WorldWideScience

Sample records for modulating oral microbial

  1. Research Progress on the Relationship Between Oral Microbial Community and Tumor

    Directory of Open Access Journals (Sweden)

    Ma Shujun

    2016-03-01

    Full Text Available Significant progress was observed in studies of the relationship between oral Helicobacter pylori and gastric cancer and tumors. Based on three distinct and close relationships, namely, the relationship between oral H. pylori and gastric cancer, between oral microbial communities and oral squamous cell carcinoma, and between oral microbial communities of human immunodeficiency virus-infected patients and tumors, this work reviews the relationship between oral microbial communities and tumors. This research also provides reference for further analysis of the relationship between oral microorganisms and tumors to realize early diagnosis of tumor patients through detecting oral microorganisms under adjuvant therapy.

  2. Oral chlorhexidine and microbial contamination during endoscopy

    DEFF Research Database (Denmark)

    Donatsky, Anders Meller; Holzknecht, Barbara Juliane; Arpi, Magnus

    2013-01-01

    BACKGROUND: One of the biggest concerns associated with transgastric surgery is contamination and risk of intra-abdominal infection with microbes introduced from the access route. The purpose of this study was to evaluate the effect of oral decontamination with chlorhexidine on microbial contamin......BACKGROUND: One of the biggest concerns associated with transgastric surgery is contamination and risk of intra-abdominal infection with microbes introduced from the access route. The purpose of this study was to evaluate the effect of oral decontamination with chlorhexidine on microbial...... contamination of the endoscope. METHODS: In a prospective, randomized, single-blinded, clinical trial the effect of chlorhexidine mouth rinse was evaluated. As a surrogate for the risk of intra-abdominal contamination during transgastric surgery, microbial contamination of the endoscope during upper endoscopy...... microbial contamination of the endoscope, but micro-organisms with abscess forming capabilities were still present. PPI treatment significantly increased CFU and should be discontinued before transgastric surgery....

  3. Acetaldehyde production and microbial colonization in oral squamous cell carcinoma and oral lichenoid disease.

    Science.gov (United States)

    Marttila, Emilia; Uittamo, Johanna; Rusanen, Peter; Lindqvist, Christian; Salaspuro, Mikko; Rautemaa, Riina

    2013-07-01

    The main aim of this prospective study was to explore the ability of the oral microbiome to produce acetaldehyde in ethanol incubation. A total of 90 patients [30 oral squamous cell carcinoma (OSCC); 30 oral lichenoid disease (OLD); 30 healthy controls (CO)] were enrolled in the study. Microbial samples were taken from the mucosa using a filter paper method. The density of microbial colonization was calculated and the spectrum analyzed. Microbial acetaldehyde production was measured by gas chromatography. The majority (68%) of cultures produced carcinogenic levels of acetaldehyde (>100 μM) when incubated with ethanol (22 mM). The mean acetaldehyde production by microbes cultured from smoker samples was significantly higher (213 μM) than from non-smoker samples (141 μM) (P=.0326). The oral microbiota from OSCC, OLD patients and healthy individuals are able to produce carcinogenic levels of acetaldehyde. The present provisional study suggests smoking may increase the production of acetaldehyde. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Ecological Effect of Arginine on Oral Microbiota.

    Science.gov (United States)

    Zheng, Xin; He, Jinzhi; Wang, Lin; Zhou, Shuangshuang; Peng, Xian; Huang, Shi; Zheng, Liwei; Cheng, Lei; Hao, Yuqing; Li, Jiyao; Xu, Jian; Xu, Xin; Zhou, Xuedong

    2017-08-03

    Dental caries is closely associated with the microbial dybiosis between acidogenic/aciduric pathogens and alkali-generating commensal bacteria colonized in the oral cavity. Our recent studies have shown that arginine may represent a promising anti-caries agent by modulating microbial composition in an in vitro consortium. However, the effect of arginine on the oral microbiota has yet to be comprehensively delineated in either clinical cohort or in vitro biofilm models that better represent the microbial diversity of oral cavity. Here, by employing a clinical cohort and a saliva-derived biofilm model, we demonstrated that arginine treatment could favorably modulate the oral microbiota of caries-active individuals. Specifically, treatment with arginine-containing dentifrice normalized the oral microbiota of caries-active individuals similar to that of caries-free controls in terms of microbial structure, abundance of typical species, enzymatic activities of glycolysis and alkali-generation related enzymes and their corresponding transcripts. Moreover, we found that combinatory use of arginine with fluoride could better enrich alkali-generating Streptococcus sanguinis and suppress acidogenic/aciduric Streptococcus mutans, and thus significantly retard the demineralizing capability of saliva-derived oral biofilm. Hence, we propose that fluoride and arginine have a potential synergistic effect in maintaining an eco-friendly oral microbial equilibrium in favor of better caries management.

  5. Reduced Oral Microbial Diversity in Individuals Harbor Periodontal Diseases

    Directory of Open Access Journals (Sweden)

    Jinghua Sun

    2012-02-01

    Full Text Available Introduction: Bacteria colonize a variety of surfaces of the hu-man body. The bacterial diversity in the oral cavity is estimated to be more than 700 different species. The oral cavity is home to microbial communities, with important implications for human health and disease. Oral microbial flora is responsible for two major human infectious diseases of the oral cavity, dental caries and periodontal diseases. From the clinical samples, previously, using polymerase chain reaction-based denaturing gradient gel electrophoresis (PCR-DGGE technique, we found a significantly greater diversity of oral microbes in caries-free individuals compared with caries-active individuals. The hypothesis: We hypothesize that a greater diversity of indigenous bacteria inhabits a healthy oral environment, and that a sig-nificant proportion of oral biota may be absent, suppressed, or replaced in a periodontal diseases environment. Evaluation of the hypothesis: The microbiota undergoes a transition from a commensal to a pathogenic relationship with the host due to factors that trigger a shift in the proportions of resident microorganisms. If our hypothesis is true, many techniques which were used to detect the oral bacterial diversity can be used in diagnosis and prognosis of periodontal diseases.

  6. Modulation of systemic immune responses through commensal gastrointestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Kyle M Schachtschneider

    Full Text Available Colonization of the gastrointestinal (GI tract is initiated during birth and continually seeded from the individual's environment. Gastrointestinal microorganisms play a central role in developing and modulating host immune responses and have been the subject of investigation over the last decades. Animal studies have demonstrated the impact of GI tract microbiota on local gastrointestinal immune responses; however, the full spectrum of action of early gastrointestinal tract stimulation and subsequent modulation of systemic immune responses is poorly understood. This study explored the utility of an oral microbial inoculum as a therapeutic tool to affect porcine systemic immune responses. For this study a litter of 12 pigs was split into two groups. One group of pigs was inoculated with a non-pathogenic oral inoculum (modulated, while another group (control was not. DNA extracted from nasal swabs and fecal samples collected throughout the study was sequenced to determine the effects of the oral inoculation on GI and respiratory microbial communities. The effects of GI microbial modulation on systemic immune responses were evaluated by experimentally infecting with the pathogen Mycoplasma hyopneumoniae. Coughing levels, pathology, toll-like receptors 2 and 6, and cytokine production were measured throughout the study. Sequencing results show a successful modulation of the GI and respiratory microbiomes through oral inoculation. Delayed type hypersensitivity responses were stronger (p = 0.07, and the average coughing levels and respiratory TNF-α variance were significantly lower in the modulated group (p<0.0001 and p = 0.0153, respectively. The M. hyopneumoniae infection study showed beneficial effects of the oral inoculum on systemic immune responses including antibody production, severity of infection and cytokine levels. These results suggest that an oral microbial inoculation can be used to modulate microbial communities, as well as

  7. Exploring the Association between Alzheimer's Disease, Oral Health, Microbial Endocrinology and Nutrition.

    Science.gov (United States)

    Harding, Alice; Gonder, Ulrike; Robinson, Sarita J; Crean, StJohn; Singhrao, Sim K

    2017-01-01

    Longitudinal monitoring of patients suggests a causal link between chronic periodontitis and the development of Alzheimer's disease (AD). However, the explanation of how periodontitis can lead to dementia remains unclear. A working hypothesis links extrinsic inflammation as a secondary cause of AD. This hypothesis suggests a compromised oral hygiene leads to a dysbiotic oral microbiome whereby Porphyromonas gingivalis , a keystone periodontal pathogen, with its companion species, orchestrates immune subversion in the host. Brushing and chewing on teeth supported by already injured soft tissues leads to bacteremias. As a result, a persistent systemic inflammatory response develops to periodontal pathogens. The pathogens, and the host's inflammatory response, subsequently lead to the initiation and progression of multiple metabolic and inflammatory co-morbidities, including AD. Insufficient levels of essential micronutrients can lead to microbial dysbiosis through the growth of periodontal pathogens such as demonstrated for P. gingivalis under low hemin bioavailability. An individual's diet also defines the consortium of microbial communities that take up residency in the oral and gastrointestinal (GI) tract microbiomes. Their imbalance can lead to behavioral changes. For example, probiotics enriched in Lactobacillus genus of bacteria, when ingested, exert some anti-inflammatory influence through common host/bacterial neurochemicals, both locally, and through sensory signaling back to the brain. Early life dietary behaviors may cause an imbalance in the host/microbial endocrinology through a dietary intake incompatible with a healthy GI tract microbiome later in life. This imbalance in host/microbial endocrinology may have a lasting impact on mental health. This observation opens up an opportunity to explore the mechanisms, which may underlie the previously detected relationship between diet, oral/GI microbial communities, to anxiety, cognition and sleep patterns

  8. Halitosis: An oral microbial faction

    Directory of Open Access Journals (Sweden)

    Rajiv Saini

    2010-01-01

    Full Text Available Halitosis is a widespread condition and believed to affect one-quarter of the population around the world; also, most people have this condition from time to time. Breath malodour may be an important factor in social communication, and therefore may be the origin of concern not only for a possible health condition but also for frequent psychological alterations, leading to social and personal isolation. The most conspicuous malodorous compounds are termed volatile sulphur compounds (VSCs, with hydrogen sulphide, methyl mercaptan, and dimethyl sulphide accounting for roughly 90% of the VSCs. A number of oral bacteria, especially Gram-negative anaerobic species found in the subgingival plaque, produce a diverse array of malodorous compounds as byproducts of their metabolism, including VSCs and short-chain organic acids. Assessment and management of halitosis is of paramount importance in enhancing the overall health; moreover, dentists play a significant role in combating halitosis by reducing the oral microbial stack. Thus, the aim of the present review was to describe the aetiological factors, assessment tools, and therapeutic approaches related to halitosis.

  9. study of oral and gingival microbial flora in institutionalized mentally

    African Journals Online (AJOL)

    boaz

    from the mouth and gingiva of 138 institutionalized mentally retarded patients of Sari to culture in specific media to ... Key words: Oral and gingival microbial flora, Mental retardation, D%, Sari ... staphylococcus aureus and, in case of negative.

  10. Exploring the Association between Alzheimer’s Disease, Oral Health, Microbial Endocrinology and Nutrition

    Science.gov (United States)

    Harding, Alice; Gonder, Ulrike; Robinson, Sarita J.; Crean, StJohn; Singhrao, Sim K.

    2017-01-01

    Longitudinal monitoring of patients suggests a causal link between chronic periodontitis and the development of Alzheimer’s disease (AD). However, the explanation of how periodontitis can lead to dementia remains unclear. A working hypothesis links extrinsic inflammation as a secondary cause of AD. This hypothesis suggests a compromised oral hygiene leads to a dysbiotic oral microbiome whereby Porphyromonas gingivalis, a keystone periodontal pathogen, with its companion species, orchestrates immune subversion in the host. Brushing and chewing on teeth supported by already injured soft tissues leads to bacteremias. As a result, a persistent systemic inflammatory response develops to periodontal pathogens. The pathogens, and the host’s inflammatory response, subsequently lead to the initiation and progression of multiple metabolic and inflammatory co-morbidities, including AD. Insufficient levels of essential micronutrients can lead to microbial dysbiosis through the growth of periodontal pathogens such as demonstrated for P. gingivalis under low hemin bioavailability. An individual’s diet also defines the consortium of microbial communities that take up residency in the oral and gastrointestinal (GI) tract microbiomes. Their imbalance can lead to behavioral changes. For example, probiotics enriched in Lactobacillus genus of bacteria, when ingested, exert some anti-inflammatory influence through common host/bacterial neurochemicals, both locally, and through sensory signaling back to the brain. Early life dietary behaviors may cause an imbalance in the host/microbial endocrinology through a dietary intake incompatible with a healthy GI tract microbiome later in life. This imbalance in host/microbial endocrinology may have a lasting impact on mental health. This observation opens up an opportunity to explore the mechanisms, which may underlie the previously detected relationship between diet, oral/GI microbial communities, to anxiety, cognition and sleep

  11. Exploring the Association between Alzheimer’s Disease, Oral Health, Microbial Endocrinology and Nutrition

    Directory of Open Access Journals (Sweden)

    Alice Harding

    2017-12-01

    Full Text Available Longitudinal monitoring of patients suggests a causal link between chronic periodontitis and the development of Alzheimer’s disease (AD. However, the explanation of how periodontitis can lead to dementia remains unclear. A working hypothesis links extrinsic inflammation as a secondary cause of AD. This hypothesis suggests a compromised oral hygiene leads to a dysbiotic oral microbiome whereby Porphyromonas gingivalis, a keystone periodontal pathogen, with its companion species, orchestrates immune subversion in the host. Brushing and chewing on teeth supported by already injured soft tissues leads to bacteremias. As a result, a persistent systemic inflammatory response develops to periodontal pathogens. The pathogens, and the host’s inflammatory response, subsequently lead to the initiation and progression of multiple metabolic and inflammatory co-morbidities, including AD. Insufficient levels of essential micronutrients can lead to microbial dysbiosis through the growth of periodontal pathogens such as demonstrated for P. gingivalis under low hemin bioavailability. An individual’s diet also defines the consortium of microbial communities that take up residency in the oral and gastrointestinal (GI tract microbiomes. Their imbalance can lead to behavioral changes. For example, probiotics enriched in Lactobacillus genus of bacteria, when ingested, exert some anti-inflammatory influence through common host/bacterial neurochemicals, both locally, and through sensory signaling back to the brain. Early life dietary behaviors may cause an imbalance in the host/microbial endocrinology through a dietary intake incompatible with a healthy GI tract microbiome later in life. This imbalance in host/microbial endocrinology may have a lasting impact on mental health. This observation opens up an opportunity to explore the mechanisms, which may underlie the previously detected relationship between diet, oral/GI microbial communities, to anxiety, cognition

  12. Location of Microbial Ecology Evaluation Device in Apollo Command Module

    Science.gov (United States)

    1971-01-01

    The location of the Microbial Ecology Evaluation Device (MEED) installed on the open hatch of the Apollo Command Module is illustrated in this photograph. The MEED, equipment of the Microbial Response in Space Environment experiment, will house a selection of microbial systems. The MEED will be deployed during the extravehicular activity on the transearth coast phase of the Aopllo 16 lunar landing mission. The purpose of the experiment will be to measure the effects of certain space environmental parameters on the microbial test systems.

  13. Microbial transformation from normal oral microbiota to acute endodontic infections

    Directory of Open Access Journals (Sweden)

    Hsiao William WL

    2012-07-01

    Full Text Available Abstract Background Endodontic infections are a leading cause of oro-facial pain and tooth loss in western countries, and may lead to severe life-threatening infections. These infections are polymicrobial with high bacterial diversity. Understanding the spatial transition of microbiota from normal oral cavities through the infected root canal to the acute periapical abscess can improve our knowledge of the pathogenesis of endodontic infections and lead to more effective treatment. We obtained samples from the oral cavity, infected root canal and periapical abscess of 8 patients (5 with localized and 3 with systemic infections. Microbial populations in these samples were analyzed using next-generation sequencing of 16S rRNA amplicons. Bioinformatics tools and statistical tests with rigorous criteria were used to elucidate the spatial transition of the microbiota from normal to diseased sites. Results On average, 10,000 partial 16S rRNA gene sequences were obtained from each sample. All sequences fell into 11 different bacterial phyla. The microbial diversity in root canal and abscess samples was significantly lower than in the oral samples. Streptococcus was the most abundant genus in oral cavities while Prevotella and Fusobacterium were most abundant in diseased samples. The microbiota community structures of root canal and abscess samples were, however, more similar to each other than to the oral cavity microbiota. Using rigorous criteria and novel bioinformatics tools, we found that Granulicatella adiacens, Eubacterium yurii, Prevotella melaninogenica, Prevotella salivae, Streptococcus mitis, and Atopobium rimae were over-represented in diseased samples. Conclusions We used a novel approach and high-throughput methodologies to characterize the microbiota associated normal and diseased oral sites in the same individuals.

  14. High‑throughput sequencing analyses of oral microbial diversity in healthy people and patients with dental caries and periodontal disease.

    Science.gov (United States)

    Chen, Tingtao; Shi, Yan; Wang, Xiaolei; Wang, Xin; Meng, Fanjing; Yang, Shaoguo; Yang, Jian; Xin, Hongbo

    2017-07-01

    Recurrence of oral diseases caused by antibiotics has brought about an urgent requirement to explore the oral microbial diversity in the human oral cavity. In the present study, the high‑throughput sequencing method was adopted to compare the microbial diversity of healthy people and oral patients and sequence analysis was performed by UPARSE software package. The Venn results indicated that a mean of 315 operational taxonomic units (OTUs) was obtained, and 73, 64, 53, 19 and 18 common OTUs belonging to Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria and Fusobacteria, respectively, were identified in healthy people. Moreover, the reduction of Firmicutes and the increase of Proteobacteria in the children group, and the increase of Firmicutes and the reduction of Proteobacteria in the youth and adult groups, indicated that the age bracket and oral disease had largely influenced the tooth development and microbial development in the oral cavity. In addition, the traditional 'pathogenic bacteria' of Firmicutes, Proteobacteria and Bacteroidetes (accounted for >95% of the total sequencing number in each group) indicated that the 'harmful' bacteria may exert beneficial effects on oral health. Therefore, the data will provide certain clues for curing some oral diseases by the strategy of adjusting the disturbed microbial compositions in oral disease to healthy level.

  15. Microbiële genetica: nieuwe mogelijkheden voor preventie en behandeling van (orale) infecties

    NARCIS (Netherlands)

    Deng, D.M.; Crielaard, W.

    2008-01-01

    Meer inzicht in de microbiële genetica van pathogene orale micro-organismen en een nieuw scala van moleculair genetische technieken hebben samen geleid tot andere strategieën in de ontwikkeling van antimicrobiële geneesmiddelen. In dit artikel wordt de belangrijke rol van de kennis van de microbiële

  16. The microbiology of oral lichen planus: Is microbial infection the cause of oral lichen planus?

    Science.gov (United States)

    Baek, K; Choi, Y

    2018-02-01

    Oral lichen planus (OLP) is a variant of lichen planus (LP), a common chronic mucocutaneous inflammatory disease. Cutaneous lesions of LP are self-limiting, but OLP lesions are non-remissive, alternating periods of exacerbation and quiescence, and only symptomatic treatments exist for OLP. The precise etiology and pathogenesis of OLP are hardly understood, which is a major obstacle to the development of new therapeutics for this disease. OLP is considered a T-cell-mediated inflammatory disease. Although various antigens have been considered, what actually triggers the inflammatory response of T cells is unknown. Suggested predisposing factors include genetic factors, stress, trauma, and infection. The aim of this review was to determine whether microbial infection can cause OLP. We first reviewed the association between OLP and microbial factors, including viral, fungal, and bacterial infections. In addition, each microbial factor associated with OLP was assessed by modified guidelines of Fredricks and Relman to determine whether it establishes a causal relationship. In conclusion, no microbial factor yet fulfills the guidelines to establish the causality of OLP. By focusing on the unclarified issues, however, the potential roles of microbial factors in the pathogenesis of OLP will be soon elucidated. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Oral microbial profiles of individuals with different levels of sugar intake

    DEFF Research Database (Denmark)

    Keller, Mette K; Kressirer, Christine A; Belstrøm, Daniel

    2017-01-01

    The aim was to compare the oral microbial profiles in young adults with an intake of free sugars above or below the current recommendations by the WHO for sugar consumption. Seventy subjects completed a Quantitative Food Frequency Questionnaire to establish the proportion of free sugars in relation...... and Prevotella melaninogenica was observed in plaque samples in the reference group. By qPCR, Scardovia wiggsiae was associated with elevated sugar intake. The findings suggests that the amount of ingested sugars had a marginal influence on microbial profiles in dental plaque and saliva. However, some caries...

  18. Unfolding Role of a Danger Molecule Adenosine Signaling in Modulation of Microbial Infection and Host Cell Response

    Directory of Open Access Journals (Sweden)

    Jaden S. Lee

    2018-01-01

    Full Text Available Ectonucleotidases CD39 and CD73, specific nucleotide metabolizing enzymes located on the surface of the host, can convert a pro-inflammatory environment driven by a danger molecule extracellular-ATP to an adenosine-mediated anti-inflammatory milieu. Accordingly, CD39/CD73 signaling has been strongly implicated in modulating the intensity, duration, and composition of purinergic danger signals delivered to host. Recent studies have eluted potential roles for CD39 and CD73 in selective triggering of a variety of host immune cells and molecules in the presence of pathogenic microorganisms or microbial virulence molecules. Growing evidence also suggests that CD39 and CD73 present complimentary, but likely differential, actions against pathogens to shape the course and severity of microbial infection as well as the associated immune response. Similarly, adenosine receptors A2A and A2B have been proposed to be major immunomodulators of adenosine signaling during chronic inflammatory conditions induced by opportunistic pathogens, such as oral colonizer Porphyromonas gingivalis. Therefore, we here review the recent studies that demonstrate how complex network of molecules in the extracellular adenosine signaling machinery and their interactions can reshape immune responses and may also be targeted by opportunistic pathogens to establish successful colonization in human mucosal tissues and modulate the host immune response.

  19. Oral mucosal lesions, microbial changes, and taste disturbances induced by adjuvant chemotherapy in breast cancer patients

    DEFF Research Database (Denmark)

    Jensen, Siri Beier; Mouridsen, Henning T.; Bergmann, Olav Jonas

    2008-01-01

    OBJECTIVE: The aim of the study was to examine oral mucosal lesions, microbial changes, and taste disturbances induced by adjuvant chemotherapy (CT) in breast cancer patients during and 1 year after treatment. STUDY DESIGN: Forty-five consecutive breast cancer patients, eligible for adjuvant CT...... with cyclophosphamide, epirubicin or methotrexate, and 5-fluorouracil were followed before, during, 6 months and 1 year after CT and were compared to a control group of 31 breast cancer patients not receiving adjuvant CT. RESULTS: During CT, oral mucosal lesions developed including erythema (n = 10, 22%) and ulceration...... (n = 7, 16%). Five patients (11%) were diagnosed with oral candidosis. Scores of dental bacterial plaque and gingival inflammation increased during CT and the oral microbial composition changed towards a more acidophilic flora. Taste disturbances were experienced by 84% (n = 38) of the patients...

  20. ON THE RELATIVE IMPORTANCE OF SPECIFIC AND NONSPECIFIC APPROACHES TO ORAL MICROBIAL ADHESION

    NARCIS (Netherlands)

    BUSSCHER, HJ; COWAN, MM; VANDERMEI, HC

    In this paper, it is suggested that specificity and non-specificity in (oral) microbial adhesion are different expressions for the same phenomena. It is argued that the same basic, physicochemical forces are responsible for so-called 'non-specific' and 'specific' binding and that from a

  1. Houttuynia cordata modulates oral innate immune mediators: potential role of herbal plant on oral health.

    Science.gov (United States)

    Satthakarn, S; Chung, W O; Promsong, A; Nittayananta, W

    2015-05-01

    Epithelial cells play an active role in oral innate immunity by producing various immune mediators. Houttuynia cordata Thunb (H. cordata), a herbal plant found in Asia, possesses many activities. However, its impacts on oral innate immunity have never been reported. The aim of this study was to determine the effects of H. cordata extract on the expression of innate immune mediators produced by oral epithelial cells. Primary gingival epithelial cells (GECs) were treated with various concentrations of the extract for 18 h. The gene expression of hBD2, SLPI, cytokines, and chemokines was measured using quantitative real-time RT-PCR. The secreted proteins in the culture supernatants were detected by ELISA or Luminex assay. Cytotoxicity of the extract was assessed using CellTiter-Blue Assay. H. cordata significantly induced the expression of hBD2, SLPI, IL-8, and CCL20 in a dose-dependent manner without cytotoxicity. The secreted hBD2 and SLPI proteins were modulated, and the levels of IL-2, IL-6, IL-8, and IFN-γ were significantly induced by the extract. Our data indicated that H. cordata can modulate oral innate immune mediators. These findings may lead to the development of new topical agents from H. cordata for the prevention and treatment of immune-mediated oral diseases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Onshore Wind Speed Modulates Microbial Aerosols along an Urban Waterfront

    Directory of Open Access Journals (Sweden)

    M. Elias Dueker

    2017-11-01

    Full Text Available Wind blowing over aquatic and terrestrial surfaces produces aerosols, which include microbial aerosols. We studied the effect of onshore wind speeds on aerosol concentrations as well as total and culturable microbial aerosols (bacterial and viral at an urban waterfront (New York, NY, United States of America. We used two distinct methods to characterize microbial aerosol responses to wind speed: A culture-based exposure-plate method measuring viable bacterial deposition near-shore (CFU accumulation rate; and a culture-independent aerosol sampler-based method measuring total bacterial and viral aerosols (cells m−3 air. While ambient coarse (>2 µm and fine (0.3–2 µm aerosol particle number concentrations (regulated indicators of air quality decreased with increasing onshore wind speeds, total and depositing culturable bacterial aerosols and total viral aerosols increased. Taxonomic identification of the 16S rDNA of bacterial aerosol isolates suggested both terrestrial and aquatic sources. Wind appears to increase microbial aerosol number concentrations in the near-shore environment by onshore transport at low wind speeds (<4 m s−1, and increased local production and transport of new microbial aerosols from adjacent water surfaces at higher wind speeds (>4 m s−1. This study demonstrates a wind-modulated microbial connection between water and air in the coastal urban environment, with implications for public health management and urban microbial ecology.

  3. Development and application of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    Science.gov (United States)

    Hong, E.; Park, Y.; Muirhead, R.; Jeong, J.; Pachepsky, Y. A.

    2017-12-01

    Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. Based on calibration and testing results, the APEX with the microbe module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water under various agricultural

  4. Modulation of neonatal microbial recognition: TLR-mediated innate immune responses are specifically and differentially modulated by human milk.

    Science.gov (United States)

    LeBouder, Emmanuel; Rey-Nores, Julia E; Raby, Anne-Catherine; Affolter, Michael; Vidal, Karine; Thornton, Catherine A; Labéta, Mario O

    2006-03-15

    The mechanisms controlling innate microbial recognition in the neonatal gut are still to be fully understood. We have sought specific regulatory mechanisms operating in human breast milk relating to TLR-mediated microbial recognition. In this study, we report a specific and differential modulatory effect of early samples (days 1-5) of breast milk on ligand-induced cell stimulation via TLRs. Although a negative modulation was exerted on TLR2 and TLR3-mediated responses, those via TLR4 and TLR5 were enhanced. This effect was observed in human adult and fetal intestinal epithelial cell lines, monocytes, dendritic cells, and PBMC as well as neonatal blood. In the latter case, milk compensated for the low capacity of neonatal plasma to support responses to LPS. Cell stimulation via the IL-1R or TNFR was not modulated by milk. This, together with the differential effect on TLR activation, suggested that the primary effect of milk is exerted upstream of signaling proximal to TLR ligand recognition. The analysis of TLR4-mediated gene expression, used as a model system, showed that milk modulated TLR-related genes differently, including those coding for signal intermediates and regulators. A proteinaceous milk component of > or =80 kDa was found to be responsible for the effect on TLR4. Notably, infant milk formulations did not reproduce the modulatory activity of breast milk. Together, these findings reveal an unrecognized function of human milk, namely, its capacity to influence neonatal microbial recognition by modulating TLR-mediated responses specifically and differentially. This in turn suggests the existence of novel mechanisms regulating TLR activation.

  5. The 'sialo-microbial-dental complex' in oral health and disease.

    Science.gov (United States)

    Kaidonis, John; Townsend, Grant

    2016-01-01

    Biofilms are naturally found in all wet environments including the oral structures of nearly all species. Human oral biofilms have existed since our earliest ancestors and have evolved symbiotically with the dentition over many millennia within a Palaeolithic, hunter-gatherer setting. Irrespective of the plant-animal ratio, it can be argued that the Palaeolithic diet was essentially acidic, and acted as a selective force for much of the evolution of the stomatognathic system. The relationship between saliva, biofilm and teeth, the 'sialo-microbial-dental complex', provides oral health benefits and offers a different perspective to the old dental paradigm that only associated oral biofilms (plaque) with disease (caries). This new paradigm emphasises that oral biofilms are essential for the 'mineral maintenance' of teeth. Oral biofilms provide physical protection from dietary acid and together with bacterial metabolic acids cause the resting pH of the biofilm to fall below neutral. This is then followed by the re-establishment of a neutral environment by chemical interactions mediated by the saliva within the biofilm. Such pH fluctuations are often responsible for the cyclic demineralisation, then remineralisation of teeth, a process necessary for tooth maturation. However, since the advent of farming and especially since the industrial revolution, the increase in consumption of carbohydrates, refined sugars and acidic drinks has changed the ecology of biofilms. Biofilm biodiversity is significantly reduced together with a proliferation of acidogenic and aciduric organisms, tipping the balance of the 'demin-remin' cycle towards net mineral loss and hence caries. In addition, the consumption of acidic drinks in today's societies has removed the protective nature of the biofilm, leading to erosion. Erosion and caries are 'modern-day' diseases and reflect an imbalance within the oral biofilm resulting in the demineralisation of teeth. Copyright © 2015 The Authors

  6. Alterations in oral microbial flora induced by waterpipe tobacco smoking

    Directory of Open Access Journals (Sweden)

    Shakhatreh MAK

    2018-02-01

    Full Text Available Muhamad Ali K Shakhatreh,1 Omar F Khabour,1 Karem H Alzoubi,2 Majed M Masadeh,3 Emad I Hussein,4 George N Bshara1 1Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Irbid, Jordan; 2Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan; 3Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan; 4Department of Biological Sciences, Yarmouk University, Irbid, Jordan Background: Waterpipe smoking is a global health problem and a serious public concern. Little is known about the effects of waterpipe smoking on oral health. In the current study, we examined the alterations of oral microbial flora by waterpipe smoking. Methods: One hundred adult healthy subjects (59 waterpipe smokers and 41 non-smokers were recruited into the study. Swabs were taken from the oral cavity and subgingival regions. Standard culturing techniques were used to identify types, frequency, and mean number of microorganisms in cultures obtained from the subjects. Results: It was notable that waterpipe smokers were significantly associated with a history of oral infections. In subgingiva, Acinetobacter and Moraxella species were present only in waterpipe smokers. In addition, the frequency of Candida albicans was higher in the subgingiva of waterpipe smokers (p = 0.023 while the frequency of Fusobacterium nucleatum was significantly lower in the subgingiva of waterpipe smokers (p = 0.036. However, no change was observed in other tested bacteria, such as Campylobacter species; Viridans group streptococci, Enterobacteriaceae, and Staphylococcus aureus. In oral cavity and when colony-forming units were considered, the only bacterial species that showed significant difference were the black-pigmented bacteria (p < 0.001. Conclusion: This study provides evidence indicating that some of the oral microflora is significantly altered by

  7. Oral administration of Saccharomyces boulardii ameliorates carbon tetrachloride-induced liver fibrosis in rats via reducing intestinal permeability and modulating gut microbial composition.

    Science.gov (United States)

    Li, Ming; Zhu, Lin; Xie, Ao; Yuan, Jieli

    2015-02-01

    To investigate the effects of orally administrated Saccharomyces boulardii (S. boulardii) on the progress of carbon tetrachloride (CCl4)-induced liver fibrosis, 34 male Wistar rats were randomly divided into four experimental groups including the control group (n = 8), the cirrhotic group (n = 10), the preventive group (n = 8), and the treatment group (n = 8). Results showed that the liver expression levels of collagen, type I, alpha 1 (Col1A1), alpha smooth muscle actin (αSMA), transforming growth factor beta (TGF-β) and the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) increased significantly in cirrhotic rats compared with control and decreased by S. boulardii administration. Treatment of S. boulardii also attenuated the increased endotoxin levels and pro-inflammatory cytokines in CCl4-treated rats. And, these were associated with the changes of intestinal permeability and fecal microbial composition. Our study suggested that oral administration of S. boulardii can promote the liver function of CCl4-treated rats, and the preventive treatment of this probiotic yeast may decelerate the progress of liver fibrosis.

  8. Oral Probiotics Alter Healthy Feline Respiratory Microbiota.

    Science.gov (United States)

    Vientós-Plotts, Aida I; Ericsson, Aaron C; Rindt, Hansjorg; Reinero, Carol R

    2017-01-01

    Probiotics have been advocated as a novel therapeutic approach to respiratory disease, but knowledge of how oral administration of probiotics influences the respiratory microbiota is needed. Using 16S rRNA amplicon sequencing of bacterial DNA our objective was to determine whether oral probiotics changed the composition of the upper and lower airway, rectal, and blood microbiota. We hypothesized that oral probiotics would modulate the respiratory microbiota in healthy cats, demonstrated by the detection and/or increased relative abundance of the probiotic bacterial species and altered composition of the microbial population in the respiratory tract. Six healthy young research cats had oropharyngeal (OP), bronchoalveolar lavage fluid (BALF), rectal, and blood samples collected at baseline and 4 weeks after receiving oral probiotics. 16S rRNA gene amplicon libraries were sequenced, and coverage, richness, and relative abundance of representative operational taxonomic units (OTUs) were determined. Hierarchical and principal component analyses (PCA) demonstrated relatedness of samples. Mean microbial richness significantly increased only in the upper and lower airways. The number of probiotic OTUs (out of 5 total) that significantly increased in relative abundance vs. baseline was 5 in OP, 3 in BAL and 2 in feces. Using hierarchical clustering, BALF and blood samples grouped together after probiotic administration, and PERMANOVA supported that these two sites underwent significant changes in microbial composition. PERMANOVA revealed that OP and rectal samples had microbial population compositions that did not significantly change. These findings were visualized via PCA, which revealed distinct microbiomes in each site; samples clustered more tightly at baseline and had more variation after probiotic administration. This is the first study describing the effect of oral probiotics on the respiratory microbiota via detection of probiotic species in the airways. Finding

  9. Oral Probiotics Alter Healthy Feline Respiratory Microbiota

    Directory of Open Access Journals (Sweden)

    Aida I. Vientós-Plotts

    2017-07-01

    Full Text Available Probiotics have been advocated as a novel therapeutic approach to respiratory disease, but knowledge of how oral administration of probiotics influences the respiratory microbiota is needed. Using 16S rRNA amplicon sequencing of bacterial DNA our objective was to determine whether oral probiotics changed the composition of the upper and lower airway, rectal, and blood microbiota. We hypothesized that oral probiotics would modulate the respiratory microbiota in healthy cats, demonstrated by the detection and/or increased relative abundance of the probiotic bacterial species and altered composition of the microbial population in the respiratory tract. Six healthy young research cats had oropharyngeal (OP, bronchoalveolar lavage fluid (BALF, rectal, and blood samples collected at baseline and 4 weeks after receiving oral probiotics. 16S rRNA gene amplicon libraries were sequenced, and coverage, richness, and relative abundance of representative operational taxonomic units (OTUs were determined. Hierarchical and principal component analyses (PCA demonstrated relatedness of samples. Mean microbial richness significantly increased only in the upper and lower airways. The number of probiotic OTUs (out of 5 total that significantly increased in relative abundance vs. baseline was 5 in OP, 3 in BAL and 2 in feces. Using hierarchical clustering, BALF and blood samples grouped together after probiotic administration, and PERMANOVA supported that these two sites underwent significant changes in microbial composition. PERMANOVA revealed that OP and rectal samples had microbial population compositions that did not significantly change. These findings were visualized via PCA, which revealed distinct microbiomes in each site; samples clustered more tightly at baseline and had more variation after probiotic administration. This is the first study describing the effect of oral probiotics on the respiratory microbiota via detection of probiotic species in the

  10. Development and evaluation of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    Science.gov (United States)

    Hong, Eun-Mi; Park, Yongeun; Muirhead, Richard; Pachepsky, Yakov

    2017-04-01

    Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. The total number of removed bacteria was set to the concentrations of bacteria in soil-manure mixing layer and eroded manure amount. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. The stream network of the watershed ran through grazing lands with the daily bovine waste deposition. Based on calibration and testing results, the APEX with the microbe module

  11. Developing a servicelearning module for oral health: A needs assessment

    Directory of Open Access Journals (Sweden)

    R Ebrahim

    2017-03-01

    Full Text Available Background. Service learning (SL as a pedagogy in higher education must be differentiated from other services with a primarily philanthropic intent. Dental therapy and oral hygiene students at Sefako Makgatho Health Sciences University, School of Oral Health Sciences, Pretoria, South Africa visit community sites during their 2nd year of study. However, the current curricula would need restructuring for alignment with the espoused pedagogy and standards of SL. Such an SL curriculum design would thus allow for the provision of meaningful services to communities as an integral component of these programmes.Objective. To explore (i perceptions of 2nd-year oral health students; and (ii opinions of academics with regard to the need for an SL module.Methods. Purposive sampling was used to conduct two focus group discussions with academics involved in curriculum development (n=11 and students who had previous exposure to communities (n=10. A survey containing open-ended questions was completed by 9 academics, who would implement the proposed SL module. Frequencies were calculated and data from the open questions were analysed for emergent themes.Results. Most academics (89%, n=8 indicated that working effectively with others as members of a team and developing cultural sensitivity were achievable from an SL module. Two themes emerged from the focus groups, i.e. (i enhanced teaching and learning – students could apply theoretical and clinical training in an authentic setting; and (ii standardisation of training – an SL module would ensure consistency when engaging with communities.Conclusion. The needs assessment was valuable to inform the development and implementation of the SL module.

  12. Comparative analyses identified species-specific functional roles in oral microbial genomes

    Science.gov (United States)

    Chen, Tsute; Gajare, Prasad; Olsen, Ingar; Dewhirst, Floyd E.

    2017-01-01

    ABSTRACT The advent of next generation sequencing is producing more genomic sequences for various strains of many human oral microbial species and allows for insightful functional comparisons at both intra- and inter-species levels. This study performed in-silico functional comparisons for currently available genomic sequences of major species associated with periodontitis including Aggregatibacter actinomycetemcomitans (AA), Porphyromonas gingivalis (PG), Treponema denticola (TD), and Tannerella forsythia (TF), as well as several cariogenic and commensal streptococcal species. Complete or draft sequences were annotated with the RAST to infer structured functional subsystems for each genome. The subsystems profiles were clustered to groups of functions with similar patterns. Functional enrichment and depletion were evaluated based on hypergeometric distribution to identify subsystems that are unique or missing between two groups of genomes. Unique or missing metabolic pathways and biological functions were identified in different species. For example, components involved in flagellar motility were found only in the motile species TD, as expected, with few exceptions scattered in several streptococcal species, likely associated with chemotaxis. Transposable elements were only found in the two Bacteroidales species PG and TF, and half of the AA genomes. Genes involved in CRISPR were prevalent in most oral species. Furthermore, prophage related subsystems were also commonly found in most species except for PG and Streptococcus mutans, in which very few genomes contain prophage components. Comparisons between pathogenic (P) and nonpathogenic (NP) genomes also identified genes potentially important for virulence. Two such comparisons were performed between AA (P) and several A. aphrophilus (NP) strains, and between S. mutans + S. sobrinus (P) and other oral streptococcal species (NP). This comparative genomics approach can be readily used to identify functions unique to

  13. Cross-reactive microbial peptides can modulate HIV-specific CD8+ T cell responses.

    Directory of Open Access Journals (Sweden)

    Christopher W Pohlmeyer

    Full Text Available Heterologous immunity is an important aspect of the adaptive immune response. We hypothesized that this process could modulate the HIV-1-specific CD8+ T cell response, which has been shown to play an important role in HIV-1 immunity and control. We found that stimulation of peripheral blood mononuclear cells (PBMCs from HIV-1-positive subjects with microbial peptides that were cross-reactive with immunodominant HIV-1 epitopes resulted in dramatic expansion of HIV-1-specific CD8+ T cells. Interestingly, the TCR repertoire of HIV-1-specific CD8+ T cells generated by ex vivo stimulation of PBMCs using HIV-1 peptide was different from that of cells stimulated with cross-reactive microbial peptides in some HIV-1-positive subjects. Despite these differences, CD8+ T cells stimulated with either HIV-1 or cross-reactive peptides effectively suppressed HIV-1 replication in autologous CD4+ T cells. These data suggest that exposure to cross-reactive microbial antigens can modulate HIV-1-specific immunity.

  14. Developing a service-learning module for oral health: A needs assessment

    Directory of Open Access Journals (Sweden)

    R Ebrahim

    2017-03-01

    Full Text Available Background. Service learning (SL as a pedagogy in higher education must be differentiated from other services with a primarily philanthropic intent. Dental therapy and oral hygiene students at Sefako Makgatho Health Sciences University, School of Oral Health Sciences, Pretoria, South Africa visit community sites during their 2nd year of study. However, the current curricula would need restructuring for alignment with the espoused pedagogy and standards of SL. Such an SL curriculum design would thus allow for the provision of meaningful services to communities as an integral component of these programmes. Objective. To explore (i perceptions of 2nd-year oral health students; and (ii opinions of academics with regard to the need for an SL module. Methods. Purposive sampling was used to conduct two focus group discussions with academics involved in curriculum development (n=11 and students who had previous exposure to communities (n=10. A survey containing open-ended questions was completed by 9 academics, who would implement the proposed SL module. Frequencies were calculated and data from the open questions were analysed for emergent themes. Results. Most academics (89%, n=8 indicated that working effectively with others as members of a team and developing cultural sensitivity were achievable from an SL module. Two themes emerged from the focus groups, i.e. (i enhanced teaching and learning – students could apply theoretical and clinical training in an authentic setting; and (ii standardisation of training – an SL module would ensure consistency when engaging with communities. Conclusion. The needs assessment was valuable to inform the development and implementation of the SL module.

  15. Habitat Fragmentation can Modulate Drought Effects on the Plant-soil-microbial System in Mediterranean Holm Oak (Quercus ilex) Forests.

    Science.gov (United States)

    Flores-Rentería, Dulce; Curiel Yuste, Jorge; Rincón, Ana; Brearley, Francis Q; García-Gil, Juan Carlos; Valladares, Fernando

    2015-05-01

    Ecological transformations derived from habitat fragmentation have led to increased threats to above-ground biodiversity. However, the impacts of forest fragmentation on soils and their microbial communities are not well understood. We examined the effects of contrasting fragment sizes on the structure and functioning of soil microbial communities from holm oak forest patches in two bioclimatically different regions of Spain. We used a microcosm approach to simulate the annual summer drought cycle and first autumn rainfall (rewetting), evaluating the functional response of a plant-soil-microbial system. Forest fragment size had a significant effect on physicochemical characteristics and microbial functioning of soils, although the diversity and structure of microbial communities were not affected. The response of our plant-soil-microbial systems to drought was strongly modulated by the bioclimatic conditions and the fragment size from where the soils were obtained. Decreasing fragment size modulated the effects of drought by improving local environmental conditions with higher water and nutrient availability. However, this modulation was stronger for plant-soil-microbial systems built with soils from the northern region (colder and wetter) than for those built with soils from the southern region (warmer and drier) suggesting that the responsiveness of the soil-plant-microbial system to habitat fragmentation was strongly dependent on both the physicochemical characteristics of soils and the historical adaptation of soil microbial communities to specific bioclimatic conditions. This interaction challenges our understanding of future global change scenarios in Mediterranean ecosystems involving drier conditions and increased frequency of forest fragmentation.

  16. Impact of temperature and time storage on the microbial detection of oral samples by Checkerboard DNA-DNA hybridization method.

    Science.gov (United States)

    do Nascimento, Cássio; dos Santos, Janine Navarro; Pedrazzi, Vinícius; Pita, Murillo Sucena; Monesi, Nadia; Ribeiro, Ricardo Faria; de Albuquerque, Rubens Ferreira

    2014-01-01

    Molecular diagnosis methods have been largely used in epidemiological or clinical studies to detect and quantify microbial species that may colonize the oral cavity in healthy or disease. The preservation of genetic material from samples remains the major challenge to ensure the feasibility of these methodologies. Long-term storage may compromise the final result. The aim of this study was to evaluate the effect of temperature and time storage on the microbial detection of oral samples by Checkerboard DNA-DNA hybridization. Saliva and supragingival biofilm were taken from 10 healthy subjects, aliquoted (n=364) and processed according to proposed protocols: immediate processing and processed after 2 or 4 weeks, and 6 or 12 months of storage at 4°C, -20°C and -80°C. Either total or individual microbial counts were recorded in lower values for samples processed after 12 months of storage, irrespective of temperatures tested. Samples stored up to 6 months at cold temperatures showed similar counts to those immediately processed. The microbial incidence was also significantly reduced in samples stored during 12 months in all temperatures. Temperature and time of oral samples storage have relevant impact in the detection and quantification of bacterial and fungal species by Checkerboard DNA-DNA hybridization method. Samples should be processed immediately after collection or up to 6 months if conserved at cold temperatures to avoid false-negative results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A Pilot test of an oral health education module for community health ...

    African Journals Online (AJOL)

    Objectives: The purpose of this paper is to report the experience of developing, facilitating, and evaluating a 3-day module on oral health education for Primary Health Care Workers (CHW) in Ikeja LGA Lagos State. Methods: Twenty-one CHW in Ikeja LGA were invited for a 3-day oral health education-training program in ...

  18. Oral microbial profile discriminates breast-fed from formula-fed infants.

    Science.gov (United States)

    Holgerson, Pernilla L; Vestman, Nelly R; Claesson, Rolf; Ohman, Carina; Domellöf, Magnus; Tanner, Anne C R; Hernell, Olle; Johansson, Ingegerd

    2013-02-01

    Little is known about the effect of diet on the oral microbiota of infants, although diet is known to affect the gut microbiota. The aims of the present study were to compare the oral microbiota in breast-fed and formula-fed infants, and investigate growth inhibition of streptococci by infant-isolated lactobacilli. A total of 207 mothers consented to participation of their 3-month-old infants. A total of 146 (70.5%) infants were exclusively and 38 (18.4%) partially breast-fed, and 23 (11.1%) were exclusively formula-fed. Saliva from all of their infants was cultured for Lactobacillus species, with isolate identifications from 21 infants. Lactobacillus isolates were tested for their ability to suppress Streptococcus mutans and S sanguinis. Oral swabs from 73 infants were analysed by the Human Oral Microbe Identification Microarray (HOMIM) and by quantitative polymerase chain reaction for Lactobacillus gasseri. Lactobacilli were cultured from 27.8% of exclusively and partially breast-fed infants, but not from formula-fed infants. The prevalence of 14 HOMIM-detected taxa, and total salivary lactobacilli counts differed by feeding method. Multivariate modelling of HOMIM-detected bacteria and possible confounders clustered samples from breast-fed infants separately from formula-fed infants. The microbiota of breast-fed infants differed based on vaginal or C-section delivery. Isolates of L plantarum, L gasseri, and L vaginalis inhibited growth of the cariogenic S mutans and the commensal S sanguinis: L plantarum >L gasseri >L vaginalis. The microbiota of the mouth differs between 3-month-old breast-fed and formula-fed infants. Possible mechanisms for microbial differences observed include species suppression by lactobacilli indigenous to breast milk.

  19. Role of Fusobacterium nucleatum and Coaggregation in Anaerobe Survival in Planktonic and Biofilm Oral Microbial Communities during Aeration

    OpenAIRE

    Bradshaw, David J.; Marsh, Philip D.; Watson, G. Keith; Allison, Clive

    1998-01-01

    Coaggregation is a well-characterized phenomenon by which specific pairs of oral bacteria interact physically. The aim of this study was to examine the patterns of coaggregation between obligately anaerobic and oxygen-tolerant species that coexist in a model oral microbial community. Obligate anaerobes other than Fusobacterium nucleatum coaggregated only poorly with oxygen-tolerant species. In contrast, F. nucleatum was able to coaggregate not only with both oxygen-tolerant and other obligate...

  20. Where do the immunostimulatory effects of oral proteolytic enzymes ('systemic enzyme therapy') come from? Microbial proteolysis as a possible starting point.

    Science.gov (United States)

    Biziulevicius, Gediminas A

    2006-01-01

    Enteric-coated proteolytic enzyme preparations like Wobenzym and Phlogenzym are widely used for the so-called 'systemic enzyme therapy' both in humans and animals. Numerous publications reveal that oral proteolytic enzymes are able to stimulate directly the activity of immune competent cells as well as to increase efficiency of some of their products. But origins of the immunostimulatory effects of oral proteolytic enzymes are still unclear. The hypothesis described here suggests that it may be proteolysis of intestinal microorganisms that makes the immune competent cells to work in the immunostimulatory manner. The hypothesis was largely formed by several scientific observations: First, microbial lysis products (lipopolysaccharides, muropeptides and other peptidoglycan fragments, beta-glucans, etc.) are well known for their immunostimulatory action. Second, a normal human being hosts a mass of intestinal microorganisms equivalent to about 1 kg. The biomass (mainly due to naturally occurring autolysis) continuously supplies the host's organism with immunostimulatory microbial cell components. Third, the immunostimulatory effects resulting from the oral application of exogenously acting antimicrobial (lytic) enzyme preparations, such as lysozyme and lysosubtilin, are likely to be a result of the action of microbial lysis products. Fourth, cell walls of most microorganisms contain a considerable amount of proteins/peptides, a possible target for exogenous proteolytic enzymes. In fact, several authors have already shown that a number of proteases possess an ability to lyse the microbial cells in vitro. Fifth, the pretreatment of microbial cells (at least of some species) in vitro with proteolytic enzymes makes them more sensitive to the lytic action of lysozyme and, otherwise, pretreatment with lysozyme makes them more susceptible to proteolytic degradation. Sixth, exogenous proteases, when in the intestines, may participate in final steps of food-protein digestion

  1. Effects of intensity-modulated radiotherapy on human oral microflora

    International Nuclear Information System (INIS)

    Shao Ziyang; Tang Zisheng; Jiang Yuntao; Ma Rui; Liu Zheng; Huang Zhengwei; Yan Chao

    2011-01-01

    This study aimed to evaluate changes in the biodiversity of the oral microflora of patients with head and neck cancer treated with postoperative intensity-modulated radiotherapy (IMRT) or conventional radiotherapy (CRT). Pooled dental plaque samples were collected during the radiation treatment from patients receiving IMRT (n=13) and CRT (n=12). Denaturing gradient gel electrophoresis (DGGE) was used to analyze the temporal variation of these plaque samples. The stimulated and unstimulated salivary flow rates were also compared between IMRT and CRT patients. Reductions in the severity of hyposalivation were observed in IMRT patients compared with CRT patients. We also observed that the temporal stability of the oral ecosystem was significantly higher in the IMRT group (69.96±7.82%) than in the CRT group (51.98±10.45%) (P<0.05). The findings of the present study suggest that IMRT is more conducive to maintaining the relative stability of the oral ecosystem than CRT. (author)

  2. Microbiological Profile of Oral Infections in Diabetic Patients and ...

    African Journals Online (AJOL)

    Background: Oral microbial flora is increasingly being incriminated in oral infections. There is paucity of information on the importance of aerobic oral flora in diabetes. The purpose of this study was to compare aerobic oral microbial flora in diabetics and non-diabetics and to relate these microbes with oral infections.

  3. Towards understanding oral health

    NARCIS (Netherlands)

    Zaura, E.; ten Cate, J.M.

    2015-01-01

    During the last century, dental research has focused on unraveling the mechanisms behind various oral pathologies, while oral health was typically described as the mere absence of oral diseases. The term ‘oral microbial homeostasis' is used to describe the capacity of the oral ecosystem to maintain

  4. The impact of an oral hygiene education module on patient practices and nursing documentation.

    Science.gov (United States)

    Coke, Lola; Otten, Karine; Staffileno, Beth; Minarich, Laura; Nowiszewski, Candice

    2015-02-01

    Oral hygiene is inconsistent among patients with cancer and is a national patient care issue. To promote comfort and nutritional status, oral hygiene for patients with cancer is important. The purpose of this study was to develop an evidence-based oral hygiene educational module (EM) for nursing and patient care technician (PCT) staff to promote consistent oral hygiene patient education; evaluate patient understanding of oral hygiene practices post-EM; and determine staff documentation frequency of oral hygiene care. Pre- and post-EM data were collected using a developed oral hygiene assessment tool; nursing documentation data were collected by chart review. Post-EM data were collected eight weeks post-EM. Data were analyzed using frequencies and the Mann-Whitney U test. Twenty-two patient documentation pairs were collected. Compared to pre-EM, admission teaching, patient education, and patient oral hygiene practices improved post-EM. Post-EM oral hygiene documentation and PCT teaching increased.

  5. Perturbation of neonatal microbial gut community by peripartum antibiotics in wistar rats lead to decreased weight gain

    DEFF Research Database (Denmark)

    Tulstrup, Monica Vera-Lise; Bahl, Martin Iain; Roager, Henrik Munch

    2016-01-01

    orally to either mothers or young children to treat or prevent bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, as it disrupts the intricate balance between specific bacterial groups within this ecosystem......, potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by peripartum antibiotics affects intestinal microbial composition and general health of the offspring. To address this, 33 pregnant Wistar rats were dosed by oral gavage with either amoxicillin......H as well as spleen size than control animals. Offspring were dissected at different time points and significant changes in liver, spleen and epididymal fat were measured between groups. Composition of the gut microbiota, alpha diversity, caecum short chain fatty acid levels, caloric contents of faeces...

  6. Effect of probiotic-fermented milk administration on gastrointestinal survival of Lactobacillus casei ATCC 393 and modulation of intestinal microbial flora.

    Science.gov (United States)

    Sidira, Marianthi; Galanis, Alex; Ypsilantis, Petros; Karapetsas, Athanasios; Progaki, Zoi; Simopoulos, Constantinos; Kourkoutas, Yiannis

    2010-01-01

    The aim of the present study was to assess the survival of free and immobilized Lactobacillus casei ATCC 393 on apple pieces, contained in probiotic-fermented milk, after gastrointestinal (GI) transit and to investigate the potential regulation of intestinal microbial flora in a rat model. In in vitro GI stress tolerance tests, immobilized L. casei ATCC 393 exhibited significantly higher survival rates compared to free cells. At a second stage, probiotic-fermented milk produced by either free or immobilized cells was administered orally at a single dose or daily for 9 days in Wistar rats. By 12 h after single-dose administration, both free and immobilized cells were detected by microbiological and molecular analysis at levels ≥6 logCFU/g of feces. Moreover, daily administration led to significant reduction of staphylococci, enterobacteria, coliforms and streptococci counts. In conclusion, L. casei ATCC 393 contained in fermented milk survived GI transit and modulated intestinal microbiota. Copyright © 2010 S. Karger AG, Basel.

  7. Can Intensity-Modulated Radiotherapy Preserve Oral Health-Related Quality of Life of Nasopharyngeal Carcinoma Patients?

    International Nuclear Information System (INIS)

    Pow, Edmond H.N.; Kwong, Dora L.W.; Sham, Jonathan S.T.; Lee, Victor H.F.; Ng, Sherry C.Y.

    2012-01-01

    Purpose: To investigate the changes in salivary function and oral health-related quality of life for patients with nasopharyngeal carcinoma treated by intensity-modulated radiotherapy (IMRT). Methods and Materials: A total of 57 patients with early-stage nasopharyngeal carcinoma received IMRT. The parotid and whole saliva flow was measured, and the Medical Outcomes Study 36-item short form, European Organization for Research and Treatment of Cancer Quality of Life questionnaire-C30, European Organization for Research and Treatment of Cancer Quality of Life questionnaire 35-item head-and-neck module, and Oral Health Impact Profile questionnaires were completed at baseline and 2, 6, 12, 18, and 24 months after IMRT. Results: Parotid saliva flow recovered fully after 1 year and maintained. Whole saliva flow recovered partially to 40% of baseline. A general trend of deterioration in most quality of life scales was observed after IMRT, followed by gradual recovery. Persistent oral-related symptoms were found 2 years after treatment. Conclusion: IMRT for early-stage nasopharyngeal carcinoma could only partially preserve the whole salivary function and oral health-related quality of life.

  8. Can Intensity-Modulated Radiotherapy Preserve Oral Health-Related Quality of Life of Nasopharyngeal Carcinoma Patients?

    Energy Technology Data Exchange (ETDEWEB)

    Pow, Edmond H.N., E-mail: ehnpow@hku.hk [Oral Rehabilitation, University of Hong Kong Faculty of Dentistry, Hong Kong Special Administrative Region (China); Kwong, Dora L.W.; Sham, Jonathan S.T.; Lee, Victor H.F.; Ng, Sherry C.Y. [Department of Clinical Oncology, University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong Special Administrative Region (Hong Kong)

    2012-06-01

    Purpose: To investigate the changes in salivary function and oral health-related quality of life for patients with nasopharyngeal carcinoma treated by intensity-modulated radiotherapy (IMRT). Methods and Materials: A total of 57 patients with early-stage nasopharyngeal carcinoma received IMRT. The parotid and whole saliva flow was measured, and the Medical Outcomes Study 36-item short form, European Organization for Research and Treatment of Cancer Quality of Life questionnaire-C30, European Organization for Research and Treatment of Cancer Quality of Life questionnaire 35-item head-and-neck module, and Oral Health Impact Profile questionnaires were completed at baseline and 2, 6, 12, 18, and 24 months after IMRT. Results: Parotid saliva flow recovered fully after 1 year and maintained. Whole saliva flow recovered partially to 40% of baseline. A general trend of deterioration in most quality of life scales was observed after IMRT, followed by gradual recovery. Persistent oral-related symptoms were found 2 years after treatment. Conclusion: IMRT for early-stage nasopharyngeal carcinoma could only partially preserve the whole salivary function and oral health-related quality of life.

  9. Modulation of host responses by oral commensal bacteria

    Directory of Open Access Journals (Sweden)

    Deirdre A. Devine

    2015-02-01

    Full Text Available Immunomodulatory commensal bacteria are proposed to be essential for maintaining healthy tissues, having multiple roles including priming immune responses to ensure rapid and efficient defences against pathogens. The default state of oral tissues, like the gut, is one of inflammation which may be balanced by regulatory mechanisms and the activities of anti-inflammatory resident bacteria that modulate Toll-like receptor (TLR signalling or NF-κB activation, or influence the development and activities of immune cells. However, the widespread ability of normal resident organisms to suppress inflammation could impose an unsustainable burden on the immune system and compromise responses to pathogens. Immunosuppressive resident bacteria have been isolated from the mouth and, for example, may constitute 30% of the resident streptococci in plaque or on the tongue. Their roles in oral health and dysbiosis remain to be determined. A wide range of bacterial components and/or products can mediate immunomodulatory activity, raising the possibility of development of alternative strategies for therapy and health promotion using probiotics, prebiotics, or commensal-derived immunomodulatory molecules.

  10. Oral Dysbiotic Communities and Their Implications in Systemic Diseases

    Directory of Open Access Journals (Sweden)

    Preethi Sudhakara

    2018-04-01

    Full Text Available The human body supports the growth of a wide array of microbial communities in various niches such as the oral cavity, gastro-intestinal and urogenital tracts, and on the surface of the skin. These host associated microbial communities include yet-un-cultivable bacteria and are influenced by various factors. Together, these communities of bacteria are referred to as the human microbiome. Human oral microbiome consists of both symbionts and pathobionts. Deviation from symbiosis among the bacterial community leads to “dysbiosis”, a state of community disturbance. Dysbiosis occurs due to many confounding factors that predispose a shift in the composition and relative abundance of microbial communities. Dysbiotic communities have been a major cause for many microbiome related systemic infections. Such dysbiosis is directed by certain important pathogens called the “keystone pathogens”, which can modulate community microbiome variations. One such persistent infection is oral infection, mainly periodontitis, where a wide array of causal organisms have been implied to systemic infections such as cardio vascular disease, diabetes mellitus, rheumatoid arthritis, and Alzheimer’s disease. The keystone pathogens co-occur with many yet-cultivable bacteria and their interactions lead to dysbiosis. This has been the focus of recent research. While immune evasion is one of the major modes that leads to dysbiosis, new processes and new virulence factors of bacteria have been shown to be involved in this important process that determines a disease or health state. This review focuses on such dysbiotic communities, their interactions, and their virulence factors that predispose the host to other systemic implications.

  11. The effect of cigarette smoking on the oral and nasal microbiota.

    Science.gov (United States)

    Yu, Guoqin; Phillips, Stephen; Gail, Mitchell H; Goedert, James J; Humphrys, Michael S; Ravel, Jacques; Ren, Yanfang; Caporaso, Neil E

    2017-01-17

    The goal of the study was to investigate whether cigarette smoking alters oral and nasal microbial diversity, composition, and structure. Twenty-three current smokers and 20 never smokers were recruited. From each subject, nine samples including supra and subgingiva plaque scrapes, saliva, swabs from five soft oral tissue sites, and one nasal swab from both the anterior nares were collected. 16S rRNA V3-V4 region was sequenced for microbial profiles. We found that alpha diversity was lower in smokers than in nonsmokers in the buccal mucosa, but in other sample sites, microbial diversity and composition were not significantly different by smoking status. Microbial profiles differed significantly among eight oral sites. This study investigates the effect of cigarette smoking on different sites of the oral cavity and shows a potential effect of cigarette smoking on the buccal mucosa microbiota. The marked heterogeneity of the oral microbial ecosystem that we found may contribute to the stability of the oral microbiota in most sites when facing environmental perturbations such as that caused by cigarette smoking.

  12. Assessment of microbial contamination and oral health risks associated with handling of Indian currency notes circulating in Bengaluru city: A cross-sectional survey

    Directory of Open Access Journals (Sweden)

    D P Narayan

    2015-01-01

    Full Text Available Introduction: Accumulated data obtained over the last 20 years on the microbial status and survival of pathogens on currency notes indicate that this could represent a potential cause of sporadic cases of food borne illness. Objectives: To identify the micro-organisms present on the Indian currency notes and the oral health risks due to microbial contamination of Indian currency notes circulating in Bengaluru city. Materials and Methods: A cross-sectional survey was conducted and the Indian currency notes of various denominations (Rs. 10, Rs. 20, Rs. 50, Rs. 100, Rs. 500, and Rs. 1000 were collected from fruit vendors, hawkers, vegetable vendors, bus conductors, railway ticket counters, hotel counters, and butchers. Sample size was determined to be 70 Indian currency notes. Convenience sampling technique was used. Microbiological analysis of the collected currency notes was done. Results: The contamination rate of collected currency notes from the butchers and hawkers were 80% and 60% respectively. Staphylococcus aureus was present on 15 currency notes (21.42% and was found to be higher in Rs. 10 than in other currency denominations. Streptococcus pyogenes was present on four currency notes (5.714% of Rs. 10. Conclusion: The Indian currency notes circulating in Bengaluru city were contaminated with pathogenic bacteria. The oral health risks due to microbial contamination of Indian currency notes are acute pharyngitis, peritonsillar or retropharyngeal abscess, mastoiditis, sinusitis, otitis media, mild cellulitis, angular cheilitis, some endodontic infections, osteomyelitis of the jaw, parotitis, and oral mucositis.

  13. Intensity-Modulated Radiotherapy in Postoperative Treatment of Oral Cavity Cancers

    International Nuclear Information System (INIS)

    Gomez, Daniel R.; Zhung, Joanne E.; Gomez, Jennifer; Chan, Kelvin; Wu, Abraham J.; Wolden, Suzanne L.; Pfister, David G.; Shaha, Ashok; Shah, Jatin P.; Kraus, Dennis H.; Wong, Richard J.; Lee, Nancy Y.

    2009-01-01

    Purpose: To present our single-institution experience of intensity-modulated radiotherapy (IMRT) for oral cavity cancer. Methods and Materials: Between September 2000 and December 2006, 35 patients with histologically confirmed squamous cell carcinoma of the oral cavity underwent surgery followed by postoperative IMRT. The sites included were buccal mucosa in 8, oral tongue in 11, floor of the mouth in 9, gingiva in 4, hard palate in 2, and retromolar trigone in 1. Most patients had Stage III-IV disease (80%). Ten patients (29%) also received concurrent postoperative chemotherapy with IMRT. The median prescribed radiation dose was 60 Gy. Results: The median follow-up for surviving patients was 28.1 months (range, 11.9-85.1). Treatment failure occurred in 11 cases as follows: local in 4, regional in 2, and distant metastases in 5. Of the 5 patients with distant metastases, 2 presented with dermal metastases. The 2- and 3-year estimates of locoregional progression-free survival, distant metastasis-free survival, disease-free survival, and overall survival were 84% and 77%, 85% and 85%, 70% and 64%, and 74% and 74%, respectively. Acute Grade 2 or greater dermatitis, mucositis, and esophageal reactions were experienced by 54%, 66%, and 40% of the patients, respectively. Documented late complications included trismus (17%) and osteoradionecrosis (5%). Conclusion: IMRT as an adjuvant treatment after surgical resection for oral cavity tumors is feasible and effective, with promising results and acceptable toxicity

  14. Periodontitis: from microbial immune subversion to systemic inflammation

    Science.gov (United States)

    Hajishengallis, George

    2014-01-01

    Periodontitis is a dysbiotic inflammatory disease with an adverse impact on systemic health. Recent studies have provided insights into the emergence and persistence of dysbiotic oral microbial communities, which can mediate inflammatory pathology at local as well as distant sites. This Review discusses mechanisms of microbial immune subversion that tip the balance from homeostasis to disease in oral or extraoral sites. PMID:25534621

  15. Ecological therapeutic opportunities for oral diseases

    Science.gov (United States)

    Hoare, Anilei; Marsh, Philip D.; Diaz, Patricia I.

    2017-01-01

    SUMMARY The three main oral diseases of humans, that is caries, periodontal diseases and oral candidiasis, are associated with microbiome shifts initiated by changes in the oral environment and/or decreased effectiveness of mucosal immune surveillance. In this review we discuss the role that microbial-based therapies may have in the control of these conditions. Most investigations on the use of microorganisms for management of oral disease have been conducted with probiotic strains with some positive but very discrete clinical outcomes. Other strategies such as whole oral microbiome transplantation or modification of community function by enrichment with health-promoting indigenous oral strains may offer more promise but research in this field is still in its infancy. Any microbial-based therapeutics for oral conditions, however, are likely to be only one component within a holistic preventive strategy that should also aim at modification of the environmental influences responsible for the initiation and perpetuation of microbiome shifts associated with oral dysbiosis. PMID:28840820

  16. Oral microbial community assembly under the influence of periodontitis.

    Science.gov (United States)

    Chen, Hongju; Peng, Shuting; Dai, Lin; Zou, Quan; Yi, Bin; Yang, Xianghong; Ma, Zhanshan Sam

    2017-01-01

    Several ecological hypotheses (e.g., specific plaque, non-specific plaque and keystone pathogen) regarding the etiology of periodontitis have been proposed since the 1990s, most of which have been centered on the concept of dysbiosis associated with periodontitis. Nevertheless, none of the existing hypotheses have presented mechanistic interpretations on how and why dysbiosis actually occurs. Hubbell's neutral theory of biodiversity offers a powerful null model to test hypothesis regarding the mechanism of community assembly and diversity maintenance from the metagenomic sequencing data, which can help to understand the forces that shape the community dynamics such as dysbiosis. Here we reanalyze the dataset from Abusleme et al.'s comparative study of the oral microbial communities from periodontitis patients and healthy individuals. Our study demonstrates that 14 out of 61 communities (23%) passed the neutrality test, a percentage significantly higher than the previous reported neutrality rate of 1% in human microbiome (Li & Ma 2016, Scientific Reports). This suggests that, while the niche selection may play a predominant role in the assembly and diversity maintenance in oral microbiome, the effect of neutral dynamics may not be ignored. However, no statistically significant differences in the neutrality passing rates were detected between the periodontitis and healthy treatments with Fisher's exact probability test and multiple testing corrections, suggesting that the mechanism of community assembly is robust against disturbances such as periodontitis. In addition, our study confirmed previous finding that periodontitis patients exhibited higher biodiversity. These findings suggest that while periodontitis may significantly change the community composition measured by diversity (i.e., the exhibition or 'phenotype' of community assembly), it does not seem to cause the 'mutation' of the 'genotype" (mechanism) of community assembly. We argue that the 'phenotypic

  17. Oral microbial community assembly under the influence of periodontitis.

    Directory of Open Access Journals (Sweden)

    Hongju Chen

    Full Text Available Several ecological hypotheses (e.g., specific plaque, non-specific plaque and keystone pathogen regarding the etiology of periodontitis have been proposed since the 1990s, most of which have been centered on the concept of dysbiosis associated with periodontitis. Nevertheless, none of the existing hypotheses have presented mechanistic interpretations on how and why dysbiosis actually occurs. Hubbell's neutral theory of biodiversity offers a powerful null model to test hypothesis regarding the mechanism of community assembly and diversity maintenance from the metagenomic sequencing data, which can help to understand the forces that shape the community dynamics such as dysbiosis. Here we reanalyze the dataset from Abusleme et al.'s comparative study of the oral microbial communities from periodontitis patients and healthy individuals. Our study demonstrates that 14 out of 61 communities (23% passed the neutrality test, a percentage significantly higher than the previous reported neutrality rate of 1% in human microbiome (Li & Ma 2016, Scientific Reports. This suggests that, while the niche selection may play a predominant role in the assembly and diversity maintenance in oral microbiome, the effect of neutral dynamics may not be ignored. However, no statistically significant differences in the neutrality passing rates were detected between the periodontitis and healthy treatments with Fisher's exact probability test and multiple testing corrections, suggesting that the mechanism of community assembly is robust against disturbances such as periodontitis. In addition, our study confirmed previous finding that periodontitis patients exhibited higher biodiversity. These findings suggest that while periodontitis may significantly change the community composition measured by diversity (i.e., the exhibition or 'phenotype' of community assembly, it does not seem to cause the 'mutation' of the 'genotype" (mechanism of community assembly. We argue that the

  18. Metabolic Interactions between Bacteria and Fungi in Commensal Oral Biofilms

    OpenAIRE

    Lof, Marloes; Janus, Marleen M.; Krom, Bastiaan P.

    2017-01-01

    Oral health is more than just the absence of disease. The key to oral health is a diverse microbiome in an ecological balance. The oral microbiota is one of the most complex and diverse microbial communities in the human body. To maintain oral health, balance between the human host and the intrinsic microorganisms is essential. The healthy oral cavity is represented by a great microbial diversity, including both bacteria and fungi. The bacterial microbiome is very well studied. In contrast, f...

  19. Plant carbohydrate binding module enhances activity of hybrid microbial cellulase enzyme

    Directory of Open Access Journals (Sweden)

    Caitlin Siobhan Byrt

    2012-11-01

    Full Text Available A synthetic, highly active cellulase enzyme suitable for in planta production may be a valuable tool for biotechnological approaches to develop transgenic biofuel crops with improved digestibility. Here, we demonstrate that the addition of a plant derived carbohydrate binding module (CBM to a synthetic glycosyl hydrolase (GH improved the activity of the hydrolase in releasing sugar from plant biomass. A CEL-HYB1-CBM enzyme was generated by fusing a hybrid microbial cellulase, CEL-HYB1, with the carbohydrate-binding module (CBM of the tomato (Solanum lycopersicum SlCel9C1 cellulase. CEL-HYB1 and CEL-HYB1-CBM enzymes were produced in vitro using Pichia pastoris and the activity of these enzymes was tested using CMC, MUC and native crystalline cellulose assays. The presence of the CBM substantially improved the endo-glucanase activity of CEL-HYB1, especially against the native crystalline cellulose encountered in Sorghum plant cell walls. These results indicate that addition of an endogenous plant derived CBM to cellulase enzymes may enhance hydrolytic activity.

  20. Impact of Oral Hygiene Discontinuation on Supragingival and Salivary Microbiomes

    DEFF Research Database (Denmark)

    Belstrøm, D; Sembler-Møller, M L; Grande, M A

    2018-01-01

    of oral hygiene. Supragingival and salivary microbiotas were processed by next-generation sequencing (Human Oral Microbe Identification using Next Generation Sequencing) and microbial community profiles were compared. Microbial composition of supragingival plaque samples collected after 4, 7, and 10 d......The purpose of the present study was to characterize and compare supragingival and salivary microbiotas during a 10-d period of oral hygiene discontinuation. We tested the hypothesis that the composition of the salivary microbiota will reflect local microbial changes associated with accumulated...... biofilm formation and maturation. Pooled supragingival plaque (n = 145) and stimulated saliva (n = 145) samples were collected and plaque and gingival indices were recorded from 29 orally healthy individuals at baseline, during oral hygiene discontinuation (days 4, 7, and 10), and 14 d after resumption...

  1. The oral microbiome - an update for oral healthcare professionals

    DEFF Research Database (Denmark)

    Kilian, M; Chapple, I L C; Hannig, M

    2016-01-01

    disease-promoting bacteria to manifest and cause conditions such as caries, gingivitis and periodontitis. For practitioners and patients alike, promoting a balanced microbiome is therefore important to effectively maintain or restore oral health. This article aims to give an update on our current...... and health. The mouth houses the second most diverse microbial community in the body, harbouring over 700 species of bacteria that colonise the hard surfaces of teeth and the soft tissues of the oral mucosa. Through recent advances in technology, we have started to unravel the complexities of the oral...

  2. Head and neck intensity modulated radiation therapy leads to an increase of opportunistic oral pathogens

    NARCIS (Netherlands)

    Schuurhuis, Jennifer M.; Stokman, Monique A.; Witjes, Max J. H.; Langendijk, Johannes A.; van Winkelhoff, Arie J.; Vissink, Arjan; Spijkervet, Frederik K. L.

    Objectives: The introduction of intensity modulated radiation therapy (IMRT) has led to new possibilities in the treatment of head and neck cancer (HNC). Limited information is available on how this more advanced radiation technique affects the oral microflora. In a prospective study we assessed the

  3. Proceedings of the 8. International Symposium on Microbial Ecology : microbial biosystems : new frontiers

    International Nuclear Information System (INIS)

    Bell, C.R.; Brylinsky, M.; Johnson-Green, P.

    2000-01-01

    A wide range of disciplines were presented at this conference which reflected the importance of microbial ecology and provided an understanding of the factors that determine the growth and activities of microorganisms. The conference attracted 1444 delegates from 54 countries. The research emerging from the rapidly expanding frontier of microbial ecosystems was presented in 62 oral presentation and 817 poster presentations. The two volumes of these proceedings presented a total of 27 areas in microbial ecology, some of which included terrestrial biosystems, aquatic, estuarine, surface and subsurface microbial ecology. Other topics included bioremediation, microbial ecology in industry and microbial ecology of oil fields. Some of the papers highlighted the research that is underway to determine the feasibility of using microorganisms for enhanced oil recovery (EOR). Research has shown that microbial EOR can increase production at lower costs than conventional oil recovery. The use of bacteria has also proven to be a feasible treatment method in the biodegradation of hydrocarbons associated with oil spills. refs., tabs., figs

  4. Oral microbiota and cancer

    OpenAIRE

    Meurman, Jukka H.

    2010-01-01

    Inflammation caused by infections may be the most important preventable cause of cancer in general. However, in the oral cavity the role of microbiota in carcinogenesis is not known. Microbial populations on mouth mucosa differ between healthy and malignant sites and certain oral bacterial species have been linked with malignancies but the evidence is still weak in this respect. Nevertheless, oral microorganisms inevitably up-regulate cytokines and other inflammatory mediators that affect the...

  5. Antibiotic treatment affects intestinal permeability and gut microbial composition in Wistar rats dependent on antibiotic class

    DEFF Research Database (Denmark)

    Tulstrup, Monica Vera-Lise; Christensen, Ellen Gerd; Carvalho, Vera

    2015-01-01

    Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, by disrupting the intricate balance between specific bacterial groups within this ecosystem...... potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (n=12 per group) were dosed by oral gavage with either amoxicillin...... (AMX), cefataxime (CTX), vancomycin (VAN), metronidazole (MTZ), or water (CON) daily for 10-11 days. Bacterial composition, alpha diversity and cecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity...

  6. Towards understanding oral health.

    Science.gov (United States)

    Zaura, Egija; ten Cate, Jacob M

    2015-01-01

    During the last century, dental research has focused on unraveling the mechanisms behind various oral pathologies, while oral health was typically described as the mere absence of oral diseases. The term 'oral microbial homeostasis' is used to describe the capacity of the oral ecosystem to maintain microbial community stability in health. However, the oral ecosystem itself is not stable: throughout life an individual undergoes multiple physiological changes while progressing through infancy, childhood, adolescence, adulthood and old age. Recent discussions on the definition of general health have led to the proposal that health is the ability of the individual to adapt to physiological changes, a condition known as allostasis. In this paper the allostasis principle is applied to the oral ecosystem. The multidimensionality of the host factors contributing to allostasis in the oral cavity is illustrated with an example on changes occurring in puberty. The complex phenomenon of oral health and the processes that prevent the ecosystem from collapsing during allostatic changes in the entire body are far from being understood. As yet individual components (e.g. hard tissues, microbiome, saliva, host response) have been investigated, while only by consolidating these and assessing their multidimensional interactions should we be able to obtain a comprehensive understanding of the ecosystem, which in turn could serve to develop rational schemes to maintain health. Adapting such a 'system approach' comes with major practical challenges for the entire research field and will require vast resources and large-scale multidisciplinary collaborations. 2015 S. Karger AG, Basel

  7. Deep sequencing identifies ethnicity-specific bacterial signatures in the oral microbiome.

    Directory of Open Access Journals (Sweden)

    Matthew R Mason

    Full Text Available Oral infections have a strong ethnic predilection; suggesting that ethnicity is a critical determinant of oral microbial colonization. Dental plaque and saliva samples from 192 subjects belonging to four major ethnicities in the United States were analyzed using terminal restriction fragment length polymorphism (t-RFLP and 16S pyrosequencing. Ethnicity-specific clustering of microbial communities was apparent in saliva and subgingival biofilms, and a machine-learning classifier was capable of identifying an individual's ethnicity from subgingival microbial signatures. The classifier identified African Americans with a 100% sensitivity and 74% specificity and Caucasians with a 50% sensitivity and 91% specificity. The data demonstrates a significant association between ethnic affiliation and the composition of the oral microbiome; to the extent that these microbial signatures appear to be capable of discriminating between ethnicities.

  8. Application of high-throughput sequencing in understanding human oral microbiome related with health and disease

    OpenAIRE

    Chen, Hui; Jiang, Wen

    2014-01-01

    The oral microbiome is one of most diversity habitat in the human body and they are closely related with oral health and disease. As the technique developing,, high throughput sequencing has become a popular approach applied for oral microbial analysis. Oral bacterial profiles have been studied to explore the relationship between microbial diversity and oral diseases such as caries and periodontal disease. This review describes the application of high-throughput sequencing for characterizati...

  9. The role of wound healing in oral health

    NARCIS (Netherlands)

    Fernández Gutiérrez, María Marcela

    2018-01-01

    Oral health depends on a complex interplay between the mucosal tissues, physicochemical and microbial components present in the oral cavity. Maintenance of a stable ecosystem is an essential determinant of oral health. However, as a result of a major change in the ecosystem, the stability can be

  10. OralCard: a bioinformatic tool for the study of oral proteome.

    Science.gov (United States)

    Arrais, Joel P; Rosa, Nuno; Melo, José; Coelho, Edgar D; Amaral, Diana; Correia, Maria José; Barros, Marlene; Oliveira, José Luís

    2013-07-01

    The molecular complexity of the human oral cavity can only be clarified through identification of components that participate within it. However current proteomic techniques produce high volumes of information that are dispersed over several online databases. Collecting all of this data and using an integrative approach capable of identifying unknown associations is still an unsolved problem. This is the main motivation for this work. We present the online bioinformatic tool OralCard, which comprises results from 55 manually curated articles reflecting the oral molecular ecosystem (OralPhysiOme). It comprises experimental information available from the oral proteome both of human (OralOme) and microbial origin (MicroOralOme) structured in protein, disease and organism. This tool is a key resource for researchers to understand the molecular foundations implicated in biology and disease mechanisms of the oral cavity. The usefulness of this tool is illustrated with the analysis of the oral proteome associated with diabetes melitus type 2. OralCard is available at http://bioinformatics.ua.pt/oralcard. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Oral Microbial Shift: Factors affecting the Microbiome and Prevention of Oral Disease.

    Science.gov (United States)

    Dagli, Namrata; Dagli, Rushabh; Darwish, Shrouq; Baroudi, Kusai

    2016-01-01

    Recently, oral microbiome has gained popularity among scientists. Microorganisms are no longer considered as disease-producing pathogens, rather they are now considered as partners of human in maintaining health. Since ancient times, changes in our lifestyle have affected our microbiome and the balance with their human host has been perturbed. The present review includes the description about factors affecting oral microbiome and establishing symbiosis with the human host so that they contribute in maintaining health rather than eliciting diseases. A comprehensive literature search was performed on databases such as Google Scholar, PubMed and Medline until April 2015. First, articles were selected on the basis of their titles and then abstracts were screened and unwanted articles were excluded. Articles obtained from all the databases were checked and duplicate articles were removed. Articles obtained from various databases: PubMed = 35, Google Scholar=8. Out of these 43 articles, total 29 articles were finally selected for this review. The published literature suggests that the modern oral microbiome is less biodiverse, and possess more pathogenic bacterial species and lesser beneficial bacteria. The possible factors mainly responsible for this shift in microbiome were found to be change in diet, industrial revolution and indiscriminate use of antibiotics. Various changes in lifestyles have affected oral microbiome adversely and perturb the symbiosis between the microbiome and their hosts. The present oral microbiome is found to be less diverse and more pathogenic. The present review may be helpful in understanding the relationship between the microbiome and their human hosts so that microbiome contributes in maintaining healthy state of the body.

  12. Plant and Fungal Food Components with Potential Activity on the Development of Microbial Oral Diseases

    Directory of Open Access Journals (Sweden)

    Maria Daglia

    2011-01-01

    Full Text Available This paper reports the content in macronutrients, free sugars, polyphenols, and inorganic ions, known to exert any positive or negative action on microbial oral disease such as caries and gingivitis, of seven food/beverages (red chicory, mushroom, raspberry, green and black tea, cranberry juice, dark beer. Tea leaves resulted the richest material in all the detected ions, anyway tea beverages resulted the richest just in fluoride. The highest content in zinc was in chicory, raspberry and mushroom. Raspberry is the richest food in strontium and boron, beer in selenium, raspberry and mushroom in copper. Beer, cranberry juice and, especially green and black tea are very rich in polyphenols, confirming these beverages as important sources of such healthy substances. The fractionation, carried out on the basis of the molecular mass (MM, of the water soluble components occurring in raspberry, chicory, and mushroom extracts (which in microbiological assays revealed the highest potential action against oral pathogens, showed that both the high and low MM fractions are active, with the low MM fractions displaying the highest potential action for all the fractionated extracts. Our findings show that more compounds that can play a different active role occur in these foods.

  13. Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health

    NARCIS (Netherlands)

    Crielaard, W.; Zaura, E.; Schuller, A.A.; Huse, S.M.; Montijn, R.C.; Keijser, B.J.F.

    2011-01-01

    Background An understanding of the relation of commensal microbiota to health is essential in preventing disease. Here we studied the oral microbial composition of children (N = 74, aged 3 - 18 years) in natural transition from their deciduous to a permanent dentition and related the microbial

  14. Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health

    NARCIS (Netherlands)

    Crielaard, W.; Zaura, E.; Schuller, A.A.; Huse, S.M.; Montijn, R.C.; Keijser, B.J.F.

    2011-01-01

    BACKGROUND: An understanding of the relation of commensal microbiota to health is essential in preventing disease. Here we studied the oral microbial composition of children (N = 74, aged 3 - 18 years) in natural transition from their deciduous to a permanent dentition and related the microbial

  15. Microbial profiling of dental plaque from mechanically ventilated patients.

    Science.gov (United States)

    Sands, Kirsty M; Twigg, Joshua A; Lewis, Michael A O; Wise, Matt P; Marchesi, Julian R; Smith, Ann; Wilson, Melanie J; Williams, David W

    2016-02-01

    Micro-organisms isolated from the oral cavity may translocate to the lower airways during mechanical ventilation (MV) leading to ventilator-associated pneumonia (VAP). Changes within the dental plaque microbiome during MV have been documented previously, primarily using culture-based techniques. The aim of this study was to use community profiling by high throughput sequencing to comprehensively analyse suggested microbial changes within dental plaque during MV. Bacterial 16S rDNA gene sequences were obtained from 38 samples of dental plaque sampled from 13 mechanically ventilated patients and sequenced using the Illumina platform. Sequences were processed using Mothur, applying a 97% gene similarity cut-off for bacterial species level identifications. A significant 'microbial shift' occurred in the microbial community of dental plaque during MV for nine out of 13 patients. Following extubation, or removal of the endotracheal tube that facilitates ventilation, sampling revealed a decrease in the relative abundance of potential respiratory pathogens and a compositional change towards a more predominantly (in terms of abundance) oral microbiota including Prevotella spp., and streptococci. The results highlight the need to better understand microbial shifts in the oral microbiome in the development of strategies to reduce VAP, and may have implications for the development of other forms of pneumonia such as community-acquired infection.

  16. Recent advances in dental biofilm: impacts of microbial interactions on the biofilm ecology and pathogenesis

    Directory of Open Access Journals (Sweden)

    Yung-Hua Li

    2017-05-01

    Full Text Available The human oral cavity is a complex ecosystem harboring hundreds species of microbes that are largely living on the tooth surfaces as dental biofilms. Most microbes in dental biofilms promote oral health by stimulating the immune system or by preventing invasion of pathogens. Species diversity, high cell density and close proximity of cells are typical of life in dental biofilms, where microbes interact with each other and develop complex interactions that can be either competitive or cooperative. Competition between species is a well-recognized ecological force to drive microbial metabolism, species diversity and evolution. However, it was not until recently that microbial cooperative activities are also recognized to play important roles in microbial physiology and ecology. Importantly, these interactions profoundly affect the overall biomass, function, diversity and the pathogenesis in dental biofilms. It is now recognized that every human body contains a personalized oral microbiome that is essential to maintaining the oral health. Remarkably, the indigenous species in dental biofilms often maintain a relatively stable and harmless relationship with the host, despite regular exposure to environmental perturbations and the host defense factors. Such stability or homeostasis results from a dynamic balance of microbial-microbial and microbial-host interactions. Under certain circumstances, however, the homeostasis may breakdown, predisposing a site to diseases. In this review, we describe several examples of microbial interactions and their impacts on the homeostasis and pathogenesis of dental biofilms. We hope to encourage research on microbial interactions in the regulation of the homeostasis in biofilms.

  17. Role of Fusobacterium nucleatum and Coaggregation in Anaerobe Survival in Planktonic and Biofilm Oral Microbial Communities during Aeration

    Science.gov (United States)

    Bradshaw, David J.; Marsh, Philip D.; Watson, G. Keith; Allison, Clive

    1998-01-01

    Coaggregation is a well-characterized phenomenon by which specific pairs of oral bacteria interact physically. The aim of this study was to examine the patterns of coaggregation between obligately anaerobic and oxygen-tolerant species that coexist in a model oral microbial community. Obligate anaerobes other than Fusobacterium nucleatum coaggregated only poorly with oxygen-tolerant species. In contrast, F. nucleatum was able to coaggregate not only with both oxygen-tolerant and other obligately anaerobic species but also with otherwise-noncoaggregating obligate anaerobe–oxygen-tolerant species pairs. The effects of the presence or absence of F. nucleatum on anaerobe survival in both the biofilm and planktonic phases of a complex community of oral bacteria grown in an aerated (gas phase, 200 ml of 5% CO2 in air · min−1) chemostat system were then investigated. In the presence of F. nucleatum, anaerobes persisted in high numbers (>107 · ml−1 in the planktonic phase and >107 · cm−2 in 4-day biofilms). In an equivalent culture in the absence of F. nucleatum, the numbers of black-pigmented anaerobes (Porphyromonas gingivalis and Prevotella nigrescens) were significantly reduced (P ≤ 0.001) in both the planktonic phase and in 4-day biofilms, while the numbers of facultatively anaerobic bacteria increased in these communities. Coaggregation-mediated interactions between F. nucleatum and other species facilitated the survival of obligate anaerobes in aerated environments. PMID:9746571

  18. Ecological dynamics of oral microbial communities

    NARCIS (Netherlands)

    Koopman, J.E.

    2016-01-01

    The microbiota of the oral cavity have been a topic of research for quite some years. Yet, this research was mostly focused on isolated pathogenic species, with limited attention for the ecosystem and what a healthy ecosystem encompasses. The general aim of this thesis was to investigate the

  19. Microbiomics of Oral Biofilms: Driving The Future of Dental Research

    Directory of Open Access Journals (Sweden)

    Chaminda Jayampath Seneviratne

    2017-09-01

    Full Text Available Oral infectious diseases such as dental caries, periodontal disease, endodontic infections, oral candidiasis and peri-implantitis cause major health problems worldwide. All of these infectious diseases are associated with the biofilm growth mode of the oral pathogens. In the past, researchers often attempted to examine the association of single pathogens with particular dental diseases such as in the case of Streptococcus mutans acting as an aetiological agent for dental caries and the so-called “red-complex” bacteria for periodontal disease. However, with the recent advent of OMICS biology techniques such as genomics, transcriptomics, proteomics, it is possible to gain new insights into the host-microbial interaction, microbial community structure and composition in the oral cavity. The new studies on oral microbiomics can unravel the facets of the aetiopathology of oral diseases as never seen before. This mini-review will provide an history and overview of some of the existing DNA sequencing platforms employed to study the microbiomics of oral biofilms and the exciting future ahead for dental research.

  20. Oral warfarin intake affects skin inflammatory cytokine responses in rats.

    Science.gov (United States)

    Aleksandrov, Aleksandra Popov; Mirkov, Ivana; Zolotarevski, Lidija; Ninkov, Marina; Mileusnic, Dina; Kataranovski, Dragan; Kataranovski, Milena

    2017-09-01

    Warfarin is an anticoagulant used in prevention/prophylaxis of thromboembolism. Besides the effects on coagulation, non-hemorrhagic reactions have also been documented. Although cutaneous reactions were reported in some patients, the impact on skin immunity was not explored. In the present paper, the effect of 30-day oral warfarin intake on skin cytokine responses in rats was analyzed. Increased release of inflammatory cytokines (TNF, IL-1β and IL-10) was noted by skin explants from rats which received warfarin, but without effect on IL-6. No impact on epidermal cell cytokine secretion was seen, except a tendency of an increase of IL-6 response to stimulation with microbial product lipopolysaccharide (LPS). Topical application of contact allergen dinitrochlorobenzene (DNCB) resulted in slight (numerical solely) increase of TNF release by skin explants of warfarin-treated animals, while epidermal cells responded by increased secretion of all four cytokines examined. The data presented provide new information on the potential of oral warfarin to modulate skin innate immune activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Application of magnetic OMS-2 in sequencing batch reactor for treating dye wastewater as a modulator of microbial community.

    Science.gov (United States)

    Pan, Fei; Yu, Yang; Xu, Aihua; Xia, Dongsheng; Sun, Youmin; Cai, Zhengqing; Liu, Wen; Fu, Jie

    2017-10-15

    The potential and mechanism of synthesized magnetic octahedral molecular sieve (Fe 3 O 4 @OMS-2) nanoparticles in enhancing the aerobic microbial ability of sequencing batch reactor (SBR) for treating dye wastewater have been revealed in this study. The addition of Fe 3 O 4 @OMS-2 of 0.25g/L enhanced the decolorization of SBRs with an operation cycle of 24h by more than 20%. The 16S rRNA gene high-throughput sequencing indicated Fe 3 O 4 @OMS-2 increased the microbial richness and diversity of SBRs, and more importantly, promoted the potential dye-degrading bacteria. After a series of enriching and screening, four bacterial strains with the considerable decolorizing ability were isolated from SBRs, designating Alcaligenes faecalis FP-G1, Bacillus aryabhattai FP-F1, Escherichia fergusonii FP-D1 and Rhodococcus ruber FP-E1, respectively. The growth and decolorization of these pure strains were promoted in the presence of Fe 3 O 4 @OMS-2, which agrees with the result of high-throughput sequencing. Monitoring dissolved Fe/Mn ions and investigating the change of oxidation states of Fe/Mn species discovered OMS-2 composition played the critical role in modulating the microbial community. The significant enhancement of Mn-oxidizing/-reducing bacteria suggested microbial Mn redox may be the key action mechanism of Fe 3 O 4 @OMS-2, which can provide numerous benefits for the microbial community and decolorization of SBRs. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The Fungal Biome of the Oral Cavity.

    Science.gov (United States)

    Chandra, Jyotsna; Retuerto, Mauricio; Mukherjee, Pranab K; Ghannoum, Mahmoud

    2016-01-01

    Organisms residing in the oral cavity (oral microbiota) contribute to health and disease, and influence diseases like gingivitis, periodontitis, and oral candidiasis (the most common oral complication of HIV-infection). These organisms are also associated with cancer and other systemic diseases including upper respiratory infections. There is limited knowledge regarding how oral microbes interact together and influence the host immune system. Characterizing the oral microbial community (oral microbiota) in health and disease represents a critical step in gaining insight into various members of this community. While most of the studies characterizing oral microbiota have focused on bacterial community, there are few encouraging studies characterizing the oral mycobiome (the fungal component of the oral microbiota). Our group recently characterized the oral mycobiome in health and disease focusing on HIV. In this chapter we will describe the methods used by our group for characterization of the oral mycobiome.

  3. [New approaches to oral cavity opportunistic microbiota study].

    Science.gov (United States)

    Tets, G V; Vikina, D S; Vecherkovskaia, M F; Domorad, A A; Kharlamova, V V; Tets, V V

    2013-01-01

    Identification of some bacteria of the oral microbiota in humans including opportunistic pathogens capable of causing infections of various locations is a challenging problem for dentistry. Lack of knowledge on oral microbiota is the result of the absence of appropriate culture technique for isolation of pure cultures of those bacteria. The paper presents the study on mixed oral microbial biofilms with isolation and identification of insufficiently explored or still unknown aerobic opportunistic bacteria.

  4. The Oral Microbiota.

    Science.gov (United States)

    Arweiler, Nicole B; Netuschil, Lutz

    2016-01-01

    The oral microbiota represents an important part of the human microbiota, and includes several hundred to several thousand diverse species. It is a normal part of the oral cavity and has an important function to protect against colonization of extrinsic bacteria which could affect systemic health. On the other hand, the most common oral diseases caries, gingivitis and periodontitis are based on microorganisms. While (medical) research focused on the planktonic phase of bacteria over the last 100 years, it is nowadays generally known, that oral microorganisms are organised as biofilms. On any non-shedding surfaces of the oral cavity dental plaque starts to form, which meets all criteria for a microbial biofilm and is subject to the so-called succession. When the sensitive ecosystem turns out of balance - either by overload or weak immune system - it becomes a challenge for local or systemic health. Therefore, the most common strategy and the golden standard for the prevention of caries, gingivitis and periodontitis is the mechanical removal of this biofilms from teeth, restorations or dental prosthesis by regular toothbrushing.

  5. Probiotics as oral health biotherapeutics.

    Science.gov (United States)

    Saha, Shyamali; Tomaro-Duchesneau, Catherine; Tabrizian, Maryam; Prakash, Satya

    2012-09-01

    Oral health is affected by its resident microorganisms. Three prominent oral disorders are dental caries, gingivitis and periodontitis, with the oral microbiota playing a key role in the initiation/progression of all three. Understanding the microbiota and the diseases they may cause is critical to the development of new therapeutics. This review is focused on probiotics for the prevention and/or treatment of oral diseases. This review describes the oral ecosystem and its correlation with oral health/disease. The pathogenesis and current prevention/treatment strategies of periodontal diseases (PD) and dental caries (DC) are depicted. An introduction of probiotics is followed by an analysis of their role in PD and DC, and their potential role(s) in oral health. Finally, a discussion ensues on the future research directions and limitations of probiotics for oral health. An effective oral probiotic formulation should contribute to the prevention/treatment of microbial diseases of the oral cavity. Understanding the oral microbiota's role in oral disease is important for the development of a therapeutic to prevent/treat dental diseases. However, investigations into clinical efficacy, delivery/dose optimization, mechanism(s) of action and other related parameters are yet to be fully explored. Keeping this in mind, investigations into oral probiotic therapies are proving promising.

  6. Biofilm and dental implant: The microbial link

    Directory of Open Access Journals (Sweden)

    Sangeeta Dhir

    2013-01-01

    Full Text Available Mouth provides a congenial environment for the growth of the microorganisms as compared to any other part of the human body by exhibiting an ideal nonshedding surface. Dental plaque happens to be a diverse community of the microorganisms found on the tooth surface. Periodontal disease and the peri-implant disease are specific infections that are originating from these resident microbial species when the balance between the host and the microbial pathogenicity gets disrupted. This review discusses the biofilms in relation to the peri-implant region, factors affecting its presence, and the associated treatment to manage this complex microbial colony. Search Methodology: Electronic search of the medline was done with the search words: Implants and biofilms/dental biofilm formation/microbiology at implant abutment interface/surface free energy/roughness and implant, periimplantitis/local drug delivery and dental implant. Hand search across the journals - clinical oral implant research, implant dentistry, journal of dental research, international journal of oral implantology, journal of prosthetic dentistry, perioodntology 2000, journal of periodontology were performed. The articles included in the review comprised of in vivo studies, in vivo (animal and human studies, abstracts, review articles.

  7. Oral microbiota and cancer

    Directory of Open Access Journals (Sweden)

    Jukka H. Meurman

    2010-08-01

    Full Text Available Inflammation caused by infections may be the most important preventable cause of cancer in general. However, in the oral cavity the role of microbiota in carcinogenesis is not known. Microbial populations on mouth mucosa differ between healthy and malignant sites and certain oral bacterial species have been linked with malignancies but the evidence is still weak in this respect. Nevertheless, oral microorganisms inevitably up-regulate cytokines and other inflammatory mediators that affect the complex metabolic pathways and may thus be involved in carcinogenesis. Poor oral health associates statistically with prevalence of many types of cancer, such as pancreatic and gastrointestinal cancer. Furthermore, several oral micro-organisms are capable of converting alcohol to carcinogenic acetaldehyde which also may partly explain the known association between heavy drinking, smoking, poor oral health and the prevalence of oral and upper gastrointestinal cancer. A different problem is the cancer treatment-caused alterations in oral microbiota which may lead to the emergence of potential pathogens and subsequent other systemic health problems to the patients. Hence clinical guidelines and recommendations have been presented to control oral microbiota in patients with malignant disease, but also in this area the scientific evidence is weak. More controlled studies are needed for further conclusion.

  8. Mixed Antimony(V Complexes with Different Sugars to Modulate the Oral Bioavailability of Pentavalent Antimonial Drugs

    Directory of Open Access Journals (Sweden)

    Weverson A. Ferreira

    2014-04-01

    Full Text Available Previous studies have shown that the association of the drug meglumine antimoniate (MA with β-cyclodextrin can improve its bioavailability by the oral route. In this work, ribose and maltose were investigated for their ability to form mixed or association complexes with MA, release MA and modulate the serum levels of Sb after oral administration in mice. Analysis of the MA/ribose composition by high performance liquid chromatography coupled to mass spectrometry (LCMS-IT-TOF revealed the presence of mixed meglumine-Sb-ribose and Sb-ribose complexes. Analysis of the MA/maltose composition suggested the formation of MA-maltose association compounds. Circular dichroism characterization of these compositions following dilution in water at 37 °C suggested a partial and slow dissociation of the association compounds. When the MA/ribose composition was administered orally and compared to MA, the serum concentration of Sb was significantly lower after 1 h and greater after 3 h. On the other hand, the MA/maltose composition showed similar serum Sb concentration after 1 h and higher level of Sb after 3 h, when compared to MA. In conclusion, the present study has demonstrated the formation of mixed or association complexes of MA with sugars, such as maltose and ribose, which promoted sustained serum level of Sb after oral administration.

  9. Natural Antimicrobials and Oral Microorganisms: A Systematic Review on Herbal Interventions for the Eradication of Multispecies Oral Biofilms

    OpenAIRE

    Karygianni, Lamprini; Al-Ahmad, Ali; Argyropoulou, Aikaterini; Hellwig, Elmar; Anderson, Annette C.; Skaltsounis, Alexios L.

    2016-01-01

    Oral diseases such as caries and periodontitis are mainly caused by microbial biofilms. Antibiotic therapy has reached its limits with regard to antimicrobial resistance, and new therapeutic measures utilizing natural phytochemicals are currently a focus of research. Hence, this systematic review provides a critical presentation of the antimicrobial effects of various medicinal herbs against in vitro, ex vivo, and in situ formed multispecies oral biofilms. Searches were performed in three Eng...

  10. Polymerase chain reaction-based denaturing gradient gel electrophoresis in the evaluation of oral microbiota.

    Science.gov (United States)

    Li, Y; Saxena, D; Barnes, V M; Trivedi, H M; Ge, Y; Xu, T

    2006-10-01

    Clinical evaluation of oral microbial reduction after a standard prophylactic treatment has traditionally been based on bacterial cultivation methods. However, not all microbes in saliva or dental plaque can be cultivated. Polymerase chain reaction-based denaturing gradient gel electrophoresis (PCR-DGGE) is a cultivation-independent molecular fingerprinting technique that allows the assessment of the predominant bacterial species present in the oral cavity. This study sought to evaluate the oral microbial changes that occurred after a standard prophylactic treatment with a conventional oral care product using PCR-DGGE. Twelve healthy adults participated in the study. Pooled plaque samples were collected at baseline, 24 h after prophylaxis (T1), and 4 days after toothbrushing with fluoride toothpaste (T4). The total microbial genomic DNA of the plaque was isolated. PCR was performed with a set of universal bacterial 16S rDNA primers. The PCR-amplified 16S rDNA fragments were separated by DGGE. The effects of the treatment and of dental brushing were assessed by comparing the PCR-DGGE fingerprinting profiles. The mean numbers of detected PCR amplicons were 22.3 +/- 6.1 for the baseline group, 13.0 +/- 3.1 for the T1 group, and 13.5 +/- 4.3 for the T4 group; the differences among the three groups were statistically significant (P < 0.01). The study also found a significant difference in the mean similarities of microbial profiles between the baseline and the treatment groups (P < 0.001). PCR-based DGGE has been shown to be an excellent means of rapidly and accurately assessing oral microbial changes in this clinical study.

  11. The Failure Patterns of Oral Cavity Squamous Cell Carcinoma After Intensity-Modulated Radiotherapy-University of Iowa Experience

    International Nuclear Information System (INIS)

    Yao Min; Chang, Kristi; Funk, Gerry F.; Lu Heming; Tan Huaming; Wacha, Judith C; Dornfeld, Kenneth J.; Buatti, John M.

    2007-01-01

    Purpose: Determine the failure patterns of oral cavity squamous cell carcinoma (SCC) treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Between May 2001 and July 2005, 55 patients with oral cavity SCC were treated with IMRT for curative intent. Forty-nine received postoperative IMRT, 5 definitive IMRT, and 1 neoadjuvant. Three target volumes were defined (clinical target CTV1, CTV2, and CTV3). The failure patterns were determined by coregistration or comparison of the treatment planning computed tomography to the images obtained at the time of recurrence. Results: The median follow-up for all patients was 17.1 months (range, 0.27-59.3 months). The median follow-up for living patients was 23.9 months (range, 9.3-59.3 months). Nine patients had locoregional failures: 4 local failures only, 2 regional failures only, and 3 had both local and regional failures. Five patients failed distantly; of these, 3 also had locoregional failures. The 2-year overall survival, disease-specific survival, local recurrence-free survival, locoregional recurrence-free survival, and distant disease-free survival was 68%, 74%, 85%, 82%, and 89%, respectively. The median time from treatment completion to locoregional recurrence was 4.1 months (range, 3.0-12.1 months). Except for 1 patient who failed in contralateral lower neck outside the radiation field, all failed in areas that had received a high dose of radiation. The locoregional control is strongly correlated with extracapsular extension. Conclusions: Intensity-modulated RT is effective for oral cavity SCC. Most failures are in-field failures. Further clinical studies are necessary to improve the outcomes of patients with high-risk features, particularly for those with extracapsular extension

  12. Patterns of relapse following surgery and postoperative intensity modulated radiotherapy for oral and oropharyngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Collan, Juhani; Vaalavirta, Leila; Kajanti, Mikael; Tenhunen, Mikko; Saarilahti, Kauko (Dept. of Oncology, Helsinki Univ. Central Hospital, and Univ. of Helsinki, Helsinki (Finland)), E-mail: kauko.saarilahti@hus.fi; Lundberg, Marie; Baeck, Leif; Maekitie, Antti (Dept. of Otorhinolaryngology - Head and Neck Surgery, Helsinki Univ. Central Hospital, and Univ. of Helsinki, Helsinki (Finland))

    2011-10-15

    Background. To investigate the patterns of relapse following intensity modulated radiotherapy (IMRT) given after radical surgery for oral and oropharyngeal squamous cell cancer. Patients and methods. One hundred and two patients with oral or oropharyngeal cancer were treated with radical surgery followed by IMRT up to a mean total dose of 60 Gy between years 2001 and 2007. Thirty-nine of the patients (%) also received concomitant weekly cisplatin. Forty of the patients had oral and 62 had oropharyngeal cancer. Data on the tumour, patient and treatment factors were collected. Following therapy the patients were followed by clinical examination, endoscopy and MRI/CT at 2- to 3-months interval up to 2 years and thereafter at 6-month intervals. Results. The mean follow-up time of the patients was 55 months (range, 26-106 months). The rate for local tumour control for the whole cohort was 92.2%: 87.5% for oral cancer patients and 96.7% for oropharyngeal cancer patients. The 5-year disease specific survival was 90.2% and 5-year overall survival 84.3%. During the follow-up eight locoregional recurrences were observed, three at the primary tumour site and one at regional nodal site and four at both sites. The mean time to primary tumour recurrence was seven months (range, 2-10 months) and to nodal recurrence seven months (range, 2-12 months). Distant metastasis occurred in six (6%) patients. The factors associated with poor prognosis were the primary tumour size and tumour site with oral cancers having worse outcome. The treatment was well tolerated with no unexpected toxicities. The most frequent late toxicity was dysphagia necessitating permanent PEG in five patients. This was correlated with the advanced primary tumour size and resulting in wide tumour excision and reconstruction. Conclusions. Surgery combined with postoperative radiotherapy given as IMRT results in low level of tumour recurrence

  13. Patterns of relapse following surgery and postoperative intensity modulated radiotherapy for oral and oropharyngeal cancer

    International Nuclear Information System (INIS)

    Collan, Juhani; Vaalavirta, Leila; Kajanti, Mikael; Tenhunen, Mikko; Saarilahti, Kauko; Lundberg, Marie; Baeck, Leif; Maekitie, Antti

    2011-01-01

    Background. To investigate the patterns of relapse following intensity modulated radiotherapy (IMRT) given after radical surgery for oral and oropharyngeal squamous cell cancer. Patients and methods. One hundred and two patients with oral or oropharyngeal cancer were treated with radical surgery followed by IMRT up to a mean total dose of 60 Gy between years 2001 and 2007. Thirty-nine of the patients (%) also received concomitant weekly cisplatin. Forty of the patients had oral and 62 had oropharyngeal cancer. Data on the tumour, patient and treatment factors were collected. Following therapy the patients were followed by clinical examination, endoscopy and MRI/CT at 2- to 3-months interval up to 2 years and thereafter at 6-month intervals. Results. The mean follow-up time of the patients was 55 months (range, 26-106 months). The rate for local tumour control for the whole cohort was 92.2%: 87.5% for oral cancer patients and 96.7% for oropharyngeal cancer patients. The 5-year disease specific survival was 90.2% and 5-year overall survival 84.3%. During the follow-up eight locoregional recurrences were observed, three at the primary tumour site and one at regional nodal site and four at both sites. The mean time to primary tumour recurrence was seven months (range, 2-10 months) and to nodal recurrence seven months (range, 2-12 months). Distant metastasis occurred in six (6%) patients. The factors associated with poor prognosis were the primary tumour size and tumour site with oral cancers having worse outcome. The treatment was well tolerated with no unexpected toxicities. The most frequent late toxicity was dysphagia necessitating permanent PEG in five patients. This was correlated with the advanced primary tumour size and resulting in wide tumour excision and reconstruction. Conclusions. Surgery combined with postoperative radiotherapy given as IMRT results in low level of tumour recurrence

  14. PCB126 modulates fecal microbial fermentation of the dietary fiber inulin

    Science.gov (United States)

    Exposure to environmental pollutants can alter gut microbial populations. Short-chain fatty acids (SCFAs), produced from gut microbial fermentation of dietary fibers such as inulin, exert numerous effects on host energy metabolism. SCFAs are also linked to health promoting effects, including a red...

  15. ANTIMICROBIAL AND SYNERGISTIC ACTIVITY OF INGREDIENTS OF BETEL QUID ON ORAL AND ENTERIC PATHOGENS

    OpenAIRE

    Niraj A Ghanwate; Prashant Thakare

    2012-01-01

    In this study, antimicrobial and synergistic activity of ingredients of betel quid i.e. kattha, lime, betel leaf, betel nut, cardamom, clove and fennel seeds was tested against microbial population of oral cavity and four enteric pathogens namely Staphylococcus aureus, Salmonella typhi, Escherichia coli and Shigell flexneri. For this purpose two methods were used. Pour plate method was used for calculating the reduction in microbial population in oral cavity and disk diffusion method was u...

  16. Gallic acid modulates phenotypic behavior and gene expression in oral squamous cell carcinoma cells by interfering with leptin pathway.

    Science.gov (United States)

    Santos, Eliane Macedo Sobrinho; da Rocha, Rogério Gonçalves; Santos, Hércules Otacílio; Guimarães, Talita Antunes; de Carvalho Fraga, Carlos Alberto; da Silveira, Luiz Henrique; Batista, Paulo Ricardo; de Oliveira, Paulo Sérgio Lopes; Melo, Geraldo Aclécio; Santos, Sérgio Henrique; de Paula, Alfredo Maurício Batista; Guimarães, André Luiz Sena; Farias, Lucyana Conceição

    2018-01-01

    Gallic acid is a polyphenolic compost appointed to interfere with neoplastic cells behavior. Evidence suggests an important role of leptin in carcinogenesis pathways, inducing a proliferative phenotype. We investigated the potential of gallic acid to modulate leptin-induced cell proliferation and migration of oral squamous cell carcinoma cell lines. The gallic acid effect on leptin secretion by oral squamous cell carcinoma cells, as well as the underlying molecular mechanisms, was also assessed. For this, we performed proliferation, migration, immunocytochemical and qPCR assays. The expression levels of cell migration-related genes (MMP2, MMP9, Col1A1, and E-cadherin), angiogenesis (HIF-1α, mir210), leptin signaling (LepR, p44/42 MAPK), apoptosis (casp-3), and secreted leptin levels by oral squamous cell carcinoma cells were also measured. Gallic acid decreased proliferation and migration of leptin-treated oral squamous cell carcinoma cells, and reduced mRNA expression of MMP2, MMP9, Col1A1, mir210, but did not change HIF-1α. Gallic acid decreased levels of leptin secreted by oral squamous cell carcinoma cells, accordingly with downregulation of p44/42 MAPK expression. Thus, gallic acid appears to break down neoplastic phenotype of oral squamous cell carcinoma cells by interfering with leptin pathway. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Preliminary characterization of the oral microbiota of Chinese adults with and without gingivitis

    Directory of Open Access Journals (Sweden)

    Huang Shi

    2011-12-01

    Full Text Available Abstract Background Microbial communities inhabiting human mouth are associated with oral health and disease. Previous studies have indicated the general prevalence of adult gingivitis in China to be high. The aim of this study was to characterize in depth the oral microbiota of Chinese adults with or without gingivitis, by defining the microbial phylogenetic diversity and community-structure using highly paralleled pyrosequencing. Methods Six non-smoking Chinese, three with and three without gingivitis (age range 21-39 years, 4 females and 2 males were enrolled in the present cross-sectional study. Gingival parameters of inflammation and bleeding on probing were characterized by a clinician using the Mazza Gingival Index (MGI. Plaque (sampled separately from four different oral sites and salivary samples were obtained from each subject. Sequences and relative abundance of the bacterial 16 S rDNA PCR-amplicons were determined via pyrosequencing that produced 400 bp-long reads. The sequence data were analyzed via a computational pipeline customized for human oral microbiome analyses. Furthermore, the relative abundances of selected microbial groups were validated using quantitative PCR. Results The oral microbiomes from gingivitis and healthy subjects could be distinguished based on the distinct community structures of plaque microbiomes, but not the salivary microbiomes. Contributions of community members to community structure divergence were statistically accessed at the phylum, genus and species-like levels. Eight predominant taxa were found associated with gingivitis: TM7, Leptotrichia, Selenomonas, Streptococcus, Veillonella, Prevotella, Lautropia, and Haemophilus. Furthermore, 98 species-level OTUs were identified to be gingivitis-associated, which provided microbial features of gingivitis at a species resolution. Finally, for the two selected genera Streptococcus and Fusobacterium, Real-Time PCR based quantification of relative bacterial

  18. Preliminary characterization of the oral microbiota of Chinese adults with and without gingivitis

    Science.gov (United States)

    2011-01-01

    Background Microbial communities inhabiting human mouth are associated with oral health and disease. Previous studies have indicated the general prevalence of adult gingivitis in China to be high. The aim of this study was to characterize in depth the oral microbiota of Chinese adults with or without gingivitis, by defining the microbial phylogenetic diversity and community-structure using highly paralleled pyrosequencing. Methods Six non-smoking Chinese, three with and three without gingivitis (age range 21-39 years, 4 females and 2 males) were enrolled in the present cross-sectional study. Gingival parameters of inflammation and bleeding on probing were characterized by a clinician using the Mazza Gingival Index (MGI). Plaque (sampled separately from four different oral sites) and salivary samples were obtained from each subject. Sequences and relative abundance of the bacterial 16 S rDNA PCR-amplicons were determined via pyrosequencing that produced 400 bp-long reads. The sequence data were analyzed via a computational pipeline customized for human oral microbiome analyses. Furthermore, the relative abundances of selected microbial groups were validated using quantitative PCR. Results The oral microbiomes from gingivitis and healthy subjects could be distinguished based on the distinct community structures of plaque microbiomes, but not the salivary microbiomes. Contributions of community members to community structure divergence were statistically accessed at the phylum, genus and species-like levels. Eight predominant taxa were found associated with gingivitis: TM7, Leptotrichia, Selenomonas, Streptococcus, Veillonella, Prevotella, Lautropia, and Haemophilus. Furthermore, 98 species-level OTUs were identified to be gingivitis-associated, which provided microbial features of gingivitis at a species resolution. Finally, for the two selected genera Streptococcus and Fusobacterium, Real-Time PCR based quantification of relative bacterial abundance validated the

  19. Oral contraceptives and neuroactive steroids.

    Science.gov (United States)

    Rapkin, Andrea J; Biggio, Giovanni; Concas, Alessandra

    2006-08-01

    A deregulation in the peripheral and brain concentrations of neuroactive steroids has been found in certain pathological conditions characterized by emotional or affective disturbances, including major depression and anxiety disorders. In this article we summarize data pertaining to the modulatory effects of oral contraceptive treatment on neuroactive steroids in women and rats. Given that the neuroactive steroids concentrations are reduced by oral contraceptives, together with the evidence that a subset of women taking oral contraceptives experience negative mood symptoms, we propose the use of this pharmacological treatment as a putative model to study the role of neuroactive steroids in the etiopathology of mood disorders. Moreover, since neuroactive steroids are potent modulators of GABA(A) receptor function and plasticity, the treatment with oral contraceptives might also represent a useful experimental model to further investigate the physiological role of these steroids in the modulation of GABAergic transmission.

  20. Betel nut chewing, oral premalignant lesions, and the oral microbiome.

    Science.gov (United States)

    Hernandez, Brenda Y; Zhu, Xuemei; Goodman, Marc T; Gatewood, Robert; Mendiola, Paul; Quinata, Katrina; Paulino, Yvette C

    2017-01-01

    Oral cancers are attributed to a number of causal agents including tobacco, alcohol, human papillomavirus (HPV), and areca (betel) nut. Although betel nut chewing has been established as an independent cause of oral cancer, the mechanisms of carcinogenesis are poorly understood. An investigation was undertaken to evaluate the influence of betel nut chewing on the oral microbiome and oral premalignant lesions. Study participants were recruited from a dental clinic in Guam. Structured interviews and oral examinations were performed. Oral swabbing and saliva samples were evaluated by 454 pyrosequencing of the V3- V5 region of the 16S rRNA bacterial gene and genotyped for HPV. One hundred twenty-two adults were enrolled including 64 current betel nut chewers, 37 former chewers, and 21 with no history of betel nut use. Oral premalignant lesions, including leukoplakia and submucous fibrosis, were observed in 10 chewers. Within-sample bacterial diversity was significantly lower in long-term (≥10 years) chewers vs. never chewers and in current chewers with oral lesions vs. individuals without lesions. Between-sample bacterial diversity based on Unifrac distances significantly differed by chewing status and oral lesion status. Current chewers had significantly elevated levels of Streptococcus infantis and higher and lower levels of distinct taxa of the Actinomyces and Streptococcus genera. Long-term chewers had reduced levels of Parascardovia and Streptococcus. Chewers with oral lesions had significantly elevated levels of Oribacterium, Actinomyces, and Streptococcus, including Streptococcus anginosus. In multivariate analyses, controlling for smoking, oral HPV, S.anginosus, and S. infantis levels, current betel nut chewing remained the only predictor of oral premalignant lesions. Our study provides evidence that betel nut chewing alters the oral bacterial microbiome including that of chewers who develop oral premalignant lesions. Nonetheless, whether microbial changes

  1. Exploring the possible applications of catechin (gel for oral care of the elderly and disabled individuals

    Directory of Open Access Journals (Sweden)

    Muneaki Tamura

    2012-08-01

    Full Text Available The oral cavity contains more than hundreds of microbial species. An increase in the number of these microorganisms like high pathogenic potential species, such as cariogenic and periodontopathic bacteria, and the change of microbial biota may result in, not only oral infection, but also systemic diseases, such as infective endocarditis and aspiration pneumonia. It is very important to control the growth of these microorganisms and its biota just after oral cleaning in order to suppress disease onset. In this regard, it is useful to use the anti-microbial component which acts against pathogenic microorganisms. Here, we highlight the importance of catechin, and feature its possible oral, especially periodontal applications. By combining catechin with gel (catechin gel, antimicrobial activity of catechin was prolonged in gel and catechin anti-oxidization property was observed. Catechin gel inhibited the growth of the Actinomyces, periodontopathic bacteria and Candida strains tested, but did not inhibit that of the oral streptococci that are important in the normal oral flora. In contrast, commercially available moisture gels containing antimicrobial components showed antimicrobial activity against all of the tested strains including the oral streptococci. This show that catechin has selective antimicrobial activity, attributable to hydrogen peroxide production. This paper reviews previous works using catechin and, likewise, catechin gel may be show its possible oral application for prevent dental caries and periodontal disease.

  2. Pharmacological interactions of anti-microbial agents in odontology.

    Science.gov (United States)

    Gómez-Moreno, Gerardo; Guardia, Javier; Cutando, Antonio; Calvo-Guirado, José-Luis

    2009-03-01

    In this third article we describe the pharmacological interactions resulting from the use of anti-microbial agents. Although the antimicrobials prescribed in odontology are generally safe they can produce interactions with other medicaments which can give rise to serious adverse reactions which are well documented in clinical studies. Antibiotics with grave and dangerous life threatening consequences are erythromycin, clarithromycin and metronidazol and the anti-fungal agents are ketoconazol and itraconazol. Regarding the capacity of the anti-microbials to reduce the efficacy of oral anti-contraceptives the clinical studies to date are inconclusive, however, it would be prudent for the oral cavity specialist to point out the risk of a possible interaction. Therefore the specialist should be aware of possible interactions as a consequence of administering an antibiotic together with other medicaments the patient may be taking.

  3. Microbial minorities modulate methane consumption through niche partitioning

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Meima-Franke, M.; Hordijk, C.A.; Steenbergh, A.K.; Hefting, M.M.; Bodrossy, L.; von Bergen, M.; Seifert, J.

    2013-01-01

    Microbes catalyze all major geochemical cycles on earth. However, the role of microbial traits and community composition in biogeochemical cycles is still poorly understood mainly due to the inability to assess the community members that are actually performing biogeochemical conversions in complex

  4. Comparing the effect of echinacea and chlorhexidine mouthwash on the microbial flora of intubated patients admitted to the intensive care unit

    Directory of Open Access Journals (Sweden)

    Mehdi Safarabadi

    2017-01-01

    Full Text Available Background: Providing intubated patients admitted to the intensive care units with oral healthcare is one of the main tasks of nurses in order to prevent Ventilator-Associated Pneumonia (VAP. This study aimed at comparing the effects of two mouthwash solutions (echinacea and chlorhexidine on the oral microbial flora of patients hospitalized in the intensive care units. Materials and Methods: In this clinical trial, 70 patients aged between18 and 65 years undergoing tracheal intubation through the mouth in three hospitals in Arak, were selected using simple random sampling and were randomly divided into two groups: the intervention group and the control group. The oral health checklist was used to collect the data (before and after the intervention. The samples were obtained from the orally intubated patients and were then cultured in selective media. Afterwards, the aerobic microbial growth was investigated in all culture media. The data were analyzed using SPSS software. Results: The microbial flora in the echinacea group significantly decreased after the intervention (p < 0.0001 and it was also the case withmicrobial flora of the patients in the chlorhexidine group (p < 0.001. After 4 days, the oral microbial flora of the patients in the intervention group was lower than that of the patients in the control group (p < 0.001. Conclusions: The results showed that the echinacea solution was more effective in decreasing the oral microbial flora of patients in the intensive care unit. Given the benefits of the components of the herb Echinacea, it can be suggested as a viable alternative to chlorhexidine.

  5. Orally delivered β-glucans aggravate dextran sulfate sodium (DSS)-induced intestinal inflammation

    NARCIS (Netherlands)

    Heinsbroek, Sigrid E. M.; Williams, David L.; Welting, Olaf; Meijer, Sybren L.; Gordon, Siamon; de Jonge, Wouter J.

    2015-01-01

    β-Glucans have beneficial health effects due to their immune modulatory properties. Oral administration of β-glucans affects tumour growth, microbial infection, sepsis, and wound healing. We hypothesized that pre-treatment with orally delivered soluble and particulate β-glucans could ameliorate the

  6. Role of bacteria in oral carcinogenesis

    Directory of Open Access Journals (Sweden)

    R Rajeev

    2012-01-01

    Full Text Available Oral cancer is the most common cancer diagnosed in Indian men and is the leading cause of cancer deaths. It is considered as a multistep and multifactorial disease. Besides accumulation of genetic mutations, numerous other carcinogens are involved. In this category, viral and chemical carcinogens are well studied and documented. However, in the oral cavity, the role of microbiota in carcinogenesis is not known. Microbial populations on mouth mucosa differ between healthy and malignant sites, and certain oral bacterial species have been linked with malignancies, but the evidence is still weak in this respect. Nevertheless, oral microorganisms inevitably up-regulate cytokines and other inflammatory mediators that affect the complex metabolic pathways, and may thus be involved in carcinogenesis. Poor oral health associates statistically with prevalence of many types of cancer such as pancreatic and gastrointestinal cancer. This review presents possible carcinogenesis pathway involved in bacterial carcinogenesis, commonly implicated bacteria in oral carcinogenesis, and their role in cancer therapeutics as well.

  7. Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health

    Directory of Open Access Journals (Sweden)

    Montijn Roy C

    2011-03-01

    Full Text Available Abstract Background An understanding of the relation of commensal microbiota to health is essential in preventing disease. Here we studied the oral microbial composition of children (N = 74, aged 3 - 18 years in natural transition from their deciduous to a permanent dentition and related the microbial profiles to their oral health status. The microbial composition of saliva was assessed by barcoded pyrosequencing of the V5-V6 hypervariable regions of the 16 S rRNA, as well as by using phylogenetic microarrays. Results Pyrosequencing reads (126174 reads, 1045 unique sequences represented 8 phyla and 113 higher taxa in saliva samples. Four phyla - Firmicutes, Bacteriodetes, Proteobacteria and Actinobacteria - predominated in all groups. The deciduous dentition harboured a higher proportion of Proteobacteria (Gammaproteobacteria, Moraxellaceae than Bacteroidetes, while in all other groups Bacteroidetes were at least as abundant as Proteobacteria. Bacteroidetes (mainly genus Prevotella, Veillonellaceae family, Spirochaetes and candidate division TM7 increased with increasing age, reflecting maturation of the microbiome driven by biological changes with age. Microarray analysis enabled further analysis of the individual salivary microbiota. Of 350 microarray probes, 156 gave a positive signal with, on average, 77 (range 48-93 probes per individual sample. A caries-free oral status significantly associated with the higher signal of the probes targeting Porphyromonas catoniae and Neisseria flavescens. Conclusions The potential role of P. catoniae and N. flavescens as oral health markers should be assessed in large-scale clinical studies. The combination of both, open-ended and targeted molecular approaches provides us with information that will increase our understanding of the interplay between the human host and its microbiome.

  8. Oral and dental infections with anaerobic bacteria: clinical features, predominant pathogens, and treatment.

    Science.gov (United States)

    Tanner, A; Stillman, N

    1993-06-01

    Microbial populations colonizing the teeth are a major source of pathogens responsible for oral and dental infections, including periodontal diseases, gingivitis, pericoronitis, endodontitis, peri-implantitis, and postextraction infections. Each entity has distinct clinical and microbial features. Bacterial species associated with oral infections include Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Bacteroides forsythus, Campylobacter rectus, Eubacterium species, Fusobacterium nucleatum, Eikenella corrodens, and Peptostreptococcus micros. Treponema pallidum-related spirochetes have been associated with acute necrotizing ulcerative gingivitis. Porphyromonas endodontalis appears to be specifically related to endodontic infections. Oral infections in medically compromised patients, including those with AIDS, are associated with similar species and are usually complicated by superinfection with enteric and Candida species. Isolation of species causing oral infections requires the collection of appropriate samples and the use of strictly anaerobic techniques. Rapid selective culture, immunofluorescence, and DNA probe methods have been developed for the identification of these oral species. The varied measures required in the management of oral and dental infections may include antimicrobial therapy. Accurate microbiological diagnosis, including antibiotic susceptibility testing, is indicated for cases that do not respond to therapy.

  9. Role of Microbial Modulation in Management of Atopic Dermatitis in Children.

    Science.gov (United States)

    Hulshof, Lies; Van't Land, Belinda; Sprikkelman, Aline B; Garssen, Johan

    2017-08-09

    The pathophysiology of atopic dermatitis (AD) is multifactorial and is a complex interrelationship between skin barrier, genetic predisposition, immunologic development, skin microbiome, environmental, nutritional, pharmacological, and psychological factors. Several microbial modulations of the intestinal microbiome with pre- and/or probiotics have been used in AD management, with different clinical out-come (both positive, as well as null findings). This review provides an overview of the clinical evidence from trials in children from 2008 to 2017, aiming to evaluate the effect of dietary interventions with pre- and/or pro-biotics for the treatment of AD. By searching the PUBMED/MEDLINE, EMBADE, and COCHRANE databases 14 clinical studies were selected and included within this review. Data extraction was independently conducted by two authors. The primary outcome was an improvement in the clinical score of AD severity. Changes of serum immunological markers and/or gastrointestinal symptoms were explored if available. In these studies some dietary interventions with pre- and/or pro-biotics were beneficial compared to control diets in the management of AD in children, next to treatment with emollients, and/or local corticosteroids. However, heterogeneity between studies was high, making it clear that focused clinical randomized controlled trials are needed to understand the potential role and underlying mechanism of dietary interventions in children with AD.

  10. Oral squamous cell carcinoma proliferative phenotype is modulated by proanthocyanidins: a potential prevention and treatment alternative for oral cancer

    Directory of Open Access Journals (Sweden)

    Swapp Aaron

    2007-06-01

    Full Text Available Abstract Background Despite the recently reported drop in the overall death rate from cancer, the estimated survival rate and number of deaths from oral cancer remain virtually unchanged. Early detection efforts, in combination with strategies for prevention and risk-reduction, have the potential to dramatically improve clinical outcomes. The identification of non-toxic, effective treatments, including complementary and alternative therapies, is critical if the survival rate is to be improved. Epidemiologic studies have suggested a protective effect from certain plant-derived foods and extracts; however, it has been difficult to isolate and identify the compounds most responsible for these observations. The primary purpose of this study was to investigate the response of human oral squamous cell carcinoma (OSCC to proanthocyanidin (PAC, a plant-derived compound that may inhibit the progression of several other cancers. Methods Using a series of in vitro assays, we sought to quantify the effects of PAC on OSCC, cervical carcinoma, and non-cancerous cell lines, specifically the effects of PAC on cell proliferation. Recent data suggest that infection with the human papillomavirus (HPV may also modulate the proliferative potential of OSCC; therefore, we also measured the effects of PAC administration on HPV-transfected OSCC proliferation. Results Our results demonstrated that PAC administration was sufficient to significantly suppress cellular proliferation of OSCC in a dose-dependent manner. In addition, the increased proliferation of OSCC after transfection with HPV 16 was reduced by the administration of PAC, as was the proliferation of the cervical cancer and non-cancerous cell lines tested. Our results also provide preliminary evidence that PAC administration may induce apoptosis in cervical and oral cancer cell lines, while acting merely to suppress proliferation of the normal cell line control. Conclusion These results signify that PAC may be

  11. Oral contraceptives modulate the muscle metaboreflex in healthy young women.

    Science.gov (United States)

    Parmar, Hanna R; Sears, Jasmin; Molgat-Seon, Yannick; McCulloch, Cara L; McCracken, Laura A; Brown, Courtney V; Sheel, A William; Dominelli, Paolo B

    2018-05-01

    There are known sex differences in blood pressure regulation. The differences are related to ovarian hormones that influence β-adrenergic receptors and the transduction of muscle sympathetic nerve activity. Oral contraceptives (OC) modulate the ovarian hormonal profile in women and therefore may alter the cardiovascular response. We questioned if OC would alter the absolute pressor response to static exercise and influence the day-to-day variability of the response. Healthy men (n = 11) and women (n = 19) completed a familiarization day and 2 experimental testing days. Women were divided into those taking (W-OC, n = 10) and not taking (W-NC, n = 9) OC. Each experimental testing day involved isometric handgripping exercise, at 30% of maximal force, followed by circulatory occlusion to isolate the metaboreflex. Experimental days in men were 7-14 days apart. The first experimental testing in W-OC occurred 2-7 days after the start of the active phase of their OC. Women not taking OC were tested during the early and late follicular phase of the menstrual cycle as determined by commercial ovulation monitor. The increase in mean arterial pressure (MAP) during exercise was significantly lower in W-NC (95 ± 4 mm Hg) compared with men (114 ± 4 mm Hg) and W-OC (111 ± 3 mm Hg) (P < 0.05), with the differences preserved during circulatory occlusion. The rise in MAP was significantly correlated between the 2 testing days in men (r = 0.72, P < 0.01) and W-OC (r = 0.77, P < 0.05), but not in W-NC (r = 0.17, P = 0.67), indicating greater day-to-day variation in W-NC. In conclusion, OC modulate the exercise pressor response in women and minimize day-to-day variability in the exercise metaboreflex.

  12. Modulation of EEG spectral edge frequency during patterned pneumatic oral stimulation in preterm infants

    Science.gov (United States)

    Song, Dongli; Jegatheesan, Priya; Weiss, Sunshine; Govindaswami, Balaji; Wang, Jingyan; Lee, Jaehoon; Oder, Austin; Barlow, Steven M

    2014-01-01

    Background Stimulation of the nervous system plays a central role in brain development and neurodevelopmental outcome. Thalamocortical and corticocortical development is diminished in premature infants and correlated to electroencephalography (EEG) progression. The purpose of this study was to determine the effects of orocutaneous stimulation on the modulation of spectral edge frequency, fc=90% (SEF-90) derived from EEG recordings in preterm infants. Methods Twenty two preterm infants were randomized to experimental and control conditions. Pulsed orocutaneous stimulation was presented during gavage feedings begun at around 32 weeks postmenstrual age (PMA). The SEF-90 was derived from 2-channel EEG recordings. Results Compared to the control condition, the pulsed orocutaneous stimulation produced a significant reorganization of SEF-90 in the left (p = 0.005) and right (p stimulation also produced a significant pattern of short term cortical adaptation and a long term neural adaptation manifest as a 0.5 Hz elevation in SEF-90 after repeated stimulation sessions. Conclusion This is the first study to demonstrate the modulating effects of a servo-controlled oral somatosensory input on the spectral features of EEG activity in preterm infants. PMID:24129553

  13. Alteration of intestinal microbiota in mice orally administered with salmon cartilage proteoglycan, a prophylactic agent.

    Directory of Open Access Journals (Sweden)

    Krisana Asano

    Full Text Available Proteoglycan (PG extracted from salmon nasal cartilage has potential to be a prophylactic agent. Daily oral administration of the PG attenuates systemic inflammatory response in the experimental mouse models. In this study, we applied the culture-independent approach to investigate an alteration of intestinal microbiota composition in PG-administered mice. The results indicated that the population level of bacilli increased in the small and large intestine upon PG administration. On the other hand, the population level of clostridia decreased in the large intestine. The proportion of bacteria that are able to ferment saccharides and produce short-chain fatty acids increased in the small intestine and decreased in the large intestine. Importantly, population level of probiotic lactobacilli and bacteria exhibiting the immunomodulatory effect increased in the PG-administered mice. In addition, several disease-associated bacteria decreased upon PG administration. These results provided an understanding of the specific role of PG involved in host immune modulation and supported our hypothesis that daily oral administration of PG improves the overall balance in composition of the intestinal microbial community.

  14. Oral contraceptive therapy modulates hemispheric asymmetry in spatial attention.

    Science.gov (United States)

    Cicinelli, Ettore; De Tommaso, Marina; Cianci, Antonio; Colacurci, Nicola; Rella, Leonarda; Loiudice, Luisa; Cicinelli, Maria Vittoria; Livrea, Paolo

    2011-12-01

    Functional cerebral asymmetries (FCAs) are known to fluctuate across the menstrual cycle. The visual line-bisection task administered to normally cycling women showed different patterns of the interhemispheric interactions during menses and the midluteal cycle phase. However, the contribution of estrogens and progestins hormones to this phenomenon is still unclear. The aim of our study was to show a variation of FCAs in women administered oral contraceptives (OCs) using the visual line-bisection task. Visual line-bisection task with three horizontal lines was administered to 36 healthy women taking a 21-day OC. Twenty-nine patients were right handed. The task was administered during OC intake (day 10) and at the end of the pill-free period. The right-handed women showed a significant leftward bias of veridical center on the first and third lines during OC intake compared with an opposite rightward bias during the pill-free period. The same phenomenon of contralateral deviation was observed in left-handed women on day 10 of OC intake. The results of this study confirm a hormonal modulation on interhemispheric interaction and suggest that OCs may improve the interhemispheric interaction reducing FCAs compared with the low hormone level period. This opens new insights in OC prescription and choice of administration schedule in order to improve cognitive performances. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Phase II Clinical Trial of Intraoral Grafting of Human Tissue Engineered Oral Mucosa

    Science.gov (United States)

    2017-10-01

    treatment, EVPOME (Group 1), or standard of care, the palatal oral mucosa (POM) graft (Group 2). The study population will include non- smoking adults...nor prevents microbial infection, fluid loss, and foreign material contamination and relapse secondary to wound contracture. Oral mucosa is in... smoking subjects (ages 18 and older) in need of additional keratinized oral mucosa and provided recruitment materials to local dentists. This resulted

  16. The oral cavity microbiota: between health, oral disease, and cancers of the aerodigestive tract.

    Science.gov (United States)

    Le Bars, Pierre; Matamoros, Sébastien; Montassier, Emmanuel; Le Vacon, Françoise; Potel, Gilles; Soueidan, Assem; Jordana, Fabienne; de La Cochetière, Marie-France

    2017-06-01

    Many studies show that the human microbiome plays a critical role in the chronic pathologies of obesity, inflammatory bowel diseases, and diabetes. More recently, the interaction between cancer and the microbiome has been highlighted. Most studies have focused on the gut microbiota because it represents the most extensive bacterial community, and the body of evidence correlating it with gut syndromes is increasing. However, in the strict sense, the gastrointestinal (GI) tract begins in the oral cavity, and special attention should be paid to the specific flora of this cavity. This study reviewed the current knowledge about the various microbial ecosystems of the upper part of the GI tract and discussed their potential link to carcinogenesis. The overall composition of the microbial communities, as well as the presence or absence of "key species", in relation to carcinogenesis is addressed. Alterations in the oral microbiota can potentially be used to predict the risk of cancer. Molecular advances and the further monitoring of the microbiota will increase our understanding of the role of the microbiota in carcinogenesis and open new perspectives for future therapeutic and prophylactic modalities.

  17. Effect of Fixed Orthodontic Treatment on Salivary Flow, pH and Microbial Count.

    Science.gov (United States)

    Arab, Sepideh; Nouhzadeh Malekshah, Sepideh; Abouei Mehrizi, Ehsan; Ebrahimi Khanghah, Anita; Naseh, Roya; Imani, Mohammad Moslem

    2016-01-01

    The present study was designed to evaluate the changes in saliva properties and oral microbial flora in patients undergoing fixed orthodontic treatment. Two important saliva properties namely the salivary flow rate and pH as well as oral microbial flora were assessed in 30 orthodontic patients before starting fixed orthodontic treatment and after six, 12 and 18 weeks of treatment. Selective media, Sabouraud dextrose agar, Mitis salivarius agar and Rogosa agar were used for isolation of Candida albicans, Streptococcus mutans and Lactobacillus acidophilus, respectively. Statistical analysis was performed using Friedman and Dunn's tests. Porthodontic treatment, the total colony counts of Candida albicans, Streptococcus mutans and Lactobacillus acidophilus showed a significant increase. The saliva pH decreased during the orthodontic treatment (Porthodontic treatment causes major changes in the saliva properties. The changes in oral microflora and saliva properties show the importance of caries preventive measures during orthodontic treatment.

  18. Role of Microbial Modulation in Management of Atopic Dermatitis in Children

    Directory of Open Access Journals (Sweden)

    Lies Hulshof

    2017-08-01

    Full Text Available The pathophysiology of atopic dermatitis (AD is multifactorial and is a complex interrelationship between skin barrier, genetic predisposition, immunologic development, skin microbiome, environmental, nutritional, pharmacological, and psychological factors. Several microbial modulations of the intestinal microbiome with pre- and/or probiotics have been used in AD management, with different clinical out-come (both positive, as well as null findings. This review provides an overview of the clinical evidence from trials in children from 2008 to 2017, aiming to evaluate the effect of dietary interventions with pre- and/or pro-biotics for the treatment of AD. By searching the PUBMED/MEDLINE, EMBADE, and COCHRANE databases 14 clinical studies were selected and included within this review. Data extraction was independently conducted by two authors. The primary outcome was an improvement in the clinical score of AD severity. Changes of serum immunological markers and/or gastrointestinal symptoms were explored if available. In these studies some dietary interventions with pre- and/or pro-biotics were beneficial compared to control diets in the management of AD in children, next to treatment with emollients, and/or local corticosteroids. However, heterogeneity between studies was high, making it clear that focused clinical randomized controlled trials are needed to understand the potential role and underlying mechanism of dietary interventions in children with AD.

  19. Review article: the gut microbiome in inflammatory bowel disease-avenues for microbial management.

    Science.gov (United States)

    McIlroy, J; Ianiro, G; Mukhopadhya, I; Hansen, R; Hold, G L

    2018-01-01

    The concept of an altered collective gut microbiota rather than identification of a single culprit is possibly the most significant development in inflammatory bowel disease research. We have entered the "omics" era, which now allows us to undertake large-scale/high-throughput microbiota analysis which may well define how we approach diagnosis and treatment of inflammatory bowel disease (IBD) in the future, with a strong steer towards personalised therapeutics. To assess current epidemiological, experimental and clinical evidence of the current status of knowledge relating to the gut microbiome, and its role in IBD, with emphasis on reviewing the evidence relating to microbial therapeutics and future microbiome modulating therapeutics. A Medline search including items 'intestinal microbiota/microbiome', 'inflammatory bowel disease', 'ulcerative colitis', 'Crohn's disease', 'faecal microbial transplantation', 'dietary manipulation' was performed. Disease remission and relapse are associated with microbial changes in both mucosal and luminal samples. In particular, a loss of species richness in Crohn's disease has been widely observed. Existing therapeutic approaches broadly fall into 3 categories, namely: accession, reduction or indirect modulation of the microbiome. In terms of microbial therapeutics, faecal microbial transplantation appears to hold the most promise; however, differences in study design/methodology mean it is currently challenging to elegantly translate results into clinical practice. Existing approaches to modulate the gut microbiome are relatively unrefined. Looking forward, the future of microbiome-modulating therapeutics looks bright with several novel strategies/technologies on the horizon. Taken collectively, it is clear that ignoring the microbiome in IBD is not an option. © 2017 John Wiley & Sons Ltd.

  20. Health-Associated Niche Inhabitants as Oral Probiotics: The Case of Streptococcus dentisani

    OpenAIRE

    L?pez-L?pez, Arantxa; Camelo-Castillo, Anny; Ferrer, Mar?a D.; Simon-Soro, ?urea; Mira, Alex

    2017-01-01

    Oral diseases, including dental caries and periodontitis, are among the most prevalent diseases worldwide and develop as a consequence of a microbial dysbiosis. Several bacterial strains are being tested as potential oral health-promoting organisms, but usually they are species isolated from niches other than the site where they must exert its probiotic action, typically from fecal samples. We hypothesize that oral inhabitants associated to health conditions will be more effective than tradit...

  1. Antimicrobial activity of jasmine oil against oral microorganisms

    Science.gov (United States)

    Thaweboon, S.; Thaweboon, B.; Kaypetch, R.

    2018-02-01

    Jasmine sambac is a species of jasmine indigenous to the tropical and warm temperature regions in particular West and Southeast Asia. Essential oil extracted from the flowers of J. sambac has been shown to have anti-oxidant activity. However, very little information regarding antimicrobial activity especially oral microorganisms exists. Objective: To investigate antimicrobial effect of essential oil extracted from flowers of J. sambac against various oral microorganisms. Materials and Methods: Oral microbial strains used in the study were Streptococcus mutans KPSK2, Staphylococcus aureus ATCC 5638, Lactobacillus casei ATCC 6363, Klebsiella pneumoniae (clinical isolate), Escherichia coli ATCC 25922, Candida albicans ATCC 10231, Candida krusei ATCC 6258, Candida parapsilosis ATCC 22019, Candida tropicalis (clinical isolate), Candida glabrata ATCC 90030, Candida pseudotropicalis (clinical isolate) and Candida stellatoidia (clinical isolate). The potential of microbial growth inhibition of the oil was firstly screened by Kirby-Bauer disk diffusion method and then the minimum inhibitory concentration (MIC) was determined by agar dilution method. Results: Jasmine oil showed antimicrobial activities against S. mutans, L. casei, E. coli and all strains of Candida species with the zones of inhibition ranging from 9 to 26 mm and MIC values of 0.19-1.56 %v/v. Conclusion: Results from the present study are scientific evidence to demonstrate that jasmine oil could be employed as a natural antimicrobial agent against oral microorganisms.

  2. Emerging role of bacteria in oral carcinogenesis: a review with special reference to perio-pathogenic bacteria.

    Science.gov (United States)

    Perera, Manosha; Al-Hebshi, Nezar Noor; Speicher, David J; Perera, Irosha; Johnson, Newell W

    2016-01-01

    Oral cancer, primarily oral squamous cell carcinoma (OSCC), continues to be a major global health problem with high incidence and low survival rates. While the major risk factors for this malignancy, mostly lifestyle related, have been identified, around 15% of oral cancer cases remain unexplained. In light of evidence implicating bacteria in the aetiology of some cancer types, several epidemiological studies have been conducted in the last decade, employing methodologies ranging from traditional culture techniques to 16S rRNA metagenomics, to assess the possible role of bacteria in OSCC. While these studies have demonstrated differences in microbial composition between cancerous and healthy tissues, they have failed to agree on specific bacteria or patterns of oral microbial dysbiosis to implicate in OSCC. On the contrary, some oral taxa, particularly Porphyromonas gingivalis and Fusobacterium nucleatum, show strong oral carcinogenic potential in vitro and in animal studies. Bacteria are thought to contribute to oral carcinogenesis via inhibition of apoptosis, activation of cell proliferation, promotion of cellular invasion, induction of chronic inflammation, and production of carcinogens. This narrative review provides a critical analysis of and an update on the association between bacteria and oral carcinogenesis and the possible mechanisms underlying it.

  3. Microbial synthesis of alka(enes

    Directory of Open Access Journals (Sweden)

    Weihua eWang

    2013-10-01

    Full Text Available Alka(enes are the predominant constituents of gasoline, diesel, and jet fuels. They can be produced naturally by a wide range of microorganisms. Bio- alka(enes can be used as drop-in biofuels. To date, five microbial pathways that convert free fatty acids or fatty acid derivatives into alka(enes have been identified or reconstituted. The discoveries open a door to achieve microbial production of alka(enes with high efficiency. The modules derived from these alka(ene biosynthetic pathways can be assembled as biological parts and synthetic biology strategies can be employed to optimize the metabolic pathways and improve alka(ene production.

  4. Does canine inflammatory bowel disease influence gut microbial profile and host metabolism?

    NARCIS (Netherlands)

    Xu, Jia; Verbrugghe, Adronie; Lourenço, Marta; Janssens, Geert P.J.; Liu, Daisy J.X.; Wiele, Van de Tom; Eeckhaut, Venessa; Immerseel, Van Filip; Maele, Van de Isabel; Niu, Yufeng; Bosch, Guido; Junius, Greet; Wuyts, Brigitte; Hesta, Myriam

    2016-01-01

    Background: Inflammatory bowel disease (IBD) refers to a diverse group of chronic gastrointestinal diseases, and gut microbial dysbiosis has been proposed as a modulating factor in its pathogenesis. Several studies have investigated the gut microbial ecology of dogs with IBD but it is yet unclear

  5. Nanocoatings for Chronic Wound Repair—Modulation of Microbial Colonization and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Mara Mădălina Mihai

    2018-04-01

    Full Text Available Wound healing involves a complex interaction between immunity and other natural host processes, and to succeed it requires a well-defined cascade of events. Chronic wound infections can be mono- or polymicrobial but their major characteristic is their ability to develop a biofilm. A biofilm reduces the effectiveness of treatment and increases resistance. A biofilm is an ecosystem on its own, enabling the bacteria and the host to establish different social interactions, such as competition or cooperation. With an increasing incidence of chronic wounds and, implicitly, of chronic biofilm infections, there is a need for alternative therapeutic agents. Nanotechnology shows promising openings, either by the intrinsic antimicrobial properties of nanoparticles or their function as drug carriers. Nanoparticles and nanostructured coatings can be active at low concentrations toward a large variety of infectious agents; thus, they are unlikely to elicit emergence of resistance. Nanoparticles might contribute to the modulation of microbial colonization and biofilm formation in wounds. This comprehensive review comprises the pathogenesis of chronic wounds, the role of chronic wound colonization and infection in the healing process, the conventional and alternative topical therapeutic approaches designed to combat infection and stimulate healing, as well as revolutionizing therapies such as nanotechnology-based wound healing approaches.

  6. The oral microbiota of Irish children in health and disease: a longitudinal and cross sectional study

    OpenAIRE

    Hurley, Eimear

    2017-01-01

    The oral cavity harbours a very rich and diverse microbial community. In the last decade, the oral microbiota of children and adults has been studied in detail using continuously developing DNA sequencing methods. In particular focusing on the oral microbiome changes in the presence of diseases such as dental caries, periodontal disease and the relationship of the oral microbiome with oral health and disease states. The overall aim of these studies was to unravel the complexity of the oral ec...

  7. Oral Health in a Sample of Pregnant Women from Northern Appalachia (2011–2015

    Directory of Open Access Journals (Sweden)

    Katherine Neiswanger

    2015-01-01

    Full Text Available Background. Chronic poor oral health has a high prevalence in Appalachia, a large region in the eastern USA. The Center for Oral Health Research in Appalachia (COHRA has been enrolling pregnant women and their babies since 2011 in the COHRA2 study of genetic, microbial, and environmental factors involved in oral health in Northern Appalachia. Methods. The COHRA2 protocol is presented in detail, including inclusion criteria (healthy, adult, pregnant, US Caucasian, English speaking, and nonimmunocompromised women, recruiting (two sites: Pittsburgh, Pennsylvania, and West Virginia, USA, assessments (demographic, medical, dental, psychosocial/behavioral, and oral microbial samples and DNA, timelines (longitudinal from pregnancy to young childhood, quality control, and retention rates. Results. Preliminary oral health and demographic data are presented in 727 pregnant women, half from the greater Pittsburgh region and half from West Virginia. Despite similar tooth brushing and flossing habits, COHRA2 women in West Virginia have significantly worse oral health than the Pittsburgh sample. Women from Pittsburgh are older and more educated and have less unemployment than the West Virginia sample. Conclusions. We observed different prevalence of oral health and demographic variables between pregnant women from West Virginia (primarily rural and Pittsburgh (primarily urban. These observations suggest site-specific differences within Northern Appalachia that warrant future studies.

  8. Quantifying oral inflammatory load: oral neutrophil counts in periodontal health and disease.

    Science.gov (United States)

    Landzberg, M; Doering, H; Aboodi, G M; Tenenbaum, H C; Glogauer, M

    2015-06-01

    Neutrophils are the primary white blood cells that are recruited to fight the initial phases of microbial infections. While healthy norms have been determined for circulating blood neutrophil counts in order to identify patients with suspected systemic infections, the levels of oral neutrophils (oPMNs) in oral health and in the presence of periodontal diseases have not been described. It is important to address this deficiency in our knowledge as neutrophils are the primary immune cell present in the crevicular fluid and oral environment and previous work has suggested that they may be good indicators of overall oral inflammation and periodontal disease severity. The objective of this study was to measure oPMN counts obtained in a standardized oral rinse from healthy patients and from those with chronic periodontal disease in order to determine if oPMN levels have clinical relevance as markers of periodontal inflammation. A parallel goal of this investigation was to introduce the concept of 'oral inflammatory load', which constitutes the inflammatory burden experienced by the body as a consequence of oral inflammatory disease. Periodontal examinations of patients with a healthy periodontium and chronic periodontal disease were performed (n = 124). Two standardized consecutive saline rinses of 30 s each were collected before patient examination and instrumentation. Neutrophils were quantified in the rinse samples and correlated with the clinical parameters and periodontal diagnosis. Average oPMN counts were determined for healthy patients and for those with mild, moderate and severe chronic periodontal diseases. A statistically significant correlation was found between oPMN counts and deep periodontal probing, sites with bleeding on probing and overall severity of periodontal disease. oPMN counts obtained through a 30-s oral rinse are a good marker of oral inflammatory load and correlate with measures of periodontal disease severity. © 2014 John Wiley & Sons A

  9. Urease and Dental Plaque Microbial Profiles in Children.

    Science.gov (United States)

    Morou-Bermudez, Evangelia; Rodriguez, Selena; Bello, Angel S; Dominguez-Bello, Maria G

    2015-01-01

    Urease enzymes produced by oral bacteria generate ammonia, which can have a significant impact on the oral ecology and, consequently, on oral health. To evaluate the relationship of urease with dental plaque microbial profiles in children as it relates to dental caries, and to identify the main contributors to this activity. 82 supragingival plaque samples were collected from 44 children at baseline and one year later, as part of a longitudinal study on urease and caries in children. DNA was extracted; the V3-V5 region of the 16S rRNA gene was amplified and sequenced using 454 pyrosequencing. Urease activity was measured using a spectrophotometric assay. Data were analyzed with Qiime. Plaque urease activity was significantly associated with the composition of the microbial communities of the dental plaque (Baseline P = 0.027, One Year P = 0.012). The bacterial taxa whose proportion in dental plaque exhibited significant variation by plaque urease levels in both visits were the family Pasteurellaceae (Baseline Purease and positively associated with dental caries (Bonferroni Purease enzymes primarily from species in the family Pasteurellaceae can be an important ecological determinant in children's dental plaque. Further studies are needed to establish the role of urease-associated bacteria in the acid/base homeostasis of the dental plaque, and in the development and prediction of dental caries in children.

  10. Acquiring and maintaining a normal oral microbiome: current perspective.

    NARCIS (Netherlands)

    Zaura, E.; Nicu, E.A.; Krom, B.P.; Keijser, B.J.

    2014-01-01

    The oral microbiota survives daily physical and chemical perturbations from the intake of food and personal hygiene measures, resulting in a long-term stable microbiome. Biological properties that confer stability in the microbiome are important for the prevention of dysbiosis-a microbial shift

  11. Acquiring and maintaining a normal oral microbiome : Current perspective

    NARCIS (Netherlands)

    Zaura, E.; Nicu, E.A.; Krom, B.P.; Keijser, B.J.F.

    2014-01-01

    The oral microbiota survives daily physical and chemical perturbations from the intake of food and personal hygiene measures, resulting in a long-term stable microbiome. Biological properties that confer stability in the microbiome are important for the prevention of dysbiosis—a microbial shift

  12. Obtaining Normal Tissue Constraints Using Intensity Modulated Radiotherapy (IMRT) in Patients with Oral Cavity, Oropharnygeal, and Laryngeal Carcinoma

    International Nuclear Information System (INIS)

    Skinner, William K.J.; Muse, Evan D.; Yaparpalvi, Ravindra; Guha, Chandan; Garg, Madhur K.; Kalnicki, Shalom

    2009-01-01

    The purpose of this study was to evaluate normal tissue dose constraints while maintaining planning target volume (PTV) prescription without reducing PTV margins. Sixteen patients with oral cavity carcinoma (group I), 27 patients with oropharyngeal carcinoma (group II), and 28 patients with laryngeal carcinoma (group III) were reviewed. Parotid constraints were a mean dose to either parotid < 26 Gy (PP1), 50% of either parotid < 30 Gy (PP2), or 20 cc of total parotid < 20 Gy (PP3). Treatment was intensity modulated radiation therapy (IMRT) with simultaneous integrated boost (SIB). All patients met constraints for cord and brain stem. The mandibular constraints were met in 66%, 29%, and 57% of patients with oral, oropharyngeal, and laryngeal cancers, respectively. Mean dose of 26 Gy (PP1) was achieved in 44%, 41%, and 38% of oral, oropharyngeal, and laryngeal patients. PP2 (parotid constraint of 30 Gy to less than 50% of one parotid) was the easiest to achieve (group I, II, and III: 82%, 76%, and 78%, respectively). PP3 (20 cc of total parotid < 20 Gy) was difficult, and was achieved in 25%, 17%, and 35% of oral, oropharyngeal, and laryngeal patients, respectively. Mean parotid dose of 26 Gy was met 40% of the time. However, a combination of constraints allowed for sparing of the parotid based on different criteria and was met in high numbers. This was accomplished without reducing PTV-parotid overlap. What dose constraint best correlates with subjective and objective functional outcomes remains a focus for future study.

  13. Developing a service-learning module for oral health: A needs ...

    African Journals Online (AJOL)

    Background. Service learning (SL) as a pedagogy in higher education must be differentiated from other services with a primarily philanthropic intent. Dental therapy and oral hygiene students at Sefako Makgatho Health Sciences University, School of Oral Health Sciences, Pretoria, South Africa visit community sites during ...

  14. Antimicrobial resistance in aerobic bacteria isolated from oral ...

    African Journals Online (AJOL)

    This study reinforces the need for dog bite wound microbial culture and antimicrobial sensitivity test as isolates showed varied antimicrobial susceptibility patterns. The oral cavities of hunting dogs are laden with multi-drug resistant bacteria of significant public health importance that could be transferred to humans through ...

  15. Toothpaste formulation efficacy in reducing oral flora | Okpalugo ...

    African Journals Online (AJOL)

    Purpose: To assess the microbial quality as well as the effectiveness of seven brands of toothpaste marketed in Abuja, Nigeria's capital city, for reducing oral bacterial flora. Methods: Seven brands of toothpaste were randomly purchased from the open market in Abuja. Two brands contained triclosan + sodium fluoride as ...

  16. Plasticity of the Pyruvate Node Modulates Hydrogen Peroxide Production and Acid Tolerance in Multiple Oral Streptococci.

    Science.gov (United States)

    Cheng, Xingqun; Redanz, Sylvio; Cullin, Nyssa; Zhou, Xuedong; Xu, Xin; Joshi, Vrushali; Koley, Dipankar; Merritt, Justin; Kreth, Jens

    2018-01-15

    Commensal Streptococcus sanguinis and Streptococcus gordonii are pioneer oral biofilm colonizers. Characteristic for both is the SpxB-dependent production of H 2 O 2 , which is crucial for inhibiting competing biofilm members, especially the cariogenic species Streptococcus mutans H 2 O 2 production is strongly affected by environmental conditions, but few mechanisms are known. Dental plaque pH is one of the key parameters dictating dental plaque ecology and ultimately oral health status. Therefore, the objective of the current study was to characterize the effects of environmental pH on H 2 O 2 production by S. sanguinis and S. gordonii S. sanguinis H 2 O 2 production was not found to be affected by moderate changes in environmental pH, whereas S. gordonii H 2 O 2 production declined markedly in response to lower pH. Further investigation into the pyruvate node, the central metabolic switch modulating H 2 O 2 or lactic acid production, revealed increased lactic acid levels for S. gordonii at pH 6. The bias for lactic acid production at pH 6 resulted in concomitant improvement in the survival of S. gordonii at low pH and seems to constitute part of the acid tolerance response of S. gordonii Differential responses to pH similarly affect other oral streptococcal species, suggesting that the observed results are part of a larger phenomenon linking environmental pH, central metabolism, and the capacity to produce antagonistic amounts of H 2 O 2 IMPORTANCE Oral biofilms are subject to frequent and dramatic changes in pH. S. sanguinis and S. gordonii can compete with caries- and periodontitis-associated pathogens by generating H 2 O 2 Therefore, it is crucial to understand how S. sanguinis and S. gordonii adapt to low pH and maintain their competitiveness under acid stress. The present study provides evidence that certain oral bacteria respond to environmental pH changes by tuning their metabolic output in favor of lactic acid production, to increase their acid survival

  17. IL-27 Modulates Chemokine Production in TNF-α -Stimulated Human Oral Epithelial Cells.

    Science.gov (United States)

    Hosokawa, Yoshitaka; Hosokawa, Ikuko; Ozaki, Kazumi; Matsuo, Takashi

    2017-01-01

    Interleukin-27 (IL-27) is a cytokine which belongs to the IL-12 family. However, the role of IL-27 in the pathogenesis of periodontal disease is uncertain. The aim of this study was to examine the effect of IL-27 on chemokine production in TNF-α-stimulated human oral epithelial cells (TR146). We measured chemokine production in TR146 by ELISA. We used western blot analysis to detect the phosphorylation levels of signal transduction molecules, including STAT1 and STAT3 in TR146. We used inhibitors to examine the role of STAT1 and STAT3 activation. IL-27 increased CXCR3 ligands production in TNF-α-stimulated TR146. Meanwhile, IL-27 suppressed IL-8 and CCL20 production induced by TNF-α. STAT1 phosphorylation level in IL-27 and TNF-α-stimulated TR146 was enhanced in comparison to TNF-α-stimulated TR146. STAT3 phosphorylation level in IL-27-treated TR146 did not change by TNF-α. Both STAT1 inhibitor and STAT3 inhibitor decreased CXCR3 ligands production. STAT1 inhibitor overrode the inhibitory effect of IL-27 on IL-8 and CCL20 production in TNF-α-stimulated TR146. Meanwhile, STAT3 inhibitor did not modulate IL-8 and CCL20 production. IL-27 might control leukocyte migration in periodontal lesion by modulating chemokine production from epithelial cells. © 2017 The Author(s). Published by S. Karger AG, Basel.

  18. Alterations in diversity of the oral microbiome in pediatric inflammatory bowel disease.

    Science.gov (United States)

    Docktor, Michael J; Paster, Bruce J; Abramowicz, Shelly; Ingram, Jay; Wang, Yaoyu E; Correll, Mick; Jiang, Hongyu; Cotton, Sean L; Kokaras, Alexis S; Bousvaros, Athos

    2012-05-01

    Oral pathology is a commonly reported extraintestinal manifestation of Crohn's disease (CD). The host-microbe interaction has been implicated in the pathogenesis of inflammatory bowel disease (IBD) in genetically susceptible hosts, yet limited information exists about oral microbes in IBD. We hypothesize that the microbiology of the oral cavity may differ in patients with IBD. Our laboratory has developed a 16S rRNA-based technique known as the Human Oral Microbe Identification Microarray (HOMIM) to study the oral microbiome of children and young adults with IBD. Tongue and buccal mucosal brushings from healthy controls, CD, and ulcerative colitis (UC) patients were analyzed using HOMIM. Shannon Diversity Index (SDI) and Principal Component Analysis (PCA) were employed to compare population and phylum-level changes among our study groups. In all, 114 unique subjects from the Children's Hospital Boston were enrolled. Tongue samples from patients with CD showed a significant decrease in overall microbial diversity as compared with the same location in healthy controls (P = 0.015) with significant changes seen in Fusobacteria (P < 0.0002) and Firmicutes (P = 0.022). Tongue samples from patients with UC did not show a significant change in overall microbial diversity as compared with healthy controls (P = 0.418). As detected by HOMIM, we found a significant decrease in overall diversity in the oral microbiome of pediatric CD. Considering the proposed microbe-host interaction in IBD, the ease of visualization and direct oral mucosal sampling of the oral cavity, further study of the oral microbiome in IBD is of potential diagnostic and prognostic value. Copyright © 2011 Crohn's & Colitis Foundation of America, Inc.

  19. Does canine inflammatory bowel disease influence gut microbial profile and host metabolism?

    OpenAIRE

    Xu, Jia; Verbrugghe, Adronie; Louren?o, Marta; Janssens, Geert P. J.; Liu, Daisy J. X.; Van de Wiele, Tom; Eeckhaut, Venessa; Van Immerseel, Filip; Van de Maele, Isabel; Niu, Yufeng; Bosch, Guido; Junius, Greet; Wuyts, Brigitte; Hesta, Myriam

    2016-01-01

    Background Inflammatory bowel disease (IBD) refers to a diverse group of chronic gastrointestinal diseases, and gut microbial dysbiosis has been proposed as a modulating factor in its pathogenesis. Several studies have investigated the gut microbial ecology of dogs with IBD but it is yet unclear if this microbial profile can alter the nutrient metabolism of the host. The aim of the present study was to characterize the faecal bacterial profile and functionality as well as to determine host me...

  20. Oral microflora in children with hematologic malignancies

    Directory of Open Access Journals (Sweden)

    M. F. Vecherkovskaya

    2015-06-01

    Full Text Available The goal was a comprehensive study of oral microflora in healthy children and those with hematologic malignancies, based on the analysis of mixed microbial biofilms composition, isolation and identification of new previously unknown microorganisms. The material was obtained in children with hematological diseases in remission, 2–10 years aged, and for the control group from St. Petersburg schoolchildren and in kindergartens. We used microbiological, biochemical and molecular genetic methods, including electron microscopy, proteomic analysis, sequencing and complete genome annotation. Microorganisms of 23 genera isolated as pure cultures and identified by biochemical activity from mixed microbial biofilm derived from saliva of healthy and sick children. In microflora of children with hematologic malignancies a previously unknown type of streptococci with a large number of antibiotic resistance genes was revealed. Differences in oral microbiota composition of healthy children and children with hematological diseases in remission were revealed. The microbiota of children with hematologic malignancies contains more genes controlling antibiotic resistance. Also, it was observed previously unknown bacterium of the genus Streptococcus.

  1. Oral microflora in children with hematologic malignancies

    Directory of Open Access Journals (Sweden)

    M. F. Vecherkovskaya

    2015-01-01

    Full Text Available The goal was a comprehensive study of oral microflora in healthy children and those with hematologic malignancies, based on the analysis of mixed microbial biofilms composition, isolation and identification of new previously unknown microorganisms. The material was obtained in children with hematological diseases in remission, 2–10 years aged, and for the control group from St. Petersburg schoolchildren and in kindergartens. We used microbiological, biochemical and molecular genetic methods, including electron microscopy, proteomic analysis, sequencing and complete genome annotation. Microorganisms of 23 genera isolated as pure cultures and identified by biochemical activity from mixed microbial biofilm derived from saliva of healthy and sick children. In microflora of children with hematologic malignancies a previously unknown type of streptococci with a large number of antibiotic resistance genes was revealed. Differences in oral microbiota composition of healthy children and children with hematological diseases in remission were revealed. The microbiota of children with hematologic malignancies contains more genes controlling antibiotic resistance. Also, it was observed previously unknown bacterium of the genus Streptococcus.

  2. Communication among Oral Bacteria

    Science.gov (United States)

    Kolenbrander, Paul E.; Andersen, Roxanna N.; Blehert, David S.; Egland, Paul G.; Foster, Jamie S.; Palmer, Robert J.

    2002-01-01

    Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities. PMID:12209001

  3. Oral Assessment in Mathematics: Implementation and Outcomes

    Science.gov (United States)

    Iannone, P.; Simpson, A.

    2012-01-01

    In this article, we report the planning and implementation of an oral assessment component in a first-year pure mathematics module of a degree course in mathematics. Our aim was to examine potential barriers to using oral assessments, explore the advantages and disadvantages compared to existing common assessment methods and document the outcomes…

  4. International field testing of the psychometric properties of an EORTC quality of life module for oral health: the EORTC QLQ-OH15.

    Science.gov (United States)

    Hjermstad, Marianne J; Bergenmar, Mia; Bjordal, Kristin; Fisher, Sheila E; Hofmeister, Dirk; Montel, Sébastien; Nicolatou-Galitis, Ourania; Pinto, Monica; Raber-Durlacher, Judith; Singer, Susanne; Tomaszewska, Iwona M; Tomaszewski, Krzysztof A; Verdonck-de Leeuw, Irma; Yarom, Noam; Winstanley, Julie B; Herlofson, Bente B

    2016-09-01

    This international EORTC validation study (phase IV) is aimed at testing the psychometric properties of a quality of life (QoL) module related to oral health problems in cancer patients. The phase III module comprised 17 items with four hypothesized multi-item scales and three single items. In phase IV, patients with mixed cancers, in different treatment phases from 10 countries completed the EORTC QLQ-C30, the QLQ-OH module, and a debriefing interview. The hypothesized structure was tested using combinations of classical test theory and item response theory, following EORTC guidelines. Test-retest assessments and responsiveness to change analysis (RCA) were performed after 2 weeks. Five hundred seventy-two patients (median age 60.3, 54 % females) were analyzed. Completion took issues were addressed. Analyses suggested a revision of the phase III hypothesized scale structure. Two items were deleted based on a high degree of item misfit, together with negative patient feedback. The remaining 15 items formed one eight-item scale named OH-QoL score, a two-item information scale, a two-item scale regarding dentures, and three single items (sticky saliva/mouth soreness/sensitivity to food/drink). Face and convergent validity and internal consistency were confirmed. Test-retest reliability (n = 60) was demonstrated as was RCA for patients undergoing chemotherapy (n = 117; p = 0.06). The resulting QLQ-OH15 discriminated between clinically distinct patient groups, e.g., low performance status vs. higher (p < 000.1), and head-and-neck cancer versus other cancers (p < 0.03). The EORTC module QLQ-OH15 is a short, well-accepted assessment tool focusing on oral problems and QoL to improve clinical management. ClinicalTrials.gov Identifier: NCT01724333.

  5. The TF-miRNA Coregulation Network in Oral Lichen Planus

    Science.gov (United States)

    Zuo, Yu-Ling; Gong, Di-Ping; Li, Bi-Ze; Zhao, Juan; Zhou, Ling-Yue; Shao, Fang-Yang; Jin, Zhao; He, Yuan

    2015-01-01

    Oral lichen planus (OLP) is a chronic inflammatory disease that affects oral mucosa, some of which may finally develop into oral squamous cell carcinoma. Therefore, pinpointing the molecular mechanisms underlying the pathogenesis of OLP is important to develop efficient treatments for OLP. Recently, the accumulation of the large amount of omics data, especially transcriptome data, provides opportunities to investigate OLPs from a systematic perspective. In this paper, assuming that the OLP associated genes have functional relationships, we present a new approach to identify OLP related gene modules from gene regulatory networks. In particular, we find that the gene modules regulated by both transcription factors (TFs) and microRNAs (miRNAs) play important roles in the pathogenesis of OLP and many genes in the modules have been reported to be related to OLP in the literature. PMID:26064947

  6. Responses to microbial challenges by SLAMF receptors

    Directory of Open Access Journals (Sweden)

    Boaz Job Van Driel

    2016-01-01

    Full Text Available The SLAMF Family (SLAMF of cell surface glycoproteins is comprised of nine glycoproteins and whilst SLAMF1, 3, 5, 6, 7, 8, 9 are self-ligand receptors, SLAMF2 and SLAMF4 interact with each other. Their interactions induce signal transduction networks in trans, thereby shaping immune cell-cell communications. Collectively, these receptors modulate a wide range of functions, such as myeloid cell and lymphocyte development and, T and B cell responses to microbes and parasites. In addition, several SLAMF receptors serve as microbial sensors, which either positively or negatively modulate the function of macrophages, dendritic cells, neutrophils and NK cells in response to microbial challenges. The SLAMF receptor-microbe interactions contribute both to intracellular microbicidal activity as well as to migration of phagocytes to the site of inflammation. In this review, we describe the current knowledge on how the SLAMF receptors and their specific adapters SAP and EAT-2 regulate innate and adaptive immune responses to microbes.

  7. The EORTC QLQ-OH17: a supplementary module to the EORTC QLQ-C30 for assessment of oral health and quality of life in cancer patients

    NARCIS (Netherlands)

    Hjermstad, M.J.; Bergenmar, M.; Fisher, S.E.; Montel, S.; Nicolatou-Galitis, O.; Raber-Durlacher, J.; Singer, S.; Verdonck-de Leeuw, I.; Weis, J.; Yarom, N.; Herlofson, B.B.

    2012-01-01

    Aims Assessment of oral and dental problems is seldom routine in clinical oncology, despite the potential negative impact of these problems on nutritional status, social function and quality of life (QoL). The aim was to develop a supplementary module to the European Organisation for Research and

  8. The EORTC QLQ-OH17: A supplementary module to the EORTC QLQ-C30 for assessment of oral health and quality of life in cancer patients

    NARCIS (Netherlands)

    Hjermstad, M.J.; Bergenmar, M.; Fisher, S.E.; Montel, S.; Nicolatou-Galitis, O.; Raber-Durlacher, J.; Singer, S.; de Leeuw, I.M.; Weis, J.; Yarom, N.; Herlofson, B.B.

    2012-01-01

    Aims: Assessment of oral and dental problems is seldom routine in clinical oncology, despite the potential negative impact of these problems on nutritional status, social function and quality of life (QoL). The aim was to develop a supplementary module to the European Organisation for Research and

  9. Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide.

    Directory of Open Access Journals (Sweden)

    Zhejun Wang

    Full Text Available Human oral biofilms are multispecies microbial communities that exhibit high resistance to antimicrobial agents. Dental plaque gives rise to highly prevalent and costly biofilm-related oral infections, which lead to caries or other types of oral infections. We investigated the ability of the recently identified anti-biofilm peptide 1018 to induce killing of bacterial cells present within oral multispecies biofilms. At 10 μg/ml (6.5 μM, peptide 1018 was able to significantly (p50% of the biofilm being killed and >35% being dispersed in only 3 minutes. Peptide 1018 may potentially be used by itself or in combination with CHX as a non-toxic and effective anti-biofilm agent for plaque disinfection in clinical dentistry.

  10. Prebiotics Modulate the Effects of Antibiotics on Gut Microbial Diversity and Functioning in Vitro.

    Science.gov (United States)

    Johnson, Laura P; Walton, Gemma E; Psichas, Arianna; Frost, Gary S; Gibson, Glenn R; Barraclough, Timothy G

    2015-06-04

    Intestinal bacteria carry out many fundamental roles, such as the fermentation of non-digestible dietary carbohydrates to produce short chain fatty acids (SCFAs), which can affect host energy levels and gut hormone regulation. Understanding how to manage this ecosystem to improve human health is an important but challenging goal. Antibiotics are the front line of defence against pathogens, but in turn they have adverse effects on indigenous microbial diversity and function. Here, we have investigated whether dietary supplementation--another method used to modulate gut composition and function--could be used to ameliorate the side effects of antibiotics. We perturbed gut bacterial communities with gentamicin and ampicillin in anaerobic batch cultures in vitro. Cultures were supplemented with either pectin (a non-fermentable fibre), inulin (a commonly used prebiotic that promotes the growth of beneficial bacteria) or neither. Although antibiotics often negated the beneficial effects of dietary supplementation, in some treatment combinations, notably ampicillin and inulin, dietary supplementation ameliorated the effects of antibiotics. There is therefore potential for using supplements to lessen the adverse effects of antibiotics. Further knowledge of such mechanisms could lead to better therapeutic manipulation of the human gut microbiota.

  11. Prebiotics Modulate the Effects of Antibiotics on Gut Microbial Diversity and Functioning in Vitro

    Directory of Open Access Journals (Sweden)

    Laura P. Johnson

    2015-06-01

    Full Text Available Intestinal bacteria carry out many fundamental roles, such as the fermentation of non-digestible dietary carbohydrates to produce short chain fatty acids (SCFAs, which can affect host energy levels and gut hormone regulation. Understanding how to manage this ecosystem to improve human health is an important but challenging goal. Antibiotics are the front line of defence against pathogens, but in turn they have adverse effects on indigenous microbial diversity and function. Here, we have investigated whether dietary supplementation—another method used to modulate gut composition and function—could be used to ameliorate the side effects of antibiotics. We perturbed gut bacterial communities with gentamicin and ampicillin in anaerobic batch cultures in vitro. Cultures were supplemented with either pectin (a non-fermentable fibre, inulin (a commonly used prebiotic that promotes the growth of beneficial bacteria or neither. Although antibiotics often negated the beneficial effects of dietary supplementation, in some treatment combinations, notably ampicillin and inulin, dietary supplementation ameliorated the effects of antibiotics. There is therefore potential for using supplements to lessen the adverse effects of antibiotics. Further knowledge of such mechanisms could lead to better therapeutic manipulation of the human gut microbiota.

  12. Arginine Improves pH Homeostasis via Metabolism and Microbiome Modulation.

    Science.gov (United States)

    Agnello, M; Cen, L; Tran, N C; Shi, W; McLean, J S; He, X

    2017-07-01

    Dental caries can be described as a dysbiosis of the oral microbial community, in which acidogenic, aciduric, and acid-adapted bacterial species promote a pathogenic environment, leading to demineralization. Alkali generation by oral microbes, specifically via arginine catabolic pathways, is an essential factor in maintaining plaque pH homeostasis. There is evidence that the use of arginine in dentifrices helps protect against caries. The aim of the current study was to investigate the mechanistic and ecological effect of arginine treatment on the oral microbiome and its regulation of pH dynamics, using an in vitro multispecies oral biofilm model that was previously shown to be highly reflective of the in vivo oral microbiome. Pooled saliva from 6 healthy subjects was used to generate overnight biofilms, reflecting early stages of biofilm maturation. First, we investigated the uptake of arginine by the cells of the biofilm as well as the metabolites generated. We next explored the effect of arginine on pH dynamics by pretreating biofilms with 75 mM arginine, followed by the addition of sucrose (15 mM) after 0, 6, 20, or 48 h. pH was measured at each time point and biofilms were collected for 16S sequencing and targeted arginine quantification, and supernatants were prepared for metabolomic analysis. Treatment with only sucrose led to a sustained pH drop from 7 to 4.5, while biofilms treated with sucrose after 6, 20, or 48 h of preincubation with arginine exhibited a recovery to higher pH. Arginine was detected within the cells of the biofilms, indicating active uptake, and arginine catabolites citrulline, ornithine, and putrescine were detected in supernatants, indicating active metabolism. Sequencing analysis revealed a shift in the microbial community structure in arginine-treated biofilms as well as increased species diversity. Overall, we show that arginine improved pH homeostasis through a remodeling of the oral microbial community.

  13. Microbubble-induced detachment of coadhering oral bacteria from salivary pellicles

    NARCIS (Netherlands)

    Sharma, PK; Gibcus, MJ; van der Mei, HC; Busscher, HJ

    The presence and maturity of the salivary pellicle influences microbial adhesion and its tenacity in the oral cavity, posing a challenge to different plaque-control systems. Some plaque-control systems rely on surface-tension forces arising from passing microbubbles sprayed over the pellicle.

  14. Long-term oil contamination alters the molecular ecological networks of soil microbial functional genes

    Directory of Open Access Journals (Sweden)

    Yuting eLiang

    2016-02-01

    Full Text Available With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001. Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential keystone genes, defined as either hubs or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions.

  15. The microbiome associated with equine periodontitis and oral health.

    Science.gov (United States)

    Kennedy, Rebekah; Lappin, David Francis; Dixon, Padraic Martin; Buijs, Mark Johannes; Zaura, Egija; Crielaard, Wim; O'Donnell, Lindsay; Bennett, David; Brandt, Bernd Willem; Riggio, Marcello Pasquale

    2016-04-14

    Equine periodontal disease is a common and painful condition and its severe form, periodontitis, can lead to tooth loss. Its aetiopathogenesis remains poorly understood despite recent increased awareness of this disorder amongst the veterinary profession. Bacteria have been found to be causative agents of the disease in other species, but current understanding of their role in equine periodontitis is extremely limited. The aim of this study was to use high-throughput sequencing to identify the microbiome associated with equine periodontitis and oral health. Subgingival plaque samples from 24 horses with periodontitis and gingival swabs from 24 orally healthy horses were collected. DNA was extracted from samples, the V3-V4 region of the bacterial 16S rRNA gene amplified by PCR and amplicons sequenced using Illumina MiSeq. Data processing was conducted using USEARCH and QIIME. Diversity analyses were performed with PAST v3.02. Linear discriminant analysis effect size (LEfSe) was used to determine differences between the groups. In total, 1308 OTUs were identified and classified into 356 genera or higher taxa. Microbial profiles at health differed significantly from periodontitis, both in their composition (p PERMANOVA) and in microbial diversity (p < 0.001; Mann-Whitney test). Samples from healthy horses were less diverse (1.78, SD 0.74; Shannon diversity index) and were dominated by the genera Gemella and Actinobacillus, while the periodontitis group samples showed higher diversity (3.16, SD 0.98) and were dominated by the genera Prevotella and Veillonella. It is concluded that the microbiomes associated with equine oral health and periodontitis are distinct, with the latter displaying greater microbial diversity.

  16. Combinatorial effects of arginine and fluoride on oral bacteria.

    Science.gov (United States)

    Zheng, X; Cheng, X; Wang, L; Qiu, W; Wang, S; Zhou, Y; Li, M; Li, Y; Cheng, L; Li, J; Zhou, X; Xu, X

    2015-02-01

    Dental caries is closely associated with the microbial disequilibrium between acidogenic/aciduric pathogens and alkali-generating commensal residents within the dental plaque. Fluoride is a widely used anticaries agent, which promotes tooth hard-tissue remineralization and suppresses bacterial activities. Recent clinical trials have shown that oral hygiene products containing both fluoride and arginine possess a greater anticaries effect compared with those containing fluoride alone, indicating synergy between fluoride and arginine in caries management. Here, we hypothesize that arginine may augment the ecological benefit of fluoride by enriching alkali-generating bacteria in the plaque biofilm and thus synergizes with fluoride in controlling dental caries. Specifically, we assessed the combinatory effects of NaF/arginine on planktonic and biofilm cultures of Streptococcus mutans, Streptococcus sanguinis, and Porphyromonas gingivalis with checkerboard microdilution assays. The optimal NaF/arginine combinations were selected, and their combinatory effects on microbial composition were further examined in single-, dual-, and 3-species biofilm using bacterial species-specific fluorescence in situ hybridization and quantitative polymerase chain reaction. We found that arginine synergized with fluoride in suppressing acidogenic S. mutans in both planktonic and biofilm cultures. In addition, the NaF/arginine combination synergistically reduced S. mutans but enriched S. sanguinis within the multispecies biofilms. More importantly, the optimal combination of NaF/arginine maintained a "streptococcal pressure" against the potential growth of oral anaerobe P. gingivalis within the alkalized biofilm. Taken together, we conclude that the combinatory application of fluoride and arginine has a potential synergistic effect in maintaining a healthy oral microbial equilibrium and thus represents a promising ecological approach to caries management. © International & American

  17. Nitrate and the origin of saliva influence composition and short chain fatty acid production of oral microcosms

    NARCIS (Netherlands)

    Koopman, J.E.; Buijs, M.J.; Brandt, B.W.; Keijser, B.J.F.; Crielaard, W.; Zaura, E.

    2016-01-01

    Nitrate is emerging as a possible health benefactor. Especially the microbial conversion of nitrate to nitrite in the oral cavity and the subsequent conversion to nitric oxide in the stomach are of interest in this regard. Yet, how nitrate influences the composition and biochemistry of the oral

  18. Microbial changes during pregnancy, birth and infancy

    Directory of Open Access Journals (Sweden)

    Meital Nuriel-Ohayon

    2016-07-01

    Full Text Available Several healthy developmental processes such as pregnancy, fetal development and infant development include a multitude of physiological changes: weight gain, hormonal and metabolic changes, as well as immune changes. In this review we present an additional important factor which both influences and is affected by these physiological processes- the microbiome. We summarize the known changes in microbiota composition at a variety of body sites including gut, vagina, oral cavity and placenta, throughout pregnancy, fetal development and early childhood. There is still a lot to be discovered; yet several pieces of research point to the healthy desired microbial changes. Future research is likely to unravel precise roles and mechanisms of the microbiota in gestation; perhaps linking the metabolic, hormonal and immune changes together. Although some research has started to link microbial dysbiosis and specific microbial populations with unhealthy pregnancy complications, it is important to first understand the context of the natural healthy microbial changes occurring. Until recently the placenta and developing fetus were considered to be germ free, containing no apparent microbiome. We present multiple study results showing distinct microbiota compositions in the placenta and meconium, alluding to early microbial colonization. These results may change dogmas and our overall understanding of the importance and roles of microbiota from the beginning of life. We further review the main factors shaping the infant microbiome- modes of delivery, feeding, weaning, and exposure to antibiotics. Taken together, we are starting to build a broader understanding of healthy vs. abnormal microbial alterations throughout major developmental time-points.

  19. Effects of probiotic Lactobacillus salivarius on the compositional stability of oral microbial communities.

    NARCIS (Netherlands)

    Pham, C.I.; van Spanning, R.J.M.; Roling, W.F.M.; Prosperi, A.C.; Terefework, Z.; ten Cate, J.M.; Crielaard, W.; Zaura, E.

    2009-01-01

    Probiotics are microorganisms beneficial to gastrointestinal health. Although some strains are also known to possess positive effects on oral health, the effects of most intestinal probiotics on the oral microflora remain unknown. We assessed the ability of the intestinal probiotic Lactobacillus

  20. Gut Homeostasis, Microbial Dysbiosis, and Opioids.

    Science.gov (United States)

    Wang, Fuyuan; Roy, Sabita

    2017-01-01

    Gut homeostasis plays an important role in maintaining animal and human health. The disruption of gut homeostasis has been shown to be associated with multiple diseases. The mutually beneficial relationship between the gut microbiota and the host has been demonstrated to maintain homeostasis of the mucosal immunity and preserve the integrity of the gut epithelial barrier. Currently, rapid progress in the understanding of the host-microbial interaction has redefined toxicological pathology of opioids and their pharmacokinetics. However, it is unclear how opioids modulate the gut microbiome and metabolome. Our study, showing opioid modulation of gut homeostasis in mice, suggests that medical interventions to ameliorate the consequences of drug use/abuse will provide potential therapeutic and diagnostic strategies for opioid-modulated intestinal infections. The study of morphine's modulation of the gut microbiome and metabolome will shed light on the toxicological pathology of opioids and its role in the susceptibility to infectious diseases.

  1. Modulation of microbial consortia enriched from different polluted environments during petroleum biodegradation.

    Science.gov (United States)

    Omrani, Rahma; Spini, Giulia; Puglisi, Edoardo; Saidane, Dalila

    2018-04-01

    Environmental microbial communities are key players in the bioremediation of hydrocarbon pollutants. Here we assessed changes in bacterial abundance and diversity during the degradation of Tunisian Zarzatine oil by four indigenous bacterial consortia enriched from a petroleum station soil, a refinery reservoir soil, a harbor sediment and seawater. The four consortia were found to efficiently degrade up to 92.0% of total petroleum hydrocarbons after 2 months of incubation. Illumina 16S rRNA gene sequencing revealed that the consortia enriched from soil and sediments were dominated by species belonging to Pseudomonas and Acinetobacter genera, while in the seawater-derived consortia Dietzia, Fusobacterium and Mycoplana emerged as dominant genera. We identified a number of species whose relative abundances bloomed from small to high percentages: Dietzia daqingensis in the seawater microcosms, and three OTUs classified as Acinetobacter venetianus in all two soils and sediment derived microcosms. Functional analyses on degrading genes were conducted by comparing PCR results of the degrading genes alkB, ndoB, cat23, xylA and nidA1 with inferences obtained by PICRUSt analysis of 16S amplicon data: the two data sets were partly in agreement and suggest a relationship between the catabolic genes detected and the rate of biodegradation obtained. The work provides detailed insights about the modulation of bacterial communities involved in petroleum biodegradation and can provide useful information for in situ bioremediation of oil-related pollution.

  2. Oral microflora in preschool children attending a fluoride varnish program

    DEFF Research Database (Denmark)

    Anderson, Maria; Grindefjord, Margaret; Dahllöf, Göran

    2016-01-01

    hundred seven 3-year-old children were enrolled from a cohort of 3403 preschool children taking part in a community based oral health project. Two hundred sixty-three of them had attended caries-preventive program with semi-annual applications of a fluoride varnish since the age of 1 year (test group......BACKGROUND: To compare the oral microflora in preschool children attending a fluoride varnish program with a reference group receiving a standard oral health program without fluoride varnish applications. A second aim was to relate the microbial composition to the caries prevalence. METHODS: Five......) while 237 had received standard preventive care (reference group). Oral samples were collected with a sterile swab and analysed with checkerboard DNA-DNA hybridization using 12 pre-determined bacterial probes. Caries and background data were collected from clinical examinations and questionnaires...

  3. Oral Bacterial and Fungal Microbiome Impacts Colorectal Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Klara Klimesova

    2018-04-01

    Full Text Available Host’s physiology is significantly influenced by microbiota colonizing the epithelial surfaces. Complex microbial communities contribute to proper mucosal barrier function, immune response, and prevention of pathogen invasion and have many other crucial functions. The oral cavity and large intestine are distant parts of the digestive tract, both heavily colonized by commensal microbiota. Nevertheless, they feature different proportions of major bacterial and fungal phyla, mostly due to distinct epithelial layers organization and different oxygen levels. A few obligate anaerobic strains inhabiting the oral cavity are involved in the pathogenesis of oral diseases. Interestingly, these microbiota components are also enriched in gut inflammatory and tumor tissue. An altered microbiota composition – dysbiosis – and formation of polymicrobial biofilms seem to play important roles in the development of oral diseases and colorectal cancer. In this review, we describe the differences in composition of commensal microbiota in the oral cavity and large intestine and the mechanisms by which microbiota affect the inflammatory and carcinogenic response of the host.

  4. The numerous microbial species in oral biofilms: how could antibacterial therapy be effective?

    NARCIS (Netherlands)

    ten Cate, J.M.; Zaura, E.

    2012-01-01

    Hundreds of bacterial species inhabit the oral cavity. Many of these have never been cultivated and can be assessed only with DNA-based techniques. This new understanding has changed the paradigm of the etiology of oral disease from that associated with ‘traditional pathogens’ as being primarily

  5. Earth's Earliest Ecosystems in the Classroom: The Use of Microbial Mats to Teach General Principles in Microbial Ecology, and Scientific Inquiry

    Science.gov (United States)

    Beboutl, Brad M.; Bucaria, Robin

    2004-01-01

    Microbial mats are living examples of the most ancient biological communities on earth, and may also be useful models for the search for life elsewhere. They are centrally important to Astrobiology. In this lecture, we will present an introduction to microbial mats, as well as an introduction to our web-based educational module on the subject of microbial ecology, featuring living mats maintained in a mini "Web Lab" complete with remotely-operable instrumentation. We have partnered with a number of outreach specialists in order to produce an informative and educational web-based presentation, aspects of which will be exported to museum exhibits reaching a wide audience. On our web site, we will conduct regularly scheduled experimental manipulations, linking the experiments to our research activities, and demonstrating fundamental principles of scientific research.

  6. A microbial biogeochemistry network for soil carbon and nitrogen cycling and methane flux: model structure and application to Asia

    Science.gov (United States)

    Xu, X.; Song, C.; Wang, Y.; Ricciuto, D. M.; Lipson, D.; Shi, X.; Zona, D.; Song, X.; Yuan, F.; Oechel, W. C.; Thornton, P. E.

    2017-12-01

    A microbial model is introduced for simulating microbial mechanisms controlling soil carbon and nitrogen biogeochemical cycling and methane fluxes. The model is built within the CN (carbon-nitrogen) framework of Community Land Model 4.5, named as CLM-Microbe to emphasize its explicit representation of microbial mechanisms to biogeochemistry. Based on the CLM4.5, three new pools were added: bacteria, fungi, and dissolved organic matter. It has 11 pools and 34 transitional processes, compared with 8 pools and 9 transitional flow in the CLM4.5. The dissolve organic carbon was linked with a new microbial functional group based methane module to explicitly simulate methane production, oxidation, transport and their microbial controls. Comparing with CLM4.5-CN, the CLM-Microbe model has a number of new features, (1) microbial control on carbon and nitrogen flows between soil carbon/nitrogen pools; (2) an implicit representation of microbial community structure as bacteria and fungi; (3) a microbial functional-group based methane module. The model sensitivity analysis suggests the importance of microbial carbon allocation parameters on soil biogeochemistry and microbial controls on methane dynamics. Preliminary simulations validate the model's capability for simulating carbon and nitrogen dynamics and methane at a number of sites across the globe. The regional application to Asia has verified the model in simulating microbial mechanisms in controlling methane dynamics at multiple scales.

  7. Effect of Fixed Orthodontic Treatment on Salivary Flow, pH and Microbial Count

    Directory of Open Access Journals (Sweden)

    Sepideh Arab

    2016-08-01

    Full Text Available Objectives: The present study was designed to evaluate the changes in saliva properties and oral microbial flora in patients undergoing fixed orthodontic treatment.Materials and Methods: Two important saliva properties namely the salivary flow rate and pH as well as oral microbial flora were assessed in 30 orthodontic patients before starting fixed orthodontic treatment and after six, 12 and 18 weeks of treatment. Selective media, Sabouraud dextrose agar, Mitis salivarius agar and Rogosa agar were used for isolation of Candida albicans, Streptococcus mutans and Lactobacillus acidophilus, respectively. Statistical analysis was performed using Friedman and Dunn’s tests. P< 0.05 was considered statistically significant.Results: After six, 12 and 18 weeks of commencing fixed orthodontic treatment, the total colony counts of Candida albicans, Streptococcus mutans and Lactobacillus acidophilus showed a significant increase. The saliva pH decreased during the orthodontic treatment (P< 0.05 while the salivary flow did not change significantly. Conclusions: Fixed orthodontic treatment causes major changes in the saliva properties. The changes in oral microflora and saliva properties show the importance of caries preventive measures during orthodontic treatment.

  8. Clinical evaluation of an ionic tooth brush on oral hygiene status, gingival status, and microbial parameter

    Directory of Open Access Journals (Sweden)

    Deshmukh J

    2006-01-01

    Full Text Available It has long been recognised that the presence of dental plaque leads to gingivitis and periodontal disease, as well as dental caries. Today tooth brushing is the most widely accepted method of removing plaque. Hence this present clinical study was undertaken to evaluate the effectiveness of an ionic toothbrush on oral hygiene status. For this study, 20 dental students in the age group of 18-20 years were included. All the subjects after undergoing dental prophylaxis were then provided with ionic toothbrushes, either active (equipped with lithium battery or inactive (without lithium battery. Plaque index and gingival bleeding index were examined at 7th, 14th, and 21st day. Microbial assessment was done for detection of colony forming units (CFU from the plaque samples which were collected on 0 day and 21st day, both before brushing and after brushing. Results shown a significant reduction in all the parameters and the reduction was more significant in active and inactive ionic toothbrush users. It was concluded that both active and inactive ionic toothbrushes reduced the plaque index and gingival bleeding index scores significantly and active ionic tooth brushes were more effective as compared to inactive ionic toothbrushes. There was no soft tissue trauma following the use of both type of toothbrushes, which showed that ionic toothbrushes were equally safe for regular long-term use.

  9. Oral microflora in infants delivered vaginally and by caesarean section

    DEFF Research Database (Denmark)

    Nelun Barfod, Mette; Magnusson, Kerstin; Lexner, Michala Oron

    2011-01-01

    International Journal of Paediatric Dentistry 2011 Background. Early in life, vaginally delivered infants exhibit a different composition of the gut flora compared with infants delivered by caesarean section (C-section); however, it is unclear whether this also applies to the oral cavity. Aim....... To investigate and compare the oral microbial profile between infants delivered vaginally and by C-section. Design. This is a cross-sectional case-control study. Eighty-four infants delivered either vaginally (n = 42) or by C-section (n = 42) were randomly selected from the 2009 birth cohort at the County...

  10. INITIAL MICROBIAL ADHESION IS A DETERMINANT FOR THE STRENGTH OF BIOFILM ADHESION

    NARCIS (Netherlands)

    BUSSCHER, HJ; VANDERMEI, HC; Bos, R.R.M.

    1995-01-01

    This paper presents a hypothesis on the importance of initial microbial adhesion in the overall process of biofilm formation. The hypothesis is based on the realization that dynamic shear conditions exist in many environments, such as in the oral cavity, or on rocks and ship hulls. Recognizing that

  11. Modulation of radiation-induced oral mucositis by pentoxifylline: Preclinical studies

    International Nuclear Information System (INIS)

    Gruber, Sylvia; Bozsaky, Eva; Schmidt, Margret; Doerr, Wolfgang

    2015-01-01

    Oral mucositis is a frequent early side effect of radio(chemo)therapy of head-and-neck malignancies. The epithelial radiation response is accompanied by inflammatory reactions; their interaction with epithelial processes remains unclear. The aim of the present study was to investigate the effect of pentoxifylline (PTX) on the oral mucosal radiation response in the mouse tongue model. Irradiation comprised fractionation (5 fractions of 3 Gy/week) over 1 (days 0-4) or 2 weeks (days 0-4, 7-11), followed by graded local top-up doses (day 7/14), in order to generate complete dose-effect curves. PTX (15 mg/kg subcutaneously) was applied once daily over varying time intervals. Ulceration of mouse tongue epithelium, corresponding to confluent mucositis, was analyzed as the clinically relevant endpoint. With fractionated irradiation over 1 week, PTX administration significantly reduced the incidence of mucosal reactions when initiated before (day - 5) the onset of fractionation; a trend was observed for start of PTX treatment on day 0. Similarly, PTX treatment combined with 2 weeks of fractionation had a significant effect on ulcer incidence in all but one experiment. This clearly illustrates the potential of PTX to ameliorate oral mucositis during daily fractionated irradiation. PTX resulted in a significant reduction of oral mucositis during fractionated irradiation, which may be attributed to stimulation of mucosal repopulation processes. The biological basis of this effect, however, needs to be clarified in further, detailed mechanistic studies. (orig.) [de

  12. Fragment-Based Discovery of a Potent, Orally Bioavailable Inhibitor That Modulates the Phosphorylation and Catalytic Activity of ERK1/2.

    Science.gov (United States)

    Heightman, Tom D; Berdini, Valerio; Braithwaite, Hannah; Buck, Ildiko M; Cassidy, Megan; Castro, Juan; Courtin, Aurélie; Day, James E H; East, Charlotte; Fazal, Lynsey; Graham, Brent; Griffiths-Jones, Charlotte M; Lyons, John F; Martins, Vanessa; Muench, Sandra; Munck, Joanne M; Norton, David; O'Reilly, Marc; Palmer, Nick; Pathuri, Puja; Reader, Michael; Rees, David C; Rich, Sharna J; Richardson, Caroline; Saini, Harpreet; Thompson, Neil T; Wallis, Nicola G; Walton, Hugh; Wilsher, Nicola E; Woolford, Alison J-A; Cooke, Michael; Cousin, David; Onions, Stuart; Shannon, Jonathan; Watts, John; Murray, Christopher W

    2018-05-31

    Aberrant activation of the MAPK pathway drives cell proliferation in multiple cancers. Inhibitors of BRAF and MEK kinases are approved for the treatment of BRAF mutant melanoma, but resistance frequently emerges, often mediated by increased signaling through ERK1/2. Here, we describe the fragment-based generation of ERK1/2 inhibitors that block catalytic phosphorylation of downstream substrates such as RSK but also modulate phosphorylation of ERK1/2 by MEK without directly inhibiting MEK. X-ray crystallographic and biophysical fragment screening followed by structure-guided optimization and growth from the hinge into a pocket proximal to the C-α helix afforded highly potent ERK1/2 inhibitors with excellent kinome selectivity. In BRAF mutant cells, the lead compound suppresses pRSK and pERK levels and inhibits proliferation at low nanomolar concentrations. The lead exhibits tumor regression upon oral dosing in BRAF mutant xenograft models, providing a promising basis for further optimization toward clinical pERK1/2 modulating ERK1/2 inhibitors.

  13. Oral Gene Application Using Chitosan-DNA Nanoparticles Induces Transferable Tolerance

    Science.gov (United States)

    Ensminger, Stephan M.; Spriewald, Bernd M.

    2012-01-01

    Oral tolerance is a promising approach to induce unresponsiveness to various antigens. The development of tolerogenic vaccines could be exploited in modulating the immune response in autoimmune disease and allograft rejection. In this study, we investigated a nonviral gene transfer strategy for inducing oral tolerance via antigen-encoding chitosan-DNA nanoparticles (NP). Oral application of ovalbumin (OVA)-encoding chitosan-DNA NP (OVA-NP) suppressed the OVA-specific delayed-type hypersensitivity (DTH) response and anti-OVA antibody formation, as well as spleen cell proliferation following OVA stimulation. Cytokine expression patterns following OVA stimulation in vitro showed a shift from a Th1 toward a Th2/Th3 response. The OVA-NP-induced tolerance was transferable from donor to naïve recipient mice via adoptive spleen cell transfer and was mediated by CD4+CD25+ T cells. These findings indicate that nonviral oral gene transfer can induce regulatory T cells for antigen-specific immune modulation. PMID:22933401

  14. Utilization and control of ecological interactions in polymicrobial infections and community-based microbial cell factories.

    Science.gov (United States)

    Wigneswaran, Vinoth; Amador, Cristina Isabel; Jelsbak, Lotte; Sternberg, Claus; Jelsbak, Lars

    2016-01-01

    Microbial activities are most often shaped by interactions between co-existing microbes within mixed-species communities. Dissection of the molecular mechanisms of species interactions within communities is a central issue in microbial ecology, and our ability to engineer and control microbial communities depends, to a large extent, on our knowledge of these interactions. This review highlights the recent advances regarding molecular characterization of microbe-microbe interactions that modulate community structure, activity, and stability, and aims to illustrate how these findings have helped us reach an engineering-level understanding of microbial communities in relation to both human health and industrial biotechnology.

  15. Implant-abutment gap versus microbial colonization : Clinical significance based on a literature review

    NARCIS (Netherlands)

    Passos, Sheila Pestana; May, Liliana Gressler; Faria, Renata; Ozcan, Mutlu; Bottino, Marco Antonio

    2013-01-01

    Microorganisms from the oral cavity may settle at the implant-abutment interface (IAI). As a result, tissue inflammation could occur around these structures. The databases MEDLINE/PubMed and PubMed Central were used to identify articles published from 1981 through 2012 related to the microbial

  16. Liaison between micro-organisms and oral cancer

    Science.gov (United States)

    Srinivasprasad, Vijayan; Dineshshankar, Janardhanam; Sathiyajeeva, J.; Karthikeyan, M.; Sunitha, J.; Ragunathan, Ramachandran

    2015-01-01

    Oral cancer which is a subtype of head and neck, cancer is any neoplastic tissue growth in the oral cavity. It comprises an abnormal mass of cells that foists genetic mutation and impedes the normal cell cycle, resulting in its unrestrained growth. Various studies on the plausible link between oral microbial flora and cancer notwithstanding, our understanding of their link remains obscure and inadequate. The multitude of mechanisms by which the microflora initiate or spur Carcinogenesis are still under study and scrutiny. As is widely known, the oral cavity is an abode to a wide assortment of microbes, each present in contrasting amounts. It is observed that increased growth of the microflora is concomitant with known clinical risk factors for oral cancer. Manifold bacterial species have been found to interfere directly with eukaryotic cellular signaling, adopting a style typical of tumor promoters. Bacteria are also known to impede apoptosis thereby potentially promoting carcinogenesis. The viral role in carcinogenesis (by annulling of p53 tumor suppressor gene and other cellular proteins with subsequent alteration in host genome function) is well documented. Furthermore, the changes occurring in the commensal microflora in accompaniment with cancer development could possibly be used as a diagnostic indicator for early cancer detection. The intention of this review is to obtain a better understanding of the “role” that micro-organisms play in oral cancer etiology. PMID:26538877

  17. Enzymes in therapy of biofilm-related oral diseases.

    Science.gov (United States)

    Pleszczyńska, Małgorzata; Wiater, Adrian; Bachanek, Teresa; Szczodrak, Janusz

    2017-05-01

    Biofilm-related infections of the oral cavity, including dental caries and periodontitis, represent the most prevalent health problems. For years, the treatment thereof was largely based on antibacterial chemical agents. Recently, however, there has been growing interest in the application of more preventive and minimally invasive biotechnological methods. This review focuses on the potential applications of enzymes in the treatment and prevention of oral diseases. Dental plaque is a microbial community that develops on the tooth surface, embedded in a matrix of extracellular polymeric substances of bacterial and host origin. Both cariogenic microorganisms and the key components of oral biofilm matrix may be the targets of the enzymes. Oxidative salivary enzymes inhibit or limit the growth of oral pathogens, thereby supporting the natural host defense system; polysaccharide hydrolases (mutanases and dextranases) degrade important carbohydrate components of the biofilm matrix, whereas proteases disrupt bacterial adhesion to oral surfaces or affect cell-cell interactions. The efficiency of the enzymes in in vitro and in vivo studies, advantages and limitations, as well as future perspectives for improving the enzymatic strategy are discussed. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  18. Exploring the Association between Alzheimer’s Disease, Oral Health, Microbial Endocrinology and Nutrition

    OpenAIRE

    Harding, Alice; Gonder, Ulrike; Robinson, Sarita J.; Crean, StJohn; Singhrao, Sim K.

    2017-01-01

    Longitudinal monitoring of patients suggests a causal link between chronic periodontitis and the development of Alzheimer’s disease (AD). However, the explanation of how periodontitis can lead to dementia remains unclear. A working hypothesis links extrinsic inflammation as a secondary cause of AD. This hypothesis suggests a compromised oral hygiene leads to a dysbiotic oral microbiome whereby Porphyromonas gingivalis, a keystone periodontal pathogen, with its companion species, orchestrates ...

  19. Polyphenol and Microbial Profile of On-farm Cocoa Beans Fermented with Selected Microbial Consortia

    Directory of Open Access Journals (Sweden)

    Tochukwu Vincent Balogu

    2017-09-01

    Full Text Available Background and Objective: Quality and preference of cocoa as raw material for various mcocoa products primarily depend on fermentation techniques that modulate the resultant flavour and the phytochemical properties. This study investigated the combined effect of selected microbial consortia and bioreactors on phytochemical profiles of fermented cocoa beans.Material and Methods: Three microbial consortia labeled as Treatments (T-1, T-2, T-3 were used as starter culture (≈105cells ml-1 for on-farm cocoa fermentation on three chambers (basket, woodbox, and plastic for 7 days. These novel consortia were T-1, Staphylococcus spp + Pseudomonas spp+ Bacillus spp, T-2, Staphylococcus spp + Pseudomonas spp +L. lactis, and T-3, Bacillus spp+ Lactobacillus spp + Saccharomyces spp+ Torulopsis spp.Results and Conclusion: The microbial profile were significantly (P≤0.05 altered by all treatments (T-1, T-2, T-3 and microbial frequency was enhanced by 5 -22.5%. T-3 and T-1 significantly altered phenolic content in basket chamber. Tannin was significantly (p≤0.05 varied by T-1(basket, plastic, wood box and T-2(plastic. Tannin: polyphenol conversion ratio adopted as fermented cocoa bean quality benchmark was significantly enhanced by T-1 (basket, woodbox and T-2 (plastic, but was significantly suppressed by T-3 (basket. This study evidently concluded that the appropriate synergy of microbial flora and fermenting chambers could achieve good cocoa quality with low polyphenol content (best for cocoa beverages or high polyphenol content (best for pharmaceutical, confectionery and nutraceutical industries. These findings would avail an economic alternative to the expensive polyphenol reconstitution of cocoa butter used for various industrial products, thereby maximizing economic benefits for both cocoa farmers and industrialists.Conflict of interest: The authors declare no conflict of interest.

  20. Ultra-deep and quantitative saliva proteome reveals dynamics of the oral microbiome

    DEFF Research Database (Denmark)

    Grassl, Niklas; Kulak, Nils Alexander; Pichler, Garwin

    2016-01-01

    BACKGROUND: The oral cavity is home to one of the most diverse microbial communities of the human body and a major entry portal for pathogens. Its homeostasis is maintained by saliva, which fulfills key functions including lubrication of food, pre-digestion, and bacterial defense. Consequently, d...

  1. Oral microbiota in patients with atherosclerosis.

    Science.gov (United States)

    Fåk, Frida; Tremaroli, Valentina; Bergström, Göran; Bäckhed, Fredrik

    2015-12-01

    Recent evidence suggests that the microbiota may be considered as an environmental factor that contributes to the development of atherosclerosis. Periodontal disease has been associated with cardio- and cerebrovascular events, and inflammation in the periodontium is suggested to increase the systemic inflammatory level of the host, which may in turn influence plaque composition and rupture. We previously showed that bacteria from the oral cavity and the gut could be found in atherosclerotic plaques. To elucidate whether the oral microbiota composition differed between patients with asymptomatic and symptomatic atherosclerosis we performed pyrosequencing of the oral microbiota of 92 individuals including patients with asymptomatic and symptomatic atherosclerosis and control individuals without carotid plaques or previous stroke or myocardial infarction. The overall microbial structure was similar in controls and atherosclerosis patients, but patients with symptomatic atherosclerosis had higher relative abundance of Anaeroglobus (mean 0.040% (SD 0.049)) than the control group (0.010% (SD 0.028)) (P = 0.03). Using linear regression analysis, we found that Parvimonas associated positively with uCRP and Capnocytophaga, Catonella and Lactobacillus associated with blood lipid markers. In conclusion, abundance of Anaeroglobus in the oral cavity could be associated with symptomatic atherosclerosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Protease-activated receptor 2 modulates proliferation and invasion of oral squamous cell carcinoma cells.

    Science.gov (United States)

    Al-Eryani, Kamal; Cheng, Jun; Abé, Tatsuya; Maruyama, Satoshi; Yamazaki, Manabu; Babkair, Hamzah; Essa, Ahmed; Saku, Takashi

    2015-07-01

    Based on our previous finding that protease-activated receptor 2 (PAR-2) regulates hemophagocytosis of oral squamous cell carcinoma (SCC) cells, which induces their heme oxygenase 1-dependent keratinization, we have formulated a hypothesis that PAR-2 functions in wider activities of SCC cells. To confirm this hypothesis, we investigated immunohistochemical profiles of PAR-2 in oral SCC tissues and its functional roles in cell proliferation and invasion in SCC cells in culture. The PAR-2 expression modes were determined in 48 surgical tissue specimens of oral SCC. Using oral SCC-derived cell systems, we determined both gene and protein expression levels of PAR-2. SCC cell proliferation and invasive properties were also examined in conditions in which PAR-2 was activated by the synthetic peptide SLIGRL. PAR-2 was immunolocalized in oral SCC and carcinoma in situ cells, especially in those on the periphery of carcinoma cell foci (100% of cases), but not in normal oral epithelia. Its expression at both gene and protein levels was confirmed in 3 oral SCC cell lines including ZK-1. Activation of PAR-2 induced ZK-1 cell proliferation in a dose-dependent manner. PAR-2-activated ZK-1 cells invaded faster than nonactivated ones. The expression of PAR-2 is specific to oral malignancies, and PAR-2 regulates the growth and invasion of oral SCC cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Immunohematopoietic modulation by oral β-1,3-glucan in mice infected with Listeria monocytogenes.

    Science.gov (United States)

    Torello, Cristiane O; de Souza Queiroz, Julia; Oliveira, Sueli C; Queiroz, Mary L S

    2010-12-01

    In this study we demonstrated that the oral administration of β-1,3-glucan (Imunoglucan®) protects mice from a lethal dose of Listeria monocytogenes (LM) when administered prophylactically for 10 days at the doses of 150 and 300 mg/kg, with survival rates up to 40%. These doses also prevented the myelosuppression and the splenomegaly caused by a sublethal infection with LM, due to increased numbers of granulocyte-macrophage progenitors (CFU-GM) in the bone marrow. Investigation of the production of colony-stimulating factors revealed an increased colony-stimulating activity (CSA) in the serum of infected mice pre-treated with Imunoglucan®. The treatment also restored the reduced ability of stromal cells to display myeloid progenitors in long-term bone marrow cultures (LTBMC) and up-regulated IL-6 and IL-1α production by these cells in the infected mice, which was consistent with higher number of non-adherent cells. Additional studies to investigate the levels of interferon-gamma (INF-γ) in the supernatant of splenocyte cultures demonstrated a further increase in the level of this cytokine in infected-treated mice, compared to infected controls. In all cases, no differences were observed between the responses of the two optimal biologically effective doses. In contrast, no significant changes were produced by the treatment with the 50mg/kg dose. In addition, no changes were observed in normal mice treated with the three doses used. All together our results suggest that orally given Imunoglucan® indirectly modulates immune activity and probably disengages Listeria induced suppression of these responses by inducing a higher reserve of myeloid progenitors in the bone marrow in consequence of biologically active cytokine release (CSFs, IL-1α, IL-6, and INF-γ). Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Amygdala reactivity to negative stimuli is influenced by oral contraceptive use.

    Science.gov (United States)

    Petersen, Nicole; Cahill, Larry

    2015-09-01

    The amygdala is a highly interconnected region of the brain that is critically important to emotional processing and affective networks. Previous studies have shown that the response of the amygdala to emotionally arousing stimuli can be modulated by sex hormones. Because oral contraceptive pills dramatically lower circulating sex hormone levels with potent analogs of those hormones, we performed a functional magnetic resonance imaging experiment to measure amygdala reactivity in response to emotional stimuli in women using oral contraceptives, and compared their amygdala reactivity with that of naturally cycling women. Here, we show that women who use oral contraceptive pills have significantly decreased bilateral amygdala reactivity in response to negatively valenced, emotionally arousing stimuli compared with naturally cycling women. We suggest that by modulating amygdala reactivity, oral contraceptive pills may influence behaviors that have previously been shown to be amygdala dependent-in particular, emotional memory. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. Lipopolysaccharide contamination of beta-lactoglobulin affects the immune response against intraperitoneally and orally administered antigen

    DEFF Research Database (Denmark)

    Pedersen, Susanne Brix; Kjær, T.M.R.; Barkholt, Vibeke

    2004-01-01

    Microbial components in the environment are potent activators of the immune system with capacity to shift the active immune response towards priming of Th1 and/or Th2 cells. Lipopolysaccharide (LPS), a cell-wall component of Gram- negative bacteria, is extensively present in food products like co......-LG was contaminated with LPS. Conclusions: LPS contamination of an aqueous protein solution does not affect oral tolerance induction, whereas LPS present in emulsion prevents oral tolerance induction towards the food protein.......Microbial components in the environment are potent activators of the immune system with capacity to shift the active immune response towards priming of Th1 and/or Th2 cells. Lipopolysaccharide (LPS), a cell-wall component of Gram- negative bacteria, is extensively present in food products like cow......'s milk. It is not well established, however, how this presence of LPS affects oral tolerance induction. Methods: We studied the effect of LPS contamination in a commercial preparation of the cow milk protein beta-lactoglobulin (beta-LG) on antigen-specific immune responses. IgG1/IgG2a production upon...

  6. Oral Bacterial and Fungal Microbiome Impacts Colorectal Carcinogenesis

    OpenAIRE

    Klara Klimesova; Zuzana Jiraskova Zakostelska; Helena Tlaskalova-Hogenova

    2018-01-01

    Host’s physiology is significantly influenced by microbiota colonizing the epithelial surfaces. Complex microbial communities contribute to proper mucosal barrier function, immune response, and prevention of pathogen invasion and have many other crucial functions. The oral cavity and large intestine are distant parts of the digestive tract, both heavily colonized by commensal microbiota. Nevertheless, they feature different proportions of major bacterial and fungal phyla, mostly due to distin...

  7. Detection of survivin mRNA in healthy oral mucosa, oral leucoplakia and oral cancer.

    Science.gov (United States)

    Lodi, G; Franchini, R; Bez, C; Sardella, A; Moneghini, L; Pellegrini, C; Bosari, S; Manfredi, M; Vescovi, P; Carrassi, A

    2010-01-01

    Survivin is involved in modulation of cell death and cell division processes. Survivin expression in normal adult tissues has not been fully understood, although it is markedly lower than in cancer, where it is over-expressed. To investigate survivin expression in normal, potentially malignant and cancerous oral mucosa. We measured survivin mRNA levels by real-time RT-PCR in specimens of oral mucosa (15 from normal mucosa, 17 from potentially malignant lesions, 17 from neoplasms). Scores were compared using Kruskal-Wallis test and post hoc according to Conover. Chi-squared test was used for dichotomous data. The median relative levels of survivin mRNA resulted six for normal mucosa, eight for potentially malignant lesions, 13 for cancers: differences among these three groups were statistically significant, as between cancer and potentially malignant lesions. Expression in normal mucosa and potentially lesions group showed no significant difference. Low, but not marginal expression of survivin in normal mucosa is a new finding, and it could be explained with the higher sensibility of our methods. Survivin expression in oral potentially malignant lesions might indicate a progressive deregulation of expression paralleling oncogenesis, particularly during the first stages of process, suggesting a putative predictive role for survivin.

  8. Effect of an oxygenating agent on oral bacteria in vitro and on dental plaque composition in healthy young adults.

    Science.gov (United States)

    Fernandez y Mostajo, Mercedes; van der Reijden, Wil A; Buijs, Mark J; Beertsen, Wouter; Van der Weijden, Fridus; Crielaard, Wim; Zaura, Egija

    2014-01-01

    Oral bacteria live in symbiosis with the host. Therefore, when mouthwashes are indicated, selective inhibition of taxa contributing to disease is preferred instead of broad-spectrum antimicrobials. The potential selectivity of an oxygenating mouthwash, Ardox-X® (AX), has not been assessed. The aim of this study was to determine the antimicrobial potential of AX and the effects of a twice-daily oral rinse on dental plaque composition. In vitro, 16 oral bacterial strains were tested using agar diffusion susceptibility, minimum inhibitory and minimum bactericidal concentration tests. A pilot clinical study was performed with 25 healthy volunteers. Clinical assessments and microbiological sampling of supragingival plaque were performed at 1 month before the experiment (Pre-exp), at the start of the experiment (Baseline) and after the one-week experimental period (Post-exp). During the experiment individuals used AX mouthwash twice daily in absence of other oral hygiene measures. The microbiological composition of plaque was assessed by 16S rRNA gene amplicon sequencing. AX showed high inter-species variation in microbial growth inhibition. The tested Prevotella strains and Fusobacterium nucleatum showed the highest sensitivity, while streptococci and Lactobacillus acidophilus were most resistant to AX. Plaque scores at Pre-exp and Baseline visits did not differ significantly (p = 0.193), nor did the microbial composition of plaque. During a period of 7-days non-brushing but twice daily rinsing plaque scores increased from 2.21 (0.31) at Baseline to 2.43 (0.39) Post-exp. A significant microbial shift in composition was observed: genus Streptococcus and Veillonella increased while Corynebacterium, Haemophilus, Leptotrichia, Cardiobacterium and Capnocytophaga decreased (p ≤ 0.001). AX has the potential for selective inhibition of oral bacteria. The shift in oral microbiome after 1 week of rinsing deserves further research.

  9. Effect of an oxygenating agent on oral microorganisms in vitro and on dental plaque composition in healthy young adults

    Directory of Open Access Journals (Sweden)

    Mercedes eFernandez y Mostajo

    2014-07-01

    Full Text Available Oral bacteria live in symbiosis with the host. Therefore, when mouthwashes are indicated, selective inhibition of taxa contributing to disease is preferred instead of broad-spectrum antimicrobials. The potential selectivity of an oxygenating mouthwash, Ardox-X® (AX, has not been assessed. The aim of this study was to determine the antimicrobial potential of AX and the effects of a twice-daily oral rinse on dental plaque composition. Material and methods: In vitro, 16 oral bacterial strains were tested using agar diffusion susceptibility, minimum inhibitory and minimum bactericidal concentration tests. A pilot clinical study was performed with 25 healthy volunteers. Clinical assessments and microbiological sampling of supragingival plaque were performed at one month before the experiment (Pre-exp, at the start of the experiment (Baseline and after the one-week experimental period (Post-exp. During the experiment individuals used AX mouthwash twice daily in absence of other oral hygiene measures. The microbiological composition of plaque was assessed by 16S rRNA gene amplicon sequencing. Results: AX showed high inter-species variation in microbial growth inhibition. The tested Prevotella strains and Fusobacterium nucleatum showed the highest sensitivity, while streptococci and Lactobacillus acidophilus were most resistant to AX. Plaque scores at Pre-exp and Baseline visits did not differ significantly (p = 0.193, nor did the microbial composition of plaque during a period of 7-days non-brushing but twice daily rinsing. Plaque scores increased from 2.21 (0.31 at Baseline to 2.43 (0.39 Post-exp. A significant microbial shift in composition was observed: genus Streptococcus and Veillonella increased while Corynebacterium, Haemophilus, Leptotrichia, Cardiobacterium and Capnocytophaga decreased (p ≤ 0.001. Conclusion: AX has the potential for selective inhibition of oral bacteria. The shift in oral microbiome after one week of rinsing deserves

  10. Linkages between oral commensal bacteria and atherosclerotic plaques in coronary artery disease patients.

    Science.gov (United States)

    Chhibber-Goel, Jyoti; Singhal, Varsha; Bhowmik, Debaleena; Vivek, Rahul; Parakh, Neeraj; Bhargava, Balram; Sharma, Amit

    2016-01-01

    Coronary artery disease is an inflammatory disorder characterized by narrowing of coronary arteries due to atherosclerotic plaque formation. To date, the accumulated epidemiological evidence supports an association between oral bacterial diseases and coronary artery disease, but has failed to prove a causal link between the two. Due to the recent surge in microbial identification and analyses techniques, a number of bacteria have been independently found in atherosclerotic plaque samples from coronary artery disease patients. In this study, we present meta-analysis from published studies that have independently investigated the presence of bacteria within atherosclerotic plaque samples in coronary artery disease patients. Data were collated from 63 studies covering 1791 patients spread over a decade. Our analysis confirms the presence of 23 oral commensal bacteria, either individually or in co-existence, within atherosclerotic plaques in patients undergoing carotid endarterectomy, catheter-based atherectomy, or similar procedures. Of these 23 bacteria, 5 ( Campylobacter rectus , Porphyromonas gingivalis , Porphyromonas endodontalis , Prevotella intermedia , Prevotella nigrescens ) are unique to coronary plaques, while the other 18 are additionally present in non-cardiac organs, and associate with over 30 non-cardiac disorders. We have cataloged the wide spectrum of proteins secreted by above atherosclerotic plaque-associated bacteria, and discuss their possible roles during microbial migration via the bloodstream. We also highlight the prevalence of specific poly-microbial communities within atherosclerotic plaques. This work provides a resource whose immediate implication is the necessity to systematically catalog landscapes of atherosclerotic plaque-associated oral commensal bacteria in human patient populations.

  11. Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters.

    Science.gov (United States)

    de Menezes, Alexandre B; Prendergast-Miller, Miranda T; Richardson, Alan E; Toscas, Peter; Farrell, Mark; Macdonald, Lynne M; Baker, Geoff; Wark, Tim; Thrall, Peter H

    2015-08-01

    Network and multivariate statistical analyses were performed to determine interactions between bacterial and fungal community terminal restriction length polymorphisms as well as soil properties in paired woodland and pasture sites. Canonical correspondence analysis (CCA) revealed that shifts in woodland community composition correlated with soil dissolved organic carbon, while changes in pasture community composition correlated with moisture, nitrogen and phosphorus. Weighted correlation network analysis detected two distinct microbial modules per land use. Bacterial and fungal ribotypes did not group separately, rather all modules comprised of both bacterial and fungal ribotypes. Woodland modules had a similar fungal : bacterial ribotype ratio, while in the pasture, one module was fungal dominated. There was no correspondence between pasture and woodland modules in their ribotype composition. The modules had different relationships to soil variables, and these contrasts were not detected without the use of network analysis. This study demonstrated that fungi and bacteria, components of the soil microbial communities usually treated as separate functional groups as in a CCA approach, were co-correlated and formed distinct associations in these adjacent habitats. Understanding these distinct modular associations may shed more light on their niche space in the soil environment, and allow a more realistic description of soil microbial ecology and function. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Innate Immunity and Saliva in Candida albicans–mediated Oral Diseases

    Science.gov (United States)

    Salvatori, O.; Puri, S.; Tati, S.; Edgerton, M.

    2016-01-01

    The oral cavity is a unique niche where Candida albicans infections occur in immunocompetent as well as immunosuppressed individuals. Here we critically review the significance of human innate immune response in preventing oral candidiasis. One important line of defense against oropharyngeal candidiasis is the oral microbiota that prevents infection by competing for space and nutrients as well as by secreting antagonistic molecules and triggering local inflammatory responses. C. albicans is able to induce mucosal defenses through activation of immune cells and production of cytokines. Also, saliva contains various proteins that affect C. albicans growth positively by promoting mucosal adherence and negatively through immune exclusion and direct fungicidal activity. We further discuss the role of saliva in unifying host innate immune defenses against C. albicans as a communicating medium and how C. albicans overgrowth in the oral cavity may be a result of aberrations ranging from microbial dysbiosis and salivary dysfunction to epithelial damage. Last we underscore select oral diseases in which C. albicans is a contributory microorganism in immune-competent individuals. PMID:26747422

  13. A Review of Evidence for a Therapeutic Application of Traditional Japanese Kampo Medicine for Oral Diseases/Disorders.

    Science.gov (United States)

    Veilleux, Marie-Pier; Moriyama, Satomi; Yoshioka, Masami; Hinode, Daisuke; Grenier, Daniel

    2018-04-18

    Kampo medicines prescribed by specialized medical practitioners and Japanese physicians have gradually reemerged in Japan as alternatives to Western medications. Kampo formulations are composed of several plant extracts and, as such, the broad variety of phytochemicals they contain likely act synergistically to provide their beneficial effects. Kampo medicines have traditionally been prescribed for a number of health conditions, including chronic hepatitis, bronchial asthma, anemia, etc. The aim of this article is to review the beneficial effects of Kampos with respect to oral health. Pertinent papers published between 1970 and 2017 were retrieved by searching in PubMed, ScienceDirect, Web of Science, and Scopus using key words followed by evaluation of the relevant articles. In vitro studies have identified a number of properties that give credence to the potential of Kampos for treating or preventing oral diseases/disorders. Given their anti-microbial and anti-inflammatory properties, they may be promising agents for controlling periodontal diseases, oral mucositis, xerostomia, and drug-induced gingival overgrowth. Since some oral diseases have a complex etiology that involves microbial pathogens and the host immune response, agents with dual functionality such as Kampo phytochemicals may offer a therapeutic advantage.

  14. Critical Concerns for Oral Communication Education in the United States and the United Kingdom

    Science.gov (United States)

    Emanuel, Richard

    2011-01-01

    An examination of oral communication education in the United States (U.S.) and United Kingdom (U.K.) identified four critical concerns: (1) Today's college students are not getting adequate oral communication education; (2) Oral communication education is being relegated to a "module" in another discipline-specific course; (3) When an…

  15. Understanding and Modulating Mammalian-Microbial Communication for Improved Human Health

    OpenAIRE

    Mani, Sridhar; Boelsterli, Urs A.; Redinbo, Matthew R.

    2013-01-01

    The fact that the bacteria in the human gastrointestinal (GI) tract play a symbiotic role was noted as early as 1885, well before we began to manage microbial infections using antibiotics. However, even with the first antimicrobial compounds used in humans, the sulfa drugs, microbes were recognized to be critically involved in the biotransformation of these therapeutics. Thus, the roles played by the microbiota in physiology and in the management of human health have long been appreciated. De...

  16. Poorly known microbial taxa dominate the microbiome of permafrost thaw ponds.

    Science.gov (United States)

    Wurzbacher, Christian; Nilsson, R Henrik; Rautio, Milla; Peura, Sari

    2017-08-01

    In the transition zone of the shifting permafrost border, thaw ponds emerge as hotspots of microbial activity, processing the ancient carbon freed from the permafrost. We analyzed the microbial succession across a gradient of recently emerged to older ponds using three molecular markers: one universal, one bacterial and one fungal. Age was a major modulator of the microbial community of the thaw ponds. Surprisingly, typical freshwater taxa comprised only a small fraction of the community. Instead, thaw ponds of all age classes were dominated by enigmatic bacterial and fungal phyla. Our results on permafrost thaw ponds lead to a revised perception of the thaw pond ecosystem and their microbes, with potential implications for carbon and nutrient cycling in this increasingly important class of freshwaters.

  17. Combinatorial Effects of Arginine and Fluoride on Oral Bacteria

    OpenAIRE

    Zheng, X.; Cheng, X.; Wang, L.; Qiu, W.; Wang, S.; Zhou, Y.; Li, M.; Li, Y.; Cheng, L.; Li, J.; Zhou, X.; Xu, X.

    2015-01-01

    Dental caries is closely associated with the microbial disequilibrium between acidogenic/aciduric pathogens and alkali-generating commensal residents within the dental plaque. Fluoride is a widely used anticaries agent, which promotes tooth hard-tissue remineralization and suppresses bacterial activities. Recent clinical trials have shown that oral hygiene products containing both fluoride and arginine possess a greater anticaries effect compared with those containing fluoride alone, indicati...

  18. An Open-Ended Investigative Microbial Ecology Laboratory for Introductory Biology

    Science.gov (United States)

    Jones-Held, Susan; Paoletti, Robert; Glick, David; Held, Michael E.

    2010-01-01

    In this article we describe a multi-week investigative laboratory in microbial ecology/diversity and nitrogen cycling that we have used in our introductory biology course. This module encourages active student involvement in experimental design, using the scientific literature and quantitative analysis of large data sets. Students analyze soil…

  19. Efficacy of different brands of mouth rinses on oral bacterial load ...

    African Journals Online (AJOL)

    Subjects were divided into 3 groups and their saliva samples were assessed for microbial counts at the beginning and the end of an eight-week period during which they rinsed with 10ml of mouthrinse for 15 seconds twice daily (morning and evening) in addition to their usual oral hygiene procedures.The results showed ...

  20. Cardiotoxin III Inhibits Proliferation and Migration of Oral Cancer Cells through MAPK and MMP Signaling

    Directory of Open Access Journals (Sweden)

    Ching-Yu Yen

    2013-01-01

    Full Text Available Cardiotoxin III (CTXIII, isolated from the snake venom of Formosan cobra Naja naja atra, has previously been found to induce apoptosis in many types of cancer. Early metastasis is typical for the progression of oral cancer. To modulate the cell migration behavior of oral cancer is one of the oral cancer therapies. In this study, the possible modulating effect of CTXIII on oral cancer migration is addressed. In the example of oral squamous carcinoma Ca9-22 cells, the cell viability was decreased by CTXIII treatment in a dose-responsive manner. In wound-healing assay, the cell migration of Ca9-22 cells was attenuated by CTXIII in a dose- and time-responsive manner. After CTXIII treatment, the MMP-2 and MMP-9 protein expressions were downregulated, and the phosphorylation of JNK and p38-MAPK was increased independent of ERK phosphorylation. In conclusion, CTXIII has antiproliferative and -migrating effects on oral cancer cells involving the p38-MAPK and MMP-2/-9 pathways.

  1. Effects of Hangeshashinto on Growth of Oral Microorganisms

    Directory of Open Access Journals (Sweden)

    Haruka Fukamachi

    2015-01-01

    Full Text Available Oral mucositis (OM in cancer patients induced by chemotherapy or radiotherapy has a significant impact on quality of life, and causes considerable morbidity. Oral microorganisms are likely to intensify the inflammatory process and aggravate the formation of ulcers. Hangeshashinto (HST, a Japanese kampo medicine, has been reported to be effective when used as a gargle for the treatment of OM. To clarify the effects of HST on oral microorganisms, we assessed its antimicrobial activity against 27 microbial species, including 19 oral bacteria and one fungus. HST extract inhibited the growth of Gram-negative bacteria, including Fusobacterium nucleatum, Porphyromonas gingivalis, Porphyromonas endodontalis, Prevotella intermedia, Prevotella melaninogenica, Tannerella forsythia, Treponema denticola, and Porphyromonas asaccharolytica, though inhibitory effects were less pronounced for Gram-positive bacteria and the fungal strain. We then investigated the effects of antibacterial activities on 15 purified ingredients of HST and determined that baicalein, berberine, coptisine, [6]-shogaol, and homogentisic acid actively inhibited the growth of these bacteria. These findings showed that HST inhibits the growth of specific Gram-negative periodontopathogenic bacteria, which are significant pathogens in OM, without disturbing the normal oral flora. Our data suggest that HST may be a useful treatment for OM in patients undergoing anticancer treatment.

  2. Signature of Microbial Dysbiosis in Periodontitis.

    Science.gov (United States)

    Meuric, Vincent; Le Gall-David, Sandrine; Boyer, Emile; Acuña-Amador, Luis; Martin, Bénédicte; Fong, Shao Bing; Barloy-Hubler, Frederique; Bonnaure-Mallet, Martine

    2017-07-15

    Periodontitis is driven by disproportionate host inflammatory immune responses induced by an imbalance in the composition of oral bacteria; this instigates microbial dysbiosis, along with failed resolution of the chronic destructive inflammation. The objectives of this study were to identify microbial signatures for health and chronic periodontitis at the genus level and to propose a model of dysbiosis, including the calculation of bacterial ratios. Published sequencing data obtained from several different studies (196 subgingival samples from patients with chronic periodontitis and 422 subgingival samples from healthy subjects) were pooled and subjected to a new microbiota analysis using the same Visualization and Analysis of Microbial Population Structures (VAMPS) pipeline, to identify microbiota specific to health and disease. Microbiota were visualized using CoNet and Cytoscape. Dysbiosis ratios, defined as the percentage of genera associated with disease relative to the percentage of genera associated with health, were calculated to distinguish disease from health. Correlations between the proposed dysbiosis ratio and the periodontal pocket depth were tested with a different set of data obtained from a recent study, to confirm the relevance of the ratio as a potential indicator of dysbiosis. Beta diversity showed significant clustering of periodontitis-associated microbiota, at the genus level, according to the clinical status and independent of the methods used. Specific genera ( Veillonella , Neisseria , Rothia , Corynebacterium , and Actinomyces ) were highly prevalent (>95%) in health, while other genera ( Eubacterium , Campylobacter , Treponema , and Tannerella ) were associated with chronic periodontitis. The calculation of dysbiosis ratios based on the relative abundance of the genera found in health versus periodontitis was tested. Nonperiodontitis samples were significantly identifiable by low ratios, compared to chronic periodontitis samples. When

  3. The Link between Microbial Diversity and Nitrogen Cycling in Marine Sediments Is Modulated by Macrofaunal Bioturbation.

    Science.gov (United States)

    Yazdani Foshtomi, Maryam; Braeckman, Ulrike; Derycke, Sofie; Sapp, Melanie; Van Gansbeke, Dirk; Sabbe, Koen; Willems, Anne; Vincx, Magda; Vanaverbeke, Jan

    2015-01-01

    The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea. Our results indicated that bacteria (total and β-AOB) showed more spatio-temporal variation than archaea (total and AOA) as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices. Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided broad correlative support for the hypothesis that this relationship is modulated by macrofaunal activity. We

  4. The Link between Microbial Diversity and Nitrogen Cycling in Marine Sediments Is Modulated by Macrofaunal Bioturbation.

    Directory of Open Access Journals (Sweden)

    Maryam Yazdani Foshtomi

    Full Text Available The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea.Our results indicated that bacteria (total and β-AOB showed more spatio-temporal variation than archaea (total and AOA as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices.Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided broad correlative support for the hypothesis that this relationship is modulated by macrofaunal

  5. Effects of probiotic Lactobacillus salivarius W24 on the compositional stability of oral microbial communities

    NARCIS (Netherlands)

    Pham, L.C.; van Spanning, R.J.M.; Röling, W.F.M.; Prosperi, A.C.; Terefework, Z.; ten Cate, J.M.; Crielaard, W.; Zaura, E.

    2008-01-01

    Probiotics are microorganisms beneficial to gastrointestinal health. Although some strains are also known to possess positive effects on oral health, the effects of most intestinal probiotics on the oral microflora remain unknown. We assessed the ability of the intestinal probiotic Lactobacillus

  6. The use of acrylic resin oral prosthesis in radiation therapy of oral cavity and paranasal sinus cancer

    International Nuclear Information System (INIS)

    Cheng, V.S.T.; Oral, K.; Aramamy, M.A.

    1982-01-01

    In radiation therapy of cancer of the oral cavity and the paranasal sinuses, the extent to which the tissues of the oral cavity are included in the radiation treatment portals will determine the severity of the oral discomfort during treatment. This will affect the nutritional status of the patients, and may eventually affect the total dose of radiation which the patients can receive for treatment of their cancers. In cooperation with the Maxillofacial Prosthetic Department, an acrylic resin oral prosthesis was developed. This prosthesis is easy to use and can be made for each individual patient within 24 hours. It allows for maximum sparing of the normal tissues in the oral cavity and can be modified for shielding of backscattered electrons from heavy metals in the teeth. We have also found that acrylic resin extensions can be built onto the posterior edge of post-maxillectomy obturators; this extension can be used as a carrier for radioactive sources to deliver radiation to deep seated tumor modules in the paranasal sinuses

  7. The use of acrylic resin oral prosthesis in radiation therapy of oral cavity and paranasal sinus cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, V.S.T.; Oral, K.; Aramamy, M.A.

    1982-07-01

    In radiation therapy of cancer of the oral cavity and the paranasal sinuses, the extent to which the tissues of the oral cavity are included in the radiation treatment portals will determine the severity of the oral discomfort during treatment. This will affect the nutritional status of the patients, and may eventually affect the total dose of radiation which the patients can receive for treatment of their cancers. In cooperation with the Maxillofacial Prosthetic Department, an acrylic resin oral prosthesis was developed. This prosthesis is easy to use and can be made for each individual patient within 24 hours. It allows for maximum sparing of the normal tissues in the oral cavity and can be modified for shielding of backscattered electrons from heavy metals in the teeth. We have also found that acrylic resin extensions can be built onto the posterior edge of post-maxillectomy obturators; this extension can be used as a carrier for radioactive sources to deliver radiation to deep seated tumor modules in the paranasal sinuses.

  8. Helicobacter pylori coinfection is a confounder, modulating mucosal inflammation in oral submucous fibrosis

    Directory of Open Access Journals (Sweden)

    Rajendran R

    2009-01-01

    Full Text Available The oral cavity has been considered a potential reservoir for Helicobacter pylori (H pylori , from where the organism causes recurrent gastric infections. Aim: With this case-control study we tried to evaluate the role of H pylori in the etiology of mucosal inflammation, a condition that compounds the morbid state associated with oral submucous fibrosis (OSF. Materials and Methods : Subjects ( n = 150 were selected following institutional regulations on sample collection and grouped into test cases and positive and negative controls based on the presence of mucosal fibrosis and inflammation. The negative controls had none of the clinical signs. All patients underwent an oral examination as well as tests to assess oral hygiene/periodontal disease status; a rapid urease test (RUT of plaque samples was also done to estimate the H pylori bacterial load. We used univariate and mutivariate logistic regression for statistical analysis of the data and calculated the odds ratios to assess the risk posed by the different variables. Results : The RUT results differed significantly between the groups, reflecting the variations in the bacterial loads in each category. The test was positive in 52% in the positive controls (where nonspecific inflammation of oral mucosa was seen unassociated with fibrosis, in 46% of the test cases, and in 18% of the negative controls (healthy volunteers (χ2 = 13.887; P < 0.01. A positive correlation was seen between the oral hygiene/periodontal disease indices and RUT reactivity in all the three groups. Conclusions: The contribution of the H pylori in dental plaque to mucosal inflammation and periodontal disease was significant. Logistic regression analysis showed gastrointestinal disease and poor oral hygiene as being the greatest risk factors for bacterial colonization, irrespective of the subject groups. A positive correlation exists between RUT reactivity and the frequency of mucosal inflammation.

  9. Natural Antimicrobials and Oral Microorganisms: A Systematic Review on Herbal Interventions for the Eradication of Multispecies Oral Biofilms.

    Science.gov (United States)

    Karygianni, Lamprini; Al-Ahmad, Ali; Argyropoulou, Aikaterini; Hellwig, Elmar; Anderson, Annette C; Skaltsounis, Alexios L

    2015-01-01

    Oral diseases such as caries and periodontitis are mainly caused by microbial biofilms. Antibiotic therapy has reached its limits with regard to antimicrobial resistance, and new therapeutic measures utilizing natural phytochemicals are currently a focus of research. Hence, this systematic review provides a critical presentation of the antimicrobial effects of various medicinal herbs against in vitro, ex vivo, and in situ formed multispecies oral biofilms. Searches were performed in three English databases (PubMed, EMBASE, CAMbase) and the electronic archives of five German journals from the times of their establishment until October 10th, 2014, with the search terms "(plant extracts OR herbal extracts OR plant OR herb) AND (oral biofilm OR dental biofilm OR dental plaque OR oral disease OR dental disease)." The pooled data were assessed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA). Initially, 1848 articles were identified, out of which 585 full-text articles were screened, 149 articles were reevaluated for eligibility and finally, 14 articles met all inclusion criteria. The data of 14 reports disclosed enhanced antiadhesive and antibiofilm activity by the plant extracts obtained from Vitis vinifera, Pinus spp., Coffea canephora, Camellia sinensis, Vaccinium macrocarpon, Galla chinensis, Caesalpinia ferrea Martius, Psidium cattleianum, representative Brazilian plants and manuka honey. Overall, a positive correlation was revealed between herb-based therapies and elimination rates of all types of multispecies oral biofilms. In that context, integrating or even replacing conventional dental therapy protocols with herbal-inspired treatments can allow effective antimicrobial control of oral biofilms and thus, dental diseases.

  10. Natural antimicrobials and oral microorganisms: A systematic review on herbal interventions for the eradication of multispecies oral biofilms.

    Directory of Open Access Journals (Sweden)

    Lamprini eKarygianni

    2016-01-01

    Full Text Available Oral diseases such as caries and periodontitis are mainly caused by microbial biofilms. Antibiotic therapy has reached its limits with regard to antimicrobial resistance, and new therapeutic measures utilizing natural phytochemicals are currently a focus of research. Hence, this systematic review provides a critical presentation of the antimicrobial effects of various medicinal herbs against in vitro, ex vivo and in situ formed multispecies oral biofilms. Searches were performed in three English databases (PubMed, EMBASE, CAMbase and the electronic archives of five German journals from the times of their establishment until October 10th, 2014, with the search terms (plant extracts OR herbal extracts OR plant OR herb AND (oral biofilm OR dental biofilm OR dental plaque OR oral disease OR dental disease. The pooled data were assessed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Initially, 1,848 articles were identified, out of which 585 full-text articles were screened, 149 articles were reevaluated for eligibility and finally, 14 articles met all inclusion criteria. The data of 14 reports disclosed enhanced antiadhesive and antibiofilm activity by the plant extracts obtained from Vitis vinifera, Pinus spp., Coffea canephora, Camellia sinensis, Vaccinium macrocarpon, Galla chinensis, Caesalpinia ferrea Martius, Psidium cattleianum, representative Brazilian plants and manuka honey. Overall, a positive correlation was revealed between herb-based therapies and elimination rates of all types of multispecies oral biofilms. In that context, integrating or even replacing conventional dental therapy protocols with herbal-inspired treatments can allow effective antimicrobial control of oral biofilms and thus, dental diseases.

  11. Optimise the microbial flora with milk and yoghurt to prevent disease.

    Science.gov (United States)

    Morris, James A

    2018-05-01

    Pathogenic bacteria, which are temporary or permanent members of our microbial flora, cause or contribute to a wide range of human disease at all ages. Conditions include Alzheimer's disease, atherosclerosis, diabetes mellitus, obesity, cancer, autoimmunity and psychosis, amongst others. The mechanism of damage is inflammation which can be chronic or acute. An optimal microbial flora includes a wide range of pathogenic bacteria in low dose. This allows specific immunity to be developed and maintained with minimal inflammatory damage. Human milk has evolved to deliver an optimal microbial flora to the infant. Cow's milk has the potential, following appropriate fortification, to maintain an optimal human microbial flora throughout life. Yoghurt is a fermented milk product in which bacteria normally present in milk convert sugars to lactic acid. The acid suppresses the growth of pathogens in the oral cavity, oropharynx and oesophagus. Thus yoghurt can restore an optimal flora in these regions in the short term. Since bacteria are transported between epithelial surfaces, yoghurt will also optimise the flora elsewhere. The judicious use of milk and yogurt could prevent a high proportion of human disease. Copyright © 2018 The Author. Published by Elsevier Ltd.. All rights reserved.

  12. Oral antibiotics enhance antibody responses to keyhole limpet hemocyanin in orally but not muscularly immunized chickens.

    Science.gov (United States)

    Murai, Atsushi; Kitahara, Kazuki; Okumura, Shouta; Kobayashi, Misato; Horio, Fumihiko

    2016-02-01

    Recent studies have emphasized the crucial role of gut microbiota in triggering and modulating immune response. We aimed to determine whether the modification of gut microbiota by oral co-administration of two antibiotics, ampicillin and neomycin, would lead to changes in the antibody response to antigens in chickens. Neonatal chickens were given or not given ampicillin and neomycin (0.25 and 0.5 g/L, respectively) in drinking water. At 2 weeks of age, the chicks were muscularly or orally immunized with antigenic keyhole limpet hemocyanin (KLH), and then serum anti-KLH antibody levels were examined by ELISA. In orally immunized chicks, oral antibiotics treatment enhanced antibody responses (IgM, IgA, IgY) by 2-3-fold compared with the antibiotics-free control, while the antibiotics did not enhance antibody responses in the muscularly immunized chicks. Concomitant with their enhancement of antibody responses, the oral antibiotics also lowered the Lactobacillus species in feces. Low doses of antibiotics (10-fold and 100-fold lower than the initial trial), which failed to change the fecal Lactobacillus population, did not modify any antibody responses when chicks were orally immunized with KLH. In conclusion, oral antibiotics treatment enhanced the antibody response to orally exposed antigens in chickens. This enhancement of antibody response was associated with a modification of the fecal Lactobacillus content, suggesting a possible link between gut microbiota and antibody response in chickens. © 2015 Japanese Society of Animal Science.

  13. Microbial Regulation of Glucose Metabolism and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Silke Crommen

    2017-12-01

    Full Text Available Type 2 diabetes is a combined disease, resulting from a hyperglycemia and peripheral and hepatic insulin resistance. Recent data suggest that the gut microbiota is involved in diabetes development, altering metabolic processes including glucose and fatty acid metabolism. Thus, type 2 diabetes patients show a microbial dysbiosis, with reduced butyrate-producing bacteria and elevated potential pathogens compared to metabolically healthy individuals. Furthermore, probiotics are a known tool to modulate the microbiota, having a therapeutic potential. Current literature will be discussed to elucidate the complex interaction of gut microbiota, intestinal permeability and inflammation leading to peripheral and hepatic insulin resistance. Therefore, this review aims to generate a deeper understanding of the underlying mechanism of potential microbial strains, which can be used as probiotics.

  14. Mouthguards: does the indigenous microbiome play a role in maintaining oral health?

    Science.gov (United States)

    Kumar, Purnima S; Mason, Matthew R

    2015-01-01

    The existence of symbiotic relationships between bacteria and their hosts in various ecosystems have long been known to science. The human body also hosts vast numbers of bacteria in several habitats. Emerging evidence from the gastro-intestinal tract, genito-urinary tract and respiratory indicates that there are several health benefits to hosting a complex and diverse microbial community. Bacteria colonize the oral cavity within a few minutes after birth and form stable communities. Our knowledge of the oral microbiome has expanded exponentially with development of novel exploratory methods that allow us to examine diversity, structure, function, and topography without the need to cultivate the individual components of the biofilm. The purpose of this perspective, therefore, is to examine the strength of current evidence supporting a role for the oral microbiome in maintaining oral health. While several lines of evidence are emerging to suggest that indigenous oral microbiota may have a role in immune education and preventing pathogen expansion, much more work is needed to definitively establish whether oral bacteria do indeed contribute to sustaining oral health, and if so, the mechanisms underlying this role.

  15. Mouthguards: Does the indigenous microbiome play a role in maintaining oral health?

    Directory of Open Access Journals (Sweden)

    Purnima S Kumar

    2015-05-01

    Full Text Available The existence of symbiotic relationships between bacteria in different ecosystems and their host niches have long been known to science. The human body also hosts vast numbers of bacteria in several habitats. Emerging evidence from the gastro-intestinal tract, genito-urinary tract and respiratory indicates that there are several health benefits to hosting a complex and diverse microbial community i. Bacteria colonize the oral cavity within a few minutes after birth and form stable communities . Our knowledge of the oral microbiome has expanded exponentially with development of novel exploratory methods that allow us to examine diversity, structure, function and topography without the need to cultivate the individual components of the biofilm. The purpose of this perspective, therefore, is to examine the strength of current evidence supporting a role for the oral microbiome in maintaining oral health. While several lines of evidence are emerging to suggest that indigenous oral microbiota may have a role in immune education and preventing pathogen expansion, much more work is needed to definitively establish whether oral bacteria do indeed contribute to sustaining oral health, and if so, the mechanisms underlying this role.

  16. Oral microbiota species in acute apical endodontic abscesses

    Directory of Open Access Journals (Sweden)

    Noelle George

    2016-03-01

    Full Text Available Background and objectives: Acute apical abscesses are serious endodontic diseases resulting from pulpal infection with opportunistic oral microorganisms. The objective of this study was to identify and compare the oral microbiota in patients (N=18 exhibiting acute apical abscesses, originating from the demographic region in Portland, Oregon. The study hypothesis is that abscesses obtained from this demographic region may contain unique microorganisms not identified in specimens from other regions. Design: Endodontic abscesses were sampled from patients at the Oregon Health & Science University (OHSU School of Dentistry. DNA from abscess specimens was subjected to polymerase chain reaction amplification using 16S rRNA gene-specific primers and Cy3-dCTP labeling. Labeled DNA was then applied to microbial microarrays (280 species generated by the Human Oral Microbial Identification Microarray Laboratory (Forsyth Institute, Cambridge, MA. Results: The most prevalent microorganisms, found across multiple abscess specimens, include Fusobacterium nucleatum, Parvimonas micra, Megasphaera species clone CS025, Prevotella multisaccharivorax, Atopobium rimae, and Porphyromonas endodontalis. The most abundant microorganisms, found in highest numbers within individual abscesses, include F. nucleatum, P. micra, Streptococcus Cluster III, Solobacterium moorei, Streptococcus constellatus, and Porphyromonas endodontalis. Strong bacterial associations were identified between Prevotella multisaccharivorax, Acidaminococcaceae species clone DM071, Megasphaera species clone CS025, Actinomyces species clone EP053, and Streptococcus cristatus (all with Spearman coefficients >0.9. Conclusions: Cultivable and uncultivable bacterial species have been identified in endodontic abscesses obtained from the Portland, Oregon demographic region, and taxa identifications correlated well with other published studies, with the exception of Treponema and Streptococcus cristae, which

  17. Oral microbiota species in acute apical endodontic abscesses.

    Science.gov (United States)

    George, Noelle; Flamiatos, Erin; Kawasaki, Kellie; Kim, Namgu; Carriere, Charles; Phan, Brian; Joseph, Raphael; Strauss, Shay; Kohli, Richie; Choi, Dongseok; Baumgartner, J Craig; Sedgley, Christine; Maier, Tom; Machida, Curtis A

    2016-01-01

    Acute apical abscesses are serious endodontic diseases resulting from pulpal infection with opportunistic oral microorganisms. The objective of this study was to identify and compare the oral microbiota in patients (N=18) exhibiting acute apical abscesses, originating from the demographic region in Portland, Oregon. The study hypothesis is that abscesses obtained from this demographic region may contain unique microorganisms not identified in specimens from other regions. Endodontic abscesses were sampled from patients at the Oregon Health & Science University (OHSU) School of Dentistry. DNA from abscess specimens was subjected to polymerase chain reaction amplification using 16S rRNA gene-specific primers and Cy3-dCTP labeling. Labeled DNA was then applied to microbial microarrays (280 species) generated by the Human Oral Microbial Identification Microarray Laboratory (Forsyth Institute, Cambridge, MA). The most prevalent microorganisms, found across multiple abscess specimens, include Fusobacterium nucleatum, Parvimonas micra, Megasphaera species clone CS025, Prevotella multisaccharivorax, Atopobium rimae, and Porphyromonas endodontalis. The most abundant microorganisms, found in highest numbers within individual abscesses, include F. nucleatum, P. micra, Streptococcus Cluster III, Solobacterium moorei, Streptococcus constellatus, and Porphyromonas endodontalis. Strong bacterial associations were identified between Prevotella multisaccharivorax, Acidaminococcaceae species clone DM071, Megasphaera species clone CS025, Actinomyces species clone EP053, and Streptococcus cristatus (all with Spearman coefficients >0.9). Cultivable and uncultivable bacterial species have been identified in endodontic abscesses obtained from the Portland, Oregon demographic region, and taxa identifications correlated well with other published studies, with the exception of Treponema and Streptococcus cristae, which were not commonly identified in endodontic abscesses between the

  18. Microbial interactions: ecology in a molecular perspective.

    Science.gov (United States)

    Braga, Raíssa Mesquita; Dourado, Manuella Nóbrega; Araújo, Welington Luiz

    2016-12-01

    The microorganism-microorganism or microorganism-host interactions are the key strategy to colonize and establish in a variety of different environments. These interactions involve all ecological aspects, including physiochemical changes, metabolite exchange, metabolite conversion, signaling, chemotaxis and genetic exchange resulting in genotype selection. In addition, the establishment in the environment depends on the species diversity, since high functional redundancy in the microbial community increases the competitive ability of the community, decreasing the possibility of an invader to establish in this environment. Therefore, these associations are the result of a co-evolution process that leads to the adaptation and specialization, allowing the occupation of different niches, by reducing biotic and abiotic stress or exchanging growth factors and signaling. Microbial interactions occur by the transference of molecular and genetic information, and many mechanisms can be involved in this exchange, such as secondary metabolites, siderophores, quorum sensing system, biofilm formation, and cellular transduction signaling, among others. The ultimate unit of interaction is the gene expression of each organism in response to an environmental (biotic or abiotic) stimulus, which is responsible for the production of molecules involved in these interactions. Therefore, in the present review, we focused on some molecular mechanisms involved in the microbial interaction, not only in microbial-host interaction, which has been exploited by other reviews, but also in the molecular strategy used by different microorganisms in the environment that can modulate the establishment and structuration of the microbial community. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  19. Fusobacterium nucleatum binding to complement regulatory protein CD46 modulates the expression and secretion of cytokines and matrix metalloproteinases by oral epithelial cells.

    Science.gov (United States)

    Mahtout, Hayette; Chandad, Fatiha; Rojo, Jose M; Grenier, Daniel

    2011-02-01

    Periodontitis is a chronic inflammatory disease that results in the destruction of the supporting tissues of the teeth. Gingival epithelial cells are an important mechanical barrier and participate in the host inflammatory response to periodontopathogens. The aim of the present study is to investigate the capacity of Fusobacterium nucleatum to bind to the complement regulatory protein CD46 expressed by oral epithelial cells and to determine the impact of the binding on the gene expression and protein secretion of interleukin (IL)-6, IL-8, and matrix metalloproteinase (MMP)-9 by oral epithelial cells. Binding of recombinant human CD46 to the surface of F. nucleatum was demonstrated by immunologic assays. After stimulation of oral epithelial cells with F. nucleatum, gene expression was determined by real-time polymerase chain reaction analysis while protein secretion was monitored by enzyme-linked immunosorbent assays. Heat and protease treatments of bacterial cells reduced CD46 binding. F. nucleatum-bound CD46 mediated the cleavage of C3b in the presence of factor I. Stimulating oral epithelial cells with F. nucleatum at a multiplicity of infection of 50 resulted in a significant upregulation of the gene expression and protein secretion of IL-6, IL-8, and MMP-9 by oral epithelial cells. However, pretreating the epithelial cells with an anti-CD46 polyclonal antibody attenuated the production of IL-6, IL-8, and MMP-9 in response to F. nucleatum. Such an inhibitory effect was not observed with non-specific antibodies. The present study demonstrates that F. nucleatum can bind the complement regulatory protein CD46. The interaction of F. nucleatum with epithelial cell surface CD46 may contribute to increasing the levels of proinflammatory mediators and MMPs in periodontal sites and consequently modulate tissue destruction.

  20. Probiotics and oral health effects in children

    DEFF Research Database (Denmark)

    Twetman, Svante; Stecksén-Blicks, Christina

    2008-01-01

    BACKGROUND: Probiotics are living micro-organisms added to food which beneficially affect the host by improving its intestinal microbial balance. OBJECTIVE: This paper aims to present a general background on probiotics and its health effects in children, and to examine the evidence for oral...... interest was conducted in children. Four papers dealt with oral installation of probiotic bacteria, and although detectable levels were found in saliva shortly after intake, the studies failed to demonstrate a long-term installation. Seven papers evaluated the effect of lactobacilli- or bifidobacteria......-derived probiotics on the salivary levels of caries-associated bacteria in placebo-controlled designs. All but one reported a hampering effect on mutans streptococci and/or yeast. The single study carried out in early childhood reported a significant caries reduction in 3- to 4-year-old children after 7 months...

  1. Methanogenic Archaea and oral infections – ways to unravel the black box

    Directory of Open Access Journals (Sweden)

    Hans-Peter Horz

    2011-02-01

    Full Text Available Archaea, organisms that make up the third domain of cellular life are members of the human oral microflora. They are strikingly less diverse than oral bacteria and appear to be relatively rare with respect to their numerical abundance. Since they have been exclusively found in association with oral infections such as periodontitis and apical periodontitis and given their unique physiology and energy metabolism, it is highly plausible that they are more than just secondary colonizers of infected areas, but instead are actively involved in the overall poly-microbial infection process. Conversely, it is a highly challenging task to clearly demonstrate their possible active participation – mostly due to the difficulty to grow them in routine microbiology laboratories. This current review points out the importance for understanding the medical impact of methanogens and aims at devising strategies for elucidating the true function of archaea in the oral ecosystem.

  2. Phonologie et morphosyntaxe de l’anglais dans un produit SIC : le premier module de MACAO Phonologie et morphosyntaxe de l’anglais dans un produit SIC : le premier module de MACAO

    Directory of Open Access Journals (Sweden)

    Laurence Vincent-Durroux

    2002-12-01

    Full Text Available La préoccupation fréquente, chez les étudiants spécialistes d’autres disciplines que l’anglais, d’améliorer leur compréhension de l’anglais oral a motivé notre démarche de création d’un produit SIC (Systèmes d’Information et de Communication : MACAO (Modules d’Aide à la Compréhension de l’Anglais Oral. Le premier module, "S’entraîner à la reconnaissance", est réalisé et l’outil informatique s’est révélé particulièrement utile pour notre projet. Dans cet article, nous faisons état des difficultés récurrentes en compréhension de l’anglais oral : elles peuvent être dues à des attentes erronées fondées sur la dissymétrie entre la langue écrite et la langue orale, mais aussi à une reconnaissance difficile de certains morphèmes par l’existence de variantes phonologiques en fonction du contexte et par la proximité phonologique de certains morphèmes. Nous présentons également comment le contenu du premier module tente d’apporter des solutions à ces difficultés : en amenant les apprenants à prendre conscience du phénomène de réduction vocalique et d’inaccentuation qui touche certaines syllabes des mots aussi bien que certains éléments monosyllabiques de l’énoncé et en proposant un entraînement à la reconnaissance de ces éléments. Le module est en cours de validation avec une phase d’évaluation.French students who have English as part of their curriculum often express the wish to improve their comprehension of oral English. This led us to envisage the creation of a CALL product: MACAO (Modules to help in the comprehension of oral English. The first module has been created: "Training oneself for recognition". The computer was particularly adequate in this prospect. In this paper we present the most frequent difficulties in the comprehension of oral English: they can be related either to erroneous expectations based on the dissymmetry between the written form and the oral

  3. Practice patterns in prescribing oral care products by dental practitioners

    Directory of Open Access Journals (Sweden)

    Alena B. Abdrashitova

    2017-05-01

    Full Text Available This paper describes the practice patterns of dental practitioners in how they choose oral care products for prescriptions to their patients. One hundred seventy-three respondents were selected for a medico-sociological study. They were divided into 3 groups based on their work experience: less than 5 years (30.0%, 5–9 years (40.0% and 10–14 years (30.0%. The majority of respondents were dental therapists (71.0%, and the rest were paedodontists, dental surgeons, periodontists and orthodontists (11.0%, 7.0%, 4.0% and 1.0%, respectively. The study was conducted using a questionnaire specially developed by us, which consisted of 34 questions grouped into several domains. Analysis of the obtained results has shown that the majority of dental practitioners (88.7% were competent in prescribing oral care products. Professionals with work experience over 10 years often choose oral care products incorrectly; 80.6% of them believe that long-term use of personal oral care products containing antiseptic components affects the oral microbial flora, which suggests that it is necessary to amend the existing classification of toothpastes.

  4. Toll-Like Receptor 2 as a Regulator of Oral Tolerance in the Gastrointestinal Tract

    Directory of Open Access Journals (Sweden)

    Matthew C. Tunis

    2014-01-01

    Full Text Available Food allergy, other adverse immune responses to foods, inflammatory bowel disease, and eosinophilic esophagitis have become increasingly common in the last 30 years. It has been proposed in the “hygiene hypothesis” that dysregulated immune responses to environmental microbial stimuli may modify the balance between tolerance and sensitization in some patients. Of the pattern recognition receptors that respond to microbial signals, toll-like receptors (TLRs represent the most investigated group. The relationship between allergy and TLR activation is currently at the frontier of immunology research. Although TLR2 is abundant in the mucosal environment, little is known about the complex relationship between bystander TLR2 activation by the commensal microflora and the processing of oral antigens. This review focuses on recent advances in our understanding of the relationship between TLR2 and oral tolerance, with an emphasis on regulatory T cells, eosinophils, B cells, IgA, intestinal regulation, and commensal microbes.

  5. The Influence of Different Maternal Microbial Communities on the Development of Infant Gut and Oral Microbiota

    OpenAIRE

    Drell, Tiina; Stsepetova, Jelena; Simm, Jaak; Rull, Kristiina; Aleksejeva, Aira; Antson, Anne; Tillmann, Vallo; Metsis, Madis; Sepp, Epp; Salumets, Andres; Mandar, Reet

    2017-01-01

    Very few studies have analyzed how the composition of mother?s microbiota affects the development of infant?s gut and oral microbiota during the first months of life. Here, microbiota present in the mothers? gut, vagina, breast milk, oral cavity, and mammary areola were compared with the gut and oral microbiota of their infants over the first six months following birth. Samples were collected from the aforementioned body sites from seven mothers and nine infants at three different time points...

  6. A Western diet ecological module identified from the 'humanized' mouse microbiota predicts diet in adults and formula feeding in children.

    Science.gov (United States)

    Siddharth, Jay; Holway, Nicholas; Parkinson, Scott J

    2013-01-01

    The interplay between diet and the microbiota has been implicated in the growing frequency of chronic diseases associated with the Western lifestyle. However, the complexity and variability of microbial ecology in humans and preclinical models has hampered identification of the molecular mechanisms underlying the association of the microbiota in this context. We sought to address two key questions. Can the microbial ecology of preclinical models predict human populations? And can we identify underlying principles that surpass the plasticity of microbial ecology in humans? To do this, we focused our study on diet; perhaps the most influential factor determining the composition of the gut microbiota. Beginning with a study in 'humanized' mice we identified an interactive module of 9 genera allied with Western diet intake. This module was applied to a controlled dietary study in humans. The abundance of the Western ecological module correctly predicted the dietary intake of 19/21 top and 21/21 of the bottom quartile samples inclusive of all 5 Western and 'low-fat' diet subjects, respectively. In 98 volunteers the abundance of the Western module correlated appropriately with dietary intake of saturated fatty acids, fat-soluble vitamins and fiber. Furthermore, it correlated with the geographical location and dietary habits of healthy adults from the Western, developing and third world. The module was also coupled to dietary intake in children (and piglets) correlating with formula (vs breast) feeding and associated with a precipitous development of the ecological module in young children. Our study provides a conceptual platform to translate microbial ecology from preclinical models to humans and identifies an ecological network module underlying the association of the gut microbiota with Western dietary habits.

  7. A Western diet ecological module identified from the 'humanized' mouse microbiota predicts diet in adults and formula feeding in children.

    Directory of Open Access Journals (Sweden)

    Jay Siddharth

    Full Text Available The interplay between diet and the microbiota has been implicated in the growing frequency of chronic diseases associated with the Western lifestyle. However, the complexity and variability of microbial ecology in humans and preclinical models has hampered identification of the molecular mechanisms underlying the association of the microbiota in this context. We sought to address two key questions. Can the microbial ecology of preclinical models predict human populations? And can we identify underlying principles that surpass the plasticity of microbial ecology in humans? To do this, we focused our study on diet; perhaps the most influential factor determining the composition of the gut microbiota. Beginning with a study in 'humanized' mice we identified an interactive module of 9 genera allied with Western diet intake. This module was applied to a controlled dietary study in humans. The abundance of the Western ecological module correctly predicted the dietary intake of 19/21 top and 21/21 of the bottom quartile samples inclusive of all 5 Western and 'low-fat' diet subjects, respectively. In 98 volunteers the abundance of the Western module correlated appropriately with dietary intake of saturated fatty acids, fat-soluble vitamins and fiber. Furthermore, it correlated with the geographical location and dietary habits of healthy adults from the Western, developing and third world. The module was also coupled to dietary intake in children (and piglets correlating with formula (vs breast feeding and associated with a precipitous development of the ecological module in young children. Our study provides a conceptual platform to translate microbial ecology from preclinical models to humans and identifies an ecological network module underlying the association of the gut microbiota with Western dietary habits.

  8. Comparisons of Subgingival Microbial Profiles of Refractory Periodontitis, Severe Periodontitis and Periodontal Health using the Human Oral Microbe Identification Microarray (HOMIM)

    Science.gov (United States)

    Colombo, Ana Paula V.; Boches, Susan K.; Cotton, Sean L.; Goodson, J. Max; Kent, Ralph; Haffajee, Anne D.; Socransky, Sigmund S.; Hasturk, Hatice; Van Dyke, Thomas E.; Paster, Bruce J.

    2013-01-01

    Aim This study compared the subgingival microbiota of subjects with refractory periodontitis (RP) to those in subjects with treatable periodontitis (GR) or periodontal health (PH) using the Human Oral Microbe Identification Microarray (HOMIM). Methods At baseline, subgingival plaque samples were taken from 47 periodontitis and 20 PH individuals, and analyzed for the presence of 300 species by HOMIM. The periodontitis subjects were classified as RP (n=17) based on mean attachment loss (AL) and/or >3 sites with AL ≥2.5 mm after SRP, surgery and systemically administered amoxicillin and metronidazole or as GR (n=30) based on mean attachment gain and no sites with AL ≥2.5 mm after treatment. Significant differences in taxa among groups were sought using the Kruskal Wallis and Chi-square tests. Results More species were detected in diseased patients (GR or RP) than those without disease (PH). RP subjects were distinguished from GR and PH by a significantly high frequency of putative periodontal pathogens such as, Parvimonas micra, Campylobacter gracilis, Eubacterium nodatum, Selenomonas noxia, Tannerella forsythia, Porphyromonas gingivalis, Prevotella spp., Treponema spp., Eikenella corrodens, as well as “unusual” species (Pseudoramibacter alactolyticus, TM7 spp. oral taxon (OT) 346/356, Bacteroidetes spp. OT 272/274, Solobacterium moorei, Desulfobulbus sp. OT 041, Brevundimonas diminuta, Sphaerocytophaga sp. OT 337, Shuttleworthia satelles, Filifactor alocis, Dialister invisus/pneumosintes, Granulicatella adiacens, Mogibacterium tidmidum, Veillonella atypica, Mycoplasma salivarium, Synergistes sp. cluster II, Acidaminococcaceae [G-1] sp. OT 132/150/155/148/135) [pspp. cluster I, Capnocytophaga sputigena, Cardiobacterium hominis, Haemophilus parainfluenzae, Lautropia mirabilis, Propionibacterium propionicum, Rothia dentocariosa/mucilagenosa, Streptococcus sanguinis (p<0.05). Conclusion RP patients present a distinct microbial profile compared to patients in the

  9. Effect of IMRT and three-dimensional conformal radiotherapy on oral Candida colonization: A comparative study

    Directory of Open Access Journals (Sweden)

    Jasmine Shanthi Kamath

    2017-01-01

    Conclusion: Although candidiasis is seen regardless of the type of radiation therapy used, the oral environment is more stable after intensity-modulated radiation therapy as and when compared to 3D CRT. Salivary substitutes and good oral hygiene before, during, and after radiotherapy could be used to increase oral clearance and to decrease the chance of candidiasis.

  10. Synthetic Microbial Ecology: Engineering Habitats for Modular Consortia.

    Science.gov (United States)

    Ben Said, Sami; Or, Dani

    2017-01-01

    The metabolic diversity present in microbial communities enables cooperation toward accomplishing more complex tasks than possible by a single organism. Members of a consortium communicate by exchanging metabolites or signals that allow them to coordinate their activity through division of labor. In contrast with monocultures, evidence suggests that microbial consortia self-organize to form spatial patterns, such as observed in biofilms or in soil aggregates, that enable them to respond to gradient, to improve resource interception and to exchange metabolites more effectively. Current biotechnological applications of microorganisms remain rudimentary, often relying on genetically engineered monocultures (e.g., pharmaceuticals) or mixed-cultures of partially known composition (e.g., wastewater treatment), yet the vast potential of "microbial ecological power" observed in most natural environments, remains largely underused. In line with the Unified Microbiome Initiative (UMI) which aims to "discover and advance tools to understand and harness the capabilities of Earth's microbial ecosystems," we propose in this concept paper to capitalize on ecological insights into the spatial and modular design of interlinked microbial consortia that would overcome limitations of natural systems and attempt to optimize the functionality of the members and the performance of the engineered consortium. The topology of the spatial connections linking the various members and the regulated fluxes of media between those modules, while representing a major engineering challenge, would allow the microbial species to interact. The modularity of such spatially linked microbial consortia (SLMC) could facilitate the design of scalable bioprocesses that can be incorporated as parts of a larger biochemical network. By reducing the need for a compatible growth environment for all species simultaneously, SLMC will dramatically expand the range of possible combinations of microorganisms and their

  11. Engineering chemical interactions in microbial communities.

    Science.gov (United States)

    Kenny, Douglas J; Balskus, Emily P

    2018-03-05

    Microbes living within host-associated microbial communities (microbiotas) rely on chemical communication to interact with surrounding organisms. These interactions serve many purposes, from supplying the multicellular host with nutrients to antagonizing invading pathogens, and breakdown of chemical signaling has potentially negative consequences for both the host and microbiota. Efforts to engineer microbes to take part in chemical interactions represent a promising strategy for modulating chemical signaling within these complex communities. In this review, we discuss prominent examples of chemical interactions found within host-associated microbial communities, with an emphasis on the plant-root microbiota and the intestinal microbiota of animals. We then highlight how an understanding of such interactions has guided efforts to engineer microbes to participate in chemical signaling in these habitats. We discuss engineering efforts in the context of chemical interactions that enable host colonization, promote host health, and exclude pathogens. Finally, we describe prominent challenges facing this field and propose new directions for future engineering efforts.

  12. Development of oral agent in the treatment of multiple sclerosis: how the first available oral therapy, Fingolimod will change therapeutic paradigm approach

    Directory of Open Access Journals (Sweden)

    Gasperini C

    2012-07-01

    Full Text Available Claudio Gasperini,1 Serena Ruggieri21Department of Neurosciences, S Camillo Forlanini Hospital, 2Department of Neurology and Psychiatry, University of Rome “Sapienza,” Rome, ItalyAbstract: Multiple sclerosis (MS is a chronic inflammatory disorder of the central nervous system, traditionally considered to be an autoimmune, demyelinating disease. Based on this understanding, the initial therapeutic strategies were directed at immune modulation and inflammation control. At present, there are five licensed first-line disease-modifying drugs and two second-line treatments in MS. Currently available MS therapies have shown significant efficacy throughout many trials, but they produce different side-effect profiles in patients. Since they are well known and safe, they require regular and frequent parenteral administration and are associated with limited long-term treatment adherence. Thus, there is an important need for the development of new therapeutic strategies. Several oral compounds are in late-stage development for treating MS. Fingolimod (FTY720; Novartis, Basel, Switzerland is an oral sphingosine-1-phosphase receptor modulator which has demonstrated superior efficacy compared with placebo and interferon β-1a in Phase III studies and has been approved in the treatment of MS. We summarily review the oral compounds in study, focusing on the recent development, approval and the clinical experience with FTY720.Keywords: multiple sclerosis, oral compounds, fingolimod, fty720, sphingosine 1, phosphate, patient satisfaction

  13. Resource Availability Modulates the Cooperative and Competitive Nature of a Microbial Cross-Feeding Mutualism.

    Directory of Open Access Journals (Sweden)

    Tim A Hoek

    2016-08-01

    Full Text Available Mutualisms between species play an important role in ecosystem function and stability. However, in some environments, the competitive aspects of an interaction may dominate the mutualistic aspects. Although these transitions could have far-reaching implications, it has been difficult to study the causes and consequences of this mutualistic-competitive transition in experimentally tractable systems. Here, we study a microbial cross-feeding mutualism in which each yeast strain supplies an essential amino acid for its partner strain. We find that, depending upon the amount of freely available amino acid in the environment, this pair of strains can exhibit an obligatory mutualism, facultative mutualism, competition, parasitism, competitive exclusion, or failed mutualism leading to extinction of the population. A simple model capturing the essential features of this interaction explains how resource availability modulates the interaction and predicts that changes in the dynamics of the mutualism in deteriorating environments can provide advance warning that collapse of the mutualism is imminent. We confirm this prediction experimentally by showing that, in the high nutrient competitive regime, the strains rapidly reach a common carrying capacity before slowly reaching the equilibrium ratio between the strains. However, in the low nutrient regime, before collapse of the obligate mutualism, we find that the ratio rapidly reaches its equilibrium and it is the total abundance that is slow to reach equilibrium. Our results provide a general framework for how mutualisms may transition between qualitatively different regimes of interaction in response to changes in nutrient availability in the environment.

  14. Use of the clinical microbiology laboratory for the diagnosis and management of infectious diseases related to the oral cavity

    Directory of Open Access Journals (Sweden)

    Dewa Made Sukrama

    2016-06-01

    Full Text Available Our knowledge regarding the pathogenesis of infections relative to the oral cavity is rapidly expanding, similar to our overall understanding of how infectious diseases impact our daily lives. The complexity of the flora within the oral cavity is quite unique and often makes diagnosis difficult; however, it is becoming more apparent that accurate diagnostic testing is important from the standpoint of focusing appropriate therapy on pathogens within this crucial body site, and avoiding overuse of antimicrobial agents in settings of infection where they have no demonstrated benefit.Infections of the oral mucosa, teeth (caries and root canal infections and their supporting structures (periodontitis, dento-alveolar abscess are polymicrobial, although usually associated with a characteristic microbiota linked to the site of infection. However, identification of the relevant oral pathogens is not commonly undertaken in diagnostic clinical microbiology laboratories due to lack of expertise in handling fastidious oral microbes and interpretation of the findings. When specimens from oral diseases are processed, they are frequently reported as ‘mixed oral flora’. This type of reporting is unhelpful both to clinicians and to epidemiologists collating data for disease and anti-microbial susceptibility trends. This probably reflects the lack of input by experts in oral microbiology into general guidelines for processing and reporting samples from the oral cavity. Although there is a general consensus within the dental and maxillo-facial surgery community on the role of the major pathogens for many types of infection, there is controversy on the role of some species, first line anti-microbial agents and their associated breakpoints. Furthermore, there is poor uptake and understanding of microbiology diagnostic services by the dental profession, inappropriate specimens and misinterpretation of culture results.

  15. Utilization and control of ecological interactions in polymicrobial infections and community-based microbial cell factories [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Vinoth Wigneswaran

    2016-03-01

    Full Text Available Microbial activities are most often shaped by interactions between co-existing microbes within mixed-species communities. Dissection of the molecular mechanisms of species interactions within communities is a central issue in microbial ecology, and our ability to engineer and control microbial communities depends, to a large extent, on our knowledge of these interactions. This review highlights the recent advances regarding molecular characterization of microbe-microbe interactions that modulate community structure, activity, and stability, and aims to illustrate how these findings have helped us reach an engineering-level understanding of microbial communities in relation to both human health and industrial biotechnology.

  16. Early microbial contact, the breast milk microbiome and child health.

    Science.gov (United States)

    Rautava, S

    2016-02-01

    The significance of contact with microbes in early life for subsequent health has been the subject of intense research during the last 2 decades. Disturbances in the establishment of the indigenous intestinal microbiome caused by cesarean section delivery or antibiotic exposure in early life have been linked to the risk of immune-mediated and inflammatory conditions such as atopic disorders, inflammatory bowel disease and obesity later in life. Distinct microbial populations have recently been discovered at maternal sites including the amniotic cavity and breast milk, as well as meconium, which have previously been thought to be sterile. Our understanding of the impact of fetal microbial contact on health outcomes is still rudimentary. Breast milk is known to modulate immune and metabolic programming. The breast milk microbiome is hypothesized to guide infant gut colonization and is affected by maternal health status and mode of delivery. Immunomodulatory factors in breast milk interact with the maternal and infant gut microbiome and may mediate some of the health benefits associated with breastfeeding. The intimate connection between the mother and the fetus or the infant is a potential target for microbial therapeutic interventions aiming to support healthy microbial contact and protect against disease.

  17. Diet and host-microbial crosstalk in postnatal intestinal immune homeostasis.

    Science.gov (United States)

    Jain, Nitya; Walker, W Allan

    2015-01-01

    Neonates face unique challenges in the period following birth. The postnatal immune system is in the early stages of development and has a range of functional capabilities that are distinct from the mature adult immune system. Bidirectional immune-microbial interactions regulate the development of mucosal immunity and alter the composition of the microbiota, which contributes to overall host well-being. In the past few years, nutrition has been highlighted as a third element in this interaction that governs host health by modulating microbial composition and the function of the immune system. Dietary changes and imbalances can disturb the immune-microbiota homeostasis, which might alter susceptibility to several autoimmune and metabolic diseases. Major changes in cultural traditions, socioeconomic status and agriculture are affecting the nutritional status of humans worldwide, which is altering core intestinal microbial communities. This phenomenon is especially relevant to the neonatal and paediatric populations, in which the microbiota and immune system are extremely sensitive to dietary influences. In this Review, we discuss the current state of knowledge regarding early-life nutrition, its effects on the microbiota and the consequences of diet-induced perturbation of the structure of the microbial community on mucosal immunity and disease susceptibility.

  18. Soft, chewable gelatin-based pharmaceutical oral formulations: a technical approach.

    Science.gov (United States)

    Dille, Morten J; Hattrem, Magnus N; Draget, Kurt I

    2018-06-01

    Hard tablets and capsules for oral drug delivery cause problems for people experiencing dysphagia. This work describes the formulation and properties of a gelatin based, self-preserved, and soft chewable tablet as an alternative and novel drug delivery format. Gelatin (8.8-10% in 24.7-29% water) constituted the matrix of the soft, semi-solid tablets. Three different pharmaceuticals (Ibuprofen 10%, Acetaminophen 15%, and Meloxicam 1.5%) were tested in this formulation. Microbial stability was controlled by lowering the water activity with a mixture of sorbitol and xylitol (45.6-55%). Rheological properties were tested applying small strain oscillation measurements. Taste masking of ibuprofen soft-chew tablets was achieved by keeping the ibuprofen insoluble at pH 4.5 and keeping the processing temperature below the crystalline-to-amorphous transition temperature. Soft-chew formulations showed good stability for all three pharmaceuticals (up to 24 months), and the ibuprofen containing formulation exhibited comparable dissolution to a standard oral tablet as well as good microbial stability. The rheological properties of the ibuprofen/gelatin formulation had the fingerprint of a true gelatin gel, albeit higher moduli, and melting temperature. The results suggest that easy-to-swallow and well taste-masked soft chewable tablet formulations with extended shelf life are within reach for several active pharmaceutical ingredients (APIs).

  19. Effect of single oral doses of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on incretin and plasma glucose levels after an oral glucose tolerance test in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Herman, Gary A; Bergman, Arthur; Stevens, Catherine

    2006-01-01

    CONTEXT: In response to a meal, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) are released and modulate glycemic control. Normally these incretins are rapidly degraded by dipeptidyl peptidase-4 (DPP-4). DPP-4 inhibitors are a novel class of oral antihyperglyce......CONTEXT: In response to a meal, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) are released and modulate glycemic control. Normally these incretins are rapidly degraded by dipeptidyl peptidase-4 (DPP-4). DPP-4 inhibitors are a novel class of oral...... antihyperglycemic agents in development for the treatment of type 2 diabetes. The degree of DPP-4 inhibition and the level of active incretin augmentation required for glucose lowering efficacy after an oral glucose tolerance test (OGTT) were evaluated. OBJECTIVE: The objective of the study was to examine...... concentrations; and sitagliptin pharmacokinetics. RESULTS: Sitagliptin dose-dependently inhibited plasma DPP-4 activity over 24 h, enhanced active GLP-1 and GIP levels, increased insulin/C-peptide, decreased glucagon, and reduced glycemic excursion after OGTTs administered at 2 and 24 h after single oral 25...

  20. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2.

    Science.gov (United States)

    Jin, Qusheng; Kirk, Matthew F

    2016-01-01

    Geological carbon sequestration captures CO 2 from industrial sources and stores the CO 2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO 2 concentration. This study uses biogeochemical modeling to explore the influence of CO 2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO 2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO 2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO 2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO 2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  1. Thermodynamic and kinetic response of microbial reactions to high CO2

    Directory of Open Access Journals (Sweden)

    Qusheng Jin

    2016-11-01

    Full Text Available Geological carbon sequestration captures CO2 from industrial sources and stores the CO2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO2 concentration. This study uses biogeochemical modeling to explore the influence of CO2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  2. Intestinal Microbial Community Differs between Acute Pancreatitis Patients and Healthy Volunteers.

    Science.gov (United States)

    Zhang, Xi Mei; Zhang, Zheng Yu; Zhang, Chen Huan; Wu, Jing; Wang, You Xin; Zhang, Guo Xin

    2018-01-01

    A case control study including 45 acute pancreatitis and 44 healthy volunteers was performed to investigate the association between intestinal microbial community and acute pancreatitis. High-throughput 16S rRNA gene amplicon sequencing was used to profile the microbiological composition of the samples. In total, 27 microbial phyla were detected and the samples of pancreatitis patients contained fewer phyla. Samples from acute pancreatitis patients contained more Bacteroidetes and Proteobacteria and fewer Firmicutes and Actinobacteria than those from healthy volunteers. PCoA analyses distinguished the fecal microbial communities of acute pancreatitis patients from those of healthy volunteers. The intestinal microbes of acute pancreatitis patients are different from those of healthy volunteers. Modulation of the intestinal microbiome may serve as an alternative strategy for treating acute pancreatitis. Copyright © 2018 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  3. Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray.

    Science.gov (United States)

    Colombo, Ana Paula V; Boches, Susan K; Cotton, Sean L; Goodson, J Max; Kent, Ralph; Haffajee, Anne D; Socransky, Sigmund S; Hasturk, Hatice; Van Dyke, Thomas E; Dewhirst, Floyd; Paster, Bruce J

    2009-09-01

    This study compared the subgingival microbiota of subjects with refractory periodontitis (RP) to those in subjects with treatable periodontitis (GRs = good responders) or periodontal health (PH) using the Human Oral Microbe Identification Microarray (HOMIM). At baseline, subgingival plaque samples were taken from 47 subjects with periodontitis and 20 individuals with PH and analyzed for the presence of 300 species by HOMIM. The subjects with periodontitis were classified as having RP (n = 17) based on mean attachment loss (AL) and/or more than three sites with AL >or=2.5 mm after scaling and root planing, surgery, and systemically administered amoxicillin and metronidazole or as GRs (n = 30) based on mean attachment gain and no sites with AL >or=2.5 mm after treatment. Significant differences in taxa among the groups were sought using the Kruskal-Wallis and chi(2) tests. More species were detected in patients with disease (GR or RP) than in those without disease (PH). Subjects with RP were distinguished from GRs or those with PH by a significantly higher frequency of putative periodontal pathogens, such as Parvimonas micra (previously Peptostreptococcus micros or Micromonas micros), Campylobacter gracilis, Eubacterium nodatum, Selenomonas noxia, Tannerella forsythia (previously T. forsythensis), Porphyromonas gingivalis, Prevotella spp., Treponema spp., and Eikenella corrodens, as well as unusual species (Pseudoramibacter alactolyticus, TM7 spp. oral taxon [OT] 346/356, Bacteroidetes sp. OT 272/274, Solobacterium moorei, Desulfobulbus sp. OT 041, Brevundimonas diminuta, Sphaerocytophaga sp. OT 337, Shuttleworthia satelles, Filifactor alocis, Dialister invisus/pneumosintes, Granulicatella adiacens, Mogibacterium timidum, Veillonella atypica, Mycoplasma salivarium, Synergistes sp. cluster II, and Acidaminococcaceae [G-1] sp. OT 132/150/155/148/135) (P spp. cluster I, Capnocytophaga sputigena, Cardiobacterium hominis, Haemophilus parainfluenzae, Lautropia mirabilis

  4. Effect of 12-month weekly professional oral hygiene care on the composition of the oral flora in dentate, dependent elderly residents: A prospective study.

    Science.gov (United States)

    Wikström, Maude; Kareem, Kawa L; Almståhl, Annica; Palmgren, Erika; Lingström, Peter; Wårdh, Inger

    2017-06-01

    To study the effect of weekly professional oral hygiene care on the proportion of micro-organisms associated with good oral health, caries, and periodontal and soft tissue diseases in oral biofilms in dentate, dependent elderly residents. Assisted oral hygiene care reduces the plaque score and number of micro-organisms in the oral biofilms in elderly residents. Less is known about the effect on the quality/composition of the remaining oral flora. Participants comprised 33 residents in the study and 35 in the control group. Dental status (≥10 natural teeth and no removable dentures to be included), plaque score, salivary secretion rate and prescription medicines were recorded. Duplicate samples, collected from supragingival plaque and tongue, were analysed using cultivation technique. Differences between and within groups were analysed using one-way and two-way ANOVA, respectively. At the baseline, the number of teeth in the participants (mean age, 83.7 ± 7.4 years) was 22.0 ± 4.5. The number of prescription medicines was 9.4 ± 4.5. Seventy-six per cent had low salivary secretion rate. Fifty per cent had "visible thick" supragingival plaque. At the 12-month registration, "no visible" or "visible but thin" plaque was recorded in 92% in the study group. The proportions of bacteria associated with good oral health and periodontal diseases were decreased over time, while the frequency and proportions of micro-organisms associated with caries and soft tissue infection were unaffected or increased. The results indicate that assisted oral hygiene care alone is not sufficient to regain an oral microbial flora associated with good oral health in dentate, dependent elderly residents. © 2016 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  5. Arabinoxylo-Oligosaccharides and Inulin Impact Inter-Individual Variation on Microbial Metabolism and Composition, Which Immunomodulates Human Cells.

    Science.gov (United States)

    Van den Abbeele, Pieter; Taminiau, Bernard; Pinheiro, Iris; Duysburgh, Cindy; Jacobs, Heidi; Pijls, Loek; Marzorati, Massimo

    2018-02-07

    Fecal batch fermentations coupled to cocultures of epithelial cells and macrophages were used to compare how arabinoxylo-oligosaccharides (AXOS) and inulin modulate gut microbial activity and composition of three different human donors and subsequently the epithelial permeability and immune response. Both inulin and AXOS decreased the pH during incubation (-1.5 pH units), leading to increased productions of acetate, propionate, and butyrate. Differences in terms of metabolites production could be linked to specific microbial alterations at genus level upon inulin/AXOS supplementation (i.e., Bifidobacterium, Bacteroides, Prevotella and unclassified Erysipelotrichaceae), as shown by 16S-targeted Illumina sequencing. Both products stimulated gut barrier and immune function with increases in TEER, NF-KB, IL-10, and IL-6. Ingredients with different structures selectively modulate the microbiota of a specific donor leading to differential changes at metabolic level. The extent of this effect is donor specific and is linked to a final specific modulation of the host's immune system.

  6. Commensal bacteria modulate the tumor microenvironment.

    Science.gov (United States)

    Poutahidis, Theofilos; Erdman, Susan E

    2016-09-28

    It has been recently shown that gut microbes modulate whole host immune and hormonal factors impacting the fate of distant preneoplastic lesions toward malignancy or regression. This raises the possibility that the tumor microenvironment interacts with broader systemic microbial-immune networks. These accumulated findings suggest novel therapeutic opportunities for holobiont engineering in emerging tumor microenvironments. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome.

    Science.gov (United States)

    Warinner, Christina; Speller, Camilla; Collins, Matthew J

    2015-01-19

    The field of palaeomicrobiology is dramatically expanding thanks to recent advances in high-throughput biomolecular sequencing, which allows unprecedented access to the evolutionary history and ecology of human-associated and environmental microbes. Recently, human dental calculus has been shown to be an abundant, nearly ubiquitous, and long-term reservoir of the ancient oral microbiome, preserving not only microbial and host biomolecules but also dietary and environmental debris. Modern investigations of native human microbiota have demonstrated that the human microbiome plays a central role in health and chronic disease, raising questions about changes in microbial ecology, diversity and function through time. This paper explores the current state of ancient oral microbiome research and discusses successful applications, methodological challenges and future possibilities in elucidating the intimate evolutionary relationship between humans and their microbes.

  8. A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome

    Science.gov (United States)

    Warinner, Christina; Speller, Camilla; Collins, Matthew J.

    2015-01-01

    The field of palaeomicrobiology is dramatically expanding thanks to recent advances in high-throughput biomolecular sequencing, which allows unprecedented access to the evolutionary history and ecology of human-associated and environmental microbes. Recently, human dental calculus has been shown to be an abundant, nearly ubiquitous, and long-term reservoir of the ancient oral microbiome, preserving not only microbial and host biomolecules but also dietary and environmental debris. Modern investigations of native human microbiota have demonstrated that the human microbiome plays a central role in health and chronic disease, raising questions about changes in microbial ecology, diversity and function through time. This paper explores the current state of ancient oral microbiome research and discusses successful applications, methodological challenges and future possibilities in elucidating the intimate evolutionary relationship between humans and their microbes. PMID:25487328

  9. Immune modulation by Bacillus subtilus-based direct-fed microbials in commercial broiler chickens

    Science.gov (United States)

    Direct-fed microbials (DFMs), also known as probiotics, have been successfully used to improve the balance of gut microbiota. Spores of Bacillus subtilis, have been used as DFMs for food animals and humans and our previous studies showed that dietary supplementation of broiler chickens with a B. su...

  10. A Western Diet Ecological Module Identified from the ‘Humanized’ Mouse Microbiota Predicts Diet in Adults and Formula Feeding in Children

    Science.gov (United States)

    Siddharth, Jay; Holway, Nicholas; Parkinson, Scott J.

    2013-01-01

    The interplay between diet and the microbiota has been implicated in the growing frequency of chronic diseases associated with the Western lifestyle. However, the complexity and variability of microbial ecology in humans and preclinical models has hampered identification of the molecular mechanisms underlying the association of the microbiota in this context. We sought to address two key questions. Can the microbial ecology of preclinical models predict human populations? And can we identify underlying principles that surpass the plasticity of microbial ecology in humans? To do this, we focused our study on diet; perhaps the most influential factor determining the composition of the gut microbiota. Beginning with a study in ‘humanized’ mice we identified an interactive module of 9 genera allied with Western diet intake. This module was applied to a controlled dietary study in humans. The abundance of the Western ecological module correctly predicted the dietary intake of 19/21 top and 21/21 of the bottom quartile samples inclusive of all 5 Western and ‘low-fat’ diet subjects, respectively. In 98 volunteers the abundance of the Western module correlated appropriately with dietary intake of saturated fatty acids, fat-soluble vitamins and fiber. Furthermore, it correlated with the geographical location and dietary habits of healthy adults from the Western, developing and third world. The module was also coupled to dietary intake in children (and piglets) correlating with formula (vs breast) feeding and associated with a precipitous development of the ecological module in young children. Our study provides a conceptual platform to translate microbial ecology from preclinical models to humans and identifies an ecological network module underlying the association of the gut microbiota with Western dietary habits. PMID:24391809

  11. Application of Metagenomic Analyses in Dentistry as a Novel Strategy Enabling Complex Insight into Microbial Diversity of the Oral Cavity.

    Science.gov (United States)

    Burczynska, Aleksandra; Dziewit, Lukasz; Decewicz, Przemysław; Struzycka, Izabela; Wroblewska, Marta

    2017-03-30

    The composition of the oral microbiome in healthy individuals is complex and dynamic, and depends on many factors, such as anatomical location in the oral cavity, diet, oral hygiene habits or host immune responses. It is estimated at present that worldwide about 2 billion people suffer from diseases of the oral cavity, mainly periodontal disease and dental caries. Importantly, the oral microflora involved in local infections may spread and cause systemic, even life-threatening infections. In search for etiological agents of infections in dentistry, traditional approaches are not sufficient, as about 50% of oral bacteria are not cultivable. Instead, metagenomic analyses are particularly useful for studies of the complex oral microbiome - both in healthy individuals, and in patients with oral and dental diseases. In this paper we review the current and future applications of metagenomic studies in evaluation of both the composition of the oral microbiome as well as its potential pathogenic role in infections in dentistry.

  12. Microbial cross-contamination by airborne dispersion and contagion during defeathering of poultry.

    Science.gov (United States)

    Allen, V M; Hinton, M H; Tinker, D B; Gibson, C; Mead, G C; Wathes, C M

    2003-09-01

    1. A readily identifiable strain of Escherichia coli K12 was used as a 'marker' organism to determine the sources, routes and patterns of microbial cross-contamination during mechanical defeathering of broiler chicken carcases. 2. Inoculation of scald water with the marker organism led to a relatively even pattern of carcase contamination during subsequent defeathering. Microbial cross-contamination was greater by this route of inoculation than by either surface inoculation of a 'seeder' carcase or oral inoculation of a live bird one day before slaughter. 3. Dispersal of the marker organism was strongly influenced by the mechanical action of the defeathering machines. Forward transmission of the marker occurred by aerosol or large airborne droplets and particulates such as feathers. Moving carcases through the defeathering machines when these were non-operational clearly reduced backward transmission of the marker. 4. Although microbial dispersal was unaffected by increasing the spacing between individual carcases or installing a water curtain at the entry and exit of the defeathering machines, shielding of carcases with aluminium baffles reduced counts of the marker organism from contaminated carcases by > 90%. 5. The results imply that microbial cross-contamination of broiler chicken carcases during defeathering occurs mainly via the airborne route, which could be contained by physical means.

  13. Bacteriophage and their potential roles in the human oral cavity

    Directory of Open Access Journals (Sweden)

    Anna Edlund

    2015-04-01

    Full Text Available The human oral cavity provides the perfect portal of entry for viruses and bacteria in the environment to access new hosts. Hence, the oral cavity is one of the most densely populated habitats of the human body containing some 6 billion bacteria and potentially 35 times that many viruses. The role of these viral communities remains unclear; however, many are bacteriophage that may have active roles in shaping the ecology of oral bacterial communities. Other implications for the presence of such vast oral phage communities include accelerating the molecular diversity of their bacterial hosts as both host and phage mutate to gain evolutionary advantages. Additional roles include the acquisitions of new gene functions through lysogenic conversions that may provide selective advantages to host bacteria in response to antibiotics or other types of disturbances, and protection of the human host from invading pathogens by binding to and preventing pathogens from crossing oral mucosal barriers. Recent evidence suggests that phage may be more involved in periodontal diseases than were previously thought, as their compositions in the subgingival crevice in moderate to severe periodontitis are known to be significantly altered. However, it is unclear to what extent they contribute to dysbiosis or the transition of the microbial community into a state promoting oral disease. Bacteriophage communities are distinct in saliva compared to sub- and supragingival areas, suggesting that different oral biogeographic niches have unique phage ecology shaping their bacterial biota. In this review, we summarize what is known about phage communities in the oral cavity, the possible contributions of phage in shaping oral bacterial ecology, and the risks to public health oral phage may pose through their potential to spread antibiotic resistance gene functions to close contacts.

  14. Treatment of Oral Cavity Squamous Cell Carcinoma With Adjuvant or Definitive Intensity-Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sher, David J., E-mail: dsher@lroc.harvard.edu [Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Boston, Massachusetts (United States); Thotakura, Vijaya [Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Balboni, Tracy A. [Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Boston, Massachusetts (United States); Norris, Charles M.; Haddad, Robert I.; Posner, Marshall R.; Lorch, Jochen [Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Goguen, Laura A.; Annino, Donald J. [Department of Surgery, Division of Otolaryngology, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Tishler, Roy B. [Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Boston, Massachusetts (United States)

    2011-11-15

    Purpose: The optimal management of oral cavity squamous cell carcinoma (OCSCC) typically involves surgical resection followed by adjuvant radiotherapy or chemoradiotherapy (CRT) in the setting of adverse pathologic features. Intensity-modulated radiation therapy (IMRT) is frequently used to treat oral cavity cancers, but published IMRT outcomes specific to this disease site are sparse. We report the Dana-Farber Cancer Institute experience with IMRT-based treatment for OCSCC. Methods and Materials: Retrospective study of all patients treated at Dana-Farber Cancer Institute for OCSCC with adjuvant or definitive IMRT between August 2004 and December 2009. The American Joint Committee on Cancer disease stage criteria distribution of this cohort included 5 patients (12%) with stage I; 10 patients (24%) with stage II (n = 10, 24%),; 14 patients (33%) with stage III (n = 14, 33%),; and 13 patients (31%) with stage IV. The primary endpoint was overall survival (OS); secondary endpoints were locoregional control (LRC) and acute and chronic toxicity. Results: Forty-two patients with OCSCC were included, 30 of whom were initially treated with surgical resection. Twenty-three (77%) of 30 surgical patients treated with adjuvant IMRT also received concurrent chemotherapy, and 9 of 12 (75%) patients treated definitively without surgery were treated with CRT or induction chemotherapy and CRT. With a median follow-up of 2.1 years (interquartile range, 1.1-3.1 years) for all patients, the 2-year actuarial rates of OS and LRC following adjuvant IMRT were 85% and 91%, respectively, and the comparable results for definitive IMRT were 63% and 64% for OS and LRC, respectively. Only 1 patient developed symptomatic osteoradionecrosis, and among patients without evidence of disease, 35% experienced grade 2 to 3 late dysphagia, with only 1 patient who was continuously gastrostomy-dependent. Conclusions: In this single-institution series, postoperative IMRT was associated with promising LRC

  15. Treatment of Oral Cavity Squamous Cell Carcinoma With Adjuvant or Definitive Intensity-Modulated Radiation Therapy

    International Nuclear Information System (INIS)

    Sher, David J.; Thotakura, Vijaya; Balboni, Tracy A.; Norris, Charles M.; Haddad, Robert I.; Posner, Marshall R.; Lorch, Jochen; Goguen, Laura A.; Annino, Donald J.; Tishler, Roy B.

    2011-01-01

    Purpose: The optimal management of oral cavity squamous cell carcinoma (OCSCC) typically involves surgical resection followed by adjuvant radiotherapy or chemoradiotherapy (CRT) in the setting of adverse pathologic features. Intensity-modulated radiation therapy (IMRT) is frequently used to treat oral cavity cancers, but published IMRT outcomes specific to this disease site are sparse. We report the Dana-Farber Cancer Institute experience with IMRT-based treatment for OCSCC. Methods and Materials: Retrospective study of all patients treated at Dana-Farber Cancer Institute for OCSCC with adjuvant or definitive IMRT between August 2004 and December 2009. The American Joint Committee on Cancer disease stage criteria distribution of this cohort included 5 patients (12%) with stage I; 10 patients (24%) with stage II (n = 10, 24%),; 14 patients (33%) with stage III (n = 14, 33%),; and 13 patients (31%) with stage IV. The primary endpoint was overall survival (OS); secondary endpoints were locoregional control (LRC) and acute and chronic toxicity. Results: Forty-two patients with OCSCC were included, 30 of whom were initially treated with surgical resection. Twenty-three (77%) of 30 surgical patients treated with adjuvant IMRT also received concurrent chemotherapy, and 9 of 12 (75%) patients treated definitively without surgery were treated with CRT or induction chemotherapy and CRT. With a median follow-up of 2.1 years (interquartile range, 1.1–3.1 years) for all patients, the 2-year actuarial rates of OS and LRC following adjuvant IMRT were 85% and 91%, respectively, and the comparable results for definitive IMRT were 63% and 64% for OS and LRC, respectively. Only 1 patient developed symptomatic osteoradionecrosis, and among patients without evidence of disease, 35% experienced grade 2 to 3 late dysphagia, with only 1 patient who was continuously gastrostomy-dependent. Conclusions: In this single-institution series, postoperative IMRT was associated with promising LRC

  16. Progress toward understanding the contribution of alkali generation in dental biofilms to inhibition of dental caries

    Science.gov (United States)

    Liu, Ya-Ling; Nascimento, Marcelle; Burne, Robert A

    2012-01-01

    Alkali production by oral bacteria is believed to have a major impact on oral microbial ecology and to be inibitory to the initiation and progression of dental caries. A substantial body of evidence is beginning to accumulate that indicates the modulation of the alkalinogenic potential of dental biofilms may be a promising strategy for caries control. This brief review highlights recent progress toward understanding molecular genetic and physiologic aspects of important alkali-generating pathways in oral bacteria, and the role of alkali production in the ecology of dental biofilms in health and disease. PMID:22996271

  17. Synthetic biology for microbial heavy metal biosensors.

    Science.gov (United States)

    Kim, Hyun Ju; Jeong, Haeyoung; Lee, Sang Jun

    2018-02-01

    Using recombinant DNA technology, various whole-cell biosensors have been developed for detection of environmental pollutants, including heavy metal ions. Whole-cell biosensors have several advantages: easy and inexpensive cultivation, multiple assays, and no requirement of any special techniques for analysis. In the era of synthetic biology, cutting-edge DNA sequencing and gene synthesis technologies have accelerated the development of cell-based biosensors. Here, we summarize current technological advances in whole-cell heavy metal biosensors, including the synthetic biological components (bioparts), sensing and reporter modules, genetic circuits, and chassis cells. We discuss several opportunities for improvement of synthetic cell-based biosensors. First, new functional modules must be discovered in genome databases, and this knowledge must be used to upgrade specific bioparts through molecular engineering. Second, modules must be assembled into functional biosystems in chassis cells. Third, heterogeneity of individual cells in the microbial population must be eliminated. In the perspectives, the development of whole-cell biosensors is also discussed in the aspects of cultivation methods and synthetic cells.

  18. The oral microbiome in human immunodeficiency virus (HIV)-positive individuals.

    Science.gov (United States)

    Kistler, James O; Arirachakaran, Pratanporn; Poovorawan, Yong; Dahlén, Gunnar; Wade, William G

    2015-09-01

    Human immunodeficiency virus (HIV) infection is associated with a range of oral conditions, and increased numbers of disease-associated microbial species have previously been found in HIV-positive subjects. The aim of this study was to use next-generation sequencing to compare the composition of the oral microbiome in HIV-positive and -negative individuals. Plaque and saliva were collected from 37 HIV-positive individuals and 37 HIV-negative individuals, and their bacterial composition determined by pyrosequencing of partial 16S rRNA genes. A total of 855,222 sequences were analysed. The number of species-level operational taxonomic units (OTUs) detected was significantly lower in the saliva of HIV-positive individuals (mean = 303.3) than in that of HIV-negative individuals (mean = 365.5) (P PCoA) based on community membership (Jaccard index) and structure (Yue and Clayton measure of dissimilarity) showed significant separation of plaque and saliva samples [analysis of molecular variance (AMOVA), P PCoA plots did not show any clear separation based on HIV status. However, AMOVA indicated that there was a significant difference in the community membership of saliva between HIV-positive and -negative groups (P = 0.001). Linear discriminant analysis effect size revealed an OTU identified as Haemophilus parainfluenzae to be significantly associated with HIV-positive individuals, whilst Streptococcus mitis/HOT473 was most significantly associated with HIV-negative individuals. In conclusion, this study has confirmed that the microbial composition of saliva and plaque is different. The oral microbiomes of HIV-positive and -negative individuals were found to be similar overall, although there were minor but significant differences in the composition of the salivary microbiota of the two groups.

  19. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction.

    Science.gov (United States)

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2015-12-01

    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Quality control for diagnostic oral microbiology laboratories in European countries

    Directory of Open Access Journals (Sweden)

    Andrew J. Smith

    2011-11-01

    Full Text Available Participation in diagnostic microbiology internal and external quality control (QC processes is good laboratory practice and an essential component of a quality management system. However, no QC scheme for diagnostic oral microbiology existed until 2009 when the Clinical Oral Microbiology (COMB Network was created. At the European Oral Microbiology Workshop in 2008, 12 laboratories processing clinical oral microbiological samples were identified. All these were recruited to participate into the study and six laboratories from six European countries completed both the online survey and the first QC round. Three additional laboratories participated in the second round. Based on the survey, European oral microbiology laboratories process a significant (mean per laboratory 4,135 number of diagnostic samples from the oral cavity annually. A majority of the laboratories did not participate in any internal or external QC programme and nearly half of the laboratories did not have standard operating procedures for the tests they performed. In both QC rounds, there was a large variation in the results, interpretation and reporting of antibiotic susceptibility testing among the laboratories. In conclusion, the results of this study demonstrate the need for harmonisation of laboratory processing methods and interpretation of results for oral microbiology specimens. The QC rounds highlighted the value of external QC in evaluating the efficacy and safety of processes, materials and methods used in the laboratory. The use of standardised methods is also a prerequisite for multi-centre epidemiological studies that can provide important information on emerging microbes and trends in anti-microbial susceptibility for empirical prescribing in oro-facial infections.

  1. Metagenomic sequencing reveals altered metabolic pathways in the oral microbiota of sailors during a long sea voyage.

    Science.gov (United States)

    Zheng, Weiwei; Zhang, Ze; Liu, Cuihua; Qiao, Yuanyuan; Zhou, Dianrong; Qu, Jia; An, Huaijie; Xiong, Ming; Zhu, Zhiming; Zhao, Xiaohang

    2015-03-16

    Seafaring is a difficult occupation, and sailors face higher health risks than individuals on land. Commensal microbiota participates in the host immune system and metabolism, reflecting the host's health condition. However, the interaction mechanisms between the microbiota and the host's health condition remain unclear. This study reports the influence of long sea voyages on human health by utilising a metagenomic analysis of variation in the microbiota of the buccal mucosa. Paired samples collected before and after a sea-voyage were analysed. After more than 120 days of ocean sailing, the oral microbial diversity of sailors was reduced by approximately 5 fold, and the levels of several pathogens (e.g., Streptococcus pneumonia) increased. Moreover, 69.46% of the identified microbial sequences were unclassified microbiota. Notably, several metabolic pathways were dramatically decreased, including folate biosynthesis, carbohydrate, lipid and amino acid pathways. Clinical examination of the hosts confirmed the identified metabolic changes, as demonstrated by decreased serum levels of haemoglobin and folic acid, a decreased neutrophil-to-lymphocyte ratio, and increased levels of triglycerides, cholesterol and homocysteine, which are consistent with the observed microbial variation. Our study suggests that oral mucosal bacteria may reflect host health conditions and could provide approaches for improving the health of sailors.

  2. Synthetic microbial ecology and the dynamic interplay between microbial genotypes.

    Science.gov (United States)

    Dolinšek, Jan; Goldschmidt, Felix; Johnson, David R

    2016-11-01

    Assemblages of microbial genotypes growing together can display surprisingly complex and unexpected dynamics and result in community-level functions and behaviors that are not readily expected from analyzing each genotype in isolation. This complexity has, at least in part, inspired a discipline of synthetic microbial ecology. Synthetic microbial ecology focuses on designing, building and analyzing the dynamic behavior of ‘ecological circuits’ (i.e. a set of interacting microbial genotypes) and understanding how community-level properties emerge as a consequence of those interactions. In this review, we discuss typical objectives of synthetic microbial ecology and the main advantages and rationales of using synthetic microbial assemblages. We then summarize recent findings of current synthetic microbial ecology investigations. In particular, we focus on the causes and consequences of the interplay between different microbial genotypes and illustrate how simple interactions can create complex dynamics and promote unexpected community-level properties. We finally propose that distinguishing between active and passive interactions and accounting for the pervasiveness of competition can improve existing frameworks for designing and predicting the dynamics of microbial assemblages.

  3. On the (elusive) role of oral motor-movements in fluency-based memory illusions.

    Science.gov (United States)

    Westerman, Deanne L; Klin, Celia M; Lanska, Meredith

    2015-07-01

    It is well established that the ease with which a stimulus is processed affects many different types of evaluative judgments. Recently, it has been proposed that for verbal stimuli the effect of fluency on such judgments is mediated by the muscles that are involved in speech (Topolinski & Strack, 2009, 2010). Evidence for this claim can be found in studies that have shown that fluency effects are eliminated if such judgments are made while these muscles are otherwise engaged (such as while chewing gum or eating). Additional research has found that oral-motor tasks block familiarity-based responding on recognition memory tasks (Topolinski, 2012). The current study investigated the effect of an oral-motor task on recognition memory. Of particular interest was whether the fluency-blocking effects of an oral-motor task would extend to fluency-based illusions of recognition memory. Although we found robust fluency-based illusions of familiarity, we did not find that the effects were modulated by the nature of the concurrent task (gum-chewing vs. a manual-motor task). Moreover, we found no evidence that oral-motor tasks affected recognition more generally, nor did we find that an oral-motor task modulated affective ratings to repeated stimuli. We were also unable to replicate the finding that an oral-motor task blocks the false fame effect (Topolinski & Strack, 2010). These results call into question the assertion that oral-motor movements mediate fluency effects in recognition memory and other evaluative judgments. (c) 2015 APA, all rights reserved.

  4. Oral calcitonin

    Directory of Open Access Journals (Sweden)

    Hamdy RC

    2012-09-01

    Full Text Available Ronald C Hamdy,1,2 Dane N Daley11Osteoporosis Center, College of Medicine, East Tennessee State University, 2Veterans Affairs Medical Center, Johnson City, TN, USAAbstract: Calcitonin is a hormone secreted by the C-cells of the thyroid gland in response to elevations of the plasma calcium level. It reduces bone resorption by inhibiting mature active osteoclasts and increases renal calcium excretion. It is used in the management of postmenopausal osteoporosis, Paget's disease of bone, and malignancy-associated hypercalcemia. Synthetic and recombinant calcitonin preparations are available; both have similar pharmacokinetic and pharmacodynamic profiles. As calcitonin is a peptide, the traditional method of administration has been parenteral or intranasal. This hinders its clinical use: adherence with therapy is notoriously low, and withdrawal from clinical trials has been problematic. An oral formulation would be more attractive, practical, and convenient to patients. In addition to its effect on active osteoclasts and renal tubules, calcitonin has an analgesic action, possibly mediated through β-endorphins and the central modulation of pain perception. It also exerts a protective action on cartilage and may be useful in the management of osteoarthritis and possibly rheumatoid arthritis. Oral formulations of calcitonin have been developed using different techniques. The most studied involves drug-delivery carriers such as Eligen® 8-(N-2hydroxy-5-chloro-benzoyl-amino-caprylic acid (5-CNAC (Emisphere Technologies, Cedar Knolls, NJ. Several factors affect the bioavailability and efficacy of orally administered calcitonin, including amount of water used to take the tablet, time of day the tablet is taken, and proximity to intake of a meal. Preliminary results looked promising. Unfortunately, in two Phase III studies, oral calcitonin (0.8 mg with 200 mg 5-CNAC, once a day for postmenopausal osteoporosis and twice a day for osteoarthritis failed to

  5. Development and evaluation of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    Science.gov (United States)

    Microbial contamination of waters in agricultural watershed is the critical public health issue. The watershed-scale model has been proven to be one of the candidate tools for predicting microbial water quality and evaluating management practices. The Agricultural Policy/Environmental eXtender (APEX...

  6. The effect of arginine on oral biofilm communities.

    Science.gov (United States)

    Nascimento, M M; Browngardt, C; Xiaohui, X; Klepac-Ceraj, V; Paster, B J; Burne, R A

    2014-02-01

    Alkali production by oral bacteria via the arginine deiminase system (ADS) increases the pH of oral biofilms and reduces the risk for development of carious lesions. This study tested the hypothesis that increased availability of arginine in the oral environment through an exogenous source enhances the ADS activity levels in saliva and dental plaque. Saliva and supra-gingival plaque samples were collected from 19 caries-free (CF) individuals (DMFT = 0) and 19 caries-active (CA) individuals (DMFT ≥ 2) before and after treatment, which comprised the use of a fluoride-free toothpaste containing 1.5% arginine, or a regular fluoride-containing toothpaste twice daily for 4 weeks. ADS activity was measured by quantification of ammonia produced from arginine by oral samples at baseline, after washout period, 4 weeks of treatment, and 2 weeks post-treatment. Higher ADS activity levels were observed in plaque samples from CF compared to those of CA individuals (P = 0.048) at baseline. The use of the arginine toothpaste significantly increased ADS activity in plaque of CA individuals (P = 0.026). The plaque microbial profiles of CA treated with the arginine toothpaste showed a shift in bacterial composition to a healthier community, more similar to that of CF individuals. Thus, an anti-caries effect may be expected from arginine-containing formulations due in large part to the enhancement of ADS activity levels and potential favorable modification to the composition of the oral microbiome. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. A randomized controlled study of peanut oral immunotherapy (OIT): clinical desensitization and modulation of the allergic response

    Science.gov (United States)

    Varshney, Pooja; Jones, Stacie M.; Scurlock, Amy M.; Perry, Tamara T.; Kemper, Alex; Steele, Pamela; Hiegel, Anne; Kamilaris, Janet; Carlisle, Suzanne; Yue, Xiaohong; Kulis, Mike; Pons, Laurent; Vickery, Brian; Burks, A. Wesley

    2011-01-01

    Background Open-label oral immunotherapy (OIT) protocols have been used to treat small numbers of patients with peanut allergy. Peanut OIT has not been evaluated in double-blind, placebo-controlled trials. Objective To investigate the safety and effectiveness of OIT for peanut allergy in a double blind, placebo-controlled study. Methods In this multicenter study, peanut-allergic children ages 1-16 years received OIT with peanut flour or placebo. Initial escalation, build-up, and maintenance phases were followed by an oral food challenge at approximately one year. Titrated skin prick tests (SPT) and laboratory studies were performed at regular intervals. Results Twenty-eight subjects were enrolled in the study. Three peanut OIT subjects withdrew early in the study due to allergic side effects. During the double-blind, placebo-controlled food challenge, all remaining peanut OIT subjects (N=16) ingested the maximum cumulative dose of 5000 mg (approximately 20 peanuts), while placebo subjects (N=9) ingested a median cumulative dose of 280 mg (range, 0-1900 mg) [p<0.001]. In contrast to the placebo group, the peanut OIT group showed reductions in SPT size (p<0.001), IL-5 (p=0.01), and IL-13 (p=0.02) and increases in peanut-specific IgG4 (p<0.001). Peanut OIT subjects had initial increases in peanut-specific IgE (p<0.01) but did not show significant change from baseline by the time of OFC. The ratio of FoxP3 hi: FoxP3 intermediate CD4+CD25+ T cells increased at the time of OFC (p=0.04) in peanut OIT subjects. Conclusion These results conclusively demonstrate that peanut OIT induces desensitization and concurrent immune modulation. The present study continues and is evaluating the hypothesis that peanut OIT causes long-term immune tolerance. PMID:21377034

  8. Supragingival Microbial Profiles of Permanent and Deciduous Teeth in Children with Mixed Dentition.

    Directory of Open Access Journals (Sweden)

    Weihua Shi

    Full Text Available The present study was designed to investigate the microbial profiles of teeth in different locations in mixed-dentition-stage children, and to compare the microbiomes of permanent and deciduous teeth in the same healthy oral cavity.Supragingival plaque samples of teeth in various locations-the first permanent molars, deciduous molars, deciduous canines and incisors and permanent incisors-were collected from 20 healthy mixed-dentition-stage children with 10-12 permanent teeth erupted. Plaque DNA was extracted, and the V3-V4 hypervariable region of the bacterial 16S rRNA gene was amplified and subjected to sequencing.On average, 18,051 high-quality sequences per sample were generated. Permanent tooth sites tended to host more diverse bacterial communities than those of deciduous tooth sites. A total of 12 phyla, 21 classes, 38 orders, 66 families, 74 genera were detected ultimately. Five predominant phyla (Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria and Actinobacteria were highly variable among sites. Of 26 genera with a mean relative abundance of >0.1%, 16 showed significant differences in relative abundance among the groups. More than 20% of the total operational taxonomical units were detected only in permanent or deciduous teeth. The variation in the microbial community composition was due mainly to permanent teeth being enriched in Actinomyces and deciduous teeth in Treponema. The core microbiome of supragingival plaque in mixed dentition comprised 19 genera with complex correlationships.Our results suggest differences in microbial diversity and composition between permanent and deciduous teeth sites in mixed dentition. Moreover, the core microbiome of these sites was determined. These findings enhance our understanding of the development of the native oral microbiota with age.

  9. Microbial fuel cells with an integrated spacer and separate anode and cathode modules

    KAUST Repository

    He, Weihua; Zhang, Xiaoyuan; Liu, Jia; Zhu, Xiuping; Feng, Yujie; Logan, Bruce E.

    2016-01-01

    A new type of scalable MFC was developed based on using alternating graphite fiber brush array anode modules and dual cathode modules in order to simplify construction, operation, and maintenance of the electrodes. The modular MFC design was tested

  10. Oral health-related quality of life of a consecutive sample of Spanish dental patients

    OpenAIRE

    Montero Martín, Javier; Yarte, José María; Bravo Pérez, Manuel; López-Valverde Centeno, Antonio

    2011-01-01

    Objectives: Assessment of the oral health-related quality of life and the modulating factors of patients deman-- ding dental treatment in the city of Salamanca, through the use of two validated instruments: the OIDP-sp (Oral Impacts on Daily Performance) and OHIP-14 (Oral Health Impact Profile). Study design: the study was conducted on a consecutive sample of 200 patients aged 18-65 years visiting an Integral Dental Centre in the city of Salamanca. Two validated instruments (OIDP-sp and OHIP-...

  11. Microbial Pre-exposure and Vectorial Competence of Anopheles Mosquitoes

    Directory of Open Access Journals (Sweden)

    Constentin Dieme

    2017-12-01

    Full Text Available Anopheles female mosquitoes can transmit Plasmodium, the malaria parasite. During their aquatic life, wild Anopheles mosquito larvae are exposed to a huge diversity of microbes present in their breeding sites. Later, adult females often take successive blood meals that might also carry different micro-organisms, including parasites, bacteria, and viruses. Therefore, prior to Plasmodium ingestion, the mosquito biology could be modulated at different life stages by a suite of microbes present in larval breeding sites, as well as in the adult environment. In this article, we highlight several naturally relevant scenarios of Anopheles microbial pre-exposure that we assume might impact mosquito vectorial competence for the malaria parasite: (i larval microbial exposures; (ii protist co-infections; (iii virus co-infections; and (iv pathogenic bacteria co-infections. In addition, significant behavioral changes in African Anopheles vectors have been associated with increasing insecticide resistance. We discuss how these ethological modifications may also increase the repertoire of microbes to which mosquitoes could be exposed, and that might also influence their vectorial competence. Studying Plasmodium–Anopheles interactions in natural microbial environments would efficiently contribute to refining the transmission risks.

  12. Bioinformatic approaches reveal metagenomic characterization of soil microbial community.

    Directory of Open Access Journals (Sweden)

    Zhuofei Xu

    Full Text Available As is well known, soil is a complex ecosystem harboring the most prokaryotic biodiversity on the Earth. In recent years, the advent of high-throughput sequencing techniques has greatly facilitated the progress of soil ecological studies. However, how to effectively understand the underlying biological features of large-scale sequencing data is a new challenge. In the present study, we used 33 publicly available metagenomes from diverse soil sites (i.e. grassland, forest soil, desert, Arctic soil, and mangrove sediment and integrated some state-of-the-art computational tools to explore the phylogenetic and functional characterizations of the microbial communities in soil. Microbial composition and metabolic potential in soils were comprehensively illustrated at the metagenomic level. A spectrum of metagenomic biomarkers containing 46 taxa and 33 metabolic modules were detected to be significantly differential that could be used as indicators to distinguish at least one of five soil communities. The co-occurrence associations between complex microbial compositions and functions were inferred by network-based approaches. Our results together with the established bioinformatic pipelines should provide a foundation for future research into the relation between soil biodiversity and ecosystem function.

  13. Phase 1b Food Based Modulation of Biomarkers in Human Tissues at High-Risk for Oral Cancer.

    Science.gov (United States)

    2018-03-05

    Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Salivary Gland Squamous Cell Carcinoma; Stage 0 Hypopharyngeal Cancer; Stage 0 Laryngeal Cancer; Stage 0 Lip and Oral Cavity Cancer; Stage 0 Nasopharyngeal Cancer; Stage 0 Oropharyngeal Cancer; Stage 0 Paranasal Sinus and Nasal Cavity Cancer; Stage I Salivary Gland Cancer; Stage I Squamous Cell Carcinoma of the Hypopharynx; Stage I Squamous Cell Carcinoma of the Larynx; Stage I Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage I Squamous Cell Carcinoma of the Nasopharynx; Stage I Squamous Cell Carcinoma of the Oropharynx; Stage I Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage I Verrucous Carcinoma of the Larynx; Stage I Verrucous Carcinoma of the Oral Cavity; Stage II Salivary Gland Cancer; Stage II Squamous Cell Carcinoma of the Hypopharynx; Stage II Squamous Cell Carcinoma of the Larynx; Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Squamous Cell Carcinoma of the Nasopharynx; Stage II Squamous Cell Carcinoma of the Oropharynx; Stage II Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage II Verrucous Carcinoma of the Larynx; Stage II Verrucous Carcinoma of the Oral Cavity; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Salivary Gland Cancer; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Oral Cavity Squamous Cell Carcinoma; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Nasal Cavity and Paranasal Sinus Cancer; Stage IVA

  14. What if Best Practice Is Too Expensive? Feedback on Oral Presentations and Efficient Use of Resources

    Science.gov (United States)

    Leger, Lawrence A.; Glass, Karligash; Katsiampa, Paraskevi; Liu, Shibo; Sirichand, Kavita

    2017-01-01

    We evaluate feedback methods for oral presentations used in training non-quantitative research skills (literature review and various associated tasks). Training is provided through a credit-bearing module taught to MSc students of banking, economics and finance in the UK. Monitoring oral presentations and providing "best practice"…

  15. Management of familial Mediterranean fever by colchicine does not normalize the altered profile of microbial long chain fatty acids in the human metabolome

    Directory of Open Access Journals (Sweden)

    Zhanna eKtsoyan

    2013-01-01

    Full Text Available In our previous works we established that in an autoinflammatory condition, familial Mediterranean fever, the gut microbial diversity is specifically restructured, which also results in the altered profiles of microbial long chain fatty acids (LCFAs present in the systemic metabolome. The mainstream management of the disease is based on oral administration of colchicine to suppress clinical signs and extend remission periods and our aim was to determine whether this therapy normalizes the microbial LCFA profiles in the metabolome as well. Unexpectedly, the treatment does not normalize these profiles. Moreover, it results in the formation of new distinct microbial LCFA clusters, which are well separated from the corresponding values in healthy controls and FMF patients without the therapy. We hypothesize that the therapy alters the proinflammatory network specific for the disease, with the concomitant changes in gut microbiota and the corresponding microbial LCFAs in the metabolome.

  16. Microbial reprogramming inhibits Western diet-associated obesity.

    Directory of Open Access Journals (Sweden)

    Theofilos Poutahidis

    Full Text Available A recent epidemiological study showed that eating 'fast food' items such as potato chips increased likelihood of obesity, whereas eating yogurt prevented age-associated weight gain in humans. It was demonstrated previously in animal models of obesity that the immune system plays a critical role in this process. Here we examined human subjects and mouse models consuming Westernized 'fast food' diet, and found CD4(+ T helper (Th17-biased immunity and changes in microbial communities and abdominal fat with obesity after eating the Western chow. In striking contrast, eating probiotic yogurt together with Western chow inhibited age-associated weight gain. We went on to test whether a bacteria found in yogurt may serve to lessen fat pathology by using purified Lactobacillus reuteri ATCC 6475 in drinking water. Surprisingly, we discovered that oral L. reuteri therapy alone was sufficient to change the pro-inflammatory immune cell profile and prevent abdominal fat pathology and age-associated weight gain in mice regardless of their baseline diet. These beneficial microbe effects were transferable into naïve recipient animals by purified CD4(+ T cells alone. Specifically, bacterial effects depended upon active immune tolerance by induction of Foxp3(+ regulatory T cells (Treg and interleukin (Il-10, without significantly changing the gut microbial ecology or reducing ad libitum caloric intake. Our finding that microbial targeting restored CD4(+ T cell balance and yielded significantly leaner animals regardless of their dietary 'fast food' indiscretions suggests population-based approaches for weight management and enhancing public health in industrialized societies.

  17. Microbial brokers of insect-plant interactions revisited.

    Science.gov (United States)

    Douglas, Angela E

    2013-07-01

    Recent advances in sequencing methods have transformed the field of microbial ecology, making it possible to determine the composition and functional capabilities of uncultured microorganisms. These technologies have been instrumental in the recognition that resident microorganisms can have profound effects on the phenotype and fitness of their animal hosts by modulating the animal signaling networks that regulate growth, development, behavior, etc. Against this backdrop, this review assesses the impact of microorganisms on insect-plant interactions, in the context of the hypothesis that microorganisms are biochemical brokers of plant utilization by insects. There is now overwhelming evidence for a microbial role in insect utilization of certain plant diets with an extremely low or unbalanced nutrient content. Specifically, microorganisms enable insect utilization of plant sap by synthesizing essential amino acids. They also can broker insect utilization of plant products of extremely high lignocellulose content, by enzymatic breakdown of complex plant polysaccharides, nitrogen fixation, and sterol synthesis. However, the experimental evidence for microbial-mediated detoxification of plant allelochemicals is limited. The significance of microorganisms as brokers of plant utilization by insects is predicted to vary, possibly widely, as a result of potentially complex interactions between the composition of the microbiota and the diet and insect developmental age or genotype. For every insect species feeding on plant material, the role of resident microbiota as biochemical brokers of plant utilization is a testable hypothesis.

  18. Oral Probiotic VSL#3 Prevents Autoimmune Diabetes by Modulating Microbiota and Promoting Indoleamine 2,3-Dioxygenase-Enriched Tolerogenic Intestinal Environment

    Directory of Open Access Journals (Sweden)

    Jayashree Dolpady

    2016-01-01

    Full Text Available The gut microbiota modulates the autoimmune pathogenesis of type 1 diabetes (T1D via mechanisms that remain largely unknown. The inflammasome components are innate immune sensors that are highly influenced by the gut environment and play pivotal roles in maintaining intestinal immune homeostasis. In this study we show that modifications of the gut microbiota induced by oral treatment with Lactobacillaceae-enriched probiotic VSL#3, alone or in combination with retinoic acid (RA, protect NOD mice from T1D by affecting inflammasome at the intestinal level. In particular, we show that VSL#3 treatment inhibits IL-1β expression while enhancing release of protolerogenic components of the inflammasome, such as indoleamine 2,3-dioxygenase (IDO and IL-33. Those modifications of the intestinal microenvironment in VSL#3-treated NOD mice modulate gut immunity by promoting differentiation of tolerogenic CD103+ DCs and reducing differentiation/expansion of Th1 and Th17 cells in the intestinal mucosa and at the sites of autoimmunity, that is, within the pancreatic lymph nodes (PLN of VSL#3-treated NOD mice. Our data provide a link between dietary factors, microbiota composition, intestinal inflammation, and immune homeostasis in autoimmune diabetes and could pave the way for new therapeutic approaches aimed at changing the intestinal microenvironment with probiotics to counterregulate autoimmunity and prevent T1D.

  19. Antimicrobial Photoinactivation Using Visible Light Plus Water-Filtered Infrared-A (VIS + wIRA Alters In Situ Oral Biofilms.

    Directory of Open Access Journals (Sweden)

    A Al-Ahmad

    Full Text Available Recently, growing attention has been paid to antimicrobial photodynamic therapy (aPDT in dentistry. Changing the microbial composition of initial and mature oral biofilm by aPDT using visible light plus water-filtered infrared-A wavelengths (VIS + wIRA has not yet been investigated. Moreover, most aPDT studies have been conducted on planktonic bacterial cultures. Therefore, in the present clinical study we cultivated initial and mature oral biofilms in six healthy volunteers for 2 hours or 3 days, respectively. The biofilms were treated with aPDT using VIS+wIRA (200 mW cm(-2, toluidine blue (TB and chlorine e6 (Ce6 for 5 minutes. Chlorhexidine treated biofilm samples served as positive controls, while untreated biofilms served as negative controls. After aPDT treatment the colony forming units (CFU of the biofilm samples were quantified, and the surviving bacteria were isolated in pure cultures and identified using MALDI-TOF, biochemical tests and 16S rDNA-sequencing. aPDT killed more than 99.9% of the initial viable bacterial count and 95% of the mature oral biofilm in situ, independent of the photosensitizer. The number of surviving bacterial species was highly reduced to 6 (TB and 4 (Ce6 in the treated initial oral biofilm compared to the 20 different species of the untreated biofilm. The proportions of surviving bacterial species were also changed after TB- and Ce6-mediated aPDT of the mature oral biofilm, resulting in a shift in the microbial composition of the treated biofilm compared to that of the control biofilm. In conclusion, aPDT using VIS + wIRA showed a remarkable potential to eradicate both initial and mature oral biofilms, and also to markedly alter the remaining biofilm. This encourages the clinical use of aPDT with VIS + wIRA for the treatment of periimplantitis and periodontitis.

  20. Predicting the severity and prognosis of trismus after intensity-modulated radiation therapy for oral cancer patients by magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Li-Chun Hsieh

    Full Text Available To develop magnetic resonance imaging (MRI indicators to predict trismus outcome for post-operative oral cavity cancer patients who received adjuvant intensity-modulated radiation therapy (IMRT, 22 patients with oral cancer treated with IMRT were studied over a two-year period. Signal abnormality scores (SA scores were computed from Likert-type ratings of the abnormalities of nine masticator structures and compared with the Mann-Whitney U-test and Kruskal-Wallis one-way ANOVA test between groups. Seventeen patients (77.3% experienced different degrees of trismus during the two-year follow-up period. The SA score correlated with the trismus grade (r = 0.52, p<0.005. Patients having progressive trismus had higher mean doses of radiation to multiple structures, including the masticator and lateral pterygoid muscles, and the parotid gland (p<0.05. In addition, this group also had higher SA-masticator muscle dose product at 6 months and SA scores at 12 months (p<0.05. At the optimum cut-off points of 0.38 for the propensity score, the sensitivity was 100% and the specificity was 93% for predicting the prognosis of the trismus patients. The SA score, as determined using MRI, can reflect the radiation injury and correlate to trismus severity. Together with the radiation dose, it could serve as a useful biomarker to predict the outcome and guide the management of trismus following radiation therapy.

  1. Effects of 25-hydroxyvitamin D3 on cathelicidin production and antibacterial function of human oral keratinocytes.

    Science.gov (United States)

    Wang, Qi; Zhang, Wu; Li, Hao; Aprecio, Raydolf; Wu, Wan; Lin, Yiqiao; Li, Yiming

    2013-01-01

    Vitamin D and its metabolites have been recognized as key determinants in innate immune modulation. In this study, we investigated the regulation of antibacterial functions of oral keratinocyte cells by 25-hydroxyvitamin D3 (25VD3). OKF6/TERT2 cells, an immortalized human oral keratinocyte cell line, were transfected with or without 24-hydroxylase small interfering RNA (siRNA) and incubated with different amounts of 25VD3. These epithelial cells expressed high levels of inactivating 24-hydroxylase (CYP24A1) and relatively low levels of activating 1α-hydroxylase (CYP27B1) in the presence of 25VD3. 25VD3 influenced the expression of vitamin D-driven genes and cathelicidin in a dose-related manner. SiRNA specific to 24-hydroxylase augmented the cathelicidin production and subseqently influenced the antibacterial activity on multispecies of oral pathogens. These observations suggest that 25VD3 is capable of stimulating cathelicidin production and modulating antibacterial function upon CYP24A1 knochdown in oral epithelial cells, and indicate novel mechanisms that 25VD3 may enhance antibacterial ability in oral keratinocytes. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Chitosan-based polyherbal toothpaste: As novel oral hygiene product

    Directory of Open Access Journals (Sweden)

    Mohire Nitin

    2010-01-01

    Full Text Available Objective: The objective of the present work was to develop chitosan-based polyherbal toothpaste and evaluate its plaque-reducing potential and efficacy in reduction of dental pathogens. Materials and Methods: Antimicrobial activity of herbal extracts against dental pathogens were performed by using disk diffusion method. The pharmaceutical evaluation of toothpaste was carried out as per the US Government Tooth Paste Specifications. A 4-week clinical study was conducted in patients with oro-dental problems to evaluate the plaque removing efficacy of chitosan-based polyherbal toothpaste with commercially available chlorhexidine gluconate (0.2% w/v mouthwash as positive control. Total microbial count was carried out to determine the percentage decrease in the oral bacterial count over the period of treatment. Result: Herbal extracts were found to possess satisfactory antimicrobial activity against most of the dental pathogens. Chitosan-containing polyherbal toothpaste significantly reduces the plaque index by 70.47% and bacterial count by 85.29%, and thus fulfills the majority of esthetic and medicinal requirements of oral hygiene products. Conclusion: Chitosan-based polyherbal toothpaste proves itself as a promising novel oral hygiene product as compared with currently available oral hygiene products. A further study to confirm the exact mechanism and active constituents behind antiplaque and antimicrobial activity of chitosan-based polyherbal toothpaste and its efficacy in large number of patient population is on high demand.

  3. Microbial ecology-based engineering of Microbial Electrochemical Technologies.

    Science.gov (United States)

    Koch, Christin; Korth, Benjamin; Harnisch, Falk

    2018-01-01

    Microbial ecology is devoted to the understanding of dynamics, activity and interaction of microorganisms in natural and technical ecosystems. Bioelectrochemical systems represent important technical ecosystems, where microbial ecology is of highest importance for their function. However, whereas aspects of, for example, materials and reactor engineering are commonly perceived as highly relevant, the study and engineering of microbial ecology are significantly underrepresented in bioelectrochemical systems. This shortfall may be assigned to a deficit on knowledge and power of these methods as well as the prerequisites for their thorough application. This article discusses not only the importance of microbial ecology for microbial electrochemical technologies but also shows which information can be derived for a knowledge-driven engineering. Instead of providing a comprehensive list of techniques from which it is hard to judge the applicability and value of information for a respective one, this review illustrates the suitability of selected techniques on a case study. Thereby, best practice for different research questions is provided and a set of key questions for experimental design, data acquisition and analysis is suggested. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  4. The influence of oral health on patients' food perception: a systematic review.

    Science.gov (United States)

    Batisse, C; Bonnet, G; Eschevins, C; Hennequin, M; Nicolas, E

    2017-12-01

    Oral food perception depends on somatosensory information that includes taste and can be modified by oral components and/or functions such as mastication. The purpose of this study was to describe the interplay between oral health, mastication and taste. A review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist was conducted on 615 publications found by both PubMed and backward research. Thirty-one studies have been included. The results showed that the decline in taste ability observed during the healthy ageing process could be potentiated by the deterioration of oral health and poor oral hygiene. Prosthetic treatment could modify taste ability and oral food perception. A palatal covering with removable dentures can have an impact on taste perception which may depend on taste modality. During the mastication sequence, taste is apparently scattered throughout the oral cavity, probably through saliva. The deterioration of masticatory function modifies taste perception. Oral health and oral care should consider factors influencing patients' food perception and relations between taste and mastication. Therefore, dentists may modulate these factors to improve food perception and patients' eating pleasure and quality of life. © 2017 John Wiley & Sons Ltd.

  5. Microbial bebop: creating music from complex dynamics in microbial ecology.

    Science.gov (United States)

    Larsen, Peter; Gilbert, Jack

    2013-01-01

    In order for society to make effective policy decisions on complex and far-reaching subjects, such as appropriate responses to global climate change, scientists must effectively communicate complex results to the non-scientifically specialized public. However, there are few ways however to transform highly complicated scientific data into formats that are engaging to the general community. Taking inspiration from patterns observed in nature and from some of the principles of jazz bebop improvisation, we have generated Microbial Bebop, a method by which microbial environmental data are transformed into music. Microbial Bebop uses meter, pitch, duration, and harmony to highlight the relationships between multiple data types in complex biological datasets. We use a comprehensive microbial ecology, time course dataset collected at the L4 marine monitoring station in the Western English Channel as an example of microbial ecological data that can be transformed into music. Four compositions were generated (www.bio.anl.gov/MicrobialBebop.htm.) from L4 Station data using Microbial Bebop. Each composition, though deriving from the same dataset, is created to highlight different relationships between environmental conditions and microbial community structure. The approach presented here can be applied to a wide variety of complex biological datasets.

  6. The oral microbiome and adverse pregnancy outcomes

    Directory of Open Access Journals (Sweden)

    Cobb CM

    2017-08-01

    Full Text Available Charles M Cobb,1 Patricia J Kelly,2 Karen B Williams,3 Shilpa Babbar,4 Mubashir Angolkar,5 Richard J Derman6 1Department of Periodontics, School of Dentistry, 2Department of Public Health Nursing, School of Nursing and Health Studies, 3Department of Biomedical & Health Informatics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 4Department of Obstetrics, Gynecology & Women’s Health, Division of Maternal & Fetal Medicine, School of Medicine, Saint Louis University, St Louis, MO, USA; 5Department of Public Health, Jawaharlal Nehru Medical College (JNMC, KLE University, Karnataka, India; 6Department of Obstetrics & Gynecology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA Abstract: Significant evidence supports an association between periodontal pathogenic bacteria and preterm birth and preeclampsia. The virulence properties assigned to specific oral pathogenic bacteria, for example, Fusobacterium nucleatum, Porphyromonas gingivalis, Filifactor alocis, Campylobacter rectus, and others, render them as potential collaborators in adverse outcomes of pregnancy. Several pathways have been suggested for this association: 1 hematogenous spread (bacteremia of periodontal pathogens; 2 hematogenous spread of multiple mediators of inflammation that are generated by the host and/or fetal immune response to pathogenic bacteria; and 3 the possibility of oral microbial pathogen transmission, with subsequent colonization, in the vaginal microbiome resulting from sexual practices. As periodontal disease is, for the most part, preventable, the medical and dental public health communities can address intervention strategies to control oral inflammatory disease, lessen the systemic inflammatory burden, and ultimately reduce the potential for adverse pregnancy outcomes. This article reviews the oral, vaginal, and placental microbiomes, considers their potential impact on preterm labor, and the future

  7. Effect of Microenvironmental pH Modulation on the Dissolution Rate and Oral Absorption of the Salt of a Weak Acid - Case Study of GDC-0810.

    Science.gov (United States)

    Hou, Hao Helen; Jia, Wei; Liu, Lichuan; Cheeti, Sravanthi; Li, Jane; Nauka, Ewa; Nagapudi, Karthik

    2018-01-29

    The purpose of this work is to investigate the effect of microenvironmental pH modulation on the in vitro dissolution rate and oral absorption of GDC-0810, an oral anti-cancer drug, in human. The pH-solubility profile of GDC-0810 free acid and pH max of its N-Methyl-D-glucamine (NMG) salt were determined. Precipitation studies were conducted for GDC-0810 NMG salt at different pH values. GDC-0810 200-mg dose NMG salt tablet formulations containing different levels of sodium bicarbonate as the pH modifier were tested for dissolution under the dual pH-dilution scheme. Three tablet formulations were evaluated in human as a part of a relative bioavailability study. A 200-mg dose of GDC-0810 was administered QD with low fat food. Intrinsic solubility of GDC-0810 free acid was found to be extremely low. The pH max of the NMG salt suggested a strong tendency for form conversion to the free acid under GI conditions. In vitro dissolution profiles showed that the dissolution rate and extent of GDC-0810 increased with increasing the level of sodium bicarbonate in the formulation. The human PK data showed a similar trend for the geometric mean of C max and AUC 0-t for formulations containing 5%, 10%, and 15% sodium bicarbonate, but the difference is not statistically significant. Incorporation of a basic pH modifier, sodium bicarbonate, in GDC-0810 NMG salt tablet formulations enhanced in vitro dissolution rate of GDC-0810 via microenvironmental pH modulation. The human PK data showed no statistically significant difference in drug exposure from tablets containing 5%, 10%, and 15% sodium bicarbonate.

  8. Linkages between oral commensal bacteria and atherosclerotic plaques in coronary artery disease patients

    OpenAIRE

    Chhibber-Goel, Jyoti; Singhal, Varsha; Bhowmik, Debaleena; Vivek, Rahul; Parakh, Neeraj; Bhargava, Balram; Sharma, Amit

    2016-01-01

    Coronary artery disease is an inflammatory disorder characterized by narrowing of coronary arteries due to atherosclerotic plaque formation. To date, the accumulated epidemiological evidence supports an association between oral bacterial diseases and coronary artery disease, but has failed to prove a causal link between the two. Due to the recent surge in microbial identification and analyses techniques, a number of bacteria have been independently found in atherosclerotic plaque samples from...

  9. The pathogenic persona of community-associated oral streptococci.

    Science.gov (United States)

    Whitmore, Sarah E; Lamont, Richard J

    2011-07-01

    The mitis group streptococci (MGS) are widespread in the oral cavity and are traditionally associated with oral health. However, these organisms have many attributes that contribute to the development of pathogenic oral communities. MGS adhere rapidly to saliva-coated tooth surfaces, thereby providing an attachment substratum for more overtly pathogenic organisms such as Porphyromonas gingivalis, and the two species assemble into heterotypic communities. Close physical association facilitates physiologic support, and pathogens such as Aggregatibacter actinomycetemcomitans display resource partitioning to favour carbon sources generated by streptococcal metabolism. MGS exchange information with community members through a number of interspecies signalling systems including AI-2 and contact dependent mechanisms. Signal transduction systems induced in P. gingivalis are based on protein dephosphorylation mediated by the tyrosine phosphatase Ltp1, and converge on a LuxR-family transcriptional regulator, CdhR. Phenotypic responses in P. gingivalis include regulation of hemin uptake systems and gingipain activity, processes that are intimately linked to the virulence of the organism. Furthermore, communities of S. gordonii with P. gingivalis or with A. actinomycetemcomitans are more pathogenic in animal models than the constituent species alone. We propose that MGS should be considered accessory pathogens, organisms whose pathogenic potential only becomes evident in the context of a heterotypic microbial community. © 2011 Blackwell Publishing Ltd.

  10. Post-oral sugar detection rapidly and chemospecifically modulates taste-guided behavior

    Science.gov (United States)

    Spector, Alan C.

    2016-01-01

    Several recent studies have shown that post-oral sugar sensing rapidly stimulates ingestion. Here, we explored the specificity with which early-phase post-oral sugar sensing influenced ingestive motivation. In experiment 1, rats were trained to associate the consumption of 0.3 M sucrose with injections of LiCl (3.0 meq/kg ip, conditioned taste aversion) or given equivalent exposures to the stimuli, but in an unpaired fashion. Then, all rats were subjected to two brief-access tests to assess appetitive and consummatory responses to the taste properties of sucrose (0.01–1.0 M), 0.12 M NaCl, and dH2O (in 10-s trials in randomized blocks). Intraduodenal infusions of either 0.3 M sucrose or equiosmolar 0.15 M NaCl (3.0 ml) were administered, beginning just before each test. For unpaired rats, intraduodenal sucrose specifically enhanced licking for 0.03–1.0 M sucrose, with no effect on trial initiation, relative to intraduodenal NaCl. Rats with an aversion to sucrose suppressed licking responses to sucrose in a concentration-dependent manner, as expected, but the intraduodenal sucrose preload did not appear to further influence licking responses; instead, intraduodenal sucrose attenuated trial initiation. Using a serial taste reactivity (TR) paradigm, however, experiment 2 demonstrated that intraduodenal sucrose preloads suppressed ingestive oromotor responses to intraorally delivered sucrose in rats with a sucrose aversion. Finally, experiment 3 showed that intraduodenal sucrose preloads enhanced preferential licking to some representative tastants tested (sucrose, Polycose, and Intralipid), but not others (NaCl, quinine). Together, the results suggest that the early phase-reinforcing efficacy of post-oral sugar is dependent on the sensory and motivational properties of the ingesta. PMID:27511277

  11. Integrating a Nurse-Midwife-Led Oral Health Intervention Into CenteringPregnancy Prenatal Care: Results of a Pilot Study.

    Science.gov (United States)

    Adams, Sally H; Gregorich, Steven E; Rising, Sharon S; Hutchison, Margaret; Chung, Lisa H

    2017-07-01

    National and professional organizations recommend oral health promotion in prenatal care to improve women's oral health. However, few prenatal programs include education about oral health promotion. The objective of this study was to determine if women receiving a brief, low-cost, and sustainable educational intervention entitled CenteringPregnancy Oral Health Promotion had clinically improved oral health compared to women receiving standard CenteringPregnancy care. Women attending CenteringPregnancy, a group prenatal care model, at 4 health centers in the San Francisco Bay Area, participated in this nonrandomized controlled pilot study in 2010 to 2011. The intervention arm received the CenteringPregnancy Oral Health Promotion intervention consisting of two 15-minute skills-based educational modules addressing maternal and infant oral health, each module presented in a separate CenteringPregnancy prenatal care session. The present analysis focused on the maternal module that included facilitated discussions and skills-building activities including proper tooth brushing. The control arm received standard CenteringPregnancy prenatal care. Dental examinations and questionnaires were administered prior to and approximately 9 weeks postintervention. Primary outcomes included the Plaque Index, percent bleeding on probing, and percent of gingival pocket depths 4 mm or greater. Secondary outcomes were self-reported oral health knowledge, attitudes (importance and self-efficacy), and behaviors (tooth brushing and flossing). Regression models tested whether pre to post changes in outcomes differed between the intervention versus the control arms. One hundred and one women participated in the study; 49 were in the intervention arm, and 52 were in the control arm. The control and intervention arms did not vary significantly at baseline. Significant pre to post differences were noted between the arms with significant improvements in the intervention arm for the Plaque Index

  12. Microbial bebop: creating music from complex dynamics in microbial ecology.

    Directory of Open Access Journals (Sweden)

    Peter Larsen

    Full Text Available In order for society to make effective policy decisions on complex and far-reaching subjects, such as appropriate responses to global climate change, scientists must effectively communicate complex results to the non-scientifically specialized public. However, there are few ways however to transform highly complicated scientific data into formats that are engaging to the general community. Taking inspiration from patterns observed in nature and from some of the principles of jazz bebop improvisation, we have generated Microbial Bebop, a method by which microbial environmental data are transformed into music. Microbial Bebop uses meter, pitch, duration, and harmony to highlight the relationships between multiple data types in complex biological datasets. We use a comprehensive microbial ecology, time course dataset collected at the L4 marine monitoring station in the Western English Channel as an example of microbial ecological data that can be transformed into music. Four compositions were generated (www.bio.anl.gov/MicrobialBebop.htm. from L4 Station data using Microbial Bebop. Each composition, though deriving from the same dataset, is created to highlight different relationships between environmental conditions and microbial community structure. The approach presented here can be applied to a wide variety of complex biological datasets.

  13. Soil microbial community responses to antibiotic-contaminated manure under different soil moisture regimes.

    Science.gov (United States)

    Reichel, Rüdiger; Radl, Viviane; Rosendahl, Ingrid; Albert, Andreas; Amelung, Wulf; Schloter, Michael; Thiele-Bruhn, Sören

    2014-01-01

    Sulfadiazine (SDZ) is an antibiotic frequently administered to livestock, and it alters microbial communities when entering soils with animal manure, but understanding the interactions of these effects to the prevailing climatic regime has eluded researchers. A climatic factor that strongly controls microbial activity is soil moisture. Here, we hypothesized that the effects of SDZ on soil microbial communities will be modulated depending on the soil moisture conditions. To test this hypothesis, we performed a 49-day fully controlled climate chamber pot experiments with soil grown with Dactylis glomerata (L.). Manure-amended pots without or with SDZ contamination were incubated under a dynamic moisture regime (DMR) with repeated drying and rewetting changes of >20 % maximum water holding capacity (WHCmax) in comparison to a control moisture regime (CMR) at an average soil moisture of 38 % WHCmax. We then monitored changes in SDZ concentration as well as in the phenotypic phospholipid fatty acid and genotypic 16S rRNA gene fragment patterns of the microbial community after 7, 20, 27, 34, and 49 days of incubation. The results showed that strongly changing water supply made SDZ accessible to mild extraction in the short term. As a result, and despite rather small SDZ effects on community structures, the PLFA-derived microbial biomass was suppressed in the SDZ-contaminated DMR soils relative to the CMR ones, indicating that dynamic moisture changes accelerate the susceptibility of the soil microbial community to antibiotics.

  14. Effects of probiotic fermented milk on biofilms, oral microbiota, and enamel

    OpenAIRE

    Lodi, Carolina Simonetti; Oliveira, Lidiane Viana; Brighenti, Fernanda Lourenção [UNESP; Delbem, Alberto Carlos Botazzo; Martinhon, Cleide Cristina Rodrigues

    2015-01-01

    The aim of this study was to evaluate in vitro and in vivo the effects of 2 brands of probiotic fermented milk on biofilms, oral microbiota, and enamel. For the in situ experiment, ten volunteers wore palatine devices containing four blocks of bovine dental enamel over 3 phases, during which 20% sucrose solution, Yakult® (Treatment A), and Batavito® (Treatment B) were dropped on the enamel blocks. Salivary microbial counts were obtained and biofilm samples were analyzed after each phase. For ...

  15. The oral microbiome of patients with axial spondyloarthritis compared to healthy individuals

    Directory of Open Access Journals (Sweden)

    Jordan E. Bisanz

    2016-06-01

    Full Text Available Background. A loss of mucosal tolerance to the resident microbiome has been postulated in the aetiopathogenesis of spondyloarthritis, thus the purpose of these studies was to investigate microbial communities that colonise the oral cavity of patients with axial spondyloarthritis (AxSpA and to compare these with microbial profiles of a matched healthy population. Methods. Thirty-nine participants, 17 patients with AxSpA and 22 age and gender-matched disease-free controls were recruited to the study. For patients with AxSpA, disease activity was assessed using the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI. All participants underwent a detailed dental examination to assess oral health, including the presence of periodontal disease assessed using probing pocket depth (PPD. Plaque samples were obtained and their bacterial populations were profiled using Ion Torrent sequencing of the V6 region of the 16S rRNA gene. Results.Patients with AxSpA had active disease (BASDAI 4.1 ± 2.1 [mean ± SD], and a significantly greater prevalence of periodontitis (PPD ≥ 4 mm at ≥4 sites than controls. Bacterial communities did not differ between the two groups with multiple metrics of α and β diversity considered. Analysis of operational taxonomic units (OTUs and higher levels of taxonomic assignment did not provide strong evidence of any single taxa associated with AxSpA in the subgingival plaque. Discussion. Although 16S rRNA gene sequencing did not identify specific bacterial profiles associated with AxSpA, there remains the potential for the microbiota to exert functional and metabolic influences in the oral cavity which could be involved in the pathogenesis of AxSpA.

  16. Supernatants from oral epithelial cells and gingival fibroblasts modulate human immunodeficiency virus type 1 promoter activation induced by periodontopathogens in monocytes/macrophages.

    Science.gov (United States)

    González, O A; Ebersole, J L; Huang, C B

    2010-04-01

    Bacterial and host cell products during coinfections of Human Immunodeficiency Virus type 1-positive (HIV-1(+)) patients regulate HIV-1 recrudescence in latently infected cells (e.g. T cells, monocytes/macrophages), impacting highly active antiretroviral therapy (HAART) failure and progression of acquired immunodeficiency syndrome. A high frequency of oral opportunistic infections (e.g. periodontitis) in HIV-1(+) patients has been demonstrated; however, their potential to impact HIV-1 exacerbation is unclear. We sought to determine the ability of supernatants derived from oral epithelial cells (OKF4) and human gingival fibroblasts (Gin-4) challenged with periodontal pathogens, to modulate the HIV-1 promoter activation in monocytes/macrophages. BF24 monocytes/macrophages transfected with the HIV-1 promoter driving the expression of chloramphenicol acetyltransferase (CAT) were stimulated with Porphyromonas gingivalis, Fusobacterium nucleatum, or Treponema denticola in the presence of supernatants from OKF4 or Gin4 cells either unstimulated or previously pulsed with bacteria. CAT levels were determined by enzyme-linked immunosorbent assay and cytokine production was evaluated by Luminex beadlyte assays. OKF4 and Gin4 supernatants enhanced HIV-1 promoter activation particularly related to F. nucleatum challenge. An additive effect was observed in HIV-1 promoter activation when monocytes/macrophages were simultaneously stimulated with gingival cell supernatants and bacterial extracts. OKF4 cells produced higher levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukins -6 and -8 in response to F. nucleatum and P. gingivalis. Preincubation of OKF4 supernatants with anti-GM-CSF reduced the additive effect in periodontopathogen-induced HIV-1 promoter activation. These results suggest that soluble mediators produced by gingival resident cells in response to periodontopathogens could contribute to HIV-1 promoter activation in monocytes

  17. Activity modulation of microbial enzymes by llama (Lama glama) heavy-chain polyclonal antibodies during in vivo immune responses.

    Science.gov (United States)

    Ferrari, A; Weill, F S; Paz, M L; Cela, E M; González Maglio, D H; Leoni, J

    2012-03-01

    Since they were first described in 1993, it was found that recombinant variable fragments (rVHHs) of heavy-chain antibodies (HCAbs) from Camelidae have unusual biophysical properties, as well as a special ability to interact with epitopes that are cryptic for conventional Abs. It has been assumed that in vivo raised polyclonal HCAbs (pHCAbs) should behave in a similar manner than rVHHs; however, this assumption has not been tested sufficiently. Furthermore, our own preliminary work on a single serum sample from a llama immunized with a β-lactamase, has suggested that pHCAbs have no special ability to down-modulate catalytic activity. In this work, we further explored the interaction of pHCAbs from four llamas raised against two microbial enzymes and analyzed it within a short and a long immunization plan. The relative contribution of pHCAbs to serum titer was found to be low compared with that of the most abundant conventional subisotype (IgG(1)), during the whole immunization schedule. Furthermore, pHCAbs not only failed to inhibit the enzymes, but also activated one of them. Altogether, these results suggest that raising high titer inhibitory HCAbs is not a straightforward strategy - neither as a biotechnological strategy nor in the biological context of an immune response against infection - as raising inhibitory rVHHs.

  18. Subgingival microbial communities in Leukocyte Adhesion Deficiency and their relationship with local immunopathology.

    Science.gov (United States)

    Moutsopoulos, Niki M; Chalmers, Natalia I; Barb, Jennifer J; Abusleme, Loreto; Greenwell-Wild, Teresa; Dutzan, Nicolas; Paster, Bruce J; Munson, Peter J; Fine, Daniel H; Uzel, Gulbu; Holland, Steven M

    2015-03-01

    Leukocyte Adhesion Deficiency I (LAD-I) is a primary immunodeficiency caused by single gene mutations in the CD18 subunit of β2 integrins which result in defective transmigration of neutrophils into the tissues. Affected patients suffer from recurrent life threatening infections and severe oral disease (periodontitis). Microbial communities in the local environment (subgingival plaque) are thought to be the triggers for inflammatory periodontitis, yet little is known regarding the microbial communities associated with LAD-I periodontitis. Here we present the first comprehensive characterization of the subgingival communities in LAD-I, using a 16S rRNA gene-based microarray, and investigate the relationship of this tooth adherent microbiome to the local immunopathology of periodontitis. We show that the LAD subgingival microbiome is distinct from that of health and Localized Aggressive Periodontitits. Select periodontitis-associated species in the LAD microbiome included Parvimonas micra, Porphyromonas endodontalis, Eubacterium brachy and Treponema species. Pseudomonas aeruginosa, a bacterium not typically found in subgingival plaque is detected in LAD-I. We suggest that microbial products from LAD-associated communities may have a role in stimulating the local inflammatory response. We demonstrate that bacterial LPS translocates into the lesions of LAD-periodontitis potentially triggering immunopathology. We also show in in vitro assays with human macrophages and in vivo in animal models that microbial products from LAD-associated subgingival plaque trigger IL-23-related immune responses, which have been shown to dominate in patient lesions. In conclusion, our current study characterizes the subgingival microbial communities in LAD-periodontitis and supports their role as triggers of disease pathogenesis.

  19. Subgingival microbial communities in Leukocyte Adhesion Deficiency and their relationship with local immunopathology.

    Directory of Open Access Journals (Sweden)

    Niki M Moutsopoulos

    2015-03-01

    Full Text Available Leukocyte Adhesion Deficiency I (LAD-I is a primary immunodeficiency caused by single gene mutations in the CD18 subunit of β2 integrins which result in defective transmigration of neutrophils into the tissues. Affected patients suffer from recurrent life threatening infections and severe oral disease (periodontitis. Microbial communities in the local environment (subgingival plaque are thought to be the triggers for inflammatory periodontitis, yet little is known regarding the microbial communities associated with LAD-I periodontitis. Here we present the first comprehensive characterization of the subgingival communities in LAD-I, using a 16S rRNA gene-based microarray, and investigate the relationship of this tooth adherent microbiome to the local immunopathology of periodontitis. We show that the LAD subgingival microbiome is distinct from that of health and Localized Aggressive Periodontitits. Select periodontitis-associated species in the LAD microbiome included Parvimonas micra, Porphyromonas endodontalis, Eubacterium brachy and Treponema species. Pseudomonas aeruginosa, a bacterium not typically found in subgingival plaque is detected in LAD-I. We suggest that microbial products from LAD-associated communities may have a role in stimulating the local inflammatory response. We demonstrate that bacterial LPS translocates into the lesions of LAD-periodontitis potentially triggering immunopathology. We also show in in vitro assays with human macrophages and in vivo in animal models that microbial products from LAD-associated subgingival plaque trigger IL-23-related immune responses, which have been shown to dominate in patient lesions. In conclusion, our current study characterizes the subgingival microbial communities in LAD-periodontitis and supports their role as triggers of disease pathogenesis.

  20. Salivary Gluten Degradation and Oral Microbial Profiles in Healthy Individuals and Celiac Disease Patients

    NARCIS (Netherlands)

    Tian, N.; Faller, L.; Leffler, D.A.; Kelly, C.P.; Hansen, J.; Bosch, J.A.; Wei, G.; Paster, B.J.; Schuppan, D.; Helmerhorst, E.J.

    Celiac disease (CD) is a chronic immune-mediated enteropathy induced by dietary gluten in genetically predisposed individuals. Saliva harbors the second highest bacterial load of the gastrointestinal (GI) tract after the colon. We hypothesized that enzymes produced by oral bacteria may be involved

  1. African Journal of Oral Health - Vol 7, No 1 (2017)

    African Journals Online (AJOL)

    A Pilot test of an oral health education module for community health workers in Ikeja LGA, Lagos State. EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. A. A. Adeniyi, V. Ajieroh, O. O Sofola, O Asiyanbi, A. Oyapero, 8-16 ...

  2. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    NARCIS (Netherlands)

    Timmers, R.A.; Rothballer, M.; Strik, D.P.B.T.B.; Engel, M.; Schulz, M.; Hartmann, A.; Hamelers, H.V.M.; Buisman, C.J.N.

    2012-01-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into

  3. Advancements toward a Systems Level Understanding of the Human Oral Microbiome

    Directory of Open Access Journals (Sweden)

    Jeffrey Scott Mclean

    2014-07-01

    Full Text Available Oral microbes represent one of the most well studied microbial communities owing to the fact that they are a fundamental part of human development influencing health and disease, an easily accessible human microbiome, a highly structured and remarkably resilient biofilm as well as a model of bacteria-bacteria and bacteria-host interactions. In the last eighty years since oral plaque was first characterized for its functionally stable physiological properties such as the highly repeatable rapid pH decrease upon carbohydrate addition and subsequent recovery phase, the fundamental approaches to study the oral microbiome have cycled back and forth between community level investigations and characterizing individual model isolates. Since that time, many individual species have been well characterized and the development of the early plaque community, which involves many cell–cell binding interactions, has been carefully described. With high throughput sequencing enabling the enormous diversity of the oral cavity to be realized, a number of new challenges to progress were revealed. The large number of uncultivated oral species, the high interpersonal variability of taxonomic carriage and the possibility of multiple pathways to dysbiosis pose as major hurdles to obtain a systems level understanding from the community to the gene level. It is now possible however to start connecting the insights gained from single species with community wide approaches. This review will discuss some of the recent insights into the oral microbiome at a fundamental level, existing knowledge gaps, as well as challenges that have surfaced and the approaches to address them.

  4. Changes in the Structure of the Microbial Community Associated with Nannochloropsis salina following Treatments with Antibiotics and Bioactive Compounds

    Science.gov (United States)

    Geng, Haifeng; Tran-Gyamfi, Mary B.; Lane, Todd W.; Sale, Kenneth L.; Yu, Eizadora T.

    2016-01-01

    Open microalgae cultures host a myriad of bacteria, creating a complex system of interacting species that influence algal growth and health. Many algal microbiota studies have been conducted to determine the relative importance of bacterial taxa to algal culture health and physiological states, but these studies have not characterized the interspecies relationships in the microbial communities. We subjected Nanochroloropsis salina cultures to multiple chemical treatments (antibiotics and quorum sensing compounds) and obtained dense time-series data on changes to the microbial community using 16S gene amplicon metagenomic sequencing (21,029,577 reads for 23 samples) to measure microbial taxa-taxa abundance correlations. Short-term treatment with antibiotics resulted in substantially larger shifts in the microbiota structure compared to changes observed following treatment with signaling compounds and glucose. We also calculated operational taxonomic unit (OTU) associations and generated OTU correlation networks to provide an overview of possible bacterial OTU interactions. This analysis identified five major cohesive modules of microbiota with similar co-abundance profiles across different chemical treatments. The Eigengenes of OTU modules were examined for correlation with different external treatment factors. This correlation-based analysis revealed that culture age (time) and treatment types have primary effects on forming network modules and shaping the community structure. Additional network analysis detected Alteromonadeles and Alphaproteobacteria as having the highest centrality, suggesting these species are “keystone” OTUs in the microbial community. Furthermore, we illustrated that the chemical tropodithietic acid, which is secreted by several species in the Alphaproteobacteria taxon, is able to drastically change the structure of the microbiota within 3 h. Taken together, these results provide valuable insights into the structure of the microbiota

  5. Detrimental consequences of women life cycle on the oral cavity

    Directory of Open Access Journals (Sweden)

    Jammula Surya Prasanna

    2018-01-01

    Full Text Available The majority of us visit a dentist only when we experience a toothache, as visiting the dentist regularly is the last thing that strikes our mind. Many clinical studies have concluded that oral bacteria can lead to a genre of health conditions which may sometimes be very serious. As females go, through certain stages in their reproductive life cycle, alterations arise in the level of sex steroid hormones circulating in their bloodstream. Specifically, variations in levels of progesterone and estrogen in women may adversely affect the periodontal tissues in the mouth. Extensive research suggests a relationship between periodontal diseases and puberty, menstruation, pregnancy, oral contraceptive use, and menopause. Estrogen and progesterone affect the entire body, including the oral tissues. The gingival tissues respond to this increased level of estrogen and progesterone by undergoing vasodilatation and increased capillary permeability. Consequently, there is an increased migration of fluid and white blood cells out of blood vessels. Also associated with increased progesterone levels are alterations in the existing microbial populations. The levels of Gram-negative anaerobic bacteria, such as Prevotella intermedia, increase as a result of the high concentration of hormones available as a nutrient for growth. This article discusses the plethora of causes which affect the oral health of women as they undergo the different life cycles.

  6. Investigation of microbial adaptation to salinity variation for treatment of reverse osmosis concentrate by membrane bioreactor

    DEFF Research Database (Denmark)

    Jang, Duksoo; Moon, Chungman; Ahn, Kyuhong

    2014-01-01

    quantitative study on a microbial adaptation strategy for variations on salt concentration (0–20 g/L), lab-scale membrane bioreactors (7L working volume) with polypropylene hollow fiber membrane module (pore size 0.4 μm) were used with different adaptation strategies: instant and stepwise mode. The performance...

  7. Characterization of the microbiota of the skin and oral cavity of Oreochromis niloticusCaracterização da microbiota da pele e cavidade oral de Oreochromis niloticusdoi:10.12662/2317-3076jhbs.v4i3.767.p193-197.2016

    Directory of Open Access Journals (Sweden)

    Edmar Maciel Lima Junior

    2016-09-01

    Full Text Available Introduction: Fish are usually exposed to higher microbial loads than land or air animals. The microbiota of fish mostly consists of Pseudomonas spp., Aeromonas spp., Shewanella putrefasciens, Acinetobacter spp. and Moraxella spp. The objective of this study was to analyze the oral cavity, and skin tissue microbiota on the Nile tilapia (Oreochromis niloticus, a fish species raised commercially in Brazil. Methods: Samples were collected from the oral cavity and skin of 20 Nile tilapia specimens (Oreochromis niloticus, each weighing approximately 1,000 grams. The samples were cultures for quantitative analysis on sheep blood agar (SBA and chromID™ CPS® agar (CPS. Results: Eleven different bacterial species were identified on CPS and SBA plates. Gram-negative species were the most prevalent, while gram-positive Globicatella spp, Streptococcus spp and Enterococcus faecalis were also found. Pseudomonas aeruginosa species were isolated from all samples. Gram-positive Enterococcus faecalis was found in 70 and 60% of the skin and oral samples, respectively. Conclusion: For all samples studied, the microbial load was less than 100,000 CFU/g of tissue. This value is a cutoff standardized for the American Society of Microbiology to differentiate the causal agent from the colonizers. In light of this result and considering the absence of infectious signs in the fish samples, we conclude that the CFU values found in this study reflect a normal, non-infectious colonization/microbiota.

  8. The Microbiome-Gut-Behavior Axis: Crosstalk Between the Gut Microbiome and Oligodendrocytes Modulates Behavioral Responses.

    Science.gov (United States)

    Ntranos, Achilles; Casaccia, Patrizia

    2018-01-01

    Environmental and dietary stimuli have always been implicated in brain development and behavioral responses. The gut, being the major portal of communication with the external environment, has recently been brought to the forefront of this interaction with the establishment of a gut-brain axis in health and disease. Moreover, recent breakthroughs in germ-free and antibiotic-treated mice have demonstrated the significant impact of the microbiome in modulating behavioral responses in mice and have established a more specific microbiome-gut-behavior axis. One of the mechanisms by which this axis affects social behavior is by regulating myelination at the prefrontal cortex, an important site for complex cognitive behavior planning and decision-making. The prefrontal cortex exhibits late myelination of its axonal projections that could extend into the third decade of life in humans, which make it susceptible to external influences, such as microbial metabolites. Changes in the gut microbiome were shown to alter the composition of the microbial metabolome affecting highly permeable bioactive compounds, such as p-cresol, which could impair oligodendrocyte differentiation. Dysregulated myelination in the prefrontal cortex is then able to affect behavioral responses in mice, shifting them towards social isolation. The reduced social interactions could then limit microbial exchange, which could otherwise pose a threat to the survival of the existing microbial community in the host and, thus, provide an evolutionary advantage to the specific microbial community. In this review, we will analyze the microbiome-gut-behavior axis, describe the interactions between the gut microbiome and oligodendrocytes and highlight their role in the modulation of social behavior.

  9. Modulation of Active Gut Microbiota by Lactobacillus rhamnosus GG in a Diet Induced Obesity Murine Model

    Directory of Open Access Journals (Sweden)

    Yosep Ji

    2018-04-01

    Full Text Available Gut microbiota play a key role in the development of metabolic disorders. Defining and correlating structural shifts in gut microbial assemblages with conditions related to metabolic syndrome have, however, been proven difficult. Results from 16S genomic DNA and 16S ribosomal RNA analyses of fecal samples may differ widely, leading to controversial information on the whole microbial community and metabolically active microbiota. Using a C57BL/6J murine model, we compared data from 16S genomic DNA and ribosomal RNA of the fecal microbiota. The study included three groups of experimental animals comprising two groups with high fat diet induced obesity (DIO while a third group (control received a low fat diet. One of the DIO groups was treated with the probiotic Lactobacillus rhamnosus GG (LGG. Compared to the data obtained by DNA analysis, a significantly higher abundance of OTUs was accounted for by RNA analysis. Moreover, rRNA based analysis showed a modulation of the active gut microbial population in the DIO group receiving LGG, thus reflecting a change in the induced obesity status of the host. As one of the most widely studied probiotics the functionality of LGG has been linked to the alleviation of metabolic syndrome, and, in some cases, to an impact on the microbiome. Yet, it appears that no study has reported thus far on modulation of the active microbiota by LGG treatment. It is postulated that the resulting impact on calorie consumption affects weight gain concomitantly with modulation of the functional structure of the gut microbial population. Using the 16S rRNA based approach therefore decisively increased the precision of gut microbiota metagenome analysis.

  10. Modulation of Active Gut Microbiota by Lactobacillus rhamnosus GG in a Diet Induced Obesity Murine Model.

    Science.gov (United States)

    Ji, Yosep; Park, Soyoung; Park, Haryung; Hwang, Eunchong; Shin, Hyeunkil; Pot, Bruno; Holzapfel, Wilhelm H

    2018-01-01

    Gut microbiota play a key role in the development of metabolic disorders. Defining and correlating structural shifts in gut microbial assemblages with conditions related to metabolic syndrome have, however, been proven difficult. Results from 16S genomic DNA and 16S ribosomal RNA analyses of fecal samples may differ widely, leading to controversial information on the whole microbial community and metabolically active microbiota. Using a C57BL/6J murine model, we compared data from 16S genomic DNA and ribosomal RNA of the fecal microbiota. The study included three groups of experimental animals comprising two groups with high fat diet induced obesity (DIO) while a third group (control) received a low fat diet. One of the DIO groups was treated with the probiotic Lactobacillus rhamnosus GG (LGG). Compared to the data obtained by DNA analysis, a significantly higher abundance of OTUs was accounted for by RNA analysis. Moreover, rRNA based analysis showed a modulation of the active gut microbial population in the DIO group receiving LGG, thus reflecting a change in the induced obesity status of the host. As one of the most widely studied probiotics the functionality of LGG has been linked to the alleviation of metabolic syndrome, and, in some cases, to an impact on the microbiome. Yet, it appears that no study has reported thus far on modulation of the active microbiota by LGG treatment. It is postulated that the resulting impact on calorie consumption affects weight gain concomitantly with modulation of the functional structure of the gut microbial population. Using the 16S rRNA based approach therefore decisively increased the precision of gut microbiota metagenome analysis.

  11. Microbial Rechargeable Battery

    NARCIS (Netherlands)

    Molenaar, Sam D.; Mol, Annemerel R.; Sleutels, Tom H.J.A.; Heijne, Ter Annemiek; Buisman, Cees J.N.

    2016-01-01

    Bioelectrochemical systems hold potential for both conversion of electricity into chemicals through microbial electrosynthesis (MES) and the provision of electrical power by oxidation of organics using microbial fuel cells (MFCs). This study provides a proof of concept for a microbial

  12. Oral sex, oral health and orogenital infections

    Directory of Open Access Journals (Sweden)

    Rajiv Saini

    2010-01-01

    Full Text Available Oral sex is commonly practiced by sexually active male-female and same-gender couples of various ages, including adolescents. The various type of oral sex practices are fellatio, cunnilingus and analingus. Oral sex is infrequently examined in research on adolescents; oral sex can transmit oral, respiratory, and genital pathogens. Oral health has a direct impact on the transmission of infection; a cut in your mouth, bleeding gums, lip sores or broken skin increases chances of infection. Although oral sex is considered a low risk activity, it is important to use protection and safer sex precautions. There are various methods of preventing infection during oral sex such as physical barriers, health and medical issues, ethical issues and oral hygiene and dental issues. The lesions or unhealthy periodontal status of oral cavity accelerates the phenomenon of transmission of infections into the circulation. Thus consequences of unhealthy or painful oral cavity are significant and oral health should be given paramount importance for the practice of oral sex.

  13. Can soil microbial diversity influence plant metabolites and life history traits of a rhizophagous insect? A demonstration in oilseed rape.

    Science.gov (United States)

    Lachaise, Tom; Ourry, Morgane; Lebreton, Lionel; Guillerm-Erckelboudt, Anne-Yvonne; Linglin, Juliette; Paty, Chrystelle; Chaminade, Valérie; Marnet, Nathalie; Aubert, Julie; Poinsot, Denis; Cortesero, Anne-Marie; Mougel, Christophe

    2017-12-01

    Interactions between plants and phytophagous insects play an important part in shaping the biochemical composition of plants. Reciprocally plant metabolites can influence major life history traits in these insects and largely contribute to their fitness. Plant rhizospheric microorganisms are an important biotic factor modulating plant metabolites and adaptation to stress. While plant-insects or plant-microorganisms interactions and their consequences on the plant metabolite signature are well-documented, the impact of soil microbial communities on plant defenses against phytophagous insects remains poorly known. In this study, we used oilseed rape (Brassica napus) and the cabbage root fly (Delia radicum) as biological models to tackle this question. Even though D. radicum is a belowground herbivore as a larva, its adult life history traits depend on aboveground signals. We therefore tested whether soil microbial diversity influenced emergence rate and fitness but also fly oviposition behavior, and tried to link possible effects to modifications in leaf and root metabolites. Through a removal-recolonization experiment, 3 soil microbial modalities ("high," "medium," "low") were established and assessed through amplicon sequencing of 16S and 18S ribosomal RNA genes. The "medium" modality in the rhizosphere significantly improved insect development traits. Plant-microorganism interactions were marginally associated to modulations of root metabolites profiles, which could partly explain these results. We highlighted the potential role of plant-microbial interaction in plant defenses against Delia radicum. Rhizospheric microbial communities must be taken into account when analyzing plant defenses against herbivores, being either below or aboveground. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  14. Nanotechnology in dentistry: drug delivery systems for the control of biofilm-dependent oral diseases.

    Science.gov (United States)

    de Sousa, Francisco Fabio Oliveira; Ferraz, Camila; Rodrigues, Lidiany K Arla de Azevedo; Nojosa, Jacqueline de Santiago; Yamauti, Monica

    2014-01-01

    Dental disorders, such as caries, periodontal and endodontic diseases are major public health issues worldwide. In common, they are biofilm-dependent oral diseases, and the specific conditions of oral cavity may develop infectious foci that could affect other physiological systems. Efforts have been made to develop new treatment routes for the treatment of oral diseases, and therefore, for the prevention of some systemic illnesses. New drugs and materials have been challenged to prevent and treat these conditions, especially by means of bacteria elimination. "Recent progresses in understanding the etiology, epidemiology and microbiology of the microbial flora in those circumstances have given insight and motivated the innovation on new therapeutic approaches for the management of the oral diseases progression". Some of the greatest advances in the medical field have been based in nanosized systems, ranging from the drug release with designed nanoparticles to tissue scaffolds based on nanotechnology. These systems offer new possibilities for specific and efficient therapies, been assayed successfully in preventive/curative therapies to the oral cavity, opening new challenges and opportunities to overcome common diseases based on bacterial biofilm development. The aim of this review is to summarize the recent nanotechnological developments in the drug delivery field related to the prevention and treatment of the major biofilm-dependent oral diseases and to identify those systems, which may have higher potential for clinical use.

  15. Isolation of Candida species from the oral cavity and fingertips of complete denture wearers.

    Science.gov (United States)

    Nagaral, Suresh; Desai, Raviraj G; Kamble, Vikas; Patil, Anand Kumar G

    2014-11-01

    Wearing a dental prosthesis is known to increase oral candidal colonization and predispose the wearer to oral candidosis. Denture wearers frequently use fingers to take the prosthesis out of their mouth. Oral Candida, if present may contaminate wearer's finger. The objective of this study was to investigate the simultaneous candidal colonization of oral cavity and fingertips of complete denture wearers. A total of 25 apparently healthy male subjects who had worn complete dentures for at least 1 year were selected. Information about each patient's denture age, denture hygiene, handling, and wearing habits, and hand washing habits after denture handling were be obtained. Intraoral examination of all the patients was done. For microbiological examination samples were collected from the fingertip and oral rinse of each patient. Candida species were identified with use of germ tube test and commercially available yeast identification system. Data was statistically analyzed. Significance was set at p < 0.05. It was found that frequency of hand washing, denture handling and denture stomatitis with respect to fingertip candidal isolation was not statistically significant. But poor denture hygiene and denture stomatitis with respect to oral candidal colonization was statistically significant. Denture wearers with oral Candida had a higher prevalence of Candida contamination on their fingers. Patients with removable prostheses should be informed about the importance of proper prosthesis and personal hygiene and the possibility of microbial contamination of the hands and other parts of the body.

  16. Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures.

    Science.gov (United States)

    Xiu, Yu; Jang, Sungho; Jones, J Andrew; Zill, Nicholas A; Linhardt, Robert J; Yuan, Qipeng; Jung, Gyoo Yeol; Koffas, Mattheos A G

    2017-10-01

    The ability to design and construct combinatorial synthetic metabolic pathways has far exceeded our capacity for efficient screening and selection of the resulting microbial strains. The need for high-throughput rapid screening techniques is of upmost importance for the future of synthetic biology and metabolic engineering. Here we describe the development of an RNA riboswitch-based biosensor module with dual fluorescent reporters, and demonstrate a high-throughput flow cytometry-based screening method for identification of naringenin over producing Escherichia coli strains in co-culture. Our efforts helped identify a number of key operating parameters that affect biosensor performance, including the selection of promoter and linker elements within the sensor-actuator domain, and the effect of host strain, fermentation time, and growth medium on sensor dynamic range. The resulting biosensor demonstrates a high correlation between specific fluorescence of the biosensor strain and naringenin titer produced by the second member of the synthetic co-culture system. This technique represents a novel application for synthetic microbial co-cultures and can be expanded from naringenin to any metabolite if a suitable riboswitch is identified. The co-culture technique presented here can be applied to a variety of target metabolites in combination with the SELEX approach for aptamer design. Due to the compartmentalization of the two genetic constructs responsible for production and detection into separate cells and application as independent modules of a synthetic microbial co-culture we have subsequently reduced the need for re-optimization of the producer module when the biosensor is replaced or removed. Biotechnol. Bioeng. 2017;114: 2235-2244. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Analyses of the microbial diversity across the human microbiome.

    Directory of Open Access Journals (Sweden)

    Kelvin Li

    Full Text Available Analysis of human body microbial diversity is fundamental to understanding community structure, biology and ecology. The National Institutes of Health Human Microbiome Project (HMP has provided an unprecedented opportunity to examine microbial diversity within and across body habitats and individuals through pyrosequencing-based profiling of 16 S rRNA gene sequences (16 S from habits of the oral, skin, distal gut, and vaginal body regions from over 200 healthy individuals enabling the application of statistical techniques. In this study, two approaches were applied to elucidate the nature and extent of human microbiome diversity. First, bootstrap and parametric curve fitting techniques were evaluated to estimate the maximum number of unique taxa, S(max, and taxa discovery rate for habitats across individuals. Next, our results demonstrated that the variation of diversity within low abundant taxa across habitats and individuals was not sufficiently quantified with standard ecological diversity indices. This impact from low abundant taxa motivated us to introduce a novel rank-based diversity measure, the Tail statistic, ("τ", based on the standard deviation of the rank abundance curve if made symmetric by reflection around the most abundant taxon. Due to τ's greater sensitivity to low abundant taxa, its application to diversity estimation of taxonomic units using taxonomic dependent and independent methods revealed a greater range of values recovered between individuals versus body habitats, and different patterns of diversity within habitats. The greatest range of τ values within and across individuals was found in stool, which also exhibited the most undiscovered taxa. Oral and skin habitats revealed variable diversity patterns, while vaginal habitats were consistently the least diverse. Collectively, these results demonstrate the importance, and motivate the introduction, of several visualization and analysis methods tuned specifically for

  18. Restorative dentistry and oral rehabilitation: United Kingdom National Multidisciplinary Guidelines.

    Science.gov (United States)

    Butterworth, C; McCaul, L; Barclay, C

    2016-05-01

    This is the official guideline endorsed by the specialty associations involved in the care of head and neck cancer patients in the UK and provides recommendations on the pre-treatment oral and dental assessment, during and after treatment and oral rehabilitation. Restorative dentists are core members of the multidisciplinary team treating head and neck cancer patients, involved from the treatment planning phase through to long-term rehabilitation. Recommendations • Preventative oral care must be delivered to patients whose cancer treatment will affect the oral cavity, jaws, salivary glands and oral accessibility. (G) • Close working and communication between the surgeons, oncologists and restorative dental specialists is important in ensuring optimal oral health outcomes. (G) • Intensity-modulated radiotherapy has been shown to reduce long-term xerostomia and should be offered to all appropriate patients. (R) • If patients are deemed at risk of trismus they should be warned and its progressive and potentially irreversible nature explained. (G) • Where it is known that adjuvant radiotherapy will be given, extractions should take place at primary surgery to maximise the time for healing and minimise the number of surgical events for patients. (G) • Osseointegrated implants should be considered for all patients having resection for head and neck cancer. (G).

  19. Microbial biosensors

    International Nuclear Information System (INIS)

    Le Yu; Chen, Wilfred; Mulchandani, Ashok

    2006-01-01

    A microbial biosensor is an analytical device that couples microorganisms with a transducer to enable rapid, accurate and sensitive detection of target analytes in fields as diverse as medicine, environmental monitoring, defense, food processing and safety. The earlier microbial biosensors used the respiratory and metabolic functions of the microorganisms to detect a substance that is either a substrate or an inhibitor of these processes. Recently, genetically engineered microorganisms based on fusing of the lux, gfp or lacZ gene reporters to an inducible gene promoter have been widely applied to assay toxicity and bioavailability. This paper reviews the recent trends in the development and application of microbial biosensors. Current advances and prospective future direction in developing microbial biosensor have also been discussed

  20. Childhood microbial keratitis

    Directory of Open Access Journals (Sweden)

    Abdullah G Al Otaibi

    2012-01-01

    Conclusion: Children with suspected microbial keratitis require comprehensive evaluation and management. Early recognition, identifying the predisposing factors and etiological microbial organisms, and instituting appropriate treatment measures have a crucial role in outcome. Ocular trauma was the leading cause of childhood microbial keratitis in our study.

  1. Longitudinal research on the oral environment of elderly wearing fixed or removable prostheses.

    Science.gov (United States)

    Tanaka, Junko; Tanaka, Masahiro; Kawazoe, Takayoshi

    2009-04-01

    The purpose of this study was to investigate oral environmental risk factors involved in caries incidence in the elderly. We investigated the relationship between the oral environment factors of the elderly with both fixed prostheses and removable prostheses at baseline and at follow-up and examined time-course changes of each oral environmental factor by prosthesis type. The subject group consisted 11 elderly patients with fixed prostheses and 11 who wore removable prostheses. We examined oral environmental factors by saliva tests. Five oral environmental factors were examined: the stimulated salivary flow rate, buffering capacity, and the counts of mutans streptococci (SM), lactobacilli (LB), and Candida (CA). We compared these factors for subjects with fixed prostheses and those wearing removable prostheses at baseline and at follow-up. Furthermore, 3-year changes in the factors of each oral environment were compared and evaluated. Significant differences were observed between the two groups in the salivary microbial counts of SM and LB at baseline and at follow-up. The LB counts increased in the Denture group during the 3-year period and significant differences were noted. We found that fixed prostheses are less cariogenic, and removable prostheses cause an increase in the cariogenic bacterial count. Regarding time-course changes by the type of prosthesis, the LB count tended to increase in the subjects with removable prostheses. The risk of caries due to a fixed prosthesis may be lower than that of removable prostheses.

  2. Oral Samples as Non-Invasive Proxies for Assessing the Composition of the Rumen Microbial Community.

    Directory of Open Access Journals (Sweden)

    Ilma Tapio

    Full Text Available Microbial community analysis was carried out on ruminal digesta obtained directly via rumen fistula and buccal fluid, regurgitated digesta (bolus and faeces of dairy cattle to assess if non-invasive samples could be used as proxies for ruminal digesta. Samples were collected from five cows receiving grass silage based diets containing no additional lipid or four different lipid supplements in a 5 x 5 Latin square design. Extracted DNA was analysed by qPCR and by sequencing 16S and 18S rRNA genes or the fungal ITS1 amplicons. Faeces contained few protozoa, and bacterial, fungal and archaeal communities were substantially different to ruminal digesta. Buccal and bolus samples gave much more similar profiles to ruminal digesta, although fewer archaea were detected in buccal and bolus samples. Bolus samples overall were most similar to ruminal samples. The differences between both buccal and bolus samples and ruminal digesta were consistent across all treatments. It can be concluded that either proxy sample type could be used as a predictor of the rumen microbial community, thereby enabling more convenient large-scale animal sampling for phenotyping and possible use in future animal breeding programs aimed at selecting cattle with a lower environmental footprint.

  3. Modulation of stimulus-induced 20-Hz activity for the tongue and hard palate during tongue movement in humans.

    Science.gov (United States)

    Maezawa, Hitoshi; Onishi, Kaori; Yagyu, Kazuyori; Shiraishi, Hideaki; Hirai, Yoshiyuki; Funahashi, Makoto

    2016-01-01

    Modulation of 20-Hz activity in the primary sensorimotor cortex (SM1) may be important for oral functions. Here, we show that 20-Hz event-related desynchronization/synchronization (20-Hz ERD/ERS) is modulated by sensory input and motor output in the oral region. Magnetic 20-Hz activity was recorded following right-sided tongue stimulation during rest (Rest) and self-paced repetitive tongue movement (Move). To exclude proprioception effects, 20-Hz activity induced by right-sided hard palate stimulation was also recorded. The 20-Hz activity in the two conditions was compared via temporal spectral evolution analyses. 20-Hz ERD/ERS was detected over bilateral temporoparietal areas in the Rest condition for both regions. Moreover, 20-Hz ERS was significantly suppressed in the Move condition for both regions. Detection of 20-Hz ERD/ERS during the Rest condition for both regions suggests that the SM1 functional state may be modulated by oral stimulation, with or without proprioceptive effects. Moreover, the suppression of 20-Hz ERS for the hard palate during the Move condition suggests that the stimulation-induced functional state of SM1 may have been modulated by the movement, even though the movement and stimulation areas were different. Sensorimotor function of the general oral region may be finely coordinated through 20-Hz cortical oscillation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Antibiotic Treatment Affects Intestinal Permeability and Gut Microbial Composition in Wistar Rats Dependent on Antibiotic Class.

    Directory of Open Access Journals (Sweden)

    Monica Vera-Lise Tulstrup

    Full Text Available Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, as it disrupts the intricate balance between specific bacterial groups within this ecosystem, potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (housed in pairs with 6 cages per group were dosed by oral gavage with either amoxicillin (AMX, cefotaxime (CTX, vancomycin (VAN, metronidazole (MTZ, or water (CON daily for 10-11 days. Bacterial composition, alpha diversity and caecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity and an increase in the relative abundance of Proteobacteria was observed for all three antibiotics. Additionally, the relative abundance of Bifidobacteriaceae was increased in the CTX group and both Lactobacillaceae and Verrucomicrobiaceae were increased in the VAN group compared to the CON group. No changes in microbiota composition or function were observed following MTZ treatment. Intestinal permeability to 4 kDa FITC-dextran decreased after CTX and VAN treatment and increased following MTZ treatment. Plasma haptoglobin levels were increased by both AMX and CTX but no changes in expression of host tight junction genes were found in any treatment group. A strong correlation between the level of caecal succinate, the relative abundance of Clostridiaceae 1 family in the caecum, and the level of acute phase protein haptoglobin in blood plasma was observed. In conclusion, antibiotic-induced changes in microbiota may be linked to alterations in intestinal permeability, although the specific interactions remain to be elucidated as changes in

  5. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer.

    Science.gov (United States)

    Mishra, Alok; Kumar, Rakesh; Tyagi, Abhishek; Kohaar, Indu; Hedau, Suresh; Bharti, Alok C; Sarker, Subhodeep; Dey, Dipankar; Saluja, Daman; Das, Bhudev

    2015-01-01

    In this study, we investigated the effects of the natural antioxidant curcumin on the HPV16-positive oral carcinoma cell line 93VU147T and demonstrated that curcumin is not only a potent inhibitor for the activity of host nuclear transcription factors AP-1 and NF-kB but it also selectively suppresses transcription of the HPV16/E6 oncogene during the carcinogenic process in oral cancer cells. This study suggests a therapeutic potential of curcumin for high-risk human papilloma virus (HPV)-infected oral cancers.

  6. Differential responses of human dendritic cells to metabolites from the oral/airway microbiome.

    Science.gov (United States)

    Whiteson, K; Agrawal, S; Agrawal, A

    2017-06-01

    Small molecule metabolites that are produced or altered by host-associated microbial communities are emerging as significant immune response modifiers. However, there is a key gap in our knowledge of how oral microbial metabolites affect the immune response. Here, we examined the effects of metabolites from five bacterial strains found commonly in the oral/airway microbial communities of humans. The five strains, each isolated from cystic fibrosis patient sputum, were Pseudomonas aeruginosa FLR01 non-mucoid (P1) and FLR02 mucoid (P2) forms, Streptococcus pneumoniae (Sp), S. salivarius (Ss) and Rothia mucilaginosa (Rm). The effect of bacterial metabolites on dendritic cell (DC) activation, T cell priming and cytokine secretion was determined by exposing DCs to bacterial supernatants and individual metabolites of interest. Supernatants from P1 and P2 induced high levels of tumour necrosis factor (TNF)-α, interleukin (IL)-12 and IL-6 from DCs and primed T cells to secrete interferon (IFN)-γ, IL-22 compared to supernatants from Sp, Ss and Rm. Investigations into the composition of supernatants using gas chromatography-mass spectroscopy (GC-MS) revealed signature metabolites for each of the strains. Supernatants from P1 and P2 contained high levels of putrescine and glucose, while Sp and Ss contained high levels of 2,3-butanediol. The individual metabolites replicated the results of whole supernatants, although the magnitudes of their effects were reduced significantly. Altogether, our data demonstrate for the first time that the signature metabolites produced by different bacteria have different effects on DC functions. The identification of signature metabolites and their effects on the host immune system can provide mechanistic insights into diseases and may also be developed as biomarkers. © 2017 British Society for Immunology.

  7. Development and evaluation of the bacterial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model.

    Science.gov (United States)

    Hong, Eun-Mi; Park, Yongeun; Muirhead, Richard; Jeong, Jaehak; Pachepsky, Yakov A

    2018-02-15

    The Agricultural Policy/Environmental eXtender (APEX) is a watershed-scale water quality model that includes detailed representation of agricultural management. The objective of this work was to develop a process-based model for simulating the fate and transport of manure-borne bacteria on land and in streams with the APEX model. The bacteria model utilizes manure erosion rates to estimate the amount of edge-of-field bacteria export. Bacteria survival in manure is simulated as a two-stage process separately for each manure application event. In-stream microbial fate and transport processes include bacteria release from streambeds due to sediment resuspension during high flow events, active release from the streambed sediment during low flow periods, bacteria settling with sediment, and survival. Default parameter values were selected from published databases and evaluated based on field observations. The APEX model with the newly developed microbial fate and transport module was applied to simulate fate and transport of the fecal indicator bacterium Escherichia coli in the Toenepi watershed, New Zealand that was monitored for seven years. The stream network of the watershed ran through grazing lands with daily bovine waste deposition. Results show that the APEX with the bacteria module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water as affected by various agricultural practices, evaluating monitoring protocols, and supporting the selection of management practices based on regulations that rely on fecal indicator bacteria concentrations. Published by Elsevier B.V.

  8. Screening of Probiotic Candidates in Human Oral Bacteria for the Prevention of Dental Disease.

    Directory of Open Access Journals (Sweden)

    Tomohiko Terai

    Full Text Available The oral cavity in healthy subjects has a well-balanced microbiota that consists of more than 700 species. However, a disturbance of this balance, with an increase of harmful microbes and a decrease of beneficial microbes, causes oral disorders such as periodontal disease or dental caries. Nowadays, probiotics are expected to confer oral health benefits by modulating the oral microbiota. This study screened new probiotic candidates with potential oral health benefits and no harmful effects on the oral cavity. We screened 14 lactobacillus strains and 36 streptococcus strains out of 896 oral isolates derived from healthy subjects. These bacteria did not produce volatile sulfur compounds or water-insoluble glucan, had higher antibacterial activity against periodontal bacteria, and had higher adherence activity to oral epithelial cells or salivary-coated hydroxyapatite in vitro. We then evaluated the risk of primary cariogenicity and infective endocarditis of the selected oral isolates. As a result, Lactobacillus crispatus YIT 12319, Lactobacillus fermentum YIT 12320, Lactobacillus gasseri YIT 12321, and Streptococcus mitis YIT 12322 were selected because they showed no cariogenic potential in an artificial mouth system and a lower risk of experimental infective endocarditis in a rat model. These candidates are expected as new probiotics with potential oral health benefits and no adverse effects on general health.

  9. Screening of Probiotic Candidates in Human Oral Bacteria for the Prevention of Dental Disease.

    Science.gov (United States)

    Terai, Tomohiko; Okumura, Takekazu; Imai, Susumu; Nakao, Masumi; Yamaji, Kazuaki; Ito, Masahiko; Nagata, Tsuyoshi; Kaneko, Kimiyuki; Miyazaki, Kouji; Okada, Ayako; Nomura, Yoshiaki; Hanada, Nobuhiro

    2015-01-01

    The oral cavity in healthy subjects has a well-balanced microbiota that consists of more than 700 species. However, a disturbance of this balance, with an increase of harmful microbes and a decrease of beneficial microbes, causes oral disorders such as periodontal disease or dental caries. Nowadays, probiotics are expected to confer oral health benefits by modulating the oral microbiota. This study screened new probiotic candidates with potential oral health benefits and no harmful effects on the oral cavity. We screened 14 lactobacillus strains and 36 streptococcus strains out of 896 oral isolates derived from healthy subjects. These bacteria did not produce volatile sulfur compounds or water-insoluble glucan, had higher antibacterial activity against periodontal bacteria, and had higher adherence activity to oral epithelial cells or salivary-coated hydroxyapatite in vitro. We then evaluated the risk of primary cariogenicity and infective endocarditis of the selected oral isolates. As a result, Lactobacillus crispatus YIT 12319, Lactobacillus fermentum YIT 12320, Lactobacillus gasseri YIT 12321, and Streptococcus mitis YIT 12322 were selected because they showed no cariogenic potential in an artificial mouth system and a lower risk of experimental infective endocarditis in a rat model. These candidates are expected as new probiotics with potential oral health benefits and no adverse effects on general health.

  10. The chemopreventive properties and therapeutic modulation of green tea polyphenols in oral squamous cell carcinoma.

    Science.gov (United States)

    Lee, Ui-Lyong; Choi, Sung-Weon

    2011-01-01

    Chemoprevention is a relatively novel and promising approach for controlling cancer that uses specific natural products or synthetic agents to suppress, reverse, or prevent premalignancy before transformation into invasive cancer. Oral cavity squamous cell carcinoma (OCSCC) represents a large, worldwide health burden with approximately 274,000 cases diagnosed annually worldwide. Smoking and alcohol consumption are major inducers of OCSCC. Recently, the human papilloma virus was also shown to potentially be an etiologic factor. Due to its easily identifiable risk factors and the presence of premalignant regions, oral cancer makes a good candidate for chemoprevention. Green tea is the most widely consumed beverage in the world, and it has received considerable attention because of its abundant, scientifically proven, beneficial effects on human health. In this review, we discuss the role of green tea in oral cancer chemoprevention with regard to the multiple molecular mechanisms proposed in various in vitro, in vivo, and clinical trials.

  11. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    OpenAIRE

    Timmers, R.A.; Rothballer, M.; Strik, D.P.B.T.B.; Engel, M.; Schulz, M.; Hartmann, A.; Hamelers, H.V.M.; Buisman, C.J.N.

    2012-01-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode-rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) w...

  12. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    OpenAIRE

    Timmers, Ruud A.; Rothballer, Michael; Strik, David P. B. T. B.; Engel, Marion; Schulz, Stephan; Schloter, Michael; Hartmann, Anton; Hamelers, Bert; Buisman, Cees

    2012-01-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode–rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) w...

  13. Microbial fuel cells with an integrated spacer and separate anode and cathode modules

    KAUST Repository

    He, Weihua

    2016-01-01

    A new type of scalable MFC was developed based on using alternating graphite fiber brush array anode modules and dual cathode modules in order to simplify construction, operation, and maintenance of the electrodes. The modular MFC design was tested with a single (two-sided) cathode module with a specific surface area of 29 m2 m−3 based on a total liquid volume (1.4 L; 20 m2 m−3 using the total reactor volume of 2 L), and two brush anode modules. Three different types of spacers were used in the cathode module to provide structural stability, and enhance air flow relative to previous cassette (combined anode–cathode) designs: a low-profile wire spacer; a rigid polycarbonate column spacer; and a flexible plastic mesh spacer. The best performance was obtained using the wire spacer that produced a maximum power density of 1100 ± 10 mW m−2 of cathode (32 ± 0.3 W m−3 based on liquid volume) with an acetate-amended wastewater (COD = 1010 ± 30 mg L−1), compared to 1010 ± 10 mW m−2 for the column and 650 ± 20 mW m−2 for the mesh spacers. Anode potentials were unaffected by the different types of spacers. Raw domestic wastewater produced a maximum of 400 ± 8 mW m−2 under fed batch conditions (wire-spacers), which is one of the highest power densities for this fuel. Over time the maximum power was reduced to 300 ± 10 mW m−2 and 275 ± 7 mW m−2 for the two anode compartments, with only slightly less power of 250 ± 20 mW m−2 obtained under continuous flow conditions. In fixed-resistance tests, the average COD removal was 57 ± 5% at a hydraulic retention time of 8 h. These results show that this modular MFC design can both simplify reactor construction and enable relatively high power generation from even relatively dilute wastewater.

  14. Bacteria and Candida yeasts in inflammations of the oral mucosa in children with secondary immunodeficiency.

    Science.gov (United States)

    Olczak-Kowalczyk, Dorota; Daszkiewicz, Marta; Krasuska-Sławińska; Dembowska-Bagińska, Bozena; Gozdowski, Dariusz; Daszkiewicz, Paweł; Fronc, Beata; Semczuk, Katarzyna

    2012-08-01

    Oral microbial flora and a damaged oral mucosa may increase the risk of bacteriemia, fungemia and complications in immunocompromised patients. Assessment of presence: bacteria and Candida spp. in different oral lesions, and the incidence of bacteremia in the case of a damaged mucosa in transplant recipients and patients receiving anti-tumour chemotherapy. Forty-five patients – 18 months to 18 years of life, were included (20 – organ recipients, 14– anti-tumour chemotherapy, 11 – control group). Clinical, oral mucosa examination focused on the type, severity and site of lesions, and microbiology assessed the presence of bacteria and fungi in the material from lesions. Blood cultures were performed in ten immunocompromised patients with manifestations of systemic infection. The control material consisted of blood cultures made prior to the onset of oral lesions and after 4–6 weeks following their remission in a diagnosed bacteremia. The statistical analysis was performed. In the subjects with secondary immunodeficiency, among other coagulase-negative Staphylococcus (CoNS), Candidia spp. were more frequent. In cancer patients, mucositis was associated with Candida spp., Streptococcus spp. Organ recipients with stomatitis exhibited the presence of CoNS, Streptococcus viridians and other. Oral lesions in the control group contained Haemophilus parainfluenzae, Neisseria spp. and Staphylococcus aureus. In 30% of immunocompromised patients, oral lesions were accompanied by bacteremia. A correlation has been found between oral lesions and the presence of S. aureus in patients without secondary immunodeficiency, and of CoNS, Enterococcus spp., Candida spp. in immunocompromised patients.

  15. Plant-based vaccines for oral delivery of type 1 diabetes-related autoantigens: Evaluating oral tolerance mechanisms and disease prevention in NOD mice.

    Science.gov (United States)

    Posgai, Amanda L; Wasserfall, Clive H; Kwon, Kwang-Chul; Daniell, Henry; Schatz, Desmond A; Atkinson, Mark A

    2017-02-13

    Autoantigen-specific immunological tolerance represents a central objective for prevention of type 1 diabetes (T1D). Previous studies demonstrated mucosal antigen administration results in expansion of Foxp3 + and LAP + regulatory T cells (Tregs), suggesting oral delivery of self-antigens might represent an effective means for modulating autoimmune disease. Early preclinical experiments using the non-obese diabetic (NOD) mouse model reported mucosal administration of T1D-related autoantigens [proinsulin or glutamic acid decarboxylase 65 (GAD)] delayed T1D onset, but published data are conflicting regarding dose, treatment duration, requirement for combinatorial agents, and extent of efficacy. Recently, dogma was challenged in a report demonstrating oral insulin does not prevent T1D in NOD mice, possibly due to antigen digestion prior to mucosal immune exposure. We used transplastomic plants expressing proinsulin and GAD to protect the autoantigens from degradation in an oral vaccine and tested the optimal combination, dose, and treatment duration for the prevention of T1D in NOD mice. Our data suggest oral autoantigen therapy alone does not effectively influence disease incidence or result in antigen-specific tolerance assessed by IL-10 measurement and Treg frequency. A more aggressive approach involving tolerogenic cytokine administration and/or lymphocyte depletion prior to oral antigen-specific immunotherapy will likely be required to impart durable therapeutic efficacy.

  16. Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities.

    Directory of Open Access Journals (Sweden)

    Gemma Henderson

    Full Text Available Molecular microbial ecology techniques are widely used to study the composition of the rumen microbiota and to increase understanding of the roles they play. Therefore, sampling and DNA extraction methods that result in adequate yields of microbial DNA that also accurately represents the microbial community are crucial. Fifteen different methods were used to extract DNA from cow and sheep rumen samples. The DNA yield and quality, and its suitability for downstream PCR amplifications varied considerably, depending on the DNA extraction method used. DNA extracts from nine extraction methods that passed these first quality criteria were evaluated further by quantitative PCR enumeration of microbial marker loci. Absolute microbial numbers, determined on the same rumen samples, differed by more than 100-fold, depending on the DNA extraction method used. The apparent compositions of the archaeal, bacterial, ciliate protozoal, and fungal communities in identical rumen samples were assessed using 454 Titanium pyrosequencing. Significant differences in microbial community composition were observed between extraction methods, for example in the relative abundances of members of the phyla Bacteroidetes and Firmicutes. Microbial communities in parallel samples collected from cows by oral stomach-tubing or through a rumen fistula, and in liquid and solid rumen digesta fractions, were compared using one of the DNA extraction methods. Community representations were generally similar, regardless of the rumen sampling technique used, but significant differences in the abundances of some microbial taxa such as the Clostridiales and the Methanobrevibacter ruminantium clade were observed. The apparent microbial community composition differed between rumen sample fractions, and Prevotellaceae were most abundant in the liquid fraction. DNA extraction methods that involved phenol-chloroform extraction and mechanical lysis steps tended to be more comparable. However

  17. Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide.

    Science.gov (United States)

    Wang, Zhejun; de la Fuente-Núñez, Cesar; Shen, Ya; Haapasalo, Markus; Hancock, Robert E W

    2015-01-01

    Human oral biofilms are multispecies microbial communities that exhibit high resistance to antimicrobial agents. Dental plaque gives rise to highly prevalent and costly biofilm-related oral infections, which lead to caries or other types of oral infections. We investigated the ability of the recently identified anti-biofilm peptide 1018 to induce killing of bacterial cells present within oral multispecies biofilms. At 10 μg/ml (6.5 μM), peptide 1018 was able to significantly (pbiofilm formation over 3 days. The activity of the peptide on preformed biofilms was found to be concentration-dependent since more than 60% of the total plaque biofilm cell population was killed by 10 μg/ml of peptide 1018 in 3 days, while at 5 μg/ml 50% of cells were dead and at 1 μg/ml the peptide triggered cell death in around 30% of the total bacterial population, as revealed by confocal microscopy. The presence of saliva did not affect peptide activity, since no statistically significant difference was found in the ability of peptide 1018 to kill oral biofilms using either saliva coated and non-saliva coated hydroxyapatite surfaces. Scanning electron microscopy experiments indicated that peptide 1018 induced cell lysis in plaque biofilms. Furthermore, combined treatment using peptide 1018 and chlorhexidine (CHX) increased the anti-biofilm activity of each compound compared to when these were used alone, resulting in >50% of the biofilm being killed and >35% being dispersed in only 3 minutes. Peptide 1018 may potentially be used by itself or in combination with CHX as a non-toxic and effective anti-biofilm agent for plaque disinfection in clinical dentistry.

  18. The Oral Microbiome of Denture Wearers Is Influenced by Levels of Natural Dentition

    Science.gov (United States)

    O’Donnell, Lindsay E.; Robertson, Douglas; Nile, Christopher J.; Cross, Laura J.; Riggio, Marcello; Sherriff, Andrea; Bradshaw, David; Lambert, Margaret; Malcolm, Jennifer; Buijs, Mark J.; Zaura, Egija; Crielaard, Wim; Brandt, Bernd W.; Ramage, Gordon

    2015-01-01

    Objectives The composition of dental plaque has been well defined, whereas currently there is limited understanding of the composition of denture plaque and how it directly influences denture related stomatitis (DS). The aims of this study were to compare the microbiomes of denture wearers, and to understand the implications of these towards inter-kingdom and host-pathogen interactions within the oral cavity. Methods Swab samples were obtained from 123 participants wearing either a complete or partial denture; the bacterial composition of each sample was determined using bar-coded illumina MiSeq sequencing of the bacterial hypervariable V4 region of 16S rDNA. Sequencing data processing was undertaken using QIIME, clustered in Operational Taxonomic Units (OTUs) and assigned to taxonomy. The dentures were sonicated to remove the microbial flora residing on the prosthesis, sonicate was then cultured using diagnostic colorex Candida media. Samples of unstimulated saliva were obtained and antimicrobial peptides (AMP) levels were measured by ELISA. Results We have shown that dental and denture plaques are significantly distinct both in composition and diversity and that the oral microbiome composition of a denture wearer is variable and is influenced by the location within the mouth. Dentures and mucosa were predominantly made up of Bacilli and Actinobacteria. Moreover, the presence of natural teeth has a significant impact on the overall microbial composition, when compared to the fully edentulous. Furthermore, increasing levels of Candida spp. positively correlate with Lactobacillus spp. AMPs were quantified, though showed no specific correlations. Conclusions This is the first study to provide a detailed understanding of the oral microbiome of denture wearers and has provided evidence that DS development is more complex than simply a candidal infection. Both fungal and bacterial kingdoms clearly play a role in defining the progression of DS, though we were unable to

  19. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions.

    Science.gov (United States)

    Adler, Christina J; Dobney, Keith; Weyrich, Laura S; Kaidonis, John; Walker, Alan W; Haak, Wolfgang; Bradshaw, Corey J A; Townsend, Grant; Sołtysiak, Arkadiusz; Alt, Kurt W; Parkhill, Julian; Cooper, Alan

    2013-04-01

    The importance of commensal microbes for human health is increasingly recognized, yet the impacts of evolutionary changes in human diet and culture on commensal microbiota remain almost unknown. Two of the greatest dietary shifts in human evolution involved the adoption of carbohydrate-rich Neolithic (farming) diets (beginning ∼10,000 years before the present) and the more recent advent of industrially processed flour and sugar (in ∼1850). Here, we show that calcified dental plaque (dental calculus) on ancient teeth preserves a detailed genetic record throughout this period. Data from 34 early European skeletons indicate that the transition from hunter-gatherer to farming shifted the oral microbial community to a disease-associated configuration. The composition of oral microbiota remained unexpectedly constant between Neolithic and medieval times, after which (the now ubiquitous) cariogenic bacteria became dominant, apparently during the Industrial Revolution. Modern oral microbiotic ecosystems are markedly less diverse than historic populations, which might be contributing to chronic oral (and other) disease in postindustrial lifestyles.

  20. Programming the quorum sensing-based AND gate in Shewanella oneidensis for logic gated-microbial fuel cells.

    Science.gov (United States)

    Hu, Yidan; Yang, Yun; Katz, Evgeny; Song, Hao

    2015-03-11

    An AND logic gate based on a synthetic quorum-sensing (QS) module was constructed in a Shewanella oneidensis MR-1 mtrA knockout mutant. The presence of two input signals activated the expression of a periplasmic decaheme cytochrome MtrA to regenerate the extracellular electron transfer conduit, enabling the construction of AND-gated microbial fuel cells.

  1. Optimal Antibiotic Dosage for Chronic Kidney Disease Patient: A Pharmacological Manual for Oral Clinicians.

    Science.gov (United States)

    Chidambaram, Ramasamy

    2015-01-01

    Chronic kidney disease, (CKD) a gradual and inevitable deterioration in renal function, is the disease with the most associations in dentistry. Dosage adjustment is one amongst the vital elements to be familiar with during their oral care. CKD patients take extended duration to filter out medications, therefore dosage must always be tailored under the supervision of nephrologist. The relished benefits from antibiotic could transform as anti-microbial resistance on their abuse and nephrotoxic when contraindicated drugs are encouraged. New patented drug belonging to oxazoliodine group has driven the researchers to handle the emerging AMR. The present communication discusses the pharmacological factors influencing in prescribing the antibiotics for CKD patient from the dentist's point of view. The formulas destined for calculating the optimal dosage of antibiotics have been documented to aid oral physicians.

  2. [Characterization and microbial community shifts of rice strawdegrading microbial consortia].

    Science.gov (United States)

    Wang, Chunfang; Ma, Shichun; Huang, Yan; Liu, Laiyan; Fan, Hui; Deng, Yu

    2016-12-04

    To study the relationship between microbial community and degradation rate of rice straw, we compared and analyzed cellulose-decomposing ability, microbial community structures and shifts of microbial consortia F1 and F2. We determined exoglucanase activity by 3, 5-dinitrosalicylic acid colorimetry. We determined content of cellulose, hemicellulose and lignin in rice straw by Van Soest method, and calculated degradation rates of rice straw by the weight changes before and after a 10-day incubation. We analyzed and compared the microbial communities and functional microbiology shifts by clone libraries, Miseq analysis and real time-PCR based on the 16S rRNA gene and cel48 genes. Total degradation rate, cellulose, and hemicellulose degradation rate of microbial consortia F1 were significantly higher than that of F2. The variation trend of exoglucanase activity in both microbial consortia F1 and F2 was consistent with that of cel48 gene copies. Microbial diversity of F1 was complex with aerobic bacteria as dominant species, whereas that of F2 was simple with a high proportion of anaerobic cellulose decomposing bacteria in the later stage of incubation. In the first 4 days, unclassified Bacillales and Bacillus were dominant in both F1 and F2. The dominant species and abundance became different after 4-day incubation, Bacteroidetes and Firmicutes were dominant phyla of F1 and F2, respectively. Although Petrimonas and Pusillimonas were common dominant species in F1 and F2, abundance of Petrimonas in F2 (38.30%) was significantly higher than that in F1 (9.47%), and the abundance of Clostridiales OPB54 in F2 increased to 14.85% after 8-day incubation. The abundance of cel48 gene related with cellulose degradation rate and exoglucanase activity, and cel48 gene has the potential as a molecular marker to monitor the process of cellulose degradation. Microbial community structure has a remarkable impact on the degradation efficiency of straw cellulose, and Petrimonas

  3. Trade-offs between microbial growth phases lead to frequency-dependent and non-transitive selection.

    Science.gov (United States)

    Manhart, Michael; Adkar, Bharat V; Shakhnovich, Eugene I

    2018-02-14

    Mutations in a microbial population can increase the frequency of a genotype not only by increasing its exponential growth rate, but also by decreasing its lag time or adjusting the yield (resource efficiency). The contribution of multiple life-history traits to selection is a critical question for evolutionary biology as we seek to predict the evolutionary fates of mutations. Here we use a model of microbial growth to show that there are two distinct components of selection corresponding to the growth and lag phases, while the yield modulates their relative importance. The model predicts rich population dynamics when there are trade-offs between phases: multiple strains can coexist or exhibit bistability due to frequency-dependent selection, and strains can engage in rock-paper-scissors interactions due to non-transitive selection. We characterize the environmental conditions and patterns of traits necessary to realize these phenomena, which we show to be readily accessible to experiments. Our results provide a theoretical framework for analysing high-throughput measurements of microbial growth traits, especially interpreting the pleiotropy and correlations between traits across mutants. This work also highlights the need for more comprehensive measurements of selection in simple microbial systems, where the concept of an ordinary fitness landscape breaks down. © 2018 The Author(s).

  4. Licochalcone A induces apoptosis in KB human oral cancer cells via a caspase-dependent FasL signaling pathway.

    Science.gov (United States)

    Kim, Jae-Sung; Park, Mi-Ra; Lee, Sook-Young; Kim, Do Kyoung; Moon, Sung-Min; Kim, Chun Sung; Cho, Seung Sik; Yoon, Goo; Im, Hee-Jeong; You, Jae-Seek; Oh, Ji-Su; Kim, Su-Gwan

    2014-02-01

    Licochalcone A (Lico-A) is a natural phenol licorice compound with multiple bioactivities, including anti-inflammatory, anti-microbial, anti-fungal and osteogenesis-inducing properties. In the present study, we investigated the Lico-A-induced apoptotic effects and examined the associated apoptosis pathway in KB human oral cancer cells. Lico-A decreased the number of viable KB oral cancer cells. However, Lico-A did not have an effect on primary normal human oral keratinocytes. In addition, the IC50 value of Lico-A was determined to be ~50 µM following dose-dependent stimulation. KB oral cancer cells stimulated with Lico-A for 24 h showed chromatin condensation by DAPI staining, genomic DNA fragmentation by agarose gel electrophoresis and a gradually increased apoptotic cell population by FACS analysis. These data suggest that Lico-A induces apoptosis in KB oral cancer cells. Additionally, Lico‑A‑induced apoptosis in KB oral cancer cells was mediated by the expression of factor associated suicide ligand (FasL) and activated caspase-8 and -3 and poly(ADP-ribose) polymerase (PARP). Furthermore, in the KB oral cancer cells co-stimulation with a caspase inhibitor (Z-VAD-fmk) and Lico-A significantly abolished the apoptotic phenomena. Our findings demonstrated that Lico‑A-induced apoptosis in KB oral cancer cells involves the extrinsic apoptotic signaling pathway, which involves a caspase-dependent FasL-mediated death receptor pathway. Our data suggest that Lico-A be developed as a chemotherapeutic agent for the management of oral cancer.

  5. Microbial biomass dynamics dominate N cycle responses to warming in a sub-arctic peatland

    Science.gov (United States)

    Weedon, J. T.; Aerts, R.; Kowalchuk, G. K.; van Bodegom, P. M.

    2012-04-01

    The balance of primary production and decomposition in sub-arctic peatlands may shift with climate change. Nitrogen availability will modulate this shift, but little is known about the drivers of soil nitrogen dynamics in these environments, and how they are influenced by rising soil temperatures. We used a long-term open top chamber warming experiment in Abisko, Sweden, to test for the interactive effects of spring warming, summer warming and winter snow addition on soil organic and inorganic nitrogen fluxes, potential activities of carbon and nitrogen cycle enzymes, and the structure of the soil-borne microbial communities. Summer warming increased the flux of soil organic nitrogen over the growing season, while simultaneously causing a seasonal decrease in microbial biomass, suggesting that N flux is driven by large late-season dieback of microbes. This change in N cycle dynamics was not reflected in any of the measured potential enzyme activities. Moreover, the soil microbial community structure was stable across treatments, suggesting non-specific microbial dieback. To further test whether the observed patterns were driven by direct temperature effects or indirect effects (via microbial biomass dynamics), we conducted follow-up controlled experiments in soil mesocosms. Experimental additions of dead microbial cells had stronger effects on N pool sizes and enzyme activities than either plant litter addition or a 5 °C alteration in incubation temperatures. Peat respiration was positively affected by both substrate addition and higher incubation temperatures, but the temperature-only effect was not sufficient to account for the increases in respiration observed in previous field experiments. We conclude that warming effects on peatland N cycling (and to some extent C cycling) are dominated by indirect effects, acting through alterations to the seasonal flux of microbe-derived organic matter. We propose that climate change models of soil carbon and nitrogen

  6. Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease.

    Science.gov (United States)

    Ilan, Yaron

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD.

  7. Chronic oral infection with major periodontal bacteria Tannerella forsythia modulates systemic atherosclerosis risk factors and inflammatory markers.

    Science.gov (United States)

    Chukkapalli, Sasanka S; Rivera-Kweh, Mercedes F; Velsko, Irina M; Chen, Hao; Zheng, Donghang; Bhattacharyya, Indraneel; Gangula, Pandu R; Lucas, Alexandra R; Kesavalu, Lakshmyya

    2015-04-01

    Tannerella forsythia is a Gram-negative anaerobic organism that inhabits the subgingival cavity and initiates connective tissue destruction and alveolar bone resorption in periodontal disease (PD). PD is a chronic immunoinflammatory disease and has been linked to several systemic diseases including atherosclerosis. This study evaluated the effects of a chronic oral infection with T. forsythia ATCC 43037 on the induction of PD, inflammatory markers and atherosclerosis risk factors in hyperlipidemic ApoE(null) mice. Mice were orally infected for 12 and 24 weeks prior to euthanasia. Bacterial colonization of the oral cavity and bacteremia was confirmed via isolation of genomic DNA from oral plaque and tissues. Oral infection elicited significantly elevated levels of serum IgG and IgM antibodies and alveolar bone resorption compared to control mice. Tannerella forsythia-infected mice had increased serum amyloid A, and significantly reduced serum nitric oxide when compared to controls. Tannerella forsythia chronic infection also significantly increased serum lipoproteins suggesting altered cholesterol metabolism and potential for aortic inflammation. Despite enhanced acute phase reactants and altered lipid profiles, T. forsythia infection was associated with decreased aortic plaque. This study investigates the potential of a known periodontal bacterial pathogen found in atherosclerotic plaque in humans to accelerate atherosclerosis in hyperlipdemic mice. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Microbial conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lau, P. [National Research Council of Canada, Ottawa, ON (Canada). Bioconversion and Sustainable Development

    2006-07-01

    Microbes are a biomass and an valuable resource. This presentation discussed microbial conversion technologies along with background information on microbial cells, their characteristics and microbial diversity. Untapped opportunities for microbial conversion were identified. Metagenomic and genome mining approaches were also discussed, as they can provide access to uncultivated or unculturable microorganisms in communal populations and are an unlimited resource for biocatalysts, novel genes and metabolites. Genome mining was seen as an economical approach. The presentation also emphasized that the development of microbial biorefineries would require significant insights into the relevant microorganisms and that biocatalysts were the ultimate in sustainability. In addition, the presentation discussed the natural fibres initiative for biochemicals and biomaterials. Anticipated outputs were identified and work in progress of a new enzyme-retting cocktail to provide diversity and/or consistency in fibre characteristics for various applications were also presented. It was concluded that it is necessary to leverage understanding of biological processes to produce bioproducts in a clean and sustainable manner. tabs., figs.

  9. The oral microbiota in patients with pancreatic cancer, patients with IPMNs, and controls: a pilot study.

    Science.gov (United States)

    Olson, Sara H; Satagopan, Jaya; Xu, Youming; Ling, Lilan; Leong, Siok; Orlow, Irene; Saldia, Amethyst; Li, Peter; Nunes, Pamela; Madonia, Vincent; Allen, Peter J; O'Reilly, Eileen; Pamer, Eric; Kurtz, Robert C

    2017-09-01

    Poor oral health appears to be a risk factor for pancreatic cancer, possibly implicating the oral microbiota. In this pilot study, we evaluated the characteristics of the oral microbiota in patients with pancreatic ductal adenocarcinoma (PDAC), intraductal papillary mucinous neoplasms (IPMN), and healthy controls. Forty newly diagnosed PDAC patients, 39 IPMN patients, and 58 controls, excluding current smokers and users of antibiotics, provided saliva samples. Common oral bacterial species were comprehensively surveyed by sequencing of the 16S rRNA microbial genes. We obtained measures of diversity and the mean relative proportions of individual taxa. We explored the degree to which these measures differed according to respondent characteristics based on individual interviews. PDAC cases did not differ in diversity measures from either controls or IPMN cases. PDAC cases had higher mean relative proportions of Firmicutes and related taxa, while controls had higher mean relative proportions of Proteobacteria and related taxa. Results were generally similar when comparing PDAC to IPMN cases. Among IPMNs and controls combined, younger individuals had higher levels of several taxa within the Proteobacteria. The only other variable consistently related to mean relative proportions was mouthwash use, with taxa within Firmicutes more common among users. While there were no differences in diversity of the oral microbiota among these groups, there were differences in the mean relative proportions of some taxa. Characteristics of the oral microbiota are not associated with most measures of oral health.

  10. [Study on Microbial Diversity of Peri-implantitis Subgingival by High-throughput Sequencing].

    Science.gov (United States)

    Li, Zhi-jie; Wang, Shao-guo; Li, Yue-hong; Tu, Dong-xiang; Liu, Shi-yun; Nie, Hong-bing; Li, Zhi-qiang; Zhang, Ju-mei

    2015-07-01

    To study microbial diversity of peri-implantitis subgingival with high-throughput sequencing, and investigate microbiological etiology of peri-implantitis. Subgingival plaques were sampled from the patients with peri-implantitis (D group) and non-peri-implantitis subjects (N group). The microbiological diversity of the subgingival plaques was detected by sequencing V4 region of 16S rRNA with Illumina Miseq platform. The diversity of the community structure was analyzed using Mothur software. A total of 156 507 gene sequences were detected in nine samples and 4 402 operational taxonomic units (OTUs) were found. Selenomonas, Pseudomonas, and Fusobacterium were dominant bacteria in D group, while Fusobacterium, Veillonella and Streptococcus were dominant bacteria in N group. Differences between peri-implantitis and non-peri-implantitis bacterial communities were observed at all phylogenetic levels by LEfSe, which was also found in PcoA test. The occurrence of peri-implantitis is not only related to periodontitis pathogenic microbe, but also related with the changes of oral microbial community structure. Treponema, Herbaspirillum, Butyricimonas and Phaeobacte may be closely related to the occurrence and development of peri-implantitis.

  11. Dehydroandrographolide, an iNOS inhibitor, extracted from Andrographis paniculata (Burm.f.) Nees, induces autophagy in human oral cancer cells.

    Science.gov (United States)

    Hsieh, Ming-Ju; Lin, Chiao-Wen; Chiou, Hui-Ling; Yang, Shun-Fa; Chen, Mu-Kuan

    2015-10-13

    Autophagy, which is constitutively executed at the basal level in all cells, promotes cellular homeostasis by regulating the turnover of organelles and proteins. Andrographolide and dehydroandrographolide (DA) are the two principle components of Andrographis paniculata (Burm.f.) Nees. and are the main contributors to its therapeutic properties. However, the pharmacological activities of dehydroandrographolide (DA) remain unclear. In this study, DA induces oral cancer cell death by activating autophagy. Treatment with autophagy inhibitors inhibited DA-induced human oral cancer cell death. In addition, DA increased LC3-II expression and reduced p53 expression in a time- and concentration-dependent manner. Furthermore, DA induced autophagy and decreased cell viability through modulation of p53 expression. DA-induced autophagy was triggered by an activation of JNK1/2 and an inhibition of Akt and p38. In conclusion, this study demonstrated that DA induced autophagy in human oral cancer cells by modulating p53 expression, activating JNK1/2, and inhibiting Akt and p38. Finally, an administration of DA effectively suppressed the tumor formation in the oral carcinoma xenograft model in vivo. This is the first study to reveal the novel function of DA in activating autophagy, suggesting that DA could serve as a new and potential chemopreventive agent for treating human oral cancer.

  12. Effects of Biochar Blends on Microbial Community Composition in Two Coastal Plain Soils

    Directory of Open Access Journals (Sweden)

    Thomas F. Ducey

    2015-11-01

    Full Text Available The amendment of soil with biochar has been demonstrated to have an effect not only on the soil physicochemical properties, but also on soil microbial community composition and activity. Previous reports have demonstrated significant impacts on soil microbial community structure. These impacts are modulated not only by the biochar composition, but also on the soil’s physicochemical characteristics. This indicates that soil characteristics must be considered prior to biochar amendment. A significant portion of the soils of the southeastern coastal plain are severely degraded and, therefore, candidates for biochar amendment to strengthen soil fertility. In this study we focused on two common soil series in the southeastern coastal plain, utilizing feedstocks endemic to the area. We chose feedstocks in four ratios (100% pine chip; 80:20 mixture of pine chip to poultry litter; 50:50 mixture of pine chip to poultry litter; 100% poultry litter prior to pyrolysis and soil amendment as a biochar product. Soil was analyzed for bioavailable nutrients via Mehlich-1 extractions, as well as microbial community composition using phospholipid fatty acid analysis (PLFA. Our results demonstrated significant shifts in microbial community composition in response to biochar amendment, the effects of which were greatest with 100% poultry litter biochar. Strong relationships between PLFAs and several Mehlich-1 extractable nutrients (Al, Cu, Fe, and P were observed.

  13. Effect of an essential oil-containing dentifrice on dental plaque microbial composition.

    Science.gov (United States)

    Charles, C H; Vincent, J W; Borycheski, L; Amatnieks, Y; Sarina, M; Qaqish, J; Proskin, H M

    2000-09-01

    To determine the effect of 6 months use of an essential oil-containing (EO) antiplaque/antigingivitis fluoride dentifrice on the balance of the oral microbial flora and on the emergence of resistant microbial forms by analysis of dental plaque and saliva. The dentifrice essential oils consisted of a fixed combination of thymol, menthol, methyl salicylate, and eucalyptol. An identical fluoride-containing dentifrice without the essential oils served as the control. A subgroup of 66 subjects from a clinical trial population of 321 was randomly selected for characterization of their dental plaque microflora. Saliva was also cultured to monitor for the emergence of opportunistic pathogens. Supragingival plaque and saliva were harvested at baseline, after which subjects received a dental prophylaxis. Subjects were sampled again after 3 and 6 months of product use prior to clinical examination. Plaque was characterized for microbial content by phase contrast microscopy for recognizable cellular morphotypes and by cultivation on nonselective and selective culture media. Determination of the minimum inhibitory concentrations of the test agent against selected Actinomyces and Veillonella isolated bacterial species was conducted at all time points to monitor for the potential development of bacterial resistance. There were no statistically significant differences between the microbial flora obtained from subjects using the essential oil-containing dentifrice and the vehicle control for all parameters and time periods except for the percentage of spirochetes at 6 months and for percentage of "other" microorganisms at 3 months. The EO group exhibited a lower adjusted mean for both parameters. Additionally, there was no evidence of the development of bacterial resistance to the antimicrobial activity of the essential oils or the emergence of opportunistic pathogens.

  14. In-vitro analysis of APA microcapsules for oral delivery of live bacterial cells.

    Science.gov (United States)

    Chen, H; Ouyang, W; Jones, M; Haque, T; Lawuyi, B; Prakash, S

    2005-08-01

    Oral administration of microcapsules containing live bacterial cells has potential as an alternative therapy for several diseases. This article evaluates the suitability of the alginate-poly-L-lysine-alginate (APA) microcapsules for oral delivery of live bacterial cells, in-vitro, using a dynamic simulated human gastro-intestinal (GI) model. Results showed that the APA microcapsules were morphologically stable in the simulated stomach conditions, but did not retain their structural integrity after a 3-day exposure in simulated human GI media. The microbial populations of the tested bacterial cells and the activities of the tested enzymes in the simulated human GI suspension were not substantially altered by the presence of the APA microcapsules, suggesting that there were no significant adverse effects of oral administration of the APA microcapsules on the flora of the human gastrointestinal tract. When the APA microcapsules containing Lactobacillus plantarum 80 (LP80) were challenged in the simulated gastric medium (pH = 2.0), 80.0% of the encapsulated cells remained viable after a 5-min incubation; however, the viability decreased considerably (8.3%) after 15 min and dropped to 2.6% after 30 min and lower than 0.2% after 60 min, indicating the limitations of the currently obtainable APA membrane for oral delivery of live bacteria. Further in-vivo studies are required before conclusions can be made concerning the inadequacy of APA microcapsules for oral delivery of live bacterial cells.

  15. Microbial community composition and endolith colonization at an Arctic thermal spring are driven by calcite precipitation

    Science.gov (United States)

    Starke, Verena; Kirshtein, Julie; Fogel, Marilyn L.; Steele, Andrew

    2013-01-01

    Environmental conditions shape community composition. Arctic thermal springs provide an opportunity to study how environmental gradients can impose strong selective pressures on microbial communities and provide a continuum of niche opportunities. We use microscopic and molecular methods to conduct a survey of microbial community composition at Troll Springs on Svalbard, Norway, in the high Arctic. Microorganisms there exist under a wide range of environmental conditions: in warm water as periphyton, in moist granular materials, and in cold, dry rock as endoliths. Troll Springs has two distinct ecosystems, aquatic and terrestrial, together in close proximity, with different underlying environmental factors shaping each microbial community. Periphyton are entrapped during precipitation of calcium carbonate from the spring's waters, providing microbial populations that serve as precursors for the development of endolithic communities. This process differs from most endolith colonization, in which the rock predates the communities that colonize it. Community composition is modulated as environmental conditions change within the springs. At Troll, the aquatic environments show a small number of dominant operational taxonomic units (OTUs) that are specific to each sample. The terrestrial environments show a more even distribution of OTUs common to multiple samples.

  16. Deciphering chicken gut microbial dynamics based on high-throughput 16S rRNA metagenomics analyses.

    Science.gov (United States)

    Mohd Shaufi, Mohd Asrore; Sieo, Chin Chin; Chong, Chun Wie; Gan, Han Ming; Ho, Yin Wan

    2015-01-01

    Chicken gut microbiota has paramount roles in host performance, health and immunity. Understanding the topological difference in gut microbial community composition is crucial to provide knowledge on the functions of each members of microbiota to the physiological maintenance of the host. The gut microbiota profiling of the chicken was commonly performed previously using culture-dependent and early culture-independent methods which had limited coverage and accuracy. Advances in technology based on next-generation sequencing (NGS), offers unparalleled coverage and depth in determining microbial gut dynamics. Thus, the aim of this study was to investigate the ileal and caecal microbiota development as chicken aged, which is important for future effective gut modulation. Ileal and caecal contents of broiler chicken were extracted from 7, 14, 21 and 42-day old chicken. Genomic DNA was then extracted and amplified based on V3 hyper-variable region of 16S rRNA. Bioinformatics, ecological and statistical analyses such as Principal Coordinate Analysis (PCoA) was performed in mothur software and plotted using PRIMER 6. Additional analyses for predicted metagenomes were performed through PICRUSt and STAMP software package based on Greengenes databases. A distinctive difference in bacterial communities was observed between ilea and caeca as the chicken aged (P microbial communities in the caeca were more diverse in comparison to the ilea communities. The potentially pathogenic bacteria such as Clostridium were elevated as the chicken aged and the population of beneficial microbe such as Lactobacillus was low at all intervals. On the other hand, based on predicted metagenomes analysed, clear distinction in functions and roles of gut microbiota such as gene pathways related to nutrient absorption (e.g. sugar and amino acid metabolism), and bacterial proliferation and colonization (e.g. bacterial motility proteins, two-component system and bacterial secretion system) were

  17. Microbial Cell Factories for the Production of Terpenoid Flavor and Fragrance Compounds.

    Science.gov (United States)

    Schempp, Florence M; Drummond, Laura; Buchhaupt, Markus; Schrader, Jens

    2018-03-14

    Terpenoid flavor and fragrance compounds are of high interest to the aroma industry. Microbial production offers an alternative sustainable access to the desired terpenoids independent of natural sources. Genetically engineered microorganisms can be used to synthesize terpenoids from cheap and renewable resources. Due to its modular architecture, terpenoid biosynthesis is especially well suited for the microbial cell factory concept: a platform host engineered for a high flux toward the central C 5 prenyl diphosphate precursors enables the production of a broad range of target terpenoids just by varying the pathway modules converting the C 5 intermediates to the product of interest. In this review typical terpenoid flavor and fragrance compounds marketed or under development by biotech and aroma companies are given, and the specificities of the aroma market are discussed. The main part of this work focuses on key strategies and recent advances to engineer microbes to become efficient terpenoid producers.

  18. Microbial Inoculants and Their Impact on Soil Microbial Communities: A Review

    Directory of Open Access Journals (Sweden)

    Darine Trabelsi

    2013-01-01

    Full Text Available The knowledge of the survival of inoculated fungal and bacterial strains in field and the effects of their release on the indigenous microbial communities has been of great interest since the practical use of selected natural or genetically modified microorganisms has been developed. Soil inoculation or seed bacterization may lead to changes in the structure of the indigenous microbial communities, which is important with regard to the safety of introduction of microbes into the environment. Many reports indicate that application of microbial inoculants can influence, at least temporarily, the resident microbial communities. However, the major concern remains regarding how the impact on taxonomic groups can be related to effects on functional capabilities of the soil microbial communities. These changes could be the result of direct effects resulting from trophic competitions and antagonistic/synergic interactions with the resident microbial populations, or indirect effects mediated by enhanced root growth and exudation. Combination of inoculants will not necessarily produce an additive or synergic effect, but rather a competitive process. The extent of the inoculation impact on the subsequent crops in relation to the buffering capacity of the plant-soil-biota is still not well documented and should be the focus of future research.

  19. Molecular microbial ecology manual

    NARCIS (Netherlands)

    Kowalchuk, G.A.; Bruijn, de F.J.; Head, I.M.; Akkermans, A.D.L.

    2004-01-01

    The field of microbial ecology has been revolutionized in the past two decades by the introduction of molecular methods into the toolbox of the microbial ecologist. This molecular arsenal has helped to unveil the enormity of microbial diversity across the breadth of the earth's ecosystems, and has

  20. Microbial electrosynthetic cells

    Energy Technology Data Exchange (ETDEWEB)

    May, Harold D.; Marshall, Christopher W.; Labelle, Edward V.

    2018-01-30

    Methods are provided for microbial electrosynthesis of H.sub.2 and organic compounds such as methane and acetate. Method of producing mature electrosynthetic microbial populations by continuous culture is also provided. Microbial populations produced in accordance with the embodiments as shown to efficiently synthesize H.sub.2, methane and acetate in the presence of CO.sub.2 and a voltage potential. The production of biodegradable and renewable plastics from electricity and carbon dioxide is also disclosed.

  1. Microbial Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Merry [American Society for Microbiology (ASM), Washington, DC (United States); Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2006-10-01

    The American Academy of Microbiology convened a colloquium March 10-12, 2006, in San Francisco, California, to discuss the production of energy fuels by microbial conversions. The status of research into various microbial energy technologies, the advantages and disadvantages of each of these approaches, research needs in the field, and education and training issues were examined, with the goal of identifying routes for producing biofuels that would both decrease the need for fossil fuels and reduce greenhouse gas emissions. Currently, the choices for providing energy are limited. Policy makers and the research community must begin to pursue a broader array of potential energy technologies. A diverse energy portfolio that includes an assortment of microbial energy choices will allow communities and consumers to select the best energy solution for their own particular needs. Funding agencies and governments alike need to prepare for future energy needs by investing both in the microbial energy technologies that work today and in the untested technologies that will serve the world’s needs tomorrow. More mature bioprocesses, such as ethanol production from starchy materials and methane from waste digestors, will find applications in the short term. However, innovative techniques for liquid fuel or biohydrogen production are among the longer term possibilities that should also be vigorously explored, starting now. Microorganisms can help meet human energy needs in any of a number of ways. In their most obvious role in energy conversion, microorganisms can generate fuels, including ethanol, hydrogen, methane, lipids, and butanol, which can be burned to produce energy. Alternatively, bacteria can be put to use in microbial fuel cells, where they carry out the direct conversion of biomass into electricity. Microorganisms may also be used some day to make oil and natural gas technologies more efficient by sequestering carbon or by assisting in the recovery of oil and

  2. Effects of lactoferrin and lactoperoxidase-containing food on the oral microbiota of older individuals.

    Science.gov (United States)

    Nakano, Manabu; Wakabayashi, Hiroyuki; Sugahara, Hirosuke; Odamaki, Toshitaka; Yamauchi, Koji; Abe, Fumiaki; Xiao, Jin-Zhong; Murakami, Kohji; Ishikawa, Kentaro; Hironaka, Shouji

    2017-10-01

    The oral microbiota influences health and disease states. Some gram-negative anaerobic bacteria play important roles in tissue destruction associated with periodontal disease. Lactoferrin (LF) and lactoperoxidase (LPO) are antimicrobial proteins found in saliva; however, their influence on the whole oral microbiota currently remains unknown. In this randomized, double-blinded, placebo-controlled study, the effects of long-term ingestion of LF and LPO-containing tablets on the microbiota of supragingival plaque and tongue coating were assessed. Forty-six older individuals ingested placebo or test tablets after every meal for 8 weeks. The relative abundance of bacterial species was assessed by 16S rRNA gene high-throughput sequencing. Most of the bacterial species in supragingival plaque and tongue coating that exhibited significant decreases in the test group were gram-negative bacteria, including periodontal pathogens. Decreases in the total relative abundance of gram-negative organisms in supragingival plaque and tongue coating correlated with improvements in assessed variables related to oral health, such as oral malodor and plaque accumulation. Furthermore, there was significantly less microbiota diversity in supragingival plaque at 8 weeks in the test group than in the placebo group and low microbiota diversity correlated with improvements in assessed variables related to oral health. These results suggest that LF and LPO-containing tablets promote a shift from a highly diverse and gram-negative-dominated to a gram-positive-dominated community in the microbiota of supragingival plaque and tongue coating. This microbial shift may contribute to improvements in oral health, including oral malodor and state of the gingiva. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  3. Microbial bioinformatics 2020.

    Science.gov (United States)

    Pallen, Mark J

    2016-09-01

    Microbial bioinformatics in 2020 will remain a vibrant, creative discipline, adding value to the ever-growing flood of new sequence data, while embracing novel technologies and fresh approaches. Databases and search strategies will struggle to cope and manual curation will not be sustainable during the scale-up to the million-microbial-genome era. Microbial taxonomy will have to adapt to a situation in which most microorganisms are discovered and characterised through the analysis of sequences. Genome sequencing will become a routine approach in clinical and research laboratories, with fresh demands for interpretable user-friendly outputs. The "internet of things" will penetrate healthcare systems, so that even a piece of hospital plumbing might have its own IP address that can be integrated with pathogen genome sequences. Microbiome mania will continue, but the tide will turn from molecular barcoding towards metagenomics. Crowd-sourced analyses will collide with cloud computing, but eternal vigilance will be the price of preventing the misinterpretation and overselling of microbial sequence data. Output from hand-held sequencers will be analysed on mobile devices. Open-source training materials will address the need for the development of a skilled labour force. As we boldly go into the third decade of the twenty-first century, microbial sequence space will remain the final frontier! © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  4. Dehydroandrographolide, an iNOS inhibitor, extracted from from Andrographis paniculata (Burm.f.) Nees, induces autophagy in human oral cancer cells

    Science.gov (United States)

    Hsieh, Ming-Ju; Lin, Chiao-Wen; Chiou, Hui-Ling; Yang, Shun-Fa; Chen, Mu-Kuan

    2015-01-01

    Autophagy, which is constitutively executed at the basal level in all cells, promotes cellular homeostasis by regulating the turnover of organelles and proteins. Andrographolide and dehydroandrographolide (DA) are the two principle components of Andrographis paniculata (Burm.f.) Nees. and are the main contributors to its therapeutic properties. However, the pharmacological activities of dehydroandrographolide (DA) remain unclear. In this study, DA induces oral cancer cell death by activating autophagy. Treatment with autophagy inhibitors inhibited DA-induced human oral cancer cell death. In addition, DA increased LC3-II expression and reduced p53 expression in a time- and concentration-dependent manner. Furthermore, DA induced autophagy and decreased cell viability through modulation of p53 expression. DA-induced autophagy was triggered by an activation of JNK1/2 and an inhibition of Akt and p38. In conclusion, this study demonstrated that DA induced autophagy in human oral cancer cells by modulating p53 expression, activating JNK1/2, and inhibiting Akt and p38. Finally, an administration of DA effectively suppressed the tumor formation in the oral carcinoma xenograft model in vivo. This is the first study to reveal the novel function of DA in activating autophagy, suggesting that DA could serve as a new and potential chemopreventive agent for treating human oral cancer. PMID:26356821

  5. Pseudomembranous Type of Oral Candidiasis is Associated with Decreased Salivary Flow Rate and Secretory Immunoglobulin A Levels.

    Science.gov (United States)

    Mahajan, Bela; Bagul, Neeta; Desai, Rajiv; Reddy, Mamatha; Mahajan, Amit; Shete, Ashwini; Risbud, Arun; Mane, Arati

    2015-08-01

    Saliva plays an important role in maintaining microbial homeostasis in the oral cavity, while salivary gland hypofunction predisposes the oral mucosa to pathologic alteration and increases the risk for oral candidiasis. This study sought to determine the salivary flow rate (SFR) and secretory immunoglobulin A (SIgA) levels in HIV-positive and HIV-negative individuals and evaluate their relationship with the determinants of oral candidiasis. Sixty HIV-positive (30 with and 30 without oral candidiasis) and 30 healthy HIV-negative individuals were enrolled. Cotton pellet was weighed pre- and post-saliva collection for the assessment of SFR, while SIgA levels were estimated by commercial ELISA (Diametra, Italy) kit. The mean ± SD, SFR and SIgA levels in HIV-positive individuals with candidiasis, without candidiasis and HIV-negative controls were 0.396 ± 0.290, 0.546 ± 0.355 and 0.534 ± 0.214 ml/min and 115.891 ± 37.621, 136.024 ± 51.075 and 149.418 ± 31.765 µg/ml, respectively. A positive correlation between low CD4 counts (indicator of immunodeficiency) and SIgA was observed in HIV-positive individuals with candidiasis (r = 0.373, p = 0.045). We also report here for the first time the significant decrease in SFR and SIgA levels in individuals presenting with pseudomembranous type of oral candidiasis and Candida albicans infection.

  6. Nano-graphene oxide incorporated into PMMA resin to prevent microbial adhesion.

    Science.gov (United States)

    Lee, Jung-Hwan; Jo, Jeong-Ki; Kim, Dong-Ae; Patel, Kapil Dev; Kim, Hae-Won; Lee, Hae-Hyoung

    2018-04-01

    Although polymethyl methacrylate (PMMA) is widely used as a dental material, a major challenge of using this substance is its poor antimicrobial (anti-adhesion) effects, which increase oral infections. Here, graphene-oxide nanosheets (nGO) were incorporated into PMMA to introduce sustained antimicrobial-adhesive effects by increasing the hydrophilicity of PMMA. After characterizing nGO and nGO-incorporated PMMA (up to 2wt%) in terms of morphology and surface characteristics, 3-point flexural strength and hardness were evaluated. The anti-adhesive effects were determined for 4 different microbial species with experimental specimens and the underlying anti-adhesive mechanism was investigated by a non-thermal oxygen plasma treatment. Sustained antimicrobial-adhesive effects were characterized with incubation in artificial saliva for up to 28 days. The typical nanosheet morphology was observed for nGO. Incorporating nGO into PMMA roughened its surface and increased its hydrophilicity without compromising flexural strength or surface hardness. An anti-adhesive effect after 1h of exposure to microbial species in artificial saliva was observed in nGO-incorporated specimens, which accelerated with increasing levels of nGO without significant cytotoxicity to oral keratinocytes. Plasma treatment of native PMMA demonstrated that the antimicrobial-adhesive effects of nGO incorporation were at least partially due to increased hydrophilicity, not changes in the surface roughness. A sustained antimicrobial-adhesive property against Candida albicans was observed in 2% nGO for up to 28 days. The presence of sustained anti-adhesion properties in nGO-incorporated PMMA without loading any antimicrobial drugs suggests the potential usefulness of this compound as a promising antimicrobial dental material for dentures, orthodontic devices and provisional restorative materials. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. ORAL MYIASIS CONVERTING TO ORAL SQUAMOUS CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    Akshay

    2015-10-01

    Full Text Available INTRODUCTION: Oral Myiasis, a condition of infestation of the body by fly larvae (maggots is a rare pathology in humans. It is associated with poor oral hygiene, alcoholism, senility, suppurating lesions, severe halitosis. It is seen frequently in tropical countries and hot climatic regions. The reported cases in literature of oral Myiasis associated with oral cancer are few. The treatment is a mechanical removal of the maggots but a systemic treatment with Ivermectin, a semi - synthetic macrolide antibiotic, has been used successfully for treatment for oral m yiasis. We present a case of 55 yr old male alcoholic patient with oral myiasis with extensive proliferative growth of oral cavity. Our patient was managed with manual debridement and administration of systemic ivermect in along with antibiotic coverage. Incisional biopsy of the proliferative lesion showed well differentiated squamous cell carcinoma. Thus our patient showed presence of oral myiasis in association with oral squamous cell carcinoma.

  8. Examining the association between oral health and oral HPV infection.

    Science.gov (United States)

    Bui, Thanh Cong; Markham, Christine M; Ross, Michael Wallis; Mullen, Patricia Dolan

    2013-09-01

    Oral human papillomavirus (HPV) infection is the cause of 40% to 80% of oropharyngeal cancers; yet, no published study has examined the role of oral health in oral HPV infection, either independently or in conjunction with other risk factors. This study examined the relation between oral health and oral HPV infection and the interactive effects of oral health, smoking, and oral sex on oral HPV infection. Our analyses comprised 3,439 participants ages 30 to 69 years for whom data on oral HPV and oral health were available from the nationally representative 2009-2010 National Health and Nutrition Examination Survey. Results showed that higher unadjusted prevalence of oral HPV infection was associated with four measures of oral health, including self-rated oral health as poor-to-fair [prevalence ratio (PR) = 1.56; 95% confidence interval (CI), 1.25-1.95], indicated the possibility of gum disease (PR = 1.51; 95% CI, 1.13-2.01), reported use of mouthwash to treat dental problems in the past week (PR = 1.28; 95% CI, 1.07-1.52), and higher number of teeth lost (Ptrend = 0.035). In multivariable logistic regression models, oral HPV infection had a statistically significant association with self-rated overall oral health (OR = 1.55; 95% CI, 1.15-2.09), independent of smoking and oral sex. In conclusion, poor oral health was an independent risk factor of oral HPV infection, irrespective of smoking and oral sex practices. Public health interventions may aim to promote oral hygiene and oral health as an additional measure to prevent HPV-related oral cancers.

  9. Probiotic Lactobacillus reuteri has antifungal effects on oral Candida species in vitro

    DEFF Research Database (Denmark)

    Jørgensen, Mette Rose; Kragelund, Camilla; Jensen, Peter Østrup

    2017-01-01

    Background: An alternative approach for managing Candida infections in the oral cavity by modulating the oral microbiota with probiotic bacteria has been proposed.  Objective: The aim was to investigate the antifungal potential of the probiotic bacterium Lactobacillus reuteri (DSM 17938 and ATCC...... PTA 5289) against six oral Candida species (C. albicans, C. glabrata, C. krusei, C. tropicalis, C. dubliniensis, and C. parapsilosis).  Design: The lactobacilli were tested for their ability to co-aggregate with and inhibit the growth of the yeasts assessed by spectrophotometry and the agar overlay...... inhibition assay. Additionally, the pH was evaluated with microsensors, and the production of hydrogen peroxide (H2O2) by the lactobacilli was verified.  Results: Both L. reuteri strains showed co-aggregation abilities with the yeasts. The lactobacilli almost completely inhibited the growth of C. albicans...

  10. Identifying Low pH Active and Lactate-Utilizing Taxa within Oral Microbiome Communities from Healthy Children Using Stable Isotope Probing Techniques

    Energy Technology Data Exchange (ETDEWEB)

    McLean, Jeffrey S.; Fansler, Sarah J.; Majors, Paul D.; Mcateer, Kathleen; Allen, Lisa Z.; Shirtliff, Mark E.; Lux, Renate; Shi, Wenyuan

    2012-03-05

    Many human microbial infectious diseases including dental caries are polymicrobial in nature and how these complex multi-species communities evolve from a healthy to a diseased state is not well understood. Although many health- or disease-associated oral microbes have been characterized in vitro, their physiology in vivo in the presence of the complex oral microbiome is difficult to determine with current approaches. In addition, about half of these oral species remain uncultivated to date and little is known except their 16S rRNA sequence. Lacking culture-based physiological analyses, the functional roles of uncultivated microorganisms will remain enigmatic despite their apparent disease correlation. To start addressing these knowledge gaps, we applied a novel combination of in vivo Magnetic Resonance Spectroscopy (MRS) with RNA and DNA based Stable Isotope Probing (SIP) to oral plaque communities from healthy children for temporal monitoring of carbohydrate utilization, organic acid production and identification of metabolically active and inactive bacterial species.

  11. Licochalcone A induces apoptosis in KB human oral cancer cells via a caspase-dependent FasL signaling pathway

    Science.gov (United States)

    KIM, JAE-SUNG; PARK, MI-RA; LEE, SOOK-YOUNG; KIM, DO KYOUNG; MOON, SUNG-MIN; KIM, CHUN SUNG; CHO, SEUNG SIK; YOON, GOO; IM, HEE-JEONG; YOU, JAE-SEEK; OH, JI-SU; KIM, SU-GWAN

    2014-01-01

    Licochalcone A (Lico-A) is a natural phenol licorice compound with multiple bioactivities, including anti-inflammatory, anti-microbial, anti-fungal and osteogenesis-inducing properties. In the present study, we investigated the Lico-A-induced apoptotic effects and examined the associated apoptosis pathway in KB human oral cancer cells. Lico-A decreased the number of viable KB oral cancer cells. However, Lico-A did not have an effect on primary normal human oral keratinocytes. In addition, the IC50 value of Lico-A was determined to be ~50 μM following dose-dependent stimulation. KB oral cancer cells stimulated with Lico-A for 24 h showed chromatin condensation by DAPI staining, genomic DNA fragmentation by agarose gel electrophoresis and a gradually increased apoptotic cell population by FACS analysis. These data suggest that Lico-A induces apoptosis in KB oral cancer cells. Additionally, Lico-A-induced apoptosis in KB oral cancer cells was mediated by the expression of factor associated suicide ligand (FasL) and activated caspase-8 and −3 and poly(ADP-ribose) polymerase (PARP). Furthermore, in the KB oral cancer cells co-stimulation with a caspase inhibitor (Z-VAD-fmk) and Lico-A significantly abolished the apoptotic phenomena. Our findings demonstrated that Lico-A-induced apoptosis in KB oral cancer cells involves the extrinsic apoptotic signaling pathway, which involves a caspase-dependent FasL-mediated death receptor pathway. Our data suggest that Lico-A be developed as a chemotherapeutic agent for the management of oral cancer. PMID:24337492

  12. The effects of a new mouthrinse containing chlorhexidine, cetylpyridinium chloride and zinc lactate on the microflora of oral halitosis patients : a dual-centre, double-blind placebo-controlled study

    NARCIS (Netherlands)

    Roldan, S; Winkel, EG; Herrera, D; Sanz, M; Van Winkelhoff, AJ

    Aim: This study evaluated the microbial effects of a newly formulated mouthwash (Halita((R)) ) on oral halitosis patients. Methods: Forty subjects were included in this dual-centre, double-blind, placebo-controlled parallel study. Inclusion and exclusion criteria were used to select patients. At

  13. A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring

    Czech Academy of Sciences Publication Activity Database

    Šimek, Karel; Nedoma, Jiří; Znachor, Petr; Kasalický, Vojtěch; Jezbera, Jan; Horňák, Karel; Seďa, Jaromír

    2014-01-01

    Roč. 59, č. 5 (2014), s. 1477-1492 ISSN 0024-3590 R&D Projects: GA ČR(CZ) GA13-00243S Institutional support: RVO:60077344 Keywords : microbial food web * freshwater reservoir * limnology Subject RIV: EE - Microbiology, Virology Impact factor: 3.794, year: 2014

  14. 11 Soil Microbial Biomass

    African Journals Online (AJOL)

    186–198. Insam H. (1990). Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil. Biol. Biochem. 22: 525–532. Insam H. D. and Domsch K. H. (1989). Influence of microclimate on soil microbial biomass. Soil Biol. Biochem. 21: 211–21. Jenkinson D. S. (1988). Determination of microbial.

  15. Effects of Long Term Antibiotic Therapy on Human Oral and Fecal Viromes.

    Science.gov (United States)

    Abeles, Shira R; Ly, Melissa; Santiago-Rodriguez, Tasha M; Pride, David T

    2015-01-01

    Viruses are integral members of the human microbiome. Many of the viruses comprising the human virome have been identified as bacteriophage, and little is known about how they respond to perturbations within the human ecosystem. The intimate association of phage with their cellular hosts suggests their communities may change in response to shifts in bacterial community membership. Alterations to human bacterial biota can result in human disease including a reduction in the host's resilience to pathogens. Here we report the ecology of oral and fecal viral communities and their responses to long-term antibiotic therapy in a cohort of human subjects. We found significant differences between the viral communities of each body site with a more heterogeneous fecal virus community compared with viruses in saliva. We measured the relative diversity of viruses, and found that the oral viromes were significantly more diverse than fecal viromes. There were characteristic changes in the membership of oral and fecal bacterial communities in response to antibiotics, but changes in fecal viral communities were less distinguishing. In the oral cavity, an abundance of papillomaviruses found in subjects on antibiotics suggests an association between antibiotics and papillomavirus production. Despite the abundance of papillomaviruses identified, in neither the oral nor the fecal viromes did antibiotic therapy have any significant impact upon overall viral diversity. There was, however, an apparent expansion of the reservoir of genes putatively involved in resistance to numerous classes of antibiotics in fecal viromes that was not paralleled in oral viromes. The emergence of antibiotic resistance in fecal viromes in response to long-term antibiotic therapy in humans suggests that viruses play an important role in the resilience of human microbial communities to antibiotic disturbances.

  16. Anaerobic oral flora in the North American black bear (Ursus americanus) in eastern North Carolina.

    Science.gov (United States)

    Clarke, Elsburgh O; Stoskopf, Michael K; Minter, Larry J; Stringer, Elizabeth M

    2012-06-01

    Microbial flora can provide insight into the ecology and natural history of wildlife in addition to improving understanding of health risks. This study examines the anaerobic oral flora of hunter killed black bears (Ursus americanus) in eastern North Carolina. Oral swabs from the buccal and lingual supragingival tooth surfaces of the first and second mandibular and maxillary molars of 22 black bears were inoculated onto Brucella Blood Agar plates supplemented with hemin and vitamin K after transport from the field using reduced oxoid nutrient broth. Sixteen anaerobic bacterial species, representing nine genera were identified using the RapID ANA II Micromethod Kit system and a number of organisms grown that could not be identified with the system. The most frequently identified anaerobes were Peptostreptococcus prevotii, Streptococcus constellatus, and Porphyromonas gingivalis. The diversity in the anaerobic oral flora of black bear in eastern North Carolina suggests the importance of including these organisms in basic health risk assessment protocols and suggests a potential tool for assessment of bear/habitat interactions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. MBGD update 2013: the microbial genome database for exploring the diversity of microbial world.

    Science.gov (United States)

    Uchiyama, Ikuo; Mihara, Motohiro; Nishide, Hiroyo; Chiba, Hirokazu

    2013-01-01

    The microbial genome database for comparative analysis (MBGD, available at http://mbgd.genome.ad.jp/) is a platform for microbial genome comparison based on orthology analysis. As its unique feature, MBGD allows users to conduct orthology analysis among any specified set of organisms; this flexibility allows MBGD to adapt to a variety of microbial genomic study. Reflecting the huge diversity of microbial world, the number of microbial genome projects now becomes several thousands. To efficiently explore the diversity of the entire microbial genomic data, MBGD now provides summary pages for pre-calculated ortholog tables among various taxonomic groups. For some closely related taxa, MBGD also provides the conserved synteny information (core genome alignment) pre-calculated using the CoreAligner program. In addition, efficient incremental updating procedure can create extended ortholog table by adding additional genomes to the default ortholog table generated from the representative set of genomes. Combining with the functionalities of the dynamic orthology calculation of any specified set of organisms, MBGD is an efficient and flexible tool for exploring the microbial genome diversity.

  18. HIV enteropathy and aging: gastrointestinal immunity, mucosal epithelial barrier, and microbial translocation.

    Science.gov (United States)

    Wang, Hongyin; Kotler, Donald P

    2014-07-01

    Despite decreases in morbidity and mortality as a result of antiretroviral therapy, gastrointestinal dysfunction remains common in HIV infection. Treated patients are at risk for complications of 'premature' aging, such as cardiovascular disease, osteopenia, neurocognitive decline, malignancies, and frailty. This review summarizes recent observations in this field. Mucosal CD4 lymphocytes, especially Th17 cells, are depleted in acute HIV and simian immune deficiency virus (SIV) infections, although other cell types also are affected. Reconstitution during therapy often is incomplete, especially in mucosa. Mucosal barrier function is affected by both HIV infection and aging and includes paracellular transport via tight junctions and uptake through areas of apoptosis; other factors may affect systemic antigen exposure. The resultant microbial translocation is associated with systemic immune activation in HIV and SIV infections. There is evidence of immune activation and microbial translocation in the elderly. The immune phenotypes of immunosenescence in HIV infection and aging appear similar. There are several targets for intervention; blockage of residual mucosal virus replication, preventing antigen uptake, modulating the microbiome, improving T cell recovery, combining therapies aimed at mucosal integrity, augmenting mucosal immunity, and managing traditional risk factors for premature aging in the general population. Aging may interact with HIV enteropathy to enhance microbial translocation and immune activation.

  19. Microbial ecology of terrestrial Antarctica: Are microbial systems at risk from human activities?

    Energy Technology Data Exchange (ETDEWEB)

    White, G.J.

    1996-08-01

    Many of the ecological systems found in continental Antarctica are comprised entirely of microbial species. Concerns have arisen that these microbial systems might be at risk either directly through the actions of humans or indirectly through increased competition from introduced species. Although protection of native biota is covered by the Protocol on Environmental Protection to the Antarctic Treaty, strict measures for preventing the introduction on non-native species or for protecting microbial habitats may be impractical. This report summarizes the research conducted to date on microbial ecosystems in continental Antarctica and discusses the need for protecting these ecosystems. The focus is on communities inhabiting soil and rock surfaces in non-coastal areas of continental Antarctica. Although current polices regarding waste management and other operations in Antarctic research stations serve to reduce the introduction on non- native microbial species, importation cannot be eliminated entirely. Increased awareness of microbial habitats by field personnel and protection of certain unique habitats from physical destruction by humans may be necessary. At present, small-scale impacts from human activities are occurring in certain areas both in terms of introduced species and destruction of habitat. On a large scale, however, it is questionable whether the introduction of non-native microbial species to terrestrial Antarctica merits concern.

  20. The Safety, Pharmacokinetics, and Effects of LGD-4033, a Novel Nonsteroidal Oral, Selective Androgen Receptor Modulator, in Healthy Young Men

    Science.gov (United States)

    Basaria, Shehzad; Collins, Lauren; Dillon, E. Lichar; Orwoll, Katie; Storer, Thomas W.; Miciek, Renee; Ulloor, Jagadish; Zhang, Anqi; Eder, Richard; Zientek, Heather; Gordon, Gilad; Kazmi, Syed; Sheffield-Moore, Melinda

    2013-01-01

    Background. Concerns about potential adverse effects of testosterone on prostate have motivated the development of selective androgen receptor modulators that display tissue-selective activation of androgenic signaling. LGD-4033, a novel nonsteroidal, oral selective androgen receptor modulator, binds androgen receptor with high affinity and selectivity. Objectives. To evaluate the safety, tolerability, pharmacokinetics, and effects of ascending doses of LGD-4033 administered daily for 21 days on lean body mass, muscle strength, stair-climbing power, and sex hormones. Methods. In this placebo-controlled study, 76 healthy men (21–50 years) were randomized to placebo or 0.1, 0.3, or 1.0 mg LGD-4033 daily for 21 days. Blood counts, chemistries, lipids, prostate-specific antigen, electrocardiogram, hormones, lean and fat mass, and muscle strength were measured during and for 5 weeks after intervention. Results. LGD-4033 was well tolerated. There were no drug-related serious adverse events. Frequency of adverse events was similar between active and placebo groups. Hemoglobin, prostate-specific antigen, aspartate aminotransferase, alanine aminotransferase, or QT intervals did not change significantly at any dose. LGD-4033 had a long elimination half-life and dose-proportional accumulation upon multiple dosing. LGD-4033 administration was associated with dose-dependent suppression of total testosterone, sex hormone–binding globulin, high density lipoprotein cholesterol, and triglyceride levels. follicle-stimulating hormone and free testosterone showed significant suppression at 1.0-mg dose only. Lean body mass increased dose dependently, but fat mass did not change significantly. Hormone levels and lipids returned to baseline after treatment discontinuation. Conclusions. LGD-4033 was safe, had favorable pharmacokinetic profile, and increased lean body mass even during this short period without change in prostate-specific antigen. Longer randomized trials should

  1. The influence of e-waste recycling on the molecular ecological network of soil microbial communities in Pakistan and China.

    Science.gov (United States)

    Jiang, Longfei; Cheng, Zhineng; Zhang, Dayi; Song, Mengke; Wang, Yujie; Luo, Chunling; Yin, Hua; Li, Jun; Zhang, Gan

    2017-12-01

    Primitive electronic waste (e-waste) recycling releases large amounts of organic pollutants and heavy metals into the environment. As crucial moderators of geochemical cycling processes and pollutant remediation, soil microbes may be affected by these contaminants. We collected soil samples heavily contaminated by e-waste recycling in China and Pakistan, and analyzed the indigenous microbial communities. The results of this work revealed that the microbial community composition and diversity, at both whole and core community levels, were affected significantly by polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and heavy metals (e.g., Cu, Zn, and Pb). The geographical distance showed limited impacts on microbial communities compared with geochemical factors. The constructed ecological network of soil microbial communities illustrated microbial co-occurrence, competition and antagonism across soils, revealing the response of microbes to soil properties and pollutants. Two of the three main modules constructed with core operational taxonomic units (OTUs) were sensitive to nutrition (total organic carbon and total nitrogen) and pollutants. Five key OTUs assigned to Acidobacteria, Proteobacteria, and Nitrospirae in ecological network were identified. This is the first study to report the effects of e-waste pollutants on soil microbial network, providing a deeper understanding of the ecological influence of crude e-waste recycling activities on soil ecological functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Metabolomic Studies of Oral Biofilm, Oral Cancer, and Beyond.

    Science.gov (United States)

    Washio, Jumpei; Takahashi, Nobuhiro

    2016-06-02

    Oral diseases are known to be closely associated with oral biofilm metabolism, while cancer tissue is reported to possess specific metabolism such as the 'Warburg effect'. Metabolomics might be a useful method for clarifying the whole metabolic systems that operate in oral biofilm and oral cancer, however, technical limitations have hampered such research. Fortunately, metabolomics techniques have developed rapidly in the past decade, which has helped to solve these difficulties. In vivo metabolomic analyses of the oral biofilm have produced various findings. Some of these findings agreed with the in vitro results obtained in conventional metabolic studies using representative oral bacteria, while others differed markedly from them. Metabolomic analyses of oral cancer tissue not only revealed differences between metabolomic profiles of cancer and normal tissue, but have also suggested a specific metabolic system operates in oral cancer tissue. Saliva contains a variety of metabolites, some of which might be associated with oral or systemic disease; therefore, metabolomics analysis of saliva could be useful for identifying disease-specific biomarkers. Metabolomic analyses of the oral biofilm, oral cancer, and saliva could contribute to the development of accurate diagnostic, techniques, safe and effective treatments, and preventive strategies for oral and systemic diseases.

  3. Oral Carcinogenesis and Oral Cancer Chemoprevention: A Review

    OpenAIRE

    Tanaka, Takuji; Tanaka, Mayu; Tanaka, Takahiro

    2011-01-01

    Oral cancer is one of the major global threats to public health. The development of oral cancer is a tobacco-related multistep and multifocal process involving field cancerization and carcinogenesis. The rationale for molecular-targeted prevention of oral cancer is promising. Biomarkers of genomic instability, including aneuploidy and allelic imbalance, are possible to measure the cancer risk of oral premalignancies. Understanding of the biology of oral carcinogenesis will yield important adv...

  4. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems.

    Science.gov (United States)

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-01-01

    Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.

  5. 'TIME': A Web Application for Obtaining Insights into Microbial Ecology Using Longitudinal Microbiome Data.

    Science.gov (United States)

    Baksi, Krishanu D; Kuntal, Bhusan K; Mande, Sharmila S

    2018-01-01

    Realization of the importance of microbiome studies, coupled with the decreasing sequencing cost, has led to the exponential growth of microbiome data. A number of these microbiome studies have focused on understanding changes in the microbial community over time. Such longitudinal microbiome studies have the potential to offer unique insights pertaining to the microbial social networks as well as their responses to perturbations. In this communication, we introduce a web based framework called 'TIME' (Temporal Insights into Microbial Ecology'), developed specifically to obtain meaningful insights from microbiome time series data. The TIME web-server is designed to accept a wide range of popular formats as input with options to preprocess and filter the data. Multiple samples, defined by a series of longitudinal time points along with their metadata information, can be compared in order to interactively visualize the temporal variations. In addition to standard microbiome data analytics, the web server implements popular time series analysis methods like Dynamic time warping, Granger causality and Dickey Fuller test to generate interactive layouts for facilitating easy biological inferences. Apart from this, a new metric for comparing metagenomic time series data has been introduced to effectively visualize the similarities/differences in the trends of the resident microbial groups. Augmenting the visualizations with the stationarity information pertaining to the microbial groups is utilized to predict the microbial competition as well as community structure. Additionally, the 'causality graph analysis' module incorporated in TIME allows predicting taxa that might have a higher influence on community structure in different conditions. TIME also allows users to easily identify potential taxonomic markers from a longitudinal microbiome analysis. We illustrate the utility of the web-server features on a few published time series microbiome data and demonstrate the

  6. Recent Updates on Treatment of Ocular Microbial Infections by Stem Cell Therapy: A Review

    Directory of Open Access Journals (Sweden)

    Seoh Wei Teh

    2018-02-01

    Full Text Available Ocular microbial infection has emerged as a major public health crisis during the past two decades. A variety of causative agents can cause ocular microbial infections; which are characterized by persistent and destructive inflammation of the ocular tissue; progressive visual disturbance; and may result in loss of visual function in patients if early and effective treatments are not received. The conventional therapeutic approaches to treat vision impairment and blindness resulting from microbial infections involve antimicrobial therapy to eliminate the offending pathogens or in severe cases; by surgical methods and retinal prosthesis replacing of the infected area. In cases where there is concurrent inflammation, once infection is controlled, anti-inflammatory agents are indicated to reduce ocular damage from inflammation which ensues. Despite advances in medical research; progress in the control of ocular microbial infections remains slow. The varying level of ocular tissue recovery in individuals and the incomplete visual functional restoration indicate the chief limitations of current strategies. The development of a more extensive therapy is needed to help in healing to regain vision in patients. Stem cells are multipotent stromal cells that can give rise to a vast variety of cell types following proper differentiation protocol. Stem cell therapy shows promise in reducing inflammation and repairing tissue damage on the eye caused by microbial infections by its ability to modulate immune response and promote tissue regeneration. This article reviews a selected list of common infectious agents affecting the eye; which include fungi; viruses; parasites and bacteria with the aim of discussing the current antimicrobial treatments and the associated therapeutic challenges. We also provide recent updates of the advances in stem cells studies on sepsis therapy as a suggestion of optimum treatment regime for ocular microbial infections.

  7. Recent Updates on Treatment of Ocular Microbial Infections by Stem Cell Therapy: A Review.

    Science.gov (United States)

    Teh, Seoh Wei; Mok, Pooi Ling; Abd Rashid, Munirah; Bastion, Mae-Lynn Catherine; Ibrahim, Normala; Higuchi, Akon; Murugan, Kadarkarai; Mariappan, Rajan; Subbiah, Suresh Kumar

    2018-02-13

    Ocular microbial infection has emerged as a major public health crisis during the past two decades. A variety of causative agents can cause ocular microbial infections; which are characterized by persistent and destructive inflammation of the ocular tissue; progressive visual disturbance; and may result in loss of visual function in patients if early and effective treatments are not received. The conventional therapeutic approaches to treat vision impairment and blindness resulting from microbial infections involve antimicrobial therapy to eliminate the offending pathogens or in severe cases; by surgical methods and retinal prosthesis replacing of the infected area. In cases where there is concurrent inflammation, once infection is controlled, anti-inflammatory agents are indicated to reduce ocular damage from inflammation which ensues. Despite advances in medical research; progress in the control of ocular microbial infections remains slow. The varying level of ocular tissue recovery in individuals and the incomplete visual functional restoration indicate the chief limitations of current strategies. The development of a more extensive therapy is needed to help in healing to regain vision in patients. Stem cells are multipotent stromal cells that can give rise to a vast variety of cell types following proper differentiation protocol. Stem cell therapy shows promise in reducing inflammation and repairing tissue damage on the eye caused by microbial infections by its ability to modulate immune response and promote tissue regeneration. This article reviews a selected list of common infectious agents affecting the eye; which include fungi; viruses; parasites and bacteria with the aim of discussing the current antimicrobial treatments and the associated therapeutic challenges. We also provide recent updates of the advances in stem cells studies on sepsis therapy as a suggestion of optimum treatment regime for ocular microbial infections.

  8. Infusing Oral Health Care into Nursing Curriculum: Addressing Preventive Health in Aging and Disability

    Directory of Open Access Journals (Sweden)

    Joan Earle Hahn

    2012-01-01

    Full Text Available Access to oral health care is essential for promoting and maintaining overall health and well-being, yet oral health disparities exist among vulnerable and underserved populations. While nurses make up the largest portion of the health care work force, educational preparation to address oral health needs of elders and persons with disabilities is limited across nursing curricula. This descriptive study reports on the interdisciplinary development, implementation, and testing of an oral health module that was included and infused into a graduate nursing curriculum in a three-phase plan. Phase 1 includes evaluation of a lecture presented to eight gerontological nurse practitioner (GNP students. Phase 2 includes evaluation of GNP students’ perceptions of learning, skills, and confidence following a one-time 8-hour practicum infused into 80 required practicum hours. The evaluation data show promise in preparing nurse practitioner students to assess and address preventive oral health needs of persons aging with disabilities such that further infusion and inclusion in a course for nurse practitioners across five specialties will implemented and tested in Phase 3.

  9. Infusing Oral Health Care into Nursing Curriculum: Addressing Preventive Health in Aging and Disability

    Science.gov (United States)

    Hahn, Joan Earle; FitzGerald, Leah; Markham, Young Kee; Glassman, Paul; Guenther, Nancy

    2012-01-01

    Access to oral health care is essential for promoting and maintaining overall health and well-being, yet oral health disparities exist among vulnerable and underserved populations. While nurses make up the largest portion of the health care work force, educational preparation to address oral health needs of elders and persons with disabilities is limited across nursing curricula. This descriptive study reports on the interdisciplinary development, implementation, and testing of an oral health module that was included and infused into a graduate nursing curriculum in a three-phase plan. Phase 1 includes evaluation of a lecture presented to eight gerontological nurse practitioner (GNP) students. Phase 2 includes evaluation of GNP students' perceptions of learning, skills, and confidence following a one-time 8-hour practicum infused into 80 required practicum hours. The evaluation data show promise in preparing nurse practitioner students to assess and address preventive oral health needs of persons aging with disabilities such that further infusion and inclusion in a course for nurse practitioners across five specialties will implemented and tested in Phase 3. PMID:22619708

  10. In vitro antimicrobial activity of Caesalpinia ferrea Martius fruits against oral pathogens.

    Science.gov (United States)

    Sampaio, Fábio C; Pereira, Maria do Socorro V; Dias, Celidarque S; Costa, Vicente Carlos O; Conde, Nikeila C O; Buzalaf, Marília A R

    2009-07-15

    In the Amazon region of Brazil, the fruits of Caesalpinia ferrea Martius (Brazilian ironwood) are widely used as an antimicrobial and healing medicine in many situations including oral infections. This study aimed to evaluate the antimicrobial activity of Caesalpinia ferrea Martius fruit extract against oral pathogens. Polyphenols estimation and spectral analysis ((1)H NMR) of the methanol extract were carried out. The microorganisms Candida albicans, Streptococcus mutans, Streptococcus salivarius, Streptococcus oralis and Lactobacillus casei were tested using the microdilution method for planktonic cells (MIC) and a multispecies biofilm model. Chlorhexidine was used as positive control. Polyphenols in the extract were estimated at 7.3% and (1)H NMR analysis revealed hydroxy phenols and methoxilated compounds. MIC values for Candida albicans, Streptococcus mutans, Streptococcus salivarius, Streptococcus oralis and Lactobacillus casei were 25.0, 40.0, 66.0, 100.0, 66.0 microg/mL, respectively. For the biofilm assay, chlorhexidine and plant extract showed no growth at 10(-4) and 10(-5) microbial dilution, respectively. At 10(-4) and 10(-5) the growth values (mean+/-SD) of the negative controls (DMSO and saline solution) for Streptococcus mutans, Streptococcus sp. and Candida albicans were 8.1+/-0.7, 7.0+/-0.6 and 5.9+/-0.9 x 10(6)CFU, respectively. Caesalpinia ferrea fruit extract can inhibit in vitro growth of oral pathogens in planktonic and biofilm models supporting its use for oral infections.

  11. Oral microbiome and oral and gastrointestinal cancer risk

    OpenAIRE

    Ahn, Jiyoung; Chen, Calvin Y.; Hayes, Richard B.

    2012-01-01

    A growing body of evidence implicates human oral bacteria in the etiology of oral and gastrointestinal cancers. Epidemiological studies consistently report increased risks of these cancers in men and women with periodontal disease or tooth loss, conditions caused by oral bacteria. More than 700 bacterial species inhabit the oral cavity, including at least 11 bacterial phyla and 70 genera. Oral bacteria may activate alcohol and smoking-related carcinogens locally or act systemically, through c...

  12. Enhanced Dissolution and Oral Bioavailability of Piroxicam Formulations: Modulating Effect of Phospholipids

    Directory of Open Access Journals (Sweden)

    Muhammad D. Hussain

    2010-10-01

    Full Text Available Several biologically relevant phospholipids were assessed as potential carriers/additives for rapidly dissolving solid formulations of piroxicam (Biopharmaceutics Classification System Class II drug. On the basis of in vitro dissolution studies, dimyristoylphosphatidylglycerol (DMPG was ranked as the first potent dissolution rate enhancer for the model drug. Subsequently, the solid dispersions of varying piroxicam/DMPG ratios were prepared and further investigated. Within the concentration range studied (6.4-16.7 wt %, the dissolution rate of piroxicam from the solid dispersions appeared to increase as a function of the carrier weight fraction, whereas the cumulative drug concentration was not significantly affected by piroxicam/DMPG ratio, presumably due to a unique phase behavior of the aqueous dispersions of this carrier phospholipid. Solid state analysis of DMPG-based formulations reveled that they are two-component systems, with a less thermodynamically stable form of piroxicam (Form II being dispersed within the carrier. Finally, oral bioavailability of piroxicam from the DMPG-based formulations in rats was found to be superior to that of the control, as indicated by the bioavailability parameters, cmax and especially Tmax (53 µg/mL within 2 h vs. 39 µg/mL within 5.5 h, respectively. Hence, DMPG was regarded as the most promising carrier phospholipid for enhancing oral bioavailability of piroxicam and potentially other Class II drugs.

  13. Effectiveness of Discovery Learning-Based Transformation Geometry Module

    Science.gov (United States)

    Febriana, R.; Haryono, Y.; Yusri, R.

    2017-09-01

    Development of transformation geometry module is conducted because the students got difficulties to understand the existing book. The purpose of the research was to find out the effectiveness of discovery learning-based transformation geometry module toward student’s activity. Model of the development was Plomp model consisting preliminary research, prototyping phase and assessment phase. The research was focused on assessment phase where it was to observe the designed product effectiveness. The instrument was observation sheet. The observed activities were visual activities, oral activities, listening activities, mental activities, emotional activities and motor activities. Based on the result of the research, it is found that visual activities, learning activities, writing activities, the student’s activity is in the criteria very effective. It can be concluded that the use of discovery learning-based transformation geometry module use can increase the positive student’s activity and decrease the negative activity.

  14. Metabolomic Studies of Oral Biofilm, Oral Cancer, and Beyond

    Directory of Open Access Journals (Sweden)

    Jumpei Washio

    2016-06-01

    Full Text Available Oral diseases are known to be closely associated with oral biofilm metabolism, while cancer tissue is reported to possess specific metabolism such as the ‘Warburg effect’. Metabolomics might be a useful method for clarifying the whole metabolic systems that operate in oral biofilm and oral cancer, however, technical limitations have hampered such research. Fortunately, metabolomics techniques have developed rapidly in the past decade, which has helped to solve these difficulties. In vivo metabolomic analyses of the oral biofilm have produced various findings. Some of these findings agreed with the in vitro results obtained in conventional metabolic studies using representative oral bacteria, while others differed markedly from them. Metabolomic analyses of oral cancer tissue not only revealed differences between metabolomic profiles of cancer and normal tissue, but have also suggested a specific metabolic system operates in oral cancer tissue. Saliva contains a variety of metabolites, some of which might be associated with oral or systemic disease; therefore, metabolomics analysis of saliva could be useful for identifying disease-specific biomarkers. Metabolomic analyses of the oral biofilm, oral cancer, and saliva could contribute to the development of accurate diagnostic, techniques, safe and effective treatments, and preventive strategies for oral and systemic diseases.

  15. Microbial endocrinology: Host-microbiota neuroendocrine interactions influencing brain and behavior.

    Science.gov (United States)

    Lyte, Mark

    2014-01-01

    The ability of microorganisms, whether present as commensals within the microbiota or introduced as part of a therapeutic regimen, to influence behavior has been demonstrated by numerous laboratories over the last few years. Our understanding of the mechanisms that are responsible for microbiota-gut-brain interactions is, however, lacking. The complexity of the microbiota is, of course, a contributing factor. Nonetheless, while microbiologists approaching the issue of microbiota-gut-brain interactions in the behavior well recognize such complexity, what is often overlooked is the equal complexity of the host neurophysiological system, especially within the gut which is differentially innervated by the enteric nervous system. As such, in the search for common mechanisms by which the microbiota may influence behavior one may look for mechanisms which are shared by both host and microbiota. Such interkingdom signaling can be found in the shared production of neurochemical mediators that are found in both eukaryotes and prokaryotes. The study of the production and recognition of neurochemicals that are exactly the same in structure to those produced in the vertebrate organisms is known as microbial endocrinology. The examination of the microbiota from the vantage point of host-microbiota neuroendocrine interactions cannot only identify new microbial endocrinology-based mechanisms by which the microbiota can influence host behavior, but also lead to the design of interventions in which the composition of the microbiota may be modulated in order to achieve a specific microbial endocrinology-based profile beneficial to overall host behavior.

  16. Oral myiasis

    Directory of Open Access Journals (Sweden)

    Thalaimalai Saravanan

    2015-01-01

    Full Text Available Myiasis is a pathologic condition in humans occurring because of parasitic infestation. Parasites causing myiasis belong to the order Diptera. Oral myiasis is seen secondary to oral wounds, suppurative lesions, and extraction wounds, especially in individuals with neurological deficit. In such cases, neglected oral hygiene and halitosis attracts the flies to lay eggs in oral wounds resulting in oral myiasis. We present a case of oral myiasis in 40-year-old male patient with mental disability and history of epilepsy.

  17. Microbial network, phylogenetic diversity and community membership in the active layer across a permafrost thaw gradient.

    Science.gov (United States)

    Mondav, Rhiannon; McCalley, Carmody K; Hodgkins, Suzanne B; Frolking, Steve; Saleska, Scott R; Rich, Virginia I; Chanton, Jeff P; Crill, Patrick M

    2017-08-01

    Biogenic production and release of methane (CH 4 ) from thawing permafrost has the potential to be a strong source of radiative forcing. We investigated changes in the active layer microbial community of three sites representative of distinct permafrost thaw stages at a palsa mire in northern Sweden. The palsa site (intact permafrost and low radiative forcing signature) had a phylogenetically clustered community dominated by Acidobacteria and Proteobacteria. The bog (thawing permafrost and low radiative forcing signature) had lower alpha diversity and midrange phylogenetic clustering, characteristic of ecosystem disturbance affecting habitat filtering. Hydrogenotrophic methanogens and Acidobacteria dominated the bog shifting from palsa-like to fen-like at the waterline. The fen (no underlying permafrost, high radiative forcing signature) had the highest alpha, beta and phylogenetic diversity, was dominated by Proteobacteria and Euryarchaeota and was significantly enriched in methanogens. The Mire microbial network was modular with module cores consisting of clusters of Acidobacteria, Euryarchaeota or Xanthomonodales. Loss of underlying permafrost with associated hydrological shifts correlated to changes in microbial composition, alpha, beta and phylogenetic diversity associated with a higher radiative forcing signature. These results support the complex role of microbial interactions in mediating carbon budget changes and climate feedback in response to climate forcing. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Oral Microbiota and Risk for Esophageal Squamous Cell Carcinoma in a High-Risk Area of China.

    Science.gov (United States)

    Chen, Xingdong; Winckler, Björn; Lu, Ming; Cheng, Hongwei; Yuan, Ziyu; Yang, Yajun; Jin, Li; Ye, Weimin

    2015-01-01

    Poor oral health has been linked with an increased risk of esophageal squamous cell carcinoma (ESCC). We investigated whether alteration of oral microbiota is associated with ESCC risk. Fasting saliva samples were collected from 87 incident and histopathologicallly diagnosed ESCC cases, 63 subjects with dysplasia and 85 healthy controls. All subjects were also interviewed with a questionnaire. V3-V4 region of 16S rRNA was amplified and sequenced by 454-pyrosequencing platform. Carriage of each genus was compared by means of multivariate-adjusted odds ratios derived from logistic regression model. Relative abundance was compared using Metastats method. Beta diversity was estimated using Unifrac and weighted Unifrac distances. Principal coordinate analysis (PCoA) was applied to ordinate dissimilarity matrices. Multinomial logistic regression was used to compare the coordinates between different groups. ESCC subjects had an overall decreased microbial diversity compared to control and dysplasia subjects (PPCoA coordinates also revealed that ESCC subjects had significantly different levels for several coordinates compared to non-ESCC subjects. In conclusion, we observed a correlation between altered salivary bacterial microbiota and ESCC risk. The results of our study on the saliva microbiome are of particular interest as it reflects the shift in microbial communities. Further studies are warranted to verify this finding, and if being verified, to explore the underlying mechanisms.

  19. Semaphorin4D Drives CD8+ T-Cell Lesional Trafficking in Oral Lichen Planus via CXCL9/CXCL10 Upregulations in Oral Keratinocytes.

    Science.gov (United States)

    Ke, Yao; Dang, Erle; Shen, Shengxian; Zhang, Tongmei; Qiao, Hongjiang; Chang, Yuqian; Liu, Qing; Wang, Gang

    2017-11-01

    Chemokine-mediated CD8 + T-cell recruitment is an essential but not well-established event for the persistence of oral lichen planus (OLP). Semaphorin 4D (Sema4D)/CD100 is implicated in immune dysfunction, chemokine modulation, and cell migration, which are critical aspects for OLP progression, but its implication in OLP pathogenesis has not been determined. In this study, we sought to explicate the effect of Sema4D on human oral keratinocytes and its capacity to drive CD8 + T-cell lesional trafficking via chemokine modulation. We found that upregulations of sSema4D in OLP tissues and blood were positively correlated with disease severity and activity. In vitro observation revealed that Sema4D induced C-X-C motif chemokine ligand 9/C-X-C motif chemokine ligand 10 production by binding to plexin-B1 via protein kinase B-NF-κB cascade in human oral keratinocytes, which elicited OLP CD8 + T-cell migration. We also confirmed using clinical samples that elevated C-X-C motif chemokine ligand 9/C-X-C motif chemokine ligand 10 levels were positively correlated with sSema4D levels in OLP lesions and serum. Notably, we determined matrix metalloproteinase-9 as a new proteolytic enzyme for the cleavage of sSema4D from the T-cell surface, which may contribute to the high levels of sSema4D in OLP lesions and serum. Our findings conclusively revealed an amplification feedback loop involving T cells, chemokines, and Sema4D-dependent signal that promotes OLP progression. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. [Effect of Long-Term Application of Agrotechnical Techniques and Crops on Soil Microbial Communities].

    Science.gov (United States)

    Korvigo, I O; Pershina, E V; Ivanova, E A; Matyuk, N S; Savos'kina, O A; Chirak, E L; Provorov, N A; Andronov, E E

    2016-01-01

    Effects of long-term application ofvarious fertilizers and crops on soil microbiomes an a long-term field experiment were investigated using the library of the 16S rRNA gene sequences obtained by high-throughput sequencing of the total DNA. The communities exhibited high diversity, with 655 microbial genera belonging to 34 phyla detected (31 bacterial and 3 archaeal ones). For analysis of the effect of the studied factors on community structure, a linear model was developed in order to simplify interpretation of the data of high-throughput sequencing and to obtain biologically important information. Liming was shown to modulate the effect of mineral fertilizers on the structure of microbial populations. The differences in the structure and alpha-diversity of microbial communities were shown to depend more on the crops and liming, rather than on the fertilizers applied. Interaction between the crop factor and liming expressed as an ambiguous effect of liming on the microbiome in the presence of different plants was reliably demonstrated. Thus, in the case of barley and clover, liming resulted in increased taxonomic diversity of the community, while in the case of potato and flax it had an opposite effect.

  1. Effects of dietary fat on appetite and energy intake in health and obesity--oral and gastrointestinal sensory contributions.

    Science.gov (United States)

    Little, Tanya J; Feinle-Bisset, Christine

    2011-09-26

    While epidemiological studies have revealed a strong positive relationship between the intake of dietary fat with total energy intake and body weight, laboratory-based studies investigating physiological effects of fat have demonstrated that the direct exposure of receptors in the oral cavity and small intestine to fat, specifically fatty acids (FAs), induces potent effects on gastrointestinal (GI) motility and gut peptide secretion that favor the suppression of appetite and energy intake. Recent studies in humans have demonstrated an association between a decreased ability to detect the presence of FAs in the oral cavity with increased energy intake and body mass index suggesting that impairment of oral fat sensing mechanisms may contribute to overeating and obesity. Furthermore, while sensing of the presence of FAs in the small intestine results in the modulation of GI motility, stimulation of GI hormone release, including cholecystokinin (CCK) and peptide YY (PYY), and suppression of subsequent energy intake, recent data indicate that these effects of fat are attenuated in individuals with reduced oral sensitivity to fat, and following consumption of a high-fat diet. This review will focus on emerging knowledge about the physiological mechanisms that sense the presence of fat in both the oral cavity and the small intestine, and environmental factors, such as high-fat diet exposure and energy restriction, that may modulate sensitivity to nutrients, and thereby contribute to the regulation of appetite and body weight. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Microbial profile comparisons of saliva, pooled and site-specific subgingival samples in periodontitis patients.

    Directory of Open Access Journals (Sweden)

    Daniel Belstrøm

    Full Text Available The purpose of this study was to compare microbial profiles of saliva, pooled and site-specific subgingival samples in patients with periodontitis. We tested the hypotheses that saliva can be an alternative to pooled subgingival samples, when screening for presence of periopathogens.Site specific subgingival plaque samples (n = 54, pooled subgingival plaque samples (n = 18 and stimulated saliva samples (n = 18 were collected from 18 patients with generalized chronic periodontitis. Subgingival and salivary microbiotas were characterized by means of HOMINGS (Human Oral Microbe Identification using Next Generation Sequencing and microbial community profiles were compared using Spearman rank correlation coefficient.Pronounced intraindividual differences were recorded in site-specific microbial profiles, and site-specific information was in general not reflected by pooled subgingival samples. Presence of Porphyromonas gingivalis, Treponema denticola, Prevotella intermedia, Filifactor alocis, Tannerella forsythia and Parvimona micra in site-specific subgingival samples were detected in saliva with an AUC of 0.79 (sensitivity: 0.61, specificity: 0.94, compared to an AUC of 0.76 (sensitivity: 0.56, specificity: 0.94 in pooled subgingival samples.Site-specific presence of periodontal pathogens was detected with comparable accuracy in stimulated saliva samples and pooled subgingival plaque samples. Consequently, saliva may be a reasonable surrogate for pooled subgingival samples when screening for presence of periopathogens. Future large-scale studies are needed to confirm findings from this study.

  3. Scandinavian Fellowship for Oral Pathology and Oral Medicine

    DEFF Research Database (Denmark)

    Kragelund, Camilla; Reibel, J; Hietanen, J

    2012-01-01

    as new approaches, treatments and diagnostic possibilities develop. Likewise, the role of the dentist in the community changes and may vary in different countries. As members of the Scandinavian Fellowship for Oral Pathology and Oral Medicine and subject representatives of oral pathology and oral......In Scandinavia, as in many European countries, most patients consult their general dentist once a year or more. This gives the dentist a unique opportunity and an obligation to make an early diagnosis of oral diseases, which is beneficial for both the patient and the society. Thus, the dentist must...... medicine, we feel obliged to contribute to the discussion of how the guidelines of the dental curriculum support the highest possible standards of dental education. This article is meant to delineate a reasonable standard of oral pathology and oral medicine in the European dental curriculum and to guide...

  4. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    Science.gov (United States)

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  5. A theoretical reassessment of microbial maintenance and implications for microbial ecology modeling.

    Science.gov (United States)

    Wang, Gangsheng; Post, Wilfred M

    2012-09-01

    We attempted to reconcile three microbial maintenance models (Herbert, Pirt, and Compromise) through a theoretical reassessment. We provided a rigorous proof that the true growth yield coefficient (Y(G)) is the ratio of the specific maintenance rate (a in Herbert) to the maintenance coefficient (m in Pirt). Other findings from this study include: (1) the Compromise model is identical to the Herbert for computing microbial growth and substrate consumption, but it expresses the dependence of maintenance on both microbial biomass and substrate; (2) the maximum specific growth rate in the Herbert (μ(max,H)) is higher than those in the other two models (μ(max,P) and μ(max,C)), and the difference is the physiological maintenance factor (m(q) = a); and (3) the overall maintenance coefficient (m(T)) is more sensitive to m(q) than to the specific growth rate (μ(G)) and Y(G). Our critical reassessment of microbial maintenance provides a new approach for quantifying some important components in soil microbial ecology models. © This article is a US government work and is in the public domain in the USA.

  6. Influence of the Toothpaste with Brazilian Ethanol Extract Propolis on the Oral Cavity Health

    Directory of Open Access Journals (Sweden)

    Dariusz Skaba

    2013-01-01

    Full Text Available Propolis-based therapeutic agents represent this potential for the development of new drugs in dental care. The aim of a clinical-cohort study was to determine the influence of application of toothpaste enriched with Brazilian extract of propolis (EEP on health status of oral cavity. Laboratory analysis was conducted in order to assess the chemical composition of EEP including total phenolic compounds, the DPPH (1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, ABTS radical cation scavenging activity, and FRAP assay. Clinical research involved two groups of subjects comprising 32 adult patients, with assessment based on the preliminary evaluation of the state of their marginal periodontium. The investigation of oral health indices API, OHI, and SBI and microbiological examination of oral microflora were also carried out. Results obtained indicated time-dependent microbial action of EEP at 50 mg/L concentration, with antimicrobial activity against Gram-positive bacteria. The total decrease of API, OHI, and SBI mean values was observed. Hygienic preparations with 3% content of Brazilian ethanol extract of green propolis (EEP efficiently support removal of dental plaque and improve the state of marginal periodontium.

  7. Development of a dual-modality, dual-view smartphone-based imaging system for oral cancer detection

    Science.gov (United States)

    Uthoff, Ross D.; Song, Bofan; Birur, Praveen; Kuriakose, Moni Abraham; Sunny, Sumsum; Suresh, Amritha; Patrick, Sanjana; Anbarani, Afarin; Spires, Oliver; Wilder-Smith, Petra; Liang, Rongguang

    2018-02-01

    Oral cancer is a rising health issue in many low and middle income countries (LMIC). Proposed is an implementation of autofluorescence imaging (AFI) and white light imaging (WLI) on a smartphone platform providing inexpensive early detection of cancerous conditions in the oral cavity. Interchangeable modules allow both whole mouth imaging for an overview of the patients' oral health and an intraoral imaging probe for localized information. Custom electronics synchronize image capture and external LED operation for the excitation of tissue fluorescence. A custom Android application captures images and an image processing algorithm provides likelihood estimates of cancerous conditions. Finally, all data can be uploaded to a cloud server where a convolutional neural network classifies the images and a remote specialist can provide diagnosis and triage instructions.

  8. Microbial profile of a kefir sample preparations: grains in natura and lyophilized and fermented suspension

    Directory of Open Access Journals (Sweden)

    Rafaela Strada de Oliveira Bergmann

    2010-12-01

    Full Text Available Probiotics are supplementary foods developed by microbial strains that improve animal health beyond basic nutrition. Probiotics are consumed orally, regardless of being considered as normal inhabitants of the intestines, able to survive in enzimatic and biliary secretions. Kefir is a probiotic originated from the old continent, fermented by several bacteria and yeasts, encapsulated in a polyssacharide matrix, and resembles jelly grains. Kefir is also presented as its sourish product both in sugary or milky suspensions containing vitamins, aminoacids, peptides, carbohydrates, ethanol, and volatile compounds. Kefir is known to have a diverse microbial content depending on the country and fermentative substrates, which cause distinct probiotic effects. In this sense, the purpose of this work was to isolate, identify, and quantify the microbial content of a native sugary kefir sample (fermented suspension and lyophilized natural grains. Serial dilutions were plated on Rogosa agar (AR and De Man, Rogosa and Sharpe (MRS, for Lactobacillus; Brain Heart Infusion (BHI, for total bacteria; Sabouraud-Dextrose-Agar (SDA, for yeasts and filamentous fungi; Thioglycolate Agar (TA, for Streptococcus, Acetobacteria and Leuconostoc; and Coconut Water Agar (CWA, and CWA supplemented with yeast extract (CWAY, for various genera. Genera and species for all strains were identified through biochemical reactions and specific API systems. The microbial profile of kefir was different from other sources of grains despite the presence of similar microorganisms and others which have not been reported yet. The data obtained with the CWA and CWAE media suggest that both substrates are alternative and salutary media for culture of kefir strains.

  9. The Microbial DNA Index System (MiDIS): A tool for microbial pathogen source identification

    Energy Technology Data Exchange (ETDEWEB)

    Velsko, S. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-08-09

    The microbial DNA Index System (MiDIS) is a concept for a microbial forensic database and investigative decision support system that can be used to help investigators identify the sources of microbial agents that have been used in a criminal or terrorist incident. The heart of the proposed system is a rigorous method for calculating source probabilities by using certain fundamental sampling distributions associated with the propagation and mutation of microbes on disease transmission networks. This formalism has a close relationship to mitochondrial and Y-chromosomal human DNA forensics, and the proposed decision support system is somewhat analogous to the CODIS and SWGDAM mtDNA databases. The MiDIS concept does not involve the use of opportunistic collections of microbial isolates and phylogenetic tree building as a basis for inference. A staged approach can be used to build MiDIS as an enduring capability, beginning with a pilot demonstration program that must meet user expectations for performance and validation before evolving into a continuing effort. Because MiDIS requires input from a a broad array of expertise including outbreak surveillance, field microbial isolate collection, microbial genome sequencing, disease transmission networks, and laboratory mutation rate studies, it will be necessary to assemble a national multi-laboratory team to develop such a system. The MiDIS effort would lend direction and focus to the national microbial genetics research program for microbial forensics, and would provide an appropriate forensic framework for interfacing to future national and international disease surveillance efforts.

  10. Effects of Elevated Carbon Dioxide and Salinity on the Microbial Diversity in Lithifying Microbial Mats

    Directory of Open Access Journals (Sweden)

    Steven R. Ahrendt

    2014-03-01

    Full Text Available Atmospheric levels of carbon dioxide (CO2 are rising at an accelerated rate resulting in changes in the pH and carbonate chemistry of the world’s oceans. However, there is uncertainty regarding the impact these changing environmental conditions have on carbonate-depositing microbial communities. Here, we examine the effects of elevated CO2, three times that of current atmospheric levels, on the microbial diversity associated with lithifying microbial mats. Lithifying microbial mats are complex ecosystems that facilitate the trapping and binding of sediments, and/or the precipitation of calcium carbonate into organosedimentary structures known as microbialites. To examine the impact of rising CO2 and resulting shifts in pH on lithifying microbial mats, we constructed growth chambers that could continually manipulate and monitor the mat environment. The microbial diversity of the various treatments was compared using 16S rRNA gene pyrosequencing. The results indicated that elevated CO2 levels during the six month exposure did not profoundly alter the microbial diversity, community structure, or carbonate precipitation in the microbial mats; however some key taxa, such as the sulfate-reducing bacteria Deltasulfobacterales, were enriched. These results suggest that some carbonate depositing ecosystems, such as the microbialites, may be more resilient to anthropogenic-induced environmental change than previously thought.

  11. MICROBIAL FUEL CELL

    DEFF Research Database (Denmark)

    2008-01-01

    A novel microbial fuel cell construction for the generation of electrical energy. The microbial fuel cell comprises: (i) an anode electrode, (ii) a cathode chamber, said cathode chamber comprising an in let through which an influent enters the cathode chamber, an outlet through which an effluent...

  12. Molecular ecology of microbial mats

    NARCIS (Netherlands)

    Bolhuis, H.; Cretoiu, M.S.; Stal, L.J.

    2014-01-01

    Phototrophic microbial mats are ideal model systems for ecological and evolutionary analysis of highly diverse microbial communities. Microbial mats are small-scale, nearly closed, and self-sustaining benthic ecosystems that comprise the major element cycles, trophic levels, and food webs. The steep

  13. Answer Me These Questions Three: Using Online Training to Improve Students' Oral Source Citations

    Science.gov (United States)

    Buerkle, C. Wesley; Gearhart, Christopher C.

    2017-01-01

    This experimental study examines an online module designed to increase student competence in oral citation behavior using a mastery training strategy. Students in the experimental condition provided complete citations at a higher rate and provided more citation information for traditional and web-based sources compared with a control group without…

  14. Microbial biosensors for environmental monitoring

    Directory of Open Access Journals (Sweden)

    David VOGRINC

    2015-12-01

    Full Text Available Microbial biosensors are analytical devices capable of sensing substances in the environment due to the specific biological reaction of the microorganism or its parts. Construction of a microbial biosensor requires knowledge of microbial response to the specific analyte. Linking this response with the quantitative data, using a transducer, is the crucial step in the construction of a biosensor. Regarding the transducer type, biosensors are divided into electrochemical, optical biosensors and microbial fuel cells. The use of the proper configuration depends on the selection of the biosensing element. With the use of transgenic E. coli strains, bioluminescence or fluorescence based biosensors were developed. Microbial fuel cells enable the use of the heterogeneous microbial populations, isolated from wastewater. Different microorganisms are used for different pollutants – pesticides, heavy metals, phenolic compounds, organic waste, etc. Biosensing enables measurement of their concentration and their toxic or genotoxic effects on the microbes. Increasing environmental awareness has contributed to the increase of interest for biomonitoring. Although technologies, such as bioinformatics and genetic engineering, allow us to design complex and efficient microbial biosensors for environmental pollutants, the transfer of the laboratory work to the field still remains a problem to solve.

  15. ‘TIME’: A Web Application for Obtaining Insights into Microbial Ecology Using Longitudinal Microbiome Data

    Directory of Open Access Journals (Sweden)

    Krishanu D. Baksi

    2018-01-01

    Full Text Available Realization of the importance of microbiome studies, coupled with the decreasing sequencing cost, has led to the exponential growth of microbiome data. A number of these microbiome studies have focused on understanding changes in the microbial community over time. Such longitudinal microbiome studies have the potential to offer unique insights pertaining to the microbial social networks as well as their responses to perturbations. In this communication, we introduce a web based framework called ‘TIME’ (Temporal Insights into Microbial Ecology’, developed specifically to obtain meaningful insights from microbiome time series data. The TIME web-server is designed to accept a wide range of popular formats as input with options to preprocess and filter the data. Multiple samples, defined by a series of longitudinal time points along with their metadata information, can be compared in order to interactively visualize the temporal variations. In addition to standard microbiome data analytics, the web server implements popular time series analysis methods like Dynamic time warping, Granger causality and Dickey Fuller test to generate interactive layouts for facilitating easy biological inferences. Apart from this, a new metric for comparing metagenomic time series data has been introduced to effectively visualize the similarities/differences in the trends of the resident microbial groups. Augmenting the visualizations with the stationarity information pertaining to the microbial groups is utilized to predict the microbial competition as well as community structure. Additionally, the ‘causality graph analysis’ module incorporated in TIME allows predicting taxa that might have a higher influence on community structure in different conditions. TIME also allows users to easily identify potential taxonomic markers from a longitudinal microbiome analysis. We illustrate the utility of the web-server features on a few published time series microbiome

  16. Microbial shifts in the swine nasal microbiota in response to parenteral antimicrobial administration.

    Science.gov (United States)

    Zeineldin, Mohamed; Aldridge, Brian; Blair, Benjamin; Kancer, Katherine; Lowe, James

    2018-05-24

    The continuous administration of antimicrobials in swine production has been widely criticized with the increase of antimicrobial-resistant bacteria and dysbiosis of the beneficial microbial communities. While an increasing number of studies investigate the effects of antimicrobial administration on swine gastrointestinal microbiota biodiversity, the impact of their use on the composition and diversity of nasal microbial communities has not been widely explored. The objective of this study was to characterize the short-term impact of different parenteral antibiotics administration on the composition and diversity of nasal microbial communities in growing pigs. Five antimicrobial treatment groups, each consisting of four, eight-week old piglets, were administered one of the antimicrobials; Ceftiofur Crystalline free acid (CCFA), Ceftiofur hydrochloride (CHC), Tulathromycin (TUL), Oxytetracycline (OTC), and Procaine Penicillin G (PPG) at label dose and route. Individual deep nasal swabs were collected immediately before antimicrobial administration (control = day 0), and again on days 1, 3, 7, and 14 after dosing. The nasal microbiota across all the samples were dominated by Firmicutes, proteobacteria and Bacteroidetes. While, the predominant bacterial genera were Moraxella, Clostridium and Streptococcus. Linear discriminant analysis, showed a pronounced, antimicrobial-dependent microbial shift in the composition of nasal microbiota and over time from day 0. By day 14, the nasal microbial compositions of the groups receiving CCFA and OTC had returned to a distribution that closely resembled that observed on day 0. In contrast, pigs that received CHC, TUL and PPG appeared to deviate away from the day 0 composition by day 14. Based on our results, it appears that the impact of parenteral antibiotics on the swine nasal microbiota is variable and has a considerable impact in modulating the nasal microbiota structure. Our results will aid in developing alternative

  17. Image-guided intensity modulated radiotherapy with helical tomotherapy for postoperative treatment of high-risk oral cavity cancer

    International Nuclear Information System (INIS)

    Hsieh, Chen-Hsi; Hsieh, Yen-Ping; Lin, Shoei Long; Chen, Chun-Yi; Chen, Chien-An; Shueng, Pei-Wei; Kuo, Ying-Shiung; Liao, Li-Jen; Hu, Kawang-Yu; Lin, Shih-Chiang; Wu, Le-Jung; Lin, Yu-Chin; Chen, Yu-Jen; Wang, Li-Ying

    2011-01-01

    The aim of this study was to assess the treatment results and toxicity profiles of helical tomotherapy (HT) for postoperative high-risk oral cavity cancer. From December 6, 2006 through October 9, 2009, 19 postoperative high-risk oral cavity cancer patients were enrolled. All of the patients received HT with (84%) or without (16%) chemotherapy. The median follow-up time was 17 months. The 2-year overall survival, disease-free survival, locoregional control, and distant metastasis-free rates were 94%, 84%, 92%, and 94%, respectively. The package of overall treatment time > 13 wk, the interval between surgery and radiation ≤ 6 wk, and the overall treatment time of radiation ≤ 7 wk was 21%, 84%, and 79%, respectively. The percentage of grade 3 mucositis, dermatitis, and leucopenia was 42%, 5% and 5%, respectively. HT achieved encouraging clinical outcomes for postoperative high-risk oral cavity cancer patients with high compliance. A long-term follow-up study is needed to confirm these preliminary findings

  18. Determinants of Oral Health: Does Oral Health Literacy Matter?

    OpenAIRE

    Naghibi Sistani, Mohammad Mehdi; Yazdani, Reza; Virtanen, Jorma; Pakdaman, Afsaneh; Murtomaa, Heikki

    2013-01-01

    Objective. To evaluate oral health literacy, independent of other oral health determinants, as a risk indicator for self-reported oral health. Methods. A cross-sectional population-based survey conducted in Tehran, Iran. Multiple logistic regression analysis served to estimate the predictive effect of oral health literacy on self-reported oral health status (good versus poor) controlling for socioeconomic and demographic factors and tooth-brushing behavior. Results. In all, among 1031 partici...

  19. Socioeconomic inequalities in oral health in different European welfare state regimes.

    Science.gov (United States)

    Guarnizo-Herreño, Carol C; Watt, Richard G; Pikhart, Hynek; Sheiham, Aubrey; Tsakos, Georgios

    2013-09-01

    There is very little information about the relationship between welfare regimes and oral health inequalities. We compared socioeconomic inequalities in adults' oral health in five European welfare-state regimes: Scandinavian, Anglo-Saxon, Bismarckian, Southern and Eastern. Using data from the oral health module of the Eurobarometer 72.3 survey, we assessed inequalities in two self-reported oral health measures: no functional dentition (less than 20 natural teeth) and edentulousness (no natural teeth). Occupational social class, education and subjective social status (SSS) were included as socioeconomic position indicators. We estimated age-standardised prevalence rates, ORs, the Relative Index of Inequality (RII) and the Slope Index of Inequality (SII). The Scandinavian regime showed the lowest prevalence rates of the two oral health measures while the Eastern showed the highest. In all welfare regimes there was a general pattern of social gradients by occupational social class and education. Relative educational inequalities in no functional dentition were largest in the Scandinavian welfare regime (RII=3.81; 95% CI 2.68 to 5.42). The Scandinavian and Southern regimes showed the largest relative inequalities in edentulousness by occupation and education, respectively. There were larger absolute inequalities in no functional dentition in the Eastern regime by occupation (SII=42.16; 95% CI 31.42 to 52.89) and in the Southern by SSS (SII=27.92; 95% CI 17.36 to 38.47). Oral health inequalities in adults exist in all welfare-state regimes, but contrary to what may be expected from theory, they are not smaller in the Scandinavian regime. Future work should examine the potential mechanisms linking welfare provision and oral health inequalities.

  20. Oral health-related quality of life of a consecutive sample of Spanish dental patients.

    Science.gov (United States)

    Montero, Javier; Yarte, José-María; Bravo, Manuel; López-Valverde, Antonio

    2011-09-01

    Assessment of the oral health-related quality of life and the modulating factors of patients demanding dental treatment in the city of Salamanca, through the use of two validated instruments: the OIDP-sp (Oral Impacts on Daily Performance) and OHIP-14 (Oral Health Impact Profile). the study was conducted on a consecutive sample of 200 patients aged 18-65 years visiting an Integral Dental Centre in the city of Salamanca. Two validated instruments (OIDP-sp and OHIP-14) were used to measure the oral health-related quality of life. An analogue visual scale was used to register oral satisfaction. Data on sociodemographic background, behavioural and clinical factors were also gathered. ANOVA, T Student Test, and both Pearson and Spearman correlations coefficients were used for the statistical analysis. according to the OIDP, 68.5% suffered from some kind of impact in their oral quality of life, while impact prevalence with the OHIP was 85%. Some other factors influencing the quality of life and degree of satisfaction were revealed. patients over 45 years, regardless of their gender, from high social class, living in rural areas and with poor hygiene, showed higher impact and lower satisfaction. The study also revealed some clinical conditions closely related to the level of satisfaction.

  1. Hydrodynamics of microbial filter feeding

    DEFF Research Database (Denmark)

    Nielsen, Lasse Tor; Asadzadeh, Seyed Saeed; Dölger, Julia

    2017-01-01

    Microbial filter feeders are an important group of grazers, significant to the microbial loop, aquatic food webs, and biogeochemical cycling. Our understanding of microbial filter feeding is poor, and, importantly, it is unknown what force microbial filter feeders must generate to process adequate......-feeding choanoflagellate Diaphanoeca grandis using particle tracking, and demonstrate that the current understanding of microbial filter feeding is inconsistent with computational fluid dynamics (CFD) and analytical estimates. Both approaches underestimate observed filtration rates by more than an order of magnitude......; the beating flagellum is simply unable to draw enough water through the fine filter. We find similar discrepancies for other choanoflagellate species, highlighting an apparent paradox. Our observations motivate us to suggest a radically different filtration mechanism that requires a flagellar vane (sheet...

  2. Meta genome-wide network from functional linkages of genes in human gut microbial ecosystems.

    Science.gov (United States)

    Ji, Yan; Shi, Yixiang; Wang, Chuan; Dai, Jianliang; Li, Yixue

    2013-03-01

    The human gut microbial ecosystem (HGME) exerts an important influence on the human health. In recent researches, meta-genomics provided deep insights into the HGME in terms of gene contents, metabolic processes and genome constitutions of meta-genome. Here we present a novel methodology to investigate the HGME on the basis of a set of functionally coupled genes regardless of their genome origins when considering the co-evolution properties of genes. By analyzing these coupled genes, we showed some basic properties of HGME significantly associated with each other, and further constructed a protein interaction map of human gut meta-genome to discover some functional modules that may relate with essential metabolic processes. Compared with other studies, our method provides a new idea to extract basic function elements from meta-genome systems and investigate complex microbial environment by associating its biological traits with co-evolutionary fingerprints encoded in it.

  3. Syndecan-1 suppresses epithelial-mesenchymal transition and migration in human oral cancer cells.

    Science.gov (United States)

    Wang, Xiaofeng; He, Jinting; Zhao, Xiaoming; Qi, Tianyang; Zhang, Tianfu; Kong, Chenfei

    2018-04-01

    Epithelial-mesenchymal transition (EMT) is one of the major processes that contribute to the occurrence of cancer metastasis. EMT has been associated with the development of oral cancer. Syndecan‑1 (SDC1) is a key cell‑surface adhesion molecule and its expression level inversely correlates with tumor differentiation and prognosis. In the present study, we aimed to determine the role of SDC1 in oral cancer progression and investigate the molecular mechanisms through which SDC1 regulates the EMT and invasiveness of oral cancer cells. We demonstrated that basal SDC1 expression levels were lower in four oral cancer cell lines (KB, Tca8113, ACC2 and CAL‑27), than in normal human periodontal ligament fibroblasts. Ectopic overexpression of SDC1 resulted in morphological transformation, decreased expression of EMT‑associated markers, as well as decreased migration, invasiveness and proliferation of oral cancer cells. In contrast, downregulation of the expression of SDC1 caused the opposite results. Furthermore, the knockdown of endogenous SDC1 activated the extracellular signal‑regulated kinase (ERK) cascade, upregulated the expression of Snail and inhibited the expression of E‑cadherin. In conclusion, our findings revealed that SDC1 suppressed EMT via the modulation of the ERK signaling pathway that, in turn, negatively affected the invasiveness of human oral cancer cells. Our results provided useful evidence about the potential use of SDC1 as a molecular target for therapeutic interventions in human oral cancer.

  4. Amygdala reactivity to negative stimuli is influenced by oral contraceptive use

    OpenAIRE

    Petersen, Nicole; Cahill, Larry

    2015-01-01

    The amygdala is a highly interconnected region of the brain that is critically important to emotional processing and affective networks. Previous studies have shown that the response of the amygdala to emotionally arousing stimuli can be modulated by sex hormones. Because oral contraceptive pills dramatically lower circulating sex hormone levels with potent analogs of those hormones, we performed a functional magnetic resonance imaging experiment to measure amygdala reactivity in response to ...

  5. Chemotactic preferences govern competition and pattern formation in simulated two-strain microbial communities.

    Science.gov (United States)

    Centler, Florian; Thullner, Martin

    2015-01-01

    Substrate competition is a common mode of microbial interaction in natural environments. While growth properties play an important and well-studied role in competition, we here focus on the influence of motility. In a simulated two-strain community populating a homogeneous two-dimensional environment, strains competed for a common substrate and only differed in their chemotactic preference, either responding more sensitively to a chemoattractant excreted by themselves or responding more sensitively to substrate. Starting from homogeneous distributions, three possible behaviors were observed depending on the competitors' chemotactic preferences: (i) distributions remained homogeneous, (ii) patterns formed but dissolved at a later time point, resulting in a shifted community composition, and (iii) patterns emerged and led to the extinction of one strain. When patterns formed, the more aggregating strain populated the core of microbial aggregates where starving conditions prevailed, while the less aggregating strain populated the more productive zones at the fringe or outside aggregates, leading to a competitive advantage of the less aggregating strain. The presence of a competitor was found to modulate a strain's behavior, either suppressing or promoting aggregate formation. This observation provides a potential mechanism by which an aggregated lifestyle might evolve even if it is initially disadvantageous. Adverse effects can be avoided as a competitor hinders aggregate formation by a strain which has just acquired this ability. The presented results highlight both, the importance of microbial motility for competition and pattern formation, and the importance of the temporal evolution, or history, of microbial communities when trying to explain an observed distribution.

  6. Microbial stratification and microbially catalyzed processes along a hypersaline chemocline

    Science.gov (United States)

    Hyde, A.; Joye, S. B.; Teske, A.

    2017-12-01

    Orca Basin is the largest deep hypersaline anoxic basin in the world, covering over 400 km2. Located at the bottom of the Gulf of Mexico, this body of water reaches depths of 200 meters and is 8 times denser (and more saline) than the overlying seawater. The sharp pycnocline prevents any significant vertical mixing and serves as a particle trap for sinking organic matter. These rapid changes in salinity, oxygen, organic matter, and other geochemical parameters present unique conditions for the microbial communities present. We collected samples in 10m intervals throughout the chemocline. After filtering the water, we used high-throughput bacterial and archaeal 16S rRNA gene sequencing to characterize the changing microbial community along the Orca Basin chemocline. The results reveal a dominance of microbial taxa whose biogeochemical function is entirely unknown. We then used metagenomic sequencing and reconstructed genomes for select samples, revealing the potential dominant metabolic processes in the Orca Basin chemocline. Understanding how these unique geochemical conditions shape microbial communities and metabolic capabilities will have implications for the ocean's biogeochemical cycles and the consequences of expanding oxygen minimum zones.

  7. Oral biopsy: Oral pathologist′s perspective

    Directory of Open Access Journals (Sweden)

    K L Kumaraswamy

    2012-01-01

    Full Text Available Many oral lesions may need to be diagnosed by removing a sample of tissue from the oral cavity. Biopsy is widely used in the medical field, but the practice is not quite widespread in dental practice. As oral pathologists, we have found many artifacts in the tissue specimen because of poor biopsy technique or handling, which has led to diagnostic pitfalls and misery to both the patient and the clinician. This article aims at alerting the clinicians about the clinical faults arising preoperatively, intraoperatively and postoperatively while dealing with oral biopsy that may affect the histological assessment of the tissue and, therefore, the diagnosis. It also reviews the different techniques, precautions and special considerations necessary for specific lesions.

  8. Perceived oral health, oral self-care habits and dental attendance ...

    African Journals Online (AJOL)

    Perceived oral health, oral self-care habits and dental attendance among pregnant women in Benin-City, Nigeria. ... Results: The majority of the respondents (81.7%) rated their oral health as excellent/good using the global oral health rating scale. Seventy one percent of the respondents did not change their oral self-care ...

  9. Microbial electrode sensor for alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Hikuma, M [Ajinomoto Co., Inc., Kawasaki, Japan; Kubo, T; Yasuda, T; Karube, I; Suzuki, S

    1979-10-01

    A microbial electrode consisting of immobilized microorganisms, a gas permeable Teflon membrane, and an oxygen electrode was prepared for the continuous determination of methyl and ethyl alcohols. Immobilized Trichosporon brassicae was employed for a microbial electrode sensor for ethyl alcohol. When a sample solution containing ethyl alcohol was injected into a microbial electrode system, the current of the electrode decreased markedly with time until a steady state was reached. The response time was within 10 min by the steady state method and within 6 min by the pulse method. A linear relationship was observed between the current decrease and the concentration of ethyl alcohol below 22.5 mg/liter. The current was reproducible within +- 6% of the relative error when a sample solution containing 16.5 mg/liter ethyl alcohol. The standard deviation was 0.5 mg/liter in 40 experiments. The selectivity of the microbial electrode sensor for ethyl alcohol was satisfactory. The microbial electrode sensor was applied to a fermentation broth of yeasts and satisfactory comparative results were obtained (correlation coefficient 0.98). The current output of the microbial electrode sensor was almost constant for more than three weeks and 2100 assays. A microbial electrode sensor using immobilized bacteria for methyl alcohol was also described.

  10. Global microbialization of coral reefs.

    Science.gov (United States)

    Haas, Andreas F; Fairoz, Mohamed F M; Kelly, Linda W; Nelson, Craig E; Dinsdale, Elizabeth A; Edwards, Robert A; Giles, Steve; Hatay, Mark; Hisakawa, Nao; Knowles, Ben; Lim, Yan Wei; Maughan, Heather; Pantos, Olga; Roach, Ty N F; Sanchez, Savannah E; Silveira, Cynthia B; Sandin, Stuart; Smith, Jennifer E; Rohwer, Forest

    2016-04-25

    Microbialization refers to the observed shift in ecosystem trophic structure towards higher microbial biomass and energy use. On coral reefs, the proximal causes of microbialization are overfishing and eutrophication, both of which facilitate enhanced growth of fleshy algae, conferring a competitive advantage over calcifying corals and coralline algae. The proposed mechanism for this competitive advantage is the DDAM positive feedback loop (dissolved organic carbon (DOC), disease, algae, microorganism), where DOC released by ungrazed fleshy algae supports copiotrophic, potentially pathogenic bacterial communities, ultimately harming corals and maintaining algal competitive dominance. Using an unprecedented data set of >400 samples from 60 coral reef sites, we show that the central DDAM predictions are consistent across three ocean basins. Reef algal cover is positively correlated with lower concentrations of DOC and higher microbial abundances. On turf and fleshy macroalgal-rich reefs, higher relative abundances of copiotrophic microbial taxa were identified. These microbial communities shift their metabolic potential for carbohydrate degradation from the more energy efficient Embden-Meyerhof-Parnas pathway on coral-dominated reefs to the less efficient Entner-Doudoroff and pentose phosphate pathways on algal-dominated reefs. This 'yield-to-power' switch by microorganism directly threatens reefs via increased hypoxia and greater CO2 release from the microbial respiration of DOC.

  11. Microbial-Host Co-metabolites Are Prodromal Markers Predicting Phenotypic Heterogeneity in Behavior, Obesity, and Impaired Glucose Tolerance

    Directory of Open Access Journals (Sweden)

    Marc-Emmanuel Dumas

    2017-07-01

    Full Text Available The influence of the gut microbiome on metabolic and behavioral traits is widely accepted, though the microbiome-derived metabolites involved remain unclear. We carried out untargeted urine 1H-NMR spectroscopy-based metabolic phenotyping in an isogenic C57BL/6J mouse population (n = 50 and show that microbial-host co-metabolites are prodromal (i.e., early markers predicting future divergence in metabolic (obesity and glucose homeostasis and behavioral (anxiety and activity outcomes with 94%–100% accuracy. Some of these metabolites also modulate disease phenotypes, best illustrated by trimethylamine-N-oxide (TMAO, a product of microbial-host co-metabolism predicting future obesity, impaired glucose tolerance (IGT, and behavior while reducing endoplasmic reticulum stress and lipogenesis in 3T3-L1 adipocytes. Chronic in vivo TMAO treatment limits IGT in HFD-fed mice and isolated pancreatic islets by increasing insulin secretion. We highlight the prodromal potential of microbial metabolites to predict disease outcomes and their potential in shaping mammalian phenotypic heterogeneity.

  12. Oral cancer screening practices of oral health professionals in Australia.

    Science.gov (United States)

    Mariño, Rodrigo; Haresaku, Satoru; McGrath, Roisin; Bailey, Denise; Mccullough, Michael; Musolino, Ross; Kim, Boaz; Chinnassamy, Alagesan; Morgan, Michael

    2017-12-15

    To evaluate oral cancer-related screening practices of Oral Health Professionals (OHPs - dentists, dental hygienists, dental therapists, and oral health therapists) practising in Victoria, Australia. A 36-item survey was distributed to 3343 OHPs. Items included socio-demographic and work-related characteristics; self-assessed knowledge of oral cancer; perceived level of confidence in discussing oral health behaviors with patients; oral cancer screening practices; and self-evaluated need for additional training on screening procedures for oral cancer. A total of 380 OHPs responded this survey, achieving an overall response rate of 9.4%. Forty-five were excluded from further analysis. Of these 335 OHP, 72% were dentists; (n = 241); either GDP or Dental Specialists; 13.7% (n = 46) were dental hygienists; 12.2% (n = 41) were oral health therapists, and the remaining 2.1% (n = 7) were dental therapists. While the majority (95.2%) agreed that oral cancer screening should be routinely performed, in actual practice around half (51.4%) screened all their patients. Another 12.8% "Very rarely" conducted screening examinations. The probability of routinely conducting an oral cancer screening was explored utilising Logistic Regression Analysis. Four variables remained statistically significant (p oral cancer screening rose with increasing levels of OHPs' confidence in oral cancer-related knowledge (OR = 1.35; 95% CI: 1.09-1.67) and with higher levels of confidence in discussing oral hygiene practices with patients (OR = 1.25; 95% CI: 1.03-1.52). Results also showed that dental specialists were less likely to perform oral cancer screening examinations compared with other OHPs (OR = 0.18; 95% CI: 0.07-0.52) and the likelihood of performing an oral cancer screening decreased when the "patient complained of a problem" (OR = 0.21; 95% CI: 0.10-0.44). Only half the study sample performed oral cancer screening examinations for all of their patients

  13. Probiotic Lactobacillus reuteri has antifungal effects on oral Candida species in vitro.

    Science.gov (United States)

    Jørgensen, Mette Rose; Kragelund, Camilla; Jensen, Peter Østrup; Keller, Mette Kirstine; Twetman, Svante

    2017-01-01

    Background: An alternative approach for managing Candida infections in the oral cavity by modulating the oral microbiota with probiotic bacteria has been proposed. Objective: The aim was to investigate the antifungal potential of the probiotic bacterium Lactobacillus reuteri (DSM 17938 and ATCC PTA 5289) against six oral Candida species ( C. albicans, C. glabrata, C. krusei, C. tropicalis, C. dubliniensis , and C. parapsilosis ). Design: The lactobacilli were tested for their ability to co-aggregate with and inhibit the growth of the yeasts assessed by spectrophotometry and the agar overlay inhibition assay. Additionally, the pH was evaluated with microsensors, and the production of hydrogen peroxide (H2O2) by the lactobacilli was verified. Results: Both L. reuteri strains showed co-aggregation abilities with the yeasts. The lactobacilli almost completely inhibited the growth of C. albicans and C. parapsilosis , but did not affect C. krusei . Statistically significant differences in co-aggregation and growth inhibition capacities between the two L. reuteri strains were observed (preuteri exhibited antifungal properties against five of the six most common oral Candida species. Further, the results reconfirms that the probiotic capacity of L. reuteri is strain specific.

  14. Oral Cancer Screening

    Science.gov (United States)

    ... decrease the risk of oral cavity and oropharyngeal cancer. Oral cavity, pharyngeal, and laryngeal cancer are diseases in ... and treatment of oral cavity, pharyngeal, and laryngeal cancer: Oral Cavity and Oropharyngeal Cancer Prevention Lip and Oral ...

  15. Inequalities in oral health and oral health promotion

    OpenAIRE

    Moysés, Samuel Jorge

    2012-01-01

    This article offers a critical review of the problem of inequalities in oral health and discusses strategies for disease prevention and oral health promotion. It shows that oral health is not merely a result of individual biological, psychological, and behavioral factors; rather, it is the sum of collective social conditions created when people interact with the social environment. Oral health status is directly related to socioeconomic position across the socioeconomic gradient in almost all...

  16. Oral Candidal Carriage in Subjects with Pure Vegetarian and Mixed Dietary Habits.

    Science.gov (United States)

    Patil, Shankargouda; Rao, Roopa S; Raj, A Thirumal; Sanketh, D S; Sarode, Sachin; Sarode, Gargi

    2017-07-01

    Candida albicans being a part of the normal oral microbial flora is one of the most commonly isolated species from the oral cavity. Recent studies have shown a steady rise in the number of non C. albicans species, which are relatively resistant to common antifungal agents and are being recognized as potential pathogens. It is vital to ascertain the predisposing factors leading to such a shift in the oral candidal flora. To estimate the prevalence of candidal species among vegetarians and non-vegetarians. Clinical data including age, gender, and diet preference of 238 participants were noted. Participants with a history of systemic disorders, oral prosthesis, salivary gland disorders and habits such as smoking, alcoholism, and tobacco usage were excluded from the study. The participants were asked to gargle a 10 ml solution of phosphate buffered saline for one minute before depositing the same in a sterile container. The samples were cultured using Hicrome agar media. Data analysis was carried out using Statistical Package for Social Sciences (SPSS software) version 10.5 and differences between individual groups were tested by Chi-square test. Among 238 samples, 127 (53.3%) samples were positive for Candida . The candidal prevalence in vegetarians (68.5%) was higher than non-vegetarians (40.7%). C. albicans was the most common species to be isolated in both vegetarians (35.1%) and non-vegetarians (39.2%). Candida glabrata and Candida tropicalis showed a higher prevalence in vegetarians (30.5% and 10.1%, respectively) in comparison to non-vegetarians (8.4% and 2.3%, respectively). Candida krusei was isolated only from vegetarians (4.6%). Results indicate that diet plays a major role in oral candidal prevalence and species specificity which in turn may predispose the vegetarians toward these pathogenic organisms.

  17. The relationship between oral hygiene and oral colonisation with Candida species.

    Science.gov (United States)

    Muzurovic, Selma; Babajic, Emina; Masic, Tarik; Smajic, Rubina; Selmanagic, Aida

    2012-01-01

    The aim of this study is to determine relationship between oral hygiene and colonisation of Candia species in oral cavity. Maintenance oral hygiene is reducing pathological agents in the mouth and preventing violation of oral health. Study included 140 patients. For oral hygiene assessement were used the dental plaque index, oral hygiene index and dental calculus index. Ph test strips were used to determine pH of saliva. For isolation of Candida species oral swabs were taken to all patients. It was found out that pH of oral cavity does not varies notably, no matter of oral hygiene level. Candida species were identified in 28.6% respondents. The most present were Candida albicans, in 85% cases. The presence of plaque, tartar and high index oral hygiene (IOH) in patients with Candida is statistically significant. It was found that 83.4% of patients with Candida poorly maintained oral hygiene. Poor oral hygiene is associated with a significantly higher score in the presence of tartar, plaque and high IOH. In total patient's population 67% has amalgam fillings. Presence of amalgam fillings in patients with identified Candida was statistically significant. This study indicates low level of oral hygiene. Correlation between presence of Candida species and poor oral hygiene was proved. Also Candida was more present among patients with amalgam fillings. Improvement of oral hygiene is necessery for oral health and health in general, as well.

  18. Effect of Fixed Metallic Oral Appliances on Oral Health.

    Science.gov (United States)

    Alnazzawi, Ahmad

    2018-01-01

    There is a substantial proportion of the population using fixed metallic oral appliances, such as crowns and bridges, which are composed of various dental alloys. These restorations may be associated with a number of effects on oral health with variable degrees of severity, to review potential effects of using fixed metallic oral appliances, fabricated from various alloys. The MEDLINE/PubMed database was searched using certain combinations of keywords related to the topic. The search revealed that burning mouth syndrome, oral pigmentation, hypersensitivity and lichenoid reactions, and genotoxic and cytotoxic effects are the major potential oral health changes associated with fixed prosthodontic appliances. Certain oral disorders are associated with the use of fixed metallic oral appliances. Patch test is the most reliable method that can be applied for identifying metal allergy, and the simultaneous use of different alloys in the mouth is discouraged.

  19. GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater

    KAUST Repository

    Bayer, Kristina

    2015-01-08

    The GeoChip 4.2 gene array was employed to interrogate the microbial functional gene repertoire of sponges and seawater collected from the Red Sea and the Mediterranean. Complementary amplicon sequencing confirmed the microbial community composition characteristic of high microbial abundance (HMA) and low microbial abundance (LMA) sponges. By use of GeoChip, altogether 20 273 probes encoding for 627 functional genes and representing 16 gene categories were identified. Minimum curvilinear embedding analyses revealed a clear separation between the samples. The HMA/LMA dichotomy was stronger than any possible geographic pattern, which is shown here for the first time on the level of functional genes. However, upon inspection of individual genes, very few specific differences were discernible. Differences were related to microbial ammonia oxidation, ammonification, and archaeal autotrophic carbon fixation (higher gene abundance in sponges over seawater) as well as denitrification and radiation-stress-related genes (lower gene abundance in sponges over seawater). Except for few documented specific differences the functional gene repertoire between the different sources appeared largely similar. This study expands previous reports in that functional gene convergence is not only reported between HMA and LMA sponges but also between sponges and seawater.

  20. GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater

    KAUST Repository

    Bayer, Kristina; Moitinho-Silva, Lucas; Brü mmer, Franz; Cannistraci, Carlo V.; Ravasi, Timothy; Hentschel, Ute

    2015-01-01

    The GeoChip 4.2 gene array was employed to interrogate the microbial functional gene repertoire of sponges and seawater collected from the Red Sea and the Mediterranean. Complementary amplicon sequencing confirmed the microbial community composition characteristic of high microbial abundance (HMA) and low microbial abundance (LMA) sponges. By use of GeoChip, altogether 20 273 probes encoding for 627 functional genes and representing 16 gene categories were identified. Minimum curvilinear embedding analyses revealed a clear separation between the samples. The HMA/LMA dichotomy was stronger than any possible geographic pattern, which is shown here for the first time on the level of functional genes. However, upon inspection of individual genes, very few specific differences were discernible. Differences were related to microbial ammonia oxidation, ammonification, and archaeal autotrophic carbon fixation (higher gene abundance in sponges over seawater) as well as denitrification and radiation-stress-related genes (lower gene abundance in sponges over seawater). Except for few documented specific differences the functional gene repertoire between the different sources appeared largely similar. This study expands previous reports in that functional gene convergence is not only reported between HMA and LMA sponges but also between sponges and seawater.

  1. [Oral microbiota: a promising predictor of human oral and systemic diseases].

    Science.gov (United States)

    Xin, Xu; Junzhi, He; Xuedong, Zhou

    2015-12-01

    A human oral microbiota is the ecological community of commensal, symbiotic, and pathogenic microorganisms found in human oral cavity. Oral microbiota exists mostly in the form of a biofilm and maintains a dynamic ecological equilibrium with the host body. However, the disturbance of this ecological balance inevitably causes oral infectious diseases, such as dental caries, apical periodontitis, periodontal diseases, pericoronitis, and craniofacial bone osteomyelitis. Oral microbiota is also correlated with many systemic diseases, including cancer, diabetes mellitus, rheumatoid arthritis, cardiovascular diseases, and preterm birth. Hence, oral microbiota has been considered as a potential biomarker of human diseases. The "Human Microbiome Project" and other metagenomic projects worldwide have advanced our knowledge of the human oral microbiota. The integration of these metadata has been the frontier of oral microbiology to improve clinical translation. By reviewing recent progress on studies involving oral microbiota-related oral and systemic diseases, we aimed to propose the essential role of oral microbiota in the prediction of the onset, progression, and prognosis of oral and systemic diseases. An oral microbiota-based prediction model helps develop a new paradigm of personalized medicine and benefits the human health in the post-metagenomics era.

  2. Oral fingolimod (FTY720) in multiple sclerosis: two-year results of a phase II extension study

    DEFF Research Database (Denmark)

    O'Connor, P; Comi, G; Montalban, X

    2009-01-01

    OBJECTIVE: To report the results of a 24-month extension of a phase II trial assessing the efficacy, safety, and tolerability of the once-daily oral sphingosine-1-phosphate receptor modulator, fingolimod (FTY720), in relapsing multiple sclerosis (MS). METHODS: In the randomized, double-blind, pla...

  3. Role of oral microbiome on oral cancers, a review.

    Science.gov (United States)

    Gholizadeh, Pourya; Eslami, Hosein; Yousefi, Mehdi; Asgharzadeh, Mohammad; Aghazadeh, Mohammad; Kafil, Hossein Samadi

    2016-12-01

    The oral cavity is inhibited by many of the bacterial species. Some of them have a key role in the development of oral disease. Interrelationships between oral microbiome and systemic conditions such as head-and-neck cancer have become increasingly appreciated in recent years. Emerging evidence also suggests a link between periodontal disease and oral cancer, and the explanation being that chronic inflammation could be a major factor in both diseases. Squamous cell carcinoma is that the most frequently occurring malignancy of the oral cavity and adjacent sites, representing over 90% of all cancers. The incidence of oral cancer is increasing, significantly among young people and women. Worldwide there are 350,000-400,000 new cases diagnosed every year. Bacteria, viruses, and fungi are strongly implicated as etiological factors in certain cancers. In this review we will discuss the association between the development of oral cancer in potentially malignant oral lesions with chronic periodontitis, chronic Porphyromonas gingivalis, Fusobacterium nucleatum, candida, other microbes and described mechanisms which may be involved in these carcinoma. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. IQuaD dental trial; improving the quality of dentistry: a multicentre randomised controlled trial comparing oral hygiene advice and periodontal instrumentation for the prevention and management of periodontal disease in dentate adults attending dental primary care

    OpenAIRE

    Clarkson, Jan E; Ramsay, Craig R; Averley, Paul; Bonetti, Debbie; Boyers, Dwayne; Campbell, Louise; Chadwick, Graham R; Duncan, Anne; Elders, Andrew; Gouick, Jill; Hall, Andrew F; Heasman, Lynne; Heasman, Peter A; Hodge, Penny J; Jones, Clare

    2013-01-01

    Background:\\ud Periodontal disease is the most common oral disease affecting adults, and although it is largely preventable it remains the major cause of poor oral health worldwide. Accumulation of microbial dental plaque is the primary aetiological factor for both periodontal disease and caries. Effective self-care (tooth brushing and interdental aids) for plaque control and removal of risk factors such as calculus, which can only be removed by periodontal instrumentation (PI), are considere...

  5. Porphyromonas gingivalis and Treponema denticola Mixed Microbial Infection in a Rat Model of Periodontal Disease

    Directory of Open Access Journals (Sweden)

    Raj K. Verma

    2010-01-01

    Full Text Available Porphyromonas gingivalis and Treponema denticola are periodontal pathogens that express virulence factors associated with the pathogenesis of periodontitis. In this paper we tested the hypothesis that P. gingivalis and T. denticola are synergistic in terms of virulence; using a model of mixed microbial infection in rats. Groups of rats were orally infected with either P. gingivalis or T. denticola or mixed microbial infections for 7 and 12 weeks. P. gingivalis genomic DNA was detected more frequently by PCR than T. denticola. Both bacteria induced significantly high IgG, IgG2b, IgG1, IgG2a antibody levels indicating a stimulation of Th1 and Th2 immune response. Radiographic and morphometric measurements demonstrated that rats infected with the mixed infection exhibited significantly more alveolar bone loss than shaminfected control rats. Histology revealed apical migration of junctional epithelium, rete ridge elongation, and crestal alveolar bone resorption; resembling periodontal disease lesion. These results showed that P. gingivalis and T. denticola exhibit no synergistic virulence in a rat model of periodontal disease.

  6. Strengthening of Oral Health Systems: Oral Health through Primary Health Care

    Science.gov (United States)

    Petersen, Poul Erik

    2014-01-01

    Around the globe many people are suffering from oral pain and other problems of the mouth or teeth. This public health problem is growing rapidly in developing countries where oral health services are limited. Significant proportions of people are underserved; insufficient oral health care is either due to low availability and accessibility of oral health care or because oral health care is costly. In all countries, the poor and disadvantaged population groups are heavily affected by a high burden of oral disease compared to well-off people. Promotion of oral health and prevention of oral diseases must be provided through financially fair primary health care and public health intervention. Integrated approaches are the most cost-effective and realistic way to close the gap in oral health between rich and poor. The World Health Organization (WHO) Oral Health Programme will work with the newly established WHO Collaborating Centre, Kuwait University, to strengthen the development of appropriate models for primary oral health care. PMID:24525450

  7. Image-guided intensity modulated radiotherapy with helical tomotherapy for postoperative treatment of high-risk oral cavity cancer

    Directory of Open Access Journals (Sweden)

    Chen Yu-Jen

    2011-01-01

    Full Text Available Abstract Background The aim of this study was to assess the treatment results and toxicity profiles of helical tomotherapy (HT for postoperative high-risk oral cavity cancer. Methods From December 6, 2006 through October 9, 2009, 19 postoperative high-risk oral cavity cancer patients were enrolled. All of the patients received HT with (84% or without (16% chemotherapy. Results The median follow-up time was 17 months. The 2-year overall survival, disease-free survival, locoregional control, and distant metastasis-free rates were 94%, 84%, 92%, and 94%, respectively. The package of overall treatment time > 13 wk, the interval between surgery and radiation ≤ 6 wk, and the overall treatment time of radiation ≤ 7 wk was 21%, 84%, and 79%, respectively. The percentage of grade 3 mucositis, dermatitis, and leucopenia was 42%, 5% and 5%, respectively. Conclusions HT achieved encouraging clinical outcomes for postoperative high-risk oral cavity cancer patients with high compliance. A long-term follow-up study is needed to confirm these preliminary findings.

  8. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88.

    Science.gov (United States)

    Larsson, Erik; Tremaroli, Valentina; Lee, Ying Shiuan; Koren, Omry; Nookaew, Intawat; Fricker, Ashwana; Nielsen, Jens; Ley, Ruth E; Bäckhed, Fredrik

    2012-08-01

    The gut microbiota has profound effects on host physiology but local host-microbial interactions in the gut are only poorly characterised and are likely to vary from the sparsely colonised duodenum to the densely colonised colon. Microorganisms are recognised by pattern recognition receptors such as Toll-like receptors, which signal through the adaptor molecule MyD88. To identify host responses induced by gut microbiota along the length of the gut and whether these required MyD88, transcriptional profiles of duodenum, jejunum, ileum and colon were compared from germ-free and conventionally raised wild-type and Myd88-/- mice. The gut microbial ecology was assessed by 454-based pyrosequencing and viruses were analysed by PCR. The gut microbiota modulated the expression of a large set of genes in the small intestine and fewer genes in the colon but surprisingly few microbiota-regulated genes required MyD88 signalling. However, MyD88 was essential for microbiota-induced colonic expression of the antimicrobial genes Reg3β and Reg3γ in the epithelium, and Myd88 deficiency was associated with both a shift in bacterial diversity and a greater proportion of segmented filamentous bacteria in the small intestine. In addition, conventionally raised Myd88-/- mice had increased expression of antiviral genes in the colon, which correlated with norovirus infection in the colonic epithelium. This study provides a detailed description of tissue-specific host transcriptional responses to the normal gut microbiota along the length of the gut and demonstrates that the absence of MyD88 alters gut microbial ecology.

  9. Oral symptoms and salivary findings in oral lichen planus, oral lichenoid lesions and stomatitis

    DEFF Research Database (Denmark)

    Larsen, Kristine Roen; Johansen, Jeanne Duus; Reibel, Jesper

    2017-01-01

    BACKGROUND: To examine if patients with oral lichen planus, oral lichenoid lesions and generalised stomatitis and concomitant contact allergy have more frequent and severe xerostomia, lower unstimulated and chewing-stimulated saliva and citric-acid-stimulated parotid saliva flow rates, and higher...... of xerostomia, clinical examination, sialometry, mucosal biopsy and contact allergy testing. RESULTS: Nineteen patients had oral lichen planus, 19 patients had oral lichenoid lesions and 11 patients had generalised stomatitis. 38.8% had contact allergy. Xerostomia was significantly more common and severe...... in the chewing stimulated saliva samples from patients when compared to healthy controls. The differences were not significant and they were irrespective of the presence of contact allergy. CONCLUSION: Xerostomia is prevalent in patients with oral lichen planus, lichenoid lesions and generalised stomatitis...

  10. Senescence-Derived Extracellular Molecules as Modulators of Oral Cancer Development: A Mini-Review.

    Science.gov (United States)

    Parkinson, Eric Kenneth; James, Emma L; Prime, Stephen S

    2016-01-01

    Oral cancers are predominantly oral squamous cell carcinomas (OSCCs) derived from keratinocytes, and there is now very detailed knowledge of the genetics and molecular biology of the epithelial tumourigenic component of these cancers, including the identification of cancer stem or tumour-initiating cells. Several key genetic alterations have been identified including the near ubiquitous loss of the CDKN2A/p16INK4A and p53 pathways and telomerase activation, together with frequent inactivation of the NOTCH1 canonical pathway either by somatic genetic alterations or by the presence of human papilloma virus. There is also evidence that OSCCs arise from a 'field' of altered cells and that malignant conversion takes place pre-dominantly at the microscopic level. However, in the last decade, it has been realised that tumour development and progression are influenced by the cells of the microenvironment with cross-talk between the epithelial (tumour) and mesenchymal components. OSCCs, especially those that have bypassed cellular senescence, produce an array of proteins and metabolites that induce cellular senescence in the normal surrounding cells; indeed, senescence is a common property of cancer-associated fibroblasts (CAFs). Cellular senescence is defined as an irreversible cell cycle arrest and is associated with the release of molecules known as the senescence-associated secretory phenotype that can selectively promote the growth of pre-neoplastic keratinocytes (osteopontin) and cancer invasion (transforming growth factor β, matrix metalloproteinases, interleukin 6 and lactate). In addition, both old and new work has shown that keratinocytes harbouring NOTCH loss-of-function mutations that lead to defective keratinocyte differentiation and loss of squamous epithelial barrier function may act as a tumour-promoting stimulus for initiated cells harbouring RAS pathway mutations by activating a wound response in the tumour mesenchyme. Thus, not all keratinocytes in the

  11. New microbial resource: microbial diversity, function and dynamics in Chinese liquor starter.

    Science.gov (United States)

    Huang, Yuhong; Yi, Zhuolin; Jin, Yanling; Zhao, Yonggui; He, Kaize; Liu, Dayu; Zhao, Dong; He, Hui; Luo, Huibo; Zhang, Wenxue; Fang, Yang; Zhao, Hai

    2017-11-06

    Traditional Chinese liquor (Baijiu) solid state fermentation technology has lasted for several thousand years. The microbial communities that enrich in liquor starter are important for fermentation. However, the microbial communities are still under-characterized. In this study, 454 pyrosequencing technology was applied to comprehensively analyze the microbial diversity, function and dynamics of two most-consumed liquor starters (Jiang- and Nong-flavor) during production. In total, 315 and 83 bacterial genera and 72 and 47 fungal genera were identified in Jiang- and Nong-flavor liquor starter, respectively. The relatively high diversity was observed when the temperature increased to 70 and 62 °C for Jiang- and Nong-flavor liquor starter, respectively. Some thermophilic fungi have already been isolated. Microbial communities that might contribute to ethanol fermentation, saccharification and flavor development were identified and shown to be core communities in correlation-based network analysis. The predictively functional profile of bacterial communities showed significant difference in energy, carbohydrate and amino acid metabolism and the degradation of aromatic compounds between the two kinds of liquor starters. Here we report these liquor starters as a new functionally microbial resource, which can be used for discovering thermophilic and aerobic enzymes and for food and feed preservation.

  12. Immunohistochemical study of integrin α₅β₁, fibronectin, and Bcl-2 in normal oral mucosa, inflammatory fibroepithelial hyperplasia, oral epithelial dysplasia, and oral squamous cell carcinoma.

    Science.gov (United States)

    Núñez, Manuel Antonio Gordón; de Matos, Felipe Rodrigues; Freitas, Roseana de Almeida; Galvão, Hébel Cavalcanti

    2013-07-01

    The objective of this study was to compare the immunoexpression of integrin α₅β₁, fibronectin, and the Bcl-2 protein in normal oral mucosa (NOM), inflammatory fibroepithelial hyperplasia (IFH), oral epithelial dysplasia (OED), and oral squamous cell carcinoma (OSCC). Eleven cases of NOM, 16 IFH, 20 OED, and 27 OSCC were selected for analysis of the immunoexpression of integrin α₅β₁, fibronectin, and bcl-2 protein. There was an association between the intensity and location of the integrin α₅β₁ expression, especially in the OSCC, that 48.1% of cases showed weak immunoreactivity and 40.7% in the suprabasal layer (P < 0.05). There was an association between the pattern and distribution of fibronectin expression in basement membrane, where 90% of NOM showed a pattern of linear continuous and 80% of OED exhibited focal distribution (P < 0.05). The fibronectin expression in connective tissue was predominantly intense with an association of staining pattern among the different specimens, where 37% of OSCC showed a reticular pattern (P < 0.05). There was an association of bcl-2 protein among the types of specimens, especially in IFH and OSCC, where 100% of the cases exhibited scores 1 of staining (P < 0.05). Within this context, the interaction of integrin α₅β₁ with its main ligand in the extracellular matrix, fibronectin, is suggested to influence the survival of tumor cells and to favor their proliferation by modulating apoptosis through the upregulation of antiapoptotic proteins or the suppression of apoptotic mediators.

  13. Deep subsurface microbial processes

    Science.gov (United States)

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  14. The maturing of microbial ecology.

    Science.gov (United States)

    Schmidt, Thomas M

    2006-09-01

    A.J. Kluyver and C.B. van Niel introduced many scientists to the exceptional metabolic capacity of microbes and their remarkable ability to adapt to changing environments in The Microbe's Contribution to Biology. Beyond providing an overview of the physiology and adaptability of microbes, the book outlined many of the basic principles for the emerging discipline of microbial ecology. While the study of pure cultures was highlighted, provided a unifying framework for understanding the vast metabolic potential of microbes and their roles in the global cycling of elements, extrapolation from pure cultures to natural environments has often been overshadowed by microbiologists inability to culture many of the microbes seen in natural environments. A combination of genomic approaches is now providing a culture-independent view of the microbial world, revealing a more diverse and dynamic community of microbes than originally anticipated. As methods for determining the diversity of microbial communities become increasingly accessible, a major challenge to microbial ecologists is to link the structure of natural microbial communities with their functions. This article presents several examples from studies of aquatic and terrestrial microbial communities in which culture and culture-independent methods are providing an enhanced appreciation for the microbe's contribution to the evolution and maintenance of life on Earth, and offers some thoughts about the graduate-level educational programs needed to enhance the maturing field of microbial ecology.

  15. In-Drift Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    D. Jolley

    2000-11-09

    As directed by written work direction (CRWMS M and O 1999f), Performance Assessment (PA) developed a model for microbial communities in the engineered barrier system (EBS) as documented here. The purpose of this model is to assist Performance Assessment and its Engineered Barrier Performance Section in modeling the geochemical environment within a potential repository drift for TSPA-SR/LA, thus allowing PA to provide a more detailed and complete near-field geochemical model and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). This model and its predecessor (the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document, CRWMS M and O 1998a) was developed to respond to the applicable KTIs. Additionally, because of the previous development of the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a), the M and O was effectively able to resolve a previous KTI concern regarding the effects of microbial processes on seepage and flow (NRC 1998). This document supercedes the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a). This document provides the conceptual framework of the revised in-drift microbial communities model to be used in subsequent performance assessment (PA) analyses.

  16. In-Drift Microbial Communities

    International Nuclear Information System (INIS)

    Jolley, D.

    2000-01-01

    As directed by written work direction (CRWMS M and O 1999f), Performance Assessment (PA) developed a model for microbial communities in the engineered barrier system (EBS) as documented here. The purpose of this model is to assist Performance Assessment and its Engineered Barrier Performance Section in modeling the geochemical environment within a potential repository drift for TSPA-SR/LA, thus allowing PA to provide a more detailed and complete near-field geochemical model and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). This model and its predecessor (the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document, CRWMS M and O 1998a) was developed to respond to the applicable KTIs. Additionally, because of the previous development of the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a), the M and O was effectively able to resolve a previous KTI concern regarding the effects of microbial processes on seepage and flow (NRC 1998). This document supercedes the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a). This document provides the conceptual framework of the revised in-drift microbial communities model to be used in subsequent performance assessment (PA) analyses

  17. Urban Transit System Microbial Communities Differ by Surface Type and Interaction with Humans and the Environment.

    Science.gov (United States)

    Hsu, Tiffany; Joice, Regina; Vallarino, Jose; Abu-Ali, Galeb; Hartmann, Erica M; Shafquat, Afrah; DuLong, Casey; Baranowski, Catherine; Gevers, Dirk; Green, Jessica L; Morgan, Xochitl C; Spengler, John D; Huttenhower, Curtis

    2016-01-01

    Public transit systems are ideal for studying the urban microbiome and interindividual community transfer. In this study, we used 16S amplicon and shotgun metagenomic sequencing to profile microbial communities on multiple transit surfaces across train lines and stations in the Boston metropolitan transit system. The greatest determinant of microbial community structure was the transit surface type. In contrast, little variation was observed between geographically distinct train lines and stations serving different demographics. All surfaces were dominated by human skin and oral commensals such as Propionibacterium , Corynebacterium , Staphylococcus , and Streptococcus . The detected taxa not associated with humans included generalists from alphaproteobacteria, which were especially abundant on outdoor touchscreens. Shotgun metagenomics further identified viral and eukaryotic microbes, including Propionibacterium phage and Malassezia globosa . Functional profiling showed that Propionibacterium acnes pathways such as propionate production and porphyrin synthesis were enriched on train holding surfaces (holds), while electron transport chain components for aerobic respiration were enriched on touchscreens and seats. Lastly, the transit environment was not found to be a reservoir of antimicrobial resistance and virulence genes. Our results suggest that microbial communities on transit surfaces are maintained from a metapopulation of human skin commensals and environmental generalists, with enrichments corresponding to local interactions with the human body and environmental exposures. IMPORTANCE Mass transit environments, specifically, urban subways, are distinct microbial environments with high occupant densities, diversities, and turnovers, and they are thus especially relevant to public health. Despite this, only three culture-independent subway studies have been performed, all since 2013 and all with widely differing designs and conclusions. In this study, we

  18. Generation of Electricity and Analysis of Microbial Communities in Wheat Straw Biomass-Powered Microbial Fuel Cells

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Min, Booki; Huang, L.

    2009-01-01

    Electricity generation from wheat straw hydrolysate and the microbial ecology of electricity producing microbial communities developed in two chamber microbial fuel cells (MFCs) were investigated. Power density reached 123 mW/m2 with an initial hydrolysate concentration of 1000 mg-COD/L while...

  19. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell.

    Science.gov (United States)

    Timmers, Ruud A; Rothballer, Michael; Strik, David P B T B; Engel, Marion; Schulz, Stephan; Schloter, Michael; Hartmann, Anton; Hamelers, Bert; Buisman, Cees

    2012-04-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode-rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) were located on the root surfaces, but they were more abundant colonising the graphite granular electrode. Anaerobic cellulolytic bacteria dominated the area where most of the EAB were found, indicating that the current was probably generated via the hydrolysis of cellulose. Due to the presence of oxygen and nitrate, short-chain fatty acid-utilising denitrifiers were the major competitors for the electron donor. Acetate-utilising methanogens played a minor role in the competition for electron donor, probably due to the availability of graphite granules as electron acceptors.

  20. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Timmers, Ruud A.; Strik, David P.B.T.B.; Hamelers, Bert; Buisman, Cees [Wageningen Univ. (Netherlands). Sub-dept. of Environmental Technology; Rothballer, Michael; Hartmann, Anton [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg (Germany). Dept. Microbe-Plant Interactions; Engel, Marion; Schulz, Stephan; Schloter, Michael [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg (Germany). Dept. Terrestrial Ecogenetics

    2012-04-15

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode-rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) were located on the root surfaces, but they were more abundant colonising the graphite granular electrode. Anaerobic cellulolytic bacteria dominated the area where most of the EAB were found, indicating that the current was probably generated via the hydrolysis of cellulose. Due to the presence of oxygen and nitrate, short-chain fatty acid-utilising denitrifiers were the major competitors for the electron donor. Acetate-utilising methanogens played a minor role in the competition for electron donor, probably due to the availability of graphite granules as electron acceptors. (orig.)

  1. Microbial degradation of whole-grain complex carbohydrates and impact on short-chain fatty acids and health

    DEFF Research Database (Denmark)

    Knudsen, Knud Erik Bach

    2015-01-01

    Whole-grain cereals have a complex dietary fiber (DF) composition consisting of oligosaccharides (mostly fructans), resistant starch, and nonstarch polysaccharides (NSPs); the most important are arabinoxylans, mixed-linkage β(1,3; 1,4)-d-glucan (β-glucan), and cellulose and the noncarbohydrate...... to the intake of DF. The type and composition of cereal DF can consequently be used to modulate the microbial composition and activity as well as the production and molar ratios of short-chain fatty acids (SCFAs). Arabinoxylans and β-glucan in whole-grain cereals and cereal ingredients have been shown...... on the concentration in peripheral blood was less because the majority of propionate and butyrate is cleared in the liver. Active microbial fermentation with increased SCFA production reduced the exposure of potentially toxic compounds to the epithelium, potentially stimulating anorectic hormones and acting...

  2. Reduced immune responses to purified protein derivative and Candida albicans in oral lichen planus.

    Science.gov (United States)

    Simark-Mattsson, Charlotte; Eklund, Christina

    2013-10-01

    Impairment of cellular immunity is reported in lichen planus, an autoimmune disease affecting mucosae and skin. Our aim was to investigate immune responses directed against a set of microbial antigens in patients with oral lichen planus and in matched controls. Venous blood was obtained, and the mononuclear cells were enriched by density gradient centrifugation. The proliferation of peripheral blood mononuclear cells was assessed, following stimulation with purified protein derivative (PPD), Candida albicans, phytohemagglutinin or when cells were left unstimulated, after three or six days of cell culture. The production of interleukin-1ß (IL-1ß), IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-13, IL-17, interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α), G-CSF, GM-CSF, MCP-1, MIP-ß was assessed in supernatants using the Bio-plex(®) assay and was complemented with ELISA for selected cytokines. Patients with oral lichen planus demonstrated reduced proliferative responses against PPD (P stimulated supernatants from patients with oral lichen planus. Collectively, the findings suggested that memory lymphocytes from patients with oral lichen planus (OLP) may have an impaired functional ability to react against certain recall antigens, as part of a generalized response, which may reflect immune regulatory processes. Further studies are needed to clarify the mechanisms of down-regulation in OLP pathogenesis and progression. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. The onset risk of carcinoma in patients continuing tacrolimus topical treatment for oral lichen planus: a case report.

    Science.gov (United States)

    Morita, Mayu; Asoda, Seiji; Tsunoda, Kazuyuki; Soma, Tomoya; Nakagawa, Taneaki; Shirakawa, Masayori; Shoji, Hirofumi; Yagishita, Hisao; Nishikawa, Takeji; Kawana, Hiromasa

    2017-04-01

    Oral lichen planus is a chronic inflammatory mucocutaneous disease. Topical use of steroids and other immuno-modulating therapies have been tried for this intractable condition. Nowadays, tacrolimus ointment is used more commonly as a choice for treatment. However, a number of discussions have taken place after tacrolimus was reported to be carcinogenic. This report describes a patient who applied tacrolimus ointment to the lower lip after being diagnosed with oral lichen planus in 2008, and whose lesion developed squamous cell carcinoma in 2010. Since the relationship between tacrolimus and cancer development has been reported in only a few cases, including this case report, the clinician must be careful selecting tacrolimus as a second-line treatment for oral lichen planus.

  4. Dietary thylakoids suppress blood glucose and modulate appetite-regulating hormones in pigs exposed to oral glucose tolerance test

    DEFF Research Database (Denmark)

    Montelius, Caroline; Szwiec, Katarzyna; Kardas, Marek

    2014-01-01

    BACKGROUND & AIMS: Dietary chloroplast thylakoids have previously been found to reduce food intake and body weight in animal models, and to change metabolic profiles in humans in mixed-food meal studies. The aim of this study was to investigate the modulatory effects of thylakoids on glucose...... metabolism and appetite-regulating hormones during an oral glucose tolerance test in pigs fed a high fat diet. METHODS: Six pigs were fed a high fat diet (36 energy% fat) for one month before oral glucose tolerance test (1 g/kg d-glucose) was performed. The experiment was designed as a cross-over study......, either with or without addition of 0.5 g/kg body weight of thylakoid powder. RESULTS: The supplementation of thylakoids to the oral glucose tolerance test resulted in decreased blood glucose concentrations during the first hour, increased plasma cholecystokinin concentrations during the first two hours...

  5. Prevention of gingival trauma : Oral hygiene devices and oral piercings

    NARCIS (Netherlands)

    Hoenderdos, N.L.

    2017-01-01

    Maintaining healthy teeth and soft oral tissues for life is important. Oral hygiene devices and oral piercings can damage the soft oral tissues. This thesis investigates the safety of manual toothbrushes, interdental brushes and rubber bristles interdental cleaners by analysing the gingival abrasion

  6. Toward Understanding, Managing, and Protecting Microbial Ecosystems

    Science.gov (United States)

    Bodelier, Paul L. E.

    2011-01-01

    Microbial communities are at the very basis of life on earth, catalyzing biogeochemical reactions driving global nutrient cycles. However, unlike for plants and animals, microbial diversity is not on the biodiversity–conservation agenda. The latter, however, would imply that microbial diversity is not under any threat by anthropogenic disturbance or climate change. This maybe a misconception caused by the rudimentary knowledge we have concerning microbial diversity and its role in ecosystem functioning. This perspective paper identifies major areas with knowledge gaps within the field of environmental microbiology that preclude a comprehension of microbial ecosystems on the level we have for plants and animals. Opportunities and challenges are pointed out to open the microbial black box and to go from descriptive to predictive microbial ecology. PMID:21747797

  7. Towards understanding, managing and protecting microbial ecosystems

    Directory of Open Access Journals (Sweden)

    Paul eBodelier

    2011-04-01

    Full Text Available Microbial communities are at the very basis of life on earth, catalysing biogeochemical reactions driving global nutrient cycles. However, unlike for plants and animals, microbial diversity is not on the biodiversity conservation agenda. The latter, however, would imply that microbial diversity is not under any threat by anthropogenic disturbance or climate change. This maybe a misconception caused by the rudimentary knowledge we have concerning microbial diversity and its role in ecosystem functioning. This perspective paper indentifies major areas with knowledge gaps within the field of environmental microbiology that preclude a comprehension of microbial ecosystems on the level we have for plants and animals. Opportunities and challenges are pointed out to open the microbial black box and to go from descriptive to predictive microbial ecology.

  8. Toward understanding, managing, and protecting microbial ecosystems.

    Science.gov (United States)

    Bodelier, Paul L E

    2011-01-01

    Microbial communities are at the very basis of life on earth, catalyzing biogeochemical reactions driving global nutrient cycles. However, unlike for plants and animals, microbial diversity is not on the biodiversity-conservation agenda. The latter, however, would imply that microbial diversity is not under any threat by anthropogenic disturbance or climate change. This maybe a misconception caused by the rudimentary knowledge we have concerning microbial diversity and its role in ecosystem functioning. This perspective paper identifies major areas with knowledge gaps within the field of environmental microbiology that preclude a comprehension of microbial ecosystems on the level we have for plants and animals. Opportunities and challenges are pointed out to open the microbial black box and to go from descriptive to predictive microbial ecology.

  9. Flos Lonicera Combined with Metformin Ameliorates Hepatosteatosis and Glucose Intolerance in Association with Gut Microbiota Modulation

    Directory of Open Access Journals (Sweden)

    Na R. Shin

    2017-11-01

    Full Text Available The gut microbiota is important in energy contribution, metabolism and immune modulation, and compositional disruption of the gut microbiota population is closely associated with chronic metabolic diseases like type 2 diabetes (T2D and non-alcoholic fatty liver disease (NAFLD. Metformin (MET and Flos Lonicera (FL are common treatments for metabolic diseases in Western and Oriental medicinal fields. We evaluated the effect of treatment with FL and MET in combination on hepatosteatosis, glucose tolerance, and gut microbial composition. FL and MET were administered to Otsuka Long-Evans Tokushima Fatty (OLETF rats, an animal model of genetic T2D and NAFLD. The FL+MET treatment reduced liver weight, serum cholesterol, insulin resistance, and hepatic MDA level and modulated the gut microbial composition. More specifically, the genera of Prevotella and Lactobacillus were negatively associated with the body and liver weights, hepatic TG and TC content, and serum insulin level. However, the relative abundance of these genera decreased in response to the FL+MET treatment. Interestingly, pathway prediction data revealed that the FL+MET treatment attenuated lipopolysaccharide-related pathways, in keeping with the decrease in serum and fecal endotoxin levels. FL and MET in combination exerts a synergistic effect on the improvement of hepatosteatosis and insulin sensitivity in OLETF rats, and modulates gut microbiota in association with the effect.

  10. Metallothioneins: Emerging Modulators in Immunity and Infection

    Directory of Open Access Journals (Sweden)

    Kavitha Subramanian Vignesh

    2017-10-01

    Full Text Available Metallothioneins (MTs are a family of metal-binding proteins virtually expressed in all organisms including prokaryotes, lower eukaryotes, invertebrates and mammals. These proteins regulate homeostasis of zinc (Zn and copper (Cu, mitigate heavy metal poisoning, and alleviate superoxide stress. In recent years, MTs have emerged as an important, yet largely underappreciated, component of the immune system. Innate and adaptive immune cells regulate MTs in response to stress stimuli, cytokine signals and microbial challenge. Modulation of MTs in these cells in turn regulates metal ion release, transport and distribution, cellular redox status, enzyme function and cell signaling. While it is well established that the host strictly regulates availability of metal ions during microbial pathogenesis, we are only recently beginning to unravel the interplay between metal-regulatory pathways and immunological defenses. In this perspective, investigation of mechanisms that leverage the potential of MTs to orchestrate inflammatory responses and antimicrobial defenses has gained momentum. The purpose of this review, therefore, is to illumine the role of MTs in immune regulation. We discuss the mechanisms of MT induction and signaling in immune cells and explore the therapeutic potential of the MT-Zn axis in bolstering immune defenses against pathogens.

  11. Manual de Adiestramiento sobre Terapia de Rehidratacion Oral y Control de las Enfermedades Diarreicas (Oral Rehydration Therapy and the Control of Diarrheal Diseases). Training for Development. Peace Corps Information Collection & Exchange Training Manual No. T-53.

    Science.gov (United States)

    Clark, Mari; And Others

    This Spanish-language manual was developed to train Peace Corps volunteers and other community health workers in Spanish-speaking countries in oral rehydration therapy (ORT) and the control of diarrheal diseases. Using a competency-based format, the manual contains three training modules (organized in seven sessions) that focus on interrelated…

  12. Stability of extemporaneously prepared moxifloxacin oral suspensions.

    Science.gov (United States)

    Hutchinson, David J; Johnson, Cary E; Klein, Kristin C

    2009-04-01

    The stability of extemporaneously prepared moxifloxacin oral suspensions was studied. An oral suspension of moxifloxacin 20 mg/mL was prepared by thoroughly grinding three 400-mg tablets of moxifloxacin in a glass mortar. Thirty milliliters of Ora-Plus and 30 mL of either Ora-Sweet or Ora-Sweet SF were mixed and added to the powder to make a final volume of 60 mL. Three identical samples of each formulation were prepared and placed in 2-oz amber plastic bottles with child-resistant caps and were stored at room temperature (23-25 degrees C). A 1-mL sample was withdrawn from each of the six bottles with a micropipette immediately after preparation and at 7, 14, 28, 60, and 90 days. After further dilution to an expected concentration of 8 microg/ mL with sample diluent, the samples were assayed in duplicate by stability-indicating high-performance liquid chromatography. Stability was defined as the retention of at least 90% of the initial concentration. At least 99% of the initial moxifloxacin remained throughout the 90-day study period in both preparations. There were no detectable changes in color, odor, taste, and pH and no visible microbial growth in any sample. Extemporaneously compounded suspensions of moxifloxacin 20 mg/mL in a 1:1 mixture of Ora-Plus and Ora-Sweet or Ora-Sweet SF were stable for at least 90 days when stored in 2-oz amber plastic bottles at room temperature.

  13. Oral symptoms and functional outcome related to oral and oropharyngeal cancer

    NARCIS (Netherlands)

    Kamstra, Jolanda I.; Jager-Wittenaar, Harriet; Dijkstra, Pieter U.; Huisman, Paulien M.; van Oort, Rob P.; van der Laan, Bernard F. A. M.; Roodenburg, Jan L. N.

    Purpose This study aimed to assess: (1) oral symptoms of patients treated for oral or oropharyngeal cancer; (2) how patients rank the burden of oral symptoms; (3) the impact of the tumor, the treatment, and oral symptoms on functional outcome. Methods Eighty-nine patients treated for oral or

  14. Dietary Modulation of Inflammation-Induced Colorectal Cancer through PPARγ

    Directory of Open Access Journals (Sweden)

    Ashlee B. Carter

    2009-01-01

    Full Text Available Mounting evidence suggests that the risk of developing colorectal cancer (CRC is dramatically increased for patients with chronic inflammatory diseases. For instance, patients with Crohn's Disease (CD or Ulcerative Colitis (UC have a 12–20% increased risk for developing CRC. Preventive strategies utilizing nontoxic natural compounds that modulate immune responses could be successful in the suppression of inflammation-driven colorectal cancer in high-risk groups. The increase of peroxisome proliferator-activated receptor-γ (PPAR-γ expression and its transcriptional activity has been identified as a target for anti-inflammatory efforts, and the suppression of inflammation-driven colon cancer. PPARγ down-modulates inflammation and elicits antiproliferative and proapoptotic actions in epithelial cells. All of which may decrease the risk for inflammation-induced CRC. This review will focus on the use of orally active, naturally occurring chemopreventive approaches against inflammation-induced CRC that target PPARγ and therefore down-modulate inflammation.

  15. Oral Cancer

    Science.gov (United States)

    Oral cancer can form in any part of the mouth. Most oral cancers begin in the flat cells that cover the ... your mouth, tongue, and lips. Anyone can get oral cancer, but the risk is higher if you are ...

  16. Self-reported oral health, oral hygiene, and oral HPV infection in at-risk women in Ho Chi Minh City, Vietnam.

    Science.gov (United States)

    Bui, Thanh Cong; Tran, Ly Thi-Hai; Markham, Christine M; Huynh, Thuy Thi-Thu; Tran, Loi Thi; Pham, Vy Thi-Tuong; Tran, Quan Minh; Hoang, Ngoc Hieu; Hwang, Lu-Yu; Sturgis, Erich Madison

    2015-07-01

    This study aimed to examine the relationships among self-reported oral health, oral hygiene practices, and oral human papillomavirus (HPV) infection in women at risk for sexually transmitted infections (STIs) in Ho Chi Minh City, Vietnam. Convenience and referral sampling methods were used in a clinic-based setting to recruit 126 women aged 18-45 years between August and October 2013. Behavioral factors were self-reported. Oral-rinse samples were tested for HPV DNA of 2 low-risk and 13 high-risk genotypes. A higher unadjusted prevalence of oral HPV infection was associated with poorer self-rated overall oral health (P = .001), reported oral lesions or problems in the past year (P = .001), and reported a tooth loss not because of injury (P = .001). Higher unadjusted prevalence of oral HPV infection was also associated with two measures of oral hygiene: lower frequencies of toothbrushing per day (P = .047) and gargling without toothbrushing (P = .037). After adjusting for other factors in multivariable logistic regression models, poorer self-rated overall oral health remained statistically associated with oral HPV infection (P = .042); yet the frequency of tooth-brushing per day did not (P = .704). Results corroborate the association between self-reported poor oral health and oral HPV infection. The effect of oral hygiene on oral HPV infection remains inconclusive. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Microbial accumulation of uranium

    International Nuclear Information System (INIS)

    Zhang Wei; Dong Faqin; Dai Qunwei

    2005-01-01

    The mechanism of microbial accumulation of uranium and the effects of some factors (including pH, initial uranium concentration, pretreatment of bacteria, and so on) on microbial accumulation of uranium are discussed briefly. The research direction and application prospect are presented. (authors)

  18. Gastrointestinal Transit Time, Glucose Homeostasis and Metabolic Health: Modulation by Dietary Fibers.

    Science.gov (United States)

    Müller, Mattea; Canfora, Emanuel E; Blaak, Ellen E

    2018-02-28

    Gastrointestinal transit time may be an important determinant of glucose homeostasis and metabolic health through effects on nutrient absorption and microbial composition, among other mechanisms. Modulation of gastrointestinal transit may be one of the mechanisms underlying the beneficial health effects of dietary fibers. These effects include improved glucose homeostasis and a reduced risk of developing metabolic diseases such as obesity and type 2 diabetes mellitus. In this review, we first discuss the regulation of gastric emptying rate, small intestinal transit and colonic transit as well as their relation to glucose homeostasis and metabolic health. Subsequently, we briefly address the reported health effects of different dietary fibers and discuss to what extent the fiber-induced health benefits may be mediated through modulation of gastrointestinal transit.

  19. Application of biocathode in microbial fuel cells: cell performance and microbial community

    Energy Technology Data Exchange (ETDEWEB)

    Guo-Wei, Chen [Pusan National Univ. (Korea). Dept. of Environmental Engineering; Hefei Univ. of Technology (China). School of Civil Engineering; Choi, Soo-Jung; Lee, Tae-Ho; Lee, Gil-Young; Cha, Jae-Hwan; Kim, Chang-Won [Pusan National Univ. (Korea). Dept. of Environmental Engineering

    2008-06-15

    Instead of the utilization of artificial redox mediators or other catalysts, a biocathode has been applied in a two-chamber microbial fuel cell in this study, and the cell performance and microbial community were analyzed. After a 2-month startup, the microorganisms of each compartment in microbial fuel cell were well developed, and the output of microbial fuel cell increased and became stable gradually, in terms of electricity generation. At 20 ml/min flow rate of the cathodic influent, the maximum power density reached 19.53 W/m{sup 3}, while the corresponding current and cell voltage were 15.36 mA and 223 mV at an external resistor of 14.9 {omega}, respectively. With the development of microorganisms in both compartments, the internal resistance decreased from initial 40.2 to 14.0 {omega}, too. Microbial community analysis demonstrated that five major groups of the clones were categorized among those 26 clone types derived from the cathode microorganisms. Betaproteobacteria was the most abundant division with 50.0% (37 of 74) of the sequenced clones in the cathode compartment, followed by 21.6% (16 of 74) Bacteroidetes, 9.5% (7 of 74) Alphaproteobacteria, 8.1% (6 of 74) Chlorobi, 4.1% (3 of 74) Deltaproteobacteria, 4.1% (3 of 74) Actinobacteria, and 2.6% (2 of 74) Gammaproteobacteria. (orig.)

  20. Oral Cryotherapy for Preventing Oral Mucositis in Patients Receiving Cancer Treatment.

    Science.gov (United States)

    Riley, Philip; McCabe, Martin G; Glenny, Anne-Marie

    2016-10-01

    In patients receiving treatment for cancer, does oral cryotherapy prevent oral mucositis? Oral cryotherapy is effective for the prevention of oral mucositis in adults receiving fluorouracil-based chemotherapy for solid cancers, and for the prevention of severe oral mucositis in adults receiving high-dose melphalan-based chemotherapy before hematopoietic stem cell transplantation (HSCT).

  1. Intensity-Modulated Radiotherapy for Oral Cavity Squamous Cell Carcinoma: Patterns of Failure and Predictors of Local Control

    International Nuclear Information System (INIS)

    Daly, Megan E.; Le, Quynh-Thu; Kozak, Margaret M.; Maxim, Peter G.; Murphy, James D.; Hsu, Annie; Loo, Billy W.; Kaplan, Michael J.; Fischbein, Nancy J.; Chang, Daniel T.

    2011-01-01

    Purpose: Few studies have evaluated the use of intensity-modulated radiotherapy (IMRT) for squamous cell carcinoma (SCC) of the oral cavity (OC). We report clinical outcomes and failure patterns for these patients. Methods and Materials: Between October 2002 and June 2009, 37 patients with newly diagnosed SCC of the OC underwent postoperative (30) or definitive (7) IMRT. Twenty-five patients (66%) received systemic therapy. The median follow-up was 38 months (range, 10-87 months). The median interval from surgery to RT was 5.9 weeks (range, 2.1-10.7 weeks). Results: Thirteen patients experienced local-regional failure at a median of 8.1 months (range, 2.4-31.9 months), and 2 additional patients experienced local recurrence between surgery and RT. Seven local failures occurred in-field (one with simultaneous nodal and distant disease) and two at the margin. Four regional failures occurred, two in-field and two out-of-field, one with synchronous metastases. Six patients experienced distant failure. The 3-year actuarial estimates of local control, local-regional control, freedom from distant metastasis, and overall survival were 67%, 53%, 81%, and 60% among postoperative patients, respectively, and 60%, 60%, 71%, and 57% among definitive patients. Four patients developed Grade ≥2 chronic toxicity. Increased surgery to RT interval predicted for decreased LRC (p = 0.04). Conclusions: Local-regional control for SCC of the OC treated with IMRT with or without surgery remains unsatisfactory. Definitive and postoperative IMRT have favorable toxicity profiles. A surgery-to-RT interval of <6 weeks improves local-regional control. The predominant failure pattern was local, suggesting that both improvements in target delineation and radiosensitization and/or dose escalation are needed.

  2. Oral candidiasis following steroid therapy for oral lichen planus.

    Science.gov (United States)

    Marable, D R; Bowers, L M; Stout, T L; Stewart, C M; Berg, K M; Sankar, V; DeRossi, S S; Thoppay, J R; Brennan, M T

    2016-03-01

    The purpose of this multicentre study was to determine the incidence of oral candidiasis in patients treated with topical steroids for oral lichen planus (OLP) and to determine whether the application of a concurrent antifungal therapy prevented the development of an oral candidiasis in these patients. Records of 315 patients with OLP seen at four Oral Medicine practices treated for at least 2 weeks with steroids with and without the use of an antifungal regimen were retrospectively reviewed. The overall incidence of oral fungal infection in those treated with steroid therapy for OLP was 13.6%. There was no statistically significant difference in the rate of oral candidiasis development in those treated with an antifungal regimen vs those not treated prophylactically (14.3% vs 12.6%) (P = 0.68). Despite the use of various regimens, none of the preventive antifungal strategies used in this study resulted in a significant difference in the rate of development of an oral candidiasis in patients with OLP treated with steroids. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Podoplanin expression in oral potentially malignant disorders and oral squamous cell carcinoma.

    Science.gov (United States)

    A G, Deepa; Janardanan-Nair, Bindu; B R, Varun

    2017-12-01

    Podoplanin is a type I transmembrane sialomucin-like glycoprotein that is specifically expressed in lymphatic endothelial cells. Studies have shown that assessment of podoplanin expression in the epithelial cells can be used to predict the malignant transformation of potentially malignant disorders and the metastatic tendency of primary head and neck squamous cell carcinoma. The aim of our study was to compare the expression of podoplanin in oral leukoplakia, oral submucous fibrosis and oral squamous cell carcinoma with that in normal buccal mucosa by immunohistochemical methods. Immunohistochemical expression of podoplanin was analyzed in 20 cases each of oral leukoplakia, oral submucous fibrosis, oral squamous cell carcinoma and normal buccal mucosa, with monoclonal antibody D2-40. The expression of podoplanin was graded from grade 0-4. There was a statistically significant upregulation of the grades of podoplanin expression in oral squamous cell carcinoma(100%), oral submucous fibrosis (90%) and oral leukoplakia (65%) when compared to that in normal mucosa(35%). Podoplanin expression increased with decrease in grades of differentiation in oral squamous cell carcinoma . Podoplanin expression in the samples of oral submucous fibrosis was higher than that in oral leukoplakia. Evaluation of podoplanin expression in the epithelial cells of oral dysplastic lesions may provide valuable information to predict their risk of malignant transformation. Key words: Immunohistochemistry, Oral leukoplakia, Oral submucous fibrosis, Podoplanin, Squamous cell carcinoma.

  4. Microbiomes associated with bovine periodontitis and oral health.

    Science.gov (United States)

    Borsanelli, Ana C; Lappin, David F; Viora, Lorenzo; Bennett, David; Dutra, Iveraldo S; Brandt, Bernd W; Riggio, Marcello P

    2018-05-01

    Periodontitis is an infectious polymicrobial, immuno-inflammatory disease of multifactorial aetiology that has an impact on the health, production and welfare of ruminants. The objective of the present study was to determine the microbial profiles present in the gingival sulcus of cattle considered periodontally healthy and in the periodontal pocket of animals with periodontitis lesions using high-throughput bacterial 16S rRNA gene sequencing. Subgingival biofilm samples were collected from 40 cattle with periodontitis and 38 periodontally healthy animals. In total, 1923 OTUs were identified and classified into 395 genera or higher taxa. Microbial profiles in health differed significantly from periodontitis in their composition (p PERMANOVA) but no statistically significant differences were observed in the diversity of healthy and periodontitis microbiomes. The most prevalent taxa in health were Pseudomonas, Burkholderia and Actinobacteria, whereas in disease these were Prevotella, Fusobacterium and Porphyromonas. The most discriminative taxa in health were Gastranaerophilales, Planifilum and Burkholderia, and in disease these were Elusimicrobia, Synergistes and Propionivibrio. In conclusion, statistically significant difference exists between the microbiome in bovine oral health and periodontitis, with populations showing 72.6% dissimilarity. The diversity of the bacteria found in health and periodontitis were similar and bacteria recognised as periodontal pathogens showed increased abundance in disease. In this context, the main components of bacterial homeostasis in the biofilm of healthy sites and of dysbiosis in periodontal lesions provide unprecedented indicators for the evolution of knowledge about bovine periodontitis. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. The oral microbial community of gingivitis and lumpy jaw in captive macropods.

    Science.gov (United States)

    Antiabong, John F; Boardman, Wayne; Moore, Robert B; Brown, Melissa H; Ball, Andrew S

    2013-12-01

    Gingivitis and lumpy jaw are diseases of polymicrobial aetiology. Although Fusobacterium necrophorum has been associated with these diseases in macropods, little is known about other organisms associated with these diseases in this animal species. PCR-DGGE analysis revealed the potential pathogens associated with gingivitis and lumpy jaw in macropods. PCR-DGGE profile comparison between the healthy and disease groups indicated a shift in the oral bacterial community structures with similarity coefficients of 48% and 35% for gingivitis and lumpy jaw respectively. Moreover, gingivitis was associated with increase in bacterial diversity (Shannon index = 2.87; PL curve = 45%) while lumpy jaw resulted in a decline in bacterial diversity (Shannon index = 2.47; PL curve = 74%). This study suggest that the establishment of gingivitis and lumpy jaw diseases follows the ecological plaque hypothesis. This forms the basis for an expanded investigation in an epidemiological scale and suggests the need for the appropriate choice of antimicrobial agent(s) and for the effective management and control of polymicrobial diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Microbial production of gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hideo

    1987-10-20

    Microbial production of ethylene, isobutane and a saturated gaseous hydrocarbon mixture was described. Microbial ethylene production was studied with Penicillium digitatum IFO 9372 and a novel pathway of the ethylene biosynthesis through alpha-ketoglutarate was proposed. Rhodotorula minuta IFO 1102 was selected for the microbial production of isobutane and the interesting actions of L-leucine and L-phenylalanine for the isobutane production were found. It was finally presented about the microbial production of a saturated gaseous hydrocarbon mixture with Rhizopus japonicus IFO 4758 was described. A gas mixture was produced through a chemical reaction of SH compounds and some cellular component such as squalene under aerobic conditions. (4 figs, 7 tabs, 41 refs)

  7. Microbial control of pollution

    Energy Technology Data Exchange (ETDEWEB)

    Fry, J C; Gadd, G M; Herbert, R A; Jones, C W; Watson-Craik, I A [eds.

    1992-01-01

    12 papers are presented on the microbial control of pollution. Topics covered include: bioremediation of oil spills; microbial control of heavy metal pollution; pollution control using microorganisms and magnetic separation; degradation of cyanide and nitriles; nitrogen removal from water and waste; and land reclamation and restoration.

  8. Copper removal and microbial community analysis in single-chamber microbial fuel cell.

    Science.gov (United States)

    Wu, Yining; Zhao, Xin; Jin, Min; Li, Yan; Li, Shuai; Kong, Fanying; Nan, Jun; Wang, Aijie

    2018-04-01

    In this study, copper removal and electricity generation were investigated in a single-chamber microbial fuel cell (MFC). Result showed that copper was efficiently removed in the membrane-less MFC with removal efficiency of 98.3% at the tolerable Cu 2+ concentration of 12.5 mg L -1 , the corresponding open circuit voltage and maximum power density were 0.78 V and 10.2 W m -3 , respectively. The mechanism analysis demonstrated that microbial electrochemical reduction contributed to the copper removal with the products of Cu and Cu 2 O deposited at biocathode. Moreover, the microbial community analysis indicated that microbial communities changed with different copper concentrations. The dominant phyla were Proteobacteria and Bacteroidetes which could play key roles in electricity generation, while Actinobacteria and Acidobacteria were also observed which were responsible for Cu-resistant and copper removal. It will be of important guiding significance for the recovery of copper from low concentration wastewater through single-chamber MFC with simultaneous energy recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Combining microbial cultures for efficient production of electricity from butyrate in a microbial electrochemical cell

    Science.gov (United States)

    Miceli, Joseph F.; Garcia-Peña, Ines; Parameswaran, Prathap; Torres, César I.; Krajmalnik-Brown, Rosa

    2014-01-01

    Butyrate is an important product of anaerobic fermentation; however, it is not directly used by characterized strains of the highly efficient anode respiring bacteria (ARB) Geobacter sulfurreducens in microbial electrochemical cells. By combining a butyrate-oxidizing community with a Geobacter rich culture, we generated a microbial community which outperformed many naturally derived communities found in the literature for current production from butyrate and rivaled the highest performing natural cultures in terms of current density (~11 A/m2) and Coulombic efficiency (~70%). Microbial community analyses support the shift in the microbial community from one lacking efficient ARB in the marine hydrothermal vent community to a community consisting of ~80% Geobacter in the anode biofilm. This demonstrates the successful production and adaptation of a novel microbial culture for generating electrical current from butyrate with high current density and high Coulombic efficiency, by combining two mixed micro bial cultures containing complementing biochemical pathways. PMID:25048958

  10. Towards the understanding of microbial metabolism in relation to microbial enhanced oil recovery

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Nielsen, Sidsel Marie; Nielsen, Kristian Fog

    2017-01-01

    In this study, Bacillus licheniformis 421 was used as a model organism to understand the effects of microbial cell growth and metabolite production under anaerobic conditions in relation to microbial enhanced oil recovery. The bacterium was able to grow anaerobically on different carbon compounds...

  11. Microbial respiration per unit microbial biomass increases with carbon-to-nutrient ratios in soils

    Science.gov (United States)

    Spohn, Marie; Chodak, Marcin

    2015-04-01

    The ratio of carbon-to-nutrient in forest floors is usually much higher than the ratio of carbon-to-nutrient that soil microorganisms require for their nutrition. In order to understand how this mismatch affects carbon cycling, the respiration rate per unit soil microbial biomass carbon - the metabolic quotient (qCO2) - was studied. This was done in a field study (Spohn and Chodak, 2015) and in a meta-analysis of published data (Spohn, 2014). Cores of beech, spruce, and mixed spruce-beech forest soils were cut into slices of 1 cm from the top of the litter layer down to 5 cm in the mineral soil, and the relationship between the qCO2 and the soil carbon-to-nitrogen (C:N) and the soil carbon-to-phosphorus (C:P) ratio was analyzed. We found that the qCO2 was positively correlated with soil C:N ratio in spruce soils (R = 0.72), and with the soil C:P ratio in beech (R = 0.93), spruce (R = 0.80) and mixed forest soils (R = 0.96). We also observed a close correlation between the qCO2 and the soil C concentration in all three forest types. Yet, the qCO2 decreased less with depth than the C concentration in all three forest types, suggesting that the change in qCO2 is not only controlled by the soil C concentration. We conclude that microorganisms increase their respiration rate per unit biomass with increasing soil C:P ratio and C concentration, which adjusts the substrate to their nutritional demands in terms of stoichiometry. In an analysis of literature data, I tested the effect of the C:N ratio of soil litter layers on microbial respiration in absolute terms and per unit microbial biomass C. For this purpose, a global dataset on the microbial respiration rate per unit microbial biomass C - termed the metabolic quotient (qCO2) - was compiled form literature data. It was found that the qCO2 in the soil litter layers was positively correlated with the litter C:N ratio and negatively related with the litter nitrogen (N) concentration. The positive relation between the qCO2

  12. A Microbial Assessment Scheme to measure microbial performance of Food Safety Management Systems.

    Science.gov (United States)

    Jacxsens, L; Kussaga, J; Luning, P A; Van der Spiegel, M; Devlieghere, F; Uyttendaele, M

    2009-08-31

    A Food Safety Management System (FSMS) implemented in a food processing industry is based on Good Hygienic Practices (GHP), Hazard Analysis Critical Control Point (HACCP) principles and should address both food safety control and assurance activities in order to guarantee food safety. One of the most emerging challenges is to assess the performance of a present FSMS. The objective of this work is to explain the development of a Microbial Assessment Scheme (MAS) as a tool for a systematic analysis of microbial counts in order to assess the current microbial performance of an implemented FSMS. It is assumed that low numbers of microorganisms and small variations in microbial counts indicate an effective FSMS. The MAS is a procedure that defines the identification of critical sampling locations, the selection of microbiological parameters, the assessment of sampling frequency, the selection of sampling method and method of analysis, and finally data processing and interpretation. Based on the MAS assessment, microbial safety level profiles can be derived, indicating which microorganisms and to what extent they contribute to food safety for a specific food processing company. The MAS concept is illustrated with a case study in the pork processing industry, where ready-to-eat meat products are produced (cured, cooked ham and cured, dried bacon).

  13. Hydrodynamics of microbial filter feeding.

    Science.gov (United States)

    Nielsen, Lasse Tor; Asadzadeh, Seyed Saeed; Dölger, Julia; Walther, Jens H; Kiørboe, Thomas; Andersen, Anders

    2017-08-29

    Microbial filter feeders are an important group of grazers, significant to the microbial loop, aquatic food webs, and biogeochemical cycling. Our understanding of microbial filter feeding is poor, and, importantly, it is unknown what force microbial filter feeders must generate to process adequate amounts of water. Also, the trade-off in the filter spacing remains unexplored, despite its simple formulation: A filter too coarse will allow suitably sized prey to pass unintercepted, whereas a filter too fine will cause strong flow resistance. We quantify the feeding flow of the filter-feeding choanoflagellate Diaphanoeca grandis using particle tracking, and demonstrate that the current understanding of microbial filter feeding is inconsistent with computational fluid dynamics (CFD) and analytical estimates. Both approaches underestimate observed filtration rates by more than an order of magnitude; the beating flagellum is simply unable to draw enough water through the fine filter. We find similar discrepancies for other choanoflagellate species, highlighting an apparent paradox. Our observations motivate us to suggest a radically different filtration mechanism that requires a flagellar vane (sheet), something notoriously difficult to visualize but sporadically observed in the related choanocytes (sponges). A CFD model with a flagellar vane correctly predicts the filtration rate of D. grandis , and using a simple model we can account for the filtration rates of other microbial filter feeders. We finally predict how optimum filter mesh size increases with cell size in microbial filter feeders, a prediction that accords very well with observations. We expect our results to be of significance for small-scale biophysics and trait-based ecological modeling.

  14. Care and consumption: A Latin American social medicine's conceptual framework to comprehend oral health inequalities.

    Science.gov (United States)

    Abadía-Barrero, César Ernesto; Martínez-Parra, Adriana Gisela

    2017-10-01

    This article offers a conceptual framework that arises out of the Latin American Social Medicine/Collective Health (LASM/CH) tradition to comprehend inequalities in oral health. We conducted a dialogue between the LASM/CH proposal called social determination of health (in particular one of its nuclear categories 'ways of living together') and studies that address social inequalities and oral health. This dialogue allowed us to redefine oral health-disease-treatment as a process that either promotes or harms well-being and is modulated by different ways of living together where not only patients and professionals, but also governments, supranational bodies, and national and international markets represented by food, pharmaceutical, insurance, personal care, and cosmetic companies interact. The article proposes the cycle particular-consumption care/institutional-consumption care as the construct that allows investigators to think about how ways of living together relate to oral health inequalities. 'Particular-consumption care' includes ways and possibilities to access healthy foods and practice protective hygienic measures. 'Institutional-consumption care' refers to institutional responses related to supply, access to services, capabilities for resolution, and pedagogical practices.

  15. EVA Suit Microbial Leakage Investigation

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to collect microbial samples from various EVA suits to determine how much microbial contamination is typically released during...

  16. Discovery and therapeutic promise of selective androgen receptor modulators.

    Science.gov (United States)

    Chen, Jiyun; Kim, Juhyun; Dalton, James T

    2005-06-01

    Androgens are essential for male development and the maintenance of male secondary characteristics, such as bone mass, muscle mass, body composition, and spermatogenesis. The main disadvantages of steroidal androgens are their undesirable physicochemical and pharmacokinetic properties. The recent discovery of nonsteroidal selective androgen receptor modulators (SARMs) provides a promising alternative for testosterone replacement therapies with advantages including oral bioavailability, flexibility of structural modification, androgen receptor specificity, tissue selectivity, and the lack of steroid-related side effects.

  17. Utilisation of oral health services, oral health needs and oral health status in a peri-urban informal settlement.

    Science.gov (United States)

    Westaway, M S; Viljoen, E; Rudolph, M J

    1999-04-01

    Interviews were conducted with 294 black residents (155 females and 138 males) of a peri-urban informal settlement in Gauteng to ascertain utilisation of oral health services, oral health needs and oral health status. Only 37 per cent of the sample had consulted a dentist or medical practitioner, usually for extractions. Teenagers and employed persons were significantly less likely to utilise dentists than the older age groups and unemployed persons. Forty per cent were currently experiencing oral health problems such as a sore mouth, tooth decay and bleeding/painful gums. Two hundred and twelve (73 per cent) interviewees wanted dental treatment or advice. Residents who rated their oral health status as fair or poor appeared to have the greatest need for oral health services. The use of interviews appears to be a cost-effective method of determining oral morbidity.

  18. Effects of short-term xylitol gum chewing on the oral microbiome.

    Science.gov (United States)

    Söderling, Eva; ElSalhy, Mohamed; Honkala, Eino; Fontana, Margherita; Flannagan, Susan; Eckert, George; Kokaras, Alexis; Paster, Bruce; Tolvanen, Mimmi; Honkala, Sisko

    2015-03-01

    The aim of this study was to determine the effects of short-term xylitol gum chewing on the salivary microbiota of children. The study was a randomised, controlled, double-blind trial. Healthy children used xylitol chewing gum (xylitol group, n = 35) or sorbitol chewing gum (control group, n = 38) for 5 weeks. The daily dose of xylitol/sorbitol was approximately 6 g/day. At baseline and at the end of the test period, unstimulated and paraffin-stimulated saliva were collected. The microbial composition of the saliva was assessed using human oral microbe identification microarray (HOMIM). Mutans streptococci (MS) were plate cultured. As judged by HOMIM results, no xylitol-induced changes in the salivary microbiota took place in the xylitol group. In the control group, Veillonella atypica showed a significant decrease (p = 0.0001). The xylitol gum chewing decreased viable counts of MS in both stimulated (p = 0.006) and unstimulated (p = 0.002) saliva, but similar effects were also seen in the control group. The use of xylitol gum decreased MS, in general, but did not change the salivary microbial composition. Short-term consumption of xylitol had no impact on the composition of the salivary microbiota, but resulted in a decrease in the levels of MS.

  19. Oral Microbiome: A New Biomarker Reservoir for Oral and Oropharyngeal Cancers

    OpenAIRE

    Lim, Yenkai; Totsika, Makrina; Morrison, Mark; Punyadeera, Chamindie

    2017-01-01

    Current biomarkers (DNA, RNA and protein) for oral cavity and oropharyngeal cancers demonstrate biological variations between individuals, rendering them impractical for clinical translation. Whilst these biomarkers originate from the host, there is not much information in the literature about the influence of oral microbiota on cancer pathogenesis, especially in oral cancers. Oral microbiotas are known to participate in disease initiation and progression not only limited to the oral cavity, ...

  20. Representing Microbial Dormancy in Soil Decomposition Models Improves Model Performance and Reveals Key Ecosystem Controls on Microbial Activity

    Science.gov (United States)

    He, Y.; Yang, J.; Zhuang, Q.; Wang, G.; Liu, Y.

    2014-12-01

    Climate feedbacks from soils can result from environmental change and subsequent responses of plant and microbial communities and nutrient cycling. Explicit consideration of microbial life history traits and strategy may be necessary to predict climate feedbacks due to microbial physiology and community changes and their associated effect on carbon cycling. In this study, we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of dormancy at six temperate forest sites with observed soil efflux ranged from 4 to 10 years across different forest types. We then extrapolated the model to all temperate forests in the Northern Hemisphere (25-50°N) to investigate spatial controls on microbial and soil C dynamics. Both models captured the observed soil heterotrophic respiration (RH), yet no-dormancy model consistently exhibited large seasonal amplitude and overestimation in microbial biomass. Spatially, the total RH from temperate forests based on dormancy model amounts to 6.88PgC/yr, and 7.99PgC/yr based on no-dormancy model. However, no-dormancy model notably overestimated the ratio of microbial biomass to SOC. Spatial correlation analysis revealed key controls of soil C:N ratio on the active proportion of microbial biomass, whereas local dormancy is primarily controlled by soil moisture and temperature, indicating scale-dependent environmental and biotic controls on microbial and SOC dynamics. These developments should provide essential support to modeling future soil carbon dynamics and enhance the avenue for collaboration between empirical soil experiment and modeling in the sense that more microbial physiological measurements are needed to better constrain and evaluate the models.