WorldWideScience

Sample records for molecular beacon approach

  1. A dual molecular beacon approach for fast detection of Mycobacterium tuberculosis.

    Science.gov (United States)

    Yu, Chuan-Xing; Zhao, Zi-Yun; Lv, Jian-Xin; Zhu, Ling

    2013-02-01

    The main objectives of this study were to assess a dual molecular beacon approach for fast detection of Mycobacterium tuberculosis (MT). MT beacon (Tb-B) was designed to target the unique IS6110 (114 bp) and rpoB (215 bp) fragment of the MT (H37Ra) genome, and the two fragments were inserted into the PMD-19T vector after purification, by PCR and sequencing, to construct plasmids. Different dilutions of positive plasmid standards were used for dual molecular beacon RT-PCR of rpoB and IS6110, and standard curves were established.The results show that the dual molecular beacon of rpoB and IS6110 detecting MT was stable (CV is 1.91-2.68 %) with a high amplification efficiency (95.6 %). In addition, the strains of non MT did not generate fluorescence signals, while strains of MT did, indicating that the primers and molecular beacons were specific, and only MT complex was amplified. The linear range was wide (10(3)-10(11) copies/mL), and clinical specimens presenting different bacterial counts can be detected.

  2. Molecular beacon sequence design algorithm.

    Science.gov (United States)

    Monroe, W Todd; Haselton, Frederick R

    2003-01-01

    A method based on Web-based tools is presented to design optimally functioning molecular beacons. Molecular beacons, fluorogenic hybridization probes, are a powerful tool for the rapid and specific detection of a particular nucleic acid sequence. However, their synthesis costs can be considerable. Since molecular beacon performance is based on its sequence, it is imperative to rationally design an optimal sequence before synthesis. The algorithm presented here uses simple Microsoft Excel formulas and macros to rank candidate sequences. This analysis is carried out using mfold structural predictions along with other free Web-based tools. For smaller laboratories where molecular beacons are not the focus of research, the public domain algorithm described here may be usefully employed to aid in molecular beacon design.

  3. MicroRNA Detection Using a Double Molecular Beacon Approach: Distinguishing Between miRNA and Pre-miRNA.

    Science.gov (United States)

    James, Amanda Marie; Baker, Meredith B; Bao, Gang; Searles, Charles D

    2017-01-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression and are recognized for their roles both as modulators of disease progression and as biomarkers of disease activity, including neurological diseases, cancer, and cardiovascular disease (CVD). Commonly, miRNA abundance is assessed using quantitative real-time PCR (qRT-PCR), however, qRT-PCR for miRNA can be labor intensive, time consuming, and may lack specificity for detection of mature versus precursor forms of miRNA. Here, we describe a novel double molecular beacon approach to miRNA assessment that can distinguish and quantify mature versus precursor forms of miRNA in a single assay, an essential feature for use of miRNAs as biomarkers for disease. Using this approach, we found that molecular beacons with DNA or combined locked nucleic acid (LNA)-DNA backbones can detect mature and precursor miRNAs (pre-miRNAs) of low (beacon assay was accurate in assessing miRNA abundance in a sample containing a mixed population of mature and precursor miRNAs. In contrast, qRT-PCR and the single molecular beacon assay overestimated miRNA abundance. Additionally, the double molecular beacon assay was less labor intensive than traditional qRT-PCR and had 10-25% increased specificity. Our data suggest that the double molecular beacon-based approach is more precise and specific than previous methods, and has the promise of being the standard for assessing miRNA levels in biological samples.

  4. Photodynamic Molecular Beacons: An Image-Guided Therapeutic Approach to Breast Cancer Vertebral Metastases

    Science.gov (United States)

    2011-03-01

    which will restrict the drug and light doses that can be used safely. MMP PDT beacons potentially address this limitation. We have demonstrated the...Shao, R., Ji, X., Gelovani, J. G., and Li, C. (2007) A novel method for imaging in vivo degradation of poly(L-glutamic acid), a biodegradable drug ...Piwnica-Worms, D. (2003) Quantitative analysis of permeation peptide complexes labeled with Technetium-99m: chiral and sequence-specific effects on net cell

  5. Rapid and direct quantitative detection of viable bifidobacteria in probiotic yogurt by combination of ethidium monoazide and real-time PCR using a molecular beacon approach.

    Science.gov (United States)

    Meng, X C; Pang, R; Wang, C; Wang, L Q

    2010-11-01

    The potential of ethidium monoazide (EMA) real-time PCR method based on molecular beacon probe for rapid detection of viable bifidobacteria present in probiotic yogurt was evaluated in this work. A real-time PCR with molecular beacon assay was developed to determine genus Bifidobacterium quantitatively in order to increase the sensitivity and specificity of assay. EMA was used to treat probiotic yogurt prior to DNA extraction and real-time PCR detection to allow detection of only viable bacteria. The primer set of Bif-F/Bif-R which is genus-specific for Bifid. was designed. The specificity of the probes ensures that no signal is generated by non-target amplicons. Linear regression analysis demonstrated a good correlation (R² = 0·9948) between the EMA real-time PCR results and the plate counting, and real-time quantitative PCR results correlated adequately with enumeration of bifidobacteria by culture for commercial probiotic yogurt. This culture-independent approach is promising for the direct and rapid detection of viable bifidobacteria in commercial probiotic yogurt, and the detection can be carried out within 4 h. The detection limit for this method is about 10⁴ cell/ml. In conclusion, the direct quantitative EMA real-time PCR assay based on molecular beacon described in this research is a rapid and quantitative method.

  6. Decimal Integer Multiplication based on Molecular Beacons

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2013-12-01

    Full Text Available Due to the enhancement of circuit integration level, and the accelerating of working frequency of traditional computer, it requires components dimension must be constantly decreased. So encapsulation, etching and other problems of chip are becoming more and more difficult to solve, which causes its performance also become unstable. In order to overcome this problem, DNA computing as a new kind of molecular computing mode, with its high parallelism, huge amounts of storage capacity, low energy consumption advantages has received extensive attention. Being the same with traditional electronic computer, DNA computer is composed by arithmetic operations such as addition, subtraction, multiplication and dividing and basic logic units such as AND, OR, NON gate. This paper puts forward a new method to realize decimal integer multiplication based on molecular beacons. The algorithm firstly converts decimal integer to binary number, and then resolves the multiplication process into multiplication of current bit and addition of intermediate result after shifting two steps. Molecular beacon is used as multiplying unit, coding sequence is used as multiplier in this method. Based on the working principle of molecular beacon, multiplication operation of two one-bit binary is simulated. And by recording fluorescence status of molecular beacon to observe intermediate result and carry-bit situation, the final result can be obtained through addition after shifting. Examples prove that this method can realize decimal integer multiplication rapidly and accurately. This method is similar to multiplication system in traditional electronic computer, and it provides a simple, easier operation method for DNA computer to realize arithmetic operation.

  7. Diagnosis of Neisseria gonorrhoeae Using Molecular Beacon

    Science.gov (United States)

    Patel, Achchhe Lal; Sonkar, Subash Chandra; Kumari, Indu; Saluja, Daman

    2015-01-01

    Neisseria gonorrhoeae is an important sexually transmitted diseases (STD) causing pathogen worldwide. Due to absence of an affordable diagnostic assay, routine screening of gonococcal infection becomes impossible in developing countries where infection rates are maximum. Treatment is given on the basis of symptoms alone which leads to spread of infection. Thus, development of a rapid, sensitive, specific, and PCR based visual diagnostic assay suitable for developing countries, required for better disease management, is aimed at in present study. Endocervical swabs were collected from patients visiting gynecology department of various hospitals in Delhi. In-house PCR based assay was developed and modified to visual assay using molecular beacon for end-point detection. It was evaluated against Roche AMPLICOR NG kit and rmp gene. Specificity of beacon was confirmed by competition experiments. Diagnostic test was 98.21% specific and 99.59% sensitive whereas negative and positive predicted value were 99.40% and 98.78%, respectively. We also observed that twice the concentration (2X) of premix was stable at 4°C for 4 months and dry swab samples gave concordant results with that of wet swabs. These features make the test best suitable for routine diagnosis of genital infections in developing countries. PMID:25802857

  8. Diagnosis of Neisseria gonorrhoeae Using Molecular Beacon

    Directory of Open Access Journals (Sweden)

    Divya Sachdev

    2015-01-01

    Full Text Available Neisseria gonorrhoeae is an important sexually transmitted diseases (STD causing pathogen worldwide. Due to absence of an affordable diagnostic assay, routine screening of gonococcal infection becomes impossible in developing countries where infection rates are maximum. Treatment is given on the basis of symptoms alone which leads to spread of infection. Thus, development of a rapid, sensitive, specific, and PCR based visual diagnostic assay suitable for developing countries, required for better disease management, is aimed at in present study. Endocervical swabs were collected from patients visiting gynecology department of various hospitals in Delhi. In-house PCR based assay was developed and modified to visual assay using molecular beacon for end-point detection. It was evaluated against Roche AMPLICOR NG kit and rmp gene. Specificity of beacon was confirmed by competition experiments. Diagnostic test was 98.21% specific and 99.59% sensitive whereas negative and positive predicted value were 99.40% and 98.78%, respectively. We also observed that twice the concentration (2X of premix was stable at 4°C for 4 months and dry swab samples gave concordant results with that of wet swabs. These features make the test best suitable for routine diagnosis of genital infections in developing countries.

  9. Molecular Beacon-Based MicroRNA Imaging During Neurogenesis.

    Science.gov (United States)

    Lee, Jonghwan; Kim, Soonhag

    2016-01-01

    The fluorescence monitoring system for examining endogenous microRNA (miRNA) activity in cellular level provides crucial information on not only understanding a critical role of miRNA involving a variety of biological processes, but also evaluating miRNA expression patterns in a noninvasive manner. In this protocol, we report the details of a new procedure for a molecular beacon-based miRNA monitoring system, which includes the illustration scheme for miRNA detection strategy, exogenous miRNA detection, and measurement of endogenous miRNA expression level during neurogenesis. The fluorescence signal of miR-124a beacon quenched by BHQ2 was gradually recovered as increasing concentration of the miR-124a in tube. The functional work of miR-124a beacon was examined in intracellular environment, allowing for the internalization of the miR-124a beacon by lipofectamine, which resulted in activated fluorescent signals of the miR-124a beacon in the HeLa cells after the addition of synthetic miR-124a. The endogenous miR-124a expression level was detected by miR-124a beacon system during neurogenesis, showing brighter fluorescence intensity in cytoplasmic area of P19 cells after induction of neuronal differentiation by retinoic acid. The molecular beacon based-miRNA detection technique could be applicable to the simultaneous visualization of a variety of miRNA expression patterns using different fluorescence dyes. For the study of examining endogenous miRNA expression level using miRNA-beacon system, if cellular differentiation step is already prepared, transfection step of miR-124a beacon into P19 cells, and acquisition of activated fluorescence signal measured by confocal microscope can be conducted approximately within 6 h.

  10. New frontiers of molecular beacons: signal amplification and nanomachines

    DEFF Research Database (Denmark)

    Della Vedova, Paolo

    2013-01-01

    Gene expression is the process in which information stored into a gene is used to create a functional gene product, for example a protein or a functional RNA. Gene expression is used by all living organism to control cell life, differentiation, regeneration and cancer genesis. Molecular beacons...... provide a useful way to detect gene expression inside living cells without influencing the cell behavior. Molecular beacons are a particular kind of nucleic acid based probes composed by an oligonucleotide chain which assumes a hairpin configuration, encoding the target sequence of interest (loop) flanked...... section gives initially an overview of the molecular beacon technology usability and working principle. Later on the mechanism of molecular beacon’s internalization by SLO treatment was theoretically and experimentally investigated to determine optimal transfection condition and actual cell loading...

  11. Protein analysis based on molecular beacon probes and biofunctionalized nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    With the completion of the human genome-sequencing project, there has been a resulting change in the focus of studies from genomics to proteomics. By utilizing the inherent advantages of molecular beacon probes and biofunctionalized nanoparticles, a series of novel principles, methods and techniques have been exploited for bioanalytical and biomedical studies. This review mainly discusses the applications of molecular beacon probes and biofunctionalized nanoparticles-based technologies for realtime, in-situ, highly sensitive and highly selective protein analysis, including the nonspecific or specific protein detection and separation, protein/DNA interaction studies, cell surface protein recognition, and antigen-antibody binding process-based bacteria assays. The introduction of molecular beacon probes and biofunctionalized nanoparticles into the protein analysis area would necessarily advance the proteomics research.

  12. The morpholino molecular beacon for specific RNA visualization in vivo.

    Science.gov (United States)

    Chen, Jianbin; Wu, Jikui; Hong, Yunhan

    2016-02-21

    A non-invasive fluorescent probe, morpholino molecular beacon (MO-MB), was designed for RNA visualization in vivo. Featuring negligible toxicity, stability, and high target specificity in living embryos, MO-MB is superior to conventional probes and has the potential for specific RNA visualization in basic biological and clinical research.

  13. mRNA detection in living cell using phosphorothioate-modified molecular beacon

    Institute of Scientific and Technical Information of China (English)

    TANG HongXing; YANG XiaoHai; WANG KeMin; TAN WeiHong; LI Wei

    2009-01-01

    In this study, GFP mRNA in COS-7 cell and GFP-transfected COS-7 cell was detected in real time using phosphorothioate-modified molecular beacon based on living cell imaging method. Results showed that phosphorothioate-modified molecular beacon still kept the advantages of molecular beacon, such as, excellent selectivity, high sensitivity, and no separation detection. In addition, this modification could significantly increase the nuclease resistance of molecular beacon. Phosphorothioate-modified molecular beacon can efficiently reduce the false positive signal and improve the accuracy of living cell mRNA detection.

  14. Cleavable DNA-protein hybrid molecular beacon: A novel efficient signal translator for sensitive fluorescence anisotropy bioassay.

    Science.gov (United States)

    Hu, Pan; Yang, Bin

    2016-01-15

    Due to its unique features such as high sensitivity, homogeneous format, and independence on fluorescent intensity, fluorescence anisotropy (FA) assay has become a hotspot of study in oligonucleotide-based bioassays. However, until now most FA probes require carefully customized structure designs, and thus are neither generalizable for different sensing systems nor effective to obtain sufficient signal response. To address this issue, a cleavable DNA-protein hybrid molecular beacon was successfully engineered for signal amplified FA bioassay, via combining the unique stable structure of molecular beacon and the large molecular mass of streptavidin. Compared with single DNA strand probe or conventional molecular beacon, the DNA-protein hybrid molecular beacon exhibited a much higher FA value, which was potential to obtain high signal-background ratio in sensing process. As proof-of-principle, this novel DNA-protein hybrid molecular beacon was further applied for FA bioassay using DNAzyme-Pb(2+) as a model sensing system. This FA assay approach could selectively detect as low as 0.5nM Pb(2+) in buffer solution, and also be successful for real samples analysis with good recovery values. Compatible with most of oligonucleotide probes' designs and enzyme-based signal amplification strategies, the molecular beacon can serve as a novel signal translator to expand the application prospect of FA technology in various bioassays.

  15. Single and multiple molecular beacon probes for DNA hybridization studies on a silica glass surface

    Science.gov (United States)

    Fang, Xiaohong; Liu, Xiaojing; Tan, Weihong

    1999-05-01

    Surface immobilizable molecular beacons have been developed for DNA hybridization studies on a silica glass plate. Molecular beacons are a new class of oligonucleotide probes that have a loop-and-stem structure with a fluorophore and a quencher attached to the two ends of the stem. They only emit intense fluorescence when hybridize to their target molecules. This provides an excellent selectivity for the detection of DNA molecules. We have designed biotinylated molecular beacons which can be immobilized onto a solid surface. The molecular beacon is synthesized using DABCYL as the quencher and an optical stable dye, tetramethylrhodamine, as the fluorophore. Mass spectrometry is used to confirm the synthesized molecular beacon. The molecular beacons have been immobilized onto a silica surface through biotin-avidin binding. The surface immobilized molecular beacons have been used for the detection of target DNA with subnanomolar analytical sensitivity. have also immobilized two different molecular beacons on a silica surface in spatially resolved microscopic regions. The hybridization study of these two different molecular beacon probes has shown excellent selectivity for their target sequences. The newly designed molecular beacons are intended for DNA molecular interaction studies at an interface and for the development of ultrasensitive DNA sensors for a variety of applications including disease diagnosis, disease mechanism studies, new drug development, and in the investigation of molecular interactions between DNA molecules and other interesting biomolecules.

  16. Genotyping Single Nucleotide Polymorphisms Using Different Molecular Beacon Multiplexed within a Suspended Core Optical Fiber

    Directory of Open Access Journals (Sweden)

    Linh Viet Nguyen

    2014-08-01

    Full Text Available We report a novel approach to genotyping single nucleotide polymorphisms (SNPs using molecular beacons in conjunction with a suspended core optical fiber (SCF. Target DNA sequences corresponding to the wild- or mutant-type have been accurately recognized by immobilizing two different molecular beacons on the core of a SCF. The two molecular beacons differ by one base in the loop-probe and utilize different fluorescent indicators. Single-color fluorescence enhancement was obtained when the immobilized SCFs were filled with a solution containing either wild-type or mutant-type sequence (homozygous sample, while filling the immobilized SCF with solution containing both wild- and mutant-type sequences resulted in dual-color fluorescence enhancement, indicating a heterozygous sample. The genotyping was realized amplification-free and with ultra low-volume for the required DNA solution (nano-liter. This is, to our knowledge, the first genotyping device based on the combination of optical fiber and molecular beacons.

  17. Caged molecular beacons: controlling nucleic acid hybridization with light.

    Science.gov (United States)

    Wang, Chunming; Zhu, Zhi; Song, Yanling; Lin, Hui; Yang, Chaoyong James; Tan, Weihong

    2011-05-28

    We have constructed a novel class of light-activatable caged molecular beacons (cMBs) that are caged by locking two stems with a photo-labile biomolecular interaction or covalent bond. With the cMBs, the nucleic acid hybridization process can be easily controlled with light, which offers the possibility for a high spatiotemporal resolution study of intracellular mRNAs. © The Royal Society of Chemistry 2011

  18. Molecular beacon – tool for real time studying gene activity in stem cells

    DEFF Research Database (Denmark)

    Ilieva, Mirolyuba; Dufva, Martin

    and cancerogenesis. Molecular beacon technology is based on fluorescence resonance energy transfer (FRET) and the complementary pairing principles. These fluorescent molecular probes are highly specific and sensitive and are one important tool in in vitro diagnostics. Here molecular beacons are used to follow...

  19. Ultrasensitive monitoring of ribozyme cleavage product using molecular-beacon-ligation system

    Institute of Scientific and Technical Information of China (English)

    MENG XiangXian; TANG ZhiWen; WANG KeMin; TAN WeiHong; YANG XiaoHai; LI Jun; GUO QiuPing

    2007-01-01

    This paper reports a new approach to detect ribozyme cleavage product based on the molecular- beacon-ligation system. The molecular beacon, designed in such a way that one-half of its loop is complementary to ribozyme cleavage product, is used to monitor ligation process of RNA/DNA complex in a homogeneous solution and to convert directly cleavage product information into fluorescence signal. The method need not label ribozyme and ribozyme substrate, which is fast, simple and ultrasensitive for detection of cleavage product. Detection limit of the assay is 0.05 nmol/L. The cleavage product of hammerhead ribozyme against hepatitis C virus RNA (HCV-RNA) was detected perfectly based on this assay. Owing to its ultrasensitivity, excellent specificity, convenience and fidelity, this method might hold out great promise in ribozyme reaction and ribozyme gene therapy.

  20. Molecular Beacon CNT-based Detection of SNPs

    Science.gov (United States)

    Egorova, V. P.; Krylova, H. V.; Lipnevich, I. V.; Veligura, A. A.; Shulitsky, B. G.; Y Fedotenkova, L.

    2015-11-01

    An fluorescence quenching effect due to few-walled carbon nanotubes chemically modified by carboxyl groups has been utilized to discriminate Single Nucleotide Polymorphism (SNP). It was shown that the complex obtained from these nanotube and singlestranded primer DNA is formed due to stacking interactions between the hexagons of the nanotubes and aromatic rings of nucleotide bases as well as due to establishing of hydrogen bonds between acceptor amine groups of nucleotide bases and donor carboxyl groups of the nanotubes. It has been demonstrated that these complexes may be used to make highly effective DNA biosensors detecting SNPs which operate as molecular beacons.

  1. Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA

    NARCIS (Netherlands)

    Leone, G.; Schijndel, van H.; Gemen, van B.; Kramer, F.R.; Schoen, C.D.

    1998-01-01

    Molecular beacon probes can be employed in a NASBA amplicon detection system to generate a specific fluorescent signal concomitantly with amplification. A molecular beacon, designed to hybridize within the target sequence, was introduced into NASBA reactions that amplify the genomic RNA of potato le

  2. Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA

    NARCIS (Netherlands)

    Leone, G.; Schijndel, van H.; Gemen, van B.; Kramer, F.R.; Schoen, C.D.

    1998-01-01

    Molecular beacon probes can be employed in a NASBA amplicon detection system to generate a specific fluorescent signal concomitantly with amplification. A molecular beacon, designed to hybridize within the target sequence, was introduced into NASBA reactions that amplify the genomic RNA of potato

  3. Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA

    NARCIS (Netherlands)

    Leone, G.; Schijndel, van H.; Gemen, van B.; Kramer, F.R.; Schoen, C.D.

    1998-01-01

    Molecular beacon probes can be employed in a NASBA amplicon detection system to generate a specific fluorescent signal concomitantly with amplification. A molecular beacon, designed to hybridize within the target sequence, was introduced into NASBA reactions that amplify the genomic RNA of potato le

  4. Detection of DNA damage by using hairpin molecular beacon probes and graphene oxide.

    Science.gov (United States)

    Zhou, Jie; Lu, Qian; Tong, Ying; Wei, Wei; Liu, Songqin

    2012-09-15

    A hairpin molecular beacon tagged with carboxyfluorescein in combination with graphene oxide as a quencher reagent was used to detect the DNA damage by chemical reagents. The fluorescence of molecular beacon was quenched sharply by graphene oxide; while in the presence of its complementary DNA the quenching efficiency decreased because their hybridization prevented the strong adsorbability of molecular beacon on graphene oxide. If the complementary DNA was damaged by a chemical reagent and could not form intact duplex structure with molecular beacon, more molecular beacon would adsorb on graphene oxide increasing the quenching efficiency. Thus, damaged DNA could be detected based on different quenching efficiencies afforded by damaged and intact complementary DNA. The damage effects of chlorpyrifos-methyl and three metabolites of styrene such as mandelieaeids, phenylglyoxylieaeids and epoxystyrene on DNA were studied as models. The method for detection of DNA damage was reliable, rapid and simple compared to the biological methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Molecular Beacons: Powerful Tools for Imaging RNA in Living Cells

    Science.gov (United States)

    Monroy-Contreras, Ricardo; Vaca, Luis

    2011-01-01

    Recent advances in RNA functional studies highlights the pivotal role of these molecules in cell physiology. Diverse methods have been implemented to measure the expression levels of various RNA species, using either purified RNA or fixed cells. Despite the fact that fixed cells offer the possibility to observe the spatial distribution of RNA, assays with capability to real-time monitoring RNA transport into living cells are needed to further understand the role of RNA dynamics in cellular functions. Molecular beacons (MBs) are stem-loop hairpin-structured oligonucleotides equipped with a fluorescence quencher at one end and a fluorescent dye (also called reporter or fluorophore) at the opposite end. This structure permits that MB in the absence of their target complementary sequence do not fluoresce. Upon binding to targets, MBs emit fluorescence, due to the spatial separation of the quencher and the reporter. Molecular beacons are promising probes for the development of RNA imaging techniques; nevertheless much work remains to be done in order to obtain a robust technology for imaging various RNA molecules together in real time and in living cells. The present work concentrates on the different requirements needed to use successfully MB for cellular studies, summarizing recent advances in this area. PMID:21876785

  6. Molecular Beacons: Powerful Tools for Imaging RNA in Living Cells

    Directory of Open Access Journals (Sweden)

    Ricardo Monroy-Contreras

    2011-01-01

    Full Text Available Recent advances in RNA functional studies highlights the pivotal role of these molecules in cell physiology. Diverse methods have been implemented to measure the expression levels of various RNA species, using either purified RNA or fixed cells. Despite the fact that fixed cells offer the possibility to observe the spatial distribution of RNA, assays with capability to real-time monitoring RNA transport into living cells are needed to further understand the role of RNA dynamics in cellular functions. Molecular beacons (MBs are stem-loop hairpin-structured oligonucleotides equipped with a fluorescence quencher at one end and a fluorescent dye (also called reporter or fluorophore at the opposite end. This structure permits that MB in the absence of their target complementary sequence do not fluoresce. Upon binding to targets, MBs emit fluorescence, due to the spatial separation of the quencher and the reporter. Molecular beacons are promising probes for the development of RNA imaging techniques; nevertheless much work remains to be done in order to obtain a robust technology for imaging various RNA molecules together in real time and in living cells. The present work concentrates on the different requirements needed to use successfully MB for cellular studies, summarizing recent advances in this area.

  7. Gold nanoparticle fluorescent molecular beacon for low-resolution DQ2 gene HLA typing.

    Science.gov (United States)

    Beni, Valerio; Zewdu, Taye; Joda, Hamdi; Katakis, Ioanis; O'Sullivan, Ciara K

    2012-01-01

    Coeliac disease is an inflammation of the small intestine triggered by gluten ingestion. We present a fluorescent genosensor, exploiting molecular-beacon-functionalized gold nanoparticles, for the identification of human leukocyte antigen (HLA) DQ2 gene, a key genetic factor in coeliac disease. Optimization of sensor performance was achieved by tuning the composition of the oligonucleotide monolayer immobilized on the gold nanoparticle and the molecular beacon design. Co-immobilization of the molecular beacon with a spacing oligonucleotide (thiolated ten-thymine oligonucleotide) in the presence of ten-adenine oligonucleotides resulted in a significant increase of the sensor response owing to improved spacing of the molecular beacons and extension of the distance from the nanoparticle surface, which renders them more available for recognition. Further increase in the response (approximately 40%) was shown to be achievable when the recognition sequence of the molecular beacon was incorporated in the stem. Improvement of the specificity of the molecular beacons was also achieved by the incorporation within their recognition sequence of a one-base mismatch. Finally, gold nanoparticles functionalized with two molecular beacons targeting the DQA1*05* and DQB1*02* alleles allowed the low-resolution typing of the DQ2 gene at the nanomolar level.

  8. Fast molecular beacon hybridization in organic solvents with improved target specificity.

    Science.gov (United States)

    Dave, Neeshma; Liu, Juewen

    2010-12-02

    DNA hybridization is of tremendous importance in biology, bionanotechnology, and biophysics. Molecular beacons are engineered DNA hairpins with a fluorophore and a quencher labeled on each of the two ends. A target DNA can open the hairpin to give an increased fluorescence signal. To date, the majority of molecular beacon detections have been performed only in aqueous buffers. We describe herein DNA detection in nine different organic solvents, methanol, ethanol, isopropanol, acetonitrile, formamide, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), ethylene glycol, and glycerol, varying each up to 75% (v/v). In comparison with detection in water, the detection in organic solvents showed several important features. First, the molecular beacon hybridizes to its target DNA in the presence of all nine solvents up to a certain percentage. Second, the rate of this hybridization was significantly faster in most organic solvents compared with water. For example, in 56% ethanol, the beacon showed a 70-fold rate enhancement. Third, the ability of the molecular beacon to discriminate single-base mismatch is still maintained. Lastly, the DNA melting temperature in the organic solvents showed a solvent concentration-dependent decrease. This study suggests that molecular beacons can be used for applications where organic solvents must be involved or organic solvents can be intentionally added to improve the molecular beacon performance.

  9. Immobilization of aptamer-based molecular beacons onto optically-encoded micro-sized beads.

    Science.gov (United States)

    Jun, Bong-Hyun; Kim, Ji-Eun; Rho, Chul; Byun, Jang-Woong; Kim, Yo Han; Kang, Homan; Kim, Jong-Ho; Kang, Taegyu; Cho, Myung-Haing; Lee, Yoon-Sik

    2011-07-01

    This paper presents a method for the novel immobilization of aptamer-based molecular beacons (apta-beacons) onto optically-encoded micro-sized beads (apta-beacon beads). To immobilize apta-beacons onto flourescently-encoded micro-sized beads, core-shell type beads containing a fluorescent dye-encoded core and apta beacon-coupled shell were prepared. The fluorescent dye-encoded beads were prepared from TentaGel resins by coupling RITC to the amino groups of the core region, after partial protection of amino groups with Fmoc-OSu in a diffusion-controlled manner. After deprotection of the Fmoc-amino groups, FITC-coupled molecular beacons (MBs) were immobilized to the beads together with a quencher by covelent bonding. Briefly, aspartic acid (Asp) was coupled to the shell part of the beads. Then, the quencher was coupled to the N-terminal amino group of Asp and the MBs were coupled to the side chain carboxyl group. In a model study, thrombin was directly detected using this apta-beacon bead method. The thrombin-bound apta-beacon beads were easily recognized by the appearance of fluorescence without any further labeling step.

  10. Real time monitoring of nucleic acids ligation based on molecular beacon

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel method has been developed to monitor the nucleic acids ligation process. Molecular beacon was employed here to convert the ligation information into fluorescence signal quickly and quantitatively. This method provides effective and original approach to researching the dynamic ligation process and the interactions between nucleic acids and ligase. An analytical method for T4 DNA ligase based on this way has been built up with a linear detection range from 2.3×10?4 U/mL to 0.23 U/mL. It is rapid and sensitive to detect 2.8×10?5 U T4 DNA ligase in 10 min.

  11. REAL-TIME DETECTION OF SURVIVIN mRNA EXPRESSION IN CERVICAL CANCER CELL LINES USING MOLECULAR BEACON IMAGING

    Institute of Scientific and Technical Information of China (English)

    An Ruifang; He Dalin; Xue Yan; Wang Shu; Xie Li; Zhao Jun; Wang Xinyang; Yang Lili

    2006-01-01

    Objective To detect the expression of survivin mRNA in cervical cancer cell lines using molecular beacon imaging technology. Methods Human cervical cancer cells (HeLa and SiHa) and human fetal lung fibroblast HFL-I were cultured in vitro. After adding 100 nmol/L survivin mRNA molecular beacon, the fluorescent signals were observed under fluorescent microscope. The expressions of survivin in cervical cancer cells and HFL-I cell were examined by immunocytochemical streptravidin-biothin peroxidase (SP) assay at the same time. Results Two kinds of survivin mRNA molecular beacon, with different color fluorescence, had strong fluorescent signal in cervical cancer cell lines, and the signal in SiHa cell line was stronger, but these signals were not found in HFL-I ; Immunocytochemical staining of positive survivin was located in the cytoplasm of cervical cancer cell lines HeLa and SiHa, whereas, no expression of survivin was detected in HFL-I cell line. Conclusion The technology of molecular beacon imaging can be used to detect the expression of survivin mRNA in viable cells successfully, and may provide a new approach to the diagnosis of early stage cervical cancer and the following-up in the clinic.

  12. High-throughput SNP genotyping: combining tag SNPs and molecular beacons

    CSIR Research Space (South Africa)

    Barreiro, LB

    2009-10-01

    Full Text Available In the last decade, molecular beacons have emerged to become a widely used tool in the multiplex typing of single nucleotide polymorphisms (SNPs). Improvements in detection technologies in instrumentation and chemistries to label these probes have...

  13. Tracking neuronal marker expression inside living differentiating cells using molecular beacons

    DEFF Research Database (Denmark)

    Ilieva, Mirolyuba; Della Vedova, Paolo; Hansen, Ole

    2013-01-01

    Monitoring gene expression is an important tool for elucidating mechanisms of cellular function. In order to monitor gene expression during nerve cell development, molecular beacon (MB) probes targeting markers representing different stages of neuronal differentiation were designed and synthesized...

  14. Highly sensitive and rapid bacteria detection using molecular beacon-Au nanoparticles hybrid nanoprobes.

    Science.gov (United States)

    Cao, Jing; Feng, Chao; Liu, Yan; Wang, Shouyu; Liu, Fei

    2014-07-15

    Since many diseases are caused by pathogenic bacterial infections, accurate and rapid detection of pathogenic bacteria is in urgent need to timely apply appropriate treatments and to reduce economic costs. To end this, we designed molecular beacon-Au nanoparticle hybrid nanoprobes to improve the bacterial detection efficiency and sensitivity. Here, we show that the designed molecular beacon modified Au nanoparticles could specifically recognize synthetic DNAs targets and can readily detect targets in clinical samples. Moreover, the hybrid nanoprobes can recognize Escherichia coli within an hour at a concentration of 10(2) cfu/ml, which is 1000-folds sensitive than using molecular beacon directly. Our results show that the molecular beacon-Au nanoparticle hybrid nanoprobes have great potential in medical and biological applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A distance-dependent metal-enhanced fluorescence sensing platform based on molecular beacon design.

    Science.gov (United States)

    Zhou, Zhenpeng; Huang, Hongduan; Chen, Yang; Liu, Feng; Huang, Cheng Zhi; Li, Na

    2014-02-15

    A new metal-enhanced fluorescence (MEF) based platform was developed on the basis of distance-dependent fluorescence quenching-enhancement effect, which combined the easiness of Ag-thiol chemistry with the MEF property of noble-metal structures as well as the molecular beacon design. For the given sized AgNPs, the fluorescence enhancement factor was found to increase with a d(6) dependency in agreement with fluorescence resonance energy transfer mechanism at shorter distance and decrease with a d(-3) dependency in agreement with plasmonic enhancement mechanism at longer distance between the fluorophore and the AgNP surface. As a proof of concept, the platform was demonstrated by a sensitive detection of mercuric ions, using thymine-containing molecular beacon to tune silver nanoparticle (AgNP)-enhanced fluorescence. Mercuric ions were detected via formation of a thymine-mercuric-thymine structure to open the hairpin, facilitating fluorescence recovery and AgNP enhancement to yield a limit of detection of 1 nM, which is well below the U.S. Environmental Protection Agency regulation of the Maximum Contaminant Level Goal (10nM) in drinking water. Since the AgNP functioned as not only a quencher to reduce the reagent blank signal but also an enhancement substrate to increase fluorescence of the open hairpin when target mercuric ions were present, the quenching-enhancement strategy can greatly improve the detection sensitivity and can in principle be a universal approach for various targets when combined with molecular beacon design. © 2013 Elsevier B.V. All rights reserved.

  16. Analytical performance of molecular beacons on surface immobilized gold nanoparticles of varying size and density.

    Science.gov (United States)

    Uddayasankar, Uvaraj; Krull, Ulrich J

    2013-11-25

    The high quenching efficiency of metal nanoparticles has facilitated its use as quenchers in molecular beacons. To optimize this system, a good understanding of the many factors that influence molecular beacon performance is required. In this study, molecular beacon performance was evaluated as a function of gold nanoparticle size and its immobilization characteristics. Gold nanoparticles of 4 nm, 15 nm and 87 nm diameter, were immobilized onto glass slides. Each size regime offered distinctive optical properties for fluorescence quenching of molecular dyes that were conjugated to oligonucleotides that were immobilized to the gold nanoparticles. Rigid double stranded DNA was used as a model to place fluorophores at different distances from the gold nanoparticles. The effect of particle size and also the immobilization density of nanoparticles was evaluated. The 4 nm and 87 nm gold nanoparticles offered the highest sensitivity in terms of the change in fluorescence intensity as a function of distance (3-fold improvement for Cy5). The optical properties of the molecular fluorophore was of significance, with Cy5 offering higher contrast ratios than Cy3 due to the red-shifted emission spectrum relative to the plasmon peak. A high density of gold nanoparticles reduced contrast ratios, indicating preference for a monolayer of immobilized nanoparticles when considering analytical performance. Molecular beacon probes were then used in place of the double stranded oligonucleotides. There was a strong dependence of molecular beacon performance on the length of a linker used for attachment to the nanoparticle surface. The optimal optical performance was obtained with 4 nm gold nanoparticles that were immobilized as monolayers of low density (5.7×10(11)particles cm(-2)) on glass surfaces. These nanoparticle surfaces offered a 2-fold improvement in analytical performance of the molecular beacons when compared to other nanoparticle sizes investigated. The principles developed

  17. Optical Fiber Nanotips Coated with Molecular Beacons for DNA Detection

    Directory of Open Access Journals (Sweden)

    Ambra Giannetti

    2015-04-01

    Full Text Available Optical fiber sensors, thanks to their compactness, fast response and real-time measurements, have a large impact in the fields of life science research, drug discovery and medical diagnostics. In recent years, advances in nanotechnology have resulted in the development of nanotools, capable of entering the single cell, resulting in new nanobiosensors useful for the detection of biomolecules inside living cells. In this paper, we provide an application of a nanotip coupled with molecular beacons (MBs for the detection of DNA. The MBs were characterized by hybridization studies with a complementary target to prove their functionality both free in solution and immobilized onto a solid support. The solid support chosen as substrate for the immobilization of the MBs was a 30 nm tapered tip of an optical fiber, fabricated by chemical etching. With this set-up promising results were obtained and a limit of detection (LOD of 0.57 nM was reached, opening up the possibility of using the proposed nanotip to detect mRNAs inside the cytoplasm of living cells.

  18. Fluorescence monitoring of riboswitch transcription regulation using a dual molecular beacon assay.

    Science.gov (United States)

    Chinnappan, Raja; Dubé, Audrey; Lemay, Jean-François; Lafontaine, Daniel A

    2013-05-01

    Riboswitches are mRNA elements that specifically bind cellular metabolites and control gene expression by modifying their structure. As riboswitches often control essential genes in pathogenic bacteria, riboswitches have been proposed as new targets for antibiotics. High-throughput screening provides a powerful approach to identify riboswitch ligand analogs that could act as powerful antibacterial drugs. Biochemical assays have already been used to find riboswitch-binding analogs, but those methods do take into account the transcriptional context for riboswitch regulation. As the importance of co-transcriptional ligand binding has been shown for several riboswitches, it is vital to develop an assay that screens riboswitch-binding analogs during the transcriptional process. Here, we describe the development of a dual molecular beacon system monitoring the transcriptional regulation activity of the Bacillus subtilis pbuE adenine riboswitch. This system relies on two molecular beacons that enable the monitoring of transcription efficiency, as well as the regulatory activity of the riboswitch. Different analogs were tested using our system, and a good correlation was observed between riboswitch activity and reported metabolite affinities. This method is specific, reliable and could be applied at the high-throughput level for the identification of new potential antibiotics targeting any riboswitch-regulating gene expression at the mRNA level.

  19. Molecular beacon anchored onto a graphene oxide substrate

    Science.gov (United States)

    Darbandi, Arash; Datta, Debopam; Patel, Krunal; Lin, Gary; Stroscio, Michael A.; Dutta, Mitra

    2017-09-01

    In this article, we report a graphene oxide-based nanosensor incorporating semiconductor quantum dots linked to DNA-aptamers that functions as a ‘turn-off’ fluorescent nanosensor for detection of low concentrations of analytes. A specific demonstration of this turn-off aptasensor is presented for the case of the detection of mercury (II) ions. In this system, ensembles of aptamer-based quantum-dot sensors are anchored onto graphene oxide (GO) flakes which provide a platform for analyte detection in the vicinity of GO. Herein, the operation of this ensemble-based nanosensor is demonstrated for mercury ions, which upon addition of mercury, quenching of the emission intensity from the quantum dots is observed due to resonance energy transfer between quantum dots and the gold nanoparticle connected via a mercury target aptamer. A key result is that the usually dominant effect of quenching of the quantum dot due to close proximity to the GO can be reduced to negligible levels by using a linker molecule in conjunctions with the aptamer-based nanosensor. The effect of ionic concentration of the background matrix on the emission intensity was also investigated. The sensor system is found to be highly selective towards mercury and exhibits a linear behavior (r 2 > 0.99) in the nanomolar concentration range. The detection limit of the sensor towards mercury with no GO present was found to be 16.5 nM. With GO attached to molecular beacon via 14 base, 35 base, and 51 base long linker DNA, the detection limit was found to be 38.4 nM, 9.45 nM, and 11.38 nM; respectively.

  20. Real-time quantitative nicking endonuclease-mediated isothermal amplification with small molecular beacons.

    Science.gov (United States)

    Xu, Wentao; Wang, Chenguang; Zhu, Pengyu; Guo, Tianxiao; Xu, Yuancong; Huang, Kunlun; Luo, Yunbo

    2016-04-21

    Techniques of isothermal amplification have recently made great strides, and have generated significant interest in the field of point-of-care detection. Nicking endonuclease-mediated isothermal amplification (NEMA) is an example of simple isothermal technology. In this paper, a real-time quantitative nicking endonuclease-mediated isothermal amplification with small molecular beacons (SMB-NEMA) of improved specificity and sensitivity is described. First, we optimized the prohibition of de novo synthesis by choosing Nt·BstNBI endonuclease. Second, the whole genome was successfully amplified with Nt·BstNBI (6 U), betaine (1 M) and trehalose (60 mM) for the first time. Third, we achieved 10 pg sensitivity for the first time after adding a small molecular beacon that spontaneously undergoes a conformational change when hybridizing to target, and the practical test validated the assay's application. The small molecular beacon has a similar melting temperature to the reaction temperature, but is approximately 10 bp shorter than the length of a traditional molecular beacon. A new threshold regulation was also established for isothermal conditions. Finally, we established a thermodynamic model for designing small molecular beacons. This multistate model is more correct than the traditional algorithm. This theoretical and practical basis will help us to monitor SMB-NEMA in a quantitative way. In summary, our SMB-NEMA method allows the simple, specific and sensitive assessment of isothermal DNA quantification.

  1. Quencher-free molecular beacon tethering 7-hydroxycoumarin detects targets through protonation/deprotonation.

    Science.gov (United States)

    Kashida, Hiromu; Yamaguchi, Kyohei; Hara, Yuichi; Asanuma, Hiroyuki

    2012-07-15

    In this study, we synthesized a simple but efficient quencher-free molecular beacon tethering 7-hydroxycoumarin on D-threoninol based on its pK(a) change. The pK(a) of 7-hydroxycoumarin in a single strand was determined as 8.8, whereas that intercalated in the duplex was over 10. This large pK(a) shift (more than 1.2) upon hybridization could be attributed to the anionic and hydrophobic microenvironment inside the DNA duplex. Because 7-hydroxycoumarin quenches its fluorescence upon protonation, the emission intensity of the duplex at pH 8.5 was 1/15 that of the single strand. We applied this quenching mechanism to the preparation of a quencher-free molecular beacon by introducing the dye into the middle of the stem part. In the absence of the target, the stem region formed a duplex and fluorescence was quenched. However, when the target was added, the molecular beacon opened and the dye was deprotonated. As a result, the emission intensity of the molecular beacon with the target was 10 times higher than that without the target. Accordingly, a quencher-free molecular beacon utilizing the pK(a) change was successfully developed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. A molecular beacon-based DNA switch for reversible pH sensing in vesicles and live cells.

    Science.gov (United States)

    Narayanaswamy, Nagarjun; Nair, Raji R; Suseela, Y V; Saini, Deepak Kumar; Govindaraju, T

    2016-07-01

    In this Communication, a molecular beacon-based DNA switch (LMB) is developed as an efficient and reversible pH sensing probe. Remarkably, LMB exhibited reversible structural transition between the closed (molecular beacon) and open (A-motif) states very efficiently in synthetic vesicles and live cells without the need for any transfection agents.

  3. "Molecular beacon"-based fluorescent assay for selective detection of glutathione and cysteine.

    Science.gov (United States)

    Xu, Hui; Hepel, Maria

    2011-02-01

    We report on the development of a fluorescence turn-on "molecular beacon" probe for the detection of glutathione (GSH) and cysteine (Cys). The method is based on a competitive ligation of Hg(2+) ions by GSH/Cys and thymine-thymine (T-T) mismatches in a DNA strand of the self-hybridizing beacon strand. The assay relies on the distance-dependent optical properties of the fluorophore/quencher pair attached to the ends of the molecular beacon DNA strand. In a very selective coordination of Hg(2+) to GSH/Cys, the fluorophore/quencher distance increases concomitantly with the dehybridization and dissociation of the beacon stem T-Hg(2+)-T due to the extraction of Hg(2+) ions. This process results in switching the molecular beacon to the "on" state. The concentration range of the probe is 4-200 nM with the limit of detection (LOD) of 4.1 nM for GSH and 4.2 nM Cys. The probe tested satisfactorily against interference for a range of amino acids including sulfur-containing methionine.

  4. A transfection reporter for the prevention of false-negative results in molecular beacon experiments.

    Science.gov (United States)

    Toga, Tatsuya; Kuraoka, Isao; Yasui, Akira; Iwai, Shigenori

    2013-09-01

    We previously developed a molecular beacon-type probe to detect the strand scission in cellular base excision repair and found that the phosphodiester linkages in the fluorophore/quencher linkers were cleaved. This reaction was applied to a transfection reporter, which contained the unmodified phosphodiester in the linker to another type of fluorophore. After cotransfection of cells with the probe and the reporter, the signals were used to detect the incision and to confirm the proper transfection, respectively. This method will contribute to the prevention of false-negative results in experiments using molecular beacon-type probes. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Molecular beacon-based enzyme-free strategy for amplified DNA detection.

    Science.gov (United States)

    Huang, Jiahao; Wu, Jueqi; Li, Zhigang

    2016-05-15

    We report an enzyme-free, sensitive strategy for DNA detections through fluorescence amplification. The sensing method employs molecular beacons (MBs) and two single-stranded helper DNA probes. In the presence of a DNA target, it binds and opens an MB. This triggers the hybridizations between the MB and helper probes, and consequently releases the DNA target, which becomes available to react with another MB and enhances the fluorescence emission of the MBs. The detection limit of the proposed strategy is 0.58 pM, which is about 3 orders of magnitude better than the conventional MB-based method. This method is also fast and exhibits good selectivity. It is superior to previous MB-based amplification approaches employing enzymes or nanomaterials.

  6. DNA Duplex-Based Photodynamic Molecular Beacon for Targeted Killing of Retinoblastoma Cell.

    Science.gov (United States)

    Wei, Yanchun; Lu, Cuixia; Chen, Qun; Xing, Da

    2016-11-01

    Retinoblastoma (RB) is the most common primary intraocular malignancy of infancy. An alternative RB treatment protocol is proposed and tested. It is based on a photodynamic therapy (PDT) with a designed molecular beacon that specifically targets the murine double minute x (MDMX) high-expressed RB cells. A MDMX mRNA triggered photodynamic molecular beacon is designed by binding a photosensitizer molecule (pyropheophorbide-a, or PPa) and a black hole quencher-3 (BHQ3) through a complementary oligonucleotide sequence. Cells with and without MDMX high-expression are incubated with the beacon and then irradiated with a laser. The fluorescence and reactive oxygen species are detected in solution to verify the specific activation of PPa by the perfectly matched DNA targets. The cell viabilities are evaluated with CCK-8 and flow cytometry assay. The fluorescence and photo-cytoxicity of PPa is recovered and significantly higher in the MDMX high-expressed Y79 and WERI-Rb1 cells, compared to that with the MDMX low-expressed cells. The synthesized beacon exhibits high PDT efficiency toward MDMX high-expressed RB cells. The data suggest that the designed beacon may provide a potential alternative for RB therapy and secures the ground for future investigation.

  7. Quantum dot-based molecular beacon to monitor intracellular microRNAs.

    Science.gov (United States)

    Lee, Jonghwan; Moon, Sung Ung; Lee, Yong Seung; Ali, Bahy A; Al-Khedhairy, Abdulaziz A; Ali, Daoud; Ahmed, Javed; Al Salem, Abdullah M; Kim, Soonhag

    2015-06-02

    Fluorescence monitoring of endogenous microRNA (miRNA or miR) activity related to neuronal development using nano-sized materials provides crucial information on miRNA expression patterns in a noninvasive manner. In this study, we report a new method to monitor intracellular miRNA124a using quantum dot-based molecular beacon (R9-QD-miR124a beacon). The R9-QD-miR124a beacon was constructed using QDs and two probes, miR124a-targeting oligomer and arginine rich cell-penetrating peptide (R9 peptide). The miR124a-targeting oligomer contains a miR124a binging sequence and a black hole quencher 1 (BHQ1). In the absence of target miR124a, the R9-QD-miR124a beacon forms a partial duplex beacon and remained in quenched state because the BHQ1 quenches the fluorescence signal of the R9-QD-miR124a beacon. The binding of miR124a to the miR124a binding sequence of the miR124a-targeting oligomer triggered the separation of the BHQ1 quencher and subsequent signal-on of a red fluorescence signal. Moreover, enhanced cellular uptake was achieved by conjugation with the R9 peptide, which resulted in increased fluorescent signal of the R9-QD-miR124a beacons in P19 cells during neurogenesis due to the endogenous expression of miR124a.

  8. Biomaterial constructs for delivery of multiple therapeutic genes: a spatiotemporal evaluation of efficacy using molecular beacons.

    Directory of Open Access Journals (Sweden)

    Jennifer C Alexander

    Full Text Available Gene therapy is emerging as a potential therapeutic approach for cardiovascular pathogenesis. An appropriate therapy may require multiple genes to enhance therapeutic outcome by modulating inflammatory response and angiogenesis in a controlled and time-dependent manner. Thus, the aim of this research was to assess the spatiotemporal efficacy of a dual-gene therapy model based on 3D collagen scaffolds loaded with the therapeutic genes interleukin 10 (IL-10, a potent anti-inflammatory cytokine, and endothelial nitric oxide synthase (eNOS, a promoter of angiogenesis. A collagen-based scaffold loaded with plasmid IL-10 polyplexes and plasmid eNOS polyplexes encapsulated into microspheres was used to transfect HUVECs and HMSCs cells.The therapeutic efficacy of the system was monitored at 2, 7 and 14 days for eNOS and IL-10 mRNA expression using RT-PCR and live cell imaging molecular beacon technology. The dual gene releasing collagen-based scaffold provided both sustained and delayed release of functional polyplexes in vitro over a 14 day period which was corroborated with variation in expression levels seen using RT-PCR and MB imaging. Maximum fold increases in IL-10 mRNA and eNOS mRNA expression levels occurred at day 7 in HMSCs and HUVECs. However, IL-10 mRNA expression levels seemed dependent on frequency of media changes and/or ease of transfection of the cell type. It was demonstrated that molecular beacons are able to monitor changes in mRNA levels at various time points, in the presence of a 3D scaffolding gene carrier system and the results complemented those of RT-PCR.

  9. Molecular beacon nanosensors for live cell detection and tracking differentiation and reprogramming

    DEFF Research Database (Denmark)

    Ilieva, Mirolyuba

    2013-01-01

    cell level is molecular beacons (MBs). They are stem-loop structured antisense oligonucleotide probes labelled with a reporter fluorophore at one end and with quencher at the other end. Upon hybridization with complementary target, hydrogen bonds between stem nucleotide bases brake, resulting...

  10. Dual Functional Roles of Molecular Beacon as a MicroRNA Detector and Inhibitor.

    Science.gov (United States)

    Li, Wai Ming; Chan, Ching-Man; Miller, Andrew L; Lee, Chow H

    2017-03-03

    MicroRNAs are essential in many cellular processes. The ability to detect microRNAs is important for understanding its function and biogenesis. This study is aimed at using a molecular beacon to detect miR-430 in developing zebrafish embryos as a proof of principle. miR-430 is crucial for the clearance of maternal mRNA during maternal zygotic transition in embryonic development. Despite its known function, the temporal and spatial expression of miR-430 remains unclear. We used various imaging techniques, including laser scanning confocal microscopy, spinning disk, and lightsheet microscopy, to study the localization of miR-430 and any developmental defects possibly caused by the molecular beacon. Our results show that miR-430 is expressed early in development and is localized in distinct cytoplasmic granules where its target mRNA can be detected. We also show that the designed molecular beacon can inhibit the function of miR-430 and cause developmental defect in the brain, notochord, heart, and kidney, depending on the delivery site within the embryo, suggesting that miR-430 plays a diverse role in embryonic morphogenesis. When compared with morpholino, molecular beacon is 2 orders of magnitude more potent in inhibiting miR-430. Thus, our results reveal that in addition to being used as a valuable tool for the detection of microRNAs in vivo, molecular beacons can also be employed to inhibit microRNAs in a specific manner. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Double-hairpin molecular-beacon-based amplification detection for gene diagnosis linked to cancer.

    Science.gov (United States)

    Xu, Huo; Zhang, Rongbo; Li, Feng; Zhou, Yingying; Peng, Ting; Wang, Xuedong; Shen, Zhifa

    2016-09-01

    A powerful double-hairpin molecular beacon (DHMB) was developed for cancer-related KRAS gene detection based on the one-to-two stoichiometry. During target DNA detection, DHMB can execute signal transduction even if no any exogenous element is involved. Unlike the conventional molecular beacon based on the one-to-one interaction, one target DNA not only hybridizes with one DHMB and opens its hairpin but also promotes the interaction between two DHMBs, causing the separation of two fluorophores from quenchers. This leads to an enhanced fluorescence signal. As a result, the target KRAS gene is able to be detected within a wide dynamic range from 0.05 to 200 nM with the detection limit of 50 pM, indicating a dramatic improvement compared with traditional molecular beacons. Moreover, the point mutations existing in target DNAs can be easily screened. The potential application for target species in real samples was indicated by the analysis of PCR amplicons of DNAs from the DNA extracted from SW620 cell. Besides becoming a promising candidate probe for molecular biology research and clinical diagnosis of genetic diseases, the DHMB is expected to provide a significant insight into the design of DNA probe-based homogenous sensing systems. Graphical Abstract A powerful double-hairpin molecular beacon (DHMB) was developed for cancer-related gene KRAS detection based on the one-to-two stoichiometry. Without the help of any exogenous probe, the point mutation is easily screened, and the target DNA can be quantified down to 50 pM, indicating a dramatic improvement compared with traditional molecular beacons.

  12. Linear molecular beacons for highly sensitive bioanalysis based on cyclic Exo III enzymatic amplification.

    Science.gov (United States)

    Yang, Chaoyong James; Cui, Liang; Huang, Jiahao; Yan, Ling; Lin, Xiaoyan; Wang, Chunming; Zhang, Wei Yun; Kang, Huaizhi

    2011-09-15

    Sensitive analysis or monitoring of biomolecules and small molecules is very important for many biological researches, clinical diagnosis and forensic investigations. As a sequence-independent exonuclease, Exonuclease III (Exo III) has been widely used for amplified detection of proteins and nucleic acids where displacing probes or molecular beacons are used as the signaling probes. However, displacing probes suffer slow hybridization rate and high background signal and molecular beacons are difficult to design and prone to undesired nonspecific interactions. Herein, we report a new type of probes called linear molecular beacons (LMBs) for use in Exo III amplification assays to improve hybridization kinetics and reduce background noises. LMBs are linear oligonucleotide probes with a fluorophore and quencher attached to 3' terminal and penultimate nucleotides, respectively. Compared to conventional molecular beacons and displacing probes, LMBs are easy to design and synthesize. More importantly, LMBs have a much lower background noise and allow faster reaction rates. Using LMBs in cyclic Exo III amplification assay, ultrasensitive nucleic acid detection methods were developed with a detection limit of less than 120fM, which is 2 orders of magnitude lower than that of conventional molecular beacons or displacing probes-based Exo III amplification assays. Furthermore, LMBs can be extended as universal probes for detection of non-nucleic acid molecules such as cocaine with high sensitivity. These results demonstrate that the combination of Exo III amplification and LMB signaling provides a general method for ultrasensitive and selective detection of a wide range of targets. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Study of an Innovative Indoor Robotic Navigation Approach Based on Beacons and PSD

    Directory of Open Access Journals (Sweden)

    Wang Zhenxing

    2016-01-01

    Full Text Available In this paper, innovative indoor navigation methods have been proposed to meet the challenges in robotic navigation systems. The general positioning methods for robotic navigation include vision-based approaches, WIFI beacons, infrared beacons, ultrasonic beacons, etc. However, the common problem with these methods is their inaccuracy. Especially, improving the precision of robotic positioning mechanisms is the key to indoor navigation systems. This paper proposes an approach that combines the external rotating beacon with an internal rotation of position sensitive devices (PSD which are installed on the robot. While two infrared beams from an external beacon source are equally projected to both sides of the PSD, the robot‟s position can be calculated precisely. The high performance and accurate results can be achieved by optimizing the rotation aligning time, dividing the working area, and compensating errors with information fusion. In comparison with other generic approaches, this proposed innovative approach requires less computing resources and is easier to implement due to its much lower complexity for the computing algorithms.

  14. Single-cell detection of mRNA expression using nanofountain-probe electroporated molecular beacons.

    Science.gov (United States)

    Giraldo-Vela, Juan P; Kang, Wonmo; McNaughton, Rebecca L; Zhang, Xuemei; Wile, Brian M; Tsourkas, Andrew; Bao, Gang; Espinosa, Horacio D

    2015-05-01

    New techniques for single-cell analysis enable new discoveries in gene expression and systems biology. Time-dependent measurements on individual cells are necessary, yet the common single-cell analysis techniques used today require lysing the cell, suspending the cell, or long incubation times for transfection, thereby interfering with the ability to track an individual cell over time. Here a method for detecting mRNA expression in live single cells using molecular beacons that are transfected into single cells by means of nanofountain probe electroporation (NFP-E) is presented. Molecular beacons are oligonucleotides that emit fluorescence upon binding to an mRNA target, rendering them useful for spatial and temporal studies of live cells. The NFP-E is used to transfect a DNA-based beacon that detects glyceraldehyde 3-phosphate dehydrogenase and an RNA-based beacon that detects a sequence cloned in the green fluorescence protein mRNA. It is shown that imaging analysis of transfection and mRNA detection can be performed within seconds after electroporation and without disturbing adhered cells. In addition, it is shown that time-dependent detection of mRNA expression is feasible by transfecting the same single cell at different time points. This technique will be particularly useful for studies of cell differentiation, where several measurements of mRNA expression are required over time.

  15. Establishment of an accurate and fast detection method using molecular beacons in loop-mediated isothermal amplification assay

    Science.gov (United States)

    Liu, Wei; Huang, Simo; Liu, Ningwei; Dong, Derong; Yang, Zhan; Tang, Yue; Ma, Wen; He, Xiaoming; Ao, Da; Xu, Yaqing; Zou, Dayang; Huang, Liuyu

    2017-01-01

    This study established a constant-temperature fluorescence quantitative detection method, combining loop-mediated isothermal amplification (LAMP) with molecular beacons. The advantages of LAMP are its convenience and efficiency, as it does not require a thermocycler and results are easily visualized by the naked eye. However, a major disadvantage of current LAMP techniques is the use of indirect evaluation methods (e.g., electrophoresis, SYBR Green I dye, precipitation, hydroxynaphthol blue dye, the turbidimetric method, calcein/Mn2+ dye, and the composite probe method), which cannot distinguish between the desired products and products of nonspecific amplification, thereby leading to false positives. Use of molecular beacons avoids this problem because molecular beacons produce fluorescence signals only when binding to target DNA, thus acting as a direct indicator of amplification products. Our analyses determined the optimal conditions for molecular beacons as an evaluation tool in LAMP: beacon length of 25–45 bp, beacon concentration of 0.6–1 pmol/μL, and reaction temperature of 60–65 °C. In conclusion, we validated a novel molecular beacon loop-mediated isothermal amplification method (MB-LAMP), realizing the direct detection of LAMP product. PMID:28059137

  16. A Telomerase-Specific Doxorubicin-Releasing Molecular Beacon for Cancer Theranostics.

    Science.gov (United States)

    Ma, Yi; Wang, Zhaohui; Zhang, Min; Han, Zhihao; Chen, Dan; Zhu, Qiuyun; Gao, Weidong; Qian, Zhiyu; Gu, Yueqing

    2016-03-01

    A molecular beacon-based drug delivery system was designed for both detection of telomerase activity in living cells and telomerase-triggered drug release for precise cancer treatment. This system is composed of a gold nanoparticle core densely packed with FITC-labeled hairpin DNA sequences hybridized with telomerase primers. Molecules of the anticancer drug doxorubicin were intercalated into the stem region of the DNA sequence. The presence of telomerase will elongate the primers, leading to inner chain substitution followed by the release of the FITC fluorescence and the trapped doxorubicin. This molecular beacon could specifically distinguish tumor cells and normal cells based on telomerase activity, precisely release doxorubicin in response to telomerase activity in the tumor cells, and prevent toxicity to normal organs.

  17. In situ single step detection of exosome microRNA using molecular beacon.

    Science.gov (United States)

    Lee, Ji Hye; Kim, Jeong Ah; Kwon, Min Hee; Kang, Ji Yoon; Rhee, Won Jong

    2015-06-01

    In situ single step detection of microRNAs (miRNA) in a whole exosome has been developed as a novel diagnosis method that can be utilized for various diseases. Exosomes are small extracellular vesicles that contain biomarker miRNAs produced from their originating cells and are known to travel through the circulatory system. This makes exosomal miRNAs from the body fluids an attractive biomarker that can lead to a paradigm shift in the diagnosis of disease. However, current techniques, including real-time PCR analysis, are time-consuming and laborious, making them unsuitable for exosomal miRNA detection for diagnosis. Thus, the development of alternative methods is necessary. Herein, we have demonstrated that exosomal miRNAs can be detected directly using a nano-sized fluorescent oligonucleotide probe, molecular beacon. MiRNA-21 in exosomes from breast cancer cells were detected successfully by molecular beacons in a quantitative manner. Permeabilization by streptolysin O treatment further enhanced the delivery of molecular beacons into exosomes, giving significantly increased signals from target miRNAs. In addition, we selectively detected cancer cell-derived exosomal miRNA-21 among heterogeneous exosome mixtures and in human serum. The method developed in the article is simple, fast, and sensitive, so it will offer great opportunities for the high-throughput diagnosis and prognosis of diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Theranostic properties of a survivin-directed molecular beacon in human melanoma cells.

    Directory of Open Access Journals (Sweden)

    Sara Carpi

    Full Text Available Survivin is an inhibitor of apoptosis overexpressed in different types of tumors and undetectable in most terminally differentiated normal tissues. In the current study, we sought to evaluate the in vitro theranostic properties of a molecular beacon-oligodeoxynucleotide (MB that targets survivin mRNA. We used laser scanning confocal microscopy to study MB delivery in living cells and real-time PCR and western blot to assess selective survivin-targeting in human malignant melanoma cells. We further assess the pro-apoptotic effect of MB by measuring internucleosomal DNA fragmentation, dissipation of mitochondrial membrane potential (MMP and changes in nuclear morphology. Transfection of MB into A375 and 501 Mel cells generated high signal intensity from the cytoplasm, while no signal was detected in the extracellular environment and in survivin-negative cells (i.e., human melanocytes and monocytes. MB time dependently decreased survivin mRNA and protein expression in melanoma cells with the maximum effect reached at 72 h. Treatment of melanoma cells with MB induced apoptosis by significant changes in MMP, accumulation of histone-complexed DNA fragments in the cytoplasm and nuclear condensation. MB also enhanced the pro-apoptotic effect of standard chemotherapeutic drugs tested at clinically relevant concentrations. The MB tested in the current study conjugates the ability of imaging with the pharmacological silencing activity against survivin mRNA in human melanoma cells and may represent an innovative approach for cancer diagnosis and treatment.

  19. Specific survivin dual fluorescence resonance energy transfer molecular beacons for detection of human bladder cancer cells

    Institute of Scientific and Technical Information of China (English)

    Zhi-qiang WANG; Jun ZHAO; Jin ZENG; Kai-jie WU; Yu-le CHEN; Xin-ya ng WANG; Luke S CHANG; Da-lin HE

    2011-01-01

    Survivin molecular beacons can be used to detectbladder cancer cells in urine samples non-invasively.The aim of this study is to improve the specificity of detection of bladder cancer cells using survivin dual fluorescence resonance energy transfer molecular beacons (FRET MBs) that have fluorophores forming one donor-acceptor pair.Methods:Survivin-targeting dual fluorescence resonance energy transfer molecular beacons with unique target sequences were designed,which had no overlap with the other genes in the apoptosis inhibitor protein family.Human bladder cancer cell lines 5637,253J and T24,as well as the exfoliated cells in the urine of healthy adults and patients with bladder cancer were examined.Images of cells were taken using a laser scanning confocal fluorescence microscope.For assays using dual FRET MBs,the excitation wavelength was 488 nm,and the emission detection wavelengths were 520+20 nm and 560+20 nm,respectively.Results:The human bladder cancer cell lines and exfoliated cells in the urine of patients with bladder cancer incubated with the survivin dual FRET MBs exhibited strong fluorescence signals.In contrast,no fluorescence was detected in the survivin-negative human dermal fibroblasts-adult (HDF-a) cells or exfoliated cells in the urine of healthy adults incubated with the survivin dual FRET MBs.Conclusion:The results suggest that the survivin dual FRET MBs may be used as a specific and non-invasive method for early detection and follow-up of patients with bladder cancer.

  20. Simultaneous and multiplexed detection of exosome microRNAs using molecular beacons.

    Science.gov (United States)

    Lee, Ji Hye; Kim, Jeong Ah; Jeong, Seunga; Rhee, Won Jong

    2016-12-15

    Simultaneous and multiplexed detection of microRNAs (miRNAs) in a whole exosome is developed, which can be utilized as a PCR-free efficient diagnosis method for various diseases. Exosomes are small extracellular vesicles that contain biomarker miRNAs from parental cells. Because they circulate throughout bodily fluids, exosomal biomarkers offer great advantages for diagnosis in many aspects. In general, PCR-based methods can be used for exosomal miRNA detection but they are laborious, expensive, and time-consuming, which make them unsuitable for high-throughput diagnosis of diseases. Previously, we reported that single miRNA in the exosomes can be detected specifically using an oligonucleotide probe or molecular beacon. Herein, we demonstrate for the first time that multiple miRNAs can be detected simultaneously in exosomes using miRNA-targeting molecular beacons. Exosomes from a breast cancer cell line, MCF-7, were used for the production of exosomes because MCF-7 has a high level of miR-21, miR-375, and miR-27a as target miRNAs. Molecular beacons successfully hybridized with multiple miRNAs in the cancer cell-derived exosomes even in the presence of high human serum concentration. In addition, it is noteworthy that the choice of fluorophores for multiplexing biomarkers in an exosome is crucial because of its small size. The proposed method described in this article is beneficial to high-throughput analysis for disease diagnosis, prognosis, and response to treatment because it is a time-, labor-, and cost-saving technique.

  1. Molecular beacon probes-base multiplex NASBA Real-time for detection of HIV-1 and HCV.

    Science.gov (United States)

    Mohammadi-Yeganeh, S; Paryan, M; Mirab Samiee, S; Kia, V; Rezvan, H

    2012-06-01

    Developed in 1991, nucleic acid sequence-based amplification (NASBA) has been introduced as a rapid molecular diagnostic technique, where it has been shown to give quicker results than PCR, and it can also be more sensitive. This paper describes the development of a molecular beacon-based multiplex NASBA assay for simultaneous detection of HIV-1 and HCV in plasma samples. A well-conserved region in the HIV-1 pol gene and 5'-NCR of HCV genome were used for primers and molecular beacon design. The performance features of HCV/HIV-1 multiplex NASBA assay including analytical sensitivity and specificity, clinical sensitivity and clinical specificity were evaluated. The analysis of scalar concentrations of the samples indicated that the limit of quantification of the assay was beacon probes detected all HCV genotypes and all major variants of HIV-1. This method may represent a relatively inexpensive isothermal method for detection of HIV-1/HCV co-infection in monitoring of patients.

  2. G-Quadruplex DNAzyme Molecular Beacon for Amplified Colorimetric Biosensing of Pseudostellaria heterophylla

    Directory of Open Access Journals (Sweden)

    Juan Hu

    2013-01-01

    Full Text Available With an internal transcribed spacer of 18 S, 5.8 S and 26 S nuclear ribosomal DNA (nrDNA ITS as DNA marker, we report a colorimetric approach for authentication of Pseudostellaria heterophylla (PH and its counterfeit species based on the differentiation of the nrDNA ITS sequence. The assay possesses an unlabelled G-quadruplex DNAzyme molecular beacon (MB probe, employing complementary sequence as biorecognition element and 1:1:1:1 split G-quadruplex halves as reporter. In the absence of target DNA (T-DNA, the probe can shape intermolecular G-quadruplex structures capable of binding hemin to form G-quadruplex-hemin DNAzyme and catalyze the oxidation of ABTS2− to blue-green ABTS•− by H2O2. In the presence of T-DNA, T-DNA can hybridize with the complementary sequence to form a duplex structure, hindering the formation of the G-quadruplex structure and resulting in the loss of the catalytic activity. Consequently, a UV-Vis absorption signal decrease is observed in the ABTS2−-H2O2 system. The “turn-off” assay allows the detection of T-DNA from 1.0 × 10−9 to 3.0 × 10−7 mol·L−1 (R2 = 0.9906, with a low detection limit of 3.1 × 10−10 mol·L−1. The present study provides a sensitive and selective method and may serve as a foundation of utilizing the DNAzyme MB sensor for identifying traditional Chinese medicines.

  3. ENHANCED COMPOSITE APPROACH WITH MOBILE BEACON SHORTEST PATH TO SOLVE LOCALIZATION PROBLEM IN WIRELESS SENSOR NETWORK

    Directory of Open Access Journals (Sweden)

    Sunil Kumar,

    2010-12-01

    Full Text Available Wireless sensor network is tremendously being used in different environments to perform various monitoring task such as search, rescue, disaster relief, target tracking and a number of tasks in smart environment. In this paper a unique localization algorithm is proposed that gives the high accuracy in wireless sensor network. We propose amobile beacon algorithm and then merge it with DV- hop algorithm to introduce a unique approach which solves the localization problem in wireless sensor network.

  4. Mega-nano detection of foodborne pathogens and transgenes using molecular beacon and semiconductor quantum dot technologies.

    Science.gov (United States)

    Burris, Kellie P; Wu, Tsai-Chin; Vasudev, Milana; Stroscio, Michael A; Millwood, Reginald J; Stewart, C Neal

    2013-09-01

    Signature molecules derived from Listeria monocytogenes, Bacillus thuringiensis, and Salmonella Typhimurium were detected directly on food substrates (mega) by coupling molecular beacon technology utilizing fluorescent resonance energy transfer (FRET), luminescent nanoscale semiconductor quantum dots, and nanoscale quenchers. We designed target DNA sequences for detecting hlyA, Bt cry1Ac, and invA genes from L. monocytogenes, B. thuringiensis and Salmonella Typhimurium, respectively, and prepared molecular beacons for specific targets for use in real-time monitoring. We successfully detected increased fluorescence in the presence of signature molecules at molecular beacon (MB) concentrations from 1.17 nM to 40 nM, depending upon system tested in (water, milk or plant leaves), respective target (hlyA, Bt cry1Ac, or invA) and genomic DNA target concentration (50-800 ng). We were able to detect bacterial genomic DNA derived from L. monocytogenes and Salmonella sp. in a food system, 2% milk ( > 20% of total volume). Furthermore, we infiltrated the Bt cry1Ac beacon in the presence of genomic DNA extracted from B. thuringiensis into Arabidopsis thaliana leaves and observed increased fluorescence in the presence of the target, indicating the ability to use these beacons in a plant system.

  5. Molecular beacon-enabled purification of living cells by targeting cell type-specific mRNAs.

    Science.gov (United States)

    Wile, Brian M; Ban, Kiwon; Yoon, Young-Sup; Bao, Gang

    2014-10-01

    Molecular beacons (MBs) are dual-labeled oligonucleotides that fluoresce only in the presence of complementary mRNA. The use of MBs to target specific mRNAs allows sorting of specific cells from a mixed cell population. In contrast to existing approaches that are limited by available surface markers or selectable metabolic characteristics, the MB-based method enables the isolation of a wide variety of cells. For example, the ability to purify specific cell types derived from pluripotent stem cells (PSCs) is important for basic research and therapeutics. In addition to providing a general protocol for MB design, validation and nucleofection into cells, we describe how to isolate a specific cell population from differentiating PSCs. By using this protocol, we have successfully isolated cardiomyocytes differentiated from mouse or human PSCs (hPSCs) with ∼ 97% purity, as confirmed by electrophysiology and immunocytochemistry. After designing MBs, their ordering and validation requires 2 weeks, and the isolation process requires 3 h.

  6. Molecular beacon-based real-time PCR method for detection of 15 high-risk and 5 low-risk HPV types.

    Science.gov (United States)

    Takács, Tibor; Jeney, Csaba; Kovács, Laura; Mózes, Johanna; Benczik, Márta; Sebe, Attila

    2008-04-01

    Detection of HPV infections requires a robust time-effective single-step method for efficient screening. A molecular beacon-based one-step multiplex real-time PCR system was developed to detect 15 high-risk (HPV types 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68) and 5 low-risk HPV types (HPV types 6, 11, 42, 43, 44). Molecular beacons detecting high-risk types are 5'-FAM-3'-DABCYL-labelled, molecular beacons for low-risk detection are 5'-TET-3'-DABCYL-labelled, while the internal control added before sample DNA extraction is detected by a 5'-FAM-TexasRed-3'-DABCYL wavelength-shifting molecular beacon. Accordingly, fluorescent data for HPV detection are collected at 530 nm for high-risk types, 560 nm in case of low-risk types and the reaction internal control is detected at 610 nm on a Roche LightCycler 2.0 instrument. The sensitivity for detected types varies between 22 and 700 copies/reaction. The clinical performance was tested on 161 clinical sample DNAs. The MB-RT PCR results were compared to the typing results obtained by the L1F/L1R PCR and hybridization-based system described previously, and the concordance rate between the two systems was 89.44%. The favorable characteristics shown by this multiplex single-step real-time HPV detection system make this promising approach worthy for further development and application for clinical screening.

  7. A quencher-free molecular beacon design based on pyrene excimer fluorescence using pyrene-labeled UNA (unlocked nucleic acid)

    DEFF Research Database (Denmark)

    Karlsen, Kasper Kannegård; Okholm, Anders Hauge; Kjems, Jørgen

    2013-01-01

    A quencher-free molecular beacon capable of generating pyrene excimer fluorescence has been constructed using strategically positioned pyrene-UNA monomers. Hybridization of a fully complementary RNA target was accompanied by a pyrene excimer emission increase of more than 900%, and detection of RNA...

  8. A quencher-free molecular beacon design based on pyrene excimer fluorescence using pyrene-labeled UNA (unlocked nucleic acid)

    DEFF Research Database (Denmark)

    Karlsen, Kasper Kannegård; Okholm, Anders Hauge; Kjems, Jørgen

    2013-01-01

    A quencher-free molecular beacon capable of generating pyrene excimer fluorescence has been constructed using strategically positioned pyrene-UNA monomers. Hybridization of a fully complementary RNA target was accompanied by a pyrene excimer emission increase of more than 900%, and detection of RNA...

  9. A DNA tetrahedron-based molecular beacon for tumor-related mRNA detection in living cells.

    Science.gov (United States)

    Xie, Nuli; Huang, Jin; Yang, Xiaohai; Yang, Yanjing; Quan, Ke; Wang, He; Ying, Le; Ou, Min; Wang, Kemin

    2016-02-01

    Due to its low cytotoxicity, high resistance to enzymatic degradation, and cellular permeability, a DNA tetrahedron-based molecular beacon (DTMB) is designed for tumor-related TK1 mRNA detection in living cells, where the target sequence can induce the tetrahedron from contraction to extension, resulting in fluorescence restoration.

  10. A molecular-beacon-based asymmetric PCR assay for easy visualization of amplicons in the diagnosis of trichomoniasis.

    Science.gov (United States)

    Sonkar, Subash C; Sachdev, Divya; Mishra, Prashant K; Kumar, Anita; Mittal, Pratima; Saluja, Daman

    2016-12-15

    The currently available nucleic acid amplification tests (NAATs) for trichomoniasis are accurate, quick and confirmative with superior sensitivity than traditional culture-based microbiology assays. However, these assays are associated with problems of carry over contamination, false positive results, requirement of technical expertise for performance and detection of end product. Hence, a diagnostic assay with easy visualization of the amplified product will be profitable. An in-house, rapid, sensitive, specific molecular-beacon-based PCR assay, using primers against pfoB gene of Trichomonas vaginalis, was developed and evaluated using dry ectocervical swabs (n=392) from symptomatic females with vaginal discharge. Total DNA was isolated and used as template for the PCR assays. The performance and reproducibility of PCR assay was evaluated by composite reference standard (CRS). For easy visualization of the amplified product, molecular-beacon was designed and amplicons were visualized directly using fluorescent handheld dark reader or by Micro-Plate Reader. Molecular-beacons are single-stranded hairpin shaped nucleic acid probes composed of a stem, with fluorophore/quencher pair and a loop region complementary to the desired DNA. The beacon-based PCR assay designed in the present study is highly specific as confirmed by competition experiments and extremely sensitive with detection limit of 20fg of genomic DNA (3-4 pathogens). The minimum infrastructure requirement and ease to perform the assay makes this method highly useful for resource poor countries for better disease management. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Systematic interpretation of molecular beacon PCR for identifying rpoB mutations in Mycobacterium tuberculosis isolates with mixed resistant and susceptible bacteria

    Science.gov (United States)

    Gomez, Diana I.; Fisher-Hoch, Susan P.; Bordt, Andrea S.; Quitugua, Teresa N.; Robledo, Jaime; Alvarez, Nataly; Correa, Nidia; McCormick, Joseph B.; Restrepo, Blanca I.

    2010-01-01

    Detection of multi-drug resistant tuberculosis (MDR-TB), a frequent cause of treatment failure, takes two or more weeks to identify by culture. Rifampicin (RIF) resistance is a hallmark of MDR-TB, and detection of mutations in the rpoB gene of Mycobacterium tuberculosis using molecular beacon probes with real-time quantitative PCR (qPCR) is a novel approach that takes ≤ 2 days. However, qPCR identification of resistant isolates, particularly for isolates with mixed RIF-susceptible and RIF-resistant bacteria, is reader-dependent and limits its clinical use. The aim of this study was to develop an objective, reader independent method to define rpoB mutants using beacon qPCR. This would facilitate the transition from a research protocol to the clinical setting, where high-throughput methods with objective interpretation are required. For this, DNAs from 107 M. tuberculosis clinical isolates with known susceptibility to RIF by culture-based methods were obtained from two regions where isolates have not previously been subjected to evaluation using molecular beacon qPCR: The Texas-Mexico border and Colombia. Using coded DNA specimens, mutations within an 81 bp hot-spot region of rpoB were established by qPCR with five beacons spanning this region. Visual and mathematical approaches were used to establish whether the qPCR cycle threshold (Ct) of the experimental isolate was significantly higher (mutant) compared to a reference wild-type isolate. Visual classification of the beacon qPCR required reader training for strains with a mixture of RIF-susceptible and resistant bacteria. Only then, the visual interpretation by an experienced reader had 100% sensitivity and 94.6% specificity versus RIF-resistance by culture phenotype, and 98.1% sensitivity and 100% specificity versus mutations based on DNA sequence. The mathematical approach was 98% sensitive and 94.5% specific versus culture, and 96.2% sensitive and 100% specific versus DNA sequence. Our findings indicate the

  12. Simple fluorescence-based detection of protein kinase A activity using a molecular beacon probe.

    Science.gov (United States)

    Ma, Changbei; Lv, Xiaoyuan; Wang, Kemin; Jin, Shunxin; Liu, Haisheng; Wu, Kefeng; Zeng, Weimin

    2017-06-08

    Protein kinase A was detected by quantifying the amount of ATP used after a protein kinase reaction. The ATP assay was performed using the T4 DNA ligase and a molecular beacon (MB). In the presence of ATP, DNA ligase catalyzed the ligation of short DNA. The ligation product then hybridized to MB, resulting in a fluorescence enhancement of the MB. This assay was capable of determining protein kinase A in the range of 12.5∼150 nM, with a detection limit of 1.25 nM. Furthermore, this assay could also be used to investigate the effect of genistein on protein kinase A. It was a universal, non-radioisotopic, and homogeneous method for assaying protein kinase A.

  13. A simple molecular beacon with duplex-specific nuclease amplification for detection of microRNA.

    Science.gov (United States)

    Li, Yingcun; Zhang, Jiangyan; Zhao, Jingjing; Zhao, Likun; Cheng, Yongqiang; Li, Zhengping

    2016-02-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene activity, promoting or inhibiting cell proliferation, migration and apoptosis. Abnormal expression of miRNAs is associated with many diseases. Therefore, it is essential to establish a simple, rapid and sensitive miRNA detection method. In this paper, based on a simple molecular beacon (MB) and duplex-specific nuclease (DSN), we developed a target recycling amplification method for miRNA detection. By controlling the number of stem bases to 5, the MB probe used in this method can be prevented from hydrolysis by DSN without special modification. This assay is direct and simple to quantitatively detect miRNA with high sensitivity and specificity. The MB probe design provides a new strategy for nuclease-based amplification reaction.

  14. Use of a molecular beacon to track the activity of base excision repair protein OGG1 in live cells.

    Science.gov (United States)

    Mirbahai, Leda; Kershaw, Rachael M; Green, Richard M; Hayden, Rachel E; Meldrum, Rosalind A; Hodges, Nikolas J

    2010-02-01

    An abundant form of DNA damage caused by reactive oxygen species is 8-oxo-7,8-dihydroguanine for which the base excision repair protein 8-oxoguanine-DNA glycosylase 1 (OGG1) is a major repair enzyme. To assess the location and intracellular activity of the OGG1 protein in response to oxidative stress, we have utilised a fluorescence-quench molecular beacon switch containing a 8-oxo-dG:C base pair and a fluorescent and quencher molecule at opposite ends of a hairpin oligonucleotide. Oxidative stress was induced by treatment with potassium bromate. Flow cytometry demonstrated a concentration-dependent increase in the activity of OGG1 that was detected by the fluorescence produced when the oligonucleotide was cleaved in the cells treated with potassium bromate. This signal is highly specific and not detectable in OGG1 knock out cells. Induction of OGG1 activity is not a result of induction of OGG1 gene expression as assessed by qPCR suggesting a role for protein stabilisation or increased OGG1 catalytic activity. High resolution confocal microscopy pinpointed the location of the fluorescent molecular beacon in live cells to perinuclear regions that were identified as mitochondria by co-staining with mitotracker dye. There is no evidence of cut beacon within the nuclear compartment of the cell. Control experiments with a positive control beacon (G:C base pair and lacking the DAB quencher) did not result in mitochondrial localisation of fluorescence signal indicating that the dye does not accumulate in mitochondria independent of OGG1 activity. Furthermore, faint nuclear staining was apparent confirming that the beacon structure is able to enter the nucleus. In conclusion, these data indicate that the mitochondria are the major site for OGG1 repair activity under conditions of oxidative stress.

  15. Molecular beacon probes–base multiplex NASBA Real-time for detection of HIV-1 and HCV

    Directory of Open Access Journals (Sweden)

    Samira Mohammadi Yeganeh

    2012-06-01

    Full Text Available Background and Objectives: Developed in 1991, nucleic acid sequence-based amplification (NASBA has been introduced as a rapid molecular diagnostic technique, where it has been shown to give quicker results than PCR, and it can also be more sensitive. This paper describes the development of a molecular beacon-based multiplex NASBA assay for simultaneous detection of HIV-1 and HCV in plasma samples.Materials and Methods: A well-conserved region in the HIV-1 pol gene and 5’-NCR of HCV genome were used for primers and molecular beacon design. The performance features of HCV/HIV-1 multiplex NASBA assay including analytical sensitivity and specificity, clinical sensitivity and clinical specificity were evaluated.Results: The analysis of scalar concentrations of the samples indicated that the limit of quantification of the assay was < 1000 copies/ml for HIV-1 and < 500copies/ml for HCV with 95% confidence interval. Multiplex NASBA assay showed a 98% sensitivity and 100% specificity. The analytical specificity study with BLAST software demonstrated that the primers do not attach to any other sequences except for that of HIV-1 or HCV. The primers and molecular beacon probes detected all HCV genotypes and all major variants of HIV-1.Conclusion: This method may represent a relatively inexpensive isothermal method for detection of HIV-1/HCV co-infection in monitoring of patients.

  16. Use of molecular beacons for the rapid analysis of DNA damage induced by exposure to an atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, Hirofumi, E-mail: kurita@ens.tut.ac.jp, E-mail: mizuno@ens.tut.ac.jp; Miyachika, Saki; Yasuda, Hachiro; Takashima, Kazunori; Mizuno, Akira, E-mail: kurita@ens.tut.ac.jp, E-mail: mizuno@ens.tut.ac.jp [Department of Environmental and Life Sciences, Toyohashi University of Technology, Aichi 441-8580 (Japan)

    2015-12-28

    A rapid method for evaluating the damage caused to DNA molecules upon exposure to plasma is demonstrated. Here, we propose the use of a molecular beacon for rapid detection of DNA strand breaks induced by atmospheric pressure plasma jet (APPJ) irradiation. Scission of the molecular beacon by APPJ irradiation leads to separation of the fluorophore-quencher pair, resulting in an increase in fluorescence that directly correlates with the DNA strand breaks. The results show that the increase in fluorescence intensity is proportional to the exposure time and the rate of fluorescence increase is proportional to the discharge power. This simple and rapid method allows the estimation of DNA damage induced by exposure to a non-thermal plasma.

  17. Use of molecular beacons for the rapid analysis of DNA damage induced by exposure to an atmospheric pressure plasma jet

    Science.gov (United States)

    Kurita, Hirofumi; Miyachika, Saki; Yasuda, Hachiro; Takashima, Kazunori; Mizuno, Akira

    2015-12-01

    A rapid method for evaluating the damage caused to DNA molecules upon exposure to plasma is demonstrated. Here, we propose the use of a molecular beacon for rapid detection of DNA strand breaks induced by atmospheric pressure plasma jet (APPJ) irradiation. Scission of the molecular beacon by APPJ irradiation leads to separation of the fluorophore-quencher pair, resulting in an increase in fluorescence that directly correlates with the DNA strand breaks. The results show that the increase in fluorescence intensity is proportional to the exposure time and the rate of fluorescence increase is proportional to the discharge power. This simple and rapid method allows the estimation of DNA damage induced by exposure to a non-thermal plasma.

  18. Single palindromic molecular beacon-based amplification for genetic analysis of cancers.

    Science.gov (United States)

    Li, Feng; Zhao, Hui; Wang, Zheng-Yong; Wu, Zai-Sheng; Yang, Zhe; Li, Cong-Cong; Xu, Huo; Lyu, Jian-Xin; Shen, Zhi-Fa

    2017-05-15

    The detection of biomarkers is of crucial importance in reducing the morbidity and mortality of complex diseases. Thus, there is a great desire to develop highly efficient and simple sensing methods to fulfill the different diagnostic and therapeutic purposes. Herein, using tumor suppressor p53 gene as model target DNA, we developed a novel palindromic fragment-incorporated molecular beacon (P-MB) that can perform multiple functions, including recognition element, signal reporter, polymerization template and primer. Upon specific hybridization with target DNA, P-MBs can interact with each other and are extended by polymerase without any additional probes. As a result, hybridized targets are peeled off from P-MBs and initiate the next round of reactions, leading to the unique strand displacement amplification (SDA). The newly-proposed enzymatic amplification displays the detection limit as low as 100pM and excellent selectivity in distinguishing single-base mutation with the linear response range from 100pM to 75nM. This is the simplest SDA sensing system so far because of only involving one type of DNA probe. This impressive sensing paradigm is expected to provide new insight into developing new-type of DNA probes that hold tremendous potential with important applications in molecular biology research and clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Rapid detection of infectious rotavirus group A using a molecular beacon assay.

    Science.gov (United States)

    Bertol, Jéssica Wildgrube; Gatti, Maria Silvia Viccari

    2016-08-01

    Rapid, sensitive and specific methods are necessary to detect and quantify infectious viruses. Cultivating and detecting enteric viruses in cell culture are difficult, thus impairing the advancement of knowledge regarding virus-induced diarrhea. Rotavirus (RV) detection has been conducted by serological or molecular biology methods, which do not provide information regarding viral infectivity. Molecular beacons (MBs) have demonstrated efficacy for viral detection in cell culture. We propose a MB assay to detect human rotavirus group A (HuRVA) in cell culture. MA104 cells were mock-infected or infected with HuRVA strains (RotaTeq(®) vaccine and K8 strains), and a specific MB for the HuRVA VP6 gene was used for virus detection. Mock-infected cells showed basal fluorescence, while infected cells exhibited increased fluorescence emission. MB hybridization to the viral mRNA target of HuRVA was confirmed. Fluorescence increased according to the increase in the number of infectious viral particles per cell (MOI 0.5-MOI 1). This technique provides quick and efficient HuRVA detection in cell culture without a need for viral culture for several days or many times until cytopathic effects are visualized. This methodology could be applied in the selection of samples for developing RV vaccines.

  20. Frequency of common HFE variants in the Saudi population: a high throughput molecular beacon-based study

    Directory of Open Access Journals (Sweden)

    Al-Hamed Mohamed

    2006-05-01

    Full Text Available Abstract Background Hereditary Hemochromatosis (HH is an autosomal recessive disorder highlighted byiron-overload. Two popular mutations in HFE, p.C282Y and p.H63D, have been discovered and found to associate with HH in different ethnic backgrounds. p.C282Y and p.H63D diagnosis is usually made byrestriction enzyme analysis. However, the use of this technique is largelylimited to research laboratories because they are relativelyexpensive, time-consuming, and difficult to transform into a high throughput format. Methods Single nucleotide variations in target DNA sequences can be readily identified using molecular beacon fluorescent probes. These are quenched probes with loop and hairpin structure, and they become fluorescent upon specific target recognition. We developed high throughput homogeneous real-time PCR assays using molecular beacon technology, to genotype p.C282Y and p.H63D variants. Representative samples of different genotypes for these variants were assayed by restriction enzyme analysis and direct sequencing as bench mark methods for comparison with the newly developed molecular beacon-based real-time PCR assay. Results Complete concordance was achieved by all three assay formats. Homozygotes (mutant and wildtype and heterozygotes were readily differentiated by the allele specific molecular beacons as reported by the associated fluorophore in the real-time assay developed in this study. Additionally, these assays were used in a high throughput format to establish the allele frequency of C282Y and H63D in Saudis for the first time. Conclusion These assays may be reliably applied as a diagnostic test or large scale method for population screening.

  1. A FRET-enabled molecular peptide beacon with a significant red shift for the ratiometric detection of nucleic acids.

    Science.gov (United States)

    Maity, Debabrata; Jiang, Juanjuan; Ehlers, Martin; Wu, Junchen; Schmuck, Carsten

    2016-05-01

    A cationic molecular peptide beacon NAP1 functionalized with a fluorescence resonance energy transfer-pair at its ends allows the ratiometric detection of ds-DNA with a preference for AT rich sequences. NAP1 most likely binds in a folded form into the minor groove of ds-DNA, which results in a remarkable change in its fluorescence properties. As NAP1 exhibits quite low cytotoxicity, it can also be used for imaging of nuclear DNA in cells.

  2. A SHORT INTERFERING RNA MOLECULAR BEACON FOR THE ATTENUATION OF MYCOBACTERIAL INFECTION

    Directory of Open Access Journals (Sweden)

    Remo George

    2014-01-01

    Full Text Available The ability of the pathogen Mycobacterium Tuberculosis (MTB to invade and survive within macrophages of granulomas is attributed to the product of the Mammalian Cell Entry (MCE operon whose gene, mce4A, encodes a cholesterol transporter that transports host lipids into the bacterium that allows the bacterium to survive during chronic infection. Here, we proposed and tested the hypothesis that a mce4A siRNA molecular beacon can be used to attenuate mycobacterial infection in macrophages. Mce4A gene was cloned and expressed in E. coli (E. coli-4A and differentiated U937 cells were transduced with piLenti-siRNA-GFP phage expressing the mce4A siRNA for 24 h. This was followed by infection with either E. coli-4A or M. smegmatis for 3 h followed by incubation for 0, 3, 6, 24 and 48 h. The cells were lysed and the lysates were plated on LB agar plates containing ampicillin (100 µg mL-1 or on 7H11 media and incubated at 37°C overnight. Our results showed that the siRNA treatment attenuated E.coli-4A infection in macrophages at 3, 6, 24 and 48 h by 0, 77, 59.6 and 99.7%, respectively. Our results also showed that the siRNA treatment attenuated M. smegmatis infection in macrophages at 3, 6, 24 and 48 h. by 94.8, 70.3, 98.9 and 93.4%, respectively. In conclusion, a mce4A siRNA molecular beacon was successfully delivered and stably expressed in macrophages which attenuated E. coli expressing mce4A (E. coli-4A and M. smegmatis infection in macrophages.

  3. DNA-templated silver nanoclusters based label-free fluorescent molecular beacon for the detection of adenosine deaminase.

    Science.gov (United States)

    Zhang, Kai; Wang, Ke; Xie, Minhao; Zhu, Xue; Xu, Lan; Yang, Runlin; Huang, Biao; Zhu, Xiaoli

    2014-02-15

    A general and reliable fluorescent molecular beacon is proposed in this work utilizing DNA-templated silver nanoclusters (AgNCs). The fluorescent molecular beacon has been employed for sensitive determination of the concentration of adenosine deaminase (ADA) and its inhibition. A well-designed oligonucleotide containing three functional regions (an aptamer region for adenosine assembly, a sequence complementary to the region of the adenosine aptamer, and an inserted six bases cytosine-loop) is adopted as the core element in the strategy. The enzymatic reaction of adenosine catalyzed by ADA plays a key role as well in the regulation of the synthesis of the DNA-templated AgNCs, i.e. the signal indicator. The intensity of the fluorescence signal may thereby determine the concentration of the enzyme and its inhibitor. The detection limit of the ADA can be lowered to 0.05 UL(-1). Also, 100 fM of a known inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA) is enough to present distinguishable fluorescence emission. Moreover, since the fluorescent signal indicator is not required to be bound with the oligonucleotide, this fluorescent molecular beacon may integrate the advantages of both the label-free and signal-on strategies.

  4. Direct detection of microRNAs using isothermal amplification and molecular beacon with excellent sensitivity and specificity

    Science.gov (United States)

    Zhang, Wancun; Zhang, Qi; Qian, Zhiyu; Gu, Yueqing

    2017-02-01

    MicroRNAs (miRNAs) play important roles in a wide range of biological processes, including proliferation, development, metabolism, immunological response, tumorigenesis, and viral infection. The detection of miRNAs is imperative for gaining a better understanding of the functions of these biomolecules and has great potential for the early diagnosis of human disease as well as the discovery of new drugs through the use of miRNAs as targets. In this article, we develop a highly sensitive, and specific miRNA assay based on the two-stage isothermal amplification reactions and molecular beacon. The two-stage isothermal amplification reactions involves two templates and two-stage amplification reactions under isothermal conditions. The first template enables the amplification of miRNA, and the second template enables the conversion of miRNA to the reporter oligonucleotide(Y). Importantly, different miRNAs can be converted to the same Y seperately, which can hybridize with the same set of molecular beacon to generate fluorescent signals. This assay is highly sensitive and specific with a detection limit of 1 fM and can even discriminate single-nucleotide differences. Moreover, in combination with the specific templates, this method can be applied for multiplex miRNA assay by simply using the same molecular beacon. This method has potential to become a promising miRNA quantification method in biomedical research and clinical diagnosis.

  5. Systematic interpretation of molecular beacon polymerase chain reaction for identifying rpoB mutations in Mycobacterium tuberculosis isolates with mixed resistant and susceptible bacteria.

    Science.gov (United States)

    Gomez, Diana I; Fisher-Hoch, Susan P; Bordt, Andrea S; Quitugua, Teresa N; Robledo, Jaime; Alvarez, Nataly; Correa, Nidia; McCormick, Joseph B; Restrepo, Blanca I

    2010-05-01

    Detection of multidrug-resistant tuberculosis (MDR-TB), a frequent cause of treatment failure, takes 2 or more weeks to identify by culture. Rifampicin (RIF) resistance is a hallmark of MDR-TB, and detection of mutations in the rpoB gene of Mycobacterium tuberculosis using molecular beacon probes with real-time quantitative polymerase chain reaction (qPCR) is a novel approach that takes Visual and mathematical approaches were used to establish whether the qPCR cycle threshold of the experimental isolate was significantly higher (mutant) compared to a reference wild-type isolate. Visual classification of the beacon qPCR required reader training for strains with a mixture of RIF-susceptible and RIF-resistant bacteria. Only then had the visual interpretation by an experienced reader had 100% sensitivity and 94.6% specificity versus RIF resistance by culture phenotype and 98.1% sensitivity and 100% specificity versus mutations based on DNA sequence. The mathematical approach was 98% sensitive and 94.5% specific versus culture and 96.2% sensitive and 100% specific versus DNA sequence. Our findings indicate the mathematical approach has advantages over the visual reading, in that it uses a Microsoft Excel template to eliminate reader bias or inexperience, and allows objective interpretation from high-throughput analyses even in the presence of a mixture of RIF-resistant and RIF-susceptible isolates without the need for reader training.

  6. The use of nanocrystal quantum dot as fluorophore reporters in molecular beacon-based assays

    Science.gov (United States)

    Adegoke, Oluwasesan; Park, Enoch Y.

    2016-12-01

    The utilization of molecular beacon (MB) biosensor probes to detect nucleic acid targets has received enormous interest within the scientific community. This interest has been stimulated by the operational qualities of MB-based probes with respect to their unique sensitivity and specificity. The design of MB biosensors entails not only optimizing the sequence of the loop to hybridize with the nucleic acid target or optimization of the length of the stem to tune the sensitivity but also the selection of the appropriate fluorophore reporter to generate the signal transduction read-out upon hybridization of the probe with the target sequence. Traditional organic fluorescent dyes are mostly used for signal reporting in MB assays but their optical properties in comparison to semiconductor fluorescent quantum dot (Qdot) nanocrystals are at a disadvantage. This review highlights the progress made in exploiting Qdot as fluorophore reporters in MB-based assays with the aim of instigating further development in the field of Qdot-MB technology. The development reported to date indicates that unparalleled fluorescence signal reporting in MB-based assays can be achieved using well-constructed Qdot fluorophores.

  7. Quantification of Salmonella Typhi in water and sediments by molecular-beacon based qPCR.

    Science.gov (United States)

    Rani, Neetika; Vajpayee, Poornima; Bhatti, Saurabh; Singh, Smriti; Shanker, Rishi; Gupta, Kailash Chand

    2014-10-01

    A molecular-beacon based qPCR assay targeting staG gene was designed for specific detection and quantification of S. Typhi and validated against water and sediment samples collected from the river Ganga, Yamuna and their confluence on two days during Mahakumbha mela 2012-2013 (a) 18 December, 2012: before six major religious holy dips (Makar Sankranti, Paush Poornima, Mauni Amavasya, Basant Panchami, Maghi Poornima and Mahashivratri) (b) 10 February, 2013: after the holy dip was taken by over 3,00,00,000 devotees led by ascetics of Hindu sects at Sangam on 'Mauni Amavasya' (the most auspicious day of ritualistic mass bathing). The assay could detect linearly lowest 1 genomic equivalent per qPCR and is highly sensitive and selective for S. Typhi detection in presence of non specific DNA from other bacterial strains including S. Paratyphi A and S. Typhimurium. It has been observed that water and sediment samples exhibit S. Typhi. The mass holy dip by devotees significantly affected the water and sediment quality by enhancing the number of S. Typhi in the study area. The qPCR developed in the study might be helpful in planning the intervention and prevention strategies for control of enteric fever outbreaks in endemic regions.

  8. Quantitative rRNA-targeted solution-based hybridization assay using peptide nucleic acid molecular beacons.

    Science.gov (United States)

    Li, Xu; Morgenroth, Eberhard; Raskin, Lutgarde

    2008-12-01

    The potential of a solution-based hybridization assay using peptide nucleic acid (PNA) molecular beacon (MB) probes to quantify 16S rRNA of specific populations in RNA extracts of environmental samples was evaluated by designing PNA MB probes for the genera Dechloromonas and Dechlorosoma. In a kinetic study with 16S rRNA from pure cultures, the hybridization of PNA MB to target 16S rRNA exhibited a higher final hybridization signal and a lower apparent rate constant than the hybridizations to nontarget 16S rRNAs. A concentration of 10 mM NaCl in the hybridization buffer was found to be optimal for maximizing the difference between final hybridization signals from target and nontarget 16S rRNAs. Hybridization temperatures and formamide concentrations in hybridization buffers were optimized to minimize signals from hybridizations of PNA MB to nontarget 16S rRNAs. The detection limit of the PNA MB hybridization assay was determined to be 1.6 nM of 16S rRNA. To establish proof for the application of PNA MB hybridization assays in complex systems, target 16S rRNA from Dechlorosoma suillum was spiked at different levels to RNA isolated from an environmental (bioreactor) sample, and the PNA MB assay enabled effective quantification of the D. suillum RNA in this complex mixture. For another environmental sample, the quantitative results from the PNA MB hybridization assay were compared with those from clone libraries.

  9. Noninvasive Monitoring of Three-Dimensional Chondrogenic Constructs Using Molecular Beacon Nanosensors.

    Science.gov (United States)

    Tay, Li Min; Wiraja, Christian; Yeo, David C; Wu, Yingnan; Yang, Zheng; Chuah, Yon Jin; Lee, Eng Hin; Kang, Yuejun; Xu, Chenjie

    2017-01-01

    Chondrogenic differentiation of human mesenchymal stem cells (MSCs) in three-dimensional hydrogel holds promise as a method for repairing injured articular cartilage. Given MSC plasticity (its potential to mature into alternative lineages), nondestructive monitoring is critical for the optimization of chondrogenic differentiation conditions and the evaluation of the final product. However, conventional validation/assessments of the differentiation process (i.e., quantitative reverse transcription polymerase chain reaction [qRT-PCR] and histology) are end-point assays requiring disruption of the sample. This report introduces molecular beacon (MB)-based nanosensors to achieve noninvasive monitoring of chondrogenic differentiation. These nanosensors consist of biodegradable poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) encapsulating MBs to detect Type II Collagen (Col2) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNAs that serve as lineage-specific and housekeeping biomarkers, respectively. The sustainable release of MBs from MB-NPs allows longitudinal monitoring of MSCs undergoing chondrogenic differentiation over a period of 28 days. Dual-colored MB loading ensures accurate assessment of Col2 mRNA expression level, where potential heterogeneity in nanosensor uptake and retention by MSCs are taken into account. When normalized nanosensor signal was compared against qRT-PCR result, a tight correlation was observed (R(2) = 0.9301). Finally, nanosensor usage was compatible with MSC potency with minimal influence on chondrogenic, adipogenic, and osteogenic differentiation.

  10. A molecular beacon biosensor based on the nanostructured aluminum oxide surface.

    Science.gov (United States)

    Che, Xiangchen; He, Yuan; Yin, Haocheng; Que, Long

    2015-10-15

    A new class of molecular beacon biosensors based on the nanostructured aluminum oxide or anodic aluminum oxide (AAO) surface is reported. In this type of sensor, the AAO surface is used to enhance the fluorescent signals of the fluorophore-labeled hairpin DNA. When a target DNA with a complementary sequence to that of the hairpin DNA is applied on the sensor, the fluorophores are forced to move away from the AAO surface due to the hybridization between the hairpin DNA and the target DNA, resulting in the significant decrease of the fluorescent signals. The observed signal reduction is sufficient to achieve a demonstrated detection limit of 10nM, which could be further improved by optimizing the AAO surface. The control experiments have also demonstrated that the bioassay used in the experiments has excellent specificity and selectivity, indicating the great promise of this type of sensor for diagnostic applications. Since the arrayed AAO micropatterns can be fabricated on a single chip in a cost-effective manner, the arrayed sensors could provide an ideal technical platform for studying fundamental biological process and monitoring disease biomarkers.

  11. The use of Molecular Beacons to Directly Measure Bacterial mRNA Abundances and Transcript Degradation

    Science.gov (United States)

    Kuechenmeister, Lisa J.; Anderson, Kelsi L.; Morrison, John M.; Dunman, Paul M.

    2009-01-01

    The regulation of mRNA turnover is a dynamic means by which bacteria regulate gene expression. Although current methodologies allow characterization of the stability of individual transcripts, procedures designed to measure alterations in transcript abundance/turnover on a high throughput scale are lacking. In the current report, we describe the development of a rapid and simplified molecular beacon-based procedure to directly measure the mRNA abundances and mRNA degradation properties of well-characterized Staphylococcus aureus pathogenicity factors. This method does not require any PCR-based amplification, can monitor the abundances of multiple transcripts within a single RNA sample, and was successfully implemented into a high throughput screen of transposon mutant library members to detect isolates with altered mRNA turnover properties. It is expected that the described methodology will provide great utility in characterizing components of bacterial RNA degradation processes and can be used to directly measure the mRNA levels of virtually any bacterial transcript. PMID:18992285

  12. Electrochemical molecular beacon biosensor for sequence-specific recognition of double-stranded DNA.

    Science.gov (United States)

    Miao, Xiangmin; Guo, Xiaoting; Xiao, Zhiyou; Ling, Liansheng

    2014-09-15

    Direct recognition of double-stranded DNA (dsDNA) was crucial to disease diagnosis and gene therapy, because DNA in its natural state is double stranded. Here, a novel sensor for the sequence-specific recognition of dsDNA was developed based on the structure change of ferrocene (Fc) redox probe modified molecular beacon (MB). For constructing such a sensor, gold nanoparticles (AuNPs) were initially electrochemical-deposited onto glass carbon electrode (GCE) surface to immobilize thiolated MB in their folded states with Au-S bond. Hybridization of MB with target dsDNA induced the formation of parallel triplex DNA and opened the stem-loop structure of it, which resulted in the redox probe (Fc) away from the electrode and triggered the decrease of current signals. Under optimal conditions, dsDNA detection could be realized in the range from 350 pM to 25 nM, with a detection limit of 275 pM. Moreover, the proposed method has good sequence-specificity for target dsDNA compared with single base pair mismatch and two base pairs mismatches.

  13. A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms.

    Science.gov (United States)

    Guo, Qingsheng; Bai, Zhixiong; Liu, Yuqian; Sun, Qingjiang

    2016-03-15

    In this work, we report the application of streptavidin-coated quantum dot (strAV-QD) in molecular beacon (MB) microarray assays by using the strAV-QD to label the immobilized MB, avoiding target labeling and meanwhile obviating the use of amplification. The MBs are stem-loop structured oligodeoxynucleotides, modified with a thiol and a biotin at two terminals of the stem. With the strAV-QD labeling an "opened" MB rather than a "closed" MB via streptavidin-biotin reaction, a sensitive and specific detection of label-free target DNA sequence is demonstrated by the MB microarray, with a signal-to-background ratio of 8. The immobilized MBs can be perfectly regenerated, allowing the reuse of the microarray. The MB microarray also is able to detect single nucleotide polymorphisms, exhibiting genotype-dependent fluorescence signals. It is demonstrated that the MB microarray can perform as a 4-to-2 encoder, compressing the genotype information into two outputs.

  14. Simple, rapid detection of influenza A (H1N1) viruses using a highly sensitive peptide-based molecular beacon.

    Science.gov (United States)

    Lim, Eun-Kyung; Guk, Kyeonghye; Kim, Hyeran; Chung, Bong-Hyun; Jung, Juyeon

    2016-01-01

    A peptide-based molecular beacon (PEP-MB) was prepared for the simple, rapid, and specific detection of H1N1 viruses using a fluorescence resonance energy transfer (FRET) system. The PEP-MB exhibited minimal fluorescence in its "closed" hairpin structure. However, in the presence of H1N1 viruses, the specific recognition of the hemagglutinin (HA) protein of H1 strains by the PEP-MB causes the beacon to assume an "open" structure that emits strong fluorescence. The PEP-MB could detect H1N1 viruses within 15 min or even 5 min and can exhibit strong fluorescence even at low viral concentrations, with a detection limit of 4 copies.

  15. Theragnosis-based combined cancer therapy using doxorubicin-conjugated microRNA-221 molecular beacon.

    Science.gov (United States)

    Lee, Jonghwan; Choi, Kyung-Ju; Moon, Sung Ung; Kim, Soonhag

    2016-01-01

    Recently, microRNA (miRNA or miR) has emerged as a new cancer biomarker because of its high expression level in various cancer types and its role in the control of tumor suppressor genes. In cancer studies, molecular imaging and treatment based on target cancer markers have been combined to facilitate simultaneous cancer diagnosis and therapy. In this study, for combined therapy with diagnosis of cancer, we developed a doxorubicin-conjugated miR-221 molecular beacon (miR-221 DOXO MB) in a single platform composed of three different nucleotides: miR-221 binding sequence, black hole quencher 1 (BHQ1), and doxorubicin binding site. Imaging of endogenous miR-221 was achieved by specific hybridization between miR-221 and the miR-221 binding site in miR-221 DOXO MB. The presence of miR-221 triggered detachment of the quencher oligo and subsequent activation of a fluorescent signal of miR-221 DOXO MB. Simultaneous cancer therapy in C6 astrocytoma cells and nude mice was achieved by inhibition of miRNA-221 function that downregulates tumor suppressor genes. The detection of miR-221 expression and inhibition of miR-221 function by miR-221 DOXO MB provide the feasibility as a cancer theragnostic probe. Furthermore, a cytotoxic effect was induced by unloading of doxorubicin intercalated into miR-221 DOXO MB inside cells. Loss of miR-221 function and cytotoxicity induced by the miR-221 DOXO MB provides combined therapeutic efficacy against cancers. This method could be used as a new theragnostic probe with enhanced therapy to detect and inhibit many cancer-related miRNAs.

  16. Chitosan Combined with Molecular Beacon for Mir-155 Detection and Imaging in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Hai-Zhen Zhu

    2014-09-01

    Full Text Available Lung cancer is the major cause of cancer-related deaths worldwide, thus developing effective methods for its early diagnosis is urgently needed. In recent years, microRNAs (miRNAs, miR have been reported to play important roles in carcinogenesis and have become potential biomarkers for cancer diagnosis and treatment. Molecular beacon (MB technology is a universal technology to detect DNA/RNA expression in living cells. As a natural polymers, chitosan (CS nanoparticles could be used as a carrier for safe delivery of nucleic acid. In this study, we developed a probe using nanoparticles of miR-155 MB self assembled with CS (CS-miR-155 MB to image the expression of miR-155 in cancer cells. Hybridization assay showed that the locked nucleic acid (LAN modified miR-155 MB could target miR-155 effectively and sensitively. The miR-155 MB self-assembly with CS nanoparticles formed stable complexes at the proper weight ratio. The CS nanoparticles showed higher fluorescence intensity and transfection efficiency than the lipid-based formulation transfection agent by confocal microscopy and flow cytometry analysis. The CS-MB complexes were found to be easily synthesized and exhibited strong enzymatic stability, efficient cellular uptake, high target selectivity and biocompatibility. The CS-MB complexes can also be applied in other cancers just by simply changing for a targeted miRNA highly expressed in those cancer cells. Therefore, it is a promising vehicle used for detecting miRNA expression in living cells.

  17. Hybridization Efficiency of Molecular Beacons Bound to Gold Nanowires: Effect of Surface Coverage and Target Length

    Science.gov (United States)

    2010-01-01

    Surface-bound nucleic acid probes designed to adopt specific secondary structures are becoming increasingly important in a range of biosensing applications but remain less well characterized than traditional single-stranded probes, which are typically designed to avoid secondary structure. We report the hybridization efficiency for surface-immobilized hairpin DNA probes. Our probes are molecular beacons, carrying a 3′ dye moiety and a 5′ thiol for attachment to gold nanowires, which serve as both scaffolds for probe attachment and quenchers. Hybridization efficiency was dependent on probe surface coverage, reaching a maximum of ∼90% at intermediate coverages of (1−2) × 1012 probes/cm2 and dropping to ≤20% at higher or lower coverages. Fluorescence intensity did not track with the number of target molecules bound, and was highest for high probe coverage despite the lower bound targets per square centimeter. Backfilling with short thiolated oligoethylene glycol spacers increased hybridization efficiency at low hairpin probe coverages (∼(3−4) × 1011 probes/cm2), but not at higher probe coverages (1 × 1012/cm2). We also evaluated the effect of target length by adding up to 50 nonhybridizing nucleotides to the 3′ or 5′ end of the complementary target sequence. Additional nucleotides on the 3′ end of the complementary target sequence (i.e., the end near the nanowire surface) had a much greater impact on hybridization efficiency as compared to nucleotides added to the 5′ end. This work provides guidance in designing sensors in which surface-bound probes designed to adopt secondary structures are used to detect target sequences from solution. PMID:21038880

  18. A Biofunctional Molecular Beacon for Detecting Single Base Mutations in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Haiyan Dong

    2016-01-01

    Full Text Available The development of a convenient and sensitive biosensing system to detect specific DNA sequences is an important issue in the field of genetic disease therapy. As a classic DNA detection technique, molecular beacon (MB is often used in the biosensing system. However, it has intrinsic drawbacks, including high assay cost, complicated chemical modification, and operational complexity. In this study, we developed a simple and cost-effective label-free multifunctional MB (LMMB by integrating elements of polymerization primer, template, target recognition, and G-quadruplex into one entity to detect target DNA. The core technique was accomplished by introducing a G-hairpin that features fragments of both G-quadruplex and target DNA recognition in the G-hairpin stem. Hybridization between LMMB and target DNA triggered conformational change between the G-hairpin and the common C-hairpin, resulting in significant SYBR-green signal amplification. The hybridization continues to the isothermal circular strand-displacement polymerization and accumulation of the double-stranded fragments, causing the uninterrupted extension of the LMMB without a need of chemical modification and other assistant DNA sequences. The novel and programmable LMMB could detect target DNA with sensitivity at 250 pmol/l with a linear range from 2 to 100 nmol/l and the relative standard deviation of 7.98%. The LMMB could sense a single base mutation from the normal DNA, and polymerase chain reaction (PCR amplicons of the mutant-type cell line from the wild-type one. The total time required for preparation and assaying was only 25 minutes. Apparently, the LMMB shows great potential for detecting DNA and its mutations in biosamples, and therefore it opens up a new prospect for genetic disease therapy.

  19. Detection of Naja atra Cardiotoxin Using Adenosine-Based Molecular Beacon.

    Science.gov (United States)

    Shi, Yi-Jun; Chen, Ying-Jung; Hu, Wan-Ping; Chang, Long-Sen

    2017-01-07

    This study presents an adenosine (A)-based molecular beacon (MB) for selective detection of Naja atra cardiotoxin (CTX) that functions by utilizing the competitive binding between CTX and the poly(A) stem of MB to coralyne. The 5'- and 3'-end of MB were labeled with a reporter fluorophore and a non-fluorescent quencher, respectively. Coralyne induced formation of the stem-loop MB structure through A₂-coralyne-A₂ coordination, causing fluorescence signal turn-off due to fluorescence resonance energy transfer between the fluorophore and quencher. CTX3 could bind to coralyne. Moreover, CTX3 alone induced the folding of MB structure and quenching of MB fluorescence. Unlike that of snake venom α-neurotoxins, the fluorescence signal of coralyne-MB complexes produced a bell-shaped concentration-dependent curve in the presence of CTX3 and CTX isotoxins; a turn-on fluorescence signal was noted when CTX concentration was ≤80 nM, while a turn-off fluorescence signal was noted with a further increase in toxin concentrations. The fluorescence signal of coralyne-MB complexes yielded a bell-shaped curve in response to varying concentrations of N. atra crude venom but not those of Bungarus multicinctus and Protobothrops mucrosquamatus venoms. Moreover, N. nigricollis venom also functioned as N. atra venom to yield a bell-shaped concentration-dependent curve of MB fluorescence signal, again supporting that the hairpin-shaped MB could detect crude venoms containing CTXs. Taken together, our data validate that a platform composed of coralyne-induced stem-loop MB structure selectively detects CTXs.

  20. A Biofunctional Molecular Beacon for Detecting Single Base Mutations in Cancer Cells.

    Science.gov (United States)

    Dong, Haiyan; Ma, Ji; Wang, Jie; Wu, Zai-Sheng; Sinko, Patrick J; Jia, Lee

    2016-04-05

    The development of a convenient and sensitive biosensing system to detect specific DNA sequences is an important issue in the field of genetic disease therapy. As a classic DNA detection technique, molecular beacon (MB) is often used in the biosensing system. However, it has intrinsic drawbacks, including high assay cost, complicated chemical modification, and operational complexity. In this study, we developed a simple and cost-effective label-free multifunctional MB (LMMB) by integrating elements of polymerization primer, template, target recognition, and G-quadruplex into one entity to detect target DNA. The core technique was accomplished by introducing a G-hairpin that features fragments of both G-quadruplex and target DNA recognition in the G-hairpin stem. Hybridization between LMMB and target DNA triggered conformational change between the G-hairpin and the common C-hairpin, resulting in significant SYBR-green signal amplification. The hybridization continues to the isothermal circular strand-displacement polymerization and accumulation of the double-stranded fragments, causing the uninterrupted extension of the LMMB without a need of chemical modification and other assistant DNA sequences. The novel and programmable LMMB could detect target DNA with sensitivity at 250 pmol/l with a linear range from 2 to 100 nmol/l and the relative standard deviation of 7.98%. The LMMB could sense a single base mutation from the normal DNA, and polymerase chain reaction (PCR) amplicons of the mutant-type cell line from the wild-type one. The total time required for preparation and assaying was only 25 minutes. Apparently, the LMMB shows great potential for detecting DNA and its mutations in biosamples, and therefore it opens up a new prospect for genetic disease therapy.

  1. Label-free molecular beacons-based cascade amplification DNA machine for sensitive detection of telomerase activity.

    Science.gov (United States)

    Li, Kan; Wang, Lei; Xu, Xiaowen; Jiang, Wei

    2017-05-15

    Sensitive detection of telomerase activity is critical to cancer diagnosis, screening of anticancer drugs and evaluation of cancer therapy. Herein, a label-free molecular beacons-based DNA machine was developed for sensitive detection of telomerase activity. The DNA machine consisted of T7 exonuclease (T7 Exo), label-free recognition molecular beacon (RMB) and signal molecular beacon (SMB) with projecting 5'-terminuses, which can protect RMB and SMB from being digested by T7 Exo. Firstly, telomerase elongated telomerase substrate (TS) primer, generating a telomerase elongation production (TEP) with tandem repeats (TTAGGG)n. Next, TEP activated the DNA machine by hybridizing with RMB, unfolding RMB with a recessed 5'-terminus, making RMB deprotection from T7 Exo. Then T7 Exo-assisted cycling cleavage was incurred, releasing intact TEP and numerous DNA fragments (trigger DNA), which got recycling I. Subsequently, trigger DNA specifically opened SMB and was recycled by T7 Exo, liberating multiple G-quadruplex (G4) structures, which got recycling II. Finally, TEP and the liberative G4 structures strongly interacted with N-methyl-mesoporphyrin IX (NMM), yielding a significantly enhanced fluorescence together. In this way, per telomerase-mediated elongation event was efficiently converted into the greatly amplified fluorescence signals. Telomerase activity in crude HeLa cells extracts equivalent to 50 cells/mL was successfully measured with a linear range from 50 cells/mL to 2000 cells/mL. Besides, the strategy was also successfully used to assay the inhibition effect of a telomerase-inhibiting drug, demonstrating the strategy holds the potential to screen telomerase inhibitors.

  2. Ligation-rolling circle amplification combined with γ-cyclodextrin mediated stemless molecular beacon for sensitive and specific genotyping of single-nucleotide polymorphism.

    Science.gov (United States)

    Zou, Zhen; Qing, Zhihe; He, Xiaoxiao; Wang, Kemin; He, Dinggeng; Shi, Hui; Yang, Xue; Qing, Taiping; Yang, Xiaoxiao

    2014-07-01

    A novel approach for highly sensitive and selective genotyping of single-nucleotide polymorphism (SNP) has been developed based on ligation-rolling circle amplification (L-RCA) and stemless molecular beacon. In this approach, two tailored DNA probes were involved. The stemless molecular beacon, formed through the inclusion interactions of γ-cyclodextrin (γ-CD) and bis-pyrene labeled DNA fragment, was served as signal probe. In the absence of mutant target, the two pyrene molecules were bound in the γ-CD cavity to form an excimer and showed a strong fluorescence at 475 nm. It was here named γ-CD-P-MB. The padlock DNA probe was designed as recognition probe. Upon the recognition of a point mutation DNA targets, the padlock probe was ligated to generate a circular template. An RCA amplification was then initiated using the circular template in the presence of Phi29 polymerase and dNTPs. The L-RCA products, containing repetitive sequence units, subsequently hybridized with the γ-CD-P-MB. This made pyrene molecules away from γ-CD cavity and caused a decrease of excimer fluorescence. As a proof-of-concept, SNP typing of β-thalassemia gene at position -28 was investigated using this approach. The detection limit of mutated target was determined to be 40 fM. In addition, DNA ligase offered high fidelity in distinguishing the mismatched bases at the ligation site, resulting in positive detection of mutant target even when the ratio of the wildtype to the mutant is 999:1. Given these attractive characteristics, the developed approach might provide a great genotyping platform for pathogenic diagnosis and genetic analysis.

  3. Molecular Beacon Enables Combination of Highly Processive and Highly Sensitive Rolling Circle Amplification Readouts for Detection of DNA-Modifying Enzymes

    DEFF Research Database (Denmark)

    Kristoffersen, Emil Laust; Gonzales, Maria; Stougaard, Magnus

    2015-01-01

    -modifying enzymes like type IB Topoisomerases and subsequently amplified by a rolling circle amplification (RCA) mechanism. The RCA process can be followed in real-time by the addition of a molecular beacon with a fluorophore/quencher pair. Upon hybridization to the amplified product, the fluorophore/quencher pair...... is separated, giving rise to a fluorescent signal, measurable in pseudo real-time using a qPCR machine or in a fluorimeter. The RCA products in complex with the molecular beacon can subsequently be moved to microscopic slides and analyzed in a fluorescence microscope. We describe the proof of the principle...... of this molecular beacon-based method combining the qPCR readout format with the standard Rolling circle Enhanced Enzymatic Assay previously reported. Although the qPCR setup is less sensitive, it allows easy, fast, and high-throughput measurement of enzyme activities. Human Topoisomerase IB (TopIB) is a well...

  4. Application of a molecular beacon based real-time isothermal amplification (MBRTIA) technology for simultaneous detection of Bacillus cereus and Staphylococcus aureus.

    Science.gov (United States)

    Mandappa, I M; Joglekar, Prasanna; Manonmani, H K

    2015-07-01

    A multiplex real-time isothermal amplification assay was developed using molecular beacons for the detection of Bacillus cereus and Staphylococcus aureus by targeting four important virulence genes. A correlation between targeting highly accessible DNA sequences and isothermal amplification based molecular beacon efficiency and sensitivity was demonstrated using phi(Φ)29 DNA polymerase at a constant isothermal temperature of 30 °C. It was very selective and consistently detected down to 10(1) copies of DNA. The specificity and sensitivity of this assay, when tested with pure culture were high, surpassing those of currently used PCR assays for the detection of these organisms. The molecular beacon based real-time isothermal amplification (MBRTIA) assay could be carried out entirely in 96 well plates or well strips, enabling a rapid and high-throughput detection of food borne pathogens.

  5. SOX2 and OCT4 mRNA-Expressing Cells, Detected by Molecular Beacons, Localize to the Center of Neurospheres during Differentiation

    DEFF Research Database (Denmark)

    Ilieva, Mirolyuba; Dufva, Martin

    2013-01-01

    Neurospheres are used as in vitro assay to measure the properties of neural stem cells. To investigate the molecular and phenotypic heterogeneity of neurospheres, molecular beacons (MBs) targeted against the stem cell markers OCT4 and SOX2 were designed, and synthesized with a 2'-O-methyl RNA...

  6. Multiplex detection of microRNAs by combining molecular beacon probes with T7 exonuclease-assisted cyclic amplification reaction.

    Science.gov (United States)

    Liu, Yacui; Zhang, Jiangyan; Tian, Jingxiao; Fan, Xiaofei; Geng, Hao; Cheng, Yongqiang

    2017-01-01

    A simple, highly sensitive, and specific assay was developed for the homogeneous and multiplex detection of microRNAs (miRNAs) by combining molecular beacon (MB) probes and T7 exonuclease-assisted cyclic amplification. An MB probe with five base pairs in the stem region without special modification can effectively prevent the digestion by T7 exonuclease. Only in the presence of target miRNA is the MB probe hybridized with the target miRNA, and then digested by T7 exonuclease in the 5' to 3' direction. At the same time, the target miRNA is released and subsequently initiates the nuclease-assisted cyclic digestion process, generating enhanced fluorescence signal significantly. The results show that the combination of T7 exonuclease-assisted cyclic amplification reaction and MB probe possesses higher sensitivity for miRNA detection. Moreover, multiplex detection of miRNAs was successfully achieved by designing two MB probes labeled with FAM and Cy3, respectively. As a result, the method opens a new pathway for the sensitive and multiplex detection of miRNAs as well as clinical diagnosis. Graphical Abstract A simple, highly sensitive, and specific assay was developed for the detection of microRNAs by combining molecular beacon probes with T7 exonuclease-assisted cyclic amplification reaction.

  7. Direct detection of circulating free DNA extracted from serum samples of breast cancer using locked nucleic acid molecular beacon.

    Science.gov (United States)

    Gui, Zhen; Wang, Quanbo; Li, Jinchang; Zhu, Mingchen; Yu, Lili; Xun, Tang; Yan, Feng; Ju, Huangxian

    2016-07-01

    As an emerging noninvasive blood biomarker, circulating free DNA (cfDNA) can be utilized to assess diagnosis, progression and evaluate prognosis of cancer. However, cfDNAs are not "naked", they can be part of complexes, or are bound to the surface of the cells via proteins, which make the detection more challenging. Here, a simple method for the detection of Ubiquitin-like with PHD and ring finger domains 1 (UHRF1) DNA exacted from serum of breast cancer (BC) has been developed using a novel locked nucleic acid molecular beacon (LNA-MB). In order to enhance the stability and detection efficiency of the probe in biofluids, we design a shared-stem molecular beacon containing a 27-mer loop and a 4-mer stem with DNA/LNA alternating bases. The fluorescence is released in the presence of target. The detection procedure is simple and can be completed within 1h. This method shows a sensitive response to UHRF1 DNA with a dynamic range of 3 orders of magnitude. The limit of detection is 11nM (S/N=3) with excellent selectivity. It can discriminate UHRF1 DNA from three-base mismatched DNA with a high specificity. More importantly, this method can distinguish the expression of serum UHRF1 DNA among 5 breast cancer patients and 5 healthy controls. The mentioned superiority may suggest that this assay can be served as a promising noninvasive detection tool for early BC diagnosis and monitoring.

  8. Detection of Campylobacter jejuni and Campylobacter coli in chicken meat samples by real-time nucleic acid sequence-based amplification with molecular beacons.

    Science.gov (United States)

    Churruca, E; Girbau, C; Martínez, I; Mateo, E; Alonso, R; Fernández-Astorga, A

    2007-06-10

    A nucleic acid sequence-based amplification (NASBA) assay based on molecular beacons was used for real-time detection of Campylobacter jejuni and Campylobacter coli in samples of chicken meat. A set of specific primers and beacon probe were designed to target the 16S rRNA of both species. The real-time NASBA protocol including the RNA isolation was valid for both of the cell suspensions in buffered saline and the artificially contaminated chicken meat samples. The presence of rRNA could be correlated with cellular viability, following inactivation of the bacteria by heating, in inoculated chicken meat samples but not in RNase-free cell suspensions.

  9. A solid-state electrochemiluminescence biosensing switch for detection of DNA hybridization based on ferrocene-labeled molecular beacon

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaoying [School of Public Health, Southeast University, Nanjing 210009 (China); He Pingang, E-mail: pghe@chem.ecnu.edu.c [Department of Chemistry, East China Normal University, Shanghai 200062 (China); Fang Yuzhi, E-mail: yzfang@chem.ecnu.edu.c [Department of Chemistry, East China Normal University, Shanghai 200062 (China)

    2010-08-15

    A solid-state electrochemiluminescence (ECL) biosensing switch incorporating quenching of ECL of ruthenium(II) tris-(bipyridine) (Ru(bpy){sub 3}{sup 2+}) by ferrocene (Fc) has been successfully developed for DNA hybridization detection. The important issue for this biosensing system is based on the ferrocene-labeled molecular beacon (Fc-MB), i.e. using the special Fc-MB to react with the target DNA and then change its structure, resulting in an ECL intensity change. Under the optimal conditions, the difference of ECL intensity before and after the hybridization reaction ({Delta}I{sub ECL}) was linearly related to the concentration of the complementary sequence in the range of 10 fM-10 pM and the detection limit was down to 1.0 fM.

  10. "Molecular beacon"-hosted thioflavin T: Applications for label-free fluorescent detection of iodide and logic operations.

    Science.gov (United States)

    Li, Yan-Yun; Jiang, Xiao-Qin; Lu, Ling-Fei; Zhang, Min; Shi, Guoyue

    2016-04-01

    In this work, we presented a simple, label-free and rapid-responsive fluorescence assay for iodide (I(-)) detection based on "molecular beacon (MB)"-hosted thioflavin T (ThT), achieving a limit of detection as low as 158 nM. The proposed method exhibited very good selectivity to I(-) ions over other anions interference due to the strong binding force between I(-) ions with Hg(2+). Upon the addition of I(-) ions, it would capture Hg(2+) from a T-Hg(2+)-T complex belonging to the MB-like DNA hairpin structure, which eventually quenched the initial fluorescence as output. In addition, it was successfully applied for operation of an integrated DNA logic gate system and to the determination of I(-) in real samples such as human urine.

  11. In vitro RNA release from a human rhinovirus monitored by means of a molecular beacon and chip electrophoresis.

    Science.gov (United States)

    Weiss, Victor U; Bliem, Christina; Gösler, Irene; Fedosyuk, Sofiya; Kratzmeier, Martin; Blaas, Dieter; Allmaier, Günter

    2016-06-01

    Liquid-phase electrophoresis either in the classical capillary format or miniaturized (chip CE) is a valuable tool for quality control of virus preparations and for targeting questions related to conformational changes of viruses during infection. We present an in vitro assay to follow the release of the RNA genome from a human rhinovirus (common cold virus) by using a molecular beacon (MB) and chip CE. The MB, a probe that becomes fluorescent upon hybridization to a complementary sequence, was designed to bind close to the 3' end of the viral genome. Addition of Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), a well-known additive for reduction of bleaching and blinking of fluorophores in fluorescence microscopy, to the background electrolyte increased the sensitivity of our chip CE set-up. Hence, a fast, sensitive and straightforward method for the detection of viral RNA is introduced. Additionally, challenges of our assay will be discussed. In particular, we found that (i) desalting of virus preparations prior to analysis increased the recorded signal and (ii) the MB-RNA complex signal decreased with the time of virus storage at -70 °C. This suggests that 3'-proximal sequences of the viral RNA, if not the whole genome, underwent degradation during storage and/or freezing and thawing. In summary, we demonstrate, for two independent virus batches, that chip electrophoresis can be used to monitor MB hybridization to RNA released upon incubation of the native virus at 56 °C. Graphical Abstract Schematic of the study strategy: RNA released from HRV-A2 is detected by chip electrophoresis through the increase in fluorescence after genom complexation to a cognate molecular beacon.

  12. High-throughput real-time assay based on molecular beacons for HIV-1 integrase 3'-processing reaction

    Institute of Scientific and Technical Information of China (English)

    Hong-qiu HE; Xiao-hui MA; Bin LIU; Xiao-yi ZHANG; Wei-zu CHEN; Cun-xin WANG; Shao-hui CHENG

    2007-01-01

    Aim: To develop a high-throughput real-time assay based on molecular beacons to monitor the integrase 3'-processing reaction in vitro and apply it to inhibitor screening.Methods: The recombinant human immunodeficiency virus (HIV)-1 integrase (IN) is incubated with a 38 mer oligonucleotide substrate, a sequence identical to the U5 end of HIV-1 long terminal repeats (LTR). Based on the fluores-cence properties of molecular beacons, the substrate is designed to form a stem-loop structure labeled with a fluorophore at the 5' end and a quencher at the 3'end.IN cleaves the terminal 3'-dinucleotide containing the quencher, resulting in an increase in fluorescence which can be monitored on a spectrofluorometer. To optimize this assay, tests were performed to investigate the effects of substrates, enzyme and the metal ion concentrations on the IN activity and optimal param-eters were obtained. Moreover, 2 IN inhibitors were employed to test the perfor-mance of this assay in antiviral compound screening.Results: The fluorescent intensity of the reaction mixture varies linearly with time and is proportional to the velocity of the 3'-processing reaction. Tests were performed and the results showed that the optimal rate was obtained for a reaction mixture containing 50 mg/L recom-binant HIV-1 IN, 400 nmol/L substrate, and 10 mmol/L Mn2+. The IN 3'-processing reaction under the optimal conditions showed a more than 18-fold increase in the fluorescence intensity compared to the enzyme-free control. The IC50 values of the IN inhibitors obtained in our assay were similar to the values obtained from a radiolabeled substrate assay.Conclusion: Our results demonstrated that this is a fast, reliable, and sensitive method to monitor HIV IN 3'-processing reaction and that it can be used for inhibitor screening.

  13. A novel asymmetric-loop molecular beacon-based two-phase hybridization assay for accurate and high-throughput detection of multiple drug resistance-conferring point mutations in Mycobacterium tuberculosis.

    Science.gov (United States)

    Chen, Qinghai; Wu, Nan; Xie, Meng; Zhang, Bo; Chen, Ming; Li, Jianjun; Zhuo, Lisha; Kuang, Hong; Fu, Weiling

    2012-04-01

    The accurate and high-throughput detection of drug resistance-related multiple point mutations remains a challenge. Although the combination of molecular beacons with bio-immobilization technology, such as microarray, is promising, its application is difficult due to the ineffective immobilization of molecular beacons on the chip surface. Here, we propose a novel asymmetric-loop molecular beacon in which the loop consists of 2 parts. One is complementary to a target, while the other is complementary to an oligonucleotide probe immobilized on the chip surface. With this novel probe, a two-phase hybridization assay can be used for simultaneously detecting multiple point mutations. This assay will have advantages, such as easy probe availability, multiplex detection, low background, and high-efficiency hybridization, and may provide a new avenue for the immobilization of molecular beacons and high-throughput detection of point mutations.

  14. In-cell protease assay systems based on trans-localizing molecular beacon proteins using HCV protease as a model system.

    Directory of Open Access Journals (Sweden)

    Jeong Hee Kim

    Full Text Available This study describes a sensitive in-cell protease detection system that enables direct fluorescence detection of a target protease and its inhibition inside living cells. This live-cell imaging system provides a fluorescent molecular beacon protein comprised of an intracellular translocation signal sequence, a protease-specific cleavage sequence, and a fluorescent tag sequence(s. The molecular beacon protein is designed to change its intracellular localization upon cleavage by a target protease, i.e., from the cytosol to a subcellular organelle or from a subcellular organelle to the cytosol. Protease activity can be monitored at the single cell level, and accordingly the entire cell population expressing the protease can be accurately enumerated. The clear cellular change in fluorescence pattern makes this system an ideal tool for various life science and drug discovery research, including high throughput and high content screening applications.

  15. Molecular Beacon Based DNA Computing Model for General Satisfiability Problem%可满足问题的分子信标计算模型

    Institute of Scientific and Technical Information of China (English)

    殷志祥; 崔建中; 支凌迎; 孙侠; 黄晓慧

    2008-01-01

    分子信标(Molecular Beacon)是一种发夹状的荧光探针,它可以特异地和那些与分子信标的环(Loop)互补的核酸靶序列杂交,具有单个碱基错配的检测能力.肽核酸(Peptide Nucleic Acid)是人工合成的核酸(DNA)的类似物.PNA骨架为酰胺键,与DNA补链杂交更稳定,可以阻止聚合酶延伸反应.文中将可满足问题的约束变量编码于分子信标的环部识别区,通过分子信标与使得给定范式为真的变量的PNA补链杂交,再利用PNA链可以阻止聚合酶延伸反应的性质,用限制性内切酶EcoRI降解对应于非解的分子信标,最后通过加热表面使分子信标构形发生变化,产生荧光读解.提出的可满足问题的分子信标计算模型具有可靠性高、无需观察和记录计算的中间结果、读解简单等优点.%Molecular Beacon is a hairpin-shaped fluorescent probe,which can hybridize with great specificity target sequence that is complement to its loop sequence.The specificity of Molec-ular Beacon is as high as single base mismatch detection.Peptide Nucleic Acid (PNA) is an artifi-cial synthesized analogue of nature occurring DNA,in which the DNA sugar-phosphate backbone has been replaced by a pseudo-peptide.Thus the hybridization of PNA to complement DNA strand is more specific and stable than that of DNA to DNA.PNA can stop polymerase extension reaction as well.In this paper,Molecular Beacons were employed to encode variables in satisfi-ability problem and complement PNA strands were added and allowed to hybridize with Molecular Beacon.The hybridized PNA strands on Molecular Beacon stopped polymerase extension reac-tion,causing Molecular Beacon corresponding to non-solution were digested by means of restric-tion endonuclease EcoRI.The remaining Molecular Beacons encoding solutions were read out via heating.The appealing characteristics of proposed method in this paper are: Reliable,no obser-vation and record of midst solution,easy solution detection.

  16. Three-dimensional structure of DNA self-assembly based on molecular beacon%基于分子信标的DNA自组装立体结构

    Institute of Scientific and Technical Information of China (English)

    刘静; 殷志祥

    2014-01-01

    文章讨论了分子信标技术和DNA自组装作为DNA计算的重要模型,并对近年来分子信标技术和DNA自组装技术的发展状况进行了总结;将分子信标技术的优势融入DNA自组装模型,提出一种DNA四面体结构,并利用该结构解决布尔逻辑运算问题。%Molecular beacon and DNA self-assembly as the important DNA computing model are dis-cussed ,and recent developments of molecular beacon technology and DNA self-assembly technology are summarized .The advantages of molecular beacon technology are integrated into DNA self-assem-bly model ,and a tetrahedron structure of DNA is proposed to solve the problem of the Boolean logical operation .

  17. PERFORMANCE ANALYSIS OF ANTI-COLLISION ENABLED ROBOT USING HYBRID BEACON SCHEDULING APPROACH

    Directory of Open Access Journals (Sweden)

    P. Prabakaran

    2014-01-01

    Full Text Available In multi-robot environment, when many robots are moving in the same workspace, there is a possibility of their physical collision with themselves as well as with physical objects. In this study, hybrid beacon scheduling protocol is proposed and for avoiding such collisions in robotic mobile environment with low latency and power consumption. The purpose of deploying this protocol is to collect relevant data for processing and reporting. In particular, based on data reporting, the robotic nodes can be classified as time-driven or event-driven. The motivation behind this research is that it dynamically switches between the event-driven data-reporting and time-driven data-reporting schemes. As such, the proposed protocol accurately analyzes the environment being monitored using only moderate resource consumption. We have implemented the proposed protocol on a network simulator and analyzed its behaviors under various conditions.

  18. Expression patterns of prion protein gene in differential genotypes sheep: quantification using molecular beacon real-time RT-PCR.

    Science.gov (United States)

    Wang, Chuan; Wu, Run; Li, Fa-Di; Liu, Lei; Zhang, Xiao-Li; Zhao, Chun-Lin; Diao, Xiao-Long; Guan, Hong-Wei

    2011-06-01

    Determination of the transcription level of cellular prion protein (PrP(C)) is essential for understanding its role in organisms and revealing mechanism of susceptibility and resistance to scrapie. However, the expression of prion protein (PrP) mRNA in sheep has not been quantified in great detail in digestive tract which is important during scrapie spread through oral route. Herein, we report on measurement of sheep PrP mRNA using absolute quantitative real-time RT-PCR. Total RNA was isolated from five different regions of the central nervous system (CNS), four regions of lymphoid system, eleven regions of digestive tract, and two reproductive organ tissues of eight sheep of two different genotypes (ARR/ARQ and ARH/ARQ) and PrP mRNA was quantified by real-time RT-PCR using molecular beacon. The results showed that highest levels of PrP mRNA were expressed in thalamus and cerebrum (P mRNA expression in sheep for further studies of pathogenesis of prion diseases.

  19. Non-genetic Purification of Ventricular Cardiomyocytes from Differentiating Embryonic Stem Cells through Molecular Beacons Targeting IRX-4

    Directory of Open Access Journals (Sweden)

    Kiwon Ban

    2015-12-01

    Full Text Available Isolation of ventricular cardiomyocytes (vCMs has been challenging due to the lack of specific surface markers. Here we show that vCMs can be purified from differentiating mouse embryonic stem cells (mESCs using molecular beacons (MBs targeting specific intracellular mRNAs. We designed MBs (IRX4 MBs to target mRNA encoding Iroquois homeobox protein 4 (Irx4, a transcription factor specific for vCMs. To purify mESC vCMs, IRX4 MBs were delivered into cardiomyogenically differentiating mESCs, and IRX4 MBs-positive cells were FACS-sorted. We found that, of the cells isolated, ∼98% displayed vCM-like action potentials by electrophysiological analyses. These MB-purified vCMs continuously maintained their CM characteristics as verified by spontaneous beating, Ca2+ transient, and expression of vCM-specific proteins. Our study shows the feasibility of isolating pure vCMs via cell sorting without modifying host genes. The homogeneous and functional ventricular CMs generated via the MB-based method can be useful for disease investigation, drug discovery, and cell-based therapies.

  20. Monitoring p21 mRNA expression in living cell based on molecular beacon fluorescence increasing rate

    Institute of Scientific and Technical Information of China (English)

    TANG HongXing; YANG XiaoHai; WANG KeMin; TAN WeiHong; LIU Bin; HE LiFang; WANG Wei

    2008-01-01

    Studying the expression level of mRNA in living cells will offer tremendous opportunities for ad-vancement in cell biology research, disease diagnostics, and drug discovery. In this paper, a molecular beacon (MB) specific for the important tumor suppressor gene p21 has been designed and synthesized. The fluorescence signal was detected in real-time after the MB entered the cytoplasm of nasopharyn-geal carcinoma cells. After injecting the p21MB into nasopharyngeal carcinoma cell and p33-trans-fected nasopharyngeal carcinoma cell, the consistent increase of fluorescent signal intensity was de-tected in both cell lines, and maximum fluorescence intensity achieved in about 15 min. In about 4 min following microinjection, the fluorescence increasing rate was significantly different between these two cell lines, which indicate the different p21 mRNA expression levels. The results obtained in the real-time detection were also validated by RT-PCR. Analysis of the initial fluorescence increasing rate can effi-ciently reduce the side effect of enzyme and improve the accuracy in living cell mRNA detection.

  1. Dual hairpin-like molecular beacon based on coralyne-adenosine interaction for sensing melamine in dairy products.

    Science.gov (United States)

    Wang, Guangfeng; Zhu, Yanhong; Chen, Ling; Zhang, Xiaojun

    2014-11-01

    This study presents a novel dual hairpin-like molecular beacon (MB) for the selective and sensitive detection of melamine (MA) based on the conjugation of MA and thymine. In this protocol, the coordination between coralyne and adenosine (A) leaded a dual hairpin-like MB and the fluorophore-quencher pair is close proximity resulting in the fluorescence quenching. With the addition of MA, it conjugated with thymine in the loop part of dual hairpin-like MB by triple H-bonds, triggering the dissociation of the dual hairpin-like MB. The resulting spatial separation of the fluorophore from quencher induced the enhancement in fluorescence emission. Under the optimized conditions, the sensor exhibited a wide linear range of 8×10(-9)-1.6×10(-5) M (R(2)=0.9969) towards MA, with a low detection limit of 5 nM, approximately 4000 times lower than the Drug Administration and the US Food estimated MA safety limit. The real milk samples were also investigated with a satisfying result.

  2. Selective amyloid β oligomer assay based on abasic site-containing molecular beacon and enzyme-free amplification.

    Science.gov (United States)

    Zhu, Linling; Zhang, Junying; Wang, Fengyang; Wang, Ya; Lu, Linlin; Feng, Chongchong; Xu, Zhiai; Zhang, Wen

    2016-04-15

    Amyloid-beta (Aβ) oligomers are highly toxic species in the process of Aβ aggregation and are regarded as potent therapeutic targets and diagnostic markers for Alzheimer's disease (AD). Herein, a label-free molecular beacon (MB) system integrated with enzyme-free amplification strategy was developed for simple and highly selective assay of Aβ oligomers. The MB system was constructed with abasic site (AP site)-containing stem-loop DNA and a fluorescent ligand 2-amino-5,6,7-trimethyl-1,8-naphyridine (ATMND), of which the fluorescence was quenched upon binding to the AP site in DNA stem. Enzyme-free amplification was realized by target-triggered continuous opening of two delicately designed MBs (MB1 and MB2). Target DNA hybridization with MB1 and then MB2 resulted in the release of two ATMND molecules in one binding event. Subsequent target recycling could greatly amplify the detection sensitivity due to the greatly enhanced turn-on emission of ATMND fluorescence. Combining with Aβ oligomers aptamers, the strategy was applied to analyze Aβ oligomers and the results showed that it could quantify Aβ oligomers with high selectivity and monitor the Aβ aggregation process. This novel method may be conducive to improve the diagnosis and pathogenic study of Alzheimer's disease.

  3. A label-free fluorescent molecular beacon based on DNA-Ag nanoclusters for the construction of versatile Biosensors.

    Science.gov (United States)

    Cao, Qiao; Teng, Ye; Yang, Xuan; Wang, Jin; Wang, Erkang

    2015-12-15

    In this paper, we developed a simple, low-cost and sensitive DNA sequences detection biosensor based on a label-free molecular beacon (MB) whose DNA hairpin structure terminal has a guanine-rich sequence that can enhance fluorescence of silver nanoclusters (Ag NCs). Without hybridization between hairpin probe and target DNA, the Ag NCs presented bright fluorescence for the proximity of guanine-rich sequences (GRSs). After binding with target DNA, the hairpin shape was destroyed which results in a decrease of the Ag NCs fluorescence intensity. With this biosensor, we detected three disease-related genes that were the human immunodeficiency virus (HIV) gene, hepatitis B virus (HBV) gene and human T-lymphotropic virus type I (HTLV-I) gene. The detection limits based on S/N of 3 were 4.4 nM, 6.8 nM and 8.5 nM for HIV gene, HBV gene and HTLV-I gene, respectively. Our sensor was also of high selectivity and could distinguish even one nucleotide mismatched target.

  4. An ultrasensitive alloyed near-infrared quinternary quantum dot-molecular beacon nanodiagnostic bioprobe for influenza virus RNA.

    Science.gov (United States)

    Adegoke, Oluwasesan; Kato, Tatsuya; Park, Enoch Y

    2016-06-15

    Conventional techniques used to diagnose influenza virus face several challenges, such as low sensitivity, slow detection, false positive results and misinterpreted data. Hence, diagnostic probes that can offer robust detection qualities, such as high sensitivity, rapid detection, elimination of false positive data, and specificity for influenza virus, are urgently needed. The near-infrared (NIR) range is an attractive spectral window due to low photon absorption by biological tissues, hence well-constructed fluorescent biosensors that emit within the NIR window can offer an improved limit of detection (LOD). Here, we demonstrate the use of a newly synthesized NIR quinternary alloyed CdZnSeTeS quantum dots (QDs) as an ultrasensitive fluorescence reporter in a conjugated molecular beacon (MB) assay to detect extremely low concentrations of influenza virus H1N1 RNA. Under optimum conditions, two different strains of influenza virus H1N1 RNA were detected based on fluorescence enhancement signal transduction. We successfully discriminated between two different strains of influenza virus H1N1 RNA based on the number of complementary nucleotide base pairs of the MB to the target RNA sequence. The merits of our bioprobe system are rapid detection, high sensitivity (detects H1N1 viral RNA down to 2 copies/mL), specificity and versatility (detects H1N1 viral RNA in human serum). For comparison, a conventional CdSe/ZnS-MB probe could not detect the extremely low concentrations of H1N1 viral RNA detected by our NIR alloyed CdZnSeTeS-MB probe. Our bioprobe detection system produced a LOD as low as ~1 copy/mL and is more sensitive than conventional molecular tests and rapid influenza detection tests (RIDTS) probes.

  5. Multiplex bioimaging of piRNA molecular pathway-regulated theragnostic effects in a single breast cancer cell using a piRNA molecular beacon.

    Science.gov (United States)

    Lee, Youn Jung; Moon, Sung Ung; Park, Min Geun; Jung, Woon Yong; Park, Yong Keun; Song, Sung Kyu; Ryu, Je Gyu; Lee, Yong Seung; Heo, Hye Jung; Gu, Ha Na; Cho, Su Jeong; Ali, Bahy A; Al-Khedhairy, Abdulaziz A; Lee, Ilkyun; Kim, Soonhag

    2016-09-01

    Recently, PIWI-interacting small non-coding RNAs (piRNAs) have emerged as novel cancer biomarkers candidate because of their high expression level in various cancer types and role in the control of tumor suppressor genes. In this study, a novel breast cancer theragnostics probe based on a single system targeting the piRNA-36026 (piR-36026) molecular pathway was developed using a piR-36026 molecular beacon (MB). The piR-36026 MB successfully visualized endogenous piR-36026 biogenesis, which is highly expressed in MCF7 cells (a human breast cancer cell line), and simultaneously inhibited piR-36026-mediated cancer progression in vitro and in vivo. We discovered two tumor suppressor proteins, SERPINA1 and LRAT, that were directly regulated as endogenous piR-36026 target genes in MCF7 cells. Furthermore, multiplex bioimaging of a single MCF7 cell following treatment with piR-36026 MB clearly visualized the direct molecular interaction of piRNA-36026 with SERPINA1 or LRAT and subsequent molecular therapeutic responses including caspase-3 and PI in the nucleus.

  6. Comparative Evaluation of Sloppy Molecular Beacon and Dual-Labeled Probe Melting Temperature Assays to Identify Mutations in Mycobacterium tuberculosis Resulting in Rifampin, Fluoroquinolone and Aminoglycoside Resistance

    Science.gov (United States)

    Lee, Jong Seok; Via, Laura E.; Barry, Clifton E.; Alland, David; Chakravorty, Soumitesh

    2015-01-01

    Several molecular assays to detect resistance to Rifampin, the Fluoroquinolones, and Aminoglycosides in Mycobacterium tuberculosis (M. tuberculosis) have been recently described. A systematic approach for comparing these assays in the laboratory is needed in order to determine the relative advantage of each assay and to decide which ones should be advanced to evaluation. We performed an analytic comparison of a Sloppy Molecular Beacon (SMB) melting temperature (Tm) assay and a Dual labeled probe (DLP) Tm assay. Both assays targeted the M. tuberculosis rpoB, gyrA, rrs genes and the eis promoter region. The sensitivity and specificity to detect mutations, analytic limit of detection (LOD) and the detection of heteroresistance were tested using a panel of 56 clinical DNA samples from drug resistant M. tuberculosis strains. Both SMB and DLP assays detected 29/29 (100%) samples with rpoB RRDR mutations and 3/3 (100%) samples with eis promoter mutations correctly. The SMB assay detected all 17/17 gyrA mutants and 22/22 rrs mutants, while the DLP assay detected 16/17 (94%) gyrA mutants and 12/22 (55%) rrs mutants. Both assays showed comparable LODs for detecting rpoB and eis mutations; however, the SMB assay LODs were at least two logs better for detecting wild type and mutants in gyrA and rrs targets. The SMB assay was also moderately better at detecting heteroresistance. In summary, both assays appeared to be promising methods to detect drug resistance associated mutations in M. tuberculosis; however, the relative advantage of each assay varied under each test condition. PMID:25938476

  7. Comparative Evaluation of Sloppy Molecular Beacon and Dual-Labeled Probe Melting Temperature Assays to Identify Mutations in Mycobacterium tuberculosis Resulting in Rifampin, Fluoroquinolone and Aminoglycoside Resistance.

    Directory of Open Access Journals (Sweden)

    Sandy S Roh

    Full Text Available Several molecular assays to detect resistance to Rifampin, the Fluoroquinolones, and Aminoglycosides in Mycobacterium tuberculosis (M. tuberculosis have been recently described. A systematic approach for comparing these assays in the laboratory is needed in order to determine the relative advantage of each assay and to decide which ones should be advanced to evaluation. We performed an analytic comparison of a Sloppy Molecular Beacon (SMB melting temperature (Tm assay and a Dual labeled probe (DLP Tm assay. Both assays targeted the M. tuberculosis rpoB, gyrA, rrs genes and the eis promoter region. The sensitivity and specificity to detect mutations, analytic limit of detection (LOD and the detection of heteroresistance were tested using a panel of 56 clinical DNA samples from drug resistant M. tuberculosis strains. Both SMB and DLP assays detected 29/29 (100% samples with rpoB RRDR mutations and 3/3 (100% samples with eis promoter mutations correctly. The SMB assay detected all 17/17 gyrA mutants and 22/22 rrs mutants, while the DLP assay detected 16/17 (94% gyrA mutants and 12/22 (55% rrs mutants. Both assays showed comparable LODs for detecting rpoB and eis mutations; however, the SMB assay LODs were at least two logs better for detecting wild type and mutants in gyrA and rrs targets. The SMB assay was also moderately better at detecting heteroresistance. In summary, both assays appeared to be promising methods to detect drug resistance associated mutations in M. tuberculosis; however, the relative advantage of each assay varied under each test condition.

  8. Novel Molecular Beacon Probe-Based Real-Time RT-PCR Assay for Diagnosis of Crimean-Congo Hemorrhagic Fever Encountered in India

    Directory of Open Access Journals (Sweden)

    Aman Kamboj

    2014-01-01

    Full Text Available Crimean-Congo hemorrhagic fever (CCHF is an emerging zoonotic disease in India and requires immediate detection of infection both for preventing further transmission and for controlling the infection. The present study describes development, optimization, and evaluation of a novel molecular beacon-based real-time RT-PCR assay for rapid, sensitive, and specific diagnosis of Crimean-Congo hemorrhagic fever virus (CCHFV. The developed assay was found to be a better alternative to the reported TaqMan assay for routine diagnosis of CCHF.

  9. Fluorescence monitoring of riboswitch transcription regulation using a dual molecular beacon assay

    OpenAIRE

    Chinnappan, Raja; Dubé, Audrey; Lemay, Jean-François; Daniel A Lafontaine

    2013-01-01

    Riboswitches are mRNA elements that specifically bind cellular metabolites and control gene expression by modifying their structure. As riboswitches often control essential genes in pathogenic bacteria, riboswitches have been proposed as new targets for antibiotics. High-throughput screening provides a powerful approach to identify riboswitch ligand analogs that could act as powerful antibacterial drugs. Biochemical assays have already been used to find riboswitch-binding analogs, but those m...

  10. Label-free molecular beacon for real-time monitoring of DNA polymerase activity.

    Science.gov (United States)

    Ma, Changbei; Liu, Haisheng; Wang, Jun; Jin, Shunxin; Wang, Kemin

    2016-05-01

    Traditional methods for assaying DNA polymerase activity are discontinuous, time consuming, and laborious. Here, we report a new approach for label-free and real-time monitoring of DNA polymerase activity using a Thioflavin T (ThT) probe. In the presence of DNA polymerase, the DNA primer could be elongated through polymerase reaction to open MB1, leading to the release of the G-quartets. These then bind to ThT to form ThT/G-quadruplexes with an obvious fluorescence generation. It exhibits a satisfying detection result for the activity of DNA polymerase with a low detection limit of 0.05 unit/ml. In addition, no labeling with a fluorophore or a fluorophore-quencher pair is required; this method is fairly simple, fast, and low cost. Furthermore, the proposed method was also applied to assay the inhibition of DNA polymerase activity. This approach may offer potential applications in drug screening, clinical diagnostics, and some other related biomedical research.

  11. Gold Nanoparticle-Quantum Dot Fluorescent Nanohybrid: Application for Localized Surface Plasmon Resonance-induced Molecular Beacon Ultrasensitive DNA Detection

    Science.gov (United States)

    Adegoke, Oluwasesan; Park, Enoch Y.

    2016-11-01

    In biosensor design, localized surface plasmon resonance (LSPR)-induced signal from gold nanoparticle (AuNP)-conjugated reporter can produce highly sensitive nanohybrid systems. In order to retain the physicochemical properties of AuNPs upon conjugation, high colloidal stability in aqueous solution is needed. In this work, the colloidal stability with respect to the zeta potential (ZP) of four negatively charged thiol-functionalized AuNPs, thioglycolic (TGA)-AuNPs, 3-mercaptopropionic acid (MPA)-AuNPs, l-cysteine-AuNPs and l-glutathione (GSH)-AuNPs, and a cationic cyteamine-capped AuNPs was studied at various pHs, ionic strength, and NP concentration. A strong dependence of the ZP charge on the nanoparticle (NP) concentration was observed. High colloidal stability was exhibited between pH 3 and 9 for the negatively charged AuNPs and between pH 3 and 7 for the cationic AuNPs. With respect to the ionic strength, high colloidal stability was exhibited at ≤104 μM for TGA-AuNPs, l-cysteine-AuNPs, and GSH-AuNPs, whereas ≤103 μM is recommended for MPA-AuNPs. For the cationic AuNPs, very low ionic strength of ≤10 μM is recommended due to deprotonation at higher concentration. GSH-AuNPs were thereafter bonded to SiO2-functionalized alloyed CdZnSeS/ZnSe1.0S1.3 quantum dots (SiO2-Qdots) to form a plasmon-enhanced AuNP-SiO2-Qdots fluorescent nanohybrid. The AuNP-SiO2-Qdots conjugate was afterward conjugated to a molecular beacon (MB), thus forming an ultrasensitive LSPR-induced SiO2-Qdots-MB biosensor probe that detected a perfect nucleotide DNA sequence at a concentration as low as 10 fg/mL. The limit of detection was 11 fg/mL (1.4 fM) while the biosensor probe efficiently distinguished between single-base mismatch and noncomplementary sequence target.

  12. Sensitive HIV-1 detection in a homogeneous solution based on an electrochemical molecular beacon coupled with a nafion-graphene composite film modified screen-printed carbon electrode.

    Science.gov (United States)

    Li, Bo; Li, Zhengliang; Situ, Bo; Dai, Zong; Liu, Qinlan; Wang, Qian; Gu, Dayong; Zheng, Lei

    2014-02-15

    A novel electrochemical sensing assay for sensitive determination of HIV-1 in a homogeneous solution has been developed using an electrochemical molecular beacon combined with a nafion-graphene composite film modified screen-printed carbon electrode (nafion-graphene/SPCE). The electrochemical molecular beacon (CAs-MB), comprising a special recognition sequence for the conserved region of the HIV-1 gag gene and a pair of carminic acid molecules as a marker, can indicate the presence of the HIV-1 target by its on/off electrochemical signal behavior. It is suitable for direct, electrochemical determination of HIV-1, thereby simplifying the detection procedure and improving the signal-to-noise (S/N) ratio. To further improve the sensitivity, the nafion-graphene/SPCE was used to monitor changes in the CAs-MB, which has notable advantages, such as being ultrasensitive, inexpensive, and disposable. Under optimized conditions, the peak currents showed a linear relationship with the logarithm of target oligonucleotide concentrations ranging from 40 nM to 2.56 μM, with a detection limit of 5 nM (S/N=3). This sensing assay also displays a good stability, with a recovery of 88-106.8% and RSD<7% (n=5) in real serum samples. This work may lead to the development of an effective method for early point-of-care diagnosis of HIV-1 infection.

  13. Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer- and microRNA-221 molecular beacon-conjugated nanoparticle.

    Science.gov (United States)

    Kim, Jin Kyeoung; Choi, Kyung-Ju; Lee, Minhyung; Jo, Mi-hee; Kim, Soonhag

    2012-01-01

    MicroRNAs (miRNA, miR) have been reported as cancer biomarkers that regulate tumor suppressor genes. Hence, simultaneous detecting and inhibiting of miRNA function will be useful as a cancer theragnostics probe to minimize side effects and invasiveness. In this study, we developed a cancer-targeting therangostics probe in a single system using an AS1411 aptamer - and miRNA-221 molecular beacon (miR-221 MB)-conjugated magnetic fluorescence (MF) nanoparticle (MFAS miR-221 MB) to simultaneously target to cancer tissue, image intracellularly expressed miRNA-221 and treat miRNA-221-involved carcinogenesis. AS1411 aptamer-conjugated MF (MFAS) nanoparticles displayed a great selectivity and delivery into various cancer cell lines. The miR-221 MB detached from the MFAS miR-221 MB in the cytoplasm of C6 cells clearly imaged miRNA-221 biogenesis and simultaneously resulted in antitumor therapeutic effects by inhibiting miRNA function, indicating a successful astrocytoma-targeting theragnostics. MFAS miRNA MB can be easily applied to other cancers by simply changing a targeted miRNA highly expressed in cancers.

  14. Electroactive crown ester-Cu(2+) complex with in-situ modification at molecular beacon probe serving as a facile electrochemical DNA biosensor for the detection of CaMV 35s.

    Science.gov (United States)

    Zhan, Fengping; Liao, Xiaolei; Gao, Feng; Qiu, Weiwei; Wang, Qingxiang

    2017-06-15

    A novel electrochemical DNA biosensor has been facilely constructed by in-situ assembly of electroactive 4'-aminobenzo-18-crown-6-copper(II) complex (AbC-Cu(2+)) on the free terminal of the hairpin-structured molecule beacon. The 3'-SH modified molecule beacon probe was first immobilized on the gold electrode (AuE) surface through self-assembly chemistry of Au-S bond. Then the crow ester of AbC was covalently coupled with 5'-COOH on the molecule beacon, and served as a platform to attach the Cu(2+) by coordination with ether bond (-O-) of the crown cycle. Thus, an electroactive molecule beacon-based biosensing interface was constructed. In comparison with conventional methods for preparation of electroactive molecule beacon, the approach presented in this work is much simpler, reagent- and labor-saving. Selectivity study shows that the in-situ fabricated electroactive molecule beacon remains excellent recognition ability of pristine molecule beacon probe to well differentiate various DNA fragments. The target DNA can be quantatively determined over the range from 0.10pM to 0.50nM. The detection limit of 0.060pM was estimated based on signal-to-noise ratio of 3. When the biosensor was applied for the detection cauliflower mosaic virus 35s (CaMV 35s) in soybean extraction samples, satisfactory results are achieved. This work opens a new strategy for facilely fabricating electrochemical sensing interface, which also shows great potential in aptasensor and immurosensor fabrication. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Special Stamps:Historical Relic Beacons

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In May 2002, the State Postal Bureau issued a set of five stamps picturing historical relic beacons. They are the Mao Beacon, the Jiangxinyu Twin Beacon, the Huaniaoshan Beacon, the Laotieshan Beacon, and

  16. Evaluation of a molecular beacon real-time PCR assay for detection of Baylisascaris procyonis in different soil types and water samples.

    Science.gov (United States)

    Gatcombe, Rachel R; Jothikumar, Narayanan; Dangoudoubiyam, Sriveny; Kazacos, Kevin R; Hill, Vincent R

    2010-01-01

    Baylisascaris procyonis is a helminth parasite commonly found in North American raccoons (Procyon lotor) that is a cause of clinical neural, ocular, and visceral larva migrans in humans when infective eggs are ingested. Rapid detection of B. procyonis eggs in contaminated soil and water would assist public health analysts in evaluating risks associated with public exposure to areas of known raccoon activity. In this study, a molecular beacon probe-based real-time polymerase chain reaction (PCR) assay was developed to enable rapid and specific detection of eggs of Baylisascaris spp. The molecular beacon assay targeted the cytochrome oxidase subunit 2 (cox-2) gene of B. procyonis. To determine method sensitivity, experiments testing various egg levels (250, 25, and five eggs) were performed by seeding into 0.5-g soil samples or 0.5-mL water samples. Different soil sample types were extracted using a commercial nucleic acid extraction kit. Specificity testing using previously characterized helminth tissue specimens indicated that the assay was specific to Baylisascaris spp. Little real-time PCR inhibition was observed for most of the soil and water samples. A seed level of 250 eggs was detected for all soil types, and two seed levels (25 and five eggs) were detected for surface water samples. These results demonstrate that the reported real-time PCR assay was effective for the sensitive detection of B. procyonis in a wide range of soil types, and should be a useful tool for investigations of soil or water potentially contaminated with eggs of this parasite.

  17. Highly sensitive detection of cancer-related genes based on complete fluorescence restoration of a molecular beacon with a functional overhang.

    Science.gov (United States)

    Li, Feng; Zhou, Ying-Ying; Peng, Ting; Xu, Huo; Zhang, Rong-Bo; Zhao, Hui; Wang, Zheng-Yong; Lv, Jian-Xin; Wu, Zai-Sheng; Shen, Zhi-Fa

    2016-07-21

    The accurate detection of cancer-related genes is of great significance for early diagnosis and targeted therapy of cancer. In this contribution, an automatically cycling operation of a functional overhang-containing molecular beacon (OMB)-based sensing system was proposed to perform amplification detection of the p53 gene. Contrary to the common molecular beacon (MB), a target DNA is designated to hybridize with a label-free recognition probe (RP) with a hairpin structure rather than OMB. In the presence of a target DNA of interest, the locked primer in RP opens and triggers the subsequent amplification procedures. The newly-developed OMB is not only capable of accomplishing cyclical nucleic acid strand-displacement polymerization (CNDP) with the help of polymerase and nicking endonuclease, but is also cleaved by restriction endonucleases, removing the quencher away from the fluorophore. Thus, the target DNA at an extremely low concentration is expected to generate a considerable amount of double-stranded and cleaved OMBs, and the quenched fluorescence is completely restored, leading to a dramatic increase in fluorescence intensity. Utilizing this sensing platform, the target gene can be detected down to 8.2 pM in a homogeneous way, and a linear response range of 0.01 to 150 nM could be obtained. More strikingly, the mutant genes can be easily distinguished from the wild-type ones. The proof-of-concept demonstrations reported herein are expected to promote the development of DNA biosensing systems, showing great potential in basic research and clinical diagnosis.

  18. Auditory evacuation beacons

    NARCIS (Netherlands)

    Wijngaarden, S.J. van; Bronkhorst, A.W.; Boer, L.C.

    2005-01-01

    Auditory evacuation beacons can be used to guide people to safe exits, even when vision is totally obscured by smoke. Conventional beacons make use of modulated noise signals. Controlled evacuation experiments show that such signals require explicit instructions and are often misunderstood. A new si

  19. Ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon mediated circular strand displacement polymerization and hyperbranched rolling circle amplification.

    Science.gov (United States)

    Li, Xiaolu; Guo, Jing; Zhai, Qian; Xia, Jing; Yi, Gang

    2016-08-31

    Using a cascade signal amplification strategy, an ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon (MB) mediated circular strand displacement polymerization (CSDP) and hyperbranched rolling circle amplification (HRCA) was proposed. The hybridization of MB probe to target DNA resulted in a conformational change of the MB and triggered the CSDP in the presence of bio-primer and Klenow fragment (KF exo(-)), leading to multiple biotin-tagged DNA duplex. Furthermore, the HRCA was implemented to product amounts of double-stranded DNA (ds-DNA) fragments using phi29 DNA polymerase via biotin-streptavidin interaction. After the product of HRCA binded numerous biotinylated detection probes, an ultrasensitive electrochemical readout by further employing the streptavidin-alkaline phosphatase. The proposed biosensor exhibited excellent detection sensitivity and specificity with a log-linear response to target DNA from 0.01 fM to 10 pM as low as 8.9 aM. The proposed method allowed DNA detection with simplicity, rapidness, low cost and high specificity, which might have the potential for application in clinical molecular diagnostics and environmental monitoring.

  20. Molecular beacon-based real-time PCR detection of primary isolates of Salmonella Typhimurium and Salmonella Enteritidis in environmental and clinical samples

    Directory of Open Access Journals (Sweden)

    Emmanuel Maria A

    2009-05-01

    Full Text Available Abstract Background A fast and simple two-step multiplex real-time PCR assay has been developed to replace the traditional, laborious Salmonella serotyping procedure. Molecular beacons were incorporated into the assay as probes for target DNA. Target sequences were regions of the invA, prot6E and fliC genes specific for Salmonella spp. Salmonella Enteritidis and Salmonella Typhimurium, respectively, the two most clinically relevant serotypes. An internal amplification positive control was included in the experiment to ensure the optimal functioning of the PCR and detect possible PCR inhibition. Three sets of primers were used for the amplification of the target sequences. The results were compared to those of the Kauffmann-White antigenic classification scheme. Results The assay was 100% sensitive and specific, correctly identifying all 44 Salmonella strains, all 21 samples of S. Enteritidis and all 17 samples of S. Typhimurium tested in this work. Therefore, the entire experiment had specificity and sensitivity of 100%. The detection limit was down to 10 copies of DNA target per 25 μl reaction. Conclusion The assay can amplify and analyse a large number of samples in approximately 8 hours, compared to the 4 to 5 days conventional identification takes, and is thus considered a very promising method for detecting the two major serotypes of Salmonella quickly and accurately from clinical and environmental samples.

  1. Novel multifunction-integrated molecular beacon for the amplification detection of DNA hybridization based on primer/template-free isothermal polymerization.

    Science.gov (United States)

    Dong, Haiyan; Wu, Zai-Sheng; Xu, Jianguo; Ma, Ji; Zhang, Huijuan; Wang, Jie; Shen, Weiyu; Xie, Jingjing; Jia, Lee

    2015-10-15

    Molecular beacon (MB) is widely explored as a signaling probe in powerful biosensing systems, for example, enzyme-assisted strand displacement amplification (SDA)-based system. The existing polymerization-based amplification system is often composed of recognition element, primer, template and fluorescence reporter. To develop a new MB sensing system and simply the signal amplification design, we herein attempted to propose a multifunctional integrated MB (MI-MB) for the polymerization amplification detection of target DNA via introducing a G-rich fragment into the loop of MB without using any exogenous auxiliary oligonucleotide probe. Utilizing only one MI-MB probe, the p53 target gene could trigger the cycles of hybridization/polymerization/displacement, resulting in amplification of the target hybridization event. Thus, the p53 gene can be detected down to 5 × 10(-10)M with the linear response range from 5 × 10(-10)M to 4 × 10(-7)M. Using the MI-MB, we could readily discriminate the point mutation-contained p53 from the wild-type one. As a proof-of-concept study, owing to its simplicity and multifunction, including recognition, replication, amplification and signaling, the MI-MB exhibits the great potential for the development of different biosensors for various biomedical applications, especially, for early cancer diagnosis.

  2. Detection of Clavibacter michiganensis subsp. sepedonicus by AmpliDet RNA, a new technology based on real time monitoring of NASBA amplicons with a molecular beacon.

    Science.gov (United States)

    van Beckhoven, J R C M; Stead, D E; van der Wolf, J M

    2002-01-01

    To develop a procedure for direct detection of viable cells of Clavibacter michiganensis subsp. sepedonicus (Cms), the causal organism of bacterial ring rot in potato, based on AmpliDet RNA, in which amplicons generated by nucleic acid sequence based amplification (NASBA) are monitored in real time with a molecular beacon. Five methods were evaluated and fine-tuned for extraction of RNA from Cms. The most efficient non-commercial RNA extraction method included an enzymatic breakdown of the cell wall followed by a phenol extraction. AmpliDet RNA enabled detection of 10,000 molecules of purified rRNA per reaction and 100 cfu of Cms per reaction in more complex samples. Two primer pairs were tested with DNA and RNA purified from Cms. One primer pair was able to distinguish live from dead cells. An AmpliDet RNA was developed which enabled fast and specific detection of viable cells of Cms in complex substrates at a detection limit of 100 cfu per reaction. This novel AmpliDet RNA is carried out in sealed tubes, thus reducing the risk of carry-over contamination. The method will be particularly suitable for studies on the epidemiology of Cms in which viable cells should be exclusively detected.

  3. Nicking endonuclease-assisted signal amplification of a split molecular aptamer beacon for biomolecule detection using graphene oxide as a sensing platform.

    Science.gov (United States)

    Li, Xiang; Ding, Xuelian; Fan, Jing

    2015-12-07

    Sensitive and selective detection of ultralow concentrations of specific biomolecules is important in early clinical diagnoses and biomedical applications. Many types of aptasensors have been developed for the detection of various biomolecules, but usually suffer from false positive signals and high background signals. In this work, we have developed an amplified fluorescence aptasensor platform for ultrasensitive biomolecule detection based on enzyme-assisted target-recycling signal amplification and graphene oxide. By using a split molecular aptamer beacon and a nicking enzyme, the typical problem of false positive signals can be effectively resolved. Only in the presence of a target biomolecule, the sensor system is able to generate a positive signal, which significantly improves the selectivity of the aptasensor. Moreover, using graphene oxide as a super-quencher can effectively reduce the high background signal of a sensing platform. We select vascular endothelial growth factor (VEGF) and adenosine triphosphate (ATP) as model analytes in the current proof-of-concept experiments. It is shown that under optimized conditions, our strategy exhibits high sensitivity and selectivity for the quantification of VEGF and ATP with a low detection limit (1 pM and 4 nM, respectively). In addition, this biosensor has been successfully utilized in the analysis of real biological samples.

  4. Real-time imaging of the epithelial-mesenchymal transition using microRNA-200a sequence-based molecular beacon-conjugated magnetic nanoparticles.

    Directory of Open Access Journals (Sweden)

    YoonSeok Choi

    Full Text Available The epithelial-mesenchymal transition (EMT plays important roles in tumor progression to metastasis. Thus, the development of an imaging probe that can monitor transient periods of the EMT process in live cells is required for a better understanding of metastatic process. Inspired by the fact that the mRNA expression levels of zinc finger E-box-binding homeobox 1 (ZEB1 increase when cells adopt mesenchyme characteristics and that microRNA-200a (miR-200a can bind to ZEB1 mRNA, we conjugated molecular beacon (MB mimicking mature miR-200a to magnetic nanoparticles (miR-200a-MB-MNPs and devised an imaging method to observe transitional changes in the cells during EMT. Transforming growth factor-β1 treated epithelial cells and breast cancer cell lines representing both epithelial and mesenchymal phenotypes were used for the validation of miR-200a-MB-MNPs as an EMT imaging probe. The real-time imaging of live cells acquired with the induction of EMT revealed an increase in fluorescence signals by miR-200a-MB-MNPs, cell morphology alterations, and the loss of cell-cell adhesion. Our results suggest that miR-200a-MB-MNPs can be used as an imaging probe for the real-time monitoring of the EMT process in live cells.

  5. A novel molecular beacon-based method for isothermal detection of sequence-specific DNA via T7 RNA polymerase-aided target regeneration.

    Science.gov (United States)

    Yin, Bin-Cheng; Wu, Shan; Ma, Jin-Liang; Ye, Bang-Ce

    2015-06-15

    Developing molecular beacon (MB)-based method for DNA detection has been of great interest to many researchers because of its intrinsic advantages of simplicity, rapidity, and specificity. In this work, we have developed a novel MB-based method for isothermal detection of sequence-specific DNA via T7 RNA polymerase-aided target regeneration strategy. The proposed method involves three primary processes of target-mediated ligation by T4 DNA ligase, transcription reaction by T7 RNA polymerase, and MB switch for signal output. Upon the hybridization with DNA target, a rationally designed MB and a pair of primers encoded with T7 promoter sequence were ligated via the formation of a phosphodiester bond by T4 DNA ligase. The resultant joint fragment acted as template to initiate T7 RNA polymerase-mediated transcription reaction. Correspondingly, a great amount of RNA strands complementary to MB and partial primers were transcribed to initiate new cyclic reactions of MB switch, ligation, and transcription. With such signal amplification strategy of the regeneration of target-like RNA fragments, our proposed assay achieved a detection limit as low as ∼10 pM, which was ∼3 orders of magnitude lower than the traditional MB-based method with a recognition mechanism in 1:1 stoichiometric ratio between MB and target molecule. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A label-free colorimetric isothermal cascade amplification for the detection of disease-related nucleic acids based on double-hairpin molecular beacon.

    Science.gov (United States)

    Wu, Dong; Xu, Huo; Shi, Haimei; Li, Weihong; Sun, Mengze; Wu, Zai-Sheng

    2017-03-08

    K-Ras mutations at codon 12 play an important role in an early step of carcinogenesis. Here, a label-free colorimetric isothermal cascade amplification for ultrasensitive and specific detection of K-Ras point mutation is developed based on a double-hairpin molecular beacon (DHMB). The biosensor consists of DHMB probe and a primer-incorporated polymerization template (PPT) designed partly complementary to DHMB. In the presence of polymerase, target DNA is designed to trigger strand displacement amplification (SDA) via promote the hybridization of PPT with DHMB and subsequently initiates cascade amplification process with the help of the nicking endonuclease. During the hybridization and enzymatic reaction, G-quadruplex/hemin DNAzymes are generated, catalyzing the oxidation of ABTS(2-) by H2O2 in the presence of hemin. Utilizing the proposed facile colorimetric scheme, the target DNA can be quantified down to 4 pM with the dynamic response range of 5 orders of magnitude, indicating the substantially improved detection capability. Even more strikingly, point mutation in K-ras gene can be readily observed by the naked eye without the need for the labeling or expensive equipment. Given the high-performance for K-Ras analysis, the enhanced signal transduction capability associated with double-hairpin structure of DHMB provides a novel rout to screen biomarkers, and the descripted colorimetric biosensor seems to hold great promise for diagnostic applications of genetic diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Enzyme-free and label-free ultra-sensitive colorimetric detection of Pb(2+) using molecular beacon and DNAzyme based amplification strategy.

    Science.gov (United States)

    Yun, Wen; Cai, Dingzhou; Jiang, JiaoLai; Zhao, Pengxiang; Huang, Yu; Sang, Ge

    2016-06-15

    An enzyme-free and label-free colorimetric Pb(2+) sensor based on DNAzyme and molecular beacon (MB) has been developed and demonstrated by recycle using enzyme strand for signal amplification. The substrate strand DNA (S-DNA) of DNAzyme could be converted into MB structure with base pairs of stem part at the both ends. The MB could hybridize with enzyme strand DNA (E-DNA) to form DNAzyme, and be activated and cleaved in the presence of Pb(2+). The cleaved MB is much less stable, releasing from the DNAzyme as two product pieces. The product pieces of MB are flexible and could bind to unmodified AuNPs to effectively stabilize them against salt-induced aggregation. Then, the E-DNA is liberated to catalyze the next reaction and amplify the response signal. By taking advantage of repeated using of E-DNA, our proposed method exhibited high sensitive for Pb(2+) detection in a linear range from 0.05 to 5 nM with detection limit of 20 pM by UV-vis spectrometer. Moreover, this method was also used for determination of Pb(2+) in river water samples with satisfying results. Importantly, this strategy could reach high sensitivity without any modification and complex enzymatic or hairpins based amplification procedures.

  8. Trifunctional molecular beacon-mediated quadratic amplification for highly sensitive and rapid detection of mercury(II) ion with tunable dynamic range.

    Science.gov (United States)

    Zhao, Yue; Liu, Huaqing; Chen, Feng; Bai, Min; Zhao, Junwu; Zhao, Yongxi

    2016-12-15

    Analyses of target with low abundance or concentration varying over many orders of magnitude are severe challenges faced by numerous assay methods due to their modest sensitivity and limited dynamic range. Here, we introduce a homogeneous and rapid quadratic polynomial amplification strategy through rational design of a trifunctional molecular beacon, which serves as not only a reporter molecule but also a bridge to couple two stage amplification modules without adding any reaction components or process other than basic linear amplification. As a test bed for our studies, we took mercury(II) ion as an example and obtained a high sensitivity with detection limit down to 200 pM within 30min. In order to create a tunable dynamic range, homotropic allostery is employed to modulate the target specific binding. When the number of metal binding site varies from 1 to 3, signal response is programmed accordingly with useful dynamic range spanning 50, 25 and 10 folds, respectively. Furthermore, the applicability of the proposed method in river water and biological samples are successfully verified with good recovery and reproducibility, indicating considerable potential for its practicality in complex real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. An ultrasensitive SiO2-encapsulated alloyed CdZnSeS quantum dot-molecular beacon nanobiosensor for norovirus.

    Science.gov (United States)

    Adegoke, Oluwasesan; Seo, Min-Woong; Kato, Tatsuya; Kawahito, Shoji; Park, Enoch Y

    2016-12-15

    Ultrasensitive, rapid and selective diagnostic probes are urgently needed to overcome the limitations of traditional probes for norovirus (NV). Here, we report the detection of NV genogroup II via nucleic acid hybridization technology using a quantum dot (QD)-conjugated molecular beacon (MB) probe. To boost the sensitivity of the MB assay system, an ultrasensitive QD fluorophore with unique optical properties was synthesized, characterized and exploited as a fluorescence signal generator. Alloyed thioglycolic (TGA)-capped CdZnSeS QDs with a high photoluminescence (PL) quantum yield (QY) value of 92% were synthesized, and a modified silanization method was employed to encapsulate the thiol-capped QDs in a silica layer. The resulting highly luminescent alloyed SiO2-coated CdZnSeS QDs had a remarkable PL QY value of 98%. Transmission electron microscopy and dynamic light scattering confirmed the monodispersity of the alloyed nanocrystals, and zeta potential analysis confirmed their colloidal stability. Powder X-ray diffraction and PL lifetime measurements confirmed the surface modification of the QDs. The alloyed TGA-capped and SiO2-coated CdZnSeS QD-conjugated MB bioprobes detected extremely low concentrations of NV RNA. Ultrasensitive detection of low concentrations of NV RNA with a limit of detection (LOD) of 8.2copies/mL in human serum and a LOD of 9.3 copies/mL in buffer was achieved using the SiO2-coated CdZnSeS QD-MB probes, an increase in sensitivity of 3-fold compared with the detection limit for NV RNA using TGA-capped CdZnSeS QD-MBs. The additional merits of our detection system are rapidity, specificity and improved sensitivity over conventional molecular test probes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. The G-BHQ synergistic effect: Improved double quenching molecular beacons based on guanine and Black Hole Quencher for sensitive simultaneous detection of two DNAs.

    Science.gov (United States)

    Xiang, Dongshan; Li, Fengquan; Wu, Chenyi; Shi, Boan; Zhai, Kun

    2017-11-01

    We designed two double quenching molecular beacons (MBs) with simple structure based on guanine (G base) and Black Hole Quencher (BHQ), and developed a new analytical method for sensitive simultaneous detection of two DNAs by synchronous fluorescence analysis. In this analytical method, carboxyl fluorescein (FAM) and tetramethyl-6-carboxyrhodamine (TAMRA) were respectively selected as fluorophore of two MBs, Black Hole Quencher 1 (BHQ-1) and Black Hole Quencher 2 (BHQ-2) were respectively selected as organic quencher, and three continuous nucleotides with G base were connected to organic quencher (BHQ-1 and BHQ-2). In the presence of target DNAs, the two MBs hybridize with the corresponding target DNAs, the fluorophores are separated from organic quenchers and G bases, leading to recovery of fluorescence of FAM and TAMRA. Under a certain conditions, the fluorescence intensities of FAM and TAMRA all exhibited good linear dependence on their concentration of target DNAs (T1 and T2) in the range from 4 × 10(-10) to 4 × 10(-8)molL(-1) (M). The detection limit (3σ, n = 13) of T1 was 3 × 10(-10)M and that of T2 was 2×10(-10)M, respectively. Compared with the existing analysis methods for multiplex DNA with MBs, this proposed method based on double quenching MBs is not only low fluorescence background, short analytical time and low detection cost, but also easy synthesis and good stability of MB probes. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Molecular beacon-decorated polymethylmethacrylate core-shell fluorescent nanoparticles for the detection of survivin mRNA in human cancer cells.

    Science.gov (United States)

    Adinolfi, Barbara; Pellegrino, Mario; Giannetti, Ambra; Tombelli, Sara; Trono, Cosimo; Sotgiu, Giovanna; Varchi, Greta; Ballestri, Marco; Posati, Tamara; Carpi, Sara; Nieri, Paola; Baldini, Francesco

    2017-02-15

    One of the main goals of nanomedicine in cancer is the development of effective drug delivery systems, primarily nanoparticles. Survivin, an overexpressed anti-apoptotic protein in cancer, represents a pharmacological target for therapy and a Molecular Beacon (MB) specific for survivin mRNA is available. In this study, the ability of polymethylmethacrylate nanoparticles (PMMA-NPs) to promote survivin MB uptake in human A549 cells was investigated. Fluorescent and positively charged core PMMA-NPs of nearly 60nm, obtained through an emulsion co-polymerization reaction, and the MB alone were evaluated in solution, for their analytical characterization; then, the MB specificity and functionality were verified after adsorption onto the PMMA-NPs. The carrier ability of PMMA-NPs in A549 was examined by confocal microscopy. With the optimized protocol, a hardly detectable fluorescent signal was obtained after incubation of the cells with the MB alone (fluorescent spots per cell of 1.90±0.40 with a mean area of 1.04±0.20µm(2)), while bright fluorescent spots inside the cells were evident by using the MB loaded onto the PMMA-NPs. (27.50±2.30 fluorescent spots per cell with a mean area of 2.35±0.16µm(2)). These results demonstrate the ability of the PMMA-NPs to promote the survivin-MB internalization, suggesting that this complex might represent a promising strategy for intracellular sensing and for the reduction of cancer cell proliferation. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A modified molecular beacons-based multiplex real-time PCR assay for simultaneous detection of eight foodborne pathogens in a single reaction and its application.

    Science.gov (United States)

    Hu, Qinghua; Lyu, Dongyue; Shi, Xiaolu; Jiang, Yixiang; Lin, Yiman; Li, Yinghui; Qiu, Yaqun; He, Lianhua; Zhang, Ran; Li, Qingge

    2014-03-01

    Foodborne disease outbreaks are often caused by one of the major pathogens. Early identification of the causal pathogen is crucial for disease control and prevention. We describe a real-time polymerase chain reaction (rtPCR) assay that can identify, in a single reaction, up to eight common foodborne bacterial pathogens, including Salmonella enterica subsp. enterica, Listeria monocytogenes, Escherichia coli O157, Vibrio parahaemolyticus, V. vulnificus, Campylobacter jejuni, Enterobacter sakazakii, and Shigella spp. This multiplex rtPCR assay takes advantage of modified molecular beacons and the multicolor combinational probe coding strategy to discriminate each pathogen and the homo-tag assisted non-dimer (HAND) system to prevent dimer formation. The detection limits of the assay ranged from 1.3×10(3) colony-forming units (CFU)/g stool (L. monocytogenes) to 1.6×10(4) CFU/g stool (Shigella spp.). The target genes were 100% specific as assessed on 986 reference strains covering 41 species since no cross-reactions were observed. The assay was applied to the detection of foodborne pathogens in 11,167 clinical samples and the results were compared with culture methods for further validation. The sensitivity and specificity of the rtPCR were 100% and 99%, respectively. When performed in a 96-well rtPCR system, more than 90 samples could be analyzed within 3 h. Given the high accuracy, sensitivity, specificity, and short turn-around time, the established assay could be used for the rapid and reliable identification of the causative pathogens responsible for a certain foodborne disease outbreak and rapid screening of these major foodborne pathogens in laboratory-based surveillance of outpatient clinical samples or even food samples.

  13. Photodynamic Molecular Beacons: An Image-Guided Therapeutic Approach to Breast Cancer Vertebral Metastases

    Science.gov (United States)

    2012-03-01

    vertebroplasty or kyphoplasty in order to mechani - cally stabilize weak or fractured vertebrae:23,27,30,31,50,51 These surgical procedures involve injection of a...as long wave-­ length absorption and emission, easy derivatization, high singlet oxygen quantum yield and low in vivo toxicity, porphyrins have

  14. Molecular and atomic line surveys of galaxies I: the dense, star-forming phase as a beacon

    CERN Document Server

    Geach, James E

    2012-01-01

    We predict the space density of molecular gas reservoirs in the Universe, and place a lower limit on the number counts of carbon monoxide (CO), hydrogen cyanide (HCN) molecular and [CII] atomic emission lines in blind redshift surveys in the submillimeter-centimeter spectral regime. Our model uses: (a) recently available HCN Spectral Line Energy Distributions (SLEDs) of local Luminous Infrared Galaxies (LIRGs, L_IR>10^11 L_sun), (b) a value for epsilon=SFR/M_dense(H_2) provided by new developments in the study of star formation feedback on the interstellar medium and (c) a model for the evolution of the infrared luminosity density. Minimal 'emergent' CO SLEDs from the dense gas reservoirs expected in all star-forming systems in the Universe are then computed from the HCN SLEDs since warm, HCN-bright gas will necessarily be CO-bright, with the dense star-forming gas phase setting an obvious minimum to the total molecular gas mass of any star-forming galaxy. We include [CII] as the most important of the far-inf...

  15. REAL-TIME DETECTION OF SURVIVIN mRNA EXPRESSION IN CERVICAL CANCER CELL LINES USING MOLECULAR BEACON IMAGING

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The initiated growth of human cancer cells of-ten mostly come fromthe abnor mal expression ofgenes.Survivinis anapotosis inhibitor of IAPfami-ly,cloned by Ambrosini in1997usingthe cDNAofeffector cell protease receptor-1(EPR-1),and is thekey gene for the development and advancement oftumor.Inthe present study,the feasibility of detec-ting the expression of survivin mRNA was exam-inedincervical cancer cell lines using molecular bea-coni maging technology.MATERIALS AND METHODS1Cervical cancer cell lines and ce...

  16. Variational Approach to Molecular Kinetics.

    Science.gov (United States)

    Nüske, Feliks; Keller, Bettina G; Pérez-Hernández, Guillermo; Mey, Antonia S J S; Noé, Frank

    2014-04-08

    The eigenvalues and eigenvectors of the molecular dynamics propagator (or transfer operator) contain the essential information about the molecular thermodynamics and kinetics. This includes the stationary distribution, the metastable states, and state-to-state transition rates. Here, we present a variational approach for computing these dominant eigenvalues and eigenvectors. This approach is analogous to the variational approach used for computing stationary states in quantum mechanics. A corresponding method of linear variation is formulated. It is shown that the matrices needed for the linear variation method are correlation matrices that can be estimated from simple MD simulations for a given basis set. The method proposed here is thus to first define a basis set able to capture the relevant conformational transitions, then compute the respective correlation matrices, and then to compute their dominant eigenvalues and eigenvectors, thus obtaining the key ingredients of the slow kinetics.

  17. Robot-Beacon Distributed Range-Only SLAM for Resource-Constrained Operation.

    Science.gov (United States)

    Torres-González, Arturo; Martínez-de Dios, Jose Ramiro; Ollero, Anibal

    2017-04-20

    This work deals with robot-sensor network cooperation where sensor nodes (beacons) are used as landmarks for Range-Only (RO) Simultaneous Localization and Mapping (SLAM). Most existing RO-SLAM techniques consider beacons as passive devices disregarding the sensing, computational and communication capabilities with which they are actually endowed. SLAM is a resource-demanding task. Besides the technological constraints of the robot and beacons, many applications impose further resource consumption limitations. This paper presents a scalable distributed RO-SLAM scheme for resource-constrained operation. It is capable of exploiting robot-beacon cooperation in order to improve SLAM accuracy while meeting a given resource consumption bound expressed as the maximum number of measurements that are integrated in SLAM per iteration. The proposed scheme combines a Sparse Extended Information Filter (SEIF) SLAM method, in which each beacon gathers and integrates robot-beacon and inter-beacon measurements, and a distributed information-driven measurement allocation tool that dynamically selects the measurements that are integrated in SLAM, balancing uncertainty improvement and resource consumption. The scheme adopts a robot-beacon distributed approach in which each beacon participates in the selection, gathering and integration in SLAM of robot-beacon and inter-beacon measurements, resulting in significant estimation accuracies, resource-consumption efficiency and scalability. It has been integrated in an octorotor Unmanned Aerial System (UAS) and evaluated in 3D SLAM outdoor experiments. The experimental results obtained show its performance and robustness and evidence its advantages over existing methods.

  18. Overshadowing of geometric cues by a beacon in a spatial navigation task.

    Science.gov (United States)

    Redhead, Edward S; Hamilton, Derek A; Parker, Matthew O; Chan, Wai; Allison, Craig

    2013-06-01

    In three experiments, we examined whether overshadowing of geometric cues by a discrete landmark (beacon) is due to the relative saliences of the cues. Using a virtual water maze task, human participants were required to locate a platform marked by a beacon in a distinctively shaped pool. In Experiment 1, the beacon overshadowed geometric cues in a trapezium, but not in an isosceles triangle. The longer escape latencies during acquisition in the trapezium control group with no beacon suggest that the geometric cues in the trapezium were less salient than those in the triangle. In Experiment 2, we evaluated whether generalization decrement, caused by the removal of the beacon at test, could account for overshadowing. An additional beacon was placed in an alternative corner. For the control groups, the beacons were identical; for the overshadow groups, they were visually unique. Overshadowing was again found in the trapezium. In Experiment 3, we tested whether the absence of overshadowing in the triangle was due to the geometric cues being more salient than the beacon. Following training, the beacon was relocated to a different corner. Participants approached the beacon rather than the trained platform corner, suggesting that the beacon was more salient. These results suggest that associative processes do not fully explain cue competition in the spatial domain.

  19. Molecular Approaches to Studying Denitrification

    Science.gov (United States)

    Voytek, M. A.

    2001-05-01

    Denitrification is carried out by a diverse array of microbes, mainly as an alternative mode of respiration that allows the organisms to respire using oxidized N compounds instead of oxygen. A common approach in biogeochemistry to the study of the regulation of denitrification is to assess activity by mass balance of substrates and products or direct rate measurements and has intrinsically assumed resource regulation of denitrification. Reported rates can vary significantly even among ecosystems characterized by similar environmental conditions, thus indicating that direct control by abiotic factors often is not sufficient to predict denitrification rates accurately in natural environments. Alternatively, a microbiological approach would proceed with the identification of the organisms responsible and an evaluation of the effect of environmental factors on the biochemical pathways involved. Traditional studies have relied on culturing techniques, such as most probable number enrichments, and have failed to assess the role of the predominately uncultivable members of the microbial community. A combination of biogeochemical measurements and the assessment of the microbial community is necessary and becoming increasingly possible with the development and application of molecular techniques. In order to understand how the composition and physiological behavior of the microbial community affects denitrification rates, we use a suite of molecular techniques developed for phylogenetic and metabolic characterization of denitrifying communities. Molecular tools available for quantifying denitrifying bacteria and assessing their diversity and activity are summarized. Their application is illustrated with examples from marine and freshwater environments. Emerging techniques and their application to ground water studies will be discussed.

  20. Topical MMP beacon enabled fluorescence-guided resection of oral carcinoma.

    Science.gov (United States)

    Burgess, Laura; Chen, Juan; Wolter, Nikolaus E; Wilson, Brian; Zheng, Gang

    2016-03-01

    Each year almost 300,000 individuals worldwide are diagnosed with oral cancer, more than 90% of these being oral carcinoma [N. Engl. J. Med.328, 1841993]. Surgical resection is the standard of care, but accurate delineation of the tumor boundaries is challenging, resulting in either under-resection with risk of local recurrence or over-resection with increased functional loss and negative impact on quality of life. This study evaluates, in two pre-clinical in vivo tumor models, the potential of fluorescence-guided resection using molecular beacons activated by metalloproteinases, which are frequently upregulated in human oral cancer. In both models there was rapid (beacon activation upon local application, allowing clear fluoresecence imaging in vivo and confirmed by ex vivo fluorescence microscopy and HPLC, with minimal activation in normal oral tissues. Although the tissue penetration was limited using topical application, these findings support further development of this approach towards translation to first-in-human trials.

  1. Molecular approaches in experimental neuroimaging

    Energy Technology Data Exchange (ETDEWEB)

    Tavitian, B. [CEA Saclay, 91 - Gif sur Yvette (France)

    2009-07-01

    We quantified and compared six parameters (resolution, depth, sensitivity, portability, quantification and cost) of four molecular imaging techniques (MRI, optics, ultrasound and TEP), with the three types of electromagnetic radiation used in vivo (Frequencies (10{sup 6} to 10{sup 22} Hz), Photonic Energy (10{sup -4} to 10{sup 9} eV) and Wavelengths (10{sup -2} to 10{sup -15} m)). This form of molecular imaging demands the most sensitive technique available (Pl. 26-2 to 26-4). Four examples of experimental in vivo approaches on small animals are shown: molecular passage through the blood-brain barrier (endothelial cells, astrocytes and occludin, pharmacokinetics, studied with PET) (Pl. 2-5 to 2-11); imaging of receptors and ligands, especially peripheral benzodiazepine receptors (PBR) by PET and MRI in the rat (Pl. 2-12 to Pl. 2-15); neuro-pathology of neuro-degenerative and inflammatory diseases and stroke by PET and MRI in the rat (Pl. 2-16 to 2-17); and the study of responses to stimulation explored with in vivo imaging of calcium signals and their variations by photonic analysis, as on the scale of mitochondrial calcium (Pl.2-18 to Pl.2-22). (author)

  2. Indoor location estimation using radio beacons

    Science.gov (United States)

    Ahmad, Uzair; Lee, Young-Koo; Lee, Sungyoug; Park, Chongkug

    2007-12-01

    We present a simple location estimation method for developing radio beacon based location system in the indoor environments. It employs an online learning approach for making large scale location systems in a short time collaboratively. The salient features of our method are low memory requirements and simple computations which make it suitable for both distributed location-aware applications based on client-server model as well as privacy sensitive applications residing on stand alone devices.

  3. The quick detection of mutation site of eodon 463 in katG gene of INH resistant MTB by molecular beacon%耐异烟肼结核杆菌Kat G463condon点突变的分子信标快速检测

    Institute of Scientific and Technical Information of China (English)

    陈庆海; 府伟灵; 张雪; 王易伟; 边志衡; 匡红

    2009-01-01

    目的 应用分子信标探针检测结核杆菌耐异烟肼kat G463condon点突变,并与测序结果比较以验证该检测方法.方法 运用软件对Beacon designer设计,katG基因包含463condon的分子信标,建立其扩增体系及分子信标芯片检测方法,对扩增产物测序并作比较.结果 通过CDC相机观测到结核标准株及耐异烟肼PCR产物与分子信标杂交后荧光信号区别明显;16株耐异烟肼组与10株H37RV标准株对照组荧光信号强度比较,耐异烟肼组463condon突变检出率为37%,分子信标检测方法与测序法符合率达93%.结论 分子信标技术是一种具有高灵敏核酸点突变检测技术;分子信标芯片检测方法与测序法符合率较好.%Objective To detect the mutation site of codon 463 in katG gene of INH resistant MTB by molecular beacon probe, and verify the detecting method by comparing with gene sequencing. Methods The software Beacon designer,was used to design codon 463 molecular beacon probe and the amplification system,and then the method was compared with gene sequencing. Results The difference between PCR products from standard strain and INH resistant one is obvious in detecting the fluores-cent light by use of CDC camera. We detected and compare the fluorescent light signal of INH resistant strains group (n= 16) and H37RV standard strains group (n= 10). The detection rate of codon 463 mutation accounted for 37% by comparing the above two groups. The coincidence rate of molecular beacon detection method and sequencing assay was 93 %. Conclusion The molecular beacon method is a technology with characteristics of high sensitiveness and specificity in detecting nucleic acid. The co-incidence rate is good between molecular beacon chip way and sequencing.

  4. Crowdsourcing for Context: Regarding Privacy in Beacon Encounters via Contextual Integrity

    Directory of Open Access Journals (Sweden)

    Bello-Ogunu Emmanuel

    2016-07-01

    Full Text Available Research shows that context is important to the privacy perceptions associated with technology. With Bluetooth Low Energy beacons, one of the latest technologies for providing proximity and indoor tracking, the current identifiers that characterize a beacon are not sufficient for ordinary users to make informed privacy decisions about the location information that could be shared. One solution would be to have standardized category and privacy labels, produced by beacon providers or an independent third-party. An alternative solution is to find an approach driven by users, for users. In this paper, we propose a novel crowdsourcing based approach to introduce elements of context in beacon encounters.We demonstrate the effectiveness of this approach through a user study, where participants use a crowd-based mobile app designed to collect beacon category and privacy information as a scavenger hunt game. Results show that our approach was effective in helping users label beacons according to the specific context of a given beacon encounter, as well as the privacy perceptions associated with it. This labeling was done with an accuracy of 92%, and with an acceptance rate of 82% of all recommended crowd labels. Lastly, we conclusively show how crowdsourcing for context can be used towards a user-centric framework for privacy management during beacon encounters.

  5. Detection of MDR1 mRNA expression with optimized gold nanoparticle beacon

    Science.gov (United States)

    Zhou, Qiumei; Qian, Zhiyu; Gu, Yueqing

    2016-03-01

    MDR1 (multidrug resistance gene) mRNA expression is a promising biomarker for the prediction of doxorubicin resistance in clinic. However, the traditional technical process in clinic is complicated and cannot perform the real-time detection mRNA in living single cells. In this study, the expression of MDR1 mRNA was analyzed based on optimized gold nanoparticle beacon in tumor cells. Firstly, gold nanoparticle (AuNP) was modified by thiol-PEG, and the MDR1 beacon sequence was screened and optimized using a BLAST bioinformatics strategy. Then, optimized MDR1 molecular beacons were characterized by transmission electron microscope, UV-vis and fluorescence spectroscopies. The cytotoxicity of MDR1 molecular beacon on L-02, K562 and K562/Adr cells were investigated by MTT assay, suggesting that MDR1 molecular beacon was low inherent cytotoxicity. Dark field microscope was used to investigate the cellular uptake of hDAuNP beacon assisted with ultrasound. Finally, laser scanning confocal microscope images showed that there was a significant difference in MDR1 mRNA expression in K562 and K562/Adr cells, which was consistent with the results of q-PCR measurement. In summary, optimized MDR1 molecular beacon designed in this study is a reliable strategy for detection MDR1 mRNA expression in living tumor cells, and will be a promising strategy for in guiding patient treatment and management in individualized medication.

  6. COSPAS-SARSAT Beacon Certification Facility

    Data.gov (United States)

    Federal Laboratory Consortium — EPG's COSPAS-SARSAT Beacon Certification Facility is one of five certification facilities in the world. Formal certifications are available for all beacon types and...

  7. Beacon Communities’ Public Health Initiatives: A Case Study Analysis

    Science.gov (United States)

    Massoudi, Barbara L.; Marcial, Laura H.; Haque, Saira; Bailey, Robert; Chester, Kelley; Cunningham, Shellery; Riley, Amanda; Soper, Paula

    2014-01-01

    Introduction: The Beacon Communities for Public Health (BCPH) project was launched in 2011 to gain a better understanding of the range of activities currently being conducted in population- and public health by the Beacon Communities. The project highlighted the successes and challenges of these efforts with the aim of sharing this information broadly among the public health community. Background: The Beacon Community Program, designed to showcase technology-enabled, community-based initiatives to improve outcomes, focused on: building and strengthening health information technology (IT) infrastructure and exchange capabilities; translating investments in health IT to measureable improvements in cost, quality, and population health; and, developing innovative approaches to performance measurement, technology, and care delivery. Methods: Four multimethod case studies were conducted based on a modified sociotechnical framework to learn more about public health initiative implementation and use in the Beacon Communities. Our methodological approach included using document review and semistructured key informant interviews. NACCHO Model Practice Program criteria were used to select the public health initiatives included in the case studies. Findings: Despite differences among the case studies, common barriers and facilitators were found to be present in all areas of the sociotechnical framework application including structure, people, technology, tasks, overarching considerations, and sustainability. Overall, there were many more facilitators (range = 7–14) present for each Beacon compared to barriers (range = 4–6). Discussion: Four influential promising practices were identified through the work: forging strong and sustainable partnerships; ensuring a good task-technology fit and a flexible and iterative design; fostering technology acceptance; and, providing education and demonstrating value. Conclusions: A common weakness was the lack of a framework or model for

  8. Beacon communities' public health initiatives: a case study analysis.

    Science.gov (United States)

    Massoudi, Barbara L; Marcial, Laura H; Haque, Saira; Bailey, Robert; Chester, Kelley; Cunningham, Shellery; Riley, Amanda; Soper, Paula

    2014-01-01

    The Beacon Communities for Public Health (BCPH) project was launched in 2011 to gain a better understanding of the range of activities currently being conducted in population- and public health by the Beacon Communities. The project highlighted the successes and challenges of these efforts with the aim of sharing this information broadly among the public health community. The Beacon Community Program, designed to showcase technology-enabled, community-based initiatives to improve outcomes, focused on: building and strengthening health information technology (IT) infrastructure and exchange capabilities; translating investments in health IT to measureable improvements in cost, quality, and population health; and, developing innovative approaches to performance measurement, technology, and care delivery. Four multimethod case studies were conducted based on a modified sociotechnical framework to learn more about public health initiative implementation and use in the Beacon Communities. Our methodological approach included using document review and semistructured key informant interviews. NACCHO Model Practice Program criteria were used to select the public health initiatives included in the case studies. Despite differences among the case studies, common barriers and facilitators were found to be present in all areas of the sociotechnical framework application including structure, people, technology, tasks, overarching considerations, and sustainability. Overall, there were many more facilitators (range = 7-14) present for each Beacon compared to barriers (range = 4-6). Four influential promising practices were identified through the work: forging strong and sustainable partnerships; ensuring a good task-technology fit and a flexible and iterative design; fostering technology acceptance; and, providing education and demonstrating value. A common weakness was the lack of a framework or model for the Beacon Communities evaluation work. Sharing a framework or approach

  9. 47 CFR 97.203 - Beacon station.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Beacon station. 97.203 Section 97.203... SERVICE Special Operations § 97.203 Beacon station. (a) Any amateur station licensed to a holder of a Technician, Technician Plus, General, Advanced or Amateur Extra Class operator license may be a beacon. A...

  10. Frequency Estimator Performance for a Software-Based Beacon Receiver

    Science.gov (United States)

    Zemba, Michael J.; Morse, Jacquelynne Rose; Nessel, James A.; Miranda, Felix

    2014-01-01

    As propagation terminals have evolved, their design has trended more toward a software-based approach that facilitates convenient adjustment and customization of the receiver algorithms. One potential improvement is the implementation of a frequency estimation algorithm, through which the primary frequency component of the received signal can be estimated with a much greater resolution than with a simple peak search of the FFT spectrum. To select an estimator for usage in a QV-band beacon receiver, analysis of six frequency estimators was conducted to characterize their effectiveness as they relate to beacon receiver design.

  11. Molecular approaches to Taenia asiatica.

    Science.gov (United States)

    Jeon, Hyeong-Kyu; Eom, Keeseon S

    2013-02-01

    Taenia solium, T. saginata, and T. asiatica are taeniid tapeworms that cause taeniasis in humans and cysticercosis in intermediate host animals. Taeniases remain an important public health concerns in the world. Molecular diagnostic methods using PCR assays have been developed for rapid and accurate detection of human infecting taeniid tapeworms, including the use of sequence-specific DNA probes, PCR-RFLP, and multiplex PCR. More recently, DNA diagnosis using PCR based on histopathological specimens such as 10% formalin-fixed paraffin-embedded and stained sections mounted on slides has been applied to cestode infections. The mitochondrial gene sequence is believed to be a very useful molecular marker for not only studying evolutionary relationships among distantly related taxa, but also for investigating the phylo-biogeography of closely related species. The complete sequence of the human Taenia tapeworms mitochondrial genomes were determined, and its organization and structure were compared to other human-tropic Taenia tapeworms for which complete mitochondrial sequence data were available. The multiplex PCR assay with the Ta4978F, Ts5058F, Tso7421F, and Rev7915 primers will be useful for differential diagnosis, molecular characterization, and epidemiological surveys of human Taenia tapeworms.

  12. Molecular approach to echinoderm regeneration.

    Science.gov (United States)

    Thorndyke, M C; Chen, W C; Beesley, P W; Patruno, M

    2001-12-15

    Until very recently echinoderm regeneration research and indeed echinoderm research in general has suffered because of the lack of critical mass. In terms of molecular studies of regeneration, echinoderms in particular have lagged behind other groups in this respect. This is in sharp contrast to the major advances achieved with molecular and genetic techniques in the study of embryonic development in echinoderms. The aim of our studies has been to identify genes involved in the process of regeneration and in particular neural regeneration in different echinoderm species. Our survey included the asteroid Asterias rubens and provided evidence for the expression of Hox gene homologues in regenerating radial nerve cords. Present evidence suggests: 1) ArHox1 expression is maintained in intact radial nerve cord and may be upregulated during regeneration. 2) ArHox1 expression may contribute to the dedifferentiation and/or cell proliferation process during epimorphic regeneration. From the crinoid Antedon bifida, we have been successful in cloning a fragment of a BMP2/4 homologue (AnBMP2/4) and analysing its expression during arm regeneration. Here, we discuss the importance of this family of growth factors in several regulatory spheres, including maintaining the identity of pluripotent blastemal cells or as a classic skeletal morphogenic regulator. There is clearly substantial scope for future echinoderm research in the area of molecular biology and certain aspects are discussed in this review.

  13. Dictyostelium discoideum: Molecular approaches to cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Spudich, J.A.

    1987-01-01

    The central point of this book is to present Dictyostelium as a valuable eukaryotic organism for those interested in molecular studies that require a combined biochemical, structural, and genetic approach. The book is not meant to be a comprehensive compilation of all methods involving Dictyostelium, but instead is a selective set of chapters that demonstrates the utility of the organism for molecular approaches to interesting cell biological problems.

  14. Molecular approaches to contraceptive development

    Indian Academy of Sciences (India)

    Usha Natraj

    2001-11-01

    The next generation of contraceptives will be based on the identification of novel molecules essential for reproductive processes and will rely on the refinement of older as well as newer technologies. Functional analysis of naturally occurring reproductive genetic disorders and creation of mice null for specific genes would greatly assist in the choice of genetic targets for contraceptive development. Structure-based design of drugs as exemplified by the preparation of an orally active non-peptide gonadotropin releasing hormone (GnRH) would revolutionize drug formulation and delivery for a peptide analogue. This review examines some of the molecular targets that may change contraceptive choices in the future.

  15. Huntington Disease: Molecular Diagnostics Approach.

    Science.gov (United States)

    Bastepe, Murat; Xin, Winnie

    2015-10-06

    Huntington disease (HD) is caused by expansion of a CAG trinucleotide repeat in the first exon of the Huntingtin (HTT) gene. Molecular testing of Huntington disease for diagnostic confirmation and disease prediction requires detection of the CAG repeat expansion. There are three main types of HD genetic testing: (1) diagnostic testing to confirm or rule out disease, (2) presymptomatic testing to determine whether an at-risk individual inherited the expanded allele, and (3) prenatal testing to determine whether the fetus has inherited the expanded allele. This unit includes protocols that describe the complementary use of polymerase chain reactions (PCR) and Southern blot hybridization to accurately measure the CAG trinucleotide repeat size and interpret the test results. In addition, an indirect linkage analysis that does not reveal the unwanted parental HD status in a prenatal testing will also be discussed.

  16. Development of a molecular-beacon-based multi-allelic real-time RT-PCR assay for the detection of human coronavirus causing severe acute respiratory syndrome (SARS-CoV): a general methodology for detecting rapidly mutating viruses.

    Science.gov (United States)

    Hadjinicolaou, Andreas V; Farcas, Gabriella A; Demetriou, Victoria L; Mazzulli, Tony; Poutanen, Susan M; Willey, Barbara M; Low, Donald E; Butany, Jagdish; Asa, Sylvia L; Kain, Kevin C; Kostrikis, Leondios G

    2011-04-01

    Emerging infectious diseases have caused a global effort for development of fast and accurate detection techniques. The rapidly mutating nature of viruses presents a major difficulty, highlighting the need for specific detection of genetically diverse strains. One such infectious agent is SARS-associated coronavirus (SARS-CoV), which emerged in 2003. This study aimed to develop a real-time RT-PCR detection assay specific for SARS-CoV, taking into account its intrinsic polymorphic nature due to genetic drift and recombination and the possibility of continuous and multiple introductions of genetically non-identical strains into the human population, by using mismatch-tolerant molecular beacons designed to specifically detect the SARS-CoV S, E, M and N genes. These were applied in simple, reproducible duplex and multiplex real-time PCR assays on 25 post-mortem samples and constructed RNA controls, and they demonstrated high target detection ability and specificity. This assay can readily be adapted for detection of other emerging and rapidly mutating pathogens.

  17. Molecular approach of auditory neuropathy.

    Science.gov (United States)

    Silva, Magali Aparecida Orate Menezes da; Piatto, Vânia Belintani; Maniglia, Jose Victor

    2015-01-01

    Mutations in the otoferlin gene are responsible for auditory neuropathy. To investigate the prevalence of mutations in the mutations in the otoferlin gene in patients with and without auditory neuropathy. This original cross-sectional case study evaluated 16 index cases with auditory neuropathy, 13 patients with sensorineural hearing loss, and 20 normal-hearing subjects. DNA was extracted from peripheral blood leukocytes, and the mutations in the otoferlin gene sites were amplified by polymerase chain reaction/restriction fragment length polymorphism. The 16 index cases included nine (56%) females and seven (44%) males. The 13 deaf patients comprised seven (54%) males and six (46%) females. Among the 20 normal-hearing subjects, 13 (65%) were males and seven were (35%) females. Thirteen (81%) index cases had wild-type genotype (AA) and three (19%) had the heterozygous AG genotype for IVS8-2A-G (intron 8) mutation. The 5473C-G (exon 44) mutation was found in a heterozygous state (CG) in seven (44%) index cases and nine (56%) had the wild-type allele (CC). Of these mutants, two (25%) were compound heterozygotes for the mutations found in intron 8 and exon 44. All patients with sensorineural hearing loss and normal-hearing individuals did not have mutations (100%). There are differences at the molecular level in patients with and without auditory neuropathy. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  18. Molecular approach of auditory neuropathy

    Directory of Open Access Journals (Sweden)

    Magali Aparecida Orate Menezes da Silva

    2015-06-01

    Full Text Available INTRODUCTION: Mutations in the otoferlin gene are responsible for auditory neuropathy. OBJECTIVE: To investigate the prevalence of mutations in the mutations in the otoferlin gene in patients with and without auditory neuropathy. METHODS: This original cross-sectional case study evaluated 16 index cases with auditory neuropathy, 13 patients with sensorineural hearing loss, and 20 normal-hearing subjects. DNA was extracted from peripheral blood leukocytes, and the mutations in the otoferlin gene sites were amplified by polymerase chain reaction/restriction fragment length polymorphism. RESULTS: The 16 index cases included nine (56% females and seven (44% males. The 13 deaf patients comprised seven (54% males and six (46% females. Among the 20 normal-hearing subjects, 13 (65% were males and seven were (35% females. Thirteen (81% index cases had wild-type genotype (AA and three (19% had the heterozygous AG genotype for IVS8-2A-G (intron 8 mutation. The 5473C-G (exon 44 mutation was found in a heterozygous state (CG in seven (44% index cases and nine (56% had the wild-type allele (CC. Of these mutants, two (25% were compound heterozygotes for the mutations found in intron 8 and exon 44. All patients with sensorineural hearing loss and normal-hearing individuals did not have mutations (100%. CONCLUSION: There are differences at the molecular level in patients with and without auditory neuropathy.

  19. Rapid detection of fluoroquinolone-resistant and heteroresistant Mycobacterium tuberculosis by use of sloppy molecular beacons and dual melting-temperature codes in a real-time PCR assay.

    Science.gov (United States)

    Chakravorty, Soumitesh; Aladegbami, Bola; Thoms, Kimberley; Lee, Jong Seok; Lee, Eun Gae; Rajan, Vignesh; Cho, Eun-Jin; Kim, Hyunchul; Kwak, Hyunkyung; Kurepina, Natalia; Cho, Sang-Nae; Kreiswirth, Barry; Via, Laura E; Barry, Clifton E; Alland, David

    2011-03-01

    Fluoroquinolones (FQ) are important second-line drugs to treat tuberculosis; however, FQ resistance is an emerging problem. Resistance has been mainly attributed to mutations in a 21-bp region of the Mycobacterium tuberculosis gyrA gene, often called the quinolone resistance-determining region (QRDR). We have developed a simple, rapid, and specific assay to detect FQ resistance-determining QRDR mutations. The assay amplifies the M. tuberculosis gyrA QRDR in an asymmetrical PCR followed by probing with two sloppy molecular beacons (SMBs) spanning the entire QRDR. Mutations are detected by melting temperature (T(m)) shifts that occur when the SMBs bind to mismatched sequences. By testing DNA targets corresponding to all known QRDR mutations, we found that one or both of the SMBs produced a T(m) shift of at least 3.6°C for each mutation, making mutation detection very robust. The assay was also able to identify mixtures of wild-type and mutant DNA, with QRDR mutants identified in samples containing as little as 5 to 10% mutant DNA. The assay was blindly validated for its ability to identify the QRDR mutations on DNA extracted from clinical M. tuberculosis strains. Fifty QRDR wild-type samples, 34 QRDR mutant samples, and 8 heteroresistant samples containing mixtures of wild-type and mutant DNA were analyzed. The results showed 100% concordance to conventional DNA sequencing, including a complete identification of all of the mixtures. This SMB T(m) shift assay will be a valuable molecular tool to rapidly detect FQ resistance and to detect the emergence of FQ heteroresistance in clinical samples from tuberculosis patients.

  20. Designing reduced beacon trajectory for sensor localization

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Localization is one of the substantial issues in wireless sensor networks. The key problem for the mobile beacon localization is how to choose the appropriate beacon trajectory. However, little research has been done on it. In this paper, firstly,we deduce the number of positions for a beacon to send a packet according to the acreage of ROI (region of interest); and next we present a novel method based on virtual force to arrange the positions in arbitrary ROI; then we apply TSP (travelling salesman problem) algorithm to the positions sequence to obtain the optimal touring path, i.e. the reduced beacon trajectory. When a mobile beacon moves along the touring path, sending RF signals at every position, the sensors in ROI can work out their position with trilateration. Experimental results demonstrate that the localization method, based on the beacon reduced path, is efficient and has flexible accuracy.

  1. Underwater Acoustic Beacon Location System

    Science.gov (United States)

    2016-12-23

    transpose operator is a standard operator in linear or matrix algebra . The transpose operator converts the row vector   T aaaa z,y,x=P to a column...February 2017 The below identified patent application is available for licensing. Requests for information should be addressed to...300087 1 of 31 UNDERWATER ACOUSTIC BEACON LOCATION SYSTEM [0001] The present application claims the benefit of United States Provisional

  2. The ANTARES optical beacon system

    Energy Technology Data Exchange (ETDEWEB)

    Ageron, M. [CPPM - Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (France); Aguilar, J.A. [IFIC - Instituto de Fisica Corpuscular, Edificios de Investigacion de Paterna, CSIC - Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain)]. E-mail: J.A.Aguilar@ific.uv.es; Albert, A. [GRPHE - Groupe de Recherche en Physique des Hautes Energies, Universite de Haute Alsace, 61 Rue Albert Camus, 68093 Mulhouse Cedex (France)) (and others)

    2007-08-11

    ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three-dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular, when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirable. Accordingly, different time calibration systems have been developed for the ANTARES telescope. In this article, a system based on Optical Beacons, a set of external and well-controlled pulsed light sources located throughout the detector, is described. This calibration system takes into account the optical properties of sea water, which is used as the detection volume of the ANTARES telescope. The design, tests, construction and first results of the two types of beacons, LED and laser-based, are presented.

  3. BBIS: Beacon Bus Information System

    Science.gov (United States)

    Kasim, Shahreen; Hafit, Hanayanti; Pei Juin, Kong; Afizah Afif, Zehan; Hashim, Rathiah; Ruslai, Husni; Jahidin, Kamaruzzaman; Syafwan Arshad, Mohammad

    2016-11-01

    Lack of bus information for example bus timetable, status of the bus and messy advertisement on bulletin board at the bus stop will give negative impact to tourist. Therefore, a real-time update bus information bulletin board provides all information needed so that passengers can save their bus information searching time. Supported with Android or iOS, Beacon Bus Information System (BBIS) provides bus information between Batu Pahat and Kluang area. BBIS is a system that implements physical web technology and interaction on demand. It built on Backend-as-a-Service, a cloud solution and Firebase non relational database as data persistence backend and syncs between user client in the real-time. People walk through bus stop with smart device and do not require any application. Bluetooth Beacon is used to achieve smart device's best performance of data sharing. Intellij IDEA 15 is one of the tools that that used to develop the BBIS system. Multi-language included front end and backend supported Integration development environment (IDE) helped to speed up integration process.

  4. 16S rRNA beacons for bacterial monitoring during human space missions.

    Science.gov (United States)

    Larios-Sanz, Maia; Kourentzi, Katerina D; Warmflash, David; Jones, Jeffrey; Pierson, Duane L; Willson, Richard C; Fox, George E

    2007-04-01

    Microorganisms are unavoidable in space environments and their presence has, at times, been a source of problems. Concerns about disease during human space missions are particularly important considering the significant changes the immune system incurs during spaceflight and the history of microbial contamination aboard the Mir space station. Additionally, these contaminants may have adverse effects on instrumentation and life-support systems. A sensitive, highly specific system to detect, characterize, and monitor these microbial populations is essential. Herein we describe a monitoring approach that uses 16S rRNA targeted molecular beacons to successfully detect several specific bacterial groupings. This methodology will greatly simplify in-flight monitoring by minimizing sample handling and processing. We also address and provide solutions to target accessibility problems encountered in hybridizations that target 16S rRNA.

  5. Fusing Range Measurements from Ultrasonic Beacons and a Laser Range Finder for Localization of a Mobile Robot

    Science.gov (United States)

    Ko, Nak Yong; Kuc, Tae-Yong

    2015-01-01

    This paper proposes a method for mobile robot localization in a partially unknown indoor environment. The method fuses two types of range measurements: the range from the robot to the beacons measured by ultrasonic sensors and the range from the robot to the walls surrounding the robot measured by a laser range finder (LRF). For the fusion, the unscented Kalman filter (UKF) is utilized. Because finding the Jacobian matrix is not feasible for range measurement using an LRF, UKF has an advantage in this situation over the extended KF. The locations of the beacons and range data from the beacons are available, whereas the correspondence of the range data to the beacon is not given. Therefore, the proposed method also deals with the problem of data association to determine which beacon corresponds to the given range data. The proposed approach is evaluated using different sets of design parameter values and is compared with the method that uses only an LRF or ultrasonic beacons. Comparative analysis shows that even though ultrasonic beacons are sparsely populated, have a large error and have a slow update rate, they improve the localization performance when fused with the LRF measurement. In addition, proper adjustment of the UKF design parameters is crucial for full utilization of the UKF approach for sensor fusion. This study contributes to the derivation of a UKF-based design methodology to fuse two exteroceptive measurements that are complementary to each other in localization. PMID:25970259

  6. Molecular biology approaches in bioadhesion research

    Directory of Open Access Journals (Sweden)

    Marcelo Rodrigues

    2014-07-01

    Full Text Available The use of molecular biology tools in the field of bioadhesion is still in its infancy. For new research groups who are considering taking a molecular approach, the techniques presented here are essential to unravelling the sequence of a gene, its expression and its biological function. Here we provide an outline for addressing adhesion-related genes in diverse organisms. We show how to gradually narrow down the number of candidate transcripts that are involved in adhesion by (1 generating a transcriptome and a differentially expressed cDNA list enriched for adhesion-related transcripts, (2 setting up a BLAST search facility, (3 perform an in situ hybridization screen, and (4 functional analyses of selected genes by using RNA interference knock-down. Furthermore, latest developments in genome-editing are presented as new tools to study gene function. By using this iterative multi-technologies approach, the identification, isolation, expression and function of adhesion-related genes can be studied in most organisms. These tools will improve our understanding of the diversity of molecules used for adhesion in different organisms and these findings will help to develop innovative bio-inspired adhesives.

  7. The ANTARES Optical Beacon System

    CERN Document Server

    Ageron, M; Albert, A; Ameli, F; Anghinolfi, M; Anton, G; Anvar, S; Ardellier-Desages, F; Aslanides, E; Aubert, J J; Auer, R; Barbarito, E; Basa, S; Battaglieri, M; Becherini, Y; Beltramelli, J; Bertin, V; Bigi, A; Billault, M; Blaes, R; De Botton, N R; Bouwhuis, M C; Bradbury, S M; Bruijn, R; Brunner, J; Burgio, G F; Busto, J; Cafagna, F; Caillat, L; Calzas, A; Capone, A; Caponetto, L; Carmona, E; Carr, J; Cartwright, S L; Castel, D; Castorina, E; Cavasinni, V; Cecchini, S; Ceres, A; Charvis, P; Chauchot, P; Chiarusi, T; Circella, M; Colnard, C; Compere, C; Coniglione, R; Cottini, N; Coyle, P; Cuneo, S; Cussatlegras, A S; Damy, G; Van Dantzig, R; De Bonis, G; De Marzo, C; De Vita, R; Dekeyser, I; Delagnes, E; Denans, D; Deschamps, A; Destelle, J J; Dinkespieler, B; Distefano, C; Donzaud, C; Drogou, J F; Druillole, F; Durand, D; Ernenwein, J P; Escoffier, S; Falchini, E; Favard, S; Fehr, F; Feinstein, F; Ferry, S; Fiorello, C; Flaminio, V; Fratini, K; Fuda, J L; Galeotti, S; Gallone, J M; Giacomelli, G; Girard, N; Gojak, C; Goret, P; Graf, K; Hallewell, G; Harakeh, M N; Hartmann, B; Heijboer, A; Heine, E; Hello, Y; Hernández-Rey, J J; Hossl, J; Hoffman, C; Hogenbirk, J; Hubbard, John R; Jaquet, M; Jaspers, M; De Jong, M; Jouvenot, F; Kalantar-Nayestanaki, N; Kappes, A; Karg, T; Katz, U; Keller, P; Kok, E; Kok, H; Kooijman, P; Kopper, C; Korolkova, E V; Kouchner, A; Kretschmer, W; Kruijer, A; Kuch, S; Kudryavtsev, V A; Lagier, P; Lahmann, R; Lamanna, G; Lamare, P; Lambard, G; Languillat, J C; Laschinsky, H; Lavalle, J; Le Guen, Y; Le Provost, H; Le Van-Suu, A; Lefèvre, D; Legou, T; Lelaizant, G; Lim, G; Lo Presti, D; Löhner, H; Loucatos, Sotirios S; Louis, F; Lucarelli, F; Lyashuk, V; Marcelin, M; Margiotta, A; Masullo, R; Mazéas, F; Mazure, A; McMillan, J E; Megna, R; Melissas, M; Migneco, E; Milovanovic, A; Mongelli, M; Montaruli, T; Morganti, M; Moscoso, L; Musumeci, M; Naumann-Godo, M; Naumann, C; Niess, V; Noble, T; Olivetto, C; Ostasch, R; Palanque-Delabrouille, Nathalie; Payre, P; Peek, H; Pérez, A; Petta, C; Piattelli, P; Pillet, R; Pineau, J P; Poinsignon, J; Popa, V; Pradier, T; Racca, C; Randazzo, N; Van Randwijk, J; Real, D; Van Rens, B; Rethore, F; Rewiersma, P A M; Riccobene, G; Rigaud, V; Ripani, M; Roca, V; Roda, C; Rolin, J F; Rose, H J; Rostovtsev, A; Roux, J; Ruppi, M; Russo, G V; Rusydi, G; Salesa, F; Salomon, K; Sapienza, P; Schmitt, F; Schuller, J P; Shanidze, R; Sokalski, I A; Spona, T; Spurio, M; van der Steenhoven, G; Stolarczyk, T; Streeb, K; Sulak, L; Taiuti, M; Tamburini, C; Tao, C; Terreni, G; Thompson, L F; Urbano, F; Valdy, P; Valente, V; Vallage, B; Vaudaine, G; Venekamp, G; Verlaat, B; Vernin, P; De Vries-Uiterweerd, G; Van Wijk, R; Wijnker, G; De Witt-Huberts, P K A; Wobbe, G; De Wolf, E; Yao, A F; Zaborov, D; Zaccone, Henri; De Dios-Zornoza-Gomez, Juan; Zúñiga, J; al, et

    2007-01-01

    ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirable. Accordingly, different time calibration systems have been developed for the ANTARES telescope. In this article, a system based on Optical Beacons, a set of external and well-controlled pulsed light sources located throughout the detector, is described. This calibration system takes into account the optical properties of ...

  8. Cyclostationary Beacon for Assisting Spectrum Sensing in Opportunistic Spectrum Access

    Directory of Open Access Journals (Sweden)

    Thomas Kaiser

    2011-03-01

    Full Text Available Cognitive radio is a promising solution to the problem of spectrum scarcity by means of allowing secondary radio networks access the spectrum opportunistically. One of the most important issues in cognitive radio is how to detect existing over-the-air signals reliably. Not a few literatures have reported that signals could be detected via their inherent or embedded properties. However, this approach may not be reliable and flexible enough for all kinds of signals with different modulation types. In this paper, we propose a type of multitone beacon signal carrying cyclostationary signatures, which is able to enhance the reliability and efficiency of signal detection at low cost of spectrum overhead. This beacon not only can indicate the presence or absence of user signal but also can reveal some other information helpful to opportunistic spectrum access through the information bits carried on its cyclostationary signatures. It could be applied to device/network identification, indication of spectrum allocation and spectrum rendezvous, both for primary and secondary users. Based on our previous work reported in [1], the generation and detection algorithm of the beacon signal are extended with improved spectral efficiency. Performance is discussed with both computer simulation and testbed validation.

  9. Beacon data acquisition and display system

    Science.gov (United States)

    Skogmo, David G.; Black, Billy D.

    1991-01-01

    A system for transmitting aircraft beacon information received by a secondary surveillance radar through telephone lines to a remote display includes a digitizer connected to the radar for preparing a serial file of data records containing position and identification information of the beacons detected by each sweep of the radar. This information is transmitted through the telephone lines to a remote computer where it is displayed.

  10. Visual detection of STAT5B gene expression in living cell using the hairpin DNA modified gold nanoparticle beacon.

    Science.gov (United States)

    Xue, Jianpeng; Shan, Lingling; Chen, Haiyan; Li, Yang; Zhu, Hongyan; Deng, Dawei; Qian, Zhiyu; Achilefu, Samuel; Gu, Yueqing

    2013-03-15

    Signal transducer and activator of transcription 5B (STAT5B) is an important protein in JAK-STAT signaling pathway that is responsible for the metastasis and proliferation of tumor cells. Determination of the STAT5B messenger Ribonucleic Acid (mRNA) relating to the STAT5B expression provides insight into the mechanism of tumor progression. In this study, we designed and used a special hairpin deoxyribonucleic acid (DNA) for human STAT5B mRNA to functionalize gold nanoparticles, which served as a beacon for detecting human STAT5B expression. Up to 90% quenching efficiency was achieved. Upon hybridizing with the target mRNA, the hairpin DNA modified gold nanoparticle beacons (hDAuNP beacons) release the fluorophores attached at 5' end of the oligonucleotide sequence. The fluorescence properties of the beacon before and after the hybridization with the complementary DNA were confirmed in vitro. The stability of hDAuNP beacons against degradation by DNase I and GSH indicated that the prepared beacon is stable inside cells. The detected fluorescence in MCF-7 cancer cells correlates with the specific STAT5B mRNA expression, which is consistent with the result from PCR measurement. Fluorescence microscopy showed that the hDAuNP beacons internalized in cells without using transfection agents, with intracellular distribution in the cytoplasm rather than the nucleus. The results demonstrated that this beacon could directly provide quantitative measurement of the intracellular STAT5B mRNA in living cells. Compared to the previous approaches, this beacon has advantages of higher target to background ratio of detection and an increased resistance to nuclease degradation. The strategy reported in this study is a promising approach for the intracellular measurement of RNA or protein expression in living cells, and has great potential in the study of drug screening and discovery. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Clinical study on diagnostic utility of Survivin-molecular beacons in bladder cancer%Survivin分子信标诊断膀胱肿瘤的临床应用研究

    Institute of Scientific and Technical Information of China (English)

    王新阳; 贺大林; 杨小杰; 赵军

    2013-01-01

    Objective:To develop a sensitive method for detection of bladder cancer cells the cast-off cells of bladder cancer patients,we examine the feasibility by using molecular beacon (MB) probes specific for a tumor specific Survivin mRNA.Methods:MB analyzed the survivn mRNA in bladder cancer cell 5637,J82 and identified by Western blot.Urine cytology,MB test,and Western blot were carried to test,cancer tissue of 35 bladder cancer patients and 35 health adults.Results:Survivin MB could detect the expression of Survivin gene and generated fluorescent signals in the cancer cells,and not detect in normal prostate fibroblast cells.MB detected cancerous cells in 80% of confirmed bladder cancer patients (28/35).The specificity was 77.1% (27/35).Survivin protein was detected by western blot in 71.4% (25/35) of these patients.The two methods had high consistency.The sensitivity and specificity of urine cytology was 28.6% (10/35),100% (35/35).Conclusion:Survivin MB is specific and sensitive molecular probe for detecting bladder cancer cells and urine cast-off cells of bladder cancer patients.It has great potential for the development of a clinical diagnostic procedure for early detection of bladder cancer and follow-up after operation.%目的:探讨分子信标检测尿脱落细胞Survivn mRNA的可行性,寻找一种能够早期诊断膀胱肿瘤的方法.方法:分子信标检测膀胱肿瘤5637、J82细胞Survivin mRNA的表达,并通过Western bolt方法验证,并对35例膀胱移行细胞癌患者和35名正常健康成人行分子信标检测尿脱落细胞,Western bolt检测组织中的Survivin含量,同时行尿脱落细胞学检查.结果:Survivin分子信标检测肿瘤细胞内的Survivin表达且具有高特异性.以随机100个细胞中60个以上的细胞为阳性做为阳性标准,确定MB-cy3的阳性率为80% (28/35),特异性为77.1%(27/35);Western bolt检测的阳性率为71.4%(25/35).两种实验方法对细胞和蛋白质中Survivin的检

  12. Messaging with Cost-Optimized Interstellar Beacons

    Science.gov (United States)

    Benford, James; Benford, Gregory; Benford, Dominic

    2010-06-01

    On Earth, how would we build galactic-scale beacons to attract the attention of extraterrestrials, as some have suggested we should do? From the point of view of expense to a builder on Earth, experience shows an optimum trade-off. This emerges by minimizing the cost of producing a desired power density at long range, which determines the maximum range of detectability of a transmitted signal. We derive general relations for cost-optimal aperture and power. For linear dependence of capital cost on transmitter power and antenna area, minimum capital cost occurs when the cost is equally divided between antenna gain and radiated power. For nonlinear power-law dependence, a similar simple division occurs. This is validated in cost data for many systems; industry uses this cost optimum as a rule of thumb. Costs of pulsed cost-efficient transmitters are estimated from these relations by using current cost parameters (/W, /m2) as a basis. We show the scaling and give examples of such beacons. Galactic-scale beacons can be built for a few billion dollars with our present technology. Such beacons have narrow "searchlight" beams and short "dwell times" when the beacon would be seen by an alien observer in their sky. More-powerful beacons are more efficient and have economies of scale: cost scales only linearly with range R, not as R2, so number of stars radiated to iincreases as the square of cost. On a cost basis, they will likely transmit at higher microwave frequencies, ˜10 GHz. The natural corridor to broadcast is along the galactic radius or along the local spiral galactic arm we are in. A companion paper asks "If someone like us were to produce a beacon, how should we look for it?"

  13. Messaging with Cost-Optimized Interstellar Beacons

    Science.gov (United States)

    Benford, James; Benford, Gregory; Benford, Dominic

    2010-01-01

    On Earth, how would we build galactic-scale beacons to attract the attention of extraterrestrials, as some have suggested we should do? From the point of view of expense to a builder on Earth, experience shows an optimum trade-off. This emerges by minimizing the cost of producing a desired power density at long range, which determines the maximum range of detectability of a transmitted signal. We derive general relations for cost-optimal aperture and power. For linear dependence of capital cost on transmitter power and antenna area, minimum capital cost occurs when the cost is equally divided between antenna gain and radiated power. For nonlinear power-law dependence, a similar simple division occurs. This is validated in cost data for many systems; industry uses this cost optimum as a rule of thumb. Costs of pulsed cost-efficient transmitters are estimated from these relations by using current cost parameters ($/W, $/sq m) as a basis. We show the scaling and give examples of such beacons. Galactic-scale beacons can be built for a few billion dollars with our present technology. Such beacons have narrow "searchlight" beams and short "dwell times" when the beacon would be seen by an alien observer in their sky. More-powerful beacons are more efficient and have economies of scale: cost scales only linearly with range R, not as R(exp 2), so number of stars radiated to increases as the square of cost. On a cost basis, they will likely transmit at higher microwave frequencies, -10 GHz. The natural corridor to broadcast is along the galactic radius or along the local spiral galactic arm we are in. A companion paper asks "If someone like us were to produce a beacon, how should we look for it?"

  14. Beach Advisory and Closing Online Notification (BEACON) system

    Data.gov (United States)

    U.S. Environmental Protection Agency — Beach Advisory and Closing Online Notification system (BEACON) is a colletion of state and local data reported to EPA about beach closings and advisories. BEACON is...

  15. Energy-Efficient BOP-Based Beacon Transmission Scheduling in Wireless Sensor Networks

    Science.gov (United States)

    Kim, Eui-Jik; Youm, Sungkwan; Choi, Hyo-Hyun

    Many applications in wireless sensor networks (WSNs) require the energy efficiency and scalability. Although IEEE 802.15.4/Zigbee which is being considered as general technology for WSNs enables the low duty-cycling with time synchronization of all the nodes in network, it still suffer from its low scalability due to the beacon frame collision. Recently, various algorithms to resolve this problem are proposed. However, their manners to implement are somewhat ambiguous and the degradation of energy/communication efficiency is serious by the additional overhead. This paper describes an Energy-efficient BOP-based Beacon transmission Scheduling (EBBS) algorithm. EBBS is the centralized approach, in which a resource-sufficient node called as Topology Management Center (TMC) allocates the time slots to transmit a beacon frame to the nodes and manages the active/sleep schedules of them. We also propose EBBS with Adaptive BOPL (EBBS-AB), to adjust the duration to transmit beacon frames in every beacon interval, adaptively. Simulation results show that by using the proposed algorithm, the energy efficiency and the throughput of whole network can be significantly improved. EBBS-AB is also more effective for the network performance when the nodes are uniformly deployed on the sensor field rather than the case of random topologies.

  16. Adaptive Beaconing in Mobility Aware Clustering Based MAC Protocol for Safety Message Dissemination in VANET

    Directory of Open Access Journals (Sweden)

    Nishu Gupta

    2017-01-01

    Full Text Available Majority of research contributions in wireless access in vehicular environment (WAVE/IEEE 802.11p standard focus on life critical safety-related applications. These applications require regular status update of vehicle’s position referred to as beaconing. Periodic beaconing in vehicle to vehicle communication leads to severe network congestion in the communication channel. The condition worsens under high vehicular density where it impacts reliability and upper bound latency of safety messages. In this paper, WAVE compliant enhancement to the existing IEEE 802.11p protocol is presented which targets prioritized delivery of safety messages while simultaneously provisioning the dissemination of nonsafety messages. Proposed scheme relies on dynamic generation of beacons to mitigate channel congestion and inefficient bandwidth utilization by reducing transmission frequency of beacons. Through the use of clustering mechanism, different beaconing frequencies and different data transmission rates are assigned to prioritize vehicular mobility. Through extensive simulation results, the performance of the proposed approach is evaluated in terms of a wide range of quality of service (QoS parameters for two different transmission ranges. Results show that the proposed protocol provides significant enhancement and stability of the clustered topology in vehicular ad hoc network over existing standard and other protocols with similar applications.

  17. iBeacon technology in the development of mobile applications

    OpenAIRE

    2015-01-01

    iBeacon technology, made possible by BLE, enables mobile application developers to base their applications on proximity. We would like to know how proximity can be integrated in the development of mobile applications. In the thesis we take a deeper look at iBeacon technology where monitoring and ranging are examined and the differences between location and proximity explained. Available options used for the configuration of iBeacons are also presented. Then two existing iBeacon applications a...

  18. Silver Nanoclusters Beacon as Stimuli-Responsive Versatile Platform for Multiplex DNAs Detection and Aptamer-Substrate Complexes Sensing.

    Science.gov (United States)

    Liu, Guoliang; Li, Jingjing; Feng, Da-Qian; Zhu, Jun-Jie; Wang, Wei

    2017-01-03

    An activatable silver nanoclusters beacon (ASNCB) was synthesized through a facile one-pot approach and applied for multiplex DNAs, small molecule, and protein sensing. Multifunctional single-stranded DNA sequences are rationally designed and used for ASNCB in situ synthesis. Via target-responsive structure transformation of ASNCB, target recognition induced ASNCB conformational transition and lit up the fluorescent signal of silver nanoclusters. By further implementing two different color ASNCBs (520 and 600 nm), the parallel multiplexed analysis of two target genes (Influenza A virus genes H1N1 and H5N1) is achieved. Additionally, with the introduction of aptamer for the design of the molecular beacon, the detections of small molecule adenosine triphosphate (ATP) and biomacromolecule thrombin have also been realized. This is the first time that an activatable fluorescent silver nanoclusters (Ag NCs)-based probe and the target recognition have been integrated into a single process, which provides a versatile platform for different analytes in a facile way. The successful application of our proposed ASNCB in real sample analysis and ATP imaging in living cells further displayed its promising potential for fluorescence sensing.

  19. Analytically modelling the performance of piggybacking on beacons in VANETs

    NARCIS (Netherlands)

    Klein Wolterink, W.; Heijenk, G.; Berg, J.L. van den

    2012-01-01

    Piggybacking on beacons is a forwarding technique in vehicular ad-hoc networks (VANET) as a means to disseminate data. With this technique data is attached to and transmitted along with scheduled beacons. Nodes are assumed to beacon asynchronously. In this paper we present a first version of an anal

  20. 14 CFR 171.269 - Marker beacon performance requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Marker beacon performance requirements. 171.269 Section 171.269 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Landing System (ISMLS) § 171.269 Marker beacon performance requirements. ISMLS marker beacon equipment...

  1. An aptamer beacon responsive to botulinum toxins.

    Science.gov (United States)

    Bruno, John G; Richarte, Alicia M; Carrillo, Maria P; Edge, Allison

    2012-01-15

    Sixty candidate DNA aptamers were developed against botulinum neurotoxin (BoNT) type A light chain (LC) from ten rounds of selection, resulting in several identical sequences. Secondary structures of the identical aptamers were compared to structures of previously reported BoNT A DNA aptamers. A series of ten candidate loop structures were selected from this comparison as potential binding pockets and aptamer beacons. These candidate beacons were synthesized with 5'-TYE 665 and 3'-Iowa Black quencher labels for comparison of fluorescence levels as a function of BoNT A LC concentration. Only three of the ten candidates exhibited any fluorescence response to increasing levels of BoNT A LC. However, of the two most responsive candidates, one represented a subset loop of the larger more intensely fluorescent double-looped structure, designated Beacon 10. This beacon yielded a lower limit of detection of 1 ng/mL in buffer using a spectrofluorometer and a portable handheld fluorometer, but also responded substantially to BoNT A, B, E holotoxins and heavy or light chain components even in a dilute soil suspension, but not in 50% human serum. Beacon 10 did not respond strongly to a variety of other divergent peptides, suggesting that it is relatively specific to the level of botulinum toxins and is only useful for environmental testing. Beacon 10 also shared short sequence segments with other published BoNT aptamer DNA sequences, suggesting that these may be points of physical contact between the aptamers and BoNTs.

  2. Doing Forensic on DTUsat-2 Using the Beacon Counter

    DEFF Research Database (Denmark)

    Fléron, René

    2016-01-01

    DTUsat-2 was launched into a Polar LEO on a Dnepr rocket out of Yasny on 19th June 2014. After the first few days of beacon recording and precise orbit determination it became apparent that all was not nominal. One notable thing was the relatively low beacon count number. The beacon count reflects...... how many times the communication system has generated and transmitted a beacon. When nominal the number will reach 32767 in about 22.5 days before rolling over. Not only did we observe a low beacon count number but most surprisingly the counter seemed the restart right before AOS when the satellite...... AOS were the satellite should have maximum power. A thorough investigation using modelling and beacon count mapping has been conducted in order to understand why the satellite does not operate nominally and why the beacon counter maps out contradictive to our initial understandings....

  3. Beacons and surface features differentially influence human reliance on global and local geometric cues when reorienting in a virtual environment.

    Science.gov (United States)

    Bodily, Kent D; Kilday, Zachary A; Eastman, Caroline K; Gaskin, Katherine A; Graves, April A; Roberts, Jonathan E; Sturz, Bradley R

    2013-02-01

    In the reorientation literature, non-geometric cues include discrete objects (e.g., beacons) and surface-based features (e.g., colors, textures, and odors). To date, these types of non-geometric cues have been considered functionally similar, and it remains unknown whether beacons and surface features differentially influence the extent to which organisms reorient via global and local geometric cues. In the present experiment, we trained human participants to approach a location in a trapezoid-shaped enclosure uniquely specified by global and local geometric cues. We explored the role of beacons on the use of geometric cues by training participants in the presence or absence of uniquely-colored beacons. We explored the role of surface features on the use of geometric cues by recoloring two adjacent walls at the correct location and/or adding a line on the floor which corresponded to the major principal axis of the enclosure. All groups were then tested in novel-shaped enclosures in the absence of unique beacons and surface features to assess the relative use of global and local geometric cues. Results suggested that beacons facilitated the use of global geometric cues, whereas surface features either facilitated or hindered the use of geometric cues, depending on the feature. Published by Elsevier B.V.

  4. Emerging molecular approaches in stem cell biology.

    Science.gov (United States)

    Jaishankar, Amritha; Vrana, Kent

    2009-04-01

    Stem cells are characterized by their ability to self-renew and differentiate into multiple adult cell types. Although substantial progress has been made over the last decade in understanding stem cell biology, recent technological advances in molecular and systems biology may hold the key to unraveling the mystery behind stem cell self-renewal and plasticity. The most notable of these advances is the ability to generate induced pluripotent cells from somatic cells. In this review, we discuss our current understanding of molecular similarities and differences among various stem cell types. Moreover, we survey the current state of systems biology and forecast future needs and direction in the stem cell field.

  5. Continuous Molecular Fields Approach Applied to Structure-Activity Modeling

    CERN Document Server

    Baskin, Igor I

    2013-01-01

    The Method of Continuous Molecular Fields is a universal approach to predict various properties of chemical compounds, in which molecules are represented by means of continuous fields (such as electrostatic, steric, electron density functions, etc). The essence of the proposed approach consists in performing statistical analysis of functional molecular data by means of joint application of kernel machine learning methods and special kernels which compare molecules by computing overlap integrals of their molecular fields. This approach is an alternative to traditional methods of building 3D structure-activity and structure-property models based on the use of fixed sets of molecular descriptors. The methodology of the approach is described in this chapter, followed by its application to building regression 3D-QSAR models and conducting virtual screening based on one-class classification models. The main directions of the further development of this approach are outlined at the end of the chapter.

  6. Molecular approaches to study probiotic bacteria

    NARCIS (Netherlands)

    Vaughan, E.E.; Heilig, G.H.J.; Zoetendal, E.G.; Satokari, R.; Collins, J.K.; Akkermans, A.D.L.; Vos, de W.M.

    2000-01-01

    Functional foods comprising probiotic bacteria are receiving increasing attention from the scientific community and science funding agencies [1]. An essential aspect relating to the functionality of probiotic-based foods is to develop molecular methods to determine the presence, activity and viabili

  7. Approaches for molecular characterization of modified biopolymers

    NARCIS (Netherlands)

    Haar, ter R.

    2011-01-01

    In this thesis, research on the molecular characterization of products obtained after structure modification of oligosaccharides, starch, model peptides, and bovine α-lactalbumin is described. The research goals comprised the development of analytical tools as well as the elucidation of molecu

  8. Beacon-Based Service Publishing Framework in Multiservice Wi-Fi Hotspots

    Directory of Open Access Journals (Sweden)

    Di Sorte Dario

    2007-01-01

    Full Text Available In an expected future multiaccess and multiservice IEEE 802.11 environment, the problem of providing users with useful service-related information to support a correct rapid network selection is expected to become a very important issue. A feasible short-term 802.11-tailored working solution, compliant with existing equipment, is to publish service information encoded within the SSID information element within beacon frames. This makes it possible for an operator to implement service publishing in 802.11 networks while waiting for a standardized mechanism. Also, this straightforward approach has allowed us to evaluate experimentally the performance of a beacon-based service publishing solution. In fact, the main focus of the paper is indeed to present a quantitative comparison of service discovery times between the legacy scenario, where the user is forced to associate and authenticate with a network point of access to check its service offer, and the enhanced scenario where the set of service-related information is broadcasted within beacons. These discovery times are obtained by processing the results of a measurement campaign performed in a multiaccess/service 802.11 environment. This analysis confirms the effectiveness of the beacon-based approach. We also show that the cost in terms of wireless bandwidth consumption of such solution is low.

  9. Real-time fluorescence PCR-molecular beacon assay for detecting mutations in rpoB genes of rifampin-resistant Mycobacterium tuberculosis%实时荧光PCR分子信标检测耐利福平结核分枝杆菌印rpoB基因

    Institute of Scientific and Technical Information of China (English)

    孙桂芝; 高铁杰; 钟镐镐; 康丽军; 张治国; 衡万杰; 吴秉铨; 刘威

    2008-01-01

    Objective To establish a rapid method to detect mutations in rpoB genes of rifampin-resistant Mycobacterium tubereulosis in dinical specimens using Real-time fluorescence PCR molecular beacon assay.Methods 174 strains of Mvcobacterium tuberculosis clinical isolates were analyzed using real-time fluorescence PCR molecular beacon assay foilowed with DNA sequencing while 12 strains of NTM and 4 strains of bacteria other than Mycobacterium tuberculosis were used as the contrast.Results Eighty-two 89.1 of 92 rifampin (RIF)-resistant strains and 3 of 82 RIF-sensitive strains were found to harbor mutation in the rpoB gene using real-time fluorescence PCR-molecular beacon assay.The specificity, sensitivity,and accuracy of this assay were 96.3%,89.1%,and 92.5%,respectively-Eithty-three of 92 RIF-resistant strains and 1 of 82 RIF-sensitive strains were found to harbor mutation in the rpoB gene using the direct DNA sequencing.The specificity,sensitivity,and accuracy of the direct DNA sequencing were 98.8,90.2%,and 94.2%,respectively.As compared with real-time PCR molecular beacon assay,171 of 174(98.3%)strains of myeobactefium tuberculosis clinical isolates had the salne results.Conclusion Real-time fluorescence PCR-molecular beacon assay can be used as a rapid screen method to detect RIF-resistant isolates.%目的 应用实时荧光PCR分子信标技术,建立快速检测临床标本中结核分枝杆菌利福平rpoB相关耐药突变点方法,探讨其缩短耐药实验报告时间的临床应用价值.方法 以分枝杆菌药物敏感性实验绝对浓度法为标准,12株非结核分枝杆菌、4株非分枝杆菌作对照,对174例结核患者临床分离株应用实时荧光PCR分子信标方法,检测利福平rpoB核心区域的耐药突变点并将结果与直接测序进行比较.结果 (1)实时荧光PCR分子信标方法:82例结核分枝杆菌利福平敏感菌株中,3例发生rpoB基因突变,特异度为96.3%;92例结核分枝杆菌利福平耐药菌株中,82

  10. Localization with a Mobile Beacon in Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sangho Lee

    2012-04-01

    Full Text Available Localization is one of the most important issues associated with underwater acoustic sensor networks, especially when sensor nodes are randomly deployed. Given that it is difficult to deploy beacon nodes at predetermined locations, localization schemes with a mobile beacon on the sea surface or along the planned path are inherently convenient, accurate, and energy-efficient. In this paper, we propose a new range-free Localization with a Mobile Beacon (LoMoB. The mobile beacon periodically broadcasts a beacon message containing its location. Sensor nodes are individually localized by passively receiving the beacon messages without inter-node communications. For location estimation, a set of potential locations are obtained as candidates for a node’s location and then the node’s location is determined through the weighted mean of all the potential locations with the weights computed based on residuals.

  11. Localization with a mobile beacon in underwater acoustic sensor networks.

    Science.gov (United States)

    Lee, Sangho; Kim, Kiseon

    2012-01-01

    Localization is one of the most important issues associated with underwater acoustic sensor networks, especially when sensor nodes are randomly deployed. Given that it is difficult to deploy beacon nodes at predetermined locations, localization schemes with a mobile beacon on the sea surface or along the planned path are inherently convenient, accurate, and energy-efficient. In this paper, we propose a new range-free Localization with a Mobile Beacon (LoMoB). The mobile beacon periodically broadcasts a beacon message containing its location. Sensor nodes are individually localized by passively receiving the beacon messages without inter-node communications. For location estimation, a set of potential locations are obtained as candidates for a node's location and then the node's location is determined through the weighted mean of all the potential locations with the weights computed based on residuals.

  12. Impacts of Fog Characteristics, Forward Illumination, and Warning Beacon Intensity Distribution on Roadway Hazard Visibility.

    Science.gov (United States)

    Bullough, John D; Rea, Mark S

    2016-01-01

    Warning beacons are critical for the safety of transportation, construction, and utility workers. These devices need to produce sufficient luminous intensity to be visible without creating glare to drivers. Published standards for the photometric performance of warning beacons do not address their performance in conditions of reduced visibility such as fog. Under such conditions light emitted in directions other than toward approaching drivers can create scattered light that makes workers and other hazards less visible. Simulations of visibility of hazards under varying conditions of fog density, forward vehicle lighting, warning beacon luminous intensity, and intensity distribution were performed to assess their impacts on visual performance by drivers. Each of these factors can influence the ability of drivers to detect and identify workers and hazards along the roadway in work zones. Based on the results, it would be reasonable to specify maximum limits on the luminous intensity of warning beacons in directions that are unlikely to be seen by drivers along the roadway, limits which are not included in published performance specifications.

  13. Validation of the Calypso Surface Beacon Transponder.

    Science.gov (United States)

    Belanger, Maxwell; Saleh, Ziad; Volpe, Tom; Margiasso, Rich; Li, Xiang; Chan, Maria; Zhu, Xiaofeng; Tang, Xiaoli

    2016-07-08

    Calypso L-shaped Surface Beacon transponder has recently become available for clinical applications. We herein conduct studies to validate the Surface Beacon transponder in terms of stability, reproducibility, orientation sensitivity, cycle rate dependence, and respiratory waveform tracking accuracy. The Surface Beacon was placed on a Quasar respiratory phantom and positioned at the isocenter with its two arms aligned with the lasers. Breathing waveforms were simulated, and the motion of the transponder was tracked. Stability and drift analysis: sinusoidal waveforms (200 cycles) were produced, and the amplitudes of phases 0% (inhale) and 50% (exhale) were recorded at each breathing cycle. The mean and standard deviation (SD) of the amplitudes were calculated. Linear least-squares fitting was performed to access the possible amplitude drift over the breathing cycles. Reproducibility: similar setting to stability and drift analysis, and the phantom generated 100 cycles of the sinusoidal waveform per run. The Calypso system's was re-setup for each run. Recorded amplitude and SD of 0% and 50% phase were compared between runs to assess contribution of Calypso electromagnetic array setup variation. Beacon orientation sensitivity: the Calypso tracks sinusoidal phantom motion with a defined angular offset of the beacon to assess its effect on SD and peak-to-peak amplitude. Rate dependence: sinusoidal motion was generated at cycle rates of 1 Hz, .33 Hz, and .2 Hz. Peak-to-peak displacement and SDs were assessed. Respiratory waveform tracking accuracy: the phantom reproduced recorded breathing cycles (by volunteers and patients) were tracked by the Calypso system. Deviation in tracking position from produced waveform was used to calculate SD throughout entire breathing cycle. Stability and drift analysis: Mean amplitude ± SD of phase 0% or 50% were 20.01 ± 0.04 mm and -19.65 ± 0.08 mm, respectively. No clinically significant drift was detected with drift measured as 5.1

  14. Adaptive Molecular Resolution Approach in Hamiltonian Form: An Asymptotic Analysis

    CERN Document Server

    Zhu, Jinglong; Site, Luigi Delle

    2016-01-01

    Adaptive Molecular Resolution approaches in Molecular Dynamics are becoming relevant tools for the analysis of molecular liquids characterized by the interplay of different physical scales. The essential difference among these methods is in the way the change of molecular resolution is made in a buffer/transition region. In particular a central question concerns the possibility of the existence of a global Hamiltonian which, by describing the change of resolution, is at the same time physically consistent, mathematically well defined and numerically accurate. In this paper we present an asymptotic analysis of the adaptive process complemented by numerical results and show that under certain mathematical conditions a Hamiltonian, which is physically consistent and numerically accurate, may exist. \\blue{Such conditions show that molecular simulations in the current computational implementation require systems of large size and thus a Hamiltonian approach as the one proposed, at this stage, would not be practica...

  15. Development of a universal RNA beacon for exogenous gene detection.

    Science.gov (United States)

    Guo, Yuanjian; Lu, Zhongju; Cohen, Ira Stephen; Scarlata, Suzanne

    2015-05-01

    Stem cell therapy requires a nontoxic and high-throughput method to achieve a pure cell population to prevent teratomas that can occur if even one cell in the implant has not been transformed. A promising method to detect and separate cells expressing a particular gene is RNA beacon technology. However, developing a successful, specific beacon to a particular transfected gene can take months to develop and in some cases is impossible. Here, we report on an off-the-shelf universal beacon that decreases the time and cost of applying beacon technology to select any living cell population transfected with an exogenous gene. ©AlphaMed Press.

  16. Biomolecular Architectures Molecular Biology

    Science.gov (United States)

    2013-08-31

    designed molecular beacon probes for detecting hlyA and invA genes from Listeria monocytogenes (Gram-positive) and Salmonella spp . (Gram-negative...bacterium, Bacillus thuringiensis, transgenic tobacco containing the transgene, Bt cry1Ac, the Gram-negative bacterium, Salmonella Typhimurium, and the Gram... Salmonella Typhimurium, and the Gram-positive bacterium, Listeria monocytogenes, were monitored for detection by coupling molecular beacon (MB

  17. Measurements of Tilt and Focus for Sodium Beacon Adaptive Optics on the Starfire 3.5 Meter Telescope

    Science.gov (United States)

    2010-09-01

    beacon and natural guide star operation. This approach, and a more complicated approach, are described in detail by Link and Foucault [3]. They show these...Astronomical Telescopes and Instrumentation Conference, Glasgow, Scotland, 21–25 June 2004. 3. Link D. and Foucault B., "Investigation of focus control

  18. Cellular and molecular approaches to memory storage.

    Science.gov (United States)

    Laroche, S

    2000-01-01

    There has been nearly a century of interest in the idea that information is stored in the brain as changes in the efficacy of synaptic connections on neurons that are activated during learning. The discovery and detailed report of the phenomenon generally known as long-term potentiation opened a new chapter in the study of synaptic plasticity in the vertebrate brain, and this form of synaptic plasticity has now become the dominant model in the search for the cellular bases of learning and memory. To date, considerable progress has been made in understanding the cellular and molecular mechanisms underlying synaptic plasticity and in identifying the neural systems which express it. In parallel, the hypothesis that the mechanisms underlying synaptic plasticity are activated during learning and serve learning and memory has gained much empirical support. Accumulating evidence suggests that the rapid activation of the genetic machinery is a key mechanism underlying the enduring modification of neural networks required for the laying down of memory. These advances are reviewed below.

  19. A molecular dynamics approach to barrodiffusion

    Science.gov (United States)

    Cooley, James; Marciante, Mathieu; Murillo, Michael

    2016-10-01

    Unexpected phenomena in the reaction rates for Inertial Confinement Fusion (ICF) capsules have led to a renewed interest in the thermo-dynamically driven diffusion process for the past 10 years, often described collectively as barodiffusion. In the current context, barodiffusion would manifest as a process that separates ions of differing mass and charge ratios due to pressure and temperature gradients set-up through shock structures in the capsule core. Barrodiffusion includes additional mass transfer terms that account for the irreversible transport of species due to gradients in the system, both thermodynamic and electric e.g, i = - ρD [ ∇c +kp ∇ln(pi) +kT(i) ∇ln(Ti) +kt(e) ∇ln(Te) +eke/Ti ∇ϕ ] . Several groups have attacked this phenomena using continuum scale models and supplemented with kinetic theory to derive coefficients for the different diffusion terms based on assumptions about the collisional processes. In contrast, we have applied a molecular dynamics (MD) simulation to this system to gain a first-principle understanding of the rate kinetics and to assess the accuracy of the differin

  20. Molecular approaches to malaria and Babesisosis diagnosis

    Directory of Open Access Journals (Sweden)

    G. L. McLaughlin

    1992-01-01

    Full Text Available The development of additional methods for detecting and identifuing Babesia and Plasmodium infections may be useful in disease monitoring, management and control efforts. To preliminarily evaluate sunthetic peptide-based serodiagnosis, a hydrophilic sequence (DDESEFDKEKwas selected from published BabR gene of B. bovis. Immunization of rabbits and cattle with the hemocyanin-conjugated peptide elicited antibody responses that specifically detected both P. falciparum and B. bovis antigens by immunofluorescence and Western blots. Using a dot-ELISA with this peptide, antisera from immunized and naturally-infected cattle, and immunized rodents, were specifically detected. Reactivity was weak and correlated with peptide immunization or infection. DNA-based detection using repetitive DNA was species-specific in dot-blot formats for B. bovis DNA, and in both dot-blot and in situ formats for P. falciparum; a streamlined enzymelinked synthetic DNA assay for P. falciparum detected 30 parasites/mm(cúbicos from patient blood using either colorimetric (2-15 h color development or chemiluminescent detection (0.5-6-min. exposures. Serodiagnostic and DNA hybridization methods may be complementary in the respective detection of both chronic and acute infections. However, recent improvements in the polymerase chain reaction (PCR make feasible a more sensitive and uniform approach to the diagnosis of these and other infectious disease complexes, with appropriate primers and processing methods. An analysis of ribosomal DNA genes of Plasmodium and Toxoplasma identified Apicomplexa-conserved sequence regions. Specific and distinctive PCR profiles were obtained for primers spanning the internal transcribed spacer locus for each of several Plasmodium and Babesia species.

  1. Detecting the Beacons of Life with Exo-Life Beacon Space Telescope (ELBST)

    Science.gov (United States)

    Airapetian, V. S.; Danchi, W. C.; Chen, P. C.; Rabin, D. M.; Carpenter, K. G.; Mlynczak, M. G.

    2017-02-01

    We propose a new observational strategy, the “Exo-Life Beacon Space Telescope,” for detecting the signatures of “beacons” of life defined as high signal and low spectral resolution thermal emission from molecules associated with life signatures.

  2. Beach Advisory and Closing Online Notification (BEACON) system

    Science.gov (United States)

    Beach Advisory and Closing Online Notification system (BEACON) is a colletion of state and local data reported to EPA about beach closings and advisories. BEACON is the public-facing query of the Program tracking, Beach Advisories, Water quality standards, and Nutrients database (PRAWN) which tracks beach closing and advisory information.

  3. Beacons In Brief. P/PV In Brief. Issue 2

    Science.gov (United States)

    Blank, Susan; Farley, Chelsea

    2004-01-01

    This second issue in P/PV's "In Brief" series focuses on the San Francisco Beacon Initiative and P/PV's recently released evaluation results. The Beacon Initiative established after-school programs in eight public schools in low-income San Francisco neighborhoods. P/PV's 36-month evaluation examined key developmental and academic outcomes.…

  4. Getting Obstacle Avoidance Trajectory of Mobile Beacon for Localization

    Directory of Open Access Journals (Sweden)

    Huan-Qing CUI

    2010-11-01

    Full Text Available Localization is one of the most important technologies in wireless sensor network, and mobile beacon assisted localization is a promising localization method. The mobile beacon trajectory planning is a basic and important problem in these methods. There are many obstacles in the real world, which obstruct the moving of mobile beacon. This paper focuses on the obstacle avoidance trajectory planning scheme. After partitioning the deployment area with fixed cell decomposition, the beacon trajectory are divided into global and local trajectory. The approximate shortest global trajectory is obtained by depth-first search, greedy strategy method and ant colony algorithm, while local trajectory is any existing trajectories. Simulation results show that this method can avoid obstacles in the network deployment area, and the smaller cell size leads to longer beacon trajectory and more localizable sensor nodes.

  5. Indoor Navigation using Direction Sensor and Beacons

    Science.gov (United States)

    Shields, Joel; Jeganathan, Muthu

    2004-01-01

    A system for indoor navigation of a mobile robot includes (1) modulated infrared beacons at known positions on the walls and ceiling of a room and (2) a cameralike sensor, comprising a wide-angle lens with a position-sensitive photodetector at the focal plane, mounted in a known position and orientation on the robot. The system also includes a computer running special-purpose software that processes the sensor readings to obtain the position and orientation of the robot in all six degrees of freedom in a coordinate system embedded in the room.

  6. Adaptive molecular resolution approach in Hamiltonian form: An asymptotic analysis

    Science.gov (United States)

    Zhu, Jinglong; Klein, Rupert; Delle Site, Luigi

    2016-10-01

    Adaptive molecular resolution approaches in molecular dynamics are becoming relevant tools for the analysis of molecular liquids characterized by the interplay of different physical scales. The essential difference among these methods is in the way the change of molecular resolution is made in a buffer (transition) region. In particular a central question concerns the possibility of the existence of a global Hamiltonian which, by describing the change of resolution, is at the same time physically consistent, mathematically well defined, and numerically accurate. In this paper we present an asymptotic analysis of the adaptive process complemented by numerical results and show that under certain mathematical conditions a Hamiltonian, which is physically consistent and numerically accurate, may exist. Such conditions show that molecular simulations in the current computational implementation require systems of large size, and thus a Hamiltonian approach such as the one proposed, at this stage, would not be practical from the numerical point of view. However, the Hamiltonian proposed provides the basis for a simplification and generalization of the numerical implementation of adaptive resolution algorithms to other molecular dynamics codes.

  7. Molecular structure and elastic properties of thermotropic liquid crystals: Integrated molecular dynamics—Statistical mechanical theory vs molecular field approach

    Science.gov (United States)

    Capar, M. Ilk; Nar, A.; Ferrarini, A.; Frezza, E.; Greco, C.; Zakharov, A. V.; Vakulenko, A. A.

    2013-03-01

    The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio.

  8. Effects of Maternal Obesity on Fetal Programming: Molecular Approaches.

    Science.gov (United States)

    Neri, Caterina; Edlow, Andrea G

    2015-09-03

    Maternal obesity has become a worldwide epidemic. Obesity and a high-fat diet have been shown to have deleterious effects on fetal programming, predisposing offspring to adverse cardiometabolic and neurodevelopmental outcomes. Although large epidemiological studies have shown an association between maternal obesity and adverse outcomes for offspring, the underlying mechanisms remain unclear. Molecular approaches have played a key role in elucidating the mechanistic underpinnings of fetal malprogramming in the setting of maternal obesity. These approaches include, among others, characterization of epigenetic modifications, microRNA expression, the gut microbiome, the transcriptome, and evaluation of specific mRNA expression via quantitative reverse transcription polmerase chain reaction (RT-qPCR) in fetuses and offspring of obese females. This work will review the data from animal models and human fluids/cells regarding the effects of maternal obesity on fetal and offspring neurodevelopment and cardiometabolic outcomes, with a particular focus on molecular approaches.

  9. Theory of molecular conductance using a modular approach

    Science.gov (United States)

    Hsu, Liang-Yan; Rabitz, Herschel

    2016-12-01

    This study probes the correlation between the conductance of a molecular wire (the property of a whole system) and its constituent backbone units (modules). By using a tight-binding Hamiltonian combined with single-particle Green's functions, we develop an approach that enables an estimate of a conductance decay constant in terms of the Hamiltonians of molecular backbone units and the couplings between two nearest-neighbor units in the off-resonant tunneling regime. For demonstration, we examine several representative molecular systems in a framework of the Hückel model (the simplest atomistic-level model). The Hückel model can be reduced to a single-orbital-per-site formulation [A. Nitzan, Annu. Rev. Phys. Chem. 52, 681 (2001)], and each energy level in the single-orbital-per-site picture can be expressed in an explicit form including the synergistic effect of all molecular orbitals of a molecular backbone unit. Based on the proposed approach, we show the correspondence between the complete destructive quantum interference and an infinite injection gap and derive the preconditions of the modified Simmons equation and the rule of intramolecular series circuits.

  10. Molecular imaging: a new approach to nuclear cardiology

    Energy Technology Data Exchange (ETDEWEB)

    Dobrucki, L.W.; Sinusas, A.J. [Yale Univ. School of Medicine, New Haven (United States). Section of Cardiovascular Medicine, Department of Internal Medicine

    2005-03-01

    Nuclear cardiology has historically played an important role in detection of cardiovascular disease as well as risk statification. With the growth of molecular biology have come new therapeutic interventions and the requirement for new diagnostic imaging approaches. Noninvasive targeted radiotracer based as well as transporter gene imaging strategies are evolving to meet these new needs, but require the development of an interdisciplinary approach which focuses on molecular processes, as well as the pathogenesis and progression of disease. This progress has been made possible with the availability of transgenic animal models along with many technological advances. Future adaptations of the developing experimental procedures and instrumentations will allow for the smooth translation and application to clinical practice. This review is intended as a brief overview on the subject molecular imaging. Basic concepts and historical perspective of molecular imaging will be reviewed first, followed by description of current technology, and concluding with current applications in cardiology. The emphasis will be on the use of both single photon emission computed tomography (SPECT) and positron emission tomography (PET) radiotracers, although other imaging modalities will be also briefly discussed. The specific approaches presented here will include receptor-based and reporter gene imaging of natural and therapeutical angiogenesis.

  11. Evaluation design and technical assistance opportunities: early findings from the Beacon Community Program evaluation teams.

    Science.gov (United States)

    Rein, Alison; Kennedy, Hilary; DeCoudres, Ben; Singer Cohen, Rebecca; Sabharwal, Raj; Fairbrother, Gerry

    2012-01-01

    The Beacon Community Cooperative Agreement Program is funding 17 communities to build and strengthen their health information technology (IT) capabilities to enhance care coordination, improve patient and population health, and reduce or restrain costs. Based on the experiences and evidence generated by these communities, the program hopes to illustrate the possibilities of leveraging health IT to achieve desired goals. Doing so requires rigorous evaluation work, which is the subject of this issue brief. Based on semistructured interviews with representatives from each Beacon Community, the brief outlines various study designs, evaluation approaches, outcome measures, and data sources in use. It also identifies some common challenges, including establishing governance models, determining baseline measures, and assessing impact in a relatively constrained timeframe. Technical assistance in disseminating and publishing findings and assessing return on investments will be offered in the coming year.

  12. Nanosecond-level time synchronization of AERA using a beacon reference transmitter and commercial airplanes

    Directory of Open Access Journals (Sweden)

    Huege Tim

    2017-01-01

    Full Text Available Radio detection of cosmic-ray air showers requires time synchronization of detectors on a nanosecond level, especially for advanced reconstruction algorithms based on the wavefront curvature and for interferometric analysis approaches. At the Auger Engineering Radio Array, the distributed, autonomous detector stations are time-synchronized via the Global Positioning System which, however, does not provide sufficient timing accuracy. We thus employ a dedicated beacon reference transmitter to correct for eventby-event clock drifts in our offline data analysis. In an independent cross-check of this “beacon correction” using radio pulses emitted by commercial airplanes, we have shown that the combined timing accuracy of the two methods is better than 2 nanoseconds.

  13. Nanosecond-level time synchronization of AERA using a beacon reference transmitter and commercial airplanes

    Science.gov (United States)

    Huege, Tim

    2017-03-01

    Radio detection of cosmic-ray air showers requires time synchronization of detectors on a nanosecond level, especially for advanced reconstruction algorithms based on the wavefront curvature and for interferometric analysis approaches. At the Auger Engineering Radio Array, the distributed, autonomous detector stations are time-synchronized via the Global Positioning System which, however, does not provide sufficient timing accuracy. We thus employ a dedicated beacon reference transmitter to correct for eventby-event clock drifts in our offline data analysis. In an independent cross-check of this "beacon correction" using radio pulses emitted by commercial airplanes, we have shown that the combined timing accuracy of the two methods is better than 2 nanoseconds.

  14. Nanosecond-level time synchronization of AERA using a beacon reference transmitter and commercial airplanes

    CERN Document Server

    Huege, Tim

    2016-01-01

    Radio detection of cosmic-ray air showers requires time synchronization of detectors on a nanosecond level, especially for advanced reconstruction algorithms based on the wavefront curvature and for interferometric analysis approaches. At the Auger Engineering Radio Array, the distributed, autonomous detector stations are time-synchronized via the Global Positioning System which, however, does not provide sufficient timing accuracy. We thus employ a dedicated beacon reference transmitter to correct for event-by-event clock drifts in our offline data analysis. In an independent cross-check of this "beacon correction" using radio pulses emitted by commercial airplanes, we have shown that the combined timing accuracy of the two methods is better than 2 nanoseconds.

  15. HF beacon network for ionospheric specification in Peru

    Science.gov (United States)

    Hysell, D. L.; Milla, M. A.; Vierinen, J.

    2016-12-01

    A growing network of HF beacon transmitters and receivers is being deployed in Peru for specifying the F region ionosphere regionally. The effort is motivated by ionospheric disturbances associated with equatorial spread F (ESF), especially disturbances arising under inauspicious ESF conditions. The beacons use dual frequencies (2.72 and 3.64 MHz). They incorporate PRN coding to afford group-delay measurements. Scatered power, Doppler shift, bearing, and polarization are also measured. An algorithm for inverting the beacon data combined with electron density profiles from Jicamarca is described. Data and representative solutions from recent campaigns will be reviewed.

  16. Novel approach to improve molecular imaging research: Correlation between macroscopic and molecular pathological findings in patients

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Ingrid, E-mail: i.boehm@uni-bonn.de [Department of Diagnostic Radiology, ZARF Project, Center for Molecular Imaging Research MBMB, Philipps University of Marburg, Baldingerstrasse, 35039 Marburg (Germany)

    2011-09-15

    Purpose: Currently, clinical research approaches are sparse in molecular imaging studies. Moreover, possible links between imaging features and pathological laboratory parameters are unknown, so far. Therefore, the goal was to find a possible relationship between imaging features and peripheral blood cell apoptosis, and thereby to present a novel way to complement molecular imaging research. Materials and methods: The investigation has been done in systemic lupus erythematosus (SLE), a prototype of an autoimmune disease characterized by multiorgan involvement, autoantibody production, and disturbed apoptosis. Retrospectively, radiological findings have been compared to both autoantibody findings and percentage apoptotic blood cells. Results: Two SLE groups could be identified: patients with normal (annexin V binding < 20%), and with increased apoptosis (annexin V binding > 20%) of peripheral blood cells. The frequency of radiological examinations in SLE patients significantly correlated with an increased percentage of apoptotic cells (p < 0.005). In patients with characteristic imaging findings (e.g. lymph node swelling, pleural effusion) an elevated percentage of apoptotic cells was present. In contrast SLE-patients with normal imaging findings or uncharacteristic results of minimal severity had normal percentages of apoptotic blood cells. Conclusion: This correlation between radiographic findings and percentage of apoptotic blood cells provides (1) further insight into pathological mechanisms of SLE, (2) will offer the possibility to introduce apoptotic biomarkers as molecular probes for clinical molecular imaging approaches in future to early diagnose organ complaints in patients with SLE, and (3) is a plea to complement molecular imaging research by this clinical approach.

  17. Molecular approaches to epidemiology and clinical aspects of malaria.

    Science.gov (United States)

    Brown, G V; Beck, H P; Molyneux, M; Marsh, K

    2000-10-01

    Malaria is a problem of global importance, responsible for 1-2 million deaths per year, mainly in African children, as well as considerable morbidity manifested as severe anaemia and encephalopathy in young children. Fundamental to the development of new tools for malaria control in humans is an increased understanding of key features of malaria infection, such as the diversity of outcome in different individuals, the understanding of different manifestations of the disease and of the mechanisms of immunity that allow clinical protection in the face of ongoing low-grade infection (concomitant immunity or premunition). Here, Graham Brown and colleagues review some of the ways in which molecular approaches might be used to increase our understanding of the epidemiology and clinical manifestations of malaria, as discussed at the Molecular Approaches to Malaria conference (MAM2000), Lorne, Australia, 2-5 February 2000.

  18. Molecular approaches to screen bioactive compounds from endophytic fungi

    Directory of Open Access Journals (Sweden)

    M Vasundhara

    2016-11-01

    Full Text Available Endophytic fungi are capable of producing plant associated metabolites and their analogs with therapeutic value. In order to identify the potential endophytic isolates producing bioactive compounds, one need to screen all isolated endophytes, which may run into hundreds. Isolation of endophytic fungi is relatively a simple process; but screening of the isolated fungi for required metabolite production is a cumbersome process. Endophytic fungi producing plant associated metabolites may contain genes involved in the entire biosynthetic pathway(s. Therefore, ascertaining the presence of key enzymes of a particular biosynthetic pathway could serve as a molecular marker for screening of these endophytes to produce that metabolite. In absence of entire biosynthetic pathways in endophytic fungi, plant genes associated with that metabolic pathway could serve as markers. This review focuses on the impact of molecular approaches to screen the endophytic fungi for the production of bioactive compounds. An attempt has been made on screening of anticancer compounds like taxol (paclitaxel, podophyllotoxin and camptothecin using molecular markers. The advantages of molecular approaches over conventional methods to screen endophytic fungi and also identification of endophytic fungi are also discussed.

  19. Molecular Approaches to Screen Bioactive Compounds from Endophytic Fungi.

    Science.gov (United States)

    Vasundhara, M; Kumar, Anil; Reddy, M Sudhakara

    2016-01-01

    Endophytic fungi are capable of producing plant associated metabolites and their analogs with therapeutic value. In order to identify the potential endophytic isolates producing bioactive compounds, one need to screen all isolated endophytes, which may run into hundreds. Isolation of endophytic fungi is relatively a simple process; but screening of the isolated fungi for required metabolite production is a cumbersome process. Endophytic fungi producing plant associated metabolites may contain genes involved in the entire biosynthetic pathway(s). Therefore, ascertaining the presence of key enzymes of a particular biosynthetic pathway could serve as a molecular marker for screening of these endophytes to produce that metabolite. In absence of entire biosynthetic pathways in endophytic fungi, plant genes associated with that metabolic pathway could serve as markers. This review focuses on the impact of molecular approaches to screen the endophytic fungi for the production of bioactive compounds. An attempt has been made on screening of anticancer compounds like taxol (paclitaxel), podophyllotoxin, and camptothecin using molecular markers. The advantages of molecular approaches over conventional methods to screen endophytic fungi and also identification of endophytic fungi are discussed.

  20. Molecular Targeted Approaches to Cancer Therapy and Prevention Using Chalcones

    OpenAIRE

    Jandial, Danielle D.; Blair, Christopher A.; Zhang, Saiyang; Krill, Lauren S; Zhang, Yan-Bing; Zi, Xiaolin

    2014-01-01

    There is an emerging paradigm shift in oncology that seeks to emphasize molecularly targeted approaches for cancer prevention and therapy. Chalcones (1,3-diphenyl-2-propen-1-ones), naturally-occurring compounds with widespread distribution in spices, tea, beer, fruits and vegetables, consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α, β-unsaturated carbonyl system. Due to their structural diversity, relative ease of chemical manipulation and reacti...

  1. Molecular approaches to bivalve population studies: a review

    Directory of Open Access Journals (Sweden)

    Dragomir-Cosmin David

    2011-12-01

    Full Text Available This paper presents a literature review concerning the importance of molecular approaches in bivalve’s population study. The class Bivalvia counts more than 20,000 species with a wide distribution both in freshwater and marine environment. Given their importance especially in aquaculture as a source of food, they have also a strong economic impact upon human society. This review encompasses best practices in bivalve studies from field sampling to laboratory analyses, addressing questions about molecular methods and tools commonly used by specialized researchers. Molecular tools specifically deals with phylogeography, population genetics, biology, ecology and taxonomy. In all these fields, molecular markers play an important role by completing some unanswered questions such as the role of the bivalves in the ecosystems in relation to anthropogenic and global change issues. Numerous genetic markers were developed for specific problems, thereferore we identify as a major issue the absence of uniform and universally recognized methods. The various sections of the paper emphasize from peer reviewed literature literature which are considered the most useful markers, costs and benefits of different methodology, major gaps of knowledge.in bivalve population studies. By reviewing virtually all genetic markers employed during nearly half a century of bivalve molecular research, in our opinion two are the best option “tools: the mitochondrial COI (cytochrome oxidase subunit I and nuclear ITS2 (internal transcribed spacer 2.

  2. Modeling DNA beacons at the mesoscopic scale

    CERN Document Server

    Errami, Jalal; Theodorakopoulos, Nikos

    2007-01-01

    We report model calculations on DNA single strands which describe the equilibrium dynamics and kinetics of hairpin formation and melting. Modeling is at the level of single bases. Strand rigidity is described in terms of simple polymer models; alternative calculations performed using the freely rotating chain and the discrete Kratky-Porod models are reported. Stem formation is modeled according to the Peyrard-Bishop-Dauxois Hamiltonian. The kinetics of opening and closing is described in terms of a diffusion-controlled motion in an effective free energy landscape. Melting profiles, dependence of melting temperature on loop length, and kinetic time scales are in semiquantitative agreement with experimental data obtained from fluorescent DNA beacons forming poly(T) loops. Variation in strand rigidity is not sufficient to account for the large activation enthalpy of closing and the strong loop length dependence observed in hairpins forming poly(A) loops. Implications for modeling single strands of DNA or RNA are...

  3. Modeling on Bessel beam guide star beacon for wavefront sensing

    Science.gov (United States)

    Sun, Quan; Luo, Ruiyao; Yang, Yi; Wu, Wuming; Du, Shaojun; Ning, Yu

    2017-06-01

    Bessel beam has the advantages of reducing scattering artefacts and increasing the quality of the image and penetration. This paper proposed to generate a guide star by Bessel beam with vortex phase, and to use the beacon with special spot structure to measure the atmosphere turbulence aberrations. With the matching algorithm of measured characteristic spot in each subaperture, the detection accuracy of Hartmann wavefront sensor can be improved. Based on wave optics theory, the modeling of Bessel beam guide star and wavefront sensing system was built. The laser guide star beacon generated by Bessel beam with vortex phase and beacon echo wave measured by Hartmann sensor were both simulated. Compared with the results measured by echo wave from Gauss beam generated guide star beacon, this novel method can reduce the error of wavefront detection and increase the detection accuracy of Hartmann sensor.

  4. Quantitative detection of the expression of six miRNAs in patients with ischemic cardiovascular diseaseby using fluorescence real-time PCR utilizing molecular beacon and gold nanoparticles%用金纳米-分子信标的荧光定量PCR新技术研究6个miRNAs在心肌缺血患者中的表达

    Institute of Scientific and Technical Information of China (English)

    何凤屏; 徐新; 马绍椿; 唐良秋; 刘凤莲; 马占忠; 刘彦明

    2013-01-01

    Objective To investigate the usage of a novel fluorescence real-time polymerase chain ration(RT-PCR) technology u-tilizing gold nanoparticle(AuNP) and molecular beacon(MB) probe for the quantitative detection of 6 microRNAs(miRNAs) in patients at different stage of ischemic cardiovascular disease.Methods The expression of the 6 miRNAs in 200 patients with ischemic cardiovascular disease were detected by using the sensitive detection method constructed in this study, and the results were validated by flexible multi-analyte profiling(xMAP).Results In patients group with acute myocardial ischemia,the serum levels of miRNA-21,miRNA-133,miRNA-199,miRNA-208 and miRNA-499 were significantly up-regulated in 1 - 3 hours after the onset of acute myocardial infarction.In patients group with chronic myocardial ischemia, the expression of miRNA-21, miRNA-133, miRNA-199 and miRNA-1 were significantly up-regulated in patients combined with primary hypertension and myocardial ischemia.And the expression levels of the miRNAs mentioned above were significantly higher in the two patients groups than those in control group(P 0.05).结论 新建立的金纳米-分子信标探针的实时荧光定量PCR技术可作为早期检测miRNAs新的实验方法,为心肌梗死患者的早期诊断提供新的检测手段.

  5. Data governance and data sharing agreements for community-wide health information exchange: lessons from the beacon communities.

    Science.gov (United States)

    Allen, Claudia; Des Jardins, Terrisca R; Heider, Arvela; Lyman, Kristin A; McWilliams, Lee; Rein, Alison L; Schachter, Abigail A; Singh, Ranjit; Sorondo, Barbara; Topper, Joan; Turske, Scott A

    2014-01-01

    Unprecedented efforts are underway across the United States to electronically capture and exchange health information to improve health care and population health, and reduce costs. This increased collection and sharing of electronic patient data raises several governance issues, including privacy, security, liability, and market competition. Those engaged in such efforts have had to develop data sharing agreements (DSAs) among entities involved in information exchange, many of whom are "nontraditional" health care entities and/or new partners. This paper shares lessons learned based on the experiences of six federally funded communities participating in the Beacon Community Cooperative Agreement Program, and offers guidance for navigating data governance issues and developing DSAs to facilitate community-wide health information exchange. While all entities involved in electronic data sharing must address governance issues and create DSAs accordingly, until recently little formal guidance existed for doing so - particularly for community-based initiatives. Despite this lack of guidance, together the Beacon Communities' experiences highlight promising strategies for navigating complex governance issues, which may be useful to other entities or communities initiating information exchange efforts to support delivery system transformation. For the past three years, AcademyHealth has provided technical assistance to most of the 17 Beacon Communities, 6 of whom contributed to this collaborative writing effort. Though these communities varied widely in terms of their demographics, resources, and Beacon-driven priorities, common themes emerged as they described their approaches to data governance and DSA development. The 6 Beacon Communities confirmed that DSAs are necessary to satisfy legal and market-based concerns, and they identified several specific issues, many of which have been noted by others involved in network data sharing initiatives. More importantly, these

  6. Microbial detection with low molecular weight RNA

    Science.gov (United States)

    Kourentzi, K. D.; Fox, G. E.; Willson, R. C.

    2001-01-01

    The need to monitor microorganisms in the environment has increased interest in assays based on hybridization probes that target nucleic acids (e.g., rRNA). We report the development of liquid-phase assays for specific bacterial 5S rRNA sequences or similarly sized artificial RNAs (aRNAs) using molecular beacon technology. These beacons fluoresce only in the presence of specific target sequences, rendering as much as a 27-fold fluorescence enhancement. The assays can be used with both crude cell lysates and purified total RNA preparations. Minimal sample preparation (e.g., heating to promote leakage from cells) is sufficient to detect many Gram-negative bacteria. Using this approach it was possible to detect an aRNA-labeled Escherichia coli strain in the presence of a large background of an otherwise identical E. coli strain. Finally, by using a longer wavelength carboxytetramethylrhodamine beacon it was possible to reduce the fraction of the signal due to cellular autofluorescence to below 0.5%.

  7. Tailoring approach for obtaining molecular orbitals of large systems

    Indian Academy of Sciences (India)

    Anuja P Rahalkar; Shridhar R Gadre

    2012-01-01

    Molecular orbitals (MO’s) within Hartree-Fock (HF) theory are of vital importance as they provide preliminary information of bonding and features such as electron localization and chemical reactivity. The contemporary literature treats the Kohn-Sham orbitals within density functional theory (DFT) equivalently to the MO's obtained within HF framework. The high scaling order of ab initio methods is the main hurdle in obtaining the MO's for large molecular systems. With this view, an attempt is made in the present work to employ molecular tailoring approach (MTA) for obtaining the complete set of MO's including occupied and virtual orbitals, for large molecules at HF and B3LYP levels of theory. The energies of highest occupied and lowest unoccupied molecular orbitals, and hence the band gaps, are accurately estimated by MTA for most of the test cases benchmarked in this study, which include -conjugated molecules. Typically, the root mean square errors of valence MO's are in range of 0.001 to 0.010 a.u. for all the test cases examined. MTA shows a time advantage factor of 2 to 3 over the corresponding actual calculation, for many of the systems reported.

  8. Master Equation Approach to Molecular Motor's Directed Motion

    Institute of Scientific and Technical Information of China (English)

    FENG Juan; ZHUO Yi-Zhong

    2005-01-01

    @@ The master equation approach based on the periodic one-dimensional three-state hopping model is developed to study the molecular motor's directed motion. An explicit solution Px ( t ) is obtained for the probability distribution as a function of the time for any initial distribution Px(0) with all the transients included. We introduce dj to represent the sub-step lengths, which can reflect how the external load affects the individual rate via load distribution factors θ+j and θ-j. A wide variety of molecular motor behaviour under external load f can readily be obtained by the unequal-distance transition model with load-dependent transition rates. By comparison with the experiments, namely of the drift velocity v and the randomness parameter r versus adenosine triphosphate concentration and external load f, it is shown that the model presented here can rather satisfactorily explain the available data.

  9. Molecular basis of glyphosate resistance: Different approaches through protein engineering

    Science.gov (United States)

    Pollegioni, Loredano; Schonbrunn, Ernst; Siehl, Daniel

    2011-01-01

    Glyphosate (N-phosphonomethyl-glycine) is the most-used herbicide in the world: glyphosate-based formulations exhibit broad-spectrum herbicidal activity with minimal human and environmental toxicity. The extraordinary success of this simple small molecule is mainly due to the high specificity of glyphosate towards the plant enzyme enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway leading to biosynthesis of aromatic amino acids. Starting in 1996, transgenic glyphosate-resistant plants were introduced thus allowing the application of the herbicide to the crop (post-emergence) to remove emerged weeds without crop damage. This review focuses on the evolution of mechanisms of resistance to glyphosate as obtained through natural diversity, the gene shuffling approach to molecular evolution, and a rational, structure-based approach to protein engineering. In addition, we offer rationale for the means by which the modifications made have had their intended effect. PMID:21668647

  10. Molecular Therapeutic Approaches for Pediatric Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Sarah K Tasian

    2014-03-01

    Full Text Available Approximately two thirds of children with acute myeloid leukemia (AML are cured with intensive multi-agent chemotherapy. However, primary chemorefractory and relapsed AML remains a significant source of childhood cancer mortality, highlighting the need for new therapies. Further therapy intensification with traditional cytotoxic agents is not feasible given the potential for significant toxicity to normal tissues with conventional chemotherapy and the risk for long-term end-organ dysfunction. Significant emphasis has been placed upon the development of molecularly targeted therapeutic approaches for adults and children with high-risk subtypes of AML with the goal of improving remission induction and minimizing relapse. Several promising agents are currently in clinical testing or late preclinical development for AML, including monoclonal antibodies against leukemia cell surface proteins, kinase inhibitors, proteasome inhibitors, epigenetic agents, and chimeric antigen receptor engineered T cell immunotherapies. Many of these therapies have been specifically tested in children with relapsed/refractory AML via phase 1 and 2 trials with a smaller number of new agents under phase 3 evaluation for children with de novo AML. Although successful identification and implementation of new drugs for children with AML remains a formidable challenge, enthusiasm for novel molecular therapeutic approaches is great given the potential for significant clinical benefit for children who will otherwise fail standard therapy.

  11. New Approaches to Sepsis: Molecular Diagnostics and Biomarkers

    Science.gov (United States)

    Bauer, Michael; Riedemann, Niels C.; Hartog, Christiane S.

    2012-01-01

    Summary: Sepsis is among the most common causes of death in hospitals. It arises from the host response to infection. Currently, diagnosis relies on nonspecific physiological criteria and culture-based pathogen detection. This results in diagnostic uncertainty, therapeutic delays, the mis- and overuse of antibiotics, and the failure to identify patients who might benefit from immunomodulatory therapies. There is a need for new sepsis biomarkers that can aid in therapeutic decision making and add information about screening, diagnosis, risk stratification, and monitoring of the response to therapy. The host response involves hundreds of mediators and single molecules, many of which have been proposed as biomarkers. It is, however, unlikely that one single biomarker is able to satisfy all the needs and expectations for sepsis research and management. Among biomarkers that are measurable by assays approved for clinical use, procalcitonin (PCT) has shown some usefulness as an infection marker and for antibiotic stewardship. Other possible new approaches consist of molecular strategies to improve pathogen detection and molecular diagnostics and prognostics based on transcriptomic, proteomic, or metabolic profiling. Novel approaches to sepsis promise to transform sepsis from a physiologic syndrome into a group of distinct biochemical disorders and help in the development of better diagnostic tools and effective adjunctive sepsis therapies. PMID:23034322

  12. Crowdsourcing for Context: Regarding Privacy in Beacon Encounters via Contextual Integrity

    National Research Council Canada - National Science Library

    Emmanuel Bello-Ogunu; Mohamed Shehab

    2016-01-01

    .... With Bluetooth Low Energy beacons, one of the latest technologies for providing proximity and indoor tracking, the current identifiers that characterize a beacon are not sufficient for ordinary users...

  13. Beacon-Less Geographic Routing in Real Wireless Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    Juan A. Sánchez; Rafael Marín-Pérez; Pedro M. Ruiz

    2008-01-01

    Geographic Routing (GR) algorithms require nodes to periodically transmit HELLO messages to allow neigh-bors to know their positions (beaconing mechanism). Beacon-less routing algorithms have recently been proposed to reduce the control overheads due to these messages. However, existing beacon-less algorithms have not considered realistic physical layers. Therefore, those algorithms cannot work properly in realistic scenarios. In this paper we present a new beacon-less routing protocol called BOSS. Its design is based on the conclusions of our open-field experiments using Tmote-sky sensors. BOSS is adapted to error-prone networks and incorporates a new mechanism to reduce collisions and duplicate messages produced during the selection of the next forwarder node. We compare BOSS with Beacon-Less Routing (BLR)and Contention-Based Forwarding (CBF) algorithms through extensive simulations. The results show that our scheme is able to achieve almost perfect packet delivery ratio (like BLR) while having a low bandwidth consumption (even lower than CBF). Additionally, we carried out an empirical evaluation in a real testbed that shows the correctness of our simulation results.

  14. Information Dissemination in VANETS by Piggybacking on Beacons - An Analysis of the Impact of Network Parameters

    NARCIS (Netherlands)

    Klein Wolterink, W.; Heijenk, G.J.; Karagiannis, G.

    2011-01-01

    Piggybacking on beacons is a forwarding technique that is regularly used in vehicular ad-hoc network (VANET) research as a means to disseminate data. With this technique data is attached to and transmitted along with scheduled beacons, without changing the timing of the beacons. In this paper we eva

  15. 76 FR 65216 - Beacon Medical Services, LLC, Aurora, CO; Notice of Negative Determination Regarding Application...

    Science.gov (United States)

    2011-10-20

    ... Employment and Training Administration Beacon Medical Services, LLC, Aurora, CO; Notice of Negative... apply for Trade Adjustment Assistance (TAA) applicable to workers and former workers of Beacon Medical Services, LLC, Aurora, Colorado (Beacon Medical Services). The negative determination was issued on June 22...

  16. 33 CFR 149.580 - What are the requirements for a radar beacon?

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false What are the requirements for a radar beacon? 149.580 Section 149.580 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Navigation Miscellaneous § 149.580 What are the requirements for a radar beacon? (a) A radar beacon (RACON...

  17. 14 CFR 171.321 - DME and marker beacon performance requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false DME and marker beacon performance... (MLS) § 171.321 DME and marker beacon performance requirements. (a) The DME equipment must meet the..._regulations/ibr_locations.html. (b) MLS marker beacon equipment must meet the performance requirements...

  18. 76 FR 17625 - Proposed Information Collection; Comment Request; Emergency Beacon Registrations

    Science.gov (United States)

    2011-03-30

    ... Beacon Registrations AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION... ships, aircraft, or individuals in distress if they are equipped with an emergency radio beacon. Persons purchasing a digital distress beacon, operating in the frequency range of 406.000 to 406.100 MHz, must...

  19. 33 CFR 149.535 - What are the requirements for rotating beacons on platforms?

    Science.gov (United States)

    2010-07-01

    ... rotating beacons on platforms? 149.535 Section 149.535 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Aids to Navigation Lights on Platforms § 149.535 What are the requirements for rotating beacons on... rotating beacon that distinguishes the deepwater port from other surrounding offshore structures....

  20. A Place To Grow: Evaluation of the New York City Beacons. Summary Report.

    Science.gov (United States)

    Warren, Constancia; Feist, Michelle; Nevarez, Nancy

    This study examined six Beacon centers, which are community centers located in public school buildings that offer a range of activities and services to participants of all ages, before and after school, in the evenings, and on weekends. Individual Beacons are managed by community-based organizations. The study examined how the Beacons provided…

  1. 78 FR 75392 - American Beacon Funds, et al.; Notice of Application

    Science.gov (United States)

    2013-12-11

    ...-Advised Fund as follows: (a) American Beacon Acadian Emerging Markets Managed Volatility Fund-- Acadian...--Bridgeway Capital Management, Inc.; (d) American Beacon Earnest Partners Emerging Markets Equity Fund--EARNEST Partners, LLC; (e) American Beacon Emerging Markets Fund--Brandes Investment Partners, LP,...

  2. Quantum Trajectory Approach to Molecular Dynamics Simulation with Surface Hopping

    CERN Document Server

    Feng, Wei; Li, Xin-Qi; Fang, Weihai

    2012-01-01

    The powerful molecular dynamics (MD) simulation is basically based on a picture that the atoms experience classical-like trajectories under the exertion of classical force field determined by the quantum mechanically solved electronic state. In this work we propose a quantum trajectory approach to the MD simulation with surface hopping, from an insight that an effective "observation" is actually implied in theMDsimulation through tracking the forces experienced, just like checking the meter's result in the quantum measurement process. This treatment can build the nonadiabatic surface hopping on a dynamical foundation, instead of the usual artificial and conceptually inconsistent hopping algorithms. The effects and advantages of the proposed scheme are preliminarily illustrated by a two-surface model system.

  3. Structure-based molecular modeling approaches to GPCR oligomerization.

    Science.gov (United States)

    Kaczor, Agnieszka A; Selent, Jana; Poso, Antti

    2013-01-01

    Classical structure-based drug design techniques using G-protein-coupled receptors (GPCRs) as targets focus nearly exclusively on binding at the orthosteric site of a single receptor. Dimerization and oligomerization of GPCRs, proposed almost 30 years ago, have, however, crucial relevance for drug design. Targeting these complexes selectively or designing small molecules that affect receptor-receptor interactions might provide new opportunities for novel drug discovery. In order to study the mechanisms and dynamics that rule GPCRs oligomerization, it is essential to understand the dynamic process of receptor-receptor association and to identify regions that are suitable for selective drug binding, which may be determined with experimental methods such as Förster resonance energy transfer (FRET) or Bioluminescence resonance energy transfer (BRET) and computational sequence- and structure-based approaches. The aim of this chapter is to provide a comprehensive description of the structure-based molecular modeling methods for studying GPCR dimerization, that is, protein-protein docking, molecular dynamics, normal mode analysis, and electrostatics studies.

  4. Rapid molecular identification of human taeniid cestodes by pyrosequencing approach.

    Science.gov (United States)

    Thanchomnang, Tongjit; Tantrawatpan, Chairat; Intapan, Pewpan M; Sanpool, Oranuch; Janwan, Penchom; Lulitanond, Viraphong; Tourtip, Somjintana; Yamasaki, Hiroshi; Maleewong, Wanchai

    2014-01-01

    Taenia saginata, T. solium, and T. asiatica are causative agents of taeniasis in humans. The difficulty of morphological identification of human taeniids can lead to misdiagnosis or confusion. To overcome this problem, several molecular methods have been developed, but use of these tends to be time-consuming. Here, a rapid and high-throughput pyrosequencing approach was developed for the identification of three human taeniids originating from various countries. Primers targeting the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of the three Taenia species were designed. Variations in a 26-nucleotide target region were used for identification. The reproducibility and accuracy of the pyrosequencing technology was confirmed by Sanger sequencing. This technique will be a valuable tool to distinguish between sympatric human taeniids that occur in Thailand, Asia and Pacific countries. This method could potentially be used for the molecular identification of the taeniid species that might be associated with suspicious cysts and lesions, or cyst residues in humans or livestock at the slaughterhouse.

  5. Rapid molecular identification of human taeniid cestodes by pyrosequencing approach.

    Directory of Open Access Journals (Sweden)

    Tongjit Thanchomnang

    Full Text Available Taenia saginata, T. solium, and T. asiatica are causative agents of taeniasis in humans. The difficulty of morphological identification of human taeniids can lead to misdiagnosis or confusion. To overcome this problem, several molecular methods have been developed, but use of these tends to be time-consuming. Here, a rapid and high-throughput pyrosequencing approach was developed for the identification of three human taeniids originating from various countries. Primers targeting the mitochondrial cytochrome c oxidase subunit 1 (cox1 gene of the three Taenia species were designed. Variations in a 26-nucleotide target region were used for identification. The reproducibility and accuracy of the pyrosequencing technology was confirmed by Sanger sequencing. This technique will be a valuable tool to distinguish between sympatric human taeniids that occur in Thailand, Asia and Pacific countries. This method could potentially be used for the molecular identification of the taeniid species that might be associated with suspicious cysts and lesions, or cyst residues in humans or livestock at the slaughterhouse.

  6. Exploring the transformative potential of Bluetooth beacons in higher education

    Directory of Open Access Journals (Sweden)

    Kieran McDonald

    2016-11-01

    Full Text Available The growing ubiquity of smartphones and tablet devices integrated into personal, social and professional life, facilitated by expansive communication networks globally, has the potential to disrupt higher education. Academics and students are considering the future possibilities of exploiting these tools and utilising networks to consolidate and expand knowledge, enhancing learning gain. Bluetooth beacon technology has been developed by both Apple and Google as a way to situate digital information within physical spaces, and this paper reflects on a beacon intervention in a contemporary art school in higher education conducted by the authors intended to develop a situated community of practice in Art & Design. The paper describes the project, including relevant theoretical foundations and background to the beacon technology, with regards to the potential of using these devices to create a connected learning community by enhancing learning and facilitating knowledge creation in a borderless learning space.

  7. A Search for New Physics with the BEACON Mission

    CERN Document Server

    Turyshev, Slava G; Shao, Michael; Girerd, Andre

    2008-01-01

    The primary objective of the Beyond Einstein Advanced Coherent Optical Network (BEACON) mission is a search for new physics beyond general relativity by measuring the curvature of relativistic space-time around Earth. This curvature is characterized by the Eddington parameter \\gamma -- the most fundamental relativistic gravity parameter and a direct measure for the presence of new physical interactions. BEACON will achieve an accuracy of 1 x 10^{-9} in measuring the parameter \\gamma, thereby going a factor of 30,000 beyond the present best result involving the Cassini spacecraft. Secondary mission objectives include: (i) a direct measurement of the "frame-dragging" and geodetic precessions in the Earth's rotational gravitomagnetic field, to 0.05% and 0.03% accuracy correspondingly, (ii) first measurement of gravity's non-linear effects on light and corresponding 2nd order spatial metric's effects to 0.01% accuracy. BEACON will lead to robust advances in tests of fundamental physics -- this mission could disco...

  8. Indoor localization and beacon calibration using ultrasonic and radio frequency

    Science.gov (United States)

    Yoon, Jeong-Yong; Jung, Kyoo-Sick; Shin, Dong-Hun

    2005-12-01

    Using the ultrasonic and the radio frequency, a method for the robot localization and calibration was presented. The distance between the receiver and a beacon can be computed by using the difference between times of flight. The presented method uses the gradient of the maximum amplitude of the ultrasonic in order to measure the time of flight precisely. The measured three distances between the receiver and the beacon were used to compute the robot position by the direct inverse method and the iterated least square approximation method. This paper defines the calibration as the problem to find the location of 3 beacons and 3 robots, and presents 3 methods for it and found the 2B2R method as the best among them.

  9. Distributed localization using mobile beacons in wireless sensor networks

    Institute of Scientific and Technical Information of China (English)

    KUANG Xing-hong; SHAO Hui-he

    2007-01-01

    A new distributed node localization algorithm named mobile beacons-improved particle filter (MB-IPF) was proposed. In the algorithm, the mobile nodes equipped with globe position system (GPS) move around in the wireless sensor network (WSN) field based on the Gauss-Markov mobility model, and periodically broadcast the beacon messages. Each unknown node estimates its location in a fully distributed mode based on the received mobile beacons. The localization algorithm is based on the IPF and several refinements, including the proposed weighted centroid algorithm, the residual resampling algorithm, and the markov chain monte carlo (MCMC) method etc., which were also introduced for performance improvement. The simulation results show that our proposed algorithm is efficient for most applications.

  10. Gold nanoparticle-based beacon to detect STAT5b mRNA expression in living cells: a case optimized by bioinformatics screen

    Directory of Open Access Journals (Sweden)

    Deng D

    2015-04-01

    Full Text Available Dawei Deng,* Yang Li,* Jianpeng Xue, Jie Wang, Guanhua Ai, Xin Li, Yueqing GuDepartment of Biomedical Engineering, China Pharmaceutical University, Nanjing, People’s Republic of China*These authors contributed equally to this workAbstract: Messenger RNA (mRNA, a single-strand ribonucleic acid with functional gene information is usually abnormally expressed in cancer cells and has become a promising biomarker for the study of tumor progress. Hairpin DNA-coated gold nanoparticle (hDAuNP beacon containing a bare gold nanoparticle (AuNP as fluorescence quencher and thiol-terminated fluorescently labeled stem–loop–stem oligonucleotide sequences attached by Au–S bond is currently a new nanoscale biodiagnostic platform capable of mRNA detection, in which the design of the loop region sequence is crucial for hybridizing with the target mRNA. Hence, in this study, to improve the sensitivity and selectivity of hDAuNP beacon simultaneously, the loop region of hairpin DNA was screened by bioinformatics strategy. Here, signal transducer and activator of transcription 5b (STAT5b mRNA was selected and used as a practical example. The results from the combined characterizations using optical techniques, flow cytometry assay, and cell microscopic imaging showed that after optimization, the as-prepared hDAuNP beacon had higher selectivity and sensitivity for the detection of STAT5b mRNA in living cells, as compared with our previous beacon. Thus, the bioinformatics method may be a promising new strategy for assisting in the designing of the hDAuNP beacon, extending its application in the detection of mRNA expression and the resultant mRNA-based biological processes and disease pathogenesis.Keywords: molecular beacon, bioinformatics, gold nanoparticle, STAT5b mRNA, visual detection

  11. A complementary palette of NanoCluster Beacons.

    Science.gov (United States)

    Obliosca, Judy M; Babin, Mark C; Liu, Cong; Liu, Yen-Liang; Chen, Yu-An; Batson, Robert A; Ganguly, Mainak; Petty, Jeffrey T; Yeh, Hsin-Chih

    2014-10-28

    NanoCluster Beacons (NCBs), which use few-atom DNA-templated silver clusters as reporters, are a type of activatable molecular probes that are low-cost and easy to prepare. While NCBs provide a high fluorescence enhancement ratio upon activation, their activation colors are currently limited. Here we report a simple method to design NCBs with complementary emission colors, creating a set of multicolor probes for homogeneous, separation-free detection. By systematically altering the position and the number of cytosines in the cluster-nucleation sequence, we have tuned the activation colors of NCBs to green (C8-8, 460 nm/555 nm); yellow (C5-5, 525 nm/585 nm); red (C3-4, 580 nm/635 nm); and near-infrared (C3-3, 645 nm/695 nm). At the same NCB concentration, the activated yellow NCB (C5-5) was found to be 1.3 times brighter than the traditional red NCB (C3-4). Three of the four colors (green, yellow, and red) were relatively spectrally pure. We also found that subtle changes in the linker sequence (down to the single-nucleotide level) could significantly alter the emission spectrum pattern of an NCB. When the length of linker sequences was increased, the emission peaks were found to migrate in a periodic fashion, suggesting short-range interactions between silver clusters and nucleobases. Size exclusion chromatography results indicated that the activated NCBs are more compact than their native duplex forms. Our findings demonstrate the unique photophysical properties and environmental sensitivities of few-atom DNA-templated silver clusters, which are not seen before in common organic dyes or luminescent crystals.

  12. BEACON: automated tool for Bacterial GEnome Annotation ComparisON.

    Science.gov (United States)

    Kalkatawi, Manal; Alam, Intikhab; Bajic, Vladimir B

    2015-08-18

    Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs). The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACON's utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27%, while the number of genes without any function assignment is reduced. We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/ .

  13. BEACON SYNCHRONIZATION TECHNOLOGY FOR “BEIDOU” TERRESTRIAL IMPROVEMENT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    WEIJin-chen; TANGJi-qiang; SHENFeng

    2005-01-01

    Synchronization is an essential technology in the radio navigation system. The technique for improving the “Beidou” positioning ability is presented through constituting the terrestrial improvement system, and the beacon synchronization of the improvement system with the “Beidou” one-way time transfer model is realized.The direct digital synthesis (DDS) is adopted to generate the pseudo-random code clock having high precision and stability. Meanwhile, the CPLD device is used to design the synchronization pulse picking-up module, the spread spectrum PN code generator and the spread spectrum modulator. Measurement results indicate that the beacon synchronization has the high precision and the stability.

  14. Omnidirectional beacon-localization using a catadioptric system.

    Science.gov (United States)

    Shen, Thomas C; Drost, Robert J; Sadler, Brian M; Rzasa, John R; Davis, Christopher C

    2016-04-01

    We present a catadioptric beacon localization system that can provide mobile network nodes with omnidirectional situational awareness of neighboring nodes. In this system, a receiver composed of a hyperboloidal mirror and camera is used to estimate the azimuth, elevation, and range of an LED beacon. We provide a general framework for understanding the propagation of error in the angle-of-arrival estimation and then present an experimental realization of such a system. The situational awareness provided by the proposed system can enable the alignment of communication nodes in an optical wireless network, which may be particularly useful in addressing RF-denied environments.

  15. Genomics, Physiology, and Molecular Breeding Approaches for Improving Salt Tolerance.

    Science.gov (United States)

    Ismail, Abdelbagi M; Horie, Tomoaki

    2017-02-22

    Salt stress reduces land and water productivity and contributes to poverty and food insecurity. Increased salinization caused by human practices and climate change is progressively reducing agriculture productivity despite escalating calls for more food. Plant responses to salt stress are fairly well understood, involving numerous critical processes that are each controlled by multiple genes. Knowledge of the critical mechanisms controlling salt uptake and exclusion from functioning tissues, signaling of salt stress, and the arsenal of protective metabolites is advancing. However, little progress has been made in developing salt-tolerant varieties of crop species using standard (but slow) breeding approaches. The genetic diversity available within cultivated crops and their wild relatives provides rich sources for trait and gene discovery that has yet to be sufficiently utilized. Transforming this knowledge into modern approaches using genomics and molecular tools for precision breeding will accelerate the development of tolerant cultivars and help sustain food production. Expected final online publication date for the Annual Review of Plant Biology Volume 68 is April 29, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  16. Molecular approaches to diversity of populations of apicomplexan parasites.

    Science.gov (United States)

    Beck, Hans-Peter; Blake, Damer; Dardé, Marie-Laure; Felger, Ingrid; Pedraza-Díaz, Susana; Regidor-Cerrillo, Javier; Gómez-Bautista, Mercedes; Ortega-Mora, Luis Miguel; Putignani, Lorenza; Shiels, Brian; Tait, Andrew; Weir, Willie

    2009-01-01

    Apicomplexan parasites include many parasites of importance either for livestock or as causative agents of human diseases. The importance of these parasites has been recognised by the European Commission and resulted in support of the COST (Cooperation in Science and Technology) Action 857 'Apicomplexan Biology in the Post-Genomic Era'. In this review we discuss the current understanding in 'Biodiversity and Population Genetics' of the major apicomplexan parasites, namely the Eimeria spp., Cryptosporidium spp., Toxoplasma gondii, Neospora caninum, Theileria spp. and Plasmodium spp. During the past decade molecular tools for characterizing and monitoring parasite populations have been firmly established as an integral part of field studies and intervention trials. Analyses have been conducted for most apicomplexan pathogens to describe the extent of genetic diversity, infection dynamics or population structure. The underlying key question for all parasites is to understand how genetic diversity influences epidemiology and pathogenicity and its implication in therapeutic and vaccination strategies as well as disease control. Similarities in the basic biology and disease or transmission patterns among this order of parasites promote multifaceted discussions and comparison of epidemiological approaches and methodological tools. This fosters mutual learning and has the potential for cross-fertilisation of ideas and technical approaches.

  17. Optimalization of Beacon Selection for Localization in Wireless AD-HOC Networks

    Directory of Open Access Journals (Sweden)

    Martin Matula

    2008-01-01

    Full Text Available In this paper we engage in optimalization of convenient beacons for localization position of a node in the ad-hoc network. An algorithm designed by us localizes position of moving or static node by RSS (Received Signal Strength method and trilateration. At first, localization of unknown node runs by combination of all beacons. Than optimalizating algorithmreduces the number of beacons (and repeats localization, while only three left. Its reduction is based on highest levels of received signal strength. It is only when signals are from the nearest beacons. Position localizating exactness is statistically interpreted from all localization by beacons combination and its repeating.

  18. Fusarium diversity in soil using a specific molecular approach and a cultural approach.

    Science.gov (United States)

    Edel-Hermann, Véronique; Gautheron, Nadine; Mounier, Arnaud; Steinberg, Christian

    2015-04-01

    Fusarium species are ubiquitous in soil. They cause plant and human diseases and can produce mycotoxins. Surveys of Fusarium species diversity in environmental samples usually rely on laborious culture-based methods. In the present study, we have developed a molecular method to analyze Fusarium diversity directly from soil DNA. We designed primers targeting the translation elongation factor 1-alpha (EF-1α) gene and demonstrated their specificity toward Fusarium using a large collection of fungi. We used the specific primers to construct a clone library from three contrasting soils. Sequence analysis confirmed the specificity of the assay, with 750 clones identified as Fusarium and distributed among eight species or species complexes. The Fusarium oxysporum species complex (FOSC) was the most abundant one in the three soils, followed by the Fusarium solani species complex (FSSC). We then compared our molecular approach results with those obtained by isolating Fusarium colonies on two culture media and identifying species by sequencing part of the EF-1α gene. The 750 isolates were distributed into eight species or species complexes, with the same dominant species as with the cloning method. Sequence diversity was much higher in the clone library than in the isolate collection. The molecular approach proved to be a valuable tool to assess Fusarium diversity in environmental samples. Combined with high throughput sequencing, it will allow for in-depth analysis of large numbers of samples.

  19. Evolution of stratospheric chemistry in the Saturn storm beacon region

    Science.gov (United States)

    Moses, Julianne I.; Armstrong, Eleanor S.; Fletcher, Leigh N.; Friedson, A. James; Irwin, Patrick G. J.; Sinclair, James A.; Hesman, Brigette E.

    2015-11-01

    The giant northern-hemisphere storm that erupted on Saturn in December 2010 triggered significant changes in stratospheric temperatures and species abundances that persisted for more than a year after the original outburst. The stratospheric regions affected by the storm have been nicknamed "beacons" due to their prominent infrared-emission signatures (Fletcher, L.N. et al. [2011]. Science 332, 1413). The two beacon regions that were present initially merged in April 2011 to form a single, large, anticyclonic vortex (Fletcher, L.N. et al. [2012]. Icarus 221, 560). We model the expected photochemical evolution of the stratospheric constituents in the beacons from the initial storm onset through the merger and on out to March 2012. The results are compared with longitudinally resolved Cassini/CIRS spectra from May 2011. If we ignore potential changes due to vertical winds within the beacon, we find that C2H2, C2H6, and C3H8 remain unaffected by the increased stratospheric temperatures in the beacon, the abundance of the shorter-lived CH3C2H decreases, and the abundance of C2H4 increases significantly due to the elevated temperatures, the latter most notably in a secondary mixing-ratio peak located near mbar pressures. The C4H2 abundance in the model decreases by a factor of a few in the 0.01-10 mbar region but has a significant increase in the 10-30 mbar region due to evaporation of the previously condensed phase. The column abundances of C6H6 and H2O above ∼30 mbar also increase due to aerosol evaporation. Model-data comparisons show that models that consider temperature changes alone underpredict the abundance of C2Hx species by a factor of 2-7 in the beacon core in May 2011, suggesting that other processes not considered by the models, such as downwelling winds in the vortex, are affecting the species profiles. Additional calculations indicate that downwelling winds of order - 10 cm s-1 near ∼0.1 mbar need to be included in the photochemical models in order to

  20. Molecular bulk heterojunctions: an emerging approach to organic solar cells.

    Science.gov (United States)

    Roncali, Jean

    2009-11-17

    The predicted exhaustion of fossil energy resources and the pressure of environmental constraints are stimulating an intensification of research on renewable energy sources, in particular, on the photovoltaic conversion of solar energy. In this context, organic solar cells are attracting increasing interest that is motivated by the possibility of fabricating large-area, lightweight, and flexible devices using simple techniques with low environmental impact. Organic solar cells are based on a heterojunction resulting from the contact of a donor (D) and an acceptor (A) material. Absorption of solar photons creates excitons, Coulombically bound electron-hole pairs, which diffuse to the D/A interface, where they are dissociated into free holes and electrons by the electric field. D/A heterojunctions can be created with two types of architectures, namely, bilayer heterojunction and bulk heterojunction (BHJ) solar cells. BHJ cells combine the advantages of easier fabrication and higher conversion efficiency due to the considerably extended D/A interface. Until now, the development of BHJ solar cells has been essentially based on the use of soluble pi-conjugated polymers as donor material. Intensive interdisciplinary research carried out in the past 10 years has led to an increase in the conversion efficiency of BHJ cells from 0.10 to more than 5.0%. These investigations have progressively established regioregular poly(3-hexylthiophene) (P3HT) as the standard donor material for BHJ solar cells, owing to a useful combination of optical and charge-transport properties. However, besides the limit imposed to the maximum conversion efficiency by its intrinsic electronic properties, P3HT and more generally polymers pose several problems related to the control of their structure, molecular weight, polydispersity, and purification. In this context, recent years have seen the emergence of an alternative approach based on the replacement of polydisperse polymers by soluble

  1. Detection of selection utilizing molecular phylogenetics: a possible approach.

    Science.gov (United States)

    Yang, Ming; Wyckoff, Gerald J

    2011-05-01

    The neutral theory of molecular evolution (Kimura 1985) is the basis for most current statistical tests for detecting selection, mainly using polymorphism data within species, divergence data between species, and/or genomic structures like linkage disequilibrium (Wang et al. 2006). In most cases informative tests can only be constructed with ample variations within these parameters and many common tests are difficult to formulate when identity-by-descent is not clear, for example in gene families or repetitive elements. With the current progress being made toward whole-genome sequencing and re-sequencing efforts, as well as protein sequencing via tandem mass spectrometry where genomic sequencing is lacking, we felt it was necessary to re-visit possible methods for rapid screening and detection of evolutionary outliers. These outliers might be of interest for other research, such as candidate gene association studies or genome annotations, drug- and disease-target searches, and functional studies. We focused on methods that would work on both protein and nucleotide data, could be used on large gene or protein domain families, and could be generated quickly in order for "first pass" annotation of large scale data. For these reasons, we chose properties of trees generated routinely in molecular phylogenetic studies; genetic distance, tree shape and balance, and internal node statistics (Heard 1992). Our current research looking at protein domain family data and phylogenetic trees from PFAM (Finn et al. 2008) suggests this approach towards detecting evolutionary outliers is feasible, but additional work will be necessary to determine the parameters that suggest either positive or negative selection is occurring in specific gene families. This is particularly true when other factors such as rapid duplication and deletion of genes containing these domains is taking place, and we suggest phylogenetic statistics may be useful in combination with existing methodologies for

  2. Preliminary Results of the NASA Beacon Receiver for Alphasat Aldo Paraboni TDP5 Propagation Experiment

    Science.gov (United States)

    Nessel, James; Morse, Jacquelynne; Zemba, Michael; Riva, Carlo; Luini, Lorenzo

    2014-01-01

    NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have initiated a joint propagation campaign within the framework of the Alphasat propagation experiment to characterize rain attenuation, scintillation, and gaseous absorption effects of the atmosphere in the 40 GHz band. NASA GRC has developed and installed a K/Q-band (20/40 GHz) beacon receiver at the POLIMI campus in Milan, Italy, which receives the 20/40 GHz signals broadcast from the Alphasat Aldo Paraboni TDP#5 beacon payload. The primary goal of these measurements is to develop a physical model to improve predictions of communications systems performance within the Q-band. Herein, we describe the design and preliminary performance of the NASA propagation terminal, which has been installed and operating in Milan since May 2014. The receiver is based upon a validated Fast Fourier Transform (FFT) I/Q digital design approach utilized in other operational NASA propagation terminals, but has been modified to employ power measurement via a frequency estimation technique and to coherently track and measure the amplitude of the 20/40 GHz beacon signals. The system consists of a 1.2-m K-band and a 0.6-m Qband Cassegrain reflector employing synchronous open-loop tracking to track the inclined orbit of the Alphasat satellite. An 8 Hz sampling rate is implemented to characterize scintillation effects, with a 1-Hz measurement bandwidth dynamic range of 45 dB. A weather station with an optical disdrometer is also installed to characterize rain drop size distribution for correlation with physical based models.

  3. Performance of the NASA Beacon Receiver for the Alphasat Aldo Paraboni TDP5 Propagation Experiment

    Science.gov (United States)

    Nessel, James; Morse, Jacquelynne; Zemba, Michael; Riva, Carlo; Luini, Lorenzo

    2015-01-01

    NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have initiated a joint propagation campaign within the framework of the Alphasat propagation experiment to characterize rain attenuation, scintillation, and gaseous absorption effects of the atmosphere in the 40 gigahertz band. NASA GRC has developed and installed a K/Q-band (20/40 gigahertz) beacon receiver at the POLIMI campus in Milan, Italy, which receives the 20/40 gigahertz signals broadcast from the Alphasat Aldo Paraboni Technology Demonstration Payload (TDP) no. 5 beacon payload. The primary goal of these measurements is to develop a physical model to improve predictions of communications systems performance within the Q-band. Herein, we describe the design and preliminary performance of the NASA propagation terminal, which has been installed and operating in Milan since June 2014. The receiver is based upon a validated Fast Fourier Transform (FFT) I/Q digital design approach utilized in other operational NASA propagation terminals, but has been modified to employ power measurement via a frequency estimation technique and to coherently track and measure the amplitude of the 20/40 gigahertz beacon signals. The system consists of a 1.2-meter K-band and a 0.6-meter Q-band Cassegrain reflector employing synchronous open-loop tracking to track the inclined orbit of the Alphasat satellite. An 8 hertz sampling rate is implemented to characterize scintillation effects, with a 1-hertz measurement bandwidth dynamic range of 45 decibels. A weather station with an optical disdrometer is also installed to characterize rain drop size distribution for correlation with physical based models.

  4. Early Detection of Breast Cancer Using Molecular Beacons

    Science.gov (United States)

    2008-01-01

    exfoliated cells in body fluids is more quantitative than that detected in cancer cells on frozen tissue sections because most cells in tissue sections...the MB and QD detections are more specific and sensitive than cytological method in detecting breast cancer cells. The proposed study will also...Lewis) for the presence of benign, atypical or malignant cells. We will then compare the results of the MB and QD detection with cytological findings

  5. Molecular Beacons: Powerful Tools for Imaging RNA in Living Cells

    OpenAIRE

    Ricardo Monroy-Contreras; Luis Vaca

    2011-01-01

    Recent advances in RNA functional studies highlights the pivotal role of these molecules in cell physiology. Diverse methods have been implemented to measure the expression levels of various RNA species, using either purified RNA or fixed cells. Despite the fact that fixed cells offer the possibility to observe the spatial distribution of RNA, assays with capability to real-time monitoring RNA transport into living cells are needed to further understand the role of RNA dynamics in cellular fu...

  6. A Spinach molecular beacon triggered by strand displacement.

    Science.gov (United States)

    Bhadra, Sanchita; Ellington, Andrew D

    2014-08-01

    We have re-engineered the fluorescent RNA aptamer Spinach to be activated in a sequence-dependent manner. The original Spinach aptamer was extended at its 5'- and 3'-ends to create Spinach.ST, which is predicted to fold into an inactive conformation and thus prevent association with the small molecule fluorophore DFHBI. Hybridization of a specific trigger oligonucleotide to a designed toehold leads to toehold-initiated strand displacement and refolds Spinach into the active, fluorophore-binding conformation. Spinach.ST not only specifically detects its target oligonucleotide but can discriminate readily against single-nucleotide mismatches. RNA amplicons produced during nucleic acid sequence-based amplification (NASBA) of DNA or RNA targets could be specifically detected and reported in real-time by conformational activation of Spinach.ST generated by in vitro transcription. In order to adapt any target sequence to detection by a Spinach reporter we used a primer design technique that brings together otherwise distal toehold sequences via hairpin formation. The same techniques could potentially be used to adapt common Spinach reporters to non-nucleic acid analytes, rather than by making fusions between aptamers and Spinach.

  7. Remarks on the observability of single beacon underwater navigation

    DEFF Research Database (Denmark)

    Jouffroy, Jerome; Ross, Andrew

    This paper contributes a simple and intuitive result in the analysis of underwater navigation using a single ranging beacon. This analysis should help with the design of small and lightweight underwater vehicles by reducing the amount of instrumentation required for accurate navigation. The concept...

  8. Long Shelf Life of a Lyophilized DNA Aptamer Beacon Assay.

    Science.gov (United States)

    Bruno, John G

    2017-03-01

    An aptamer beacon previously developed to detect C-telopeptide (CTx) from human bone collagen breakdown was lyophilized and shown to give a "lights on" concentration-dependent spectral fluorescence response essentially identical to that of the fresh reagent despite storage in a dark dry environment for the past 5.5 years.

  9. Remarks on the observability of single beacon underwater navigation

    DEFF Research Database (Denmark)

    Jouffroy, Jerome; Ross, Andrew

    This paper contributes a simple and intuitive result in the analysis of underwater navigation using a single ranging beacon. This analysis should help with the design of small and lightweight underwater vehicles by reducing the amount of instrumentation required for accurate navigation. The concept...

  10. Exploration of Adaptive Beaconing for Efficient Intervehicle Safety Communication

    NARCIS (Netherlands)

    Schmidt, Robert K.; Leinmüller, Tim; Schoch, Elmar; Kargl, Frank; Schäfer, Günther

    2010-01-01

    In the future intervehicle communication will make driving safer, easier, and more comfortable. As a cornerstone of the system, vehicles need to be aware of other vehicles in the vicinity. This cooperative awareness is achieved by beaconing, the exchange of periodic single-hop broadcast messages tha

  11. Molecular concepts of water splitting. Nature's approach

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Nicholas; Lubitz, Wolfgang [Max-Planck-Institut fuer Chemische Energiekonversion, Muelheim an der Ruhr (Germany)

    2013-07-01

    Based on studies of natural systems, much has also been learned concerning the design principles required for biomimetic catalysis of water splitting and hydrogen evolution. In summary, these include use of abundant and inexpensive metals, the effective protection of the active sites in functional environments, repair/replacement of active components in case of damage, and the optimization of reaction rates. Biomimetic chemistry aims to mimic all these features; many labs are working toward this goal by developing new approaches in the design and synthesis of such systems, encompassing not only the catalytic center, but also smart matrices and assembly via self-organization. More stable catalysts that do not require self-repair may be obtained from fully artificial (inorganic) catalytic systems that are totally different from the biological ones and only apply some basic principles learned from nature. Metals other than Mn/Ca, Fe, and Ni could be used (e.g. Co) in new ligand spheres and other matrices. For light harvesting, charge separation/stabilization, and the effective coupling of the oxidizing/reducing equivalents to the redox catalysts, different methods have been proposed - for example, covalently linked molecular donor-acceptor systems, photo-voltaic devices, semiconductor-based systems, and photoactive metal complexes. The aim of all these approaches is to develop catalytic systems that split water with sunlight into hydrogen and oxygen while displaying high efficiency and long-term stability. Such a system - either biological, biomimetic, or bioinspired - has the potential to be used on a large scale to produce 'solar fuels' (e.g. hydrogen or secondary products thereof). (orig.)

  12. A Two-Layer Method for Sedentary Behaviors Classification Using Smartphone and Bluetooth Beacons.

    Science.gov (United States)

    Cerón, Jesús D; López, Diego M; Hofmann, Christian

    2017-01-01

    Among the factors that outline the health of populations, person's lifestyle is the more important one. This work focuses on the caracterization and prevention of sedentary lifestyles. A sedentary behavior is defined as "any waking behavior characterized by an energy expenditure of 1.5 METs (Metabolic Equivalent) or less while in a sitting or reclining posture". To propose a method for sedentary behaviors classification using a smartphone and Bluetooth beacons considering different types of classification models: personal, hybrid or impersonal. Following the CRISP-DM methodology, a method based on a two-layer approach for the classification of sedentary behaviors is proposed. Using data collected from a smartphones' accelerometer, gyroscope and barometer; the first layer classifies between performing a sedentary behavior and not. The second layer of the method classifies the specific sedentary activity performed using only the smartphone's accelerometer and barometer data, but adding indoor location data, using Bluetooth Low Energy (BLE) beacons. To improve the precision of the classification, both layers implemented the Random Forest algorithm and the personal model. This study presents the first available method for the automatic classification of specific sedentary behaviors. The layered classification approach has the potential to improve processing, memory and energy consumption of mobile devices and wearables used.

  13. Smartphone-Based Indoor Localization with Bluetooth Low Energy Beacons

    Directory of Open Access Journals (Sweden)

    Yuan Zhuang

    2016-04-01

    Full Text Available Indoor wireless localization using Bluetooth Low Energy (BLE beacons has attracted considerable attention after the release of the BLE protocol. In this paper, we propose an algorithm that uses the combination of channel-separate polynomial regression model (PRM, channel-separate fingerprinting (FP, outlier detection and extended Kalman filtering (EKF for smartphone-based indoor localization with BLE beacons. The proposed algorithm uses FP and PRM to estimate the target’s location and the distances between the target and BLE beacons respectively. We compare the performance of distance estimation that uses separate PRM for three advertisement channels (i.e., the separate strategy with that use an aggregate PRM generated through the combination of information from all channels (i.e., the aggregate strategy. The performance of FP-based location estimation results of the separate strategy and the aggregate strategy are also compared. It was found that the separate strategy can provide higher accuracy; thus, it is preferred to adopt PRM and FP for each BLE advertisement channel separately. Furthermore, to enhance the robustness of the algorithm, a two-level outlier detection mechanism is designed. Distance and location estimates obtained from PRM and FP are passed to the first outlier detection to generate improved distance estimates for the EKF. After the EKF process, the second outlier detection algorithm based on statistical testing is further performed to remove the outliers. The proposed algorithm was evaluated by various field experiments. Results show that the proposed algorithm achieved the accuracy of <2.56 m at 90% of the time with dense deployment of BLE beacons (1 beacon per 9 m, which performs 35.82% better than <3.99 m from the Propagation Model (PM + EKF algorithm and 15.77% more accurate than <3.04 m from the FP + EKF algorithm. With sparse deployment (1 beacon per 18 m, the proposed algorithm achieves the accuracies of <3.88 m at

  14. Ethylmalonic encephalopathy: application of improved biochemical and molecular diagnostic approaches.

    Science.gov (United States)

    Drousiotou, A; DiMeo, I; Mineri, R; Georgiou, Th; Stylianidou, G; Tiranti, V

    2011-04-01

    Ethylmalonic encephalopathy (EE, OMIM # 602473) is an autosomal recessive metabolic disorder of infancy affecting the brain, the gastrointestinal tract and peripheral vessels. It is caused by a defect in the ETHE1 gene product, which was recently shown to be part of a metabolic pathway devoted to sulphide detoxification. We report the application of improved biochemical and molecular approaches to the diagnosis of three cases of EE from two unrelated Cypriot families. The children presented all the typical biochemical hallmarks of the disease including elevated lactate and butyrylcarnitine in blood and elevated urinary excretion of ethylmalonic acid, 2-methylsuccinate, isobutyrylglycine and isovalerylglycine. We also detected an elevated level of thiosulphate in urine, which we propose as an additional biochemical marker of the disease. The proband of the first family was shown to be a compound heterozygote for a missense mutation in exon 5, L185R, and a deletion of exon 4. The deletion was identified using quantitative real-time polymerase chain reaction (qRT-PCR). Using the same technique, the proband of the second family was found to be homozygous for the exon 4 deletion. A prenatal diagnosis was performed for the second family using qRT-PCR, thus establishing the usefulness of RT-PCR in prenatal diagnosis.

  15. Molecular Approaches to Functionalization of Dental Implant Surfaces

    Directory of Open Access Journals (Sweden)

    Angelina O. Zekiy

    2015-12-01

    Full Text Available The present review examines several approaches to improve properties of dental implants by modifying their bioactive surfaces (functionalization using the techniques of molecular transplantation. The first group of functional ligands is designed to enhance osseointegration of implants, it includes growth factors, promoting the formation and bone remodeling: bone morphogenetic proteins (BMPs, platelet-derived growth factor (PDGF, fibroblast growth factor (FGF and their combinations with each other, and several other ones. The second group of bioactive molecules does not directly stimulate bone formation, but it promotes osteoblast seeding on the implant surface due to the adhesive properties, thus accelerating osseointegration. Finally, the third group of substances used to increase the antibacterial properties of coatings, thereby reducing the formation of bacterial film on the implant surface and the risk of inflammatory rejection of the implant. Key issues of using biofunctional coatings, despite their obvious promise today still are relatively high cost, difficulties of controlling properties and its storage between the fabrication and installation of implants in the bone of the recipient.

  16. Comparative approaches in evolutionary psychology: molecular neuroscience meets the mind.

    Science.gov (United States)

    Panksepp, Jaak; Moskal, Joseph R; Panksepp, Jules B; Kroes, Roger A

    2002-12-01

    Evolutionary psychologists often overlook a wealth of information existing between the proximate genotypic level and the ultimate phenotypic level. This commonly ignored level of biological organization is the ongoing activity of neurobiological systems. In this paper, we extend our previous arguments concerning strategic weaknesses of evolutionary psychology by advocating a foundational view that focuses on similarities in brain, behavior, and various basic psychological features across mammalian species. Such an approach offers the potential to link the emerging discipline of evolutionary psychology to its parent scientific disciplines such as biochemistry, physiology, molecular genetics, developmental biology and the neuroscientific analysis of animal behavior. We detail an example of this through our impending work using gene microarray technology to characterize gene expression patterns in rats during aggressive and playful social interactions. Through a focus on functional homologies and the experimental analysis of conserved, subcortical emotional and motivational brain systems, neuroevolutionary psychobiology can reveal ancient features of the human mind that are still shared with other animals. Claims regarding evolved, uniquely human, psychological constructs should be constrained by the rigorous evidentiary standards that are routine in other sciences.

  17. Molecular Approaches to Understand Nutritional Potential of Coarse Cereals.

    Science.gov (United States)

    Singh, Amit Kumar; Singh, Rakesh; Subramani, Rajkumar; Kumar, Rajesh; Wankhede, Dhammaprakash P

    2016-06-01

    Coarse grains are important group of crops that constitutes staple food for large population residing primarily in the arid and semi-arid regions of the world. Coarse grains are designated as nutri-cereals as they are rich in essential amino acids, minerals and vitamins. In spite of having several nutritional virtues in coarse grain as mentioned above, there is still scope for improvement in quality parameters such as cooking qualities, modulation of nutritional constituents and reduction or elimination of anti-nutritional factors. Besides its use in traditional cooking, coarse grains have been used mainly in the weaning food preparation and other malted food production. Improvement in quality parameters will certainly increase consumer's preference for coarse grains and increase their demand. The overall genetic gain in quality traits of economic importance in the cultivated varieties will enhance their industrial value and simultaneously increase income of farmers growing these varieties. The urgent step for improvement of quality traits in coarse grains requires a detailed understanding of molecular mechanisms responsible for varied level of different nutritional contents in different genotypes of these crops. In this review we have discussed the progresses made in understanding of coarse grain biology with various omics tool coupled with modern breeding approaches and the current status with regard to our effort towards dissecting traits related to improvement of quality and nutritional constituents of grains.

  18. The Southeastern Minnesota Beacon Project for Community-driven Health Information Technology: Origins, Achievements, and Legacy.

    Science.gov (United States)

    Chute, Christopher G; Hart, Lacey A; Alexander, Alex K; Jensen, Daniel W

    2014-01-01

    The Southeastern (SE) Minnesota Beacon organized all the health care providers, county public health organizations, and school districts in the deployment and integration of health information exchange (HIE) and targeted health communication around childhood asthma and diabetes. The community cooperated to establish a clinical data repository for all residents in the 11-county region. Through this community of practice approach that involved traditional and nontraditional providers, the SE Minnesota Beacon was able to realize unique applications of this technology. This manuscript overviews the associated organization and infrastructure of this community collaboration. The Office of the National Coordinator for Health Information Technology (ONC), as part of the American Recovery and Reinvestment Act of 2009 (ARRA) stimulus, established 17 projects throughout the United States targeting the introduction and meaningful use of health information technology (HIT). These 17 communities were intended to serve as an example of what could be accomplished. The SE Minnesota Beacon is one of these communities. The community ultimately opted for peer-to-peer HIE, using Nationwide Health Information Network (NwHIN) Connect software. The clinical data repository was established using the infrastructure developed by the Regenstrief Institute, which operated as a trusted third party. As an extension to HIE, the consortium of county public health departments created a patient data portal for use by school nurses and parents. Childhood asthma was addressed by creating, exchanging, and maintaining an "asthma action plan" for each affected child, shared throughout the community, including through the patient portal. Diabetes management introduced patient treatment decision tools and patient quality of life measures, facilitating care. Influenza vaccination was enhanced by large-scale community reporting in partnership with the state vaccination registry. The methodology and

  19. Theoretical study of molecular vibrations in electron momentum spectroscopy experiments on furan: An analytical versus a molecular dynamical approach

    Energy Technology Data Exchange (ETDEWEB)

    Morini, Filippo; Deleuze, Michael S., E-mail: michael.deleuze@uhasselt.be [Center of Molecular and Materials Modelling, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek (Belgium); Watanabe, Noboru; Takahashi, Masahiko [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan)

    2015-03-07

    The influence of thermally induced nuclear dynamics (molecular vibrations) in the initial electronic ground state on the valence orbital momentum profiles of furan has been theoretically investigated using two different approaches. The first of these approaches employs the principles of Born-Oppenheimer molecular dynamics, whereas the so-called harmonic analytical quantum mechanical approach resorts to an analytical decomposition of contributions arising from quantized harmonic vibrational eigenstates. In spite of their intrinsic differences, the two approaches enable consistent insights into the electron momentum distributions inferred from new measurements employing electron momentum spectroscopy and an electron impact energy of 1.2 keV. Both approaches point out in particular an appreciable influence of a few specific molecular vibrations of A{sub 1} symmetry on the 9a{sub 1} momentum profile, which can be unravelled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  20. BEACON: automated tool for Bacterial GEnome Annotation ComparisON

    KAUST Repository

    Kalkatawi, Manal Matoq Saeed

    2015-08-18

    Background Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs). Results The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACON’s utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27 %, while the number of genes without any function assignment is reduced. Conclusions We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/

  1. Light-powered, artificial molecular pumps: a minimalistic approach

    Directory of Open Access Journals (Sweden)

    Giulio Ragazzon

    2015-11-01

    Full Text Available The realization of artificial molecular motors capable of converting energy into mechanical work is a fascinating challenge of nanotechnology and requires reactive systems that can operate away from chemical equilibrium. This article describes the design and construction of a simple, supramolecular ensemble in which light irradiation causes the directional transit of a macrocycle along a nonsymmetric molecular axle, thus forming the basis for the development of artificial molecular pumps.

  2. The detection of HBV DNA G1896A point mutation with locked nucleic acid technology combined with molecular beacon%锁核酸结合分子信标技术检测乙型肝炎病毒DNA G1896A点突变研究

    Institute of Scientific and Technical Information of China (English)

    张红; 郑欣; 宋庆涛; 蔡剑英; 王大明; 曾劲峰; 叶贤林; 熊文

    2012-01-01

    Objective The aim of this study is to investigate and evaluate the real-time fluorescent PCR detection method of hepatitis B virus (HBV) DNA G1896A point mutations. Methods A total of 158 HBV samples which had been analyzed for G1896A mutation were selected, including 150 non-mutation samples and 58 mutant samples. The molecular beacon probe was designed in the mutant region, and the sample was processed with locked nucleic acid in the point mutation region. The pre C region G1896A point mutations of HBV was detected with Fluorescent PCR, then use DNA sequencing to confirm 8 mutant samples, 6 heterozygous samples, and 19 non-mutation samples which had been detected by real-time fluorescent PCR detection method. Results (l)Both the sensitivity of mutant plasmids and of wild-type plasmids achieved 100 copies/ml. (2)There was no detection signal when we used mutant probe to detect the high concentration of wild-type plasmids. It was the same when we used wild-type probe to detect the high concentration of mutant plasmids. (3)The mutant could be detected when the mutational template accounted for 5% of the total heterozygous. (4)All the result of detection with sequencing coincided with that of detection with real-time fluorescent PCR detection method. Conclusion Because real-time fluorescent PCR detection method can rapidly, easily, and exactly detect the HBV DNA G1896A point mutation, thus it is an important method to detect point mutations and has important clinical value.%目的 研究和评估乙型肝炎病毒(HBV)DNA G1896A点突变的实时荧光PCR检测方法.方法 收集经测序验证HBV DNA G1896A未突变的野生型样本150例和已发生突变的突变型样本58例,在突变区域设计分子信标探针,点突变处进行锁核酸处理,利用荧光PCR方法检测HBV前C区G1896A点突变;再从临床标本中随机抽取18例、8例和19例荧光PCR结果分别显示为G1896A突变的标本、杂合的标本以及野生型的标本的PCR

  3. A simplified approach for the molecular classification of glioblastomas.

    Directory of Open Access Journals (Sweden)

    Marie Le Mercier

    Full Text Available Glioblastoma (GBM is the most common malignant primary brain tumors in adults and exhibit striking aggressiveness. Although GBM constitute a single histological entity, they exhibit considerable variability in biological behavior, resulting in significant differences in terms of prognosis and response to treatment. In an attempt to better understand the biology of GBM, many groups have performed high-scale profiling studies based on gene or protein expression. These studies have revealed the existence of several GBM subtypes. Although there remains to be a clear consensus, two to four major subtypes have been identified. Interestingly, these different subtypes are associated with both differential prognoses and responses to therapy. In the present study, we investigated an alternative immunohistochemistry (IHC-based approach to achieve a molecular classification for GBM. For this purpose, a cohort of 100 surgical GBM samples was retrospectively evaluated by immunohistochemical analysis of EGFR, PDGFRA and p53. The quantitative analysis of these immunostainings allowed us to identify the following two GBM subtypes: the "Classical-like" (CL subtype, characterized by EGFR-positive and p53- and PDGFRA-negative staining and the "Proneural-like" (PNL subtype, characterized by p53- and/or PDGFRA-positive staining. This classification represents an independent prognostic factor in terms of overall survival compared to age, extent of resection and adjuvant treatment, with a significantly longer survival associated with the PNL subtype. Moreover, these two GBM subtypes exhibited different responses to chemotherapy. The addition of temozolomide to conventional radiotherapy significantly improved the survival of patients belonging to the CL subtype, but it did not affect the survival of patients belonging to the PNL subtype. We have thus shown that it is possible to differentiate between different clinically relevant subtypes of GBM by using IHC

  4. A computational toy model for shallow landslides: Molecular dynamics approach

    Science.gov (United States)

    Martelloni, Gianluca; Bagnoli, Franco; Massaro, Emanuele

    2013-09-01

    The aim of this paper is to propose a 2D computational algorithm for modeling the triggering and propagation of shallow landslides caused by rainfall. We used a molecular dynamics (MD) approach, similar to the discrete element method (DEM), that is suitable to model granular material and to observe the trajectory of a single particle, so to possibly identify its dynamical properties. We consider that the triggering of shallow landslides is caused by the decrease of the static friction along the sliding surface due to water infiltration by rainfall. Thence the triggering is caused by the two following conditions: (a) a threshold speed of the particles and (b) a condition on the static friction, between the particles and the slope surface, based on the Mohr-Coulomb failure criterion. The latter static condition is used in the geotechnical model to estimate the possibility of landslide triggering. The interaction force between particles is modeled, in the absence of experimental data, by means of a potential similar to the Lennard-Jones one. The viscosity is also introduced in the model and for a large range of values of the model's parameters, we observe a characteristic velocity pattern, with acceleration increments, typical of real landslides. The results of simulations are quite promising: the energy and time triggering distribution of local avalanches show a power law distribution, analogous to the observed Gutenberg-Richter and Omori power law distributions for earthquakes. Finally, it is possible to apply the method of the inverse surface displacement velocity [4] for predicting the failure time.

  5. Exploring polymorphism in molecular crystals with a computational approach

    NARCIS (Netherlands)

    Ende, J.A. van den

    2016-01-01

    Different crystal structures can possess different properties and therefore the control of polymorphism in molecular crystals is a goal in multiple industries, e.g. the pharmaceutical industry. Part I of this thesis is a computational study at the molecular scale of a particular solid-solid polymorp

  6. Exploring polymorphism in molecular crystals with a computational approach

    NARCIS (Netherlands)

    Ende, J.A. van den

    2016-01-01

    Different crystal structures can possess different properties and therefore the control of polymorphism in molecular crystals is a goal in multiple industries, e.g. the pharmaceutical industry. Part I of this thesis is a computational study at the molecular scale of a particular solid-solid

  7. Fundamental Approaches in Molecular Biology for Communication Sciences and Disorders

    Science.gov (United States)

    Bartlett, Rebecca S.; Jette, Marie E.; King, Suzanne N.; Schaser, Allison; Thibeault, Susan L.

    2012-01-01

    Purpose: This contemporary tutorial will introduce general principles of molecular biology, common deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein assays and their relevance in the field of communication sciences and disorders. Method: Over the past 2 decades, knowledge of the molecular pathophysiology of human disease has…

  8. Fundamental Approaches in Molecular Biology for Communication Sciences and Disorders

    Science.gov (United States)

    Bartlett, Rebecca S.; Jette, Marie E.; King, Suzanne N.; Schaser, Allison; Thibeault, Susan L.

    2012-01-01

    Purpose: This contemporary tutorial will introduce general principles of molecular biology, common deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein assays and their relevance in the field of communication sciences and disorders. Method: Over the past 2 decades, knowledge of the molecular pathophysiology of human disease has…

  9. Molecular epidemiology: a multidisciplinary approach to understanding parasitic zoonoses.

    Science.gov (United States)

    Traub, R J; Monis, P T; Robertson, I D

    2005-10-01

    Sound application of molecular epidemiological principles requires working knowledge of both molecular biological and epidemiological methods. Molecular tools have become an increasingly important part of studying the epidemiology of infectious agents. Molecular tools have allowed the aetiological agent within a population to be diagnosed with a greater degree of efficiency and accuracy than conventional diagnostic tools. They have increased the understanding of the pathogenicity, virulence, and host-parasite relationships of the aetiological agent, provided information on the genetic structure and taxonomy of the parasite and allowed the zoonotic potential of previously unidentified agents to be determined. This review describes the concept of epidemiology and proper study design, describes the array of currently available molecular biological tools and provides examples of studies that have integrated both disciplines to successfully unravel zoonotic relationships that would otherwise be impossible utilising conventional diagnostic tools. The current limitations of applying these tools, including cautions that need to be addressed during their application are also discussed.

  10. Characteristic and Synthetic Approach of Molecularly Imprinted Polymer

    Directory of Open Access Journals (Sweden)

    Kyung Ho Row

    2006-06-01

    Full Text Available Molecularly imprinted polymers (MIP exhibiting high selectivity and affinity tothe predetermined molecule (template are now seeing a fast growing research. However,optimization of the imprinted products is difficult due to the fact that there are manyvariables to consider, some or all of which can potentially impact upon the chemical,morphological and molecular recognition properties of the imprinted materials. This reviewpresent a summary of the principal synthetic considerations pertaining to good practice in thepolymerization aspects of molecular imprinting, and is primarily aimed at researcher familiarwith molecular imprinting methods but with little or no prior experience in polymersynthesis. The synthesis, characteristic, effect of molecular recognition and differentpreparation methods of MIP in recent few years are discussed in this review, unsolvedproblems and possible developments of MIP were also been briefly discussed.

  11. A Structural and Molecular Approach for the Study Biomarkers

    Science.gov (United States)

    Thomas-Keprta, Kathie; Vali, Hojatollah; Sears, S. Kelly; Roh, Yul

    2001-01-01

    Investigation of the nucleation and growth of crystals in both abiotic and biotic systems is critical to seemingly diverse disciplines of geology, biology, environmental science, and astrobiology. While there are abundant studies devoted to the determination of the structure and composition of inorganic crystals, as well as to the development of thermodynamic and kinetic models, it is only recently that research efforts have been directed towards understanding mineralization in biological systems (i.e., biomineralization). Biomineralization refers to the processes by which living organisms form inorganic solids. Studies of the processes of biomineralization under low temperature aqueous conditions have focused primarily on magnetite forming bacteria and shell forming marine organisms. Many of the biological building materials consist of inorganic minerals (calcium carbonate, calcium phosphate, silica or iron oxide) intricately combined with organic polymers (like proteins). More recently, efforts have been undertaken to explore the nature of biological activities in ancient rocks. In the absence of well-preserved microorganisms or genetic material required for the polmerase chain reaction (PCR) method in molecular phylogenetic studies, using biominerals as biomarkers offers an alternative approach for the recognition of biogenic activity in both terrestrial and extraterrestrial environments. The primary driving force in biomineralization is the interaction between organic and inorganic phases. Thus, the investigation of the ultrastructure and the nature of reactions at the molecular level occurring at the interface between inorganic and organic phases is essential to understanding the processes leading to the nucleation and growth of crystals. It is recognized that crystal surfaces can serve as the substrate for the organization of organic molecules that lead to the formation of polymers and other complex organic molecules, and in discussions of the origins of life

  12. Isothermal amplification detection of nucleic acids by a double-nicked beacon.

    Science.gov (United States)

    Shi, Chao; Zhou, Meiling; Pan, Mei; Zhong, Guilin; Ma, Cuiping

    2016-03-01

    Isothermal and rapid amplification detection of nucleic acids is an important technology in environmental monitoring, foodborne pathogen detection, and point-of-care clinical diagnostics. Here we have developed a novel method of isothermal signal amplification for single-stranded DNA (ssDNA) detection. The ssDNA target could be used as an initiator, coupled with a double-nicked molecular beacon, to originate amplification cycles, achieving cascade signal amplification. In addition, the method showed good specificity and strong anti-jamming capability. Overall, it is a one-pot and isothermal strand displacement amplification method without the requirement of a stepwise procedure, which greatly simplifies the experimental procedure and decreases the probability of contamination of samples. With its advantages, the method would be very useful to detect nucleic acids in point-of-care or field use.

  13. Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy

    Science.gov (United States)

    Kuzuya, Akinori; Sakai, Yusuke; Yamazaki, Takahiro; Xu, Yan; Komiyama, Makoto

    2011-01-01

    DNA origami involves the folding of long single-stranded DNA into designed structures with the aid of short staple strands; such structures may enable the development of useful nanomechanical DNA devices. Here we develop versatile sensing systems for a variety of chemical and biological targets at molecular resolution. We have designed functional nanomechanical DNA origami devices that can be used as 'single-molecule beacons', and function as pinching devices. Using 'DNA origami pliers' and 'DNA origami forceps', which consist of two levers ~170 nm long connected at a fulcrum, various single-molecule inorganic and organic targets ranging from metal ions to proteins can be visually detected using atomic force microscopy by a shape transition of the origami devices. Any detection mechanism suitable for the target of interest, pinching, zipping or unzipping, can be chosen and used orthogonally with differently shaped origami devices in the same mixture using a single platform. PMID:21863016

  14. Design of Radio Beacon for Spacecraft-Memory Localization

    Directory of Open Access Journals (Sweden)

    Xiansheng Zhang

    2013-09-01

    Full Text Available With the development of space technology and more and more space experiments, it has brought forward higher requests for memory of hard-recovered solid-state recorders. Therefore, Recovery of the memory becomes more important. Aiming at the disadvantages of present ways of recycling, we introduce a real-time GPS positioning wireless beacon can be applied on memory recovery. This paper introduces the principle of the system, circuit, and the function that can realized. Experimental results show that the beacon in a static environment and dynamic environment had a good performance in GPS positioning, and a high positioning accuracy. During Signal transmission, the receivers can received the raw GPS signal without error and can depict the running track of memory.

  15. iBeacon-perustaiset maamerkit sisätilapaikannuksessa

    OpenAIRE

    2015-01-01

    Tämän opinnäytetyön aihe saatiin HAMKin Älykkäät palvelut MATEC-tutkimusryhmästä. MATECssa on käynnissä koko vuoden kestävä projekti, Itsenäistä liikkumista sujuvoittavat iBeacon-tienlöytämisratkaisut (ILSI), minkä osana tämä työ toteutettiin. Projektissa haettiin mahdollisia ratkaisu-ja, käyttäen iBeacon-teknologiaa, jonka avulla voidaan helpottaa sokeiden ihmisten itsenäistä selviytymistä erilaisissa sisätilaympäristöissä. Työn tarkoituksena oli luoda älypuhelinsovellus Applen iOS-alust...

  16. SU-E-J-257: Image Artifacts Caused by Implanted Calypso Beacons in MRI Studies

    Energy Technology Data Exchange (ETDEWEB)

    Amro, H; Chetty, I; Gordon, J; Wen, N [Henry Ford Health System, Detroit, MI (United States)

    2014-06-01

    Purpose: The presence of Calypso Beacon-transponders in patients can cause artifacts during MRI imaging studies. This could be a problem for post-treatment follow up of cancer patients using MRI studies to evaluate metastasis and for functional imaging studies.This work assesses (1) the volume immediately surrounding the transponders that will not be visualized by the MRI due to the beacons, and (2) the dependence of the non-visualized volume on beacon orientation, and scanning techniques. Methods: Two phantoms were used in this study (1) water filled box, (2) and a 2300 cc block of pork meat. Calypso beacons were implanted in the phantoms both in parallel and perpendicular orientations with respect to the MR scanner magnetic field. MR image series of the phantom were obtained with on a 1.0T high field open MR-SIM with multiple pulse sequences, for example, T1-weighted fast field echo and T2-weighted turbo spin echo. Results: On average, a no-signal region with 2 cm radius and 3 cm length was measured. Image artifacts are more significant when beacons are placed parallel to scanner magnetic field; the no-signal area around the beacon was about 0.5 cm larger in orthogonal orientation. The no-signal region surrounding the beacons slightly varies in dimension for the different pulse sequences. Conclusion: The use of Calypso beacons can prohibit the use of MRI studies in post-treatment assessments, especially in the immediate region surrounding the implanted beacon. A characterization of the MR scanner by identifying the no-signal regions due to implanted beacons is essential. This may render the use of Calypso beacons useful for some cases and give the treating physician a chance to identify those patients prior to beacon implantation.

  17. Q-Band (37-41 GHz) Satellite Beacon Architecture for RF Propagation Experiments

    Science.gov (United States)

    Simmons, Rainee N.; Wintucky, Edwin G.

    2012-01-01

    In this paper, the design of a beacon transmitter that will be flown as a hosted payload on a geostationary satellite to enable propagation experiments at Q-band (37-41 GHz) frequencies is presented. The beacon uses a phased locked loop stabilized dielectric resonator oscillator and a solid-state power amplifier to achieve the desired output power. The satellite beacon antenna is configured as an offset-fed cut-paraboloidal reflector.

  18. Q-Band (37 to 41 GHz) Satellite Beacon Architecture for RF Propagation Experiments

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    In this paper, the design of a beacon transmitter that will be flown as a hosted payload on a geostationary satellite to enable propagation experiments at Q-band (37 to 41 GHz) frequencies is presented. The beacon uses a phased locked loop stabilized dielectric resonator oscillator and a solid-state power amplifier to achieve the desired output power. The satellite beacon antenna is configured as an offset-fed cutparaboloidal reflector.

  19. Smartphone-Based Indoor Localization with Bluetooth Low Energy Beacons.

    Science.gov (United States)

    Zhuang, Yuan; Yang, Jun; Li, You; Qi, Longning; El-Sheimy, Naser

    2016-04-26

    Indoor wireless localization using Bluetooth Low Energy (BLE) beacons has attracted considerable attention after the release of the BLE protocol. In this paper, we propose an algorithm that uses the combination of channel-separate polynomial regression model (PRM), channel-separate fingerprinting (FP), outlier detection and extended Kalman filtering (EKF) for smartphone-based indoor localization with BLE beacons. The proposed algorithm uses FP and PRM to estimate the target's location and the distances between the target and BLE beacons respectively. We compare the performance of distance estimation that uses separate PRM for three advertisement channels (i.e., the separate strategy) with that use an aggregate PRM generated through the combination of information from all channels (i.e., the aggregate strategy). The performance of FP-based location estimation results of the separate strategy and the aggregate strategy are also compared. It was found that the separate strategy can provide higher accuracy; thus, it is preferred to adopt PRM and FP for each BLE advertisement channel separately. Furthermore, to enhance the robustness of the algorithm, a two-level outlier detection mechanism is designed. Distance and location estimates obtained from PRM and FP are passed to the first outlier detection to generate improved distance estimates for the EKF. After the EKF process, the second outlier detection algorithm based on statistical testing is further performed to remove the outliers. The proposed algorithm was evaluated by various field experiments. Results show that the proposed algorithm achieved the accuracy of localization accuracy in environments with sparse beacon deployment.

  20. Aftermath of bustamante attack on genomic beacon service.

    Science.gov (United States)

    Aziz, Md Momin Al; Ghasemi, Reza; Waliullah, Md; Mohammed, Noman

    2017-07-26

    With the enormous need for federated eco-system for holding global genomic and clinical data, Global Alliance for Genomic and Health (GA4GH) has created an international website called beacon service which allows a researcher to find out whether a specific dataset can be utilized to his or her research beforehand. This simple webservice is quite useful as it allows queries like whether a certain position of a target chromosome has a specific nucleotide. However, the increased integration of individuals genomic data into clinical practice and research raised serious privacy concern. Though the answer of such queries are yes or no in Bacon network, it results in serious privacy implication as demonstrated in a recent work from Shringarpure and Bustamante. In their attack model, the authors demonstrated that with a limited number of queries, presence of an individual in any dataset can be determined. We propose two lightweight algorithms (based on randomized response) which captures the efficacy while preserving the privacy of the participants in a genomic beacon service. We also elaborate the strength and weakness of the attack by explaining some of their statistical and mathematical models using real world genomic database. We extend their experimental simulations for different adversarial assumptions and parameters. We experimentally evaluated the solutions on the original attack model with different parameters for better understanding of the privacy and utility tradeoffs provided by these two methods. Also, the statistical analysis further elaborates the different aspects of the prior attack which leads to a better risk management for the participants in a beacon service. The differentially private and lightweight solutions discussed here will make the attack much difficult to succeed while maintaining the fundamental motivation of beacon database network.

  1. Integrated Formulation of Beacon-Based Exception Analysis for Multimissions

    Science.gov (United States)

    Mackey, Ryan; James, Mark; Park, Han; Zak, Mickail

    2003-01-01

    Further work on beacon-based exception analysis for multimissions (BEAM), a method of real-time, automated diagnosis of a complex electromechanical systems, has greatly expanded its capability and suitability of application. This expanded formulation, which fully integrates physical models and symbolic analysis, is described. The new formulation of BEAM expands upon previous advanced techniques for analysis of signal data, utilizing mathematical modeling of the system physics, and expert-system reasoning,

  2. Rayleigh beacon for measuring the surface profile of a radio telescope.

    Science.gov (United States)

    Padin, S

    2014-12-01

    Millimeter-wavelength Rayleigh scattering from water droplets in a cloud is proposed as a means of generating a bright beacon for measuring the surface profile of a radio telescope. A λ=3  mm transmitter, with an output power of a few watts, illuminating a stratiform cloud, can generate a beacon with the same flux as Mars in 10 GHz bandwidth, but the beacon has a narrow line width, so it is extremely bright. The key advantage of the beacon is that it can be used at any time, and positioned anywhere in the sky, as long as there are clouds.

  3. Cellular and Molecular Biological Approaches to Interpreting Ancient Biomarkers

    Science.gov (United States)

    Newman, Dianne K.; Neubauer, Cajetan; Ricci, Jessica N.; Wu, Chia-Hung; Pearson, Ann

    2016-06-01

    Our ability to read the molecular fossil record has advanced significantly in the past decade. Improvements in biomarker sampling and quantification methods, expansion of molecular sequence databases, and the application of genetic and cellular biological tools to problems in biomarker research have enabled much of this progress. By way of example, we review how attempts to understand the biological function of 2-methylhopanoids in modern bacteria have changed our interpretation of what their molecular fossils tell us about the early history of life. They were once thought to be biomarkers of cyanobacteria and hence the evolution of oxygenic photosynthesis, but we now believe that 2-methylhopanoid biosynthetic capacity originated in the Alphaproteobacteria, that 2-methylhopanoids are regulated in response to stress, and that hopanoid 2-methylation enhances membrane rigidity. We present a new interpretation of 2-methylhopanes that bridges the gap between studies of the functions of 2-methylhopanoids and their patterns of occurrence in the rock record.

  4. A Molecular Dynamics Approach to Grain Boundary Structure and Migration

    DEFF Research Database (Denmark)

    Cotterill, R. M. J.; Leffers, Torben; Lilholt, Hans

    1974-01-01

    It has been demonstrated that grain boundary formation from the melt can be simulated by the molecular dynamics method. The space between two mutually-misoriented crystal slabs was filled with atoms in a random manner and this liquid was then cooled until crystallization occurred. The general...

  5. Unraveling the molecular effects of mutation L270P on Wiskkot-Aldrich syndrome protein: insights from molecular dynamics approach.

    Science.gov (United States)

    Palaniappan, Chandrasekaran; Rao, Sethumadhavan; Ramalingam, Rajasekaran

    2016-09-01

    Missense mutation L270P disrupts the auto-inhibited state of "Wiskkot-Aldrich syndrome protein" (WASP), thereby constitutively activating the mutant structure, a key event for pathogenesis of X-linked neutropenia (XLN). In this study, we comprehensively deciphered the molecular feature of activated mutant structure by all atom molecular dynamics (MD) approach. MD analysis revealed that mutant structure exposed a wide variation in the spatial environment of atoms, resulting in enhanced residue flexibility. The increased flexibility of residues favored to decrease the number of intra-molecular hydrogen bonding interactions in mutant structure. The reduction of hydrogen bonds in the mutant structure resulted to disrupt the local folding of secondary structural elements that eventually affect the proper folding of mutants. The unfolded state of mutant structure established more number of inter-molecular hydrogen bonding interaction at interface level due to the conformational variability, thus mediated high binding affinity with its interacting partner, Cdc42.

  6. Molecular allergology approach to allergic diseases in the paediatric age

    Directory of Open Access Journals (Sweden)

    Zaffiro Alessandra

    2009-10-01

    Full Text Available Abstract Identification, characterization, and purification of allergens are essential for the structural and immunologic studies needed to understand how these molecules induce specific IgE antibody production by the human immune system. Advances in molecular biology techniques have led to the production of recombinant allergens having constant properties, allowing detection of specific IgE directed against different molecular components of an allergenic source. Presence of homologous allergens in different sources is the reason for cross-reaction. Molecule-based diagnostic tools can lead to better interpretation of poly-sensitizations, observed by ST and in vitro tests using allergenic extracts as they were made before. Some examples IgE sensitization to major genuine allergens and panallergens will be presented.

  7. A molecular topology approach to predicting pesticide pollution of groundwater

    Science.gov (United States)

    Worrall , Fred

    2001-01-01

    Various models have proposed methods for the discrimination of polluting and nonpolluting compounds on the basis of simple parameters, typically adsorption and degradation constants. However, such attempts are prone to site variability and measurement error to the extent that compounds cannot be reliably classified nor the chemistry of pollution extrapolated from them. Using observations of pesticide occurrence in U.S. groundwater it is possible to show that polluting from nonpolluting compounds can be distinguished purely on the basis of molecular topology. Topological parameters can be derived without measurement error or site-specific variability. A logistic regression model has been developed which explains 97% of the variation in the data, with 86% of the variation being explained by the rule that a compound will be found in groundwater if 6 pollution at the molecular level and their application to agrochemical development and risk assessment is discussed.

  8. Molecular dynamics simulations of amyloid fibrils: an in silico approach

    Institute of Scientific and Technical Information of China (English)

    Wei Ye; Wei Wang; Cheng Jiang; Qingfen Yu; Haifeng Chen

    2013-01-01

    Amyloid fibrils play causal roles in the pathogenesis of amyloid-related degenerative diseases such as Alzheimer's disease,type Ⅱ diabetes mellitus,and the prion-related transmissible spongiform encephalopathies.The mechanism of fibril formation and protein aggregation is still hotly debated and remains an important open question in order to develop therapeutic method of these diseases.However,traditional molecular biological and crystallographic experiments could hardly observe atomic details and aggregation process.Molecular dynamics (MD) simulations could provide explanations for experimental results and detailed pathway of protein aggregation.In this review,we focus on the applications of MD simulations on several amyloidogenic protein systems.Furthermore,MD simulations could help us to understand the mechanism of amyloid aggregation and how to design the inhibitors.

  9. Graph theoretical similarity approach to compare molecular electrostatic potentials.

    Science.gov (United States)

    Marín, Ray M; Aguirre, Nestor F; Daza, Edgar E

    2008-01-01

    In this work we introduce a graph theoretical method to compare MEPs, which is independent of molecular alignment. It is based on the edit distance of weighted rooted trees, which encode the geometrical and topological information of Negative Molecular Isopotential Surfaces. A meaningful chemical classification of a set of 46 molecules with different functional groups was achieved. Structure--activity relationships for the corticosteroid binding affinity (CBG) of 31 steroids by means of hierarchical clustering resulted in a clear partitioning in high, intermediate, and low activity groups, whereas the results from quantitative structure--activity relationships, obtained from a partial least-squares analysis, showed comparable or better cross-validated correlation coefficients than the ones reported for previous methods based solely in the MEP.

  10. Bioscience methodologies in physical chemistry an engineering and molecular approach

    CERN Document Server

    D'Amore, Alberto

    2013-01-01

    The field of bioscience methodologies in physical chemistry stands at the intersection of the power and generality of classical and quantum physics with the minute molecular complexity of chemistry and biology. This book provides an application of physical principles in explaining and rationalizing chemical and biological phenomena. It does not stick to the classical topics that are conventionally considered as part of physical chemistry; instead it presents principles deciphered from a modern point of view, which is the strength of this book.

  11. Performance Analysis of Beacon-Less IEEE 802.15.4 Multi-Hop Networks

    CERN Document Server

    Srivastava, Rachit

    2012-01-01

    We develop an approximate analytical technique for evaluating the performance of multi-hop networks based on beacon-less CSMA/CA as standardised in IEEE 802.15.4, a popular standard for wireless sensor networks. The network comprises sensor nodes, which generate measurement packets, and relay nodes which only forward packets. We consider a detailed stochastic process at each node, and analyse this process taking into account the interaction with neighbouring nodes via certain unknown variables (e.g., channel sensing rates, collision probabilities, etc.). By coupling these analyses of the various nodes, we obtain fixed point equations that can be solved numerically to obtain the unknown variables, thereby yielding approximations of time average performance measures, such as packet discard probabilities and average queueing delays. Different analyses arise for networks with no hidden nodes and networks with hidden nodes. We apply this approach to the performance analysis of tree networks rooted at a data sink. ...

  12. A molecular-genetic approach to studying source-sink interactions in Arabidopsis thalian. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, S. I.

    2000-06-01

    This is a final report describing the results of the research funded by the DOE Energy Biosciences Program grant entitled ''A Molecular-Genetic Approach to Studying Source-Sink Interactions in Arabidiopsis thaliana''.

  13. Concise NMR approach for molecular dynamics characterizations in organic solids.

    Science.gov (United States)

    Aliev, Abil E; Courtier-Murias, Denis

    2013-08-22

    Molecular dynamics characterisations in solids can be carried out selectively using dipolar-dephasing experiments. Here we show that the introduction of a sum of Lorentzian and Gaussian functions greatly improve fittings of the "intensity versus time" data for protonated carbons in dipolar-dephasing experiments. The Lorentzian term accounts for remote intra- and intermolecular (1)H-(13)C dipole-dipole interactions, which vary from one molecule to another or for different carbons within the same molecule. Thus, by separating contributions from weak remote interactions, more accurate Gaussian decay constants, T(dd), can be extracted for directly bonded (1)H-(13)C dipole-dipole interactions. Reorientations of the (1)H-(13)C bonds lead to the increase of T(dd), and by measuring dipolar-dephasing constants, insight can be gained into dynamics in solids. We have demonstrated advantages of the method using comparative dynamics studies in the α and γ polymorphs of glycine, cyclic amino acids L-proline, DL-proline and trans-4-hydroxy-L-proline, the Ala residue in different dipeptides, as well as adamantane and hexamethylenetetramine. It was possible to distinguish subtle differences in dynamics of different carbon sites within a molecule in polymorphs and in L- and DL-forms. The presence of overall molecular motions is shown to lead to particularly large differences in dipolar-dephasing experiments. The differences in dynamics can be attributed to differences in noncovalent interactions. In the case of hexamethylenetetramine, for example, the presence of C-H···N interactions leads to nearly rigid molecules. Overall, the method allows one to gain insight into the role of noncovalent interactions in solids and their influence on the molecular dynamics.

  14. Laboratory detection of sepsis: biomarkers and molecular approaches.

    Science.gov (United States)

    Riedel, Stefan; Carroll, Karen C

    2013-09-01

    Sepsis, severe sepsis, and septic shock cause significant morbidity and mortality worldwide. Rapid diagnosis and therapeutic interventions are desirable to improve the overall mortality in patients with sepsis. However, gold standard laboratory diagnostic methods for sepsis, pose a significant challenge to rapid diagnosis of sepsis by physicians and laboratories. This article discusses the usefulness and potential of biomarkers and molecular test methods for a more rapid clinical and laboratory diagnosis of sepsis. Because new technologies are quickly emerging, physicians and laboratories must appreciate the key factors and characteristics that affect the clinical usefulness and diagnostic accuracy of these test methodologies. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Beacon- and Schema-Based Method for Recognizing Algorithms from Students' Source Code

    Science.gov (United States)

    Taherkhani, Ahmad; Malmi, Lauri

    2013-01-01

    In this paper, we present a method for recognizing algorithms from students programming submissions coded in Java. The method is based on the concept of "programming schemas" and "beacons". Schemas are high-level programming knowledge with detailed knowledge abstracted out, and beacons are statements that imply specific…

  16. 46 CFR 169.555 - Emergency position indicating radio beacon (EPIRB).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Emergency position indicating radio beacon (EPIRB). 169.555 Section 169.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS... Emergency position indicating radio beacon (EPIRB). (a) Each vessel certificated for exposed waters must...

  17. Weak beacon detection for air-to-ground optical wireless link establishment.

    Science.gov (United States)

    Han, Yaoqiang; Dang, Anhong; Tang, Junxiong; Guo, Hong

    2010-02-01

    In an air-to-ground free-space optical communication system, strong background interference seriously affects the beacon detection, which makes it difficult to establish the optical link. In this paper, we propose a correlation beacon detection scheme under strong background interference conditions. As opposed to traditional beacon detection schemes, the beacon is modulated by an m-sequence at the transmitting terminal with a digital differential matched filter (DDMF) array introduced at the receiving end to detect the modulated beacon. This scheme is capable of suppressing both strong interference and noise by correlation reception of the received image sequence. In addition, the DDMF array enables each pixel of the image sensor to have its own DDMF of the same structure to process its received image sequence in parallel, thus it makes fast beacon detection possible. Theoretical analysis and an outdoor experiment have been demonstrated and show that the proposed scheme can realize fast and effective beacon detection under strong background interference conditions. Consequently, the required beacon transmission power can also be reduced dramatically.

  18. 46 CFR 169.831 - Emergency position indicating radio beacon (EPIRB).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Emergency position indicating radio beacon (EPIRB). 169.831 Section 169.831 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS... radio beacon (EPIRB). The master shall ensure that— (a) The EPIRB required in § 169.555 of this...

  19. 46 CFR 169.744 - Emergency position indicating radio beacon (EPIRB).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Emergency position indicating radio beacon (EPIRB). 169.744 Section 169.744 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS... position indicating radio beacon (EPIRB). Each EPIRB must be marked with the vessel's name. ...

  20. What Happened to the Beacon Schools? Policy Reform and Educational Equity

    Science.gov (United States)

    Smith, Emma

    2015-01-01

    This paper considers the impact of the Beacon schools initiative on the social and academic characteristics of secondary schools in England. The Beacon schools programme ran from 1998 to 2004 and epitomised the (then) Labour government's focus on school improvement through diversity, collaboration and partnership. This paper looks at variation in…

  1. Beacon Editor: Capturing Signal Transduction Pathways Using the Systems Biology Graphical Notation Activity Flow Language.

    Science.gov (United States)

    Elmarakeby, Haitham; Arefiyan, Mostafa; Myers, Elijah; Li, Song; Grene, Ruth; Heath, Lenwood S

    2017-08-28

    The Beacon Editor is a cross-platform desktop application for the creation and modification of signal transduction pathways using the Systems Biology Graphical Notation Activity Flow (SBGN-AF) language. Prompted by biologists' requests for enhancements, the Beacon Editor includes numerous powerful features for the benefit of creation and presentation.

  2. Beacon- and Schema-Based Method for Recognizing Algorithms from Students' Source Code

    Science.gov (United States)

    Taherkhani, Ahmad; Malmi, Lauri

    2013-01-01

    In this paper, we present a method for recognizing algorithms from students programming submissions coded in Java. The method is based on the concept of "programming schemas" and "beacons". Schemas are high-level programming knowledge with detailed knowledge abstracted out, and beacons are statements that imply specific…

  3. Down-regulation of the beacon gene expression in the regenerating rat adrenal cortex.

    Science.gov (United States)

    Ziolkowska, Agnieszka; Rucinski, Marcin; Tyczewska, Marianna; Belloni, Anna Sandra; Nowak, Magdalena; Nussdorfer, Gastone G; Malendowicz, Ludwik K

    2006-12-01

    Beacon, a hypothalamic peptide involved in the regulation of food intake, has been recently shown to be expressed in the adrenal cortex, and to inhibit its secretion and growth. To further characterize the role of beacon in the control of adrenal growth, we investigated the level of beacon gene expression in the regenerating rat adrenal cortex. Conventional reverse transcription-polymerase chain reaction (PCR) and immunocytochemistry demonstrated the expression of beacon mRNA and protein in the adrenals at both days 5 and 8 of regeneration after enucleation and contralateral adrenalectomy. Semiquantitative real time-PCR revealed a net down-regulation of beacon mRNA in the regenerating glands, as compared to the intact adrenal cortex of sham-operated animals. Beacon gene expression was higher at day 8 than at day 5 of regeneration. Mitotic index, as assayed by the stachmokinetic method with vincristin, was negligible in the intact adrenal, but greatly elevated in regenerating gland, with a higher index found at day 5 than at day 8 after surgery. Taken together our findings indicate that the level of beacon gene expression is inversely correlated with the proliferative activity of adrenocortical cells, and suggest that beacon might act as an endogenous inhibitor of adrenocortical growth in the rat.

  4. 46 CFR 28.150 - Emergency Position Indicating Radio Beacons (EPIRBs).

    Science.gov (United States)

    2010-10-01

    ... beacon (EPIRB) as required by 46 CFR part 25, subpart 25.26. Note: Each vessel which uses radio..., as set forth in 47 CFR part 80. ... 46 Shipping 1 2010-10-01 2010-10-01 false Emergency Position Indicating Radio Beacons (EPIRBs)....

  5. 77 FR 41271 - Safety Zone; Newburgh to Beacon Swim, Newburgh, Hudson River, NY

    Science.gov (United States)

    2012-07-13

    ... Acronyms DHS Department of Homeland Security FR Federal Register CFR Code of Federal Regulations NPRM... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Newburgh to Beacon Swim, Newburgh, Hudson... Newburgh, NY for the annual Newburgh Beacon Swim event. This temporary safety zone is necessary to...

  6. What Happened to the Beacon Schools? Policy Reform and Educational Equity

    Science.gov (United States)

    Smith, Emma

    2015-01-01

    This paper considers the impact of the Beacon schools initiative on the social and academic characteristics of secondary schools in England. The Beacon schools programme ran from 1998 to 2004 and epitomised the (then) Labour government's focus on school improvement through diversity, collaboration and partnership. This paper looks at variation in…

  7. The Development of Landmark and Beacon Use in Young Children: Evidence from a Touchscreen Search Task

    Science.gov (United States)

    Sutton, Jennifer E.

    2006-01-01

    Children ages 2, 3 and 4 years participated in a novel hide-and-seek search task presented on a touchscreen monitor. On beacon trials, the target hiding place could be located using a beacon cue, but on landmark trials, searching required the use of a nearby landmark cue. In Experiment 1, 2-year-olds performed less accurately than older children…

  8. In search of molecular approaches to improving cancer therapy efficacy.

    Science.gov (United States)

    Cherepenko, E; Telegeev, G

    2014-03-01

    The study of genome rearrangement sites using full genome sequences is an important approach to revealing the nature of cancer and finding effective ways for cancer treatment. The progress in DNA sequencing could make the procedure of whole genome reading close to routine procedure of lower cost. The personal analysis of rearranged ends (PARE) method used for rearrangement study is reviewed. PARE allows identifying of individual cancer biomarkers making personal medicine possible. Also, the progress in "liquid biopsy" technology based on detection of circulating tumor cells in the patient's blood is shortly summarized. Another important approach is the discovered phenomenon of synthetic lethality causing cancer cell death due to appropriate combination of mutations in different genes or inhibitors of their protein products. Studies of genome rearrangements and synthetic lethality are considered promising for the development of effective cancer treatment approaches.

  9. Vibrational spectrum at a water surface: a hybrid quantum mechanics/molecular mechanics molecular dynamics approach.

    Science.gov (United States)

    Ishiyama, Tatsuya; Takahashi, Hideaki; Morita, Akihiro

    2012-03-28

    A hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulation is applied to the calculation of surface orientational structure and vibrational spectrum (second-order nonlinear susceptibility) at the vapor/water interface for the first time. The surface orientational structure of the QM water molecules is consistent with the previous MD studies, and the calculated susceptibility reproduces the experimentally reported one, supporting the previous results using the classical force field MD simulation. The present QM/MM MD simulation also demonstrates that the positive sign of the imaginary part of the second-order nonlinear susceptibility at the lower hydrogen bonding OH frequency region originates not from individual molecular orientational structure, but from cooperative electronic structure through the hydrogen bonding network.

  10. First approach to molecular epidemiology of bovine tuberculosis in Colombia

    Directory of Open Access Journals (Sweden)

    Jimena Jojoa-Jojoa

    2015-12-01

    Full Text Available Objective. To investigate the presence of Mycobacterium bovis and other Mycobacterium species in samples of cattle and buffalo in Colombia, to start the molecular characterization of M. bovis in the country. Material and methods. 492 samples were collected from herds identified with the presence of infected animals through the PPD, by the Group of Bovine Tuberculosis ICA Colombian Agricultural Institute in eight departments of Colombia. Lymph nodes of head, thorax and abdomen, gross lesions of tissues with tuberculosis, nasal swabs, milk, blood and fresh cheeses were included. Samples were subjected to detection of Mycobacterium bovis and other mycobacteria by conventional microbiological analysis and PCR-6110 and spoligotyping molecular assays. Results. In the samples analyzed especially in lymph nodes, Mycobacterium bovis was demonstrated with genotypes reported and not previously reported in the world, as well as M. tuberculosis in Antioquia, Cundinamarca, Boyacá and Magdalena departments. Conclusions. In Colombia there are at least 7 genotypes of M. bovis that are infected and sick cattle and buffalo from four different departments becoming serious threat to public health.

  11. An Integrated, Statistical Molecular Approach to the Physical Chemistry Curriculum

    Science.gov (United States)

    Cartier, Stephen F.

    2009-01-01

    As an alternative to the "thermodynamics first" or "quantum first" approaches to the physical chemistry curriculum, the statistical definition of entropy and the Boltzmann distribution are introduced in the first days of the course and the entire two-semester curriculum is then developed from these concepts. Once the tools of statistical mechanics…

  12. Molecular Genetic Approaches to Human Diseases Involving Mental Retardation.

    Science.gov (United States)

    Latt, Samuel A.; And Others

    1984-01-01

    Recombinant DNA techniques provide new approaches to the diagnosis and analysis of inherited human diseases associated with mental retardation, such as Lesch-Nyhan syndrome, phenylketonauria, the Fragile X syndrome, Down syndrome, and those associated with deletions or duplications of subchromosomal regions. (Author/CL)

  13. An Integrated, Statistical Molecular Approach to the Physical Chemistry Curriculum

    Science.gov (United States)

    Cartier, Stephen F.

    2009-01-01

    As an alternative to the "thermodynamics first" or "quantum first" approaches to the physical chemistry curriculum, the statistical definition of entropy and the Boltzmann distribution are introduced in the first days of the course and the entire two-semester curriculum is then developed from these concepts. Once the tools of statistical mechanics…

  14. Directionality based Location Discovery Scheme Using Beacon Nodes with Transmission Capabilities throughout Sensor Network

    Directory of Open Access Journals (Sweden)

    Qinli An

    2013-06-01

    Full Text Available In this paper, we propose a range-free localization scheme for wireless sensor networks (WSNs using four beacon nodes(BNs equipped with a directional antenna with special transmission capabilities for sending wireless beacon signals throughout the sensor network. Each beacon node rotates with a constant angular speed and broadcasts its angular bearings. A sensor node can determine its location by listening to wireless transmissions from the four fixed beacon nodes. The proposed method is based on an angle-of-arrival estimation technique that does not increase the complexity or cost of construction of the sensor nodes. We present error analysis and the best positions of beacon nodes in the proposed method. Numerical results, obtained by simulating several scenarios, show that the algorithm can reach a good level of convergence.

  15. Measuring Transport Time of Mine Equipment in an Underground Mine Using a Bluetooth Beacon System

    Directory of Open Access Journals (Sweden)

    Jihoo Jung

    2016-12-01

    Full Text Available In this study, the time taken for mine haulage equipment to travel between destinations in an underground mine was measured and analyzed using a Bluetooth beacon system. In this system, Bluetooth beacons are attached to multiple points in an underground mine environment, and smartphones are mounted on mine equipment, such as haulage trucks, to collect transport time data. An underground limestone mine in Korea was selected to test the Bluetooth beacon system. The field experiments indicated that smartphones mounted on haulage trucks can recognize all Bluetooth beacons installed in the vicinity. The results also revealed that the Bluetooth beacon system can be used successfully in underground mines to quantitatively analyze transport times of haulage trucks going back and forth between loading and dumping points.

  16. Dynamic covalent chemistry approaches toward macrocycles, molecular cages, and polymers.

    Science.gov (United States)

    Jin, Yinghua; Wang, Qi; Taynton, Philip; Zhang, Wei

    2014-05-20

    The current research in the field of dynamic covalent chemistry includes the study of dynamic covalent reactions, catalysts, and their applications. Unlike noncovalent interactions utilized in supramolecular chemistry, the formation/breakage of covalent bonding has slower kinetics and usually requires the aid of a catalyst. Catalytic systems that enable efficient thermodynamic equilibrium are thus essential. In this Account, we describe the development of efficient catalysts for alkyne metathesis, and discuss the application of dynamic covalent reactions (mainly imine, olefin, and alkyne metathesis) in the development of organic functional materials. Alkyne metathesis is an emerging dynamic covalent reaction that offers robust and linear acetylene linkages. By introducing a podand motif into the catalyst ligand design, we have developed a series of highly active and robust alkyne metathesis catalysts, which, for the first time, enabled the one-step covalent assembly of ethynylene-linked functional molecular cages. Imine chemistry and olefin metathesis are among the most well-established reversible reactions, and have also been our main synthetic tools. Various shape-persistent macrocycles and covalent organic polyhedrons have been efficiently constructed in one-step through dynamic imine chemistry and olefin metathesis. The geometrical features and solubilizing groups of the building blocks as well as the reaction kinetics have significant effect on the outcome of a covalent assembly process. More recently, we explored the orthogonality of imine and olefin metatheses, and successfully synthesized heterosequenced macrocycles and molecular cages through one-pot orthogonal dynamic covalent chemistry. In addition to discrete molecular architectures, functional polymeric materials can also be accessed through dynamic covalent reactions. Defect-free solution-processable conjugated polyaryleneethynylenes and polydiacetylenes have been prepared through alkyne metathesis

  17. Towards high-throughput molecular detection of Plasmodium: new approaches and molecular markers

    National Research Council Canada - National Science Library

    Steenkeste, Nicolas; Incardona, Sandra; Chy, Sophy; Duval, Linda; Ekala, Marie-Thérèse; Lim, Pharath; Hewitt, Sean; Sochantha, Tho; Socheat, Doung; Rogier, Christophe; Mercereau-Puijalon, Odile; Fandeur, Thierry; Ariey, Frédéric

    2009-01-01

    .... Two new molecular methods were developed: dot18S, a Plasmodium-specific nested PCR based on the 18S rRNA gene followed by dot-blot detection of species by using species-specific probes and CYTB, a Plasmodium-specific nested PCR based...

  18. Molecular clocks, molecular profiles, and optimum diets: three approaches to the problem of aging.

    Science.gov (United States)

    Robinson, A B

    1979-02-01

    It has been hypothesized that the deamidation of glutaminyl and asparaginyl residues serves as a molecular clock for many biological processes including protein turnover, development, and aging. At present, this hypothesis has passed some experimental tests which are necessary but not sufficient for its acceptance. The current state of evidence about deamidation as a molecular clock is discussed. In addition, since the molecular biology of aging, especially in humans, is only partly understood, it is of value to develop quantitative, empirical measures of physiological human age and to use these measures to evaluate alternative human living conditions, especially easily adopted alternatives like variations in diet. This may allow some decrease in the suffering and loss from human aging until such time as molecular biology provides superior and more intellectually satisfying answers. An empirical system which consists of quantitative measurement of several hundred human chemical constituents followed by computerized pattern recognition is described. It is hoped that this system will eventually become an aid in the minimization of the rate of human aging through changes in diet and other factors.

  19. Modular Approaches to Flouride-Bridged Molecular Magnetic Materials

    DEFF Research Database (Denmark)

    Pedersen, Kasper Steen

    spectroscopy. Lanthanides are interesting components for magnetic materials and have a huge underexplored potential in molecular magnetic systems. Advancements are, however, significantly hindered by their complicated electronic and magnetic nature. In this project, we have studied the properties of a class...... parameter make complexes with central ions from the 4d and 5d series particularly interesting building blocks for magnetic materials. The main obstacle is the common inherent lability of hexafluoridometallates towards hydrolysis, a tendency that is strongly diminished for several 4d and 5d [MF6]2– complexes......) and electron paramagnetic resonance (EPR) spectroscopies, the magnetic properties of the isolated [ReF6]2– unit in (PPh4)2[ReF6]·2H2O have been fully studied including the slow relaxation of the magnetization observed below ca. 4 K. This slow dynamic is preserved for the tetragonal, one...

  20. Computational Approaches for Probing the Formation of Atmospheric Molecular Clusters

    DEFF Research Database (Denmark)

    Elm, Jonas

    This thesis presents the investigation of atmospheric molecular clusters using computational methods. Previous investigations have focused on solving problems related to atmospheric nucleation, and have not been targeted at the performance of the applied methods. This thesis focuses on assessing...... the performance of computational strategies in order to identify a sturdy methodology, which should be applicable for handling various issues related to atmospheric cluster formation. Density functional theory (DFT) is applied to study individual cluster formation steps. Utilizing large test sets of numerous...... and pinic acid) for atmospheric cluster formation. Glycine is found to have a similar potential as ammonia in enhancing atmospheric nucleation. Pinic acid molecules form favourable clusters with sulfuric acid, but with formation free energies which are too low to explain observed nucleation rates. Pinic...

  1. Complement involvement in periodontitis: molecular mechanisms and rational therapeutic approaches

    Science.gov (United States)

    Hajishengallis, George; Maekawa, Tomoki; Abe, Toshiharu; Hajishengallis, Evlambia; Lambris, John D.

    2015-01-01

    The complement system is a network of interacting fluid-phase and cell surface-associated molecules that trigger, amplify, and regulate immune and inflammatory signaling pathways. Dysregulation of this finely balanced network can destabilize host-microbe homeostasis and cause inflammatory tissue damage. Evidence from clinical and animal model-based studies suggests that complement is implicated in the pathogenesis of periodontitis, a polymicrobial community-induced chronic inflammatory disease that destroys the tooth-supporting tissues. This review discusses molecular mechanisms of complement involvement in the dysbiotic transformation of the periodontal microbiome and the resulting destructive inflammation, culminating in loss of periodontal bone support. These mechanistic studies have additionally identified potential therapeutic targets. In this regard, interventional studies in preclinical models have provided proof-of-concept for using complement inhibitors for the treatment of human periodontitis. PMID:26306443

  2. Novel approaches for the molecular classification of prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Robert H. Getzenberg

    2010-01-01

    @@ Among the urologic cancers, prostate cancer is by far the most common, and it appears to have the potential to affect almost all men throughout the world as they age. A number of studies have shown that many men with prostate cancer will not die from their disease, but rather with the disease but from other causes. These men have a form of prostate cancer that is de-scribed as "very low risk" and has often been called indolent. There are however a group of men that have a form of prostate cancer that is much more aggressive and life threatening. Unlike other cancer types, we have few tools to provide for the molecular classification of prostate cancer.

  3. Molecular approaches to improve rice abiotic stress tolerance.

    Science.gov (United States)

    Mizoi, Junya; Yamaguchi-Shinozaki, Kazuko

    2013-01-01

    Abiotic stress is a major factor limiting productivity of rice crops in large areas of the world. Because plants cannot avoid abiotic stress by moving, they have acquired various mechanisms for stress tolerance in the course of their evolution. Enhancing or introducing such mechanisms in rice is one effective way to develop stress-tolerant cultivars. Based on physiological studies on stress responses, recent progress in plant molecular biology has enabled discovery of many genes involved in stress tolerance. These genes include regulatory genes, which regulate stress response (e.g., transcription factors and protein kinases), and functional genes, which protect the cell (e.g., enzymes for generating protective metabolites and proteins). Both kinds of genes are used to increase stress tolerance in rice. In addition, several quantitative trait loci (QTLs) associated with higher stress tolerance have been cloned, contributing to the discovery of significantly important genes for stress tolerance.

  4. A MOLECULAR APPROACH TO THE SYNTHESIS OF NOVEL POLYIMIDES

    Institute of Scientific and Technical Information of China (English)

    Zhi-yuan Wang

    1999-01-01

    In the past ten years there has been a flurry of activity in the synthesis of new specialty polymers,largely as a result of the increased need for high technology materials. Interest is mainly shown in two distinct categories of polymers: a) polymers which are used in very small quantities to fulfill critical needs as a part of device systems, and b) high-performance engineering polymers which significantly extend their mechanical and thermal properties for structural applications. Polyimides and their unparalleled versatility have captured the attention and imagination of scientists and engineers. This article describes some of the recent work done by the author's group on the rational design at the molecular level and the synthesis of polyimides that have unusual structures and novel properties.

  5. Addressing Beacon re-identification attacks: quantification and mitigation of privacy risks.

    Science.gov (United States)

    Raisaro, Jean Louis; Tramèr, Florian; Ji, Zhanglong; Bu, Diyue; Zhao, Yongan; Carey, Knox; Lloyd, David; Sofia, Heidi; Baker, Dixie; Flicek, Paul; Shringarpure, Suyash; Bustamante, Carlos; Wang, Shuang; Jiang, Xiaoqian; Ohno-Machado, Lucila; Tang, Haixu; Wang, XiaoFeng; Hubaux, Jean-Pierre

    2017-02-20

    The Global Alliance for Genomics and Health (GA4GH) created the Beacon Project as a means of testing the willingness of data holders to share genetic data in the simplest technical context-a query for the presence of a specified nucleotide at a given position within a chromosome. Each participating site (or "beacon") is responsible for assuring that genomic data are exposed through the Beacon service only with the permission of the individual to whom the data pertains and in accordance with the GA4GH policy and standards.While recognizing the inference risks associated with large-scale data aggregation, and the fact that some beacons contain sensitive phenotypic associations that increase privacy risk, the GA4GH adjudged the risk of re-identification based on the binary yes/no allele-presence query responses as acceptable. However, recent work demonstrated that, given a beacon with specific characteristics (including relatively small sample size and an adversary who possesses an individual's whole genome sequence), the individual's membership in a beacon can be inferred through repeated queries for variants present in the individual's genome.In this paper, we propose three practical strategies for reducing re-identification risks in beacons. The first two strategies manipulate the beacon such that the presence of rare alleles is obscured; the third strategy budgets the number of accesses per user for each individual genome. Using a beacon containing data from the 1000 Genomes Project, we demonstrate that the proposed strategies can effectively reduce re-identification risk in beacon-like datasets. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  6. Power sources for search and rescue 406 MHz beacons

    Science.gov (United States)

    Attia, Alan I.; Perrone, David E.

    1987-01-01

    The results of a study directed at the selection of a commercially available, safe, low cost, light weight and long storage life battery for search and rescue (Sarsat) 406 MHz emergency beacons are presented. In the course of this work, five electrochemical systems (lithium-manganese dioxide, lithium-carbon monofluoride, lithium-silver vanadium oxide, alkaline cells, and cadmium-mercuric oxide) were selected for limited experimental studies to determine their suitability for this application. Two safe, commercially available batteries (lithium-manganese dioxide and lithium-carbon monofluoride) which meet the near term requirements and several alternatives for the long term were identified.

  7. Deep Sea AUV Navigation Using Multiple Acoustic Beacons

    Institute of Scientific and Technical Information of China (English)

    冀大雄; 宋伟; 赵宏宇; 刘健

    2016-01-01

    Navigation is a critical requirement for the operation of Autonomous Underwater Vehicles (AUVs). To estimate the vehicle position, we present an algorithm using an extended Kalman filter (EKF) to integrate dead-reckoning position with acoustic ranges from multiple beacons pre-deployed in the operating environment. Owing to high latency, variable sound speed multipath transmissions and unreliability in acoustic measurements, outlier recognition techniques are proposed as well. The navigation algorithm has been tested by the recorded data of deep sea AUV during field operations in a variety of environments. Our results show the improved performance over prior techniques based on position computation.

  8. Beacon Hill公司的水彩系列

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Beacon Hill's公司最新的水彩系列有多种不同的颜色变化,跨度从微妙的柔和的中性色彩一直到充满异国情调的色彩。为了让客户更好地体验到这种水彩的感觉,他们采用了半透明色调的颜料绘制图案。

  9. Deep sea AUV navigation using multiple acoustic beacons

    Science.gov (United States)

    Ji, Da-xiong; Song, Wei; Zhao, Hong-yu; Liu, Jian

    2016-04-01

    Navigation is a critical requirement for the operation of Autonomous Underwater Vehicles (AUVs). To estimate the vehicle position, we present an algorithm using an extended Kalman filter (EKF) to integrate dead-reckoning position with acoustic ranges from multiple beacons pre-deployed in the operating environment. Owing to high latency, variable sound speed multipath transmissions and unreliability in acoustic measurements, outlier recognition techniques are proposed as well. The navigation algorithm has been tested by the recorded data of deep sea AUV during field operations in a variety of environments. Our results show the improved performance over prior techniques based on position computation.

  10. Charge transport through biomolecular wires in a solvent: bridging molecular dynamics and model Hamiltonian approaches.

    Science.gov (United States)

    Gutiérrez, R; Caetano, R A; Woiczikowski, B P; Kubar, T; Elstner, M; Cuniberti, G

    2009-05-22

    We present a hybrid method based on a combination of classical molecular dynamics simulations, quantum-chemical calculations, and a model Hamiltonian approach to describe charge transport through biomolecular wires with variable lengths in presence of a solvent. The core of our approach consists in a mapping of the biomolecular electronic structure, as obtained from density-functional based tight-binding calculations of molecular structures along molecular dynamics trajectories, onto a low-dimensional model Hamiltonian including the coupling to a dissipative bosonic environment. The latter encodes fluctuation effects arising from the solvent and from the molecular conformational dynamics. We apply this approach to the case of pG-pC and pA-pT DNA oligomers as paradigmatic cases and show that the DNA conformational fluctuations are essential in determining and supporting charge transport.

  11. Geometrical approach to central molecular chirality: a chirality selection rule

    OpenAIRE

    Capozziello, S.; Lattanzi, A

    2004-01-01

    Chirality is of primary importance in many areas of chemistry and has been extensively investigated since its discovery. We introduce here the description of central chirality for tetrahedral molecules using a geometrical approach based on complex numbers. According to this representation, for a molecule having n chiral centres, it is possible to define an index of chirality. Consequently a chirality selection rule has been derived which allows the characterization of a molecule as achiral, e...

  12. Molecular weight enlargement--a molecular approach to continuous homogeneous catalysis.

    Science.gov (United States)

    Janssen, Michèle; Müller, Christian; Vogt, Dieter

    2010-09-28

    Molecular weight enlargement (MWE) is an attractive method for homogeneous catalyst recycling. Applications of MWE in combination with either catalyst precipitation or nanofiltration have demonstrated their great potential as a method for process intensification in homogeneous catalysis. Selected, recent advances in MWE in combination with catalyst recovery are discussed, together with their implication for future developments. These examples demonstrate that this strategy is applicable in many different homogeneously catalyzed transformations.

  13. Avian schistosomes in French aquatic birds: a molecular approach.

    Science.gov (United States)

    Jouet, D; Ferté, H; Hologne, C; Kaltenbach, M L; Depaquit, J

    2009-06-01

    The prevalence of human cercarial dermatitis (HCD) caused by bird schistosomes appears to be increasing in France, in light of the impact of tourism combined with high densities of wild aquatic hosts in freshwater areas. The present work expands our knowledge of schistosome systematics by including samples of bird schistosomes collected from their natural hosts in France. Heads (318) and viscera (81) of aquatic birds belonging to 16 species from five orders, collecting during the hunting seasons or found dead, were autopsied for nasal and visceral schistosomes. Eggs and/or adults were analysed by molecular methods using the D2 domain and the second internal transcribed spacer (ITS-2) region of rDNA to determine species. Even if nasal eggs were polymorphic according to the host, all haplotypes were similar to that of Trichobilharzia regenti. Marked diversity of visceral species was observed. Final hosts under natural conditions were reported. For the first time, Trichobilharzia franki is reported in its natural bird hosts, Anas platyrhynchos, Anas crecca, Aythya fuligula and Cygnus olor. We also identified T. szidati in A. crecca and Anas clypeata. Bilharziella polonica was found in six species of aquatic birds, including Grus grus. This finding is the first record of bird schistosomes in this aquatic bird. Three new taxa of visceral schistosomes in Anser anser are strongly suspected according to their haplotypes. Futhermore, a new haplotype of visceral schistosomes isolated in Cygnus olor and similar to Allobilharzia visceralis was identified.

  14. Biomimetic polymers of plant cutin: an approach from molecular modeling.

    Science.gov (United States)

    San-Miguel, Miguel A; Oviedo, Jaime; Heredia-Guerrero, Jose Alejandro; Heredia, Antonio; Benitez, Jose Jesus

    2014-07-01

    Biomimetics of materials is based on adopting and reproducing a model in nature with a well-defined functionality optimized through evolution. An example is barrier polymers that protect living tissues from the environment. The protecting layer of fruits, leaves, and non-lignified stems is the plant cuticle. The cuticle is a complex system in which the cutin is the main component. Cutin is a biopolyester made of polyhydroxylated carboxylic acids of 16 and 18 carbon atoms. The biosynthesis of cutin in plants is not well understood yet, but a direct chemical route involving the self-assembly of either molecules or molecular aggregates has been proposed. In this work, we present a combined study using experimental and simulation techniques on self-assembled layers of monomers selectively functionalized with hydroxyl groups. Our results demonstrate that the number and position of the hydroxyl groups are critical for the interaction between single molecules and the further rearrangement. Also, the presence of lateral hydroxyl groups reinforces lateral interactions and favors the bi-dimensional growth (2D), while terminal hydroxyl groups facilitate the formation of a second layer caused by head-tail interactions. The balance of 2D/3D growth is fundamental for the plant to create a protecting layer both large enough in 2D and thick enough in 3D.

  15. A Motion Planning Approach to Studying Molecular Motions

    KAUST Repository

    Amato, Nancy M.

    2010-01-01

    While structurally very different, protein and RNA molecules share an important attribute. The motions they undergo are strongly related to the function they perform. For example, many diseases such as Mad Cow disease or Alzheimer\\'s disease are associated with protein misfolding and aggregation. Similarly, RNA folding velocity may regulate the plasmid copy number, and RNA folding kinetics can regulate gene expression at the translational level. Knowledge of the stability, folding, kinetics and detailed mechanics of the folding process may help provide insight into how proteins and RNAs fold. In this paper, we present an overview of our work with a computational method we have adapted from robotic motion planning to study molecular motions. We have validated against experimental data and have demonstrated that our method can capture biological results such as stochastic folding pathways, population kinetics of various conformations, and relative folding rates. Thus, our method provides both a detailed view (e.g., individual pathways) and a global view (e.g., population kinetics, relative folding rates, and reaction coordinates) of energy landscapes of both proteins and RNAs. We have validated these techniques by showing that we observe the same relative folding rates as shown in experiments for structurally similar protein molecules that exhibit different folding behaviors. Our analysis has also been able to predict the same relative gene expression rate for wild-type MS2 phage RNA and three of its mutants.

  16. A computational toy model for shallow landslides: Molecular Dynamics approach

    CERN Document Server

    Martelloni, Gianluca; Massaro, Emanuele

    2012-01-01

    The aim of this paper is to propose a 2D computational algorithm for modeling of the trigger and the propagation of shallow landslides caused by rainfall. We used a Molecular Dynamics (MD) inspired model, similar to discrete element method (DEM), that is suitable to model granular material and to observe the trajectory of single particle, so to identify its dynamical properties. We consider that the triggering of shallow landslides is caused by the decrease of the static friction along the sliding surface due to water infiltration by rainfall. Thence the triggering is caused by two following conditions: (a) a threshold speed of the particles and (b) a condition on the static friction, between particles and slope surface, based on the Mohr-Coulomb failure criterion. The latter static condition is used in the geotechnical model to estimate the possibility of landslide triggering. Finally the interaction force between particles is defined trough a potential that, in the absence of experimental data, we have mode...

  17. New vaccines for mammalian allergy using molecular approaches

    Directory of Open Access Journals (Sweden)

    Marianne evan Hage

    2014-03-01

    Full Text Available Allergen-specific immunotherapy (SIT offers a disease specific causative treatment by inducing tolerance to the allergen and preventing progression of allergic diseases. It may be considered in patients allergic to furry animals. Current mammalian allergy vaccines are still prepared from relatively poorly defined allergen extracts and may induce immediate and late phase side effects. Although the mechanisms of SIT are still not fully understood, the more recent approaches report different strategies to reduce both allergen-specific IgE as well as T cell reactivity. The availability of recombinant allergens and synthetic peptides from mammalian species has contributed to formulating new allergy vaccines to improve SIT for furry animal allergy. The majority of studies have focused on the major cat allergen Fel d 1 due to it’s extensively characterization in terms of IgE and T-cell epitopes and to its dominant role in cat allergy. Here we review the most recent approaches, e.g. synthetic peptides, recombinant allergen derivatives, different hypoallergenic molecules, recombinant allergens coupled to virus-like particles or immunomodulatory substances as well as strategies targeting the allergen to Fc receptors and the MHC class II pathway using a new route for administration. Many of the new vaccines hold promise but only a few of them have been investigated in clinical trials which will be the gold standard for evaluation of safety and efficacy in allergic patients.

  18. New vaccines for Mammalian allergy using molecular approaches.

    Science.gov (United States)

    van Hage, Marianne; Pauli, Gabrielle

    2014-01-01

    Allergen-specific immunotherapy (SIT) offers a disease specific causative treatment by modifying the allergen-specific immune response allowing tolerance to higher doses of allergen and preventing progression of allergic diseases. It may be considered in patients allergic to furry animals. Current mammalian allergy vaccines are still prepared from relatively poorly defined allergen extracts and may induce immediate and late phase side effects. Although the mechanisms of SIT are still not fully understood, the more recent approaches report different strategies to reduce both allergen-specific IgE as well as T cell reactivity. The availability of recombinant allergens and synthetic peptides from the mammalian species has contributed to formulating new allergy vaccines to improve SIT for furry animal allergy. The majority of studies have focused on the major cat allergen Fel d 1 due to its extensive characterization in terms of IgE and T cell epitopes and to its dominant role in cat allergy. Here we review the most recent approaches, e.g., synthetic peptides, recombinant allergen derivatives, different hypoallergenic molecules, and recombinant allergens coupled to virus-like particles or immunomodulatory substances as well as strategies targeting the allergen to Fcγ receptors and the MHC class II pathway using a new route for administration. Many of the new vaccines hold promise but only a few of them have been investigated in clinical trials which will be the gold standard for evaluation of safety and efficacy in allergic patients.

  19. Biotechnological and molecular approaches for vanillin production: a review.

    Science.gov (United States)

    Kaur, Baljinder; Chakraborty, Debkumar

    2013-02-01

    Vanillin is one of the most widely used flavoring agents in the world. As the annual world market demand of vanillin could not be met by natural extraction, chemical synthesis, or tissue culture technology, thus biotechnological approaches may be replacement routes to make production of bio-vanillin economically viable. This review's main focus is to highlight significant aspects of biotechnology with emphasis on the production of vanillin from eugenol, isoeugenol, lignin, ferulic acid, sugars, phenolic stilbenes, vanillic acid, aromatic amino acids, and waste residues by applying fungi, bacteria, and plant cells. Production of biovanillin using GRAS lactic acid bacteria and metabolically engineered microorganisms, genetic organization of vanillin biosynthesis operons/gene cassettes and finally the stability of biovanillin generated through various biotechnological procedures are also critically reviewed in the later sections of the review.

  20. Surface tension of molecular liquids: Lattice gas approach

    CERN Document Server

    Maslechko, A; Kulinskii, V

    2016-01-01

    The approach of global isomorphism between the fluid and the Ising model is applied to obtain an expression for the surface tension of the Lennard-Jones fluid on the basis of the information about the Ising model. This is done in a broad interval of temperatures along the phase coexistence, and is valid both in 2D and 3D. The relation between the critical amplitudes of the surface tension of the fluid and the Ising model is derived in the vicinity of the critical point. The obtained theoretical estimates agree well with the literature results for the surface tension. The methodology is demonstrated for the 2D LJ fluid on the basis of the exact solution of the 2D Ising model and is tested for the 3D LJ fluid. As a result, an expression for the surface tension without any fitting parameter is derived.

  1. Computational Approaches for Probing the Formation of Atmospheric Molecular Clusters

    DEFF Research Database (Denmark)

    Elm, Jonas

    the performance of computational strategies in order to identify a sturdy methodology, which should be applicable for handling various issues related to atmospheric cluster formation. Density functional theory (DFT) is applied to study individual cluster formation steps. Utilizing large test sets of numerous...... atmospheric clusters I evaluate the performance of different DFT functionals, with a specific focus on how to control potential errors associated with the calculation of single point energies and evaluation of the thermal contribution to the Gibbs free energy. Using DFT I study two candidate systems (glycine...... acid could thereby enhance the further growth of an existing cluster by condensing on the surface. Conclusively, I find that the performance of a single DFT functional can lead to an inadequate description of investigated atmospheric systems and thereby recommend a joint DFT (J-DFT) approach...

  2. Inversion of Ionospheric Electron Density from GPS Beacon Observations

    Institute of Scientific and Technical Information of China (English)

    ZouYu-hua; XuJi-sheng

    2003-01-01

    This paper studies the mathematical foundation of time-dependent three-dimensional (3-D) computerized ionospheric tomography (CIT) for reconstructing ionospheric electron density, N~, from ground-based GPS beacon observations. After simplifying the relation between N. and time,the time-dependent 3-D inversion in consideration is reduced to a 3-D tomography with incomplete projections. To see clearly the effects of the incompleteness on the quality of reconstruction under 3-D condition, the formula of 3-D parallelbeam tomogtTaphy is deduced theoretically. After establishing the mathematical foundation, simulations based on actual GPS ray paths with the help of the IRI-90 model are performed,and reasonable time-dependent 3-D distribution images of Ne are obtained when taking proper layout of the network and allowing variable resolutions. The quality of the reconstruction is rather good when compared with the images from the IRI-90 model directly. Therefore, results in this paper demonstrate that imaging of the ionospheric electron density distribution from GPS beacon observations is reasonable in theor yand feasible in practice.

  3. Inversion of Ionospheric Electron Density from GPS Beacon Observations

    Institute of Scientific and Technical Information of China (English)

    Zou Yu-hua; Xu Ji-sheng

    2003-01-01

    This paper studies the mathematical foundation of time-dependent three-dimensional (3-D) computerized ionospheric tomography (CIT) for reconstructing ionospheric electron density, Ne, from ground-based GPS beacon observations. After simplifying the relation between Ne and time,the time-dependent 3-D inversion in consideration is reduced to a 3-D tomography with incomplete projections.To see clearly the effects of the incompleteness on the quality of reconstruction under 3-D condition, the formula of 3-D parallel-beam tomography is deduced theoretically. After establishing the mathematical foundation, simulations based on actual GPS ray paths with the help of the IRI-90 model are performed,and reasonable time-dependent 3-D distribution images of Neare obtained when taking proper layout of the network and allowing variable resolutions. The quality of the reconstruction is rather good when compared with the images from the IRI-90 model directly. Therefore, results in this paper demon-strate that imaging of the ionospheric electron density distri-bution from GPS beacon observations is reasonable in theory and feasible in practice.

  4. Design and implementation of Bluetooth beacon in mobile payment system

    Science.gov (United States)

    Han, Tiantian; Ding, Lei

    2017-08-01

    The current line of payment means, mainly in the following ways, cash payment, credit card payment, WeChat Alipay sweep payment. There are many inconvenience in Cash payment, large amounts of cash inconvenience to carry, count the money to spend time and effort, true and false banknotes difficult to distinguish, ticket settlement easy to go wrong. Credit card payment is relatively time-consuming, and WeChat Alipay sweep payment need to sweep. Therefore, the design of a convenient, fast payment to meet the line to pay the demand is particularly important. Based on the characteristics of BLE Bluetooth wireless communication technology, this paper designs a kind of payment method based on Bluetooth beacon. Through the Bluetooth beacon broadcast consumption, consumers only need to open the relevant APP in the Android client, and you can get Bluetooth via mobile phone Bluetooth the amount of consumption of the standard broadcast, in accordance with the corresponding payment platform to complete the payment process, which pay less time to improve the efficiency of payment.

  5. Molecular engineering approaches for the Gup1p and its molecular partners purification and identification

    OpenAIRE

    Pinheiro, Rosária Filipa da Rocha

    2013-01-01

    Dissertação de mestrado em Genética Molecular S. cerevisiae GUP1 was initially associated to glycerol uptake through an active system. This, since its deletion caused defects on glycerol-mediated salt-stress recovery and on the glycerol/H+ uptake Vmax. Over the last decade, several phenotypes for Δgup1 strain have been reported, suggesting that Gup1p is involved in a wide range of crucial processes for cell preservation and functioning. These include cytoskeleton polarizatio...

  6. Molecular Approaches to Understanding C & N Dynamics in MArine Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Arturo Massol; James Tiedje; Jizhong Zhou; Allan Devol

    2007-05-16

    Continental margin sediments constitute only about 10% of the total sediment surface area in the world’s oceans, nevertheless they are the dominant sites of nitrogen (N) cycling. Recent studies suggest that the oceanic nitrogen budget is unbalanced, primarily due to a higher nitrogen removal rate in contrast to the fixation rate, and it has been suggested that denitrification activity contributes significantly to this imbalance. Although denitrification in marine environments has been studied intensively at the process level, little is known about the species abundance, composition, distribution, and functional differences of the denitrifying population. Understanding the diversity of microbial populations in marine environments, their responses to various environmental factors such as NO3-, and how this impact the rate of denitrification is critical to predict global N dynamics. Environmental Microbiology has the prompt to study the influence of each microbial population on a biogeochemical process within a given ecosystem. Culture-dependent and –independent techniques using nucleic acid probes can access the identity and activity of cultured and uncultured microorganisms. Nucleic acid probes can target distintict genes which set phylogenetic relationships, such as rDNA 16S, DNA gyrase (gyrB) and RNA polymerase sigma 70 factor (rpoD). In the other hand, the genetic capabilities and their expression could be tracked using probes that target several functional genes, such as nirS, nirK, nosZ, and nifH, which are genes involved in denitrification. Selective detection of cells actively expressing functional genes within a community using In Situ Reverse Transcription-PCR (ISRT-PCR) could become a powerful culture-independent technique in microbial ecology. Here we describe an approach to study the expression of nirS genes in denitrifying bacteria. Pure cultures of Pseudomonas stutzeri and Paracoccus denitrificans, as well as co-cultures with non

  7. Dual-channel detection of metallothioneins and mercury based on a mercury-mediated aptamer beacon using thymidine-mercury-thymidine complex as a quencher.

    Science.gov (United States)

    Chen, Si-Han; Wang, Yong-Sheng; Chen, Yun-Sheng; Tang, Xian; Cao, Jin-Xiu; Li, Ming-Hui; Wang, Xiao-Feng; Zhu, Yu-Feng; Huang, Yan-Qin

    2015-01-01

    A novel dual-channel strategy for the detection of metallothioneins (MTs) and Hg(2+) has been developed based on a mercury-mediated aptamer beacon (MAB) using thymidine-mercury-thymidine complex as a quencher for the first time. In the presence of Hg(2+), the T-rich oligonucleotide with a 6-carboxyfluorescein (TRO-FAM) can form an aptamer beacon via the formation of T-Hg(2+)-T base pairs, which results in a fluorescence quenching of the sensing system owing to the fluorescence resonance energy transfer (FRET) from the fluorophore of FAM to the terminated T-Hg(2+)-T base pair. The addition of MTs into this solution leads to the disruption of the T-Hg(2+)-T complex, resulting in an increase of the fluorescent signal of the system. In the optimizing condition, ΔF was directly proportional to the concentrations ranging from 5.63 nM to 0.275 μM for MTs, and 14.2 nM to 0.30 μM for Hg(2+) with the detection limits of 1.69 nM and 4.28 nM, respectively. The proposed dual-channel method avoids the label steps of a quencher in common molecular beacon strategies, without tedious procedure or the requirement of sophisticated equipment, and is rapid, inexpensive and sensitive.

  8. DNA aptamer beacon assay for C-telopeptide and handheld fluorometer to monitor bone resorption.

    Science.gov (United States)

    Bruno, John Gordon; Carrillo, Maria P; Phillips, Taylor; Hanson, Douglas; Bohmann, Jonathan A

    2011-09-01

    A novel DNA aptamer beacon is described for quantification of a 26-amino acid C-telopeptide (CTx) of human type I bone collagen. One aptamer sequence and its reverse complement dominated the aptamer pool (31.6% of sequenced clones). Secondary structures of these aptamers were examined for potential binding pockets. Three-dimensional computer models which analyzed docking topologies and binding energies were in agreement with empirical fluorescence experiments used to select one candidate loop for beacon assay development. All loop structures from the aptamer finalists were end-labeled with TYE 665 and Iowa Black quencher for comparison of beacon fluorescence levels as a function of CTx concentration. The optimal beacon, designated CTx 2R-2h yielded a low ng/ml limit of detection using a commercially available handheld fluorometer. The CTx aptamer beacon bound full-length 26-amino acid CTx peptide, but not a shorter 8-amino acid segment of CTx peptide which is a common target for commercial CTx ELISA kits. The prototype assay was shown to detect CTx peptide from human urine after creatinine and urea were removed by size-exclusion chromatography to prevent nonspecific denaturing of the aptamer beacon. This work demonstrates the potential of aptamer beacons to be utilized for rapid and sensitive bone health monitoring in a handheld or point-of-care format.

  9. Highly selective single nucleotide polymorphism recognition by a chiral (5S) PNA beacon.

    Science.gov (United States)

    Totsingan, Filbert; Tedeschi, Tullia; Sforza, Stefano; Corradini, Roberto; Marchelli, Rosangela

    2009-01-01

    A chiral peptide nucleic acid (PNA) beacon containing a C-5 modified monomer based on L-lysine was synthesized. The terminal amino group of the lysine side chain was linked to a spacer for future applications on surfaces. The PNA beacon bears a carboxyfluorescein fluorophore and a dabcyl quencher at opposite ends. The DNA binding properties were compared with those of a homologous PNA beacon containing only achiral monomers. Both beacons underwent a fluorescence increase in the presence of complementary DNA, with higher efficiency and higher selectivity (evaluated using single mismatched DNA sequences) observed for the chiral monomer containing PNA. Ion exchange (IE) HPLC with fluorimetric detection was used in combination with the beacon for the selective detection of complementary DNA. A fluorescent peak corresponding to the PNA beacon:DNA duplex was observed at a very low detection limit (1 nM). The discriminating capacity of the chiral PNA beacon for a single mismatch was found to be superior to those observed with the unmodified one, thus confirming the potency of chirality for increasing the affinity and specificity of DNA recognition.

  10. Pedestrian and motorists' actions at pedestrian hybrid beacon sites: findings from a pilot study.

    Science.gov (United States)

    Pulugurtha, Srinivas S; Self, Debbie R

    2015-01-01

    This paper focuses on an analysis of pedestrian and motorists' actions at sites with pedestrian hybrid beacons and assesses their effectiveness in improving the safety of pedestrians. Descriptive and statistical analyses (one-tail two-sample T-test and two-proportion Z-test) were conducted using field data collected during morning and evening peak hours at three study sites in the city of Charlotte, NC, before and after the installation of pedestrian hybrid beacons. Further, an analysis was conducted to assess the change in pedestrian and motorists' actions over time (before the installation; 1 month, 3 months, 6 months, and 12 months after the installation). Results showed an increase in average traffic speed at one of the pedestrian hybrid beacon sites while no specific trends were observed at the other two pedestrian hybrid beacon sites. A decrease in the number of motorists not yielding to pedestrians, pedestrians trapped in the middle of the street, and pedestrian-vehicle conflicts were observed at all the three pedestrian hybrid beacon sites. The installation of pedestrian hybrid beacons did not have a negative effect on pedestrian actions at two out of the three sites. Improvements seem to be relatively more consistent 3 months after the installation of the pedestrian hybrid beacon.

  11. Sphingolipids: A Potential Molecular Approach to Treat Allergic Inflammation

    Directory of Open Access Journals (Sweden)

    Wai Y. Sun

    2012-01-01

    Full Text Available Allergic inflammation is an immune response to foreign antigens, which begins within minutes of exposure to the allergen followed by a late phase leading to chronic inflammation. Prolonged allergic inflammation manifests in diseases such as urticaria and rhino-conjunctivitis, as well as chronic asthma and life-threatening anaphylaxis. The prevalence of allergic diseases is profound with 25% of the worldwide population affected and a rising trend across all ages, gender, and racial groups. The identification and avoidance of allergens can manage this disease, but this is not always possible with triggers being common foods, prevalent air-borne particles and only extremely low levels of allergen exposure required for sensitization. Patients who are sensitive to multiple allergens require prophylactic and symptomatic treatments. Current treatments are often suboptimal and associated with adverse effects, such as the interruption of cognition, sleep cycles, and endocrine homeostasis, all of which affect quality of life and are a financial burden to society. Clearly, a better therapeutic approach for allergic diseases is required. Herein, we review the current knowledge of allergic inflammation and discuss the role of sphingolipids as potential targets to regulate inflammatory development in vivo and in humans. We also discuss the benefits and risks of using sphingolipid inhibitors.

  12. Molecular Approaches To Target GPCRs in Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Giulio Innamorati

    2011-03-01

    Full Text Available Hundreds of G protein coupled receptor (GPCR isotypes integrate and coordinate the function of individual cells mediating signaling between different organs in our bodies. As an aberration of the normal relationships that organize cells’ coexistence, cancer has to deceive cell-cell communication in order to grow and spread. GPCRs play a critical role in this process. Despite the fact that GPCRs represent one of the most common drug targets, current medical practice includes only a few anticancer compounds directly acting on their signaling. Many approaches can be envisaged to target GPCRs involved in oncology. Beyond interfering with GPCRs signaling by using agonists or antagonists to prevent cell proliferation, favor apoptosis, induce maturation, prevent migration, etc., the high specificity of the interaction between the receptors and their ligands can be exploited to deliver toxins, antineoplastic drugs or isotopes to transformed cells. In this review we describe the strategies that are in use, or appear promising, to act directly on GPCRs in the fight against neoplastic transformation and tumor progression.

  13. Molecular imaging of prostate cancer: translating molecular biology approaches into the clinical realm

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Hebert Alberto; Sala, Evis; Hricak, Hedvig [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Grimm, Jan [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Program in Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York (United States); Donati, Olivio F. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2015-05-01

    The epidemiology of prostate cancer has dramatically changed since the introduction of prostate-specific antigen (PSA) screening in the 1980's. Most prostate cancers today are detected at early stages of the disease and are considered 'indolent'; however, some patients' prostate cancers demonstrate a more aggressive behaviour which leads to rapid progression and death. Increasing understanding of the biology underlying the heterogeneity that characterises this disease has led to a continuously evolving role of imaging in the management of prostate cancer. Functional and metabolic imaging techniques are gaining importance as the impact on the therapeutic paradigm has shifted from structural tumour detection alone to distinguishing patients with indolent tumours that can be managed conservatively (e.g., by active surveillance) from patients with more aggressive tumours that may require definitive treatment with surgery or radiation. In this review, we discuss advanced imaging techniques that allow direct visualisation of molecular interactions relevant to prostate cancer and their potential for translation to the clinical setting in the near future. The potential use of imaging to follow molecular events during drug therapy as well as the use of imaging agents for therapeutic purposes will also be discussed. (orig.)

  14. A Molecular Imaging Approach to Mercury Sensing Based on Hyperpolarized (129)Xe Molecular Clamp Probe.

    Science.gov (United States)

    Guo, Qianni; Zeng, Qingbin; Jiang, Weiping; Zhang, Xiaoxiao; Luo, Qing; Zhang, Xu; Bouchard, Louis-S; Liu, Maili; Zhou, Xin

    2016-03-14

    Mercury pollution, in the form of mercury ions (Hg(2+)), is a major health and environmental hazard. Commonly used sensors are invasive and limited to point measurements. Fluorescence-based sensors do not provide depth resolution needed to image spatial distributions. Herein we report a novel sensor capable of yielding spatial distributions by MRI using hyperpolarized (129)Xe. A molecular clamp probe was developed consisting of dipyrrolylquinoxaline (DPQ) derivatives and twocryptophane-A cages. The DPQ derivatives act as cation receptors whereas cryptophane-A acts as a suitable host molecule for xenon. When the DPQ moiety interacts with mercury ions, the molecular clamp closes on the ion. Due to overlap of the electron clouds of the two cryptophane-A cages, the shielding effect on the encapsulated Xe becomes important. This leads to an upfield change of the chemical shift of the encapsulated Xe. This sensor exhibits good selectivity and sensitivity toward the mercury ion. This mercury-activated hyperpolarized (129)Xe-based chemosensor is a new concept method for monitoring Hg(2+) ion distributions by MRI.

  15. Microfluidic Approach for the Synthesis of Micro- or Nanosized Molecularly Imprinted Polymer Particles

    OpenAIRE

    Choi, Kyung M

    2008-01-01

    Molecularly imprinted polymers (MIPs) have specific molecular recognition sites for chemical detection.High affinity receptors can increase the sensitivity of sensors/devices. The synthesis of micro- or nanosized MIP's particles is desirable to improve the sensitivity since MIP's particle sizes are inversely proportional to the affinity between receptors and template molecules. To synthesize nano- or microsized MIPs particles, we demonstrate here a novel microfluidic approach, which p...

  16. A quantitative comparison between the flow factor approach model and the molecular dynamics simulation results for the flow of a confined molecularly thin fluid film

    Science.gov (United States)

    Zhang, Yongbin

    2015-06-01

    Quantitative comparisons were made between the flow factor approach model and the molecular dynamics simulation (MDS) results both of which describe the flow of a molecularly thin fluid film confined between two solid walls. Although these two approaches, respectively, calculate the flow of a confined molecularly thin fluid film by different ways, very good agreements were found between them when the Couette and Poiseuille flows, respectively, calculated from them were compared. It strongly indicates the validity of the flow factor approach model in modeling the flow of a confined molecularly thin fluid film.

  17. Engineering nanomaterials with a combined electrochemical and molecular biomimetic approach

    Science.gov (United States)

    Dai, Haixia

    Biocomposite materials, such as bones, teeth, and shells, are created using mild aqueous solution-based processes near room temperature. Proteins add flexibility to these processes by facilitating the nucleation, growth, and ordering of specific inorganic materials into hierarchical structures. We aim to develop a biomimetic strategy for engineering technologically relevant inorganic materials with controlled compositions and structures, as Nature does, using proteins to orchestrate material formation and assembly. This approach involves three basic steps: (i) preparation of inorganic substrates compatible with combinatorial polypeptide screening; (ii) identification of inorganic-binding polypeptides and their engineering into inorganic-binding proteins; and (iii) protein-mediated inorganic nucleation and organization. Cuprous oxide (Cu2O), a p-type semiconductor, has been used to demonstrate all three steps. Zinc oxide (ZnO), an n-type semiconductor, has been used to show the generality of selected steps. Step (i), preparation of high quality inorganic substrates to select inorganic-binding polypeptides, was accomplished using electrochemical microfabrication to grow and pattern Cu2O and ZnO. Raman spectroscopy and x-ray photoelectron spectroscopy were used to verify phase purity and compositional stability of these surfaces during polypeptide screening. Step (ii), accomplished in collaboration with personnel in Prof Baneyx' lab at the University of Washington, involved incubating the inorganic substrates with the FliTrx(TM) random peptide library to identify cysteine-constrained dodecapeptides that bind the targeted inorganic. Insertion of a Cu2O-binding dodecapeptide into the DNA-binding protein TraI endowed the engineered TraI with strong affinity for Cu2O (Kd ≈ 10 -8 M). Finally, step (iii) involved nonequilibrium synthesis and organization of Cu2O nanoparticles, taking advantage of the inorganic and DNA recognition properties of the engineered TraI. The

  18. An algebraic approach for simultaneous solution of process and molecular design problems

    Directory of Open Access Journals (Sweden)

    S. Bommareddy

    2010-09-01

    Full Text Available The property integration framework has allowed for simultaneous representation of processes and products from a properties perspective and thereby established a link between molecular and process design problems. The simultaneous approach involves solving two reverse problems. The first reverse problem identifies the property targets corresponding to the desired process performance. The second reverse problem is the reverse of a property prediction problem, which identifies the molecular structures that match the targets identified in the first problem. Group Contribution Methods (GCM are used to form molecular property operators that will be used to track properties. Earlier contributions in this area have worked to include higher order estimation of GCM for solving the molecular design problem. In this work, the accuracy of the property prediction is further enhanced by improving the techniques to enumerate higher order groups. Incorporation of these higher order enumeration techniques increases the efficiency of property prediction and thus the application range of the group contribution methods in molecular design problems. Successful tracking of properties is the key in applying the reverse problem formulation for integrated process and product design problems. An algebraic technique has been developed for solving process and molecular design problems simultaneously. Since both process and molecular property operators target the same optimum process performance, the set of inequality expressions can be solved simultaneously to identify the molecules that meet the desired process performance. Since this approach is based on an algebraic algorithm, any number of properties can be tracked simultaneously.

  19. Tight Bounds for Beacon-Based Coverage in Simple Rectilinear Polygons

    KAUST Repository

    Bae, Sang Won

    2016-03-21

    We establish tight bounds for beacon-based coverage problems. In particular, we show that $$\\\\lfloor \\\\frac{n}{6} \\ floor $$⌊n6⌋ beacons are always sufficient and sometimes necessary to cover a simple rectilinear polygon P with n vertices. When P is monotone and rectilinear, we prove that this bound becomes $$\\\\lfloor \\\\frac{n+4}{8} \\ floor $$⌊n+48⌋. We also present an optimal linear-time algorithm for computing the beacon kernel of P.

  20. Fluorescent nanoparticle beacon for logic gate operation regulated by strand displacement.

    Science.gov (United States)

    Yang, Jing; Shen, Lingjing; Ma, Jingjing; Schlaberg, H Inaki; Liu, Shi; Xu, Jin; Zhang, Cheng

    2013-06-26

    A mechanism is developed to construct a logic system by employing DNA/gold nanoparticle (AuNP) conjugates as a basic work unit, utilizing a fluorescent beacon probe to detect output signals. To implement the logic circuit, a self-assembly DNA structure is attached onto nanoparticles to form the fluorescent beacon. Moreover, assisted by regulation of multilevel strand displacement, cascaded logic gates are achieved. The computing results are detected by methods using fluorescent signals, gel electrophoresis and transmission electron microscope (TEM). This work is expected to demonstrate the feasibility of the cascaded logic system based on fluorescent nanoparticle beacons, suggesting applications in DNA computation and biotechnology.

  1. An analysis of iBeacons and critical minimum distances in device placement

    OpenAIRE

    2014-01-01

    This project has been carried out in, and under the supervision of the Mobile Services Laboratory at the department of Communication Systems, KTH. The task was to explore the technical specifics of the iBeacon technology and its practical limitations in terms of reliability and device placement. In plain text; how close the beacons can be placed to allow for reliable isolation of the pertinent beacon. The main method of reaching the set goal was data capture at certain key positions around th...

  2. Detecting and Preventing Beacon Replay Attacks in Receiver-Initiated MAC Protocols for Energy Efficient WSNs

    DEFF Research Database (Denmark)

    Di Mauro, Alessio; Fafoutis, Xenofon; Mödersheim, Sebastian Alexander

    2013-01-01

    In receiver-initiated MAC protocols for Wireless Sensor Networks (WSNs), communication is initiated by the receiver of the data through beacons containing the receiver's identity. In this paper, we consider the case of a network intruder that captures and replays such beacons towards legitimate...... nodes, pretending to have a fake identity within the network. To prevent this attack we propose RAP, a challenge-response authentication protocol that is able to detect and prevent the beacon replay attack. The effectiveness of the protocol is formally verified using OFMC and ProVerif. Furthermore, we...

  3. Easy-to-Build Satellite Beacon Receiver for Propagation Experimentation at Millimeter Bands

    Directory of Open Access Journals (Sweden)

    F. Machado

    2014-04-01

    Full Text Available This paper describes the design and development of a digital satellite beacon receiver for propagation experimentation. Satellite beacons are frequently available for pointing large antennas, but such signals can be used for measuring rain attenuation and other phenomena as, for example, tropospheric scintillation. A fairly inexpensive beacon receiver has been built using off-the-shelf parts. This instrument is not at all bulky making it suitable for easy transportation. This article analyzes the receiver specifications, describes in detail its structure and presents some operational test results.

  4. A molecular mechanics approach for analyzing tensile nonlinear deformation behavior of single-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Yu Wang; Daining Fang; Ai Kah Soh; Bin Liu

    2007-01-01

    In this paper, by capturing the atomic informa-tion and reflecting the behaviour governed by the nonlin-ear potential function, an analytical molecular mechanics approach is proposed. A constitutive relation for single-walled carbon nanotubes (SWCNT's) is established to describe the nonlinear stress-strain curve of SWCNT's and to predict both the elastic properties and breaking strain of SWCNT's during tensile deformation. An analysis based on the virtual internal bond (VIB) model proposed by P. Zhang et al. is also presented for comparison. The results indicate that the proposed molecular mechanics approach is indeed an acceptable analytical method for analyzing the mechanical behavior of SWCNT's.

  5. Molecular toxicity identification evaluation (mTIE) approach predicts chemical exposure in Daphnia magna.

    Science.gov (United States)

    Antczak, Philipp; Jo, Hun Je; Woo, Seonock; Scanlan, Leona; Poynton, Helen; Loguinov, Alex; Chan, Sarah; Falciani, Francesco; Vulpe, Chris

    2013-10-15

    Daphnia magna is a bioindicator organism accepted by several international water quality regulatory agencies. Current approaches for assessment of water quality rely on acute and chronic toxicity that provide no insight into the cause of toxicity. Recently, molecular approaches, such as genome wide gene expression responses, are enabling an alternative mechanism based approach to toxicity assessment. While these genomic methods are providing important mechanistic insight into toxicity, statistically robust prediction systems that allow the identification of chemical contaminants from the molecular response to exposure are needed. Here we apply advanced machine learning approaches to develop predictive models of contaminant exposure using a D. magna gene expression data set for 36 chemical exposures. We demonstrate here that we can discriminate between chemicals belonging to different chemical classes including endocrine disruptors and inorganic and organic chemicals based on gene expression. We also show that predictive models based on indices of whole pathway transcriptional activity can achieve comparable results while facilitating biological interpretability.

  6. Seamless Guidance System Combining GPS, BLE Beacon, and NFC Technologies

    Directory of Open Access Journals (Sweden)

    Rung-Shiang Cheng

    2016-01-01

    Full Text Available Users rely increasingly on Location-Based Services (LBS and automated navigation/guidance systems nowadays. However, while such services are easily implemented in outdoor environments using Global Positioning System (GPS technology, a requirement still exists for accurate localization and guidance schemes in indoor settings. Accordingly, the present study proposes a system based on GPS, Bluetooth Low Energy (BLE beacons, and Near Field Communication (NFC technology. Through establishing graphic information and the design of algorithm, this study develops a guidance system for indoors and outdoors on smart phones, wishing to give user perfect smart life through this system. The proposed system is implemented on a smart phone and evaluated on a student campus environment. The experimental results confirm the ability of the proposed app to switch automatically from an outdoor mode to an indoor mode and to guide the user to requested target destination via the shortest possible route.

  7. Directional pattern measurement of the BRAMS beacon antenna system

    Science.gov (United States)

    Martínez Picar, A.; Marqué, C.; Anciaux, M.; Lamy, H.

    2015-01-01

    The typical methods for measuring antenna characteristics are mostly based on the use of remote transmitters or receivers. For antennas used in radio communications, calibrations are usually done on an antenna test stand using transmitters with known power output. In order to minimize the ground effects while performing measurements, it is necessary to place the transmitter or receiver high above ground with the aid of aircrafts. It is, however, necessary to determine precisely the coordinates of the airborne devices as well as to maintain high stability. This used to be excessively difficult to carry out, but recent advances in Unmanned Aerial Vehicle (UAV) technologies have brought a feasible option. In this paper, the results of using a low-cost system for measuring the directional pattern of BRAMS beacon antenna system based on an UAV are presented.

  8. Beacons of discovery the worldwide science of particle physics

    CERN Document Server

    International Committee for Future Accelerators (ICFA)

    2011-01-01

    To discover what our world is made of and how it works at the most fundamental level is the challenge of particle physics. The tools of particle physics—experiments at particle accelerators and underground laboratories, together with observations of space—bring opportunities for discovery never before within reach. Thousands of scientists from universities and laboratories around the world collaborate to design, build and use unique detectors and accelerators to explore the fundamental physics of matter, energy, space and time. Together, in a common world-wide program of discovery, they provide a deep understanding of the world around us and countless benefits to society. Beacons of Discovery presents a vision of the global science of particle physics at the dawn of a new light on the mystery and beauty of the universe.

  9. Improving adherence to the Epic Beacon ambulatory workflow.

    Science.gov (United States)

    Chackunkal, Ellen; Dhanapal Vogel, Vishnuprabha; Grycki, Meredith; Kostoff, Diana

    2017-06-01

    Computerized physician order entry has been shown to significantly improve chemotherapy safety by reducing the number of prescribing errors. Epic's Beacon Oncology Information System of computerized physician order entry and electronic medication administration was implemented in Henry Ford Health System's ambulatory oncology infusion centers on 9 November 2013. Since that time, compliance to the infusion workflow had not been assessed. The objective of this study was to optimize the current workflow and improve the compliance to this workflow in the ambulatory oncology setting. This study was a retrospective, quasi-experimental study which analyzed the composite workflow compliance rate of patient encounters from 9 to 23 November 2014. Based on this analysis, an intervention was identified and implemented in February 2015 to improve workflow compliance. The primary endpoint was to compare the composite compliance rate to the Beacon workflow before and after a pharmacy-initiated intervention. The intervention, which was education of infusion center staff, was initiated by ambulatory-based, oncology pharmacists and implemented by a multi-disciplinary team of pharmacists and nurses. The composite compliance rate was then reassessed for patient encounters from 2 to 13 March 2015 in order to analyze the effects of the determined intervention on compliance. The initial analysis in November 2014 revealed a composite compliance rate of 38%, and data analysis after the intervention revealed a statistically significant increase in the composite compliance rate to 83% ( p < 0.001). This study supports a pharmacist-initiated educational intervention can improve compliance to an ambulatory, oncology infusion workflow.

  10. BEACON: A Summary Framework to Overcome Potential Reimbursement Hurdles.

    Science.gov (United States)

    Dunlop, William C N; Mullins, C Daniel; Pirk, Olaf; Goeree, Ron; Postma, Maarten J; Enstone, Ashley; Heron, Louise

    2016-10-01

    To provide a framework for addressing payers' criteria during the development of pharmaceuticals. A conceptual framework was presented to an international health economic expert panel for discussion. A structured literature search (from 2010 to May 2015), using the following databases in Ovid: Medline(®) and Medline(®) In-Process (PubMed), Embase (Ovid), EconLit (EBSCOhost) and the National Health Service Economic Evaluation Database (NHS EED), and a 'grey literature' search, were conducted to identify existing criteria from the payer perspective. The criteria assessed by existing frameworks and guidelines were collated; the most commonly reported criteria were considered for inclusion in the framework. A mnemonic was conceived as a memory aide to summarise these criteria. Overall, 41 publications were identified as potentially relevant to the objective. Following further screening, 26 were excluded upon full-text review on the basis of no framework presented (n = 13), redundancy (n = 11) or abstract only (n = 2). Frameworks that captured criteria developed for or utilised by the pharmaceutical industry (n = 5) and reimbursement guidance (n = 10) were reviewed. The most commonly identified criteria-unmet need/patient burden, safety, efficacy, quality-of-life outcomes, environment, evidence quality, budget impact and comparator-were incorporated into the summary framework. For ease of communication, the following mnemonic was developed: BEACON (Burden/target population, Environment, Affordability/value, Comparator, Outcomes, Number of studies/quality of evidence). The BEACON framework aims to capture the 'essence' of payer requirements by addressing the most commonly described criteria requested by payers regarding the introduction of a new pharmaceutical.

  11. Digital beacon receiver for ionospheric TEC measurement developed with GNU Radio

    Science.gov (United States)

    Yamamoto, M.

    2008-11-01

    A simple digital receiver named GNU Radio Beacon Receiver (GRBR) was developed for the satellite-ground beacon experiment to measure the ionospheric total electron content (TEC). The open-source software toolkit for the software defined radio, GNU Radio, is utilized to realize the basic function of the receiver and perform fast signal processing. The software is written in Python for a LINUX PC. The open-source hardware called Universal Software Radio Peripheral (USRP), which best matches the GNU Radio, is used as a front-end to acquire the satellite beacon signals of 150 and 400 MHz. The first experiment was successful as results from GRBR showed very good agreement to those from the co-located analog beacon receiver. Detailed design information and software codes are open at the URL http://www.rish.kyoto-u.ac.jp/digitalbeacon/.

  12. Multi-kW Uplink Fiber-Laser Beacon with Agile Signal Format Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Uplink Laser Beacons for deep-space communication, can benefit greatly from migration to the 1010-1030nm wavelengths, via use of Silicon-APDs on the spacecraft...

  13. Multi-kW Uplink Fiber-Laser Beacon with Agile Signal Format Project

    Data.gov (United States)

    National Aeronautics and Space Administration —  Laser beacons with scalable powers are needed for ground to deep-space optical communication uplinks. They serve as absolute reference for tracking of...

  14. LDB: Localization with Directional Beacons for Sparse 3D Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hanjiang Luo

    2010-01-01

    Full Text Available In this paper, we propose a novel distributed localization scheme LDB, a 3D localization scheme with directional beacons for Underwater Acoustic Sensor Networks (UWA-SNs. LDB localizes sensor nodes using an Autonomous Underwater Vehicle (AUV as a mobile beacon sender. Mounted with a directional transceiver which creates conical shaped directional acoustic beam, the AUV patrols over the 3D deployment volume with predefined trajectory sending beacons with constant interval towards the sensor nodes. By listening two or more beacons sent from the AUV, the nodes can localize themselves silently. Through theoretical analysis, we provide the upper bound of the estimation error of the scheme. We also evaluate the scheme by simulations and the results show that our scheme can achieve a high localization accuracy, even in sparse networks.

  15. Exploring Protein-Peptide Recognition Pathways Using a Supervised Molecular Dynamics Approach.

    Science.gov (United States)

    Salmaso, Veronica; Sturlese, Mattia; Cuzzolin, Alberto; Moro, Stefano

    2017-03-10

    Peptides have gained increased interest as therapeutic agents during recent years. The high specificity and relatively low toxicity of peptide drugs derive from their extremely tight binding to their targets. Indeed, understanding the molecular mechanism of protein-peptide recognition has important implications in the fields of biology, medicine, and pharmaceutical sciences. Even if crystallography and nuclear magnetic resonance are offering valuable atomic insights into the assembling of the protein-peptide complexes, the mechanism of their recognition and binding events remains largely unclear. In this work we report, for the first time, the use of a supervised molecular dynamics approach to explore the possible protein-peptide binding pathways within a timescale reduced up to three orders of magnitude compared with classical molecular dynamics. The better and faster understating of the protein-peptide recognition pathways could be very beneficial in enlarging the applicability of peptide-based drug design approaches in several biotechnological and pharmaceutical fields.

  16. A Multi-step and Multi-level approach for Computer Aided Molecular Design

    DEFF Research Database (Denmark)

    A general multi-step approach for setting up, solving and solution analysis of computer aided molecular design (CAMD) problems is presented. The approach differs from previous work within the field of CAMD since it also addresses the need for a computer aided problem formulation and result analysis....... The problem formulation step incorporates a knowledge base for the identification and setup of the design criteria. Candidate compounds are identified using a multi-level generate and test CAMD solution algorithm capable of designing molecules having a high level of molecular detail. A post solution step...... using an Integrated Computer Aided System (ICAS) for result analysis and verification is included in the methodology. Keywords: CAMD, separation processes, knowledge base, molecular design, solvent selection, substitution, group contribution, property prediction, ICAS Introduction The use of Computer...

  17. Ab initio molecular dynamics with noisy forces: Validating the quantum Monte Carlo approach with benchmark calculations of molecular vibrational properties

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Ye, E-mail: xw111luoye@gmail.com; Sorella, Sandro, E-mail: sorella@sissa.it [International School for Advanced Studies (SISSA), and CRS Democritos, CNR-INFM, Via Bonomea 265, I-34136 Trieste (Italy); Zen, Andrea, E-mail: zen.andrea.x@gmail.com [Dipartimento di Fisica, Università di Roma “La Sapienza,” Piazzale Aldo Moro 2, I-00185 Rome (Italy)

    2014-11-21

    We present a systematic study of a recently developed ab initio simulation scheme based on molecular dynamics and quantum Monte Carlo. In this approach, a damped Langevin molecular dynamics is employed by using a statistical evaluation of the forces acting on each atom by means of quantum Monte Carlo. This allows the use of an highly correlated wave function parametrized by several variational parameters and describing quite accurately the Born-Oppenheimer energy surface, as long as these parameters are determined at the minimum energy condition. However, in a statistical method both the minimization method and the evaluation of the atomic forces are affected by the statistical noise. In this work, we study systematically the accuracy and reliability of this scheme by targeting the vibrational frequencies of simple molecules such as the water monomer, hydrogen sulfide, sulfur dioxide, ammonia, and phosphine. We show that all sources of systematic errors can be controlled and reliable frequencies can be obtained with a reasonable computational effort. This work provides convincing evidence that this molecular dynamics scheme can be safely applied also to realistic systems containing several atoms.

  18. Proteomic-Biostatistic Integrated Approach for Finding the Underlying Molecular Determinants of Hypertension in Human Plasma.

    Science.gov (United States)

    Gajjala, Prathibha R; Jankowski, Vera; Heinze, Georg; Bilo, Grzegorz; Zanchetti, Alberto; Noels, Heidi; Liehn, Elisa; Perco, Paul; Schulz, Anna; Delles, Christian; Kork, Felix; Biessen, Erik; Narkiewicz, Krzysztof; Kawecka-Jaszcz, Kalina; Floege, Juergen; Soranna, Davide; Zidek, Walter; Jankowski, Joachim

    2017-08-01

    Despite advancements in lowering blood pressure, the best approach to lower it remains controversial because of the lack of information on the molecular basis of hypertension. We, therefore, performed plasma proteomics of plasma from patients with hypertension to identify molecular determinants detectable in these subjects but not in controls and vice versa. Plasma samples from hypertensive subjects (cases; n=118) and controls (n=85) from the InGenious HyperCare cohort were used for this study and performed mass spectrometric analysis. Using biostatistical methods, plasma peptides specific for hypertension were identified, and a model was developed using least absolute shrinkage and selection operator logistic regression. The underlying peptides were identified and sequenced off-line using matrix-assisted laser desorption ionization orbitrap mass spectrometry. By comparison of the molecular composition of the plasma samples, 27 molecular determinants were identified differently expressed in cases from controls. Seventy percent of the molecular determinants selected were found to occur less likely in hypertensive patients. In cross-validation, the overall R(2) was 0.434, and the area under the curve was 0.891 with 95% confidence interval 0.8482 to 0.9349, Phypertensive patients were found to be -2.007±0.3568 and 3.383±0.2643, respectively, Phypertensives and normotensives. The identified molecular determinants may be the starting point for further studies to clarify the molecular causes of hypertension. © 2017 American Heart Association, Inc.

  19. Benchmarking the stochastic time-dependent variational approach for excitation dynamics in molecular aggregates

    Science.gov (United States)

    Chorošajev, Vladimir; Gelzinis, Andrius; Valkunas, Leonas; Abramavicius, Darius

    2016-12-01

    Time dependent variational approach is a convenient method to characterize the excitation dynamics in molecular aggregates for different strengths of system-bath interaction a, which does not require any additional perturbative schemes. Until recently, however, this method was only applicable in zero temperature case. It has become possible to extend this method for finite temperatures with the introduction of stochastic time dependent variational approach. Here we present a comparison between this approach and the exact hierarchical equations of motion approach for describing excitation dynamics in a broad range of temperatures. We calculate electronic population evolution, absorption and auxiliary time resolved fluorescence spectra in different regimes and find that the stochastic approach shows excellent agreement with the exact approach when the system-bath coupling is sufficiently large and temperatures are high. The differences between the two methods are larger, when temperatures are lower or the system-bath coupling is small.

  20. Creation of a library tour application for mobile equipment using iBeacon technology

    OpenAIRE

    2016-01-01

    We describe the design, development, and deployment of a library tour application utilizing Bluetooth Low Energy devices know as iBeacons. The tour application will serve as library orientation for incoming students. The students visit stations in the library with mobile equipment running a special tour app. When the app detects a beacon nearby, it automatically plays a video that describes the current location. After the tour, students are assessed according to the defined learning objective...

  1. Perancangan Prototipe Receiver Beacon Black Box Locator Acoustic 37,5 kHz Pingers

    OpenAIRE

    RUSTAMAJI RUSTAMAJI; PAULINE RAHMIATI; SARAH PERMATASARI

    2016-01-01

    Abstrak Ketika suatu pesawat terbang mengalami kecelakaan terjatuh ke dalam air, maka lokasi keberadaannya dapat dideteksi oleh alat yang disebut receiver beacon black box locator acoustic (pingers receiver). Pingers receiver berfungsi untuk menerima sinyal dengan frekuensi 37,5 kHz ± 1 kHz dari pingers transmitter atau Underwater Locator Beacon (ULB) yang berada pada black box pesawat. Dalam penelitian ini dibuat perancangan pingers receiver yang tersusun dari rangkaian Band Pass Filter (BPF...

  2. Detection of jamming transmission of beacon in vehicular networks%VANETs 中 beacon 的传输攻击实时检测算法

    Institute of Scientific and Technical Information of China (English)

    陈丹; 彭利民

    2015-01-01

    车载自组织网(vehicular Ad hoc networks,VANETs)中的车辆通过周期交互 beacon 实现信息共享,从而提高交通安全,然而 VANETs 无线网络特性系统易遭受多类攻击,特别是对 beacon 的传输攻击,即干扰 beacon的传输,其严重影响 VANETs 的安全性能。为此,建立车队 platooning 模型,提出实时检测干扰 beacon 传输的攻击方案。该方案首先将节点 beacon 传输时间分为相互独立的时隙,并依据此时隙将车辆分为不同的群,使得群间的 beacon 彼此不碰撞,从而降低 beacon 被干扰的概率。最后,针对两类攻击类型进行仿真。仿真结果表明,提出的检测攻击方案具有良好的性能,初始检测时间小于150 ms,平均检测率不低于0.9。在两个干扰者的情况下,漏警率小于0.15,平均的虚警率小于0.2。%The cooperation between the vehicles in the VANET is achieved by the frequent exchange of periodic broadcast messages carrying information on vehicle position and velocity,which is referred to as beacons,which is in favor of improving the security of VANET.However,the nature of medium in wireless networks makes it easy for adversary to launch a attack, especially jamming the beacon transmission,which seriously affects the performance of VANET.Therefore,this paper con-structed the model of platooning,and proposed a real-time detection jamming-beacon-transmission scheme.In this scheme,it divided time for transmission beacon into independent time slot.In the way that beacons from different groups never collided, it reduced the probability of interference with beacon.Finally,in view of the two types of attack types were simulated.The simulation results show that the proposed detection attack scheme has good performance,the initial detecting time is less than 150 ms,the average detection rate is not less than 0.9.In the case of two jammers,FNR is less than 0.15,the average FPR is less than 0.2.

  3. An Adaptive Scheme for Robot Localization and Mapping with Dynamically Configurable Inter-Beacon Range Measurements

    Directory of Open Access Journals (Sweden)

    Arturo Torres-González

    2014-04-01

    Full Text Available This work is motivated by robot-sensor network cooperation techniques where sensor nodes (beacons are used as landmarks for range-only (RO simultaneous localization and mapping (SLAM. This paper presents a RO-SLAM scheme that actuates over the measurement gathering process using mechanisms that dynamically modify the rate and variety of measurements that are integrated in the SLAM filter. It includes a measurement gathering module that can be configured to collect direct robot-beacon and inter-beacon measurements with different inter-beacon depth levels and at different rates. It also includes a supervision module that monitors the SLAM performance and dynamically selects the measurement gathering configuration balancing SLAM accuracy and resource consumption. The proposed scheme has been applied to an extended Kalman filter SLAM with auxiliary particle filters for beacon initialization (PF-EKF SLAM and validated with experiments performed in the CONET Integrated Testbed. It achieved lower map and robot errors (34% and 14%, respectively than traditional methods with a lower computational burden (16% and similar beacon energy consumption.

  4. A beacon configuration optimization method based on Fisher information for Mars atmospheric entry

    Science.gov (United States)

    Zhao, Zeduan; Yu, Zhengshi; Cui, Pingyuan

    2017-04-01

    The navigation capability of the proposed Mars network based entry navigation system is directly related to the beacon number and the relative configuration between the beacons and the entry vehicle. In this paper, a new beacon configuration optimization method is developed based on the Fisher information theory and this method is suitable for any number of visible beacons. The proposed method can be used for the navigation schemes based on range measurements provided by radio transceivers or other sensors for Mars entry. The observability of specific state is defined as its Fisher information based on the observation model. The overall navigation capability is improved by maximizing the minimum average Fisher information, even though the navigation system is not fully observed. In addition, when there is only one beacon capable of entry navigation and the observation information is relatively limited, the optimization method can be modulated to maximize the Fisher information of the specific state which may be preferred for the guidance and control system to improve its estimation accuracy. Finally, navigation scenarios consisted of 1-3 beacons are tested to validate the effectiveness of the developed optimization method. The extended Kalman filter (EKF) is employed to derive the state estimation error covariance. The results also show that the zero-Fisher information situation should be avoided, especially when the dynamic system is highly nonlinear and the states change dramatically.

  5. Accelerated Adoption of Advanced Health Information Technology in Beacon Community Health Centers.

    Science.gov (United States)

    Jones, Emily; Wittie, Michael

    2015-01-01

    To complement national and state-level HITECH Act programs, 17 Beacon communities were funded to fuel community-wide use of health information technology to improve quality. Health centers in Beacon communities received supplemental funding. This article explores the association between participation in the Beacon program and the adoption of electronic health records. Using the 2010-2012 Uniform Data System, trends in health information technology adoption among health centers located within and outside of Beacon communities were explored using differences in mean t tests and multivariate logistic regression. Electronic health record adoption was widespread and rapidly growing in all health centers, especially quality improvement functionalities: structured data capture, order and results management, and clinical decision support. Adoption lagged for functionalities supporting patient engagement, performance measurement, care coordination, and public health. The use of advanced functionalities such as care coordination grew faster in Beacon health centers, and Beacon health centers had 1.7 times higher odds of adopting health records with basic safety and quality functionalities in 2010-2012. Three factors likely underlie these findings: technical assistance, community-wide activation supporting health information exchange, and the layering of financial incentives. Additional technical assistance and community-wide activation is needed to support the use of functionalities that are currently lagging. © Copyright 2015 by the American Board of Family Medicine.

  6. Serum inverts and improves the fluorescence response of an aptamer beacon to various vitamin D analytes.

    Science.gov (United States)

    Bruno, John G; Carrillo, Maria P; Phillips, Taylor; Edge, Allison

    2012-01-01

    A dominant aptamer loop structure from a library of nearly 100 candidate aptamer sequences developed against immobilized 25-hydroxyvitamin D(3) (calcidiol) was converted into a 5'-TYE 665 and 3'-Iowa black-labelled aptamer beacon. The aptamer beacon exhibited a mild 'lights on' reaction in buffer as a function of increasing concentrations of several vitamin D analogues and metabolites, with a limit of detection of approximately 200 ng/mL, and was not specific for any particular congener. In 10% or 50% human serum, the same aptamer beacon inverted its fluorescence behaviour to become a more intense 'lights off' reaction with an improved limit of detection in the range 4-16 ng/mL. We hypothesized that this drastic change in fluorescence behaviour was due to the presence of creatinine and urea in serum, which might destabilize the quenched beacon, causing an increase in fluorescence followed by decreasing fluorescence as a function of vitamin D concentrations that may bind and quench increasingly greater fractions of the denatured beacons. However, the results of several control experiments in the presence of physiological or greater concentrations of creatinine and urea, alone or combined in buffer, failed to produce the beacon fluorescence inversion. Other possible mechanistic hypotheses are also discussed. Copyright © 2011 John Wiley & Sons, Ltd.

  7. An adaptive scheme for robot localization and mapping with dynamically configurable inter-beacon range measurements.

    Science.gov (United States)

    Torres-González, Arturo; Martinez-de Dios, Jose Ramiro; Ollero, Anibal

    2014-04-25

    This work is motivated by robot-sensor network cooperation techniques where sensor nodes (beacons) are used as landmarks for range-only (RO) simultaneous localization and mapping (SLAM). This paper presents a RO-SLAM scheme that actuates over the measurement gathering process using mechanisms that dynamically modify the rate and variety of measurements that are integrated in the SLAM filter. It includes a measurement gathering module that can be configured to collect direct robot-beacon and inter-beacon measurements with different inter-beacon depth levels and at different rates. It also includes a supervision module that monitors the SLAM performance and dynamically selects the measurement gathering configuration balancing SLAM accuracy and resource consumption. The proposed scheme has been applied to an extended Kalman filter SLAM with auxiliary particle filters for beacon initialization (PF-EKF SLAM) and validated with experiments performed in the CONET Integrated Testbed. It achieved lower map and robot errors (34% and 14%, respectively) than traditional methods with a lower computational burden (16%) and similar beacon energy consumption.

  8. Coherent site-directed transport in complex molecular networks: an effective Hamiltonian approach.

    Science.gov (United States)

    Weissman, Shira; Peskin, Uri

    2010-03-21

    Defining the conditions for coherent site-directed transport from an electron donor to a specific acceptor through tunneling barriers in a network of multiple donor/acceptors sites is an important step toward controlling electronic processes in molecular networks. The required analysis is most challenging since the entire network in essentially involved in coherent transport. In this work we introduce an efficient approach for formulating an effective donor/acceptor coupling in terms of the entire network parameters. The approach is based on implementation of Feshbach projection operators to map the entire network Hamiltonian onto a subspace defined by two specific donor and acceptor sites. This nonperturbative approach enables to define regimes of network parameters in which the effective donor-acceptor coupling is optimal. This is demonstrated numerically for simple models of molecular networks.

  9. [Modern evolutional developmental biology: mechanical and molecular genetic or phenotypic approaches?].

    Science.gov (United States)

    Vorob'eva, É I

    2010-01-01

    Heightened interest in the evolutionary problems of developmental biology in the 1980s was due to the success of molecular genetics and disappointment in the synthetic theory of evolution, where the chapters of embryology and developmental biology seem to have been left out. Modern evo-devo, which turned out to be antipodean to the methodology of the synthetic theory of evolution, propagandized in the development of evolutionary problems only the mechanical and molecular genetic approach to the evolution of ontogenesis, based on cellular and intercellular interactions. The phonotypical approach to the evaluation of evolutionary occurrences in ontogenesis, which aids in the joining of the genetic and epigenetic levels of research, the theory of natural selection, the nomogenetic conception, and the problem of the wholeness of the organism in onto- and phylogenesis may be against this. The phenotypic approach to ontogenesis is methodologically the most perspective for evolutionary developmental biology.

  10. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.

    Science.gov (United States)

    Kujur, Alice; Saxena, Maneesha S; Bajaj, Deepak; Laxmi; Parida, Swarup K

    2013-12-01

    The enormous population growth, climate change and global warming are now considered major threats to agriculture and world's food security. To improve the productivity and sustainability of agriculture, the development of highyielding and durable abiotic and biotic stress-tolerant cultivars and/climate resilient crops is essential. Henceforth, understanding the molecular mechanism and dissection of complex quantitative yield and stress tolerance traits is the prime objective in current agricultural biotechnology research. In recent years, tremendous progress has been made in plant genomics and molecular breeding research pertaining to conventional and next-generation whole genome, transcriptome and epigenome sequencing efforts, generation of huge genomic, transcriptomic and epigenomic resources and development of modern genomics-assisted breeding approaches in diverse crop genotypes with contrasting yield and abiotic stress tolerance traits. Unfortunately, the detailed molecular mechanism and gene regulatory networks controlling such complex quantitative traits is not yet well understood in crop plants. Therefore, we propose an integrated strategies involving available enormous and diverse traditional and modern -omics (structural, functional, comparative and epigenomics) approaches/resources and genomics-assisted breeding methods which agricultural biotechnologist can adopt/utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in crop plants. This would provide clues and much needed inputs for rapid selection of novel functionally relevant molecular tags regulating such complex traits to expedite traditional and modern marker-assisted genetic enhancement studies in target crop species for developing high-yielding stress-tolerant varieties.

  11. Precision medicine and molecular imaging: new targeted approaches toward cancer therapeutic and diagnosis.

    Science.gov (United States)

    Ghasemi, Mojtaba; Nabipour, Iraj; Omrani, Abdolmajid; Alipour, Zeinab; Assadi, Majid

    2016-01-01

    This paper presents a review of the importance and role of precision medicine and molecular imaging technologies in cancer diagnosis with therapeutics and diagnostics purposes. Precision medicine is progressively becoming a hot topic in all disciplines related to biomedical investigation and has the capacity to become the paradigm for clinical practice. The future of medicine lies in early diagnosis and individually appropriate treatments, a concept that has been named precision medicine, i.e. delivering the right treatment to the right patient at the right time. Molecular imaging is quickly being recognized as a tool with the potential to ameliorate every aspect of cancer treatment. On the other hand, emerging high-throughput technologies such as omics techniques and systems approaches have generated a paradigm shift for biological systems in advanced life science research. In this review, we describe the precision medicine, difference between precision medicine and personalized medicine, precision medicine initiative, systems biology/medicine approaches (such as genomics, radiogenomics, transcriptomics, proteomics, and metabolomics), P4 medicine, relationship between systems biology/medicine approaches and precision medicine, and molecular imaging modalities and their utility in cancer treatment and diagnosis. Accordingly, the precision medicine and molecular imaging will enable us to accelerate and improve cancer management in future medicine.

  12. Molecular approaches unravel the mechanism of acid soil tolerance in plants

    Institute of Scientific and Technical Information of China (English)

    Miao; Bian; Meixue; Zhou; Dongfa; Sun; Chengdao; Li

    2013-01-01

    Acid soil is a worldwide problem to plant production. Acid toxicity is mainly caused by a lack of essential nutrients in the soil and excessive toxic metals in the plant root zone. Of the toxic metals, aluminum(Al) is the most prevalent and most toxic. Plant species have evolved to variable levels of tolerance to aluminum enabling breeding of high Al-tolerant cultivars.Physiological and molecular approaches have revealed some mechanisms of Al toxicity in higher plants. Mechanisms of plant tolerance to Al stress include: 1) exclusion of Al from the root tips, and 2) absorbance, but tolerance of Al in root cells. Organic acid exudation to chelate Al is a feature shared by many higher plants. The future challenge for Al tolerance studies is the identification of novel tolerance mechanisms and the combination of different mechanisms to achieve higher tolerance. Molecular approaches have led to significant progress in explaining mechanisms and detection of genes responsible for Al tolerance.Gene-specific molecular markers offer better options for marker-assisted selection in breeding programs than linked marker strategies. This paper mainly focuses on recent progress in the use of molecular approaches in Al tolerance research.

  13. A Measurement Study of BLE iBeacon and Geometric Adjustment Scheme for Indoor Location-Based Mobile Applications

    OpenAIRE

    2016-01-01

    Bluetooth Low Energy (BLE) and the iBeacons have recently gained large interest for enabling various proximity-based application services. Given the ubiquitously deployed nature of Bluetooth devices including mobile smartphones, using BLE and iBeacon technologies seemed to be a promising future to come. This work started off with the belief that this was true: iBeacons could provide us with the accuracy in proximity and distance estimation to enable and simplify the development of many previo...

  14. Nonadiabatic molecular dynamics simulation: An approach based on quantum measurement picture

    Directory of Open Access Journals (Sweden)

    Wei Feng

    2014-07-01

    Full Text Available Mixed-quantum-classical molecular dynamics simulation implies an effective quantum measurement on the electronic states by the classical motion of atoms. Based on this insight, we propose a quantum trajectory mean-field approach for nonadiabatic molecular dynamics simulations. The new protocol provides a natural interface between the separate quantum and classical treatments, without invoking artificial surface hopping algorithm. Moreover, it also bridges two widely adopted nonadiabatic dynamics methods, the Ehrenfest mean-field theory and the trajectory surface-hopping method. Excellent agreement with the exact results is illustrated with representative model systems, including the challenging ones for traditional methods.

  15. A density functional theory-based chemical potential equalisation approach to molecular polarizability

    Indian Academy of Sciences (India)

    Amita Wadehra; Swapan K Ghosh

    2005-09-01

    The electron density changes in molecular systems in the presence of external electric fields are modeled for simplicity in terms of the induced charges and dipole moments at the individual atomic sites. A chemical potential equalisation scheme is proposed for the calculation of these quantities and hence the dipole polarizability within the framework of density functional theory based linear response theory. The resulting polarizability is expressed in terms of the contributions from individual atoms in the molecule. A few illustrative numerical calculations are shown to predict the molecular polarizabilities in good agreement with available results. The usefulness of the approach to the calculation of intermolecular interaction needed for computer simulation is highlighted.

  16. Nonadiabatic molecular dynamics simulation: An approach based on quantum measurement picture

    CERN Document Server

    Feng, Wei; Li, Xin-Qi; Fang, Weihai; Yan, YiJing

    2013-01-01

    Mixed-quantum-classical molecular dynamics simulation implies an effective measurement on the electronic states owing to continuously tracking the atomic forces.Based on this insight, we propose a quantum trajectory mean-field approach for nonadiabatic molecular dynamics simulations. The new protocol provides a natural interface between the separate quantum and classical treatments, without invoking artificial surface hopping algorithm. Moreover, it also bridges two widely adopted nonadiabatic dynamics methods, the Ehrenfest mean-field theory and the trajectory surface-hopping method. Excellent agreement with the exact results is illustrated with representative model systems, including the challenging ones for traditional methods.

  17. Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach.

    Science.gov (United States)

    Fang, Xiaohong; Tan, Weihong

    2010-01-19

    Molecular medicine is an emerging field focused on understanding the molecular basis of diseases and translating this information into strategies for diagnosis and therapy. This approach could lead to personalized medical treatments. Currently, our ability to understand human diseases at the molecular level is limited by the lack of molecular tools to identify and characterize the distinct molecular features of the disease state, especially for diseases such as cancer. Among the new tools being developed by researchers including chemists, engineers, and other scientists is a new class of nucleic acid probes called aptamers, which are ssDNA/RNA molecules selected to target a wide range of molecules and even cells. In this Account, we will focus on the use of aptamers, generated from cell-based selections, as a novel molecular tool for cancer research. Cancers originate from mutations of human genes. These genetic alterations result in molecular changes to diseased cells, which, in turn, lead to changes in cell morphology and physiology. For decades, clinicians have diagnosed cancers primarily based on the morphology of tumor cells or tissues. However, this method does not always give an accurate diagnosis and does not allow clinicians to effectively assess the complex molecular alterations that are predictive of cancer progression. As genomics and proteomics do not yet allow a full access to this molecular knowledge, aptamer probes represent one effective and practical avenue toward this goal. One special feature of aptamers is that we can isolate them by selection against cancer cells without prior knowledge of the number and arrangement of proteins on the cellular surface. These probes can identify molecular differences between normal and tumor cells and can discriminate among tumor cells of different classifications, at different disease stages, or from different patients. This Account summarizes our recent efforts to develop aptamers through cell-SELEX for the

  18. A generalized quantum chemical approach for elastic and inelastic electron transports in molecular electronics devices

    Science.gov (United States)

    Jiang, Jun; Kula, Mathias; Luo, Yi

    2006-01-01

    A generalized quantum chemical approach for electron transport in molecular devices is developed. It allows one to treat devices where the metal electrodes and the molecule are either chemically or physically bonded on equal footing. An extension to include the vibration motions of the molecule has also been implemented which has produced the inelastic electron-tunneling spectroscopy of molecular electronics devices with unprecedented accuracy. Important information about the structure of the molecule and of metal-molecule contacts that are not accessible in the experiment are revealed. The calculated current-voltage (I-V) characteristics of different molecular devices, including benzene-1,4-dithiolate, octanemonothiolate [H(CH2)8S], and octanedithiolate [S(CH2)8S] bonded to gold electrodes, are in very good agreement with experimental measurements.

  19. Molecular tailoring approach: a route for ab initio treatment of large clusters.

    Science.gov (United States)

    Sahu, Nityananda; Gadre, Shridhar R

    2014-09-16

    Conspectus Chemistry on the scale of molecular clusters may be dramatically different from that in the macroscopic bulk. Greater understanding of chemistry in this size regime could greatly influence fields such as materials science and atmospheric and environmental chemistry. Recent advances in experimental techniques and computational resources have led to accurate investigations of the energies and spectral properties of weakly bonded molecular clusters. These have enabled researchers to learn how the physicochemical properties evolve from individual molecules to bulk materials and to understand the growth patterns of clusters. Experimental techniques such as infrared, microwave, and photoelectron spectroscopy are the most popular and powerful tools for probing molecular clusters. In general, these experimental techniques do not directly reveal the atomistic details of the clusters but provide data from which the structural details need to be unearthed. Furthermore, the resolution of the spectral properties of energetically close cluster conformers can be prohibitively difficult. Thus, these investigations of molecular aggregates require a combination of experiments and theory. On the theoretical front, researchers have been actively engaged in quantum chemical ab initio calculations as well as simulation-based studies for the last few decades. To obtain reliable results, there is a need to use correlated methods such as Møller-Plesset second order method, coupled cluster theory, or dispersion corrected density functional theory. However, due to nonlinear scaling of these methods, optimizing the geometry of large clusters still remains a formidable quantum chemistry challenge. Fragment-based methods, such as divide-and-conquer, molecular tailoring approach (MTA), fragment molecular orbitals, and generalized energy-based fragmentation approach, provide alternatives for overcoming the scaling problem for spatially extended molecular systems. Within MTA, a large

  20. [Molecular genetic bases of adaptation processes and approaches to their analysis].

    Science.gov (United States)

    Salmenkova, E A

    2013-01-01

    Great interest in studying the molecular genetic bases of the adaptation processes is explained by their importance in understanding evolutionary changes, in the development ofintraspecific and interspecific genetic diversity, and in the creation of approaches and programs for maintaining and restoring the population. The article examines the sources and conditions for generating adaptive genetic variability and contribution of neutral and adaptive genetic variability to the population structure of the species; methods for identifying the adaptive genetic variability on the genome level are also described. Considerable attention is paid to the potential of new technologies of genome analysis, including next-generation sequencing and some accompanying methods. In conclusion, the important role of the joint use of genomics and proteomics approaches in understanding the molecular genetic bases of adaptation is emphasized.

  1. Genetic approaches to the molecular/neuronal mechanisms underlying learning and memory in the mouse.

    Science.gov (United States)

    Nakajima, Akira; Tang, Ya-Ping

    2005-09-01

    Learning and memory is an essential component of human intelligence. To understand its underlying molecular and neuronal mechanisms is currently an extensive focus in the field of cognitive neuroscience. We have employed advanced mouse genetic approaches to analyze the molecular and neuronal bases for learning and memory, and our results showed that brain region-specific genetic manipulations (including transgenic and knockout), inducible/reversible knockout, genetic/chemical kinase inactivation, and neuronal-based genetic approach are very powerful tools for studying the involvements of various molecules or neuronal substrates in the processes of learning and memory. Studies using these techniques may eventually lead to the understanding of how new information is acquired and how learned information is memorized in the brain.

  2. A comparison between parallelization approaches in molecular dynamics simulations on GPUs.

    Science.gov (United States)

    Rovigatti, Lorenzo; Sulc, Petr; Reguly, István Z; Romano, Flavio

    2015-01-05

    We test the relative performances of two different approaches to the computation of forces for molecular dynamics simulations on graphics processing units. A "vertex-based" approach, where a computing thread is started per particle, is compared to an "edge-based" approach, where a thread is started per each potentially non-zero interaction. We find that the former is more efficient for systems with many simple interactions per particle while the latter is more efficient if the system has more complicated interactions or fewer of them. By comparing computation times on more and less recent graphics processing unit technology, we predict that, if the current trend of increasing the number of processing cores--as opposed to their computing power--remains, the "edge-based" approach will gradually become the most efficient choice in an increasing number of cases.

  3. Wave packet evolution approach to ionization of hydrogen molecular ion by fast electrons

    CERN Document Server

    Serov, V V; Joulakian, B B; Vinitsky, S I; Serov, Vladislav V.; Derbov, Vladimir L.; Joulakian, Boghos B.; Vinitsky, Sergue I.

    2000-01-01

    The multiply differential cross section of the ionization of hydrogen molecular ion by fast electron impact is calculated by a direct approach, which involves the reduction of the initial 6D Schr\\"{o}dinger equation to a 3D evolution problem followed by the modeling of the wave packet dynamics. This approach avoids the use of stationary Coulomb two-centre functions of the continuous spectrum of the ejected electron which demands cumbersome calculations. The results obtained, after verification of the procedure in the case atomic hydrogen, reveal interesting mechanisms in the case of small scattering angles.

  4. A holistic molecular docking approach for predicting protein-protein complex structure

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A holistic protein-protein molecular docking approach,HoDock,was established,composed of such steps as binding site prediction,initial complex structure sampling,refined complex structure sampling,structure clustering,scoring and final structure selection.This article explains the detailed steps and applications for CAPRI Target 39.The CAPRI result showed that three predicted binding site residues,A191HIS,B512ARG and B531ARG,were correct,and there were five submitted structures with a high fraction of correct receptor-ligand interface residues,indicating that this docking approach may improve prediction accuracy for protein-protein complex structures.

  5. Molecular physiology of digestion in arachnida: functional and comparative-evolutionary approaches.

    OpenAIRE

    Felipe Jun Fuzita

    2014-01-01

    Spiders and scorpions are efficient predators arachnid (PA) consuming preys larger than themselves. Few studies reported, molecularly, the digestion in PA. This work describes a biochemical, transcriptomic and proteomic analysis of the midgut and midgut glands (MMG) and digestive juice (DJ) from Nephilengys cruentata and Tityus serrulatus MMG. Cathepsin L, B, D and F, legumain, trypsin, astacin, carbohydrases and lipases were identified by these approaches. Peptide isomerase and ctenitoxins, ...

  6. Feature activated molecular dynamics: an efficient approach for atomistic simulation of solid-state aggregation phenomena.

    Science.gov (United States)

    Prasad, Manish; Sinno, Talid

    2004-11-01

    An efficient approach is presented for performing efficient molecular dynamics simulations of solute aggregation in crystalline solids. The method dynamically divides the total simulation space into "active" regions centered about each minority species, in which regular molecular dynamics is performed. The number, size, and shape of these regions is updated periodically based on the distribution of solute atoms within the overall simulation cell. The remainder of the system is essentially static except for periodic rescaling of the entire simulation cell in order to balance the pressure between the isolated molecular dynamics regions. The method is shown to be accurate and robust for the Environment-Dependant Interatomic Potential (EDIP) for silicon and an Embedded Atom Method potential (EAM) for copper. Several tests are performed beginning with the diffusion of a single vacancy all the way to large-scale simulations of vacancy clustering. In both material systems, the predicted evolutions agree closely with the results of standard molecular dynamics simulations. Computationally, the method is demonstrated to scale almost linearly with the concentration of solute atoms, but is essentially independent of the total system size. This scaling behavior allows for the full dynamical simulation of aggregation under conditions that are more experimentally realizable than would be possible with standard molecular dynamics.

  7. An innovative approach to molecularly imprinted capillaries for polar templates by grafting polymerization.

    Science.gov (United States)

    Giovannoli, Cristina; Passini, Cinzia; Baravalle, Patrizia; Anfossi, Laura; Giraudi, Gianfranco; Baggiani, Claudio

    2012-06-01

    Molecularly imprinted polymers have been successfully used as selective stationary phases in capillary electrophoresis. Notwithstanding, this technique suffers from several drawbacks as the loss of molecular recognition properties in aqueous media and the lack of feasibility for imprinted systems directed towards highly polar templates soluble in aqueous environments only. Thus, the preparation of imprinted polymers for highly polar, water-soluble analytes, represents a challenge. In this work, we present an innovative approach to overcome these drawbacks. It is based on a surface molecular imprinting technique that uses preformed macromonomers as both functional recognition elements and cross-linking agents. A poly-2-hydroxyethyl-co-methacrylic acid linear polymer was grafted from the surface of silica capillaries. The grafted polymer was exhaustively esterified with methacrylic anhydride to obtain polyethylendimethacrylate-co-methacrylic acid linear chains. Then, as a proof of concept, an adequate amount of a very polar template like penicillin V was added in a hydro-organic mixture, and a thin layer of imprinted polymer was obtained by cross-linking the polymer linear chains. The binding behaviour of the imprinted and non-imprinted capillaries was evaluated in different separation conditions in order to assess the presence of template selectivity and molecular recognition effects. The experimental results clearly show that this innovative kind of imprinted material can be easily obtained in very polar polymerization environments and that it is characterized by enhanced molecular recognition properties in aqueous buffers and good selectivity towards the template and strictly related molecules.

  8. Translating clinical research of Molecular Biology into a personalized, multidisciplinary approach of colorectal cancer patients.

    Science.gov (United States)

    Strambu, V; Garofil, D; Pop, F; Radu, P; Bratucu, M; Popa, F

    2014-03-15

    Although multimodal treatment has brought important benefit, there is still great heterogeneity regarding the indication and response to chemotherapy in Stage II and III, and individual variations related to both overall survival and toxicity of new therapies in metastatic disease or tumor relapse. Recent research in molecular biology led to the development of a large scale of genetic biomarkers, but their clinical use is not concordant with the high expectations. The Aim of this review is to identify and discuss the molecular markers with proven clinical applicability as prognostic and/or predictive factors in CRC and also to establish a feasible algorithm of molecular testing, as routine practice, in the personalized, multidisciplinary approach of colorectal cancer patients in our country. Despite the revolution that occurred in the field of molecular marker research, only Serum CEA, Immunohistochemical analysis of mismatch repair proteins and PCR testing for KRAS and BRAF mutations have confirmed their clinical utility in the management of colorectal cancer. Their implementation in the current practice should partially resolve some of the controversies related to this heterogenic pathology, in matters of prognosis in different TNM stages, stage II patient risk stratification, diagnosis of hereditary CRC and likelihood of benefit from anti EGFR therapy in metastatic disease. The proposed algorithms of molecular testing are very useful but still imperfect and require further validation and constant optimization.

  9. State Representation Approach for Atomistic Time-Dependent Transport Calculations in Molecular Junctions.

    Science.gov (United States)

    Zelovich, Tamar; Kronik, Leeor; Hod, Oded

    2014-08-12

    We propose a new method for simulating electron dynamics in open quantum systems out of equilibrium, using a finite atomistic model. The proposed method is motivated by the intuitive and practical nature of the driven Liouville-von-Neumann equation approach of Sánchez et al. [J. Chem. Phys. 2006, 124, 214708] and Subotnik et al. [J. Chem. Phys. 2009, 130, 144105]. A key ingredient of our approach is a transformation of the Hamiltonian matrix from an atomistic to a state representation of the molecular junction. This allows us to uniquely define the bias voltage across the system while maintaining a proper thermal electronic distribution within the finite lead models. Furthermore, it allows us to investigate complex molecular junctions, including multilead configurations. A heuristic derivation of our working equation leads to explicit expressions for the damping and driving terms, which serve as appropriate electron sources and sinks that effectively "open" the finite model system. Although the method does not forbid it, in practice we find neither violation of Pauli's exclusion principles nor deviation from density matrix positivity throughout our numerical simulations of various tight-binding model systems. We believe that the new approach offers a practical and physically sound route for performing atomistic time-dependent transport calculations in realistic molecular junction models.

  10. STEREO Space Weather and the Space Weather Beacon

    Science.gov (United States)

    Biesecker, D. A.; Webb, D F.; SaintCyr, O. C.

    2007-01-01

    The Solar Terrestrial Relations Observatory (STEREO) is first and foremost a solar and interplanetary research mission, with one of the natural applications being in the area of space weather. The obvious potential for space weather applications is so great that NOAA has worked to incorporate the real-time data into their forecast center as much as possible. A subset of the STEREO data will be continuously downlinked in a real-time broadcast mode, called the Space Weather Beacon. Within the research community there has been considerable interest in conducting space weather related research with STEREO. Some of this research is geared towards making an immediate impact while other work is still very much in the research domain. There are many areas where STEREO might contribute and we cannot predict where all the successes will come. Here we discuss how STEREO will contribute to space weather and many of the specific research projects proposed to address STEREO space weather issues. We also discuss some specific uses of the STEREO data in the NOAA Space Environment Center.

  11. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants

    Indian Academy of Sciences (India)

    Alice Kujur; Maneesha S Saxena; Deepak Bajaj; Laxmi; Swarup K Parida

    2013-12-01

    The enormous population growth, climate change and global warming are now considered major threats to agriculture and world’s food security. To improve the productivity and sustainability of agriculture, the development of high-yielding and durable abiotic and biotic stress-tolerant cultivars and/climate resilient crops is essential. Henceforth, understanding the molecular mechanism and dissection of complex quantitative yield and stress tolerance traits is the prime objective in current agricultural biotechnology research. In recent years, tremendous progress has been made in plant genomics and molecular breeding research pertaining to conventional and next-generation whole genome, transcriptome and epigenome sequencing efforts, generation of huge genomic, transcriptomic and epigenomic resources and development of modern genomics-assisted breeding approaches in diverse crop genotypes with contrasting yield and abiotic stress tolerance traits. Unfortunately, the detailed molecular mechanism and gene regulatory networks controlling such complex quantitative traits is not yet well understood in crop plants. Therefore, we propose an integrated strategies involving available enormous and diverse traditional and modern –omics (structural, functional, comparative and epigenomics) approaches/resources and genomics-assisted breeding methods which agricultural biotechnologist can adopt/utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in crop plants. This would provide clues and much needed inputs for rapid selection of novel functionally relevant molecular tags regulating such complex traits to expedite traditional and modern marker-assisted genetic enhancement studies in target crop species for developing high-yielding stress-tolerant varieties.

  12. First tests of wavefront sensing with a constellation of laser guide beacons

    CERN Document Server

    Lloyd-Hart, M; Milton, N M; Stalcup, T; Snyder, M; Putnam, N; Angel, J R P

    2005-01-01

    Adaptive optics to correct current telescopes over wide fields, or future very large telescopes over even narrow fields, will require real-time wavefront measurements made with a constellation of laser beacons. Here we report the first such measurements, made at the 6.5 m MMT with five Rayleigh beacons in a 2 arcmin pentagon. Each beacon is made with a pulsed beam at 532 nm, of 4 W at the exit pupil of the projector. The return is range-gated from 20-29 km and recorded at 53 Hz by a 36-element Shack-Hartmann sensor. Wavefronts derived from the beacons are compared with simultaneous wavefronts obtained for individual natural stars within or near the constellation. Observations were made in seeing averaging 1.0 arcsec with 2/3 of the aberration measured to be from a ground layer of mean height 380 m. Under these conditions, subtraction of the simple instantaneous average of the five beacon wavefronts from the stellar wavefronts yielded a 40% rms reduction in the measured modes of the distortion over a 2 arcmin ...

  13. A spiral wave front beacon for underwater navigation: transducer prototypes and testing.

    Science.gov (United States)

    Dzikowicz, Benjamin R; Hefner, Brian T

    2012-05-01

    Transducers for acoustic beacons which can produce outgoing signals with wave fronts whose horizontal cross sections are circular or spiral are studied experimentally. A remote hydrophone is used to determine its aspect relative to the transducers by comparing the phase of the circular signal to the phase of the spiral signal. The transducers for a "physical-spiral" beacon are made by forming a strip of 1-3 piezocomposite transducer material around either a circular or spiral backing. A "phased-spiral" beacon is made from an array of transducer elements which can be driven either in phase or staggered out of phase so as to produce signals with either a circular or spiral wave front. Measurements are made to study outgoing signals and their usefulness in determining aspect angle. Vertical beam width is also examined and phase corrections applied when the hydrophone is out of the horizontal plane of the beacon. While numerical simulations indicate that the discontinuity in the physical-spiral beacon introduces errors into the measured phase, damping observed at the ends of the piezocomposite material is a more significant source of error. This damping is also reflected in laser Doppler vibrometer measurements of the transducer's surface velocity.

  14. Computational and molecular approaches for predicting unreported causal missense mutations in Belgian patients with haemophilia A.

    Science.gov (United States)

    Lannoy, N; Abinet, I; Bosmans, A; Lambert, C; Vermylen, C; Hermans, C

    2012-05-01

    Haemophilia A (HA) is caused by widespread mutations in the factor VIII gene. The high spontaneous mutation rate of this gene means that roughly 40% of HA mutations are private. This study aimed to describe the approaches used to confirm private disease-causing mutations in a cohort of Belgian HA patients. We studied 148 unrelated HA families for the presence of intron 22 and intron 1 inversion by Southern blotting and polymerase chain reaction (PCR). Multiplex ligation-dependent probe amplification (MLPA) assay was used to detect large genomic rearrangements. Detection of point mutations was performed by DNA sequencing. Predicting the causal impact of new non-synonymous changes was studied by two general strategies: (i) molecular approaches such as family cosegregation, evaluation of the implicated codon based on phylogenic separated species and absence of the mutation in the general Belgian population, and (ii) bioinformatics approaches to analyse the potential functional consequences of missense mutations. Among the 148 HA patients, in addition to common intron 22 and intron 1 inversions as well as large deletions or duplications, 67 different point mutations were identified, of which 42 had been reported in the HAMSTeRS database, and 25 were novel including 10 null variants for which RNA analyses confirmed the causal effect of mutations located in a splice site consensus and 15 missense mutations whose causality was demonstrated by molecular approaches and bioinformatics. This article reports several strategies to evaluate the deleterious consequences of unreported F8 substitutions in a large cohort of HA patients.

  15. Vibrational infrared and Raman spectra of polypeptides: Fragments-in-fragments within molecular tailoring approach

    Science.gov (United States)

    Sahu, Nityananda; Gadre, Shridhar R.

    2016-03-01

    The present work reports the calculation of vibrational infrared (IR) and Raman spectra of large molecular systems employing molecular tailoring approach (MTA). Further, it extends the grafting procedure for the accurate evaluation of IR and Raman spectra of large molecular systems, employing a new methodology termed as Fragments-in-Fragments (FIF), within MTA. Unlike the previous MTA-based studies, the accurate estimation of the requisite molecular properties is achieved without performing any full calculations (FC). The basic idea of the grafting procedure is implemented by invoking the nearly basis-set-independent nature of the MTA-based error vis-à-vis the respective FCs. FIF has been tested out for the estimation of the above molecular properties for three isomers, viz., β-strand, 310- and α-helix of acetyl(alanine)nNH2 (n = 10, 15) polypeptides, three conformers of doubly protonated gramicidin S decapeptide and trpzip2 protein (PDB id: 1LE1), respectively, employing BP86/TZVP, M06/6-311G**, and M05-2X/6-31G** levels of theory. For most of the cases, a maximum difference of 3 cm-1 is achieved between the grafted-MTA frequencies and the corresponding FC values. Further, a comparison of the BP86/TZVP level IR and Raman spectra of α-helical (alanine)20 and its N-deuterated derivative shows an excellent agreement with the existing experimental spectra. In view of the requirement of only MTA-based calculations and the ability of FIF to work at any level of theory, the current methodology provides a cost-effective solution for obtaining accurate spectra of large molecular systems.

  16. Free Energy Calculations using a Swarm-Enhanced Sampling Molecular Dynamics Approach.

    Science.gov (United States)

    Burusco, Kepa K; Bruce, Neil J; Alibay, Irfan; Bryce, Richard A

    2015-10-26

    Free energy simulations are an established computational tool in modelling chemical change in the condensed phase. However, sampling of kinetically distinct substates remains a challenge to these approaches. As a route to addressing this, we link the methods of thermodynamic integration (TI) and swarm-enhanced sampling molecular dynamics (sesMD), where simulation replicas interact cooperatively to aid transitions over energy barriers. We illustrate the approach by using alchemical alkane transformations in solution, comparing them with the multiple independent trajectory TI (IT-TI) method. Free energy changes for transitions computed by using IT-TI grew increasingly inaccurate as the intramolecular barrier was heightened. By contrast, swarm-enhanced sampling TI (sesTI) calculations showed clear improvements in sampling efficiency, leading to more accurate computed free energy differences, even in the case of the highest barrier height. The sesTI approach, therefore, has potential in addressing chemical change in systems where conformations exist in slow exchange.

  17. A Measurement Study of BLE iBeacon and Geometric Adjustment Scheme for Indoor Location-Based Mobile Applications

    Directory of Open Access Journals (Sweden)

    Jeongyeup Paek

    2016-01-01

    Full Text Available Bluetooth Low Energy (BLE and the iBeacons have recently gained large interest for enabling various proximity-based application services. Given the ubiquitously deployed nature of Bluetooth devices including mobile smartphones, using BLE and iBeacon technologies seemed to be a promising future to come. This work started off with the belief that this was true: iBeacons could provide us with the accuracy in proximity and distance estimation to enable and simplify the development of many previously difficult applications. However, our empirical studies with three different iBeacon devices from various vendors and two types of smartphone platforms prove that this is not the case. Signal strength readings vary significantly over different iBeacon vendors, mobile platforms, environmental or deployment factors, and usage scenarios. This variability in signal strength naturally complicates the process of extracting an accurate location/proximity estimation in real environments. Our lessons on the limitations of iBeacon technique lead us to design a simple class attendance checking application by performing a simple form of geometric adjustments to compensate for the natural variations in beacon signal strength readings. We believe that the negative observations made in this work can provide future researchers with a reference on how well of a performance to expect from iBeacon devices as they enter their system design phases.

  18. Polarization Methods of Measuring the Roll Angle of an Object in Motion in Radio Beacon Navigation Systems

    Science.gov (United States)

    Gulko, V. L.; Mescheryakov, A. A.

    2016-06-01

    Polarization methods of measuring the roll angle of an object in motion with the help of radio beacon systems are considered. The polarization properties of the beacon signals received on board the object and amplitude-phase processing of their orthogonal polarized components are used to accomplish this goal.

  19. 75 FR 20364 - Public Buildings Service; Key Largo Beacon Annex Site; Key Largo, FL; Transfer of Property

    Science.gov (United States)

    2010-04-19

    ... From the Federal Register Online via the Government Publishing Office GENERAL SERVICES ADMINISTRATION Public Buildings Service; Key Largo Beacon Annex Site; Key Largo, FL; Transfer of Property..., identified as Key Largo Beacon Annex Site, Key Largo, FL to the U.S. Fish and Wildlife Service, Department...

  20. Luminescence-based Imaging Approaches in the Field of Interventional Molecular Imaging.

    Science.gov (United States)

    van Leeuwen, Fijs W B; Hardwick, James C H; van Erkel, Arian R

    2015-07-01

    Luminescence imaging-based guidance technologies are increasingly gaining interest within surgical and radiologic disciplines. Their promise to help visualize molecular features of disease in real time and with microscopic detail is considered desirable. Integrating luminescence imaging with three-dimensional radiologic- and/or nuclear medicine-based preinterventional imaging may overcome limitations such as the limited tissue penetration of luminescence signals. At the same time, the beneficial features of luminescence imaging may be used to complement the routinely used radiologic- and nuclear medicine-based modalities. To fully exploit this integrated concept, and to relate the largely experimental luminesce-based guidance approaches into perspective with routine imaging approaches, it is essential to understand the advantages and limitations of this relatively new modality. By providing an overview of the available luminescence technologies and the various clinically evaluated exogenous luminescent tracers (fluorescent, hybrid, and theranostic tracers), this review attempts to place luminescence-based interventional molecular imaging technologies into perspective to the available radiologic- and/or nuclear medicine-based imaging technologies. At the same time, the transition from anatomic to physiologic and even molecular interventional luminescence imaging is illustrated.

  1. Companion diagnostics and molecular imaging-enhanced approaches for oncology clinical trials.

    Science.gov (United States)

    Van Heertum, Ronald L; Scarimbolo, Robert; Ford, Robert; Berdougo, Eli; O'Neal, Michael

    2015-01-01

    In the era of personalized medicine, diagnostic approaches are helping pharmaceutical and biotechnology sponsors streamline the clinical trial process. Molecular assays and diagnostic imaging are routinely being used to stratify patients for treatment, monitor disease, and provide reliable early clinical phase assessments. The importance of diagnostic approaches in drug development is highlighted by the rapidly expanding global cancer diagnostics market and the emergent attention of regulatory agencies worldwide, who are beginning to offer more structured platforms and guidance for this area. In this paper, we highlight the key benefits of using companion diagnostics and diagnostic imaging with a focus on oncology clinical trials. Nuclear imaging using widely available radiopharmaceuticals in conjunction with molecular imaging of oncology targets has opened the door to more accurate disease assessment and the modernization of standard criteria for the evaluation, staging, and treatment responses of cancer patients. Furthermore, the introduction and validation of quantitative molecular imaging continues to drive and optimize the field of oncology diagnostics. Given their pivotal role in disease assessment and treatment, the validation and commercialization of diagnostic tools will continue to advance oncology clinical trials, support new oncology drugs, and promote better patient outcomes.

  2. Understanding the complex etiologies of developmental disorders: behavioral and molecular genetic approaches.

    Science.gov (United States)

    Willcutt, Erik G; Pennington, Bruce F; Duncan, Laramie; Smith, Shelley D; Keenan, Janice M; Wadsworth, Sally; Defries, John C; Olson, Richard K

    2010-09-01

    This article has 2 primary goals. First, a brief tutorial on behavioral and molecular genetic methods is provided for readers without extensive training in these areas. To illustrate the application of these approaches to developmental disorders, etiologically informative studies of reading disability (RD), math disability (MD), and attention-deficit hyperactivity disorder (ADHD) are then reviewed. Implications of the results for these specific disorders and for developmental disabilities as a whole are discussed, and novel directions for future research are highlighted. Previous family and twin studies of RD, MD, and ADHD are reviewed systematically, and the extensive molecular genetic literatures on each disorder are summarized. To illustrate 4 novel extensions of these etiologically informative approaches, new data are presented from the Colorado Learning Disabilities Research Center, an ongoing twin study of the etiology of RD, ADHD, MD, and related disorders. RD, MD, and ADHD are familial and heritable, and co-occur more frequently than expected by chance. Molecular genetic studies suggest that all 3 disorders have complex etiologies, with multiple genetic and environmental risk factors each contributing to overall risk for each disorder. Neuropsychological analyses indicate that the 3 disorders are each associated with multiple neuropsychological weaknesses, and initial evidence suggests that comorbidity between the 3 disorders is due to common genetic risk factors that lead to slow processing speed.

  3. Molecular paleoparasitological hybridization approach as effective tool for diagnosing human intestinal parasites from scarce archaeological remains.

    Science.gov (United States)

    Jaeger, Lauren Hubert; Iñiguez, Alena Mayo

    2014-01-01

    Paleoparasitology is the science that uses parasitological techniques for diagnosing parasitic diseases in the past. Advances in molecular biology brought new insights into this field allowing the study of archaeological material. However, due to technical limitations a proper diagnosis and confirmation of the presence of parasites is not always possible, especially in scarce and degraded archaeological remains. In this study, we developed a Molecular Paleoparasitological Hybridization (MPH) approach using ancient DNA (aDNA) hybridization to confirm and complement paleoparasitological diagnosis. Eight molecular targets from four helminth parasites were included: Ascaris sp., Trichuris trichiura, Enterobius vermicularis, and Strongyloides stercoralis. The MPH analysis using 18th century human remains from Praça XV cemetery (CPXV), Rio de Janeiro, Brazil, revealed for the first time the presence E. vermicularis aDNA (50%) in archaeological sites of Brazil. Besides, the results confirmed T. trichiura and Ascaris sp. infections. The prevalence of infection by Ascaris sp. and E. vermicularis increased considerably when MPH was applied. However, a lower aDNA detection of T. trichiura (40%) was observed when compared to the diagnosis by paleoparasitological analysis (70%). Therefore, based on these data, we suggest a combination of Paleoparasitological and MPH approaches to verify the real panorama of intestinal parasite infection in human archeological samples.

  4. Molecular approaches to improvement of Jatropha curcas Linn. as a sustainable energy crop.

    Science.gov (United States)

    Sudhakar Johnson, T; Eswaran, Nalini; Sujatha, M

    2011-09-01

    With the increase in crude oil prices, climate change concerns and limited reserves of fossil fuel, attention has been diverted to alternate renewable energy sources such as biofuel and biomass. Among the potential biofuel crops, Jatropha curcas L, a non-domesticated shrub, has been gaining importance as the most promising oilseed, as it does not compete with the edible oil supplies. Economic relevance of J. curcas for biodiesel production has promoted world-wide prospecting of its germplasm for crop improvement and breeding. However, lack of adequate genetic variation and non-availability of improved varieties limited its prospects of being a successful energy crop. In this review, we present the progress made in molecular breeding approaches with particular reference to tissue culture and genetic transformation, genetic diversity assessment using molecular markers, large-scale transcriptome and proteome studies, identification of candidate genes for trait improvement, whole genome sequencing and the current interest by various public and private sector companies in commercial-scale cultivation, which highlights the revival of Jatropha as a sustainable energy crop. The information generated from molecular markers, transcriptome profiling and whole genome sequencing could accelerate the genetic upgradation of J. curcas through molecular breeding.

  5. Species detection using HyBeacon(®) probe technology: Working towards rapid onsite testing in non-human forensic and food authentication applications.

    Science.gov (United States)

    Dawnay, Nick; Hughes, Rebecca; Court, Denise Syndercombe; Duxbury, Nicola

    2016-01-01

    Identifying individual species or determining species' composition in an unknown sample is important for a variety of forensic applications. Food authentication, monitoring illegal trade in endangered species, forensic entomology, sexual assault case work and counter terrorism are just some of the fields that can require the detection of the biological species present. Traditional laboratory based approaches employ a wide variety of tools and technologies and exploit a number of different species specific traits including morphology, molecular differences and immuno-chemical analyses. A large number of these approaches require laboratory based apparatus and results can take a number of days to be returned to investigating authorities. Having a presumptive test for rapid identification could lead to savings in terms of cost and time and allow sample prioritisation if confirmatory testing in a laboratory is required later. This model study describes the development of an assay using a single HyBeacon(®) probe and melt curve analyses allowing rapid screening and authentication of food products labelled as Atlantic cod (Gadus morhua). Exploiting melt curve detection of species specific SNP sites on the COI gene the test allows detection of a target species (Atlantic cod) and closely related species which may be used as substitutes. The assay has been designed for use with the Field Portable ParaDNA system, a molecular detection platform for non-expert users. The entire process from sampling to result takes approximately 75min. Validation studies were performed on both single source genomic DNA, mixed genomic DNA and commercial samples. Data suggests the assay has a lower limit of detection of 31 pg DNA. The specificity of the assay to Atlantic cod was measured by testing highly processed food samples including frozen, defrosted and cooked fish fillets as well as fish fingers, battered fish fillet and fish pie. Ninety-six (92.7%) of all Atlantic cod food products

  6. Kontextbaserad information genom iBeacon : En implementation i iOS och Android

    OpenAIRE

    2014-01-01

    I dagsläget växer behovet av rätt information vid rätt plats, kontextbaserad information. Med hjälp av iBeacon kan man till en stor utsträckning förse det här behovet med en lösning. I uppsatsen undersöks användningsområden för iBeacon och idéer för hur man kan utveckla lösningar med hjälp av iBeacon. Ett koncept kommer att implementeras för att distribuera kontextbaserad information på mässor. Konceptet utvecklades till iOS och Android. Applikationerna tar hjälp av en webbtjänst för att unde...

  7. Visual detection of Akt mRNA in living cell using gold nanoparticle beacon

    Science.gov (United States)

    Ma, Yi; Tian, Caiping; Li, Siwen; Wang, Zhaohui; Gu, Yueqing

    2014-09-01

    PI3K-Akt signaling pathway plays the key role in cell apoptosis and survival, and the components of PI3K /Akt signaling pathway are often abnormally expressed in human tumors. Therefore, determination of the Akt (protein kinase B, PKB) messenger ribonucleic acid (mRNA) expression is significantly important in understanding the mechanism of tumor progression. In this study, we designed a special hairpin deoxyribonucleic acid (DNA) functionalized with gold nanoparticles and fluorescein isothiocyanate(FITC) as a beacon for detecting human Akt mRNA. Spectrofluorometer was used to detect the fluorescence quenching and recovery of the beacons, and laser confocal scanning microscopy was adopted to image Akt mRNA in cells. The results showed that this beacon could sensitively and quantitatively measure the Akt mRNA in living cells . This strategy is potentially useful for the cellular imaging of RNA or protein expression in living cells.

  8. A beacon interval shifting scheme for interference mitigation in body area networks.

    Science.gov (United States)

    Kim, Seungku; Kim, Seokhwan; Kim, Jin-Woo; Eom, Doo-Seop

    2012-01-01

    This paper investigates the issue of interference avoidance in body area networks (BANs). IEEE 802.15 Task Group 6 presented several schemes to reduce such interference, but these schemes are still not proper solutions for BANs. We present a novel distributed TDMA-based beacon interval shifting scheme that reduces interference in the BANs. A design goal of the scheme is to avoid the wakeup period of each BAN coinciding with other networks by employing carrier sensing before a beacon transmission. We analyze the beacon interval shifting scheme and investigate the proper back-off length when the channel is busy. We compare the performance of the proposed scheme with the schemes presented in IEEE 802.15 Task Group 6 using an OMNeT++ simulation. The simulation results show that the proposed scheme has a lower packet loss, energy consumption, and delivery-latency than the schemes of IEEE 802.15 Task Group 6.

  9. A spiral wave front beacon for underwater navigation: basic concept and modeling.

    Science.gov (United States)

    Hefner, Brian T; Dzikowicz, Benjamin R

    2011-06-01

    A spiral wave front source produces an acoustic field that has a phase that is proportional to the azimuthal angle about the source. The concept of a spiral wave front beacon is developed by combining this source with a reference source that has a phase that is constant with the angle. The phase difference between these sources contains information about the receiver's azimuthal angle relative to the beacon and can be used for underwater navigation. To produce the spiral wave front, two sources are considered: a "physical-spiral" source, which produces the appropriate phase by physically deforming the active element of the source into a spiral, and a "phased-spiral" source, which uses an array of active elements, each driven with the appropriate phase, to produce the spiral wave front. Using finite element techniques, the fields produced by these sources are examined in the context of the spiral wave front beacon, and the advantages of each source are discussed.

  10. A new class of SETI beacons that contain information (22-aug-2010)

    CERN Document Server

    Harp, G R; Blair, Samantha K; Arbunich, J; Backus, P R; Tarter, J C

    2012-01-01

    In the cm-wavelength range, an extraterrestrial electromagnetic narrow band (sine wave) beacon is an excellent choice to get alien attention across interstellar distances because 1) it is not strongly affected by interstellar / interplanetary dispersion or scattering, and 2) searching for narrowband signals is computationally efficient (scales as Ns log(Ns) where Ns = number of voltage samples). Here we consider a special case wideband signal where two or more delayed copies of the same signal are transmitted over the same frequency and bandwidth, with the result that ISM dispersion and scattering cancel out during the detection stage. Such a signal is both a good beacon (easy to find) and carries arbitrarily large information rate (limited only by the atmospheric transparency to about 10 GHz). The discovery process uses an autocorrelation algorithm, and we outline a compute scheme where the beacon discovery search can be accomplished with only 2x the processing of a conventional sine wave search, and discuss...

  11. A systems biology approach identifies molecular networks defining skeletal muscle abnormalities in chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Nil Turan

    2011-09-01

    Full Text Available Chronic Obstructive Pulmonary Disease (COPD is an inflammatory process of the lung inducing persistent airflow limitation. Extensive systemic effects, such as skeletal muscle dysfunction, often characterize these patients and severely limit life expectancy. Despite considerable research efforts, the molecular basis of muscle degeneration in COPD is still a matter of intense debate. In this study, we have applied a network biology approach to model the relationship between muscle molecular and physiological response to training and systemic inflammatory mediators. Our model shows that failure to co-ordinately activate expression of several tissue remodelling and bioenergetics pathways is a specific landmark of COPD diseased muscles. Our findings also suggest that this phenomenon may be linked to an abnormal expression of a number of histone modifiers, which we discovered correlate with oxygen utilization. These observations raised the interesting possibility that cell hypoxia may be a key factor driving skeletal muscle degeneration in COPD patients.

  12. A field-theoretic approach to linear scaling \\textit{ab-initio} molecular dynamics

    CERN Document Server

    Richters, Dorothee; Kühne, Thomas D

    2012-01-01

    We present a field-theoretic method suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is solved by means of a properly modified Langevin equation. The predictive power of this approach is illustrated using the example of liquid methane under extreme conditions.

  13. An integrative genomic approach to uncover molecular mechanisms of prokaryotic traits.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2006-11-01

    Full Text Available With mounting availability of genomic and phenotypic databases, data integration and mining become increasingly challenging. While efforts have been put forward to analyze prokaryotic phenotypes, current computational technologies either lack high throughput capacity for genomic scale analysis, or are limited in their capability to integrate and mine data across different scales of biology. Consequently, simultaneous analysis of associations among genomes, phenotypes, and gene functions is prohibited. Here, we developed a high throughput computational approach, and demonstrated for the first time the feasibility of integrating large quantities of prokaryotic phenotypes along with genomic datasets for mining across multiple scales of biology (protein domains, pathways, molecular functions, and cellular processes. Applying this method over 59 fully sequenced prokaryotic species, we identified genetic basis and molecular mechanisms underlying the phenotypes in bacteria. We identified 3,711 significant correlations between 1,499 distinct Pfam and 63 phenotypes, with 2,650 correlations and 1,061 anti-correlations. Manual evaluation of a random sample of these significant correlations showed a minimal precision of 30% (95% confidence interval: 20%-42%; n = 50. We stratified the most significant 478 predictions and subjected 100 to manual evaluation, of which 60 were corroborated in the literature. We furthermore unveiled 10 significant correlations between phenotypes and KEGG pathways, eight of which were corroborated in the evaluation, and 309 significant correlations between phenotypes and 166 GO concepts evaluated using a random sample (minimal precision = 72%; 95% confidence interval: 60%-80%; n = 50. Additionally, we conducted a novel large-scale phenomic visualization analysis to provide insight into the modular nature of common molecular mechanisms spanning multiple biological scales and reused by related phenotypes (metaphenotypes. We propose

  14. Density functional theory/molecular mechanics approach for electronic g-tensors of solvated molecules.

    Science.gov (United States)

    Rinkevicius, Zilvinas; Murugan, N Arul; Kongsted, Jacob; Aidas, Kestutis; Steindal, Arnfinn Hykkerud; Agren, Hans

    2011-04-21

    A general density functional theory/molecular mechanics approach for computation of electronic g-tensors of solvated molecules is presented. We apply the theory to the commonly studied di-tert-butyl nitroxide molecule, the simplest model compound for nitroxide spin labels, and explore the role of an aqueous environment and of various approximations for its treatment. It is found that successive improvements of the solvent shift of the g-tensor are obtained by going from the polarizable continuum model to discrete solvent models of various levels of sophistication. The study shows that an accurate parametrization of the electrostatic potential and polarizability of the solvent molecules in terms of distributed multipole expansions and anisotropic polarizabilities to a large degree relieves the need to explicitly include water molecules in the quantum region, which is the common case in density functional/continuum model approaches. It is also shown that the local dynamics of the solvent around the solute significantly influences the electronic g-tensor and should be included in benchmarking of exchange-correlation functionals for evaluation of solvent shifts of g-tensors. These findings can have important ramifications for the use of advanced hybrid density functional theory/molecular mechanics approaches for modeling spin labels in solvents, proteins, and membrane environments.

  15. Development of an aptamer beacon for detection of interferon-gamma.

    Science.gov (United States)

    Tuleuova, Nazgul; Jones, Caroline N; Yan, Jun; Ramanculov, Erlan; Yokobayashi, Yohei; Revzin, Alexander

    2010-03-01

    Traditional antibody-based affinity sensing strategies employ multiple reagents and washing steps and are unsuitable for real-time detection of analyte binding. Aptamers, on the other hand, may be designed to monitor binding events directly, in real-time, without the need for secondary labels. The goal of the present study was to design an aptamer beacon for fluorescence resonance energy transfer (FRET)-based detection of interferon-gamma (IFN-gamma)--an important inflammatory cytokine. Variants of DNA aptamer modified with biotin moieties and spacers were immobilized on avidin-coated surfaces and characterized by surface plasmon resonance (SPR). The SPR studies showed that immobilization of aptamer via the 3' end resulted in the best binding IFN-gamma (K(d) = 3.44 nM). This optimal aptamer variant was then used to construct a beacon by hybridizing fluorophore-labeled aptamer with an antisense oligonucleotide strand carrying a quencher. SPR studies revealed that IFN-gamma binding with an aptamer beacon occurred within 15 min of analyte introduction--suggesting dynamic replacement of the quencher-complementary strand by IFN-gamma molecules. To further highlight biosensing applications, aptamer beacon molecules were immobilized inside microfluidic channels and challenged with varying concentration of analyte. Fluorescence microscopy revealed low fluorescence in the absence of analyte and high fluorescence after introduction of IFN-gamma. Importantly, unlike traditional antibody-based immunoassays, the signal was observed directly upon binding of analyte without the need for multiple washing steps. The surface immobilized aptamer beacon had a linear range from 5 to 100 nM and a lower limit of detection of 5 nM IFN-gamma. In conclusion, we designed a FRET-based aptamer beacon for monitoring of an inflammatory cytokine-IFN-gamma. In the future, this biosensing strategy will be employed to monitor dynamics of cytokine production by the immune cells.

  16. Building and strengthening infrastructure for data exchange: lessons from the beacon communities.

    Science.gov (United States)

    Torres, Gretchen W; Swietek, Karen; Ubri, Petry S; Singer, Rachel F; Lowell, Kristina H; Miller, Wilhelmine

    2014-01-01

    The Beacon Community Cooperative Agreement Program supports interventions, including care-delivery innovations, provider performance measurement and feedback initiatives, and tools for providers and consumers to enhance care. Using a learning health system framework, we examine the Beacon Communities' processes in building and strengthening health IT (HIT) infrastructures, specifically successes and challenges in sharing patient information to improve clinical care. In 2010, the Office of the National Coordinator for Health Information Technology (ONC) launched the three-year program, which provided $250 million to 17 Beacon Communities to invest in HIT and health information exchange (HIE) infrastructure. Beacon Communities used this funding to develop and disseminate HIT-enabled quality improvement practices found effective in particular community and practice environments. NORC conducted 7 site visits, November 2012-March 2013, selecting Communities to represent diverse program features. From August-October 2013, NORC held discussions with the remaining 10 Communities. Following each visit or discussion, NORC summarized the information gathered, including transcripts, team observations, and other documents the Community provided, to facilitate a within-Community analysis of context and stakeholders, intervention strategies, enabling factors, and challenges. Although each Community designed and implemented data-sharing strategies in a unique environment, similar challenges and enabling factors emerged across the Beacons. From a learning health system perspective, their strategies to build and strengthen data-sharing infrastructures address the following crosscutting priorities: promoting technical advances and innovations by helping providers adapt EHRs for data exchange and performance measurement with customizable IT and offering technical support to smaller, independent providers; engaging key stakeholders; and fostering transparent governance and stewardship

  17. Time-Resolved Nucleic Acid Hybridization Beacons Utilizing Unimolecular and Toehold-Mediated Strand Displacement Designs.

    Science.gov (United States)

    Massey, Melissa; Ancona, Mario G; Medintz, Igor L; Algar, W Russ

    2015-12-01

    Nucleic acid hybridization probes are sought after for numerous assay and imaging applications. These probes are often limited by the properties of fluorescent dyes, prompting the development of new probes where dyes are paired with novel or nontraditional luminescent materials. Luminescent terbium complexes are an example of such a material, and these complexes offer several unique spectroscopic advantages. Here, we demonstrate two nonstem-loop designs for light-up nucleic acid hybridization beacons that utilize time-resolved Förster resonance energy transfer (TR-FRET) between a luminescent Lumi4-Tb cryptate (Tb) donor and a fluorescent reporter dye, where time-resolved emission from the dye provides an analytical signal. Both designs are based on probe oligonucleotides that are labeled at their opposite termini with Tb and a fluorescent reporter dye. In one design, a probe is partially blocked with a quencher dye-labeled oligonucleotide, and target hybridization is signaled through toehold-mediated strand displacement and loss of a competitive FRET pathway. In the other design, the intrinsic folding properties of an unblocked probe are utilized in combination with a temporal mechanism for signaling target hybridization. This temporal mechanism is based on a recently elucidated "sweet spot" for TR-FRET measurements and exploits distance control over FRET efficiencies to shift the Tb lifetime within or outside the time-gated detection window for measurements. Both the blocked and unblocked beacons offer nanomolar (femtomole) detection limits, response times on the order of minutes, multiplexing through the use of different reporter dyes, and detection in complex matrices such as serum and blood. The blocked beacons offer better mismatch selectivity, whereas the unblocked beacons are simpler in design. The temporal mechanism of signaling utilized with the unblocked beacons also plays a significant role with the blocked beacons and represents a new and effective

  18. Integrating Survey and Molecular Approaches to Better Understand Wildlife Disease Ecology

    Science.gov (United States)

    Cowled, Brendan D.; Ward, Michael P.; Laffan, Shawn W.; Galea, Francesca; Garner, M. Graeme; MacDonald, Anna J.; Marsh, Ian; Muellner, Petra; Negus, Katherine; Quasim, Sumaiya; Woolnough, Andrew P.; Sarre, Stephen D.

    2012-01-01

    Infectious wildlife diseases have enormous global impacts, leading to human pandemics, global biodiversity declines and socio-economic hardship. Understanding how infection persists and is transmitted in wildlife is critical for managing diseases, but our understanding is limited. Our study aim was to better understand how infectious disease persists in wildlife populations by integrating genetics, ecology and epidemiology approaches. Specifically, we aimed to determine whether environmental or host factors were stronger drivers of Salmonella persistence or transmission within a remote and isolated wild pig (Sus scrofa) population. We determined the Salmonella infection status of wild pigs. Salmonella isolates were genotyped and a range of data was collected on putative risk factors for Salmonella transmission. We a priori identified several plausible biological hypotheses for Salmonella prevalence (cross sectional study design) versus transmission (molecular case series study design) and fit the data to these models. There were 543 wild pig Salmonella observations, sampled at 93 unique locations. Salmonella prevalence was 41% (95% confidence interval [CI]: 37–45%). The median Salmonella DICE coefficient (or Salmonella genetic similarity) was 52% (interquartile range [IQR]: 42–62%). Using the traditional cross sectional prevalence study design, the only supported model was based on the hypothesis that abundance of available ecological resources determines Salmonella prevalence in wild pigs. In the molecular study design, spatial proximity and herd membership as well as some individual risk factors (sex, condition score and relative density) determined transmission between pigs. Traditional cross sectional surveys and molecular epidemiological approaches are complementary and together can enhance understanding of disease ecology: abundance of ecological resources critical for wildlife influences Salmonella prevalence, whereas Salmonella transmission is driven by

  19. Integrating survey and molecular approaches to better understand wildlife disease ecology.

    Directory of Open Access Journals (Sweden)

    Brendan D Cowled

    Full Text Available Infectious wildlife diseases have enormous global impacts, leading to human pandemics, global biodiversity declines and socio-economic hardship. Understanding how infection persists and is transmitted in wildlife is critical for managing diseases, but our understanding is limited. Our study aim was to better understand how infectious disease persists in wildlife populations by integrating genetics, ecology and epidemiology approaches. Specifically, we aimed to determine whether environmental or host factors were stronger drivers of Salmonella persistence or transmission within a remote and isolated wild pig (Sus scrofa population. We determined the Salmonella infection status of wild pigs. Salmonella isolates were genotyped and a range of data was collected on putative risk factors for Salmonella transmission. We a priori identified several plausible biological hypotheses for Salmonella prevalence (cross sectional study design versus transmission (molecular case series study design and fit the data to these models. There were 543 wild pig Salmonella observations, sampled at 93 unique locations. Salmonella prevalence was 41% (95% confidence interval [CI]: 37-45%. The median Salmonella DICE coefficient (or Salmonella genetic similarity was 52% (interquartile range [IQR]: 42-62%. Using the traditional cross sectional prevalence study design, the only supported model was based on the hypothesis that abundance of available ecological resources determines Salmonella prevalence in wild pigs. In the molecular study design, spatial proximity and herd membership as well as some individual risk factors (sex, condition score and relative density determined transmission between pigs. Traditional cross sectional surveys and molecular epidemiological approaches are complementary and together can enhance understanding of disease ecology: abundance of ecological resources critical for wildlife influences Salmonella prevalence, whereas Salmonella transmission is

  20. Code Development and Analysis Program: developmental checkout of the BEACON/MOD2A code. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Ramsthaler, J. A.; Lime, J. F.; Sahota, M. S.

    1978-12-01

    A best-estimate transient containment code, BEACON, is being developed by EG and G Idaho, Inc. for the Nuclear Regulatory Commission's reactor safety research program. This is an advanced, two-dimensional fluid flow code designed to predict temperatures and pressures in a dry PWR containment during a hypothetical loss-of-coolant accident. The most recent version of the code, MOD2A, is presently in the final stages of production prior to being released to the National Energy Software Center. As part of the final code checkout, seven sample problems were selected to be run with BEACON/MOD2A.

  1. An Electronic Structure Approach to Charge Transfer and Transport in Molecular Building Blocks for Organic Optoelectronics

    Science.gov (United States)

    Hendrickson, Heidi Phillips

    A fundamental understanding of charge separation in organic materials is necessary for the rational design of optoelectronic devices suited for renewable energy applications and requires a combination of theoretical, computational, and experimental methods. Density functional theory (DFT) and time-dependent (TD)DFT are cost effective ab-initio approaches for calculating fundamental properties of large molecular systems, however conventional DFT methods have been known to fail in accurately characterizing frontier orbital gaps and charge transfer states in molecular systems. In this dissertation, these shortcomings are addressed by implementing an optimally-tuned range-separated hybrid (OT-RSH) functional approach within DFT and TDDFT. The first part of this thesis presents the way in which RSH-DFT addresses the shortcomings in conventional DFT. Environmentally-corrected RSH-DFT frontier orbital energies are shown to correspond to thin film measurements for a set of organic semiconducting molecules. Likewise, the improved RSH-TDDFT description of charge transfer excitations is benchmarked using a model ethene dimer and silsesquioxane molecules. In the second part of this thesis, RSH-DFT is applied to chromophore-functionalized silsesquioxanes, which are currently investigated as candidates for building blocks in optoelectronic applications. RSH-DFT provides insight into the nature of absorptive and emissive states in silsesquioxanes. While absorption primarily involves transitions localized on one chromophore, charge transfer between chromophores and between chromophore and silsesquioxane cage have been identified. The RSH-DFT approach, including a protocol accounting for complex environmental effects on charge transfer energies, was tested and validated against experimental measurements. The third part of this thesis addresses quantum transport through nano-scale junctions. The ability to quantify a molecular junction via spectroscopic methods is crucial to their

  2. Molecular basis of glyphosate resistance-different approaches through protein engineering.

    Science.gov (United States)

    Pollegioni, Loredano; Schonbrunn, Ernst; Siehl, Daniel

    2011-08-01

    Glyphosate (N-phosphonomethyl-glycine) is the most widely used herbicide in the world: glyphosate-based formulations exhibit broad-spectrum herbicidal activity with minimal human and environmental toxicity. The extraordinary success of this simple, small molecule is mainly attributable to the high specificity of glyphosate for the plant enzyme enolpyruvyl shikimate-3-phosphate synthase in the shikimate pathway, leading to the biosynthesis of aromatic amino acids. Starting in 1996, transgenic glyphosate-resistant plants were introduced, thus allowing application of the herbicide to the crop (post-emergence) to remove emerged weeds without crop damage. This review focuses on mechanisms of resistance to glyphosate as obtained through natural diversity, the gene-shuffling approach to molecular evolution, and a rational, structure-based approach to protein engineering. In addition, we offer a rationale for the means by which the modifications made have had their intended effect.

  3. Genetic and Molecular Approaches to Study Neuronal Migration in the Developing Cerebral Cortex.

    Science.gov (United States)

    Dudok, Jacobus J; Leonards, Pim E G; Wijnholds, Jan

    2017-05-05

    The migration of neuronal cells in the developing cerebral cortex is essential for proper development of the brain and brain networks. Disturbances in this process, due to genetic abnormalities or exogenous factors, leads to aberrant brain formation, brain network formation, and brain function. In the last decade, there has been extensive research in the field of neuronal migration. In this review, we describe different methods and approaches to assess and study neuronal migration in the developing cerebral cortex. First, we discuss several genetic methods, techniques and genetic models that have been used to study neuronal migration in the developing cortex. Second, we describe several molecular approaches to study aberrant neuronal migration in the cortex which can be used to elucidate the underlying mechanisms of neuronal migration. Finally, we describe model systems to investigate and assess the potential toxicity effect of prenatal exposure to environmental chemicals on proper brain formation and neuronal migration.

  4. Deciphering molecular determinants of chemotherapy in gastrointestinal malignancy using systems biology approaches.

    Science.gov (United States)

    Lin, Li-Ling; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2014-09-01

    Gastrointestinal cancers are asymptomatic in early tumor development, leading to high mortality rates. Peri- or postoperative chemotherapy is a common strategy used to prolong the life expectancy of patients with these diseases. Understanding the molecular mechanisms by which anticancer drugs exert their effect is crucial to the development of anticancer therapies, especially when drug resistance occurs and an alternative drug is needed. By integrating high-throughput techniques and computational modeling to explore biological systems at different levels, from gene expressions to networks, systems biology approaches have been successfully applied in various fields of cancer research. In this review, we highlight chemotherapy studies that reveal potential signatures using microarray analysis, next-generation sequencing (NGS), proteomic and metabolomic approaches for the treatment of gastrointestinal cancers.

  5. Computing the blood brain barrier (BBB) diffusion coefficient: A molecular dynamics approach

    Science.gov (United States)

    Shamloo, Amir; Pedram, Maysam Z.; Heidari, Hossein; Alasty, Aria

    2016-07-01

    Various physical and biological aspects of the Blood Brain Barrier (BBB) structure still remain unfolded. Therefore, among the several mechanisms of drug delivery, only a few have succeeded in breaching this barrier, one of which is the use of Magnetic Nanoparticles (MNPs). However, a quantitative characterization of the BBB permeability is desirable to find an optimal magnetic force-field. In the present study, a molecular model of the BBB is introduced that precisely represents the interactions between MNPs and the membranes of Endothelial Cells (ECs) that form the BBB. Steered Molecular Dynamics (SMD) simulations of the BBB crossing phenomenon have been carried out. Mathematical modeling of the BBB as an input-output system has been considered from a system dynamics modeling viewpoint, enabling us to analyze the BBB behavior based on a robust model. From this model, the force profile required to overcome the barrier has been extracted for a single NP from the SMD simulations at a range of velocities. Using this data a transfer function model has been obtained and the diffusion coefficient is evaluated. This study is a novel approach to bridge the gap between nanoscale models and microscale models of the BBB. The characteristic diffusion coefficient has the nano-scale molecular effects inherent, furthermore reducing the computational costs of a nano-scale simulation model and enabling much more complex studies to be conducted.

  6. A New Approach for Flexible Molecular Docking Based on Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Yi Fu

    2015-01-01

    Full Text Available Molecular docking methods play an important role in the field of computer-aided drug design. In the work, on the basis of the molecular docking program AutoDock, we present QLDock as a tool for flexible molecular docking. For the energy evaluation, the algorithm uses the binding free energy function that is provided by the AutoDock 4.2 tool. The new search algorithm combines the features of a quantum-behaved particle swarm optimization (QPSO algorithm and local search method of Solis and Wets for solving the highly flexible protein-ligand docking problem. We compute the interaction of 23 protein-ligand complexes and compare the results with those of the QDock and AutoDock programs. The experimental results show that our approach leads to substantially lower docking energy and higher docking precision in comparison to Lamarckian genetic algorithm and QPSO algorithm alone. QPSO-ls algorithm was able to identify the correct binding mode of 74% of the complexes. In comparison, the accuracy of QPSO and LGA is 52% and 61%, respectively. This difference in performance rises with increasing complexity of the ligand. Thus, the novel algorithm QPSO-ls may be used to dock ligand with many rotatable bonds with high accuracy.

  7. Molecular approach to genetic and epigenetic pathogenesisof early-onset colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Colorectal cancer (CRC) is the third most frequent cancertype and the incidence of this disease is increasinggradually per year in individuals younger than 50 yearsold. The current knowledge is that early-onset CRC(EOCRC) cases are heterogeneous population thatincludes both hereditary and sporadic forms of theCRC. Although EOCRC cases have some distinguishingclinical and pathological features than elder age CRC,the molecular mechanism underlying the EOCRC ispoorly clarified. Given the significance of CRC in theworld of medicine, the present review will focus on therecent knowledge in the molecular basis of genetic andepigenetic mechanism of the hereditary forms of EOCRC,which includes Lynch syndrome, Familial CRC type X,Familial adenomatous polyposis, MutYH-associatedpolyposis, Juvenile polyposis syndrome, Peutz-JeghersSyndrome and sporadic forms of EOCRC. Recent findingsabout molecular genetics and epigenetic basis of EOCRCgave rise to new alternative therapy protocols. Althoughexact diagnosis of these cases still remains complicated,the present review paves way for better predictions andcontributes to more accurate diagnostic and therapeuticstrategies into clinical approach.

  8. Molecular tailoring approach for exploring structures, energetics and properties of clusters

    Indian Academy of Sciences (India)

    Shridhar R Gadre; K V Jovan Jose; Anuja P Rahalkar

    2010-01-01

    Molecular Tailoring Approach (MTA) is a method developed for enabling ab initio calculations on prohibitively large molecules or atomic/molecular clusters. A brief review of MTA, a linear scaling technique based on set inclusion and exclusion principle, is provided. The Molecular Electrostatic Potential (MESP) of smaller clusters is exploited for building initial geometries for the larger ones, followed by MTA geometry optimization. The applications of MTA are illustrated with a few test cases such as (CO2) and Li clusters employing Density Functional theory (DFT) and a nanocluster of orthoboric acid at the Hartree-Fock (HF) level. Further, a discussion on the geometries and energetics of benzene tetramers and pentamers, treated at the Møller-Plesset second order (MP2) perturbation theory, is given. MTA model is employed for evaluating some cluster properties viz. adiabatic ionization potential, MESP, polarizability, Hessian matrix and infrared frequencies. These property evaluations are carried out on a series of test cases and are seen to offer quite good agreement with those computed by an actual calculation. These case studies highlight the advantages of MTA model calculations vis-à-vis the actual ones with reference to the CPU-time, memory requirements and accuracy.

  9. Chiral recognition of metalaxyl enantiomers by human serum albumin: evidence from molecular modeling and photophysical approach.

    Science.gov (United States)

    Ding, Fei; Li, Xiu-Nan; Diao, Jian-Xiong; Sun, Ye; Zhang, Li; Sun, Ying

    2012-06-01

    Metalaxyl is an acylamine fungicide, belonging to the most widely known member of the amide group. This task is aimed to scrutinize binding region and spatial structural change of principal vector human serum albumin (HSA) complex with (R)-/(S)-metalaxyl by exploiting molecular modeling, steady-state and time-resolved fluorescence, and circular dichroism (CD) approaches. According to molecular modeling, (R)-metalaxyl is situated within subdomains IIA and IIIA and the affinity of site I with (R)-metalaxyl is greater than site II, whereas (S)-metalaxyl is only located at subdomain IIA and the affinity of (S)-metalaxyl with site I is superior compared with that with (R)-metalaxyl. This coincides with the competitive ligand binding, guanidine hydrochloride-induced unfolding of protein, and hydrophobic 8-anilino-1-naphthalenesulfonic acid experiments; the acting forces between (R)-/(S)-metalaxyl and HSA are hydrophobic, π-π interactions, and hydrogen bonds, as derived from molecular modeling. Fluorescence emission manifested that the complex of (R)-/(S)-metalaxyl to HSA is the formation of adduct with an affinity of 10(4) M(-1), which corroborates the time-resolved fluorescence that the static type was operated. Furthermore, the changes of far-UV CD spectra evidence the polypeptide chain of HSA partially unfolded after conjugation with (R)-/(S)-metalaxyl. Through this work, we envisage that it can offer central clues on the biodistribution, absorption, and bioaccumulation of (R)-/(S)-metalaxyl. Copyright © 2012 Wiley Periodicals, Inc.

  10. Application of molecular biology at the approach of Bartter's syndrome: case report.

    Science.gov (United States)

    Reis, Geisilaine Soares Dos; Miranda, Débora Marques de; Pereira, Paula Cristina de Barros; Sarubi, Helena Cunha; Rodrigues, Luciana Bastos; Marco, Luiz Armando Cunha de; Silva, Ana Cristina Simões E

    2012-03-01

    This paper aims to show the utility of molecular biology for diagnose Bartter syndrome (BS) by the case report of two sisters and to propose a diagram for the molecular approach of this syndrome. The two reported cases presented prematurity, pregnancy complicated with polyhydramnio and low birth weight. During the first year of life, children exhibited polyuria, polydipsia and failure to thrive, leading to the investigation of renal tubular diseases and innate errors of metabolism. The laboratorial exams suggested BS, but the definitive diagnostic was only obtained by the detection of homozygous mutation on the exon 5 of the gene KCNJ1, resulting in a substitution of the aminoacid alanin for valin on codon 214 (A214V) in both DNA stripes in the two sisters and a heterozygous mutation in their parents. The definitive diagnostic of BS is frequently very difficult to be obtained. Consequently, considering the reported cases, we showed the utility of molecular techniques for the definitive diagnostic of BS and we proposed a diagram for the rational use of these techniques.

  11. An analytic approach to 2D electronic PE spectra of molecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Szoecs, V., E-mail: szocs@fns.uniba.sk [Institute of Chemistry, Comenius University, Mlynska dolina CH2, 842 15 Bratislava (Slovakia)

    2011-05-26

    Graphical abstract: The three-pulse photon echo (3P-PE) spectra of finite molecular systems using direct calculation from electronic Hamiltonians allows peak classification from 3P-PE spectra dynamics. Display Omitted Highlights: {yields} RWA approach to electronic photon echo. {yields} A straightforward calculation of 2D electronic spectrograms in finite molecular systems. {yields} Importance of population time dynamics in relation to inter-site coherent coupling. - Abstract: The three-pulse photon echo (3P-PE) spectra of finite molecular systems and simplified line broadening models is presented. The Fourier picture of a heterodyne detected three-pulse rephasing PE signal in the {delta}-pulse limit of the external field is derived in analytic form. The method includes contributions of one and two-excitonic states and allows direct calculation of Fourier PE spectrogram from corresponding Hamiltonian. As an illustration, the proposed treatment is applied to simple systems, e.g. 2-site two-level system (TLS) and n-site TLS model of photosynthetic unit. The importance of relation between Fourier picture of 3P-PE dynamics (corresponding to nonzero population time, T) and coherent inter-state coupling is emphasized.

  12. A novel molecular approach for tracing terrigenous dissolved organic matter into the deep ocean

    Science.gov (United States)

    Medeiros, Patricia M.; Seidel, Michael; Niggemann, Jutta; Spencer, Robert G. M.; Hernes, Peter J.; Yager, Patricia L.; Miller, William L.; Dittmar, Thorsten; Hansell, Dennis A.

    2016-05-01

    Marine dissolved organic matter (DOM) contains one of the largest exchangeable organic carbon pools on Earth. Riverine input represents an important source of DOM to the oceans, yet much remains to be learned about the fate of the DOM linking terrestrial to oceanic carbon cycles through rivers at the global scale. Here we use ultrahigh-resolution mass spectrometry to identify 184 molecular formulae that are indicators of riverine inputs (referred to as t-Peaks) and to track their distribution in the deep North Atlantic and North Pacific Oceans. The t-Peaks were found to be enriched in the Amazon River, to be highly correlated with known tracers of terrigenous input, and to be observed in all samples from four different rivers characterized by vastly different landscapes and vegetation coverage spanning equatorial (Amazon and Congo), subtropical (Altamaha), and Arctic (Kolyma) regions. Their distribution reveals that terrigenous organic matter is injected into the deep ocean by the global meridional overturning circulation, indicating that a fraction of the terrigenous DOM introduced by rivers contributes to the DOM pool observed in the deep ocean and to the storage of terrigenous organic carbon. This novel molecular approach can be used to further constrain the transfer of DOM from land to sea, especially considering that Fourier transform ion cyclotron resonance mass spectrometer analysis is becoming increasingly frequent in studies characterizing the molecular composition of DOM in lakes, rivers, and the ocean.

  13. Challenges to a molecular approach to prey identification in the Burmese python, Python molurus bivittatus

    Directory of Open Access Journals (Sweden)

    Bryan G. Falk

    2015-11-01

    Full Text Available Molecular approaches to prey identification are increasingly useful in elucidating predator–prey relationships, and we aimed to investigate the feasibility of these methods to document the species identities of prey consumed by invasive Burmese pythons in Florida. We were particularly interested in the diet of young snakes, because visual identification of prey from this size class has proven difficult. We successfully extracted DNA from the gastrointestinal contents of 43 young pythons, as well as from several control samples, and attempted amplification of DNA mini-barcodes, a 130-bp region of COX1. Using a PNA clamp to exclude python DNA, we found that prey DNA was not present in sufficient quality for amplification of this locus in 86% of our samples. All samples from the GI tracts of young pythons contained only hair, and the six samples we were able to identify to species were hispid cotton rats. This suggests that young Burmese pythons prey predominantly on small mammals and that prey diversity among snakes of this size class is low. We discuss prolonged gastrointestinal transit times and extreme gastric breakdown as possible causes of DNA degradation that limit the success of a molecular approach to prey identification in Burmese pythons.

  14. Integrating molecular and morphological approaches for characterizing parasite cryptic species: implications for parasitology.

    Science.gov (United States)

    Nadler, Steven A; DE León, Gerardo Pérez-Ponce

    2011-11-01

    Herein we review theoretical and methodological considerations important for finding and delimiting cryptic species of parasites (species that are difficult to recognize using traditional systematic methods). Applications of molecular data in empirical investigations of cryptic species are discussed from an historical perspective, and we evaluate advantages and disadvantages of approaches that have been used to date. Developments concerning the theory and practice of species delimitation are emphasized because theory is critical to interpretation of data. The advantages and disadvantages of different molecular methodologies, including the number and kind of loci, are discussed relative to tree-based approaches for detecting and delimiting cryptic species. We conclude by discussing some implications that cryptic species have for research programmes in parasitology, emphasizing that careful attention to the theory and operational practices involved in finding, delimiting, and describing new species (including cryptic species) is essential, not only for fully characterizing parasite biodiversity and broader aspects of comparative biology such as systematics, evolution, ecology and biogeography, but to applied research efforts that strive to improve development and understanding of epidemiology, diagnostics, control and potential eradication of parasitic diseases.

  15. Challenges to a molecular approach to prey identification in the Burmese python, Python molurus bivittatus.

    Science.gov (United States)

    Falk, Bryan G; Reed, Robert N

    2015-01-01

    Molecular approaches to prey identification are increasingly useful in elucidating predator-prey relationships, and we aimed to investigate the feasibility of these methods to document the species identities of prey consumed by invasive Burmese pythons in Florida. We were particularly interested in the diet of young snakes, because visual identification of prey from this size class has proven difficult. We successfully extracted DNA from the gastrointestinal contents of 43 young pythons, as well as from several control samples, and attempted amplification of DNA mini-barcodes, a 130-bp region of COX1. Using a PNA clamp to exclude python DNA, we found that prey DNA was not present in sufficient quality for amplification of this locus in 86% of our samples. All samples from the GI tracts of young pythons contained only hair, and the six samples we were able to identify to species were hispid cotton rats. This suggests that young Burmese pythons prey predominantly on small mammals and that prey diversity among snakes of this size class is low. We discuss prolonged gastrointestinal transit times and extreme gastric breakdown as possible causes of DNA degradation that limit the success of a molecular approach to prey identification in Burmese pythons.

  16. Challenges to a molecular approach to prey identification in the Burmese python, Python molurus bivittatus

    Science.gov (United States)

    Falk, Bryan; Reed, Robert N.

    2015-01-01

    Molecular approaches to prey identification are increasingly useful in elucidating predator–prey relationships, and we aimed to investigate the feasibility of these methods to document the species identities of prey consumed by invasive Burmese pythons in Florida. We were particularly interested in the diet of young snakes, because visual identification of prey from this size class has proven difficult. We successfully extracted DNA from the gastrointestinal contents of 43 young pythons, as well as from several control samples, and attempted amplification of DNA mini-barcodes, a 130-bp region of COX1. Using a PNA clamp to exclude python DNA, we found that prey DNA was not present in sufficient quality for amplification of this locus in 86% of our samples. All samples from the GI tracts of young pythons contained only hair, and the six samples we were able to identify to species were hispid cotton rats. This suggests that young Burmese pythons prey predominantly on small mammals and that prey diversity among snakes of this size class is low. We discuss prolonged gastrointestinal transit times and extreme gastric breakdown as possible causes of DNA degradation that limit the success of a molecular approach to prey identification in Burmese pythons

  17. Ab initio quantum mechanical/molecular mechanical simulation of electron transfer process: fractional electron approach.

    Science.gov (United States)

    Zeng, Xiancheng; Hu, Hao; Hu, Xiangqian; Cohen, Aron J; Yang, Weitao

    2008-03-28

    Electron transfer (ET) reactions are one of the most important processes in chemistry and biology. Because of the quantum nature of the processes and the complicated roles of the solvent, theoretical study of ET processes is challenging. To simulate ET processes at the electronic level, we have developed an efficient density functional theory (DFT) quantum mechanical (QM)/molecular mechanical (MM) approach that uses the fractional number of electrons as the order parameter to calculate the redox free energy of ET reactions in solution. We applied this method to study the ET reactions of the aqueous metal complexes Fe(H(2)O)(6)(2+/3+) and Ru(H(2)O)(6)(2+/3+). The calculated oxidation potentials, 5.82 eV for Fe(II/III) and 5.14 eV for Ru(II/III), agree well with the experimental data, 5.50 and 4.96 eV, for iron and ruthenium, respectively. Furthermore, we have constructed the diabatic free energy surfaces from histogram analysis based on the molecular dynamics trajectories. The resulting reorganization energy and the diabatic activation energy also show good agreement with experimental data. Our calculations show that using the fractional number of electrons (FNE) as the order parameter in the thermodynamic integration process leads to efficient sampling and validate the ab initio QM/MM approach in the calculation of redox free energies.

  18. Elucidating Mechanisms of Molecular Recognition Between Human Argonaute and miRNA Using Computational Approaches

    KAUST Repository

    Jiang, Hanlun

    2016-12-06

    MicroRNA (miRNA) and Argonaute (AGO) protein together form the RNA-induced silencing complex (RISC) that plays an essential role in the regulation of gene expression. Elucidating the underlying mechanism of AGO-miRNA recognition is thus of great importance not only for the in-depth understanding of miRNA function but also for inspiring new drugs targeting miRNAs. In this chapter we introduce a combined computational approach of molecular dynamics (MD) simulations, Markov state models (MSMs), and protein-RNA docking to investigate AGO-miRNA recognition. Constructed from MD simulations, MSMs can elucidate the conformational dynamics of AGO at biologically relevant timescales. Protein-RNA docking can then efficiently identify the AGO conformations that are geometrically accessible to miRNA. Using our recent work on human AGO2 as an example, we explain the rationale and the workflow of our method in details. This combined approach holds great promise to complement experiments in unraveling the mechanisms of molecular recognition between large, flexible, and complex biomolecules.

  19. A Network Biology Approach to Discover the Molecular Biomarker Associated with Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Liwei Zhuang

    2014-01-01

    Full Text Available In recent years, high throughput technologies such as microarray platform have provided a new avenue for hepatocellular carcinoma (HCC investigation. Traditionally, gene sets enrichment analysis of survival related genes is commonly used to reveal the underlying functional mechanisms. However, this approach usually produces too many candidate genes and cannot discover detailed signaling transduction cascades, which greatly limits their clinical application such as biomarker development. In this study, we have proposed a network biology approach to discover novel biomarkers from multidimensional omics data. This approach effectively combines clinical survival data with topological characteristics of human protein interaction networks and patients expression profiling data. It can produce novel network based biomarkers together with biological understanding of molecular mechanism. We have analyzed eighty HCC expression profiling arrays and identified that extracellular matrix and programmed cell death are the main themes related to HCC progression. Compared with traditional enrichment analysis, this approach can provide concrete and testable hypothesis on functional mechanism. Furthermore, the identified subnetworks can potentially be used as suitable targets for therapeutic intervention in HCC.

  20. Systems biological approach on neurological disorders: a novel molecular connectivity to aging and psychiatric diseases

    Directory of Open Access Journals (Sweden)

    Santosh Winkins

    2011-01-01

    Full Text Available Abstract Background Systems biological approach of molecular connectivity map has reached to a great interest to understand the gene functional similarities between the diseases. In this study, we developed a computational framework to build molecular connectivity maps by integrating mutated and differentially expressed genes of neurological and psychiatric diseases to determine its relationship with aging. Results The systematic large-scale analyses of 124 human diseases create three classes of molecular connectivity maps. First, molecular interaction of disease protein network generates 3632 proteins with 6172 interactions, which determines the common genes/proteins between diseases. Second, Disease-disease network includes 4845 positively scored disease-disease relationships. The comparison of these disease-disease pairs with Medical Subject Headings (MeSH classification tree suggests 25% of the disease-disease pairs were in same disease area. The remaining can be a novel disease-disease relationship based on gene/protein similarity. Inclusion of aging genes set showed 79 neurological and 20 psychiatric diseases have the strong association with aging. Third and lastly, a curated disease biomarker network was created by relating the proteins/genes in specific disease contexts, such analysis showed 73 markers for 24 diseases. Further, the overall quality of the results was achieved by a series of statistical methods, to avoid insignificant data in biological networks. Conclusions This study improves the understanding of the complex interactions that occur between neurological and psychiatric diseases with aging, which lead to determine the diagnostic markers. Also, the disease-disease association results could be helpful to determine the symptom relationships between neurological and psychiatric diseases. Together, our study presents many research opportunities in post-genomic biomarkers development.