zone i t falls off as t -3 . We show that the timescale T Q separating these two regions is inversely related to the gap between the discrete bound state energy and the continuum threshold. In the case that the bound state is absorbed into the continuum and vanishes, then the time scale T Q diverges and the survival probability follows the t -1 power law even on asymptotic scales. Conversely, one could study the case of an anti-bound state approaching the threshold before being ejected from the continuum to form a bound state. Again the t -1 power law dominates precisely at the point of ejection. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
A search for deeply bound kaonic nuclear states
International Nuclear Information System (INIS)
Suzuki, T.; Bhang, H.; Franklin, G.; Gomikawa, K.; Hayano, R.S.; Hayashi, T.; Ishikawa, K.; Ishimoto, S.; Itahashi, K.; Iwasaki, M.; Katayama, T.; Kondo, Y.; Matsuda, Y.; Nakamura, T.; Okada, S.; Outa, H.; Quinn, B.; Sato, M.; Shindo, M.; So, H.; Strasser, P.; Sugimoto, T.; Suzuki, K.; Suzuki, S.; Tomono, D.; Vinodkumar, A.M.; Widmann, E.; Yamazaki, T.; Yoneyama, T.
2005-01-01
We have measured proton and neutron energy spectra by means of time-of-flight (TOF) from 4 He(Kstopped-,p/n) reactions (KEK PS E471 experiment). In the proton spectrum, a clear mono-energetic peak was observed under semi-inclusive condition, which was assigned to the formation of a strange tribaryon S 0 (3115) with isospin T=1. The mass and width of the state were deduced to be 3117.7-2.0+3.8(syst.)+/-0.9(stat.) MeV/c2 and 21.6 MeV/c2, respectively, and its main decay mode was ΣNN. In the neutron spectrum, a mono-energetic peak was found as the result of a detailed analysis, which was assigned to the formation of another kind of strange tribaryon S + (3140). The mass and width of the state were deduced to be 3140.5-0.8+3.0(syst.)+/-2.3(stat.) MeV/c2 and 21.6 MeV/c2, respectively, and its main decay mode was Σ+/-NN. The isospin of the state is assigned to be 0. The results are compared with recent theoretical calculations
Bound Electron States in Skew-symmetric Quantum Wire Intersections
2014-01-01
STATEMENT OF THE PROBLEM 29 proper normalization, the H = 32 ma2 γ 2 + 2γ + 3 6 + 11γ (2.29) Consequently, we are looking to the variational parameter γ...E0 = H = 32 ma2 3(γ + 1) 11 = 6 11 2 mγ2 (γ + 1) = 1.058 2 ma2 (2.33) This result is obviously an approximation. The true value of the ground...state energy is less than E0. However, the obtained energy values is below the threshold energy obtained in the previous section: Ecr = π 2 8 2 ma2
Magnetic moment of a two-particle bound state in quantum electrodynamics
International Nuclear Information System (INIS)
Martynenko, A.P.; Faustov, R.N.
2002-01-01
A quasipotential method for calculating relativistic and radiative corrections to the magnetic moment of a two-particle bound state is formulated for particles of arbitrary spin. It is shown that the expression for the g factors of bound particles involve O(α 2 ) terms depending on the particle spin. Numerical values are obtained for the g factors of the electron in the hydrogen atom and in deuterium
A search for bound states of the /eta/-meson in light nuclei
International Nuclear Information System (INIS)
Pile, P.H.
1988-01-01
This paper describes an experiment designed to search for a new form of nuclear matter--a bound /eta/-nucleus system. The (π + ,p) reaction was used to study the possible formation of an /eta/-mesic nucleus. No narrow /eta/-nuclear bound states were observed using 7 Li, 12 C, 16 O and 27 Al targets. 7 refs., 4 figs., 1 tab
Bound states of quarks and gluons and hadronic transitions
International Nuclear Information System (INIS)
Castro, Antonio Soares de.
1990-05-01
A potential which incorporates the concepts of confinement and asymptotic freedom, previously utilized in the description of the spectroscopy of mesons and baryons, is extended to the gluon sector. The mass spectroscopy of glueballs and hybrids is analyzed considering only pairwise potentials and massive constituent gluons. The mass spectrum of the color octet two-gluon system is adopted as a suitable description of the intermediate states of hadronic transitions, within the framework of the multipole expansion for quantum chromodynamics. The spin-dependent effects in the gluonium spectrum, associated with the Coulombian potential, are calculated through the inverted first Born approximation for the gluon-gluon scattering. (author). 102 refs, 1 fig, 13 tabs
Tunneling spectroscopy of quasiparticle bound states in a spinful Josephson junction.
Chang, W; Manucharyan, V E; Jespersen, T S; Nygård, J; Marcus, C M
2013-05-24
The spectrum of a segment of InAs nanowire, confined between two superconducting leads, was measured as function of gate voltage and superconducting phase difference using a third normal-metal tunnel probe. Subgap resonances for odd electron occupancy-interpreted as bound states involving a confined electron and a quasiparticle from the superconducting leads, reminiscent of Yu-Shiba-Rusinov states-evolve into Kondo-related resonances at higher magnetic fields. An additional zero-bias peak of unknown origin is observed to coexist with the quasiparticle bound states.
Rate Reduction for State-labelled Markov Chains with Upper Time-bounded CSL Requirements
Directory of Open Access Journals (Sweden)
Bharath Siva Kumar Tati
2016-07-01
Full Text Available This paper presents algorithms for identifying and reducing a dedicated set of controllable transition rates of a state-labelled continuous-time Markov chain model. The purpose of the reduction is to make states to satisfy a given requirement, specified as a CSL upper time-bounded Until formula. We distinguish two different cases, depending on the type of probability bound. A natural partitioning of the state space allows us to develop possible solutions, leading to simple algorithms for both cases.
Separable pole expansions in four-nucleon bound state calculations
International Nuclear Information System (INIS)
Sofianos, S.A.; Fiedeldey, H.; Haberzettl, H.; Sandhas, W.
1982-04-01
We compare the utility of the Generalized Unitary Pole Expansion (GUPE) and the Energy-Dependent Pole Expansion (EDPE) for the three-body subsystem amplitudes in four-body state calculations for a variety of separable and local nucleon-nucleon interactions. It is found that, with the EDPE, the four-body binding energy is well reproduced with only two terms each for the (2+2)- and the (3+1)-subsystem, respectively, while the GUPE requires three terms for the (3+1)-channel and four terms for the (2+2)-channel. We thus conclude that pole dominance is of greater importance for the GUPE than for EDPE, which works equally well for both types of subsystems. It is found that both methods, in particular the EDPE, converge more rapidly with increasing repulsion in the two-body interaction, i.e. the more realistic the interaction becomes. Both expansions require similar computing times for a converged calculation and are about 15-20 times faster than the widely used Hilbert-Schmidt Expansion (HSE). The respective merits of the two pole expansions are discussed and compared with the HSE. (orig.)
Application of the N-quantum approximation method to bound state problems
International Nuclear Information System (INIS)
Raychaudhuri, A.
1977-01-01
The N-quantum approximation (NQA) method is examined in the light of its application to bound state problems. Bound state wave functions are obtained as expansion coefficients in a truncated Haag expansion. From the equations of motion for the Heisenberg field and the NQA expansion, an equation satisfied by the wave function is derived. Two different bound state systems are considered. In one case, the bound state problem of two identical scalars by scalar exchange is analyzed using the NQA. An integral equation satisfied by the wave function is derived. In the nonrelativistic limit, the equation is shown to reduce to the Schroedinger equation. The equation is solved numerically, and the results compared with those obtained for this system by other methods. The NQA method is also applied to the bound state of two spin 1/2 particles with electromagnetic interaction. The integral equation for the wave function is shown to agree with the corresponding Bethe Salpeter equation in the nonrelativistic limit. Using the Dirac (4 x 4) matrices the wave function is expanded in terms of structure functions and the equation for the wave function is reduced to two disjoint sets of coupled equation for the structure functions
Rapisarda, P.; Trentelman, H.L.; Minh, H.B.
We illustrate an algorithm that starting from the image representation of a strictly bounded-real system computes a minimal balanced state variable, from which a minimal balanced state realization is readily obtained. The algorithm stems from an iterative procedure to compute a storage function,
A lower bound on the relative error of mixed-state cloning and related operations
International Nuclear Information System (INIS)
Rastegin, A E
2003-01-01
We extend the concept of the relative error to mixed-state cloning and related physical operations, in which the ancilla contains some information a priori about the input state. The lower bound on the relative error is obtained. It is shown that this result provides further support for a stronger no-cloning theorem
Calculations of antiproton nucleus quasi-bound states using the Paris (N)over-barN potential
Czech Academy of Sciences Publication Activity Database
Hrtánková, Jaroslava; Mareš, Jiří
2018-01-01
Roč. 969, č. 1 (2018), s. 45-59 ISSN 0375-9474 R&D Projects: GA ČR(CZ) GA15-04301S Institutional support: RVO:61389005 Keywords : antiproton-nucleus interaction * Paris (N)over-barN potential * antiproton-nuclear bound states Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.916, year: 2016
International Nuclear Information System (INIS)
Gai, Moshe
1999-01-01
The observation of large E1 strength near threshold in the electromagnetic dissociation of 11 Li poses a fundamental question: Is the large E1 strength due to the threshold or is it due to a low lying E1 state? Such molecular cluster states were observed in 18 O and in several nuclei near the drip line. We discuss the nature of the threshold effect as well as review the situation in Molecular (and Particle Physics) where such Molecular States are observed near the dissociation limit. We suggest that the situation in 11 Li is reminiscent of the argon-benzene molecule where the argon atom is loosely bound by a polarization (van der Waals) mechanism and thus leads to a very extended object lying near the dissociation limit. Such states are also suggested to dominate the structure of mesons [α 0 (980), f 0 (975)] and baryons [λ(1405)] with proposed Kaon molecular structure (Dalitz) near threshold. The inspection of such states throughout Physics allows us to gain insight into this phenomenon and suggest that a new collective Molecular Dipole Degree of Freedom plays a major role in the structure of hadrons (halo nuclei, mesons and baryons), and that quantitative tools such as the E1 Molecular Sum Rule are useful for elucidating the nature of the observed low lying E1 strength in halo nuclei. (author)
Bai, Xuelian; Lee, Ji-Yun; Kim, Tae Im; Dai, Fuhong; Lee, Tae-Jin; Hong, Sung-Jong
2014-01-01
Background Clonorchis sinensis causes clonorchiasis, a potentially serious disease. Growth factor receptor-bound protein 2 (Grb2) is a cytosolic protein conserved among animals and plays roles in cellular functions such as meiosis, organogenesis and energy metabolism. In the present study, we report first molecular characters of growth factor receptor bound-protein (CsGrb2) from C. sinensis as counter part of Grb2 from animals and its possible functions in development and organogenesis of C. sinensis. Methodology/Principal Findings A CsGrb2 cDNA clone retrieved from the C. sinensis transcriptome encoded a polypeptide with a SH3-SH2-SH3 structure. Recombinant CsGrb2 was bacterially produced and purified to homogeneity. Native CsGrb2 with estimated molecular weight was identified from C. sinensis adult extract by western blotting using a mouse immune serum to recombinant CsGrb2. CsGrb2 transcripts was more abundant in the metacercariae than in the adults. Immunohistochemical staining showed that CsGrb2 was localized to the suckers, mesenchymal tissues, sperms in seminal receptacle and ovary in the adults, and abundantly expressed in most organs of the metacercariae. Recombinant CsGrb2 was evaluated to be little useful as a serodiagnostic reagent for C. sinesis human infections. Conclusion Grb2 protein found in C. sinensis was conserved among animals and suggested to play a role in the organogenesis, energy metabolism and mitotic spermatogenesis of C. sinensis. These findings from C. sinensis provide wider understanding on diverse function of Grb2 in lower animals such as platyhelminths. PMID:24454892
Directory of Open Access Journals (Sweden)
Xuelian Bai
Full Text Available BACKGROUND: Clonorchis sinensis causes clonorchiasis, a potentially serious disease. Growth factor receptor-bound protein 2 (Grb2 is a cytosolic protein conserved among animals and plays roles in cellular functions such as meiosis, organogenesis and energy metabolism. In the present study, we report first molecular characters of growth factor receptor bound-protein (CsGrb2 from C. sinensis as counter part of Grb2 from animals and its possible functions in development and organogenesis of C. sinensis. METHODOLOGY/PRINCIPAL FINDINGS: A CsGrb2 cDNA clone retrieved from the C. sinensis transcriptome encoded a polypeptide with a SH3-SH2-SH3 structure. Recombinant CsGrb2 was bacterially produced and purified to homogeneity. Native CsGrb2 with estimated molecular weight was identified from C. sinensis adult extract by western blotting using a mouse immune serum to recombinant CsGrb2. CsGrb2 transcripts was more abundant in the metacercariae than in the adults. Immunohistochemical staining showed that CsGrb2 was localized to the suckers, mesenchymal tissues, sperms in seminal receptacle and ovary in the adults, and abundantly expressed in most organs of the metacercariae. Recombinant CsGrb2 was evaluated to be little useful as a serodiagnostic reagent for C. sinesis human infections. CONCLUSION: Grb2 protein found in C. sinensis was conserved among animals and suggested to play a role in the organogenesis, energy metabolism and mitotic spermatogenesis of C. sinensis. These findings from C. sinensis provide wider understanding on diverse function of Grb2 in lower animals such as platyhelminths.
Experimental and theoretical study of bound and quasibound states of Ce{sup -}
Energy Technology Data Exchange (ETDEWEB)
Walter, C. W.; Gibson, N. D.; Li, Y.-G.; Matyas, D. J.; Alton, R. M.; Lou, S. E.; Field, R. L. III; Hanstorp, D.; Pan, Lin; Beck, Donald R. [Department of Physics and Astronomy, Denison University, Granville, Ohio 43023 (United States); Department of Physics, University of Gothenburg, SE-412 96 Gothenburg (Sweden); Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States)
2011-09-15
The negative ion of cerium is investigated experimentally with tunable infrared laser photodetachment spectroscopy and theoretically with relativistic configuration interaction in the continuum formalism. The relative cross section for neutral atom production is measured with a crossed ion-beam-laser-beam apparatus over the photon energy range of 0.54-0.75 eV. A rich resonance spectrum is revealed near the threshold with, at least, 12 peaks observed due to transitions from bound states of Ce{sup -} to either bound or quasibound excited states of the negative ion. Theoretical calculations of the photodetachment cross sections enable identification of the transitions responsible for the measured peaks. Two of the peaks are due to electric dipole-allowed bound-bound transitions in Ce{sup -}, making cerium only the second atomic negative ion that has been demonstrated to support multiple bound states of opposite parity. In addition, combining the experimental data with the theoretical analysis determines the electron affinity of cerium to be 0.628(10) eV and the fine structure splitting of the ground state of Ce{sup -} ({sup 4} H{sub 7/2}-{sup 4} H{sub 9/2}) to be 0.097 75(4) eV.
Bounds on the entanglement entropy of droplet states in the XXZ spin chain
Beaud, V.; Warzel, S.
2018-01-01
We consider a class of one-dimensional quantum spin systems on the finite lattice Λ ⊂Z , related to the XXZ spin chain in its Ising phase. It includes in particular the so-called droplet Hamiltonian. The entanglement entropy of energetically low-lying states over a bipartition Λ = B ∪ Bc is investigated and proven to satisfy a logarithmic bound in terms of min{n, |B|, |Bc|}, where n denotes the maximal number of down spins in the considered state. Upon addition of any (positive) random potential, the bound becomes uniformly constant on average, thereby establishing an area law. The proof is based on spectral methods: a deterministic bound on the local (many-body integrated) density of states is derived from an energetically motivated Combes-Thomas estimate.
Some simple conditions of bound states of Schroedinger operators in dimension d >= 3
International Nuclear Information System (INIS)
Exner, P.
1984-01-01
A necessary condition for existence of bound states below a given energy of a Schroedinger operator H=-Δ+V on L 2 (Rsup(d)), d>=3, together with a lower bound to the ground-state energy of H are derived using the Sobolev inequalities. It generalizes some recent results to the dimensions d>3 and to the potentials that are not necessarily rapidly decreasing. Comparison to other known necessary conditions is given. The examples of the d-dimensional hydrogen-like atom and the d-dimensional harmonic oscillator are discussed. In both of them the bound to the ground-state energy becomes remarkably tight for large values of d
International Nuclear Information System (INIS)
Zhukov, V.V.; Osovskij, V.D.; Ptushnikov, Yu.G.; Sukretnyj, V.G.; Chujkov, B.A.
1986-01-01
A molecular beam technique with an effusion source operating at T=200 K is used to study the adsorption interaction of oxygen with W(100) and (110) faces in the range of the simple temperatures from 5 to 340 K. Three weakly-bound adsorption states of oxygen are detected corresponding to adsorption in the second, third and forth monolayer. These states are characterized by adsorption energies of 0.13, 0.08 and 0.07 eV and desorption temperatures of 45, 27 and 25 K, respectively. The kinetics of filling of these states is almost similar for both faces, whereas the adsorption kinetics in the first monolayer is essentially different. A dissociative nature of adsorption at T >or approx. 5 K and a jump migration mechanism of the admolecules in the precursor state to the stationary adsorption sites are suggested
Parra-Rivas, Pedro; Gomila, Damia; Colet, Pere; Gelens, Lendert
2017-07-01
Bound states, also called soliton molecules, can form as a result of the interaction between individual solitons. This interaction is mediated through the tails of each soliton that overlap with one another. When such soliton tails have spatial oscillations, locking or pinning between two solitons can occur at fixed distances related with the wavelength of these oscillations, thus forming a bound state. In this work, we study the formation and stability of various types of bound states in the Lugiato-Lefever equation by computing their interaction potential and by analyzing the properties of the oscillatory tails. Moreover, we study the effect of higher order dispersion and noise in the pump intensity on the dynamics of bound states. In doing so, we reveal that perturbations to the Lugiato-Lefever equation that maintain reversibility, such as fourth order dispersion, lead to bound states that tend to separate from one another in time when noise is added. This separation force is determined by the shape of the envelope of the interaction potential, as well as an additional Brownian ratchet effect. In systems with broken reversibility, such as third order dispersion, this ratchet effect continues to push solitons within a bound state apart. However, the force generated by the envelope of the potential is now such that it pushes the solitons towards each other, leading to a null net drift of the solitons. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.
Large N Chern-Simons with massive fundamental fermions — A model with no bound states
International Nuclear Information System (INIS)
Frishman, Yitzhak; Sonnenschein, Jacob
2014-01-01
In a previous paper http://dx.doi.org/10.1007/JHEP12(2013)091, we analyzed the theory of massive fermions in the fundamental representation coupled to a U(N) Chern-Simons gauge theory in three dimensions at level K. It was done in the large N, large K limits where λ=(N/K) was kept fixed. Among other results, we showed there that there are no high mass “quark anti-quark" bound states. Here we show that there are no bound states at all.
Scattering integral equations and four nucleon problem. Four nucleon bound states and scattering
International Nuclear Information System (INIS)
Narodetskij, I.M.
1981-01-01
Existing results from the application of integral equation technique four-nucleon bound states and scattering are reviewed. The purpose of this review is to provide a clear and elementary introduction in the integral equation method and to demonstrate its usefulness in physical applications. Developments in the actual numerical solutions of Faddeev-Yakubovsky type equations are such that a detailed comparison can be made with experiment. Bound state calculations indicate that a nonrelativistic description with pairwise nuclear forces does not suffice and additional degrees of freedom are noted [ru
Symanzik approach in modeling of bound states of Dirac particle in singular background
Directory of Open Access Journals (Sweden)
Pismak Yu. M.
2017-01-01
Full Text Available In the model of interaction of spinor field with homogeneous isotropic material plane constructed in framework of Symanzik approach, the bound states are studied. For localized near plane Dirac particle the expression for current, charge and density are presented. For bound state with massless dispersion law the current, charge and density are calculated for simplified model with 2 parameter exactly.The model can find application to a wide class of phenomena arising by the interaction of fields of quantum electrodynamics with two-dimensional materials.
Heavy-to-light form factors for non-relativistic bound states
International Nuclear Information System (INIS)
Bell, G.; Feldmann, Th.
2007-01-01
We investigate transition form factors between non-relativistic QCD bound states at large recoil energy. Assuming the decaying quark to be much heavier than its decay product, the relativistic dynamics can be treated according to the factorization formula for heavy-to-light form factors obtained from the heavy-quark expansion in QCD. The non-relativistic expansion determines the bound-state wave functions to be Coulomb-like. As a consequence, one can explicitly calculate the so-called 'soft-overlap' contribution to the transition form factor
Bound states in the (2+1)D scalar electrodynamics with Chern-Simons term
International Nuclear Information System (INIS)
Gomes, M.O.C.; Malacarne, L.C.
1994-01-01
This work studies the existence of bound states for the 3-dimensions scalar electrodynamics, with the Chern-Simons. Quantum field theory is used for calculation of the M fi scattering matrices, in the non-relativistic approximation. The field propagators responsible for the interaction in the scattering processes have been calculated, and scattering matrices have been constructed. After obtaining the scattering matrix, the cross section in the quantum field theory has been compared with the quantum mechanic cross section in the Born approximation, allowing to obtain the form of the potential responsible for the interactions in the scattering processes. The possibility of bound states are analyzed by using the Schroedinger equation
The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays
Energy Technology Data Exchange (ETDEWEB)
Gadella, M. [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Kuru, Ş. [Department of Physics, Faculty of Science, Ankara University, 06100 Ankara (Turkey); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)
2017-04-15
We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays for the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.
Bound-state formation for thermal relic dark matter and unitarity
International Nuclear Information System (INIS)
Harling, Benedict von; Petraki, Kalliopi
2014-01-01
We show that the relic abundance of thermal dark matter annihilating via a long-range interaction, is significantly affected by the formation and decay of dark matter bound states in the early universe, if the dark matter mass is above a few TeV . We determine the coupling required to obtain the observed dark matter density, taking into account both the direct 2-to-2 annihilations and the formation of bound states, and provide an analytical fit. We argue that the unitarity limit on the inelastic cross-section is realized only if dark matter annihilates via a long-range interaction, and we determine the upper bound on the mass of thermal-relic dark matter to be about 197 (139) TeV for (non)-self-conjugate dark matter
Backbone resonance assignments for G protein α(i3) subunit in the GDP-bound state.
Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio
2014-10-01
Guanine-nucleotide binding proteins (G proteins) serve as molecular switches in signaling pathways, by coupling the activation of G protein-coupled receptors (GPCRs) at the cell surface to intracellular responses. In the resting state, G protein forms a heterotrimer, consisting of the G protein α subunit with GDP (Gα·GDP) and the G protein βγ subunit (Gβγ). Ligand binding to GPCRs promotes the GDP-GTP exchange on Gα, leading to the dissociation of the GTP-bound form of Gα (Gα·GTP) and Gβγ. Then, Gα·GTP and Gβγ bind to their downstream effector enzymes or ion channels and regulate their activities, leading to a variety of cellular responses. Finally, Gα hydrolyzes the bound GTP to GDP and returns to the resting state by re-associating with Gβγ. The G proteins are classified with four major families based on the amino acid sequences of Gα: i/o, s, q/11, and 12/13. Here, we established the backbone resonance assignments of human Gαi3, a member of the i/o family with a molecular weight of 41 K, in complex with GDP. The chemical shifts were compared with those of Gα(i3) in complex with a GTP-analogue, GTPγS, which we recently reported, indicating that the residues with significant chemical shift differences are mostly consistent with the regions with the structural differences between the GDP- and GTPγS-bound states, as indicated in the crystal structures. The assignments of Gα(i3)·GDP would be useful for the analyses of the dynamics of Gα(i3) and its interactions with various target molecules.
Energy Technology Data Exchange (ETDEWEB)
Higashi, Yoichi, E-mail: higashiyoichi@ms.osakafu-u.ac.jp [Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Nagai, Yuki [CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871 (Japan); Yoshida, Tomohiro [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Kato, Masaru [Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Yanase, Youichi [Department of Physics, Niigata University, Niigata 950-2181 (Japan)
2015-11-15
Highlights: • We focus on the pair-density wave state in bilayer Rashba superconductors. • The zero energy Bogoliubov wave functions are localized at the edge and vortex core. • We investigate the excitation spectra of edge and vortex bound states. - Abstract: We study the excitation spectra and the wave functions of quasiparticle bound states at a vortex and an edge in bilayer Rashba superconductors under a magnetic field. In particular, we focus on the quasiparticle states at the zero energy in the pair-density wave state in a topologically non-trivial phase. We numerically demonstrate that the quasiparticle wave functions with zero energy are localized at both the edge and the vortex core if the magnetic field exceeds the critical value.
Molecular dynamics simulations of DNA-free and DNA-bound TAL effectors.
Directory of Open Access Journals (Sweden)
Hua Wan
Full Text Available TAL (transcriptional activator-like effectors (TALEs are DNA-binding proteins, containing a modular central domain that recognizes specific DNA sequences. Recently, the crystallographic studies of TALEs revealed the structure of DNA-recognition domain. In this article, molecular dynamics (MD simulations are employed to study two crystal structures of an 11.5-repeat TALE, in the presence and absence of DNA, respectively. The simulated results indicate that the specific binding of RVDs (repeat-variable diresidues with DNA leads to the markedly reduced fluctuations of tandem repeats, especially at the two ends. In the DNA-bound TALE system, the base-specific interaction is formed mainly by the residue at position 13 within a TAL repeat. Tandem repeats with weak RVDs are unfavorable for the TALE-DNA binding. These observations are consistent with experimental studies. By using principal component analysis (PCA, the dominant motions are open-close movements between the two ends of the superhelical structure in both DNA-free and DNA-bound TALE systems. The open-close movements are found to be critical for the recognition and binding of TALE-DNA based on the analysis of free energy landscape (FEL. The conformational analysis of DNA indicates that the 5' end of DNA target sequence has more remarkable structural deformability than the other sites. Meanwhile, the conformational change of DNA is likely associated with the specific interaction of TALE-DNA. We further suggest that the arrangement of N-terminal repeats with strong RVDs may help in the design of efficient TALEs. This study provides some new insights into the understanding of the TALE-DNA recognition mechanism.
Spectroscopy of the hghest Rb2 bound states with 10 kHz precision
Verhaar, B.J.; Kokkelmans, S.J.J.M.F.; van Kempen, E.G.M.; Freeland, R.S.; Wynar, R.; Comparat, D.; Ryu, C.; Heinzen, D.J.
2001-01-01
We have measured the binding energy of four of the highest bound vibrational levels of the ground electronic states of the ^87Rb2 molecule with a precision better than 10 kHz. The measurements were carried out using stimulated Raman photoassociation in an ^87Rb Bose-Einstein condensate. We have
Bound states of the Dirac equation with some physical potentials by the Nikiforov-Uvarov method
Energy Technology Data Exchange (ETDEWEB)
Setare, Mohammad R; Haidari, S [Department of Physics, University of Kurdistan, Pasdaran Avenue, Sanandaj (Iran, Islamic Republic of)], E-mail: rezakord@ipm.ir, E-mail: heidary.somayeh@gmail.com
2010-01-15
Exact analytical solutions for the s-wave Dirac equation with the reflectionless-type, Rosen-Morse and Manning-Rosen potentials are obtained, under the condition of spin symmetry. We obtained bound state energy eigenvalues and corresponding spinor wave function in the framework of the Nikiforov-Uvarov (NU) method.
Boson bound states in the β-Fermi–Pasta–Ulam model
Indian Academy of Sciences (India)
5. — journal of. November 2013 physics pp. 839–848. Boson bound states in the ... of Basic Sciences, The First Aeronautical Institute of the Air Force, Xinyang 464000, ..... [4] N Boechler, G Theocharis, S Job, P G Kevrekidis, M A Porter and C ...
Ultraheavy Yukawa-bound states of fourth-generation at Large ...
Indian Academy of Sciences (India)
2012-10-05
Oct 5, 2012 ... Abstract. A study of bound states of the fourth-generation quarks in the range of 500–700 GeV is presented, where the binding energies are expected to be mainly of Yukawa origin, with QCD subdominant. Near degeneracy of their masses exhibits a new 'isospin'. The production of a colour- octet, isosinglet ...
Lower bounds for the ground states of He-isoelectronic series
International Nuclear Information System (INIS)
Fraga, Serafin
1981-01-01
A formulation, based on the concept of null local kinetic energy regions, has been developed for the determination of lower bounds for the ground state of a two-electron atom. Numerical results, obtained from Hartree-Fock functions, are presented for the elements He through Kr of the two-electron series
Orthogonality-condition model for bound states with a separable expansion of the potential
International Nuclear Information System (INIS)
Pal, K.F.
1984-01-01
A very efficient solution of the equation of Saito's orthogonality-condition model (OCM) is reported for bound states by means of a separable expansion of the potential (PSE method). Some simplifications of the published formulae of the PSE method is derived, which facilitate its application to the OCM and may be useful in solving the Schroedinger equation as well. (author)
On the bound states of Schrodinger operators with -interactions on conical surfaces
Czech Academy of Sciences Publication Activity Database
Lotoreichik, Vladimir; Ourmieres-Bonafos, T.
2016-01-01
Roč. 41, č. 6 (2016), s. 999-1028 ISSN 0360-5302 Institutional support: RVO:61389005 Keywords : conical and hyperconical surfaces * delta-interaction * existence of bound states * Schrodinger operator * spectral asymptotics Subject RIV: BE - Theoretical Physics Impact factor: 1.608, year: 2016
Robustness of Majorana bound states in the short-junction limit
Sticlet, D.C.; Nijholt, B.; Akhmerov, A.R.
2017-01-01
We study the effects of strong coupling between a superconductor and a semiconductor nanowire on the creation of the Majorana bound states, when the quasiparticle dwell time in the normal part of the nanowire is much shorter than the inverse superconducting gap. This "short-junction" limit is
Another comment on 'relativistic description of quark-antiquark bound states'
International Nuclear Information System (INIS)
Lucha, W.; Rupprecht, H.; Schoeberl, F.F.
1991-04-01
We point out some ambiguities in the treatment of fermion-antifermion bound states by solving the reduced Salpeter equation in coordinate space. Our observations allow to cast some doubt on the validity of the conclusion of Gara et al. that moving from a nonrelativistic to a relativistic description makes things worse. (authors)
Boson bound states in the β-Fermi–Pasta–Ulam model
Indian Academy of Sciences (India)
The bound states of four bosons in the quantum -Fermi–Pasta–Ulam model are investigated and some interesting results are presented using the number conserving approximation combined ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science
Morse potential, symmetric Morse potential and bracketed bound-state energies
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2016-01-01
Roč. 31, č. 14 (2016), s. 1650088 ISSN 0217-7323 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : quantum bound states * special functions * Morse potential * symmetrized Morse potential * upper and lower energy estimates * computer-assisted symbolic manipulations Subject RIV: BE - Theoretical Physics Impact factor: 1.165, year: 2016
Manipulation of Squeezed Two-Phonon Bound States using Femtosecond Laser Pulses
Directory of Open Access Journals (Sweden)
Nakamura Kazutaka G.
2013-03-01
Full Text Available Two-phonon bound states have been excited exclusively in ZnTe(110 via impulsive stimulated second-order Raman scattering, essentially being squeezed states due to phase coherent excitation of two identical components anticorrelated in the wave vector. By using coherent control technique with a pair of femtosecond laser pulses, the manipulation of squeezed states has been demonstrated in which both the amplitude and lifetime of coherent oscillations of squeezed states are modulated, indicating the feasibility to control the quantum noise and the quantum nature of phonon squeezed states, respectively.
Generation of bound states of pulses in a SESAM mode-locked Cr:ZnSe laser
Bu, Xiangbao; Shi, Yuhang; Xu, Jia; Li, Huijuan; Wang, Pu
2018-06-01
We report on the generation of bound states of pulses in a SESAM mode-locked Cr:ZnSe laser around 2415 nm. A thulium-doped double-clad fiber laser at 1908 nm was used as the pump source. Bound states with various pulse separations at different dispersion regimes were obtained. Especially, in the anomalous dispersion regime, vibrating bound state of solitons exhibiting an evolving phase was obtained.
Gate-tunable Andreev bound states in InSb nanowire Josephson junction
Energy Technology Data Exchange (ETDEWEB)
Kang, Ning; Li, Sen; Fan, Dingxun; Xu, Hongqi [Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China); Caroff, Philippe [Division of Solid State Physics, Lund University, P. O. Box 118, S-221 00 Lund (Sweden)
2016-07-01
Hybrid InSb nanowire-superconductor devices are promising candidates for investigating Majorana modes in solid-state devices and future technologies of topological quantum manipulation. Here, we report low-temperature transport measurements on an individual InSb nanowire quantum dot coupled to superconducting contacts that exhibit an interplay between the Kondo effects and superconductivity. We observed two types of subgap resonance states within the superconducting gap, which can be attributed to gate-tunable Andreev bound states in Coulomb valleys with different Kondo temperatures. The presence of the gate-tunable 0 and pi junction allow us to investigate the fundamental 0- pi transition. Detailed magnetic field and temperature evolution of level spectroscopy demonstrate different behavior of two types of the Andreev bound states. Our results exhibit that the InSb nanowires can provide a promising platform for exploring phase coherence transport and the effect of spin-orbit coupling in semiconductor nanowire-superconductor hybrid device.
Emergent low-energy bound states in the two-orbital Hubbard model
Núñez-Fernández, Y.; Kotliar, G.; Hallberg, K.
2018-03-01
A repulsive Coulomb interaction between electrons in different orbitals in correlated materials can give rise to bound quasiparticle states. We study the nonhybridized two-orbital Hubbard model with intra- (inter)orbital interaction U (U12) and different bandwidths using an improved dynamical mean-field theory numerical technique which leads to reliable spectra on the real energy axis directly at zero temperature. We find that a finite density of states at the Fermi energy in one band is correlated with the emergence of well-defined quasiparticle states at excited energies Δ =U -U12 in the other band. These excitations are interband holon-doublon bound states. At the symmetric point U =U12 , the quasiparticle peaks are located at the Fermi energy, leading to a simultaneous and continuous Mott transition settling a long-standing controversy.
The possible Bπ molecular state and its radiative decay
Energy Technology Data Exchange (ETDEWEB)
Ke, Hong-Wei; Gao, Lei [Tianjin University, School of Science, Tianjin (China); Li, Xue-Qian [Nankai University, School of Physics, Tianjin (China)
2017-05-15
Recently, several exotic bosons have been confirmed as multi-quark states. However, there are violent disputes about their inner structures, namely if they are molecular states or tetraquarks, or even mixtures of the two structures. It would be interesting to search experimentally for non-strange four-quark states with open charm or bottom which are lighter than Λ{sub c} or Λ{sub b}. Reasonable arguments indicate that they are good candidates of pure molecular states Dπ or Bπ because pions are the lightest boson. Both Bπ and Dπ bound states do not decay via the strong interaction. The Bπ molecule may decay into B* by radiating a photon, whereas the Dπ molecule can only decay via weak interaction. In this paper we explore the mass spectra of the Bπ molecular states by solving the corresponding instantaneous B-S equation. Then the rate of radiative decay vertical stroke (3)/(2), (1)/(2) right angle → B*γ is calculated and our numerical results indicate that the processes can be measured by the future experiment. We also briefly discuss the Dπ case. Due to the constraint of the final state phase space it can only decay via weak interaction. (orig.)
Hadronic molecular states from the K anti K* interaction
Energy Technology Data Exchange (ETDEWEB)
Lue, Pei-Liang; He, Jun [Chinese Academy of Sciences, Theoretical Physics Division, Institute of Modern Physics, Lanzhou (China); Institute of Modern Physics of CAS and Lanzhou University, Research Center for Hadron and CSR Physics, Lanzhou (China)
2016-12-15
In this work, the K anti K* interaction is studied in a quasipotential Bethe-Salpeter equation approach combined with the one-boson-exchange model. With the help of the hidden-gauge Lagrangian, the exchanges of pseudoscalar mesons (π and η) and vector mesons (ρ, ω and φ) are considered to describe the K anti K* interaction. Besides the direct vector-meson exchange which can be related to the Weinberg-Tomozawa term, pseudoscalar-meson exchanges also play important roles in the mechanism of the K anti K* interaction. The poles of scattering amplitude are searched to find the molecular states produced from the K anti K* interaction. In the case of quantum number I{sup G}(J{sup PC}) = 0{sup +}(1{sup ++}), a pole is found with a reasonable cutoff, which can be related to the f{sub 1}(1285) in experiment. Another bound state with 0{sup -}(1{sup +-}) is also produced from the K anti K* interaction, which can be related to the h{sub 1}(1380). In the isovector sector, the interaction is much weaker and a bound state with 1{sup +}(1{sup +}) relevant to the b{sub 1}(1235) is produced but at a larger cutoff. Our results suggest that in the hadronic molecular state picture the f{sub 1}(1285) and b{sub 1}(1235) are the strange partners of the X(3872) and Z{sub c}(3900), respectively. (orig.)
Lower bounds for ballistic current and noise in non-equilibrium quantum steady states
Directory of Open Access Journals (Sweden)
Benjamin Doyon
2015-03-01
Full Text Available Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.
Ionization and bound-state relativistic quantum dynamics in laser-driven multiply charged ions
International Nuclear Information System (INIS)
Hetzheim, Henrik
2009-01-01
The interaction of ultra-strong laser fields with multiply charged hydrogen-like ions can be distinguished in an ionization and a bound dynamics regime. Both are investigated by means of numerically solving the Dirac equation in two dimensions and by a classical relativistic Monte-Carlo simulation. For a better understanding of highly nonlinear physical processes the development of a well characterized ultra-intense relativistic laser field strength has been driven forward, capable of studying e.g. the magnetic field effects of the laser resulting in an additional electron motion in the laser propagation direction. A novel method to sensitively measure these ultra-strong laser intensities is developed and employed from the optical via the UV towards the XUV frequency regime. In the bound dynamics field, the determination of multiphoton transition matrixelements has been investigated between different bound states via Rabi oscillations. (orig.)
Ionization and bound-state relativistic quantum dynamics in laser-driven multiply charged ions
Energy Technology Data Exchange (ETDEWEB)
Hetzheim, Henrik
2009-01-14
The interaction of ultra-strong laser fields with multiply charged hydrogen-like ions can be distinguished in an ionization and a bound dynamics regime. Both are investigated by means of numerically solving the Dirac equation in two dimensions and by a classical relativistic Monte-Carlo simulation. For a better understanding of highly nonlinear physical processes the development of a well characterized ultra-intense relativistic laser field strength has been driven forward, capable of studying e.g. the magnetic field effects of the laser resulting in an additional electron motion in the laser propagation direction. A novel method to sensitively measure these ultra-strong laser intensities is developed and employed from the optical via the UV towards the XUV frequency regime. In the bound dynamics field, the determination of multiphoton transition matrixelements has been investigated between different bound states via Rabi oscillations. (orig.)
Resolving the Spatial Structures of Bound Hole States in Black Phosphorus.
Qiu, Zhizhan; Fang, Hanyan; Carvalho, Alexandra; Rodin, A S; Liu, Yanpeng; Tan, Sherman J R; Telychko, Mykola; Lv, Pin; Su, Jie; Wang, Yewu; Castro Neto, A H; Lu, Jiong
2017-11-08
Understanding the local electronic properties of individual defects and dopants in black phosphorus (BP) is of great importance for both fundamental research and technological applications. Here, we employ low-temperature scanning tunnelling microscope (LT-STM) to probe the local electronic structures of single acceptors in BP. We demonstrate that the charge state of individual acceptors can be reversibly switched by controlling the tip-induced band bending. In addition, acceptor-related resonance features in the tunnelling spectra can be attributed to the formation of Rydberg-like bound hole states. The spatial mapping of the quantum bound states shows two distinct shapes evolving from an extended ellipse shape for the 1s ground state to a dumbbell shape for the 2p x excited state. The wave functions of bound hole states can be well-described using the hydrogen-like model with anisotropic effective mass, corroborated by our theoretical calculations. Our findings not only provide new insight into the many-body interactions around single dopants in this anisotropic two-dimensional material but also pave the way to the design of novel quantum devices.
Tortora, Maxime M. C.; Doye, Jonathan P. K.
2017-12-01
We detail the application of bounding volume hierarchies to accelerate second-virial evaluations for arbitrary complex particles interacting through hard and soft finite-range potentials. This procedure, based on the construction of neighbour lists through the combined use of recursive atom-decomposition techniques and binary overlap search schemes, is shown to scale sub-logarithmically with particle resolution in the case of molecular systems with high aspect ratios. Its implementation within an efficient numerical and theoretical framework based on classical density functional theory enables us to investigate the cholesteric self-assembly of a wide range of experimentally relevant particle models. We illustrate the method through the determination of the cholesteric behavior of hard, structurally resolved twisted cuboids, and report quantitative evidence of the long-predicted phase handedness inversion with increasing particle thread angles near the phenomenological threshold value of 45°. Our results further highlight the complex relationship between microscopic structure and helical twisting power in such model systems, which may be attributed to subtle geometric variations of their chiral excluded-volume manifold.
Relativistic description of quark-antiquark bound states. Spin-independent treatment
International Nuclear Information System (INIS)
Gara, A.; Durand, B.; Durand, L.; Nickisch, L.J.
1989-01-01
We present the results of a detailed study of light- and heavy-quark--antiquark bound states in the context of the reduced Bethe-Salpeter equation with static vector and scalar interactions. In the present paper, we consider the spin-averaged spectra. Spin effects are considered in a separate paper. We find that this approach, although apparently successful for the heavy-quark b bar b and c bar c states, fails for the s bar s, l bar l, and light-heavy states. The reasons for the failure are intrinsic to the method, as we discuss. Difficulties are already evident for the c bar c states
Hadamard States for the Klein-Gordon Equation on Lorentzian Manifolds of Bounded Geometry
Gérard, Christian; Oulghazi, Omar; Wrochna, Michał
2017-06-01
We consider the Klein-Gordon equation on a class of Lorentzian manifolds with Cauchy surface of bounded geometry, which is shown to include examples such as exterior Kerr, Kerr-de Sitter spacetime and the maximal globally hyperbolic extension of the Kerr outer region. In this setup, we give an approximate diagonalization and a microlocal decomposition of the Cauchy evolution using a time-dependent version of the pseudodifferential calculus on Riemannian manifolds of bounded geometry. We apply this result to construct all pure regular Hadamard states (and associated Feynman inverses), where regular refers to the state's two-point function having Cauchy data given by pseudodifferential operators. This allows us to conclude that there is a one-parameter family of elliptic pseudodifferential operators that encodes both the choice of (pure, regular) Hadamard state and the underlying spacetime metric.
In-gap bound states induced by interstitial Fe impurities in iron-based superconductors
Energy Technology Data Exchange (ETDEWEB)
Zhang, Degang, E-mail: degangzhang@yahoo.com
2015-12-15
Highlights: • We provide an explanation for the interesting STM observation of the robust zero energy bound state on the interstitial Fe impurities in iron-based superconductors. - Abstract: Based on a two-orbit four-band tight binding model, we investigate the low-lying electronic states around the interstitial excess Fe ions in the iron-based superconductors by using T-matrix approach. It is shown that the local density of states at the interstitial Fe impurity (IFI) possesses a strong resonance inside the gap, which seems to be insensitive to the doping and the pairing symmetry in the Fe–Fe plane, while a single or two resonances appear at the nearest neighboring (NN) Fe sites. The location and height of the resonance peaks only depend on the hopping t and the pairing parameter Δ{sub I} between the IFI and the NN Fe sites. These in-gap resonances are originated in the Andreev’s bound states due to the quasiparticle tunneling through the IFI, leading to the change of the magnitude of the superconducting order parameter. When both t and Δ{sub I} are small, this robust zero-energy bound state near the IFI is consistent with recent scanning tunneling microscopy observations.
Radiative width of molecular-cluster states
International Nuclear Information System (INIS)
Alhassid, Y.; Gai, M.; Bertsch, G.F.
1982-01-01
Molecular states are characterized by enhanced electromagnetic deexcitations of many different multipolarities. The expected enhancement of E1, E2, and E3 transitions is examined by deriving molecular sum rules for radiative deexcitation widths and via a dimensionality approach. The enhancement of the E1 transitions is the most striking
First observation of bound excited states in the A/Z = 3 nucleus 15B
International Nuclear Information System (INIS)
Dobradi, Zs.; Sohler, D.; Azaiez, F.
2004-01-01
Complete text of publication follows. Structure of strongly neutron rich nuclei, especially of those lying close to the neutron drip line came into the focus of interest. Among others, the structure of neutron rich Boron isotopes also attracted attention in the last decade. The nuclei 15 B, 17 B and 19 B are particle stable, while the isotopes with even mass number are unstable against neutron emission. Even the neutron rich Boron isotopes with odd mass number have a low neutron binding energy, which is a sign of their weakly bound nature. As a common effect of the weak binding and of the large neutron excess, neutron skin or halo can also develop already in the isotope 15 B with A/Z = 3. Structure of the nucleus 15 B has been investigated by in-beam γ-spectroscopic study of the 9 Be + 36 S fragmentation reaction at GANIL, France. The emerging fragments were identified by use of a standard ΔE-time-of-fight technique with help of the SPEG spectrograph. γ-ray energies, intensities and γγ coincidences have been measured in coincidence with the projectile like fragments by 74 BaF 2 detectors of the Chateau de crystal. On the basis of the γ-spectroscopic information the level scheme presented in Figure 1 was constructed. The level scheme is shown together with the results of di rent model calculations. The common in predictions of these models is that all of them suggest a ground state band with the spin sequence 3/2 - , 5/2 - and 7/2 - , as well as a 1/2 - state, which involves a proton single particle excitation. The shell model calculations (SM) predict similar moments of inertia, strongly different from that of the antisymmetrized molecular dynamics calculations (AMD). The experimentally observed states can be assigned to the members of the rotational band on the basis of their decay properties. The experimental results confirm the predictions of the shell model. (author)
International Nuclear Information System (INIS)
Jones, N J A; Minns, R S; Patel, R; Fielding, H H
2008-01-01
The Stark spectra of Rydberg states of NO below the υ + = 0 ionization limit, with principal quantum numbers n = 25-30, have been investigated in the presence of dc electric fields in the range 0-150 V cm -1 . The Stark states were accessed by two-colour, double-resonance excitation via the υ' = 0, N' = 0 rovibrational state of the A 2 Σ + state. The N( 2 D) atoms produced by predissociation were measured by (2 + 1) resonance-enhanced multiphoton ionization, and compared with pulsed-field ionization spectra of the bound Rydberg state population (Patel et al 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1369)
Bound states of quarks calculated with stochastic integration of the Bethe-Salpeter equation
International Nuclear Information System (INIS)
Salomon, M.
1992-07-01
We have computed the masses, wave functions and sea quark content of mesons in their ground state by integrating the Bethe-Salpeter equation with a stochastic algorithm. This method allows the inclusion of a large set of diagrams. Inspection of the kernel of the equation shows that q-q-bar pairs with similar constituent masses in a singlet spin state exhibit a high bound state which is not present in other pairs. The pion, kaon and eta belongs to this category. 19 refs., 2 figs., 2 tabs
Lower Bounds on the Capacity of the Relay Channel with States at the Source
Directory of Open Access Journals (Sweden)
Abdellatif Zaidi
2009-01-01
Full Text Available We consider a state-dependent three-terminal full-duplex relay channel with the channel states noncausally available at only the source, that is, neither at the relay nor at the destination. This model has application to cooperation over certain wireless channels with asymmetric cognition capabilities and cognitive interference relay channels. We establish lower bounds on the channel capacity for both discrete memoryless (DM and Gaussian cases. For the DM case, the coding scheme for the lower bound uses techniques of rate-splitting at the source, decode-and-forward (DF relaying, and a Gel'fand-Pinsker-like binning scheme. In this coding scheme, the relay decodes only partially the information sent by the source. Due to the rate-splitting, this lower bound is better than the one obtained by assuming that the relay decodes all the information from the source, that is, full-DF. For the Gaussian case, we consider channel models in which each of the relay node and the destination node experiences on its link an additive Gaussian outside interference. We first focus on the case in which the links to the relay and to the destination are corrupted by the same interference; and then we focus on the case of independent interferences. We also discuss a model with correlated interferences. For each of the first two models, we establish a lower bound on the channel capacity. The coding schemes for the lower bounds use techniques of dirty paper coding or carbon copying onto dirty paper, interference reduction at the source and decode-and-forward relaying. The results reveal that, by opposition to carbon copying onto dirty paper and its root Costa's initial dirty paper coding (DPC, it may be beneficial in our setup that the informed source uses a part of its power to partially cancel the effect of the interference so that the uninformed relay benefits from this cancellation, and so the source benefits in turn.
Radiative bound-state-formation cross-sections for dark matter interacting via a Yukawa potential
Energy Technology Data Exchange (ETDEWEB)
Petraki, Kalliopi [LPTHE, CNRS, UMR 7589,4 Place Jussieu, F-75252, Paris (France); Nikhef,Science Park 105, 1098 XG Amsterdam (Netherlands); Postma, Marieke; Vries, Jordy de [Nikhef,Science Park 105, 1098 XG Amsterdam (Netherlands)
2017-04-13
We calculate the cross-sections for the radiative formation of bound states by dark matter whose interactions are described in the non-relativistic regime by a Yukawa potential. These cross-sections are important for cosmological and phenomenological studies of dark matter with long-range interactions, residing in a hidden sector, as well as for TeV-scale WIMP dark matter. We provide the leading-order contributions to the cross-sections for the dominant capture processes occurring via emission of a vector or a scalar boson. We offer a detailed inspection of their features, including their velocity dependence within and outside the Coulomb regime, and their resonance structure. For pairs of annihilating particles, we compare bound-state formation with annihilation.
Interaction of D0-brane bound states and Ramond-Ramond photons
International Nuclear Information System (INIS)
Fatollahi, Amir H.
2002-01-01
We consider the problem of the interaction between a D0-brane bound state and one-form Ramond-Ramond (RR) photons using the world-line theory. Based on the fact that in the world-line theory the RR gauge fields depend on the matrix coordinates of D0-branes, the gauge fields also appear as matrices in the formulation. At the classical level, we derive the Lorentz-like equations of motion for D0-branes, and it is observed that the center of mass is colorless with respect to the SU(N) sector of the background. Using the path integral method, the perturbation theory for the interaction between the bound state and the RR background is developed. Qualitative considerations show that the possibility of the existence of a map between the world-line theory and the non-Abelian gauge theory is very considerable
The number of bound states for a discrete Schroedinger operator on ZN, N≥1, lattices
International Nuclear Information System (INIS)
Karachalios, N I
2008-01-01
We consider the discrete Schroedinger operator -Δ d +U in Z N , N≥1 in the case of a potential with negative part in an appropriate l σ -space (decays with an appropriate rate). We present a discrete analog of the method of Li and Yau (1983 Commun. Math. Phys. 88 309-18), proving an explicit upper estimate on the number of bound states N d (0)={j:μ j ≤0}, which is independent of the dimension of the lattice. This is a major difference with the continuous counterpart estimate, which is not valid when N = 1, 2. As a consequence, a dimension-independent smallness criterion for the existence of bound states is derived in contrast to the continuous case as well as to the discrete case of vanishing potential. A short comment is made on possible applications of the results to the study of the dynamics of some particular spatially discrete nonlinear systems
Light-Front Hamiltonian Approach to the Bound-State Problem in Quantum Electrodynamics
Jones, Billy D.
1997-10-01
Why is the study of the Lamb shift in hydrogen, which at the level of detail found in this paper was largely completed by Bethe in 1947, of any real interest today? While completing such a calculation using new techniques may be very interesting for formal and academic reasons, our primary motivation is to lay groundwork for precision bound-state calculations in QCD. The Lamb shift provides an excellent pedagogical tool for illustrating light-front Hamiltonian techniques, which are not widely known; but more importantly it presents three of the central dynamical and computational problems that we must face to make these techniques useful for solving QCD: How does a constituent picture emerge in a gauge field theory? How do bound-state energy scales emerge non-perturbatively? How does rotational symmetry emerge in a non-perturbative light-front calculation?
Gauge-invariant, nonperturbative approach to the infrared-finite bound-state problem in QCD
International Nuclear Information System (INIS)
Gogokhia, V.Sh.
1989-09-01
Gauge invariant, nonperturbative approach to the bound state problem within the infrared finite Bethe-Salpeter equation is presented. Condition of cancellation of the nonperturbative infrared divergences is derived. Solutions for the quark propagator and corresponding quark gluon vertex function are written down which can be directly applied to the Bethe-Salpeter equation, in particular to the 'generalized ladder' approximation of this equation. (author) 18 refs.; 3 figs
Dissecting zero modes and bound states on BPS vortices in Ginzburg-Landau superconductors
Energy Technology Data Exchange (ETDEWEB)
Izquierdo, A. Alonso [Departamento de Matematica Aplicada, Universidad de Salamanca,Facultad de Ciencias Agrarias y Ambientales,Av. Filiberto Villalobos 119, E-37008 Salamanca (Spain); Fuertes, W. Garcia [Departamento de Fisica, Universidad de Oviedo, Facultad de Ciencias,Calle Calvo Sotelo s/n, E-33007 Oviedo (Spain); Guilarte, J. Mateos [Departamento de Fisica Fundamental, Universidad de Salamanca, Facultad de Ciencias,Plaza de la Merced, E-37008 Salamanca (Spain)
2016-05-12
In this paper the zero modes of fluctuation of cylindrically symmetric self-dual vortices are analyzed and described in full detail. These BPS topological defects arise at the critical point between Type II and Type I superconductors, or, equivalently, when the masses of the Higgs particle and the vector boson in the Abelian Higgs model are equal. In addition, novel bound states of Higss and vector bosons trapped by the self-dual vortices at their core are found and investigated.
International Nuclear Information System (INIS)
Batiz, Zoltan; Gross, Franz
2000-01-01
The momentum conservation sum rule for deep inelastic scattering (DIS) from composite particles is investigated using the general theory of relativity. For two (1+1)-dimensional examples, it is shown that covariant theories automatically satisy the DIS momentum conservation sum rule provided the bound state is covariantly normalized. Therefore, in these cases the two DIS sum rules for baryon conservation and momentum conservation are equivalent. (c) 2000 The American Physical Society
Bound state solution of the Grassmannian nonlinear sigma model with fermions
International Nuclear Information System (INIS)
Abdalla, E.; Lima-Santos, A.
1987-11-01
We construct the s matrix for bound state (gauge-invariant) scattering for nonlinear sigma models defined on the manifold SU(N)/S(U(p)x (lower casex)U(n-p)) with fermions. It is not possible to compute gauge non-singlet matrix elements. In the present language they are not submitted to sufficiently many constraints derived from higher conservation laws. (author) [pt
Three-photon laser spectroscopy of even-parity bound states of samarium atom
International Nuclear Information System (INIS)
Gomonaj, O.Yi.; Kudelich, O.Yi.
2002-01-01
The energy spectrum of highly-excited even-parity bound states of a Sm atom, lying in the energy range 34421.1 - 36031.8 cm -1 , is investigated using three-photon resonance-ionization spectroscopy. The energies and total momenta of 48 levels are determined. Eight new levels not observed before are discovered. Thirteen intense two-photon transitions, which can be used in the schemes of Sm atom effective photoionization, are observed
The ordering of low-lyiing bound states of three identical particles
International Nuclear Information System (INIS)
Richard, J.M.; Taxil, P.
1990-01-01
New results are presented on the ordering of bound states of three identical particles, a problem inspired by baryon spectroscopy. We first study the case of a perturbed harmonic oscillator and relate the splitting pattern to the level spacings in the two-body problem. We also obtain much more general results, valid for almost any symmetric potential, not necessarily pairwise. The proof is given in the framework of the hyperspherical formalism. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Fox, Zachary [School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Neuert, Gregor [Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 (United States); Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232 (United States); Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee 37232 (United States); Munsky, Brian [School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States)
2016-08-21
Emerging techniques now allow for precise quantification of distributions of biological molecules in single cells. These rapidly advancing experimental methods have created a need for more rigorous and efficient modeling tools. Here, we derive new bounds on the likelihood that observations of single-cell, single-molecule responses come from a discrete stochastic model, posed in the form of the chemical master equation. These strict upper and lower bounds are based on a finite state projection approach, and they converge monotonically to the exact likelihood value. These bounds allow one to discriminate rigorously between models and with a minimum level of computational effort. In practice, these bounds can be incorporated into stochastic model identification and parameter inference routines, which improve the accuracy and efficiency of endeavors to analyze and predict single-cell behavior. We demonstrate the applicability of our approach using simulated data for three example models as well as for experimental measurements of a time-varying stochastic transcriptional response in yeast.
Matthews, Edward; Sen, Ananya; Yoshikawa, Naruo; Bergström, Ed; Dessent, Caroline E H
2016-06-01
Isolated molecular clusters of adenine, cytosine, thymine and uracil bound to hexachloroplatinate, PtCl6(2-), have been studied using laser electronic photodissociation spectroscopy to investigate photoactivation of a platinum complex in the vicinity of a nucleobase. These metal complex-nucleobase clusters represent model systems for identifying the fundamental photochemical processes occurring in photodynamic platinum drug therapies that target DNA. This is the first study to explore the specific role of a strongly photoactive platinum compound in the aggregate complex. Each of the clusters studied displays a broadly similar absorption spectra, with a strong λmax ∼ 4.6 eV absorption band and a subsequent increase in the absorption intensity towards higher spectral-energy. The absorption bands are traced to ligand-to-metal-charge-transfer excitations on the PtCl6(2-) moiety within the cluster, and result in Cl(-)·nucleobase and PtCl5(-) as primary photofragments. These results demonstrate how selective photoexcitation can drive distinctive photodecay channels for a model photo-pharmaceutical. In addition, cluster absorption due to excitation of nucleobase-centred chromophores is observed in the region around 5 eV. For the uracil cluster, photofragments consistent with ultrafast decay of the excited state and vibrational predissociation on the ground-state surface are observed. However, this decay channel becomes successively weaker on going from thymine to cytosine to adenine, due to differential coupling of the excited states to the electron detachment continuum. These effects demonstrate the distinctive photophysical characteristics of the different nucleobases, and are discussed in the context of the recently recorded photoelectron spectra of theses clusters.
Bag-model analyses of proton-antiproton scattering and atomic bound states
International Nuclear Information System (INIS)
Alberg, M.A.; Freedman, R.A.; Henley, E.M.; Hwang, W.P.; Seckel, D.; Wilets, L.
1983-01-01
We study proton-antiproton (pp-bar ) scattering using the static real potential of Bryan and Phillips outside a cutoff radius rsub0 and two different shapes for the imaginary potential inside a radius R*. These forms, motivated by bag models, are a one-gluon-annihilation potential and a simple geometric-overlap form. In both cases there are three adjustable parameters: the effective bag radius R*, the effective strong coupling constant αsubssup*, and rsub0. There is also a choice for the form of the real potential inside the cutoff radius rsub0. Analysis of the pp-bar scattering data in the laboratory-momentum region 0.4--0.7 GeV/c yields an effective nucleon bag radius R* in the range 0.6--1.1 fm, with the best fit obtained for R* = 0.86 fm. Arguments are presented that the deduced value of R* is likely to be an upper bound on the isolated nucleon bag radius. The present results are consistent with the range of bag radii in current bag models. We have also used the resultant optical potential to calculate the shifts and widths of the sup3Ssub1 and sup1Ssub0 atomic bound states of the pp-bar system. For both states we find upward (repulsive) shifts and widths of about 1 keV. We find no evidence for narrow, strongly bound pp-bar states in our potential model
Nonlinear spectroscopy of the bound exciton states in CdSe single crystals
International Nuclear Information System (INIS)
Lisitsa, M.P.; Onishchenko, N.A.; Stolyarenko, A.V.; Ananchenko, V.V.; Polishchuk, S.V.
1989-01-01
The study is devoted to the pulsed laser radiation effect on the time-resolved variations of free and bound exciton bands region at the helium temperature. A gradual disappearance of the bound I 2 exciton state is observed with increase of the excitation intensity I in CdSe transmission spectra. This phenomenon is explained by the fact that despite of the shorter life of I 2 excitons as compared to the free ones, the concentration of the centres on which they localize is rather low (≤10 16 cm -3 ) while the evolution of the light-generated electron-hole pairs is such as the most probable recombination through the bound excitons. The transmission spectrum kinetics is studied. The intensity limitation of the laser pulse transmitted through the crystal in the region of the exciton ground state region is shown to be related with two-photon absorption (TPA) in which the exciton state is an intermediate level. The calculation results are in good agreement with the experiment. The estimations show the giant TPA coefficient of ∼10 3 cm/MW. The evolution of photoexcited nonequilibrium electron-hole pairs is studied. The possibility of using CdSe single crystals as spectrum-selective limiters of the laser pulses is shown. (author)
Nonthreshold D-brane bound states and black holes with nonzero entropy
International Nuclear Information System (INIS)
Costa, M.S.; Cvetic, M.
1997-01-01
We start with Bogomol close-quote nyi-Prasad-Sommerfield- (BPS) saturated configurations of two (orthogonally) intersecting M-branes and use the electromagnetic duality or dimensional reduction along a boost, in order to obtain new p-brane bound states. In the first case the resulting configurations are interpreted as BPS-saturated nonthreshold bound states of intersecting p-branes, and in the second case as p-branes intersecting at angles and their duals. As a by-product we deduce the enhancement of supersymmetry as the angle approaches zero. We also comment on the D-brane theory describing these new bound states, and a connection between the angle and the world-volume gauge fields of the D-brane system. We use these configurations to find new embeddings of the four- and five-dimensional black holes with nonzero entropy, whose entropy now also depends on the angle and world-volume gauge fields. The corresponding D-brane configuration sheds light on the microscopic entropy of such black holes. copyright 1997 The American Physical Society
Bound-state β decay of a neutron in a strong magnetic field
International Nuclear Information System (INIS)
Kouzakov, Konstantin A.; Studenikin, Alexander I.
2005-01-01
The β decay of a neutron into a bound (pe - ) state and an antineutrino in the presence of a strong uniform magnetic field (B > or approx. 10 13 G) is considered. The β decay process is treated within the framework of the standard model of weak interactions. A Bethe-Salpeter formalism is employed for description of the bound (pe - ) system in a strong magnetic field. For the field strengths 10 13 18 G the estimate for the ratio of the bound-state decay rate w b and the usual (continuum-state) decay rate w c is derived. It is found that in such strong magnetic fields w b /w c ∼0.1-0.4. This is in contrast to the field-free case, where w b /w c ≅4.2x10 -6 [J. N. Bahcall, Phys. Rev. 124, 495 (1961); L. L. Nemenov, Sov. J. Nucl. Phys. 15, 582 (1972); X. Song, J. Phys. G: Nucl. Phys. 13, 1023 (1987)]. The dependence of the ratio w b /w c on the magnetic field strength B exhibits a logarithmiclike behavior. The obtained results can be important for applications in astrophysics and cosmology
The arbitrary l continuum states of the hyperbolic molecular potential
Energy Technology Data Exchange (ETDEWEB)
Wei, Gao-Feng, E-mail: fgwei_2000@163.com [School of Physics and Mechatronics Engineering, Xi' an University of Arts and Science, Xi' an 710065 (China); Chen, Wen-Li, E-mail: physwlchen@163.com [Department of Basic Science, Xi' an Peihua University, Xi' an 710065 (China); Dong, Shi-Hai, E-mail: dongsh2@yahoo.com [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, Mexico D.F. 07738 (Mexico); Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States)
2014-06-27
Within the framework of partial-wave method, we study in this Letter the arbitrary l continuum states of the Schrödinger equation with the hyperbolic molecular potential in terms of an improved approximation to the centrifugal term. We present the normalized radial wave functions and obtain analytical formula of phase shifts. In addition, the corresponding bound states are also discussed by studying the analytical properties of the scattering amplitude. We calculate the energy spectra and scattering phase shifts by the improved, previous approximations and the accurate methods, respectively and find that the improved approximation is better than the previous one since the present results are in better agreement with the accurate ones. - Highlights: • The hyperbolic potential with arbitrary l state is solved. • Improved approximation to centrifugal term is used. • Phase shift formula is derived analytically. • Accurate results are compared with the present results.
International Nuclear Information System (INIS)
Shen Yong; Yang Jian; Guo Hong
2009-01-01
Security of a continuous-variable quantum key distribution protocol based on noisy coherent states and channel is analysed. Assuming that the noise of coherent states is induced by Fred, a neutral party relative to others, we prove that the prepare-and-measurement scheme (P and M) and entanglement-based scheme (E-B) are equivalent. Then, we show that this protocol is secure against Gaussian collective attacks even if the channel is lossy and noisy, and, further, a lower bound to the secure key rate is derived.
A bridge between hyperspherical and integro-differential approaches to the many-body bound states
International Nuclear Information System (INIS)
Fabre de la Ripelle, M.
1986-01-01
The solution of the Schroedinger equation can be obtained from the one of a system of coupled differential equations generated from the potential harmonic expansion of the bound-state wave function of a system of identical particles governed by two-body central interactions. It is shown that the system of coupled equations can be transformed into an equivalent integro-differential equation. For three bosons in S states this equation is identical to the Faddeev equation as written by Noyes. The integro-differential equations describing the triton for non-central realistic N-N forces are explicitly given. (Auth.)
Trif, Mircea; Dmytruk, Olesia; Bouchiat, Hélène; Aguado, Ramón; Simon, Pascal
2018-02-01
We theoretically study a Josephson junction based on a semiconducting nanowire subject to a time-dependent flux bias. We establish a general density-matrix approach for the dynamical response of the Majorana junction and calculate the resulting flux-dependent susceptibility using both microscopic and effective low-energy descriptions for the nanowire. We find that the diagonal component of the susceptibility, associated with the dynamics of the Majorana state populations, dominates over the standard Kubo contribution for a wide range of experimentally relevant parameters. The diagonal term, explored, in this Rapid Communication, in the context of Majorana physics, allows probing accurately the presence of Majorana bound states in the junction.
Energy Technology Data Exchange (ETDEWEB)
Shen Yong; Yang Jian; Guo Hong, E-mail: hongguo@pku.edu.c [CREAM Group, State Key Laboratory of Advanced Optical Communication Systems and Networks (Peking University) and Institute of Quantum Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China)
2009-12-14
Security of a continuous-variable quantum key distribution protocol based on noisy coherent states and channel is analysed. Assuming that the noise of coherent states is induced by Fred, a neutral party relative to others, we prove that the prepare-and-measurement scheme (P and M) and entanglement-based scheme (E-B) are equivalent. Then, we show that this protocol is secure against Gaussian collective attacks even if the channel is lossy and noisy, and, further, a lower bound to the secure key rate is derived.
Predictions of the hidden-charm molecular states with the four quark components
International Nuclear Information System (INIS)
Chen, Rui; Liu, Xiang; Liu, Yan-Rui; Zhu, Shi-Lin
2016-01-01
In this work, we study the T anti T-type molecular systems systematically via the one pion exchange model, where T denotes the narrow J P = 1 + D 1 meson or 2 + D 2 * meson and anti T is its antiparticle.With the effective potentials, we try to find the bound-state solutions of the corresponding systems, which provide crucial information of whether T anti T-type molecular states exist. By our analysis, we predict some T anti T-type molecular states which may be accessible at future experiments like LHCb and forthcoming BelleII. (orig.)
Predictions of the hidden-charm molecular states with the four quark components
Energy Technology Data Exchange (ETDEWEB)
Chen, Rui; Liu, Xiang [Lanzhou University, School of Physical Science and Technology, Lanzhou (China); Lanzhou University and Institute of Modern Physics of CAS, Research Center for Hadron and CSR Physics, Lanzhou (China); Liu, Yan-Rui [Shandong University, School of Physics and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Jinan (China); Institute of Theoretical Physics, CAS, Key Laboratory of Theoretical Physics, Beijing (China); Zhu, Shi-Lin [Peking University, School of Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Peking University, Center for High Energy Physics, Beijing (China)
2016-06-15
In this work, we study the T anti T-type molecular systems systematically via the one pion exchange model, where T denotes the narrow J{sup P} = 1{sup +} D{sub 1} meson or 2{sup +} D{sub 2}{sup *} meson and anti T is its antiparticle.With the effective potentials, we try to find the bound-state solutions of the corresponding systems, which provide crucial information of whether T anti T-type molecular states exist. By our analysis, we predict some T anti T-type molecular states which may be accessible at future experiments like LHCb and forthcoming BelleII. (orig.)
International Nuclear Information System (INIS)
Dodonov, V V
2012-01-01
Exact and approximate formulas for the upper bound of the relative energy difference of two Gaussian states with a fixed fidelity between them are derived. The reciprocal formulas for the upper bound of the fidelity for the fixed value of the relative energy difference are also obtained. The bounds appear higher for pure states than for mixed ones, and their maximal values correspond to squeezed vacuum states. In particular, to guarantee the relative energy difference less than 10%, for quite arbitrary Gaussian states, the fidelity between them must exceed the level 0.998866. (fast track communication)
Bound states and Cooper pairs of molecules in 2D optical lattices bilayer
Energy Technology Data Exchange (ETDEWEB)
Camacho-Guardian, A.; Dominguez-Castro, G.A.; Paredes, R. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico (Mexico)
2016-08-15
We investigate the formation of Cooper pairs, bound dimers and the dimer-dimer elastic scattering of ultracold dipolar Fermi molecules confined in a 2D optical lattice bilayer configuration. While the energy and their associated bound states are determined in a variational way, the correlated two-molecule pair is addressed as in the original Cooper formulation. We demonstrate that the 2D lattice confinement favors the formation of zero center mass momentum bound states. Regarding the Cooper pairs binding energy, this depends on the molecule populations in each layer. Maximum binding energies occur for non-zero (zero) pair momentum when the Fermi system is polarized (unpolarized). We find an analytic expression for the dimer-dimer effective interaction in the deep BEC regime. The present analysis represents a route for addressing the BCS-BEC crossover in dipolar Fermi gases confined in 2D optical lattices within the current experimental panorama. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Signatures of Majorana bound states in one-dimensional topological superconductors
International Nuclear Information System (INIS)
Pientka, Falko
2014-01-01
Topological states of matter have fascinated condensed matter physicists for the past three decades. Famous examples include the integer and fractional quantum Hall states exhibiting a spectacular conductance quantization as well as topological insulators in two and three dimensions featuring gapless Dirac fermions at the boundary. Very recently, novel topological phases in superconductors have been subject of intense experimental and theoretical investigation. One-dimensional topological superconductors are particularly intriguing as they host exotic Majorana end states. These are zero-energy bound states with nonabelian exchange statistics potentially useful for topologically protected quantum computing. Recent theoretical and experimental advances have put the realization of Majorana states within reach of current measurement techniques. In this thesis we investigate signatures of Majorana bound states in realistic experiments aiming to improve the theoretical understanding of ongoing experimental efforts and to design novel measurement schemes, which exhibit convincing signatures of Majoranas. In particular we account for nonideal experimental conditions which can lead to qualitatively new features. Possible signatures of Majoranas can be accessed in the Josephson current through a weak link between two topological superconductors although the signatures in the dc Josephson effect are typically obscured by inevitable quasiparticle relaxation in the superconductor. Here we propose a measurement scheme in mesoscopic superconducting rings, where Majorana signatures persist even for infinitely fast relaxation. In a separate project we outline an alternative to the standard Josephson experiment in topological superconductors based on quantum wires. We delineate how Majoranas can be detected, when the Josephson current is induced by noncollinear magnetic fields applied to the two banks of the junction instead of a superconducting phase difference. Another important
Two-dimensional electron states bound to an off-plane donor in a magnetic field
International Nuclear Information System (INIS)
Bruno-Alfonso, A; Candido, L; Hai, G-Q
2010-01-01
The states of an electron confined in a two-dimensional (2D) plane and bound to an off-plane donor impurity center, in the presence of a magnetic field, are investigated. The energy levels of the ground state and the first three excited states are calculated variationally. The binding energy and the mean orbital radius of these states are obtained as a function of the donor center position and the magnetic field strength. The limiting cases are discussed for an in-plane donor impurity (i.e. a 2D hydrogen atom) as well as for the donor center far away from the 2D plane in strong magnetic fields, which corresponds to a 2D harmonic oscillator.
Huber, Felix; Eltschka, Christopher; Siewert, Jens; Gühne, Otfried
2018-04-01
A pure multipartite quantum state is called absolutely maximally entangled (AME), if all reductions obtained by tracing out at least half of its parties are maximally mixed. Maximal entanglement is then present across every bipartition. The existence of such states is in many cases unclear. With the help of the weight enumerator machinery known from quantum error correction and the shadow inequalities, we obtain new bounds on the existence of AME states in dimensions larger than two. To complete the treatment on the weight enumerator machinery, the quantum MacWilliams identity is derived in the Bloch representation. Finally, we consider AME states whose subsystems have different local dimensions, and present an example for a 2×3×3×3 system that shows maximal entanglement across every bipartition.
Topologically protected bound states in one-dimensional Floquet acoustic waveguide systems
Peng, Yu-Gui; Geng, Zhi-Guo; Zhu, Xue-Feng
2018-03-01
Topological manipulation of sound has recently been a hot spot in acoustics due to the fascinating property of defect immune transport. To the best of our knowledge, the studies on one-dimensional (1D) topological acoustic systems hitherto mainly focus on the case of the Su-Schrieffer-Heeger model. Here, we show that topologically protected bound states may also exist in 1D periodically modulated acoustic waveguide systems, viz., 1D Floquet topological insulators. The results show that tuning the coupling strength in a waveguide lattice could trigger topological phase transition, which gives rise to topologically protected interface states as we put together two waveguide lattices featured with different topological phases or winding numbers. However, for the combined lattice, input at the waveguides other than the interfacial ones will excite bulk states. We have further verified the robustness of interface bound states against the variation of coupling strengths between the two distinct waveguide lattices. This work extends the scope of topological acoustics and may promote potential applications for acoustic devices with topological functionalities.
State-to-state dynamics of molecular energy transfer
Energy Technology Data Exchange (ETDEWEB)
Gentry, W.R.; Giese, C.F. [Univ. of Minnesota, Minneapolis (United States)
1993-12-01
The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.
International Nuclear Information System (INIS)
Eappen, K.P.; Mayya, Y.S.; Patnaik, R.L.; Kushwaha, H.S.
2006-01-01
For the assessment of inhalation doses due to radon and its progeny to uranium mine workers, it is necessary to have information on the time integrated gas concentrations and equilibrium factors. Passive single cup dosimeters using solid state nuclear track detectors (SSNTD) are best suited for this purpose. These generally contain two SSNTDs, one placed inside the cup to measure only the radon gas concentration and other outside the cup for recording tracks due to both radon gas and the progeny species. However, since one obtains only two numbers by this method whereas information on four quantities is required for an unambiguous estimation of dose, there is a need for developing an optimal methodology for extracting information on the equilibrium factors. Several techniques proposed earlier have essentially been based on deterministic approaches, which do not fully take into account all the possible uncertainties in the environmental parameters. Keeping this in view, a simple 'mean of bounds' methodology is proposed to extract equilibrium factors based on their absolute bounds and the associated uncertainties as obtained from general arguments of radon progeny disequilibrium. This may be considered as reasonable estimates of the equilibrium factors in the absence of a knowledge of fluctuation in the environmental variables. The results are compared with those from direct measurements both in the laboratory and in real field situations. In view of the good agreement found between these, it is proposed that the simple mean of bounds estimate may be useful for practical applications in inhalation dosimetry of mine workers
Extended Lagrangian Excited State Molecular Dynamics.
Bjorgaard, J A; Sheppard, D; Tretiak, S; Niklasson, A M N
2018-02-13
An extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both for the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. The XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree-Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).
Excited-state molecular photoionization dynamics
International Nuclear Information System (INIS)
Pratt, S.T.
1995-01-01
This review presents a survey of work using resonance-enhanced multiphoton ionization and double-resonance techniques to study excited-state photoionization dynamics in molecules. These techniques routinely provide detail and precision that are difficult to achieve in single-photon ionization from the ground state. The review not only emphasizes new aspects of photoionization revealed in the excited-state experiments but also shows how the excited-state techniques can provide textbook illustrations of some fundamental mechanisms in molecular photoionization dynamics. Most of the examples are confined to diatomic molecules. (author)
Full-potential multiple scattering theory with space-filling cells for bound and continuum states.
Hatada, Keisuke; Hayakawa, Kuniko; Benfatto, Maurizio; Natoli, Calogero R
2010-05-12
We present a rigorous derivation of a real-space full-potential multiple scattering theory (FP-MST) that is free from the drawbacks that up to now have impaired its development (in particular the need to expand cell shape functions in spherical harmonics and rectangular matrices), valid both for continuum and bound states, under conditions for space partitioning that are not excessively restrictive and easily implemented. In this connection we give a new scheme to generate local basis functions for the truncated potential cells that is simple, fast, efficient, valid for any shape of the cell and reduces to the minimum the number of spherical harmonics in the expansion of the scattering wavefunction. The method also avoids the need for saturating 'internal sums' due to the re-expansion of the spherical Hankel functions around another point in space (usually another cell center). Thus this approach provides a straightforward extension of MST in the muffin-tin (MT) approximation, with only one truncation parameter given by the classical relation l(max) = kR(b), where k is the electron wavevector (either in the excited or ground state of the system under consideration) and R(b) is the radius of the bounding sphere of the scattering cell. Moreover, the scattering path operator of the theory can be found in terms of an absolutely convergent procedure in the l(max) --> ∞ limit. Consequently, this feature provides a firm ground for the use of FP-MST as a viable method for electronic structure calculations and makes possible the computation of x-ray spectroscopies, notably photo-electron diffraction, absorption and anomalous scattering among others, with the ease and versatility of the corresponding MT theory. Some numerical applications of the theory are presented, both for continuum and bound states.
A search for deeply-bound kaonic nuclear states at J-PARC
Directory of Open Access Journals (Sweden)
Sakaguchi A.
2010-04-01
Full Text Available The J-PARC E15 experiment will be performed to search for the simplest kaonic nuclear bound state, K− pp, by the in-ﬂight 3He(K−,n reaction. The exclusive measurement can be performed by a simultaneous measurement of the missing mass using the primary neutron and the invariant mass via the expected decay, K− pp → Λp → pπ− p. In this report, an overview of the experiment and the preparation status are presented.
Electron-electron bound states in parity-preserving QED3
International Nuclear Information System (INIS)
Belich, H.; Helayel-Neto, J.A.; Centro Brasileiro de Pesquisas Fisicas; Cima, O.M. del; Ferreira Junior, M.M.; Maranhao Univ., Sao Luis, MA
2002-04-01
By considering the Higgs mechanism in the framework of a parity-preserving Planar Quantum Electrodynamics, one shows that an attractive electron-electron interaction may dominate. The e - e - interaction potential emerges as the non-relativistic limit of the Moeller scattering amplitude and it results attractive with a suitable choice of parameters. Numerically values of the e - e - binding energy are obtained by solving the two-dimensional Schroedinger equation. The existence of bound states is a strong indicative that this model may be adopted to address the pairing mechanism of high-T c superconductivity. (author)
Electron-electron bound states in parity-preserving QED{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Belich, H.; Helayel-Neto, J.A. [Universidade Catolica do Petropolis, RJ (Brazil). Grupo de Fisica Teorica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas; Cima, O.M. del [Universidade Catolica do Petropolis, RJ (Brazil). Grupo de Fisica Teorica; Ferreira Junior, M.M. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]|[Maranhao Univ., Sao Luis, MA (Brazil). Dept. de Fisica
2002-04-01
By considering the Higgs mechanism in the framework of a parity-preserving Planar Quantum Electrodynamics, one shows that an attractive electron-electron interaction may dominate. The e{sup -}e{sup -} interaction potential emerges as the non-relativistic limit of the Moeller scattering amplitude and it results attractive with a suitable choice of parameters. Numerically values of the e{sup -}e{sup -} binding energy are obtained by solving the two-dimensional Schroedinger equation. The existence of bound states is a strong indicative that this model may be adopted to address the pairing mechanism of high-T{sub c} superconductivity. (author)
A rigorous approach to relativistic corrections of bound state energies for spin-1/2 particles
International Nuclear Information System (INIS)
Gesztesy, F.; Thaller, B.; Grosse, H.
1983-01-01
Under fairly general conditions on the interactions we prove holomorphy of the Dirac resolvent around its nonrelativistic limit. As a consequences, perturbation theory in terms of resolvents (instead of Hamiltonians) yields holomorphy of Dirac eigenvalues and eigenfunctions with respect to c - 1 and a new method of calculating relativistic corrections to bound state energies. Due to a formulation in an abstract setting our method is applicable in many different concrete situation. In particular our approach covers the case of the relavistic hydrogen atom in external electromagnetic fields. (Author)
Highly excited bound-state resonances of short-range inverse power-law potentials
Energy Technology Data Exchange (ETDEWEB)
Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)
2017-11-15
We study analytically the radial Schroedinger equation with long-range attractive potentials whose asymptotic behaviors are dominated by inverse power-law tails of the form V(r) = -β{sub n}r{sup -n} with n > 2. In particular, assuming that the effective radial potential is characterized by a short-range infinitely repulsive core of radius R, we derive a compact analytical formula for the threshold energy E{sub l}{sup max} = E{sub l}{sup max}(n, β{sub n}, R), which characterizes the most weakly bound-state resonance (the most excited energy level) of the quantum system. (orig.)
Quantum localization and bound-state formation in Bose-Einstein condensates
International Nuclear Information System (INIS)
Franzosi, Roberto; Giampaolo, Salvatore M.; Illuminati, Fabrizio
2010-01-01
We discuss the possibility of exponential quantum localization in systems of ultracold bosonic atoms with repulsive interactions in open optical lattices without disorder. We show that exponential localization occurs in the maximally excited state of the lowest energy band. We establish the conditions under which the presence of the upper energy bands can be neglected, determine the successive stages and the quantum phase boundaries at which localization occurs, and discuss schemes to detect it experimentally by visibility measurements. The discussed mechanism is a particular type of quantum localization that is intuitively understood in terms of the interplay between nonlinearity and a bounded energy spectrum.
Bounded energy states in homogeneous turbulent shear flow - An alternative view
Bernard, P. S.; Speziale, C. G.
1992-01-01
The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if a residual vortex stretching term is maintained in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are presented for a k-epsilon model modified to account for net vortex stretching.
Simple functional-differential equations for the bound-state wave-function components
International Nuclear Information System (INIS)
Kamuntavicius, G.P.
1986-01-01
The author presents a new method of a direct derivation of differential equations for the wave-function components of identical-particles systems. The method generates in a simple manner all the possible variants of these equations. In some cases they are the differential equations of Faddeev or Yakubovskii. It is shown that the case of the bound states allows to formulate very simple equations for the components which are equivalent to the Schroedinger equation for the complete wave function. The components with a minimal antisymmetry are defined and the corresponding equations are derived. (Auth.)
The ground state energy of a bound polaron in the presence of a magnetic field
Energy Technology Data Exchange (ETDEWEB)
Zorkani, I [International Centre for Theoretical Physics, Trieste (Italy); Belhissi, R [Faculte des Sciences Dhar Mahraz, Fes (Morocco). Dept. de Physique
1995-09-01
A theoretical calculation for the ground state energy of a bound polaron as a function of the magnetic field is presented. The theory is based on a variational approach using a trial wave function proposed by Devreese et al. in the absence of the magnetic field. It was shown that his function is adequate for all electron - phonon coupling {alpha} and all parameter {gamma}{sub 0} which is the ratio between the L.O. phonon energy and the Colombian one. Analytical results are obtained in the weak coupling limit. (author). 27 refs, 4 figs, 1 tab.
Andreev reflection properties in a parallel mesoscopic circuit with Majorana bound states
Energy Technology Data Exchange (ETDEWEB)
Mu, Jin-Tao; Han, Yu [Physics Department, Liaoning University, Shenyang 110036 (China); Gong, Wei-Jiang, E-mail: gwj@mail.neu.edu.cn [College of Sciences, Northeastern University, Shenyang 110819 (China)
2017-03-15
We investigate the Andreev reflection in a parallel mesoscopic circuit with Majorana bound states (MBSs). It is found that in such a structure, the Andreev current can be manipulated in a highly efficient way, by the adjustment of bias voltage, dot levels, inter-MBS coupling, and the applied magnetic flux. Besides, the dot-MBS coupling manner is an important factor to modulate the Andreev current, because it influences the period of the conductance oscillation. By discussing the underlying quantum interference mechanism, the Andreev-reflection property is explained in detail. We believe that all the results can assist to understand the nontrivial role of the MBSs in driving the Andreev reflection.
Exact S-matrices for dn+1(2) affine Toda solitons and their bound states
International Nuclear Information System (INIS)
Gandenberger, G.M.; MacKay, N.J.
1995-01-01
We conjecture an exact S-matrix for the scattering of solitons in d n+1 (2) affine Toda field theory in terms of the R-matrix of the quantum group U q (c n (1) ). From this we construct the scattering amplitudes for all scalar bound states (breathers) of the theory. This S-matrix conjecture is justified by detailed examination of its pole structure. We show that a breather-particle identification holds by comparing the S-matrix elements for the lowest breathers with the S-matrix for the quantum particles in real affine Toda field theory, and discuss the implications for various forms of duality. (orig.)
Numerical solution of the Schrodinger equation for stationary bound states using nodel theorem
International Nuclear Information System (INIS)
Chen Zhijiang; Kong Fanmei; Din Yibin
1987-01-01
An iterative procedure for getting the numerical solution of Schrodinger equation on stationary bound states is introduced. The theoretical foundtion, the practical steps and the method are presented. An example is added at the end. Comparing with other methods, the present one requires less storage, less running time but posesses higher accuracy. It can be run on the personal computer or microcomputer with 256 K memory and 16 bit word length such as IBM/PC, MC68000/83/20, PDP11/23 etc
Analysis of bound-state spectra near the threshold of neutral particle interaction potentials
International Nuclear Information System (INIS)
Ou Fang; Cao Zhuangqi; Chen Jianping; Xu Junjie
2006-01-01
It is understood that conventional semiclassical approximations deteriorate towards threshold in a typical neutral particle interaction potential which is important for the study of ultra-cold atoms and molecules. In this Letter we give an example of the Lennard-Jones potential with tuning of the strength parameter on the basis of the analytical transfer matrix (ATM) method. Highly accurate quantum mechanical results, such as number of the bound states, energy level density and the eigenvalues with extremely low energies have been derived
Monopole-fermion and dyon-fermion bound states. Pt. 5
International Nuclear Information System (INIS)
Osland, P.; Harvard Univ., Cambridge, MA; Schultz, C.L.; Wu, T.T.
1985-02-01
We present explicit, approximate, remarkably precise results for the Kazama-Yang hamiltonian, which describes a Dirac monopole interacting with a spin-1/2 fermion that has an extra magnetic moment. The results are valid for bound states of angular momentum j >= Zvertical strokeegvertical stroke+1/2, where the radial wave functions are determined by four coupled differential equations. These equations have been solved analytically for M - E << M, which is a limit of considerable practical interest. Binding energies and wave functions are given. (orig.)
Bound states for square well potentials extending to infinity in D ≥ 2
International Nuclear Information System (INIS)
Rupertsberger, H.
1992-01-01
It is well known that quantum mechanics allows the penetration into classically forbidden regions (tunneling). Less well known seems to be the fact that in some sense the converse is true also. Potentials with classically allowed regions where a particle can move freely to infinity can nevertheless lead to bound states in quantum mechanics due to the stringent requirements of the boundary conditions, thus forbidding an escape to infinity. This effect is demonstrated by using an obvious generalization of the well known one-dimensional (D = 1) square well potential to arbitray space dimensions. (author)
Computation of Quantum Bound States on a Singly Punctured Two-Torus
International Nuclear Information System (INIS)
Kar-Tim Chan; Zainuddin Hishamuddin; Molladavoudi Saeid
2013-01-01
We study a quantum mechanical system on a singly punctured two-torus with bound states described by the Maass waveforms which are eigenfunctions of the hyperbolic Laplace—Beltrami operator. Since the discrete eigenvalues of the Maass cusp form are not known analytically, they are solved numerically using an adapted algorithm of Hejhal and Then to compute Maass cusp forms on the punctured two-torus. We report on the computational results of the lower lying eigenvalues for the punctured two-torus and find that they are doubly-degenerate. We also visualize the eigenstates of selected eigenvalues using GridMathematica
Mutual friction in superfluid 3He: Effects of bound states in the vortex core
International Nuclear Information System (INIS)
Kopnin, N.B.; Salomaa, M.M.
1991-01-01
The motion of singular quantized vortex lines in superfluid 3 He is considered for the A and B phases. Mutual friction is calculated within a microscopic quantum-mechanical Green's-function formalism, valid for dynamical processes. This enables us to include all the different physical phenomena in a unified approach. We consider axisymmetric vortices for temperatures considerably lower than T c . In this regime, the main contribution to the force exerted on a moving vortex originates from the localized Fermi excitations occupying quantized energy eigenstates in the vortex core. These 3 He quasiparticle states are similar to the quantized motion of charge in a magnetic field; thus vortex motion in 3 He resembles the Hall phenomenon in metals. The outcome is that the viscous drag cannot simply be expressed through the cross sections for 3 He quasiparticles scattering off the vortex, but is rather due to the mutual interactions between the localized quasiparticles and the normal excitations. Our calculations conform with the experimental values for the mutual-friction parameters. We also discuss vortex oscillations, and predict that strong dissipation should be observed at a resonant frequency of about 10 kHz, owing to transitions between the bound-state energy levels. This effect could be used for detecting and measuring the quantization of the bound-state spectrum for superfluid 3 He in the vortex-core matter
New rational extensions of solvable potentials with finite bound state spectrum
International Nuclear Information System (INIS)
Grandati, Yves
2012-01-01
Using the disconjugacy properties of the Schrödinger equation, we develop a new type of generalized SUSY QM partnership which allows generating new solvable rational extensions for translationally shape invariant potentials having a finite bound state spectrum. For this we prolong the dispersion relation relating the energy to the quantum number out of the physical domain until a disconjugacy sector. By Darboux–Bäcklund Transformations built on these prolonged states we obtain new regular isospectral extensions of the initial potential. We give the spectra of these extensions in terms of new orthogonal polynomials and study their shape invariance properties. -- Highlights: ► New solvable quantum potentials. ► SUSY quantum partnership generalized to excited states. ► Based on disconjugacy theorems and asymptotic behaviour. ► Exact spectrum in terms of new orthogonal polynomials. ► Enlarged shape invariance property.
NLIE of Dirichlet sine-Gordon model for boundary bound states
International Nuclear Information System (INIS)
Ahn, Changrim; Bajnok, Zoltan; Palla, Laszlo; Ravanini, Francesco
2008-01-01
We investigate boundary bound states of sine-Gordon model on the finite-size strip with Dirichlet boundary conditions. For the purpose we derive the nonlinear integral equation (NLIE) for the boundary excited states from the Bethe ansatz equation of the inhomogeneous XXZ spin 1/2 chain with boundary imaginary roots discovered by Saleur and Skorik. Taking a large volume (IR) limit we calculate boundary energies, boundary reflection factors and boundary Luescher corrections and compare with the excited boundary states of the Dirichlet sine-Gordon model first considered by Dorey and Mattsson. We also consider the short distance limit and relate the IR scattering data with that of the UV conformal field theory
NEXAFS characterization of DNA components and molecular-orientation of surface-bound DNA oligomers
International Nuclear Information System (INIS)
Samuel, Newton T.; Lee, C.-Y.; Gamble, Lara J.; Fischer, Daniel A.; Castner, David G.
2006-01-01
Single stranded DNA oligomers (ssDNA) immobilized onto solid surfaces forms the basis for several biotechnological applications such as DNA microarrays, affinity separations, and biosensors. Surface structure of Surface-bound oligomers is expected to significantly influence their biological activity and interactions with the environment. In this study near-edge X-ray absorption fine structure spectroscopy (NEXAFS) is used to characterize the components of DNA (nucleobases, nucleotides and nucleosides) and the orientation information of surface-bound ssDNA. The K-edges of carbon, nitrogen and oxygen have spectra with features that are characteristic of the different chemical species present in the nucleobases of DNA. The effect of addition of the DNA sugar and phosphate components on the NEXAFS K-edge spectra was also investigated. The polarization-dependent nitrogen K-edge NEXAFS data show significant changes for different orientations of surface bound ssDNA. These results establish NEXAFS as a powerful technique for chemical and structural characterization of surface-bound DNA oligomers
International Nuclear Information System (INIS)
Blokhintsev, L. D.; Savin, D. A.
2016-01-01
An exactly solvable potential model is used to study the possibility of deducing information about the features of bound states for the system under consideration (binding energies and asymptotic normalization coefficients) on the basis of data on continuum states. The present analysis is based on an analytic approximation and on the subsequent continuation of a partial-wave scattering function from the region of positive energies to the region of negative energies. Cases where the system has one or two bound states are studied. The α+d and α+"1"2C systems are taken as physical examples. In the case of one bound state, the scattering function is a smooth function of energy, and the procedure of its analytic continuation for different polynomial approximations leads to close results, which are nearly coincident with exact values. In the case of two bound states, the scattering function has two poles—one in the region of positive energies and the other in the region of negative energies between the energies corresponding to the two bound states in question. Padéapproximants are used to reproduce these poles. The inclusion of these poles proves to be necessary for correctly describing the properties of the bound states.
Aspects of Majorana Bound States in One-Dimensional Systems with and without Time-Reversal Symmetry
DEFF Research Database (Denmark)
Wölms, Konrad Udo Hannes
In recent years there has been a lot of interest in topological phases of matter. Unlike conventional phases of matter, topological phases are not distinguished by symmetries, but by so-called topological invariants which have more subtle physical implications. It comes therefore as no surprise...... phase the edge excitations are called Majorana bound states and they are interesting in themselves. There has been a lot of eort in detecting Majorana bound states in the lab. One reason is that these excitations provide evidence that a system is indeed in a topological phase. It is therefore required...... to have unambiguous experimental evidence for the presence Majorana bound states, which in turn requires a good theoretical understanding of the physics associated with Majorana bound states. In particular for the most common experimental methods that are used to study them, the signature of Majorana...
Chen, Jiao-Kai
2018-04-01
We present one reduction of the Bethe-Salpeter equation for the bound states composed of two off-mass-shell constituents. Both the relativistic effects and the virtuality effects can be considered in the obtained spinless virtuality distribution equation. The eigenvalues of the spinless virtuality distribution equation are perturbatively calculated and the bound states e+e-, μ+μ-, τ+τ-, μ+e-, and τ+e- are discussed.
The light bound states of N=1 supersymmetric SU(3) Yang-Mills theory on the lattice
Ali, Sajid; Bergner, Georg; Gerber, Henning; Giudice, Pietro; Montvay, Istvan; Münster, Gernot; Piemonte, Stefano; Scior, Philipp
2018-03-01
In this article we summarise our results from numerical simulations of N=1 supersymmetric Yang-Mills theory with gauge group SU(3). We use the formulation of Curci and Veneziano with clover-improved Wilson fermions. The masses of various bound states have been obtained at different values of the gluino mass and gauge coupling. Extrapolations to the limit of vanishing gluino mass indicate that the bound states form mass-degenerate supermultiplets.
Fermionic bound states in Minkowski space. Light-cone singularities and structure
Energy Technology Data Exchange (ETDEWEB)
Paula, Wayne de; Frederico, Tobias; Pimentel, Rafael [Instituto Tecnologico de Aeronautica, DCTA, Dept. de Fisica, Sao Jose dos Campos, Sao Paulo (Brazil); Salme, Giovanni [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Viviani, Michele [Istituto Nazionale di Fisica Nucleare, Pisa (Italy)
2017-11-15
The Bethe-Salpeter equation for two-body bound system with spin 1/2 constituent is addressed directly in the Minkowski space. In order to accomplish this aim we use the Nakanishi integral representation of the Bethe-Salpeter amplitude and exploit the formal tool represented by the exact projection onto the null-plane. This formal step allows one (i) to deal with end-point singularities one meets and (ii) to find stable results, up to strongly relativistic regimes, which settle in strongly bound systems. We apply this technique to obtain the numerical dependence of the binding energies upon the coupling constants and the light-front amplitudes for a fermion-fermion 0{sup +} state with interaction kernels, in ladder approximation, corresponding to scalar-, pseudoscalar- and vector-boson exchanges, respectively. After completing the numerical survey of the previous cases, we extend our approach to a quark-antiquark system in 0{sup -} state, taking both constituent-fermion and exchanged-boson masses, from lattice calculations. Interestingly, the calculated light-front amplitudes for such a mock pion show peculiar signatures of the spin degrees of freedom. (orig.)
Bound states of Dirac fermions in monolayer gapped graphene in the presence of local perturbations
International Nuclear Information System (INIS)
Yarmohammadi, Mohsen; Zareyan, Malek
2016-01-01
In graphene, conductance electrons behave as massless relativistic particles and obey an analogue of the Dirac equation in two dimensions with a chiral nature. For this reason, the bounding of electrons in graphene in the form of geometries of quantum dots is impossible. In gapless graphene, due to its unique electronic band structure, there is a minimal conductivity at Dirac points, that is, in the limit of zero doping. This creates a problem for using such a highly motivated new material in electronic devices. One of the ways to overcome this problem is the creation of a band gap in the graphene band structure, which is made by inversion symmetry breaking (symmetry of sublattices). We investigate the confined states of the massless Dirac fermions in an impured graphene by the short-range perturbations for “local chemical potential” and “local gap”. The calculated energy spectrum exhibits quite different features with and without the perturbations. A characteristic equation for bound states (BSs) has been obtained. It is surprisingly found that the relation between the radial functions of sublattices wave functions, i.e., , , and , , can be established by SO (2) group. (paper)
Semi-inclusive B->K(K*)X decays with initial bound state effects
International Nuclear Information System (INIS)
He, Xiao-Gang; Jin, Changhao; Ma, J. P.
2001-01-01
The effects of the initial b quark bound state for the semi-inclusive decays B->K(K * )X are studied using light cone expansion and heavy quark effective theory methods. We find that the initial bound state effects on the branching ratios and CP asymmetries are small. In the light cone expansion approach, the CP-averaged branching ratios are increased by about 2% with respect to the free b-quark decay. For {bar B} 0 ->K - (K *- )X, the CP-averaged branching ratios are sensitive to the phase γ and the CP asymmetry can be as large as 7% (14%), whereas for B - ->{bar K} 0 ({bar K} *0 )X the CP-averaged branching ratios are not sensitive to γ and the CP asymmetries are small ( -4 [(0.25 - 2.0)x10 -4 ] for {bar B} 0 ->K - (K *- )X and (0.77 - 0.84)x10 -4 [(0.67 - 0.74)x10 -4 ] for B - ->{bar K} 0 ({bar K} *0 )X, depending on the value of the CP violating phase γ. In the heavy quark effective theory approach, we find that the branching ratios are decreased by about 10% and the CP asymmetries are not affected. These predictions can be tested in the near future
Bounded energy states in homogeneous turbulent shear flow: An alternative view
Bernard, Peter S.; Speziale, Charles G.
1990-01-01
The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if vortex stretching is accounted for in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are present for a k-epsilon model modified to account for vortex stretching. The calculations indicate an initial exponential time growth of the turbulent kinetic energy and dissipation rate for elapsed times that are as large as those considered in any of the previously conducted physical or numerical experiments on homogeneous shear flow. However, vortex stretching eventually takes over and forces a production-equals-dissipation equilibrium with bounded energy states. The validity of this result is further supported by an independent theoretical argument. It is concluded that the generally accepted structural equilibrium for homogeneous shear flow with unbounded component energies is in need of re-examination.
Multiple-Pulse Operation and Bound States of Solitons in Passive Mode-Locked Fiber Lasers
Directory of Open Access Journals (Sweden)
A. Komarov
2012-01-01
Full Text Available We present results of our research on a multiple-pulse operation of passive mode-locked fiber lasers. The research has been performed on basis of numerical simulation. Multihysteresis dependence of both an intracavity energy and peak intensities of intracavity ultrashort pulses on pump power is found. It is shown that the change of a number of ultrashort pulses in a laser cavity can be realized by hard as well as soft regimes of an excitation and an annihilation of new solitons. Bound steady states of interacting solitons are studied for various mechanisms of nonlinear losses shaping ultrashort pulses. Possibility of coding of information on basis of soliton trains with various bonds between neighboring pulses is discussed. The role of dispersive wave emitted by solitons because of lumped intracavity elements in a formation of powerful soliton wings is analyzed. It is found that such powerful wings result in large bounding energies of interacting solitons in steady states. Various problems of a soliton interaction in passive mode-locked fiber lasers are discussed.
Deeply quasi-bound state in single- and double-K nuclear clusters
Energy Technology Data Exchange (ETDEWEB)
Marri, S.; Kalantari, S.Z. [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Esmaili, J. [Shahrekord University, Department of Physics, Faculty of Basic Sciences, Shahrekord (Iran, Islamic Republic of)
2016-12-15
New calculations of the quasi-bound state positions in K{sup -}K{sup -}pp kaonic nuclear cluster are performed using non-relativistic four-body Faddeev-type equations in AGS form. The corresponding separable approximation for the integral kernels in the three- and four-body kaonic clusters is obtained by using the Hilbert-Schmidt expansion procedure. Different phenomenological models of anti KN-πΣ potentials with one- and two-pole structure of Λ(1405) resonance and separable potential models for anti K- anti K and nucleon-nucleon interactions, are used. The dependence of the resulting four-body binding energy on models of anti KN-πΣ interaction is investigated. We obtained the binding energy of the K{sup -}K{sup -}pp quasi-bound state ∝ 80-94 MeV with the phenomenological anti KN potentials. The width is about ∝ 5-8 MeV for the two-pole models of the interaction, while the one-pole potentials give ∝ 24-31 MeV width. (orig.)
Relativistic actions for bound-states and applications in the meson spectroscopy
International Nuclear Information System (INIS)
Silva Carvalho, Hendly da.
1991-08-01
We study relativistic equations for bound states of two-body systems using Dirac's constraint formalism and supersymmetry. The two-body system can be of spinless particles, one of them spinning and the other one spinless, or both of them spinning. The interaction is described by scalar, timelike four-vector and spacelike four-vector potentials under Lorentz transformations. As an application we use the relativistic wave equation for two scalar particles and calculate the mass spectra of the mesons treating them as spinless quark-antiquark bound states. The interaction potential in this case is a convenient adaptation of the potential employed in non-relativistic calculations. Finally, we compare our results with more recent experimental data and with theoretical results obtained with the same potential used by us but with a non-relativistic wave equation. We also compare our results with results obtained with the relativistic wave equation but with a different interaction potential. (author). 38 refs, 9 figs, 8 tabs
Quartified leptonic color, bound states, and future electron–positron collider
Directory of Open Access Journals (Sweden)
Corey Kownacki
2017-06-01
Full Text Available The [SU(3]4 quartification model of Babu, Ma, and Willenbrock (BMW, proposed in 2003, predicts a confining leptonic color SU(2 gauge symmetry, which becomes strong at the keV scale. It also predicts the existence of three families of half-charged leptons (hemions below the TeV scale. These hemions are confined to form bound states which are not so easy to discover at the Large Hadron Collider (LHC. However, just as J/ψ and ϒ appeared as sharp resonances in e−e+ colliders of the 20th century, the corresponding ‘hemionium’ states are expected at a future e−e+ collider of the 21st century.
DEFF Research Database (Denmark)
Aidas, Kestutis; Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob
2013-01-01
Attempting to unravel mechanisms in optical probing of proteins, we have performed pilot calculations of two cationic chromophores—acridine yellow and proflavin—located at different binding sites within human serum albumin, including the two primary drug binding sites as well as a heme binding site....... The computational scheme adopted involves classical molecular dynamics simulations of the ligands bound to the protein and subsequent linear response polarizable embedding density functional theory calculations of the excitation energies. A polarizable embedding potential consisting of point charges fitted...
DEFF Research Database (Denmark)
Ísberg, Vignir; Balle, Thomas; Sander, Tommy
2011-01-01
molecular dynamics (MD) simulations. The driving force for the transformation was the addition of several known intermolecular and receptor interhelical hydrogen bonds enforcing the necessary helical and rotameric movements. Subsquent MD simulations without constraints confirmed the stability......A 5-HT(2A) receptor model was constructed by homology modeling based on the ß(2)-adrenergic receptor and the G protein-bound opsin crystal structures. The 5-HT(2A) receptor model was transferred into an active conformation by an agonist ligand and a G(aq) peptide in four subsequent steered...
2016-06-06
cathodic conditions, oxidized and reduced heme states were assumed, respectively. The calculated results are summarized in Table 2. The solvation free...reports favor a flavin-bound model, proposing two one- electron reductions of flavin, namely, oxidized (Ox) to semiquinone (Sq) and semiquinone to...hydroquinone (Hq), at anodic and cathodic conditions, respectively. In this work, to provide a mechanistic understanding of riboflavin (RF) binding at
Cranked cluster wave function for molecular states
International Nuclear Information System (INIS)
Horiuchi, Hisashi; Yabana, Kazuhiro; Wada, Takahiro.
1986-01-01
Construction of the cranked cluster wave function is discussed by focussing on three problems; the self-consistency between the potential and the density distribution, the properties of the rotational angular frequency which is strongly influenced by the inter-cluster Pauli principle and by the parity projection, and the spin alignment along the rotation axis with the resulting structure-change of the molecular state. (author)
Diabetes Among United States-Bound Adult Refugees, 2009-2014.
Benoit, Stephen R; Gregg, Edward W; Zhou, Weigong; Painter, John A
2016-12-01
We reported diabetes prevalence among all US-bound adult refugees and assessed factors associated with disease. We analyzed overseas medical evaluations of US-bound refugees from 2009 through 2014 by using CDC's Electronic Disease Notification System. We identified refugees with diabetes by searching for diabetes-related keywords and medications in examination forms with text-parsing techniques. Age-adjusted prevalence rates were reported and factors associated with diabetes were assessed by using logistic regression. Of 248,850 refugees aged ≥18 years examined over 5 years, 5767 (2.3 %) had diabetes. Iraqis had the highest crude (5.1 %) and age-adjusted (8.9 %) prevalence of disease. Higher age group and body mass index were associated with diabetes in all regions. Diabetes prevalence varied by refugee nationality. Although the absolute rates were lower than rates in the United States, the prevalence is still concerning given the younger age of the population and their need for health services upon resettlement.
Bound states of water in gelatin discriminated by near-infrared spectroscopy
Otsuka, Yukiko; Shirakashi, Ryo; Hirakawa, Kazuhiko
2017-11-01
By near-infrared spectroscopy, we classified water molecules in hydrated gelatin membranes in a drying process. Absorbance spectra in the frequency range of 4500-5500 cm-1 were resolved into three peaks, S0, S1, and S2, that correspond to water molecules with different hydrogen bond states. From the areas of the absorbance peaks as a function of the water content of gelatin, together with the information on the freezing properties of water measured by differential scanning calorimetry, we found that, when the water content is less than 20%, free water disappears and only weakly and strongly bound waters remain. We also found that the weakly bound water consists of S0, S1, and S2 water molecules with a simple composition of \\text{S}0:\\text{S}1:\\text{S}2 ≈ 1:2:0. Using this information, most of the freezable water was determined to be free water. Our classification provides a simple method of estimating the retention and freezing properties of processed foods or drugs by infrared spectroscopy.
Inquiry for the conversion of the (π+ - π-) bound state into two π0
International Nuclear Information System (INIS)
Bunatyan, G.G.
1998-01-01
In the work presented, the decay of the pionium, that is the (π + π - ) bound state, into two π 0 is studied, the ππ-interaction causing this transition being described by the underlying Weinberg Lagrangian. The calculation with such a ππ-Lagrangian being carried out, the π-meson size r 0 emerges to be allowed for, and this quantity occurs in the final result. The bound (π + π - )-system itself is presumed to be due to the instantaneous Coulomb interaction and is treated consistently nonrelativistically, the Bethe-Salpeter equation being utilized. When calculating, the terms to the lowest order in the fine structure constant α and the terms ∼ ln (r 0 ) are retained. The obtained pionium lifetime τ is thought to be compatible with the conceivable future experimental data. The dependence of the results on the effective Lagrangian parameters is visualized. The investigation carried out persuades us that it is just the complete form of the genuine ππ-interaction that determines the pionium lifetime , but not much simply the ππ scattering lengths. The inquiry into pionium decaying promotes to specify the validity of the various ππ-interaction descriptions
Energy Technology Data Exchange (ETDEWEB)
Datta, Nilanjana, E-mail: n.datta@statslab.cam.ac.uk [Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Hsieh, Min-Hsiu, E-mail: Min-Hsiu.Hsieh@uts.edu.au [Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007 (Australia); Oppenheim, Jonathan, E-mail: j.oppenheim@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Department of Computer Science and Centre for Quantum Technologies, National University of Singapore, Singapore 119615 (Singapore)
2016-05-15
State redistribution is the protocol in which given an arbitrary tripartite quantum state, with two of the subsystems initially being with Alice and one being with Bob, the goal is for Alice to send one of her subsystems to Bob, possibly with the help of prior shared entanglement. We derive an upper bound on the second order asymptotic expansion for the quantum communication cost of achieving state redistribution with a given finite accuracy. In proving our result, we also obtain an upper bound on the quantum communication cost of this protocol in the one-shot setting, by using the protocol of coherent state merging as a primitive.
Neutron scattering from elemental indium, the optical model, and the bound-state potential
Energy Technology Data Exchange (ETDEWEB)
Chiba, S. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)); Guenther, P.T.; Lawson, R.D.; Smith, A.B. (Argonne National Lab., IL (USA))
1990-06-01
Neutron differential elastic-scattering cross sections of elemental indium are measured from 4.5 to 10 MeV at incident-energy intervals of {approx}500 keV. Seventy or more differential values are obtained at each incident energy, distributed between {approx}18{degree} and 160{degree}. These experimental results are combined with lower-energy values previously obtained at this laboratory, and with 11 and 14 MeV results in the literature, to form a comprehensive elastic-scattering database extending from {approx}1.5 to 14 MeV. These data are interpreted in terms of a conventional spherical optical model. The resulting potential is extrapolated to the bound-state regime. It is shown that in the middle of the 50--82 neutron shell, the potential derived from the scattering results adequately describes the binding energies of article states, but does not do well for hole states. The latter shortcoming is attributed to the holes states having occupational probabilities sufficiently different from unity, so that the exclusion principle become a factor, and to the rearrangement of the neutron core. 68 refs.
Neutron scattering from elemental indium, the optical model, and the bound-state potential
International Nuclear Information System (INIS)
Chiba, S.; Guenther, P.T.; Lawson, R.D.; Smith, A.B.
1990-01-01
Neutron differential elastic-scattering cross sections of elemental indium are measured from 4.5 to 10 MeV at incident-energy intervals of ∼500 keV. Seventy or more differential values are obtained at each incident energy, distributed between ∼18 degree and 160 degree. These experimental results are combined with lower-energy values previously obtained at this laboratory, and with 11 and 14 MeV results in the literature, to form a comprehensive elastic-scattering database extending from ∼1.5 to 14 MeV. These data are interpreted in terms of a conventional spherical optical model. The resulting potential is extrapolated to the bound-state regime. It is shown that in the middle of the 50--82 neutron shell, the potential derived from the scattering results adequately describes the binding energies of article states, but does not do well for hole states. The latter shortcoming is attributed to the holes states having occupational probabilities sufficiently different from unity, so that the exclusion principle become a factor, and to the rearrangement of the neutron core. 68 refs
International Nuclear Information System (INIS)
Levin, F.S.; Krueger, H.
1977-01-01
We propose in this article that the non-Hermitian equations typical of some many-body scattering theories be used to help solve many-body bound-state problems. The basic idea is to exploit the channel nature of many-body bound states that must exist because bound states are obvious negative-energy extensions of scattering states. Since atomic, molecular, and nuclear systems all display multichannel effects for E > 0, at least through Pauli-principle effects if not through mass-transfer reactions, this use of positive-energy methods for solving bound-state problems could have wide applicability. The development used here is based on the channel-component-state method of the channel-coupling-array theory, recently described in detail for the E > 0 case, and various aspects of the formalism are discussed. Detailed calculations using simple approximations are discussed for H 2 + , one of the simplest systems displaying channel structure. Comparison with the exact, Born-Oppenheimer results of Wind show that the non-Hermitian-equation, channel-component values of the equilibrium separation and total binding energy are accurate to within 2%, while the dissociation energy is accurate to 10%. The resulting wave function is identical to that arising from the simplest MO calculation, for which these numbers are less accurate than the preceding by at least a factor of 3. We also show that identical particle symmetry for the H 2 + case reduces the pair of coupled (two-channel) equations to a single equation with an exchange term. Similar reductions will occur for larger numbers of identical particles, thus suggesting application of the formalism to atomic structure problems. A detailed analysis of the present numerical results, their general implications, and possible applications is also given
Few-Body Techniques Using Coordinate Space for Bound and Continuum States
Garrido, E.
2018-05-01
These notes are a short summary of a set of lectures given within the frame of the "Critical Stability of Quantum Few-Body Systems" International School held in the Max Planck Institute for the Physics of Complex Systems (Dresden). The main goal of the lectures has been to provide the basic ingredients for the description of few-body systems in coordinate space. The hyperspherical harmonic and the adiabatic expansion methods are introduced in detail, and subsequently used to describe bound and continuum states. The expressions for the cross sections and reaction rates for three-body processes are derived. The case of resonant scattering and the complex scaling method as a tool to obtain the resonance energy and width is also introduced.
International Nuclear Information System (INIS)
Bednarski, Henryk; Spałek, Józef
2014-01-01
We extend the theory of the bound magnetic polaron (BMP) in diluted paramagnetic semiconductors to the situation with a ferromagnetic phase transition. This is achieved by including the classical Gaussian fluctuations of magnetization from the quartic (non-Gaussian) term in the effective Ginzburg–Landau Hamiltonian for the spins. Within this approach, we find a ferromagnetically ordered state within the BMP in the temperature range well above the Curie temperature for the host magnetic semiconductor. Numerical results are compared directly with the recently available experimental data for the ferromagnetic semiconductor GdN. The agreement is excellent, given the simplicity of our model, and is because the polaron size (≃1.4 nm) encompasses a relatively large but finite number (N≈400) of quasiclassical spins S=7/2 coming from Gd 3+ ions. The presence of BMP invalidates the notion of critical temperature and thus makes the incorporation of classical Gaussian fluctuations sufficient to realistically describe the situation. (paper)
Relativistic description of quark-antiquark bound states. II. Spin-dependent treatment
International Nuclear Information System (INIS)
Gara, A.; Durand, B.; Durand, L.
1990-01-01
We present the results of a study of light- and heavy-quark--antiquark bound states in the context of the reduced Bethe-Salpeter equation, including the full spin dependence. We obtain good fits to the observed spin splittings in the b bar b and c bar c systems using a short-distance single-gluon-exchange interaction, and a long-distance scalar confining interaction. However, we cannot obtain satisfactory fits to the centers of gravity of the b bar b and c bar c spin multiplets at the same time, and the splittings calculated for q bar Q mesons containing the lighter quarks are very poor. The difficulty appears to be intrinsic to the reduced Salpeter equation for reasons which we discuss
Exact spinor-scalar bound states in a quantum field theory with scalar interactions
International Nuclear Information System (INIS)
Shpytko, Volodymyr; Darewych, Jurij
2001-01-01
We study two-particle systems in a model quantum field theory in which scalar particles and spinor particles interact via a mediating scalar field. The Lagrangian of the model is reformulated by using covariant Green's functions to solve for the mediating field in terms of the particle fields. This results in a Hamiltonian in which the mediating-field propagator appears directly in the interaction term. It is shown that exact two-particle eigenstates of the Hamiltonian can be determined. The resulting relativistic fermion-boson equation is shown to have Dirac and Klein-Gordon one-particle limits. Analytical solutions for the bound state energy spectrum are obtained for the case of massless mediating fields
Electronic bound states in parity-preserving QED3 applied to high-Tc cuprate superconductors
International Nuclear Information System (INIS)
Christiansen, H.R.; Cima, O.M. Del; Ferreira Junior, M.M.; Maranhao Univ., Sao Luis, MA; Helayel-Neto, J.A.; Centro Brasileiro de Pesquisas Fisicas
2001-08-01
We consider a parity-preserving QED 3 model with spontaneous breaking of the gauge symmetry as a framework for the evaluation of the electron-electron interaction potential underlying high-T e superconductivity. The fact that resulting potential, - C s K o (Mr), is non-confining and weak (in the sense of Kato) strongly suggests the mechanism of pair-condensation. This potential, compatible with an s-wave order parameters, is then applied to the Schrodinger equation for the sake of numerical calculations, thereby enforcing the existence of bound states. The results worked out by means of our theoretical framework are checked by considering a number of phenomenological data extracted from different copper oxide superconductors. The agreement may motivate a deeper analysis of our model viewing an application to quasi-planar cuprate superconductors. The data analyzed here suggest an energy scale of 1-10 meV for the breaking of the U(1)-symmetry. (author)
Two-magnon bound state causes ultrafast thermally induced magnetisation switching
Barker, J.; Atxitia, U.; Ostler, T. A.; Hovorka, O.; Chubykalo-Fesenko, O.; Chantrell, R. W.
2013-01-01
There has been much interest recently in the discovery of thermally induced magnetisation switching using femtosecond laser excitation, where a ferrimagnetic system can be switched deterministically without an applied magnetic field. Experimental results suggest that the reversal occurs due to intrinsic material properties, but so far the microscopic mechanism responsible for reversal has not been identified. Using computational and analytic methods we show that the switching is caused by the excitation of two-magnon bound states, the properties of which are dependent on material factors. This discovery allows us to accurately predict the onset of switching and the identification of this mechanism will allow new classes of materials to be identified or designed for memory devices in the THz regime. PMID:24253110
Calculations of antiproton-nucleus quasi-bound states using the Paris N bar N potential
Hrtánková, Jaroslava; Mareš, Jiří
2018-01-01
An optical potential constructed using the p bar N scattering amplitudes derived from the 2009 version of the Paris N bar N potential is applied in calculations of p bar quasi-bound states in selected nuclei across the periodic table. A proper self-consistent procedure for treating energy dependence of the amplitudes in a nucleus appears crucial for evaluating p bar binding energies and widths. Particular attention is paid to the role of P-wave amplitudes. While the P-wave potential nearly does not affect calculated p bar binding energies, it reduces considerably the corresponding widths. The Paris S-wave potential supplemented by a phenomenological P-wave term yields in dynamical calculations p bar binding energies Bpbar ≈ 200 MeV and widths Γpbar ∼ 200- 230 MeV, which is very close to the values obtained within the RMF model consistent with p bar -atom data.
Bound states in the continuum on periodic structures surrounded by strong resonances
Yuan, Lijun; Lu, Ya Yan
2018-04-01
Bound states in the continuum (BICs) are trapped or guided modes with their frequencies in the frequency intervals of the radiation modes. On periodic structures, a BIC is surrounded by a family of resonant modes with their quality factors approaching infinity. Typically the quality factors are proportional to 1 /|β - β*|2 , where β and β* are the Bloch wave vectors of the resonant modes and the BIC, respectively. But for some special BICs, the quality factors are proportional to 1 /|β - β*|4 . In this paper, a general condition is derived for such special BICs on two-dimensional periodic structures. As a numerical example, we use the general condition to calculate special BICs, which are antisymmetric standing waves, on a periodic array of circular cylinders, and show their dependence on parameters. The special BICs are important for practical applications, because they produce resonances with large quality factors for a very large range of β .
Bound state properties of ABC-stacked trilayer graphene quantum dots
Xiong, Haonan; Jiang, Wentao; Song, Yipu; Duan, Luming
2017-06-01
The few-layer graphene quantum dot provides a promising platform for quantum computing with both spin and valley degrees of freedom. Gate-defined quantum dots in particular can avoid noise from edge disorders. In connection with the recent experimental efforts (Song et al 2016 Nano Lett. 16 6245), we investigate the bound state properties of trilayer graphene (TLG) quantum dots (QDs) through numerical simulations. We show that the valley degeneracy can be lifted by breaking the time reversal symmetry through the application of a perpendicular magnetic field. The spectrum under such a potential exhibits a transition from one group of Landau levels to another group, which can be understood analytically through perturbation theory. Our results provide insight into the transport property of TLG QDs, with possible applications to study of spin qubits and valleytronics in TLG QDs.
Meson-nucleus potentials and the search for meson-nucleus bound states
Metag, V.; Nanova, M.; Paryev, E. Ya.
2017-11-01
Recent experiments studying the meson-nucleus interaction to extract meson-nucleus potentials are reviewed. The real part of the potentials quantifies whether the interaction is attractive or repulsive while the imaginary part describes the meson absorption in nuclei. The review is focused on mesons which are sufficiently long-lived to potentially form meson-nucleus quasi-bound states. The presentation is confined to meson production off nuclei in photon-, pion-, proton-, and light-ion induced reactions and heavy-ion collisions at energies near the production threshold. Tools to extract the potential parameters are presented. In most cases, the real part of the potential is determined by comparing measured meson momentum distributions or excitation functions with collision model or transport model calculations. The imaginary part is extracted from transparency ratio measurements. Results on K+ ,K0 ,K- , η ,η‧ , ω, and ϕ mesons are presented and compared with theoretical predictions. The interaction of K+ and K0 mesons with nuclei is found to be weakly repulsive, while the K- , η ,η‧ , ω and ϕ meson-nucleus potentials are attractive, however, with widely different strengths. Because of meson absorption in the nuclear medium the imaginary parts of the meson-nucleus potentials are all negative, again with a large spread. An outlook on planned experiments in the charm sector is given. In view of the determined potential parameters, the criteria and chances for experimentally observing meson-nucleus quasi-bound states are discussed. The most promising candidates appear to be the η and η‧ mesons.
A photoionization study of hydrogen-bound clusters in a supersonic molecular beam
International Nuclear Information System (INIS)
Cook, K.D.; Jones, G.G.; Taylor, J.W.
1980-01-01
Hydrogen bonding of methanol, methanol-d, ethanol, and trifluoroethanol is investigated with a supersonic molecular beam as a sampling system for a photoionization quadrupole mass spectrometer. Monochromatized vacuum ultraviolet synchrotron radiation is used as the ionizing source. Cluster ions belonging to the series (ROH)sub(n)H + are detected when sampling up to 100-torr alcohol vapor with the molecular beam. No parent cluster molecular ions are detected. Experiments are described which exclude ion-molecule reactions in the mass spectrometer ion source as a possible origin of the cluster ions. Experimental evidence shows that nozzle temperature primarily influences the equilibrium distribution of clusters present in the nozzle source. From the dependences of relative cluster ion intensities on nozzle source temperature, the heats of formation of oligomers of the alcohols are estimated. Cooperative hydrogen bonding is not detected, expect for trifluoroethanol, where the trimer is found to be the most stable cluster. (orig.)
Majorana bound state of a Bogoliubov-de Gennes-Dirac Hamiltonian in arbitrary dimensions
Energy Technology Data Exchange (ETDEWEB)
Imura, Ken-Ichiro, E-mail: imura@hiroshima-u.ac.jp [Department of Quantum Matter, AdSM, Hiroshima University, 739-8530 (Japan); Fukui, Takahiro; Fujiwara, Takanori [Department of Physics, Ibaraki University, Mito 310-8512 (Japan)
2012-01-11
We study a Majorana zero-energy state bound to a hedgehog-like point defect in a topological superconductor described by a Bogoliubov-de Gennes (BdG)-Dirac type effective Hamiltonian. We first give an explicit wave function of a Majorana state by solving the BdG equation directly, from which an analytical index can be obtained. Next, by calculating the corresponding topological index, we show a precise equivalence between both indices to confirm the index theorem. Finally, we apply this observation to reexamine the role of another topological invariant, i.e., the Chern number associated with the Berry curvature proposed in the study of protected zero modes along the lines of topological classification of insulators and superconductors. We show that the Chern number is equivalent to the topological index, implying that it indeed reflects the number of zero-energy states. Our theoretical model belongs to the BDI class from the viewpoint of symmetry, whereas the spatial dimension d of the system is left arbitrary throughout the paper.
Λ(1405) resonance in baryon-meson scattering with a bound state embedded in the continuum
International Nuclear Information System (INIS)
Takeuchi, Sachiko; Shimizu, Kiyotaka
2009-01-01
We investigate Λ(1405) as a resonance in a coupled-channels baryon-meson (Σπ-NK-Λη) scattering with a 'bound state embedded in the continuum' (BSEC). For this purpose, we solve the Lippmann-Schwinger equation including a BSEC with the semirelativistic kinematics in the momentum space. This BSEC is introduced by hand, as a state not originated from a simple baryon-meson system. We assume it comes from the three-quark state. There appears a resonance in the Σπ scattering below the NK threshold without introducing a BSEC when the NK channel has a strong attraction, just like the chiral unitary approach. Even if the baryon-meson interaction is weakened by using a lower-momentum cut-off parameter, a resonance also appears around 1405 MeV when a BSEC is introduced. The corresponding peak also has a large width, and the NK scattering length is well reproduced. The interaction whose channel dependence is the same as the one originated from the color-magnetic interaction, where no NK attraction exists, also gives a broad peak with help of a BSEC. In order to reproduce the observed NK scattering length, the calculation including a BSEC seems to be preferable. Our calculation gives an appropriate NK scattering length when the BSEC contribution to the resonance is roughly half that of the NK channel.
Surface Andreev Bound States and Odd-Frequency Pairing in Topological Superconductor Junctions
Tanaka, Yukio; Tamura, Shun
2018-04-01
In this review, we summarize the achievement of the physics of surface Andreev bound states (SABS) up to now. The route of this activity has started from the physics of SABS of unconventional superconductors where the pair potential has a sign change on the Fermi surface. It has been established that SABS can be regarded as a topological edge state with topological invariant defined in the bulk Hamiltonian. On the other hand, SABS accompanies odd-frequency pairing like spin-triplet s-wave or spin-singlet p-wave. In a spin-triplet superconductor junction, induced odd-frequency pairing can penetrate into a diffusive normal metal (DN) attached to the superconductor. It causes so called anomalous proximity effect where the local density of states of quasiparticle in DN has a zero energy peak. When bulk pairing symmetry is spin-triplet px-wave, the anomalous proximity effect becomes prominent and the zero bias voltage conductance is always quantized independent of the resistance in DN and interface. Finally, we show that the present anomalous proximity effect is realized in an artificial topological superconducting system, where a nanowire with spin-orbit coupling and Zeeman field is put on the conventional spin-singlet s-wave superconductor.
Analytical bounds on SET charge sensitivity for qubit readout in a solid-state quantum computer
International Nuclear Information System (INIS)
Green, F.; Buehler, T.M.; Brenner, R.; Hamilton, A.R.; Dzurak, A.S.; Clark, R.G.
2002-01-01
Full text: Quantum Computing promises processing powers orders of magnitude beyond what is possible in conventional silicon-based computers. It harnesses the laws of quantum mechanics directly, exploiting the in built potential of a wave function for massively parallel information processing. Highly ordered and scaleable arrays of single donor atoms (quantum bits, or qubits), embedded in Si, are especially promising; they are a very natural fit to the existing, highly sophisticated, Si industry. The success of Si-based quantum computing depends on precisely initializing the quantum state of each qubit, and on precise reading out its final form. In the Kane architecture the qubit states are read out by detecting the spatial distribution of the donor's electron cloud using a sensitive electrometer. The single-electron transistor (SET) is an attractive candidate readout device for this, since the capacitive, or charging, energy of a SET's metallic central island is exquisitely sensitive to its electronic environment. Use of SETs as high-performance electrometers is therefore a key technology for data transfer in a solid-state quantum computer. We present an efficient analytical method to obtain bounds on the charge sensitivity of a single electron transistor (SET). Our classic Green-function analysis provides reliable estimates of SET sensitivity optimizing the design of the readout hardware. Typical calculations, and their physical meaning, are discussed. We compare them with the measured SET-response data
Thorwart, Michael
2018-01-01
Realizing Majorana bound states (MBS) in condensed matter systems is a key challenge on the way toward topological quantum computing. As a promising platform, one-dimensional magnetic chains on conventional superconductors were theoretically predicted to host MBS at the chain ends. We demonstrate a novel approach to design of model-type atomic-scale systems for studying MBS using single-atom manipulation techniques. Our artificially constructed atomic Fe chains on a Re surface exhibit spin spiral states and a remarkable enhancement of the local density of states at zero energy being strongly localized at the chain ends. Moreover, the zero-energy modes at the chain ends are shown to emerge and become stabilized with increasing chain length. Tight-binding model calculations based on parameters obtained from ab initio calculations corroborate that the system resides in the topological phase. Our work opens new pathways to design MBS in atomic-scale hybrid structures as a basis for fault-tolerant topological quantum computing. PMID:29756034
Pentaquark as a NK* bound state with TJP=0(3/2)-
International Nuclear Information System (INIS)
Takeuchi, Sachiko; Shimizu, Kiyotaka
2005-01-01
We have investigated negative-parity uudds pentaquarks by employing a quark model with the meson exchange and the effective gluon exchange as qq and qq interactions. The system of five quarks is dynamically solved; the qq and qq correlations are taken into account in the wave function. The masses of the pentaquarks are found to be reasonably low. It is found that the lowest-mass state is TJ P =0(1/2) - and the next lowest one is 0(3/2) - . The former is reported to have a large width. We argue that the observed narrow peak corresponds to the latter state. It is still necessary to introduce an extra attraction to reduce the mass further by 140-280 MeV to reproduce the observed Θ + mass. Since their level splitting is less than 80 MeV, the lower level will not become a bound state below the NK threshold even after such an attraction is introduced. It is also found that the relative distance of two quarks with the attractive interaction is found to be by about 1.2-1.3 times closer than that of the repulsive one. The two-body correlation seems important in the pentaquark systems
Bound-state wave functions at rest in describing deep inelastic scattering
International Nuclear Information System (INIS)
Khvedelidze, A.M.; Kvinikhidze, A.N.
1991-01-01
The deep inelastic process of the lepton-hadron scattering is studied in the bound-state rest frame. A new version of expanding structure functions in interaction constant powers is proposed, each term in it having spectral properties. This expansion makes it possible to consider contributions of composites in the final state to the cross section. It is shown that, as compared with the system P z →∞, the impulse approximation is insufficient for describing correctly the elastic limit in the composite particle rest frame. The leading asymptotics of structure functions as χ Bj →1 can be obtained by taking into account the interaction of contituents in the final state. It is shown that in contrast to the 'light-cone' formalism the ratio F 2 en (χ)/F 2 ep (χ) as χ Bj →1 depends on the explicit form of the spatial part of the nucleon wave function and, in particular, assuming the relativistic character of internal motion, it may be lower than the well-known prediction (i.e. 3/7). This is due to the correct consideration of spin degrees of freedom of the wave function of the nucleon at rest. (orig.)
On-Demand Final State Control of a Surface-Bound Bistable Single Molecule Switch.
Garrido Torres, José A; Simpson, Grant J; Adams, Christopher J; Früchtl, Herbert A; Schaub, Renald
2018-04-12
Modern electronic devices perform their defined action because of the complete reliability of their individual active components (transistors, switches, diodes, and so forth). For instance, to encode basic computer units (bits) an electrical switch can be used. The reliability of the switch ensures that the desired outcome (the component's final state, 0 or 1) can be selected with certainty. No practical data storage device would otherwise exist. This reliability criterion will necessarily need to hold true for future molecular electronics to have the opportunity to emerge as a viable miniaturization alternative to our current silicon-based technology. Molecular electronics target the use of single-molecules to perform the actions of individual electronic components. On-demand final state control over a bistable unimolecular component has therefore been one of the main challenges in the past decade (1-5) but has yet to be achieved. In this Letter, we demonstrate how control of the final state of a surface-supported bistable single molecule switch can be realized. On the basis of the observations and deductions presented here, we further suggest an alternative strategy to achieve final state control in unimolecular bistable switches.
The covariant-evolution-operator method in bound-state QED
International Nuclear Information System (INIS)
Lindgren, Ingvar; Salomonson, Sten; Aasen, Bjoern
2004-01-01
The methods of quantum-electrodynamical (QED) calculations on bound atomic systems are reviewed with emphasis on the newly developed covariant-evolution-operator method. The aim is to compare that method with other available methods and also to point out possibilities to combine that with standard many-body perturbation theory (MBPT) in order to perform accurate numerical QED calculations, including quasi-degeneracy, also for light elements, where the electron correlation is relatively strong. As a background, the time-independent many-body perturbation theory (MBPT) is briefly reviewed, particularly the method with extended model space. Time-dependent perturbation theory is discussed in some detail, introducing the time-evolution operator and the Gell-Mann-Low relation, generalized to an arbitrary model space. Three methods of treating the bound-state QED problem are discussed. The standard S-matrix formulation, which is restricted to a degenerate model space, is discussed only briefly. Two methods applicable also to the quasi-degenerate problem are treated in more detail, the two-times Green's-function and the covariant-evolution-operator techniques. The treatment is concentrated on the latter technique, which has been developed more recently and which has not been discussed in more detail before. A comparison of the two-times Green's-function and the covariant-evolution-operator techniques, which have great similarities, is performed. In the appendix a simple procedure is derived for expressing the evolution-operator diagrams of arbitrary order. The possibilities of merging QED in the covariant evolution-operator formulation with MBPT in a systematic way is indicated. With such a technique it might be feasible to perform accurate QED calculations also on light elements, which is presently not possible with the techniques available
Ab initio investigation on the valence and dipole-bound states of CNa - and SiNa -
Kalcher, Josef; Sax, Alexander F.
2000-08-01
CNa - and SiNa - have been studied by the CAS-ACPF method. The 3Σ- ground states have binding energies of 5420 and 7517 cm -1, respectively. The 5Σ- excited states are 494 and 1551 cm -1 above the respective ground states. The 1Δ , 3Π , and 1Π valence-excited states for SiNa - should be at least metastable. CNa - and SiNa - possess dipole-bound 5Σ- and 3Σ- states. Binding energies of these states in CNa - are 217 and 236 cm -1, respectively. SiNa - has two stable 5Σ- dipole-bound states, whose binding energies are 246 and 118 cm -1, respectively.
Does the Higgs mechanism favour electron-electron bound states in Maxwell-Chern-Simons QED3?
International Nuclear Information System (INIS)
Belich, Humberto; Helayeel-Neto, Jose Abdalla; Ferreira Junior, Manoel Messias
2000-01-01
Full text follows: We show that low-energy electron-electron bound states appear in the Maxwell-Chern-Simons (MCS) planar QED. In spite of the repulsive interaction mediated by the MCS gauge field, a net attractive interaction stems due to the Higgs mechanism through an Yukawa-type interaction. The spontaneous breaking of a local U(1)-symmetry is realized by a γ 6 -type potential. We conclude, by using the Schroedinger equation associated to the net attractive scattering potential, that electron-electron bound states arise in the model. Therefore, the Higgs mechanism overcomes the difficulties found out by Girotti et al. (Phys. Rev. Lett. 69 (1992) 2623) in searching for bound states in the MCS planar QED. (author)
Electron-electron bound states in Maxwell-Chern-Simons-Proca QED3
International Nuclear Information System (INIS)
Belich, H.; Helayel-Neto, J.A.; Ferreira, M.M. Jr.; Maranhao Univ., Sao Luis, MA
2002-10-01
We start from a parity-breaking MCS QED 3 model with spontaneous breaking of the gauge symmetry as a framework for evaluation of the electron-electron interaction potential and for attainment of numerical values for the e - e - - bound state. Three expressions V eff↓↓ , V eff↓↑ , V eff↓↓ ) are obtained according to the polarization state of the scattered electrons. In an energy scale compatible with condensed matter electronic excitations, these potentials become degenerated. The resulting potential is implemented in the Schroedinger equation and the variational method is applied to carry out the electronic binding energy. The resulting binding energies in the scale of 10-100 meV and a correlation length in the scale of 10 - 30 Angstrom are possible indications that the MCS-QED 3 model adopted may be suitable to address an eventual case of e - e - pairing in the presence of parity-symmetry breakdown. The data analyzed here suggest an energy scale of 10-100 meV to fix the breaking of the U(1)-symmetry. (author)
Bound states via Higgs exchanging and heavy resonant di-Higgs
Directory of Open Access Journals (Sweden)
Zhaofeng Kang
2017-08-01
Full Text Available The existence of Higgs boson h predicted by the standard model (SM was established and hunting for clues to new physics (NP hidden in h has become the top priority in particle physics. In this paper we explore an intriguing phenomenon that prevails in NP associated with h, bound state (Bh, referring to the ground state only of relatively heavy particles ϕ out of NP via interchanging h. This is well-motivated due to the intrinsic properties of h: It has zero spin and light mass, capable of mediating Yukawa interactions; moreover, it may be strongly coupled to ϕ in several important contexts, from addressing the naturalness problem by compositeness/supersymmetry (SUSY/classical scale invariance to understanding neutrino mass origin radiatively and matter asymmetry by electroweak baryogensis. The new resonance Bh, being a neutral scalar boson, has important implications to the large hadron collider (LHC di-Higgs search because it yields a clear resonant di-Higgs signature at the high mass region (≳1 TeV. In other words, searching for Bh offers a new avenue to probe the hidden sector with a Higgs-portal. For illustration in this paper we concentrate on two examples, the stop sector in SUSY and an inert Higgs doublet from a radiative neutrino model. In particular, h-mediation opens a new and wide window to probe the conventional stoponium and the current date begins to have sensitivity to stoponium around TeV.
Bound states via Higgs exchanging and heavy resonant di-Higgs
Kang, Zhaofeng
2017-08-01
The existence of Higgs boson h predicted by the standard model (SM) was established and hunting for clues to new physics (NP) hidden in h has become the top priority in particle physics. In this paper we explore an intriguing phenomenon that prevails in NP associated with h, bound state (Bh, referring to the ground state only) of relatively heavy particles ϕ out of NP via interchanging h. This is well-motivated due to the intrinsic properties of h: It has zero spin and light mass, capable of mediating Yukawa interactions; moreover, it may be strongly coupled to ϕ in several important contexts, from addressing the naturalness problem by compositeness/supersymmetry (SUSY)/classical scale invariance to understanding neutrino mass origin radiatively and matter asymmetry by electroweak baryogensis. The new resonance Bh, being a neutral scalar boson, has important implications to the large hadron collider (LHC) di-Higgs search because it yields a clear resonant di-Higgs signature at the high mass region (≳ 1 TeV). In other words, searching for Bh offers a new avenue to probe the hidden sector with a Higgs-portal. For illustration in this paper we concentrate on two examples, the stop sector in SUSY and an inert Higgs doublet from a radiative neutrino model. In particular, h-mediation opens a new and wide window to probe the conventional stoponium and the current date begins to have sensitivity to stoponium around TeV.
Coimbatore Balram, Ajit; Wójs, Arkadiusz; Jain, Jainendra
2014-03-01
Exact diagonalization studies have revealed that the energy spectrum of interacting electrons in the lowest Landau level splits, non-perturbatively, into bands. The theory of nearly free composite fermions (CFs) has been shown to be valid for the lowest band, and thus to capture the low temperature physics, but it over-predicts the number of states for the excited bands. We explain the state counting of higher bands in terms of composite fermions with an infinitely strong short range interaction between a CF particle and a CF hole. This interaction, the form of which we derive from the microscopic CF theory, eliminates configurations containing certain tightly bound CF excitons. With this modification, the CF theory reproduces, for all well-defined excited bands, an exact counting for ν > 1 / 3 , and an almost exact counting for ν The resulting insight clarifies that the corrections to the nearly free CF theory are not thermodynamically significant at sufficiently low temperatures, thus providing a microscopic explanation for why it has proved successful for the analysis of the various properties of the CF Fermi sea. NSF grants DMR-1005536 and DMR-0820404, Polish NCN grant 2011/01/B/ST3/04504 and EU Marie Curie Grant PCIG09-GA-2011-294186, Research Computing and Cyberinfrastructure, PSU and Wroclaw Centre for Networking and Supercomputing
Electroweak-charged bound states as LHC probes of hidden forces
Li, Lingfeng; Salvioni, Ennio; Tsai, Yuhsin; Zheng, Rui
2018-01-01
We explore the LHC reach on beyond-the-standard model (BSM) particles X associated with a new strong force in a hidden sector. We focus on the motivated scenario where the SM and hidden sectors are connected by fermionic mediators ψ+,0 that carry SM electroweak charges. The most promising signal is the Drell-Yan production of a ψ±ψ¯ 0 pair, which forms an electrically charged vector bound state ϒ± due to the hidden force and later undergoes resonant annihilation into W±X . We analyze this final state in detail in the cases where X is a real scalar ϕ that decays to b b ¯, or a dark photon γd that decays to dileptons. For prompt X decays, we show that the corresponding signatures can be efficiently probed by extending the existing ATLAS and CMS diboson searches to include heavy resonance decays into BSM particles. For long-lived X , we propose new searches where the requirement of a prompt hard lepton originating from the W boson ensures triggering and essentially removes any SM backgrounds. To illustrate the potential of our results, we interpret them within two explicit models that contain strong hidden forces and electroweak-charged mediators, namely λ -supersymmetry (SUSY) and non-SUSY ultraviolet extensions of the twin Higgs model. The resonant nature of the signals allows for the reconstruction of the mass of both ϒ± and X , thus providing a wealth of information about the hidden sector.
Vortices and gate-tunable bound states in a topological insulator coupled to superconducting leads
Finck, Aaron; Kurter, C.; Hor, Y. S.; van Harlingen, D. J.
2014-03-01
It has been predicted that zero energy Majorana bound states can be found in the core of vortices within topological superconductors. Here, we report on Andreev spectroscopy measurements of the topological insulator Bi2Se3 with a normal metal lead and one or more niobium leads. The niobium induces superconductivity in the Bi2Se3 through the proximity effect, leading to both signatures of Andreev reflection and a prominent re-entrant resistance effect. When a large magnetic field is applied perpendicular to the surface of the Bi2Se3, we observe multiple abrupt changes in the subgap conductance that are accompanied by sharp peaks in the dynamical resistance. These peaks are very sensitive to changes in magnetic field and disappear at temperatures associated with the critical temperature of the induced superconductivity. The appearance of the transitions and peaks can be tuned by a top gate. At high magnetic fields, we also find evidence of gate-tunable states, which can lead to stable zero-bias conductance peaks. We interpret our results in terms of a transition occurring within the proximity effect region of the topological insulator, likely due to the formation of vortices. We acknowledge support from Microsoft Project Q.
Electron-electron bound states in Maxwell-Chern-Simons-Proca QED{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Belich, H.; Helayel-Neto, J.A. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]. E-mail: belich@cbpf.br; helayel@gft.ucp.br; Del Cima, O.M. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]. E-mail: delcima@gft.ucp.br; Ferreira, M.M. Jr. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]|[Maranhao Univ., Sao Luis, MA (Brazil). Dept. de Fisica]. E-mail: manojr@cbpf.br
2002-10-01
We start from a parity-breaking MCS QED{sub 3} model with spontaneous breaking of the gauge symmetry as a framework for evaluation of the electron-electron interaction potential and for attainment of numerical values for the e{sup -}e{sup -} - bound state. Three expressions (V{sub eff{down_arrow}}{sub {down_arrow}}, V{sub eff{down_arrow}}{sub {up_arrow}}, V{sub eff{down_arrow}}{sub {down_arrow}}) are obtained according to the polarization state of the scattered electrons. In an energy scale compatible with condensed matter electronic excitations, these potentials become degenerated. The resulting potential is implemented in the Schroedinger equation and the variational method is applied to carry out the electronic binding energy. The resulting binding energies in the scale of 10-100 meV and a correlation length in the scale of 10 - 30 Angstrom are possible indications that the MCS-QED{sub 3} model adopted may be suitable to address an eventual case of e{sup -}e{sup -} pairing in the presence of parity-symmetry breakdown. The data analyzed here suggest an energy scale of 10-100 meV to fix the breaking of the U(1)-symmetry. (author)
Rovibrational bound states of SO2 isotopologues. I: Total angular momentum J = 0-10
Kumar, Praveen; Ellis, Joseph; Poirier, Bill
2015-04-01
Isotopic variation of the rovibrational bound states of SO2 for the four stable sulfur isotopes 32-34,36S is investigated in comprehensive detail. In a two-part series, we compute the low-lying energy levels for all values of total angular momentum in the range J = 0-20. All rovibrational levels are computed, to an extremely high level of numerical convergence. The calculations have been carried out using the ScalIT suite of parallel codes. The present study (Paper I) examines the J = 0-10 rovibrational levels, providing unambiguous symmetry and rovibrational label assignments for each computed state. The calculated vibrational energy levels exhibit very good agreement with previously reported experimental and theoretical data. Rovibrational energy levels, calculated without any Coriolis approximations, are reported here for the first time. Among other potential ramifications, this data will facilitate understanding of the origin of mass-independent fractionation of sulfur isotopes in the Archean rock record-of great relevance for understanding the "oxygen revolution".
Rovibrational bound states of SO2 isotopologues. II: Total angular momentum J = 11-20
Kumar, Praveen; Poirier, Bill
2015-11-01
In a two-part series, the rovibrational bound states of SO2 are investigated in comprehensive detail, for all four stable sulfur isotopes 32-34,36S. All low-lying rovibrational energy levels-both permutation-symmetry-allowed and not allowed-are computed, for all values of total angular momentum in the range J = 0-20. The calculations have carried out using the ScalIT suite of parallel codes. The present study (Paper II) examines the J = 11-20 rovibrational levels, providing symmetry and rovibrational labels for every computed state, relying on a new lambda-doublet splitting technique to make completely unambiguous assignments. Isotope shifts are analyzed, as is the validity of ;J-shifting; as a predictor of rotational fine structure. Among other ramifications, this work will facilitate understanding of mass-independent fractionation of sulfur isotopes (S-MIF) observed in the Archean rock record-particularly as this may have arisen from self shielding. S-MIF, in turn is highly relevant in the broader context of understanding the ;oxygen revolution;.
Harz, Julia; Petraki, Kalliopi
2018-01-01
We compute the cross-sections for the radiative capture of non-relativistic particles into bound states, in unbroken perturbative non-Abelian theories. We find that the formation of bound states via emission of a gauge boson can be significant for a variety of dark matter models that feature non-Abelian long-range interactions, including multi-TeV scale WIMPs and dark matter co-annihilating with coloured partners. Our results disagree with previous computations, on the relative sign of the Ab...
Energy Technology Data Exchange (ETDEWEB)
Sturm, Sven
2012-09-06
This thesis describes the ultra-precise determination of the g-factor of the electron bound to hydrogenlike {sup 28}Si{sup 13+}. The experiment is based on the simultaneous determination of the cyclotron- and Larmor frequency of a single ion, which is stored in a triple Penning-trap setup. The continuous Stern-Gerlach effect is used to couple the spin of the bound electron to the motional frequencies of the ion via a magnetic bottle, which allows the non-destructive determination of the spin state. To this end, a highly sensitive, cryogenic detection system was developed, which allowed the direct, non-destructive detection of the eigenfrequencies with the required precision. The development of a novel, phase sensitive detection technique finally allowed the determination of the g-factor with a relative accuracy of 4 . 10{sup -11}, which was previously inconceivable. The comparison of the hereby determined value with the value predicted by quantumelectrodynamics (QED) allows the verification of the validity of this fundamental theory under the extreme conditions of the strong binding potential of a highly charged ion. The exact agreement of theory and experiment is an impressive demonstration of the exactness of QED. The experimental possibilities created in this work will allow in the near future not only further tests of theory, but also the determination of the mass of the electron with a precision that exceeds the current literature value by more than an order of magnitude.
International Nuclear Information System (INIS)
Sturm, Sven
2012-01-01
This thesis describes the ultra-precise determination of the g-factor of the electron bound to hydrogenlike 28 Si 13+ . The experiment is based on the simultaneous determination of the cyclotron- and Larmor frequency of a single ion, which is stored in a triple Penning-trap setup. The continuous Stern-Gerlach effect is used to couple the spin of the bound electron to the motional frequencies of the ion via a magnetic bottle, which allows the non-destructive determination of the spin state. To this end, a highly sensitive, cryogenic detection system was developed, which allowed the direct, non-destructive detection of the eigenfrequencies with the required precision. The development of a novel, phase sensitive detection technique finally allowed the determination of the g-factor with a relative accuracy of 4 . 10 -11 , which was previously inconceivable. The comparison of the hereby determined value with the value predicted by quantumelectrodynamics (QED) allows the verification of the validity of this fundamental theory under the extreme conditions of the strong binding potential of a highly charged ion. The exact agreement of theory and experiment is an impressive demonstration of the exactness of QED. The experimental possibilities created in this work will allow in the near future not only further tests of theory, but also the determination of the mass of the electron with a precision that exceeds the current literature value by more than an order of magnitude.
Comments upon a bound state model for a two body system
International Nuclear Information System (INIS)
Micu, L.
2005-01-01
We show that in classical mechanics, classical and relativistic quantum mechanics it is possible to replace the equation of the relative motion for a two-body bound system at rest by individual dynamical equations with correlated solutions. We compare the representations of a bound system in terms of the relative and individual coordinates and mention some of the observable differences. (author)
Quasi-molecular states in sd-shell nuclei
International Nuclear Information System (INIS)
Kubono, S.; Ikeda, N.; Nomura, T.
1988-08-01
Quasi-molecular states near and below the threshold of the molecular configuration in sd-shell nuclei are discussed using recent experimental data with particle-gamma coincidence method and particle-particle coincidence method. Possible quasi-molecular states have been identified in 24 Mg as well as in 28 Si and 32 S. The important role of quasi-molecular states are discussed, specifically for the shape evolution of nuclei as a function of excitation energy and angular momentum. (author)
Energy Technology Data Exchange (ETDEWEB)
Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)
2017-12-15
It has recently been demonstrated that asymptotically flat neutral reflecting stars are characterized by an intriguing no-hair property. In particular, it has been proved that these horizonless compact objects cannot support spatially regular static matter configurations made of scalar (spin-0) fields, vector (spin-1) fields and tensor (spin-2) fields. In the present paper we shall explicitly prove that spherically symmetric compact reflecting stars can support stationary (rather than static) bound-state massive scalar fields in their exterior spacetime regions. To this end, we solve analytically the Klein-Gordon wave equation for a linearized scalar field of mass μ and proper frequency ω in the curved background of a spherically symmetric compact reflecting star of mass M and radius R{sub s}. It is proved that the regime of existence of these stationary composed star-field configurations is characterized by the simple inequalities 1 - 2M/R{sub s} < (ω/μ){sup 2} < 1. Interestingly, in the regime M/R{sub s} << 1 of weakly self-gravitating stars we derive a remarkably compact analytical equation for the discrete spectrum {ω(M,R_s, μ)}{sup n=∞}{sub n=1} of resonant oscillation frequencies which characterize the stationary composed compact-reflecting-star-linearized-massive-scalar-field configurations. Finally, we verify the accuracy of the analytically derived resonance formula of the composed star-field configurations with direct numerical computations. (orig.)
Method for constructing bound state wave functions of two interacting particles on nullplanes
International Nuclear Information System (INIS)
Leidigh, T.J.
1980-01-01
Nullplane position and momentum coordinates are defined in terms of the generators of the Poincare group. A transformation to center-of-mass and relative coordinates for a two-particle system is made. Then, another transformation from the original relative coordinates to a new set is made. In terms of the new relative coordinates the formal analogy with nonrelativistic quantum mechanics, already familiar in the nullplane formalism, is greatly enhanced. These coordinates do not appear to have been used previously. The most general form for a two-particle interaction is then partially determined and two methods for solving the remaining constraints are shown to be equivalent. The similarity to nonrelativistic quantum mechanics is used to solve a bound state problem with an interaction resembling a harmonic oscillator. The wave function is then used to model an unstable particle, which has zero spin in the limit in which the particle becomes stable. In the presence of the decay-producing interaction it is shown that the spin spectrum of the parent particle does not remain sharply zero. This is the first relativistic model to unequivocally display this result. The result is interpreted as indicating that real, relativistic, unstable particles may not possess a sharp spin spectrum
Color-suppression of non-planar diagrams in bosonic bound states
Alvarenga Nogueira, J. H.; Ji, Chueng-Ryong; Ydrefors, E.; Frederico, T.
2018-02-01
We study the suppression of non-planar diagrams in a scalar QCD model of a meson system in 3 + 1 space-time dimensions due to the inclusion of the color degrees of freedom. As a prototype of the color-singlet meson, we consider a flavor-nonsinglet system consisting of a scalar-quark and a scalar-antiquark with equal masses exchanging a scalar-gluon of a different mass, which is investigated within the framework of the homogeneous Bethe-Salpeter equation. The equation is solved by using the Nakanishi representation for the manifestly covariant bound-state amplitude and its light-front projection. The resulting non-singular integral equation is solved numerically. The damping of the impact of the cross-ladder kernel on the binding energies are studied in detail. The color-suppression of the cross-ladder effects on the light-front wave function and the elastic electromagnetic form factor are also discussed. As our results show, the suppression appears significantly large for Nc = 3, which supports the use of rainbow-ladder truncations in practical non-perturbative calculations within QCD.
Three-body unitary transformations, three-body forces, and trinucleon bound state properties
International Nuclear Information System (INIS)
Haftel, M.I.
1976-01-01
A three-body unitary transformation method for the study of three-body forces is presented. Starting with a three-body Hamiltonian with two-body forces, unitary transformations are introduced to generate Hamiltonians that have both two- and three-body forces. For cases of physical interest, the two-body forces of the altered Hamiltonians are phase equivalent (for two-body scattering) to the original and the three-body force vanishes when any interparticle distance is large. Specific examples are presented. Applications for studying the possible role of three-body forces in accounting for trinucleon bound state properties are examined. Calculations of the 3 He and 3 H charge form factors and Coulomb energy difference with hyperspherical radial transformations and with conventional N-N potentials are performed. The form factor calculations demonstrate how the proposed method can help obtain improved agreement with experiment by the introduction of appropriate three-body forces. Calculations of the Coulomb energy difference confirm previous estimates concerning charge symmetry breaking in the N-N interaction
Detecting Majorana bound states coupling with an Aharonov-Bohm interferometer
Orellana, Pedro; Ramos Andrade, Juan Pablo; Ulloa, Sergio
In this work we consider a quantum dot (QD) connected to current leads arranged to mediate the interaction between two topological nanowires, both hosting Majorana bound states (MBS) at their ends. In an interesting system geometry, one nanowire has both ends coupled with the QD, forming an Aharonov-Bohm (AB) interferometer, while the other is placed nearby such that two MBS belonging to different nanowires can interact. We model the system using an effective low energy Hamiltonian, considering that the QD is embedded between metallic leads. Using a Green's function formalism via the equation of motion procedure, we find that the conductance across the leads can show MBS signatures, i.e. half-maximum conductance at zero-energy, when both topological nanowires are connected, independent of the AB flux phase. This system may be used as a detector of the effective connections between independent MBS by monitoring the conductance while tuning the AB phase. J.P.R.-A. acknowledge support from scholarship CONICYT-Chile No.21141034. P.A.O. acknowledges support from FONDECYT Grant No. 1140571 and S.E.U. acknowledge support from NSF Grant No. DMR 1508325.
Bound State Eigenvalues of the Schroedinger Eq. in two Spatial Variables.
Rawitscher, George H.; Koltracht, Israel
2002-08-01
An efficient spectral integral equation method (SIEM) has recently been developed for obtaining the scattering solution of a one-dimensional Schroedinger equation.(R.A. Gonzales, S.-Y. Kang, I. Koltracht and G. Rawitscher, J. of Comput. Phys. 153, 160 (1999).) The purpose of the present study is to extend this method to the case of bound-states in more than one dimension. Even though other methods have already been developed for this case, such as finite element methods, the application we have in mind is to solve the non-linear Bose-Einstein condensate case in the presence of an optical lattice. In the presence of a trapping potential alone, a B-E condensate solution has been obtained by a new iterative spectral method which solves the differential equation.(Y.-S. Choi, J. Javanainen, I. Koltracht, M. Koš)trun, P.J. McKenna and N. Savytska "A Fast Algorithm for the Solution of the Time-Independent Gross-Pitaevskii Equation," Submitted to Computational Physics. But this method becomes inadequate for the case that several potential barriers are also present. The reason that the SIEM is expected to be better suited is that it distributes the collocation points much more efficiently into partitions of variable size.
International Nuclear Information System (INIS)
Tyson, Jon
2009-01-01
Matrix monotonicity is used to obtain upper bounds on minimum-error distinguishability of arbitrary ensembles of mixed quantum states. This generalizes one direction of a two-sided bound recently obtained by the author [J. Tyson, J. Math. Phys. 50, 032106 (2009)]. It is shown that the previously obtained special case has unique properties.
Absorption enhancement in type-II coupled quantum rings due to existence of quasi-bound states
Hsieh, Chi-Ti; Lin, Shih-Yen; Chang, Shu-Wei
2018-02-01
The absorption of type-II nanostructures is often weaker than type-I counterpart due to spatially separated electrons and holes. We model the bound-to-continuum absorption of type-II quantum rings (QRs) using a multiband source-radiation approach using the retarded Green function in the cylindrical coordinate system. The selection rules due to the circular symmetry for allowed transitions of absorption are utilized. The bound-tocontinuum absorptions of type-II GaSb coupled and uncoupled QRs embedded in GaAs matrix are compared here. The GaSb QRs act as energy barriers for electrons but potential wells for holes. For the coupled QR structure, the region sandwiched between two QRs forms a potential reservoir of quasi-bound electrons. Electrons in these states, though look like bound ones, would ultimately tunnel out of the reservoir through barriers. Multiband perfectly-matched layers are introduced to model the tunneling of quasi-bound states into open space. Resonance peaks are observed on the absorption spectra of type-II coupled QRs due to the formation of quasi-bound states in conduction bands, but no resonance exist in the uncoupled QR. The tunneling time of these metastable states can be extracted from the resonance and is in the order of ten femtoseconds. Absorption of coupled QRs is significantly enhanced as compared to that of uncoupled ones in certain spectral windows of interest. These features may improve the performance of photon detectors and photovoltaic devices based on type-II semiconductor nanostructures.
Gerdes, Florian; Tatsuta, Takashi; Langer, Thomas
2012-01-01
Mitochondrial AAA proteases play an important role in the maintenance of mitochondrial proteostasis. They regulate and promote biogenesis of mitochondrial proteins by acting as processing enzymes and ensuring the selective turnover of misfolded proteins. Impairment of AAA proteases causes pleiotropic defects in various organisms including neurodegeneration in humans. AAA proteases comprise ring-like hexameric complexes in the mitochondrial inner membrane and are functionally conserved from yeast to man, but variations are evident in the subunit composition of orthologous enzymes. Recent structural and biochemical studies revealed how AAA proteases degrade their substrates in an ATP dependent manner. Intersubunit coordination of the ATP hydrolysis leads to an ordered ATP hydrolysis within the AAA ring, which ensures efficient substrate dislocation from the membrane and translocation to the proteolytic chamber. In this review, we summarize recent findings on the molecular mechanisms underlying the versatile functions of mitochondrial AAA proteases and their relevance to those of the other AAA+ machines. Copyright © 2011 Elsevier B.V. All rights reserved.
Widmann, E; Curceanu, C; Trento 2006; Trento06
2006-01-01
These are the miniproceedings of the workshop "Exotic hadronic atoms, deeply bound kaonic nuclear states and antihydrogen: present results, future challenges," which was held at the European Centre for Theoretical Nuclear Physics and Related Studies (ECT*), Trento (Italy), June 19-24, 2006. The document includes a short presentation of the topics, the list of participants, and a short contribution from each speaker.
Energy Technology Data Exchange (ETDEWEB)
Miserev, D. S., E-mail: d.miserev@student.unsw.edu.au, E-mail: erazorheader@gmail.com [University of New South Wales, School of Physics (Australia)
2016-06-15
The problem of localized states in 1D systems with a relativistic spectrum, namely, graphene stripes and carbon nanotubes, is studied analytically. The bound state as a superposition of two chiral states is completely described by their relative phase, which is the foundation of the variable phase method (VPM) developed herein. Based on our VPM, we formulate and prove the relativistic Levinson theorem. The problem of bound states can be reduced to the analysis of closed trajectories of some vector field. Remarkably, the Levinson theorem appears as the Poincaré index theorem for these closed trajectories. The VPM equation is also reduced to the nonrelativistic and semiclassical limits. The limit of a small momentum p{sub y} of transverse quantization is applicable to an arbitrary integrable potential. In this case, a single confined mode is predicted.
Czech Academy of Sciences Publication Activity Database
Pavelková, Lenka
2011-01-01
Roč. 47, č. 3 (2011), s. 370-384 ISSN 0023-5954 R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : non-linear state space model * bounded uncertainty * missing measurements * state filtering * vehicle position estimation Subject RIV: BC - Control Systems Theory Impact factor: 0.454, year: 2011 http://library.utia.cas.cz/separaty/2011/AS/pavelkova-0360239.pdf
Souto, R Seoane; Martín-Rodero, A; Yeyati, A Levy
2016-12-23
We analyze the quantum quench dynamics in the formation of a phase-biased superconducting nanojunction. We find that in the absence of an external relaxation mechanism and for very general conditions the system gets trapped in a metastable state, corresponding to a nonequilibrium population of the Andreev bound states. The use of the time-dependent full counting statistics analysis allows us to extract information on the asymptotic population of even and odd many-body states, demonstrating that a universal behavior, dependent only on the Andreev state energy, is reached in the quantum point contact limit. These results shed light on recent experimental observations on quasiparticle trapping in superconducting atomic contacts.
Precision spectroscopy on hydrogen and deuterium. Test of the bound-state quantum electrodynamics
International Nuclear Information System (INIS)
Fendel, P.
2005-06-01
An optical measurement of the hyperfine splitting of the 2s state in deuterium performed for the first time and the description of the arrangement for the measurement of the 1s-3s frequency in hydrogen by excitation with a frequency combexpect the reader of this thesis. Both experiments have the goal to test the bound-state quantum electrodynamics (QED) with high precision. The measurement of the hyperfine splitting serves thereby for the improvement of the accuracy of the so called D 21 =8E HFS (2s)-E HFS (1s) difference. Because D 21 is far-reachingly independent on the nuclear structure in spite of not accurately known proton charge radii QED can be tested on a level of 10 -7 . In the framework of the thesis present here the error of this quantity was reduced by a factor of three. The result for the 2s hyperfine splitting is: f D HFS =40924454(7) Hz. By a new kind of the data acquisition furthermore many systematic errors, especially the nonlinear drift of the reference resonator, could be reduced in comparison to a similar measurement on hydrogen. The second part of the thesis describes the efforts which were and will be taken in order to test QED by means of their perdiction of the 1s Lamb shift. For this the frequency of the 1s-3s transition in hydrogen shall be measured absolutely for the first time. A further novum is that for this a frequency-quadrupled mode-coupled laser shall be come into operation. Especially the construction and the stabilization of a ps laser, the construction of two frequency-doubling stages, the arrangement for the measurement of the absolute frequency of the spectroscopy laser, the alteration of the existing 1s-2s vacuum system, and the development of the measurement software is described. Additionally in this thesis the theory of the two-photon frequency-comb spectroscopy is further developed. Concrete expressions for the expected line shape and the influence of the chirp on the excitation rate are presented
Quasi-bound alpha resonant states populated by the 12C(6Li, d) reaction
International Nuclear Information System (INIS)
Rodrigues, M.R.D.; Borello-Lewin, T.; Miyake, H.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L.; Souza, M.A.; Cunsolo, A.; Cappuzzello, F.; Foti, A.; Agodi, C.; Cavallaro, M.; Ukita, G.M.
2012-01-01
Full text: The alpha cluster phenomenon in the light nuclei structure has been the subject of a long time investigation since the proposal of the Ikeda diagrams [1]. The main purpose of the research program in progress is the investigation of this phenomenon in (xα) and (xα+n) nuclei through the ( 6 Li, d) alpha transfer reaction [2-4]. Alpha resonant states around the (4α) threshold in the nucleus 16 O are the focus of the present contribution. In fact, the importance of these resonances at the elements production in stars is recognized, as primarily pointed out by Hoyle in 12 C [6]. The existence of a rotational band with the α + 12 C (Hoyle) cluster state structure was recently demonstrated by Ohkubo and Hirabayashi [6]. In order to explore this region of interest, measurements of the 12 C( 6 Li, d) 16 O reaction up to 17 MeV of excitation at an incident energy of 25.5 MeV, have been performed employing the Sao Paulo Pelletron-Enge Split-Pole facility and the nuclear emulsion detection technique (plates Fuji G6B, 50 μm thick). Spectra associated with six scattering angles, from 5 deg to 29 deg in the laboratory frame, each one 50 cm along the focal surface, were measured. Several narrow resonances with a quasi-bound behavior embedded in the continuum were detected and the resolution of 25 keV allowed for the separation of doublets not resolved before [7,8]. The absolute cross sections and the respective deuteron angular distributions were determined and the analysis is in progress. [1] K. Ikeda et al., Prog. Theor. Phys. Suppl. E 68, 464 (1968); H. Horiuchi, K. Ikeda, and Y. Suzuki, ibid. 44, 225 (1978). [2] M.R.D.Rodrigues et al., in12th International Conference on Nuclear Reaction Mechanism, Varenna, Italy, edited by F. Cerutti and A. Ferrari , CERN Proceedings, 2010-2, pp. 331- 335. [3] T. Borello-Lewin et al., Proceedings of SOTANCP2, Brussels, Belgium 2010, edited by P. Descouvemount et al., Int. J. Mod. Mod. Phys E 20, 1018-1021 (2011). [4] T. Borello
Crystal structure of Na+, K(+)-ATPase in the Na(+)-bound state.
Nyblom, Maria; Poulsen, Hanne; Gourdon, Pontus; Reinhard, Linda; Andersson, Magnus; Lindahl, Erik; Fedosova, Natalya; Nissen, Poul
2013-10-04
The Na(+), K(+)-adenosine triphosphatase (ATPase) maintains the electrochemical gradients of Na(+) and K(+) across the plasma membrane--a prerequisite for electrical excitability and secondary transport. Hitherto, structural information has been limited to K(+)-bound or ouabain-blocked forms. We present the crystal structure of a Na(+)-bound Na(+), K(+)-ATPase as determined at 4.3 Å resolution. Compared with the K(+)-bound form, large conformational changes are observed in the α subunit whereas the β and γ subunit structures are maintained. The locations of the three Na(+) sites are indicated with the unique site III at the recently suggested IIIb, as further supported by electrophysiological studies on leak currents. Extracellular release of the third Na(+) from IIIb through IIIa, followed by exchange of Na(+) for K(+) at sites I and II, is suggested.
Possibility of a 4He2 bound state, effective range theory, and very low energy He--He scattering
International Nuclear Information System (INIS)
Uang, Y.; Stwalley, W.C.
1982-01-01
The best available intermolecular potential for helium by Aziz, Nain, Carley, Taylor, and McConville is shown here for the first time to have a 4 He 2 bound state. Two numerical analyses, namely, eigenvalue solution and effective range theory, are used to support this conclusion. Unlike usual chemically bound species, the binding energy of this very weakly bound level is found to be only 8.3 x 10 -4 K, which is four orders of magnitude smaller than the potential well depth epsilon = 10.8 K. The scattering length for He+He collisions, determined from effective range theory, is used to calculate the elastic cross section in the very low energy limit. The results (1.878 x 10 5 A 2 for 4 He+ 4 He and 6.035 x 10 2 A for 3 He+ 3 He) are consistent with measurements at the lowest velocities yet attained. In terms of the estimated uncertainties of the parameters of the potential of Aziz and co-workers, it is shown that it is very likely that a bound state of the 4 He 2 molecule does in fact exist
Meson-meson bound state in a 2+1 lattice QCD model with two flavors and strong coupling
International Nuclear Information System (INIS)
Faria da Veiga, Paulo A.; O'Carroll, Michael; Neto, Antonio Francisco
2005-01-01
We consider the existence of bound states of two mesons in an imaginary-time formulation of lattice QCD. We analyze an SU(3) theory with two flavors in 2+1 dimensions and two-dimensional spin matrices. For a small hopping parameter and a sufficiently large glueball mass, as a preliminary, we show the existence of isoscalar and isovector mesonlike particles that have isolated dispersion curves (upper gap up to near the two-particle threshold ∼-4lnκ). The corresponding meson masses are equal up to and including O(κ 3 ) and are asymptotically of order -2lnκ-κ 2 . Considering the zero total isospin sector, we show that there is a meson-meson bound state solution to the Bethe-Salpeter equation in a ladder approximation, below the two-meson threshold, and with binding energy of order bκ 2 ≅0.02359κ 2 . In the context of the strong coupling expansion in κ, we show that there are two sources of meson-meson attraction. One comes from a quark-antiquark exchange. This is not a meson exchange, as the spin indices are not those of the meson particle, and we refer to this as a quasimeson exchange. The other arises from gauge field correlations of four overlapping bonds, two positively oriented and two of opposite orientation. Although the exchange part gives rise to a space range-one attractive potential, the main mechanism for the formation of the bound state comes from the gauge contribution. In our lattice Bethe-Salpeter equation approach, this mechanism is manifested by an attractive distance-zero energy-dependent potential. We recall that no bound state appeared in the one-flavor case, where the repulsive effect of Pauli exclusion is stronger
Energy Technology Data Exchange (ETDEWEB)
Suparmi, A., E-mail: suparmiuns@gmail.com; Cari, C., E-mail: suparmiuns@gmail.com [Physics Department, Post Graduate Study, Sebelas Maret University (Indonesia); Angraini, L. M. [Physics Department, Mataram University (Indonesia)
2014-09-30
The bound state solutions of Dirac equation for Hulthen and trigonometric Rosen Morse non-central potential are obtained using finite Romanovski polynomials. The approximate relativistic energy spectrum and the radial wave functions which are given in terms of Romanovski polynomials are obtained from solution of radial Dirac equation. The angular wave functions and the orbital quantum number are found from angular Dirac equation solution. In non-relativistic limit, the relativistic energy spectrum reduces into non-relativistic energy.
Possible D(*) anti D(*) and B(*) anti B(*) molecular states in the extended constituent quark models
International Nuclear Information System (INIS)
Yang, You-Chang; Tan, Zhi-Yun; Ping, Jialun; Zong, Hong-Shi
2017-01-01
The possible neutral D (*) anti D (*) and B (*) anti B (*) molecular states are studied in the framework of the constituent quark models, which is extended by including the s-channel one-gluon exchange. Using different types of quark-quark potentials, we solve the four-body Schroedinger equation by means of the Gaussian expansion method. The bound states of D (*) anti D (*) with J PC = 1 ++ , 2 ++ and B (*) anti B (*) with J PC = 0 ++ , 1 +- , 1 ++ , 2 ++ are obtained. The molecular states D* anti D with J PC = 1 ++ and B* anti B with J PC = 1 +- are good candidates for X(3872) and Z 0 b (10610), respectively. The dependence of the results on the model parameters is also discussed. (orig.)
Current state of molecular imaging research
International Nuclear Information System (INIS)
Grimm, J.; Wunder, A.
2005-01-01
The recent years have seen significant advances in both molecular biology, allowing the identification of genes and pathways related to disease, and imaging technologies that allow for improved spatial and temporal resolution, enhanced sensitivity, better depth penetration, improved image processing, and beneficial combinations of different imaging modalities. These advances have led to a paradigm shift in the scope of diagnostic imaging. The traditional role of radiological diagnostic imaging is to define gross anatomy and structure in order to detect pathological abnormalities. Available contrast agents are mostly non-specific and can be used to image physiological processes such as changes in blood volume, flow, and perfusion but not to demonstrate pathological alterations at molecular levels. However, alterations at the anatomical-morphological level are relatively late manifestations of underlying molecular changes. Using molecular probes or markers that bind specifically to molecular targets allows for the non-invasive visualization and quantitation of biological processes such as gene expression, apoptosis, or angiogenesis at the molecular level within intact living organisms. This rapidly evolving, multidisciplinary approach, referred to as molecular imaging, promises to enable early diagnosis, can provide improved classification of stage and severity of disease, an objective assessment of treatment efficacy, and a reliable prognosis. Furthermore, molecular imaging is an important tool for the evaluation of physiological and pathophysiological processes, and for the development of new therapies. This article comprises a review of current technologies of molecular imaging, describes the development of contrast agents and various imaging modalities, new applications in specific disease models, and potential future developments. (orig.)
Synthesis and Isotope Effects on the Excited State Properties of NN Bound Complexes
Soman, Suraj; Younis, Hamid M.; Browne, Wesley R.; Vos, Johannes G.; Pryce, Mary T.
2017-01-01
A versatile approach to the preparation of [Ir(LL)(2)Cl-2](PF6) type complexes is reported, in which LL is an (NN)-N- bound polypyridyl ligand [X(2)bpy, X(2)phen, where X = H-, CH3-, (CH3)(3)C-, or phenyl-, and bpy = 2,2-bipyridyl, phen = 1,10-phenanthroline] as well as their deuterated analogues.
International Nuclear Information System (INIS)
Woon, D.E.; Peterson, K.A.; Dunning, T.H. Jr.
1998-01-01
The interaction of Ar with H 2 and HCl has been studied using Moeller - Plesset perturbation theory (MP2, MP3, MP4) and coupled-cluster [CCSD, CCSD(T)] methods with augmented correlation consistent basis sets. Basis sets as large as triply augmented quadruple zeta quality were used to investigate the convergence trends. Interaction energies were determined using the supermolecule approach with the counterpoise correction to account for basis set superposition error. Comparison with the available empirical potentials finds excellent agreement for both binding energies and transition state. For Ar - H 2 , the estimated complete basis set (CBS) limits for the binding energies of the two equivalent minima and the connecting transition state (TS) are, respectively, 55 and 47cm -1 at the MP4 level and 54 and 46cm -1 at the CCSD(T) level, respectively [the XC(fit) empirical potential of Bissonnette et al. [J. Chem. Phys. 105, 2639 (1996)] yields 56.6 and 47.8cm -1 for H 2 (v=0)]. The estimated CBS limits for the binding energies of the two minima and transition state of Ar - HCl are 185, 155, and 109cm -1 at the MP4 level and 176, 147, and 105cm -1 at the CCSD(T) level, respectively [the H6(4,3,0) empirical potential of Hutson [J. Phys. Chem. 96, 4237 (1992)] yields 176.0, 148.3, and 103.3cm -1 for HCl (v=0)]. Basis sets containing diffuse functions of (dfg) symmetries were found to be essential for accurately modeling these two complexes, which are largely bound by dispersion and induction forces. Highly correlated wave functions were also required for accurate results. This was found to be particularly true for ArHCl, where significant differences in calculated binding energies were observed between MP2, MP4, and CCSD(T). copyright 1998 American Institute of Physics
Excitations and possible bound states in the S = 1/2 alternating chain compound (VO)2P2O7
International Nuclear Information System (INIS)
Tennant, D.A.; Nagler, S.E.; Sales, B.C.
1997-01-01
Magnetic excitations in an array of (VO) 2 P 2 O 7 single crystals have been measured using inelastic neutron scattering. Until now, (VO) 2 P 2 O 7 has been thought of as a two-leg antiferromagnetic Heisenberg spin ladder with chains running in the a-direction. The present results show unequivocally that (VO) 2 P 2 O 7 is best described as an alternating spin-chain directed along the crystallographic b-direction. In addition to the expected magnon with magnetic zone-center energy gap Δ = 3.1 meV, a second excitation is observed at an energy just below 2Δ. The higher mode may be a triplet two-magnon bound state. Numerical results in support of bound modes are presented
Bound-state effects for dark matter with Higgs-like mediators
Biondini, Simone
2018-01-01
In this paper we study the impact of a scalar exchange on the dark matter relic abundance by solving a plasma-modified Schr\\"odinger equation. A simplified model is considered where a Majorana dark matter fermion is embedded in a U(1)$'$ extension of the Standard Model and couples with a dark Higgs via a Yukawa interaction. We find that the dark-Higgs exchange can increase the overclosure bounds significantly. For the largest (smallest) value of the Yukawa coupling examined in this work, the ...
Theoretical study of the electronic structure of different states of the KRb+ molecular ion
International Nuclear Information System (INIS)
Korek, M.; Younis, G.
2000-01-01
Full text.The molecular activities in ultra-cold alkali atom trapping stimulate theoretical developments to compute relevant adiabatic potential curves, especially in the framework of the pseudopotential methods. For these methods the molecular ion KRb+ is treated as system with one active electron moving in a field of two ionic cores, where core valence electron interactions are presented by an effective potential. Potential energies have been calculated over a wide range of internuclear distance (5.0-60a o ) for the lowest states of symmetry 2 Σ, 2 Π, 2 Δ and Ω for the molecular ion KRb+. To avoid an over estimation of the dissociation energy the perturbative treatment is replaced by an l-dependent core-polarization potential of the Foucrault et al. For the one valence electron of the two considered atoms, we recalculated the polarization potential cut-off parameters r k l , and r R b l by taking l=0,1,2 and r i 2 =r i 3 . Molecular orbital for the molecular ion KRb+ were derived from Self Consistent Field calculations (SCF), and full valence Configuration Interaction (IC) calculations were performed. Extensive tables of energy values versus internuclear distance are displayed and molecular spectroscopic constants have been derived, for the first time, for the bound states with regular shape
International Nuclear Information System (INIS)
Boutin, D.
2005-08-01
The first experimental observation of bound-state beta-decay showed, that due solely to the electron stripping, a stable nuclide, e.g. 163 Dy, became unstable. Also a drastic modification of the half-life of bare 187 Re, from 4.12(2) x 10 10 years down to 32.9(20) years, could be observed. It was mainly due to the possibility for the mother nuclide to decay into a previously inaccessible nuclear level of the daughter nuclide. It was proposed to study a nuclide where this decay mode was competing with continuum-state beta-decay, in order to measure their respective branchings. The ratio β b /β c could also be evaluated for the first time. 207 Tl was chosen due to its high atomic number, and Q-value of about 1.4 MeV, small enough to enhance the β b probability and large enough to allow the use of time-resolved Schottky Mass Spectrometry (SMS) to study the evolution of mother and bound-state beta-decay daughter ions. The decay properties of the ground state and isomeric state of 207 Tl 81+ have been investigated at the GSI accelerator facility in two separate experiments. For the first time β-decay where the electron could go either to a bound state (atomic orbitals) and lead to 207 Pb 81+ as a daughter nuclide, or to a continuum state and lead to 207 Pb 82+ , has been observed. The respective branchings of these two processes could be measured as well. The deduced total nuclear half-life of 255(17) s for 207 Tl 81+ , was slightly modified with respect to the half-life of the neutral atom of 286(2) s. It was nevertheless in very good agreement with calculations based on the assumption that the beta-decay was following an allowed type of transition. The branching β b /β c =0.192(20), was also in very good agreement with the same calculations. The application of stochastic precooling allowed to observe in addition the 1348 keV short-lived isomeric state of 207 Tl. The half-life of this isomeric state was measured as 1.47(32) s, which shows a small deviation
Quasiparticle Scattering off Defects and Possible Bound States in Charge-Ordered YBa_{2}Cu_{3}O_{y}.
Zhou, R; Hirata, M; Wu, T; Vinograd, I; Mayaffre, H; Krämer, S; Horvatić, M; Berthier, C; Reyes, A P; Kuhns, P L; Liang, R; Hardy, W N; Bonn, D A; Julien, M-H
2017-01-06
We report the NMR observation of a skewed distribution of ^{17}O Knight shifts when a magnetic field quenches superconductivity and induces long-range charge-density-wave (CDW) order in YBa_{2}Cu_{3}O_{y}. This distribution is explained by an inhomogeneous pattern of the local density of states N(E_{F}) arising from quasiparticle scattering off, yet unidentified, defects in the CDW state. We argue that the effect is most likely related to the formation of quasiparticle bound states, as is known to occur, under specific circumstances, in some metals and superconductors (but not in the CDW state, in general, except for very few cases in 1D materials). These observations should provide insight into the microscopic nature of the CDW, especially regarding the reconstructed band structure and the sensitivity to disorder.
Huang, Dao-Ling; Zhu, Guo-Zhu; Wang, Lai-Sheng
2016-06-01
Deprotonated thymine can exist in two different forms, depending on which of its two N sites is deprotonated: N1[T-H]^- or N3[T-H]^-. Here we report a photodetachment study of the N1[T-H]^- isomer cooled in a cryogenic ion trap and the observation of an excited dipole-bound state. Eighteen vibrational levels of the dipole-bound state are observed, and its vibrational ground state is found to be 238 ± 5 wn below the detachment threshold of N1[T-H]^-. The electron affinity of the deprotonated thymine radical (N1[T-H]^.) is measured accruately to be 26 322 ± 5 wn (3.2635 ± 0.0006 eV). By tuning the detachment laser to the sixteen vibrational levels of the dipole-bound state that are above the detachment threshold, highly non-Franck-Condon resonant-enhanced photoelectron spectra are obtained due to state- and mode-selective vibrational autodetachment. Much richer vibrational information is obtained for the deprotonated thymine radical from the photodetachment and resonant-enhanced photoelectron spectroscopy. Eleven fundamental vibrational frequencies in the low-frequency regime are obtained for the N1[T-H]^. radical, including the two lowest-frequency internal rotational modes of the methyl group at 70 ± 8 wn and 92 ± 5 wn. D. L. Huang, H. T. Liu, C. G. Ning, G. Z. Zhu and L. S. Wang, Chem. Sci., 6, 3129-3138 (2015)
Photoionization dynamics of excited molecular states
International Nuclear Information System (INIS)
Dehmer, J.L.; O'Halloran, M.A.; Tomkins, F.S.; Dehmer, P.M.; Pratt, S.T.
1987-01-01
Resonance Enhanced Multiphoton Ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of opportunities for exploring excited state physics and chemistry at the quantum-state-specific level. Here we will first give a brief overview of the large variety of experimental approaches to excited state phenomena made possible by REMPI. Then we will examine in more detail, recent studies of the three photon resonant, four photon (3 + 1) ionization of H 2 via the C 'PI/sup u/ state. Strong non-Franck-Condon behavior in the photoelectron spectra of this nominally simple Rydberg state has led to the examination of a variety of dynamical mechanisms. Of these, the role of doubly excited autoionizing states now seems decisive. Progress on photoelectron studies of autoionizing states in H 2 , excited in a (2 + 1) REMPI process via the E, F 1 Σ/sub g/ + will also be briefly discussed. 26 refs., 7 figs
Excited state dynamics & optical control of molecular motors
Wiley, Ted; Sension, Roseanne
2014-03-01
Chiral overcrowded alkenes are likely candidates for light driven rotary molecular motors. At their core, these molecular motors are based on the chromophore stilbene, undergoing ultrafast cis/trans photoisomerization about their central double bond. Unlike stilbene, the photochemistry of molecular motors proceeds in one direction only. This unidirectional rotation is a result of helicity in the molecule induced by steric hindrance. However, the steric hindrance which ensures unidirectional excited state rotation, has the unfortunate consequence of producing large ground state barriers which dramatically decrease the overall rate of rotation. These molecular scale ultrafast motors have only recently been studied by ultrafast spectroscopy. Our lab has studied the photochemistry and photophysics of a ``first generation'' molecular motor with UV-visible transient absorption spectroscopy. We hope to use optical pulse shaping to enhance the efficiency and turnover rate of these molecular motors.
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-05-16
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.
Numerical studies of the Bethe-Salpeter equation for a two-fermion bound state
de Paula, W.; Frederico, T.; Salmè, G.; Viviani, M.
2018-03-01
Some recent advances on the solution of the Bethe-Salpeter equation (BSE) for a two-fermion bound system directly in Minkowski space are presented. The calculations are based on the expression of the Bethe-Salpeter amplitude in terms of the so-called Nakanishi integral representation and on the light-front projection (i.e. the integration of the light-front variable k - = k 0 - k 3). The latter technique allows for the analytically exact treatment of the singularities plaguing the two-fermion BSE in Minkowski space. The good agreement observed between our results and those obtained using other existing numerical methods, based on both Minkowski and Euclidean space techniques, fully corroborate our analytical treatment.
Rizov, V A; Todorov, I T
1975-01-01
A recently proposed local quasipotential equation is reviewed and applied to the electromagnetic interaction of a spin-0 and a spin-/sup 1///sub 2/ particle. The Dirac particle is treated in a covariant two- component formalism in the neighbourhood of the mass shell. The fine structure of the bound state energy levels and the main part of the Lamb shift (of order alpha /sup 5/In(1/ alpha ) are evaluated with full account of relativistic recoil effects (without using any inverse mass expansion). Possible relevance of the techniques developed in this paper to fine structure calculations for meso-atomic systems is pointed out. (14 refs).
On the role of anti-bound states in the RPA description of the giant monopole resonance
International Nuclear Information System (INIS)
Vertse, T.; Bang, J.
1989-01-01
The limit of the applicability of the resonant Random Phase Approximation (RPA) method is tested by calculating escape widths in the giant monopole resonance of 16 O and comparing them to the results of a time dependent Hartree-Fock calculation. Though the widths of the narrow s-wave component agree reasonably well, the broad p-wave component shows large disagreement, which cannot be cured by complementing the basis with anti-bound states in the RPA calculation. (author) 18 refs.; 3 tabs
Big-bang nucleosynthesis through bound-state effects with a long-lived slepton in the NMSSM
Kohri, Kazunori; Koike, Masafumi; Konishi, Yasufumi; Ohta, Shingo; Sato, Joe; Shimomura, Takashi; Sugai, Kenichi; Yamanaka, Masato
2014-08-01
We show that the Li problems can be solved in the next-to-minimal supersymmetric standard model where the slepton as the next-to-lightest supersymmetric (SUSY) particle is very long lived. Such a long-lived slepton induces exotic nuclear reactions in big-bang nucleosynthesis, and destroys and produces the Li7 and Li6 nuclei via bound state formation. We study cases where the lightest SUSY particle is singlino-like neutralino and bino-like neutralino to present allowed regions in the parameter space, which is consistent with the observations on the dark matter and the Higgs mass.
International Nuclear Information System (INIS)
Faria da Veiga, Paulo A.; O'Carroll, Michael
2006-01-01
We determine baryon-baryon bound states in (3+1)-dimensional SU(3) lattice QCD with two flavors, 4x4 spin matrices, and in an imaginary time formulation. For small hopping parameter κ>0 and large glueball mass (strong coupling), we show the existence of three-quark isospin 1/2 particles (proton and neutron) and isospin 3/2 baryons (delta particles), with asymptotic masses -3lnκ and isolated dispersion curves. Baryon-baryon bound states of isospin zero are found with binding energy of order κ 2 , using a ladder approximation to a lattice Bethe-Salpeter equation. The dominant baryon-baryon interaction is an energy-independent spatial range-one attractive potential with an O(κ 2 ) strength. There is also attraction arising from gauge field correlations associated with six overlapping bonds, but it is counterbalanced by Pauli repulsion to give a vanishing zero-range potential. The overall range-one potential results from a quark, antiquark exchange with no meson exchange interpretation; the repulsive or attractive nature of the interaction depends on the isospin and spin of the two-baryon state
Energy Technology Data Exchange (ETDEWEB)
Zheng, Rui [School of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou (China); Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan (China); Li, Song, E-mail: lsong@yangtzeu.edu.cn [School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou (China); Chen, Shan-Jun; Chen, Yan [School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou (China); Zheng, Li-Min [Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan (China)
2015-09-08
Highlights: • A two-dimensional potential for Ar–BrCl is constructed at the CCSD(T) level. • The PES is characterized by three minima and two saddle points between them. • Bound state calculations were carried out for the complex. - Abstract: The intermolecular potential energy surface (PES) of the ground electronic state for the Ar–BrCl dimer is constructed at the CCSD(T) level with the aug-cc-pVQZ basis set and mid-bond functions. The PES is characterized by three minima and two saddle points. The global minimum corresponding to a collinear Ar–BrCl configuration, which has been observed experimentally, is located at R = 4.10 Å and θ = 2.5° with a well depth of −285.207 cm{sup −1}. A nearly T-shaped structure and an anti-linear Ar–ClBr geometry is also predicted. The bound state calculations are preformed to study intermolecular vibrational modes, rotational levels and average structures for the complex. Our transition frequencies, spectroscopic constants and average structures for all isotopomers of the collinear isomer agree well with experimental data. We have also provided pure rotational transitional frequencies for both nearly T-shaped and anti-linear isomers. These results are significant for further experimental investigations of the Ar–BrCl dimer.
Harnessing molecular excited states with Lanczos chains
Baroni, Stefano; Gebauer, Ralph; Bariş Malcioğlu, O.; Saad, Yousef; Umari, Paolo; Xian, Jiawei
2010-02-01
The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly expressing them in terms of continued fractions. In this paper we extend the recursion method to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to the simulation of molecular optical absorption and photoemission spectra within time-dependent density-functional and many-body perturbation theories, respectively. This method is demonstrated with a couple of applications to the optical absorption and photoemission spectra of the caffeine molecule.
Harnessing molecular excited states with Lanczos chains
Energy Technology Data Exchange (ETDEWEB)
Baroni, Stefano; Baris Malcioglu, O; Xian Jiawei [SISSA-Scuola Internazionale Superiore di Studi Avanzati, I-34151 Trieste (Italy); Gebauer, Ralph; Umari, Paolo [CNR DEMOCRITOS Theory-Elettra Group, c/o Sincrotrone Trieste, Area Science Park, I-34012 Basovizza, Trieste (Italy); Saad, Yousef [Department of Computer Science and Engineering, University of Minnesota, and Minnesota Supercomputing Institute, Minneapolis, MN 55455 (United States)
2010-02-24
The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly expressing them in terms of continued fractions. In this paper we extend the recursion method to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to the simulation of molecular optical absorption and photoemission spectra within time-dependent density-functional and many-body perturbation theories, respectively. This method is demonstrated with a couple of applications to the optical absorption and photoemission spectra of the caffeine molecule.
Harnessing molecular excited states with Lanczos chains.
Baroni, Stefano; Gebauer, Ralph; Bariş Malcioğlu, O; Saad, Yousef; Umari, Paolo; Xian, Jiawei
2010-02-24
The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly expressing them in terms of continued fractions. In this paper we extend the recursion method to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to the simulation of molecular optical absorption and photoemission spectra within time-dependent density-functional and many-body perturbation theories, respectively. This method is demonstrated with a couple of applications to the optical absorption and photoemission spectra of the caffeine molecule.
Harnessing molecular excited states with Lanczos chains
International Nuclear Information System (INIS)
Baroni, Stefano; Baris Malcioglu, O; Xian Jiawei; Gebauer, Ralph; Umari, Paolo; Saad, Yousef
2010-01-01
The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly expressing them in terms of continued fractions. In this paper we extend the recursion method to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to the simulation of molecular optical absorption and photoemission spectra within time-dependent density-functional and many-body perturbation theories, respectively. This method is demonstrated with a couple of applications to the optical absorption and photoemission spectra of the caffeine molecule.
Asymptotics of the bound state induced by delta-interaction supported on a weakly deformed plane
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Kondej, S.; Lotoreichik, Vladimir
2018-01-01
Roč. 59, č. 1 (2018), č. článku 013501. ISSN 0022-2488 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : Schrodinger operator * interactions Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.077, year: 2016
Directory of Open Access Journals (Sweden)
Yasmin M. Abaza
2014-01-01
Full Text Available Primary urethral cancer is rare and accounts for only 0.003% of all malignancies arising from the female genitourinary tract. Due to the rarity of this disease, no consensus exists regarding the optimal therapeutic approach. Nanoparticle albumin-bound-paclitaxel has been shown to be effective in the treatment of a number of malignancies including metastatic breast, pancreatic, and bladder cancer. We present a 67-year-old woman with advanced metastatic urethral adenocarcinoma resistant to two lines of chemotherapy (ifosfamide/paclitaxel/cisplatin and irinotecan/5-fluorouracil/leucovorin that showed a dramatic response to nanoparticle albumin-bound-paclitaxel. This is the first case report to document the use and efficacy of nanoparticle albumin-bound-paclitaxel in the treatment of unresectable metastatic urethral cancer.
International Nuclear Information System (INIS)
Logrado, P.G.; Vianna, J.D.M.
Upper and lower bounds for the energy eigenvalues is Schoenberg's perturbation-theory ground state are studied. After a review of the characteristic features of the partitioning techniques the perturbative expansion proposed by Schoenberg is generated from an exact operator equation. The upper and lower bounds for the ground state eigenvalue are derived by using reaction and wave operators concepts, the bracketing function and operator inequalities. (Author) [pt
High-precision calculation of loosely bound states of LiPs+ and NaPs+
International Nuclear Information System (INIS)
Yamashita, Takuma; Kino, Yasushi
2015-01-01
A positronic alkali atom would be the first step to investigate behavior of a positronium(Ps) in an external field from atoms/molecules because the system can be regarded as a simple three-body system using model potentials reflecting electron orbitals of the ion core. In order to precisely determine binding energies and structures of positronic alkali atoms (LiPs + and NaPs + ), we improve the model potential so as to reproduce highly excited atomic energy levels of alkali atoms (Li and Na). The polarization potential included by the model potential is expanded in terms of Gaussian functions to finely determine a short range part of the potential which has been assumed to be a simple form. We find better reproducibility not only of atomic levels of the alkali atoms but also of the dipole polarizability of the core ion than previous works. We construct a model potential between a positron and an ion core based on the model potential between the valence electron and ion core. Binding energies associated with a dissociation of the alkali ion core and positronium, and interparticle distances are recalculated. Our results show slightly deeper bound than other previous studies. (paper)
Search for the He-η bound states with the WASA-at-COSY facility
Directory of Open Access Journals (Sweden)
Krzemien W.
2012-12-01
Full Text Available The η-mesic nuclei in which the η meson is bound with nucleus via strong interaction was postulated already in 1986, however till now no experiment confirmed empirically its existence. The discovery of this new kind of an exotic nuclear matter would be very important for better understanding of the η meson structure and its interaction with nucleons. The search for η-mesic helium is carried out with high statistic and high acceptance with the WASA-at-COSY detection setup in the Research Center Jülich. The search is conducted via the measurement of the excitation function for the chosen decay channels of the 4He-η system. Till now two reactions dd → (4He-ηbs → 3Hepπ− and dd → (4He-ηbs → 3Henπ0 were measured with the beam momentum ramped around the η production threshold. This report includes the description of experimental method and status of the analysis.
Steady-state dynamo and current drive in a nonuniform bounded plasma
International Nuclear Information System (INIS)
Mett, R.R.; Taylor, J.B.
1991-03-01
Current drive due to helicity injection and dynamo effect are examined in an inhomogeneous bounded plasma. Averaged over a magnetic surface, there is in general no dynamo effect independent of resistivity -- contrary to the results found previously for an unbounded plasma. The dynamo field is calculated explicitly for an incompressible visco-resistive fluid in the plane-slab model. In accord with our general conclusion, outside the Alfven resonant layer it is proportional to the resistivity. Within the resonant layer there is a contribution which is enhanced, relative to its value outside the layer, by a factor (ωa 2 /(η + ν)), where ω is the wave frequency, a the plasma radius, η the magnetic diffusivity, and ν the kinematic viscosity. However, this contribution vanishes when integrated across the layer. The average field in the layer is enhanced by factor (ωa 2 /(η + ν)) 2/3 and is proportional to the shear in the magnetic field and the cube root of the gradient of the Alfven speed. These results are interpreted in terms of helicity balance, and reconciled with the infinite medium calculations. 15 refs
International Nuclear Information System (INIS)
Mankiewicz, L.; Sawicki, M.
1989-01-01
Within a relativistically correct yet analytically solvable model of light-front quantum mechanics we construct the electromagnetic form factor of the two-body bound state and we study the validity of the static approximation to the full form factor. Upon comparison of full form factors calculated for different values of binding energy we observe an unexpected effect that for very strongly bound states further increase in binding leads to an increase in the size of the bound system. A similar effect is found for another quantum-mechanical model of relativistic dynamics
Topologically protected bound states in photonic parity-time-symmetric crystals.
Weimann, S; Kremer, M; Plotnik, Y; Lumer, Y; Nolte, S; Makris, K G; Segev, M; Rechtsman, M C; Szameit, A
2017-04-01
Parity-time (PT)-symmetric crystals are a class of non-Hermitian systems that allow, for example, the existence of modes with real propagation constants, for self-orthogonality of propagating modes, and for uni-directional invisibility at defects. Photonic PT-symmetric systems that also support topological states could be useful for shaping and routing light waves. However, it is currently debated whether topological interface states can exist at all in PT-symmetric systems. Here, we show theoretically and demonstrate experimentally the existence of such states: states that are localized at the interface between two topologically distinct PT-symmetric photonic lattices. We find analytical closed form solutions of topological PT-symmetric interface states, and observe them through fluorescence microscopy in a passive PT-symmetric dimerized photonic lattice. Our results are relevant towards approaches to localize light on the interface between non-Hermitian crystals.
Mitchell, Tarissa; Lee, Deborah; Weinberg, Michelle; Phares, Christina; James, Nicola; Amornpaisarnloet, Kittisak; Aumpipat, Lalita; Cooley, Gretchen; Davies, Anita; Tin Shwe, Valerie Daw; Gajdadziev, Vasil; Gorbacheva, Olga; Khwan-Niam, Chutharat; Klosovsky, Alexander; Madilokkowit, Waritorn; Martin, Diana; Htun Myint, Naing Zaw; Yen Nguyen, Thi Ngoc; Nutman, Thomas B; O'Connell, Elise M; Ortega, Luis; Prayadsab, Sugunya; Srimanee, Chetdanai; Supakunatom, Wasant; Vesessmith, Vattanachai; Stauffer, William M
2018-03-01
With an unprecedented number of displaced persons worldwide, strategies for improving the health of migrating populations are critical. United States-bound refugees undergo a required overseas medical examination to identify inadmissible conditions (e.g., tuberculosis) 2-6 months before resettlement, but it is limited in scope and may miss important, preventable infectious, chronic, or nutritional causes of morbidity. We sought to evaluate the feasibility and health impact of diagnosis and management of such conditions before travel. We offered voluntary testing for intestinal parasites, anemia, and hepatitis B virus infection, to U.S.-bound refugees from three Thailand-Burma border camps. Treatment and preventive measures (e.g., anemia and parasite treatment, vaccination) were initiated before resettlement. United States refugee health partners received overseas results and provided post-arrival medical examination findings. During July 9, 2012 to November 29, 2013, 2,004 refugees aged 0.5-89 years enrolled. Among 463 participants screened for seven intestinal parasites overseas and after arrival, helminthic infections decreased from 67% to 12%. Among 118 with positive Strongyloides -specific antibody responses, the median fluorescent intensity decreased by an average of 81% after treatment. The prevalence of moderate-to-severe anemia (hemoglobin migration process to improve the health of refugees before resettlement. With more than 250 million migrants globally, this model may offer insights into healthier migration strategies.
International Nuclear Information System (INIS)
Aleksandrov, L.; Drenska, M.; Karadzhov, D.
1986-01-01
A generalization of the core spline method is given in the case of solution of the general bound state problem for a system of M linear differential equations with coefficients depending on the spectral parameter. The recursion scheme for construction of basic splines is described. The wave functions are expressed as linear combinations of basic splines, which are approximate partial solutions of the system. The spectral parameter (the eigenvalue) is determined from the condition for existence of a nontrivial solution of a (MxM) linear algebraic system at the last collocation point. The nontrivial solutions of this system determine (M - 1) coefficients of the linear spans, expressing the wave functions. The last unknown coefficient is determined from a boundary (or normalization) condition for the system. The computational aspects of the method are discussed, in particular, its concrete algorithmic realization used in the RODSOL program. The numerical solution of the Dirac system for the bound states of a hydrogen atom is given is an example
International Nuclear Information System (INIS)
Araujo Junior, C.F. de; Adhikari, S.K.; Tomio, L.
1993-10-01
Complex Kohn variational principle is applied to the numerical solution of the fully off-shell Lippmann-Schwinger equation for nucleon-nucleon scattering for various partial waves including the coupled 3 S 1 - 3 D 1 channel. Analytic expressions are obtained for all the integrals in the method for a suitable choice of expansion functions. Calculations with the partial waves 1 S 0 , 1 P 1 , 1 D 2 , and 3 S 1 - 3 D 1 of the Reid soft core potential show that the method converges faster than other solution schemes not only for the phase shift but also for the off-shell t matrix elements. It is also shown that its is trivial to modify this variational principle in order to make it suitable for bound-stage calculations. The bound-state approach is illustrated for the 3 S 1 - 3 D 1 channel of the Reid soft-core potential for calculating the deuteron binding, wave function and the D state asymptotic parameters. (author)
Molecular excited states from the SCAN functional
Tozer, David J.; Peach, Michael J. G.
2018-06-01
The performance of the strongly constrained and appropriately normed (SCAN) meta-generalised gradient approximation exchange-correlation functional is investigated for the calculation of time-dependent density-functional theory molecular excitation energies of local, charge-transfer and Rydberg character, together with the excited ? potential energy curve in H2. The SCAN results frequently resemble those obtained using a global hybrid functional, with either a standard or increased fraction of exact orbital exchange. For local excitations, SCAN can exhibit significant triplet instability problems, resulting in imaginary triplet excitation energies for a number of cases. The Tamm-Dancoff approximation offers a simple approach to improve the situation, but the excitation energies are still significantly underestimated. Understanding the origin of these (near)-triplet instabilities may provide useful insight into future functional development.
International Nuclear Information System (INIS)
Yan Junxia; Fu Huahua
2013-01-01
We study the electronic transport through a four-quantum-dot (FQD) structure with a diamond-like shape through nonequilibrium Green's function theory. It is observed that the bound state in the continuum (BIC) appears in this multiple QDs system, and the position of the BIC in the total density of states (TDOS) spectrum is tightly determined by the strength of the electronic hopping between the upper QD and the lower one. As the symmetry in the energy levels in these two QDs is broken, the BIC is suppressed to a general conductance peak with a finite width, and meanwhile a Fano-type antiresonance with a zero point appears in the conductance spectrum. These results will develop our understanding of the BICs and their spintronic device applications of spin filter and quantum computing.
Scattering and bound states for the Hulthen potential in a cosmic string background
Energy Technology Data Exchange (ETDEWEB)
Hosseinpour, Mansoureh; Hassanabadi, Hassan [Shahrood University of Technology, Physics Department, P. O. Box: 3619995161-316, Shahrood (Iran, Islamic Republic of); Andrade, Fabiano M. [Universidade Estadual de Ponta Grossa, Departamento de Matematica e Estatistica, Ponta Grossa, PR (Brazil); Silva, Edilberto O. [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, MA (Brazil)
2017-05-15
In this work we study the Dirac equation with vector and scalar potentials in the spacetime generated by a cosmic string. Using an approximation for the centrifugal term, a solution for the radial differential equation is obtained. We consider the scattering states under the Hulthen potential and obtain the phase shifts. From the poles of the scattering S-matrix the states energies are determined as well. (orig.)
Influence of quasi-bound states on the carrier capture into quantum dots
DEFF Research Database (Denmark)
Magnúsdóttir, Ingibjörg; Uskov, A.; Bischoff, Svend
2002-01-01
An important characteristic of quantum dot (QD) materials is the timescale on which carriers are captured into the dots and relax to their ground state. The properties of devices based on QDs, such as lasers, thus rely on efficient carrier feeding to the active QD states. These processes are beli......An important characteristic of quantum dot (QD) materials is the timescale on which carriers are captured into the dots and relax to their ground state. The properties of devices based on QDs, such as lasers, thus rely on efficient carrier feeding to the active QD states. These processes...... are believed to be mediated by carrier-phonon and carrier-carrier interaction (Auger processes). In systems of higher dimensionality, carrier relaxation via emission of LO (Longitudinal Optical) phonons is dominant. However, due to the discrete QD density of states, this process is often considered impossible...... unless the energy level separation equals the LO phonon energy, leading to a so-called phonon bottleneck. This argument is based on the assumption that the carrier-LO phonon interaction is weak. It was shown that carriers in discrete QD states couple strongly to phonons and that the intersubband...
Bottom and charm mass determinations from global fits to Q\\overline{Q} bound states at N3LO
Mateu, Vicent; Ortega, Pablo G.
2018-01-01
The bottomonium spectrum up to n = 3 is studied within Non-Relativistic Quantum Chromodynamics up to N3LO. We consider finite charm quark mass effects both in the QCD potential and the \\overline{MS} -pole mass relation up to third order in the Y-scheme counting. The u = 1 /2 renormalon of the static potential is canceled by expressing the bottom quark pole mass in terms of the MSR mass. A careful investigation of scale variation reveals that, while n = 1 , 2 states are well behaved within perturbation theory, n = 3 bound states are no longer reliable. We carry out our analysis in the n ℓ = 3 and n ℓ = 4 schemes and conclude that, as long as finite m c effects are smoothly incorporated in the MSR mass definition, the difference between the two schemes is rather small. Performing a fit to b\\overline{b} bound states we find {\\overline{m}}_b({\\overline{m}}_b) = 4 .216 ± 0 .039 GeV. We extend our analysis to the lowest lying charmonium states finding {\\overline{m}}_c({\\overline{m}}_c) = 1 .273 ± 0 .054 GeV. Finally, we perform simultaneous fits for {\\overline{m}}_b and α s finding {α}_s^{({n}_f=5)}({m}_Z)=0.1178± 0.0051 . Additionally, using a modified version of the MSR mass with lighter massive quarks we are able to predict the uncalculated O({α}_s^4) virtual massive quark corrections to the relation between the \\overline{MS} and pole masses.
Identification of a GTP-bound Rho specific scFv molecular sensor by phage display selection
Directory of Open Access Journals (Sweden)
Chinestra Patrick
2008-03-01
Full Text Available Abstract Background The Rho GTPases A, B and C proteins, members of the Rho family whose activity is regulated by GDP/GTP cycling, function in many cellular pathways controlling proliferation and have recently been implicated in tumorigenesis. Although overexpression of Rho GTPases has been correlated with tumorigenesis, only their GTP-bound forms are able to activate the signalling pathways implicated in tumorigenesis. Thus, the focus of much recent research has been to identify biological tools capable of quantifying the level of cellular GTP-bound Rho, or determining the subcellular location of activation. However useful, these tools used to study the mechanism of Rho activation still have limitations. The aim of the present work was to employ phage display to identify a conformationally-specific single chain fragment variable (scFv that recognizes the active, GTP-bound, form of Rho GTPases and is able to discriminate it from the inactive, GDP-bound, Rho in endogenous settings. Results After five rounds of phage selection using a constitutively activated mutant of RhoB (RhoBQ63L, three scFvs (A8, C1 and D11 were selected for subsequent analysis. Further biochemical characterization was pursued for the single clone, C1, exhibiting an scFv structure. C1 was selective for the GTP-bound form of RhoA, RhoB, as well as RhoC, and failed to recognize GTP-loaded Rac1 or Cdc42, two other members of the Rho family. To enhance its production, soluble C1 was expressed in fusion with the N-terminal domain of phage protein pIII (scFv C1-N1N2, it appeared specifically associated with GTP-loaded recombinant RhoA and RhoB via immunoprecipitation, and endogenous activated Rho in HeLa cells as determined by immunofluorescence. Conclusion We identified an antibody, C1-N1N2, specific for the GTP-bound form of RhoB from a phage library, and confirmed its specificity towards GTP-bound RhoA and RhoC, as well as RhoB. The success of C1-N1N2 in discriminating activated
Potential curves and spectroscopic study of the electronic states of the molecular ion LiCs+
International Nuclear Information System (INIS)
Moughrabi, A.; Korek, M.; Allouche, A.R.
2004-01-01
Full text.Due to a very accurate high-resolution techniques and to the spectacular developments in ultracold alkali atom trapping developments which are at the root of photo association spectroscopy there has been a renewed interest on the spectroscopic study of alkali dimers. The existence of new experimental data on these species has stimulated theoretical approaches, necessary to provide predictions accurate enough to be useful for interpretation and evenly for guidance of experiments. With the aim of improving the accuracy of predictions we will perform a theoretical study of the electronic structure of the molecular ion LiCs + , using a method mainly in the way by which core-valence effects are taken into account. To investigate the electronic structure of LiCs + we will use the package CIPSI (Configuration Interaction by Perturbation of a multiconfiguration wave function Selected Interactively) of the Laboratoire de Physique Quantique (Toulouse, France). The atoms Li and Cs will be treated through non-empirical effective one electron core potentials of Durand and Barthelat type. Molecular orbitals for LiCs + will be derived from Self Consistent Field Calculations (SCF) and full valence Configuration Interaction (IC) calculations. A core-core interaction more elaborated than the usual approximation 1/R will be taken into account as the sum of an exponential repulsive term plus a long range dispersion term approximated by the well known London formula. Potential energy calculations will be performed for different molecular states, for numerous values of the inter-nuclear distance R in a wide range. Spectroscopic constants have been derived for the bound states with a regular shape A ro vibrational study have been performed for the ground states with a calculation of the rotational and centrifugal distortion constants. A calculation for the transition dipole moment and matrix elements have been done for the bound states
Jenkins, Jermaine L; Krucinska, Jolanta; McCarty, Reid M; Bandarian, Vahe; Wedekind, Joseph E
2011-07-15
Riboswitches are RNA regulatory elements that govern gene expression by recognition of small molecule ligands via a high affinity aptamer domain. Molecular recognition can lead to active or attenuated gene expression states by controlling accessibility to mRNA signals necessary for transcription or translation. Key areas of inquiry focus on how an aptamer attains specificity for its effector, the extent to which the aptamer folds prior to encountering its ligand, and how ligand binding alters expression signal accessibility. Here we present crystal structures of the preQ(1) riboswitch from Thermoanaerobacter tengcongensis in the preQ(1)-bound and free states. Although the mode of preQ(1) recognition is similar to that observed for preQ(0), surface plasmon resonance revealed an apparent K(D) of 2.1 ± 0.3 nm for preQ(1) but a value of 35.1 ± 6.1 nm for preQ(0). This difference can be accounted for by interactions between the preQ(1) methylamine and base G5 of the aptamer. To explore conformational states in the absence of metabolite, the free-state aptamer structure was determined. A14 from the ceiling of the ligand pocket shifts into the preQ(1)-binding site, resulting in "closed" access to the metabolite while simultaneously increasing exposure of the ribosome-binding site. Solution scattering data suggest that the free-state aptamer is compact, but the "closed" free-state crystal structure is inadequate to describe the solution scattering data. These observations are distinct from transcriptional preQ(1) riboswitches of the same class that exhibit strictly ligand-dependent folding. Implications for gene regulation are discussed.
Harwell's atomic, molecular and solid state computer programs
International Nuclear Information System (INIS)
Harker, A.H.
1976-02-01
This document is intended to introduce the computational facilities available in the fields of atomic, molecular the solid state theory on the IBM370/165 at Harwell. The programs have all been implemented and thoroughly tested by the Theory of Solid State Materials Group. (author)
Electronic structure of molecular Rydberg states of some small molecules and molecular ion
International Nuclear Information System (INIS)
Sun Biao; Li Jiaming
1993-01-01
Based on an independent-particle-approximation (i.e. the multiple scattering self-consistent-field theory), the electronic structures of Rydberg states of the small diatomic molecules H 2 , He 2 and the He 2 + molecular ion were studied. The principal quantum number of the first state of the Rydberg series is determined from a convention of the limit of the molecular electronic configuration. The dynamics of the excited molecules and molecular ion has been elucidated. The theoretical results are in fair agreement with the existing experimental measurements, thus they can serve as a reliable basis for future refined treatment such as the configuration interaction calculation
Low chromatic aberration hexapole for molecular state selection
International Nuclear Information System (INIS)
Ke, Yi; Deng, Xiao-Bing; Hu, Zhong-Kun
2016-01-01
In molecular beam state-selection experiments, the electrostatic hexapole acts as an optical lens, imaging molecules from the source to the focus. The molecular longitudinal velocity spread induces the phenomenon of chromatic aberration, which will reduce the state-selection purity. We propose a scheme which can effectively reduce the chromatic aberration by changing the hexapole voltage operating manner. The hexapole is already charged before molecules arrive at the entrance of the hexapole. When molecules are completely inside the hexapole, the voltage is switched off rapidly at an appropriate time. In this manner, faster molecules travel a longer hexapole focusing region than slower molecules. Therefore the focusing positions of molecules with different velocities become close. Numerical trajectory simulations of molecular state selection are carried out, and the results show that this low chromatic aberration hexapole can significantly improve the state purity from 46.2% to 87.0%. (paper)
Calculations of K- nuclear quasi-bound states based on chiral meson-baryon amplitudes
Czech Academy of Sciences Publication Activity Database
Gazda, Daniel; Mareš, Jiří
2012-01-01
Roč. 881, 5/6 (2012), s. 159-168 ISSN 0375-9474 R&D Projects: GA MŠk(CZ) LG11005 Institutional support: RVO:61389005 Keywords : K- nuclear states * mesic nuclei * antikaon-nucleus interaction Subject RIV: BE - Theoretical Physics Impact factor: 1.525, year: 2012
Normal pure states of the von Nuemann algebra of bounded operators as Kaehler manifold
International Nuclear Information System (INIS)
Cirelli, R.; Lanzavecchia, P.; Mania, A.
1983-01-01
The projective space of a complex Hilbert space H is considered both as a Kaehler manifold and as the set of pure states of the von Neumann algebra B(H). A link is given between these two structures. Special attention is devoted to topology, orientation and automorphisms of the structures and Wigner's theorem. (author)
An Efficient Implementation of Non-Linear Limit State Analysis Based on Lower-Bound Solutions
DEFF Research Database (Denmark)
Damkilde, Lars; Schmidt, Lotte Juhl
2005-01-01
Limit State analysis has been used in design for decades e.g. the yield line theory for concrete slabs or slip line solutions in geotechnics. In engineering practice manual methods have been dominating but in recent years the interest in numerical methods has been increasing. In this respect it i...
Fermion bound states in the Kerr-Newman field with magnetic charge
International Nuclear Information System (INIS)
Gal'tsov, D.V.; Ershov, A.A.
1987-01-01
Approximate solutions of Dirac equations for 1/2 spin charged particles in the Kerr-Newman field are constructed. An equation for quasistationary states energy, taking account of their possible decay due to tunnelling in the black hole, is obtained. A problem of existence of zero modes is discussed
Bound states of 3He in 3He-4He mixture films
International Nuclear Information System (INIS)
Bashkin, E.; Pavloff, N.; Treiner, J.
1995-01-01
3 He atoms dissolved in superfluid 4 He may form dimers ( 3 He) 2 in two-dimensional (2D) geometries. We study dimer formation in films of dilute 3 He- 4 He mixture. After designing a schematic 3 He- 4 He interaction potential we calculate the dimer binding energy for various substrates. It is shown that 3 He impurity states localized near the substrate give rise to the largest magnitudes of the binding energies
Nonradiative recombination onto shallow bound states in confined systems in electric field
International Nuclear Information System (INIS)
Sinyavskij, Eh.P.; Rusanov, A.M.
1999-01-01
A study has been made of the one-phonon recombination of carriers onto shallow impurity states in parabolic quantum wells in the longitudinal electric field. It has been found that processes of the one-phonon recombination in confined systems occur in a more active way the in a bulk material.The possibility of electrically induced one-quantum transitions in confined systems is being discussed
Gomes, José da Silva; Gargano, Ricardo; Martins, João B L; M de Macedo, Luiz Guilherme
2014-08-07
The covalent excited states and ground state of the Br2 molecule has been investigated by using four-component relativistic COSCI and MRCISD methods. These methods were performed for all covalent states in the representation Ω((±)). Calculated potential energy curves (PECs) were obtained at the four-component COSCI level, and spectroscopic constants (R(e), D(e), D0, ω(e), ω(e)x(e), ω(e)y(e), B(e), α(e), γ(e), Te, Dv) for bounded states are reported. The vertical excitations for all covalent states are reported at COSCI, MRCISD, and MRCISD+Q levels. We also present spectroscopic constants for two weakly bounded states (A':(1)2u and B':(1)0(-)u) not yet reported in the literature, as well as accurate analytical curves for all five relativistic molecular bounded sates [the ground state X:0 g(+) and the excited states A:(1)1(u), B:(1)0(u)(+), C:(2)1(u), and B':(1)0(u)(-)] found in this work.
International Nuclear Information System (INIS)
Closser, Kristina D.; Head-Gordon, Martin; Gessner, Oliver
2014-01-01
The dynamics resulting from electronic excitations of helium clusters were explored using ab initio molecular dynamics. The simulations were performed with configuration interaction singles and adiabatic classical dynamics coupled to a state-following algorithm. 100 different configurations of He 7 were excited into the 2s and 2p manifold for a total of 2800 trajectories. While the most common outcome (90%) was complete fragmentation to 6 ground state atoms and 1 excited state atom, 3% of trajectories yielded bound, He 2 * , and <0.5% yielded an excited helium trimer. The nature of the dynamics, kinetic energy release, and connections to experiments are discussed
Yadav, Geetanjali; Singh, Anshu; Bhattacharya, Patrali; Yuvraj, Jude; Banerjee, Rintu
2013-11-01
The present work investigates the probable bioprocessing technique to mobilize the bound phenolics naturally found in finger millet cell wall for enriching it with dietary antioxidants. Comparative study was performed between the exogenous enzymatic treatment and solid-state fermentation of grain (SSF) with a food grade organism Rhizopus oryzae. SSF results indicated that at the 6th day of incubation, total phenolic content (18.64 mg gallic acid equivalent/gds) and antioxidant property (DPPH radical scavenging activity of 39.03 %, metal chelating ability of 54 % and better reducing power) of finger millet were drastically enhanced when fermented with GRAS filamentous fungi. During the enzymatic bioprocessing, most of the phenolics released during the hydrolysis, leached out into the liquid portion rather than retaining them within the millet grain, resulting in overall loss of dietary antioxidant. The present study establishes the most effective strategy to enrich the finger millet with phenolic antioxidants.
Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state.
Kanai, Ryuta; Ogawa, Haruo; Vilsen, Bente; Cornelius, Flemming; Toyoshima, Chikashi
2013-10-10
Na(+),K(+)-ATPase pumps three Na(+) ions out of cells in exchange for two K(+) taken up from the extracellular medium per ATP molecule hydrolysed, thereby establishing Na(+) and K(+) gradients across the membrane in all animal cells. These ion gradients are used in many fundamental processes, notably excitation of nerve cells. Here we describe 2.8 Å-resolution crystal structures of this ATPase from pig kidney with bound Na(+), ADP and aluminium fluoride, a stable phosphate analogue, with and without oligomycin that promotes Na(+) occlusion. These crystal structures represent a transition state preceding the phosphorylated intermediate (E1P) in which three Na(+) ions are occluded. Details of the Na(+)-binding sites show how this ATPase functions as a Na(+)-specific pump, rejecting K(+) and Ca(2+), even though its affinity for Na(+) is low (millimolar dissociation constant). A mechanism for sequential, cooperative Na(+) binding can now be formulated in atomic detail.
International Nuclear Information System (INIS)
Perez, J.F.; Coutinho, F.A.B.; Malta, C.P.
1985-01-01
It is shown that critical long distance behaviour for a two-body potential, defining the finiteness or infinitude of the number of negative eigenvalues of Schrodinger operators in ν-dimensions, are given by v sub(k) (r) = - [ν-2/2r] 2 - 1/(2rlnr) 2 + ... - 1/(2rlnr.lnlnr...ln sub(k)r) 2 where k=0,1... for ν not=2 and k=1,2... if ν=2. This result is a consequence of logarithmic corrections to an inequality known as Uncertainty Principle. If the continuum threshold in the N-body problem is defined by a two-cluster break up our results generate corrections to the existing sufficient conditions for the existence of infinitely many bound states. (Author) [pt
The interaction of MnH(X 7Sigma+) with He: ab initio potential energy surface and bound states.
Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry
2010-06-07
The potential energy surface of the ground state of the He-MnH(X (7)Sigma(+)) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the (3)He-MnH and (4)He-MnH complexes.
The interaction of MnH(X 7Σ+) with He: Ab initio potential energy surface and bound states
Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry
2010-06-01
The potential energy surface of the ground state of the He-MnH(X Σ7+) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the H3e-MnH and H4e-MnH complexes.
International Nuclear Information System (INIS)
Demić, Aleksandar; Milanović, Vitomir; Radovanović, Jelena
2015-01-01
Supersymmetric quantum mechanics (SUSYQM) is a method that can be used for generating complex potentials with entirely real spectrum with bound states in the continuum (BIC). These complex potentials are isospectral with the initial one, but SUSYQM method adds discrete BIC's at selected energies. Corresponding wavefunctions created by SUSYQM are biorthogonal and complex, hence we can discuss their phase rigidity and illustrate the application of SUSYQM on the examples of three specific potential profiles (free electron, negative Dirac potential and quantum well with infinite walls). - Highlights: • We present SUSYQM method for generating complex potentials with entirely real spectrum. • Phase rigidity and normalizability of wavefunctions in complex potential is discussed. • Numerical application is performed on three specific potential profiles.
Line bundle twisted chiral de Rham complex and bound states of D-branes on toric manifolds
International Nuclear Information System (INIS)
Parkhomenko, S.E.
2014-01-01
In this note we calculate elliptic genus in various examples of twisted chiral de Rham complex on two-dimensional toric compact manifolds and Calabi–Yau hypersurfaces in toric manifolds. At first the elliptic genus is calculated for the line bundle twisted chiral de Rham complex on a compact smooth toric manifold and K3 hypersurface in P 3 . Then we twist chiral de Rham complex by sheaves localized on positive codimension submanifolds in P 2 and calculate in each case the elliptic genus. In the last example the elliptic genus of chiral de Rham complex on P 2 twisted by SL(N) vector bundle with instanton number k is calculated. In all the cases considered we find the infinite tower of open string oscillator contributions and identify directly the open string boundary conditions of the corresponding bound state of D-branes
Determination of the self-adjoint matrix Schrödinger operators without the bound state data
Xu, Xiao-Chuan; Yang, Chuan-Fu
2018-06-01
(i) For the matrix Schrödinger operator on the half line, it is shown that the scattering data, which consists of the scattering matrix and the bound state data, uniquely determines the potential and the boundary condition. It is also shown that only the scattering matrix uniquely determines the self-adjoint potential and the boundary condition if either the potential exponentially decreases fast enough or the potential is known a priori on (), where a is an any fixed positive number. (ii) For the matrix Schrödinger operator on the full line, it is shown that the left (or right) reflection coefficient uniquely determine the self-adjoint potential if either the potential exponentially decreases fast enough or the potential is known a priori on (or ()), where b is an any fixed number.
International Nuclear Information System (INIS)
Kneipp, Marco A.C.
1999-10-01
Soliton time delays and the semiclassical limit for soliton S-matrices are calculated for non-simply laced Affine Toda Field Theories. The phase shift is written as a sum over bilinears on the soliton conserved charges. The results apply to any two solitons of any Affine Toda Field Theory. As a by-product, a general expression for the number of bound states and the values of the coupling in which the S-matrix can be diagonal are obtained. In order to arrive at these results, a vertex operator is constructed, in the principal gradation, for non-simply laced affine Lie algebras, extending the previous constructions for simply laced and twisted affine Lie algebras. (author)
Hadronic bound states in SU(2) from Dyson-Schwinger equations
Energy Technology Data Exchange (ETDEWEB)
Vujinovic, Milan [Karl-Franzens-Universitaet Graz, Institut fuer Physik, Graz (Austria); Williams, Richard [Justus-Liebig-Universitaet Giessen, Institut fuer Theoretische Physik, Giessen (Germany)
2015-03-01
By using the Dyson-Schwinger/Bethe-Salpeter formalism in Euclidean spacetime, we calculate the ground state spectrum of J ≤ 1 hadrons in an SU(2) gauge theory with two fundamental fermions. We show that the rainbow-ladder truncation, commonly employed in QCD studies, is unsuitable for a description of an SU(2) theory. This we remedy by truncating at the level of the quark-gluon vertex Dyson-Schwinger equation in a diagrammatic expansion. Results obtained within this novel approach show good agreement with lattice studies. These findings emphasize the need to use techniques more sophisticated than rainbow-ladder when investigating generic strongly interacting gauge theories. (orig.)
Rapidly converging bound state eigenenergies for the two dimensional quantum dipole
International Nuclear Information System (INIS)
Handy, C R; Vrinceanu, D
2013-01-01
We examine the effectiveness of a new spectral method in solving the two dimensional dipole problem (DP), as originally formulated by Dasbiswas et al (2010 Phys. Rev. B: At. Mol. Opt. Phys. 81 064516), and recently analysed by Amore and Fernandez (AF, 2012 Phys. Rev. B: At. Mol. Opt. Phys. 45 235004), through a large, non-orthogonal basis, Rayleigh–Ritz (RR) analysis. This deceptively simple problem has a long history of poorly approximated energy values, particularly for the ground state, until the recent work by AF. In contrast to their approach, we implement an orthogonal polynomial projection quantization (OPPQ) analysis (Handy and Vrinceanu 2013 J. Phys. A: Math. Theor. 46 135202), involving expanding the wavefunction in terms of a complete basis, Ψ( r-vector )=∑ n Ω n P n ( r-vector )R( r-vector ), where P n are the orthogonal polynomials relative to the weight R. For systems transformable into a moment equation, such as DP, the projection coefficients are determinable in closed form, yielding an efficient quantization procedure, particularly when the weight assumes the asymptotic form of the physical solutions. There are several theoretical reasons why the OPPQ should be more effective than the above RR approach. Indeed, comparable results are achieved with significantly fewer OPPQ variational parameters as compared to RR-variational parameters. For instance, with regards to the delicate ground state energy, 130 OPPQ variables are required to achieve E gr = −0.137 7614 (E gr = −0.137 7514 after a Shanks transform) as opposed to the 821 required within the RR formulation: E gr = −0.137 7478. Despite this, the relative slow convergence for low lying even parity states, within both the OPPQ and RR formulations, suggests that significant logarithmic contributions to the wavefunction, at the origin, have been ignored by all previous investigators. Modifying the RR variational analysis to include log-dependent basis, affirms this through an
Interfacial trap states in junctions of molecular semiconductors
International Nuclear Information System (INIS)
Schlettwein, D.; Oekermann, T.; Jaeger, N.; Armstrong, N.R.; Woehrle, D.
2002-01-01
Interfacial states that were established in contacts of molecular semiconductors with aqueous electrolytes or in contacts with another organic semiconductor as a solid film were analyzed by photoelectrochemical experiments and by photoelectron spectroscopy. A crucial role of such states was indicated in the interfacial charge transfer and recombination kinetics of light-induced charge carriers and also in the energetic alignment in the solid contacts. Unsubstituted zinc-phthalocyanine (PcZn) served as model compound. The role of chemical interactions in the establishment of these interfacial states was investigated by use of different reaction partners, i.e., different redox couples in the electrolyte contacts and molecular semiconductors of different ionization potential in the solid contacts. Implications of these results for the use of organic semiconductor thin films in devices of molecular electronics and of dye molecules in dye-sensitized solar cells were also discussed
International Nuclear Information System (INIS)
Toki, Hiroshi; Yamazaki, Toshimitsu
1989-01-01
The standard method of pionic atom formation does not produce deeply bound pionic atoms. A study is made on the properties of deeply bound pionic atom states by using the standard pion-nucleus optical potential. Another study is made to estimate the cross sections of the formation of ls pionic atom states by various methods. The pion-nucleus optical potential is determined by weakly bound pionic atom states and pion nucleus scattering. Although this potential may not be valid for deeply bound pionic atoms, it should provide some hint on binding energies and level widths of deeply bound states. The width of the ls state comes out to be 0.3 MeV and is well separated from the rest. The charge dependence of the ls state is investigated. The binding energies and the widths increase linearly with Z azbove a Z of 30. The report then discusses various methods to populate deeply bound pionic atoms. In particular, 'pion exchange' reactions are proposed. (n, pπ) reaction is discussed first. The cross section is calculated by assuming the in- and out-going nucleons on-shell and the produced pion in (n1) pionic atom states. Then, (n, dπ - ) cross sections are estimated. (p, 2 Heπ - ) reaction would have cross sections similar to the cross section of (n, dπ - ) reaction. In conclusion, it seems best to do (n, p) experiment on heavy nuclei for deeply bound pionic atom. (Nogami, K.)
Molecular states of HeH+. Energies and dynamical couplings
International Nuclear Information System (INIS)
Macias, A.; Riera, A.; Yanez, M.
1983-01-01
We complete the molecular results reported in a previous paper by presenting additional energies (for /sup 1,3/μ states) and radial couplings (between 'μ states) of the HeH + system. These results are needed to treat elastic and inelastic charge-exchange processes when full account is taken of momentum-transfer problems. We also present a formalism to calculate radial couplings between wave functions computed with the use of different variational methods and basis sets. The detailed form of the radial couplings is discussed and related to the Barat-Lichten correlation diagram. The effect of using finite basis sets in calculatig degenerate molecular energies is also discussed
Bound states of spin-half particles in a static gravitational field close to the black hole field
Spencer-Smith, A. F.; Gossel, G. H.; Berengut, J. C.; Flambaum, V. V.
2013-03-01
We consider the bound-state energy levels of a spin-1/2 fermion in the gravitational field of a near-black hole object. In the limit that the metric of the body becomes singular, all binding energies tend to the rest-mass energy (i.e. total energy approaches zero). We present calculations of the ground state energy for three specific interior metrics (Florides, Soffel and Schwarzschild) for which the spectrum collapses and becomes quasi-continuous in the singular metric limit. The lack of zero or negative energy states prior to this limit being reached prevents particle pair production occurring. Therefore, in contrast to the Coulomb case, no pairs are produced in the non-singular static metric. For the Florides and Soffel metrics the singularity occurs in the black hole limit, while for the Schwarzschild interior metric it corresponds to infinite pressure at the centre. The behaviour of the energy level spectrum is discussed in the context of the semi-classical approximation and using general properties of the metric.
Gauge invariant description of heavy quark bound states in quantum chromodynamics
International Nuclear Information System (INIS)
Moore, S.E.
1980-08-01
A model for a heavy quark meson is proposed in the framework of a gauge-invariant version of quantum chromodynamics. The field operators in this formulation are taken to be Wilson loops and strings with quark-antiquark ends. The fundamental differential equations of point-like Q.C.D. are expressed as variational equations of the extended loops and strings. The 1/N expansion is described, and it is assumed that nonleading effects such as intermediate quark pairs and nonplanar gluonic terms can be neglected. The action of the Hamiltonian in the A 0 = 0 gauge on a string operator is derived. A trial meson wave functional is constructed consisting of a path-averaged string operator applied to the full vacuum. A Gaussian in the derivative of the path location is assumed for the minimal form of the measure over paths. A variational parameter is incorporated in the measure as the exponentiated coefficient of the squared path location. The expectation value of the Hamiltonian in the trial state is evaluated for the assumption that the negative logarithm of the expectation value of a Wilson loop is proportional to the loop area. The energy is then minimized by deriving the equivalent quantum mechanical Schroedinger's equation and using the quantum mechanical 1/n expansion to estimate the effective eigenvalues. It is found that the area law behavior of the Wilson loop implies a nonzero best value of the variational parameter corresponding to a quantum broadening of the flux tube
Bound states, resonances and poles in the low-energy K-barN
International Nuclear Information System (INIS)
Landau, R.H.
1994-01-01
The locations in the complex energy plane of the dynamic poles of the T matrix for the (K-bar N,Σπ) system are calculated. Investigated are a quark bag model and several potential models, including one which agrees with the strong interaction shift in kaonic hydrogen as well as scattering data. The parameters of the model are fit to K - p scattering and reaction cross sections, branching ratios, and mass spectra from K - p→ Σπππ, Λπππ. The Σ P1322 (1385) and Λ D03 (1520) resonances are found to be predominately elementary bag states with considerable dressing for the Σ P13 . The Λ S01 (1405) appears as a complicated composite systems arising from two poles. The model with certain parameter sets does predict two sign changes in the real part of the K-bar N scattering amplitude near threshold, but they are not quite at the correct energies to produce agreement with the sign of the strong interaction shift of kaonic hydrogen. (author). 10 refs., 10 figs
Strong Dependence of Hydration State of F-Actin on the Bound Mg(2+)/Ca(2+) Ions.
Suzuki, Makoto; Imao, Asato; Mogami, George; Chishima, Ryotaro; Watanabe, Takahiro; Yamaguchi, Takaya; Morimoto, Nobuyuki; Wazawa, Tetsuichi
2016-07-21
Understanding of the hydration state is an important issue in the chemomechanical energetics of versatile biological functions of polymerized actin (F-actin). In this study, hydration-state differences of F-actin by the bound divalent cations are revealed through precision microwave dielectric relaxation (DR) spectroscopy. G- and F-actin in Ca- and Mg-containing buffer solutions exhibit dual hydration components comprising restrained water with DR frequency f2 (fw). The hydration state of F-actin is strongly dependent on the ionic composition. In every buffer tested, the HMW signal Dhyme (≡ (f1 - fw)δ1/(fwδw)) of F-actin is stronger than that of G-actin, where δw is DR-amplitude of bulk solvent and δ1 is that of HMW in a fixed-volume ellipsoid containing an F-actin and surrounding water in solution. Dhyme value of F-actin in Ca2.0-buffer (containing 2 mM Ca(2+)) is markedly higher than in Mg2.0-buffer (containing 2 mM Mg(2+)). Moreover, in the presence of 2 mM Mg(2+), the hydration state of F-actin is changed by adding a small fraction of Ca(2+) (∼0.1 mM) and becomes closer to that of the Ca-bound form in Ca2.0-buffer. This is consistent with the results of the partial specific volume and the Cotton effect around 290 nm in the CD spectra, indicating a change in the tertiary structure and less apparent change in the secondary structure of actin. The number of restrained water molecules per actin (N2) is estimated to be 1600-2100 for Ca2.0- and F-buffer and ∼2500 for Mg2.0-buffer at 10-15 °C. These numbers are comparable to those estimated from the available F-actin atomic structures as in the first water layer. The number of HMW molecules is roughly explained by the volume between the equipotential surface of -kT/2e and the first water layer of the actin surface by solving the Poisson-Boltzmann equation using UCSF Chimera.
Suzuki, Shu-Ichiro; Kawaguchi, Yuki; Tanaka, Yukio
2018-04-01
We study quasiparticle states on a surface of a topological insulator (TI) with proximity-induced superconductivity under an external magnetic field. An applied magnetic field creates two Majorana bound states: a vortex Majorana state localized inside a vortex core and an exterior Majorana state localized along a circle centered at the vortex core. We calculate the spin-resolved local density of states (LDOS) and demonstrate that the shrinking of the radius of the exterior Majorana state, predicted in R. S. Akzyanov et al., Phys. Rev. B 94, 125428 (2016), 10.1103/PhysRevB.94.125428, under a strong magnetic field can be seen in LDOS without smeared out by nonzero-energy states. The spin-resolved LDOS further reveals that the spin of the exterior Majorana state is strongly spin-polarized. Accordingly, the induced odd-frequency spin-triplet pairs are found to be spin-polarized as well. In order to detect the exterior Majorana states, however, the Fermi energy should be closed to the Dirac point to avoid contributions from continuum levels. We also study a different two-dimensional topological-superconducting system where a two-dimensional electron gas with the spin-orbit coupling is sandwiched between an s -wave superconductor and a ferromagnetic insulator. We show that the radius of an exterior Majorana state can be tuned by an applied magnetic field. However, on the contrary to the results at a TI surface, neither the exterior Majorana state nor the induced odd-frequency spin-triplet pairs are spin-polarized. We conclude that the spin polarization of the Majorana state is attributed to the spin-polarized Landau level, which is characteristic for systems with the Dirac-like dispersion.
Molecular electronics with single molecules in solid-state devices
DEFF Research Database (Denmark)
Moth-Poulsen, Kasper; Bjørnholm, Thomas
2009-01-01
The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule...
Bettens, Ryan P A
2003-01-15
Collins' method of interpolating a potential energy surface (PES) from quantum chemical calculations for reactive systems (Jordan, M. J. T.; Thompson, K. C.; Collins, M. A. J. Chem. Phys. 1995, 102, 5647. Thompson, K. C.; Jordan, M. J. T.; Collins, M. A. J. Chem. Phys. 1998, 108, 8302. Bettens, R. P. A.; Collins, M. A. J. Chem. Phys. 1999, 111, 816) has been applied to a bound state problem. The interpolation method has been combined for the first time with quantum diffusion Monte Carlo calculations to obtain an accurate ground state zero-point energy, the vibrationally average rotational constants, and the vibrationally averaged internal coordinates. In particular, the system studied was fluoromethane using a composite method approximating the QCISD(T)/6-311++G(2df,2p) level of theory. The approach adopted in this work (a) is fully automated, (b) is fully ab initio, (c) includes all nine nuclear degrees of freedom, (d) requires no assumption of the functional form of the PES, (e) possesses the full symmetry of the system, (f) does not involve fitting any parameters of any kind, and (g) is generally applicable to any system amenable to quantum chemical calculations and Collins' interpolation method. The calculated zero-point energy agrees to within 0.2% of its current best estimate. A0 and B0 are within 0.9 and 0.3%, respectively, of experiment.
Bound-state problem in the light-front Tamm-Dancoff approximation: Numerical study in 1+1 dimensions
International Nuclear Information System (INIS)
Harindranath, A.; Perry, R.J.; Shigemitsu, J.
1992-01-01
Numerical solutions to the two-fermion bound-state problem in the (1+1)-dimensional Yukawa model are presented within the lowest-order light-front Tamm-Dancoff approximation (i.e., keeping only two-fermion and two-fermion--one-boson sectors). Our motivation is twofold. First, we want to understand the dynamics of the model from the very-weak-coupling domain, where the system is governed by nonrelativistic dynamics, to moderate and strong-coupling domains where retardation and self-energy effects become important. Second, we want to develop techniques for solving coupled Tamm-Dancoff integral equations, in particular, methods that can be generalized to higher-order Tamm-Dancoff approximations. To achieve the first goal we first simplify the problem considerably (from a numerical point of view) by the explicit elimination of the higher Fock-space sector. The resulting integral equation, whose kernel depends upon the invariant mass of the state, is solved for the coupling constant, for a given set of the invariant mass and fermion and boson mass parameters. To achieve the second goal we solve the coupled set of equations using both basis functions and direct-discretization techniques. Results from these more general techniques are compared with the explicit-elimination method
Rovibrational bound states of SO{sub 2} isotopologues. I: Total angular momentum J = 0–10
Energy Technology Data Exchange (ETDEWEB)
Kumar, Praveen, E-mail: Praveen.Kumar@ttu.edu; Ellis, Joseph; Poirier, Bill, E-mail: Bill.Poirier@ttu.edu
2015-04-01
Highlights: • We report calculation of the exact rovibrational energy levels of SO{sub 2} for J = 0–10. • We report sulfur isotope shifts of the SO{sub 2} isotopologues rovibrational frequencies. • Coriolis coupling is treated exactly. • All rovibrational levels are computed to a high level of numerical convergence. • All of the rovibrational data exhibit near-perfect mass-dependent fractionation. - Abstract: Isotopic variation of the rovibrational bound states of SO{sub 2} for the four stable sulfur isotopes {sup 32–34,36}S is investigated in comprehensive detail. In a two-part series, we compute the low-lying energy levels for all values of total angular momentum in the range J = 0–20. All rovibrational levels are computed, to an extremely high level of numerical convergence. The calculations have been carried out using the ScalIT suite of parallel codes. The present study (Paper I) examines the J = 0–10 rovibrational levels, providing unambiguous symmetry and rovibrational label assignments for each computed state. The calculated vibrational energy levels exhibit very good agreement with previously reported experimental and theoretical data. Rovibrational energy levels, calculated without any Coriolis approximations, are reported here for the first time. Among other potential ramifications, this data will facilitate understanding of the origin of mass-independent fractionation of sulfur isotopes in the Archean rock record—of great relevance for understanding the “oxygen revolution”.
International Nuclear Information System (INIS)
Greene, L.H.; Hentges, P.J.; Aubin, H.; Aprili, M.; Badica, E.; Covington, M.; Pafford, M.M.; Westwood, G.; Klemperer, W.G.; Jian, Sha; Hinks, D.G.
2004-01-01
Quasiparticle planar tunneling spectroscopy is used to study unconventional superconductivity in YBa 2 Cu 3 O 7 (YBCO) thin films and Bi 2 Sr 2 CaCu 2 O 8 (BSCCO) single crystals. Tunneling conductances are obtained as a function of crystallographic orientation, applied magnetic field (magnitude and orientation), atomic substitution and surface damage. Our systematic studies confirm that the observed zero-bias conductance peak (ZBCP), a measure of the near-surface quasiparticle (QP) density of states (DoS), is comprised of Andreev bound states (ABS) resulting directly from the sign change of the d-wave order parameter (OP) at the Fermi surface. Our data, plus a literature search, reveals a consistency in the observation of the splitting of the ZBCP in optimally-doped materials. We note that the splitting of the ZBCP observed in applied field, and the spontaneous splitting observed at lower temperatures in zero field, occur concomitantly in a given junction, and that observation of this splitting is dependent upon two parameters: (1) the magnitude of the tunneling cone and (2) the degree of atomic-scale disorder at the interface
International Nuclear Information System (INIS)
Ikhdair, S.M.; Hamzavi, M.; Rajabi, A.A.
2013-01-01
Approximate bound-state solutions of the Dirac equation with q-deformed Woods–Saxon (WS) plus a new generalized ring-shaped (RS) potential are obtained for any arbitrary l-state. The energy eigenvalue equation and corresponding two-component wave functions are calculated by solving the radial and angular wave equations within a shortcut of the Nikiforov–Uvarov (NU) method. The solutions of the radial and polar angular parts of the wave function are expressed in terms of the Jacobi polynomials. A new approximation being expressed in terms of the potential parameters is carried out to deal with the strong singular centrifugal potential term l(l+1)r -2 . Under some limitations, we can obtain solution for the RS Hulthen potential and the standard usual spherical WS potential (q = 1). (author)
Molecular targeting of growth factor receptor-bound 2 (Grb2) as an anti-cancer strategy.
Dharmawardana, Pathirage G; Peruzzi, Benedetta; Giubellino, Alessio; Burke, Terrence R; Bottaro, Donald P
2006-01-01
Growth factor receptor-bound 2 (Grb2) is a ubiquitously expressed adapter protein that provides a critical link between cell surface growth factor receptors and the Ras signaling pathway. As such, it has been implicated in the oncogenesis of several important human malignancies. In addition to this function, research over the last decade has revealed other fundamental roles for Grb2 in cell motility and angiogenesis--processes that also contribute to tumor growth, invasiveness and metastasis. This functional profile makes Grb2 a high priority target for anti-cancer drug development. Knowledge of Grb2 protein structure, its component Src homology domains and their respective structure-function relationships has facilitated the rapid development of sophisticated drug candidates that can penetrate cells, bind Grb2 with high affinity and potently antagonize Grb2 signaling. These novel compounds offer considerable promise in our growing arsenal of rationally designed anti-cancer therapeutics.
Moore, Christopher; Stanescu, Tudor D.; Tewari, Sumanta
2018-04-01
We show that a pair of overlapping Majorana bound states (MBSs) forming a partially separated Andreev bound state (ps-ABS) represents a generic low-energy feature in spin-orbit-coupled semiconductor-superconductor (SM-SC) hybrid nanowire in the presence of a Zeeman field. The ps-ABS interpolates continuously between the "garden variety" ABS, which consists of two MBSs sitting on top of each other, and the topologically protected Majorana zero modes (MZMs), which are separated by a distance given by the length of the wire. The really problematic ps-ABSs consist of component MBSs separated by a distance of the order of the characteristic Majorana decay length ξ , and have nearly zero energy in a significant range of control parameters, such as the Zeeman field and chemical potential, within the topologically trivial phase. Despite being topologically trivial, such ps-ABSs can generate signatures identical to MZMs in local charge tunneling experiments. In particular, the height of the zero-bias conductance peak (ZBCP) generated by ps-ABSs has the quantized value 2 e2/h , and it can remain unchanged in an extended range of experimental parameters, such as Zeeman field and the tunnel barrier height. We illustrate the formation of such low-energy robust ps-ABSs in two experimentally relevant situations: a hybrid SM-SC system consisting of a proximitized nanowire coupled to a quantum dot and the SM-SC system in the presence of a spatially varying inhomogeneous potential. We then show that, unlike local measurements, a two-terminal experiment involving charge tunneling at both ends of the wire is capable of distinguishing between the generic ps-ABSs and the non-Abelian MZMs. While the MZMs localized at the opposite ends of the wire generate correlated differential conduction spectra, including correlations in energy splittings and critical Zeeman fields associated with the emergence of the ZBCPs, such correlations are absent if the ZBCPs are due to ps-ABSs emerging in the
State control of discrete-time linear systems to be bound in state variables by equality constraints
International Nuclear Information System (INIS)
Filasová, Anna; Krokavec, Dušan; Serbák, Vladimír
2014-01-01
The paper is concerned with the problem of designing the discrete-time equivalent PI controller to control the discrete-time linear systems in such a way that the closed-loop state variables satisfy the prescribed equality constraints. Since the problem is generally singular, using standard form of the Lyapunov function and a symmetric positive definite slack matrix, the design conditions are proposed in the form of the enhanced Lyapunov inequality. The results, offering the conditions of the control existence and the optimal performance with respect to the prescribed equality constraints for square discrete-time linear systems, are illustrated with the numerical example to note effectiveness and applicability of the considered approach
Polaronic and dressed molecular states in orbital Feshbach resonances
Xu, Junjun; Qi, Ran
2018-04-01
We consider the impurity problem in an orbital Feshbach resonance (OFR), with a single excited clock state | e ↑⟩ atom immersed in a Fermi sea of electronic ground state | g ↓⟩. We calculate the polaron effective mass and quasi-particle residue, as well as the polaron to molecule transition. By including one particle-hole excitation in the molecular state, we find significant correction to the transition point. This transition point moves toward the BCS side for increasing particle densities, which suggests that the corresponding many-body physics is similar to a narrow resonance.
Alkofer, Reinhard; von Smekal, Lorenz
2001-11-01
Recent studies of QCD Green's functions and their applications in hadronic physics are reviewed. We discuss the definition of the generating functional in gauge theories, in particular, the rôle of redundant degrees of freedom, possibilities of a complete gauge fixing versus gauge fixing in presence of Gribov copies, BRS invariance and positivity. The apparent contradiction between positivity and colour antiscreening in combination with BRS invariance in QCD is considered. Evidence for the violation of positivity by quarks and transverse gluons in the covariant gauge is collected, and it is argued that this is one manifestation of confinement. We summarise the derivation of the Dyson-Schwinger equations (DSEs) of QED and QCD. For the latter, the implications of BRS invariance on the Green's functions are explored. The possible influence of instantons on DSEs is discussed in a two-dimensional model. In QED in (2+1) and (3+1) dimensions, the solutions for Green's functions provide tests of truncation schemes which can under certain circumstances be extended to the DSEs of QCD. We discuss some limitations of such extensions and assess the validity of assumptions for QCD as motivated from studies in QED. Truncation schemes for DSEs are discussed in axial and related gauges, as well as in the Landau gauge. Furthermore, we review the available results from a systematic non-perturbative expansion scheme established for Landau gauge QCD. Comparisons to related lattice results, where available, are presented. The applications of QCD Green's functions to hadron physics are summarised. Properties of ground state mesons are discussed on the basis of the ladder Bethe-Salpeter equation for quarks and antiquarks. The Goldstone nature of pseudoscalar mesons and a mechanism for diquark confinement beyond the ladder approximation are reviewed. We discuss some properties of ground state baryons based on their description as Bethe-Salpeter/Faddeev bound states of quark
Energy Technology Data Exchange (ETDEWEB)
Acheson, S.A.; Bell, J.B.; Jones, M.E.; Wolfenden, R. (Univ. of North Carolina School of Medicine, Chapel Hill (USA))
1990-04-03
The enzymatic decarboxylation of orotidine 5'-monophosphate may proceed by an addition-elimination mechanism involving a covalently bound intermediate or by elimination of CO2 to generate a nitrogen ylide. In an attempt to distinguish between these two alternatives, 1-(phosphoribosyl)barbituric acid was synthesized with 13C at the 5-position. Interaction of this potential transition-state analogue inhibitor with yeast orotidine-5'-monophosphate decarboxylase resulted in a small (0.6 ppm) downfield displacement of the C-5 resonance, indicating no rehybridization of the kind that might have been expected to accompany 5,6-addition of an enzyme nucleophile. When the substrate orotidine 5'-monophosphate was synthesized with deuterium at C-5, no significant change in kcat (H/D = 0.99 +/- 0.06) or kcat/KM (H/D = 1.00 +/- 0.06) was found to result, suggesting that C-5 does not undergo significant changes in geometry before or during the step that determines the rate of the catalytic process. These results are consistent with a nitrogen ylide mechanism and offer no support for the intervention of covalently bound intermediates in the catalytic process.
Energy Technology Data Exchange (ETDEWEB)
Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)
2017-05-15
The quasi-bound states of charged massive scalar fields in the near-extremal charged Reissner-Nordstroem black-hole spacetime are studied analytically. These discrete resonant modes of the composed black-hole-field system are characterized by the physically motivated boundary condition of ingoing waves at the black-hole horizon and exponentially decaying (bounded) radial eigenfunctions at spatial infinity. Solving the Klein-Gordon wave equation for the linearized scalar fields in the black-hole spacetime, we derive a remarkably compact analytical formula for the complex frequency spectrum which characterizes the quasi-bound state resonances of the composed Reissner-Nordstroem-black-hole-charged-massive-scalar-field system. (orig.)
Ab initio theoretical study of dipole-bound anions of molecular complexes: (HF)3- and (HF)4- anions
Ramaekers, Riet; Smith, Dayle M. A.; Smets, Johan; Adamowicz, Ludwik
1997-12-01
Ab initio calculations have been performed to determine structures and vertical electron detachment energy (VDE) of the hydrogen fluoride trimer and tetramer anions, (HF)3- and (HF)4-. In these systems the excess electron is bound by the dipole field of the complex. It was determined that, unlike the neutral complexes which prefer the cyclic structures, the equilibrium geometries of the anions have "zig-zag" shapes. For both complexes the predicted VDEs are positive [210 meV and 363 meV for (HF)3- and (HF)4-, respectively], indicating that the anions are stable systems with respect to the vertical electron detachment. These results were obtained at the coupled-cluster level of theory with single, double and triple excitations [CCSD(T) method; the triple-excitation contribution in this method is calculated approximately using the perturbation approach] with the anion geometries obtained using the second-order Møller-Plesset perturbation theory (MP2) method. The same approach was also used to determine the adiabatic electron affinities (AEA) of (HF)3 and (HF)4. In addition to the electronic contribution, we also calculated the contributions (using the harmonic approximation) resulting from different zero-point vibration energies of the neutral and anionic clusters. The calculations predicted that while the AEA of (HF)3 is positive (44 meV), the AEA for (HF)4 is marginally negative (-16 meV). This suggests that the (HF)3- anion should be a stable system, while the (HF)4- is probably metastable.
The η′N interaction from a chiral effective model and η′-N bound state
International Nuclear Information System (INIS)
Sakai, Shuntaro; Jido, Daisuke
2015-01-01
The η ′ mass reduction in the nuclear medium is expected owing to the degeneracy of the pseudoscalar-singlet and octet mesons in the restoration of the spontaneous chiral symmetry breaking. In this study, we investigate the η ′ N 2body interaction, which is the fundamental interaction of the in-medium η ′ properties, using the linear sigma model as a chiral effective model. The η ′ N interaction in the linear sigma model comes from the scalar meson exchange with U A (1) symmetry effect and is found to be fairly strong attraction. The transition amplitude of η ′ N to the ηN channel is relatively small compared to that of elastic channel. From the analysis of the η ′ N 2body system, we find a η ′ N bound state with the binding energy 12.3-3.3iMeV. We expect that this strongly attractive two body interaction leads to a deep and attractive optical potential
Bound states of 27Al studied at selected 26Mg(p,γ)27Al resonances, ch. 1
International Nuclear Information System (INIS)
Maas, J.W.; Holvast, A.J.C.D.; Baghus, A.; Endt, P.M.
1976-01-01
Measurements of the γ-ray decay and angular distributions at eight low-energy (Esub(P) 26 Mg (p,γ) 27 Al resonances lead to the spin and parity assignments Jsup(π) = 3/2 + , 1/2 - , 3/2 - , 5/2 + , 5/2, 3/2 - , 9/2 - and 7/2 for the bound states at Esub(x) = 3.96, 4.05, 5.15, 5.25, 5.44, 6.16, 6.99, 7.23 and 7.47 MeV, respectively. For other levels, spin and parity limitations are set. Also reported are precise excitation energies, branching and mixing ratios and lifetime limits. For the resonances, additional information is given on energies, strengths and widths. The reaction Q-value is Q = 8267.2 +- 0.7 keV. The level scheme of 27 Al, complemented with these new data, is compared with the results from recent shell-model calculations
Sharma, Natasha
2016-01-01
The excellent particle identification capabilities of the ALICE detector, using the time projection chamber and the time-of-flight detector, allow the detection of light nuclei and anti-nuclei. Furthermore, the high tracking resolution provided by the inner tracking system enables the separation of primary nuclei from those coming from the decay of heavier systems. This allows for the reconstruction of decays such as the hypertriton mesonic weak decay ($^3_{\\Lambda}$H$\\rightarrow ^3$He + $\\pi^-$), the decay of a hypothetical bound state of a $\\Lambda$n into a deuteron and pion or the H-dibaryon decaying into a $\\Lambda$, a proton and a $\\pi^{-}$. An overview of the production of stable nuclei and anti-nuclei in proton-proton, proton-lead and, in particular, lead-lead collisions is presented. Hypernuclei production rates in Pb--Pb are also shown, together with the upper limits estimated on the production of hypothetical exotica candidates. The results are compared with predictions for the production in thermal...
Dark Matter's secret liaisons: phenomenology of a dark U(1) sector with bound states
Energy Technology Data Exchange (ETDEWEB)
Cirelli, Marco; Petraki, Kalliopi; Sala, Filippo [Laboratoire de Physique Théorique et Hautes Energies (LPTHE), UMR 7589 CNRS and UPMC, 4 Place Jussieu, F-75252, Paris (France); Panci, Paolo [CERN Theoretical Physics Department, CERN, Case C01600, CH-1211 Genève (Switzerland); Taoso, Marco, E-mail: marco.cirelli@gmail.com, E-mail: paolo.panci@cern.ch, E-mail: kpetraki@lpthe.jussieu.fr, E-mail: filo.sala@gmail.com, E-mail: m.taoso@csic.es [Instituto de Física Teórica (IFT) UAM/CSIC, calle Nicolás Cabrera 13-15, 28049 Cantoblanco, Madrid (Spain)
2017-05-01
Dark matter (DM) charged under a dark U(1) force appears in many extensions of the Standard Model, and has been invoked to explain anomalies in cosmic-ray data, as well as a self-interacting DM candidate. In this paper, we perform a comprehensive phenomenological analysis of such a model, assuming that the DM abundance arises from the thermal freeze-out of the dark interactions. We include, for the first time, bound-state effects both in the DM production and in the indirect detection signals, and quantify their importance for FERMI, AMS-02, and CMB experiments. We find that DM in the mass range 1 GeV to 100 TeV, annihilating into dark photons of MeV to GeV mass, is in conflict with observations. Instead, DM annihilation into heavier dark photons is viable. We point out that the late decays of multi-GeV dark photons can produce significant entropy and thus dilute the DM density. This can lower considerably the dark coupling needed to obtain the DM abundance, and in turn relax the existing constraints.
2002-01-01
This experiment uses a magnetic spectrometer to search for monoenergetic @g and @p@+ transitions between bound N&bar.N states. The spectrometer is instrumented with drift chambers (NDC, RDC and PDC), proportional wire chambers (A-E), and various thin scintillation counters (S,M,G,AH,V,Q,D,E and PH) f purposes, as shown in the accompanying drawing.\\\\ \\\\ Gamma-rays produced in the LH^2 target are materialized by a 10\\% converter located in the B chamber with an acceptance (@D@W/4@p) of @=2-6x10|-|3 (100-400 MeV) and 6x10|-|3 ($>$400 MeV). Trajectories of bent electron-positron pairs and @p@+ are measured in the A-E~chambers. Trajectories of less frequent high energy penetrating tracks, as well as the remaining associated charged annihilation products exiting the target, are measured in the drift chamber system. \\\\ \\\\ The resultant energy resolution (@DE/E) is better than 1,5\\% R.M.S. over the full range of energies studied. To illustrate the sensitivity of this experiment, a @g line at 300 MeV produced at t...
Energy Technology Data Exchange (ETDEWEB)
Christiansen, H.R. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]. E-mail: hugo@cbpf.br; Cima, O.M. Del [Universidade Catolica de Petropolis, RJ (Brazil). Grupo de Fisica Teorica]. E-mail: delcima@gft.ucp.br; Ferreira Junior, M.M. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]|[Maranhao Univ., Sao Luis, MA (Brazil). Dept. de Fisica]. E-mail: manojr@cbpf.br; Helayel-Neto, J.A. [Universidade Catolica de Petropolis, RJ (Brazil). Grupo de Fisica Teorica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]. E-mail: helayel@gft.ucp.br
2001-08-01
We consider a parity-preserving QED{sub 3} model with spontaneous breaking of the gauge symmetry as a framework for the evaluation of the electron-electron interaction potential underlying high-T{sub e} superconductivity. The fact that resulting potential, - C{sub s} K{sub o} (Mr), is non-confining and weak (in the sense of Kato) strongly suggests the mechanism of pair-condensation. This potential, compatible with an s-wave order parameters, is then applied to the Schrodinger equation for the sake of numerical calculations, thereby enforcing the existence of bound states. The results worked out by means of our theoretical framework are checked by considering a number of phenomenological data extracted from different copper oxide superconductors. The agreement may motivate a deeper analysis of our model viewing an application to quasi-planar cuprate superconductors. The data analyzed here suggest an energy scale of 1-10 meV for the breaking of the U(1)-symmetry. (author)
Ghorbel, Imen; Amara, Ibtissem Ben; Ktari, Naourez; Elwej, Awatef; Boudawara, Ons; Boudawara, Tahia; Zeghal, Najiba
2016-12-01
Accumulation of aluminium and acrylamide in food is a major source of human exposure. Their adverse effects are well documented, but there is no information about the health problems arising from their combined exposure. The aim of the present study was to examine the possible neurotoxic effects after co-exposure of pregnant and lactating rats to aluminium and acrylamide in order to evaluate redox state, cholinergic function and membrane-bound ATPases in the cerebellum of adult rats and their progeny. Pregnant female rats have received aluminium (50 mg/kg body weight) via drinking water and acrylamide (20 mg/kg body weight) by gavage, either individually or in combination from the 14th day of pregnancy until day 14 after delivery. Exposure to these toxicants provoked an increase in malondialdehyde (MDA) and advanced oxidation protein product (AOPP) levels and a decrease in SOD, CAT, GPx, Na + K + -ATPase, Mg 2+ -ATPase and AChE activities in the cerebellum of mothers and their suckling pups. A reduction in GSH, NPSH and vitamin C levels was also observed. These changes were confirmed by histological results. Interestingly, co-exposure to these toxicants exhibited synergism based on physical and biochemical variables in the cerebellum of mothers and their progeny.
Hodgson, Murray; Wareing, Andrew
2008-01-01
A combined beam-tracing and transfer-matrix model for predicting steady-state sound-pressure levels in rooms with multilayer bounding surfaces was used to compare the effect of extended- and local-reaction surfaces, and the accuracy of the local-reaction approximation. Three rooms—an office, a corridor and a workshop—with one or more multilayer test surfaces were considered. The test surfaces were a single-glass panel, a double-drywall panel, a carpeted floor, a suspended-acoustical ceiling, a double-steel panel, and glass fibre on a hard backing. Each test surface was modeled as of extended or of local reaction. Sound-pressure levels were predicted and compared to determine the significance of the surface-reaction assumption. The main conclusions were that the difference between modeling a room surface as of extended or of local reaction is not significant when the surface is a single plate or a single layer of material (solid or porous) with a hard backing. The difference is significant when the surface consists of multilayers of solid or porous material and includes a layer of fluid with a large thickness relative to the other layers. The results are partially explained by considering the surface-reflection coefficients at the first-reflection angles.
Energy Technology Data Exchange (ETDEWEB)
Mo, Y.; Sukenik, C.; Sandifer, M. [Case Western Univ., Cleveland, OH (United States); Barriga, R.J.; Soriaga, M.P.; Scherson, D. [Texas A& M Univ., College Station, TX (United States)
1995-12-01
The microgravimetric properties of monolayers of 2, 5-dihydroxythiophenol, 2,5-dihydroxybenzyl mercaptan, and 2, 5-dihydroxy-4-methylbenzyl mercaptan adsorbed on Au(111) single crystal electrodes were examined by in situ quartz crystal microbalance techniques in aqueous perchloric acid electrolytes. The results obtained are consistent with the reversible loss of an average of about three waters per adsorbed molecule as the layers are oxidized and subsequently reduced. These observations provide evidence for discrete changes in the extent of bound water within the hydroquinone/quinone layer as the oxidation state of the monolayer is changed. 9 refs., 4 figs.
Bounding species distribution models
Directory of Open Access Journals (Sweden)
Thomas J. STOHLGREN, Catherine S. JARNEVICH, Wayne E. ESAIAS,Jeffrey T. MORISETTE
2011-10-01
Full Text Available Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for “clamping” model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART and maximum entropy (Maxent models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5: 642–647, 2011].
Bounding Species Distribution Models
Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.
2011-01-01
Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].
Universal bounds on current fluctuations.
Pietzonka, Patrick; Barato, Andre C; Seifert, Udo
2016-05-01
For current fluctuations in nonequilibrium steady states of Markovian processes, we derive four different universal bounds valid beyond the Gaussian regime. Different variants of these bounds apply to either the entropy change or any individual current, e.g., the rate of substrate consumption in a chemical reaction or the electron current in an electronic device. The bounds vary with respect to their degree of universality and tightness. A universal parabolic bound on the generating function of an arbitrary current depends solely on the average entropy production. A second, stronger bound requires knowledge both of the thermodynamic forces that drive the system and of the topology of the network of states. These two bounds are conjectures based on extensive numerics. An exponential bound that depends only on the average entropy production and the average number of transitions per time is rigorously proved. This bound has no obvious relation to the parabolic bound but it is typically tighter further away from equilibrium. An asymptotic bound that depends on the specific transition rates and becomes tight for large fluctuations is also derived. This bound allows for the prediction of the asymptotic growth of the generating function. Even though our results are restricted to networks with a finite number of states, we show that the parabolic bound is also valid for three paradigmatic examples of driven diffusive systems for which the generating function can be calculated using the additivity principle. Our bounds provide a general class of constraints for nonequilibrium systems.
Fermionic molecular dynamics for ground states and collisions of nuclei
International Nuclear Information System (INIS)
Feldmeier, H.; Bieler, K.; Schnack, J.
1994-08-01
The antisymmetric many-body trial state which describes a system of interacting fermions is parametrized in terms of localized wave packets. The equations of motion are derived from the time-dependent quantum variational principle. The resulting Fermionic Molecular Dynamics (FMD) equations include a wide range of semi-quantal to classical physics extending from deformed Hartree-Fock theory to Newtonian molecular dynamics. Conservation laws are discussed in connection with the choice of the trial state. The model is applied to heavy-ion collisions with which its basic features are illustrated. The results show a great variety of phenomena including deeply inelastic collisions, fusion, incomplete fusion, fragmentation, neck emission, promptly emitted nucleons and evaporation. (orig.)
Peppernick, Samuel J; Gunaratne, K D Dasitha; Castleman, A W
2010-01-19
Detailed in the present investigation are results pertaining to the photoelectron spectroscopy of negatively charged atomic ions and their isoelectronic molecular counterparts. Experiments utilizing the photoelectron imaging technique are performed on the negative ions of the group 10 noble metal block (i.e. Ni-, Pd-, and Pt-) of the periodic table at a photon energy of 2.33 eV (532 nm). The accessible electronic transitions, term energies, and orbital angular momentum components of the bound electronic states in the atom are then compared with photoelectron images collected for isoelectronic early transition metal heterogeneous diatomic molecules, M-X- (M = Ti,Zr,W; X = O or C). A superposition principle connecting the spectroscopy between the atomic and molecular species is observed, wherein the electronic structure of the diatomic is observed to mimic that present in the isoelectronic atom. The molecular ions studied in this work, TiO-, ZrO-, and WC- can then be interpreted as possessing superatomic electronic structures reminiscent of the isoelectronic elements appearing on the periodic table, thereby quantifying the superatom concept.
International Nuclear Information System (INIS)
Bakke, Knut
2010-01-01
We study the appearance of bound states analogous to a quantum dot, proposed by Tan and Inkson (1996) , in the non-relativistic quantum dynamics of a neutral particle with permanent magnetic dipole moment induced by the non-inertial effects of the Fermi-Walker reference frame.
Experimental study of bound states in ^{12}Be through low-energy ^{11}Be(d,p)-transfer reactions
DEFF Research Database (Denmark)
Johansen, Jacob S.; Bildstein, V.; Borge, M. J. G.
2013-01-01
The bound states of 12Be have been studied through a 11Be(d,p)12Be transfer reaction experiment in inverse kinematics. A 2.8 MeV/u beam of 11Be was produced using the REX-ISOLDE facility at CERN. The outgoing protons were detected with the T-REX silicon detector array. The MINIBALL germanium arra...
Properties of the Excited States of Molecular Ions.
1981-04-13
FIg. 1). techniques have beest applied to the study of quartet states of Oi. The four potential curves most relevant Guyon et al., using a synchrotron...8217 a’ a a C ’U ~ ~ ~ ~ ~ ~ ~ 2 2,~ C a ’I C~- C ’ ’ ’ C- ~ C-E-38- ’- u A() A09a 265 SRI INTERNATIONAL 14FNLO PARK CA MOLECULAR PHYSICS LAB F
Dassonneville, B.; Murani, A.; Ferrier, M.; Guéron, S.; Bouchiat, H.
2018-05-01
the quantum dynamics of Andreev bound states. By spanning different physical regimes, our experiments provide unique access to inelastic scattering and spectroscopy of an isolated quantum coherent system, and reveal the associated relaxation times. This technique should be a tool of choice to investigate topological superconductivity and detect the topological protection of edge states.
((F, D1), D3) bound state, S-duality and noncommutative open string/Yang-Mills theory
International Nuclear Information System (INIS)
Lu, J.X.; Roy, S.; Singh, H.
2000-01-01
We study decoupling limits and S-dualities for noncommutative open string/Yang-Mills theory in a gravity setup by considering an SL(2,Z) invariant supergravity solution of the form ((F, D1), D3) bound state of type IIB string theory. This configuration can be regarded as D3-branes with both electric and magnetic fields turned on along one of the spatial directions of the brane and preserves half of the space-time supersymmetries of the string theory. Our study indicates that there exists a decoupling limit for which the resulting theory is an open string theory defined in a geometry with noncommutativity in both space-time and space-space directions. We study S-duality of this noncommutative open string (NCOS) and find that the same decoupling limit in the S-dual description gives rise to a space-space noncommutative Yang-Mills theory (NCYM). We also discuss independently the decoupling limit for NCYM in this D3 brane background. Here we find that S-duality of NCYM theory does not always give a NCOS theory. Instead, it can give an ordinary Yang-Mills with a singular metric and an infinitely large coupling. We also find that the open string coupling relation between the two S-duality related theories is modified such that S-duality of a strongly coupled open-string/Yang-Mills theory does not necessarily give a weakly coupled theory. The relevant gravity dual descriptions of NCOS/NCYM are also given. (author)
Amoroso, Richard L.; Vigier, Jean-Pierre
2013-09-01
In this work we extend Vigier's recent theory of `tight bound state' (TBS) physics and propose empirical protocols to test not only for their putative existence, but also that their existence if demonstrated provides the 1st empirical evidence of string theory because it occurs in the context of large-scale extra dimensionality (LSXD) cast in a unique M-Theoretic vacuum corresponding to the new Holographic Anthropic Multiverse (HAM) cosmological paradigm. Physicists generally consider spacetime as a stochastic foam containing a zero-point field (ZPF) from which virtual particles restricted by the quantum uncertainty principle (to the Planck time) wink in and out of existence. According to the extended de Broglie-Bohm-Vigier causal stochastic interpretation of quantum theory spacetime and the matter embedded within it is created annihilated and recreated as a virtual locus of reality with a continuous quantum evolution (de Broglie matter waves) governed by a pilot wave - a `super quantum potential' extended in HAM cosmology to be synonymous with the a `force of coherence' inherent in the Unified Field, UF. We consider this backcloth to be a covariant polarized vacuum of the (generally ignored by contemporary physicists) Dirac type. We discuss open questions of the physics of point particles (fermionic nilpotent singularities). We propose a new set of experiments to test for TBS in a Dirac covariant polarized vacuum LSXD hyperspace suggestive of a recently tested special case of the Lorentz Transformation put forth by Kowalski and Vigier. These protocols reach far beyond the recent battery of atomic spectral violations of QED performed through NIST.
Bounded Rationality and Budgeting
Ibrahim, Mukdad
2016-01-01
This article discusses the theory of bounded rationality which had been introduced by Herbert Simon in the 1950s. Simon introduced the notion of bounded rationality stating that while decision-makers strive for rationality, they are limited by the effect of the environment, their information process capacity and by the constraints on their information storage and retrieval capabilities. Moreover, this article tries to specifically blend this notion into budgeting, using the foundations of inc...
Baker, Joseph L; Jafri, Heba
2016-11-01
F4 fimbriae are protein filaments found in enterotoxigenic Escherichia coli cells and are implicated in the process of bacterial infection due to their function as bacterial adhesins. These filaments are comprised from several proteins, but the bacterial adhesin FaeG, which is a lactose-binding protein, is the major subunit comprising F4 fimbriae. Crystal structures for three variants of the FaeG protein were recently solved, including the ad variant of FaeG that was crystallized in complex with lactose. However, the dynamics of the FaeG protein bound to lactose have not been explored previously using molecular dynamics simulations. Therefore, in order to study the dynamical interactions between the FaeG ad variant and lactose, we have carried out the first all-atom molecular dynamics simulations of this system. We have also probed the role of crystallographic water molecules on the stability of lactose in the FaeG binding site, and have simulated seven FaeG mutants to probe the influence of amino acid substitutions on the ability of FaeG to bind lactose effectively. Our simulations agree well with experimental results for the influence of mutations on lactose binding, provide dynamical insights into the interactions of FaeG with lactose, and also suggest the possibility of additional regions of the FaeG protein that may act as secondary lactose binding sites. Copyright Â© 2016 Elsevier Inc. All rights reserved.
Quasi-bound alpha resonant states populated by the {sup 12}C({sup 6}Li, d) reaction
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, M.R.D.; Borello-Lewin, T.; Miyake, H.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L.; Souza, M.A. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Cunsolo, A.; Cappuzzello, F.; Foti, A.; Agodi, C.; Cavallaro, M. [Istituto Nazionale di Fisica Nucleare (LNS/INFN), Catania (Italy). Lab. Nazionali del Sud; Ukita, G.M. [Universidade de Santo Amaro (UNISA), Sao Paulo, SP (Brazil). Faculdade de Psicologia
2012-07-01
Full text: The alpha cluster phenomenon in the light nuclei structure has been the subject of a long time investigation since the proposal of the Ikeda diagrams [1]. The main purpose of the research program in progress is the investigation of this phenomenon in (x{alpha}) and (x{alpha}+n) nuclei through the ({sup 6}Li, d) alpha transfer reaction [2-4]. Alpha resonant states around the (4{alpha}) threshold in the nucleus {sup 16}O are the focus of the present contribution. In fact, the importance of these resonances at the elements production in stars is recognized, as primarily pointed out by Hoyle in {sup 12}C [6]. The existence of a rotational band with the {alpha} +{sup 12} C (Hoyle) cluster state structure was recently demonstrated by Ohkubo and Hirabayashi [6]. In order to explore this region of interest, measurements of the {sup 12}C({sup 6}Li, d){sup 16}O reaction up to 17 MeV of excitation at an incident energy of 25.5 MeV, have been performed employing the Sao Paulo Pelletron-Enge Split-Pole facility and the nuclear emulsion detection technique (plates Fuji G6B, 50 {mu}m thick). Spectra associated with six scattering angles, from 5 deg to 29 deg in the laboratory frame, each one 50 cm along the focal surface, were measured. Several narrow resonances with a quasi-bound behavior embedded in the continuum were detected and the resolution of 25 keV allowed for the separation of doublets not resolved before [7,8]. The absolute cross sections and the respective deuteron angular distributions were determined and the analysis is in progress. [1] K. Ikeda et al., Prog. Theor. Phys. Suppl. E 68, 464 (1968); H. Horiuchi, K. Ikeda, and Y. Suzuki, ibid. 44, 225 (1978). [2] M.R.D.Rodrigues et al., in12th International Conference on Nuclear Reaction Mechanism, Varenna, Italy, edited by F. Cerutti and A. Ferrari , CERN Proceedings, 2010-2, pp. 331- 335. [3] T. Borello-Lewin et al., Proceedings of SOTANCP2, Brussels, Belgium 2010, edited by P. Descouvemount et al., Int. J
International Nuclear Information System (INIS)
Nielsen, Joseph; Tokuhiro, Akira; Khatry, Jivan; Hiromoto, Robert
2014-01-01
Traditional probabilistic risk assessment (PRA) methods have been developed to evaluate risk associated with complex systems; however, PRA methods lack the capability to evaluate complex dynamic systems. In these systems, time and energy scales associated with transient events may vary as a function of transition times and energies to arrive at a different physical state. Dynamic PRA (DPRA) methods provide a more rigorous analysis of complex dynamic systems. Unfortunately DPRA methods introduce issues associated with combinatorial explosion of states. In order to address this combinatorial complexity, a branch-and-bound optimization technique is applied to the DPRA formalism to control the combinatorial state explosion. In addition, a new characteristic scaling metric (LENDIT – length, energy, number, distribution, information and time) is proposed as linear constraints that are used to guide the branch-and-bound algorithm to limit the number of possible states to be analyzed. The LENDIT characterization is divided into four groups or sets – 'state, system, resource and response' (S2R2) – describing reactor operations (normal and off-normal). In this paper we introduce the branch-and-bound DPRA approach and the application of LENDIT scales and S2R2 sets to a station blackout (SBO) transient. (author)
International Nuclear Information System (INIS)
Rudin, S.I.
1984-01-01
The three-body bound states of particles moving on a lattice and interacting with two-body point-like potentials are studied in two dimensions (2D) and three dimensions (3D) for spin 1/2 fermions and spin O bosons (with application to magnons). When a three boson bound state forms in 3D, it does so discontinuously implying a finite size of approximately two lattice constants. This phenomenon does not occur in 2D. For three fermions, interactions are effectively absent in the state S = 3/2. In the state S = 1/2, when there is an interaction, the three particles complex is unstable against breakup into a bound pair S = 0 and a free third particle. A finite density of states for 2D lattice makes this result relevant for BCS theory of superconductivity in 3D in confirming the choice of singlet pair (Cooper pair) as the fundamental entity. Results for bosons allows estimation of the limits of validity of spin wave theory as applied to the anisotropic Heisenberg ferromagnet in 3D with J/sub z/ > J/sub x/ = J/sub y/
Molecular and excited state properties of isomeric scarlet disperse dyes
Lim, Jihye; Szymczyk, Malgorzata; Mehraban, Nahid; Ding, Yi; Parrillo-Chapman, Lisa; El-Shafei, Ahmed; Freeman, Harold S.
2018-06-01
This work was part of an investigation aimed at characterizing the molecular and excited state properties of currently available disperse dyes developed to provide stability to extensive sunlight exposures when adsorbed on poly(ethylene terephthalate) (PET) fibers. Having completed the characterization of yellow, magenta, and cyan disperse dyes for PET-based fabrics used outdoors, our attention turned to the colors designed to enhance the color gamut of a standard 4-member (cyan/yellow/magenta/black) color set. The present study pertained specifically to the characterization of commercially available scarlet dyes. In this regard, HPLC analysis showed that a scarlet product used for PET coloration was mainly a 70/30 mixture of dyes, and the use of HRMS and single crystal X-ray diffraction analyses indicated that these two dyes were azo compounds derived from isomeric pyridine-based couplers which differed in the location of the primary amino (sbnd NH2) and anilino (sbnd NHPh) groups attached to the pyridine ring. One dye structure has the sbnd NHPh group para to the azo group (Sc2), while the other has that group in the ortho position (Sc3). The presence of either ortho substituent provides photostabilization through intramolecular H-bonding with the azo moiety. Further, results from molecular modeling studies showed that the lower excited state oxidation potential of Sc3 relative to that of Sc2 allows Sc3 to function as an energy quencher for the excited state of Sc2 - through thermodynamically favorable electron transfer.
Molecular electronics with single molecules in solid-state devices.
Moth-Poulsen, Kasper; Bjørnholm, Thomas
2009-09-01
The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule, and on how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong.
Electrically Tunable g Factors in Quantum Dot Molecular Spin States
Doty, M. F.; Scheibner, M.; Ponomarev, I. V.; Stinaff, E. A.; Bracker, A. S.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.
2006-11-01
We present a magnetophotoluminescence study of individual vertically stacked InAs/GaAs quantum dot pairs separated by thin tunnel barriers. As an applied electric field tunes the relative energies of the two dots, we observe a strong resonant increase or decrease in the g factors of different spin states that have molecular wave functions distributed over both quantum dots. We propose a phenomenological model for the change in g factor based on resonant changes in the amplitude of the wave function in the barrier due to the formation of bonding and antibonding orbitals.
Bone Mineral 31P and Matrix-Bound Water Densities Measured by Solid-State 1H and 31P MRI
Seifert, Alan C.; Li, Cheng; Rajapakse, Chamith S.; Bashoor- Zadeh, Mahdieh; Bhagat, Yusuf A.; Wright, Alexander C.; Zemel, Babette S.; Zavaliangos, Antonios; Wehrli, Felix W.
2014-01-01
Bone is a composite material consisting of mineral and hydrated collagen fractions. MRI of bone is challenging due to extremely short transverse relaxation times, but solid-state imaging sequences exist that can acquire the short-lived signal from bone tissue. Previous work to quantify bone density via MRI used powerful experimental scanners. This work seeks to establish the feasibility of MRI-based measurement on clinical scanners of bone mineral and collagen-bound water densities, the latter as a surrogate of matrix density, and to examine the associations of these parameters with porosity and donors’ age. Mineral and matrix-bound water images of reference phantoms and cortical bone from 16 human donors, ages 27-97 years, were acquired by zero-echo-time 31P and 1H MRI on whole body 7T and 3T scanners, respectively. Images were corrected for relaxation and RF inhomogeneity to obtain density maps. Cortical porosity was measured by micro-CT, and apparent mineral density by pQCT. MRI-derived densities were compared to x-ray-based measurements by least-squares regression. Mean bone mineral 31P density was 6.74±1.22 mol/L (corresponding to 1129±204 mg/cc mineral), and mean bound water 1H density was 31.3±4.2 mol/L (corresponding to 28.3±3.7 %v/v). Both 31P and bound water (BW) densities were correlated negatively with porosity (31P: R2 = 0.32, p bone mineralization ratio (expressed here as the ratio of 31P density to bound water density), which is proportional to true bone mineralization, was found to be uncorrelated with porosity, age, or pQCT density. This work establishes the feasibility of image-based quantification of bone mineral and bound water densities using clinical hardware. PMID:24846186
Photoionization of excited molecular states using multiphoton excitation techniques
International Nuclear Information System (INIS)
Dehmer, P.M.; Pratt, S.T.; Dehmer, J.L.
1984-01-01
Photoelectron spectra are reported for three photon resonant, four photon ionization of H 2 via the B 1 Σ/sub u/ + , v = 7 (J = 2,4) and C 1 π/sub u'/, v = 0-4 (J = 1) levels and of N 2 via the o 3 1 π/sub u'/, v = 1,2, b 1 π/sub u'/, v = 3-5, and c 1 π/sub u'/, v = 0 levels. The results reflect both the spectroscopy and the dynamics of photoionization of excited molecular states and are discussed in terms of the selection rules for photoionization and the relative probabilities of photoionization from Rydberg and valence states. In some cases, in accordance with the Franck-Condon principle, the results demonstrate that resonant multiphoton ionization through Rydberg states may be a powerful technique for the production of electronic, vibrational, and rotational state selected ions. However, in other cases, systematic departures from Franck-Condon factors are observed, which reflect the more subtle dynamics of excited state photoionization. 23 references, 6 figures, 2 tables
Photoionization of excited molecular states using multiphoton excitation techniques
International Nuclear Information System (INIS)
Dehmer, P.M.; Pratt, S.T.; Dehmer, J.L.
1984-01-01
Photoelectron spectra are reported for three photon resonant, four photon ionization of H 2 via the B 1 Σ + /sub u/, v = 7 (J = 2,4) and C 1 Pi/sub u/, v = 0-4 (J = 1) levels and of N 2 via the o 3 1 Pi/sub u/, v = 1,2, b 1 Pi/sub u/, v = 3-5, and c 1 Pi/sub u/, v = 0 levels. The results reflect both the spectroscopy and the dynamics of photoionization of excited molecular states and are discussed in terms of the selection rules for photoionization and the relative probabilities of photoionization from Rydberg and valence states. In some cases, in accordance with the Franck-Condon principle, the results demonstrate that resonant multiphoton ionization through Rydberg states may be a powerful technique for the production of electronic, vibrational, and rotational state selected ions. However, in other cases, systematic departures from Franck-Condon factors are observed, which reflect the more subtle dynamics of excited state photoionization
International Nuclear Information System (INIS)
Zeppenfeld, D.
1984-01-01
The present thesis deals with the construction and the analysis of mesonic bound states in SU(N) gauge theories in a two-dimensional space-time. The based field theory can thereby be considered as a simplified version of the QCD, the theory of the strong interactions. After an extensive discussion of the quantization in the temporal gauge and after the Poincare invariance of the theory has been shown mesonic bound states and the meson spectrum for different ranges of the free parameters of the theory (quark mass, coupling constant, and index N of the gauge group) are treated. The spectrum is given by a boundary value problem which in the perturbative limit is solved analytically. For massless quarks gauge-invariant annihilation operators are constructed which permit an exact solution of the energy eigenvalue equation. The energy eigenstates so found described massive interacting mesons which are surrounded by a cloud of massless free particles. (orig.) [de
International Nuclear Information System (INIS)
Willner, K.
2006-01-01
A Mapped Fourier Grid method for solving the radial Schroedinger equation is improved. It is observed that a discrete sine and cosine transform algorithm allows to compute a Hamiltonian matrix the spectrum of which is free of spurious eigenvalues. - The energies of the highest, least bound vibrational states of the Na - Na 2 van der Waals complex are computed using a hyperspherical diabatic-by-sector method. The computed levels are analyzed using quantum defect theory. (orig.)
DEFF Research Database (Denmark)
Kutchinsky, Jonatan; Taboryski, Rafael Jozef; Sørensen, C B
2001-01-01
We report measurements on three-terminal superconductor-semiconductor-superconductor injection devices demonstrating enhancement of the supercurrent by injection from a superconducting injector electrode. Two other electrodes were used to form the detector junction. Applying a small voltage...... of enhancement of the supercurrent by non-equilibrium injection into bound supercurrent-carrying Andreev states. The effect persists to temperatures where the equilibrium supercurrent has vanished. (C) 2001 Elsevier Science B.V. All rights reserved....
Iino, Hitoshi; Hikima, Takaaki; Nishida, Yuya; Yamamoto, Masaki; Kuramitsu, Seiki; Fukui, Kenji
2015-05-01
DNA mismatch repair is an excision system that removes mismatched bases chiefly generated by replication errors. In this system, MutL endonucleases direct the excision reaction to the error-containing strand of the duplex by specifically incising the newly synthesized strand. Both bacterial homodimeric and eukaryotic heterodimeric MutL proteins belong to the GHKL ATPase/kinase superfamily that comprises the N-terminal ATPase and C-terminal dimerization regions. Generally, the GHKL proteins show large ATPase cycle-dependent conformational changes, including dimerization-coupled ATP binding of the N-terminal domain. Interestingly, the ATPase domain of human PMS2, a subunit of the MutL heterodimer, binds ATP without dimerization. The monomeric ATP-bound state of the domain has been thought to be characteristic of heterodimeric GHKL proteins. In this study, we characterized the ATP-bound state of the ATPase domain from the Aquifex aeolicus MutL endonuclease, which is a homodimeric GHKL protein unlike the eukaryotic MutL. Gel filtration, dynamic light scattering, and small-angle X-ray scattering analyses clearly showed that the domain binds ATP in a monomeric form despite its homodimeric nature. This indicates that the uncoupling of dimerization and ATP binding is a common feature among bacterial and eukaryotic MutL endonucleases, which we suggest is closely related to the molecular mechanisms underlying mismatch repair.
DEFF Research Database (Denmark)
Damgård, Ivan Bjerre; Faust, Sebastian; Mukherjee, Pratyay
2013-01-01
Related key attacks (RKAs) are powerful cryptanalytic attacks where an adversary can change the secret key and observe the effect of such changes at the output. The state of the art in RKA security protects against an a-priori unbounded number of certain algebraic induced key relations, e.......g., affine functions or polynomials of bounded degree. In this work, we show that it is possible to go beyond the algebraic barrier and achieve security against arbitrary key relations, by restricting the number of tampering queries the adversary is allowed to ask for. The latter restriction is necessary......-protocols (including the Okamoto scheme, for instance) are secure even if the adversary can arbitrarily tamper with the prover’s state a bounded number of times and obtain some bounded amount of leakage. Interestingly, for the Okamoto scheme we can allow also independent tampering with the public parameters. We show...
Energy Technology Data Exchange (ETDEWEB)
Dolan, Kyle T.; Duguid, Erica M.; He, Chuan (UC)
2011-11-17
SlyA is a master virulence regulator that controls the transcription of numerous genes in Salmonella enterica. We present here crystal structures of SlyA by itself and bound to a high-affinity DNA operator sequence in the slyA gene. SlyA interacts with DNA through direct recognition of a guanine base by Arg-65, as well as interactions between conserved Arg-86 and the minor groove and a large network of non-base-specific contacts with the sugar phosphate backbone. Our structures, together with an unpublished structure of SlyA bound to the small molecule effector salicylate (Protein Data Bank code 3DEU), reveal that, unlike many other MarR family proteins, SlyA dissociates from DNA without large conformational changes when bound to this effector. We propose that SlyA and other MarR global regulators rely more on indirect readout of DNA sequence to exert control over many genes, in contrast to proteins (such as OhrR) that recognize a single operator.
Nonadiabatic excited-state molecular dynamics: On-the-fly limiting of essential excited states
Energy Technology Data Exchange (ETDEWEB)
Nelson, Tammie [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Naumov, Artem [Skolkovo Institute of Science and Technology, Moscow 143026 (Russian Federation); Fernandez-Alberti, Sebastian [Universidad Nacional de Quilmes, Roque Saenz Pea 352, B1876BXD Bernal (Argentina); Tretiak, Sergei, E-mail: serg@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2016-12-20
The simulation of nonadiabatic dynamics in extended molecular systems involving hundreds of atoms and large densities of states is particularly challenging. Nonadiabatic coupling terms (NACTs) represent a significant numerical bottleneck in surface hopping approaches. Rather than using unreliable NACT cutting schemes, here we develop “on-the-fly” state limiting methods to eliminate states that are no longer essential for the non-radiative relaxation dynamics as a trajectory proceeds. We propose a state number criteria and an energy-based state limit. The latter is more physically relevant by requiring a user-imposed energy threshold. For this purpose, we introduce a local kinetic energy gauge by summing contributions from atoms within the spatial localization of the electronic wavefunction to define the energy available for upward hops. The proposed state limiting schemes are implemented within the nonadiabatic excited-state molecular dynamics framework to simulate photoinduced relaxation in poly-phenylene vinylene (PPV) and branched poly-phenylene ethynylene (PPE) oligomers for benchmark evaluation.
Solid State Pathways towards Molecular Complexity in Space
Linnartz, Harold; Bossa, Jean-Baptiste; Bouwman, Jordy; Cuppen, Herma M.; Cuylle, Steven H.; van Dishoeck, Ewine F.; Fayolle, Edith C.; Fedoseev, Gleb; Fuchs, Guido W.; Ioppolo, Sergio; Isokoski, Karoliina; Lamberts, Thanja; Öberg, Karin I.; Romanzin, Claire; Tenenbaum, Emily; Zhen, Junfeng
2011-12-01
It has been a long standing problem in astrochemistry to explain how molecules can form in a highly dilute environment such as the interstellar medium. In the last decennium more and more evidence has been found that the observed mix of small and complex, stable and highly transient species in space is the cumulative result of gas phase and solid state reactions as well as gas-grain interactions. Solid state reactions on icy dust grains are specifically found to play an important role in the formation of the more complex ``organic'' compounds. In order to investigate the underlying physical and chemical processes detailed laboratory based experiments are needed that simulate surface reactions triggered by processes as different as thermal heating, photon (UV) irradiation and particle (atom, cosmic ray, electron) bombardment of interstellar ice analogues. Here, some of the latest research performed in the Sackler Laboratory for Astrophysics in Leiden, the Netherlands is reviewed. The focus is on hydrogenation, i.e., H-atom addition reactions and vacuum ultraviolet irradiation of interstellar ice analogues at astronomically relevant temperatures. It is shown that solid state processes are crucial in the chemical evolution of the interstellar medium, providing pathways towards molecular complexity in space.
International Nuclear Information System (INIS)
Khalili-Damghani, Kaveh; Amiri, Maghsoud
2012-01-01
In this paper, a procedure based on efficient epsilon-constraint method and data envelopment analysis (DEA) is proposed for solving binary-state multi-objective reliability redundancy allocation series-parallel problem (MORAP). In first module, a set of qualified non-dominated solutions on Pareto front of binary-state MORAP is generated using an efficient epsilon-constraint method. In order to test the quality of generated non-dominated solutions in this module, a multi-start partial bound enumeration algorithm is also proposed for MORAP. The performance of both procedures is compared using different metrics on well-known benchmark instance. The statistical analysis represents that not only the proposed efficient epsilon-constraint method outperform the multi-start partial bound enumeration algorithm but also it improves the founded upper bound of benchmark instance. Then, in second module, a DEA model is supplied to prune the generated non-dominated solutions of efficient epsilon-constraint method. This helps reduction of non-dominated solutions in a systematic manner and eases the decision making process for practical implementations. - Highlights: ► A procedure based on efficient epsilon-constraint method and DEA was proposed for solving MORAP. ► The performance of proposed procedure was compared with a multi-start PBEA. ► Methods were statistically compared using multi-objective metrics.
Directory of Open Access Journals (Sweden)
Becka M Warfield
Full Text Available RNA aptamers are oligonucleotides that bind with high specificity and affinity to target ligands. In the absence of bound ligand, secondary structures of RNA aptamers are generally stable, but single-stranded and loop regions, including ligand binding sites, lack defined structures and exist as ensembles of conformations. For example, the well-characterized theophylline-binding aptamer forms a highly stable binding site when bound to theophylline, but the binding site is unstable and disordered when theophylline is absent. Experimental methods have not revealed at atomic resolution the conformations that the theophylline aptamer explores in its unbound state. Consequently, in the present study we applied 21 microseconds of molecular dynamics simulations to structurally characterize the ensemble of conformations that the aptamer adopts in the absence of theophylline. Moreover, we apply Markov state modeling to predict the kinetics of transitions between unbound conformational states. Our simulation results agree with experimental observations that the theophylline binding site is found in many distinct binding-incompetent states and show that these states lack a binding pocket that can accommodate theophylline. The binding-incompetent states interconvert with binding-competent states through structural rearrangement of the binding site on the nanosecond to microsecond timescale. Moreover, we have simulated the complete theophylline binding pathway. Our binding simulations supplement prior experimental observations of slow theophylline binding kinetics by showing that the binding site must undergo a large conformational rearrangement after the aptamer and theophylline form an initial complex, most notably, a major rearrangement of the C27 base from a buried to solvent-exposed orientation. Theophylline appears to bind by a combination of conformational selection and induced fit mechanisms. Finally, our modeling indicates that when Mg2+ ions are
Role of ion-pair states in the predissociation dynamics of Rydberg states of molecular iodine.
von Vangerow, J; Bogomolov, A S; Dozmorov, N V; Schomas, D; Stienkemeier, F; Baklanov, A V; Mudrich, M
2016-07-28
Using femtosecond pump-probe ion imaging spectroscopy, we establish the key role of I(+) + I(-) ion-pair (IP) states in the predissociation dynamics of molecular iodine I2 excited to Rydberg states. Two-photon excitation of Rydberg states lying above the lowest IP state dissociation threshold (1st tier) is found to be followed by direct parallel transitions into IP states of the 1st tier asymptotically correlating to a pair of I ions in their lowest states I(+)((3)P2) + I(-)((1)S0), of the 2nd tier correlating to I(+)((3)P0) + I(-)((1)S0), and of the 3rd tier correlating to I(+)((1)D2) + I(-)((1)S0). Predissociation via the 1st tier proceeds presumably with a delay of 1.6-1.7 ps which is close to the vibrational period in the 3rd tier state (3rd tier-mediated process). The 2nd tier IP state is concluded to be the main precursor for predissociation via lower lying Rydberg states proceeding with a characteristic time of 7-8 ps and giving rise to Rydberg atoms I(5s(2)5p(4)6s(1)). The channel generating I((2)P3/2) + I((2)P1/2) atoms with total kinetic energy corresponding to one-photon excitation is found to proceed via a pump - dump mechanism with dramatic change of angular anisotropy of this channel as compared with earlier nanosecond experiments.
Bounding approaches to system identification
Norton, John; Piet-Lahanier, Hélène; Walter, Éric
1996-01-01
In response to the growing interest in bounding error approaches, the editors of this volume offer the first collection of papers to describe advances in techniques and applications of bounding of the parameters, or state variables, of uncertain dynamical systems. Contributors explore the application of the bounding approach as an alternative to the probabilistic analysis of such systems, relating its importance to robust control-system design.
Entangled states decoherence in coupled molecular spin clusters
Troiani, Filippo; Szallas, Attila; Bellini, Valerio; Affronte, Marco
2010-03-01
Localized electron spins in solid-state systems are widely investigated as potential building blocks of quantum devices and computers. While most efforts in the field have been focused on semiconductor low-dimensional structures, molecular antiferromagnets were recently recognized as alternative implementations of effective few-level spin systems. Heterometallic, Cr-based spin rings behave as effective spin-1/2 systems at low temperature and show long decoherence times [1]; besides, they can be chemically linked and magnetically coupled in a controllable fascion [2]. Here, we theoretically investigate the decoherence of the Bell states in such ring dimers, resulting from hyperfine interactions with nuclear spins. Based on a microscopic description of the molecules [3], we simulate the effect of inhomogeneous broadening, spectral diffusion and electron-nuclear entanglement on the electron-spin coherence, estimating the role of the different nuclei (and of possible chemical substitutions), as well as the effect of simple spin-echo sequences. References: [1] F. Troiani, et al., Phys. Rev. Lett. 94, 207208 (2005). [2] G. A. Timco, S: Carretta, F. Troiani et al., Nature Nanotech. 4, 173 (2009). [3] F. Troiani, V. Bellini, and M. Affronte, Phys. Rev. B 77, 054428 (2008).
Bourne, Yves; Renault, Ludovic; Marchot, Pascale
2015-01-16
The acetylcholinesterase found in the venom of Bungarus fasciatus (BfAChE) is produced as a soluble, non-amphiphilic monomer with a canonical catalytic domain but a distinct C terminus compared with the other vertebrate enzymes. Moreover, the peripheral anionic site of BfAChE, a surface site located at the active site gorge entrance, bears two substitutions altering sensitivity to cationic inhibitors. Antibody Elec410, generated against Electrophorus electricus acetylcholinesterase (EeAChE), inhibits EeAChE and BfAChE by binding to their peripheral sites. However, both complexes retain significant residual catalytic activity, suggesting incomplete gorge occlusion by bound antibody and/or high frequency back door opening. To explore a novel acetylcholinesterase species, ascertain the molecular bases of inhibition by Elec410, and document the determinants and mechanisms for back door opening, we solved a 2.7-Å resolution crystal structure of natural BfAChE in complex with antibody fragment Fab410. Crystalline BfAChE forms the canonical dimer found in all acetylcholinesterase structures. Equally represented open and closed states of a back door channel, associated with alternate positions of a tyrosine phenol ring at the active site base, coexist in each subunit. At the BfAChE molecular surface, Fab410 is seated on the long Ω-loop between two N-glycan chains and partially occludes the gorge entrance, a position that fully reflects the available mutagenesis and biochemical data. Experimentally based flexible molecular docking supports a similar Fab410 binding mode onto the EeAChE antigen. These data document the molecular and dynamic peculiarities of BfAChE with high frequency back door opening, and the mode of action of Elec410 as one of the largest peptidic inhibitors targeting the acetylcholinesterase peripheral site. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Molecular Clusters: Nanoscale Building Blocks for Solid-State Materials.
Pinkard, Andrew; Champsaur, Anouck M; Roy, Xavier
2018-04-17
The programmed assembly of nanoscale building blocks into multicomponent hierarchical structures is a powerful strategy for the bottom-up construction of functional materials. To develop this concept, our team has explored the use of molecular clusters as superatomic building blocks to fabricate new classes of materials. The library of molecular clusters is rich with exciting properties, including diverse functionalization, redox activity, and magnetic ordering, so the resulting cluster-assembled solids, which we term superatomic crystals (SACs), hold the promise of high tunability, atomic precision, and robust architectures among a diverse range of other material properties. Molecular clusters have only seldom been used as precursors for functional materials. Our team has been at the forefront of new developments in this exciting research area, and this Account focuses on our progress toward designing materials from cluster-based precursors. In particular, this Account discusses (1) the design and synthesis of molecular cluster superatomic building blocks, (2) their self-assembly into SACs, and (3) their resulting collective properties. The set of molecular clusters discussed herein is diverse, with different cluster cores and ligand arrangements to create an impressive array of solids. The cluster cores include octahedral M 6 E 8 and cubane M 4 E 4 (M = metal; E = chalcogen), which are typically passivated by a shell of supporting ligands, a feature upon which we have expanded upon by designing and synthesizing more exotic ligands that can be used to direct solid-state assembly. Building from this library, we have designed whole families of binary SACs where the building blocks are held together through electrostatic, covalent, or van der Waals interactions. Using single-crystal X-ray diffraction (SCXRD) to determine the atomic structure, a remarkable range of compositional variability is accessible. We can also use this technique, in tandem with vibrational
Directory of Open Access Journals (Sweden)
Jacobberger James W
2010-04-01
Full Text Available Abstract Background Cytometric measurements of DNA content and chromatin-bound Mcm2 have demonstrated bimodal patterns of expression in G1. These patterns, the replication licensing function of Mcm proteins, and a correlation between Mcm loading and cell cycle commitment for cells re-entering the cell cycle, led us to test the idea that cells expressing a defined high level of chromatin-bound Mcm6 in G1 are committed - i.e., past the G1 restriction point. We developed a cell-based assay for tightly-bound PCNA (PCNA* and Mcm6 (Mcm6*, DNA content, and a mitotic marker to clearly define G1, S, G2, and M phases of the cell cycle. hTERT-BJ1, hTERT-RPE-1, and Molt4 cells were extracted with Triton X-100 followed by methanol fixation, stained with antibodies and DAPI, then measured by cytometry. Results Bivariate analysis of cytometric data demonstrated complex patterns with distinct clustering for all combinations of the 4 variables. In G1, cells clustered in two groups characterized by low and high Mcm6* expression. Serum starvation and release experiments showed that residence in the high group was in late G1, just prior to S phase. Kinetic experiments, employing serum withdrawal, and stathmokinetic analysis with aphidicolin, mimosine or nocodazole demonstrated that cells with high levels of Mcm6* cycled with the committed phases of the cell cycle (S, G2, and M. Conclusions A multivariate assay for Mcm6*, PCNA*, DNA content, and a mitotic marker provides analysis capable of estimating the fraction of pre and post-restriction point G1 cells and supports the idea that there are at least two states in G1 defined by levels of chromatin bound Mcm proteins.
Sukharev, Maxim; Charron, Eric
2017-03-01
We extend the model of exciton-plasmon materials to include a rovibrational structure of molecules using wave-packet propagations on electronic potential energy surfaces. Our model replaces conventional two-level emitters with more complex molecules, allowing us to examine the influence of alignment and vibrational dynamics on strong coupling with surface plasmon-polaritons. We apply the model to a hybrid system comprising a thin layer of molecules placed on top of a periodic array of slits. Rigorous simulations are performed for two types of molecular systems described by vibrational bound-bound and bound-continuum electronic transitions. Calculations reveal new features in transmission, reflection, and absorption spectra, including the observation of significantly higher values of the Rabi splitting and vibrational patterns clearly seen in the corresponding spectra. We also examine the influence of anisotropic initial conditions on optical properties of hybrid materials, demonstrating that the optical response of the system is significantly affected by an initial prealignment of the molecules. Our work demonstrates that prealigned molecules could serve as an efficient probe for the subdiffraction characterization of the near-field near metal interfaces.
Energy Technology Data Exchange (ETDEWEB)
Barik, N; Barik, B K [Utkal Univ., Bhubaneswar (India). Dept. of Physics
1981-12-01
It is shown that a non-relativistic power-law potential model for the heavy quarks in the form V(r) = Arsup(..nu..) + V/sub 0/, (A,..nu..>0) acquires relativistic consistency in generating Dirac bound states of Q anti Q-system in agreement with the Schroedinger spectroscopy if the interaction is modelled by equally mixed scalar and vector parts as suggested by the phenomenology of fine-hyperfine splittings of heavy quarkonium systems in a non-relativistic perturbative approach.
International Nuclear Information System (INIS)
Barik, N.; Barik, B.K.
1981-01-01
It is shown that a non-relativistic power-law potential model for the heavy quarks in the form V(r) = Arsup(ν) + V 0 , (A,ν>0) acquires relativistic consistency in generating Dirac bound states of QantiQ-system in agreement with the Schroedinger spectroscopy if the interaction is modelled by equally mixed scalar and vector parts as suggested by the phenomenology of fine-hyperfine splittings of heavy quarkonium systems in a non-relativistic perturbative approach. (author)
International Nuclear Information System (INIS)
Tolstikhin, Oleg I.; Namba, Chusei
2003-08-01
A program to solve the quantum-mechanical collinear three-body Coulomb problem is described and illustrated by calculations for a number of representative systems and processes. In the internal region, the Schroedinger equation is solved in hyperspherical coordinates using the slow/smooth variable discretization method. In asymptotic regions, the solution is obtained in Jacobi coordinates using the asymptotic package GAILIT from the CPC library. Only bound states and scattering processes below the three-body disintegration threshold are considered here; resonances and fragmentation processes will be discussed in subsequent parts of this series. (author)
DEFF Research Database (Denmark)
Chung, Il-Sug; Taghizadeh, Alireza
2017-01-01
The bound states in the continuum (BICs) in photonic crystal (PhC) slabs presume infinite periodicity in the inplane direction. Thus, a large number of unit cells are typically required to implement the BICs with a high quality (Q) factor. Here, we report on a method to engineer the reciprocal......-space properties of BICs, which enables to keep the effect of the BIC phenomenon strong even for a microcavity of a few unit cells. For example, based on this method, a 3D microcavity of 4 unit cells can attain a Q factor of 18k. This allows for various BIC studies in a very compact platform, as well as novel...
Bassett, Matthew K.; Fortenberry, Ryan C.
2017-06-01
The C3H radical is believed to be prevalent throughout the interstellar medium and may be involved in the formation of polycyclic aromatic hydrocarbons. C3H exists as both a linear and a cyclic isomer. The C2 v cyclopropenylidenyl radical isomer was detected in the dark molecular cloud TMC-1, and the linear propenylidenyl radical isomer has been observed in various dark molecular clouds. Even though the c-C3H radical has been classified rotationally, the vibrational frequencies of this seemingly important interstellar molecule have never been directly observed. Established, highly accurate quartic force field methodologies are employed here to compute useful geometrical data, spectroscopic constants, and vibrational frequencies. The computed rotational constants are consistent with the experimental results. Consequently, the three a1 (ν1, ν2, and ν3) and one b1 (ν6) anharmonic vibrational frequencies at 3117.7 cm-1, 1564.3 cm-1, 1198.5 cm-1, and 826.7 cm-1, respectively, are reliable predictions for these, as of yet unseen, observables. Unfortunately, the two b2 fundamentals (ν4 and ν5) cannot be treated adequately in the current approach due to a flat and possible double-well potential described in detail herein. The dipole-bound excited state of the anion suffers from the same issues and may not even be bound. However, the trusted fundamental vibrational frequencies described for the neutral radical should not be affected by this deformity and are the first robustly produced for c-C3H. The insights gained here will also be applicable to other structures containing three-membered bare and exposed carbon rings that are surprisingly floppy in nature.
Energetic disorder and exciton states of individual molecular rings
International Nuclear Information System (INIS)
Herman, Pavel; Barvik, Ivan; Zapletal, David
2006-01-01
Exciton states in molecular rings (resembling, e.g. the B850 ring from LH2 complexes of purple bacterium Rhodopseudomonas acidophila) with strong intermolecular interaction are still a question of interest [V. Sundstrom, T. Pullerits, R. van Grondelle, J. Phys. Chem. B 103 (1999) 2327]. In our theoretical model we use the ring of two-level systems, simulating, e.g., the bacteriochlorophylls B850. The dynamical aspects in ensemble of rings are reflected in optical line shapes of electronic transitions. The observed linewidths reflect the combined influence of different types of static and dynamic disorder. To avoid the broadening of lines due to ensemble averaging one uses the single-molecule spectroscopy technique to obtain a fluorescence-excitation spectrum. For zero disorder the exciton manifold features two non-degenerate and eight pairwise degenerate states. In the presence of energetic disorder the degeneracy of the exciton states is lifted and oscillator strength is redistributed among the exciton states. A satisfactory understanding of the nature of static disorder in light-harvesting systems has not been reached [S. Jang, S.F. Dempster, R.J. Silbey, J. Phys. Chem. B 105 (2001) 6655]. In the local site basis, there can be present static disorder in both diagonal and off-diagonal Hamiltonian matrix elements. Silbey et al. [J. Phys. Chem. B 105 (2001) 6655] pointed out several questions: is former enough or the latter should be included as well? If both are considered, then there remains a question about whether they are independent or correlated. The distribution of the energetic separation E(k=+/-1) and relative orientation of the transition-dipole moments has been recently investigated [S. Jang, et al., J. Phys. Chem. B 105 (2001) 6655; C. Hofmann, T.J. Aartsma, J. Koehler, Chem. Phys. Lett. 395 (2004) 373]. In our present contribution we have extended such a type of investigation to four models of noncorrelated static disorder: (A) Gaussian disorder in the
Energy Technology Data Exchange (ETDEWEB)
Luque, A., E-mail: a.luque@upm.es [Instituto de Energía Solar, Universidad Politécnica de Madrid (Spain); Mellor, A.; Tobías, I.; Antolín, E.; Linares, P.G.; Ramiro, I.; Martí, A. [Instituto de Energía Solar, Universidad Politécnica de Madrid (Spain)
2013-03-15
The effective mass Schrödinger equation of a QD of parallelepipedic shape with a square potential well is solved by diagonalizing the exact Hamiltonian matrix developed in a basis of separation-of-variables wavefunctions. The expected below bandgap bound states are found not to differ very much from the former approximate calculations. In addition, the presence of bound states within the conduction band is confirmed. Furthermore, filamentary states bounded in two dimensions and extended in one dimension and layered states with only one dimension bounded, all within the conduction band—which are similar to those originated in quantum wires and quantum wells—coexist with the ordinary continuum spectrum of plane waves. All these subtleties are absent in spherically shaped quantum dots, often used for modeling.
Energy Technology Data Exchange (ETDEWEB)
Eby, Joshua; Suranyi, Peter; Wijewardhana, L. C. R.
2018-04-01
The method pioneered by Ruffini and Bonazzola (RB) to describe boson stars involves an expansion of the boson field which is linear in creation and annihilation operators. This expansion constitutes an exact solution to a non-interacting field theory, and has been used as a reasonable ansatz for an interacting one. In this work, we show how one can go beyond the RB ansatz towards an exact solution of the interacting operator Klein-Gordon equation, which can be solved iteratively to ever higher precision. Our Generalized Ruffini-Bonazzola approach takes into account contributions from nontrivial harmonic dependence of the wavefunction, using a sum of terms with energy $k\\,E_0$, where $k\\geq1$ and $E_0$ is the chemical potential of a single bound axion. The method critically depends on an expansion in a parameter $\\Delta \\equiv \\sqrt{1-E_0{}^2/m^2}<1$, where $m$ is the mass of the boson. In the case of the axion potential, we calculate corrections which are relevant for axion stars in the transition or dense branches. We find with high precision the local minimum of the mass, $M_{min}\\approx 463\\,f^2/m$, at $\\Delta\\approx0.27$, where $f$ is the axion decay constant. This point marks the crossover from transition to dense branches of solutions, and a corresponding crossover from structural instability to stability.
Antchev, G.; The TOTEM collaboration; Atanassov, I.; Avati, V.; Baechler, J.; Barrera, C. B.; Berardi, V.; Berretti, M.; Bossini, E.; Bottigli, U.; Bozzo, M.; Bruce, R.; Burkhardt, H.; Cafagna, F.S.; Catanesi, M.G.; Csanad, M.; Csorgo, T.; Deile, M.; De Leonardis, F.; D'Orazio, A.; Doubek, M.; Druzhkin, D.; Eggert, K.; Eremin, V.; Ferro, F.; Fiergolski, A.; Garcia, F.; Garcia Morales, H.; Georgiev, V.; Giani, S.; Grzanka, L.; Hammerbauer, J.; Heino, J.; Helander, P.; Isidori, T.;; Ivanchenko, V.; Karev, A.; Kavspar, J.; Kopal, J.; Kosinski, J.; Kundrat, V.; Lami, S.; Latino, G.; Lauhakangas, R.; Linhart, R.; Lindsey, C.;; Lokajivcek, M.V.; Losurdo, L; Lo Vetere, M.; Lucas-Rodriguez, F.; Lucsanyi, D.; Macri, M.; Malwski, M.; Minafra, N.; Minutoli, S.; Naaranoja, T.; Nemes, F.; Niewiadomski, H.; Novak, T.; Oliveri, E.; Oljemark, F.; Oriunno, M.; Osterberg, K.; Palazzi, P.; Palocko, L.; Passaro, V.; Peroutka, Z.; Prochazka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Redaelli, S.; Robutti, E.; Royon, C.; Ruggiero, G.; Saarikko, H.; Scribano, A.; Siroky, J.; Smajek, J.; Snoeys, W.; Stefanovitch, R.; Sziklai, J.; Taylor, C.; Tcherniaev, E.;; Turini, N.; Vacek, V.; Valentino, G.; Wenninger, J.; Welti, J.; Williams, J.; Wyszkowski, P.; Zich, J.; Zielinski, K
2017-01-01
The TOTEM experiment at the LHC has performed the first measurement at √s = 13 TeV of the ρ parameter, the real to imaginary ratio of the nuclear elastic scattering amplitude at t = 0, obtaining the following results: ρ = 0.09 ± 0.01 and ρ = 0.10 ± 0.01, depending on different physics assumptions and mathematical modelling. The unprecedented precision of the ρ measurement, combined with the TOTEM total cross-section measurements in an energy range larger than 10TeV (from 2.76 to 13TeV), has implied the exclusion of all the models classified and published by COMPETE. The ρ results obtained by TOTEM are compatible with the predictions, from alternative theoretical models both in the Regge-like framework and in the modern QCD framework, of a colourless 3-gluon bound state exchange in the t-channel of the proton-proton elastic scattering. On the contrary, if shown that the 3-gluon bound state t-channel exchange is not of importance for the description of elastic scattering, the ρ value determined by TOT...