WorldWideScience

Sample records for modulates vegfr-2 phosphorylation

  1. VEGF internalization is not required for VEGFR-2 phosphorylation in bioengineered surfaces with covalently linked VEGF

    Science.gov (United States)

    Anderson, Sean M.; Shergill, Bhupinder; Barry, Zachary T.; Manousiouthakis, Eleana; Chen, Tom T.; Botvinick, Elliot; Platt, Manu O.; Iruela-Arispe, M. Luisa; Segura, Tatiana

    2011-01-01

    Vascular endothelial growth factor (VEGF) is known to activate proliferation, migration, and survival pathways in endothelial cells through phosphorylation of VEGF receptor-2 (VEGFR-2). VEGF has been incorporated into biomaterials through encapsulation, electrostatic sequestration, and covalent attachment, but the effect of these immobilization strategies on VEGF signaling has not been thoroughly investigated. Further, although growth factor internalization along with the receptor generally occurs in a physiological setting, whether this internalization is needed for receptor phosphorylation is not entirely clear. Here we show that VEGF covalently bound through a modified heparin molecule elicits an extended response of pVEGFR-2 in human umbilical vein endothelial cells (HUVECs) and that the covalent linkage reduces internalization of the growth factor during receptor endocytosis. Optical tweezer measurements show that the rupture force required to disrupt the heparin-VEGF-VEGFR-2 interaction increases from 3–8 pN to 6–12 pN when a covalent bond is introduced between VEGF and heparin. Importantly, by covalently binding VEGF to a heparin substrate, the stability (half-life) of VEGF is extended over three-fold. Here, mathematical models support the biological conclusions, further suggesting that VEGF internalization is significantly reduced when covalently bound, and indicating that VEGF is available for repeated phosphorylation events. PMID:21826315

  2. Ynamide Click chemistry in development of triazole VEGFR2 TK modulators.

    Science.gov (United States)

    Vojtičková, Margaréta; Dobiaš, Juraj; Hanquet, Gilles; Addová, Gabriela; Cetin-Atalay, Rengul; Yildirim, Deniz Cansen; Boháč, Andrej

    2015-10-20

    Structure novelty, chemical stability and synthetic feasibility attracted us to design 1,2,3-triazole compounds as potential inhibitors of VEGFR2 tyrosine kinase. Novel triazoles T1-T7 were proposed by oxazole (AAZ from PDB: 1Y6A)/1,2,3-triazole isosteric replacement, molecular modelling and docking. In order to enable synthesis of T1-T7 we developed a methodology for preparation of ynamide 22. Compound 22 was used for all Click chemistry reactions leading to triazoles T1-T3 and T6-T7. Among the obtained products, T1, T3 and T7 specifically bind VEGFR2 TK and modulate its activity by concentration dependent manner. Moreover predicted binding poses of T1-T7 in VEGFR2 TK were similar to the one known for the oxazole inhibitor AAZ (PDB: 1Y6A). Unfortunately the VEGFR2 inhibition by triazoles e.g. T3 and T7 is lower than that determined for their oxazole bioisosters T3-ox and AAZ, resp. Different electronic properties of 1,2,3-triazole/oxazole heterocyclic rings were proposed to be the main reason for the diminished affinity of T1-T3, T6 and T7 to an oxazole AAZ inhibitor binding site in VEGFR2 TK (PDB: 1Y6A or 1Y6B). Moreover T1-T3 and T6 were screened on cytotoxic activity against two human hepatocellular carcinoma cell lines. Selective cytotoxic activity of T2 against aggressive Mahlavu cells has been discovered indicating possible affinity of T2 to Mahlavu constitutionally active PI3K/Akt pathway.

  3. Morpholino-Mediated Isoform Modulation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) Reduces Colon Cancer Xenograft Growth

    Energy Technology Data Exchange (ETDEWEB)

    Stagg, Brian C., E-mail: briancstagg@gmail.com; Uehara, Hironori; Lambert, Nathan; Rai, Ruju; Gupta, Isha; Radmall, Bryce; Bates, Taylor; Ambati, Balamurali K. [John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132 (United States)

    2014-11-26

    Angiogenesis plays a key role in tumor growth. Vascular endothelial growth factor (VEGF) is a pro-angiogenic that is involved in tumor angiogenesis. When VEGF binds to membrane-bound vascular endothelial growth factor receptor 2 (mVEGFR2), it promotes angiogenesis. Through alternative polyadenylation, VEGFR2 is also expressed in a soluble form (sVEGFR2). sVEGFR2 sequesters VEGF and is therefore anti-angiogenic. The aim of this study was to show that treatment with a previously developed and reported antisense morpholino oligomer that shifts expression from mVEGFR2 to sVEGFR2 would lead to reduced tumor vascularization and growth in a murine colon cancer xenograft model. Xenografts were generated by implanting human HCT-116 colon cancer cells into the flanks of NMRI nu/nu mice. Treatment with the therapeutic morpholino reduced both tumor growth and tumor vascularization. Because the HCT-116 cells used for the experiments did not express VEGFR2 and because the treatment morpholino targeted mouse rather than human VEGFR2, it is likely that treatment morpholino was acting on the mouse endothelial cells rather than directly on the tumor cells.

  4. The Effect of Bevacizumab on Human Malignant Melanoma Cells with Functional VEGF/VEGFR2 Autocrine and Intracrine Signaling Loops

    Directory of Open Access Journals (Sweden)

    Una Adamcic

    2012-07-01

    Full Text Available Receptors for the angiogenic factor VEGF are expressed by tumor cancer cells including melanoma, although their functionality remains unclear. Paired human melanoma cell lines WM115 and WM239 were used to investigate differences in expression and functionality of VEGF and VEGFR2 in vitro and in vivo with the anti-VEGF antibody bevacizumab. Both WM115 and WM239 cells expressed VEGF and VEGFR2, the levels of which were modulated by hypoxia. Detection of native and phosphorylated VEGFR2 in subcellular fractions under serum-free conditions showed the presence of a functional autocrine as well as intracrine VEGF/VEGFR2 signaling loops. Interestingly, treatment of WM115 and WM239 cells with increasing doses of bevacizumab (0–300 µg/ml in vitro did not show any significant inhibition of VEGFR2 phosphorylation. Small-molecule tyrosine kinase inhibitor, sunitinib, caused an inhibition of VEGFR2 phosphorylation in WM239 but not in WM115 cells. An increase in cell proliferation was observed in WM115 cells treated with bevacizumab, whereas sunitinib inhibited proliferation. When xenografted to immune-deficient mice, we found bevacizumab to be an effective antiangiogenic but not antitumorigenic agent for both cell lines. Because bevacizumab is unable to neutralize murine VEGF, this supports a paracrine angiogenic response. We propose that the failure of bevacizumab to generate an antitumorigenic effect may be related to its generation of enhanced autocrine/intracrine signaling in the cancer cells themselves. Collectively, these results suggest that, for cancers with intracrine VEGF/ VEGFR2 signaling loops, small-molecule inhibitors of VEGFR2 may be more effective than neutralizing antibodies at disease control.

  5. TBX1 Represses Vegfr2 Gene Expression and Enhances the Cardiac Fate of VEGFR2+ Cells

    Science.gov (United States)

    Lania, Gabriella; Ferrentino, Rosa; Baldini, Antonio

    2015-01-01

    The T-box transcription factor TBX1 has critical roles in maintaining proliferation and inhibiting differentiation of cardiac progenitor cells of the second heart field (SHF). Haploinsufficiency of the gene that encodes it is a cause of congenital heart disease. Here, we developed an embryonic stem (ES) cell-based model in which Tbx1 expression can be modulated by tetracycline. Using this model, we found that TBX1 down regulates the expression of VEGFR2, and we confirmed this finding in vivo during embryonic development. In addition, we found a Vegfr2 domain of expression, not previously described, in the posterior SHF and this expression is extended by loss of Tbx1. VEGFR2 has been previously described as a marker of a subpopulation of cardiac progenitors. Clonal analysis of ES-derived VEGFR2+ cells indicated that 12.5% of clones expressed three markers of cardiac lineage (cardiomyocyte, smooth muscle and endothelium). However, a pulse of Tbx1 expression was sufficient to increase the percentage to 20.8%. In addition, the percentage of clones expressing markers of multiple cardiac lineages increased from 41.6% to 79.1% after Tbx1 pulse. These results suggest that TBX1 plays a role in maintaining a progenitor state in VEGFR2+ cells. PMID:26382615

  6. A role for VEGFR2 activation in endothelial responses caused by barrier disruptive OxPAPC concentrations.

    Directory of Open Access Journals (Sweden)

    Anna A Birukova

    Full Text Available Oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (OxPAPC differentially modulate endothelial cell (EC barrier function in a dose-dependent fashion. Vascular endothelial growth factor receptor-2 (VEGFR2 is involved in the OxPAPC-induced EC inflammatory activation. This study examined a role of VEGFR2 in barrier dysfunction caused by high concentrations of OxPAPC and evaluated downstream signaling mechanisms resulting from the effect of OxPAPC in EC from pulmonary and systemic circulation.EC monolayer permeability in human pulmonary artery endothelial cells (HPAEC and human aortic endothelial cells (HAEC was monitored by changes in transendothelial electrical resistance (TER across EC monolayers. Actin cytoskeleton was examined by immunostaining with Texas Red labeled phalloidin. Phosphorylation of myosin light chains (MLC and VE-Cadherin was examined by Western blot and immunofluorescence techniques. The role of VEGFR2 in OxPAPC-induced permeability and cytoskeletal arrangement were determined using siRNA-induced VEGFR2 knockdown.Low OxPAPC concentrations (5-20 µg/ml induced a barrier protective response in both HPAEC and HAEC, while high OxPAPC concentrations (50-100 µg/ml caused a rapid increase in permeability; actin stress fiber formation and increased MLC phosphorylation were observed as early as 30 min after treatment. VEGFR2 knockdown dramatically decreased the amount of MLC phosphorylation and stress fiber formation caused by high OxPAPC concentrations with modest effects on the amount of VE-cadherin phosphorylation at Y(731. We present evidence that activation of Rho is involved in the OxPAPC/VEGFR2 mechanism of EC permeability induced by high OxPAPC concentrations. Knockdown of VEGFR2 did not rescue the early drop in TER but prevented further development of OxPAPC-induced barrier dysfunction.This study shows that VEGFR2 is involved in the delayed phase of EC barrier dysfunction caused by high Ox

  7. Editing VEGFR2 Blocks VEGF-Induced Activation of Akt and Tube Formation

    Science.gov (United States)

    Huang, Xionggao; Zhou, Guohong; Wu, Wenyi; Ma, Gaoen; D'Amore, Patricia A.; Mukai, Shizuo; Lei, Hetian

    2017-01-01

    Purpose Vascular endothelial growth factor receptor 2 (VEGFR2) plays a key role in VEGF-induced angiogenesis. The goal of this project was to test the hypothesis that editing genomic VEGFR2 loci using the technology of clustered regularly interspaced palindromic repeats (CRISPR)-associated DNA endonuclease (Cas)9 in Streptococcus pyogenes (SpCas9) was able to block VEGF-induced activation of Akt and tube formation. Methods Four 20 nucleotides for synthesizing single-guide RNAs based on human genomic VEGFR2 exon 3 loci were selected and cloned into a lentiCRISPR v2 vector, respectively. The DNA fragments from the genomic VEGFR2 exon 3 of transduced primary human retinal microvascular endothelial cells (HRECs) were analyzed by Sanger DNA sequencing, surveyor nuclease assay, and next-generation sequencing (NGS). In the transduced cells, expression of VEGFR2 and VEGF-stimulated signaling events (e.g., Akt phosphorylation) were determined by Western blot analyses; VEGF-induced cellular responses (proliferation, migration, and tube formation) were examined. Results In the VEGFR2-sgRNA/SpCas9–transduced HRECs, Sanger DNA sequencing indicated that there were mutations, and NGS demonstrated that there were 83.57% insertion and deletions in the genomic VEGFR2 locus; expression of VEGFR2 was depleted in the VEGFR2-sgRNA/SpCas9–transduced HRECs. In addition, there were lower levels of Akt phosphorylation in HRECs with VEGFR2-sgRNA/SpCas9 than those with LacZ-sgRNA/SpCas9, and there was less VEGF-stimulated Akt activation, proliferation, migration, or tube formation in the VEGFR2-depleted HRECs than those treated with aflibercept or ranibizumab. Conclusions The CRISPR-SpCas9 technology is a potential novel approach to prevention of pathologic angiogenesis. PMID:28241310

  8. Inhibition of VEGFR2 Activation and Its Downstream Signaling to ERK1/2 and Calcium by Thrombospondin-1 (TSP1): In silico Investigation

    Science.gov (United States)

    Bazzazi, Hojjat; Isenberg, Jeffery S.; Popel, Aleksander S.

    2017-01-01

    VEGF signaling through VEGFR2 is a central regulator of the angiogenic response. Inhibition of VEGF signaling by the stress-induced matricellular protein TSP1 plays a role in modulating the angiogenic response to VEGF in both health and disease. TSP1 binding to CD47 inhibits VEGFR2 activation. The full implications of this inhibitory interaction are unknown. We developed a detailed rule-based computational model to inquire if TSP1-CD47 signaling through VEGF had downstream effects upon ERK1/2 and calcium. Our Simulations suggest that enhanced degradation of VEGFR2 initiated by the binding of TSP1 to CD47 is sufficient to explain the inhibition of VEGFR2 phosphorylation, calcium elevation, and ERK1/2 activation downstream of VEGF. A complementary mechanism involving the recruitment of phosphatases to the VEGFR2 complex with consequent increase in the rate of receptor dephosphorylation may augment the inhibition of the VEGF signal. The model was then utilized to simulate the effect of inhibiting external TSP1 or the depletion of CD47 as potential therapeutic strategies in restoring VEGF signaling. Results suggest that depleting CD47 is a more efficient strategy in inhibiting the effects of TSP1/CD47 on VEGF signaling. Our results highlight the utility of in silico investigations in elucidating and clarifying molecular mechanisms at the intersection of TSP1 and VEGF biology and in differentiating between competing pro-angiogenic therapeutic strategies relevant to peripheral arterial disease (PAD) and wound healing. PMID:28220078

  9. Erythropoietin attenuates renal and pulmonary injury in polymicrobial induced-sepsis through EPO-R, VEGF and VEGF-R2 modulation.

    Science.gov (United States)

    Heitrich, Mauro; García, Daiana Maria de Los Ángeles; Stoyanoff, Tania Romina; Rodríguez, Juan Pablo; Todaro, Juan Santiago; Aguirre, María Victoria

    2016-08-01

    Sepsis remains the most important cause of acute kidney injury (AKI) and acute lung injury (ALI) in critically ill patients. The cecal ligation and puncture (CLP) model in experimental mice reproduces most of the clinical features of sepsis. Erythropoietin (EPO) is a well-known cytoprotective multifunctional hormone, which exerts anti-inflammatory, anti-oxidant, anti-apoptotic and pro-angiogenic effects in several tissues. The aim of this study was to evaluate the underlying mechanisms of EPO protection through the expression of the EPO/EPO receptor (EPO-R) and VEGF/VEF-R2 systems in kidneys and lungs of mice undergoing CLP-induced sepsis. Male inbred Balb/c mice were divided in three experimental groups: Sham, CLP, and CLP+EPO (3000IU/kg sc). Assessment of renal functional parameters, survival, histological examination, immunohistochemistry and/or Western blottings of EPO-R, VEGF and VEGF-R2 were performed at 18h post-surgery. Mice demonstrated AKI by elevation of serum creatinine and renal histologic damage. EPO treatment attenuates renal dysfunction and ameliorates kidney histopathologic changes. Additionally, EPO administration attenuates deleterious septic damage in renal cortex through the overexpression of EPO-R in tubular interstitial cells and the overexpression of the pair VEGF/VEGF-R2. Similarly CLP- induced ALI, as evidenced by parenchymal lung histopathologic alterations, was ameliorated through pulmonary EPO-R, VEGF and VEGF-R2 over expression suggesting and improvement in endothelial survival and functionality. This study demonstrates that EPO exerts protective effects in kidneys and lungs in mice with CLP-induced sepsis through the expression of EPO-R and the regulation of the VEGF/VEGF-R2 pair.

  10. Cigarette smoke regulates VEGFR2-mediated survival signaling in rat lungs

    Directory of Open Access Journals (Sweden)

    Stevenson Christopher S

    2010-02-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF and VEGF receptor 2 (VEGFR2-mediated survival signaling is critical to endothelial cell survival, maintenance of the vasculature and alveolar structure and regeneration of lung tissue. Reduced VEGF and VEGFR2 expression in emphysematous lungs has been linked to increased endothelial cell death and vascular regression. Previously, we have shown that CS down-regulated the VEGFR2 and its downstream signaling in mouse lungs. However, the VEGFR2-mediated survival signaling in response to oxidants/cigarette smoke (CS is not known. We hypothesized that CS exposure leads to disruption of VEGFR2-mediated endothelial survival signaling in rat lungs. Methods Adult male Sprague-Dawley rats were exposed CS for 3 days, 8 weeks and 6 months to investigate the effect of CS on VEGFR2-mediated survival signaling by measuring the Akt/PI3-kinase/eNOS downstream signaling in rat lungs. Results and Discussion We show that CS disrupts VEGFR2/PI3-kinase association leading to decreased Akt and eNOS phosphorylation. This may further alter the phosphorylation of the pro-apoptotic protein Bad and increase the Bad/Bcl-xl association. However, this was not associated with a significant lung cell death as evidenced by active caspase-3 levels. These data suggest that although CS altered the VEGFR2-mediated survival signaling in the rat lungs, but it was not sufficient to cause lung cell death. Conclusion The rat lungs exposed to CS in acute, sub-chronic and chronic levels may be representative of smokers where survival signaling is altered but was not associated with lung cell death whereas emphysema is known to be associated with lung cell apoptosis.

  11. VEGFR-2 reduces while combined VEGFR-2 and -3 signaling increases inflammation in apical periodontitis

    Science.gov (United States)

    Virtej, Anca; Papadakou, Panagiota; Sasaki, Hajime; Bletsa, Athanasia; Berggreen, Ellen

    2016-01-01

    Background In apical periodontitis, oral pathogens provoke an inflammatory response in the apical area that induces bone resorptive lesions. In inflammation, angio- and lymphangiogenesis take place. Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are key players in these processes and are expressed in immune cells and endothelial cells in the lesions. Objective We aimed at testing the role of VEGFR-2 and -3 in periapical lesion development and investigated their role in lymphangiogenesis in the draining lymph nodes. Design We induced lesions by pulp exposure in the lower first molars of C57BL/6 mice. The mice received IgG injections or blocking antibodies against VEGFR-2 (anti-R2), VEGFR-3 (anti-R3), or combined VEGFR-2 and -3, starting on day 0 until day 10 or 21 post-exposure. Results Lesions developed faster in the anti-R2 and anti-R3 group than in the control and anti-R2/R3 groups. In the anti-R2 group, a strong inflammatory response was found expressed as increased number of neutrophils and osteoclasts. A decreased level of pro-inflammatory cytokines was found in the anti-R2/R3 group. Lymphangiogenesis in the draining lymph nodes was inhibited after blocking of VEGFR-2 and/or -3, while the largest lymph node size was seen after anti-R2 treatment. Conclusions We demonstrate an anti-inflammatory effect of VEGFR-2 signaling in periapical lesions which seems to involve neutrophil regulation and is independent of angiogenesis. Combined signaling of VEGFR-2 and -3 has a pro-inflammatory effect. Lymph node lymphangiogenesis is promoted through activation of VEGFR-2 and/or VEGFR-3. PMID:27650043

  12. VEGFR1 and VEGFR2 involvement in extracellular galectin-1- and galectin-3-induced angiogenesis.

    Directory of Open Access Journals (Sweden)

    Nicky D'Haene

    Full Text Available AIM: Accumulating evidence suggests that extracellular galectin-1 and galectin-3 promote angiogenesis. Increased expression of galectin-1 and/or galectin-3 has been reported to be associated with tumour progression. Thus, it is critical to identify their influence on angiogenesis. METHODS: We examined the individual and combined effects of galectin-1 and galectin-3 on endothelial cell (EC growth and tube formation using two EC lines, EA.hy926 and HUVEC. The activation of vascular endothelial growth factor receptors (VEGFR1 and VEGFR2 was determined by ELISA and Western blots. We evaluated the VEGFR1 and VEGFR2 levels in endosomes by proximity ligation assay. RESULTS: We observed different responses to exogenous galectins depending on the EC line. An enhanced effect on EA.hy926 cell growth and tube formation was observed when both galectins were added together. Focusing on this enhanced effect, we observed that together galectins induced the phosphorylation of both VEGFR1 and VEGFR2, whereas galectin-1 and -3 alone induced VEGFR2 phosphorylation only. In the same way, the addition of a blocking VEGFR1 antibody completely abolished the increase in tube formation induced by the combined addition of both galectins. In contrast, the addition of a blocking VEGFR2 antibody only partially inhibited this effect. Finally, the addition of both galectins induced a decrease in the VEGFR1 and VEGFR2 endocytic pools, with a significantly enhanced effect on the VEGFR1 endocytic pool. These results suggest that the combined action of galectin-1 and galectin-3 has an enhanced effect on angiogenesis via VEGFR1 activation, which could be related to a decrease in receptor endocytosis.

  13. Discovery of Potent VEGFR-2 Inhibitors based on Furopyrimidine and Thienopyrimidne Scaffolds as Cancer Targeting Agents

    Science.gov (United States)

    Aziz, Marwa A.; Serya, Rabah A. T.; Lasheen, Deena S.; Abdel-Aziz, Amal Kamal; Esmat, Ahmed; Mansour, Ahmed M.; Singab, Abdel Nasser B.; Abouzid, Khaled A. M.

    2016-04-01

    Vascular endothelial growth factor receptor-2 (VEGFR-2) plays a crucial role in cancer angiogenesis. In this study, a series of novel furo[2,3-d]pyrimidine and thieno[2,3-d]pyrimidine based-derivatives were designed and synthesized as VEGFR-2 inhibitors, in accordance to the structure activity relationship (SAR) studies of known type II VEGFR-2 inhibitors. The synthesized compounds were evaluated for their ability to in vitro inhibit VEGFR-2 kinase enzyme. Seven compounds (15b, 16c, 16e, 21a, 21b, 21c and 21e) demonstrated highly potent dose-related VEGFR-2 inhibition with IC50 values in nanomolar range, of which the thieno[2,3-d]pyrimidine based-derivatives (21b, 21c and 21e) exhibited IC50 values of 33.4, 47.0 and 21 nM respectively. Moreover, furo[2,3-d]pyrimidine-based derivative (15b) showed the strongest inhibition of human umbilical vein endothelial cells (HUVEC) proliferation with 99.5% inhibition at 10 μM concentration. Consistent with our in vitro findings, compounds (21b and 21e) orally administered at 5 and 10 mg/kg/day for 8 consecutive days demonstrated potent anticancer activity in Erhlich ascites carcinoma (EAC) solid tumor murine model. Such compounds blunted angiogenesis in EAC as evidenced by reduced percent microvessel via decreasing VEGFR-2 phosphorylation with subsequent induction of apoptotic machinery. Furthermore, Miles vascular permeability assay confirmed their antiangiogenic effects in vivo. Intriguingly, such compounds showed no obvious toxicity.

  14. Rhamnazin, a novel inhibitor of VEGFR2 signaling with potent antiangiogenic activity and antitumor efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yao [Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, No.17 Yongwaizheng Street, Donghu District, Nanchang 330006, Jiangxi Province (China); Department of Endocrinology and Metabolism, The Third Hospital of Nanchang, Nanchang Key Laboratory of Diabetes, No.1 Qianjing Road, Xihu District, Nanchang 330009, Jiangxi Province (China); Cai, Wei [Department of Medical Genetics, College of Basic Medical Science of Nanchang University, No.461 Bayi Road, Donghu District, Nanchang 330006, Jiangxi Province (China); Pei, Chong-gang, E-mail: profchonggangpei@163.com [Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, No.17 Yongwaizheng Street, Donghu District, Nanchang 330006, Jiangxi Province (China); Shao, Yi, E-mail: profyishao@163.com [Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, No.17 Yongwaizheng Street, Donghu District, Nanchang 330006, Jiangxi Province (China)

    2015-03-20

    Anti-angiogenesis targeting vascular endothelial growth factor receptor 2 (VEGFR2) has emerged as an important tool for cancer therapy. The identification of new drugs from natural products has a long and successful history. In this study, we described a novel VEGFR2 inhibitor, rhamnazin, which inhibits tumor angiogenesis and growth. Rhamnazin significantly inhibited proliferation, migration and tube formation of human umbilical vascular endothelial cells (HUVECs) in vitro as well as inhibited sprouts formation of rat aorta ring. In addition, it inhibited vascular endothelial growth factor (VEGF)-induced phosphorylation of VEGFR2 and its downstream signaling regulator in HUVECs. Moreover, rhamnazin could directly inhibit proliferation of breast cancer cells MDA-MB-231 in vitro and in vivo. Oral administration of rhamnazin at a dose of 200 mg/kg/day could markedly inhibited human tumor xenograft growth and decreased microvessel densities (MVD) in tumor sections. Taken together, these preclinical evaluations suggest that rhamnazin inhibits angiogenesis and may be a promising anticancer drug candidate. - Highlights: • Rhamnazin inhibits the response of HUVECs to VEGF in vitro. • Rhamnazin inhibits VEGFR2 kinase activity and its downstream signaling. • Rhamnazin prevents the growth of MDA-MB-231 tumor and reduces micro-vessel density in vivo.

  15. Glycan-deficient PrP stimulates VEGFR2 signaling via glycosaminoglycan.

    Science.gov (United States)

    Gao, Zhenxing; Zhang, Huixia; Hu, Fei; Yang, Liheng; Yang, Xiaowen; Zhu, Ying; Sy, Man-Sun; Li, Chaoyang

    2016-06-01

    Whether the two N-linked glycans are important in prion, PrP, biology is unresolved. In Chinese hamster ovary (CHO) cells, the two glycans are clearly not important in the cell surface expression of transfected human PrP. Compared to fully-glycosylated PrP, glycan-deficient PrP preferentially partitions to lipid raft. In CHO cells glycan-deficient PrP also interacts with glycosaminoglycan (GAG) and vascular endothelial growth factor receptor 2 (VEGFR2), resulting in VEGFR2 activation and enhanced Akt phosphorylation. Accordingly, CHO cells expressing glycan-deficient PrP lacking the GAG binding motif or cells treated with heparinase to remove GAG show diminished Akt signaling. Being in lipid raft is critical, chimeric glycan-deficient PrP with CD4 transmembrane and cytoplasmic domains is absent in lipid raft and does not activate Akt signaling. CHO cells bearing glycan-deficient PrP also exhibit enhanced cellular adhesion and migration. Based on these findings, we propose a model in which glycan-deficient PrP, GAG, and VEGFR2 interact, activating VEGFR2 and resulting in changes in cellular behavior.

  16. Genetic variations in VEGF and VEGFR2 and glioblastoma outcome

    DEFF Research Database (Denmark)

    Sjöström, S; Wibom, C; Andersson, U

    2010-01-01

    Vascular endothelial growth factor (VEGF) and its receptors (VEGFR) are central components in the development and progression of glioblastoma. To investigate if genetic variation in VEGF and VEGFR2 is associated with glioblastoma prognosis, we examined blood samples from 154 glioblastoma cases...... collected in Sweden and Denmark between 2000 and 2004. Seventeen tagging single nucleotide polymorphisms (SNPs) in VEGF and 27 in VEGFR2 were genotyped and analysed, covering 90% of the genetic variability within the genes. In VEGF, we found no SNPs associated with survival. In VEGFR2, we found two SNPs...

  17. Genetic variations in VEGF and VEGFR2 and glioblastoma outcome

    DEFF Research Database (Denmark)

    Sjöström, S; Wibom, C; Andersson, U

    2011-01-01

    Vascular endothelial growth factor (VEGF) and its receptors (VEGFR) are central components in the development and progression of glioblastoma. To investigate if genetic variation in VEGF and VEGFR2 is associated with glioblastoma prognosis, we examined blood samples from 154 glioblastoma cases...... collected in Sweden and Denmark between 2000 and 2004. Seventeen tagging single nucleotide polymorphisms (SNPs) in VEGF and 27 in VEGFR2 were genotyped and analysed, covering 90% of the genetic variability within the genes. In VEGF, we found no SNPs associated with survival. In VEGFR2, we found two SNPs...

  18. Platycodin D inhibits tumor growth by antiangiogenic activity via blocking VEGFR2-mediated signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Luan, Xin; Gao, Yun-Ge; Guan, Ying-Yun; Xu, Jian-Rong; Lu, Qin [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Zhao, Mei [Department of Pharmacy, Shanghai Institute of Health Sciences and Health School Attached to SJTU-SM, 279 Zhouzhu Road, Shanghai 201318 (China); Liu, Ya-Rong; Liu, Hai-Jun [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Fang, Chao, E-mail: fangchao100@hotmail.com [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Chen, Hong-Zhuan, E-mail: hongzhuan_chen@hotmail.com [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China)

    2014-11-15

    Platycodin D (PD) is an active component mainly isolated from the root of Platycodon grandiflorum. Recent studies proved that PD exhibited inhibitory effect on proliferation, migration, invasion and xenograft growth of diverse cancer cell lines. However, whether PD is suppressive for angiogenesis, an important hallmark in cancer development, remains unknown. Here, we found that PD could dose-dependently inhibit human umbilical vein endothelial cell (HUVEC) proliferation, motility, migration and tube formation. PD also significantly inhibited angiogenesis in the chick embryo chorioallantoic membrane (CAM). Moreover, the antiangiogenic activity of PD contributed to its in vivo anticancer potency shown in the decreased microvessel density and delayed growth of HCT-15 xenograft in mice with no overt toxicity. Western blot analysis indicated that PD inhibited the phosphorylation of VEGFR2 and its downstream protein kinase including PLCγ1, JAK2, FAK, Src, and Akt in endothelial cells. Molecular docking simulation showed that PD formed hydrogen bonds and hydrophobic interactions within the ATP binding pocket of VEGFR2 kinase domain. The present study firstly revealed the high antiangiogenic activity and the underlying molecular basis of PD, suggesting that PD may be a potential antiangiogenic agent for angiogenesis-related diseases. - Highlights: • Platycodin D inhibits HUVEC proliferation, motility, migration and tube formation. • Platycodin D inhibits the angiogenesis in chick embryo chorioallantoic membrane. • Platycodin D suppresses the angiogenesis and growth of HCT-15 xenograft in mice. • Platycodin D inhibits the phosphorylation of VEGFR2 and downstream kinases in HUVEC.

  19. Photoactivatable Caged Prodrugs of VEGFR-2 Kinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Boris Pinchuk

    2016-04-01

    Full Text Available In this study, we report on the design, synthesis, photokinetic properties and in vitro evaluation of photoactivatable caged prodrugs for the receptor tyrosine kinase VEGFR-2. Highly potent VEGFR-2 inhibitors 1 and 3 were caged by introduction of a photoremovable protecting group (PPG to yield the caged prodrugs 4 and 5. As expected, enzymatic and cellular proliferation assays showed dramatically diminished efficacy of caged prodrugs in vitro. Upon ultraviolet (UV irradiation of the prodrugs original inhibitory activity was completely restored and even distinctly reinforced, as was the case for the prodrug 4. The presented results are a further evidence for caging technique being an interesting approach in the protein kinase field. It could enable spatial and temporal control for the inhibition of VEGFR-2. The described photoactivatable prodrugs might be highly useful as biological probes for studying the VEGFR-2 signal transduction.

  20. Wild Roman chamomile extracts and phenolic compounds: enzymatic assays and molecular modelling studies with VEGFR-2 tyrosine kinase.

    Science.gov (United States)

    Guimarães, Rafaela; Calhelha, Ricardo C; Froufe, Hugo J C; Abreu, Rui M V; Carvalho, Ana Maria; Queiroz, Maria João R P; Ferreira, Isabel C F R

    2016-01-01

    Angiogenesis is a process by which new blood vessels are formed from the pre-existing vasculature, and it is a key process that leads to tumour development. Some studies have recognized phenolic compounds as chemopreventive agents; flavonoids, in particular, seem to suppress the growth of tumor cells modifying the cell cycle. Herein, the antiangiogenic activity of Roman chamomile (Chamaemelum nobile L.) extracts (methanolic extract and infusion) and the main phenolic compounds present (apigenin, apigenin-7-O-glucoside, caffeic acid, chlorogenic acid, luteolin, and luteolin-7-O-glucoside) was evaluated through enzymatic assays using the tyrosine kinase intracellular domain of the Vascular Endothelium Growth Factor Receptor-2 (VEGFR-2), which is a transmembrane receptor expressed fundamentally in endothelial cells involved in angiogenesis, and molecular modelling studies. The methanolic extract showed a lower IC50 value (concentration that provided 50% of VEGFR-2 inhibition) than the infusion, 269 and 301 μg mL(-1), respectively. Regarding phenolic compounds, luteolin and apigenin showed the highest capacity to inhibit the phosphorylation of VEGFR-2, leading us to believe that these compounds are involved in the activity revealed by the methanolic extract.

  1. Site-Specific N-Glycosylation of Endothelial Cell Receptor Tyrosine Kinase VEGFR-2.

    Science.gov (United States)

    Chandler, Kevin Brown; Leon, Deborah R; Meyer, Rosana D; Rahimi, Nader; Costello, Catherine E

    2017-02-03

    Vascular endothelial growth factor receptor-2 (VEGFR-2) is an important receptor tyrosine kinase (RTK) that plays critical roles in both physiologic and pathologic angiogenesis. The extracellular domain of VEGFR-2 is composed of seven immunoglobulin-like domains, each with multiple potential N-glycosylation sites (sequons). N-glycosylation plays a central role in RTK ligand binding, trafficking, and stability. However, despite its importance, the functional role of N-glycosylation of VEGFR-2 remains poorly understood. The objectives of the present study were to characterize N-glycosylation sites in VEGFR-2 via enzymatic release of the glycans and concomitant incorporation of (18)O into formerly N-glycosylated sites followed by tandem mass spectrometry (MS/MS) analysis to determine N-glycosylation site occupancy and the site-specific N-glycan heterogeneity of VEGFR-2 glycopeptides. The data demonstrated that all seven VEGFR-2 immunoglobulin-like domains have at least one occupied N-glycosylation site. MS/MS analyses of glycopeptides and deamidated, deglycosylated (PNGase F-treated) peptides from ectopically expressed VEGFR-2 in porcine aortic endothelial (PAE) cells identified N-glycans at the majority of the 17 potential N-glycosylation sites on VEGFR-2 in a site-specific manner. The data presented here provide direct evidence for site-specific, heterogeneous N-glycosylation and N-glycosylation site occupancy on VEGFR-2. The study has important implications for the therapeutic targeting of VEGFR-2, ligand binding, trafficking, and signaling.

  2. Glioma cell VEGFR-2 confers resistance to chemotherapeutic and antiangiogenic treatments in PTEN-deficient glioblastoma.

    Science.gov (United States)

    Kessler, Tobias; Sahm, Felix; Blaes, Jonas; Osswald, Matthias; Rübmann, Petra; Milford, David; Urban, Severino; Jestaedt, Leonie; Heiland, Sabine; Bendszus, Martin; Hertenstein, Anne; Pfenning, Philipp-Niclas; Ruiz de Almodóvar, Carmen; Wick, Antje; Winkler, Frank; von Deimling, Andreas; Platten, Michael; Wick, Wolfgang; Weiler, Markus

    2015-10-13

    Loss of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a prerequisite for tumor cell-specific expression of vascular endothelial growth factor receptor (VEGFR)-2 in glioblastoma defining a subgroup prone to develop evasive resistance towards antiangiogenic treatments. Immunohistochemical analysis of human tumor tissues showed VEGFR-2 expression in glioma cells in 19% of specimens examined, mainly in the infiltration zone. Glioma cell VEGFR-2 positivity was restricted to PTEN-deficient tumor specimens. PTEN overexpression reduced VEGFR-2 expression in vitro, as well as knock-down of raptor or rictor. Genetic interference with VEGFR-2 revealed proproliferative, antiinvasive and chemoprotective functions for VEGFR-2 in glioma cells. VEGFR-2-dependent cellular effects were concomitant with activation of 'kappa-light-chain-enhancer' of activated B-cells, protein kinase B, and N-myc downstream regulated gene 1. Two-photon in vivo microscopy revealed that expression of VEGFR-2 in glioma cells hampers antiangiogenesis. Bevacizumab induces a proinvasive response in VEGFR-2-positive glioma cells. Patients with PTEN-negative glioblastomas had a shorter survival after initiation of bevacizumab therapy compared with PTEN-positive glioblastomas. Conclusively, expression of VEGFR-2 in glioma cells indicates an aggressive glioblastoma subgroup developing early resistance to temozolomide or bevacizumab. Loss of PTEN may serve as a biomarker identifying those tumors upfront by routine neuropathological methods.

  3. The effect of platelet rich plasma on angiogenesis in ischemic flaps in VEGFR2-luc mice.

    Science.gov (United States)

    Sönmez, Tolga Taha; Vinogradov, Alexandra; Zor, Fatih; Kweider, Nisreen; Lippross, Sebastian; Liehn, Elisa Anamaria; Naziroglu, Mustafa; Hölzle, Frank; Wruck, Christoph; Pufe, Thomas; Tohidnezhad, Mersedeh

    2013-04-01

    To improve skin flap healing, one promising strategy in reconstructive surgery might be to optimize platelet rich plasma (PRP) bioactivity and the ischemia-altered expression of genes. We studied both the effect of PRP on ischemic flaps, and whether in vivo bioluminescence imaging (BLI) is a suitable method for the longitudinal monitoring of angiogenesis in surgical wounds. Axial murine skin flaps were created in four experimental groups. In vivo measurements of VEGFR2 expression levels were made every other day until the 14th day. The local VEGF level and microvessel density were quantified on the 14th day via ELISA and immunohistochemistry, and flap survival rates were measured. We demonstrated that PRP and induced ischemia have a beneficial influence on angiogenesis and flap healing. Combining the two resulted in a significantly robust increase in angiogenesis and flap survival rate that was corroborated by bioluminescence imaging of VEGFR2 activity. This study shows that angiogenic effects of PRP may be potentialized by the stimulus of induced ischemia during free flap harvesting, and thus the two procedures appear to have a synergistic effect on flap healing. This study further demonstrates that BLI of modulated genes in reconstructive surgery is a valuable model for longitudinal in vivo evaluation of angiogenesis.

  4. MET Suppresses Epithelial VEGFR2 via Intracrine VEGF-induced Endoplasmic Reticulum-associated Degradation

    Directory of Open Access Journals (Sweden)

    Tom T. Chen

    2015-05-01

    Full Text Available Hepatocyte growth factor (HGF and vascular endothelial growth factor (VEGF drive cancer through their respective receptors, MET and VEGF receptor 2 (VEGFR2. VEGFR2 inhibits MET by promoting MET dephosphorylation. However, whether MET conversely regulates VEGFR2 remains unknown. Here we show that MET suppresses VEGFR2 protein by inducing its endoplasmic-reticulum-associated degradation (ERAD, via intracrine VEGF action. HGF–MET signaling in epithelial cancer cells promoted VEGF biosynthesis through PI3-kinase. In turn, VEGF and VEGFR2 associated within the ER, activating inositol-requiring enzyme 1α, and thereby facilitating ERAD-mediated depletion of VEGFR2. MET disruption upregulated VEGFR2, inducing compensatory tumor growth via VEGFR2 and MEK. However, concurrent disruption of MET and either VEGF or MEK circumvented this, enabling more profound tumor inhibition. Our findings uncover unique cross-regulation between MET and VEGFR2—two RTKs that play significant roles in tumor malignancy. Furthermore, these results suggest rational combinatorial strategies for targeting RTK signaling pathways more effectively, which has potentially important implications for cancer therapy.

  5. Autocrine regulation of glioblastoma cell cycle progression, viability and radioresistance through the VEGF-VEGFR2 (KDR) interplay.

    Science.gov (United States)

    Knizetova, Petra; Ehrmann, Jiri; Hlobilkova, Alice; Vancova, Iveta; Kalita, Ondrej; Kolar, Zdenek; Bartek, Jiri

    2008-08-15

    Vascular endothelial growth factor (VEGF) plays a crucial role in angiogenesis and progression of malignant brain tumors. Given the significance of tumor microenvironment in general, and the established role of paracrine VEGF signaling in glioblastoma (GBM) biology in particular, we explored the potential autocrine control of human astrocytoma behavior by VEGF. Using a range of cell and molecular biology approaches to study a panel of astrocytoma (grade III and IV/GBM)-derived cell lines and a series of clinical specimens from low- and high-grade astrocytomas, we show that co-expression of VEGF and VEGF receptors (VEGFRs) occurs commonly in astrocytoma cells. We found VEGF secretion and VEGF-induced biological effects (modulation of cell cycle progression and enhanced viability of glioblastoma cells) to function in an autocrine manner. Morevover, we demonstrated that the autocrine VEGF signaling is mediated via VEGFR2 (KDR), and involves co-activation of the c-Raf/MAPK, PI3K/Akt and PLC/PKC pathways. Blockade of VEGFR2 by the selective inhibitor (SU1498) abrogated the VEGF-mediated enhancement of astrocytoma cell growth and viability under unperturbed culture conditions. In addition, such interference with VEGF-VEGFR2 signaling potentiated the ionizing radiation-induced tumor cell death. In clinical specimens, both VEGFRs and VEGF were co-expressed in astroglial tumor cells, and higher VEGF expression correlated with tumor progression, thereby supporting the relevance of functional VEGF-VEGFR signaling in vivo. Overall, our results are consistent with a potential autocrine role of the VEGF-VEGFR2 (KDR) interplay as a factor contributing to malignant astrocytoma growth and radioresistance, thereby supporting the candidacy of this signaling cascade as a therapeutic target, possibly in combination with radiotherapy.

  6. VEGF, VEGFR-1 and VEGFR-2 immunoreactivity in the porcine arteries of vascular subovarian plexus (VSP during the estrous cycle.

    Directory of Open Access Journals (Sweden)

    A Andronowska

    2006-04-01

    Full Text Available Abstract: Vascular endothelial growth factor (VEGF is an important angiogenic factor in the female reproductive tract. It binds to cell surface through ligand-stimulatable tyrosine kinase receptors, the most important being VEGFR-1 (flt-1 and VEGFR-2 (flk-1. The broad ligament of the uterus is a dynamic organ consisting of specialized complexes of blood vessels connected functionally to the uterus, oviduct and ovary. Endothelial cells form an inner coating of the vessel walls and thus they stay under the influence of various modulators circulating in blood including ovarian steriods involved in developmental changes in the female reproductive system. The aim of the present study was to immunolocalize VEGF and its two receptors: VEGFR-1 and VEGFR-2 in the broad ligament of the uterus in the area of vascular subovarian plexus during different phases of the estrous cycle in pig and to determine the correlation between immunoreactivity of the investigated factors and phases of the estrous cycle. The study was performed on cryostat sections of vascular subovarian plexus stained immunohistochemically by ABC method. Specific polyclonal antibodies: anti-VEGF, anti-VEGFR-1 and anti-VEGFR-2 were used. Data were subjected to one-way analysis of variance. Our study revealed the presence of VEGF and its receptors in endothelial and smooth muscle cells of VSP arteries. All agents displayed phase-related differences in immunoreactivity suggesting the modulatory effect of VEGF, VEGFR-1 and VEGFR-2 on the arteries of the VSP in the porcine broad ligament of the uterus.

  7. Decorin is a novel VEGFR-2-binding antagonist for the human extravillous trophoblast.

    Science.gov (United States)

    Khan, Gausal A; Girish, Gannareddy V; Lala, Neena; Di Guglielmo, Gianni M; Lala, Peeyush K

    2011-08-01

    Extravillous trophoblasts (EVT) of the human placenta invade the uterine decidua and its arteries to ensure successful placentation. We previously identified two decidua-derived molecules, TGF-β and a TGF-β-binding proteoglycan decorin (DCN), as negative regulators of EVT proliferation, migration, and invasiveness and reported that DCN acts via multiple tyrosine kinase receptors [epidermal growth factor-receptor (EGF-R), IGF receptor-1 (IGFR1), and vascular endothelial growth factor 2 receptor (VEGFR-2)]. Because binding of DCN to VEGFR-2 has never been reported earlier, present study explored this binding, the approximate location of VEGFR-2-binding site in DCN, and its functional role in our human first trimester EVT cell line HTR-8/SVneo. Based on far-Western blotting and coimmunoprecipitation studies, we report that DCN binds both native (EVT expressed) and recombinant VEGFR-2 and that this binding is abrogated with a VEGFR-2 blocking antibody, indicating an overlap between the ligand-binding and the DCN-binding domains of VEGFR-2. We determined that (125)I-labeled VEGF-E (a VEGFR-2 specific ligand) binds EVT with a dissociation constant (K(d)) of 566 pM, and DCN displaced this binding with an inhibition constant (K(i)) of 3.93-5.78 nM, indicating a 7- to 10-fold lower affinity of DCN for VEGFR-2. DCN peptide fragments derived from the leucine rich repeat 5 domain that blocked DCN-VEGFR-2 interactions or VEGF-E binding in EVT cells also blocked VEGF-A- and VEGF-E-induced EVT cell proliferation and migration, indicative of functional VEGFR-2-binding sites of DCN. Finally, DCN inhibited VEGF-E-induced EVT migration by interfering with ERK1/2 activation. Our findings reveal a novel role of DCN as an antagonistic ligand for VEGFR-2, having implications for pathophysiology of preeclampsia, a trophoblast hypoinvasive disorder in pregnancy, and explain its antiangiogenic function.

  8. Expressions of Beta-Catenin, SUFU and VEGFR-2 Proteins in Medulloblastoma

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiong; ZHANG Hong-mei; LI Yu; MI Can

    2007-01-01

    Objective: to investigate the expressions of beta-catenin, SUFU and VEGFR-2 proteins in medulloblastoma. Methods: Immunohistochemical staining with SP method was conducted to determine the expressions of beta-catenin, SUFU and VEGFR-2 in 33 cases of medulloblastoma and 10 normal cerebellar tissues. Results: the abnormal expression rates of beta-catenin and VEGFR-2 in medulloblastoma were significantly higher than that in normal tissue. While the positive expression of SUFU gene in medulloblastoma was significantly lower than that in 10 normal cerebellar tissues. A significant negative correlation was found between beta-catenin and SUFU proteins and a positive correlation between beta-catenin and VEGFR-2 was found in medulloblastoma. Conclusion: Beta-catenin, VEGFR-2 and SUFU have important effects on the pathogenesis and development of medulloblastoma.

  9. Fragment-Based Discovery of a Dual pan-RET/VEGFR2 Kinase Inhibitor Optimized for Single-Agent Polypharmacology.

    Science.gov (United States)

    Frett, Brendan; Carlomagno, Francesca; Moccia, Maria Luisa; Brescia, Annalisa; Federico, Giorgia; De Falco, Valentina; Admire, Brittany; Chen, Zhongzhu; Qi, Wenqing; Santoro, Massimo; Li, Hong-yu

    2015-07-20

    Oncogenic conversion of the RET (rearranged during transfection) tyrosine kinase is associated with several cancers. A fragment-based chemical screen led to the identification of a novel RET inhibitor, Pz-1. Modeling and kinetic analysis identified Pz-1 as a type II tyrosine kinase inhibitor that is able to bind the "DFG-out" conformation of the kinase. Importantly, from a single-agent polypharmacology standpoint, Pz-1 was shown to be active on VEGFR2, which can block the blood supply required for RET-stimulated growth. In cell-based assays, 1.0 nM of Pz-1 strongly inhibited phosphorylation of all tested RET oncoproteins. At 1.0 mg kg(-1)  day(-1) per os, Pz-1 abrogated the formation of tumors induced by RET-mutant fibroblasts and blocked the phosphorylation of both RET and VEGFR2 in tumor tissue. Pz-1 featured no detectable toxicity at concentrations of up to 100.0 mg kg(-1), which indicates a large therapeutic window. This study validates the effectiveness and usefulness of a medicinal chemistry/polypharmacology approach to obtain an inhibitor capable of targeting multiple oncogenic pathways.

  10. 1-Aryl-3-[4-(thieno[3,2-d]pyrimidin-4-yloxyphenyl]ureas as VEGFR-2 Tyrosine Kinase Inhibitors: Synthesis, Biological Evaluation, and Molecular Modelling Studies

    Directory of Open Access Journals (Sweden)

    Pedro Soares

    2013-01-01

    Full Text Available The vascular endothelial growth factor receptor-2 (VEGFR-2 is a tyrosine kinase receptor involved in the growth and differentiation of endothelial cells that are implicated in tumor-associated angiogenesis. In this study, novel 1-aryl-3-[4-(thieno[3,2-d]pyrimidin-4-yloxyphenyl]ureas were synthesized and evaluated for the VEGFR-2 tyrosine kinase inhibition. Three of these compounds showed good VEGFR-2 inhibition presenting low IC50 values (150–199 nM in enzymatic assays, showing also a significant proliferation inhibition of VEGF-stimulated human umbilical vein endothelial cells (HUVECs at low concentrations (0.5–1 µM, using the Bromodeoxyuridine (BrdU assay, not affecting cell viability. The determination of the total and phosphorylated (active VEGFR-2 was performed by western blot, and it was possible to conclude that the compounds significantly inhibit the phosphorylation of the receptor at 1 µM pointing to their antiproliferative mechanism of action in HUVECs. The molecular rationale for inhibiting the tyrosine kinase domain of VEGFR-2 was also performed and discussed using molecular docking studies.

  11. 1-Aryl-3-[4-(thieno[3,2-d]pyrimidin-4-yloxy)phenyl]ureas as VEGFR-2 Tyrosine Kinase Inhibitors: Synthesis, Biological Evaluation, and Molecular Modelling Studies

    Science.gov (United States)

    Soares, Pedro; Costa, Raquel; Froufe, Hugo J. C.; Calhelha, Ricardo C.; Peixoto, Daniela; Ferreira, Isabel C. F. R.; Abreu, Rui M. V.; Soares, Raquel; Queiroz, Maria-João R. P.

    2013-01-01

    The vascular endothelial growth factor receptor-2 (VEGFR-2) is a tyrosine kinase receptor involved in the growth and differentiation of endothelial cells that are implicated in tumor-associated angiogenesis. In this study, novel 1-aryl-3-[4-(thieno[3,2-d]pyrimidin-4-yloxy)phenyl]ureas were synthesized and evaluated for the VEGFR-2 tyrosine kinase inhibition. Three of these compounds showed good VEGFR-2 inhibition presenting low IC50 values (150–199 nM) in enzymatic assays, showing also a significant proliferation inhibition of VEGF-stimulated human umbilical vein endothelial cells (HUVECs) at low concentrations (0.5–1 µM), using the Bromodeoxyuridine (BrdU) assay, not affecting cell viability. The determination of the total and phosphorylated (active) VEGFR-2 was performed by western blot, and it was possible to conclude that the compounds significantly inhibit the phosphorylation of the receptor at 1 µM pointing to their antiproliferative mechanism of action in HUVECs. The molecular rationale for inhibiting the tyrosine kinase domain of VEGFR-2 was also performed and discussed using molecular docking studies. PMID:23936775

  12. Computational investigation of sphingosine kinase 1 (SphK1) and calcium dependent ERK1/2 activation downstream of VEGFR2 in endothelial cells

    Science.gov (United States)

    Bazzazi, Hojjat; Popel, Aleksander S.

    2017-01-01

    Vascular endothelial growth factor (VEGF) is a powerful regulator of neovascularization. VEGF binding to its cognate receptor, VEGFR2, activates a number of signaling pathways including ERK1/2. Activation of ERK1/2 is experimentally shown to involve sphingosine kinase 1 (SphK1) activation and its calcium-dependent translocation downstream of ERK1/2. Here we construct a rule-based computational model of signaling downstream of VEGFR2, by including SphK1 and calcium positive feedback mechanisms, and investigate their consequences on ERK1/2 activation. The model predicts the existence of VEGF threshold in ERK1/2 activation that can be continuously tuned by cellular concentrations of SphK1 and sphingosine 1 phosphate (S1P). The computer model also predicts powerful effects of perturbations in plasma and ER calcium pump rates and the current through the CRAC channels on ERK1/2 activation dynamics, highlighting the critical role of intracellular calcium in shaping the pERK1/2 signal. The model is then utilized to simulate anti-angiogenic therapeutic interventions targeting VEGFR2-ERK1/2 axis. Simulations indicate that monotherapies that exclusively target VEGFR2 phosphorylation, VEGF, or VEGFR2 are ineffective in shutting down signaling to ERK1/2. By simulating therapeutic strategies that target multiple nodes of the pathway such as Raf and SphK1, we conclude that combination therapy should be much more effective in blocking VEGF signaling to EKR1/2. The model has important implications for interventions that target signaling pathways in angiogenesis relevant to cancer, vascular diseases, and wound healing. PMID:28178265

  13. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Qingyi [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Qing, Yong, E-mail: qingyongxy@yahoo.co.jp [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Yang [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Hu, Xiaojuan; Jiang, Lei [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Xiaohua, E-mail: wuxh@scu.edu.cn [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China)

    2014-12-01

    Dioscin has shown cytotoxicity against cancer cells, but its in vivo effects and the mechanisms have not elucidated yet. The purpose of the current study was to assess the antitumor effects and the molecular mechanisms of dioscin. We showed that dioscin could inhibit tumor growth in vivo and has no toxicity at the test condition. The growth suppression was accompanied by obvious blood vessel decrease within solid tumors. We also found dioscin treatment inhibited the proliferation of cancer and endothelial cell lines, and most sensitive to primary cultured human umbilical vein endothelial cells (HUVECs). What's more, analysis of HUVECs migration, invasion, and tube formation exhibited that dioscin has significantly inhibitive effects to these actions. Further analysis of blood vessel formation in the matrigel plugs indicated that dioscin could inhibit VEGF-induced blood vessel formation in vivo. We also identified that dioscin could suppress the downstream protein kinases of VEGFR2, including Src, FAK, AKT and Erk1/2, accompanied by the increase of phosphorylated P38MAPK. The results potently suggest that dioscin may be a potential anticancer drug, which efficiently inhibits angiogenesis induced by VEGFR2 signaling pathway as well as AKT/MAPK pathways. - Highlights: • Dioscin inhibits tumor growth in vivo and does not exhibit any toxicity. • Dioscin inhibits angiogenesis within solid tumors. • Dioscin inhibits the proliferation, migration, invasion, and tube formation of HUVECs. • Dioscin inhibits VEGF–induced blood vessel formation in vivo. • Dioscin inhibits VEGFR2 signaling pathway as well as AKT/MAPK pathway.

  14. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis

    Science.gov (United States)

    Fearnley, Gareth W.; Smith, Gina A.; Abdul-Zani, Izma; Yuldasheva, Nadira; Mughal, Nadeem A.; Homer-Vanniasinkam, Shervanthi; Kearney, Mark T.; Zachary, Ian C.; Tomlinson, Darren C.; Harrison, Michael A.; Wheatcroft, Stephen B.; Ponnambalam, Sreenivasan

    2016-01-01

    ABSTRACT Vascular endothelial growth factor A (VEGF-A) binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A–VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor–ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145) promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes. PMID:27044325

  15. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2016-05-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A–VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor–ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145 promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes.

  16. Anti-Angiogenic Therapy: Strategies to Develop Potent VEGFR-2 Tyrosine Kinase Inhibitors and Future Prospect.

    Science.gov (United States)

    Shi, Leilei; Zhou, Jianfeng; Wu, Jifeng; Shen, Yuemao; Li, Xun

    2016-01-01

    Tumor angiogenesis has always been a major gap for effective cancer therapy. Interruption of aberrant angiogenesis by specific inhibitors targeting receptor tyrosine kinases (RTKs) has been of great interests to medicinal chemists. Among the factors that are involved in tumor angiogenesis, vascular endothelial growth factor receptor-2 (VEGFR-2) is validated as the most closely related factor which can drive angiogenesis through binding with its natural ligand VEGF. The well-validated VEGF-driven VEGFR-2 signaling pathway can stimulate many endothelial responses, including increasing vessel permeability and enhancing endothelial cell proliferation, migration and differentiation. Consequently, circumventing angiogenesis by VEGFR-2 inhibitors represents a promising strategy for counteracting various VEGFR-2-mediated disorders as well as drug resistance. Over the past decades, a considerable number of novel small molecular VEGFR-2 inhibitors have been exploited with diverse chemical scaffolds. Especially, recent frequently launched inhibitors have declared their research values and therapeutic potentials in oncology. Still, the antiangiogenesis based treatment remains an ongoing challenge. In this review, a comprehensive retrospective of newly emerged VEGFR-2 inhibitors have been summarized, with the emphasis on the structure-activity relationship (SAR) investigation, and also binding patterns of representative inhibitors with biotargets. On the basis of all of this information, varied strategies for developing potent VEGFR-2 inhibitors and the future prospect of the clinical application of antiangiogenic inhibitors are discussed hereby.

  17. Anti-tumor effects of a human VEGFR-2-based DNA vaccine in mouse models

    OpenAIRE

    XIE, KE; Bai, Rui-Zhen; Wu, Yang; Liu, Quan; Liu,Kang; Wei, Yu-Quan

    2009-01-01

    Background Vascular endothelial growth factor (VEGF) and its receptor, VEGFR-2 (Flk-1/KDR), play a key role in tumor angiogenesis. Blocking the VEGF-VEGFR-2 pathway may inhibit tumor growth. Here, we used human VEGFR-2 as a model antigen to explore the feasibility of immunotherapy with a plasmid DNA vaccine based on a xenogeneic homologue of this receptor. Methods The protective effects and therapeutic anti-tumor immunity mediated by the DNA vaccine were investigated in mouse models. Anti-ang...

  18. Pristimerin, a Triterpenoid, Inhibits Tumor Angiogenesis by Targeting VEGFR2 Activation

    Directory of Open Access Journals (Sweden)

    Luyong Zhang

    2012-06-01

    Full Text Available Pristimerin is a triterpenoid isolated from Celastrus and Maytenus spp. that has been shown to possess a variety of biological activities, including anti-cancer activity. However, little is known about pristimerin’s effects on tumor angiogenesis. In this study, we examined the function and the mechanism of this compound in tumor angiogenesis using multiple angiogenesis assays. We found that pristimerin significantly reduced both the volume and weight of solid tumors and decreased angiogenesis in a xenograft mouse tumor model in vivo. Pristimerin significantly inhibited the neovascularization of chicken chorioallantoic membrane (CAM in vivo and abrogated vascular endothelial growth factor (VEGF-induced microvessel sprouting in an ex vivo rat aortic ring assay. Furthermore, pristimerin inhibited the VEGF-induced proliferation, migration and capillary-like structure formation of human umbilical vascular endothelial cells (HUVECs in a concentration-dependent manner. Mechanistic studies revealed that pristimerin suppressed the VEGF-induced phosphorylation of VEGF receptor 2 kinase (KDR/Flk-1 and the activity of AKT, ERK1/2, mTOR, and ribosomal protein S6 kinase. Taken together, our results provide evidence for the first time that pristimerin potently suppresses angiogenesis by targeting VEGFR2 activation. These results provide a novel mechanism of action for pristimerin which may be important in the treatment of cancer.

  19. Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth

    DEFF Research Database (Denmark)

    Hamerlik, Petra; Lathia, Justin D; Rasmussen, Rikke;

    2012-01-01

    glioma stem-like cells (GSCs), whose viability, self-renewal, and tumorigenicity rely, at least in part, on signaling through the VEGF-VEGFR2-Neuropilin-1 (NRP1) axis. We find that the limited impact of bevacizumab-mediated VEGF blockage may reflect ongoing autocrine signaling through VEGF-VEGFR2-NRP1......, which is associated with VEGFR2-NRP1 recycling and a pool of active VEGFR2 within a cytosolic compartment of a subset of human GBM cells. Whereas bevacizumab failed to inhibit prosurvival effects of VEGFR2-mediated signaling, GSC viability under unperturbed or radiation-evoked stress conditions...

  20. Design, synthesis and biological evaluation of type-II VEGFR-2 inhibitors based on quinoxaline scaffold.

    Science.gov (United States)

    Shahin, Mai I; Abou El Ella, Dalal A; Ismail, Nasser S M; Abouzid, Khaled A M

    2014-10-01

    In an effort to develop ATP-competitive VEGFR-2 selective inhibitors, a series of new quinoxaline-based derivatives was designed and synthesized. The target compounds were biologically evaluated for their inhibitory activity against VEGFR-2. The design of the target compounds was accomplished after a profound study of the structure activity relationship (SAR) of type-II VEGFR-2 inhibitors. Among the synthesized compounds, 1-(2-((4-methoxyphenyl)amino)-3-oxo-3,4 dihydroquinoxalin-6-yl)-3-phenylurea (VIIa) displayed the highest inhibitory activity against VEGFR-2. Molecular modeling study involving molecular docking and field alignment was implemented to interpret the variable inhibitory activity of the newly synthesized compounds.

  1. New Coumarin Derivatives as Anti-Breast and Anti-Cervical Cancer Agents Targeting VEGFR-2 and p38α MAPK.

    Science.gov (United States)

    Batran, Rasha Z; Dawood, Dina H; El-Seginy, Samia A; Ali, Mamdouh M; Maher, Timothy J; Gugnani, Kuljeet S; Rondon-Ortiz, Alejandro N

    2017-09-01

    Breast and cervical cancers are the most common gender-specific cancers affecting women worldwide. In this investigation, we highlighted the synthesis, VEGFR-2 and p38α MAPK inhibitory activity of new series of fluorinated coumarin-based derivatives featuring a variety of bioactive chemical moieties attached or fused to the coumarin nucleus at the 3 and/or 4 position. The bioactive inhibitors were further assessed for their anti-proliferative effect against human MCF-7 breast cancer and HeLa cervical cancer cell lines, respectively. Most of the tested compounds showed potent preferential inhibition effects against human VEGFR-2 and remarkable anticancer activities in the human breast cancer cell line MCF-7. Compounds 29, 24, and 2 displayed the highest inhibitory activity against VEGFR-2 (94% inhibition) and they were the most potent anticancer agents toward MCF-7 cancer cells with IC50 values of 7.90, 8.28, and 8.30 μg/mL, respectively. Compound 13 inhibited p38α MAPK phosphorylation with a significant reduction in % cell viability against HeLa cancer cells at 10 and 30 µM. Docking experiments carried out on VEGFR-2 and p38 MAPK crystallographic structures revealed that the active compounds bind to the active sites through H-bonds, arene-cation, and hydrophobic π-π interactions. QSAR analysis demonstrated considerable correlation coefficient (R(2)  = 0.76969) and root mean square error (RMSE = 0.10446) values. Also, the residual values between the experimental pIC50 and predicted pIC50 are very close, indicating the reliability of the established QSAR model. © 2017 Deutsche Pharmazeutische Gesellschaft.

  2. Stabiliztin of VEGFR2 Signaling by Cerebral Cavernous Malformation 3 is Critical for Vascular Development

    Energy Technology Data Exchange (ETDEWEB)

    Y He; H Zhang; L Yu; M Gunel; T Boggon; H Chen; W Min

    2011-12-31

    Cerebral cavernous malformations (CCMs) are human vascular malformations caused by mutations in three genes of unknown function: CCM1, CCM2, and CCM3. CCM3, also known as PDCD10 (programmed cell death 10), was initially identified as a messenger RNA whose abundance was induced by apoptotic stimuli in vitro. However, the in vivo function of CCM3 has not been determined. Here, we describe mice with a deletion of the CCM3 gene either ubiquitously or specifically in the vascular endothelium, smooth muscle cells, or neurons. Mice with global or endothelial cell-specific deletion of CCM3 exhibited defects in embryonic angiogenesis and died at an early embryonic stage. CCM3 deletion reduced vascular endothelial growth factor receptor 2 (VEGFR2) signaling in embryos and endothelial cells. In response to VEGF stimulation, CCM3 was recruited to and stabilized VEGFR2, and the carboxyl-terminal domain of CCM3 was required for the stabilization of VEGFR2. Indeed, the CCM3 mutants found in human patients lacking the carboxyl-terminal domain were labile and were unable to stabilize and activate VEGFR2. These results demonstrate that CCM3 promotes VEGFR2 signaling during vascular development.

  3. Screening of the transcriptional regulatory regions of vascular endothelial growth factor receptor 2 (VEGFR2 in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Hartley Judith

    2007-04-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF has neurotrophic activity which is mediated by its main agonist receptor, VEGFR2. Dysregulation of VEGF causes motor neurone degeneration in a mouse model of amyotrophic lateral sclerosis (ALS, and expression of VEGFR2 is reduced in motor neurones and spinal cord of patients with ALS. Methods We have screened the promoter region and 4 exonic regions of functional significance of the VEGFR2 gene in a UK population of patients with ALS, for mutations and polymorphisms that may affect expression or function of this VEGF receptor. Results No mutations were identified in the VEGFR2 gene. We found no association between polymorphisms in the regulatory regions of the VEGFR2 gene and ALS. Conclusion Mechanisms other than genetic variation may downregulate expression or function of the VEGFR2 receptor in patients with ALS.

  4. Novel angiogenesis inhibitory activity in cinnamon extract blocks VEGFR2 kinase and downstream signaling.

    Science.gov (United States)

    Lu, Jianming; Zhang, Keqiang; Nam, Sangkil; Anderson, Richard A; Jove, Richard; Wen, Wei

    2010-03-01

    As a critical factor in the induction of angiogenesis, vascular endothelial growth factor (VEGF) has become an attractive target for anti-angiogenesis treatment. However, the side effects associated with most anti-VEGF agents limit their chronic use. Identification of naturally occurring VEGF inhibitors derived from diet is a potential alternative approach, with the advantage of known safety. To isolate natural inhibitors of VEGF, we established an in vitro tyrosine kinase assay to screen for diet-based agents that suppress VEGFR2 kinase activity. We found that a water-based extract from cinnamon (cinnamon extract, CE), one of the oldest and most popular spices, was a potent inhibitor of VEGFR2 kinase activity, directly inhibiting kinase activity of purified VEGFR2 as well as mitogen-activated protein kinase- and Stat3-mediated signaling pathway in endothelial cells. As a result, CE inhibited VEGF-induced endothelial cell proliferation, migration and tube formation in vitro, sprout formation from aortic ring ex vivo and tumor-induced blood vessel formation in vivo. Depletion of polyphenol from CE with polyvinylpyrrolidone abolished its anti-angiogenesis activity. While cinnamaldehyde, a component responsible for CE aroma, had little effect on VEGFR2 kinase activity, high-performance liquid chromatography-purified components of CE, procyanidin type A trimer (molecular weight, 864) and a tetramer (molecular weight, 1152) were found to inhibit kinase activity of purified VEGFR2 and VEGFR2 signaling, implicating procyanidin oligomers as active components in CE that inhibit angiogenesis. Our data revealed a novel activity in cinnamon and identified a natural VEGF inhibitor that could potentially be useful in cancer prevention and/or treatment.

  5. Dietary compound isoliquiritigenin inhibits breast cancer neoangiogenesis via VEGF/VEGFR-2 signaling pathway.

    Science.gov (United States)

    Wang, Zhiyu; Wang, Neng; Han, Shouwei; Wang, Dongmei; Mo, Suilin; Yu, Linzhong; Huang, Hui; Tsui, Kamchuen; Shen, Jiangang; Chen, Jianping

    2013-01-01

    Angiogenesis is crucial for cancer initiation, development and metastasis. Identifying natural botanicals targeting angiogenesis has been paid much attention for drug discovery in recent years, with the advantage of increased safety. Isoliquiritigenin (ISL) is a dietary chalcone-type flavonoid with various anti-cancer activities. However, little is known about the anti-angiogenic activity of isoliquiritigenin and its underlying mechanisms. Herein, we found that ISL significantly inhibited the VEGF-induced proliferation of human umbilical vein endothelial cells (HUVECs) at non-toxic concentration. A series of angiogenesis processes including tube formation, invasion and migration abilities of HUVECs were also interrupted by ISL in vitro. Furthermore, ISL suppressed sprout formation from VEGF-treated aortic rings in an ex-vivo model. Molecular mechanisms study demonstrated that ISL could significantly inhibit VEGF expression in breast cancer cells via promoting HIF-1α (Hypoxia inducible factor-1α) proteasome degradation and directly interacted with VEGFR-2 to block its kinase activity. In vivo studies further showed that ISL administration could inhibit breast cancer growth and neoangiogenesis accompanying with suppressed VEGF/VEGFR-2 signaling, elevated apoptosis ratio and little toxicity effects. Molecular docking simulation indicated that ISL could stably form hydrogen bonds and aromatic interactions within the ATP-binding region of VEGFR-2. Taken together, our study shed light on the potential application of ISL as a novel natural inhibitor for cancer angiogenesis via the VEGF/VEGFR-2 pathway. Future studies of ISL for chemoprevention or chemosensitization against breast cancer are thus warranted.

  6. Relationship between Expression of beta-catenin and VEGFs(VEGFA,VEGF-C),VEGF Receptors-2(VEGFR-2)in Medulloblastoma

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-mei; ZHANG Xiong; LI Yu; MI Can

    2008-01-01

    Objective:To investigate the expression of beta-catenin and VEGFs(VEGF-A,VEGF-C)and VEGF receptor-2(VEGFR-2)protein in medulloblastoma.Methods:Immunohistochemical staining with SP method Was conducted to determine the expression of beta-eatenin and VEGFs(VEGF-A,VEGF-C)and VEGFR-2 in 33 cases of medulloblastoma and 10 normal cerebellar tissues. Results:The expression rate of beta-catenin,and VEGFs (VEGF-A,VEGF-C)and VEGFR-2 in medulloblastoma were significantly higher than that in normal tissue.A significant positive correlation was found between beta-catenin and VEGFs(VEGF-A,VEGF-C)and VEGFR-2 protein in medulloblastoma. Conclusion:There was a correlation between beta-catenin and VEGFs(VEGF-A,VEGF-C)and VEGFR-2 in medulloblastoma,which may play a role in the pathogenesis and development of medulloblastoma.

  7. The rs2071559 AA VEGFR-2 Genotype Frequency Is Significantly Lower in Neovascular Age-Related Macular Degeneration Patients

    Directory of Open Access Journals (Sweden)

    Stefano Lazzeri

    2012-01-01

    Full Text Available In this prospective, case-control genetic study, 120 consecutive neovascular age-related macular degeneration (AMD cases and 78 controls were enrolled. Two SNPs (rs2071559 and rs1870377 of VEGF-A receptor-2 (VEGFR-2 gene were analyzed with the technique of Real-Time PCR to investigate a genetic link between AMD and VEGFR-2 gene polymorphisms in Italian patients. The frequency of the VEGFR-2 genotype rs2071559 AA was significantly lower (18.33% in patients with AMD than in the control subjects (34.62%; P=0.0095, chi-square test; Pcorr=0.038; OR=0.42, 95% CI 0.22 to 0.82. In conclusion, although with the limitations of a small sample size and the few SNPs studied, this study demonstrates a lower frequency of VEGFR-2 rs2071559 AA genotype in an AMD patient population, suggesting future studies on the role VEGFR-2 SNPs.

  8. The rs2071559 AA VEGFR-2 genotype frequency is significantly lower in neovascular age-related macular degeneration patients.

    Science.gov (United States)

    Lazzeri, Stefano; Orlandi, Paola; Figus, Michele; Fioravanti, Anna; Cascio, Elisa; Di Desidero, Teresa; Agosta, Elisa; Canu, Bastianina; Sartini, Maria Sole; Danesi, Romano; Nardi, Marco; Bocci, Guido

    2012-01-01

    In this prospective, case-control genetic study, 120 consecutive neovascular age-related macular degeneration (AMD) cases and 78 controls were enrolled. Two SNPs (rs2071559 and rs1870377) of VEGF-A receptor-2 (VEGFR-2) gene were analyzed with the technique of Real-Time PCR to investigate a genetic link between AMD and VEGFR-2 gene polymorphisms in Italian patients. The frequency of the VEGFR-2 genotype rs2071559 AA was significantly lower (18.33%) in patients with AMD than in the control subjects (34.62%; P = 0.0095, chi-square test; P(corr) = 0.038; OR = 0.42, 95% CI 0.22 to 0.82). In conclusion, although with the limitations of a small sample size and the few SNPs studied, this study demonstrates a lower frequency of VEGFR-2 rs2071559 AA genotype in an AMD patient population, suggesting future studies on the role VEGFR-2 SNPs.

  9. Fragment-based discovery of a dual pan-RET/VEGFR2 kinase inhibitor optimized for single-agent polypharmacology1

    Science.gov (United States)

    Frett, Brendan; Carlomagno, Francesca; Moccia, Maria Luisa; Brescia, Annalisa; Federico, Giorgia; De Falco, Valentina; Admire, Brittany; Chen, Zhongzhu; Qi, Wenqing; Santoro, Massimo; Li, Hong-yu

    2015-01-01

    Oncogenic conversion of the RET (rearranged during transfection) tyrosine kinase is associated with several cancers. A fragment-based chemical screen lead to the identification of a novel RET inhibitor, Pz-1. Modeling and kinetic analysis identified Pz-1 as a Type-II tyrosine kinase inhibitor, able to bind the DFG-out conformation of the kinase. Importantly, from a single-agent polypharmacology standpoint, Pz-1 was shown active on VEGFR2, which can block blood supply required for RET-stimulated growth. In cell based assays, 1.0 nM of Pz-1 strongly inhibited phosphorylation of all tested RET oncoproteins. At 1.0 mg/kg/day per os, Pz-1 abrogated formation of tumors induced by RET-mutant fibroblasts and blocked phosphorylation of both RET and VEGFR2 in tumor tissue. Pz-1 featured no detectable toxicity up to 100.0 mg/kg, which indicated a large therapeutic window. This study validates the effectiveness and usefulness of a medicinal chemistry polypharmacology approach to obtain an inhibitor capable of targeting multiple oncogenic pathways PMID:26126987

  10. Effects of acoustic radiation force on the binding efficiency of BR55, a VEGFR2-specific ultrasound contrast agent.

    Science.gov (United States)

    Frinking, Peter J A; Tardy, Isabelle; Théraulaz, Martine; Arditi, Marcel; Powers, Jeffry; Pochon, Sibylle; Tranquart, François

    2012-08-01

    This work describes an in vivo study analyzing the effect of acoustic radiation force (ARF) on the binding of BR55 VEGFR2-specific contrast-agent microbubbles in a model of prostatic adenocarcinoma in rat. A commercial ultrasound system was modified by implementing high duty-cycle 3.5-MHz center frequency ARF bursts in a scanning configuration. This enabled comparing the effects of ARF on binding in tumor and healthy tissue effectively in the same field of view. Bubble binding was established by measuring late-phase enhancement in amplitude modulation (AM) contrast-specific imaging mode (4 MHz, 150 kPa) 10 min after agent injection when the unbound bubbles were cleared from the circulation. Optimal experimental conditions, such as agent concentration (0.4 × 10(8)-1.6 × 10(8) bubbles/kg), acoustic pressure amplitude (26-51 kPa) and duty-cycle (20%-95%) of the ARF bursts, were evaluated in their ability to enhance binding in tumor without significantly increasing binding in healthy tissue. Using the optimal conditions (38 kPa peak-negative pressure, 95% duty cycle), ARF-assisted binding of BR55 improved significantly in tumor (by a factor of 7) at a lower agent dose compared with binding without ARF, and it had an insignificant effect on binding in healthy tissue. Thus, the high binding specificity of BR55 microbubbles for targeting VEGFR2 present at sites of active angiogenesis was confirmed by this study. Therefore, it is believed that based on the results obtained in this work, ultrasound molecular imaging using target-specific contrast-agent microbubbles should preferably be performed in combination with ARF. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. VEGFR2 heterogeneity and response to anti-angiogenic low dose metronomic cyclophosphamide treatment

    Directory of Open Access Journals (Sweden)

    Skowronski Karolina

    2010-12-01

    Full Text Available Abstract Background Targeting tumor vasculature is a strategy with great promise in the treatment of many cancers. However, anti-angiogenic reagents that target VEGF/VEGFR2 signaling have met with variable results clinically. Among the possible reasons for this may be heterogeneous expression of the target protein. Methods Double immunofluorescent staining was performed on formalin-fixed paraffin embedded sections of treated and control SW480 (colorectal and WM239 (melanoma xenografts, and tissue microarrays of human colorectal carcinoma and melanoma. Xenografts were developed using RAG1-/- mice by injection with WM239 or SW480 cells and mice were treated with 20 mg/kg/day of cyclophosphamide in their drinking water for up to 18 days. Treated and control tissues were characterized by double immunofluorescence using the mural cell marker α-SMA and CD31, while the ratio of desmin/CD31 was also determined by western blot. Hypoxia in treated and control tissues were quantified using both western blotting for HIF-1α and immunohistochemistry of CA-IX. Results VEGFR2 is heterogeneously expressed in tumor vasculature in both malignant melanoma and colorectal carcinoma. We observed a significant decrease in microvascular density (MVD in response to low dose metronomic cyclophosphamide chemotherapy in both malignant melanoma (with higher proportion VEGFR2 positive blood vessels; 93% and colorectal carcinoma (with lower proportion VEGFR2 positive blood vessels; 60% xenografts. This reduction in MVD occurred in the absence of a significant anti-tumor effect. We also observed less hypoxia in treated melanoma xenografts, despite successful anti-angiogenic blockade, but no change in hypoxia of colorectal xenografts, suggesting that decreases in tumor hypoxia reflect a complex relationship with vascular density. Based on α-SMA staining and the ratio of desmin to CD31 expression as markers of tumor blood vessel functionality, we found evidence for increased

  12. Bioavailable copper modulates oxidative phosphorylation and growth of tumors.

    Science.gov (United States)

    Ishida, Seiko; Andreux, Pénélope; Poitry-Yamate, Carole; Auwerx, Johan; Hanahan, Douglas

    2013-11-26

    Copper is an essential trace element, the imbalances of which are associated with various pathological conditions, including cancer, albeit via largely undefined molecular and cellular mechanisms. Here we provide evidence that levels of bioavailable copper modulate tumor growth. Chronic exposure to elevated levels of copper in drinking water, corresponding to the maximum allowed in public water supplies, stimulated proliferation of cancer cells and de novo pancreatic tumor growth in mice. Conversely, reducing systemic copper levels with a chelating drug, clinically used to treat copper disorders, impaired both. Under such copper limitation, tumors displayed decreased activity of the copper-binding mitochondrial enzyme cytochrome c oxidase and reduced ATP levels, despite enhanced glycolysis, which was not accompanied by increased invasiveness of tumors. The antiproliferative effect of copper chelation was enhanced when combined with inhibitors of glycolysis. Interestingly, larger tumors contained less copper than smaller tumors and exhibited comparatively lower activity of cytochrome c oxidase and increased glucose uptake. These results establish copper as a tumor promoter and reveal that varying levels of copper serves to regulate oxidative phosphorylation in rapidly proliferating cancer cells inside solid tumors. Thus, activation of glycolysis in tumors may in part reflect insufficient copper bioavailability in the tumor microenvironment.

  13. The anti-tumour effect of a DNA vaccine carrying a fusion gene of human VEGFR2 and IL-12

    Directory of Open Access Journals (Sweden)

    Sha Wen

    2016-09-01

    Full Text Available Because of tumour dependence on angiogenesis, anti-angiogenic therapy has become the most attractive area of basic and clinical study in the field of cancer research. In order to create a synergistic effect on angiogenesis and immune regulation, we designed and constructed a new type of DNA vaccine that can express VEGFR2 (vascular endothelial growth factor receptor 2 and the prostate cancer antigen IL-12 (interleukin 12 in the same reading frame. The aim of this study was to investigate the anti-tumour activity of a eukaryotic expression plasmid carrying a fusion gene of human VEGFR2 and IL-12. According to the gene sequences in GenBank, we synthesized the human VEGFR2 and IL-12 genes. VEGFR2 and IL-12 were joined by a sequence encoding a Furin recognition site and a 2A cleavage site, and the resulting fusion gene was cloned into the eukaryotic expression vector pVAX1 to construct the expression plasmid pVAX1-VEGFR2-F2A-IL-12. The expression of VEGFR2 and IL-12 could be detected in 293T cells transfected with pVAX1-VEGFR2-F2A-IL-12 by enzyme-linked immunosorbent assay. Each of these proteins, and in particular co-expression of both proteins, can result in humoral and cellular immune responses in C57BL/6 mice. After injection into the tumour-bearing mouse model, the plasmid showed stronger inhibition of tumour growth than a plasmid expressing VEGFR2 alone. Our results demonstrate that a DNA vaccine carrying a fusion gene of human VEGFR2 and IL-12 could represent a promising approach for tumour immunotherapy.

  14. Phosphorylation Modulates Ameloblastin Self-assembly and Ca2+ Binding

    Directory of Open Access Journals (Sweden)

    Øystein Stakkestad

    2017-07-01

    Full Text Available Ameloblastin (AMBN, an important component of the self-assembled enamel extra cellular matrix, contains several in silico predicted phosphorylation sites. However, to what extent these sites actually are phosphorylated and the possible effects of such post-translational modifications are still largely unknown. Here we report on in vitro experiments aimed at investigating what sites in AMBN are phosphorylated by casein kinase 2 (CK2 and protein kinase A (PKA and the impact such phosphorylation has on self-assembly and calcium binding. All predicted sites in AMBN can be phosphorylated by CK2 and/or PKA. The experiments show that phosphorylation, especially in the exon 5 derived part of the molecule, is inversely correlated with AMBN self-assembly. These results support earlier findings suggesting that AMBN self-assembly is mostly dependent on the exon 5 encoded region of the AMBN gene. Phosphorylation was significantly more efficient when the AMBN molecules were in solution and not present as supramolecular assemblies, suggesting that post-translational modification of AMBN must take place before the enamel matrix molecules self-assemble inside the ameloblast cell. Moreover, phosphorylation of exon 5, and the consequent reduction in self-assembly, seem to reduce the calcium binding capacity of AMBN suggesting that post-translational modification of AMBN also can be involved in control of free Ca2+ during enamel extra cellular matrix biomineralization. Finally, it is speculated that phosphorylation can provide a functional crossroad for AMBN either to be phosphorylated and act as monomeric signal molecule during early odontogenesis and bone formation, or escape phosphorylation to be subsequently secreted as supramolecular assemblies that partake in enamel matrix structure and mineralization.

  15. Tryptanthrin inhibits angiogenesis by targeting the VEGFR2-mediated ERK1/2 signalling pathway.

    Directory of Open Access Journals (Sweden)

    Xuemei Liao

    Full Text Available Angiogenesis is a key step for tumour growth and metastasis, and anti-angiogenesis has been proposed as an important strategy for cancer therapy. Tryptanthrin is a weakly basic alkaloid isolated from the dried roots of medicinal indigo plants and has been shown to possess anti-tumour activities on various cancer cell types. This study aims to investigate the in vitro and in vivo anti-angiogenic activities of tryptanthrin and to unravel its underlying molecular action mechanisms. Our results show that tryptanthrin inhibited the in vitro proliferation, migration, and tube formation of the human microvascular endothelial cells (HMEC-1 in a concentration-dependent manner and significantly suppressed angiogenesis in Matrigel plugs in mice. Mechanistic studies indicated that tryptanthrin reduced the expression of several pro-angiogenic factors (Ang-1, PDGFB and MMP2. Tryptanthrin was also found to suppress the VEGFR2-mediated ERK1/2 signalling pathway in HMEC-1 cells and molecular docking simulation indicated that tryptanthrin could bound to the ATP-binding site of VEGFR2. Collectively, the present study demonstrated that tryptanthrin exhibited both in vitro and in vivo anti-angiogenic activities by targeting the VEGFR2-mediated ERK1/2 signalling pathway and might have therapeutic potential for the treatment of angiogenesis-related diseases.

  16. Tryptanthrin inhibits angiogenesis by targeting the VEGFR2-mediated ERK1/2 signalling pathway.

    Science.gov (United States)

    Liao, Xuemei; Zhou, Xuelin; Mak, Nai-ki; Leung, Kwok-nam

    2013-01-01

    Angiogenesis is a key step for tumour growth and metastasis, and anti-angiogenesis has been proposed as an important strategy for cancer therapy. Tryptanthrin is a weakly basic alkaloid isolated from the dried roots of medicinal indigo plants and has been shown to possess anti-tumour activities on various cancer cell types. This study aims to investigate the in vitro and in vivo anti-angiogenic activities of tryptanthrin and to unravel its underlying molecular action mechanisms. Our results show that tryptanthrin inhibited the in vitro proliferation, migration, and tube formation of the human microvascular endothelial cells (HMEC-1) in a concentration-dependent manner and significantly suppressed angiogenesis in Matrigel plugs in mice. Mechanistic studies indicated that tryptanthrin reduced the expression of several pro-angiogenic factors (Ang-1, PDGFB and MMP2). Tryptanthrin was also found to suppress the VEGFR2-mediated ERK1/2 signalling pathway in HMEC-1 cells and molecular docking simulation indicated that tryptanthrin could bound to the ATP-binding site of VEGFR2. Collectively, the present study demonstrated that tryptanthrin exhibited both in vitro and in vivo anti-angiogenic activities by targeting the VEGFR2-mediated ERK1/2 signalling pathway and might have therapeutic potential for the treatment of angiogenesis-related diseases.

  17. The innate immune response in fetal lung mesenchymal cells targets VEGFR2 expression and activity.

    Science.gov (United States)

    Medal, Rachel M; Im, Amanda M; Yamamoto, Yasutoshi; Lakhdari, Omar; Blackwell, Timothy S; Hoffman, Hal M; Sahoo, Debashis; Prince, Lawrence S

    2017-06-01

    In preterm infants, soluble inflammatory mediators target lung mesenchymal cells, disrupting airway and alveolar morphogenesis. However, how mesenchymal cells respond directly to microbial stimuli remains poorly characterized. Our objective was to measure the genome-wide innate immune response in fetal lung mesenchymal cells exposed to the bacterial endotoxin lipopolysaccharide (LPS). With the use of Affymetrix MoGene 1.0st arrays, we showed that LPS induced expression of unique innate immune transcripts heavily weighted toward CC and CXC family chemokines. The transcriptional response was different between cells from E11, E15, and E18 mouse lungs. In all cells tested, LPS inhibited expression of a small core group of genes including the VEGF receptor Vegfr2 Although best characterized in vascular endothelial populations, we demonstrated here that fetal mouse lung mesenchymal cells express Vegfr2 and respond to VEGF-A stimulation. In mesenchymal cells, VEGF-A increased cell migration, activated the ERK/AKT pathway, and promoted FOXO3A nuclear exclusion. With the use of an experimental coculture model of epithelial-mesenchymal interactions, we also showed that VEGFR2 inhibition prevented formation of three-dimensional structures. Both LPS and tyrosine kinase inhibition reduced three-dimensional structure formation. Our data suggest a novel mechanism for inflammation-mediated defects in lung development involving reduced VEGF signaling in lung mesenchyme. Copyright © 2017 the American Physiological Society.

  18. 人参、三七组方对HUVEC VEGFR-2蛋白表达的影响

    Institute of Scientific and Technical Information of China (English)

    唐东昕; 田伟

    2011-01-01

    目的 探讨人参、三七组方对HUVEC VEGFR-2表达的影响.方法 采用免疫组织化学的方法,观察人参、三七组方干预后,HUVEC VEGFR-2的表达.结果 人参、三七组方大剂量组促进了HUVEC VEGFR-2的表达,其作用和bFGF 相当,和空白组相比有明显增加,且组间差异显著.结论 人参、三七组方可能通过促进VEGFR-2的表达而促进HUVEC的增殖.

  19. Endosome-to-Plasma Membrane Recycling of VEGFR2 Receptor Tyrosine Kinase Regulates Endothelial Function and Blood Vessel Formation.

    Science.gov (United States)

    Jopling, Helen M; Odell, Adam F; Pellet-Many, Caroline; Latham, Antony M; Frankel, Paul; Sivaprasadarao, Asipu; Walker, John H; Zachary, Ian C; Ponnambalam, Sreenivasan

    2014-04-29

    Rab GTPases are implicated in endosome-to-plasma membrane recycling, but how such membrane traffic regulators control vascular endothelial growth factor receptor 2 (VEGFR2/KDR) dynamics and function are not well understood. Here, we evaluated two different recycling Rab GTPases, Rab4a and Rab11a, in regulating endothelial VEGFR2 trafficking and signalling with implications for endothelial cell migration, proliferation and angiogenesis. In primary endothelial cells, VEGFR2 displays co-localisation with Rab4a, but not Rab11a GTPase, on early endosomes. Expression of a guanosine diphosphate (GDP)-bound Rab4a S22N mutant caused increased VEGFR2 accumulation in endosomes. TfR and VEGFR2 exhibited differences in endosome-to-plasma membrane recycling in the presence of chloroquine. Depletion of Rab4a, but not Rab11a, levels stimulated VEGF-A-dependent intracellular signalling. However, depletion of either Rab4a or Rab11a levels inhibited VEGF-A-stimulated endothelial cell migration. Interestingly, depletion of Rab4a levels stimulated VEGF-A-regulated endothelial cell proliferation. Rab4a and Rab11a were also both required for endothelial tubulogenesis. Evaluation of a transgenic zebrafish model showed that both Rab4 and Rab11a are functionally required for blood vessel formation and animal viability. Rab-dependent endosome-to-plasma membrane recycling of VEGFR2 is important for intracellular signalling, cell migration and proliferation during angiogenesis.

  20. The effect of multistage nanovector targeting of VEGFR2 positive tumor endothelia on cell adhesion and local payload accumulation.

    Science.gov (United States)

    Martinez, Jonathan O; Evangelopoulos, Michael; Karun, Vivek; Shegog, Evan; Wang, Joshua A; Boada, Christian; Liu, Xuewu; Ferrari, Mauro; Tasciotti, Ennio

    2014-12-01

    Nanovectors are a viable solution to the formulation of poorly soluble anticancer drugs. Their bioaccumulation in the tumor parenchyma is mainly achieved exploiting the enhanced permeability and retention (EPR) effect of the leaky neovasculature. In this paper we demonstrate that multistage nanovectors (MSV) exhibit rapid tumoritropic homing independent of EPR, relying on particle geometry and surface adhesion. By studying endothelial cells overexpressing vascular endothelial growth factor receptor-2 (VEGFR2), we developed MSV able to preferentially target VEGFR2 expressing tumor-associated vessels. Static and dynamic targeting revealed that MSV conjugated with anti-VEGFR2 antibodies displayed greater than a 4-fold increase in targeting efficiency towards VEGFR2 expressing cells while exhibiting minimal adherence to control cells. Additionally, VEGFR2 conjugation bestowed MSV with a significant increase in breast tumor targeting and in the delivery of a model payload while decreasing their accumulation in the liver. Surface functionalization with an anti-VEGFR2 antibody provided enhanced affinity towards the tumor vascular endothelium, which promoted enhanced adhesion and tumoritropic accumulation of a reporter molecule released by the MSV. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. 消痰散结方对胃癌微血管密度及VEGF-A/VEGFR-2的影响%Impacts of Xiaotan Sanjie Formula on Microvessel Density and VEGF -A/VEGFR-2 in Gastric Cancer

    Institute of Scientific and Technical Information of China (English)

    唐继贵; 魏品康; 张映城

    2015-01-01

    目的:研究消痰散结方对胃癌MVD及VEGF-A/VEGFR-2表达的影响。方法对20例自愿进行单纯中药抗肿瘤治疗的胃癌患者,留取消痰散结方进行干预前及干预6个月后的胃癌(癌组织、癌旁近端、远端)标本。采用免疫组化SP法检测CD34标记微血管密度MVD,Western Blot、RT-PCR检测VEGF-A/VEGFR-2的表达。结果消痰散结方对胃癌组、癌旁近端组、远端组微血管密度MVD和VEGF-A/VEGFR-2有不同程度的下调作用。胃癌组消痰散结方治疗后微血管密度和VEGF-A/VEGFR-2下降幅度最大( P0.05)。结论消痰散结方治疗胃癌的部分作用机制可能与其抑制VEGF-A/VEGFR-2信号通路降低微血管密度有关。%Objective To study the impacts of xiaotan sanjie formula on microvessel density( MVD) in VEGF-A/VEGFR-2 expression in gastric cancer. Methods The samples of gastric cancer( cancer tis-sue,proximal tissue,distal tissue)were collected before and 6 months after intervention with xiaotan sanjie formula in 20 volunteers treated with simple Chinese medicine for anti-tumor. IHC SP method was used to detect CD34 labeled MVD,western blot and RT-PCR methods were applied to detect VEGF-A/VEGFR-2 expression. Results Xiaotan sanjie formula down-regulates MVD and VEGF-A/VEGFR-2 in the gas-tric cancer group,proximal end group and distal end group to different degrees. In the gastric cancer group, after the treatment with xiaotan sanjie formula,MVD and VEGF-A/VEGFR-2 were reduced to the largest extent in the gastric cancer group(P0. 05),without statistical significance. Conclusion The mechanism on a part of effects of xiaotan sanjie formula on gastric cancer is possibly related with inhibiting VEGF-A/VEGFR-2 signal path and reducing MVD.

  2. BR55: a lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis.

    Science.gov (United States)

    Pochon, Sibylle; Tardy, Isabelle; Bussat, Philippe; Bettinger, Thierry; Brochot, Jean; von Wronski, Mathew; Passantino, Lisa; Schneider, Michel

    2010-02-01

    BR55, an ultrasound contrast agent functionalized with a heterodimer peptide targeting the vascular endothelial growth factor receptor 2 (VEGFR2), was evaluated in vitro and in vivo, demonstrating its potential for specific tumor detection. The targeted contrast agent was prepared by incorporation of a biospecific lipopeptide into the microbubble membrane. Experiments were performed in vitro to demonstrate the binding capacities of BR55 microbubbles on immobilized receptor proteins and on various endothelial or transfected cells expressing VEGFR2. The performance of BR55 microbubbles was compared with that of streptavidin-conjugated microbubbles targeted to the same receptor by coupling them to a biotinylated antibody. The specificity of BR55 binding to human and mouse endothelial cells was determined in competition experiments with the free lipopeptide, vascular endothelial growth factor (VEGF), or a VEGFR2-specific antibody. Molecular ultrasound imaging of VEGFR2 was performed in an orthotopic breast tumor model in rats using a nondestructive, contrast-specific imaging mode. BR55 was shown to bind specifically to the immobilized recombinant VEGFR2 under flow (dynamic conditions). BR55 accumulation on the target over time was similar to that of microbubbles bearing a specific antibody. BR55 avidly bound to cells expressing VEGFR2, and the pattern of microbubble distribution was correlated with the pattern of receptor expression determined by immunocytochemistry. The binding of targeted microbubbles on cells was competed off by an excess of free lipopeptide, the natural ligand (VEGF) and by a VEGFR2-specific antibody (P < 0.001). Although selected for the human receptor, the VEGFR2-binding lipopeptide was also shown to recognize the rodent receptor. Tumor perfusion was assessed during the vascular phase of BR55, and then the malignant lesion was highlighted by specific accumulation of the targeted microbubbles on tumoral endothelium. The presence of VEGFR2 was

  3. Determination of VEGFR-2 (KDR 604A>G Polymorphism in Pancreatic Disorders

    Directory of Open Access Journals (Sweden)

    Vlad Pădureanu

    2017-02-01

    Full Text Available Pancreatic disorders have a high prevalence worldwide. Despite the fact that screening methods became more effective and the knowledge we have nowadays about pancreatic diseases has enhanced, their incidence remains high. Our purpose was to determine whether single nucleotide polymorphism (SNP of VEGFR-2/KDR (vascular endothelial growth factor receptor 2/kinase insert domain receptor influences susceptibility to develop pancreatic pathology. Genomic DNA was extracted from blood samples collected from patients diagnosed with acute pancreatitis (n = 110, chronic pancreatitis (n = 25, pancreatic cancer (n = 82 and healthy controls (n = 232. VEGFR-2 (KDR 604A>G (rs2071559 polymorphism frequency was determined with TaqMan allelic discrimination assays. Statistical assessment was performed by associating genetic polymorphism with clinical and pathological data. In both pancreatic disorders and healthy control groups the polymorphism we studied was in Hardy-Weinberg equilibrium. Association between increased risk for pancreatic disorders and studied polymorphism was statistically significant. KDR 604AG and AG + GG genotypes were more prevalent in acute pancreatitis and pancreatic cancer patients than in controls. These genotypes influence disease development in a low rate. No association was found between chronic pancreatitis and KDR 604AG and AG + GG genotypes. In Romanian cohort, we found an association between the KDR 604A→G polymorphism and acute pancreatitis and pancreatic cancer. Carriers of the -604G variant allele were more frequent among acute pancreatitis and pancreatic cancer than among controls, suggesting that KDR 604G allele may confer an increased risk for these diseases. In the future, more extensive studies on larger groups are necessary, in order to clarify the role of VEGFR2 polymorphisms in pancreatic pathology.

  4. Determination of VEGFR-2 (KDR) 604A>G Polymorphism in Pancreatic Disorders

    Science.gov (United States)

    Pădureanu, Vlad; Boldeanu, Mihail Virgil; Streaţă, Ioana; Cucu, Mihai Gabriel; Siloşi, Isabela; Boldeanu, Lidia; Bogdan, Maria; Enescu, Anca Ştefania; Forţofoiu, Maria; Enescu, Aurelia; Dumitrescu, Elena Mădălina; Alexandru, Dragoş; Şurlin, Valeriu Marian; Forţofoiu, Mircea Cătălin; Petrescu, Ileana Octavia; Petrescu, Florin; Ioana, Mihai; Ciurea, Marius Eugen; Săftoiu, Adrian

    2017-01-01

    Pancreatic disorders have a high prevalence worldwide. Despite the fact that screening methods became more effective and the knowledge we have nowadays about pancreatic diseases has enhanced, their incidence remains high. Our purpose was to determine whether single nucleotide polymorphism (SNP) of VEGFR-2/KDR (vascular endothelial growth factor receptor 2/kinase insert domain receptor) influences susceptibility to develop pancreatic pathology. Genomic DNA was extracted from blood samples collected from patients diagnosed with acute pancreatitis (n = 110), chronic pancreatitis (n = 25), pancreatic cancer (n = 82) and healthy controls (n = 232). VEGFR-2 (KDR) 604A>G (rs2071559) polymorphism frequency was determined with TaqMan allelic discrimination assays. Statistical assessment was performed by associating genetic polymorphism with clinical and pathological data. In both pancreatic disorders and healthy control groups the polymorphism we studied was in Hardy-Weinberg equilibrium. Association between increased risk for pancreatic disorders and studied polymorphism was statistically significant. KDR 604AG and AG + GG genotypes were more prevalent in acute pancreatitis and pancreatic cancer patients than in controls. These genotypes influence disease development in a low rate. No association was found between chronic pancreatitis and KDR 604AG and AG + GG genotypes. In Romanian cohort, we found an association between the KDR 604A→G polymorphism and acute pancreatitis and pancreatic cancer. Carriers of the -604G variant allele were more frequent among acute pancreatitis and pancreatic cancer than among controls, suggesting that KDR 604G allele may confer an increased risk for these diseases. In the future, more extensive studies on larger groups are necessary, in order to clarify the role of VEGFR2 polymorphisms in pancreatic pathology. PMID:28218664

  5. Ultrasound molecular imaging of VEGFR2 in a rat prostate tumor model using BR55.

    Science.gov (United States)

    Tardy, Isabelle; Pochon, Sibylle; Theraulaz, Martine; Emmel, Patricia; Passantino, Lisa; Tranquart, François; Schneider, Michel

    2010-10-01

    To evaluate BR55, a new VEGFR2-specific ultrasound contrast agent, for imaging prostate tumors in an orthotopic model in the rat. Rat prostate adenocarcinoma were established by injection of G Dunning R-3327 tumor cells in one lobe of the prostate of Copenhagen rats. Imaging experiments were performed with BR55, SonoVue, and streptavidin-functionalized microbubbles coupled with an anti-vascular endothelial growth factor receptor 2 (VEGFR2) antibody using a clinical ultrasound scanner. Contrast enhancement in the tumor and healthy prostate was followed over time by intermittent imaging at low acoustic power. Signal quantification and statistical analysis were performed in the tumor and healthy tissue to compare the behavior of the 3 contrast agents. Immunohistochemistry was performed on the prostate and tumor specimen to determine the expression of VEGFR2. Comparable contrast enhancement was observed in tumors at peak intensity for BR55 and SonoVue. Then, once unbound microbubbles had cleared from the circulation, a strong enhancement of the tumor was obtained with BR55, whereas no significant microbubble accumulation was detected in the healthy prostate tissue. SonoVue microbubbles were rapidly eliminated, and no significant binding was observed in the tumor. The tumor to prostate ratio calculated after signal quantification was about 20 for the 3 doses of BR55 tested. The enhancement obtained with BR55 in the tumor was not significantly different from the one observed with antibody-coupled streptavidin microbubbles. Intense staining for VEGFR2 was detected in the tumor vessels by immunohistochemistry. This study showed that BR55 binding to prostate tumors resulted in a strong enhancement of the lesions as early as a few minutes after contrast injection, whereas minimal nonspecific accumulation occurred in the healthy part of the gland. BR55, like SonoVue, provide information on tissue perfusion during the early vascular phase, but BR55 binding to the tumoral

  6. Fragment virtual screening based on Bayesian categorization for discovering novel VEGFR-2 scaffolds.

    Science.gov (United States)

    Zhang, Yanmin; Jiao, Yu; Xiong, Xiao; Liu, Haichun; Ran, Ting; Xu, Jinxing; Lu, Shuai; Xu, Anyang; Pan, Jing; Qiao, Xin; Shi, Zhihao; Lu, Tao; Chen, Yadong

    2015-11-01

    The discovery of novel scaffolds against a specific target has long been one of the most significant but challengeable goals in discovering lead compounds. A scaffold that binds in important regions of the active pocket is more favorable as a starting point because scaffolds generally possess greater optimization possibilities. However, due to the lack of sufficient chemical space diversity of the databases and the ineffectiveness of the screening methods, it still remains a great challenge to discover novel active scaffolds. Since the strengths and weaknesses of both fragment-based drug design and traditional virtual screening (VS), we proposed a fragment VS concept based on Bayesian categorization for the discovery of novel scaffolds. This work investigated the proposal through an application on VEGFR-2 target. Firstly, scaffold and structural diversity of chemical space for 10 compound databases were explicitly evaluated. Simultaneously, a robust Bayesian classification model was constructed for screening not only compound databases but also their corresponding fragment databases. Although analysis of the scaffold diversity demonstrated a very unevenly distribution of scaffolds over molecules, results showed that our Bayesian model behaved better in screening fragments than molecules. Through a literature retrospective research, several generated fragments with relatively high Bayesian scores indeed exhibit VEGFR-2 biological activity, which strongly proved the effectiveness of fragment VS based on Bayesian categorization models. This investigation of Bayesian-based fragment VS can further emphasize the necessity for enrichment of compound databases employed in lead discovery by amplifying the diversity of databases with novel structures.

  7. The high angiogenic activity in very early breast cancer enables reliable imaging with VEGFR2-targeted microbubbles (BR55).

    Science.gov (United States)

    Bzyl, Jessica; Palmowski, Moritz; Rix, Anne; Arns, Susanne; Hyvelin, Jean-Marc; Pochon, Sibylle; Ehling, Josef; Schrading, Simone; Kiessling, Fabian; Lederle, Wiltrud

    2013-02-01

    Tumour xenografts of well-discernible sizes can be examined well by molecular ultrasound. Here, we investigated whether very early breast carcinomas express sufficient levels of VEGFR2 for reliable molecular ultrasound imaging with targeted microbubbles. MCF-7 breast cancer xenografts were orthotopically implanted in nude mice (n = 26). Tumours measuring from 4 mm(3) (2 mm diameter) up to 65 mm(3) (5 mm diameter) were examined with automated 3D molecular ultrasound using clinically translatable VEGFR2-targeted microbubbles (BR55). Additionally, the relative tumour blood volume was assessed with non-targeted microbubbles (BR38). In vivo ultrasound data were validated by quantitative immunohistochemistry. Very small lesions 2 mm in diameter showed the highest binding of VEGFR2-specific microbubbles. In larger tumours significantly less BR55 accumulated (p = 0.023). Nonetheless, binding of VEGFR2-targeted microbubbles was still high enough for imaging. The relative blood volume was comparable at all tumour sizes. Both findings were confirmed by immunohistochemistry. Additionally, a significantly enhanced number of large and mature vessels were detected with increasing tumour size (p < 0.01), explaining the decrease in VEGFR2 expression during tumour growth. 3D molecular ultrasound using BR55 is very well suited to depicting the angiogenic activity in very small breast lesions, suggesting its potential for detecting and characterising these lesions.

  8. Anger Emotional Stress Influences VEGF/VEGFR2 and Its Induced PI3K/AKT/mTOR Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Peng Sun

    2016-01-01

    Full Text Available Objective. We discuss the influence of anger emotional stress upon VEGF/VEGFR2 and its induced PI3K/AKT/mTOR signal pathway. Methods. We created a rat model of induced anger (anger-out and anger-in emotional response using social isolation and resident-intruder paradigms and assessed changes in hippocampus’ VEGF content, neuroplasticity, and the PI3K/AKT/mTOR signaling pathway. Results. The resident-intruder method successfully generated anger-out and anger-in models that differed significantly in composite aggression score, aggression incubation, open field behavior, sucrose preference, and weight gain. Anger emotional stress decreased synaptic connections and VEGFR2 expression. Anger emotional stress led to abnormal expression of VEGF/VEGFR2 mRNA and protein and disorderly expression of key factors in the PI3K/AKT/mTOR signal pathway. Fluoxetine administration ameliorated behavioral abnormalities and damage to hippocampal neurons caused by anger emotional stress, as well as abnormal expression of some proteins in VEGF/VEGFR2 and its induced PI3K/AKT/mTOR signal pathway. Conclusion. This research provides a detailed classification of anger emotion and verifies its influence upon VEGF and the VEGF-induced signaling pathway, thus providing circumstantial evidence of mechanisms by which anger emotion damages neurogenesis. As VEGFR2 can promote neurogenesis and vasculogenesis in the hippocampus and frontal lobe, these results suggest that anger emotional stress can result in decreased neurogenesis.

  9. VEGFR2-mediated vascular dilation as a mechanism of VEGF-induced anemia and bone marrow cell mobilization.

    Science.gov (United States)

    Lim, Sharon; Zhang, Yin; Zhang, Danfang; Chen, Fang; Hosaka, Kayoko; Feng, Ninghan; Seki, Takahiro; Andersson, Patrik; Li, Jingrong; Zang, Jingwu; Sun, Baocun; Cao, Yihai

    2014-10-23

    Molecular mechanisms underlying tumor VEGF-induced host anemia and bone marrow cell (BMC) mobilization remain unknown. Here, we report that tumor VEGF markedly induced sinusoidal vasculature dilation in bone marrow (BM) and BMC mobilization to tumors and peripheral tissues in mouse and human tumor models. Unexpectedly, anti-VEGFR2, but not anti-VEGFR1, treatment completely blocked VEGF-induced anemia and BMC mobilization. Genetic deletion of Vegfr2 in endothelial cells markedly ablated VEGF-stimulated BMC mobilization. Conversely, deletion of the tyrosine kinase domain from Vegfr1 gene (Vegfr1(TK-/-)) did not affect VEGF-induced BMC mobilization. Analysis of VEGFR1(+)/VEGFR2(+) populations in peripheral blood and BM showed no significant ratio difference between VEGF- and control tumor-bearing animals. These findings demonstrate that vascular dilation through the VEGFR2 signaling is the mechanism underlying VEGF-induced BM mobilization and anemia. Thus, our data provide mechanistic insights on VEGF-induced BMC mobilization in tumors and have therapeutic implications by targeting VEGFR2 for cancer therapy.

  10. In situ validation of VEGFR-2 and α v ß 3 integrin as targets for breast lesion characterization.

    Science.gov (United States)

    Ehling, Josef; Misiewicz, Matthias; von Stillfried, Saskia; Möckel, Diana; Bzyl, Jessica; Pochon, Sibylle; Lederle, Wiltrud; Knuechel, Ruth; Lammers, Twan; Palmowski, Moritz; Kiessling, Fabian

    2016-04-01

    Vascular endothelial growth factor receptor 2 (VEGFR-2) and α v ß 3 integrin are the most frequently addressed targets in molecular imaging of tumor angiogenesis. In preclinical studies, molecular imaging of angiogenesis has shown potential to detect and differentiate benign and malignant lesions of the breast. Thus, in this retrospective clinical study employing patient tissues, the diagnostic value of VEGFR-2, α v ß 3 integrin and vascular area fraction for the diagnosis and differentiation of breast neoplasia was evaluated. To this end, tissue sections of breast cancer (n = 40), pre-invasive ductal carcinoma in situ (DCIS; n = 8), fibroadenoma (n = 40), radial scar (n = 6) and normal breast tissue (n = 40) were used to quantify (1) endothelial VEGFR-2, (2) endothelial α v ß 3 integrin and (3) total α v ß 3 integrin expression, as well as (4) the vascular area fraction. Sensitivity and specificity to differentiate benign from malignant lesions were calculated for each marker by receiver operating characteristics (ROC) analyses. Whereas vessel density, as commonly used, did not significantly differ between benign and malignant lesions (AUROC: 0.54), VEGFR-2 and α v ß 3 integrin levels were gradually up-regulated in carcinoma versus fibroadenoma versus healthy tissue. The highest diagnostic accuracy for differentiating carcinoma from fibroadenoma was found for total α v ß 3 integrin expression (AUROC: 0.76), followed by VEGFR-2 (AUROC: 0.71) and endothelial α v ß 3 integrin expression (AUROC: 0.68). In conclusion, total α v ß 3 integrin expression is the best discriminator between breast cancer, fibroadenoma and normal breast tissue. With respect to vascular targeting and molecular imaging of angiogenesis, endothelial VEGFR-2 appeared to be slightly superior to endothelial α v ß 3 for differentiating benign from cancerous lesions.

  11. 8-THP-DHI analogs as potent Type I dual TIE-2/VEGF-R2 receptor tyrosine kinase inhibitors.

    Science.gov (United States)

    Hudkins, Robert L; Zulli, Allison L; Underiner, Ted L; Angeles, Thelma S; Aimone, Lisa D; Meyer, Sheryl L; Pauletti, Daniel; Chang, Hong; Fedorov, Elena V; Almo, Steven C; Fedorov, Alexander A; Ruggeri, Bruce A

    2010-06-01

    A novel series of 8-(2-tetrahydropyranyl)-12,13-dihydroindazolo[5,4-a]pyrrolo[3,4-c]carbazoles (THP-DHI) was synthesized and evaluated as dual TIE-2 and VEGF-R2 receptor tyrosine kinase inhibitors. Development of the structure-activity relationships (SAR) with the support of X-ray crystallography led to identification of 7f and 7g as potent, selective dual TIE-2/VEGF-R2 inhibitors with excellent cellular potency and acceptable pharmacokinetic properties. Compounds 7f and 7g were orally active in tumor models with no observed toxicity.

  12. Combinatory action of VEGFR2 and MAP kinase pathways maintains endothelial-cell integrity

    Institute of Scientific and Technical Information of China (English)

    Hanbing Zhong; Danyang Wang; Nan Wang; Yesenia Rios; Haigen Huang; Song Li; Xinrong Wu; Shuo Lin

    2011-01-01

    Blood vessels normally maintain stereotyped lumen diameters and their stable structures are crucial for vascular function. However, very little is known about the molecular mechanisms controlling the maintenance of vessel diameters and the integrity of endothelial cells. We investigated this issue in zebrafish embryos by a chemical genetics approach. Small molecule libraries were screened using live Tg(kdrl:GRCFP)zn1 transgenic embryos in which endothelial cells are specifically labeled with GFP. By analyzing the effects of compounds on the morphology and function of embryonic blood vessels after lumen formation, PP1, a putative Src kinase inhibitor, was identified as capable of specifically reducing vascular lumen size by interrupting endothelial-cell integrity. The inhibitory effect is not due to Src or general VEGF signaling inhibition because another Src inhibitor and Src morpholino as well as several VEGFR inhibitors failed to produce a similar phenotype. After profiling a panel of 22 representative mammalian kinases and surveying published data, we selected a few possible new candidates. Combinational analysis of these candidate kinase inhibitors established that PP1 induced endothelial collapse by inhibiting both the VEGFR2 and MAP kinase pathways. More importantly, combinatory use of two clinically approved drugs Dasatinib and Sunitinib produced the same phenotype. This is the first study to elucidate the pathways controlling maintenance of endothelial integrity using a chemical genetics approach, indicating that endothelial integrity is controlled by the combined action of the VEGFR2 and MAP kinase pathways. Our results also suggest the possible side effect of the combination of two anticancer drugs on the circulatory system.

  13. Hsp20 functions as a novel cardiokine in promoting angiogenesis via activation of VEGFR2.

    Directory of Open Access Journals (Sweden)

    Xiaowei Zhang

    Full Text Available Heat shock proteins (Hsps are well appreciated as intrinsic protectors of cardiomyocytes against numerous stresses. Recent studies have indicated that Hsp20 (HspB6, a small heat shock protein, was increased in blood from cardiomyopathic hamsters. However, the exact source of the increased circulating Hsp20 and its potential role remain obscure. In this study, we observed that the circulating Hsp20 was increased in a transgenic mouse model with cardiac-specific overexpression of Hsp20, compared with wild-type mice, suggesting its origin from cardiomyocytes. Consistently, culture media harvested from Hsp20-overexpressing cardiomyocytes by Ad.Hsp20 infection contained an increased amount of Hsp20, compared to control media. Furthermore, we identified that Hsp20 was secreted through exosomes, independent of the endoplasmic reticulum-Golgi pathway. To investigate whether extracellular Hsp20 promotes angiogenesis, we treated human umbilical vein endothelial cells (HUVECs with recombinant human Hsp20 protein, and observed that Hsp20 dose-dependently promoted HUVEC proliferation, migration and tube formation. Moreover, a protein binding assay and immunostaining revealed an interaction between Hsp20 and VEGFR2. Accordingly, stimulatory effects of Hsp20 on HUVECs were blocked by a VEGFR2 neutralizing antibody and CBO-P11 (a VEGFR inhibitor. These in vitro data are consistent with the in vivo findings that capillary density was significantly enhanced in Hsp20-overexpressing hearts, compared to non-transgenic hearts. Collectively, our findings demonstrate that Hsp20 serves as a novel cardiokine in regulating myocardial angiogenesis through activation of the VEGFR signaling cascade.

  14. Modulation of neurite branching by protein phosphorylation in cultured rat hippocampal neurons.

    Science.gov (United States)

    Audesirk, G; Cabell, L; Kern, M

    1997-09-20

    The control of branching of axons and dendrites is poorly understood. It has been hypothesized that branching may be produced by changes in the cytoskeleton [F.J. Diez-Guerra, J. Avila, MAP2 phosphorylation parallels dendrite arborization in hippocampal neurones in culture, NeuroReport 4 (1993) 412-419; P. Friedrich, A. Aszodi, MAP2: a sensitive cross-linker and adjustable spacer in dendritic architecture, FEBS Lett. 295 (1991) 5-9]. The assembly and stability of microtubules, which are prominent cytoskeletal elements in both axons and dendrites, are regulated by microtubule-associated proteins, including tau (predominantly found in axons) and MAP2 (predominantly found in dendrites). The phosphorylation state of tau and MAP2 modulates their interactions with microtubules. In their low-phosphorylation states, tau and MAP2 bind to microtubules and increase microtubule assembly and/or stability. Increased phosphorylation decreases these effects. Diez-Guerra and Avila [F.J. Diez-Guerra, J. Avila, MAP2 phosphorylation parallels dendrite arborization in hippocampal neurones in culture, NeuroReport 4 (1993) 412-419] found that protein phosphorylation correlates with neurite branching in cultured rat hippocampal neurons, and hypothesized that increased protein phosphorylation stimulates neurite branching. To test this hypothesis, we cultured rat hippocampal neurons in the presence of specific modulators of serine-threonine protein kinases and phosphatases. Inhibitors of several protein kinases, which would be expected to decrease protein phosphorylation, reduced branching. KT5720, an inhibitor of cyclic AMP-dependent protein kinase, and KN62, an inhibitor of Ca(2+)-calmodulin-dependent protein kinases, inhibited branching of both axons and dendrites. Calphostin C and chelerythrine, inhibitors of protein kinase C, inhibited branching of axons but not dendrites. Treatments that would be expected to increase protein phosphorylation, including inhibitors of protein

  15. In situ validation of VEGFR-2 and α v ß 3 integrin as targets for breast lesion characterization

    NARCIS (Netherlands)

    Ehling, J.; Misiewicz, M.; von Stillfried, S.; Möckel, D.; Bzyl, J.; Pochon, S.; Lederle, W.; Knuechel, R.; Lammers, Twan Gerardus Gertudis Maria; Palmowski, M.; Kiessling, F.

    2016-01-01

    Vascular endothelial growth factor receptor 2 (VEGFR-2) and αvß3 integrin are the most frequently addressed targets in molecular imaging of tumor angiogenesis. In preclinical studies, molecular imaging of angiogenesis has shown potential to detect and differentiate benign and malignant lesions of th

  16. Discovery of quinazolin-4-amines bearing benzimidazole fragments as dual inhibitors of c-Met and VEGFR-2.

    Science.gov (United States)

    Shi, Lei; Wu, Ting-Ting; Wang, Zhi; Xue, Jia-Yu; Xu, Yun-Gen

    2014-09-01

    Both c-Met and VEGFR-2 are important targets for the treatment of cancers. In this study, a series of N-(2-phenyl-1H-benzo[d]imidazol-5-yl)quinazolin-4-amine derivatives were designed and identified as dual c-Met and VEGFR-2 inhibitors. Among these compounds bearing quinazoline and benzimidazole fragments, compound 7j exhibited the most potent inhibitory activity against c-Met and VEGFR-2 with IC50 of 0.05μM and 0.02μM, respectively. It also showed the highest anticancer activity against the tested cancer cell lines with IC50 of 1.5μM against MCF-7 and 8.7μM against Hep-G2. Docking simulation supported the initial pharmacophoric hypothesis and suggested a common mode of interaction at the ATP-binding site of c-Met and VEGFR-2, which demonstrates that compound 7j is a potential agent for cancer therapy deserving further researching.

  17. VEGFR2-Targeted Three-Dimensional Ultrasound Imaging Can Predict Responses to Antiangiogenic Therapy in Preclinical Models of Colon Cancer.

    Science.gov (United States)

    Zhou, Jianhua; Wang, Huaijun; Zhang, Huiping; Lutz, Amelie M; Tian, Lu; Hristov, Dimitre; Willmann, Jürgen K

    2016-07-15

    Three-dimensional (3D) imaging capabilities to assess responses to anticancer therapies are needed to minimize sampling errors common to two-dimensional approaches as a result of spatial heterogeneity in tumors. Recently, the feasibility and reproducibility of 3D ultrasound molecular imaging (3D USMI) using contrast agents, which target molecular markers, have greatly improved, due to the development of clinical 3D matrix array transducers. Here we report preclinical proof-of-concept studies showing that 3D USMI of VEGFR2/KDR expression accurately gauges longitudinal treatment responses to antiangiogenesis therapy in responding versus nonresponding mouse models of colon cancer. Tumors in these models exhibited differential patterns of VEGFR2-targeted 3D USMI signals during the course of antiangiogenic treatment with bevacizumab. In responding tumors, the VEGFR2 signal decreased as soon as 24 hours after therapy was started, whereas in nonresponding tumors there was no change in signal at any time point. The early decrease in VEGFR2 signal was highly predictive of treatment outcome at the end of therapy. Our results offer preclinical proof that 3D USMI can predict responses to antiangiogenic therapy, warranting further investigation of its clinical translatability to predicting treatment outcomes in patients. Cancer Res; 76(14); 4081-9. ©2016 AACR.

  18. Selective flexibility of side-chain residues improves VEGFR-2 docking score using AutoDock Vina.

    Science.gov (United States)

    Abreu, Rui M V; Froufe, Hugo J C; Queiroz, Maria-João R P; Ferreira, Isabel C F R

    2012-04-01

    Selective side-chain residue flexibility is an option available on AutoDock Vina docking software. This approach is promising as it attempts to provide a more realistic ligand-protein interaction environment without an unmanageable increase in computer processing time. However, studies validating this approach are still scarce. VEGFR-2 (vascular endothelial growth factor receptor 2), a known protein target for anti-angiogenic agents, was used in this study. Four residues located in the VEGFR-2 kinase site were selected and made flexible: Lys868, Glu885, Cys919, and Asp1046. The docking scores for all possible combinations of flexible residues were compared to the docking scores using a rigid conformation. The best overall docking scores were obtained using the Glu885 flexible conformation, with Pearson and Spearman rank correlation values of 0.568 and 0.543, respectively, and a 51% increase in processing time. Using different VEGFR-2 crystal structures, a similar trend was observed with the Glu885 flexible conformation presenting best scores. This study demonstrates that careful use of selective side-chain residue flexibility can improve AutoDock Vina docking score accuracy, without a significant increase in processing time. This methodology can be a valuable tool in drug design projects using VEGFR-2 but will also probably be useful if applied to other protein targets. © 2011 John Wiley & Sons A/S.

  19. In situ validation of VEGFR-2 and α v ß 3 integrin as targets for breast lesion characterization

    NARCIS (Netherlands)

    Ehling, J.; Misiewicz, M.; Stillfried, von S.; Möckel, D.; Bzyl, J.; Pochon, S.; Lederle, W.; Knuechel, R.; Lammers, T.G.G.M.; Palmowski, M.; Kiessling, F.

    2016-01-01

    Vascular endothelial growth factor receptor 2 (VEGFR-2) and αvß3 integrin are the most frequently addressed targets in molecular imaging of tumor angiogenesis. In preclinical studies, molecular imaging of angiogenesis has shown potential to detect and differentiate benign and malignant lesions of th

  20. MMP14 as a novel downstream target of VEGFR2 in migratory glioma-tropic neural stem cells

    Directory of Open Access Journals (Sweden)

    Nikita G. Alexiades

    2015-11-01

    Full Text Available Neural stem cell (NSC-based carriers have been presented as promising therapeutic tools for the treatment of infiltrative brain tumors due to their intrinsic tumor homing property. They have demonstrated the ability to migrate towards distant tumor microsatellites and effectively deliver the therapeutic payload, thus significantly improving survival in experimental animal models for brain tumor. Despite such optimistic results, the efficacy of NSC-based anti-cancer therapy has been limited due to the restricted tumor homing ability of NSCs. To examine this issue, we investigated the mechanisms of tumor-tropic migration of an FDA-approved NSC line, HB1.F3.CD, by performing a gene expression analysis. We identified vascular endothelial growth factor-A (VEGFA and membrane-bound matrix metalloproteinase (MMP14 as molecules whose expression are significantly elevated in migratory NSCs. We observed increased expression of VEGF receptor 2 (VEGFR2 in the focal adhesion complexes of migratory NSCs, with downstream activation of VEGFR2-dependent kinases such as p-PLCγ, p-FAK, and p-Akt, a signaling cascade reported to be required for cellular migration. In an in vivo orthotopic glioma xenograft model, analysis of the migratory trail showed that NSCs maintained expression of VEGFR2 and preferentially migrated within the perivascular space. Knockdown of VEGFR2 via shRNAs led to significant downregulation of MMP14 expression, which resulted in inhibited tumor-tropic migration. Overall, our results suggest, the involvement of VEGFR2-regulated MMP14 in the tumor-tropic migratory behavior of NSCs. Our data warrant investigation of MMP14 as a target for enhancing the migratory properties of NSC carriers and optimizing the delivery of therapeutic payloads to disseminated tumor burdens.

  1. Aurora A kinase modulates actin cytoskeleton through phosphorylation of Cofilin: Implication in the mitotic process.

    Science.gov (United States)

    Ritchey, Lisa; Chakrabarti, Ratna

    2014-11-01

    Aurora A kinase regulates early mitotic events through phosphorylation and activation of a variety of proteins. Specifically, Aur-A is involved in centrosomal separation and formation of mitotic spindles in early prophase. The effect of Aur-A on mitotic spindles is mediated by the modulation of microtubule dynamics and association with microtubule binding proteins. In this study we show that Aur-A exerts its effects on spindle organization through the regulation of the actin cytoskeleton. Aurora A phosphorylates Cofilin at multiple sites including S(3) resulting in the inactivation of its actin depolymerizing function. Aur-A interacts with Cofilin in early mitotic phases and regulates its phosphorylation status. Cofilin phosphorylation follows a dynamic pattern during the progression of prophase to metaphase. Inhibition of Aur-A activity induced a delay in the progression of prophase to metaphase. Aur-A inhibitor also disturbed the pattern of Cofilin phosphorylation, which correlated with the mitotic delay. Our results establish a novel function of Aur-A in the regulation of actin cytoskeleton reorganization, through Cofilin phosphorylation during early mitotic stages.

  2. Development and evaluation of a novel VEGFR2-targeted nanoscale ultrasound contrast agents

    Science.gov (United States)

    Yu, Houqiang; Li, Chunfang; He, Xiaoling; Zhou, Qibing; Ding, Mingyue

    2016-04-01

    Recent literatures have reported that the targeted nanoscale ultrasound contrast agents are becoming more and more important in medical application, like ultrasound imaging, detection of perfusion, drug delivery and molecular imaging and so on. In this study, we fabricated an uniform nanoscale bubbles (257 nm with the polydispersity index of 0.458) by incorporation of antibody targeted to vascular endothelial growth factor receptor 2 (VEGFR2) into the nanobubbles membrane by using avidin-biotin interaction. Some fundamental characterizations such as nanobubble suspension, surface morphology, particle size distribution and zeta potential were investigated. The concentration and time-intensity curves (TICs) were obtained with a self-made ultrasound experimental setup in vitro evaluation. In addition, in order to evaluate the contrast enhancement ability and the potential tumor-targeted ability in vivo, normal Wistar rats and nude female BALB/c mice were intravascular administration of the nanobubbles via tail vein injection, respectively. Significant contrast enhancement of ultrasound imaging within liver and tumor were visualized. These experiments demonstrated that the targeted nanobubbles is efficient in ultrasound molecular imaging by enhancement of the contrast effect and have potential capacity for targeted tumor diagnosis and therapy in the future.

  3. Coral-Derived Compound WA-25 Inhibits Angiogenesis by Attenuating the VEGF/VEGFR2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Shih-Wei Lin

    2015-02-01

    Full Text Available Background: WA-25 (dihydroaustrasulfone alcohol, a synthetic derivative of marine compound WE-2 suppresses atherosclerosis in rats by reducing neointima formation. Because angiogenesis plays a critical role in the pathogenesis of atherosclerosis, the present study investigated the angiogenic function and mechanism of WA-25. Methods: The angiogenic effect of WA-25 was evaluated using a rat aortic ring assay and transgenic zebrafish models were established using transgenic Tg(fli-1:EGFPy1 and Tg(kdrl:mCherryci5-fli1a:negfpy7 zebrafish embryos. In addition, the effect of WA-25 on distinct angiogenic processes, including matrix metalloproteinase (MMP expression, endothelial cell proliferation and migration, as well as tube formation, was studied using human umbilical vein endothelial cells (HUVECs. The effect of WA-25 on the endothelial vascular endothelial growth factor (VEGF signaling pathway was elucidated using qRT-PCR, immunoblot analysis, immunofluorescence and flow cytometric analyses. Results: The application of WA-25 perturbed the development of intersegmental vessels in transgenic zebrafish. Moreover, WA-25 potently suppressed microvessel sprouting in organotypic rat aortic rings. Among cultured endothelial cells, WA-25 significantly and dose-dependently inhibited MMP-2/MMP-9 expression, proliferation, migration and tube formation in HUVECs. Mechanistic studies revealed that WA-25 significantly reduced the VEGF release by reducing VEGF expression at the mRNA and protein levels. In addition, WA-25 reduced surface VEGF receptor 2 (VEGFR2/Flk-1 expression by repressing the VEGFR2 mRNA level. Finally, an exogenous VEGF supply partially rescued the WA-25-induced angiogenesis blockage in vitro and in vivo. Conclusions: WA-25 is a potent angiogenesis inhibitor that acts through the down-regulation of VEGF and VEGFR2 in endothelial cells. General Significance: WA-25 may constitute a novel anti-angiogenic drug that acts by targeting endothelial

  4. Synthesis and preclinical evaluation of [{sup 11}C]PAQ as a PET imaging tracer for VEGFR-2

    Energy Technology Data Exchange (ETDEWEB)

    Samen, Erik; Stone-Elander, Sharon [Karolinska University Hospital Solna, Karolinska Pharmacy, Stockholm (Sweden); Karolinska Institutet, Clinical Neurosciences, Stockholm (Sweden); Thorell, Jan-Olov [Karolinska University Hospital Solna, Karolinska Pharmacy, Stockholm (Sweden); Lu, Li [Karolinska Institutet, Clinical Neurosciences, Stockholm (Sweden); Tegnebratt, Tetyana; Holmgren, Lars [Karolinska Institutet, Cancer Center Karolinska, Oncology-Pathology, Stockholm (Sweden)

    2009-08-15

    (R,S)-N-(4-Bromo-2-fluorophenyl)-6-methoxy-7-((1-methyl-3-piperidinyl)methoxy)-4-quinazolinamine (PAQ) is a tyrosine kinase inhibitor with high affinity for the vascular endothelial growth factor receptor 2 (VEGFR-2), which plays an important role in tumour angiogenesis. The aim of this work was to develop and evaluate in mice the {sup 11}C-labelled analogue as an in vivo tracer for VEGFR-2 expression in solid tumours. [{sup 11}C]PAQ was synthesized by an N-methylation of desmethyl-PAQ using [{sup 11}C]methyl iodide. The tracer's pharmacokinetic properties and its distribution in both subcutaneous and intraperitoneal tumour models were evaluated with positron emission tomography (PET). [{sup 18}F]FDG was used as a reference tracer for tumour growth. PET results were corroborated by ex vivo and in vitro phosphor imaging and immunohistochemical analyses. In vitro assays and PET in healthy animals revealed low tracer metabolism, limited excretion over 60 min and a saturable and irreversible binding. Radiotracer uptake in subcutaneous tumour masses was low, while focal areas of high uptake (up to 8% ID/g) were observed in regions connecting the tumour to the host. Uptake was similarly high but more distributed in tumours growing within the peritoneum. The pattern of radiotracer uptake was generally different from that of the metabolic tracer [{sup 18}F]FDG and correlated well with variations in VEGFR-2 expression determined ex vivo by immunohistochemical analysis. These results suggest that [{sup 11}C]PAQ has potential as a noninvasive PET tracer for in vivo imaging of VEGFR-2 expression in angiogenic ''hot spots''. (orig.)

  5. The miR-126-VEGFR2 axis controls the innate response to pathogen-associated nucleic acids.

    Science.gov (United States)

    Agudo, Judith; Ruzo, Albert; Tung, Navpreet; Salmon, Hélène; Leboeuf, Marylène; Hashimoto, Daigo; Becker, Christian; Garrett-Sinha, Lee-Ann; Baccarini, Alessia; Merad, Miriam; Brown, Brian D

    2014-01-01

    miR-126 is a microRNA expressed predominately by endothelial cells and controls angiogenesis. We found miR-126 was required for the innate response to pathogen-associated nucleic acids and that miR-126-deficient mice had greater susceptibility to infection with pseudotyped HIV. Profiling of miRNA indicated that miR-126 had high and specific expression by plasmacytoid dendritic cells (pDCs). Moreover, miR-126 controlled the survival and function of pDCs and regulated the expression of genes encoding molecules involved in the innate response, including Tlr7, Tlr9 and Nfkb1, as well as Kdr, which encodes the growth factor receptor VEGFR2. Deletion of Kdr in DCs resulted in reduced production of type I interferon, which supports the proposal of a role for VEGFR2 in miR-126 regulation of pDCs. Our studies identify the miR-126-VEGFR2 axis as an important regulator of the innate response that operates through multiscale control of pDCs.

  6. VEGF/VEGFR2 Axis in Periodontal Disease Progression and Angiogenesis: Basic Approach for a New Therapeutic Strategy.

    Science.gov (United States)

    Vladau, Mircea; Cimpean, Anca Maria; Balica, Raluca Amalia; Jitariu, Andreea Adriana; Popovici, Ramona Amina; Raica, Marius

    2016-01-01

    Periodontal lesions are associated with activation of pathological angiogenesis and a high number of newly-formed blood vessels. Most angiogenic growth factors have been studied in the crevicular fluid or serum, but tissue correlations with vascular density or endothelial proliferation, are very rare, even inexistent. We assessed the VEGF/VEGFR2 axis expression in a multimodal fashion, in both epithelial and stromal compartments, with emphasis to endothelial proliferation and severity of periodontal lesions. Compared to normal gingiva, negative for VEGF/VEGFR2, periodontal lesions had a progressive increase for these markers from low to severe periodontal lesions. The transition from low to moderate periodontal lesions represents the milestone in disease progression and implies an active angiogenesis based on the highest angiogenic parameter variability observed for these lesions. Epithelial vascularization was firstly observed in moderate periodontal lesions and persists during severe periodontal disease. All the parameters used to quantify angiogenesis in periodontal lesions, were significantly increased in severe periodontal lesions dependent on VEGF expression in both the epithelial and stromal compartment. Our results support the use of anti-VEGF/VEGFR2-targeted therapy as adjuvant treatment for severe periodontal lesions. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Quercetin Inhibits Angiogenesis Mediated Human Prostate Tumor Growth by Targeting VEGFR- 2 Regulated AKT/mTOR/P70S6K Signaling Pathways

    Science.gov (United States)

    Pratheeshkumar, Poyil; Budhraja, Amit; Son, Young-Ok; Wang, Xin; Zhang, Zhuo; Ding, Songze; Wang, Lei; Hitron, Andrew; Lee, Jeong-Chae; Xu, Mei; Chen, Gang; Luo, Jia; Shi, Xianglin

    2012-01-01

    Angiogenesis is a crucial step in the growth and metastasis of cancers, since it enables the growing tumor to receive oxygen and nutrients. Cancer prevention using natural products has become an integral part of cancer control. We studied the antiangiogenic activity of quercetin using ex vivo, in vivo and in vitro models. Rat aortic ring assay showed that quercetin at non-toxic concentrations significantly inhibited microvessel sprouting and exhibited a significant inhibition in the proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Most importantly, quercetin treatment inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay. Western blot analysis showed that quercetin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, mTOR, and ribosomal protein S6 kinase in HUVECs. Quercetin (20 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that quercetin inhibited tumorigenesis by targeting angiogenesis. Furthermore, quercetin reduced the cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, mTOR and P70S6K expressions. Collectively the findings in the present study suggest that quercetin inhibits tumor growth and angiogenesis by targeting VEGF-R2 regulated AKT/mTOR/P70S6K signaling pathway, and could be used as a potential drug candidate for cancer therapy. PMID:23094058

  8. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signaling pathways.

    Directory of Open Access Journals (Sweden)

    Poyil Pratheeshkumar

    Full Text Available Angiogenesis is a crucial step in the growth and metastasis of cancers, since it enables the growing tumor to receive oxygen and nutrients. Cancer prevention using natural products has become an integral part of cancer control. We studied the antiangiogenic activity of quercetin using ex vivo, in vivo and in vitro models. Rat aortic ring assay showed that quercetin at non-toxic concentrations significantly inhibited microvessel sprouting and exhibited a significant inhibition in the proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Most importantly, quercetin treatment inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM and matrigel plug assay. Western blot analysis showed that quercetin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, mTOR, and ribosomal protein S6 kinase in HUVECs. Quercetin (20 mg/kg/d significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that quercetin inhibited tumorigenesis by targeting angiogenesis. Furthermore, quercetin reduced the cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, mTOR and P70S6K expressions. Collectively the findings in the present study suggest that quercetin inhibits tumor growth and angiogenesis by targeting VEGF-R2 regulated AKT/mTOR/P70S6K signaling pathway, and could be used as a potential drug candidate for cancer therapy.

  9. Tyrosine Phosphorylation Modulates the Vascular Responses of Mesenteric Arteries from Human Colorectal Tumors

    Directory of Open Access Journals (Sweden)

    Eduardo Ferrero

    2013-01-01

    Full Text Available The aim of this study was to analyze whether tyrosine phosphorylation in tumoral arteries may modulate their vascular response. To do this, mesenteric arteries supplying blood flow to colorectal tumors or to normal intestine were obtained during surgery and prepared for isometric tension recording in an organ bath. Increasing tyrosine phosphorylation with the phosphatase inhibitor, sodium orthovanadate produced arterial contraction which was lower in tumoral than in control arteries, whereas it reduced the contraction to noradrenaline in tumoral but not in control arteries and reduced the relaxation to bradykinin in control but not in tumoral arteries. Protein expression of VEGF-A and of the VEGF receptor FLT1 was similar in control and tumoral arteries, but expression of the VEGF receptor KDR was increased in tumoral compared with control arteries. This suggests that tyrosine phosphorylation may produce inhibition of the contraction in tumoral mesenteric arteries, which may increase blood flow to the tumor when tyrosine phosphorylation is increased by stimulation of VEGF receptors.

  10. Phosphorylation and chronic agonist treatment atypically modulate GABAB receptor cell surface stability.

    Science.gov (United States)

    Fairfax, Benjamin P; Pitcher, Julie A; Scott, Mark G H; Calver, Andrew R; Pangalos, Menelas N; Moss, Stephen J; Couve, Andrés

    2004-03-26

    GABA(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. The dynamic control of the cell surface stability of GABA(B) receptors is likely to be of fundamental importance in the modulation of receptor signaling. Presently, however, this process is poorly understood. Here we demonstrate that GABA(B) receptors are remarkably stable at the plasma membrane showing little basal endocytosis in cultured cortical and hippocampal neurons. In addition, we show that exposure to baclofen, a well characterized GABA(B) receptor agonist, fails to enhance GABA(B) receptor endocytosis. Lack of receptor internalization in neurons correlates with an absence of agonist-induced phosphorylation and lack of arrestin recruitment in heterologous systems. We also demonstrate that chronic exposure to baclofen selectively promotes endocytosis-independent GABA(B) receptor degradation. The effect of baclofen can be attenuated by activation of cAMP-dependent protein kinase or co-stimulation of beta-adrenergic receptors. Furthermore, we show that increased degradation rates are correlated with reduced receptor phosphorylation at serine 892 in GABA(B)R2. Our results support a model in which GABA(B)R2 phosphorylation specifically stabilizes surface GABA(B) receptors in neurons. We propose that signaling pathways that regulate cAMP levels in neurons may have profound effects on the tonic synaptic inhibition by modulating the availability of GABA(B) receptors.

  11. Reproductive stage and modulation of stress-induced tau phosphorylation in female rats

    Science.gov (United States)

    Steinmetz, Danielle; Ramos, Eugenia; Campbell, Shannon N.; Morales, Teresa; Rissman, Robert A.

    2015-01-01

    Chronic stress is implicated as a risk factor for Alzheimer's disease (AD) and other neurodegenerative disorders. While the specific mechanisms linking stress exposure and AD vulnerability have yet to be fully elucidated, our lab and others have shown that acute and repeated restraint stress in rodents leads to an increase in hippocampal tau phosphorylation (tau-P) and tau insolubility, a critical component of tau pathology in AD. Tau phosphorylation induced by a psychological stressor is reversible and is thought to be dependent on intact signaling through the type 1 corticotropin-releasing factor receptor, but how sex steroids or other modulators may also modulate this effect are unknown. A naturally occurring attenuation of stress response is observed in female rats at the end of pregnancy and throughout lactation. To test the hypothesis that decreased sensitivity to stress during lactation modulates stress-induced tau-P, cohorts of virgin, lactating, and weaned female rats were subjected to 30 minutes of restraint stress or no stress (control), and were sacrificed at 20 minutes or 24 hours after the episode. Exposure to restraint stress induced a significant decrease in tau-P in the hippocampus of lactating rats sacrificed 20 minutes after stress compared to lactating controls and virgins subjected to stress treatment. Lactating rats sacrificed 24 hours after exposure to restraint stress showed a significant increase in tau-P compared to the restraint-stressed lactating rats sacrificed only 20 minutes after stress exposure, expressing phosphorylation levels similar to control animals. Further, GSK3-α levels were significantly decreased in stressed lactating animals at both timepoints. This suggests a steep, yet transient stress-induced dephosphorylation of tau, influenced by GSK3, in the hippocampus of lactating rats. PMID:26510116

  12. Modulation of RNA polymerase II phosphorylation downstream of pathogen perception orchestrates plant immunity.

    Science.gov (United States)

    Li, Fangjun; Cheng, Cheng; Cui, Fuhao; de Oliveira, Marcos V V; Yu, Xiao; Meng, Xiangzong; Intorne, Aline C; Babilonia, Kevin; Li, Maoying; Li, Bo; Chen, Sixue; Ma, Xianfeng; Xiao, Shunyuan; Zheng, Yi; Fei, Zhangjun; Metz, Richard P; Johnson, Charles D; Koiwa, Hisashi; Sun, Wenxian; Li, Zhaohu; de Souza Filho, Gonçalo A; Shan, Libo; He, Ping

    2014-12-10

    Perception of microbe-associated molecular patterns (MAMPs) elicits host transcriptional reprogramming as part of the immune response. Although pathogen perception is well studied, the signaling networks orchestrating immune gene expression remain less clear. In a genetic screen for components involved in the early immune gene transcription reprogramming, we identified Arabidopsis RNA polymerase II C-terminal domain (CTD) phosphatase-like 3 (CPL3) as a negative regulator of immune gene expression. MAMP perception induced rapid and transient cyclin-dependent kinase C (CDKC)-mediated phosphorylation of Arabidopsis CTD. The CDKCs, which are in turn phosphorylated and activated by a canonical MAP kinase (MAPK) cascade, represent a point of signaling convergence downstream of multiple immune receptors. CPL3 directly dephosphorylated CTD to counteract MAPK-mediated CDKC regulation. Thus, modulation of the phosphorylation dynamics of eukaryotic RNA polymerase II transcription machinery by MAPKs, CTD kinases, and phosphatases constitutes an essential mechanism for rapid orchestration of host immune gene expression and defense upon pathogen attacks.

  13. Naringin promotes fracture healing through stimulation of angiogenesis by regulating the VEGF/VEGFR-2 signaling pathway in osteoporotic rats.

    Science.gov (United States)

    Song, Nan; Zhao, Zhihu; Ma, Xinlong; Sun, Xiaolei; Ma, Jianxiong; Li, Fengbo; Sun, Lei; Lv, Jianwei

    2017-01-05

    Postmenopausal osteoporosis is characterized by a reduction in the number of sinusoidal and arterial capillaries in the bone marrow and reduced bone perfusion. Thus, osteogenesis and angiogenesis are coupled in the process of osteoporosis formation and fracture healing. Naringin is the main ingredient of the root Rhizoma Drynariae, a traditional Chinese medicine, and it has potential effects on promoting fracture healing. However, whether naringin stimulates angiogenesis in the process of bone healing is unclear. Here, we show that naringin promotes fracture healing through stimulating angiogenesis by regulating the VEGF/VEGFR-2 signaling pathway in osteoporotic rats.

  14. EGFR、PDGFRA和VEGFR2在结肠癌中的表达及变异分析%Molecular characterization of EGFR, PDGFRA and VEGFR2 in colon cancer

    Institute of Scientific and Technical Information of China (English)

    邓子龙; 刘蔚东

    2016-01-01

    Objective To investigate EGFR, PDGFRA and VEGFR2 RTKs overexpression and activating gene mu-tations in a cohort of 30 colon cancer patients sample. Methods EGFR, PDGFRA and VEGFR2 immunohistochem-istry was performed in all samples, followed by DNA isolation from the gross macroscopically dissection of the neo-plastic area. Screening for EGFR (exons18-21) and PDGFRA (exons12, 14 and 18) mutations was done by PCR-sin-gle-strand conformational polymorphism (PCR-SSCP). Results Despite the presence of EGFR immunohistochemical positive reactions in 43 % (13/30) of the samples, no EGFR activating mutations in the hotspot region (exons18-21) were identified. A silent base substitution (CAG > CAA) in EGFR exon 20 at codon 787 (Q787Q) was found in 17 cases (56 %). All PDGFRA immunohistochemical reactions were positive and consistently observed in the stromal component, staining fibroblasts and endothelial cells, as well as in the cytoplasm of malignant cells. No activating PDGFRA mutations were found, yet, several silent mutations were observed, such as a base substitution in exon 12 (CCA > CCG) at codon 567 (P567P) in 9 cases and in exon18 (GTC > GTT) at codon 824 (V824V) in 4 cases. We also observed the presence of base substitutions in intron 14 (IVS14 +3G >A and IVS14 +49G >A) in two differ-ent cases, and in intron 18 (IVS18-50 insA) in 4 cases. VEGFR2 positivity was observed in 22 of 30 cases (73.3%),and was significantly associated with lack of metastasis ( =0.038). Conclusions Despite the absence of EGFR and PDGFRA activating mutations, the presence of overexpression of these three important therapeutic targets in a subset of cases may be important in predicting the sensitivity of colon cancer to specific anti-RTKs drugs.%目的:探讨受体酪氨酸激酶表皮生长因子受体(EGFR),血小板源性生长因子受体α多肽(PDGFRA)和血管内皮细胞生长因子受体2(VEGFR2)在30例结肠癌中的过表达及基因突变情况。方法收集该

  15. Phosphorylation of BK channels modulates the sensitivity to hydrogen sulfide (H2S

    Directory of Open Access Journals (Sweden)

    Guzel F. Sitdikova

    2014-11-01

    Full Text Available Introduction: Gases, such as nitric oxide (NO, carbon monoxide (CO or hydrogen sulfide (H2S, termed gasotransmitters, play an increasingly important role in understanding of how electrical signaling of cells is modulated. H2S is well known to act on various ion channels and receptors. In a previous study we reported that H2S increased calcium-activated potassium (BK channel activity. Aims: The goal of the present study is to investigate the modulatory effect of BK channel phosphorylation on the action of H2S on the channel as well as to recalculate and determine the H2S concentrations in aqueous sodium hydrogen sulfide (NaHS solutions.Methods: Single channel recordings of GH3, GH4 and GH4 STREX cells were used to analyze channel open probability, amplitude and open dwell times. H2S was measured with ananion selective electrode. Results: The concentration of H2S produced from NaHS was recalculated taking pH, temperature salinity of the perfusate and evaporation of H2S into account. The results indicate that from a concentration of 300 µM NaHS, only11-13%, i.e. 34-41 µM is effective as H2S in solution. GH3, GH4 and GH4 STREX cells respond differently to phosphorylation. BK channel open probability (Po of all cells lines used was increased by H2S in ATP containing solutions. PKA prevented the action of H2S on channel Po in GH4 and GH4 STREX, but not in GH3 cells. H2S, high significantly increased Po of all PKG pretreated cells. In the presence of PKC, which lowers channel activity, H2S increased channel Po of GH4 and GH4 STREX, but not those of GH3 cells. H2S increased open dwell times of GH3 cells in the absence of ATP significantly. A significant increase of dwell times with H2S was also observed in the presence of okadaic acid.Conclusions: Our results suggest that phosphorylation by PKG primes the channels for H2S activation and indicate that channel phosphorylation plays an important role in the response to H2S.

  16. Phosphorylation of BK channels modulates the sensitivity to hydrogen sulfide (H2S).

    Science.gov (United States)

    Sitdikova, Guzel F; Fuchs, Roman; Kainz, Verena; Weiger, Thomas M; Hermann, Anton

    2014-01-01

    Gases, such as nitric oxide (NO), carbon monoxide (CO), or hydrogen sulfide (H2S), termed gasotransmitters, play an increasingly important role in understanding of how electrical signaling of cells is modulated. H2S is well-known to act on various ion channels and receptors. In a previous study we reported that H2S increased calcium-activated potassium (BK) channel activity. The goal of the present study is to investigate the modulatory effect of BK channel phosphorylation on the action of H2S on the channel as well as to recalculate and determine the H2S concentrations in aqueous sodium hydrogen sulfide (NaHS) solutions. Single channel recordings of GH3, GH4, and GH4 STREX cells were used to analyze channel open probability, amplitude, and open dwell times. H2S was measured with an anion selective electrode. The concentration of H2S produced from NaHS was recalculated taking pH, temperature salinity of the perfusate, and evaporation of H2S into account. The results indicate that from a concentration of 300 μM NaHS, only 11-13%, i.e., 34-41 μM is effective as H2S in solution. GH3, GH4, and GH4 STREX cells respond differently to phosphorylation. BK channel open probability (Po) of all cells lines used was increased by H2S in ATP-containing solutions. PKA prevented the action of H2S on channel Po in GH4 and GH4 STREX, but not in GH3 cells. H2S, high significantly increased Po of all PKG pretreated cells. In the presence of PKC, which lowers channel activity, H2S increased channel Po of GH4 and GH4 STREX, but not those of GH3 cells. H2S increased open dwell times of GH3 cells in the absence of ATP significantly. A significant increase of dwell times with H2S was also observed in the presence of okadaic acid. Our results suggest that phosphorylation by PKG primes the channels for H2S activation and indicate that channel phosphorylation plays an important role in the response to H2S.

  17. Soluble amyloid precursor protein alpha (sAPPα) inhibits tau phosphorylation through modulation of GSK3β signaling pathway

    Science.gov (United States)

    Deng, Juan; Habib, Ahsan; Obregon, Demian F.; Barger, Steven W.; Giunta, Brian; Wang, Yan-Jiang; Hou, Huayan; Sawmiller, Darrell; Tan, Jun

    2015-01-01

    We recently found that sAPPα decreases Aβ generation by directly associating with β-site amyloid precursor protein (APP) converting enzyme 1 (BACE1), thereby modulating APP processing. Because inhibition of BACE1 decreases GSK3β-mediated Alzheimer’s disease (AD)-like tau phosphorylation in AD patient-derived neurons, we determined whether sAPPα also reduces GSK3β-mediated tau phosphorylation. We initially found increased levels of inhibitory phosphorylation of GSK3β in primary neurons from sAPPα over-expressing mice. Further, recombinant human sAPPα evoked the same phenomenon in SH-SY5Y cells. Further, in SH-SY5Y cells overexpressing BACE1, and HeLa cells overexpressing human tau, sAPPα reduced GSK3β activity and tau phosphorylation. Importantly, the reductions in GSK3β activity and tau phosphorylation elicited by sAPPα were prevented by BACE1 but not γ-secretase inhibition. In accord, AD mice overexpressing human sAPPα had less GSK3β activity and tau phosphorylation compared with controls. These results implicate a direct relationship between APP β-processing and GSK3β-mediated tau phosphorylation and further define the central role of sAPPα in APP autoregulation and AD pathogenesis. PMID:26342176

  18. Ribosomal protein S6 phosphorylation is controlled by TOR and modulated by PKA in Candida albicans.

    Science.gov (United States)

    Chowdhury, Tahmeena; Köhler, Julia R

    2015-10-01

    TOR and PKA signaling pathways control eukaryotic cell growth and proliferation. TOR activity in model fungi, such as Saccharomyces cerevisiae, responds principally to nutrients, e.g., nitrogen and phosphate sources, which are incorporated into the growing cell mass; PKA signaling responds to the availability of the cells' major energy source, glucose. In the fungal commensal and pathogen, Candida albicans, little is known of how these pathways interact. Here, the signal from phosphorylated ribosomal protein S6 (P-S6) was defined as a surrogate marker for TOR-dependent anabolic activity in C. albicans. Nutritional, pharmacologic and genetic modulation of TOR activity elicited corresponding changes in P-S6 levels. The P-S6 signal corresponded to translational activity of a GFP reporter protein. Contributions of four PKA pathway components to anabolic activation were then examined. In high glucose concentrations, only Tpk2 was required to upregulate P-S6 to physiologic levels, whereas all four tested components were required to downregulate P-S6 in low glucose. TOR was epistatic to PKA components with respect to P-S6. In many host niches inhabited by C. albicans, glucose is scarce, with protein being available as a nitrogen source. We speculate that PKA may modulate TOR-dependent cell growth to a rate sustainable by available energy sources, when monomers of anabolic processes, such as amino acids, are abundant.

  19. Roles of “junk phosphorylation” in modulating biomolecular association of phosphorylated proteins?

    DEFF Research Database (Denmark)

    Tan, Chris Soon Heng; Jørgensen, Claus; Linding, Rune

    2010-01-01

    Protein phosphorylation dynamically regulates cellular activities in response to environmental cues. Sequence conservation analysis of recent proteome-wide phosphorylation data revealed that many previously unidentified phosphorylation sites are not well-conserved leading to the proposal that man...... evolutionary approaches to interpret physiological important sites....

  20. The importance of intrinsically disordered segments of cardiac troponin in modulating function by phosphorylation and disease-causing mutations

    Directory of Open Access Journals (Sweden)

    Maria Papadaki

    2016-11-01

    Full Text Available Troponin plays a central role in regulation of muscle contraction. It is the Ca2+ switch of striated muscles including the heart and in the cardiac muscle is physiologically modulated by PKA-dependent phosphorylation at Ser22 and 23. Many cardiomyopathy-related mutations affect Ca2+ regulation and/or disrupt the relationship between Ca2+ binding and phosphorylation. Unlike the mechanism of heart activation, the modulation of Ca2+-sensitivity by phosphorylation of the cardiac specific N-terminal segment of TnI (1-30 is structurally subtle and has proven hard to investigate. The crystal structure of cardiac troponin describes only the relatively stable core of the molecule and the crucial mobile parts of the molecule are missing including TnI C terminal region, TnI (1-30, TnI (134-149 (‘inhibitory’ peptide and the C-terminal 28 amino acids of TnT that are intrinsically disordered.Recent studies over the years have been performed to answer this matter by building structural models of cardiac troponin in phosphorylated and dephosphorylated states based on peptide NMR studies. Now these have been updated by more recent concepts derived from molecular dynamic simulations treating troponin as a dynamic structure. The emerging model confirms the stable core structure of troponin and the mobile structure of the intrinsically disordered segments. We will discuss how we can describe these segments in terms of dynamic transitions between a small number of states with the probability distributions being altered by phosphorylation and by HCM or DCM-related mutations that can explain how Ca2+-sensitivity is modulated by phosphorylation and the effects of mutations.

  1. Discovery of N-(2-phenyl-1H-benzo[d]imidazol-5-yl)quinolin-4-amine derivatives as novel VEGFR-2 kinase inhibitors.

    Science.gov (United States)

    Shi, Lei; Wu, Ting-Ting; Wang, Zhi; Xue, Jia-Yu; Xu, Yun-Gen

    2014-09-12

    Inhibition of the VEGF signaling pathway has become a valuable approach in the treatment of cancers. In this work, a series of N-(2-phenyl-1H-benzo[d]imidazol-5-yl)quinolin-4-amine derivatives were designed and identified as potent inhibitors of VEGFR-2 (KDR) kinase. These compounds with quinoline scaffold and benzimidazole moiety were synthesized and their biological activities against VEGFR-2 and two human cancer cell lines were evaluated. Among them, compound 7s exhibited the most potent inhibitory activity against VEGFR-2 with IC50 of 0.03 μM and it also showed the highest anticancer activity against the tested cancer cell lines with IC50 of 1.2 μM against MCF-7 and 13.3 μM against Hep-G2. Docking simulation supported the initial pharmacophoric hypothesis and suggested a common mode of interaction at the ATP-binding site of VEGFR-2, which demonstrates that compound 7s is a potential agent for cancer therapy deserving further researching. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. A development of chimeric VEGFR2 TK inhibitor based on two ligand conformers from PDB: 1Y6A complex--medicinal chemistry consequences of a TKs analysis.

    Science.gov (United States)

    Lintnerová, Lucia; García-Caballero, Melissa; Gregáň, Fridrich; Melicherčík, Milan; Quesada, Ana R; Dobiaš, Juraj; Lác, Ján; Sališová, Marta; Boháč, Andrej

    2014-01-24

    VEGFR2 is an important mediator of angiogenesis and influences fate of some cancer stem cells. Here we analysed all 34 structures of VEGFR2 TK available from PDB database. From them a complex PDB: 1Y6A has an exceptional AAZ ligand bound to TK in form of two conformers (U- and S-shaped). This observation inspired us to develop three chimeric bispyridyl VEGFR2 inhibitors by combining structural features of both AAZ conformers and/or their relative ligand AAX (PDB: 1Y6B). Our most interesting inhibitor 22SYM has an enzymatic VEGFR2 TK activity (IC50: 15.1 nM) comparable or better to the active compounds from clinical drugs Nexavar and Sutent. 22SYM inhibits growth, migration and tube formation of endothelial cells (EC) and selectively induces EC apoptosis. 22SYM also inhibits in vivo angiogenesis in Zebrafish embryo assay. Additionally to the above results, we proved here that tyrosine kinases in an inactive form possessing Type I inhibitors can adopt both a closed or an opened conformation of kinase A-loop independently on their DFG-out arrangement. We proposed here that an activity of certain Type I inhibitors (e.g. 22SYM-like) in complex with DFG-out TK can be negatively influenced by collisions with a dynamically moving TK A-loop.

  3. Genetic interaction of P2X7 receptor and VEGFR-2 polymorphisms identifies a favorable prognostic profile in prostate cancer patients.

    Science.gov (United States)

    Solini, Anna; Simeon, Vittorio; Derosa, Lisa; Orlandi, Paola; Rossi, Chiara; Fontana, Andrea; Galli, Luca; Di Desidero, Teresa; Fioravanti, Anna; Lucchesi, Sara; Coltelli, Luigi; Ginocchi, Laura; Allegrini, Giacomo; Danesi, Romano; Falcone, Alfredo; Bocci, Guido

    2015-10-01

    VEGFR-2 and P2X7 receptor (P2X7R) have been described to stimulate the angiogenesis and inflammatory processes of prostate cancer. The present study has been performed to investigate the genetic interactions among VEGFR-2 and P2X7R SNPs and their correlation with overall survival (OS) in a population of metastatic prostate cancer patients. Analyses were performed on germline DNA obtained from blood samples and SNPs were investigated by real-time PCR technique. The survival dimensionality reduction (SDR) methodology was applied to investigate the genetic interaction between SNPs. One hundred patients were enrolled. The SDR software provided two genetic interaction profiles consisting of the combination between specific VEGFR-2 (rs2071559, rs11133360) and P2X7R (rs3751143, rs208294) genotypes. The median OS was 126 months (95% CI, 115.94-152.96) and 65.65 months (95% CI, 52.95-76.53) for the favorable and the unfavorable genetic profile, respectively (p < 0.0001). The genetic statistical interaction between VEGFR-2 (rs2071559, rs11133360) and P2X7R (rs3751143, rs208294) genotypes may identify a population of prostate cancer patients with a better prognosis.

  4. Soluble vascular endothelial growth factor receptors 2 (sVEGFR-2) and 3 (sVEGFR-3) and breast cancer risk in the Swedish Mammography Cohort.

    Science.gov (United States)

    Harris, Holly; Wolk, Alicja; Larsson, Anders; Vasson, Marie-Paule; Basu, Samar

    2016-01-01

    Vascular endothelial growth factor (VEGF) is a signalling protein that has been established as a contributor to tumor angiogenesis, and expression of VEGF and its soluble receptors (sVEGFR2 and sVEGFR3) have been demonstrated in breast cancer cells. However, no prospective studies have examined the association between prediagnostic sVEGFR levels and breast cancer risk. We conducted a prospective case-control study nested within the Swedish Mammography Cohort examining the association between sVEGFR2 and 3 levels and breast cancer risk. The analysis included 69 incident breast cancer cases diagnosed after blood collection and 719 controls. Logistic regression models were used to calculate odds ratios and 95% confidence intervals. After adjustment for breast cancer risk factors, sVEGFR2 levels were associated with breast cancer risk (OR=1.28; 95% CI=1.06-1.56 per 1000 ng/L increase in concentration) while sVEGFR3 levels were not related to such risk (OR=1.00; 95% CI=0.93-1.07). Our results suggest that sVEGFR2 levels may be positively associated with breast cancer risk, however future studies with larger case groups are necessary to confirm this association.

  5. Sodium butyrate modulates pRb phosphorylation and induces cell death in human vestibular schwannomas in vitro.

    Science.gov (United States)

    Mitra, Rohan; Devi, B Indira; Gope, Mohan L; Subbakrishna, D K; Gope, Rajalakshmi

    2012-01-01

    In the present study, effect of Na-Bu on the pRb phosphorylation was analysed in the primary cultures of 12 VS tumors. Primary cultures of VS tumors were established from the fresh tumor tissues removed surgically and were treated with Na-Bu. Na-Bu treatment for 48 h led to morphological changes and apoptotic cell death in VS tumor cells. Na-Bu treatment decreased level of total pRb and phosphorylated form of pRb and caused specific dephosphorylation at Ser 249/Thr 252 and Ser 567. In the untreated and Na-Bu treated cells (when present), pRb was localised in the nucleus. Moreover, in Na-Bu treated cells the nucleus appeared highly condensed as compared to untreated cells. Results of the present study indicated that Na-Bu treatment modulated pRb phosphorylation status and caused apoptotic cell death in VS tumors.

  6. Dynamic modulation of the Kv2.1 channel by Src-dependent tyrosine phosphorylation

    OpenAIRE

    Song, Min-Young; Hong, Chansik; Bae, Seong Han; So, Insuk; Park, Kang-Sik

    2011-01-01

    The voltage-gated K+ channel Kv2.1 is expressed as a highly phosphorylated protein in most central neurons, where it plays a key role in regulating neuronal membrane excitability. Previous studies have shown that Kv2.1 channel activity is upregulated by Src-mediated phosphorylation through an unknown mechanism. However, a systematic analysis of the molecular mechanism of Kv2.1 channel phosphorylation by Src is lacking. Here we show that tyrosine phosphorylation by Src plays a fundamental role...

  7. A dynamic view to the modulation of phosphorylation and O-GlcNAcylation by inhibition of O-GlcNAcase.

    Science.gov (United States)

    Tang, Cuyue; Welty, Devin F

    2013-08-01

    Protein phosphorylation and O-GlcNAcylation are reciprocally regulated. As hyperphosphorylation is implicated in tau pathology, approaches have been exploited to reduce the magnitude of tau phosphorylation by increasing the level of tau O-GlcNAcylation. With mathematic models constructed to describe different kinetic scenarios, we analyzed the temporal change of an O-GlcNAcylated protein in contrast to that of the phosphorylated form upon inhibition of O-GlcNAcase (OGA). The analyses indicate that when degradation of the modified protein is negligible relative to the naked one, the magnitude of O-GlcNAcylated protein increase is proportional to the level of inhibition, while the extent of phosphorylated protein decline varies due to other factors. Furthermore, the increase of O-GlcNAcylated protein parallels with the decrease of phosphorylated form upon acute or short-term inhibition of OGA, as observed in many in vitro and short term in vivo studies. However, phosphorylated protein is predicted to return to its initial level while O-GlcNAcylated protein to achieve a higher steady level under sustained inhibition. This simulated result is in line with a recent report on long-term inhibition of OGA in transgenic mice. Noticeably, inhibition withdrawal is anticipated to cause a transient rise of phosphorylated protein. If degradation of modified proteins proceeds in addition to the naked one, the characteristic temporal profiles of each form in response to OGA inhibition would depend on the relative importance of individual degradation pathways. The models described herein may serve as a useful investigational tool that will provide insight into pharmacological intervention for tauopathies in particular and for reciprocally modulated reactions in general. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Phosphorylation of the leukemic oncoprotein EVI1 on serine 196 modulates DNA binding, transcriptional repression and transforming ability.

    Directory of Open Access Journals (Sweden)

    Daniel J White

    Full Text Available The EVI1 (ecotropic viral integration site 1 gene at 3q26 codes for a transcriptional regulator with an essential role in haematopoiesis. Overexpression of EVI1 in acute myeloid leukaemia (AML is frequently associated with 3q26 rearrangements and confers extremely poor prognosis. EVI1 mediates transcriptional regulation, signalling, and epigenetic modifications by interacting with DNA, proteins and protein complexes. To explore to what extent protein phosphorylation impacts on EVI1 functions, we analysed endogenous EVI1 protein from a high EVI1 expressing Fanconi anaemia (FA derived AML cell line. Mass spectrometric analysis of immunoprecipitated EVI1 revealed phosphorylation at serine 196 (S196 in the sixth zinc finger of the N-terminal zinc finger domain. Mutated EVI1 with an aspartate substitution at serine 196 (S196D, which mimics serine phosphorylation of this site, exhibited reduced DNA-binding and transcriptional repression from a gene promotor selectively targeted by the N-terminal zinc finger domain. Forced expression of the S196D mutant significantly reduced EVI1 mediated transformation of Rat1 fibroblasts. While EVI1-mediated serial replating of murine haematopoietic progenitors was maintained by EVI1-S196D, this was associated with significantly higher Evi1-trancript levels compared with WT-EVI1 or EVI1-S196A, mimicking S196 non-phosphorylated EVI1. These data suggest that EVI1 function is modulated by phosphorylation of the first zinc finger domain.

  9. Cytotoxicity of VEGF121/rGel on vascular endothelial cells resulting in inhibition of angiogenesis is mediated via VEGFR-2

    Directory of Open Access Journals (Sweden)

    Hittelman Walter N

    2011-08-01

    Full Text Available Abstract Background The fusion protein VEGF121/rGel composed of the growth factor VEGF121 and the plant toxin gelonin targets the tumor neovasculature and exerts impressive anti-vascular effects. We have previously shown that VEGF121/rGel is cytotoxic to endothelial cells overexpressing VEGFR-2 but not to endothelial cells overexpressing VEGFR-1. In this study, we examined the basis for the specific toxicity of this construct and assessed its intracellular effects in vitro and in vivo. Methods We investigated the binding, cytotoxicity and internalization profile of VEGF121/rGel on endothelial cells expressing VEGFR-1 or VEGFR-2, identified its effects on angiogenesis models in vitro and ex vivo, and explored its intracellular effects on a number of molecular pathways using microarray analysis. Results Incubation of PAE/VEGFR-2 and PAE/VEGFR-1 cells with 125I-VEGF121/rGel demonstrated binding specificity that was competed with unlabeled VEGF121/rGel but not with unlabeled gelonin. Assessment of the effect of VEGF121/rGel on blocking tube formation in vitro revealed a 100-fold difference in IC50 levels between PAE/VEGFR-2 (1 nM and PAE/VEGFR-1 (100 nM cells. VEGF121/rGel entered PAE/VEGFR-2 cells within one hour of treatment but was not detected in PAE/VEGFR-1 cells up to 24 hours after treatment. In vascularization studies using chicken chorioallantoic membranes, 1 nM VEGF121/rGel completely inhibited bFGF-stimulated neovascular growth. The cytotoxic effects of VEGF121/rGel were not apoptotic since treated cells were TUNEL-negative with no evidence of PARP cleavage or alteration in the protein levels of select apoptotic markers. Microarray analysis of VEGF121/rGel-treated HUVECs revealed the upregulation of a unique "fingerprint" profile of 22 genes that control cell adhesion, apoptosis, transcription regulation, chemotaxis, and inflammatory response. Conclusions Taken together, these data confirm the selectivity of VEGF121/rGel for VEGFR-2

  10. STATE TRANSITION7-Dependent Phosphorylation Is Modulated by Changing Environmental Conditions, and Its Absence Triggers Remodeling of Photosynthetic Protein Complexes.

    Science.gov (United States)

    Bergner, Sonja Verena; Scholz, Martin; Trompelt, Kerstin; Barth, Johannes; Gäbelein, Philipp; Steinbeck, Janina; Xue, Huidan; Clowez, Sophie; Fucile, Geoffrey; Goldschmidt-Clermont, Michel; Fufezan, Christian; Hippler, Michael

    2015-06-01

    In plants and algae, the serine/threonine kinase STN7/STT7, orthologous protein kinases in Chlamydomonas reinhardtii and Arabidopsis (Arabidopsis thaliana), respectively, is an important regulator in acclimation to changing light environments. In this work, we assessed STT7-dependent protein phosphorylation under high light in C. reinhardtii, known to fully induce the expression of light-harvesting complex stress-related protein3 (LHCSR3) and a nonphotochemical quenching mechanism, in relationship to anoxia where the activity of cyclic electron flow is stimulated. Our quantitative proteomics data revealed numerous unique STT7 protein substrates and STT7-dependent protein phosphorylation variations that were reliant on the environmental condition. These results indicate that STT7-dependent phosphorylation is modulated by the environment and point to an intricate chloroplast phosphorylation network responding in a highly sensitive and dynamic manner to environmental cues and alterations in kinase function. Functionally, the absence of the STT7 kinase triggered changes in protein expression and photoinhibition of photosystem I (PSI) and resulted in the remodeling of photosynthetic complexes. This remodeling initiated a pronounced association of LHCSR3 with PSI-light harvesting complex I (LHCI)-ferredoxin-NADPH oxidoreductase supercomplexes. Lack of STT7 kinase strongly diminished PSII-LHCII supercomplexes, while PSII core complex phosphorylation and accumulation were significantly enhanced. In conclusion, our study provides strong evidence that the regulation of protein phosphorylation is critical for driving successful acclimation to high light and anoxic growth environments and gives new insights into acclimation strategies to these environmental conditions. © 2015 American Society of Plant Biologists. All Rights Reserved.

  11. A tyrosine phosphorylation switch controls the interaction between the transmembrane modulator protein Wzd and the tyrosine kinase Wze of Lactobacillus rhamnosus.

    Science.gov (United States)

    Kang, Hye-Ji; Gilbert, Christophe; Badeaux, Frédérique; Atlan, Danièle; LaPointe, Gisèle

    2015-02-21

    One proposed mechanism for assembly of secreted heteropolysaccharides by many Gram positive bacteria relies on the coordinated action of a polymerization complex through reversible phosphorylation events. The role of the tyrosine protein kinase transmembrane modulator is, however, not well understood. The protein sequences deduced from the wzb, wzd and wze genes from Lactobacillus rhamnosus ATCC 9595 and RW-9595 M contain motifs also found in corresponding proteins CpsB, CpsC and CpsD from Streptococcus pneumoniae D39 (serotype 2). Use of an anti-phosphotyrosine antibody demonstrated that both Wzd and Wze can be found in tyrosine phosphorylated form. When tyrosine 266 was mutated to phenylalanine, WzdY266F showed slightly less phosphorylated protein than those produced by using eight other tyrosine mutated Wzd genes, when expressed along with Wze and Wzb in Lactococcus lactis subsp. cremoris MG1363. In order to demonstrate the importance of ATP for the interactions among these proteins, native and fusion Wzb, Wzd and Wze proteins were expressed and purified from Escherichia coli cultures. The modulator protein, Wzd, binds with the phosphotyrosine kinase Wze, irrespective of its phosphorylation status. However, Wze attained a higher phosphorylation level after interacting with phosphorylated Wzd in the presence of 10 mM ATP. This highly phosphorylated Wze did not remain in close association with phosphorylated Wzd. The Wze tyrosine kinase protein of Lactobacillus rhamnosus thus carries out tyrosine phosphorylation of Wzd in addition to auto- and trans- phosphorylation of the kinase itself.

  12. Adenosine A₂A receptors in striatal glutamatergic terminals and GABAergic neurons oppositely modulate psychostimulant action and DARPP-32 phosphorylation.

    Directory of Open Access Journals (Sweden)

    Hai-Ying Shen

    Full Text Available Adenosine A2A receptors (A2AR are located postsynaptically in striatopallidal GABAergic neurons, antagonizing dopamine D2 receptor functions, and are also located presynaptically at corticostriatal terminals, facilitating glutamate release. To address the hypothesis that these two A2AR populations differently control the action of psychostimulants, we characterized A2AR modulation of cocaine-induced effects at the level of DARPP-32 phosphorylation at Thr-34 and Thr-75, c-Fos expression, and psychomotor activity using two lines of cell-type selective A2AR knockout (KO mice with selective A2AR deletion in GABAergic neurons (striatum-A2AR-KO mice, or with A2AR deletion in both striatal GABAergic neurons and projecting cortical glutamatergic neurons (forebrain-A2AR-KO mice. We demonstrated that striatum-A2AR KO mice lacked A2ARs exclusively in striatal GABAergic terminals whereas forebrain-A2AR KO mice lacked A2ARs in both striatal GABAergic and glutamatergic terminals leading to a blunted A2AR-mediated facilitation of synaptosomal glutamate release. The inactivation of A2ARs in GABAergic neurons reduced striatal DARPP-32 phosphorylation at Thr-34 and increased its phosphorylation at Thr-75. Conversely, the additional deletion of corticostriatal glutamatergic A2ARs produced opposite effects on DARPP-32 phosphorylation at Thr-34 and Thr-75. This distinct modulation of DARPP-32 phosphorylation was associated with opposite responses to cocaine-induced striatal c-Fos expression and psychomotor activity in striatum-A2AR KO (enhanced and forebrain-A2AR KO mice (reduced. Thus, A2ARs in glutamatergic corticostriatal terminals and in GABAergic striatal neurons modulate the action of psychostimulants and DARPP-32 phosphorylation in opposite ways. We conclude that A2ARs in glutamatergic terminals prominently control the action of psychostimulants and define a novel mechanism by which A2ARs fine-tune striatal activity by integrating GABAergic, dopaminergic and

  13. Decreased expression of CHIP leads to increased angiogenesis via VEGF-VEGFR2 pathway and poor prognosis in human renal cell carcinoma.

    Science.gov (United States)

    Sun, Chao; Li, Hai-long; Chen, Hai-rong; Shi, Mei-lin; Liu, Qing-hua; Pan, Zhen-qiang; Bai, Jin; Zheng, Jun-nian

    2015-05-29

    CHIP (c-terminal Hsp70-interacting protein) is an E3 ligase which may play different roles in different cancers. The elucidation of the VHL-HIF-1α (hypoxia inducible factor-1α)-VEGF (vascular endothelial growth factor) pathway has led to the development of targeted therapy in renal cell carcinoma (RCC). However, little is known about the role of CHIP and the relationship between CHIP and VEGF-VEGFR2 (VEGF receptor 2) pathway in RCC. In this study, we found that the expression of CHIP was downregulated and significantly correlated with pT status (P = 0.022) and TNM stage (P = 0.022) in 304 RCC and 35 normal renal tissues using tissue microarray. Moreover, low expression of CHIP is a strong and independent negative prognostic value for RCC. In vitro, CHIP negatively regulated RCC cell migration, invasion and angiogenesis. In addition, ELISA tests showed that restoration of CHIP inhibited, while knockdown promoted, the secreted level of VEGF. Furthermore, western blot indicated that the VEGFR2 protein level was reduced after CHIP overexpression. Our findings demonstrate for the first time that CHIP may be involved in RCC angiogenesis through regulating VEGF secretion and expression of VEGFR2. CHIP may serve as promising prognostic biomarker of angiogenesis and may constitute a potential therapeutic target in RCC.

  14. Squamocin modulates histone H3 phosphorylation levels and induces G1 phase arrest and apoptosis in cancer cells

    Directory of Open Access Journals (Sweden)

    Wu Yang-Chang

    2011-02-01

    Full Text Available Abstract Background Histone modifications in tumorigenesis are increasingly recognized as important epigenetic factors leading to cancer. Increased phosphorylation levels of histone H3 as a result of aurora B and pMSK1 overexpression were observed in various tumors. We selected aurora B and MSK1 as representatives for testing various compounds and drugs, and found that squamocin, a bis-tetrahydrofuran annonaceous acetogenin, exerted a potent effect on histone H3 phosphorylation. Methods GBM8401, Huh-7, and SW620 cells were incubated with 15, 30, and 60 μM squamocin for 24 h. The expressions of mRNA and proteins were analyzed by qRT-PCR and Western blotting, respectively. The cell viability was determined by an MTT assay. Cell cycle distribution and apoptotic cells were analyzed by flow cytometry. Results Our results showed that squamocin inhibited the proliferation of GBM8401, Huh-7, and SW620 cells, arrested the cell cycle at the G1 phase, and activated both intrinsic and extrinsic pathways to apoptosis. In addition, we demonstrated that squamocin had the ability to modulate the phosphorylation levels of H3S10 (H3S10p and H3S28 (H3S28p in association with the downregulation of aurora B and pMSK1 expressions. Conclusions This study is the first to show that squamocin affects epigenetic alterations by modulating histone H3 phosphorylation at S10 and S28, providing a novel view of the antitumor mechanism of squamocin.

  15. In vivo modulation of epidermal growth factor receptor phosphorylation in mice expressing different gangliosides.

    Science.gov (United States)

    Daniotti, Jose L; Crespo, Pilar M; Yamashita, Tadashi

    2006-12-01

    We studied in this work the in vivo phosphorylation of the epidermal growth factor receptor (EGFr) in skin from knockout mice lacking different ganglioside glycosyltransferases. Results show an enhancement of EGFr phosphorylation, after EGF stimulation, in skin from Sial-T2 knockout and Sial-T2/GalNAc-T double knockout mice as compared with wild-type and Sial-T1 knockout mice. Qualitative analysis of ganglioside composition in mice skin suggest that the increase of EGFr phosphorylation observed in skin from Sial-T2 knockout and Sial-T2/GalNAc-T double knockout mice in response to EGF might not be primary attributed to the expression of GD3 or a-series gangliosides in mice skin. These studies provide, for the first time, an approach for studying the molecular mechanisms involved in the in vivo regulation of EGFr function by gangliosides.

  16. Nik-related kinase regulates trophoblast proliferation and placental development by modulating AKT phosphorylation

    Science.gov (United States)

    Morioka, Yuka; Nam, Jin-Min; Ohashi, Takashi

    2017-01-01

    Nik-related kinase (Nrk) is a Ser/Thr kinase and was initially discovered as a molecule that was predominantly detected in skeletal muscles during development. A recent study using Nrk-null mice suggested the importance of Nrk in proper placental development; however, the molecular mechanism remains unknown. In this study, we demonstrated that differentiated trophoblasts from murine embryonic stem cells (ESCs) endogenously expressed Nrk and that Nrk disruption led to the enhanced proliferation of differentiated trophoblasts. This phenomenon may reflect the overproliferation of trophoblasts that has been reported in enlarged placentas of Nrk-null mice. Furthermore, we demonstrated that AKT phosphorylation at Ser473 was upregulated in Nrk-null trophoblasts and that inhibition of AKT phosphorylation cancelled the enhanced proliferation observed in differentiated Nrk-null trophoblasts. These results indicated that the upregulation of AKT phosphorylation was the possible cause of enhanced proliferation observed in Nrk-null trophoblasts. The upregulation of AKT phosphorylation was also confirmed in enlarged Nrk-null placentas in vivo, suggesting that proper regulation of AKT by Nrk was important for normal placental development. In addition, our detailed analysis on phosphorylation status of AKT isoforms in newly established trophoblast stem cells (TSCs) revealed that different levels of upregulation of AKT phosphorylation were occurred in Nrk-null TSCs depending on AKT isoforms. These results further support the importance of Nrk in proper development of trophoblast lineage cells and indicate the possible application of TSCs for the analysis of differently regulated activation mechanisms of AKT isoforms. PMID:28152035

  17. Modulating uranium binding affinity in engineered calmodulin EF-hand peptides: effect of phosphorylation.

    Directory of Open Access Journals (Sweden)

    Romain Pardoux

    Full Text Available To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T(9TKE(12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K(d = 25±6 nM to K(d = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (K(d = 0.25±0.06 nM. FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν(as(P-O and ν(s(P-O IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν(as(UO(2(2+ vibration (from 923 cm(-1 to 908 cm(-1 was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH.

  18. Modulating Uranium Binding Affinity in Engineered Calmodulin EF-Hand Peptides: Effect of Phosphorylation

    Science.gov (United States)

    Pardoux, Romain; Sauge-Merle, Sandrine; Lemaire, David; Delangle, Pascale; Guilloreau, Luc; Adriano, Jean-Marc; Berthomieu, Catherine

    2012-01-01

    To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T9TKE12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from Kd = 25±6 nM to Kd = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (Kd = 0.25±0.06 nM). FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the νas(P-O) and νs(P-O) IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in νas(UO2)2+ vibration (from 923 cm−1 to 908 cm−1) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH. PMID:22870263

  19. Expression of CYR61, CTGF, VEGF-C, VEGFR-2 mRNA in Bone Marrow of Leukemia Patients and Its Clinical Significance%白血病患者骨髓CYR61、CTGF、VEGF-C、VEGFR-2mRNA的表达及其临床意义

    Institute of Scientific and Technical Information of China (English)

    徐宁; 李静; 李喆; 李志芹; 韩海燕; 贺其图; 卢燕; 韩轩茂; 马宏杰; 张冬霞; 刘学文; 袁晓俊; 贾国荣

    2011-01-01

    The study was aimed to detect the levels of CYR61, CTGF, VEGF-C, VEGFR-2 mRNA in bone marrow (BM) of leukemia patients and investigate the interaction of CYR61, CTGF, VEGF-C, VEGFR-2 protiens in occurrence, development, infiltration and metastasis of leukemia and its clinical significance, to find a new tumor marker for diagnosis and treatment of leukemia with some new directions. 74 patients with leukemia were enrolled in this study, 38 out of them were males and 36 were females, aged from 6 to 77 years old with the median age of 45 years old. In the control group, 7 males and 5 females, aged from 16 to 78 years old with the median age of 46. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) was used to detect the levels of CYR61, CTGF, VEGF-C, VEGFR-2 mRNA. The results showed that the levels of CYR61, CTGF, VEGF-C, VEGFR-2 mRNA in BM of newly diagnosed patients with acute and chronic leukemia of each group were significantly higher as compared with the control group (p < 0.05). The levels of CYR61, CTGF mRNA in acute leukemia remission group were significantly higher than those in control group (p = 0.039, 0.025). The level of CTGF mRNA was highest in B-ALL group, and was higher than that in AML, CML, CLL, T-ALL groups (p =0. 002, 0. 034, 0. 002, 0. 010). In AML group, mRNA expressions of CYR61 and CTGF, CYR61 and VEGF-C, CTGF and VEGFR-2 were positively correlated (r =0. 452, 0. 466, 0. 464; p = 0.045, 0.038, 0.039), and in CML group mRNA expression of CYR61 and VEGF-C was positively correlated (r =0.882,p =0.000). The expression levels of VEGF-C, VEGFR-2 mRNA in acute leukemia patients with extramedullary infiltration were higher than those in acute leukemia patients without extramedullary infiltration (p =0. 028, 0. 047). VEGF-C mRNA expression and the original cell counts in AML group were positively correlated ( r = 0. 418, p = 0. 034). It is concluded that CYR61, CTGF, VEGF-C and VEGFR-2 interact each other in the pathogenesis of

  20. Human Cystathionine-β-Synthase Phosphorylation on Serine227 Modulates Hydrogen Sulfide Production in Human Urothelium.

    Directory of Open Access Journals (Sweden)

    Roberta d'Emmanuele di Villa Bianca

    Full Text Available Urothelium, the epithelial lining the inner surface of human bladder, plays a key role in bladder physiology and pathology. It responds to chemical, mechanical and thermal stimuli by releasing several factors and mediators. Recently it has been shown that hydrogen sulfide contributes to human bladder homeostasis. Hydrogen sulfide is mainly produced in human bladder by the action of cystathionine-β-synthase. Here, we demonstrate that human cystathionine-β-synthase activity is regulated in a cGMP/PKG-dependent manner through phosphorylation at serine 227. Incubation of human urothelium or T24 cell line with 8-Bromo-cyclic-guanosine monophosphate (8-Br-cGMP but not dibutyryl-cyclic-adenosine monophosphate (d-cAMP causes an increase in hydrogen sulfide production. This result is congruous with the finding that PKG is robustly expressed but PKA only weakly present in human urothelium as well as in T24 cells. The cGMP/PKG-dependent phosphorylation elicited by 8-Br-cGMP is selectively reverted by KT5823, a specific PKG inhibitor. Moreover, the silencing of cystathionine-β-synthase in T24 cells leads to a marked decrease in hydrogen sulfide production either in basal condition or following 8-Br-cGMP challenge. In order to identify the phosphorylation site, recombinant mutant proteins of cystathionine-β-synthase in which Ser32, Ser227 or Ser525 was mutated in Ala were generated. The Ser227Ala mutant cystathionine-β-synthase shows a notable reduction in basal biosynthesis of hydrogen sulfide becoming unresponsive to the 8-Br-cGMP challenge. A specific antibody that recognizes the phosphorylated form of cystathionine-β-synthase has been produced and validated by using T24 cells and human urothelium. In conclusion, human cystathionine-β-synthase can be phosphorylated in a PKG-dependent manner at Ser227 leading to an increased catalytic activity.

  1. Serine Phosphorylation of SLP76 Is Dispensable for T Cell Development but Modulates Helper T Cell Function

    Science.gov (United States)

    Navas, Victor H.; Cuche, Céline; Alcover, Andres

    2017-01-01

    The adapter protein SLP76 is a key orchestrator of T cell receptor (TCR) signal transduction. We previously identified a negative feedback loop that modulates T cell activation, involving phosphorylation of Ser376 of SLP76 by the hematopoietic progenitor kinase 1 (HPK1). However, the physiological relevance of this regulatory mechanism was still unknown. To address this question, we generated a SLP76-S376A-expressing knock-in mouse strain and investigated the effects of Ser376 mutation on T cell development and function. We report here that SLP76-S376A-expressing mice exhibit normal thymocyte development and no detectable phenotypic alterations in mature T cell subsets or other lymphoid and myeloid cell lineages. Biochemical analyses revealed that mutant T cells were hypersensitive to TCR stimulation. Indeed, phosphorylation of several signaling proteins, including SLP76 itself, phospholipase Cγ1 and the protein kinases AKT and ERK1/2, was increased. These modifications correlated with increased Th1-type and decreased Th2-type cytokine production by SLP76-S376A T cells, but did not result in significant changes of proliferative capacity nor activation-induced cell death susceptibility. Hence, our results reveal that SLP76-Ser376 phosphorylation does not mediate all HPK1-dependent regulatory effects in T cells but it fine-tunes helper T cell responses. PMID:28107427

  2. Phosphorylation modulates clearance of alpha-synuclein inclusions in a yeast model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Sandra Tenreiro

    2014-05-01

    Full Text Available Alpha-synuclein (aSyn is the main component of proteinaceous inclusions known as Lewy bodies (LBs, the typical pathological hallmark of Parkinson's disease (PD and other synucleinopathies. Although aSyn is phosphorylated at low levels under physiological conditions, it is estimated that ∼ 90% of aSyn in LBs is phosphorylated at S129 (pS129. Nevertheless, the significance of pS129 in the biology of aSyn and in PD pathogenesis is still controversial. Here, we harnessed the power of budding yeast in order to assess the implications of phosphorylation on aSyn cytotoxicity, aggregation and sub-cellular distribution. We found that aSyn is phosphorylated on S129 by endogenous kinases. Interestingly, phosphorylation reduced aSyn toxicity and the percentage of cells with cytosolic inclusions, in comparison to cells expressing mutant forms of aSyn (S129A or S129G that mimic the unphosphorylated form of aSyn. Using high-resolution 4D imaging and fluorescence recovery after photobleaching (FRAP in live cells, we compared the dynamics of WT and S129A mutant aSyn. While WT aSyn inclusions were very homogeneous, inclusions formed by S129A aSyn were larger and showed FRAP heterogeneity. Upon blockade of aSyn expression, cells were able to clear the inclusions formed by WT aSyn. However, this process was much slower for the inclusions formed by S129A aSyn. Interestingly, whereas the accumulation of WT aSyn led to a marked induction of autophagy, cells expressing the S129A mutant failed to activate this protein quality control pathway. The finding that the phosphorylation state of aSyn on S129 can alter the ability of cells to clear aSyn inclusions provides important insight into the role that this posttranslational modification may have in the pathogenesis of PD and other synucleinopathies, opening novel avenues for investigating the molecular basis of these disorders and for the development of therapeutic strategies.

  3. Minimally invasive colon resection for malignant colonic conditions is associated with a transient early increase in plasma sVEGFR1 and a decrease in sVEGFR2 levels after surgery.

    Science.gov (United States)

    Shantha Kumara, H M C; Cabot, J C; Hoffman, A; Luchtefeld, M; Kalady, M F; Hyman, N; Feingold, D; Baxter, R; Whelan, R L

    2010-02-01

    Plasma VEGF levels increase after minimally invasive colorectal resection (MICR) and remain elevated for 2-4 weeks. VEGF induces physiologic and pathologic angiogenesis by binding to endothelial cell (EC) bound VEGF-Receptor-1 (VEGFR1) and VEGFR2. Soluble forms of these receptors sequester plasma VEGF, decreasing the amount available to bind to EC-bound receptors. Ramifications of surgery-related plasma VEGF changes partially depend on plasma levels of sVEGFR1 and sVEGFR2. This study assessed perioperative sVEGFR1 and sVEGFR2 levels after MICR in patients with colorectal cancer. Forty-five patients were studied; blood samples were taken from all patients preoperatively (preop) and on postoperative days (POD) 1 and 3; in most a fourth sample was drawn between POD 7-30. Late samples were bundled into two time points: POD 7-13 and POD 14-30. sVEGFR1 and sVEGFR2 levels were measured via ELISA. sVEGFR2 data are reported as mean +/- SD and were assessed with the paired samples t test. sVEGFR1 data were not normally distributed. They are reported as median and 95% confidence interval (CI) and were assessed with the Wilcoxon signed-Rank test (p MICR; sVEGFR2 changes dominate due to their much larger magnitude. The net result is less plasma VEGF bound by soluble receptors and more plasma VEGF available to bind to ECs early after surgery.

  4. Differential roles of regulatory light chain and myosin binding protein-C phosphorylations in the modulation of cardiac force development

    Energy Technology Data Exchange (ETDEWEB)

    Colson, Brett A.; Locher, Matthew R.; Bekyarova, Tanya; Patel, Jitandrakumar R.; Fitzsimons, Daniel P.; Irving, Thomas C.; Moss, Richard L. (IIT); (UW-MED)

    2010-05-25

    Phosphorylation of myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) and myosin binding protein-C (cMyBP-C) by protein kinase A (PKA) independently accelerate the kinetics of force development in ventricular myocardium. However, while MLCK treatment has been shown to increase the Ca{sup 2+} sensitivity of force (pCa{sub 50}), PKA treatment has been shown to decrease pCa{sub 50}, presumably due to cardiac troponin I phosphorylation. Further, MLCK treatment increases Ca{sup 2+}-independent force and maximum Ca{sup 2+}-activated force, whereas PKA treatment has no effect on either force. To investigate the structural basis underlying the kinase-specific differential effects on steady-state force, we used synchrotron low-angle X-ray diffraction to compare equatorial intensity ratios (I{sub 1,1}/I{sub 1,0}) to assess the proximity of myosin cross-bridge mass relative to actin and to compare lattice spacings (d{sub 1,0}) to assess the inter-thick filament spacing in skinned myocardium following treatment with either MLCK or PKA. As we showed previously, PKA phosphorylation of cMyBP-C increases I{sub 1,1}/I{sub 1,0} and, as hypothesized, treatment with MLCK also increased I{sub 1,1}/I{sub 1,0}, which can explain the accelerated rates of force development during activation. Importantly, interfilament spacing was reduced by {approx}2 nm ({Delta} 3.5%) with MLCK treatment, but did not change with PKA treatment. Thus, RLC or cMyBP-C phosphorylation increases the proximity of cross-bridges to actin, but only RLC phosphorylation affects lattice spacing, which suggests that RLC and cMyBP-C modulate the kinetics of force development by similar structural mechanisms; however, the effect of RLC phosphorylation to increase the Ca{sup 2+} sensitivity of force is mediated by a distinct mechanism, most probably involving changes in interfilament spacing.

  5. Rat vas deferens SERCA2 is modulated by Ca{sup 2+}/calmodulin protein kinase II-mediated phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.B.R.; Muzi-Filho, H. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Valverde, R.H.F. [Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Quintas, L.E.M. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Noel, F. [Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Einicker-Lamas, M. [Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ (Brazil); Cunha, V.M.N. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil)

    2013-03-19

    Ca{sup 2+} pumps are important players in smooth muscle contraction. Nevertheless, little information is available about these pumps in the vas deferens. We have determined which subtype of sarco(endo)plasmic reticulum Ca{sup 2+}-ATPase isoform (SERCA) is expressed in rat vas deferens (RVD) and its modulation by calmodulin (CaM)-dependent mechanisms. The thapsigargin-sensitive Ca{sup 2+}-ATPase from a membrane fraction containing the highest SERCA levels in the RVD homogenate has the same molecular mass (∼115 kDa) as that of SERCA2 from the rat cerebellum. It has a very high affinity for Ca{sup 2+} (Ca{sub 0.5} = 780 nM) and a low sensitivity to vanadate (IC{sub 50} = 41 µM). These facts indicate that SERCA2 is present in the RVD. Immunoblotting for CaM and Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) showed the expression of these two regulatory proteins. Ca{sup 2+} and CaM increased serine-phosphorylated residues of the 115-kDa protein, indicating the involvement of CaMKII in the regulatory phosphorylation of SERCA2. Phosphorylation is accompanied by an 8-fold increase of thapsigargin-sensitive Ca{sup 2+} accumulation in the lumen of vesicles derived from these membranes. These data establish that SERCA2 in the RVD is modulated by Ca{sup 2+} and CaM, possibly via CaMKII, in a process that results in stimulation of Ca{sup 2+} pumping activity.

  6. Phase II study evaluating 2 dosing schedules of oral foretinib (GSK1363089, cMET/VEGFR2 inhibitor, in patients with metastatic gastric cancer.

    Directory of Open Access Journals (Sweden)

    Manish A Shah

    Full Text Available PURPOSE: The receptors for hepatocyte and vascular endothelial cell growth factors (MET and VEGFR2, respectively are critical oncogenic mediators in gastric adenocarcinoma. The purpose is to examine the safety and efficacy of foretinib, an oral multikinase inhibitor targeting MET, RON, AXL, TIE-2, and VEGFR2 receptors, for the treatment of metastatic gastric adenocarcinoma. PATIENTS AND METHODS: Foretinib safety and tolerability, and objective response rate (ORR were evaluated in patients using intermittent (240 mg/day, for 5 days every 2 weeks or daily (80 mg/day dosing schedules. Thirty evaluable patients were required to achieve alpha = 0.10 and beta = 0.2 to test the alternative hypothesis that single-agent foretinib would result in an ORR of ≥ 25%. Up to 10 additional patients could be enrolled to ensure at least eight with MET amplification. Correlative studies included tumor MET amplification, MET signaling, pharmacokinetics and plasma biomarkers of foretinib activity. RESULTS: From March 2007 until October 2009, 74 patients were enrolled; 74% male; median age, 61 years (range, 25-88; 93% had received prior therapy. Best response was stable disease (SD in 10 (23% patients receiving intermittent dosing and five (20% receiving daily dosing; SD duration was 1.9-7.2 months (median 3.2 months. Of 67 patients with tumor samples, 3 had MET amplification, one of whom had SD. Treatment-related adverse events occurred in 91% of patients. Rates of hypertension (35% vs. 15% and elevated aspartate aminotransferase (23% vs. 8% were higher with intermittent dosing. In both patients with high baseline tumor phospho-MET (pMET, the pMET:total MET protein ratio decreased with foretinib treatment. CONCLUSION: These results indicate that few gastric carcinomas are driven solely by MET and VEGFR2, and underscore the diverse molecular oncogenesis of this disease. Despite evidence of MET inhibition by foretinib, single-agent foretinib lacked efficacy in

  7. CD147 promotes liver fibrosis progression via VEGF-A/VEGFR2 signalling-mediated cross-talk between hepatocytes and sinusoidal endothelial cells.

    Science.gov (United States)

    Yan, Zhaoyong; Qu, Kai; Zhang, Jing; Huang, Qichao; Qu, Ping; Xu, Xinsen; Yuan, Peng; Huang, Xiaojun; Shao, Yongping; Liu, Chang; Zhang, Hongxin; Xing, Jinliang

    2015-10-01

    Although previous evidence indicates close involvement of CD147 in the pathogenesis of liver fibrosis, the underlying molecular mechanisms and its therapeutic value remain largely unknown. In the present study, we investigated the biological roles of CD147 in liver fibrosis and assessed its therapeutic value as a target molecule in the CCl4-induced liver fibrosis mouse model. We found that CD147 was highly expressed in both hepatocytes and SECs (sinusoidal endothelial cells) in fibrotic liver tissues. Additionally, it was significantly associated with the fibrosis stage. TGF-β1 (transforming growth factor β1) was found to be mainly responsible for the up-regulation of CD147. Bioinformatic and experimental data suggest a functional link between CD147 expression and VEGF-A (vascular endothelial growth factor A)/VEGR-2 (VEGF receptor 2) signalling-mediated angiogenesis in fibrotic liver tissues. Furthermore, we observed that the CD147-induced activation of the PI3K (phosphoinositide 3-kinase)/Akt signalling pathway promotes the production of VEGF-A in hepatocytes and expression of VEGFR-2 in SECs, which was found to enhance the angiogenic capability of SECs. Finally, our data indicate that blocking of CD147 using an mAb (monoclonal antibody) attenuated liver fibrosis progression via inhibition of VEGF-A/VEGFR-2 signalling and subsequent amelioration of microvascular abnormality in the CCl4-induced mouse model. Our findings suggest a novel functional mechanism that CD147 may promote liver fibrosis progression via inducing the VEGF-A/VEGFR-2 signalling pathway-mediated cross-talk between hepatocytes and SECs. New strategies based on the intervention of CD147 can be expected for prevention of liver fibrosis.

  8. Fragment-based discovery of a dual pan-RET/VEGFR2 kinase inhibitor optimized for single-agent polypharmacology1

    OpenAIRE

    Frett, Brendan; Carlomagno, Francesca; Moccia, Maria Luisa; Brescia, Annalisa; Federico, Giorgia; De Falco, Valentina; Admire, Brittany; Chen, Zhongzhu; Qi, Wenqing; Santoro, Massimo; Li, Hong-yu

    2015-01-01

    Oncogenic conversion of the RET (rearranged during transfection) tyrosine kinase is associated with several cancers. A fragment-based chemical screen lead to the identification of a novel RET inhibitor, Pz-1. Modeling and kinetic analysis identified Pz-1 as a Type-II tyrosine kinase inhibitor, able to bind the DFG-out conformation of the kinase. Importantly, from a single-agent polypharmacology standpoint, Pz-1 was shown active on VEGFR2, which can block blood supply required for RET-stimulat...

  9. Extracellular Signal-regulated Kinases (ERKs) Phosphorylate Lin28a Protein to Modulate P19 Cell Proliferation and Differentiation.

    Science.gov (United States)

    Liu, Xiangyuan; Chen, Min; Li, Long; Gong, Liyan; Zhou, Hu; Gao, Daming

    2017-03-10

    Lin28a, originally discovered in the nematode Caenorhabditis elegans and highly conserved across species, is a well characterized regulator of let-7 microRNA (miRNA) and is implicated in cell proliferation and pluripotency control. However, little is known about how Lin28a function is modulated at the post-translational level and thereby responds to major signaling pathways. Here we show that Lin28a is directly phosphorylated by ERK1/2 kinases at Ser-200. By editing lin28a gene with the CRISPR/Cas9-based method, we generated P19 mouse embryonic carcinoma stem cells expressing Lin28a-S200A (phospho-deficient) and Lin28a-S200D (phospho-mimetic) mutants, respectively, to study the functional impact of Ser-200 phosphorylation. Lin28a-S200D-expressing cells, but not Lin28a-S200A-expressing or control P19 embryonic carcinoma cells, displayed impaired inhibition of let-7 miRNA and resulted in decreased cyclin D1, whereas Lin28a-S200A knock-in cells expressed less let-7 miRNA, proliferated faster, and exhibited differentiation defect upon retinoic acid induction. Therefore our results support that ERK kinase-mediated Lin28a phosphorylation may be an important mechanism for pluripotent cells to facilitate the escape from the self-renewal cycle and start the differentiation process. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. AATF/Che-1 acts as a phosphorylation-dependent molecular modulator to repress p53-driven apoptosis.

    Science.gov (United States)

    Höpker, Katja; Hagmann, Henning; Khurshid, Safiya; Chen, Shuhua; Hasskamp, Pia; Seeger-Nukpezah, Tamina; Schilberg, Katharina; Heukamp, Lukas; Lamkemeyer, Tobias; Sos, Martin L; Thomas, Roman K; Lowery, Drew; Roels, Frederik; Fischer, Matthias; Liebau, Max C; Resch, Ulrike; Kisner, Tülay; Röther, Fabian; Bartram, Malte P; Müller, Roman Ulrich; Fabretti, Francesca; Kurschat, Peter; Schumacher, Björn; Gaestel, Matthias; Medema, René H; Yaffe, Michael B; Schermer, Bernhard; Reinhardt, H Christian; Benzing, Thomas

    2012-10-17

    Following genotoxic stress, cells activate a complex signalling network to arrest the cell cycle and initiate DNA repair or apoptosis. The tumour suppressor p53 lies at the heart of this DNA damage response. However, it remains incompletely understood, which signalling molecules dictate the choice between these different cellular outcomes. Here, we identify the transcriptional regulator apoptosis-antagonizing transcription factor (AATF)/Che-1 as a critical regulator of the cellular outcome of the p53 response. Upon genotoxic stress, AATF is phosphorylated by the checkpoint kinase MK2. Phosphorylation results in the release of AATF from cytoplasmic MRLC3 and subsequent nuclear translocation where AATF binds to the PUMA, BAX and BAK promoter regions to repress p53-driven expression of these pro-apoptotic genes. In xenograft experiments, mice exhibit a dramatically enhanced response of AATF-depleted tumours following genotoxic chemotherapy with adriamycin. The exogenous expression of a phospho-mimicking AATF point mutant results in marked adriamycin resistance in vivo. Nuclear AATF enrichment appears to be selected for in p53-proficient endometrial cancers. Furthermore, focal copy number gains at the AATF locus in neuroblastoma, which is known to be almost exclusively p53-proficient, correlate with an adverse prognosis and reduced overall survival. These data identify the p38/MK2/AATF signalling module as a critical repressor of p53-driven apoptosis and commend this pathway as a target for DNA damage-sensitizing therapeutic regimens.

  11. Phosphorylation switch modulates the interdigitated pattern of PIN1 localization and cell expansion in Arabidopsis leaf epidermis

    Institute of Scientific and Technical Information of China (English)

    Hongjiang Li; Deshu Lin; Pankaj Dhonukshe; Shingo Nagawa; Dandan Chen; Ji(r)í Friml; Ben Scheres; Hongwei Guo; Zhenbiao Yang

    2011-01-01

    Within a multicellular tissue cells may coordinately form a singular or multiple polar axes,but it is unclear whether a common mechanism governs different types of polar axis formation. The phosphorylation status of PIN proteins,which is directly affected by the PINOID (PID) protein kinase and the PP2A protein phosphatase,is known to regulate the apical-basal polarity of PIN localization in bipolar cells of roots and shoot apices. Here,we provide evidence that the phosphorylation status-mediated PIN polarity switch is widely used to modulate cellular processes in Arabidopsis including multipolar pavement cells (PC) with interdigitated lobes and indentations. The degree of PC interdigitation was greatly reduced either when the FYPP1 gene,which encodes a PP2A called phytochromeassociated serine/threonine protein phosphatase,was knocked out or when the PID gene was overexpressed (35S::PID).These genetic modifications caused PIN1 localization to switch from lobe to indentation regions. The PP2A and PID mediated switching of PIN1 localization is strikingly similar to their regulation of the apical-basal polarity switch of PIN proteins in other cells. Our findings suggest a common mechanism for the regulation of PIN1 polarity formation,a fundamental cellular process that is crucial for pattern formation both at the tissue/organ and cellular levels.

  12. Spinal D1-like dopamine receptors modulate NMDA receptor-induced hyperexcitability and NR1 subunit phosphorylation at serine 889.

    Science.gov (United States)

    Aira, Zigor; Barrenetxea, Teresa; Buesa, Itsaso; Martínez, Endika; Azkue, Jon Jatsu

    2016-04-01

    Activation of the N-methyl-d-aspartate receptor (NMDAR) in dorsal horn neurons is recognized as a fundamental mechanism of central sensitization and pathologic pain. This study assessed the influence of dopaminergic, D1-like receptor-mediated input to the spinal dorsal horn on NMDAR function. Spinal superfusion with selective NMDAR agonist cis-ACPD significantly increased C-fiber-evoked field potentials in rats subjected to spinal nerve ligation (SNL), but not in sham-operated rats. Simultaneous application of D1LR antagonist SCH 23390 dramatically reduced hyperexcitability induced by cis-ACPD. Furthermore, cis-ACPD-induced hyperexcitability seen in nerve-ligated rats could be mimicked in unin-jured rats during stimulation of D1LRs by agonist SKF 38393 at subthreshold concentration. Phosphorylation of NMDAR subunit NR1 at serine 889 at postsynaptic sites was found to be increased in dorsal horn neurons 90 min after SNL, as assessed by increased co-localization with postsynaptic marker PSD-95. Increased NR1 phosphorylation was attenuated in the presence of SCH 23390 in the spinal superfusate. The present results support that D1LRs regulate most basic determinants of NMDAR function in dorsal horn neurons, suggesting a potential mechanism whereby dopaminergic input to the dorsal horn can modulate central sensitization and pathologic pain.

  13. 血糖控制良好的2型糖尿病患者血清VEGF-A及其受体VEGFR1和VEGFR2含量检测%A preliminary evaluation of VEGF-A, VEGFR1 and VEGFR2 in patients with well-controlled type 2 diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    Barbara RUSZKOWSKA-CIASTEK; Alina SOKUP; Maciej W.SOCHA; Zofia RUPRECHT; Lidia HAAS; Barbara GRALCZYK; Krzysztof GRALCZYK; Grayna GADOMSKA; Danuta RO

    2014-01-01

      重要结论:研究结果表明,血糖控制良好的2型糖尿病患者血清中的 VEGF-A 及其受体 VEGFR1和VEGFR2的含量和健康志愿者基本一致,两者无统计学意义,这可能显示血糖水平的合理控制能延缓血管并发症的产生。同时,2型糖尿病患者的血清 VEGFR2含量和高密度脂蛋白胆固醇水平之间存在负相关,而血清VEGF-A、VEGFR2含量和甘油三脂水平之间存在正相关,这也表明糖尿病患者的血脂紊乱可能参与了血管生成的调节。

  14. Redox modulation of tyrosine phosphorylation-dependent neutrophil adherence to endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Thibodeau, Paul A. [INSERM U479 Phagocytes et Reponses Inflammatoires, Faculte de Medecine, Universite Paris VII-Denis Diderot, 16, rue Henri Huchard, 75870 Paris, Cedex 18 (France)]. E-mail: pathibodeau@hotmail.com; Gozin, Alexia [INSERM U479 Phagocytes et Reponses Inflammatoires, Faculte de Medecine, Universite Paris VII-Denis Diderot, 16, rue Henri Huchard, 75870 Paris, Cedex 18 (France); Gougerot-Pocidalo, Marie-Anne [INSERM U479 Phagocytes et Reponses Inflammatoires, Faculte de Medecine, Universite Paris VII-Denis Diderot, 16, rue Henri Huchard, 75870 Paris, Cedex 18 (France); Pasquier, Catherine [INSERM U479 Phagocytes et Reponses Inflammatoires, Faculte de Medecine, Universite Paris VII-Denis Diderot, 16, rue Henri Huchard, 75870 Paris, Cedex 18 (France)

    2005-02-01

    Reactive oxygen species (ROS) are now well known to be involved in an increased interaction between neutrophils and endothelial cells. Previously, we have shown that the increased adhesion of neutrophils to ROS-stimulated endothelial cells involves an increase in tyrosine phosphorylation of the focal adhesion kinase, p125{sup FAK}, and several cytoskeleton proteins. This review article focuses on the involvement of adhesion molecules in the increased adhesion of neutrophils to ROS-stimulated endothelial cells, on the oxygen species responsible for this adhesion, and on the intracellular signaling pathway leading to the modification of the cytoskeleton by ROS. The evidence from our laboratory and others describing these events is summarized. Finally, the future perspectives that need to be explored in order to inhibit or reduce the ROS-mediated adhesion of neutrophils to endothelial cells are addressed.

  15. Modulation of FXYD interaction with Na,K-ATPase by anionic phospholipids and protein kinase phosphorylation

    DEFF Research Database (Denmark)

    Cornelius, Flemming; Mahmmoud, Yasser Ahmed

    2007-01-01

    with anionic phospholipids. Specifically, the effects of the cytoplasmic domain of FXYD10, which contains the phosphorylation sites for protein kinases, on the kinetics of the Na,K-ATPase reaction were investigated by a comparison of the reconstituted native enzyme and the enzyme where 23 C-terminal amino...... acids of FXYD10 had been cleaved by mild, controlled trypsin treatment. Several kinetic properties of the Na,K-ATPase reaction cycle as well as the FXYD-regulation of Na,K-ATPase activity were found to be affected by acidic phospholipids like PI, PS, and PG. This takes into consideration the Na+ and K......+ activation, the K+-deocclusion reaction, and the poise of the E1/E2 conformational equilibrium, whereas the ATP activation was unchanged. Anionic phospholipids increased the intermolecular cross-linking between the FXYD10 C-terminus (Cys74) and the Cys254 in the Na,K-ATPase A-domain. However, neither...

  16. Dynamic Lipid-dependent Modulation of Protein Topology by Post-translational Phosphorylation.

    Science.gov (United States)

    Vitrac, Heidi; MacLean, David M; Karlstaedt, Anja; Taegtmeyer, Heinrich; Jayaraman, Vasanthi; Bogdanov, Mikhail; Dowhan, William

    2017-02-03

    Membrane protein topology and folding are governed by structural principles and topogenic signals that are recognized and decoded by the protein insertion and translocation machineries at the time of initial membrane insertion and folding. We previously demonstrated that the lipid environment is also a determinant of initial protein topology, which is dynamically responsive to post-assembly changes in membrane lipid composition. However, the effect on protein topology of post-assembly phosphorylation of amino acids localized within initially cytoplasmically oriented extramembrane domains has never been investigated. Here, we show in a controlled in vitro system that phosphorylation of a membrane protein can trigger a change in topological arrangement. The rate of change occurred on a scale of seconds, comparable with the rates observed upon changes in the protein lipid environment. The rate and extent of topological rearrangement were dependent on the charges of extramembrane domains and the lipid bilayer surface. Using model membranes mimicking the lipid compositions of eukaryotic organelles, we determined that anionic lipids, cholesterol, sphingomyelin, and membrane fluidity play critical roles in these processes. Our results demonstrate how post-translational modifications may influence membrane protein topology in a lipid-dependent manner, both along the organelle trafficking pathway and at their final destination. The results provide further evidence that membrane protein topology is dynamic, integrating for the first time the effect of changes in lipid composition and regulators of cellular processes. The discovery of a new topology regulatory mechanism opens additional avenues for understanding unexplored structure-function relationships and the development of optimized topology prediction tools.

  17. A role for phosphorylated Pol II CTD in modulating transcription coupled histone dynamics.

    Science.gov (United States)

    Spain, Marla M; Govind, Chhabi K

    2011-03-01

    Histone acetylation modulates histone occupancy both at promoters and in coding sequences. Based on our recent observation that HDACs in the budding yeast, Saccharomyces cerevisiae, are co-transcriptionally recruited to coding regions by elongating polymerases, we propose a model in which Pol II facilitates recruitment of chromatin remodeling complexes as well as other factors required for productive elongation.

  18. VEGFR2 Functions As an H2S-Targeting Receptor Protein Kinase with Its Novel Cys1045–Cys1024 Disulfide Bond Serving As a Specific Molecular Switch for Hydrogen Sulfide Actions in Vascular Endothelial Cells

    Science.gov (United States)

    Tao, Bei-Bei; Liu, Shu-Yuan; Zhang, Cai-Cai; Fu, Wei; Cai, Wen-Jie; Wang, Yi; Shen, Qing; Wang, Ming-Jie; Chen, Ying; Zhang, Li-Jia; Zhu, Yi-Zhun

    2013-01-01

    Abstract Aims: The potential receptor for hydrogen sulfide (H2S) remains unknown. Results: H2S could directly activate vascular endothelial growth factor receptor 2 (VEGFR2) and that a small interfering RNA (siRNA)-mediated knockdown of VEGFR2 inhibited H2S-induced migration of human vascular endothelial cells. H2S promoted angiogenesis in Matrigel plug assay in mice and this effect was attenuated by a VEGF receptor inhibitor. Using tandem mass spectrometry (MS), we identified a new disulfide complex located between Cys1045 and Cys1024 within VEGFR2 that was labile to H2S-mediated modification. Kinase activity of the mutant VEGFR2 (C1045A) devoid of the Cys1045–Cys1024 disulfide bond was significantly higher than wild-type VEGFR2. Transfection with vectors expressing VEGFR2 (C1045A) caused a significant increase in cell migration, while the migration-promoting effect of H2S disappeared in the cells transfected with VEGFR2 (C1045A). Therefore, the Cys1045–Cys1024 disulfide bond serves as an intrinsic inhibitory motif and functions as a molecular switch for H2S. The formation of the Cys1045–Cys1024 disulfide bond disrupted the integrity of the active conformation of VEGFR2. Breaking the Cys1045–Cys1024 disulfide bond recovered the active conformation of VEGFR2. This motif was prone to a nucleophilic attack by H2S via an interaction of their frontier molecular orbitals. siRNA-mediated knockdown of cystathionine γ-lyase attenuated migration of vascular endothelial cells induced by VEGF or moderate hypoxia. Innovation and Conclusion: The study provides the first piece of evidence of a molecular switch in H2S-targeting receptor protein kinase in H2S-induced angiogenesis and that may be applicable to additional kinases containing functionally important disulfide bonds in mediating various H2S actions. Antioxid. Redox Signal. 19, 448–464. PMID:23199280

  19. Inhibitory effect of humanized anti-VEGFR-2 ScFv-As2O3-stealth nanoparticles conjugate on growth of human hepatocellular carcinoma:in vitro andin vivo studies

    Institute of Scientific and Technical Information of China (English)

    Xiang-Bao Yin; Lin-Quan Wu; Hua-Qun Fu; Ming-Wen Huang; Kai Wang; Fan Zhou; Xin Yu; Kai-Yang Wang

    2014-01-01

    Objective:To investigate the inhibitory effect of humanized anti-VEGFR-2ScFv-As2O3-stealth nanoparticles conjugate on growth of human hepatocellular carcinoma bothin vitro andin vivo, which may be a potential agents with sensitivity and targeting ability for human hepatocellular cancer.Methods:Humanized anti-VEGFR-2ScFv-As2O3-stealth nanoparticles conjugate was previously constructed using ribosome display technology and antibody conjugate technology. In this combinedin vitro andin vivo study, the inhibitory effects of anti-VEGFR-2ScFv-As2O3-stealth nanoparticles conjugate on tumor growth, invasion, and metastasis was observed with human liver carcinoma cell lineBel7402 and normal cellL02 byMTT assay,Tanswell assay, Hochest33258 staining, andDNA ladder analysis.The anticancer activity and distribution of anti-VEGFR-2ScFv-As2O3-stealth nanoparticles was then verified in a mouse model ofBel7402 xenografts.Results:Anti-VEGFR-2ScFv-As2O3-stealth nanoparticles significantly inhibited the proliferation ofBel7402 in the3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay while had almost no effects onL02 cells.And the apoptosis inducing effects were proved byHochest33258 staining andDNA ladder analysis.Transwell assay found that the drug also inhibited the metastasis ability of tumor cells.Furthermore, anti-VEGFR-2ScFv-As2O3-stealth nanoparticles significantly delayed the growth ofBel7402 xenografts after administration(92.9%), followed byAs2O3-stealth nanoparticles, anti-VEGFR-2ScFv, andAs2O3(61.4%,58.8%,20.5%, P<0.05).The concentration ofAs2O3 in anti-VEGFR-2ScFv-As2O3-stealth nanoparticles group was more selectively.Conclusions:Anti-VEGFR-2ScFv-As2O3-stealth nanoparticles is a potent and selective anti-hepatocellular carcinoma agent which could inhibit the growth of liver cancer as a targeting agent bothin vitro andin vivo and also significantly inhibit angiogenesis.

  20. Fibroblast Growth Factor Receptor 1 (FGFR1), Partly Related to Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) and Microvessel Density, is an Independent Prognostic Factor for Non-Small Cell Lung Cancer

    Science.gov (United States)

    Pu, Dan; Liu, Jiewei; Li, Zhixi; Zhu, Jiang; Hou, Mei

    2017-01-01

    Background This study aimed to explore the correlation between FGFR1 and clinical features, including survival analysis and the promotion of angiogenesis by fibroblast growth factor receptor 1 (FGFR1) and vascular endothelial growth factor receptor 2 (VEGFR2). FGFR1 gene amplification has been found in non-small cell lung cancer (NSCLC). However, the prognostic value of FGFR1 and the correlation between FGFR1 and clinical features are still controversial. Material/Methods A total of 92 patients with NSCLC who underwent R0 resection between July 2006 and July 2008 were enrolled in the study. The expression of FGFR1, VEGFR2, and CD34 was detected by immunohistochemistry. The correlations between the aforementioned markers and the patients’ clinical features were analyzed by the chi-square test. The impact factors of prognosis were evaluated by Cox regression analyses. Results The expression ratios of FGFR1 and VEGFR2 were 26.1% and 43.4%, respectively. The intensity of FGFR1 expression was related to VEGFR2 and histopathology. To some extent, the average microvessel density (MVD) had correlation to the expression of FGFR1 and VGEFR2. The pathological stages III–IV and high expression of FGFR1 were found to be independent prognostic factors. Conclusions The expression intensity of FGFR1 and VEGFR2 was associated with MVD, and the expression of FGFR1 is one of the independent prognostic indicators for NSCLC. PMID:28088809

  1. 基于分子对接研究吲哚咔唑类小分子对Tie-2/VEGFR2的双效抑制作用模式%Studies on Interactions between Tie-2/VEGFR2 and Dihydroindazolocarbazole Dual Inhibitors via Molecular Docking

    Institute of Scientific and Technical Information of China (English)

    田元新; 张贤祚; 安林坤

    2012-01-01

    Dihydroindazolocarbazoles (DHI-carbazoles) are the potent dual inhibitors to VEGFR2 and Tie-2. In this work, the mechanism of interaction between VEGFR2/Tie-2 and DHI-carbazoles was performed with Surflex-dock. The results from molecular docking indicated that DHI-carbazoles competitively bound to the active site, which was the substrate ATP in VEGFR2/Tie-2 with high affinity. The differences of activity between VEGFR2 and Tie-2 resulted from the minor difference of active pockets. Hydro-phobic effect played a key role in the formation and stability. Hydrogen bond and electrostatic effect also contributed to the difference. This work elucidated the antitumor mechanism of the DHI-carbazoles as a dual potent inhibitor and provided theoretical basis for the design of tyrosine kinase inhibitors.%运用分子对接技术研究了吲哚咔唑类小分子对人血管内皮生长因子受体2 (VEGFR2)和人血管生成素受体Tie-2 (ANG-R-Tie-2)的双效抑制作用模式.研究结果表明,吲哚咔唑类小分子的双效抑制作用主要源于两种受体相似的活性口袋,小分子与两者的铰链区均可形成氢键,使其催化活性受到抑制,从而抑制肿瘤细胞的生长.抑制活性的差异主要源于活性口袋的细微差异所导致疏水、静电等相互作用的不同.其中,疏水作用的差异是影响配体选择性的主要原因,静电作用、氢键及空间位阻对结合稳定也有一定影响.该文的研究结果为多靶点酪氨酸激酶小分子抑制剂的设计及提高激酶抑制剂的选择性提供了重要的理论依据.

  2. VEGFR-2嵌合Fab抗体对裸鼠肝癌原位移植瘤的治疗作用%Therapeutical effect of chimeric anti-VEGFR-2 Fab antibody on orthotopic xenograft of hepatocellular carcinoma in BALB/c nude mice

    Institute of Scientific and Technical Information of China (English)

    李倩君; 潘峰; 王丙剑; 朱进; 张建民; 吴亚夫; 周传文

    2013-01-01

    目的 检测抗血管内皮生长因子受体2 (VEGFR-2)嵌合Fab抗体对裸鼠肝癌原位移植瘤的治疗作用.方法 40只4周龄雄性BALB/c裸鼠建立肝癌H22细胞移植瘤模型后随机均分为Fab抗体(A)组和生理盐水对照(B)组.比较两组裸鼠生存时间、移植瘤病理变化及微血管密度(MVD).结果 成功建立裸鼠H22肝癌原位移植瘤模型,HE染色显示肝细胞肝癌.A组裸鼠中位数生存时间明显长于B组(20.0 d vs.14.0 d)(P<0.01);A组肝脏实体瘤内MVD较B组显著减少(8.65±1.79 vs.25.64±1.53)(P<0.05).结论 抗VEGFR-2嵌合Fab抗体对裸鼠肝癌原位移植瘤有治疗作用.%Objective To investigate the therapeutical effect of chimeric anti-vascular endothelial growth factor receptor(VEGFR)-2 Fab antibody on orthotopic xenograft in BALB/c nude mice. Methods The orthotopic xenograft model of hepatocellular carcinoma H22 cells was established in 40 nude mice, which were equally randomized into two groups of A (treated with chimeric anti-VEGFR-2 Fab antibody) and B(treated with normal saline). The survival time, pathological changes and microvessel density(MVD) in H22 xenografts were compared between two groups. Results An orthotopic xenograft model of hepatocellular carcinoma was successfully created in nude mice, which was confermed as hepatocellular carcinoma by hematoxylin-eosin staining. The mean survival time was longer in group A than that in group B(20. 0 d vs. 14. 0 d) (P<0. 05). MVD in the xenografts was less in group A than that in group B(8. 65±1. 79 vs. 25. 64±1. 53) (P<0. 05). Conclusion The chimeric anti-VEGFR-2 Fab antibody has some therapeutical effect on an orthotopic xenografts in nude mice.

  3. RNA Pol II Dynamics Modulate Co-transcriptional Chromatin Modification, CTD Phosphorylation, and Transcriptional Direction.

    Science.gov (United States)

    Fong, Nova; Saldi, Tassa; Sheridan, Ryan M; Cortazar, Michael A; Bentley, David L

    2017-05-18

    Eukaryotic genes are marked by conserved post-translational modifications on the RNA pol II C-terminal domain (CTD) and the chromatin template. How the 5'-3' profiles of these marks are established is poorly understood. Using pol II mutants in human cells, we found that slow transcription repositioned specific co-transcriptionally deposited chromatin modifications; histone H3 lysine 36 trimethyl (H3K36me3) shifted within genes toward 5' ends, and histone H3 lysine 4 dimethyl (H3K4me2) extended farther upstream of start sites. Slow transcription also evoked a hyperphosphorylation of CTD Ser2 residues at 5' ends of genes that is conserved in yeast. We propose a "dwell time in the target zone" model to explain the effects of transcriptional dynamics on the establishment of co-transcriptionally deposited protein modifications. Promoter-proximal Ser2 phosphorylation is associated with a longer pol II dwell time at start sites and reduced transcriptional polarity because of strongly enhanced divergent antisense transcription at promoters. These results demonstrate that pol II dynamics help govern the decision between sense and divergent antisense transcription. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Influence of blood-activating and blood-breaking medicines on the PCNA protein and VEGF mRNA, VEGFR-2 mRNA expression in the rat model with atherosclerosis%活血、破血药对动脉粥样硬化大鼠PCNA蛋白、VEGFmRNA、VEGFR-2mRNA表达的影响

    Institute of Scientific and Technical Information of China (English)

    谢海波; 罗尧岳; 莫新民; 吴亦之; 卢青; 徐豫湘; 李武

    2013-01-01

    Objective To discuss the influence of blood-activating(angelica sinensis and ligusticum wallichii) and blood-breaking medicines(rhizoma sparganii and curcuma zedoary) on the PCNA protein and VEGFmRNA,VEGFR-2 mRNA expressions in the aortic tunica intima of rats with atherosclerosis (AS).Methods 60 male Wistar rats were randomly divided into 5 groups (including blank group,model group,statins group,blood-activating medicine group and blood-breaking medicine group) and AS rat model was established by feeding high-fat forage.These medicines were given by intragastric administration for 4 weeks.After treatment,PCNA protein expression level was detected with immunohistochemical staining method and the VEGF mRNA,VEGFR-2 mRNA gene expression levels were tested with hybridization in situ of the aortic tunica intima.Results The positive cell amount of PCNA in the blood-breaking medicine group was lower than that in the blood-activating medicine group (P<0.05).The VEGF mRNA and VEGFR-2 mRNA average gray values in the model group were higher than those in the blank group,statins group,blood-activating medicine group and blood-breaking medicine group,while there were no significant differences between blood-activating medicine group and blood-breaking medicine group.Conclusion Angelica sinensis,Ligusticum wallichii,rhizoma sparganii and curcuma zedoary can inhibit the expression of PCNA protein,VEGF mRNA and VEGFR-2 mRNA,and then inhibit the cell proliferation.The inhibiting effects on the PCNA expression of blood-breaking medicines (rhizoma sparganii and curcuma zedoary) are better than those of bloodactivating medicines(Angelica sinensis and Ligusticum wallichii).%目的 探讨活血药(当归、川芎)、破血药(三棱、莪术)对动脉粥样硬化(AS)的大鼠主动脉增殖细胞核抗原(PCNA)蛋白及血管内皮生长因子(VEGFmRNA)、血管内皮生长因子受体(VEGFR-AS)表达的影响.方法 将60只雄性Wistar大鼠随机分为5组(空白组、模型组、

  5. The Stromal Microenvironment Modulates Mitochondrial Oxidative Phosphorylation in Chronic Lymphocytic Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Hima V. Vangapandu

    2017-10-01

    Full Text Available Peripheral blood chronic lymphocytic leukemia (CLL cells are replicationally quiescent mature B-cells. In short-term cultures, supporting stromal cells provide a survival advantage to CLL cells by inducing transcription and translation without promoting proliferation. We hypothesized that the stromal microenvironment augments malignant B cells' metabolism to enable the cells to cope with their energy demands for transcription and translation. We used extracellular flux analysis to assess the two major energy-generating pathways, mitochondrial oxidative phosphorylation (OxPhos and glycolysis, in primary CLL cells in the presence of three different stromal cell lines. OxPhos, measured as the basal oxygen consumption rate (OCR and maximum respiration capacity, was significantly higher in 28 patients' CLL cells cocultured with bone marrow–derived NK.Tert stromal cells than in CLL cells cultured alone (P = .004 and <.0001, respectively. Similar OCR induction was observed in CLL cells cocultured with M2-10B4 and HS-5 stromal lines. In contrast, heterogeneous changes in the extracellular acidification rate (a measure of glycolysis were observed in CLL cells cocultured with stromal cells. Ingenuity Pathway Analysis of CLL cells' metabolomics profile indicated stroma-mediated stimulation of nucleotide synthesis. Quantitation of ribonucleotide pools showed a significant two-fold increase in CLL cells cocultured with stromal cells, indicating that the stroma may induce CLL cellular bioenergy and the RNA building blocks necessary for the transcriptional requirement of a prosurvival phenotype. The stroma did not impact the proliferation index (Ki-67 staining of CLL cells. Collectively, these data suggest that short-term interaction (≤24 hours with stroma increases OxPhos and bioenergy in replicationally quiescent CLL cells.

  6. Minimally invasive colon resection is associated with a transient increase in plasma sVEGFR1 levels and a decrease in sVEGFR2 levels during the early postoperative period.

    Science.gov (United States)

    Shantha Kumara, H M C; Cabot, J C; Hoffman, A; Luchtefeld, M; Kalady, M F; Hyman, N; Feingold, D; Baxter, R; Whelan, R Larry

    2009-04-01

    Plasma vascular endothelial growth factor (VEGF) levels are elevated for 2-4 weeks after minimally invasive colorectal resection (MICR). VEGF induces wound and tumor angiogenesis by binding to endothelial cell (EC)-bound VEGF-receptor 1 (VEGFR1) and VEGFR2. Soluble receptors (sVEGFR1, sVEGFR2) sequester VEGF in the blood and decrease VEGF's proangiogenic effect. The importance of the MICR-related VEGF changes depends on the effect of surgical procedures on sVEGFR1 and sVEGFR2; this study assessed levels of these proteins after MICR for benign indications. Blood samples were taken (n=39) preoperatively (preop) and on postoperative days (POD) 1 and 3; in most cases a fourth sample was drawn between POD 7 and 30. sVEGFR1 and sVEGFR2 levels were measured via enzyme-linked immunosorbent assay (ELISA), which detects free and VEGF bound soluble receptor. Late samples were bundled into POD 7-13 and POD 14-30 time points. Results are reported as mean and standard deviation. The data was assessed with paired-samples t-test. Preop, mean plasma sVEGFR2 level (9,203.7+/-1,934.3 pg/ml) was significantly higher than the sVEGFR1 value (132.5+/-126.2 pg/ml). sVEGFR2 levels were significantly lower on POD 1 (6,957.8+/-1,947.7 pg/ml,) and POD 3 (7,085.6+/-2,000.2 pg/ml), whereas sVEGFR1 levels were significantly higher on POD 1 (220.0+/-132.8 pg/ml) and POD 3 (182.7+/-102.1 pg/ml) versus preop results. No differences were found on POD 7-13 or 14-30. sVEGFR2 values decreased and sVEGFR1 levels increased early after MICR; due to its much higher baseline, the sVEGFR2 changes dominate. The net result is less VEGF bound to soluble receptor and more free plasma VEGF.

  7. SKLB-287, a novel oral multikinase inhibitor of EGFR and VEGFR2, exhibits potent antitumor activity in LoVo colorectal tumor model.

    Science.gov (United States)

    Chen, X; Liu, Y; Yang, H-W; Zhou, S; Cheng, C; Zheng, M-W; Zhong, L; Fu, X-Y; Pan, Y-L; Ma, S; Tang, Y; Chen, Y-Z; Li, L-L; Yang, S-Y

    2014-01-01

    Colorectal cancer (CRC) is the third common cancer and most of the chemotherapies of CRC currently used often suffer limited efficacy and large side effects. Targeted small-molecule by anti-tumor drugs are thought a promising strategy for improving the efficacy and reducing the side effects. In this investigation, we report a novel multikinase inhibitor, termed SKLB-287, which was discovered by us recently. SKLB-287 could efficiently inhibit the activation of endothelial growth factor receptor (EGFR) and vascular endothelial growth factor receptor 2 (VEGFR2). It displayed very good anti-proliferative activity against LoVo CRC cells and considerable antiangiogenic potency in transgenic zebrafish embryos. Oral administration of SKLB-287 resulted in dose-dependent suppression of tumor growth in LoVo xenograft mouse model. Immunohistochemistry was adopted to examine the in vivo anti-tumor mechanism of action of SKLB-287.

  8. Localization of vascular endothelial growth factor (VEGF) and its receptors VEGFR-1 and VEGFR-2 in bovine placentomes from implantation until term

    DEFF Research Database (Denmark)

    Pfarrer, C.D.; Ruziwa, S.D.; Winther, H.

    2006-01-01

    epithelium. An antibody against bovine VEGF revealed a strong reactivity in the stroma of maternal caruncular septa in early and mid-gestation, which distinctly decreased near term. In interplacentomal areas, VEGF was found in luminal and glandular epithelia as well as in trophoblast, with distinctly higher...... term were evaluated by immunohistochemistry. VEGF immunoreactivity was detected in fetal and maternal blood vessel tissues during implantation and throughout gestation, and in preimplantatory trophoblast cells and uterine epithelium. After implantation the immunoreaction was confined to TGC and uterine...... reactivity in giant cells. VEGFR-1 was observed in trophoblast and uterine epithelium around implantation. Later, in definite placentomes, VEGFR-1 was localized in TGC near the chorionic plate and in maternal endothelial cells in the center of the placentome. VEGFR-1 and VEGFR-2 were co-localized in uterine...

  9. High blood sugar levels significantly impact the prognosis of colorectal cancer patients through down-regulation of microRNA-16 by targeting Myb and VEGFR2.

    Science.gov (United States)

    Yang, I-Ping; Tsai, Hsiang-Lin; Huang, Ching-Wen; Lu, Chien-Yu; Miao, Zhi-Feng; Chang, Se-Fen; Juo, Suh-Hang Hank; Wang, Jaw-Yuan

    2016-04-05

    The high prevalence of type 2 diabetes mellitus in colorectal cancer patients is a crucial public health issue worldwide. The deregulation of microRNAs has been shown to be associated with the progression of CRC; however, the effects of high blood sugar levels on miR deregulation and, in turn, CRC remain unexplored. In this study, 520 CRC patients were classified into two groups according to their blood sugar levels (≧110 or <110 mg/dL). Clinicopathologic features, clinical outcomes, and serum miR-16 levels of the two groups were then analyzed, while cell cycles, cell proliferation, migration, and cellular miR-16 expression were investigated via D-(+)-glucose administration. Additionally, the target genes of miR-16 were identified. Through multivariate analysis, both the disease-free survival and overall survival of the CRC patients were found to be associated with the UICC stage, perineural invasion, and blood glucose levels (P < 0.05). Serum miR-16 levels were significantly lower in the high blood glucose patients than in the normal blood glucose patients (P = 0.0329). With D-(+)-glucose administration, the proliferation and migration of CRC cells in vitro increased remarkably (P < 0.05), while their accumulation in the G1 phase decreased significantly. Cellular miR-16 expression was suppressed by D-(+)-glucose administration. The expression levels of two target genes, Myb and VEGFR2, were affected significantly by miR-16, while glucose administration inhibited miR-16 expression and enhanced tumor cell proliferation and migration. Hyperglycemia can impact the clinical outcomes of CRC patients, likely by inhibiting miR-16 expression and the expression of its downstream genes Myb and VEGFR2.

  10. An acidic loop and cognate phosphorylation sites define a molecular switch that modulates ubiquitin charging activity in Cdc34-like enzymes

    DEFF Research Database (Denmark)

    Papaleo, Elena; Ranzani, Valeria; Tripodi, Farida;

    2011-01-01

    elements in one of the larger families of E2 enzymes: an acidic insertion in β4α2 loop in the proximity of the catalytic cysteine and two conserved key serine residues within the catalytic domain, which are phosphorylated by CK2. Our investigations, using yeast Cdc34 as a model, through 2.5 µs molecular......E2 ubiquitin-conjugating enzymes are crucial mediators of protein ubiquitination, which strongly influence the ultimate fate of the target substrates. Recently, it has been shown that the activity of several enzymes of the ubiquitination pathway is finely tuned by phosphorylation, an ubiquitous...... mechanism for cellular regulation, which modulates protein conformation. In this contribution, we provide the first rationale, at the molecular level, of the regulatory mechanism mediated by casein kinase 2 (CK2) phosphorylation of E2 Cdc34-like enzymes. In particular, we identify two co-evolving signature...

  11. AQP4 plasma membrane trafficking or channel gating is not significantly modulated by phosphorylation at COOH-terminal serine residues

    DEFF Research Database (Denmark)

    Assentoft, Mette; Larsen, Brian R; Olesen, Emma T B;

    2014-01-01

    . Phosphorylation of aquaporins can regulate plasma membrane localization and, possibly, the unit water permeability via gating of the AQP channel itself. In vivo phosphorylation of six serine residues in the COOH terminus of AQP4 has been detected by mass spectrometry: Ser(276), Ser(285), Ser(315), Ser(316), Ser...... heterologous expression in Xenopus laevis oocytes (along with serine-to-aspartate mutants of the same residues to mimic a phosphorylation). None of the mutant AQP4 constructs displayed alterations in the unit water permeability. Thus phosphorylation of six different serine residues in the COOH terminus of AQP4...

  12. BAY 61-3606, CDKi, and Sodium Butyrate Treatments Modulate p53 Protein Level and Its Site-Specific Phosphorylation in Human Vestibular Schwannomas In Vitro

    Directory of Open Access Journals (Sweden)

    Rohan Mitra

    2014-01-01

    Full Text Available This study is done to evaluate the effect of spleen tyrosine kinase inhibitor (BAY 61-3606, cyclin-dependent kinase inhibitor (CDKi, and sodium butyrate (Na-Bu on the level and phosphorylation of p53 protein and its binding to murine double minute 2 (MDM2 homologue in human vestibular schwannomas (VS. Primary cultures of the tumor tissues were treated individually with optimum concentrations of these small molecules in vitro. The results indicate modulation of p53 protein status and its binding ability to MDM2 in treated samples as compared to the untreated control. The three individual treatments reduced the level of total p53 protein. These treatments also decreased Ser392 and Ser15 phosphorylated p53 in tumor samples of young patients and Ser315 phosphorylated p53 in old patients. Basal level of Thr55 phosphorylated p53 protein was present in all VS samples and it remained unchanged after treatments. The p53 protein from untreated VS samples showed reduced affinity to MDM2 binding in vitro and it increased significantly after treatments. The MDM2/p53 ratio increased approximately 3-fold in the treated VS tumor samples as compared to the control. The differential p53 protein phosphorylation status perhaps could play an important role in VS tumor cell death due to these treatments that we reported previously.

  13. The relationship of the angiogenesis regulators VEGF-A, VEGF-R1 and VEGF-R2 to p53 status and prognostic factors in epithelial ovarian carcinoma in FIGO-stages I-II.

    Science.gov (United States)

    Skirnisdottir, Ingiridur; Seidal, Tomas; Åkerud, Helena

    2016-03-01

    The aim of this study was to evaluate prognostic effect of the angiogenesis regulators VEGF-R1, VEGF-R2 and VEGF-A for recurrent disease and disease-free survival (DFS), and their relation to the apoptosis regulator p53, in 131 patients with FIGO-stages I-II with epithelial ovarian cancer. For the detection of positivity of the markers the techniques of tissue microarrays and immunohistochemistry (IHC) were used. In tumors the frequency of positive staining for VEGF-R1 was 19%, for VEGF-R2 and VEGF-A, it was 77 and 70%, respectively. Positivity for p53 was detected in 25% of tumors. The total number of recurrences in the complete series was 34 out of 131 (26%) and 5-year disease-free survival (DFS) was 68%. Positive staining for VEGF-A (P=0.030), VEGF-R2 (P=0.011) and p53 (P=0.015) was found more frequently in type II tumors than in type I tumors. Patients with VEGF-R1 negative tumors had worse (P=0.021) DFS compared to patients with VEGF-R1 positive tumors. In two multivariate Cox analyzes with DFS as endpoint, FIGO-stage (HR=3.8), VEGF-R2 status (HR=0.4) and p53 status (HR=2.3), all were significant and independent prognostic factors. When the variables VEGF-R2 and p53 were replaced with the new variable VEGF-R2+p53-/other three combinations in one group, it was found that patients from that subgroup had 86% reduced risk of dying in disease (HR=0.24). Findings above, confirmed relationship between VEGF-R2 and VEGF-A and p53, respectively, with regard to recurrent disease and survival. Some findings from the present study are different from results from previous studies on the regulation of angiogenesis. Despite many trials with anti-angiogenic agents in the front line of ovarian cancer have shown to be positive for progression-free survival, no one has demonstrated an impact on overall survival. Therefore, one of the greatest challenges in ovarian cancer research, is to discover predictive and prognostic biomarkers.

  14. The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line

    Directory of Open Access Journals (Sweden)

    Jun Xie

    2015-11-01

    Full Text Available The effects of tanshinone IIA on the proliferation of the human non-small cell lung cancer cell line A549 and its possible mechanism on the VEGF/VEGFR signal pathway were investigated. The exploration of the interaction between tanshinone IIA and its target proteins provides a feasible platform for studying the anticancer mechanism of active components of herbs. The CCK-8 assay was used to evaluate the proliferative activity of A549 cells treated with tanshinone IIA (2.5−80 μmol/L for 24, 48 and 72 h, respectively. Flow cytometry was used for the detection of cell apoptosis and cell cycle perturbation. VEGF and VEGFR2 expression were studied by Western blotting. The binding mode of tanshinone IIA within the crystal structure of the VEGFR2 protein was evaluated with molecular docking analysis by use of the CDOCKER algorithm in Discovery Studio 2.1. The CCK-8 results showed that tanshinone IIA can significantly inhibit A549 cell proliferation in a dose- and time-dependent manner. Flow cytometry results showed that the apoptosis rate of tested group was higher than the vehicle control, and tanshinone IIA-treated cells accumulated at the S phase, which was higher than the vehicle control. Furthermore, the expression of VEGF and VEGFR2 was decreased in Western blot. Finally, molecular docking analysis revealed that tanshinone IIA could be stably docked into the kinase domain of VEGFR2 protein with its unique modes to form H-bonds with Cys917 and π–π stacking interactions with Val848. In conclusion, tanshinone IIA may suppress A549 proliferation, induce apoptosis and cell cycle arrest at the S phase. This drug may suppress angiogenesis by targeting the protein kinase domains of VEGF/VEGFR2.

  15. Coordinated Activation of VEGF/VEGFR-2 and PPARδ Pathways by a Multi-Component Chinese Medicine DHI Accelerated Recovery from Peripheral Arterial Disease in Type 2 Diabetic Mice

    Science.gov (United States)

    He, Shuang; Zhao, Tiechan; Guo, Hao; Meng, Yanzhi; Qin, Gangjian; Goukassian, David A.; Han, Jihong; Gao, Xuimei; Zhu, Yan

    2016-01-01

    Diabetic mellitus (DM) patients are at an increased risk of developing peripheral arterial disease (PAD). Danhong injection (DHI) is a Chinese patent medicine widely used for several cardiovascular indications but the mechanism of action is not well-understood. We investigated the therapeutic potential of DHI on experimental PAD in mice with chemically induced as well as genetic (KKAy) type 2 DM and the overlapping signaling pathways regulating both therapeutic angiogenesis and glucose homeostasis. Compared with normal genetic background wild type (WT) mice, both DM mice showed impaired perfusion recovery in hind-limb ischemia (HLI) model. DHI treatment significantly accelerated perfusion recovery, lowered blood glucose and improved glucose tolerance in both DM models. Bioluminescent imaging demonstrated a continuous ischemia-induced vascular endothelial growth factor receptor 2 (VEGFR-2) gene expressions with a peak time coincident with the maximal DHI stimulation. Flow cytometry analysis showed a DHI-mediated increase in endothelial progenitor cell (EPC) mobilization from bone marrow to circulating peripheral blood. DHI administration upregulated the expression of vascular endothelial growth factor A (VEGF-A) and VEGF receptor-2 (VEGFR-2) in ischemic muscle. A cross talk between ischemia-induced angiogenesis and glucose tolerance pathways was analyzed by Ingenuity Pathway Analysis (IPA) which suggested an interaction of VEGF-A/VEGFR-2 and peroxisome proliferator-activated receptor δ (PPARδ)/peroxisome proliferator-activated receptor γ (PPARγ) genes. We confirmed that upregulation of VEGF-A/VEGFR-2 by DHI promoted PPARδ gene expression in both type 2 diabetic mice. Our findings demonstrated that a multi-component Chinese medicine DHI effectively increased blood flow recovery after tissue ischemia in diabetic mice by promoting angiogenesis and improving glucose tolerance through a concomitant activation of VEGF-A/VEGFR-2 and PPARδ signaling pathways. PMID

  16. Clinical significance of VEGFR-2 and {sup 18}F-FDG PET/CT SUVmax pretreatment score in predicting the long-term outcome of patients with locally advanced rectal cancer treated with neoadjuvant therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sole, Claudio V. [Hospital General Universitario Gregorio Maranon, Department of Oncology, Madrid (Spain); School of Medicine Complutense University, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute for Sanitary Research, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Madrid (Spain); Calvo, Felipe A. [Hospital General Universitario Gregorio Maranon, Department of Oncology, Madrid (Spain); School of Medicine Complutense University, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute for Sanitary Research, Madrid (Spain); Alvarez, Emilio; Peligros, Isabel [School of Medicine Complutense University, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Department of Pathology, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute for Sanitary Research, Madrid (Spain); Garcia-Alfonso, Pilar [Hospital General Universitario Gregorio Maranon, Service of Medical Oncology, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute for Sanitary Research, Madrid (Spain); Ferrer, Carlos; Ochoa, Enrique [Hospital Provincial de Castellon, Institute of Oncology, Castellon de la Plana (Spain); Herranz, Rafael [Hospital General Universitario Gregorio Maranon, Service of Radiation Oncology, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute for Sanitary Research, Madrid (Spain); Carreras, Jose L. [School of Medicine Complutense University, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Department of Radiology and Medical Physics, Madrid (Spain)

    2013-10-15

    Vascular endothelial growth factor receptor-2 (VEGFR-2), epidermal growth factor receptor-1 (EGFR), and cyclooxygenase-2 (COX-2) stimulate key processes involved in tumor progression and are important targets for cancer drugs. {sup 18}F-FDG maximum standardized uptake value (SUVmax) is a marker of tumor metabolic activity. The purpose of this study was to measure SUVmax combined with VEGFR-2, EGFR and COX-2 proteins in pretreatment tumor biopsies from patients with locally advanced rectal cancer receiving intensive neoadjuvant treatment and to correlate the findings with clinical outcome. VEGFR-2, EGFR and COX-2 were measured using the immunoreactive score (IRS). SUVmax (median 8.4) was quantified in tumors with molecular overexpression (IRS {>=}3 + SUVmax {>=} 8.4 indicating active tumors; SUVmax <8.4 indicating inactive tumors). The Cox proportional hazards model was used to explore associations between tumor markers, disease-free survival (DFS) and overall survival (OS). The study group comprised 38 patients with a median follow-up of 69.3 months (range 4.5 - 92 months). Multivariate analysis showed that active tumors (overexpressing VEGFR-2, high SUVmax) were associated with worse DFS (HR 4.73, 95 % CI 1.18 - 22.17; p = 0.04) and OS (HR 4.28, 95 % CI 1.04 - 20.12; p = 0.05). Active tumors overexpressing VEGFR-2 are associated with a worse overall outcome in patients with rectal cancer treated with induction chemotherapy followed by pelvic chemoradiation and surgery. The optimal diagnostic cut-off level for this novel biomarker association should be investigated. Evaluation in a clinical trial is required to determine whether selected patients could benefit from a VEGFR-targeting drug. (orig.)

  17. Synchronization by Daytime Restricted Food Access Modulates the Presence and Subcellular Distribution of β-Catenin and Its Phosphorylated Forms in the Rat Liver

    Science.gov (United States)

    De Ita-Pérez, Dalia Luz; Díaz-Muñoz, Mauricio

    2017-01-01

    β-catenin, the principal effector of the Wnt pathway, is also one of the cadherin cell adhesion molecules; therefore, it fulfills signaling and structural roles in most of the tissues and organs. It has been reported that β-catenin in the liver regulates metabolic responses such as gluconeogenesis and histological changes in response to obesity-promoting diets. The function and cellular location of β-catenin is finely modulated by coordinated sequences of phosphorylation–dephosphorylation events. In this article, we evaluated the levels and cellular localization of liver β-catenin variants, more specifically β-catenin phosphorylated in serine 33 (this phosphorylation provides recognizing sites for β-TrCP, which results in ubiquitination and posterior proteasomal degradation of β-catenin) and β-catenin phosphorylated in serine 675 (phosphorylation that enhances signaling and transcriptional activity of β-catenin through recruitment of different transcriptional coactivators). β-catenin phosphorylated in serine 33 in the nucleus shows day–night fluctuations in their expression level in the Ad Libitum group. In addition, we used a daytime restricted feeding (DRF) protocol to show that the above effects are sensitive to food access-dependent circadian synchronization. We found through western blot and immunohistochemical analyses that DRF protocol promoted (1) higher total β-catenins levels mainly associated with the plasma membrane, (2) reduced the presence of cytoplasmic β-catenin phosphorylated in serine 33, (3) an increase in nuclear β-catenin phosphorylated in serine 675, (4) differential co-localization of total β-catenins/β-catenin phosphorylated in serine 33 and total β-catenins/β-catenin phosphorylated in serine 675 at different temporal points along day and in fasting and refeeding conditions, and (5) differential liver zonation of β-catenin variants studied along hepatic acinus. In conclusion, the present data comprehensively

  18. STATE TRANSITION7-Dependent Phosphorylation Is Modulated by Changing Environmental Conditions, and Its Absence Triggers Remodeling of Photosynthetic Protein Complexes1

    Science.gov (United States)

    Bergner, Sonja Verena; Scholz, Martin; Trompelt, Kerstin; Barth, Johannes; Gäbelein, Philipp; Steinbeck, Janina; Xue, Huidan; Clowez, Sophie; Fucile, Geoffrey; Goldschmidt-Clermont, Michel; Fufezan, Christian; Hippler, Michael

    2015-01-01

    In plants and algae, the serine/threonine kinase STN7/STT7, orthologous protein kinases in Chlamydomonas reinhardtii and Arabidopsis (Arabidopsis thaliana), respectively, is an important regulator in acclimation to changing light environments. In this work, we assessed STT7-dependent protein phosphorylation under high light in C. reinhardtii, known to fully induce the expression of LIGHT-HARVESTING COMPLEX STRESS-RELATED PROTEIN3 (LHCSR3) and a nonphotochemical quenching mechanism, in relationship to anoxia where the activity of cyclic electron flow is stimulated. Our quantitative proteomics data revealed numerous unique STT7 protein substrates and STT7-dependent protein phosphorylation variations that were reliant on the environmental condition. These results indicate that STT7-dependent phosphorylation is modulated by the environment and point to an intricate chloroplast phosphorylation network responding in a highly sensitive and dynamic manner to environmental cues and alterations in kinase function. Functionally, the absence of the STT7 kinase triggered changes in protein expression and photoinhibition of photosystem I (PSI) and resulted in the remodeling of photosynthetic complexes. This remodeling initiated a pronounced association of LHCSR3 with PSI-LIGHT HARVESTING COMPLEX I (LHCI)-ferredoxin-NADPH oxidoreductase supercomplexes. Lack of STT7 kinase strongly diminished PSII-LHCII supercomplexes, while PSII core complex phosphorylation and accumulation were significantly enhanced. In conclusion, our study provides strong evidence that the regulation of protein phosphorylation is critical for driving successful acclimation to high light and anoxic growth environments and gives new insights into acclimation strategies to these environmental conditions. PMID:25858915

  19. 下肢慢性缺血患者的超重和肥胖对血浆中VEGF-A、VEGFR-1和VEGFR-2浓度的影响%Overweight and obesity versus concentrations of VEGF-A, sVEGFR-1, and sVEGFR-2 in plasma of patients with lower limb chronic ischemia

    Institute of Scientific and Technical Information of China (English)

    Radosaw WIECZR; Anna Maria WIECZR; Grayna GADOMSKA; Katarzyna STANKOWSKA; Jacek FABISIAK; Karol SUPPAN; Grzegorz PULKOWSKI; Jacek BUDZYSKI; Danuta RO

    2016-01-01

    Objective:Being overweight or obese comprises a significant risk factor for atherosclerosis. Fat tissue also generates factors stimulating angiogenesis, the process by which new blood vessels form. The purpose of this paper is to assess concentrations of the vascular endothelial growth factor A (VEGF-A) and its soluble type-1 and type-2 re-ceptors (sVEGFR-1 and sVEGFR-2) in plasma of patients with peripheral arterial disease (PAD) depending on the level of nutrition according to body mass index (BMI). Methods: The study group included patients suffering from symptomatic PAD (n=46) in Fontaine classes IIa–IV without any history of neoplastic disease and who have a normal BMI (n=15), are overweight (n=21) or are obese (n=10). The control group (n=30) consisted of healthy non-smoking volunteers who were neither overweight nor obese. Venous blood plasma samples were col ected from both groups at rest in the morning to determine plasma concentrations of VEGF-A, sVEGFR-1, and sVEGFR-2 using the enzyme-linked immunosorbent assay (ELISA) method. Results:The group of patients with PAD co-existent with being over-weight or obese tended to have higher mean concentration levels of VEGF-A and sVEGFR-2 when compared with patients suffering from PAD with normal BMI. A statistical y significant positive correlation was obtained between BMI and average plasma concentrations of sVEGFR-2 (R=0.37, P=0.0103). However, no significant correlation was no-ticed between BMI and VEGF-A or sVEGFR-1 concentrations. Conclusions: A positive correlation determined be-tween the level of antiangiogenic factor and BMI value may be indicative of the linearly growing prevalence of some antiangiogenic factors in patients with metabolic disorders, which may be one of numerous factors contributing to incomplete efficiency of collateral circulation development in patients with PAD.%目的:研究外周动脉疾病(PAD)患者血浆中血管内皮生长因子 A(VEGF-A)和它的可溶性1型和2

  20. The phosphorylation status of T522 modulates tissue-specific functions of SIRT1 in energy metabolism in mice.

    Science.gov (United States)

    Lu, Jing; Xu, Qing; Ji, Ming; Guo, Xiumei; Xu, Xiaojiang; Fargo, David C; Li, Xiaoling

    2017-05-01

    SIRT1, the most conserved mammalian NAD(+)-dependent protein deacetylase, is an important metabolic regulator. However, the mechanisms by which SIRT1 is regulated in vivo remain unclear. Here, we report that phosphorylation modification of T522 on SIRT1 is crucial for tissue-specific regulation of SIRT1 activity in mice. Dephosphorylation of T522 is critical for repression of its activity during adipogenesis. The phospho-T522 level is reduced during adipogenesis. Knocking-in a constitutive T522 phosphorylation mimic activates the β-catenin/GATA3 pathway, repressing PPARγ signaling, impairing differentiation of white adipocytes, and ameliorating high-fat diet-induced dyslipidemia in mice. In contrast, phosphorylation of T522 is crucial for activation of hepatic SIRT1 in response to over-nutrition. Hepatic SIRT1 is hyperphosphorylated at T522 upon high-fat diet feeding. Knocking-in a SIRT1 mutant defective in T522 phosphorylation disrupts hepatic fatty acid oxidation, resulting in hepatic steatosis after high-fat diet feeding. In addition, the T522 dephosphorylation mimic impairs systemic energy metabolism. Our findings unveil an important link between environmental cues, SIRT1 phosphorylation, and energy homeostasis and demonstrate that the phosphorylation of T522 is a critical element in tissue-specific regulation of SIRT1 activity in vivo. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  1. Hypoxia-induced reduction of sVEGFR-2 levels in human colonic microvascular endothelial cells in vitro: Comparative study with HUVEC.

    Science.gov (United States)

    Jayasinghe, Caren; Simiantonaki, Nektaria; Michel-Schmidt, Romi; Kirkpatrick, Charles James

    2009-01-01

    The functionality of large-vessel endothelial cells, such as human umbilical vein endothelial cells (HUVEC), may differ significantly from that in the microvasculature. We established a method for the isolation of human colonic microvascular endothelial cells (HCMEC). Since colonic diseases are often accompanied by hypoxia we examined its effects on HCMEC of five individuals in comparison with HUVEC, with respect to the secretion of the soluble form of the two important vascular endothelial growth factor (VEGF) receptors, VEGFR-1 and 2. After dissociation by dispase/collagenase of mucosal and submucosal tissue obtained from normal adult colon, HCMEC were isolated using CD31-coated magnetic beads and cultivated as monolayers. Subsequent characterization studies demonstrated the endothelial phenotype, including VEGFR-1 and 2 mRNA and protein expression. sVEGFR expression analyses were performed using ELISA. Under hypoxic conditions significantly enhanced levels of sVEGFR-1 on HUVEC were observed (pHUVEC were variable, that is, either unchanged or up-regulated. The different secretion profiles of sVEGFR-1 and 2 between HUVEC and HCMEC under normoxia and hypoxia underline the importance of using a functionally adequate and relevant microvasculature for in vitro studies of colonic diseases. The homogeneously reduced sVEGFR-2 levels in hypoxic HCMEC provide evidence for a novel microvascular endothelium-specific biomarker in hypoxia-response processes.

  2. A phospholipid-PEG2000 conjugate of a vascular endothelial growth factor receptor 2 (VEGFR2)-targeting heterodimer peptide for contrast-enhanced ultrasound imaging of angiogenesis.

    Science.gov (United States)

    Pillai, R; Marinelli, E R; Fan, H; Nanjappan, P; Song, B; von Wronski, M A; Cherkaoui, S; Tardy, I; Pochon, S; Schneider, M; Nunn, A D; Swenson, R E

    2010-03-17

    The transition of a targeted ultrasound contrast agent from animal imaging to testing in clinical studies requires considerable chemical development. The nature of the construct changes from an agent that is chemically attached to microbubbles to one where the targeting group is coupled to a phospholipid, for direct incorporation to the bubble surface. We provide an efficient method to attach a heterodimeric peptide to a pegylated phospholipid and show that the resulting construct retains nanomolar affinity for its target, vascular endothelial growth factor receptor 2 (VEGFR2), for both the human (kinase insert domain-containing receptor - KDR) and the mouse (fetal liver kinase 1 - Flk-1) receptors. The purified phospholipid-PEG-peptide isolated from TFA-based eluents is not stable with respect to hydrolysis of the fatty ester moieties. This leads to the time-dependent formation of the lysophospholipid and the phosphoglycerylamide derived from the degradation of the product. Purification of the product using neutral eluent systems provides a stable product. Methods to prepare the lysophospholipid (hydrolysis product) are also included. Biacore binding data demonstrated the retention of binding of the lipopeptide to the KDR receptor. The phospholipid-PEG2000-peptide is smoothly incorporated into gas-filled microbubbles and provides imaging of angiogenesis in a rat tumor model.

  3. Role of HIF1A, VEGFA and VEGFR2 SNPs in the Susceptibility and Progression of COPD in a Spanish Population

    Science.gov (United States)

    Baz-Dávila, Rebeca; Espinoza-Jiménez, Adriana; Rodríguez-Pérez, María del Cristo; Zulueta, Javier; Varo, Nerea; Montejo, Ángela; Almeida-González, Delia; Aguirre-Jaime, Armando; Córdoba-Lanús, Elizabeth; Casanova, Ciro

    2016-01-01

    Hypoxia is involved in the development of chronic inflammatory processes. Under hypoxic conditions HIF1A, VEGF and VEGFR2 are expressed and mediate the course of the resultant disease. The aim of the present study was to define the associations between tSNPs in these genes and COPD susceptibility and progression in a Spanish cohort. The T alleles in rs3025020 and rs833070 SNPs (VEGFA gene) were less frequent in the group of COPD cases and were associated with a lower risk of developing the disease (OR = 0.60; 95% CI = 0. 39–0.93; p = 0.023 and OR = 0.60; 95% CI = 0.38–0.96; p = 0.034, respectively) under a dominant model of inheritance. The haplotype in which both SNPs presented the T allele confirmed the association found (OR = 0.02; 95% CI = 0.00 to 0.66; p = 0.03). Moreover, patients with COPD carrying the T allele in homozygosis in rs3025020 SNP showed higher lung function values and this association remained constant during 3 years of follow-up. In conclusion, T allele in rs833070 and rs3025020 may confer a protective effect to COPD susceptibility in a Spanish population and the association of the SNP rs3025020 with lung function may be suggesting a role for VEGF in the progression of the disease. PMID:27163696

  4. Shear Stress Induces Differentiation of Endothelial Lineage Cells to Protect Neonatal Brain from Hypoxic-Ischemic Injury through NRP1 and VEGFR2 Signaling

    Directory of Open Access Journals (Sweden)

    Chia-Wei Huang

    2015-01-01

    Full Text Available Neonatal hypoxic-ischemic (HI brain injuries disrupt the integrity of neurovascular structure and lead to lifelong neurological deficit. The devastating damage can be ameliorated by preserving the endothelial network, but the source for therapeutic cells is limited. We aim to evaluate the beneficial effect of mechanical shear stress in the differentiation of endothelial lineage cells (ELCs from adipose-derived stem cells (ASCs and the possible intracellular signals to protect HI injury using cell-based therapy in the neonatal rats. The ASCs expressed early endothelial markers after biochemical stimulation of endothelial growth medium. The ELCs with full endothelial characteristics were accomplished after a subsequential shear stress application for 24 hours. When comparing the therapeutic potential of ASCs and ELCs, the ELCs treatment significantly reduced the infarction area and preserved neurovascular architecture in HI injured brain. The transplanted ELCs can migrate and engraft into the brain tissue, especially in vessels, where they promoted the angiogenesis. The activation of Akt by neuropilin 1 (NRP1 and vascular endothelial growth factor receptor 2 (VEGFR2 was important for ELC migration and following in vivo therapeutic outcomes. Therefore, the current study demonstrated importance of mechanical factor in stem cell differentiation and showed promising protection of brain from HI injury using ELCs treatment.

  5. Pharmacologic inhibition of the CK2-mediated phosphorylation of B23/NPM in cancer cells selectively modulates genes related to protein synthesis, energetic metabolism, and ribosomal biogenesis.

    Science.gov (United States)

    Perera, Yasser; Pedroso, Seidy; Borras-Hidalgo, Orlando; Vázquez, Dania M; Miranda, Jamilet; Villareal, Adelaida; Falcón, Viviana; Cruz, Luis D; Farinas, Hernán G; Perea, Silvio E

    2015-06-01

    B23/NPM is a multifunctional nucleolar protein frequently overexpressed, mutated, or rearranged in neoplastic tissues. B23/NPM is involved in diverse biological processes and is mainly regulated by heteroligomer association and posttranslational modification, phosphorylation being a major posttranslational event. While the role of B23/NPM in supporting and/or driving malignant transformation is widely recognized, the particular relevance of its CK2-mediated phosphorylation remains unsolved. Interestingly, the pharmacologic inhibition of such phosphorylation event by CIGB-300, a clinical-grade peptide drug, was previously associated to apoptosis induction in tumor cell lines. In this work, we sought to identify the biological processes modulated by CIGB-300 in a lung cancer cell line using subtractive suppression hybridization and subsequent functional annotation clustering. Our results indicate that CIGB-300 modulates a subset of genes involved in protein synthesis (ES = 8.4, p NPM in cancer cells, revealing at the same time the potentialities of its pharmacological manipulation for cancer therapy. Finally, this work also suggests several candidate gene biomarkers to be evaluated during the clinical development of the anti-CK2 peptide CIGB-300.

  6. 以VEGF及VEGFR2为靶位的抗肿瘤血管生成主动免疫治疗的研究进展%Research Progress of Active Immunotherapies against Tumor Angiogenisis Targeting on VEGF and VEGFR2

    Institute of Scientific and Technical Information of China (English)

    王伟; 殷小涛; 田仁礼; 阎瑾琦; 高江平; 于继云

    2013-01-01

    Tumor cells stimulate angiogenesis to meet increasing nutrient and oxygen demands. Therefore, the dependence of growing tumors on new blood vessel formation has made anti-angiogenesis become one of the most appealing strategy in cancer research and therapeutics of clinical oncology. Among all of the factors stimulating angiogenesis, vascular endothelial growth factor (VEGF) and its receptor VEGFR2 (also called fetal liver kinse-1 [Flk-1] in mice, kinase-containing domain receptor [KDR] in humans) are critically important to the angiogenesis associated with tumor growth, metastasis and relapse. In addition, active anti-tumor immunotherapy has provided a novel strategy through interrupting tumor-mediated immune escape and suppression. By combining the two strategies, active anti-angiogenic immunotherapy might offer the possibility to more robustly inhibit tumor angiogenesis. This combination application of immunotherapy and anti-angiogenic treatment might represent a promising avenue for future research. This review summarized latest researches of active immunotherapy targeting tumor angiogenesis through interrupting the signal passway of VEGF/VEGFR2. This paper discussed three different types of vaccines utilized as anti-cancer therapeutics-cell vaccines, protein/peptide vaccines and gene/DNA vaccines-with a specific focus on angiogenesis suppression. And future research directions for this field are also outlined.%肿瘤细胞通过刺激新生血管生成来满足对营养及供氧的不断增长的需求,因此,肿瘤组织生长对于新生血管形成的依赖性使得抗血肿瘤管生成已经成为肿瘤学基础研究与临床治疗领域中最吸引人的策略之一.在众多的促血管生成因子中,血管内皮生长因子(VEGF)及其受体VEGFR2(鼠和人中也分别称为Flk-1和KDR)对于与肿瘤生长、转移及复发相关的血管生成是至关重要的.此外,通过打破肿瘤组织自身介导的免疫耐受与逃避,主动免疫治疗已

  7. Regulation of AKT phosphorylation at Ser473 and Thr308 by endoplasmic reticulum stress modulates substrate specificity in a severity dependent manner.

    Directory of Open Access Journals (Sweden)

    Hong Wa Yung

    Full Text Available Endoplasmic reticulum (ER stress is a common factor in the pathophysiology of diverse human diseases that are characterised by contrasting cellular behaviours, from proliferation in cancer to apoptosis in neurodegenerative disorders. Coincidently, dysregulation of AKT/PKB activity, which is the central regulator of cell growth, proliferation and survival, is often associated with the same diseases. Here, we demonstrate that ER stress modulates AKT substrate specificity in a severity-dependent manner, as shown by phospho-specific antibodies against known AKT targets. ER stress also reduces both total and phosphorylated AKT in a severity-dependent manner, without affecting activity of the upstream kinase PDK1. Normalisation to total AKT revealed that under ER stress phosphorylation of Thr308 is suppressed while that of Ser473 is increased. ER stress induces GRP78, and siRNA-mediated knock-down of GRP78 enhances phosphorylation at Ser473 by 3.6 fold, but not at Thr308. Substrate specificity is again altered. An in-situ proximity ligation assay revealed a physical interaction between GRP78 and AKT at the plasma membrane of cells following induction of ER stress. Staining was weak in cells with normal nuclear morphology but stronger in those displaying rounded, condensed nuclei. Co-immunoprecipitation of GRP78 and P-AKT(Ser473 confirmed the immuno-complex consists of non-phosphorylated AKT (Ser473 and Thr308. The interaction is likely specific as AKT did not bind to all molecular chaperones, and GRP78 did not bind to p70 S6 kinase. These findings provide one mechanistic explanation for how ER stress contributes to human pathologies demonstrating contrasting cell fates via modulation of AKT signalling.

  8. AQP4 plasma membrane trafficking or channel gating is not significantly modulated by phosphorylation at COOH-terminal serine residues.

    Science.gov (United States)

    Assentoft, Mette; Larsen, Brian R; Olesen, Emma T B; Fenton, Robert A; MacAulay, Nanna

    2014-11-15

    Aquaporin 4 (AQP4) is the predominant water channel in the mammalian brain and is mainly expressed in the perivascular glial endfeet at the brain-blood interface. AQP4 serves as a water entry site during brain edema formation, and regulation of AQP4 may therefore be of therapeutic interest. Phosphorylation of aquaporins can regulate plasma membrane localization and, possibly, the unit water permeability via gating of the AQP channel itself. In vivo phosphorylation of six serine residues in the COOH terminus of AQP4 has been detected by mass spectrometry: Ser(276), Ser(285), Ser(315), Ser(316), Ser(321), and Ser(322). To address the role of these phosphorylation sites for AQP4 function, serine-to-alanine mutants were created to abolish the phosphorylation sites. All mutants were detected at the plasma membrane of transfected C6 cells, with the fraction of the total cellular AQP4 expressed at the plasma membrane of transfected C6 cells being similar between the wild-type (WT) and mutant forms of AQP4. Activation of protein kinases A, C, and G in primary astrocytic cultures did not affect the plasma membrane abundance of AQP4. The unit water permeability was determined for the mutant AQP4s upon heterologous expression in Xenopus laevis oocytes (along with serine-to-aspartate mutants of the same residues to mimic a phosphorylation). None of the mutant AQP4 constructs displayed alterations in the unit water permeability. Thus phosphorylation of six different serine residues in the COOH terminus of AQP4 appears not to be required for proper plasma membrane localization of AQP4 or to act as a molecular switch to gate the water channel.

  9. The interplay between p16 serine phosphorylation and arginine methylation determines its function in modulating cellular apoptosis and senescence.

    Science.gov (United States)

    Lu, Yang; Ma, Wenlong; Li, Zhongwei; Lu, Jun; Wang, Xiuli

    2017-01-25

    Cyclin-dependent kinase inhibitor p16(INK4a) (p16) primarily functions as a negative regulator of the retinoblastoma protein (Rb) -E2F pathway, thus plays critical role in cell cycle progression, cellular senescence and apoptosis. In this study, we showed that the methylation of Arg 138 and the phosphorylation of Ser 140 on p16 were critical for the control of cell proliferation and apoptosis. Compared to wild type p16, mutant p16R138K possessed improved function in preventing cell proliferation and inducing apoptosis, while the Ser 140 mutation (p16S140A) exhibited the opposite alteration. We also demonstrated that H2O2 was able to induce the phosphorylation of p16, which facilitated the interaction between CDK4 (Cyclin-dependent protein kinase) and p16, in 293T (human emborynic kidney) cells. Furthermore, the elevated arginine methylation in p16S140A mutant and increased serine phosphorylation in p16R138K mutant suggest that a antagonizing mechanism coordinating Arg 138 methylation and Ser 140 phosphorylation to regulates p16 function as well as cellular apoptosis and senescence. These findings will therefore contribute to therapeutic treatment for p16-related gene therapy by providing theoretical and experimental evidence.

  10. Manipulating the Lateral Diffusion of Surface-Anchored EGF Demonstrates that Receptor Clustering Modulates its Phosphorylation Levels

    Energy Technology Data Exchange (ETDEWEB)

    Stabley, Daniel [Emory University; Retterer, Scott T [ORNL; Marshal, Stephen [Emory University; Salaita, Khalid [Emory University

    2013-01-01

    Upon activation, the epidermal growth factor (EGF) receptor becomes phosphorylated and triggers a vast signaling network that has profound effects on cell growth. The EGF receptor is observed to assemble into clusters after ligand binding and tyrosine kinase autophosphorylation, but the role of these assemblies in the receptor signaling pathway remains unclear. To address this question, we measured the phosphorylation of EGFR when the EGF ligand was anchored onto laterally mobile and immobile surfaces. We found that cells generated clusters of ligand-receptor complex on mobile EGF surfaces, and generated a lower ratio of phosphorylated EGFR to EGF than when compared to immobilized EGF that is unable to cluster. This result was verified by tuning the lateral assembly of ligand-receptor complexes on the surface of living cells using patterned supported lipid bilayers. Nanoscale metal lines fabricated into the supported membrane constrained lipid diffusion and EGF receptor assembly into micron and sub-micron scale corrals. Single cell analysis indicated that clustering impacts EGF receptor activation, and larger clusters (> 1 m2) of ligand-receptor complex generated lower EGF receptor phosphorylation per ligand than smaller assemblies (< 1 m2) in HCC1143 cells that were engaged to ligand-functionalized surfaces. We investigated EGFR clustering by treating cells with compounds that disrupt the cytoskeleton (Latrunculin-B), clathrin-mediated endocytosis (Pitstop2), and inhibit EGFR activation (Gefitinib). These results help elucidate the nature of large-scale EGFR clustering, thus underscoring the general significance of receptor spatial organization in tuning function.

  11. Expression of VEGF receptors VEFGR-1 and VEGFR-2, angiopoietin receptors Tie-1 and Tie-2 in chorionic villi tree during early pregnancy.

    Directory of Open Access Journals (Sweden)

    Ramazan Demir

    2010-02-01

    Full Text Available The aim of this study was to determine the expression of VEGF and its receptors in placentas from normal pregnancies between 22 days p.c. and 48 days p.c. of very early pregnancy. Placental tissues carried out from 19 pregnant women were examined. Immunohistochemical technique, electron microscopy were employed to evaluate the factors expression. In the new developing mesenchymal villi and immature intermediate villi VEGF and its receptors VEGFR-1 and VEGFR-2 immunoreactivity was detected in all the placental components, while in the stem villi and in the chorionic plate with large vessels only in some components. In the mesenchymal villi and immature intermediate villi VEGFR-1 and -2, and angiopoietin receptors Tie-1 and -2 immunoreactivity was dominantly observed in the heamangiogenic cells and cells cords, whereas the matured villi showed immunoreactivity only in other components. The ultrastructural findings were higher in respect to the all of the early pregnancy days. The placental samples from all of pregnancies, showed the VEGF and its receptors in optimal expression levels, whereas the angiopoietin receptors Tie-1 and -2 showed a higher expression levels in respect to other study factors. The receptors protein levels increased from the early days to the advanced days of gestation, but this alteration was not significant. The intensity of the immunolabeling for these proteins were not significant compared to to each other of gestatin days were examined. These findings demonstrated that a dysregulation of the placental expression of the VEGF and its receptors related to the different degrees of the gestational periods. Probably, this event may be related to complete vasculugenesis and angiogenesis in placental villi.

  12. Procyanidin B2 3,3″-di-O-gallate inhibits endothelial cells growth and motility by targeting VEGFR2 and integrin signaling pathways.

    Science.gov (United States)

    Kumar, Rahul; Deep, Gagan; Wempe, Michael F; Agarwal, Rajesh; Agarwal, Chapla

    2015-01-01

    Targeting angiogenesis, one of the hallmarks of carcinogenesis, using non-toxic phytochemicals has emerged as a translational opportunity for angioprevention and to control advanced stages of malignancy. Herein, we investigated the inhibitory effects and associated mechanism/s of action of Procyanidin B2-3,3″-di- O-gallate (B2G2), a major component of grape seed extract, on human umbilical vein endothelial cells (HUVECs) and human prostate microvascular endothelial cells (HPMECs). Our results showed that B2G2 (10-40 μM) inhibits growth and induces death in both HUVECs and HPMECs. Additional studies revealed that B2G2 causes a G1 arrest in cell cycle progression of HUVECs by down-regulating cyclins (D1 and A), CDKs (Cdk2 and Cdc2) and Cdc25c phosphatase and up-regulating CDK inhibitors (p21 and p27) expression. B2G2 also induced strong apoptotic death in HUVECs through increasing p53, Bax and Smac/Diablo expression while decreasing Bcl-2 and survivin levels. Additionally, B2G2 inhibited the growth factors-induced capillary tube formation in HUVECs and HPMECs. Interestingly, conditioned media (CCM) from prostate cancer (PCA) cells (LNCaP and PC3) grown under normoxic (~21% O2) and hypoxic (1% O2) conditions significantly enhanced the tube formation in HUVECs, which was compromised in presence of conditioned media from B2G2-treated PCA cells. B2G2 also inhibited the motility and invasiveness of both HUVECs and HPMECs. Mechanistic studies showed that B2G2 targets VEGFR2/PI3K/Akt and integrin signaling molecules which are important for endothelial cells survival, proliferation, tube formation and motility. Overall, we report that B2G2 inhibits several attributes of angiogenesis in cell culture; therefore, it warrants further investigation for efficacy for angioprevention and cancer control.

  13. First-in-Human Ultrasound Molecular Imaging With a VEGFR2-Specific Ultrasound Molecular Contrast Agent (BR55) in Prostate Cancer: A Safety and Feasibility Pilot Study.

    Science.gov (United States)

    Smeenge, Martijn; Tranquart, François; Mannaerts, Christophe K; de Reijke, Theo M; van de Vijver, Marc J; Laguna, M Pilar; Pochon, Sibylle; de la Rosette, Jean J M C H; Wijkstra, Hessel

    2017-07-01

    BR55, a vascular endothelial growth factor receptor 2 (VEGFR2)-specific ultrasound molecular contrast agent (MCA), has shown promising results in multiple preclinical models regarding cancer imaging. In this first-in-human, phase 0, exploratory study, we investigated the feasibility and safety of the MCA for the detection of prostate cancer (PCa) in men using clinical standard technology. Imaging with the MCA was performed in 24 patients with biopsy-proven PCa scheduled for radical prostatectomy using a clinical ultrasound scanner at low acoustic power. Safety monitoring was done by physical examination, blood pressure and heart rate measurements, electrocardiogram, and blood sampling. As first-in-human study, MCA dosing and imaging protocol were necessarily fine-tuned along the enrollment to improve visualization. Imaging data were correlated with radical prostatectomy histopathology to analyze the detection rate of ultrasound molecular imaging with the MCA. Imaging with MCA doses of 0.03 and 0.05 mL/kg was adequate to obtain contrast enhancement images up to 30 minutes after administration. No serious adverse events or clinically meaningful changes in safety monitoring data were identified during or after administration. BR55 dosing and imaging were fine-tuned in the first 12 patients leading to 12 subsequent patients with an improved MCA dosing and imaging protocol. Twenty-three patients underwent radical prostatectomy. A total of 52 lesions were determined to be malignant by histopathology with 26 (50%) of them seen during BR55 imaging. In the 11 patients that were scanned with the improved protocol and underwent radical prostatectomy, a total of 28 malignant lesions were determined: 19 (68%) were seen during BR55 ultrasound molecular imaging, whereas 9 (32%) were not identified. Ultrasound molecular imaging with BR55 is feasible with clinical standard technology and demonstrated a good safety profile. Detectable levels of the MCA can be reached in patients

  14. Structural basis for phosphorylated autoinducer-2 modulation of the oligomerization state of the global transcription regulator LsrR from Escherichia coli.

    Science.gov (United States)

    Wu, Minhao; Tao, Yue; Liu, Xiaotian; Zang, Jianye

    2013-05-31

    Quorum-sensing systems are widely used by bacteria to control behavior in response to fluctuations in cell density. Several small diffusible molecules called autoinducers act as signaling molecules in quorum-sensing processes through interplay with sensors. Autoinducers modulate vital physiological functions such as nutrient acquisition, gene transcription, and virulence factor production. In Escherichia coli, LsrR serves as a global transcription regulator that responds to autoinducer-2 to regulate the expression of a variety of genes, including the lsr operon and the lsrR gene. Here, we report the crystal structure of full-length LsrR from E. coli, which has an N-terminal DNA-binding domain and a C-terminal ligand-binding domain connected by a β-strand. Although only two molecules are found in one asymmetric unit, two neighboring dimers pack to form a tetramer that is consistent with the oligomerization state of LsrR in solution. Mutagenesis experiments and gel shift assays indicated that Gln-33 and Tyr-26 might be involved in interactions between LsrR and DNA. The LsrR-binding site for phosphorylated autoinducer-2 was predicted by structural comparisons of LsrR with CggR and SorC. Cross-linking, size exclusion chromatography, and gel shift assays determined that phosphorylated autoinducer-2 triggered the disassembly of the LsrR tetramer into dimers and reduced the DNA binding ability of LsrR. Our findings reveal a mechanism for the change in the oligomerization state of LsrR in the presence of phosphorylated autoinducer-2. Based on these observations, we propose that phosphorylated autoinducer-2 triggers the disassembly of the LsrR tetramer to activate the transcription of its target genes.

  15. Dopaminergic modulation of sodium current in hippocampal neurons via cAMP-dependent phosphorylation of specific sites in the sodium channel alpha subunit.

    Science.gov (United States)

    Cantrell, A R; Smith, R D; Goldin, A L; Scheuer, T; Catterall, W A

    1997-10-01

    Phosphorylation of brain Na+ channel alpha subunits by cAMP-dependent protein kinase (PKA) decreases peak Na+ current in cultured brain neurons and in mammalian cells and Xenopus oocytes expressing cloned brain Na+ channels. We have studied PKA regulation of Na+ channel function by activation of D1-like dopamine receptors in acutely isolated hippocampal neurons using whole-cell voltage-clamp recording techniques. The D1 agonist SKF 81297 reversibly reduced peak Na+ current in a concentration-dependent manner. No changes in the voltage dependence or kinetics of activation or inactivation were observed. This effect was mediated by PKA, as it was mimicked by application of the PKA activator Sp-5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole-3', 5'-monophosphorothioate(cBIMPS) and was inhibited by the specific PKA inhibitor peptide PKAI5-24. cBIMPS had similar effects on type IIA brain Na+ channel alpha subunits expressed in tsA-201 cells, but no effect was observed on a mutant Na+ channel alpha subunit in which serine residues in five PKA phosphorylation sites in the intracellular loop connecting domains I and II (LI-II) had been replaced by alanine. A single mutation, S573A, similarly eliminated cBIMPS modulation. Thus, activation of D1-like dopamine receptors results in PKA-dependent phosphorylation of specific sites in LI-II of the Na+ channel alpha subunit, causing a reduction in Na+ current. Such modulation is expected to exert a profound influence on overall neuronal excitability. Dopaminergic input to the hippocampus from the mesocorticolimbic system may exert this influence in vivo.

  16. Meta-analysis of individual patient safety data from six randomized, placebo-controlled trials with the antiangiogenic VEGFR2-binding monoclonal antibody ramucirumab.

    Science.gov (United States)

    Arnold, D; Fuchs, C; Tabernero, J; Ohtsu, A; Zhu, A X; Garon, E B; Mackey, J R; Paz-Ares, L; Baron, A D; Okusaka, T; Yoshino, T; Yoon, H H; Das, M; Ferry, D; Zhang, Y; Lin, Y; Binder, P; Sashegyi, A; Chau, I

    2017-09-07

    Ramucirumab, the human IgG1 monoclonal antibody receptor antagonist of vascular endothelial growth factor receptor 2 (VEGFR-2), has been approved for treating gastric/gastroesophageal junction, non-small cell lung, and metastatic colorectal cancers. With the completion of 6 global, randomized, double-blind, placebo-controlled, phase 3 trials across multiple tumor types, an opportunity now exists to further establish the safety parameters of ramucirumab across a large patient population. An individual patient meta-analysis across the 6 completed phase 3 trials was conducted and the relative risk (RR) and associated 95% confidence intervals (CI) were derived using fixed-effects or mixed-effects models for all-grade and high-grade adverse events (AEs) possibly related to VEGF pathway inhibition. The number needed to harm (NNH) was also calculable, due to the placebo-controlled nature of all 6 registration standard trials. A total of 4996 treated patients (N = 2748 in the ramucirumab arm, and N = 2248 in the control, placebo arm) were included in this meta-analysis. Arterial thromboembolic events (ATE, all-grade, RR: 0.8, 95% CI 0.5-1.3; high-grade [Grade ≥3], RR: 0.9, 95% CI 0.5-1.7), venous thromboembolic events (VTE, all-grade, RR: 0.7, 95% CI 0.5-1.1; high-grade, RR: 0.7, 95% CI 0.4-1.2), high-grade bleeding (RR: 1.1, 95% CI 0.8-1.5), and high-grade gastrointestinal (GI) bleeding (RR: 1.1, 95% CI 0.7-1.7) did not demonstrate a definite increased risk with ramucirumab. A higher percentage of hypertension, proteinuria, low-grade (Grade 1-2) bleeding, GI perforation, infusion-related reaction and wound-healing complications were observed in the ramucirumab arms compared to control. Ramucirumab may be distinct among antiangiogenic agents in terms of ATE, VTE, high-grade bleeding, or high-grade GI bleeding by showing no clear evidence for an increased risk of these AEs in this meta-analysis of a large and diverse patient population. Ramucirumab is consistent with

  17. The interplay between p16 serine phosphorylation and arginine methylation determines its function in modulating cellular apoptosis and senescence

    OpenAIRE

    Lu, Yang; Ma, Wenlong; Li, Zhongwei; Lu, Jun; Wang, Xiuli

    2017-01-01

    Cyclin-dependent kinase inhibitor p16INK4a (p16) primarily functions as a negative regulator of the retinoblastoma protein (Rb) -E2F pathway, thus plays critical role in cell cycle progression, cellular senescence and apoptosis. In this study, we showed that the methylation of Arg 138 and the phosphorylation of Ser 140 on p16 were critical for the control of cell proliferation and apoptosis. Compared to wild type p16, mutant p16R138K possessed improved function in preventing cell proliferatio...

  18. Construction of anti-VEGFR-2 IgG1 like human antibody and its expression in CHO-k cells%抗VEGFR-2全人源IgG1抗体的构建及其在CHO-k细胞中的表达

    Institute of Scientific and Technical Information of China (English)

    李致科; 何远; 张娟; 解伟; 曹婉璐; 王泽根; 王旻

    2013-01-01

    本文在实验室构建的单链抗体-Fc融合抗体[scFv(AK404R)-Fc]的基础上构建抗VEGFR-2全人源IgG1样全长抗体(Mab-04).利用重叠PCR,获得Mab-04的轻链和重链的核酸序列后分别克隆到真核表达载体pcDNA3.1,获得重组质粒.脂质体法将重组质粒转染至CHO-k细胞,经ProteinA柱纯化细胞培养上清液获得目的蛋白,利用Western blotting检测目的蛋白,ELISA检测Mab-04与抗原亲和力.测序表明重组质粒构建成功,Westem blotting检测显示目的蛋白成功表达(1μg.mL-1),ELISA检测阐明该抗体能与抗原结合并呈浓度依赖性(IC50为50 nmol.L-1),表明Mab-04成功表达并正确装配,为进一步大量制备该抗体及其活性研究打下基础.

  19. SB203580 Modulates p38 MAPK Signaling and Dengue Virus-Induced Liver Injury by Reducing MAPKAPK2, HSP27, and ATF2 Phosphorylation.

    Directory of Open Access Journals (Sweden)

    Gopinathan Pillai Sreekanth

    Full Text Available Dengue virus (DENV infection causes organ injuries, and the liver is one of the most important sites of DENV infection, where viral replication generates a high viral load. The molecular mechanism of DENV-induced liver injury is still under investigation. The mitogen activated protein kinases (MAPKs, including p38 MAPK, have roles in the hepatic cell apoptosis induced by DENV. However, the in vivo role of p38 MAPK in DENV-induced liver injury is not fully understood. In this study, we investigated the role of SB203580, a p38 MAPK inhibitor, in a mouse model of DENV infection. Both the hematological parameters, leucopenia and thrombocytopenia, were improved by SB203580 treatment and liver transaminases and histopathology were also improved. We used a real-time PCR microarray to profile the expression of apoptosis-related genes. Tumor necrosis factor α, caspase 9, caspase 8, and caspase 3 proteins were significantly lower in the SB203580-treated DENV-infected mice than that in the infected control mice. Increased expressions of cytokines including TNF-α, IL-6 and IL-10, and chemokines including RANTES and IP-10 in DENV infection were reduced by SB203580 treatment. DENV infection induced the phosphorylation of p38MAPK, and its downstream signals including MAPKAPK2, HSP27 and ATF-2. SB203580 treatment did not decrease the phosphorylation of p38 MAPK, but it significantly reduced the phosphorylation of MAPKAPK2, HSP27, and ATF2. Therefore, SB203580 modulates the downstream signals to p38 MAPK and reduces DENV-induced liver injury.

  20. A novel angiogenesis inhibitor impairs lovo cell survival via targeting against human VEGFR and its signaling pathway of phosphorylation.

    Science.gov (United States)

    Zhang, Y M; Dai, B L; Zheng, L; Zhan, Y Z; Zhang, J; Smith, W W; Wang, X L; Chen, Y N; He, L C

    2012-10-11

    Colorectal cancer represents the fourth commonest malignancy, and constitutes a major cause of significant morbidity and mortality among other diseases. However, the chemical therapy is still under development. Angiogenesis plays an important role in colon cancer development. We developed HMQ18-22 (a novel analog of taspine) with the aim to target angiogenesis. We found that HMQ18-22 significantly reduced angiogenesis of chicken chorioallantoic membrane (CAM) and mouse colon tissue, and inhibited cell migration and tube formation as well. Then, we verified the interaction between HMQ18-22 and VEGFR2 by AlphaScreen P-VEGFR assay, screened the targets on angiogenesis by VEGF Phospho Antibody Array, validated the target by western blot and RNAi in lovo cells. We found HMQ18-22 could decrease phosphorylation of VEGFR2(Tyr(1214)), VEGFR1(Tyr(1333)), Akt(Tyr(326)), protein kinase Cα (PKCα) (Tyr(657)) and phospholipase-Cγ-1 (PLCγ-1) (Tyr(771)). Most importantly, HMQ18-22 inhibited proliferation of lovo cell and tumor growth in a human colon tumor xenografted model of athymic mice. Compared with normal lovo cells proliferation, the inhibition on proliferation of knockdown cells (VEGFR2, VEGFR1, Akt, PKCα and PLCγ-1) by HMQ18-22 decreased. These results suggested that HMQ18-22 is a novel angiogenesis inhibitor and can be a useful therapeutic candidate for colon cancer intervention.

  1. Vitamin B₂ Sensitizes Cancer Cells to Vitamin-C-Induced Cell Death via Modulation of Akt and Bad Phosphorylation.

    Science.gov (United States)

    Chen, Ni; Yin, Shutao; Song, Xinhua; Fan, Lihong; Hu, Hongbo

    2015-08-01

    Vitamin C is an essential dietary nutrient that has a variety of biological functions. Recent studies have provided promising evidence for its additional health benefits, including anticancer activity. Vitamin B2, another essential dietary nutrient, often coexists with vitamin C in some fruits, vegetables, or dietary supplements. The objective of the present study is to determine whether the combination of vitamin C and B2 can achieve a synergistic anticancer activity. MDA-MB-231, MCF-7, and A549 cells were employed to evaluate the combinatory effects of vitamin C and B2. We found that the combination of vitamin C and B2 resulted in a synergistic cell death induction in all cell lines tested. Further mechanistic investigations revealed that vitamin B2 sensitized cancer cells to vitamin C through inhibition of Akt and Bad phosphorylation. Our findings identified vitamin B2 as a promising sensitizer for improving the efficacy of vitamin-C-based cancer chemoprevention and chemotherapy.

  2. Phosphorylation and subcellular localization of p27Kip1 regulated by hydrogen peroxide modulation in cancer cells.

    Directory of Open Access Journals (Sweden)

    Irene L Ibañez

    Full Text Available The Cyclin-dependent kinase inhibitor 1B (p27Kip1 is a key protein in the decision between proliferation and cell cycle exit. Quiescent cells show nuclear p27Kip1, but this protein is exported to the cytoplasm in response to proliferating signals. We recently reported that catalase treatment increases the levels of p27Kip1 in vitro and in vivo in a murine model. In order to characterize and broaden these findings, we evaluated the regulation of p27Kip1 by hydrogen peroxide (H(2O(2 in human melanoma cells and melanocytes. We observed a high percentage of p27Kip1 positive nuclei in melanoma cells overexpressing or treated with exogenous catalase, while non-treated controls showed a cytoplasmic localization of p27Kip1. Then we studied the levels of p27Kip1 phosphorylated (p27p at serine 10 (S10 and at threonine 198 (T198 because phosphorylation at these sites enables nuclear exportation of this protein, leading to accumulation and stabilization of p27pT198 in the cytoplasm. We demonstrated by western blot a decrease in p27pS10 and p27pT198 levels in response to H(2O(2 removal in melanoma cells, associated with nuclear p27Kip1. Melanocytes also exhibited nuclear p27Kip1 and lower levels of p27pS10 and p27pT198 than melanoma cells, which showed cytoplasmic p27Kip1. We also showed that the addition of H(2O(2 (0.1 µM to melanoma cells arrested in G1 by serum starvation induces proliferation and increases the levels of p27pS10 and p27pT198 leading to cytoplasmic localization of p27Kip1. Nuclear localization and post-translational modifications of p27Kip1 were also demonstrated by catalase treatment of colorectal carcinoma and neuroblastoma cells, extending our findings to these other human cancer types. In conclusion, we showed in the present work that H(2O(2 scavenging prevents nuclear exportation of p27Kip1, allowing cell cycle arrest, suggesting that cancer cells take advantage of their intrinsic pro-oxidant state to favor cytoplasmic localization

  3. Caspase-3-dependent cleavage of Akt modulates tau phosphorylation via GSK3β kinase: implications for Alzheimer's disease.

    Science.gov (United States)

    Chu, J; Lauretti, E; Praticò, D

    2017-01-31

    The pathological hallmark of Alzheimer's disease (AD) is accumulation of misfolded amyloid-β peptides and hyperphosphorylated tau protein in the brain. Increasing evidence suggests that serine-aspartyl proteases-caspases are activated in the AD brain. Previous studies identified a caspase-3 cleavage site within the amyloid-β precursor protein, and a caspase-3 cleavage of tau as the mechanisms involved in the development of Aβ and tau neuropathology, respectively. However, the potential role that caspase-3 could have on tau metabolism remains unknown. In the current studies, we provide experimental evidence that caspase-3 directly and specifically regulates tau phosphorylation, and demonstrate that this effect is mediated by the GSK3β kinase pathway via a caspase-3-dependent cleavage of the protein kinase B (also known as Akt). In addition, we confirm these results in vivo by using a transgenic mouse model of AD. Collectively, our findings demonstrate a new role for caspase-3 in the neurobiology of tau, and suggest that therapeutic strategies aimed at inhibiting this protease-dependent cleavage of Akt may prove beneficial in preventing tau hyperphosphorylation and subsequent neuropathology in AD and related tauopathies.Molecular Psychiatry advance online publication, 31 January 2017; doi:10.1038/mp.2016.214.

  4. Platelet-derived growth factor-DD targeting arrests pathological angiogenesis by modulating glycogen synthase kinase-3beta phosphorylation.

    Science.gov (United States)

    Kumar, Anil; Hou, Xu; Lee, Chunsik; Li, Yang; Maminishkis, Arvydas; Tang, Zhongshu; Zhang, Fan; Langer, Harald F; Arjunan, Pachiappan; Dong, Lijin; Wu, Zhijian; Zhu, Linda Y; Wang, Lianchun; Min, Wang; Colosi, Peter; Chavakis, Triantafyllos; Li, Xuri

    2010-05-14

    Platelet-derived growth factor-DD (PDGF-DD) is a recently discovered member of the PDGF family. The role of PDGF-DD in pathological angiogenesis and the underlying cellular and molecular mechanisms remain largely unexplored. In this study, using different animal models, we showed that PDGF-DD expression was up-regulated during pathological angiogenesis, and inhibition of PDGF-DD suppressed both choroidal and retinal neovascularization. We also demonstrated a novel mechanism mediating the function of PDGF-DD. PDGF-DD induced glycogen synthase kinase-3beta (GSK3beta) Ser(9) phosphorylation and Tyr(216) dephosphorylation in vitro and in vivo, leading to increased cell survival. Consistently, GSK3beta activity was required for the antiangiogenic effect of PDGF-DD targeting. Moreover, PDGF-DD regulated the expression of GSK3beta and many other genes important for angiogenesis and apoptosis. Thus, we identified PDGF-DD as an important target gene for antiangiogenic therapy due to its pleiotropic effects on vascular and non-vascular cells. PDGF-DD inhibition may offer new therapeutic options to treat neovascular diseases.

  5. Estradiol treatment in preadolescent females enhances adolescent spatial memory and differentially modulates hippocampal region-specific phosphorylated ERK labeling.

    Science.gov (United States)

    Wartman, Brianne C; Keeley, Robin J; Holahan, Matthew R

    2012-10-24

    Estrogen levels in rats are positively correlated with enhanced memory function and hippocampal dendritic spine density. There is much less work on the long-term effects of estradiol manipulation in preadolescent rats. The present work examined how injections of estradiol during postnatal days 19-22 (p19-22; preadolescence) affected water maze performance and hippocampal phosphorylated ERK labeling. To investigate this, half of the estradiol- and vehicle-treated female rats were trained on a water maze task 24h after the end of estradiol treatment (p23-27) while the other half was not trained. All female rats were tested on the water maze from p40 to p44 (adolescence) and hippocampal pERK1/2 labeling was assessed as a putative marker of neuronal plasticity. During adolescence, preadolescent-trained groups showed lower latencies than groups without preadolescent training. Retention data revealed lower latencies in both estradiol groups, whether preadolescent trained or not. Immunohistochemical detection of hippocampal pERK1/2 revealed elevations in granule cell labeling associated with the preadolescent trained groups and reductions in CA1 labeling associated with estradiol treatment. These results show a latent beneficial effect of preadolescent estradiol treatment on adolescent spatial performance and suggest an organizational effect of prepubescent exogenously applied estradiol.

  6. Ribosome-dependent ATPase interacts with conserved membrane protein in Escherichia coli to modulate protein synthesis and oxidative phosphorylation.

    Directory of Open Access Journals (Sweden)

    Mohan Babu

    Full Text Available Elongation factor RbbA is required for ATP-dependent deacyl-tRNA release presumably after each peptide bond formation; however, there is no information about the cellular role. Proteomic analysis in Escherichia coli revealed that RbbA reciprocally co-purified with a conserved inner membrane protein of unknown function, YhjD. Both proteins are also physically associated with the 30S ribosome and with members of the lipopolysaccharide transport machinery. Genome-wide genetic screens of rbbA and yhjD deletion mutants revealed aggravating genetic interactions with mutants deficient in the electron transport chain. Cells lacking both rbbA and yhjD exhibited reduced cell division, respiration and global protein synthesis as well as increased sensitivity to antibiotics targeting the ETC and the accuracy of protein synthesis. Our results suggest that RbbA appears to function together with YhjD as part of a regulatory network that impacts bacterial oxidative phosphorylation and translation efficiency.

  7. Structural characterization of the novel aminoglycoside phosphotransferase AphVIII from Streptomyces rimosus with enzymatic activity modulated by phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Boyko, Konstantin M., E-mail: kmb@inbi.ras.ru [Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt. 33, Bld. 2, 119071, Moscow (Russian Federation); National Research Center “Kurchatov Institute”, Kurchatov Complex of NBICS-technologies, Akad. Kurchatova sqr., 1, Moscow, 123182 (Russian Federation); Gorbacheva, Marina A.; Korzhenevskiy, Dmitry A. [National Research Center “Kurchatov Institute”, Kurchatov Complex of NBICS-technologies, Akad. Kurchatova sqr., 1, Moscow, 123182 (Russian Federation); Alekseeva, Maria G.; Mavletova, Dilara A.; Zakharevich, Natalia V.; Elizarov, Sergey M.; Rudakova, Natalia N.; Danilenko, Valery N. [Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, Moscow, 119333 (Russian Federation); Popov, Vladimir O. [Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt. 33, Bld. 2, 119071, Moscow (Russian Federation); National Research Center “Kurchatov Institute”, Kurchatov Complex of NBICS-technologies, Akad. Kurchatova sqr., 1, Moscow, 123182 (Russian Federation)

    2016-09-02

    Aminoglycoside phosphotransferases represent a broad class of enzymes that promote bacterial resistance to aminoglycoside antibiotics via the phosphorylation of hydroxyl groups in the latter. Here we report the spatial structure of the 3′-aminoglycoside phosphotransferase of novel VIII class (AphVIII) solved by X-ray diffraction method with a resolution of 2.15 Å. Deep analysis of APHVIII structure and its comparison with known structures of aminoglycoside phosphotransferases of various types reveals that AphVIII has a typical two-domain fold and, however, possesses some unique characteristics that distinguish the enzyme from its known homologues. The most important difference is the presence of the activation loop with unique Ser146 residue. We demonstrate that in the apo-state of the enzyme the activation loop does not interact with other parts of the enzyme and seems to adopt catalytically competent state only after substrate binding. - Highlights: • 3D structure of the novel aminoglycoside phosphotransferase AphVIII was obtained. • AphVIII activation loop is clearly identified in the electron density. • AphVIII has some unique structural features in its substrate C-ring binding pocket.

  8. Mutations in troponin T associated with Hypertrophic Cardiomyopathy increase Ca(2+)-sensitivity and suppress the modulation of Ca(2+)-sensitivity by troponin I phosphorylation.

    Science.gov (United States)

    Messer, Andrew E; Bayliss, Christopher R; El-Mezgueldi, Mohammed; Redwood, Charles S; Ward, Douglas G; Leung, Man-Ching; Papadaki, Maria; Dos Remedios, Cristobal; Marston, Steven B

    2016-07-01

    We investigated the effect of 7 Hypertrophic Cardiomyopathy (HCM)-causing mutations in troponin T (TnT) on troponin function in thin filaments reconstituted with actin and human cardiac tropomyosin. We used the quantitative in vitro motility assay to study Ca(2+)-regulation of unloaded movement and its modulation by troponin I phosphorylation. Troponin from a patient with the K280N TnT mutation showed no difference in Ca(2+)-sensitivity when compared with donor heart troponin and the Ca(2+)-sensitivity was also independent of the troponin I phosphorylation level (uncoupled). The recombinant K280N TnT mutation increased Ca(2+)-sensitivity 1.7-fold and was also uncoupled. The R92Q TnT mutation in troponin from transgenic mouse increased Ca(2+)-sensitivity and was also completely uncoupled. Five TnT mutations (Δ14, Δ28 + 7, ΔE160, S179F and K273E) studied in recombinant troponin increased Ca(2+)-sensitivity and were all fully uncoupled. Thus, for HCM-causing mutations in TnT, Ca(2+)-sensitisation together with uncoupling in vitro is the usual response and both factors may contribute to the HCM phenotype. We also found that Epigallocatechin-3-gallate (EGCG) can restore coupling to all uncoupled HCM-causing TnT mutations. In fact the combination of Ca(2+)-desensitisation and re-coupling due to EGCG completely reverses both the abnormalities found in troponin with a TnT HCM mutation suggesting it may have therapeutic potential.

  9. Suppression of c-Myc enhances p21(WAF1/CIP1) -mediated G1 cell cycle arrest through the modulation of ERK phosphorylation by ascochlorin.

    Science.gov (United States)

    Jeong, Yun-Jeong; Hoe, Hyang-Sook; Cho, Hyun-Ji; Park, Kwan-Kyu; Kim, Dae-Dong; Kim, Cheorl-Ho; Magae, Junji; Kang, Dong Wook; Lee, Sang-Rae; Chang, Young-Chae

    2017-08-18

    Numerous anti-cancer agents inhibit cell cycle progression via a p53-dependent mechanism; however, other genes such as the proto-oncogene c-Myc are promising targets for anticancer therapy. In the present study, we provide evidence that ascochlorin, an isoprenoid antibiotic, is a non-toxic anti-cancer agent that induces G1 cell cycle arrest and p21(WAF1/CIP1) expression by downregulating of c-Myc protein expression. Ascochlorin promoted the G1 arrest, upregulated p53 and p21(WAF1/CIP1) , and downregulated c-Myc in HCT116 cells. In p53-deficient cells, ascochlorin enhanced the expression of G1 arrest-related genes except p53. Small interfering RNA (siRNA) mediated c-Myc silencing indicated that the transcriptional repression of c-Myc was related to ascochlorin-mediated modulation of p21(WAF1/CIP1) expression. Ascochlorin suppressed the stabilization of the c-Myc protein by inhibiting ERK and P70S6K/4EBP1 phosphorylation, whereas it had no effect on c-Myc degradation mediated by PI3K/Akt/GSK3β. The ERK inhibitor PD98059 and siRNA-mediated ERK silencing induced G1 arrest and p21(WAF1/CIP1) expression by downregulating c-Myc in p53-deficient cells. These results indicated that ascochlorin-induced G1 arrest is associated with the repression of ERK phosphorylation and c-Myc expression. Thus, we reveal a role for ascochlorin in inhibiting tumor growth via G1 arrest, and identify a novel regulatory mechanism for ERK /c-Myc. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Statins reduce amyloid β-peptide production by modulating amyloid precursor protein maturation and phosphorylation through a cholesterol-independent mechanism in cultured neurons.

    Science.gov (United States)

    Hosaka, Ai; Araki, Wataru; Oda, Akiko; Tomidokoro, Yasushi; Tamaoka, Akira

    2013-03-01

    Statins, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, have been reported to attenuate amyloid-β peptide (Aβ) production in various cellular models. However, the mechanisms by which statins affect neuronal Aβ production have not yet been clarified. Here, we investigated this issue in rat primary cortical neurons using two statins, pitavastatin (PV) and atorvastatin (AV). Treatment of neurons with 0.2-2.5 μM PV or AV for 4 days induced a concentration- and time-dependent reduction in the secretion of both Aβ40 and Aβ42. Moreover, Western blot analyses of cell lysates showed that treatment with PV or AV significantly reduced expression levels of the mature form of amyloid precursor protein (APP) and Thr668-phosphorylated APP (P-APP), but not immature form of APP; the decreases in P-APP levels were more notable than those of mature APP levels. The statin treatment did not alter expression of BACE1 (β-site APP-cleaving enzyme 1) or γ-secretase complex proteins (presenilin 1, nicastrin, APH-1, and PEN-2). In neurons overexpressing APP via recombinant adenoviruses, PV or AV similarly reduced Aβ secretion and the levels of mature APP and P-APP. Statins also markedly reduced cellular cholesterol content in neurons in a concentration-dependent manner. Co-treatment with mevalonate reversed the statin-induced decreases in Aβ secretion and mature APP and P-APP levels, whereas co-treatment with cholesterol did not, despite recovery of cellular cholesterol levels. Finally, cell-surface biotinylation experiments revealed that both statins significantly reduced the levels of cell-surface P-APP without changing those of cell surface mature APP. These results suggest that statins reduce Aβ production by selectively modulating APP maturation and phosphorylation through a mechanism independent of cholesterol reduction in cultured neurons.

  11. Modulation of protein phosphorylation, N-glycosylation and Lys-acetylation in grape (Vitis vinifera) mesocarp and exocarp owing to Lobesia botrana infection

    DEFF Research Database (Denmark)

    Melo-Braga, Marcella N; Verano-Braga, Thiago; León, Ileana R

    2012-01-01

    to pathogen infection. Topographical distribution of phosphorylation sites within primary sequences reveal preferential phosphorylation at both the N- and C termini, and a clear preference for C-terminal phosphorylation in response to pathogen infection suggesting induction of region-specific kinase(s). Lys...... resistance response protein 206. This study represents a substantial step toward the understanding of protein and PTMs-mediated plant-pathogen interaction shedding light on the mechanisms underlying the grape infection....

  12. Protein phosphorylation and photorespiration.

    Science.gov (United States)

    Hodges, M; Jossier, M; Boex-Fontvieille, E; Tcherkez, G

    2013-07-01

    Photorespiration allows the recycling of carbon atoms of 2-phosphoglycolate produced by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) oxygenase activity, as well as the removal of potentially toxic metabolites. The photorespiratory pathway takes place in the light, encompasses four cellular compartments and interacts with several other metabolic pathways and functions. Therefore, the regulation of this cycle is probably of paramount importance to plant metabolism, however, our current knowledge is poor. To rapidly respond to changing conditions, proteins undergo a number of different post-translational modifications that include acetylation, methylation and ubiquitylation, but protein phosphorylation is probably the most common. The reversible covalent addition of a phosphate group to a specific amino acid residue allows the modulation of protein function, such as activity, subcellular localisation, capacity to interact with other proteins and stability. Recent data indicate that many photorespiratory enzymes can be phosphorylated, and thus it seems that the photorespiratory cycle is, in part, regulated by protein phosphorylation. In this review, the known phosphorylation sites of each Arabidopsis thaliana photorespiratory enzyme and several photorespiratory-associated proteins are described and discussed. A brief account of phosphoproteomic protocols is also given since the published data compiled in this review are the fruit of this approach.

  13. Modulation of Kv3.1b potassium channel phosphorylation in auditory neurons by conventional and novel protein kinase C isozymes.

    Science.gov (United States)

    Song, Ping; Kaczmarek, Leonard K

    2006-06-02

    In fast-spiking neurons such as those in the medial nucleus of the trapezoid body (MNTB) in the auditory brainstem, Kv3.1 potassium channels are required for high frequency firing. The Kv3.1b splice variant of this channel predominates in the mature nervous system and is a substrate for phosphorylation by protein kinase C (PKC) at Ser-503. In resting neurons, basal phosphorylation at this site decreases Kv3.1 current, reducing neuronal ability to follow high frequency stimulation. We used a phospho-specific antibody to determine which PKC isozymes control serine 503 phosphorylation in Kv3.1b-tranfected cells and in auditory neurons in brainstem slices. By using isozyme-specific inhibitors, we found that the novel PKC-delta isozyme, together with the novel PKC-epsilon and conventional PKCs, contributed to the basal phosphorylation of Kv3.1b in MNTB neurons. In contrast, only PKC-epsilon and conventional PKCs mediate increases in phosphorylation produced by pharmacological activation of PKC in MNTB neurons or by metabotropic glutamate receptor activation in Kv3.1/mGluR1-cotransfected cells. We also measured the time course of dephosphorylation and recovery of basal phosphorylation of Kv3.1b following brief high frequency electrical stimulation of the trapezoid body, and we determined that the recovery process is mediated by both novel PKC-delta and PKC-epsilon isozymes and by conventional PKCs. The association between Kv3.1b and PKC isozymes was confirmed by reciprocal coimmunoprecipitation of Kv3.1b with multiple PKC isozymes. Our results suggest that the Kv3.1b channel is regulated by both conventional and novel PKC isozymes and that novel PKC-delta contributes specifically to the maintenance of basal phosphorylation in auditory neurons.

  14. Modulation of protein phosphorylation, N-glycosylation and Lys-acetylation in grape (Vitis vinifera) mesocarp and exocarp owing to Lobesia botrana infection.

    Science.gov (United States)

    Melo-Braga, Marcella N; Verano-Braga, Thiago; León, Ileana R; Antonacci, Donato; Nogueira, Fábio C S; Thelen, Jay J; Larsen, Martin R; Palmisano, Giuseppe

    2012-10-01

    Grapevine (Vitis vinifera) is an economically important fruit crop that is subject to many types of insect and pathogen attack. To better elucidate the plant response to Lobesia botrana pathogen infection, we initiated a global comparative proteomic study monitoring steady-state protein expression as well as changes in N-glycosylation, phosphorylation, and Lys-acetylation in control and infected mesocarp and exocarp from V. vinifera cv Italia. A multi-parallel, large-scale proteomic approach employing iTRAQ labeling prior to three peptide enrichment techniques followed by tandem mass spectrometry led to the identification of a total of 3059 proteins, 1135 phosphorylation sites, 323 N-linked glycosylation sites and 138 Lys-acetylation sites. Of these, we could identify changes in abundance of 899 proteins. The occupancy of 110 phosphorylation sites, 10 N-glycosylation sites and 20 Lys-acetylation sites differentially changed during L. botrana infection. Sequence consensus analysis for phosphorylation sites showed eight significant motifs, two of which containing up-regulated phosphopeptides (X-G-S-X and S-X-X-D) and two containing down-regulated phosphopeptides (R-X-X-S and S-D-X-E) in response to pathogen infection. Topographical distribution of phosphorylation sites within primary sequences reveal preferential phosphorylation at both the N- and C termini, and a clear preference for C-terminal phosphorylation in response to pathogen infection suggesting induction of region-specific kinase(s). Lys-acetylation analysis confirmed the consensus X-K-Y-X motif previously detected in mammals and revealed the importance of this modification in plant defense. The importance of N-linked protein glycosylation in plant response to biotic stimulus was evident by an up-regulated glycopeptide belonging to the disease resistance response protein 206. This study represents a substantial step toward the understanding of protein and PTMs-mediated plant-pathogen interaction shedding

  15. Modulation of Protein Phosphorylation, N-Glycosylation and Lys-Acetylation in Grape (Vitis vinifera) Mesocarp and Exocarp Owing to Lobesia botrana Infection*

    Science.gov (United States)

    Melo-Braga, Marcella N.; Verano-Braga, Thiago; León, Ileana R.; Antonacci, Donato; Nogueira, Fábio C. S.; Thelen, Jay J.; Larsen, Martin R.; Palmisano, Giuseppe

    2012-01-01

    Grapevine (Vitis vinifera) is an economically important fruit crop that is subject to many types of insect and pathogen attack. To better elucidate the plant response to Lobesia botrana pathogen infection, we initiated a global comparative proteomic study monitoring steady-state protein expression as well as changes in N-glycosylation, phosphorylation, and Lys-acetylation in control and infected mesocarp and exocarp from V. vinifera cv Italia. A multi-parallel, large-scale proteomic approach employing iTRAQ labeling prior to three peptide enrichment techniques followed by tandem mass spectrometry led to the identification of a total of 3059 proteins, 1135 phosphorylation sites, 323 N-linked glycosylation sites and 138 Lys-acetylation sites. Of these, we could identify changes in abundance of 899 proteins. The occupancy of 110 phosphorylation sites, 10 N-glycosylation sites and 20 Lys-acetylation sites differentially changed during L. botrana infection. Sequence consensus analysis for phosphorylation sites showed eight significant motifs, two of which containing up-regulated phosphopeptides (X-G-S-X and S-X-X-D) and two containing down-regulated phosphopeptides (R-X-X-S and S-D-X-E) in response to pathogen infection. Topographical distribution of phosphorylation sites within primary sequences reveal preferential phosphorylation at both the N- and C termini, and a clear preference for C-terminal phosphorylation in response to pathogen infection suggesting induction of region-specific kinase(s). Lys-acetylation analysis confirmed the consensus X-K-Y-X motif previously detected in mammals and revealed the importance of this modification in plant defense. The importance of N-linked protein glycosylation in plant response to biotic stimulus was evident by an up-regulated glycopeptide belonging to the disease resistance response protein 206. This study represents a substantial step toward the understanding of protein and PTMs-mediated plant-pathogen interaction shedding

  16. Phosphorylation of actin-binding protein (ABP-280; filamin) by tyrosine kinase p56lck modulates actin filament cross-linking.

    Science.gov (United States)

    Pal Sharma, C; Goldmann, Wolfgang H

    2004-01-01

    Actin-binding protein (ABP-280; filamin) is a phosphoprotein present in the periphery of the cytoplasm where it can cross-link actin filaments, associate with lipid membranes, and bind to membrane surface receptors. Given its function and localization in the cell, we decided to investigate the possibility of whether it serves as substrate for p56lck, a lymphocyte-specific member of the src family of protein tyrosine kinases associated with cell surface glycoproteins. The interaction of p56lck with membrane glycoproteins is important for cell development and functional activation. Here, we show that purified p56lck interacts and catalyzes in vitro kinase reactions. Tyrosine phosphorylation by p56lck is restricted to a single peptide of labeled ABP-280 shown by protease digest. The addition of phorbol ester to cells results in the inhibition of phosphorylation of ABP-280 by p56lck. These results show a decrease in phosphorylation suggesting conformationally induced regulation. Dynamic light scattering confirmed increased actin filament cross-linking due to phosphorylation of ABP-280 by p56lck.

  17. Modulation of opiate-related signaling molecules in morphine-dependent conditioned behavior: conditioned place preference to morphine induces CREB phosphorylation.

    Science.gov (United States)

    Morón, José A; Gullapalli, Srinivas; Taylor, Chirisse; Gupta, Achla; Gomes, Ivone; Devi, Lakshmi A

    2010-03-01

    Opiate addiction is a chronic, relapsing behavioral disorder where learned associations that develop between the abused opiate and the environment in which it is consumed are brought about through Pavlovian (classical) conditioning processes. However, the signaling mechanisms/pathways regulating the mechanisms that underlie the responses to opiate-associated cues or the development of sensitization as a consequence of repeated context-independent administration of opiates are unknown. In this study we examined the phosphorylation levels of various classic signaling molecules in brain regions implicated in addictive behaviors after acute and repeated morphine administration. An unbiased place conditioning protocol was used to examine changes in phosphorylation that are associated with (1) the expression of the rewarding effects of morphine and (2) the sensitization that develops to this effect. We also examined the effects of a delta-receptor antagonist on morphine-induced conditioned behavior and on the phosphorylation of classic signaling molecules in view of data showing that blockade of delta-opioid receptor (deltaOR) prevents the development of sensitization to the rewarding effects of morphine. We find that CREB phosphorylation is specifically induced upon the expression of a sensitized response to morphine-induced conditioned behavior in brain areas related to memory consolidation, such as the hippocampus and cortex. A similar effect is also observed, albeit to a lesser extent, in the case of the GluR1 subunit of AMPA glutamate receptor. These increases in the phosphorylation levels of CREB and pGluR1 are significantly blocked by pretreatment with a deltaOR antagonist. These results indicate a critical role for phospho-CREB, AMPA, and deltaOR activities in mediating the expression of a sensitized response to morphine-dependent conditioned behavior.

  18. Protein kinase C modulation of the regulation of sarcoplasmic reticular function by protein kinase A-mediated phospholamban phosphorylation in diabetic rats.

    Science.gov (United States)

    Watanuki, Satoko; Matsuda, Naoyuki; Sakuraya, Fumika; Jesmin, Subrina; Hattori, Yuichi

    2004-01-01

    1. The goal of this study was to elucidate the possible mechanisms by which protein kinase A (PKA)-mediated regulation of the sarcoplasmic reticulum (SR) via phospholambin protein phosphorylation is functionally impaired in streptozotocin-induced diabetic rats. 2. Phospholamban (PLB) protein and mRNA levels were 1.3-fold higher in diabetic than in control hearts, while protein expression of cardiac SR Ca(2+)-ATPase (SERCA2a) was unchanged. 3. Basal and isoprenaline-stimulated phosphorylation of PLB at Ser(16) or Thr(17) was unchanged in diabetic hearts. However, stronger immunoreactivity was observed at the basal level in diabetic hearts when antiphosphoserine antibody was used. 4. Basal (32)P incorporation into PLB was significantly higher in diabetic than in control SR vesicles, but the extent of the PKA-mediated increase in PLB phosphorylation was the same in the two groups of vesicles. 5. Stimulation of Ca(2+) uptake by PKA-catalyzed PLB phosphorylation was weaker in diabetic than in control SR vesicles. The PKA-induced increase in Ca(2+) uptake was attenuated when control SR vesicles were preincubated with protein kinase C (PKC). 6. PKC activities were increased by more than two-fold in the membranous fractions from diabetic hearts in comparison with control values, regardless of whether Ca(2+) was present. This was associated with increases in the protein content of PKCdelta, PKCeta, PKCiota, and PKClambda in diabetic membranous fractions. 7. The changes observed in diabetic rats were reversed by insulin therapy. 8. These results suggest that PKA-dependent phosphorylation may incompletely counteract the function of PLB as an inhibitor of SERCA2a activity in diabetes in which PKC expression and activity are enhanced.

  19. 具有血管内皮细胞生长因子受体-2酪氨酸激酶抑制作用的链霉菌次生代谢产物2754R的研究%Study of the secondary metabolite 2754R produced by streptomyces as inhibitor of VEGFR2-CD

    Institute of Scientific and Technical Information of China (English)

    蒋忠科; 张洋; 郭连宏; 姜蓉; 孙承航

    2014-01-01

    Objective To discover antagonists of VEGFR2-CD from the fermentation broth produced by streptomyces strain I06A-02754. Methods Under guidance of ELISA assay against VEGFR2-CD, compound 2754R was isolated and purified by combination of different column chromatographies and HPLC. The structure of compound 2754R was identified by combination of analysis of UV, IR, HR-ESI-MS and 1D-NMR, 2D-NMR. The cytotoxicity of compound 2754R was tested by MTT assay. Results Compound 2754R was purified and structurally identified as Juglomycin group antibiotics, and was the same with Juglomycin D. Compound 2754R showed weak antagonistic activity against VEGFR2-CD by ELISA assay, but did not show obvious cytotoxicity on HepG2 (human hepatocellular carcinoma), BEL-7402 (human hepatocellular carcinoma) and MCF-7 (human breast cancer) cell lines at 10μmol/L. Conclusion It is firstly reported compound 2754R (Juglomycin D) has antagonistic activity against VEGFR2-CD.%目的分离鉴定链霉菌 I06A-02754发酵液中具血管内皮生长因子受体-2酪氨酸激酶(VEGFR2-CD)抑制活性的强极性次生代谢产物。  方法采用大孔吸附树脂、阴离子交换树脂、MPLC、HPLC等分离手段对次生代谢产物进行分离纯化;通过 UV、IR、HR-ESI 质谱、1D-NMR 和2D-NMR 对其结构进行鉴定,以 ELISA 法检测其次生代谢产物对 VEGFR2-CD 的抑制活性;以 MTT 法检测化合物对肿瘤细胞的抑制活性。  结果从发酵液的水溶性部分分离得到一个极性较大的胡桃霉素类次生代谢产物--2754R;其化学结构与胡桃霉素D 一致,对 VEGFR2-CD 表现出一定的抑制活性;MTT 实验显示化合物2754R 对 HepG2细胞、MCF-7细胞和BEL-7402细胞没有明显的抑制活性(IC50>10μmol/L)。  结论化合物2754R 是具有 VEGFR2-CD 活性的胡桃霉素类次生代谢产物。

  20. Homeodomain-interacting Protein Kinase-2 (HIPK2) Phosphorylates HMGA1a at Ser-35, Thr-52, and Thr-77 and Modulates Its DNA Binding Affinity

    OpenAIRE

    Zhang, Qingchun; Wang, Yinsheng

    2007-01-01

    The chromosomal high-mobility group A (HMGA) proteins, comprising of HMGA1a, HMGA1b and HMGA2, play important roles in the regulation of numerous processes in eukaryotic cells, such as transcriptional regulation, DNA repair, RNA processing, and chromatin remodeling. The biological activities of HMGA1 proteins are highly regulated by their post-translational modifications (PTMs), including acetylation, methylation and phosphorylation. Recently, it was found that the homeodomain-interacting pro...

  1. Tpz1-Ccq1 and Tpz1-Poz1 interactions within fission yeast shelterin modulate Ccq1 Thr93 phosphorylation and telomerase recruitment.

    Directory of Open Access Journals (Sweden)

    Jennifer L Harland

    2014-10-01

    Full Text Available In both fission yeast and humans, the shelterin complex plays central roles in regulation of telomerase recruitment, protection of telomeres against DNA damage response factors, and formation of heterochromatin at telomeres. While shelterin is essential for limiting activation of the DNA damage checkpoint kinases ATR and ATM at telomeres, these kinases are required for stable maintenance of telomeres. In fission yeast, Rad3ATR and Tel1ATM kinases are redundantly required for telomerase recruitment, since Rad3ATR/Tel1ATM-dependent phosphorylation of the shelterin subunit Ccq1 at Thr93 promotes interaction between Ccq1 and the telomerase subunit Est1. However, it remained unclear how protein-protein interactions within the shelterin complex (consisting of Taz1, Rap1, Poz1, Tpz1, Pot1 and Ccq1 contribute to the regulation of Ccq1 Thr93 phosphorylation and telomerase recruitment. In this study, we identify domains and amino acid residues that are critical for mediating Tpz1-Ccq1 and Tpz1-Poz1 interaction within the fission yeast shelterin complex. Using separation of function Tpz1 mutants that maintain Tpz1-Pot1 interaction but specifically disrupt either Tpz1-Ccq1 or Tpz1-Poz1 interaction, we then establish that Tpz1-Ccq1 interaction promotes Ccq1 Thr93 phosphorylation, telomerase recruitment, checkpoint inhibition and telomeric heterochromatin formation. Furthermore, we demonstrate that Tpz1-Poz1 interaction promotes telomere association of Poz1, and loss of Poz1 from telomeres leads to increases in Ccq1 Thr93 phosphorylation and telomerase recruitment, and telomeric heterochromatin formation defect. In addition, our studies establish that Tpz1-Poz1 and Tpz1-Ccq1 interactions redundantly fulfill the essential telomere protection function of the shelterin complex, since simultaneous loss of both interactions caused immediate loss of cell viability for the majority of cells and generation of survivors with circular chromosomes. Based on these

  2. Adjusting ammonium uptake via phosphorylation.

    Science.gov (United States)

    Lanquar, Viviane; Frommer, Wolf B

    2010-06-01

    In plants, AMT/MEP/Rh superfamily mediates high affinity ammonium uptake. AMT/MEP transporters form a trimeric complex, which requires a productive interaction between subunits in order to be functional. The AMT/MEP C-terminal domain is highly conserved in more than 700 AMT homologs from cyanobacteria to higher plants with no cases found to be lacking this domain. AMT1;1 exists in active and inactive states, probably controlled by the spatial positioning of the C-terminus. Ammonium triggers the phosphorylation of a conserved threonine residue (T460) in the C-terminus of AMT1;1 in a time- and concentration-dependent manner. The T460 phosphorylation level correlates with a decrease of root ammonium uptake. We propose that ammonium-induced phosphorylation modulates ammonium uptake as a general mechanism to protect against ammonium toxicity.

  3. Phosphorylation of brain proteins in generalized convulsions

    Energy Technology Data Exchange (ETDEWEB)

    Horan, M.P.

    1986-01-01

    Phosphorylation of neuronal proteins is being proposed as a modulating influence on several aspects of neuronal function. By labeling proteins with radioactive phosphorus (/sup 32/P) and then separating these proteins by polyacrylamide gel electrophoresis, the author can determine what factors change the phosphorylation of these proteins. They have used such a system to analyze the effects of generalized convulsions on protein phosphorylation. Electroshock (ES) and pentylenetetrazol (PTZ) were utilized to produce generalized convulsions. Brain membranes, taken from rats immediately after a convulsion, exhibited an increase in protein phosphorylation in vitro. The most noticeable change took place in proteins in the 18,000-20,000 MW range. They have designated these proteins as the low molecular weight (LMW) proteins. The change in phosphorylation was basically the same after one convulsions as after six daily convulsions. Twenty-four hours after a single convulsion no change in phosphorylation was observed. When rat membranes are exposed to PTZ in vitro, phosphorylation is increased at 20 sec but has returned to control level at 90 sec of incubation. This effect is produced without a convulsion. In general, as the concentration of magnesium is increased from 5 mM to 10 mM phosphorylation is increased. Increasing the incubation time from 20 sec to 90 sec and increasing the calcium concentration to 10 mM both decrease phosphorylation of the LMW proteins. Human temporal cortex samples present with phosphorylated proteins having patterns very similar to those in rat membranes.

  4. PSD95 Gene Specific siRNAs Attenuate Neuropathic Pain through Modulating Neuron Sensibility and Postsynaptic CaMKⅡα Phosphorylation

    Institute of Scientific and Technical Information of China (English)

    Le Shen; Xu Li; Nen Chen; Li Xu; Wei Liu; Xue-rong Yu; Yu-guang Huang

    2011-01-01

    Objective To observe the effects of PSD95 gene specific siRNAs on neuropathic pain relief,neuron viability,and postsynaptic calcium/calmodulin-dependent protein kinase Ⅱα (CaMKⅡα) phosphorylation in vitro and in vivo.Methods Gene-specific siRNAs of rat PSD95 were synthesized chemically for transfection.Adult male Sprague-Dawley (SD) rats were randomly divided into 3 groups:naive group (n=6),sham group (n=6),and sciatic nerve chronic constriction injury (CCI) group (n=24).The CCI group was further divided into 4 groups (n=6 in each group),which were pretreated with normal saline,transfection vehicle,negative control siRNAs,and PSD95 gene specific siRNAs respectively.All the subgroups received corresponding agents intrathecally for 3 days,started one day before the CCI of sciatic nerve.Both mechanical allodynia and thermal hyperalgesia were measured on post-operative day 3 and 7.PSD95 gene silenced NG108-15 cells were further stimulated by glutamate,with the cell viability and the expression/phosphorylation of CaMKⅡα measured by MTT cell proliferation assay andWestern blot,respectively.Results The siRNAs decreased PSD95 mRNA level significantly both in vivo and in vitro.Neuropathic pain rats pretreated with PSD95 gene specific siRNAs exhibited significant elevation in the mechanical withdrawal threshold and paw withdrawal thermal latency,without affecting the baseline nociception.PSD95 gene silencing enhanced neuronal tolerance against the glutamate excitotoxicity,meanwhile the phosphorylation of CaMKⅡαThr286 was attenuated.Conclusion Pre-emptive administration of PSD95 gene specific siRNAs may attenuate the central sensitization CaMKⅡα-related signaling cascades,leading to the relief of neuropathic pain.

  5. Cyclin-dependent kinase 5 modulates STAT3 and androgen receptor activation through phosphorylation of Ser⁷²⁷ on STAT3 in prostate cancer cells.

    Science.gov (United States)

    Hsu, Fu-Ning; Chen, Mei-Chih; Lin, Kuan-Chia; Peng, Yu-Ting; Li, Pei-Chi; Lin, Eugene; Chiang, Ming-Ching; Hsieh, Jer-Tsong; Lin, Ho

    2013-10-15

    Cyclin-dependent kinase 5 (Cdk5) is known to regulate prostate cancer metastasis. Our previous results indicated that Cdk5 activates androgen receptor (AR) and supports prostate cancer growth. We also found that STAT3 is a target of Cdk5 in promoting thyroid cancer cell growth, whereas STAT3 may play a role as a regulator to AR activation under cytokine control. In this study, we investigated the regulation of Cdk5 and its activator p35 on STAT3/AR signaling in prostate cancer cells. Our results show that Cdk5 biochemically interacts with STAT3 and that this interaction depends on Cdk5 activation in prostate cancer cells. The phosphorylation of STAT3 at Ser⁷²⁷ (p-Ser⁷²⁷-STAT3) is regulated by Cdk5 in cells and xenograft tumors. The mutant of STAT3 S727A reduces its interaction with Cdk5. We further show that the nuclear distribution of p-Ser⁷²⁷-STAT3 and the expression of STAT3-regulated genes (junB, c-fos, c-myc, and survivin) are regulated by Cdk5 activation. STAT3 mutant does not further decrease cell proliferation upon Cdk5 inhibition, which implies that the role of STAT3 regulated by Cdk5 correlates to cell proliferation control. Interestingly, Cdk5 may regulate the interaction between STAT3 and AR through phosphorylation of Ser⁷²⁷-STAT3 and therefore upregulate AR protein stability and transactivation. Correspondingly, clinical evidence shows that the level of p-Ser⁷²⁷-STAT3 is significantly correlated with Gleason score and the levels of upstream regulators (Cdk5 and p35) as well as downstream protein (AR). In conclusion, this study demonstrates that Cdk5 regulates STAT3 activation through Ser⁷²⁷ phosphorylation and further promotes AR activation by protein-protein interaction in prostate cancer cells.

  6. Pomegranate fruit extract modulates UV-B-mediated phosphorylation of mitogen-activated protein kinases and activation of nuclear factor kappa B in normal human epidermal keratinocytes paragraph sign.

    Science.gov (United States)

    Afaq, Farrukh; Malik, Arshi; Syed, Deeba; Maes, Daniel; Matsui, Mary S; Mukhtar, Hasan

    2005-01-01

    phosphorylation of NF-kappaB/p65 at Ser(536). Taken together, our data shows that PFE protects against the adverse effects of UV-B radiation by inhibiting UV-B-induced modulations of NF-kappaB and MAPK pathways and provides a molecular basis for the photochemopreventive effects of PFE.

  7. Neuropilin-1 modulates vascular endothelial growth factor-induced poly(ADP-ribose)-polymerase leading to reduced cerebrovascular apoptosis.

    Science.gov (United States)

    Mey, Lilli; Hörmann, Mareike; Schleicher, Nadine; Reuter, Peter; Dönges, Simone; Kinscherf, Ralf; Gassmann, Max; Gerriets, Tibo; Al-Fakhri, Nadia

    2013-11-01

    Cerebral ischemia is encompassed by cerebrovascular apoptosis, yet the mechanisms behind apoptosis regulation are not fully understood. We previously demonstrated inhibition of endothelial apoptosis by vascular endothelial growth factor (VEGF) through upregulation of poly(ADP-ribose)-polymerase (PARP) expression. However, PARP overactivation through oxidative stress can lead to necrosis. This study tested the hypothesis that neuropilin-1 (NP-1), an alternative VEGF receptor, regulates the response to cerebral ischemia by modulating PARP expression and, in turn, apoptosis inhibition by VEGF. In endothelial cell culture, NP-1 colocalized with VEGF receptor-2 (VEGFR-2) and acted as its coreceptor. This significantly enhanced VEGF-induced PARP mRNA and protein expression demonstrated by receptor-specific inhibitors and VEGF-A isoforms. NP-1 augmented the inhibitory effect of VEGF/VEGFR-2 interaction on apoptosis induced by adhesion inhibition through the αV-integrin inhibitor cRGDfV. NP-1/VEGFR-2 signal transduction involved JNK and Akt. In rat models of permanent and temporary middle cerebral artery occlusion, the ischemic cerebral hemispheres displayed endothelial and neuronal apoptosis next to increased endothelial NP-1 and VEGFR-2 expression compared to non-ischemic cerebral hemispheres, sham-operated or untreated controls. Increased vascular superoxide dismutase-1 and catalase expression as well as decreased glycogen reserves indicated oxidative stress in the ischemic brain. Of note, protein levels of intact PARP remained stable despite pro-apoptotic conditions through increased PARP mRNA production during cerebral ischemia. In conclusion, NP-1 is upregulated in conditions of imminent cerebrovascular apoptosis to reinforce apoptosis inhibition and modulate VEGF-dependent PARP expression and activation. We propose that NP-1 is a key modulator of VEGF maintaining cerebrovascular integrity during ischemia. Modulating the function of NP-1 to target PARP could help to

  8. Phosphorylation and nuclear transit modulate the balance between normal function and terminal aggregation of the yeast RNA-binding protein Ssd1.

    Science.gov (United States)

    Kurischko, Cornelia; Broach, James R

    2017-09-06

    Yeast Ssd1 is an RNA-binding protein that shuttles between the nucleus and cytoplasm. Ssd1 interacts with its target mRNAs initially during transcription by binding through its N-terminal prion-like domain (PLD) to the C-terminal domain of RNA polymerase II. Ssd1 subsequently targets mRNAs acquired in the nucleus either to daughter cells for translation or to stress granules (SG) and P-bodies (PB) for mRNA storage or decay. Here we show that PB components assist in the nuclear export of Ssd1and subsequent targeting of Ssd1 to PB sites in the cytoplasm. In the absence of import into the nucleus, Ssd1 fails to associate with P-bodies in the cytoplasm but rather is targeted to cytosolic insoluble protein deposits (IPOD). The association of Ssd1 either with IPOD sites or with PB/SG requires the PLD, whose activity is differentially regulated by the Ndr/LATS family kinase, Cbk1: phosphorylation suppresses PB/SG association but enhances IPOD formation. This regulation likely accrues from a phosphorylation sensitive nuclear localization sequence located in the PLD. The results presented here may inform our understanding of aggregate formation by RNA-binding proteins in certain neurological diseases. © 2017 by The American Society for Cell Biology.

  9. Recombinant viral capsid protein VP1 suppresses migration and invasion of human cervical cancer by modulating phosphorylated prohibitin in lipid rafts.

    Science.gov (United States)

    Chiu, Ching-Feng; Peng, Jei-Ming; Hung, Shao-Wen; Liang, Chi-Ming; Liang, Shu-Mei

    2012-07-28

    Recombinant capsid protein VP1 (rVP1) of foot-and-mouth disease virus inhibits invasion/metastasis of cancer cells. Here we studied its mechanism of action on human cervical cancer cells. The inhibition of cell invasion by rVP1 was accompanied with reduction in phosphatidylinositol (3,4,5)-triphosphate (PIP3), phospho-Akt S473, phosphorylated prohibitin (phospho-PHB) T258 in lipid rafts, dissociation of phospho-PHB T258 with Raf-1 and the inactivation of Raf-1/ERK. Addition of PIP3 or overexpression of constitutively active Akt and raft-anchored PHB T258 but not PHB T258I mutant protein reversed the inhibitory effects of rVP1. rVP1 inhibited cervical tumor growth and metastasis, and prolonged survival in xenograft mouse models. These results suggest that rVP1 inhibits cancer metastasis via de-phosphorylation of Akt and PHB T258 in lipid rafts to downregulate Raf/ERK signaling.

  10. Modulation of human gingival fibroblast adhesion, morphology, tyrosine phosphorylation, and ERK 1/2 localization on polished, grooved and SLA substratum topographies.

    Science.gov (United States)

    Kokubu, Eitoyo; Hamilton, Douglas W; Inoue, Takashi; Brunette, Donald M

    2009-12-01

    Attachment of connective tissue to dental implants, which is influenced by surface topography, is an important determinant of implant success. Approaches employed to alter topography include acid etching or blasting to produce roughened surfaces, and production of precisely defined topographies using microfabrication techniques. The aim of this study was to assess the influence of polished, microgrooved, and sand-blasted, large grit, acid-etched (SLA) topographies on fibroblast adhesion, morphology, activation, and ERK 1/2 phosphorylation and localization. Human gingival fibroblasts (HGFs) spread on all tested surfaces within 2 h, and topography influenced the pattern of phosphotyrosine localization. Fibrillar adhesion formation was prominent in HGFs cultured on microgrooves and SLA at 24 h compared with smooth. No significant difference in ERK 1/2 phosphorylation was observed at 2 or 24 h, but nuclear localization depended on culture time and substratum topography. Nuclear localization of ERK 1/2 occurred at 2 h on polished surfaces, but was not evident at 1 week. In contrast, cells on SLA and grooved surfaces did not exhibit nuclear localization of ERK 1/2 at early times, but did at 1 week. The results of this study suggest that rough and microfabricated topographies influence fibroblast adhesion and intracellular signaling through focal adhesion/integrin-dependent mechanisms in a time-dependent manner. Copyright 2008 Wiley Periodicals, Inc.

  11. Marine Compound Catunaregin Inhibits Angiogenesis through the Modulation of Phosphorylation of Akt and eNOS in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Jun-Xiu Liu

    2014-05-01

    Full Text Available Angiogenesis is the formation of blood vessels from pre-existing vasculature. Excessive or uncontrolled angiogenesis is a major contributor to many pathological conditions whereas inhibition of aberrant angiogenesis is beneficial to patients with pathological angiogenesis. Catunaregin is a core of novel marine compound isolated from mangrove associate. The potential anti-angiogenesis of catunaregin was investigated in human umbilical vein endothelial cells (HUVECs and zebrafish. HUVECs were treated with different concentrations of catunaregin in the presence or absence of VEGF. The angiogenic phenotypes including cell invasion cell migration and tube formation were evaluated following catunaregin treatment in HUVECs. The possible involvement of AKT, eNOS and ERK1/2 in catunaregin-induced anti-angiogenesis was explored using Western blotting. The anti-angiogenesis of catunaregin was further tested in the zebrafish embryo neovascularization and caudal fin regeneration assays. We found that catunaregin dose-dependently inhibited angiogenesis in both HUVECs and zebrafish embryo neovascularization and zebrafish caudal fin regeneration assays. In addition, catunaregin significantly decreased the phosphorylation of Akt and eNOS, but not the phosphorylation of ERK1/2. The present work demonstrates that catunaregin exerts the anti-angiogenic activity at least in part through the regulation of the Akt and eNOS signaling pathways.

  12. Marine compound catunaregin inhibits angiogenesis through the modulation of phosphorylation of akt and eNOS in vivo and in vitro.

    Science.gov (United States)

    Liu, Jun-Xiu; Luo, Min-Qi; Xia, Meng; Wu, Qi; Long, Si-Mei; Hu, Yaohua; Gao, Guang-Chun; Yao, Xiao-Li; He, Mian; Su, Huanxing; Luo, Xiong-Ming; Yao, Shu-Zhong

    2014-05-12

    Angiogenesis is the formation of blood vessels from pre-existing vasculature. Excessive or uncontrolled angiogenesis is a major contributor to many pathological conditions whereas inhibition of aberrant angiogenesis is beneficial to patients with pathological angiogenesis. Catunaregin is a core of novel marine compound isolated from mangrove associate. The potential anti-angiogenesis of catunaregin was investigated in human umbilical vein endothelial cells (HUVECs) and zebrafish. HUVECs were treated with different concentrations of catunaregin in the presence or absence of VEGF. The angiogenic phenotypes including cell invasion cell migration and tube formation were evaluated following catunaregin treatment in HUVECs. The possible involvement of AKT, eNOS and ERK1/2 in catunaregin-induced anti-angiogenesis was explored using Western blotting. The anti-angiogenesis of catunaregin was further tested in the zebrafish embryo neovascularization and caudal fin regeneration assays. We found that catunaregin dose-dependently inhibited angiogenesis in both HUVECs and zebrafish embryo neovascularization and zebrafish caudal fin regeneration assays. In addition, catunaregin significantly decreased the phosphorylation of Akt and eNOS, but not the phosphorylation of ERK1/2. The present work demonstrates that catunaregin exerts the anti-angiogenic activity at least in part through the regulation of the Akt and eNOS signaling pathways.

  13. Treatment of colon cancer cells using the cytosine deaminase/5-fluorocytosine suicide system induces apoptosis, modulation of the proteome, and Hsp90beta phosphorylation.

    Science.gov (United States)

    Negroni, Luc; Samson, Michel; Guigonis, Jean-Marie; Rossi, Bernard; Pierrefite-Carle, Valérie; Baudoin, Christian

    2007-10-01

    The bacterial cytosine deaminase (CD) gene, associated with the 5-fluorocytosine (5FC) prodrug, is one of the most widely used suicide systems in gene therapy. Introduction of the CD gene within a tumor induces, after 5FC treatment of the animal, a local production of 5-fluorouracil resulting in intratumor chemotherapy. Destruction of the gene-modified tumor is then followed by the triggering of an antitumor immune reaction resulting in the regression of distant wild-type metastasis. The global effects of 5FC on colorectal adenocarcinoma cells expressing the CD gene were analyzed using the proteomic method. Application of 5FC induced apoptosis and 19 proteins showed a significant change in 5FC-treated cells compared with control cells. The up-regulated and down-regulated proteins include cytoskeletal proteins, chaperones, and proteins involved in protein synthesis, the antioxidative network, and detoxification. Most of these proteins are involved in resistance to anticancer drugs and resistance to apoptosis. In addition, we show that the heat shock protein Hsp90beta is phosphorylated on serine 254 upon 5FC treatment. Our results suggest that activation of Hsp90beta by phosphorylation might contribute to tumor regression and tumor immunogenicity. Our findings bring new insights into the mechanism of the anticancer effects induced by CD/5FC treatment.

  14. Structural model of the circadian clock KaiB-KaiC complex and mechanism for modulation of KaiC phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Pattanayek, Rekha; Williams, Dewight R; Pattanayek, Sabuj; Mori, Tetsuya; Johnson, Carl H; Stewart, Phoebe L; Egli, Martin [Vanderbilt

    2010-03-08

    The circadian clock of the cyanobacterium Synechococcus elongatus can be reconstituted in vitro by the KaiA, KaiB and KaiC proteins in the presence of ATP. The principal clock component, KaiC, undergoes regular cycles between hyper- and hypo-phosphorylated states with a period of ca. 24 h that is temperature compensated. KaiA enhances KaiC phosphorylation and this enhancement is antagonized by KaiB. Throughout the cycle Kai proteins interact in a dynamic manner to form complexes of different composition. We present a three-dimensional model of the S. elongatus KaiB-KaiC complex based on X-ray crystallography, negative-stain and cryo-electron microscopy, native gel electrophoresis and modelling techniques. We provide experimental evidence that KaiB dimers interact with KaiC from the same side as KaiA and for a conformational rearrangement of the C-terminal regions of KaiC subunits. The enlarged central channel and thus KaiC subunit separation in the C-terminal ring of the hexamer is consistent with KaiC subunit exchange during the dephosphorylation phase. The proposed binding mode of KaiB explains the observation of simultaneous binding of KaiA and KaiB to KaiC, and provides insight into the mechanism of KaiB's antagonism of KaiA.

  15. The role of C/EBPβ phosphorylation in modulating membrane phospholipids repairing in LPS-induced human lung/bronchial epithelial cells.

    Science.gov (United States)

    Shu, Shiyu; Xu, Yan; Xie, Ling; Ouyang, Yufang

    2017-09-20

    Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a common critical emergency with high mortality in clinical practice. The key mechanism of ALI/ARDS is that the excessive inflammatory response damages the integrity of alveolar and bronchial cell membrane and thus affects their basic function. Phospholipids are the main component of cell membranes. Phospholipase A2 (PLA2), which catalyzes the cleavage of membrane phospholipids, is the most important inflammatory mediator of ALI. However, clara cell secretory protein 1 (CCSP1), an endogenous PLA2 inhibitor can increase the self-defense of membrane phospholipids. Thus, CCSP1 up-regulation and PLA2 inhibition constitutes an effective method for ensuring the stability of membrane phospholipids and for the treatment of ALI/ARDS. In the present study, we developed an in vitro model of ALI via lipopolysaccharide (LPS) stimulation of a human bronchial epithelial cell line, BEAS-2B, and assessed the mRNA and protein levels of CCSP1 and PLA2 in the model cells. The results demonstrated LPS induction inhibited the transcription and protein expression of CCSP1, but only the protein level of membrane associated PLA2 was increased, suggesting that in the in vitro ALI model, abnormally regulated CCSP1 transcription plays a crucial role in the damage of cell membrane. To find out the reason that CCSP1 expression was decreased in the ALI model, we predicted, by means of bioinformatics, putative transcription factors which would bind to CCSP1 promoter, examined their background and expression, and found that a transcription factor, CCAAT/enhancer binding protein β (C/EBP β), was correlated with the transcription of CCSP1 in the in vitro ALI model, and its phosphorylation in the model was decreased. CHIP-PCR and luciferase reporter assay revealed that C/EBP β bound to CCSP1 promoter and facilitated its transcription. Therefore, we conclude that there is a C/EBP β/CCSP1/PLA2 pathway in the in vitro ALI model. The

  16. Blockade of peripheral P2Y1 receptors prevents the induction of thermal hyperalgesia via modulation of TRPV1 expression in carrageenan-induced inflammatory pain rats: involvement of p38 MAPK phosphorylation in DRGs.

    Science.gov (United States)

    Kwon, Soon-Gu; Roh, Dae-Hyun; Yoon, Seo-Yeon; Moon, Ji-Young; Choi, Sheu-Ran; Choi, Hoon-Seong; Kang, Suk-Yun; Han, Ho-Jae; Beitz, Alvin J; Lee, Jang-Hern

    2014-04-01

    Although previous reports have suggested that P2Y1 receptors (P2Y1Rs) are involved in cutaneous nociceptive signaling, it remains unclear how P2Y1Rs contribute to peripheral sensitization. The current study was designed to delineate the role of peripheral P2Y1Rs in pain and to investigate potential linkages to mitogen-activated protein kinase (MAPK) in DRGs and Transient Receptor Potential Vanilloid 1 (TRPV1) expression in a rodent inflammatory pain model. Following injection of 2% carrageenan into the hind paw, expressions of P2Y1 and TRPV1 and the phosphorylation rates of both p38 MAPK and ERK but not JNK were increased and peaked at day 2 post-injection. Blockade of peripheral P2Y1Rs by the P2Y1R antagonist, MRS2500 injection (i.pl, D0 to D2) significantly reduced the induction of thermal hyperalgesia, but not mechanical allodynia. Simultaneously, MRS2500 injections suppressed upregulated TRPV1 expression and DRG p38 phosphorylation, while pERK signaling was not affected. Furthermore, inhibition of p38 activation in the DRGs by SB203580 (a p38 inhibitor, i.t, D0 to D2) prevented the upregulation of TRPV1 and a single i.t injection of SB203580 reversed the established thermal hyperalgesia, but not mechanical allodynia. Lastly, to identify the mechanism of action of P2Y1Rs, we repeatedly injected the P2Y1 agonist, MRS2365 into the naïve rat's hind paw and observed a dose-dependent increase in TRPV1 expression and p38 MAPK phosphorylation. These data demonstrate a sequential role for P2Y1R, p38 MAPK and TRPV1 in inflammation-induced thermal hyperalgesia; thus, peripheral P2Y1Rs activation modulates p38 MAPK signaling and TRPV1 expression, which ultimately leads to the induction of thermal hyperalgesia.

  17. Antioxidant, DNA interaction, VEGFR2 kinase, topoisomerase I and in vitro cytotoxic activities of heteroleptic copper(II) complexes of tetrazolo[1,5-a]pyrimidines and diimines.

    Science.gov (United States)

    Haleel, A; Mahendiran, D; Veena, V; Sakthivel, N; Rahiman, A Kalilur

    2016-11-01

    A series of heteroleptic mononuclear copper(II) complexes of the type [Cu(L(1-3))(diimine)]ClO4 (1-6) containing three tetrazolo[1,5-a]pyrimidine core ligands, ethyl 5-methyl-7-(2-hydroxyphenyl)-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate (HL(1)), ethyl 5-methyl-7-(4-diethylamino-2-hydroxyphenyl)-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate (HL(2)) or ethyl 5-methyl-7-(2-hydroxy-4-nitrophenyl)-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate (HL(3)), and two diimine coligands, 2,2'-bipyridyl (bpy) or 1,10-phenanthroline (phen) have been synthesized and characterized by spectral methods. The geometry of complexes have been determined with the help of electronic absorption and EPR splitting patterns, which suggest four coordinated square planar geometry around copper(II) ion. The lowering of HOMO-LUMO band gap value of complex 4 implies its higher biological activity compared to other complexes. Antioxidant studies revealed that the complexes possess considerable radical scavenging potency against DPPH. The binding studies of the complexes with calf thymus DNA (CT-DNA) revealed groove mode of binding, which was further supported by docking simulation. The complexes 3 and 4 strongly inhibit the topoisomerase I, and also strongly interact with VEGFR2 kinase receptor via π-π, σ-π and hydrogen bonding interaction. Gel electrophoresis experiments demonstrated the ability of the complexes to cleave plasmid DNA in the absence of activators. In vitro cytotoxic activities of the complexes were examined on three cancerous cell lines such as human lung (A549), cervical (HeLa) and colon (HCT-15), and two normal cells such as human embryonic kidney (HEK) and peripheral blood mononuclear cells (PBMCs). The live cell and fluorescent imaging of cancer cells were observed with acridine orange/ethidium bromide staining assay. All encouraging chemical and biological findings indicate that the complex 4 is a suitable candidate for drug target.

  18. Phospholipase C-related catalytically inactive protein (PRIP regulates lipolysis in adipose tissue by modulating the phosphorylation of hormone-sensitive lipase.

    Directory of Open Access Journals (Sweden)

    Toshiya Okumura

    Full Text Available Phosphorylation of hormone-sensitive lipase (HSL and perilipin by protein kinase A (PKA promotes the hydrolysis of lipids in adipocytes. Although activation of lipolysis by PKA has been well studied, inactivation via protein phosphatases is poorly understood. Here, we investigated whether phospholipase C-related catalytically inactive protein (PRIP, a binding partner for protein phosphatase 1 and protein phosphatase 2A (PP2A, is involved in lipolysis by regulating phosphatase activity. PRIP knockout (PRIP-KO mice displayed reduced body-fat mass as compared with wild-type mice fed with standard chow ad libitum. Most other organs appeared normal, suggesting that mutant mice had aberrant fat metabolism in adipocytes. HSL in PRIP-KO adipose tissue was highly phosphorylated compared to that in wild-type mice. Starvation of wild-type mice or stimulation of adipose tissue explants with the catabolic hormone, adrenaline, translocated both PRIP and PP2A from the cytosol to lipid droplets, but the translocation of PP2A was significantly reduced in PRIP-KO adipocytes. Consistently, the phosphatase activity associated with lipid droplet fraction in PRIP-KO adipocytes was significantly reduced and was independent of adrenaline stimulation. Lipolysis activity, as assessed by measurement of non-esterified fatty acids and glycerol, was higher in PRIP-KO adipocytes. When wild-type adipocytes were treated with a phosphatase inhibitor, they showed a high lipolysis activity at the similar level to PRIP-KO adipocytes. Collectively, these results suggest that PRIP promotes the translocation of phosphatases to lipid droplets to trigger the dephosphorylation of HSL and perilipin A, thus reducing PKA-mediated lipolysis.

  19. A heteroglycan from the cyanobacterium Nostoc commune modulates LPS-induced inflammatory cytokine secretion by THP-1 monocytes through phosphorylation of ERK1/2 and Akt.

    Science.gov (United States)

    Olafsdottir, Astridur; Thorlacius, Gudny Ella; Omarsdottir, Sesselja; Olafsdottir, Elin Soffia; Vikingsson, Arnor; Freysdottir, Jona; Hardardottir, Ingibjorg

    2014-09-25

    Cyanobacteria (blue-green algae) have been consumed as food and used in folk medicine since ancient times to alleviate a variety of diseases. Cyanobacteria of the genus Nostoc have been shown to produce complex exopolysaccharides with antioxidant and antiviral activity. Furthermore, Nostoc sp. are common in cyanolichen symbiosis and lichen polysaccharides are known to have immunomodulating effects. Nc-5-s is a heteroglycan isolated from free-living colonies of Nostoc commune and its structure has been characterized in detail. The aim of this study was to determine the effects of Nc-5-s on the inflammatory response of lipopolysaccharide (LPS)-stimulated human THP-1 monocytes and how the effects are mediated. THP-1 monocytes primed with interferon-γ and stimulated with LPS in the presence of Nc-5-s secreted less of the pro-inflammatory cytokine interleukin (IL)-6 and more of the anti-inflammatory cytokine IL-10 than THP-1 monocytes stimulated without Nc-5-s. In contrast, Nc-5-s increased LPS-induced secretion of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α and IL-8. Nc-5-s decreased LPS-induced phosphorylation of the extracellular regulated kinase (ERK)1/2 and Akt kinase, but did not affect phosphorylation of the p38 kinase, activation of the nuclear factor kappa B pathway, nor DNA binding of c-fos. These results show that Nc-5-s has anti-inflammatory effects on IL-6 and IL-10 secretion by THP-1 monocytes, but its effects are pro-inflammatory when it comes to TNF-α and IL-8. Furthermore, they show that the effects of Nc-5-s may be mediated through the ERK1/2 pathway and/or the Akt/phosphoinositide 3-kinase pathway and their downstream effectors. The ability of Nc-5-s to decrease IL-6 secretion, increase IL-10 secretion and moderate ERK1/2 activation indicates a potential for its development as an anti-inflammatory agent. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Modulation of Muscle Atrophy, Fatigue and MLC Phosphorylation by MuRF1 as Indicated by Hindlimb Suspension Studies on MuRF1-KO Mice

    Directory of Open Access Journals (Sweden)

    Siegfried Labeit

    2010-01-01

    Full Text Available MuRF1 is a member of the TRIM/RBCC superfamily, a gene family that encompasses a large variety of proteins, all sharing the conserved TRIM (Tripartite Motive sequential array of RING, B-box, and coiled-coil domains. Within this family, MuRF1(also named TRIM63 is a specialized member that contributes to the development of muscle atrophy and sarcopenia. Here we studied MuRF1's role in muscle atrophy during muscle unloading induced by hindlimb suspension. Consistent with previous studies, we found that MuRF1 inactivation leads to an attenuated muscle atrophy response. The amount of protection was higher as compared to the denervation model, and within the 10 day-suspension period the soleus muscle was spared from atrophy in MuRF1-KO mice. Contractility studies on hindlimb suspended muscle tissues suggested that MuRF1's functions extend beyond muscle trophicity and implicate MuRF1 in muscle fatigue and MLC phosphorylation control: soleus muscle from MuRF1-KO mice fatigued significantly faster and in addition showed a reduced posttetanic twitch potentiation. Thus the present work further established the role of MuRF1 in muscle atrophy and for the first time shows that MuRF1 plays a role in muscle fatigue and twitch potentiation.

  1. Phosphorylation, nitrosation and plasminogen K3 modulation make VDAC-1 lucid as part of the extrinsic apoptotic pathway-Resulting thesis: Native VDAC-1 indispensible for finalisation of its 3D structure.

    Science.gov (United States)

    Thinnes, Friedrich P

    2015-06-01

    Native and recombinant VDAC preparations differ in their acetylation, phosphorylation and nitrosation state; additionally, proteineous modulators are missing in the latter. They thus vary in channel characteristics, as can be taken from comparative black lipid bilayer experiments. Furthermore, the multi-compartment expression makes expect even differing native VDAC-1 molecules. Recent structural work on mammalian VDAC-1 has only used recombinant material, refolded from Escherichia coli inclusion bodies. While this approach established the basic three-dimensional structure of VDAC-1, a ß-barrel set up by nineteen ß-pleated sheets, dissent is on positioning and movements of its free N-terminal helical peptide stretch preceding ß-pleated sheet-1. A synopsis of data concerning posttranslational modifications, cyto-topology and physiology of native VDAC-1, from my point of view, suggests that the finalisation of its three-dimensional structure will need native channel preparations to be studied. Concerning relevance, recent evidence on the regulation of cell membrane-integrated VDAC-1 by posttranslational modifications and proteineous modulators, taken together with experimental demonstrations that VDAC-1 is involved in cell volume regulation, it thus may be part of the extrinsic apoptotic pathway can hopefully help to understand some relevant medical syndromes, e.g. cystic fibrosis, Alzheimer's disease, autism and malaria.

  2. Protein tyrosine phosphatase SHP-1 sensitizes EGFR/HER-2 positive breast cancer cells to trastuzumab through modulating phosphorylation of EGFR and HER-2

    Directory of Open Access Journals (Sweden)

    Wu YF

    2015-09-01

    on tumorigenicity and trastuzumab sensitivity were confirmed via in vivo xenograft model.Results: Trastuzumab-resistant SKBr-3 cells showed aberrant co-expression of EGFR and HER-2. Introduction of wild-type SHP-1 inhibited cell proliferation, clone formation, and promoted the apoptosis induced by trastuzumab. Meanwhile, SHP-1 overexpression reduced phosphorylation levels of EGFR and HER-2 both in parental and trastuzumab-resistant SKBr-3 cells. In vivo study showed an increased antitumor effect of trastuzumab in SHP-1 overexpressed xenografts. At last, we discovered that SHP-1 can make complexes with both EGFR and HER-2, and both phospho-EGFR and phosphor-HER-2 levels in wild-type SHP-1 immunoprecipitates were less than those in phosphatase-inactive SHP-1 (C453S immunoprecipitates, indicating that EGFR and HER-2 are potential substrates of SHP-1.Conclusion: Taken together, we have demonstrated that the SHP-1 is a negative regulatory factor of the tyrosine kinase activity of HER-2 and EGFR through inhibiting phosphorylation. Dual targeting of EGFR and HER-2, by combining trastuzumab with SHP-1 overexpression, may improve response in HER-2 overexpressing breast cancer cells that also express high levels of EGFR. Keywords: breast cancer, trastuzumab, EGFR, HER-2, SHP-1, drug resistance 

  3. Modulation of calcium oxalate dihydrate growth by selective crystal-face binding of phosphorylated osteopontin and polyaspartate peptide showing occlusion by sectoral (compositional) zoning.

    Science.gov (United States)

    Chien, Yung-Ching; Masica, David L; Gray, Jeffrey J; Nguyen, Sarah; Vali, Hojatollah; McKee, Marc D

    2009-08-28

    Calcium oxalate dihydrate (COD) mineral and the urinary protein osteopontin/uropontin (OPN) are commonly found in kidney stones. To investigate the effects of OPN on COD growth, COD crystals were grown with phosphorylated OPN or a polyaspartic acid-rich peptide of OPN (DDLDDDDD, poly-Asp(86-93)). Crystals grown with OPN showed increased dimensions of the {110} prismatic faces attributable to selective inhibition at this crystallographic face. At high concentrations of OPN, elongated crystals with dominant {110} faces were produced, often with intergrown, interpenetrating twin crystals. Poly-Asp(86-93) dose-dependently elongated crystal morphology along the {110} faces in a manner similar to OPN. In crystal growth studies using fluorescently tagged poly-Asp(86-93) followed by imaging of crystal interiors using confocal microscopy, sectoral (compositional) zoning in COD was observed resulting from selective binding and incorporation (occlusion) of peptide exclusively into {110} crystal sectors. Computational modeling of poly-Asp(86-93) adsorption to COD {110} and {101} surfaces also suggests increased stabilization of the COD {110} surface and negligible change to the natively stable {101} surface. Ultrastructural, colloidal-gold immunolocalization of OPN by transmission electron microscopy in human stones confirmed an intracrystalline distribution of OPN. In summary, OPN and its poly-Asp(86-93) sequence similarly affect COD mineral growth; the {110} crystallographic faces become enhanced and dominant attributable to {110} face inhibition by the protein/peptide, and peptides can incorporate into the mineral phase. We, thus, conclude that the poly-Asp(86-93) domain is central to the OPN ability to interact with the {110} faces of COD, where it binds to inhibit crystal growth with subsequent intracrystalline incorporation (occlusion).

  4. MicroRNA-34a modulates genes involved in cellular motility and oxidative phosphorylation in neural precursors derived from human umbilical cord mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Wang Tao-Yeuan

    2011-09-01

    Full Text Available Abstract Background Mesenchymal stem cell (MSC found in bone marrow (BM-MSCs and the Wharton's jelly matrix of human umbilical cord (WJ-MSCs are able to transdifferentiate into neuronal lineage cells both in vitro and in vivo and therefore hold the potential to treat neural disorders such as stroke or Parkinson's disease. In bone marrow MSCs, miR-130a and miR-206 have been show to regulate the synthesis of neurotransmitter substance P in human mesenchymal stem cell-derived neuronal cells. However, how neuronal differentiation is controlled in WJ-MSC remains unclear. Methods WJ-MSCs were isolated from human umbilical cords. We subjected WJ-MSCs into neurogenesis by a published protocol, and the miRNome patterns of WJ-MSCs and their neuronal progenitors (day 9 after differentiation were analyzed by the Agilent microRNA microarray. Results Five miRNAs were enriched in WJ-MSCs, including miR-345, miR-106a, miR-17-5p, miR-20a and miR-20b. Another 11 miRNAs (miR-206, miR-34a, miR-374, miR-424, miR-100, miR-101, miR-323, miR-368, miR-137, miR-138 and miR-377 were abundantly expressed in transdifferentiated neuronal progenitors. Among these miRNAs, miR-34a and miR-206 were the only 2 miRNAs been linked to BM-MSC neurogenesis. Overexpressing miR-34a in cells suppressed the expression of 136 neuronal progenitor genes, which all possess putative miR-34a binding sites. Gene enrichment analysis according to the Gene Ontology database showed that those 136 genes were associated with cell motility, energy production (including those with oxidative phosphorylation, electron transport and ATP synthesis and actin cytoskeleton organization, indicating that miR-34a plays a critical role in precursor cell migration. Knocking down endogenous miR-34a expression in WJ-MSCs resulted in the augment of WJ-MSC motility. Conclusions Our data suggest a critical role of miRNAs in MSC neuronal differentiation, and miR-34a contributes in neuronal precursor motility, which may

  5. Transduction of the light signal during complementary chromatic adaptation in the cyanobacterium Calothrix sp. PCC 7601: DNA-binding proteins and modulation by phosphorylation.

    Science.gov (United States)

    Sobczyk, A; Schyns, G; Tandeau de Marsac, N; Houmard, J

    1993-03-01

    The cyanobacterium Calothrix sp. PCC 7601 can adapt its pigment content in response to changes in the incident light wavelength. It synthesizes, as major light-harvesting pigments, either phycocyanin 2 (PC2, encoded by the cpc2 operon) under red light or phycoerythrin (PE, encoded by the cpeBA operon) under green light conditions. The last step of the signal transduction pathway is characterized by a transcriptional control of the expression of these operons. Partially purified protein extracts were used in gel retardation assays and DNase I footprinting experiments to identify the factors that interact with the promoter region of the cpeBA operon. We found that two proteins, RcaA and RcaB, only detected in extracts of cells grown under green light, behave as positive transcriptional factors for the expression of the cpeBA operon. Treatment of the fractions containing RcaA and RcaB with alkaline phosphatase prevents the binding of RcaA but not of RcaB to the cpeBA promoter region. A post-translational modification of RcaA thus modulates its affinity for DNA.

  6. Bryostatin induces protein kinase C modulation, Mcl-1 up-regulation and phosphorylation of Bcl-2 resulting in cellular differentiation and resistance to drug-induced apoptosis in B-cell chronic lymphocytic leukemia cells.

    Science.gov (United States)

    Thomas, Alun; Pepper, Chris; Hoy, Terry; Bentley, Paul

    2004-05-01

    Bryostatin, a macrocyclic lactone and protein kinase C (PKC) modulator, has been shown to have differentiation and anti-tumor activity against several leukemia cell lines in vitro. In this study, we demonstrated Bryostatin-induced differentiation in B-cell chronic lymphocytic leukemia (B-CLL) cells, characterized by an increase in cell size and a marked up-regulation of CD11c expression. The specific inhibitors of the extracellular signal-regulated kinase (ERK) and protein kinase C pathways, PD98059 and GF 109203X respectively, each completely blocked Bryostatin-induced differentiation of B-CLL cells, suggesting that activation of the ERK pathway plays a direct role in this process in a PKC-dependent manner. Furthermore, Bryostatin reduced both spontaneous and drug-induced apoptosis with chlorambucil, fludarabine and 2-chloro-2'-deoxyadenosine (2-Cda) in B-CLL cells. This resistance was associated with an early up-regulation of the anti-apoptotic protein Mcl-1 and post-translational phosphorylation of Bcl-2 at serine 70. The anti-apoptotic effects of Bryostatin were abrogated by GF 109203X, and to a lesser extent by the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, LY294002. Interestingly, the ERK inhibitor, PD98059 inhibited Mcl-1 expression but had little effect on Bryostatin-induced survival suggesting that the ERK pathway predominantly affects differentiation. Taken together these results present an explanation for Bryostatin-induced B-CLL cell survival in which modulation of the PKC pathway couples differentiation with an increase in antiapoptotic protein expression and calls into question the rationale for its use in the treatment of B-CLL.

  7. 靶向超声微泡对结肠癌新生血管分子成像的实验研究%Molecular imaging of tumor angiogenesis with VEGFR2 targeting microbubbles in colon cancer bearing nude mice

    Institute of Scientific and Technical Information of China (English)

    位红芹; 何洁; 杨莉; 纪丽景; 张霞; 王冬晓; 文戈; 谷英士; 李颖嘉

    2013-01-01

    used for UMI of tumor angiogenesis.%目的 探讨以VEGFR2 (kinase insert domain receptor,KDR)为靶点的靶向超声微泡对裸鼠结肠癌新生血管的成像效果.方法 以生物素-亲和素桥接法将特异性结合VEGF主要受体KDR的小肽K237与脂质微泡耦联构建靶向微泡,用同样方法将对照肽与脂质微泡耦联,构建对照微泡.以KDR阴性表达的人结肠癌LS174T细胞株建立人结肠癌裸鼠移植瘤模型.12只荷瘤鼠经尾静脉随机先后注射靶向微泡、对照微泡,2种微泡注射间隔30 min.注射靶向微泡后5 min和注射对照微泡后5 min荷瘤鼠均行超声造影检查,观察各组微泡在肿瘤组织造影增强情况,测量肿瘤组织的声强度(Ⅵ).另取6只荷瘤鼠预先注射K237肽后再注射靶向微泡,观察微泡的成像效果.靶向微泡组、对照微泡组、小肽预先封闭组肿瘤组织的Ⅵ值比较采用单因素方差分析,组间多重比较采用最小显著性差异t检验.用免疫组织化学技术检测KDR在肿瘤组织表达及分布规律.结果 成功制备了靶向微泡.注射超声微泡后5 min超声检查显示靶向微泡组肿瘤组织超声造影明显增强,对照微泡组及小肽预先封闭组仅见轻度的超声造影增强.3组Ⅵ值差异有统计学意义(F=39.130,P<0.01).靶向微泡组与对照微泡组Ⅵ值差异有统计学意义(30.18±9.56与8.28±4.74,t=6.91,P<0.01);小肽预先封闭组Ⅵ值与靶向微泡组差异有统计学意义(9.23±3.44与30.18±9.56,t =4.91,P<0.01).免疫组织化学结果显示,荷瘤鼠结肠癌新生血管内皮细胞KDR表达较正常组织血管内皮细胞KDR表达显著增加.结论 以KDR为靶点的靶向超声微泡可以与荷瘤鼠肿瘤新生血管内皮特异性黏附并有效评价肿瘤新生血管形成.

  8. β肾上腺素受体和血管内皮生长因子受体在婴幼儿血管瘤组织中的表达%The expression and significance of β2-AR and VEGFR-2 in infantile hemangioma

    Institute of Scientific and Technical Information of China (English)

    徐广琪; 牛静静; 吕仁荣; 周生儒; 霍然

    2014-01-01

    目的 检测不同时期婴幼儿血管瘤组织中β肾上腺素受体-2和血管内皮生长因子受体-2的表达,并探讨两者在血管瘤的病理演变过程中的意义.方法 按照Mulliken分类法将血管瘤分为三期:增生期(<12个月)32例,消退期(13 ~ 60个月)17例和消退完成期(61个月至12岁)11例;另收集7例瘤旁正常皮肤作为对照.通过免疫组化法检测增生期、消退期、消退完成期婴幼儿血管瘤组织中β肾上腺素受体-2和血管内皮生长因子受体-2的表达情况,并利用计算机图像分析技术(Image Pro Plus 6.0软件)测量平均吸光度值.数据统计以均数±标准差表示,采用SPSS16.0软件对定量结果进行单因素方差分析.结果 β肾上腺素受体-2在增生期血管瘤呈强阳性表达、消退期呈阳性表达、消退完成期呈弱阳性表达,在各期平均吸光度值分别为0.064 751 2±0.012 747、0.031 601 7±0.006 848、0.011 869 8±0.039 349;血管内皮生长因子受体-2在血管瘤增生期呈强阳性表达、消退期呈阳性表达、消退完成期呈弱阳性表达,在各期平均吸光度值分别为0.068 940 9±0.029 274、0.028 445 5±0.006 396、0.011 184 1±0.004 198;各期之间差异有统计学意义(P <0.05);β肾上腺素受体-2与血管内皮细胞生长因子受体-2平均吸光度值的相关性分析具有统计学意义(P<0.05).结论 β肾上腺素受体-2和血管内皮生长因子受体-2可能参与了血管瘤发生、发展及消退的病理过程.%Objective To investigate the significance of β-adrenergic receptor 2 (β2-AR) and vascular endothelial growth factor-2 (VEGFR-2) in the occurrence and development of infantile hemangioma through detecting the expression of β2-AR and VEGFR-2 in the different stages of infantile hemangiomas.Methods According to the Mulliken's classification standard,we classified the specimens as proliferating group (32 cases),involuting group (17 cases) and involuted group (11 cases

  9. VEGF and Pleiotrophin Modulate the Immune Profile of Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, Kristi D.; Roland, Christina L. [Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8593 (United States); Brekken, Rolf A., E-mail: rolf.brekken@utsouthwestern.edu [Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8593 (United States); Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8593 (United States)

    2010-05-26

    Angiogenesis, the sprouting of the existing vascular network to form new vessels, is required for the growth of solid tumors. For this reason, the primary stimulant of angiogenesis, vascular endothelial growth factor-A (VEGF), is an attractive target for tumor therapy. In fact, there are currently numerous anti-VEGF therapies in clinical development for the treatment of various cancers, including breast cancer. VEGF signals through two primary VEGF receptors, VEGFR1 and VEGFR2. VEGFR2 is the primary angiogenic receptor, and VEGFR1 has been implicated in macrophage chemotaxis and tumor cell survival and invasion. It has only been appreciated recently that the VEGFRs are expressed not only on endothelial cells and tumor cells but also on many host immune cells. Therefore, to better understand the effects of anti-VEGF therapy it is important to consider the effects of VEGF on all cells in the tumor microenvironment, including immune cells. Bevacizumab (Avastin{sup ®}, Genetech), which binds VEGF and inhibits interaction with VEGFR1 and VEGFR2, was approved for the treatment of metastatic HER2/NEU-negative breast cancer in 2008, however, the majority of human mammary tumors are either innately resistant or will acquire resistance to anti-VEGF therapy. This suggests that these tumors activate alternate angiogenesis pathways. Pleiotrophin (PTN) is an important angiogenic cytokine in breast cancer and is expressed at high levels in approximately 60% of human breast tumors. PTN functions as an angiogenic factor and promotes remodeling of the tumor microenvironment as well as epithelial-mesenchymal transition (EMT). In addition, PTN can have profound effects on macrophage phenotype. The present review focuses on the functions of VEGF and PTN on immune cell infiltration and function in breast cancer. Furthermore, we will discuss how anti-VEGF therapy modulates the immune cell profile.

  10. The Neuroprotective Effect of Lithium in cannabinoid Dependence is Mediated through Modulation of Cyclic AMP, ERK1/2 and GSK-3β Phosphorylation in Cerebellar Granular Neurons of Rat

    Science.gov (United States)

    Rahimi, Hamid Reza; Ghahremani, Mohammad Hossein; Dehpour, Ahmad Reza; Sharifzadeh, Mohammad; Ejtemaei-Mehr, Shahram; Razmi, Ali; Ostad, Seyed Nasser

    2015-01-01

    Lithium (Li), a glycogen synthase kinase-3β (GSK-3β) inhibitor, has used to attenuate the cannabinoid-induced dependence/withdrawal signs, but molecular mechanisms related to this are unclear. Recent studies indicate the involvement of upstream extracellular signal kinase1/2 (ERK1/2) and downstream GSK-3β pathways in the development of cannabinoid-induced dependence. This is mediated through cannabinoid receptor 1 (CB1) enriched in cerebellar granular neurons (CGNs). Accordingly, the present study aimed to investigate the mechanism of modulatory/neuroprotective effects of Li on a cannabinoid agonist (WIN 55,212-2 (WIN))-induced dependence, through quantitative analysis of some involved proteins such as ERK1/2, GSK-3β and related signaling pathways including their phosphorylated forms; and cAMP level as the other molecular mechanisms leading to dependence, in CGNs model. The CGNs were prepared from 7-day-old Wistar rat pup in a 12-well plate, pretreated with Li (1mM) and an ERK1/2 inhibitor SL327 (SL, 10 µM). The WIN (1 µM) was added 30 minutes prior to treatment and AM251 (AM, 1 µM), as a cannabinoid antagonist was co-treated with WIN. The cAMP level, as an indicator of cannabinoid-induced dependence, was measured by ELISA following forskolin (FSK) stimulation. Western blot analyses determined the phosphorylated forms of ERK1/2 (p-ERK1/2), GSK-3β (p-GSK-3β) as well as their total expressions in various treatment times and doses in CGNs. WIN alone could down regulate the cAMP/p-ERK1/2 cascade compared to AM treatment. However, P-GSK-3β was up-regulated with Li and WIN or with SL and Li pretreatment to AM-induced cellular response, which was the highest 60 minutes after CGNs exposure. Results further suggested the potential role of Li pretreatment to diminish the development of cannabinoid-induced dependence/neuronal injury through possible mechanisms of modulating the cAMP/p-ERK1/2 cascade independent of p-GSK-3β signaling pathway in-vitro. PMID:26664379

  11. Phosphorylation and gene expression of p53 are not affected in human cells exposed to 2.1425 GHz band CW or W-CDMA modulated radiation allocated to mobile radio base stations.

    Science.gov (United States)

    Hirose, H; Sakuma, N; Kaji, N; Suhara, T; Sekijima, M; Nojima, T; Miyakoshi, J

    2006-09-01

    A large-scale in vitro study focusing on low-level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system was conducted to test the hypothesis that modulated RF fields induce apoptosis or other cellular stress response that activate p53 or the p53-signaling pathway. First, we evaluated the response of human cells to microwave exposure at a specific absorption rate (SAR) of 80 mW/kg, which corresponds to the limit of the average whole-body SAR for general public exposure defined as a basic restriction by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. Second, we investigated whether continuous wave (CW) and wideband code division multiple access (W-CDMA) modulated signal RF fields at 2.1425 GHz induced apoptosis or any signs of stress. Human glioblastoma A172 cells were exposed to W-CDMA radiation at SARs of 80, 250, and 800 mW/kg, and CW radiation at 80 mW/kg for 24 or 48 h. Human IMR-90 fibroblasts from fetal lungs were exposed to both W-CDMA and CW radiation at a SAR of 80 mW/kg for 28 h. Under the RF field exposure conditions described above, no significant differences in the percentage of apoptotic cells were observed between the test groups exposed to RF signals and the sham-exposed negative controls, as evaluated by the Annexin V affinity assay. No significant differences in expression levels of phosphorylated p53 at serine 15 or total p53 were observed between the test groups and the negative controls by the bead-based multiplex assay. Moreover, microarray hybridization and real-time RT-PCR analysis showed no noticeable differences in gene expression of the subsequent downstream targets of p53 signaling involved in apoptosis between the test groups and the negative controls. Our results confirm that exposure to low-level RF signals up to 800 mW/kg does not induce p53-dependent apoptosis, DNA damage, or other stress response in human

  12. Modulation of tau phosphorylation by environmental copper

    OpenAIRE

    Voss, Kellen; Harris, Christopher; Ralle, Martina; Duffy, Megan; Murchison, Charles; Joseph F. Quinn

    2014-01-01

    Background The transition metal copper enhances amyloid β aggregation and neurotoxicity, and in models of concomitant amyloid and tau pathology, copper also promotes tau aggregation. Since it is not clear if the effects of environmental copper upon tau pathology are dependent on the presence of pathological amyloid β, we tested the effects of copper overload and complexing in disease models which lack pathological amyloid β. Methods We used cell culture and transgenic murine models to test th...

  13. Kinetic analyses of phosphorylated and non-phosphorylated eIFiso4E binding to mRNA cap analogues.

    Science.gov (United States)

    Khan, Mateen A; Goss, Dixie J

    2017-08-08

    Phosphorylation of eukaryotic initiation factors was previously shown to interact with m(7)G cap and play an important role in the regulation of translation initiation of protein synthesis. To gain further insight into the phosphorylation process of plant protein synthesis, the kinetics of phosphorylated wheat eIFiso4E binding to m(7)G cap analogues were examined. Phosphorylation of wheat eIFiso4E showed similar kinetic effects to human eIF4E binding to m(7)-G cap. Phosphorylation of eIFiso4E decreased the kinetic rate (2-fold) and increased the dissociation rate (2-fold) as compared to non-phosphorylated eIFiso4E binding to both mono- and di-nucleotide analogues at 22°C. Phosphorylated and non-phosphorylated eIFiso4E-m(7)G cap binding rates were found to be independent of concentration, suggesting conformational changes were rate limiting. Rate constant for phosphorylated and non-phosphorylated eIFiso4E binding to m(7)-G cap increased with temperature. Phosphorylation of eIFiso4E decreased (2-fold) the activation energy for both m(7)-G cap analogues binding as compared to non-phosphorylated eIFiso4E. The reduced energy barrier for the formation of eIFiso4E-m(7)-G cap complex suggests a more stable platform for further initiation complex formation and possible means of adapting variety of environmental conditions. Furthermore, the formation of phosphorylated eIFiso4E-cap complex may contribute to modulation of the initiation of protein synthesis in plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Dependence on phosphoinositide 3-kinase and RAS-RAF pathways drive the activity of RAF265, a novel RAF/VEGFR2 inhibitor, and RAD001 (Everolimus) in combination.

    Science.gov (United States)

    Mordant, Pierre; Loriot, Yohann; Leteur, Céline; Calderaro, Julien; Bourhis, Jean; Wislez, Marie; Soria, Jean-Charles; Deutsch, Eric

    2010-02-01

    Activation of phosphatidylinositol-3-kinase (PI3K)-AKT and Kirsten rat sarcoma viral oncogene homologue (KRAS) can induce cellular immortalization, proliferation, and resistance to anticancer therapeutics such as epidermal growth factor receptor inhibitors or chemotherapy. This study assessed the consequences of inhibiting these two pathways in tumor cells with activation of KRAS, PI3K-AKT, or both. We investigated whether the combination of a novel RAF/vascular endothelial growth factor receptor inhibitor, RAF265, with a mammalian target of rapamycin (mTOR) inhibitor, RAD001 (everolimus), could lead to enhanced antitumoral effects in vitro and in vivo. To address this question, we used cell lines with different status regarding KRAS, PIK3CA, and BRAF mutations, using immunoblotting to evaluate the inhibitors, and MTT and clonogenic assays for effects on cell viability and proliferation. Subcutaneous xenografts were used to assess the activity of the combination in vivo. RAD001 inhibited mTOR downstream signaling in all cell lines, whereas RAF265 inhibited RAF downstream signaling only in BRAF mutant cells. In vitro, addition of RAF265 to RAD001 led to decreased AKT, S6, and Eukaryotic translation initiation factor 4E binding protein 1 phosphorylation in HCT116 cells. In vitro and in vivo, RAD001 addition enhanced the antitumoral effect of RAF265 in HCT116 and H460 cells (both KRAS mut, PIK3CA mut); in contrast, the combination of RAF265 and RAD001 yielded no additional activity in A549 and MDAMB231 cells. The combination of RAF and mTOR inhibitors is effective for enhancing antitumoral effects in cells with deregulation of both RAS-RAF and PI3K, possibly through the cross-inhibition of 4E binding protein 1 and S6 protein.

  15. Phosphorylated testis-specific serine/threonine kinase 4 may phosphorylate Crem at Ser-117.

    Science.gov (United States)

    Fu, Guolong; Wei, Youheng; Wang, Xiaoli; Yu, Long

    2016-06-01

    We aimed to investigate the internal existence status of testis-specific serine/threonine kinase 4 (Tssk4) and the interaction of Tssk4 and Cre-responsive element modulator (Crem). The internal existence status of Tssk4 in testis of mice was detected using western blotting and dephosphorylation method. The interaction of Tssk4 and Crem was analyzed by western blotting, immunohistochemistry, immunofluorescence, in vitro co-immunoprecipitation assays, and in vitro kinase assay. The results revealed that Tssk4 existed in testis both in phosphorylation and unphosphorylation status by a temporal manner with the development of testis. Immunofluorescence results showed that Tssk4 had identical distribution pattern with Crem in testis, which was utterly different to the localization of Cre-responsive element binding (Creb). In conclusion, our study demonstrated that phosphorylated Tssk4 might participate in testis genes expressions by phosphorylating Crem at Ser-117.

  16. Determination of GPCR Phosphorylation Status: Establishing a Phosphorylation Barcode.

    Science.gov (United States)

    Prihandoko, Rudi; Bradley, Sophie J; Tobin, Andrew B; Butcher, Adrian J

    2015-06-01

    G protein-coupled receptors (GPCRs) are rapidly phosphorylated following agonist occupation in a process that mediates receptor uncoupling from its cognate G protein, a process referred to as desensitization. In addition, this process provides a mechanism by which receptors can engage with arrestin adaptor molecules and couple to downstream signaling pathways. The importance of this regulatory process has been highlighted recently by the understanding that ligands can direct receptor signaling along one pathway in preference to another, the phenomenon of signaling bias that is partly mediated by the phosphorylation status or phosphorylation barcode of the receptor. Methods to determine the phosphorylation status of a GPCR in vitro and in vivo are necessary to understand not only the physiological mechanisms involved in GPCR signaling, but also to fully examine the signaling properties of GPCR ligands. This unit describes detailed methods for determining the overall phosphorylation pattern on a receptor (the phosphorylation barcode), as well as mass spectrometry approaches that can define the precise sites that become phosphorylated. These techniques, coupled with the generation and characterization of receptor phosphorylation-specific antibodies, provide a full palate of techniques necessary to determine the phosphorylation status of any given GPCR subtype.

  17. Protein tyrosine phosphorylation in streptomycetes.

    Science.gov (United States)

    Waters, B; Vujaklija, D; Gold, M R; Davies, J

    1994-07-01

    Using phosphotyrosine-specific antibodies, we demonstrate that in several Streptomyces spp. a variety of proteins are phosphorylated on tyrosine residues. Tyrosine phosphorylation was found in a number of Streptomyces species including Streptomyces lividans, Streptomyces hygroscopicus and Streptomyces lavendulae. Each species exhibited a unique pattern of protein tyrosine phosphorylation. Moreover, the patterns of tyrosine phosphorylation varied during the growth phase and were also influenced by culture conditions. We suggest that metabolic shifts during the complex growth cycle of these filamentous bacteria, and possibly secondary metabolic pathways, may be controlled by the action of protein tyrosine kinases and phosphatases, as has been demonstrated in signal transduction pathways in eukaryotic organisms.

  18. Spatial proximity statistics suggest a regulatory role of protein phosphorylation on compound binding.

    Science.gov (United States)

    Korkuć, Paula; Walther, Dirk

    2016-05-01

    Phosphorylation is an important post-translational modification that regulates protein function by the attachment of negatively charged phosphate groups to phosphorylatable amino acid residues. As a mode of action, an influence of phosphorylation on the binding of compounds to proteins has been discussed and described for a number of proteins in the literature. However, a systematic statistical survey probing for enriched phosphorylation sites close to compound binding sites in support of this notion and with properly chosen random reference distributions has not been presented yet. Using high-resolution protein structures from the Protein Data Bank including their co-crystallized non-covalently bound compounds and experimentally determined phosphorylation sites, we analyzed the pairwise distance distributions of phosphorylation and compound binding sites on protein surfaces. We found that phosphorylation sites are indeed located at significantly closer distances to compounds than expected by chance holding true specifically also for the subset of compound binding sites serving as catalytic sites of metabolic reactions. This tendency was particularly evident when treating phosphorylation sites as collective sets supporting the relevance of phosphorylation hotspots. Interestingly, phosphorylation sites were found to be closer to negatively charged than to positively charged compounds suggesting a stronger modulation of the binding of negatively charged compounds in dependence on phosphorylation status than on positively charged compounds. The enrichment of phosphorylation sites near compound binding sites confirms a regulatory role of phosphorylation in compound binding and provides a solid statistical basis for the literature-reported selected events.

  19. Phosphorylation of chicken growth hormone

    Energy Technology Data Exchange (ETDEWEB)

    Aramburo, C.; Montiel, J.L. (Universidad Nacional Autonoma de Mexico (Mexico)); Donoghue, D.; Scanes, C.G. (Rutgers Univ., New Brunswick, NJ (USA)); Berghman, L.R. (Laboratory for Neuroendocrinology and Immunological Biotechnology, Louvain (Belgium))

    1990-01-01

    The possibility that chicken growth hormone (cGH) can be phosphorylated has been examined. Both native and biosynthetic cGH were phosphorylated by cAMP-dependent protein kinase (and {gamma}-{sup 32}P-ATP). The extent of phosphorylation was however less than that observed with ovine prolactin. Under the conditions employed, glycosylated cGH was not phosphorylated. Chicken anterior pituitary cells in primary culture were incubated in the presence of {sup 32}P-phosphate. Radioactive phosphate was incorporated in vitro into the fraction immunoprecipitable with antisera against cGH. Incorporation was increased with cell number and time of incubation. The presence of GH releasing factor (GRF) increased the release of {sup 32}P-phosphate labeled immunoprecipitable GH into the incubation media but not content of immunoprecipitable GH in the cells. The molecular weight of the phosphorylated immunoreactive cGH in the cells corresponded to cGH dimer.

  20. Acute exercise modifies titin phosphorylation and increases cardiac myofilament stiffness

    Directory of Open Access Journals (Sweden)

    Anna Eliane Müller

    2014-11-01

    Full Text Available Titin-based myofilament stiffness is largely modulated by phosphorylation of its elastic I-band regions N2-Bus (decreases passive stiffness, PT and PEVK (increases PT. Here, we tested the hypothesis that acute exercise changes titin phosphorylation and modifies myofilament stiffness. Adult rats were exercised on a treadmill for 15min, untrained animals served as controls. Titin phosphorylation was determined by Western blot analysis using phosphospecific antibodies to Ser4099 and Ser4010 in the N2-Bus region (PKG and PKA-dependent. respectively, and to Ser11878 and Ser 12022 in the PEVK region (PKCα and CaMKIIδ-dependent, respectively. Passive tension was determined by step-wise stretching of isolated skinned cardiomyocytes to sarcomere length ranging from 1.9-2.4µm and showed a significantly increased PT from exercised samples, compared to controls. In cardiac samples titin N2-Bus phosphorylation was significantly decreased by 40% at Ser4099, however, no significant changes were observed at Ser4010. PEVK phosphorylation at Ser11878 was significantly increased, which is probably mediated by the observed exercise-induced increase in PKCα activity. Interestingly, relative phosphorylation of Ser12022 was substantially decreased in the exercised samples. Surprisingly, in skeletal samples from acutely exercised animals we detected a significant decrease in PEVK phosphorylation at Ser11878 and an increase in Ser12022 phosphorylation; however, PKCα activity remained unchanged. In summary, our data show that a single exercise bout of 15 min affects titin domain phosphorylation and titin-based myocyte stiffness with obviously divergent effects in cardiac and skeletal muscle tissues. The observed changes in titin stiffness could play an important role in adapting the passive and active properties of the myocardium and the skeletal muscle to increased physical activity.

  1. Protein phosphorylation in bcterial signaling and regulation

    KAUST Repository

    Mijakovic, Ivan

    2016-01-26

    In 2003, it was demonstrated for the first time that bacteria possess protein-tyrosine kinases (BY-kinases), capable of phosphorylating other cellular proteins and regulating their activity. It soon became apparent that these kinases phosphorylate a number of protein substrates, involved in different cellular processes. More recently, we found out that BY-kinases can be activated by several distinct protein interactants, and are capable of engaging in cross-phosphorylation with other kinases. Evolutionary studies based on genome comparison indicate that BY-kinases exist only in bacteria. They are non-essential (present in about 40% bacterial genomes), and their knockouts lead to pleiotropic phenotypes, since they phosphorylate many substrates. Surprisingly, BY-kinase genes accumulate mutations at an increased rate (non-synonymous substitution rate significantly higher than other bacterial genes). One direct consequence of this phenomenon is no detectable co-evolution between kinases and their substrates. Their promiscuity towards substrates thus seems to be “hard-wired”, but why would bacteria maintain such promiscuous regulatory devices? One explanation is the maintenance of BY-kinases as rapidly evolving regulators, which can readily adopt new substrates when environmental changes impose selective pressure for quick evolution of new regulatory modules. Their role is clearly not to act as master regulators, dedicated to triggering a single response, but they might rather be employed to contribute to fine-tuning and improving robustness of various cellular responses. This unique feature makes BY-kinases a potentially useful tool in synthetic biology. While other bacterial kinases are very specific and their signaling pathways insulated, BY-kinase can relatively easily be engineered to adopt new substrates and control new biosynthetic processes. Since they are absent in humans, and regulate some key functions in pathogenic bacteria, they are also very promising

  2. Protein kinase C and rho activated coiled coil protein kinase 2 (ROCK2 modulate Alzheimer's APP metabolism and phosphorylation of the Vps10-domain protein, SorL1

    Directory of Open Access Journals (Sweden)

    Ehrlich Michelle E

    2010-12-01

    Full Text Available Abstract Background Generation of the amyloid β (Aβ peptide of Alzheimer's disease (AD is differentially regulated through the intracellular trafficking of the amyloid β precursor protein (APP within the secretory and endocytic pathways. Protein kinase C (PKC and rho-activated coiled-coil kinases (ROCKs are two "third messenger" signaling molecules that control the relative utilization of these two pathways. Several members of the Vps family of receptors (Vps35, SorL1, SorCS1 play important roles in post-trans-Golgi network (TGN sorting and generation of APP derivatives, including Aβ at the TGN, endosome and the plasma membrane. We now report that Vps10-domain proteins are candidate substrates for PKC and/or ROCK2 and act as phospho-state-sensitive physiological effectors for post-TGN sorting of APP and its derivatives. Results Analysis of the SorL1 cytoplasmic tail revealed multiple consensus sites for phosphorylation by protein kinases. SorL1 was subsequently identified as a phosphoprotein, based on sensitivity of its electrophoretic migration pattern to calf intestine alkaline phosphatase and on its reaction with anti-phospho-serine antibodies. Activation of PKC resulted in increased shedding of the ectodomains of both APP and SorL1, and this was paralleled by an apparent increase in the level of the phosphorylated form of SorL1. ROCK2, the neuronal isoform of another protein kinase, was found to form complexes with SorL1, and both ROCK2 inhibition and ROCK2 knockdown enhanced generation of both soluble APP and Aβ. Conclusion These results highlight the potential importance of SorL1 in elucidating phospho-state sensitive mechanisms in the regulation of metabolism of APP and Aβ by PKC and ROCK2.

  3. Directional and quantitative phosphorylation networks

    DEFF Research Database (Denmark)

    Jørgensen, Claus; Linding, Rune

    2008-01-01

    for unravelling phosphorylation-mediated cellular interaction networks. In particular, we will discuss how the combination of new quantitative mass-spectrometric technologies and computational algorithms together are enhancing mapping of these largely uncharted dynamic networks. By combining quantitative...

  4. The phosphorylation of protein S6 modulates the interaction of the 40 S ribosomal subunit with the 5'-untranslated region of a dictyostelium pre-spore-specific mRNA and controls its stability.

    Science.gov (United States)

    Chiaberge, S; Cassarino, E; Mangiarotti, G

    1998-10-16

    AC914 mRNA, a pre-spore-specific mRNA that accumulates only in the post-aggregation stage of development, is transcribed constitutively as shown by nuclear run-off experiments and by fusing its promoter to the luciferase reporter gene. The same mRNA disappears quickly from disaggregated cells. If the 5'-untranslated region (5'UTR) of the constitutively expressed Actin 15 mRNA is substituted for the 5'UTR of AC914 mRNA, this can no longer be destabilized and accumulates both in growing and disaggregated cells. If the 5'UTR of AC914 mRNA is substituted for the 5'UTR of Actin 15 mRNA, the latter accumulates only in aggregated cells. Pactamycin, but not other inhibitors of protein synthesis, prevents AC914 mRNA from being destabilized in disaggregated cells, suggesting a role of 40 S subunits in the destabilization. This has been confirmed by using an in vitro system in which the in vivo stability of different mRNAs is reproduced. A protein kinase A-dependent phosphorylation of ribosomal protein S6 determines whether 40 S subunits are capable or not of destabilizing AC914 mRNA in the in vitro system.

  5. Ovarian hormones and prolactin increase renal NaCl cotransporter phosphorylation.

    Science.gov (United States)

    Rojas-Vega, Lorena; Reyes-Castro, Luis A; Ramírez, Victoria; Bautista-Pérez, Rocío; Rafael, Chloe; Castañeda-Bueno, María; Meade, Patricia; de Los Heros, Paola; Arroyo-Garza, Isidora; Bernard, Valérie; Binart, Nadine; Bobadilla, Norma A; Hadchouel, Juliette; Zambrano, Elena; Gamba, Gerardo

    2015-04-15

    Unique situations in female physiology require volume retention. Accordingly, a dimorphic regulation of the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) has been reported, with a higher activity in females than in males. However, little is known about the hormones and mechanisms involved. Here, we present evidence that estrogens, progesterone, and prolactin stimulate NCC expression and phosphorylation. The sex difference in NCC abundance, however, is species dependent. In rats, NCC phosphorylation is higher in females than in males, while in mice both NCC expression and phosphorylation is higher in females, and this is associated with increased expression and phosphorylation of full-length STE-20 proline-alanine-rich kinase (SPAK). Higher expression/phosphorylation of NCC was corroborated in humans by urinary exosome analysis. Ovariectomy in rats resulted in decreased expression and phosphorylation of the cotransporter and promoted the shift of SPAK isoforms toward the short inhibitory variant SPAK2. Conversely, estradiol or progesterone administration to ovariectomized rats restored NCC phosphorylation levels and shifted SPAK expression and phosphorylation towards the full-length isoform. Estradiol administration to male rats induced a significant increase in NCC phosphorylation. NCC is also modulated by prolactin. Administration of this peptide hormone to male rats induced increased phosphorylation of NCC, an effect that was observed even using the ex vivo kidney perfusion strategy. Our results indicate that estradiol, progesterone, and prolactin, the hormones that are involved in sexual cycle, pregnancy and lactation, upregulate the activity of NCC.

  6. Vasopressin regulation of multisite phosphorylation of UT-A1 in the inner medullary collecting duct.

    Science.gov (United States)

    Hoban, Carol A; Black, Lauren N; Ordas, Ronald J; Gumina, Diane L; Pulous, Fadi E; Sim, Jae H; Sands, Jeff M; Blount, Mitsi A

    2015-01-01

    Vasopressin signaling is critical for the regulation of urea transport in the inner medullary collecting duct (IMCD). Increased urea permeability is driven by a vasopressin-mediated elevation of cAMP that results in the direct phosphorylation of urea transporter (UT)-A1. The identification of cAMP-sensitive phosphorylation sites, Ser(486) and Ser(499), in the rat UT-A1 sequence was the first step in understanding the mechanism of vasopressin action on the phosphorylation-dependent modulation of urea transport. To investigate the significance of multisite phosphorylation of UT-A1 in response to elevated cAMP, we used highly specific and sensitive phosphosite antibodies to Ser(486) and Ser(499) to determine cAMP action at each phosphorylation site. We found that phosphorylation at both sites was rapid and sustained. Furthermore, the rate of phosphorylation of the two sites was similar in both mIMCD3 cells and rat inner medullary tissue. UT-A1 localized to the apical membrane in response to vasopressin was phosphorylated at Ser(486) and Ser(499). We confirmed that elevated cAMP resulted in increased phosphorylation of both sites by PKA but not through the vasopressin-sensitive exchange protein activated by cAMP pathway. These results elucidate the multisite phosphorylation of UT-A1 in response to cAMP, thus providing the beginning of understanding the intracellular factors underlying vasopressin stimulation of urea transport in the IMCD.

  7. Chemistry of Phosphorylated Formaldehyde Derivatives. Part I

    Directory of Open Access Journals (Sweden)

    Vasily P. Morgalyuk

    2014-08-01

    Full Text Available The underinvestigated derivatives of unstable phosphorylated formaldehyde acetals and some of the structurally related compounds, such as thioacetals, aminonitriles, aminomethylphosphinoyl compounds, are considered. Separately considered are halogen aminals of phosphorylated formaldehyde, acetals of phosphorylated formaldehyde of H-phosphinate-type and a phosphorylated gem-diol of formaldehyde. Synthetic methods, chemical properties and examples of practical applications are given.

  8. Different modes of endothelial-smooth muscle cell interaction elicit differential β-catenin phosphorylations and endothelial functions.

    Science.gov (United States)

    Chang, Shun-Fu; Chen, Li-Jing; Lee, Pei-Ling; Lee, Ding-Yu; Chien, Shu; Chiu, Jeng-Jiann

    2014-02-04

    β-Catenin phosphorylation plays important roles in modulating its functions, but the effects of different phosphorylated forms of β-catenin in response to heterocellular interaction are unclear. Here we investigated whether distinct modes of phosphorylation on β-catenin could be triggered through heterocellular interactions between endothelial cells (ECs) and smooth muscle cells (SMCs), and the consequent modulation of EC functions. ECs were cocultured with SMCs to initiate direct contact and paracrine interaction. EC-SMC coculture induced EC β-catenin phosphorylations simultaneously at tyrosine 142 (Tyr142) and serine 45/threonine 41 (Ser45/Thr41) at the cytoplasm/nuclei and the membrane, respectively. Treating ECs with SMC-conditional medium induced β-catenin phosphorylation only at Ser45/Thr41. These findings indicate that different phosphorylation effects of EC-SMC coculture were induced through heterocellular direct contact and paracrine effects, respectively. Using specific blocking peptides, antagonists, and siRNAs, we found that the β-catenin Tyr142-phosphorylation was mediated by connexin 43/Fer and that the β-catenin Ser45/Thr41-phosphorylation was mediated by SMC-released bone morphogenetic proteins through VE-cadherin and bone morphogenetic protein receptor-II/Smad5. Transfecting ECs with β-catenin-Tyr142 or -Ser45 mutants showed that these two phosphorylated forms of β-catenin modulate differential EC function: The Tyr142-phosphorylated β-catenin stimulates vascular cell-adhesion molecule-1 expression to increase EC-monocytic adhesion, but the Ser45/Thr41-phosphorylated β-catenin attenuates VE-cadherin-dependent junction structures to increase EC permeability. Our findings provide new insights into the understanding of regulatory complexities of distinct modes of β-catenin phosphorylations under EC-SMC interactions and suggest that different phosphorylated forms of β-catenin play important roles in modulating vascular pathophysiology

  9. Association of VEGFR2 Gene+4422(AC)n Polymorphism with the Sensitivity to HiHiLo Training in Men of Han Nationality%中国北方汉族男性血管内皮生长因子受体2基因+4422(AC)n多态性与HiHiLo训练敏感性的关联研究

    Institute of Scientific and Technical Information of China (English)

    聂晶; 胡扬; 王景玲; 衣龙燕; 乌云格日勒

    2011-01-01

    目的:探讨中国北方汉族男性血管内皮生长因子受体2(VEGFR2)基因+4422(AC)n多态性与高住高练低训(HiHiLo)训练敏感性的关联.方法:选取71名中国北方平原地区汉族男子进行30天HiHiLo,方案为每日在低氧房(O2浓度为14.8%~14.3%,模拟海拔2800~3000米)居住10小时,每周进行3次75%VO2max强度的低氧训练(O2浓度为15.4%~14.8%,模拟海拔2500~2800米),运动时间为30 min/次,其余时间在常氧环境下训练.在HiHiLo前、后测定VO2max和SpO2.其SpO2的测定采用低氧环境下(15.4%O2,模拟海拔约2500米)的定量负荷运动实验,运动强度为HiHiLo前个体75%VO2max,运动时间15min.基因分型采用PCR结合荧光标记复合STR-genescan方法检测+4422(AC)n多态重复次数.结果:HiHiLo后,VO2max以及定量负荷运动dgSpO2均显著性提高,且(AC)11/(AC)11基因型者rVO2max训练敏感性显著高于(AC)11/(AC)12基因型者.结论:VEGFR2基因+4422(AC)n多态性与HiHiLo后rVO2max训练敏感性有关联,而与定量负荷下SpO2训练敏感性无关联.提示+4422(AC)n多态性可以作为预测低氧训练效果的分子遗传学标记,但还需加大样本量进一步验证.%Objective The purpose of this study was to explore the association between VEGFR2 gene+4422 (AC) n polymorphism to the sensitivity of HiHiLo. Methods Seventy one men of Han nationality in northern China underwent HiHiLo for 30 days. The subjects stayed in the hypoxic environment (14.8%~14.3%O2) 10 hours per day, and performed 30-minute hypoxic exercise ( 15.4%~ 14.8%O2) three times per week at the intensity of individual baseline VO2 max. The remaining training courses were completed at sea level. VO2 max and SpO2 were monitored before and after HiHiLo, in which SpO2 was tested through fixed load exercise in hypoxic environment (15.4%O2) at the intensity of individual baseline VO2 max. The genotypes were analyzed by STR-genescan. Results The absolute (L·min-1) and relative (ml

  10. Dehydroeburicoic Acid from Antrodia camphorata Prevents the Diabetic and Dyslipidemic State via Modulation of Glucose Transporter 4, Peroxisome Proliferator-Activated Receptor α Expression and AMP-Activated Protein Kinase Phosphorylation in High-Fat-Fed Mice

    Directory of Open Access Journals (Sweden)

    Yueh-Hsiung Kuo

    2016-06-01

    Full Text Available This study investigated the potential effects of dehydroeburicoic acid (TT, a triterpenoid compound from Antrodia camphorata, in vitro and examined the effects and mechanisms of TT on glucose and lipid homeostasis in high-fat-diet (HFD-fed mice. The in vitro study examined the effects of a MeOH crude extract (CruE of A. camphorata and Antcin K (AnK; the main constituent of fruiting body of this mushroom on membrane glucose transporter 4 (GLUT4 and phospho-Akt in C2C12 myoblasts cells. The in vitro study demonstrated that treatment with CruE, AnK and TT increased the membrane levels of glucose transporter 4 (GLUT4 and phospho-Akt at different concentrations. The animal experiments were performed for 12 weeks. Diabetic mice were randomly divided into six groups after 8 weeks of HFD-induction and treated with daily oral gavage doses of TT (at three dose levels, fenofibrate (Feno (at 0.25 g/kg body weight, metformin (Metf (at 0.3 g/kg body weight or vehicle for another 4 weeks while on an HFD diet. HFD-fed mice exhibited increased blood glucose levels. TT treatment dramatically lowered blood glucose levels by 34.2%~43.4%, which was comparable to the antidiabetic agent-Metf (36.5%. TT-treated mice reduced the HFD-induced hyperglycemia, hypertriglyceridemia, hyperinsulinemia, hyperleptinemia, and hypercholesterolemia. Membrane levels of GLUT4 were significantly higher in CruE-treated groups in vitro. Skeletal muscle membrane levels of GLUT4 were significantly higher in TT-treated mice. These groups of mice also displayed lower mRNA levels of glucose-6-phosphatase (G6 Pase, an inhibitor of hepatic glucose production. The combination of these agents produced a net hypoglycemic effect in TT-treated mice. TT treatment enhanced the expressions of hepatic and skeletal muscle AMP-activated protein kinase (AMPK phosphorylation in mice. TT-treated mice exhibited enhanced expression of hepatic fatty acid oxidation enzymes, including peroxisome proliferator

  11. Circadian KaiC phosphorylation: a multi-layer network.

    Directory of Open Access Journals (Sweden)

    Congxin Li

    2009-11-01

    Full Text Available Circadian KaiC phosphorylation in cyanobacteria reconstituted in vitro recently initiates a series of studies experimentally and theoretically to explore its mechanism. In this paper, we report a dynamic diversity in hexameric KaiC phosphoforms using a multi-layer reaction network based on the nonequivalence of the dual phosphorylation sites (S431 and T432 in each KaiC subunit. These diverse oscillatory profiles can generate a kaleidoscopic phase modulation pattern probably responsible for the genome-wide transcription rhythms directly and/or indirectly in cyanobacteria. Particularly, our model reveals that a single KaiC hexamer is an energy-based, phosphorylation-dependent and self-regulated circadian oscillator modulated by KaiA and KaiB. We suggest that T432 is the main regulator for the oscillation amplitude, while S431 is the major phase regulator. S431 and T432 coordinately control the phosphorylation period. Robustness of the Kai network was examined by mixing samples in different phases, and varying protein concentrations and temperature. Similar results were obtained regardless of the deterministic or stochastic method employed. Therefore, the dynamic diversities and robustness of Kai oscillator make it a qualified core pacemaker that controls the cellular processes in cyanobacteria pervasively and accurately.

  12. Propofol directly increases tau phosphorylation.

    Directory of Open Access Journals (Sweden)

    Robert A Whittington

    Full Text Available In Alzheimer's disease (AD and other tauopathies, the microtubule-associated protein tau can undergo aberrant hyperphosphorylation potentially leading to the development of neurofibrillary pathology. Anesthetics have been previously shown to induce tau hyperphosphorylation through a mechanism involving hypothermia-induced inhibition of protein phosphatase 2A (PP2A activity. However, the effects of propofol, a common clinically used intravenous anesthetic, on tau phosphorylation under normothermic conditions are unknown. We investigated the effects of a general anesthetic dose of propofol on levels of phosphorylated tau in the mouse hippocampus and cortex under normothermic conditions. Thirty min following the administration of propofol 250 mg/kg i.p., significant increases in tau phosphorylation were observed at the AT8, CP13, and PHF-1 phosphoepitopes in the hippocampus, as well as at AT8, PHF-1, MC6, pS262, and pS422 epitopes in the cortex. However, we did not detect somatodendritic relocalization of tau. In both brain regions, tau hyperphosphorylation persisted at the AT8 epitope 2 h following propofol, although the sedative effects of the drug were no longer evident at this time point. By 6 h following propofol, levels of phosphorylated tau at AT8 returned to control levels. An initial decrease in the activity and expression of PP2A were observed, suggesting that PP2A inhibition is at least partly responsible for the hyperphosphorylation of tau at multiple sites following 30 min of propofol exposure. We also examined tau phosphorylation in SH-SY5Y cells transfected to overexpress human tau. A 1 h exposure to a clinically relevant concentration of propofol in vitro was also associated with tau hyperphosphorylation. These findings suggest that propofol increases tau phosphorylation both in vivo and in vitro under normothermic conditions, and further studies are warranted to determine the impact of this anesthetic on the acceleration of

  13. Nucleoside phosphorylation in amide solutions

    Science.gov (United States)

    Schoffstall, A. M.; Kokko, B.

    1978-01-01

    The paper deals with phosphorylation in possible prebiotic nonaqueous solvents. To this end, phosphorylation of nucleosides using inorganic phosphates in amide solutions is studied at room and elevated temperatures. Reaction proceeds most readily in formamide and N-methylformamide. Products obtained at elevated temperature are nucleotides, nucleoside 2',3'-cyclic phosphates, and when the phosphate concentration is high, nucleoside diphosphates. At room temperature, adenosine afforded a mixture of nucleotides, but none of the cyclic nucleotide. Conditions leading to the highest relative percentage of cyclic nucleotide involve the use of low concentrations of phosphate and an excess of nucleoside.

  14. Properties of phosphorylated thymidylate synthase

    DEFF Research Database (Denmark)

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr;

    2015-01-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichin......Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat...

  15. Proteomic investigation of phosphorylation sites in poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase.

    Science.gov (United States)

    Gagné, Jean-Philippe; Moreel, Xavier; Gagné, Pierre; Labelle, Yves; Droit, Arnaud; Chevalier-Paré, Mélissa; Bourassa, Sylvie; McDonald, Darin; Hendzel, Michael J; Prigent, Claude; Poirier, Guy G

    2009-02-01

    Phosphorylation is a very common post-translational modification event known to modulate a wide range of biological responses. Beyond the regulation of protein activity, the interrelation of phosphorylation with other post-translational mechanisms is responsible for the control of diverse signaling pathways. Several observations suggest that phosphorylation of poly(ADP-ribose) polymerase-1 (PARP-1) regulates its activity. There is also accumulating evidence to suggest the establishment of phosphorylation-dependent assembly of PARP-1-associated multiprotein complexes. Although it is relatively straightforward to demonstrate phosphorylation of a defined target, identification of the actual amino acids involved still represents a technical challenge for many laboratories. With the use of a combination of bioinformatics-based predictions tools for generic and kinase-specific phosphorylation sites, in vitro phosphorylation assays and mass spectrometry analysis, we investigated the phosphorylation profile of PARP-1 and poly(ADP-ribose) glycohydrolase (PARG), two major enzymes responsible for poly(ADP-ribose) turnover. Mass spectrometry analysis revealed the phosphorylation of several serine/threonine residues within important regulatory domains and motifs of both enzymes. With the use of in vivo microirradiation-induced DNA damage, we show that altered phosphorylation at specific sites can modify the dynamics of assembly and disassembly of PARP-1 at sites of DNA damage. By documenting and annotating a collection of known and newly identified phosphorylation sites, this targeted proteomics study significantly advances our understanding of the roles of phosphorylation in the regulation of PARP-1 and PARG.

  16. Tyrosine phosphorylation in human lymphomas

    NARCIS (Netherlands)

    Haralambieva, E; Jones, M.; Roncador, GM; Cerroni, L; Lamant, L; Ott, G; Rosenwald, A; Sherman, C; Thorner, P; Kusec, R; Wood, KM; Campo, E; Falini, B; Ramsay, A; Marafioti, T; Stein, H; Kluin, PM; Pulford, K; Mason, DY

    2002-01-01

    In a previous study, we showed that the high level of protein tyrosine phosphorylation present in lymphomas containing an anaplastic lymphoma kinase (ALK) can be demonstrated in routinely processed paraffin tissue sections using immunolabelling techniques. In the present study we investigated

  17. SYMPOSIUM ON PLANT PROTEIN PHOSPHORYLATION

    Energy Technology Data Exchange (ETDEWEB)

    JOHN C WALKER

    2011-11-01

    Protein phosphorylation and dephosphorylation play key roles in many aspects of plant biology, including control of cell division, pathways of carbon and nitrogen metabolism, pattern formation, hormonal responses, and abiotic and biotic responses to environmental signals. A Symposium on Plant Protein Phosphorylation was hosted on the Columbia campus of the University of Missouri from May 26-28, 2010. The symposium provided an interdisciplinary venue at which scholars studying protein modification, as it relates to a broad range of biological questions and using a variety of plant species, presented their research. It also provided a forum where current international challenges in studies related to protein phosphorylation could be examined. The symposium also stimulated research collaborations through interactions and networking among those in the research community and engaged students and early career investigators in studying issues in plant biology from an interdisciplinary perspective. The proposed symposium, which drew 165 researchers from 13 countries and 21 States, facilitated a rapid dissemination of acquired knowledge and technical expertise regarding protein phosphorylation in plants to a broad range of plant biologists worldwide.

  18. Thiamine phosphorylated derivatives and bioelectrogenesis.

    Science.gov (United States)

    Schoffeniels, E

    1983-09-01

    Kinetic as well as thermodynamic considerations favour the idea that the change in sodium conductance explaining the action potential, must result from a bimolecular reaction system. The fact that thiamine phosphorylated derivatives are associated with the specific protein forming the sodium channel could well mean that these thiamine derivatives and more specifically thiamine triphosphate are directly involved in the conductance change.

  19. Biocatalytic asymmetric phosphorylation of mevalonate

    NARCIS (Netherlands)

    Matsumi, R.; Hellriegel, C.; Schoenenberger, B.; Milesi, T.; Oost, van der J.; Wohlgemuth, R.

    2014-01-01

    The excellent selectivity of the mevalonate kinase-catalyzed phosphorylation of mevalonate simplifies lengthy multi-step routes to (R)-mevalonate-5-phosphate to a one-step biocatalytic reaction, because the phosphate group can be transferred directly and without any additional reaction steps

  20. Affinity chromatography of phosphorylated proteins.

    Science.gov (United States)

    Tchaga, Grigoriy S

    2008-01-01

    This chapter covers the use of immobilized metal ion affinity chromatography (IMAC) for enrichment of phosphorylated proteins. Some requirements for successful enrichment of these types of proteins are discussed. An experimental protocol and a set of application data are included to enable the scientist to obtain high-yield results in a very short time with pre-packed phospho-specific metal ion affinity resin (PMAC).

  1. Characterization of intracellular regions in the human serotonin transporter for phosphorylation sites

    DEFF Research Database (Denmark)

    Sørensen, Lena; Strømgaard, Kristian; Kristensen, Anders S

    2014-01-01

    /dephosphorylation during transporter regulation by multiple pathways. In particular, activation and/or inhibition of kinases including PKC, PKG, p38MAPK, and CaMKII modulate SERT function and trafficking. The molecular mechanisms by which kinase activity is linked to SERT regulation are poorly understood, including...... the identity of specific phosphorylated residues. To elucidate SERT phosphorylation sites, we have generated peptides corresponding to the entire intracellular region of human SERT and performed in vitro phosphorylation assays with a panel of kinases suggested to be involved in SERT regulation or for which...

  2. Characterization of a novel phosphorylation site in the sodium-chloride cotransporter, NCC

    DEFF Research Database (Denmark)

    Rosenbaek, L L; Assentoft, M; Pedersen, N B

    2012-01-01

    DAVP significantly increased pS124-NCC abundance, with no changes in total NCC plasma membrane abundance. pS124-NCC levels also increased in abundance in rats after stimulation of the renin-angiotensin-aldosterone system by dietary low sodium intake. In contrast to other NCC phosphorylation sites, the STE20/SPS1......The sodium-chloride cotransporter, NCC, is essential for renal electrolyte balance. NCC function can be modulated by protein phosphorylation. In this study, we characterized the role and physiological regulation of a novel phosphorylation site in NCC at Ser124 (S124). Novel phospho...

  3. PPARy phosphorylation mediated by JNK MAPK: a potential role in macrophage-derived foam cell formation

    Institute of Scientific and Technical Information of China (English)

    Ran YIN; Yu-gang DONG; Hong-lang LI

    2006-01-01

    Aim: To investigate whether oxidized low-density lipoprotein (ox-LDL) modulates peroxisome proliferator-activated receptor γ (PPARγ) activity through phosphorylation in macrophages, and the effect of PPARy phosphorylation on macrophages-derived foam cell formation. Methods: After exposing the cultured THP-1 cells to ox-LDL in the presence or absence of different mitogen-activated protein kinase (MAPK) inhibitors, PPARγ and phosphorylated PPARγ protein levels were detected by Western blot. MAPK activity was analyzed using MAP Kinase Assay Kit. Intracellular cholesterol accumulation was assessed by Oil red O staining and cholesterol oxidase enzymatic method. The Mrna level of PPARγ target gene was determined by reverse transcription-polymerase chain reaction (RT-PCR). Results: ox-LDL evaluated PPARγ phosphorylation status and subsequently decreased PPARγ target gene expression in a dose-dependent manner. Ox-LDL also induced MAPK activation. Treatment of THP-1 cells with c-Jun N-terminal kinase-, but not p38- or extracellular signal-regulated kinase-MAPK inhibitor, significantly suppressed PPARγ phosphorylation induced by ox-LDL, which in turn inhibited foam cell formation. Conclusion: In addition to its ligand-dependent activation, ox-LDL modulates PPARγ activity through phosphorylation, which is mediated by MAPK activation. PPARγ phosphorylation mediated by MAPK facilitates foam cell formation from macrophages exposed to ox-LDL.

  4. Olive oil compounds inhibit vascular endothelial growth factor receptor-2 phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Lamy, Sylvie, E-mail: lamy.sylvie@uqam.ca; Ouanouki, Amira; Béliveau, Richard; Desrosiers, Richard R.

    2014-03-10

    Vascular endothelial growth factor (VEGF) triggers crucial signaling processes that regulate tumor angiogenesis and, therefore, represents an attractive target for the development of novel anticancer therapeutics. Several epidemiological studies have confirmed that abundant consumption of foods from plant origin is associated with reduced risk of developing cancers. In the Mediterranean basin, the consumption of extra virgin olive oil is an important constituent of the diet. Compared to other vegetable oils, the presence of several phenolic antioxidants in olive oil is believed to prevent the occurrence of a variety of pathological processes, such as cancer. While the strong antioxidant potential of these molecules is well characterized, their antiangiogenic activities remain unknown. The aim of this study is to investigate whether tyrosol (Tyr), hydroxytyrosol (HT), taxifolin (Tax), oleuropein (OL) and oleic acid (OA), five compounds contained in extra virgin olive oil, can affect in vitro angiogenesis. We found that HT, Tax and OA were the most potent angiogenesis inhibitors through their inhibitory effect on specific autophosphorylation sites of VEGFR-2 (Tyr951, Tyr1059, Tyr1175 and Tyr1214) leading to the inhibition of endothelial cell (EC) signaling. Inhibition of VEGFR-2 by these olive oil compounds significantly reduced VEGF-induced EC proliferation and migration as well as their morphogenic differentiation into capillary-like tubular structures in Matrigel. Our study demonstrates that HT, Tax and OA are novel and potent inhibitors of the VEGFR-2 signaling pathway. These findings emphasize the chemopreventive properties of olive oil and highlight the importance of nutrition in cancer prevention. - Highlights: • We investigated five compounds contained in extra virgin olive oil on angiogenesis. • Hydroxytyrosol, taxifolin and oleic acid are the best angiogenesis inhibitors. • Olive oil compounds affect endothelial cell functions essential for

  5. NPM phosphorylation stimulates Cdk1, overrides G2/M checkpoint and increases leukemic blasts in mice.

    Science.gov (United States)

    Du, Wei; Zhou, Yun; Pike, Suzette; Pang, Qishen

    2010-02-01

    An elevated level of nucleophosmin (NPM) is often found in actively proliferative cells including human tumors. To identify the regulatory role for NPM phosphorylation in proliferation and cell cycle control, a series of mutants targeting the consensus cyclin-dependent kinase (CDK) phosphorylation sites was created to mimic or abrogate either single-site or multi-site phosphorylation. Simultaneous inactivation of two CDK phosphorylation sites at Ser10 and Ser70 (NPM-AA) induced G(2)/M cell cycle arrest, phosphorylation of Cdk1 at Tyr15 (Cdc2(Tyr15)) and increased cytoplasmic accumulation of Cdc25C. Strikingly, stress-induced Cdk1(Tyr15) and Cdc25C sequestration was suppressed by expression of a phosphomimetic NPM mutant created on the same CDK sites (S10E/S70E, NPM-EE). Further analysis revealed that phosphorylation of NPM at both Ser10 and Ser70 was required for proper interaction between Cdk1 and Cdc25C. Moreover, NPM-EE directly bound to Cdc25C and prevented phosphorylation of Cdc25C at Ser216 during mitosis. Finally, NPM-EE overrided stress-induced G(2)/M arrest and increased leukemia blasts in a NOD/SCID xenograft model. Thus, these findings reveal a novel function of NPM on regulation of cell cycle progression, in which phosphorylation of NPM controls cell cycle progression at G(2)/M transition through modulation of Cdk1 and Cdc25C activities.

  6. Bcl10 is phosphorylated on Ser138 by Ca2+/calmodulin-dependent protein kinase II.

    Science.gov (United States)

    Ishiguro, Kazuhiro; Ando, Takafumi; Goto, Hidemi; Xavier, Ramnik

    2007-03-01

    Ordered assembly of scaffold proteins Carma1-Bcl10-Malt1 determines NF-kappaB activation following T cell receptor (TCR) engagement. Carma1-Bcl10 interaction and the signaling pathway are controlled by Carma1 phosphorylation, which are induced by PKCtheta and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). In addition to Carma1 phosphorylation, previous studies have demonstrated that Bcl10 is phosphorylated in the C-terminal Ser/Thr rich region following TCR engagement. However the kinases that phosphorylate Bcl10 are incompletely understood. Here we show that CaMKII phosphorylates Bcl10 on Ser138. Furthermore, a CaMKII inhibitor, KN93, and CaMKII siRNA substantially reduce Bcl10 phosphorylation induced by phorbol myristate acetate/ionomycin. S138A mutation prolongs Bcl10-induced NF-kappaB activation, suggesting that Bcl10 phosphorylation is involved in attenuation of NF-kappaB activation. These findings suggest that CaMKII modulates NF-kappaB activation via phosphorylating Bcl10 as well as Carma1.

  7. ERK phosphorylation regulates sleep and plasticity in Drosophila.

    Directory of Open Access Journals (Sweden)

    William M Vanderheyden

    Full Text Available Given the relationship between sleep and plasticity, we examined the role of Extracellular signal-regulated kinase (ERK in regulating baseline sleep, and modulating the response to waking experience. Both sleep deprivation and social enrichment increase ERK phosphorylation in wild-type flies. The effects of both sleep deprivation and social enrichment on structural plasticity in the LNvs can be recapitulated by expressing an active version of ERK (UAS-ERK(SEM pan-neuronally in the adult fly using GeneSwitch (Gsw Gsw-elav-GAL4. Conversely, disrupting ERK reduces sleep and prevents both the behavioral and structural plasticity normally induced by social enrichment. Finally, using transgenic flies carrying a cAMP response Element (CRE-luciferase reporter we show that activating ERK enhances CRE-Luc activity while disrupting ERK reduces it. These data suggest that ERK phosphorylation is an important mediator in transducing waking experience into sleep.

  8. Phosphorylation of the chromatin binding domain of KSHV LANA.

    Directory of Open Access Journals (Sweden)

    Crystal Woodard

    Full Text Available The Kaposi sarcoma associated herpesvirus (KSHV latency associated nuclear antigen (LANA is expressed in all KSHV associated malignancies and is essential for maintenance of KSHV genomes in infected cells. To identify kinases that are potentially capable of modifying LANA, in vitro phosphorylation assays were performed using an Epstein Barr virus plus LANA protein microarray and 268 human kinases purified in active form from yeast. Interestingly, of the Epstein-Barr virus proteins on the array, the EBNA1 protein had the most similar kinase profile to LANA. We focused on nuclear kinases and on the N-terminus of LANA (amino acids 1-329 that contains the LANA chromatin binding domain. Sixty-three nuclear kinases phosphorylated the LANA N-terminus. Twenty-four nuclear kinases phosphorylated a peptide covering the LANA chromatin binding domain (amino acids 3-21. Alanine mutations of serine 10 and threonine 14 abolish or severely diminish chromatin and histone binding by LANA. However, conversion of these residues to the phosphomimetic glutamic acid restored histone binding suggesting that phosphorylation of serine 10 and threonine 14 may modulate LANA function. Serine 10 and threonine 14 were validated as substrates of casein kinase 1, PIM1, GSK-3 and RSK3 kinases. Short-term treatment of transfected cells with inhibitors of these kinases found that only RSK inhibition reduced LANA interaction with endogenous histone H2B. Extended treatment of PEL cell cultures with RSK inhibitor caused a decrease in LANA protein levels associated with p21 induction and a loss of PEL cell viability. The data indicate that RSK phosphorylation affects both LANA accumulation and function.

  9. Cyclic AMP-dependent protein kinase phosphorylation facilitates GABA(B) receptor-effector coupling.

    Science.gov (United States)

    Couve, A; Thomas, P; Calver, A R; Hirst, W D; Pangalos, M N; Walsh, F S; Smart, T G; Moss, S J

    2002-05-01

    GABA (gamma-aminobutyric acid)(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. Here we show that the functional coupling of GABA(B)R1/GABA(B)R2 receptors to inwardly rectifying K(+) channels rapidly desensitizes. This effect is alleviated after direct phosphorylation of a single serine residue (Ser892) in the cytoplasmic tail of GABA(B)R2 by cyclic AMP (cAMP)-dependent protein kinase (PKA). Basal phosphorylation of this residue is evident in rat brain membranes and in cultured neurons. Phosphorylation of Ser892 is modulated positively by pathways that elevate cAMP concentration, such as those involving forskolin and beta-adrenergic receptors. GABA(B) receptor agonists reduce receptor phosphorylation, which is consistent with PKA functioning in the control of GABA(B)-activated currents. Mechanistically, phosphorylation of Ser892 specifically enhances the membrane stability of GABA(B) receptors. We conclude that signaling pathways that activate PKA may have profound effects on GABA(B) receptor-mediated synaptic inhibition. These results also challenge the accepted view that phosphorylation is a universal negative modulator of G protein-coupled receptors.

  10. Differential regulation of the histone chaperone HIRA during muscle cell differentiation by a phosphorylation switch.

    Science.gov (United States)

    Yang, Jae-Hyun; Song, Tae-Yang; Jo, Chanhee; Park, Jinyoung; Lee, Han-Young; Song, Ilang; Hong, Suji; Jung, Kwan Young; Kim, Jaehoon; Han, Jeung-Whan; Youn, Hong-Duk; Cho, Eun-Jung

    2016-08-12

    Replication-independent incorporation of variant histone H3.3 has a profound impact on chromatin function and numerous cellular processes, including the differentiation of muscle cells. The histone chaperone HIRA and H3.3 have essential roles in MyoD regulation during myoblast differentiation. However, the precise mechanism that determines the onset of H3.3 deposition in response to differentiation signals is unclear. Here we show that HIRA is phosphorylated by Akt kinase, an important signaling modulator in muscle cells. By generating a phosphospecific antibody, we found that a significant amount of HIRA was phosphorylated in myoblasts. The phosphorylation level of HIRA and the occupancy of phosphorylated protein on muscle genes gradually decreased during cellular differentiation. Remarkably, the forced expression of the phosphomimic form of HIRA resulted in reduced H3.3 deposition and suppressed the activation of muscle genes in myotubes. Our data show that HIRA phosphorylation limits the expression of myogenic genes, while the dephosphorylation of HIRA is required for proficient H3.3 deposition and gene activation, demonstrating that the phosphorylation switch is exploited to modulate HIRA/H3.3-mediated muscle gene regulation during myogenesis.

  11. Analysis of mitotic phosphorylation of Borealin

    Directory of Open Access Journals (Sweden)

    Date Dipali A

    2007-01-01

    Full Text Available Abstract Background The main role of the chromosomal passenger complex is to ensure that Aurora B kinase is properly localized and activated before and during mitosis. Borealin, a member of the chromosomal passenger complex, shows increased expression during G2/M phases and is involved in targeting the complex to the centromere and the spindle midzone, where it ensures proper chromosome segregation and cytokinesis. Borealin has a consensus CDK1 phosphorylation site, threonine 106 and can be phosphorylated by Aurora B Kinase at serine 165 in vitro. Results Here, we show that Borealin is phosphorylated during mitosis in human cells. Dephosphorylation of Borealin occurs as cells exit mitosis. The phosphorylated form of Borealin is found in an INCENP-containing complex in mitosis. INCENP-containing complexes from cells in S phase are enriched in the phosphorylated form suggesting that phosphorylation may encourage entry of Borealin into the chromosomal passenger complex. Although Aurora B Kinase is found in complexes that contain Borealin, it is not required for the mitotic phosphorylation of Borealin. Mutation of T106 or S165 of Borealin to alanine does not alter the electrophoretic mobility shift of Borealin. Experiments with cyclohexamide and the phosphatase inhibitor sodium fluoride suggest that Borealin is phosphorylated by a protein kinase that can be active in interphase and mitosis and that the phosphorylation may be regulated by a short-lived phosphatase that is active in interphase but not mitosis. Conclusion Borealin is phosphorylated during mitosis. Neither residue S165, T106 nor phosphorylation of Borealin by Aurora B Kinase is required to generate the mitotic, shifted form of Borealin. Suppression of phosphorylation during interphase is ensured by a labile protein, possibly a cell cycle regulated phosphatase.

  12. The eFIP system for text mining of protein interaction networks of phosphorylated proteins.

    Science.gov (United States)

    Tudor, Catalina O; Arighi, Cecilia N; Wang, Qinghua; Wu, Cathy H; Vijay-Shanker, K

    2012-01-01

    Protein phosphorylation is a central regulatory mechanism in signal transduction involved in most biological processes. Phosphorylation of a protein may lead to activation or repression of its activity, alternative subcellular location and interaction with different binding partners. Extracting this type of information from scientific literature is critical for connecting phosphorylated proteins with kinases and interaction partners, along with their functional outcomes, for knowledge discovery from phosphorylation protein networks. We have developed the Extracting Functional Impact of Phosphorylation (eFIP) text mining system, which combines several natural language processing techniques to find relevant abstracts mentioning phosphorylation of a given protein together with indications of protein-protein interactions (PPIs) and potential evidences for impact of phosphorylation on the PPIs. eFIP integrates our previously developed tools, Extracting Gene Related ABstracts (eGRAB) for document retrieval and name disambiguation, Rule-based LIterature Mining System (RLIMS-P) for Protein Phosphorylation for extraction of phosphorylation information, a PPI module to detect PPIs involving phosphorylated proteins and an impact module for relation extraction. The text mining system has been integrated into the curation workflow of the Protein Ontology (PRO) to capture knowledge about phosphorylated proteins. The eFIP web interface accepts gene/protein names or identifiers, or PubMed identifiers as input, and displays results as a ranked list of abstracts with sentence evidence and summary table, which can be exported in a spreadsheet upon result validation. As a participant in the BioCreative-2012 Interactive Text Mining track, the performance of eFIP was evaluated on document retrieval (F-measures of 78-100%), sentence-level information extraction (F-measures of 70-80%) and document ranking (normalized discounted cumulative gain measures of 93-100% and mean average

  13. SIMAC - A phosphoproteomic strategy for the rapid separation of mono-phosphorylated from multiply phosphorylated peptides

    DEFF Research Database (Denmark)

    Thingholm, Tine E; Jensen, Ole N; Robinson, Phillip J

    2008-01-01

    spectrometric analysis, such as immobilized metal affinity chromatography or titanium dioxide the coverage of the phosphoproteome of a given sample is limited. Here we report a simple and rapid strategy - SIMAC - for sequential separation of mono-phosphorylated peptides and multiply phosphorylated peptides from...... and an optimized titanium dioxide chromatographic method. More than double the total number of identified phosphorylation sites was obtained with SIMAC, primarily from a three-fold increase in recovery of multiply phosphorylated peptides....

  14. JAM-C maintains VEGR2 expression to promote retinal pigment epithelium cell survival under oxidative stress.

    Science.gov (United States)

    Jia, Xin; Zhao, Chen; Chen, Qishan; Du, Yuxiang; Huang, Lijuan; Ye, Zhimin; Ren, Xiangrong; Wang, Shasha; Lee, Chunsik; Tang, Zhongshu; Li, Xuri; Ju, Rong

    2017-04-03

    Junctional adhesion molecule-C (JAM-C) has been shown to play critical roles during development and in immune responses. However, its role in adult eyes under oxidative stress remains poorly understood. Here, we report that JAM-C is abundantly expressed in adult mouse retinae and choroids in vivo and in cultured retinal pigment epithelium (RPE) and photoreceptor cells in vitro. Importantly, both JAM-C expression and its membrane localisation are downregulated by H2O2-induced oxidative stress. Under H2O2-induced oxidative stress, JAM-C is critically required for the survival of human RPE cells. Indeed, loss of JAM-C by siRNA knockdown decreased RPE cell survival. Mechanistically, we show that JAM-C is required to maintain VEGFR2 expression in RPE cells, and VEGFR2 plays an important role in keeping the RPE cells viable since overexpression of VEGFR2 partially restored impaired RPE survival caused by JAM-C knockdown and increased RPE survival. We further show that JAM-C regulates VEGFR2 expression and, in turn, modulates p38 phosphorylation. Together, our data demonstrate that JAM-C plays an important role in maintaining VEGR2 expression to promote RPE cell survival under oxidative stress. Given the vital importance of RPE in the eye, approaches that can modulate JAM-C expression may have therapeutic values in treating diseases with impaired RPE survival.

  15. Phosphorylation of Intrinsically Disordered Regions in Remorin Proteins

    Directory of Open Access Journals (Sweden)

    Macarena eMarín

    2012-05-01

    Full Text Available Plant-specific remorin proteins reside in subdomains of plasma membranes, originally termed membrane rafts. They probably facilitate cellular signal transduction by direct interaction with signalling proteins such as receptor-like kinases (RLKs and may dynamically modulate their lateral segregation within plasma membranes. Recent evidence suggests such functions of remorins during plant-microbe interactions and innate immune responses, where differential phosphorylation of some of these proteins has been described to be dependent on the perception of the microbe-associated molecular pattern (MAMP flg22 and the presence of the NBS-LRR resistance protein RPM1. A number of specifically phosphorylated residues in their highly variable and intrinsically disordered N-terminal regions have been identified. Sequence diversity of these evolutionary distinct domains suggests that remorins may serve a wide range of biological functions. Here, we describe patterns and features of intrinsic disorder in remorin protein and discuss possible functional implications of phosphorylation within these rapidly evolving domains.

  16. Phosphorylation by Cdk1 induces Plk1-mediated vimentin phosphorylation during mitosis

    NARCIS (Netherlands)

    Yamaguchi, Tomoya; Goto, Hidemasa; Yokoyama, Tomoya; Silljé, Herman; Hanisch, Anja; Uldschmid, Andreas; Takai, Yasushi; Oguri, Takashi; Nigg, Erich A; Inagaki, Masaki

    2005-01-01

    Several kinases phosphorylate vimentin, the most common intermediate filament protein, in mitosis. Aurora-B and Rho-kinase regulate vimentin filament separation through the cleavage furrow-specific vimentin phosphorylation. Cdk1 also phosphorylates vimentin from prometaphase to metaphase, but its si

  17. Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues

    DEFF Research Database (Denmark)

    Lundby, Alicia; Secher, Anna; Lage, Kasper

    2012-01-01

    across 14 rat organs and tissues. We provide the data set as an easily accessible resource via a web-based database, the CPR PTM Resource. A major fraction of the presented phosphorylation sites are tissue-specific and modulate protein interaction networks that are essential for the function...

  18. Characterizing the Microenvironment Surrounding Phosphorylated Protein Sites

    Institute of Scientific and Technical Information of China (English)

    Shi-Cai Fan; Xue-Gong Zhang

    2005-01-01

    Protein phosphorylation plays an important role in various cellular processes. Due to its high complexity, the mechanism needs to be further studied. In the last few years, many methods have been contributed to this field, but almost all of them investigated the mechanism based on protein sequences around protein sites. In this study, we implement an exploration by characterizing the microenvironment surrounding phosphorylated protein sites with a modified shell model, and obtain some significant properties by the rank-sum test, such as the lack of some classes of residues, atoms, and secondary structures. Furthermore, we find that the depletion of some properties affects protein phosphorylation remarkably. Our results suggest that it is a meaningful direction to explore the mechanism of protein phosphorylation from microenvironment and we expect further findings along with the increasing size of phosphorylation and protein structure data.

  19. In vitro phosphorylation and acetylation of the murine pocket protein Rb2/p130.

    Directory of Open Access Journals (Sweden)

    Muhammad Saeed

    Full Text Available The retinoblastoma protein (pRb and the related proteins Rb2/p130 and 107 represent the "pocket protein" family of cell cycle regulators. A key function of these proteins is the cell cycle dependent modulation of E2F-regulated genes. The biological activity of these proteins is controlled by acetylation and phosphorylation in a cell cycle dependent manner. In this study we attempted to investigate the interdependence of acetylation and phosphorylation of Rb2/p130 in vitro. After having identified the acetyltransferase p300 among several acetyltransferases to be associated with Rb2/p130 during S-phase in NIH3T3 cells in vivo, we used this enzyme and the CDK4 protein kinase for in vitro modification of a variety of full length Rb2/p130 and truncated versions with mutations in the acetylatable lysine residues 1079, 128 and 130. Mutation of these residues results in the complete loss of Rb2/p130 acetylation. Replacement of lysines by arginines strongly inhibits phosphorylation of Rb2/p130 by CDK4; the inhibitory effect of replacement by glutamines is less pronounced. Preacetylation of Rb2/p130 strongly enhances CDK4-catalyzed phosphorylation, whereas deacetylation completely abolishes in vitro phosphorylation. In contrast, phosphorylation completely inhibits acetylation of Rb2/p130 by p300. These results suggest a mutual interdependence of modifications in a way that acetylation primes Rb2/p130 for phosphorylation and only dephosphorylated Rb2/p130 can be subject to acetylation. Human papillomavirus 16-E7 protein, which increases acetylation of Rb2/p130 by p300 strongly reduces phosphorylation of this protein by CDK4. This suggests that the balance between phosphorylation and acetylation of Rb2/p130 is essential for its biological function in cell cycle control.

  20. TNNI3K is a novel mediator of myofilament function and phosphorylates cardiac troponin I

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Wang, Lin; Song, Li; Zhang, Yan-Wan; Ye, Jue; Xu, Rui-Xia; Shi, Na; Meng, Xian-Min [Core Laboratory, Fu Wai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China)

    2013-02-01

    The phosphorylation of cardiac troponin I (cTnI) plays an important role in the contractile dysfunction associated with heart failure. Human cardiac troponin I-interacting kinase (TNNI3K) is a novel cardiac-specific functional kinase that can bind to cTnI in a yeast two-hybrid screen. The purpose of this study was to investigate whether TNNI3K can phosphorylate cTnI at specific sites and to examine whether the phosphorylation of cTnI caused by TNNI3K can regulate cardiac myofilament contractile function. Co-immunoprecipitation was performed to confirm that TNNI3K could interact with cTnI. Kinase assays further indicated that TNNI3K did not phosphorylate cTnI at Ser23/24 and Ser44, but directly phosphorylated Ser43 and Thr143 in vitro. The results obtained for adult rat cardiomyocytes also indicated that enhanced phosphorylation of cTnI at Ser43 and Thr143 correlated with rTNNI3K (rat TNNI3K) overexpression, and phosphorylation was reduced when rTNNI3K was knocked down. To determine the contractile function modulated by TNNI3K-mediated phosphorylation of cTnI, cardiomyocyte contraction was studied in adult rat ventricular myocytes. The contraction of cardiomyocytes increased with rTNNI3K overexpression and decreased with rTNNI3K knockdown. We conclude that TNNI3K may be a novel mediator of cTnI phosphorylation and contribute to the regulation of cardiac myofilament contraction function.

  1. Phosphorylation of Ser-204 and Tyr-405 in human malonyl-CoA decarboxylase expressed in silkworm Bombyx mori regulates catalytic decarboxylase activity.

    Science.gov (United States)

    Hwang, In-Wook; Makishima, Yu; Suzuki, Tomohiro; Kato, Tatsuya; Park, Sungjo; Terzic, Andre; Chung, Shin-Kyo; Park, Enoch Y

    2015-11-01

    Decarboxylation of malonyl-CoA to acetyl-CoA by malonyl-CoA decarboxylase (MCD; EC 4.1.1.9) is a vital catalytic reaction of lipid metabolism. While it is established that phosphorylation of MCD modulates the enzymatic activity, the specific phosphorylation sites associated with the catalytic function have not been documented due to lack of sufficient production of MCD with proper post-translational modifications. Here, we used the silkworm-based Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid system to express human MCD (hMCD) and mapped phosphorylation effects on enzymatic function. Purified MCD from silkworm displayed post-translational phosphorylation and demonstrated coherent enzymatic activity with high yield (-200 μg/silkworm). Point mutations in putative phosphorylation sites, Ser-204 or Tyr-405 of hMCD, identified by bioinformatics and proteomics analyses reduced the catalytic activity, underscoring the functional significance of phosphorylation in modulating decarboxylase-based catalysis. Identified phosphorylated residues are distinct from the decarboxylation catalytic site, implicating a phosphorylation-induced global conformational change of MCD as responsible in altering catalytic function. We conclude that phosphorylation of Ser-204 and Tyr-405 regulates the decarboxylase function of hMCD leveraging the silkworm-based BmNPV bacmid expression system that offers a fail-safe eukaryotic production platform implementing proper post-translational modification such as phosphorylation.

  2. Oxidative phosphorylation in cancer cells.

    Science.gov (United States)

    Solaini, Giancarlo; Sgarbi, Gianluca; Baracca, Alessandra

    2011-06-01

    Evidence suggests that mitochondrial metabolism may play a key role in controlling cancer cells life and proliferation. Recent evidence also indicates how the altered contribution of these organelles to metabolism and the resistance of cancer mitochondria against apoptosis-associated permeabilization are closely related. The hallmarks of cancer growth, increased glycolysis and lactate production in tumours, have raised attention due to recent observations suggesting a wide spectrum of oxidative phosphorylation deficit and decreased availability of ATP associated with malignancies and tumour cell expansion. More specifically, alteration in signal transduction pathways directly affects mitochondrial proteins playing critical roles in controlling the membrane potential as UCP2 and components of both MPTP and oxphos complexes, or in controlling cells life and death as the Bcl-2 proteins family. Moreover, since mitochondrial bioenergetics and dynamics, are also involved in processes of cells life and death, proper regulation of these mitochondrial functions is crucial for tumours to grow. Therefore a better understanding of the key pathophysiological differences between mitochondria in cancer cells and in their non-cancer surrounding tissue is crucial to the finding of tools interfering with these peculiar tumour mitochondrial functions and will disclose novel approaches for the prevention and treatment of malignant diseases. Here, we review the peculiarity of tumour mitochondrial bioenergetics and the mode it is linked to the cell metabolism, providing a short overview of the evidence accumulated so far, but highlighting the more recent advances.

  3. Semaphorin 6A regulates angiogenesis by modulating VEGF signaling

    Science.gov (United States)

    Segarra, Marta; Maric, Dragan; Salvucci, Ombretta; Hou, Xu; Kumar, Anil; Li, Xuri; Tosato, Giovanna

    2012-01-01

    Formation of new vessels during development and in the mature mammal generally proceeds through angiogenesis. Although a variety of molecules and signaling pathways are known to underlie endothelial cell sprouting and remodeling during angiogenesis, many aspects of this complex process remain unexplained. Here we show that the transmembrane semaphorin6A (Sema6A) is expressed in endothelial cells, and regulates endothelial cell survival and growth by modulating the expression and signaling of VEGFR2, which is known to maintain endothelial cell viability by autocrine VEGFR signaling. The silencing of Sema6A in primary endothelial cells promotes cell death that is not rescued by exogenous VEGF-A or FGF2, attributable to the loss of prosurvival signaling from endogenous VEGF. Analyses of mouse tissues demonstrate that Sema6A is expressed in angiogenic and remodeling vessels. Mice with null mutations of Sema6A exhibit significant defects in hyaloid vessels complexity associated with increased endothelial cell death, and in retinal vessels development that is abnormally reduced. Adult Sema6A-null mice exhibit reduced tumor, matrigel, and choroidal angiogenesis compared with controls. Sema6A plays important roles in development of the nervous system. Here we show that it also regulates vascular development and adult angiogenesis. PMID:23007403

  4. In vivo analysis of Yorkie phosphorylation sites.

    Science.gov (United States)

    Oh, H; Irvine, K D

    2009-04-30

    The co-activator Yorkie (Yki) mediates transcriptional regulation effected by the Drosophila Fat-Warts (Wts)-Hippo (Hpo) pathways. Yki is inhibited by Wts-mediated phosphorylation, and a Wts phosphorylation site at Ser168 has been identified. Here we identify two additional Wts phosphorylation sites on Yki, and examine the respective contribution of all three sites to Yki nuclear localization and activity. Our results show that although Ser168 is the most critical site, all three phosphorylation sites influence Yki localization and activity in vivo, and can be sites of regulation by Wts. Thus, investigations of the role of Yki and its mammalian homolog Yes-associated protein (YAP) in development and oncogenesis should include evaluations of additional sites. The WW domains of Yki are not required for its phosphorylation, but instead are positively required for its activity. We also identify two potential sites of phosphorylation by an unknown kinase, which could influence phosphorylation of Ser168 by Wts, suggesting that there are additional mechanisms for regulating Yki/YAP activity.

  5. Retinoic acid increases glucocorticoid receptor phosphorylation via cyclin-dependent kinase 5.

    Science.gov (United States)

    Brossaud, Julie; Roumes, Hélène; Helbling, Jean-Christophe; Moisan, Marie-Pierre; Pallet, Véronique; Ferreira, Guillaume; Biyong, Essi-Fanny; Redonnet, Anabelle; Corcuff, Jean-Benoît

    2017-07-01

    Glucocorticoid receptor (GR) function is modulated by phosphorylation. As retinoic acid (RA) can activate some cytoplasmic kinases able to phosphorylate GR, we investigated whether RA could modulate GR phosphorylation in neuronal cells in a context of long-term glucocorticoid exposure. A 4-day treatment of dexamethasone (Dex) plus RA, showed that RA potentiated the (Dex)-induced phosphorylation on GR Serine 220 (pSer220GR) in the nucleus of a hippocampal HT22 cell line. This treatment increased the cytoplasmic ratio of p35/p25 proteins, which are major CDK5 cofactors. Roscovitine, a pharmacological CDK5 inhibitor, or a siRNA against CDK5 prevented RA potentiation of GR phosphorylation. Furthermore, roscovitine counter-acted the effect of RA on GR sensitive target proteins such as BDNF or tissue-transglutaminase. These data help understanding the interaction between RA- and glucocorticoid-signalling pathways, both of which have strong influences on the adult brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Pin1: Intimate involvement with the regulatory protein kinase networks in the global phosphorylation landscape.

    Science.gov (United States)

    Litchfield, David W; Shilton, Brian H; Brandl, Christopher J; Gyenis, Laszlo

    2015-10-01

    Protein phosphorylation is a universal regulatory mechanism that involves an extensive network of protein kinases. The discovery of the phosphorylation-dependent peptidyl-prolyl isomerase Pin1 added an additional layer of complexity to these regulatory networks. We have evaluated interactions between Pin1 and the regulatory kinome and proline-dependent phosphoproteome taking into consideration findings from targeted studies as well as data that has emerged from systematic phosphoproteomic workflows and from curated protein interaction databases. The relationship between Pin1 and the regulatory protein kinase networks is not restricted simply to the recognition of proteins that are substrates for proline-directed kinases. In this respect, Pin1 itself is phosphorylated in cells by protein kinases that modulate its functional properties. Furthermore, the phosphorylation-dependent targets of Pin1 include a number of protein kinases as well as other enzymes such as phosphatases and regulatory subunits of kinases that modulate the actions of protein kinases. As a result of its interactions with numerous protein kinases and their substrates, as well as itself being a target for phosphorylation, Pin1 has an intricate relationship with the regulatory protein kinase and phosphoproteomic networks that orchestrate complex cellular processes and respond to environmental cues. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome

    DEFF Research Database (Denmark)

    Mann, Matthias; Ong, Shao En; Grønborg, Mads

    2002-01-01

    In signal transduction in eukaryotes, protein phosphorylation is a key event. To understand signaling processes, we must first acquire an inventory of phosphoproteins and their phosphorylation sites under different conditions. Because phosphorylation is a dynamic process, elucidation of signaling...

  8. Phosphorylation-dependent regulation of nuclear localization and functions of integrin-linked kinase

    Science.gov (United States)

    Acconcia, Filippo; Barnes, Christopher J.; Singh, Rajesh R.; Talukder, Amjad H.; Kumar, Rakesh

    2007-01-01

    Integrin-linked kinase (ILK) is a phosphorylated protein that regulates physiological processes that overlap with those regulated by p21-activated kinase 1 (PAK1). Here we report the possible role of ILK phosphorylation by PAK1 in ILK-mediated signaling and intracellular translocation. We found that PAK1 phosphorylates ILK at threonine-173 and serine-246 in vitro and in vivo. Depletion of PAK1 decreased the levels of endogenous ILK phosphorylation in vivo. Mutation of PAK1 phosphorylation sites on ILK to alanine reduced cell motility and cell proliferation. Biochemical fractionation, confocal microscopy, and chromatin-interaction analyses of human cells revealed that ILK localizes predominantly in the cytoplasm but also resides in the nucleus. Transfection of MCF-7 cells with point mutants ILK-T173A, ILK-S246A, or ILK-T173A; S246A (ILK-DM) altered ILK localization. Selective depletion of PAK1 dramatically increased the nuclear and focal point accumulation of ILK, further demonstrating a role for PAK1 in ILK translocation. We also identified functional nuclear localization sequence and nuclear export sequence motifs in ILK, delineated an apparently integral role for ILK in maintaining normal nuclear integrity, and established that ILK interacts with the regulatory region of the CNKSR3 gene chromatin to negatively modulate its expression. Together, these results suggest that ILK is a PAK1 substrate, undergoes phosphorylation-dependent shuttling between the cell nucleus and cytoplasm, and interacts with gene-regulatory chromatin. PMID:17420447

  9. Phosphorylation of Ku dictates DNA double-strand break (DSB) repair pathway choice in S phase.

    Science.gov (United States)

    Lee, Kyung-Jong; Saha, Janapriya; Sun, Jingxin; Fattah, Kazi R; Wang, Shu-Chi; Jakob, Burkhard; Chi, Linfeng; Wang, Shih-Ya; Taucher-Scholz, Gisela; Davis, Anthony J; Chen, David J

    2016-02-29

    Multiple DNA double-strand break (DSB) repair pathways are active in S phase of the cell cycle; however, DSBs are primarily repaired by homologous recombination (HR) in this cell cycle phase. As the non-homologous end-joining (NHEJ) factor, Ku70/80 (Ku), is quickly recruited to DSBs in S phase, we hypothesized that an orchestrated mechanism modulates pathway choice between HR and NHEJ via displacement of the Ku heterodimer from DSBs to allow HR. Here, we provide evidence that phosphorylation at a cluster of sites in the junction of the pillar and bridge regions of Ku70 mediates the dissociation of Ku from DSBs. Mimicking phosphorylation at these sites reduces Ku's affinity for DSB ends, suggesting that phosphorylation of Ku70 induces a conformational change responsible for the dissociation of the Ku heterodimer from DNA ends. Ablating phosphorylation of Ku70 leads to the sustained retention of Ku at DSBs, resulting in a significant decrease in DNA end resection and HR, specifically in S phase. This decrease in HR is specific as these phosphorylation sites are not required for NHEJ. Our results demonstrate that the phosphorylation-mediated dissociation of Ku70/80 from DSBs frees DNA ends, allowing the initiation of HR in S phase and providing a mechanism of DSB repair pathway choice in mammalian cells.

  10. Phosphorylation and calcium antagonistically tune myosin-binding protein C's structure and function.

    Science.gov (United States)

    Previs, Michael J; Mun, Ji Young; Michalek, Arthur J; Previs, Samantha Beck; Gulick, James; Robbins, Jeffrey; Warshaw, David M; Craig, Roger

    2016-03-22

    During each heartbeat, cardiac contractility results from calcium-activated sliding of actin thin filaments toward the centers of myosin thick filaments to shorten cellular length. Cardiac myosin-binding protein C (cMyBP-C) is a component of the thick filament that appears to tune these mechanochemical interactions by its N-terminal domains transiently interacting with actin and/or the myosin S2 domain, sensitizing thin filaments to calcium and governing maximal sliding velocity. Both functional mechanisms are potentially further tunable by phosphorylation of an intrinsically disordered, extensible region of cMyBP-C's N terminus, the M-domain. Using atomic force spectroscopy, electron microscopy, and mutant protein expression, we demonstrate that phosphorylation reduced the M-domain's extensibility and shifted the conformation of the N-terminal domain from an extended structure to a compact configuration. In combination with motility assay data, these structural effects of M-domain phosphorylation suggest a mechanism for diminishing the functional potency of individual cMyBP-C molecules. Interestingly, we found that calcium levels necessary to maximally activate the thin filament mitigated the structural effects of phosphorylation by increasing M-domain extensibility and shifting the phosphorylated N-terminal fragments back to the extended state, as if unphosphorylated. Functionally, the addition of calcium to the motility assays ablated the impact of phosphorylation on maximal sliding velocities, fully restoring cMyBP-C's inhibitory capacity. We conclude that M-domain phosphorylation may have its greatest effect on tuning cMyBP-C's calcium-sensitization of thin filaments at the low calcium levels between contractions. Importantly, calcium levels at the peak of contraction would allow cMyBP-C to remain a potent contractile modulator, regardless of cMyBP-C's phosphorylation state.

  11. Regulation of myosin light chain phosphorylation in the trabecular meshwork: role in aqueous humour outflow facility.

    Science.gov (United States)

    Rao, P Vasantha; Deng, Peifeng; Sasaki, Yasuharu; Epstein, David L

    2005-02-01

    Cellular contraction and relaxation and integrity of the actin cytoskeleton in trabecular meshwork (TM) tissue have been thought to influence aqueous humour outflow. However, the cellular pathways that regulate these events in TM cells are not well understood. In this study, we investigated physiological agonist-mediated regulation of myosin light chain (MLC) phosphorylation in the TM, and correlated such effects with alterations in aqueous outflow facility, since MLC phosphorylation is a critical biochemical determinant of cellular contraction in TM cells. Treatment of serum starved human TM cells with endothelin-1 (0.1 microM), thromboxane A2 mimetic U-46619 (1.0 microM), or angiotensin II (1 microM), all of which are agonists of G-protein coupled receptors, triggered activation of MLC phosphorylation, as determined by urea/glycerol-based Western blot analysis. Agonist-stimulated increase in MLC phosphorylation was associated with activation of Rho GTPase in TM cells, as determined in pull-down assays. In contrast, treatment of human TM cells with a novel Rho-kinase inhibitor H-1152 (0.1-2 microM), in the presence of serum reduced basal MLC phosphorylation. H-1152 also increased aqueous outflow facility significantly in a dose-dependent fashion, in perfusion studies with cadaver porcine eyes. This effect of H-1152 on outflow facility was associated with decreased MLC phosphorylation in TM tissue of drug-perfused eyes. Collectively, this study identifies potential physiological regulators of MLC phosphorylation in human TM cells and demonstrates the significance of Rho/Rho-kinase pathway-mediated MLC phosphorylation in modulation of aqueous outflow facility through TM.

  12. Mcm2 phosphorylation and the response to replicative stress

    Directory of Open Access Journals (Sweden)

    Stead Brent E

    2012-05-01

    of Mcm2 in the response to replicative stress, including some forms of DNA damage. We suggest that phosphorylation of Mcm2 modulates Mcm2-7 activity resulting in the stabilization of replication forks in response to replicative stress.

  13. Tyrosyl phosphorylation toggles a Runx1 switch

    OpenAIRE

    Benjamin G. Neel; Speck, Nancy A.

    2012-01-01

    The Runx1 transcription factor is post-translationally modified by seryl/threonyl phosphorylation, acetylation, and methylation that control its interactions with transcription factor partners and epigenetic coregulators. In this Perspective, the study by Huang et al. (in this issue), which describes how the regulation of Runx1 tyrosyl phosphorylation by Src family kinases and the Shp2 phosphatase toggle Runx1's interactions between different coregulatory molecules, is discussed.

  14. Compartment-Specific Phosphorylation of Squid Neurofilaments.

    Science.gov (United States)

    Grant, Philip; Pant, Harish C

    2016-01-01

    Studies of the giant axon and synapse of third-order neurons in the squid stellate ganglion have provided a vast literature on neuronal physiology and axon transport. Large neuronal size also lends itself to comparative biochemical studies of cell body versus axon. These have focused on the regulation of synthesis, assembly, posttranslational modification and function of neuronal cytoskeletal proteins (microtubules (MTs) and neurofilaments (NFs)), the predominant proteins in axoplasm. These contribute to axonal organization, stability, transport, and impulse transmission responsible for rapid contractions of mantle muscles underlying jet propulsion. Studies of vertebrate NFs have established an extensive literature on NF structure, organization, and function; studies of squid NFs, however, have made it possible to compare compartment-specific regulation of NF synthesis, assembly, and function in soma versus axoplasm. Since NFs contain over 100 eligible sites for phosphorylation by protein kinases, the compartment-specific patterns of phosphorylation have been a primary focus of biochemical studies. We have learned that NF phosphorylation is tightly compartmentalized; extensive phosphorylation occurs only in the axonal compartment in squid and in vertebrate neurons. This extensive phosphorylation plays a key role in organizing NFs, in association with microtubules (MTs), into a stable, dynamic functional lattice that supports axon growth, diameter, impulse transmission, and synaptic activity. To understand how cytoskeletal phosphorylation is topographically regulated, the kinases and phosphatases, bound to NFs isolated from cell bodies and axoplasm, have also been studied.

  15. Fibronectin phosphorylation by ecto-protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Imada, Sumi; Sugiyama, Yayoi; Imada, Masaru (Meiji Institute of Health Science, Odawara (Japan))

    1988-12-01

    The presence of membrane-associated, extracellular protein kinase (ecto-protein kinase) and its substrate proteins was examined with serum-free cultures of Swiss 3T3 fibroblast. When cells were incubated with ({gamma}-{sup 32})ATP for 10 min at 37{degree}C, four proteins with apparent molecular weights between 150 and 220 kDa were prominently phosphorylated. These proteins were also radiolabeled by lactoperoxidase catalyzed iodination and were sensitive to mild tryptic digestion, suggesting that they localized on the cell surface or in the extracellular matrix. Phosphorylation of extracellular proteins with ({gamma}-{sup 32}P)ATP in intact cell culture is consistent with the existence of ecto-protein kinase. Anti-fibronectin antibody immunoprecipitated one of the phosphoproteins which comigrated with a monomer and a dimer form of fibronectin under reducing and nonreducing conditions of electrophoresis, respectively. The protein had affinity for gelatin as demonstrated by retention with gelatin-conjugated agarose. This protein substrate of ecto-protein kinase was thus concluded to be fibronectin. The sites of phosphorylation by ecto-protein kinase were compared with those of intracellularly phosphorylated fibronectin by the analysis of radiolabeled amino acids and peptides. Ecto-protein kinase phosphorylated fibronectin at serine and threonine residues which were distinct from the sites of intracellular fibronectin phosphorylation.

  16. Protein phosphorylation: Localization in regenerating optic axons

    Energy Technology Data Exchange (ETDEWEB)

    Larrivee, D. (Cornell Univ. Medical College, New York, NY (USA))

    1990-09-01

    A number of axonal proteins display changes in phosphorylation during goldfish optic nerve regeneration. (1) To determine whether the phosphorylation of these proteins was closely linked to their synthesis in the retinal ganglion cell body, cycloheximide was injected intraocularly into goldfish whose optic nerves had been regenerating for 3 weeks. Cycloheximide reduced the incorporation of (3H)proline and 32P orthophosphate into total nerve protein by 84% and 46%, respectively. Of the 20 individual proteins examined, 17 contained less than 15% of the (3H)proline label measured in corresponding controls, whereas 18 proteins contained 50% or more of the 32P label, suggesting that phosphorylation was largely independent of synthesis. (2) To determine whether the proteins were phosphorylated in the ganglion cell axons, axonal transport of proteins was blocked by intraocular injection of vincristine. Vincristine reduced (3H)proline labeling of total protein by 88% and 32P labeling by 49%. Among the individual proteins (3H)proline labeling was reduced by 90% or more in 18 cases but 32P labeling was reduced only by 50% or less. (3) When 32P was injected into the cranial cavity near the ends of the optic axons, all of the phosphoproteins were labeled more intensely in the optic tract than in the optic nerve. These results suggest that most of the major phosphoproteins that undergo changes in phosphorylation in the course of regeneration are phosphorylated in the optic axons.

  17. PKA regulates calcineurin function through the phosphorylation of RCAN1: Identification of a novel phosphorylation site

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Sook; Lee, Eun Hye [Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Lee, Kooyeon [Department of Bio-Health Technology, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Jo, Su-Hyun, E-mail: suhyunjo@kangwon.ac.kr [Department of Physiology, BK21 Plus Graduate Program, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Seo, Su Ryeon, E-mail: suryeonseo@kangwon.ac.kr [Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701 (Korea, Republic of)

    2015-04-17

    Calcineurin is a calcium/calmodulin-dependent phosphatase that has been implicated in T cell activation through the induction of nuclear factors of activated T cells (NFAT). We have previously suggested that endogenous regulator of calcineurin (RCAN1, also known as DSCR1) is targeted by protein kinase A (PKA) for the control of calcineurin activity. In the present study, we characterized the PKA-mediated phosphorylation site in RCAN1 by mass spectrometric analysis and revealed that PKA directly phosphorylated RCAN1 at the Ser 93. PKA-induced phosphorylation and the increase in the half-life of the RCAN1 protein were prevented by the substitution of Ser 93 with Ala (S93A). Furthermore, the PKA-mediated phosphorylation of RCAN1 at Ser 93 potentiated the inhibition of calcineurin-dependent pro-inflammatory cytokine gene expression by RCAN1. Our results suggest the presence of a novel phosphorylation site in RCAN1 and that its phosphorylation influences calcineurin-dependent inflammatory target gene expression. - Highlights: • We identify novel phosphorylation sites in RCAN1 by LC-MS/MS analysis. • PKA-dependent phosphorylation of RCAN1 at Ser 93 inhibits calcineurin-mediated intracellular signaling. • We show the immunosuppressive function of RCAN1 phosphorylation at Ser 93 in suppressing cytokine expression.

  18. ERK Activation Globally Downregulates miRNAs through Phosphorylating Exportin-5.

    Science.gov (United States)

    Sun, Hui-Lung; Cui, Ri; Zhou, JianKang; Teng, Kun-Yu; Hsiao, Yung-Hsuan; Nakanishi, Kotaro; Fassan, Matteo; Luo, Zhenghua; Shi, Guqin; Tili, Esmerina; Kutay, Huban; Lovat, Francesca; Vicentini, Caterina; Huang, Han-Li; Wang, Shih-Wei; Kim, Taewan; Zanesi, Nicola; Jeon, Young-Jun; Lee, Tae Jin; Guh, Jih-Hwa; Hung, Mien-Chie; Ghoshal, Kalpana; Teng, Che-Ming; Peng, Yong; Croce, Carlo M

    2016-11-14

    MicroRNAs (miRNA) are mostly downregulated in cancer. However, the mechanism underlying this phenomenon and the precise consequence in tumorigenesis remain obscure. Here we show that ERK suppresses pre-miRNA export from the nucleus through phosphorylation of exportin-5 (XPO5) at T345/S416/S497. After phosphorylation by ERK, conformation of XPO5 is altered by prolyl isomerase Pin1, resulting in reduction of pre-miRNA loading. In liver cancer, the ERK-mediated XPO5 suppression reduces miR-122, increases microtubule dynamics, and results in tumor development and drug resistance. Analysis of clinical specimens further showed that XPO5 phosphorylation is associated with poor prognosis for liver cancer patients. Our study reveals a function of ERK in miRNA biogenesis and suggests that modulation of miRNA export has potential clinical implications.

  19. Dynamic phosphorylation of Histone Deacetylase 1 by Aurora kinases during mitosis regulates zebrafish embryos development

    Science.gov (United States)

    Loponte, Sara; Segré, Chiara V.; Senese, Silvia; Miccolo, Claudia; Santaguida, Stefano; Deflorian, Gianluca; Citro, Simona; Mattoscio, Domenico; Pisati, Federica; Moser, Mirjam A.; Visintin, Rosella; Seiser, Christian; Chiocca, Susanna

    2016-01-01

    Histone deacetylases (HDACs) catalyze the removal of acetyl molecules from histone and non-histone substrates playing important roles in chromatin remodeling and control of gene expression. Class I HDAC1 is a critical regulator of cell cycle progression, cellular proliferation and differentiation during development; it is also regulated by many post-translational modifications (PTMs). Herein we characterize a new mitosis-specific phosphorylation of HDAC1 driven by Aurora kinases A and B. We show that this phosphorylation affects HDAC1 enzymatic activity and it is critical for the maintenance of a proper proliferative and developmental plan in a complex organism. Notably, we find that Aurora-dependent phosphorylation of HDAC1 regulates histone acetylation by modulating the expression of genes directly involved in the developing zebrafish central nervous system. Our data represent a step towards the comprehension of HDAC1 regulation by its PTM code, with important implications in unravelling its roles both in physiology and pathology. PMID:27458029

  20. Proteomic Analysis of Calcium- and Phosphorylation-dependentCalmodulin Complexes in Mammalian Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Deok-Jin; Wang, Daojing

    2006-05-26

    Protein conformational changes due to cofactor binding (e.g. metal ions, heme) and/or posttranslational modifications (e.g. phosphorylation) modulate dynamic protein complexes. Calmodulin (CaM) plays an essential role in regulating calcium (Ca{sup 2+}) signaling and homeostasis. No systematic approach on the identification of phosphorylation-dependent Ca{sup 2+}/CaM binding proteins has been published. Herein, we report a proteome-wide study of phosphorylation-dependent CaM binding proteins from mammalian cells. This method, termed 'Dynamic Phosphoprotein Complex Trapping', 'DPPC Trapping' for short, utilizes a combination of in vivo and in vitro assays. The basic strategy is to drastically shift the equilibrium towards endogenous phosphorylation of Ser, Thr, and Tyr at the global scale by inhibiting corresponding phosphatases in vivo. The phosphorylation-dependent calmodulin-binding proteins are then trapped in vitro in a Ca{sup 2+}-dependent manner by CaM-Sepharose chromatography. Finally, the isolated calmodulin-binding proteins are separated by SDS-PAGE and identified by LC/MS/MS. In parallel, the phosphorylation-dependent binding is visualized by silver staining and/or Western blotting. Using this method, we selectively identified over 120 CaM-associated proteins including many previously uncharacterized. We verified ubiquitin-protein ligase EDD1, inositol 1, 4, 5-triphosphate receptor type 1 (IP{sub 3}R1), and ATP-dependent RNA helicase DEAD box protein 3 (DDX3), as phosphorylation-dependent CaM binding proteins. To demonstrate the utilities of our method in understanding biological pathways, we showed that pSer/Thr of IP{sub 3}R1 in vivo by staurosporine-sensitive kinase(s), but not by PKA/PKG/PKC, significantly reduced the affinity of its Ca{sup 2+}-dependent CaM binding. However, pSer/Thr of IP{sub 3}R1 did not substantially affect its Ca{sup 2+}-independent CaM binding. We further showed that phosphatase PP1, but not PP2A or PP2B

  1. Integrating phosphorylation network with transcriptional network reveals novel functional relationships.

    Directory of Open Access Journals (Sweden)

    Lin Wang

    Full Text Available Phosphorylation and transcriptional regulation events are critical for cells to transmit and respond to signals. In spite of its importance, systems-level strategies that couple these two networks have yet to be presented. Here we introduce a novel approach that integrates the physical and functional aspects of phosphorylation network together with the transcription network in S.cerevisiae, and demonstrate that different network motifs are involved in these networks, which should be considered in interpreting and integrating large scale datasets. Based on this understanding, we introduce a HeRS score (hetero-regulatory similarity score to systematically characterize the functional relevance of kinase/phosphatase involvement with transcription factor, and present an algorithm that predicts hetero-regulatory modules. When extended to signaling network, this approach confirmed the structure and cross talk of MAPK pathways, inferred a novel functional transcription factor Sok2 in high osmolarity glycerol pathway, and explained the mechanism of reduced mating efficiency upon Fus3 deletion. This strategy is applicable to other organisms as large-scale datasets become available, providing a means to identify the functional relationships between kinases/phosphatases and transcription factors.

  2. Phosphorylation of Cdc5 regulates its accumulation

    Directory of Open Access Journals (Sweden)

    Simpson-Lavy Kobi J

    2011-12-01

    Full Text Available Abstract Background Cdc5 (polo kinase/Plk1 is a highly conserved key regulator of the S. cerevisiae cell cycle from S-phase until cytokinesis. However, much of the regulatory mechanisms that govern Cdc5 remain to be determined. Cdc5 is phosphorylated on up to 10 sites during mitosis. In this study, we investigated the function of phosphorylation site T23, the only full consensus Cdk1 (Cdc28 phosphorylation site present. Findings Cdc5T23A introduces a degron that reduces its cellular amount to undetectable levels, which are nevertheless sufficient for normal cell proliferation. The degron acts in cis and is reversed by N-terminal GFP-tagging. Cdk1 kinase activity is required to maintain Cdc5 levels during G2. This, Cdk1 inhibited, Cdc5 degradation is APC/CCdh1 independent and requires new protein synthesis. Cdc5T23E is hyperactive, and reduces the levels of Cdc5 (in trans and drastically reduces Clb2 levels. Conclusions Phosphorylation of Cdc5 by Cdk1 is required to maintain Cdc5 levels during G2. However, phosphorylation of T23 (probably by Cdk1 caps Cdc5 and other CLB2 cluster protein accumulation, preventing potential protein toxicity, which may arise from their overexpression or from APC/CCdh1 inactivation.

  3. Phosphorylation state-dependent interaction between AKAP7δ/γ and phospholamban increases phospholamban phosphorylation

    Science.gov (United States)

    Rigatti, Marc; Le, Andrew V.; Gerber, Claire; Moraru, Ion I.; Dodge-Kafka, Kimberly L.

    2016-01-01

    Changes in heart rate and contractility in response to sympathetic stimulation occur via activation of cAMP dependent protein kinase A (PKA), leading to phosphorylation of numerous substrates that alter Ca2+ cycling. Phosphorylation of these substrates is coordinated by A-kinase anchoring proteins (AKAPs), which recruit PKA to specific substrates [1]. Phosphorylation of the PKA substrate phospholamban (PLB) is a critical determinant of Ca2+ re-entry into the sarcoplasmic reticulum and is coordinated by AKAP7δ/γ [2,3]. Here, we further these findings by showing that phosphorylation of PLB requires interaction with AKAP7δ/γ and that this interaction occurs only when PLB is unphosphorylated. Additionally, we find that two mutants of PLB (R9C and Δ14), which are associated with dilated cardiomyopathy in humans, prevent association with AKAP7δ/γ and display reduced phosphorylation in vitro. This finding implicates the AKAP7δ/γ-PLB interaction in the pathology of the disease phenotype. Further exploration of the AKAP7δ/γ-PLB association demonstrated a phosphorylation state-dependence of the interaction. Computational modeling revealed that this mode of interaction allows for small amounts of AKAP and PKA (100–200nM) to regulate the phosphorylation of large quantities of PLB (50µM). Our results confirm that AKAP7γ/δ binding to PLB is important for phosphorylation of PLB, and describe a novel phosphorylation state-dependent binding mechanism that explains how phosphorylation of highly abundant PKA substrates can be regulated by AKAPs present at ~100–200 fold lower concentrations. PMID:26027516

  4. Involvement of extracellular signal-regulated kinases 1/2 phosphorylation in estrogen-modulated nociception in rats with incision pain%磷酸化胞外信号调节激酶1/2参与雌激素对切口痛大鼠的伤害性感受调节

    Institute of Scientific and Technical Information of China (English)

    姚婧鑫; 赵欣; 薛庆生; 于布为

    2011-01-01

    Objective To investigate the role of extracellular signal-regulated kinases pERK1/2 phosphorylation in estrogen-modulated nociception of incision pain in rats. Methods Thirty two adult ovariectomized (OVX) female rats were used in this study. The plantar incision operation was performed on the 15th day after OVX. OVX rats were divided into 4 groups, with 8 in each group. Group E + S: estrogen replacement (50 μg estrogen dissolved in 100 uL olive oil) + sham incision; group V+ S: vehicle replacement (100 μL olive oil) + sham incision; group E+l: estrogen replacement (50 pg estrogen dissolved in 100 μL olive oil) + incision operation; and group V+l: vehicle replacement (100 μL olive oil) + incision operation. Estrogen or vehicle replacements were intraperitoneally injected every other day from day 14 after OVX to the end of pain behavior test. Paw withdrawal thermal latency (PWTL) assessment was used as the pain behavior test before OVX, 2 day before paw incision operation, and, 1,3,5,7 days after incision. ERK1/2 phosphorylation (pERKI/ 2) was assayed in spinal dorsal cord after pain behavior test. Results Compared with group E + S, PWTL in group V+S were significantly increased on day 16, 18, 20, 22 after OVX (P<0.05). The PWTL at 1 and 3 daysafter incision operation were significant lower than the PWTL before incision in group E+ I and group V+ I. The PWTL of rats in group E+ I were significantly reduced compared with that in group V+ I on the day 1 and 3 after incision operation. The PWTL of group E+ I and group V+ I reverted to the preoperative levels of incision pains on the day 5 and day 7 postoperatively, respectively. pERK1/2 expression in the spinal cord of rats in estrogen replacement groups were augmented more than those in the vehicle groups. After incision operation* the level of pERK1/2 in the ipsilateral side was higher than that in the contralateral side of spinal cord (P<0. 05). Conclusion Estrogen can increase the nociception of OVX incision

  5. Phosphorylation decreases ubiquitylation of the thiazide-sensitive cotransporter NCC and subsequent clathrin-mediated endocytosis.

    Science.gov (United States)

    Rosenbaek, Lena L; Kortenoeven, Marleen L A; Aroankins, Takwa S; Fenton, Robert A

    2014-05-09

    The thiazide-sensitive sodium chloride cotransporter, NCC, is the major NaCl transport protein in the distal convoluted tubule (DCT). The transport activity of NCC can be regulated by phosphorylation, but knowledge of modulation of NCC trafficking by phosphorylation is limited. In this study, we generated novel tetracycline-inducible Madin-Darby canine kidney type I (MDCKI) cell lines expressing NCC to examine the role of NCC phosphorylation and ubiquitylation on NCC endocytosis. In MDCKI-NCC cells, NCC was highly glycosylated at molecular weights consistent with NCC monomers and dimers. NCC constitutively cycles to the apical plasma membrane of MDCKI-NCC cells, with 20-30% of the membrane pool of NCC internalized within 30 min. The use of dynasore, PitStop2, methyl-β-cyclodextrin, nystatin, and filipin (specific inhibitors of either clathrin-dependent or -independent endocytosis) demonstrated that NCC is internalized via a clathrin-mediated pathway. Reduction of endocytosis resulted in greater levels of NCC in the plasma membrane. Immunogold electron microscopy confirmed the association of NCC with the clathrin-mediated internalization pathway in rat DCT cells. Compared with controls, inducing phosphorylation of NCC via low chloride treatment or mimicking phosphorylation by replacing Thr-53, Thr-58, and Ser-71 residues with Asp resulted in increased membrane abundance and reduced rates of NCC internalization. NCC ubiquitylation was lowest in the conditions with greatest NCC phosphorylation, thus providing a mechanism for the reduced endocytosis. In conclusion, our data support a model where NCC is constitutively cycled to the plasma membrane, and upon stimulation, it can be phosphorylated to both increase NCC activity and decrease NCC endocytosis, together increasing NaCl transport in the DCT.

  6. Phosphorylation Decreases Ubiquitylation of the Thiazide-sensitive Cotransporter NCC and Subsequent Clathrin-mediated Endocytosis*

    Science.gov (United States)

    Rosenbaek, Lena L.; Kortenoeven, Marleen L. A.; Aroankins, Takwa S.; Fenton, Robert A.

    2014-01-01

    The thiazide-sensitive sodium chloride cotransporter, NCC, is the major NaCl transport protein in the distal convoluted tubule (DCT). The transport activity of NCC can be regulated by phosphorylation, but knowledge of modulation of NCC trafficking by phosphorylation is limited. In this study, we generated novel tetracycline-inducible Madin-Darby canine kidney type I (MDCKI) cell lines expressing NCC to examine the role of NCC phosphorylation and ubiquitylation on NCC endocytosis. In MDCKI-NCC cells, NCC was highly glycosylated at molecular weights consistent with NCC monomers and dimers. NCC constitutively cycles to the apical plasma membrane of MDCKI-NCC cells, with 20–30% of the membrane pool of NCC internalized within 30 min. The use of dynasore, PitStop2, methyl-β-cyclodextrin, nystatin, and filipin (specific inhibitors of either clathrin-dependent or -independent endocytosis) demonstrated that NCC is internalized via a clathrin-mediated pathway. Reduction of endocytosis resulted in greater levels of NCC in the plasma membrane. Immunogold electron microscopy confirmed the association of NCC with the clathrin-mediated internalization pathway in rat DCT cells. Compared with controls, inducing phosphorylation of NCC via low chloride treatment or mimicking phosphorylation by replacing Thr-53, Thr-58, and Ser-71 residues with Asp resulted in increased membrane abundance and reduced rates of NCC internalization. NCC ubiquitylation was lowest in the conditions with greatest NCC phosphorylation, thus providing a mechanism for the reduced endocytosis. In conclusion, our data support a model where NCC is constitutively cycled to the plasma membrane, and upon stimulation, it can be phosphorylated to both increase NCC activity and decrease NCC endocytosis, together increasing NaCl transport in the DCT. PMID:24668812

  7. PKA-mediated phosphorylation of EPEC-Tir at serine residues 434 and 463

    Science.gov (United States)

    Kenny, Brendan; Gerhard, Ralf; Tegtmeyer, Nicole; Brandt, Sabine

    2010-01-01

    Type-III or type-IV secretion systems of many Gram-negative bacterial pathogens inject effector proteins into host cells that modulate cellular functions in their favour. A preferred target of these effectors is the actin-cytoskeleton as shown by studies using the gastric pathogens Helicobacter pylori (H. pylori) and enteropathogenic Escherichia coli (EPEC). We recently developed a co-infection approach to study effector protein function and molecular mechanisms by which they highjack cellular signalling cascades. This is exemplified by our observation that EPEC profoundly blocks H. pylori-induced epithelial cell scattering and elongation, a disease-related event requiring the activity of small Rho GTPase Rac1. While this suppressive effect is dependent on the effector protein Tir and the outer-membrane protein Intimin, it unexpectedly revealed evidence for Tir-signalling independent of phosphorylation of Tir at tyrosine residues 454 and 474. Instead, our studies revealed a previously unidentified function for protein kinase A (PKA)-mediated phosphorylation of Tir at serine residues 434 and 463. We demonstrated that EPEC infection activates PKA for Tir phosphorylation. Activated PKA then phosphorylates Rac1 at its serine residue 71 associated with reduced GTP-load and inhibited cell elongation. Phosphorylation of Rho GTPases such as Rac1 might be an interesting novel strategy in microbial pathogenesis. PMID:21326916

  8. Enhancement of tunability of MAPK cascade due to coexistence of processive and distributive phosphorylation mechanisms.

    Science.gov (United States)

    Sun, Jianqiang; Yi, Ming; Yang, Lijian; Wei, Wenbin; Ding, Yiming; Jia, Ya

    2014-03-04

    The processive phosphorylation mechanism becomes important when there is macromolecular crowding in the cytoplasm. Integrating the processive phosphorylation mechanism with the traditional distributive one, we propose a mixed dual-site phosphorylation (MDP) mechanism in a single-layer phosphorylation cycle. Further, we build a degree model by applying the MDP mechanism to a three-layer mitogen-activated protein kinase (MAPK) cascade. By bifurcation analysis, our study suggests that the crowded-environment-induced pseudoprocessive mechanism can qualitatively change the response of this biological network. By adjusting the degree of processivity in our model, we find that the MAPK cascade is able to switch between the ultrasensitivity, bistability, and oscillatory dynamical states. Sensitivity analysis shows that the theoretical results remain unchanged within a reasonably chosen variation of parameter perturbation. By scaling the reaction rates and also introducing new connections into the kinetic scheme, we further construct a proportion model of the MAPK cascade to validate our findings. Finally, it is illustrated that the spatial propagation of the activated MAPK signal can be improved (or attenuated) by increasing the degree of processivity of kinase (or phosphatase). Our research implies that the MDP mechanism makes the MAPK cascade become a flexible signal module, and the coexistence of processive and distributive phosphorylation mechanisms enhances the tunability of the MAPK cascade.

  9. IκB kinase phosphorylation of SNAP-23 controls platelet secretion.

    Science.gov (United States)

    Karim, Zubair A; Zhang, Jinchao; Banerjee, Meenakshi; Chicka, Michael C; Al Hawas, Rania; Hamilton, Tara R; Roche, Paul A; Whiteheart, Sidney W

    2013-05-30

    Platelet secretion plays a key role in thrombosis, thus the platelet secretory machinery offers a unique target to modulate hemostasis. We report the regulation of platelet secretion via phosphorylation of SNAP-23 at Ser95. Phosphorylation of this t-soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) occurs upon activation of known elements of the platelet signaling cascades (ie, phospholipase C, [Ca(2+)]i, protein kinase C) and requires IκB kinase (IKK)-β. Other elements of the nuclear factor κB/IκB cascade (ie, IKK-α,-β,-γ/NEMO and CARMA/MALT1/Bcl10 complex) are present in anucleate platelets and IκB is phosphorylated upon activation, suggesting that this pathway is active in platelets and implying a nongenomic role for IKK. Inhibition of IKK-β, either pharmacologically (with BMS-345541, BAY11-7082, or TPCA-1) or by genetic manipulation (platelet factor 4 Cre:IKK-β(flox/flox)), blocked SNAP-23 phosphorylation, platelet secretion, and SNARE complex formation; but, had no effect on platelet morphology or other metrics of platelet activation. Consistently, SNAP-23 phosphorylation enhanced membrane fusion of SNARE-containing proteoliposomes. In vivo studies with IKK inhibitors or platelet-specific IKK-β knockout mice showed that blocking IKK-β activity significantly prolonged tail bleeding times, suggesting that currently available IKK inhibitors may affect hemostasis.

  10. Regulation of DNA Methylation Patterns by CK2-Mediated Phosphorylation of Dnmt3a

    Directory of Open Access Journals (Sweden)

    Rachel Deplus

    2014-08-01

    Full Text Available DNA methylation is a central epigenetic modification that is established by de novo DNA methyltransferases. The mechanisms underlying the generation of genomic methylation patterns are still poorly understood. Using mass spectrometry and a phosphospecific Dnmt3a antibody, we demonstrate that CK2 phosphorylates endogenous Dnmt3a at two key residues located near its PWWP domain, thereby downregulating the ability of Dnmt3a to methylate DNA. Genome-wide DNA methylation analysis shows that CK2 primarily modulates CpG methylation of several repeats, most notably of Alu SINEs. This modulation can be directly attributed to CK2-mediated phosphorylation of Dnmt3a. We also find that CK2-mediated phosphorylation is required for localization of Dnmt3a to heterochromatin. By revealing phosphorylation as a mode of regulation of de novo DNA methyltransferase function and by uncovering a mechanism for the regulation of methylation at repetitive elements, our results shed light on the origin of DNA methylation patterns.

  11. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Matthew P.; Sikkink, Laura A. [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Penheiter, Alan R. [Molecular Medicine Program, Mayo Clinic, Rochester, MN 55905 (United States); Burghardt, Thomas P., E-mail: burghardt@mayo.edu [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 (United States); Ajtai, Katalin [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant

  12. β-carboline compounds, including harmine, inhibit DYRK1A and tau phosphorylation at multiple Alzheimer's disease-related sites.

    Directory of Open Access Journals (Sweden)

    Danielle Frost

    Full Text Available Harmine, a β-carboline alkaloid, is a high affinity inhibitor of the dual specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A protein. The DYRK1A gene is located within the Down Syndrome Critical Region (DSCR on chromosome 21. We and others have implicated DYRK1A in the phosphorylation of tau protein on multiple sites associated with tau pathology in Down Syndrome and in Alzheimer's disease (AD. Pharmacological inhibition of this kinase may provide an opportunity to intervene therapeutically to alter the onset or progression of tau pathology in AD. Here we test the ability of harmine, and numerous additional β-carboline compounds, to inhibit the DYRK1A dependent phosphorylation of tau protein on serine 396, serine 262/serine 356 (12E8 epitope, and threonine 231 in cell culture assays and in vitro phosphorylation assays. Results demonstrate that the β-carboline compounds (1 potently reduce the expression of all three phosphorylated forms of tau protein, and (2 inhibit the DYRK1A catalyzed direct phosphorylation of tau protein on serine 396. By assaying several β-carboline compounds, we define certain chemical groups that modulate the affinity of this class of compounds for inhibition of tau phosphorylation.

  13. Activity-dependent Phosphorylation of Neuronal Kv2.1 Potassium Channels by CDK5*

    OpenAIRE

    Cerda, Oscar; Trimmer, James S.

    2011-01-01

    Dynamic modulation of ion channel expression, localization, and/or function drives plasticity in intrinsic neuronal excitability. Voltage-gated Kv2.1 potassium channels are constitutively maintained in a highly phosphorylated state in neurons. Increased neuronal activity triggers rapid calcineurin-dependent dephosphorylation, loss of channel clustering, and hyperpolarizing shifts in voltage-dependent activation that homeostatically suppress neuronal excitability. These changes are reversible,...

  14. Protein-Tyrosine Phosphorylation in Bacillus subtilis

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Bottini, N.

    2005-01-01

    phosphorylation, indicating that this post-translational modifi cation could regulate physiological processes ranging from stress response and exopolysaccharide synthesis to DNA metabolism. Some interesting work in this fi eld was done in Bacillus subtilis , and we here present the current state of knowledge...

  15. Mapping of p140Cap phosphorylation sites

    DEFF Research Database (Denmark)

    Repetto, Daniele; Aramu, Simona; Boeri Erba, Elisabetta

    2013-01-01

    Protein phosphorylation tightly regulates specific binding of effector proteins that control many diverse biological functions of cells (e. g. signaling, migration and proliferation). p140Cap is an adaptor protein, specifically expressed in brain, testis and epithelial cells, that undergoes phosp...

  16. Phosphorylation sites within Ebola virus nucleoprotein

    Institute of Scientific and Technical Information of China (English)

    Sora; Yasri; Viroj; Wiwanitkit

    2015-01-01

    To understand the infection process, the viral multiplication and entry to the cell is widely studied. The Ebola virus nucleoprotein is the important problem for the pathological process. Focusing on the specific biological process, the post translational modification is needed. Here, the authors used the bioinformatics study to find the phosphorylation sites within the Ebola virus nucleoprotein and could identify many new sites.

  17. Ion channels, phosphorylation and mammalian sperm capacitation.

    Science.gov (United States)

    Visconti, Pablo E; Krapf, Dario; de la Vega-Beltrán, José Luis; Acevedo, Juan José; Darszon, Alberto

    2011-05-01

    Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies.

  18. Ion channels, phosphorylation and mammalian sperm capacitation

    Institute of Scientific and Technical Information of China (English)

    Pablo E Visconti; Dario Krapf; José Luis de la Vega-Beltrán; Juan José Acevedo; Alberto Darszon

    2011-01-01

    Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies.

  19. Phosphorylated α-synuclein in Parkinson's disease

    DEFF Research Database (Denmark)

    Stewart, Tessandra; Sossi, Vesna; Aasly, Jan O;

    2015-01-01

    INTRODUCTION: α-Synuclein (α-syn) is a key protein in Parkinson's disease (PD), and one of its phosphorylated forms, pS129, is higher in PD patients than healthy controls. However, few studies have examined its levels in longitudinally collected cerebrospinal fluid (CSF) or in preclinical cases. ...

  20. Transferases for alkylation, glycosylation and phosphorylation

    NARCIS (Netherlands)

    Auriol, D.; ter Halle, R.; Lefèvre, F.; Visser, D.F.; Gordon, G.E.R.; Bode, M.L.; Mathiba, K.; Brady, D.; De Winter, K.; Desmet, T.; Cerdobbel, A.; Soetaert, W.; van Herk, T.; Hartog, A.F.; Wever, R.; Brzezińska-rodak, M.; Klimek-Ochab, M.; Żymańczyk-Duda, E.; Mukherjee, J.; Gupta, M.N.; Yin, W.B.; Li, S.M.; Gruber-Khadjawi, M.; Whittall, J.; Sutton, P.W.

    2012-01-01

    This chapter contains sections titled: Industrial Production of Caffeic Acid-α-D-O-Glucoside Enzymatic Synthesis of 5-Methyluridine by Transglycosylation of Guanosine and Thymine Preparation and Use of Sucrose Phosphorylase as Cross-Linked Enzyme Aggregate (CLEA) Enzymatic Synthesis of Phosphorylate

  1. Protein Synthesis Initiation Factors: Phosphorylation and Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Karen S. Browning

    2009-06-15

    The initiation of the synthesis of proteins is a fundamental process shared by all living organisms. Each organism has both shared and unique mechanisms for regulation of this vital process. Higher plants provide for a major amount of fixation of carbon from the environment and turn this carbon into food and fuel sources for our use. However, we have very little understanding of how plants regulate the synthesis of the proteins necessary for these metabolic processes. The research carried out during the grant period sought to address some of these unknowns in the regulation of protein synthesis initiation. Our first goal was to determine if phosphorylation plays a significant role in plant initiation of protein synthesis. The role of phosphorylation, although well documented in mammalian protein synthesis regulation, is not well studied in plants. We showed that several of the factors necessary for the initiation of protein synthesis were targets of plant casein kinase and showed differential phosphorylation by the plant specific isoforms of this kinase. In addition, we identified and confirmed the phosphorylation sites in five of the plant initiation factors. Further, we showed that phosphorylation of one of these factors, eIF5, affected the ability of the factor to participate in the initiation process. Our second goal was to develop a method to make initiation factor 3 (eIF3) using recombinant methods. To date, we successfully cloned and expressed 13/13 subunits of wheat eIF3 in E. coli using de novo gene construction methods. The final step in this process is to place the subunits into three different plasmid operons for co-expression. Successful completion of expression of eIF3 will be an invaluable tool to the plant translation community.

  2. Construction of phosphorylation interaction networks by text mining of full-length articles using the eFIP system.

    Science.gov (United States)

    Tudor, Catalina O; Ross, Karen E; Li, Gang; Vijay-Shanker, K; Wu, Cathy H; Arighi, Cecilia N

    2015-01-01

    Protein phosphorylation is a reversible post-translational modification where a protein kinase adds a phosphate group to a protein, potentially regulating its function, localization and/or activity. Phosphorylation can affect protein-protein interactions (PPIs), abolishing interaction with previous binding partners or enabling new interactions. Extracting phosphorylation information coupled with PPI information from the scientific literature will facilitate the creation of phosphorylation interaction networks of kinases, substrates and interacting partners, toward knowledge discovery of functional outcomes of protein phosphorylation. Increasingly, PPI databases are interested in capturing the phosphorylation state of interacting partners. We have previously developed the eFIP (Extracting Functional Impact of Phosphorylation) text mining system, which identifies phosphorylated proteins and phosphorylation-dependent PPIs. In this work, we present several enhancements for the eFIP system: (i) text mining for full-length articles from the PubMed Central open-access collection; (ii) the integration of the RLIMS-P 2.0 system for the extraction of phosphorylation events with kinase, substrate and site information; (iii) the extension of the PPI module with new trigger words/phrases describing interactions and (iv) the addition of the iSimp tool for sentence simplification to aid in the matching of syntactic patterns. We enhance the website functionality to: (i) support searches based on protein roles (kinases, substrates, interacting partners) or using keywords; (ii) link protein entities to their corresponding UniProt identifiers if mapped and (iii) support visual exploration of phosphorylation interaction networks using Cytoscape. The evaluation of eFIP on full-length articles achieved 92.4% precision, 76.5% recall and 83.7% F-measure on 100 article sections. To demonstrate eFIP for knowledge extraction and discovery, we constructed phosphorylation-dependent interaction

  3. Myofilament Calcium Sensitivity: Mechanistic Insight into TnI Ser-23/24 and Ser-150 Phosphorylation Integration

    Directory of Open Access Journals (Sweden)

    Hussam E Salhi

    2016-12-01

    that TnI Ser-23/24 and Ser-150 phosphorylation regulates muscle contraction in part by modulating different TnI interactions in the thin filament and it is the combination of these differential mechanisms that provides understanding of their functional integration.

  4. Biphasic coupling of neuronal nitric oxide synthase phosphorylation to the NMDA receptor regulates AMPA receptor trafficking and neuronal cell death.

    Science.gov (United States)

    Rameau, Gerald A; Tukey, David S; Garcin-Hosfield, Elsa D; Titcombe, Roseann F; Misra, Charu; Khatri, Latika; Getzoff, Elizabeth D; Ziff, Edward B

    2007-03-28

    Postsynaptic nitric oxide (NO) production affects synaptic plasticity and neuronal cell death. Ca2+ fluxes through the NMDA receptor (NMDAR) stimulate the production of NO by neuronal nitric oxide synthase (nNOS). However, the mechanisms by which nNOS activity is regulated are poorly understood. We evaluated the effect of neuronal stimulation with glutamate on the phosphorylation of nNOS. We show that, in cortical neurons, a low glutamate concentration (30 microM) induces rapid and transient NMDAR-dependent phosphorylation of S1412 by Akt, followed by sustained phosphorylation of S847 by CaMKII (calcium-calmodulin-dependent kinase II). We demonstrate that phosphorylation of S1412 by Akt is necessary for activation of nNOS by the NMDAR. nNOS mutagenesis confirms that these phosphorylations respectively activate and inhibit nNOS and, thus, transiently activate NO production. A constitutively active (S1412D), but not a constitutively repressed (S847D) nNOS mutant elevated surface glutamate receptor 2 levels, demonstrating that these phosphorylations can control AMPA receptor trafficking via NO. Notably, an excitotoxic stimulus (150 microM glutamate) induced S1412, but not S847 phosphorylation, leading to deregulated nNOS activation. S1412D did not kill neurons; however, it enhanced the excitotoxicity of a concomitant glutamate stimulus. We propose a swinging domain model for the regulation of nNOS: S1412 phosphorylation facilitates electron flow within the reductase module of nNOS, increasing nNOS sensitivity to Ca2+-calmodulin. These findings suggest a critical role for a kinetically complex and novel series of regulatory nNOS phosphorylations induced by the NMDA receptor for the in vivo control of nNOS.

  5. HER2 phosphorylates and destabilizes pro-apoptotic PUMA, leading to antagonized apoptosis in cancer cells.

    Science.gov (United States)

    Carpenter, Richard L; Han, Woody; Paw, Ivy; Lo, Hui-Wen

    2013-01-01

    HER2 is overexpressed in 15-20% of breast cancers. HER2 overexpression is known to reduce apoptosis but the underlying mechanisms for this association remain unclear. To elucidate the mechanisms for HER2-mediated survival, we investigated the relationship between HER2 and p53 upregulated modulator of apoptosis (PUMA), a potent apoptosis inducer. Our results showed that HER2 interacts with PUMA, which was independent of HER2 activation. In addition, we observed that HER2 interacted with PUMA in both mitochondrial and non-mitochondrial compartments. We next examined whether HER2 phosphorylates PUMA. Notably, PUMA tyrosine phosphorylation has never been reported. Using an intracellular assay, we found PUMA to be phosphorylated in breast cancer cells with activated HER2. Via cell-free HER2 kinase assay, we observed that PUMA was directly phosphorylated by HER2. Activation of HER2 decreased PUMA protein half-life. To identify which of the three tyrosines within PUMA are targeted by HER2, we generated three PUMA non-phosphorylation mutants each with a single Tyr→Phe substitution. Results indicated that each PUMA single mutant had lost some, but not all phosphorylation by HER2 indicating that HER2 targets all three tyrosines. Consequently, we created an additional PUMA mutant with all three tyrosines mutated (TM-PUMA) that could not be phosphorylated by HER2. Importantly, TM-PUMA was found to have a longer half-life than PUMA. An inverse association was observed between HER2 and PUMA in 93 invasive breast carcinoma samples. We further found that TM-PUMA suppressed growth of breast cancer cells to a greater degree than PUMA. Also, TM-PUMA had a stronger propensity to induce apoptosis than PUMA. Together, our results demonstrate, for the first time, that PUMA can be tyrosine phosphorylated and that HER2-mediated phosphorylation destabilizes PUMA protein. The HER2-PUMA interplay represents a novel mechanism by which PUMA is regulated and a new molecular basis for HER2

  6. Neurofilament Phosphorylation during Development and Disease: Which Came First, the Phosphorylation or the Accumulation?

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Dale

    2012-01-01

    Full Text Available Posttranslational modification of proteins is a ubiquitous cellular mechanism for regulating protein function. Some of the most heavily modified neuronal proteins are cytoskeletal proteins of long myelinated axons referred to as neurofilaments (NFs. NFs are type IV intermediate filaments (IFs that can be composed of four subunits, neurofilament heavy (NF-H, neurofilament medium (NF-M, neurofilament light (NF-L, and α-internexin. Within wild type axons, NFs are responsible for mediating radial growth, a process that determines axonal diameter. NFs are phosphorylated on highly conserved lysine-serine-proline (KSP repeats located along the C-termini of both NF-M and NF-H within myelinated axonal regions. Phosphorylation is thought to regulate aspects of NF transport and function. However, a key pathological hallmark of several neurodegenerative diseases is ectopic accumulation and phosphorylation of NFs. The goal of this review is to provide an overview of the posttranslational modifications that occur in both normal and diseased axons. We review evidence that challenges the role of KSP phosphorylation as essential for radial growth and suggests an alternative role for NF phosphorylation in myelinated axons. Furthermore, we demonstrate that regulation of NF phosphorylation dynamics may be essential to avoiding NF accumulations.

  7. PhosTryp: a phosphorylation site predictor specific for parasitic protozoa of the family trypanosomatidae

    Directory of Open Access Journals (Sweden)

    Palmeri Antonio

    2011-12-01

    Full Text Available Abstract Background Protein phosphorylation modulates protein function in organisms at all levels of complexity. Parasites of the Leishmania genus undergo various developmental transitions in their life cycle triggered by changes in the environment. The molecular mechanisms that these organisms use to process and integrate these external cues are largely unknown. However Leishmania lacks transcription factors, therefore most regulatory processes may occur at a post-translational level and phosphorylation has recently been demonstrated to be an important player in this process. Experimental identification of phosphorylation sites is a time-consuming task. Moreover some sites could be missed due to the highly dynamic nature of this process or to difficulties in phospho-peptide enrichment. Results Here we present PhosTryp, a phosphorylation site predictor specific for trypansomatids. This method uses an SVM-based approach and has been trained with recent Leishmania phosphosproteomics data. PhosTryp achieved a 17% improvement in prediction performance compared with Netphos, a non organism-specific predictor. The analysis of the peptides correctly predicted by our method but missed by Netphos demonstrates that PhosTryp captures Leishmania-specific phosphorylation features. More specifically our results show that Leishmania kinases have sequence specificities which are different from their counterparts in higher eukaryotes. Consequently we were able to propose two possible Leishmania-specific phosphorylation motifs. We further demonstrate that this improvement in performance extends to the related trypanosomatids Trypanosoma brucei and Trypanosoma cruzi. Finally, in order to maximize the usefulness of PhosTryp, we trained a predictor combining all the peptides from L. infantum, T. brucei and T. cruzi. Conclusions Our work demonstrates that training on organism-specific data results in an improvement that extends to related species. PhosTryp is freely

  8. BAD Phosphorylation: A Novel Link between Apoptosis and Cancer

    OpenAIRE

    Polzien, Lisa

    2011-01-01

    BAD (Bcl-2 antagonist of cell death, Bcl-2 associated death promoter) is a pro-apoptotic member of the Bcl-2 protein family that is regulated by phosphorylation in response to survival factors. Although much attention has been devoted to the identification of phosphorylation sites in murine BAD (mBAD), little data are available with respect to phosphorylation of human BAD (hBAD) protein. In this work, we investigated the quantitative contribution of BAD targeting kinases in phosphorylating se...

  9. Flux control through protein phosphorylation in yeast

    DEFF Research Database (Denmark)

    Chen, Yu; Nielsen, Jens

    2016-01-01

    describe the development of phosphoproteomics in yeast as well as approaches to analysing the phosphoproteomics data. Finally, we focus on integrated analyses with other omics data sets and genome-scale metabolic models. Despite the advances, future studies improving both experimental technologies......Protein phosphorylation is one of the most important mechanisms regulating metabolism as it can directly modify metabolic enzymes by the addition of phosphate groups. Attributed to such a rapid and reversible mechanism, cells can adjust metabolism rapidly in response to temporal changes. The yeast...... as well as identify mechanisms underlying human metabolic diseases. Here we collect functional phosphorylation events of 41 enzymes involved in yeast metabolism and demonstrate functional mechanisms and the application of this information in metabolic engineering. From a systems biology perspective, we...

  10. Phosphorylation sites within Ebola virus nucleoprotein

    Directory of Open Access Journals (Sweden)

    Sora Yasri

    2015-07-01

    Full Text Available To understand the infection process, the viral multiplication and entry to the cell is widely studied. The Ebola virus nucleoprotein is the important problem for the pathological process. Focusing on the specific biological process, the post translational modification is needed. Here, the authors used the bioinformatics study to find the phosphorylation sites within the Ebola virus nucleoprotein and could identify many new sites.

  11. Solid polymer electrolyte from phosphorylated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  12. Linear motif atlas for phosphorylation-dependent signaling

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Jensen, LJ; Diella, F;

    2008-01-01

    Systematic and quantitative analysis of protein phosphorylation is revealing dynamic regulatory networks underlying cellular responses to environmental cues. However, matching these sites to the kinases that phosphorylate them and the phosphorylation-dependent binding domains that may subsequently...... sequence models of linear motifs. The atlas is available as a community resource (http://netphorest.info)....

  13. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Brunak, Søren; Olsen, JV

    2010-01-01

    ) or CDK2 were almost fully phosphorylated in mitotic cells. In particular, nuclear proteins and proteins involved in regulating metabolic processes have high phosphorylation site occupancy in mitosis. This suggests that these proteins may be inactivated by phosphorylation in mitotic cells....

  14. Phosphorylation of erythrocyte membrane liberates calcium

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, V.P.S.; Brockerhoff, H.

    1986-05-01

    Phosphorylation of permeabilized erythrocyte ghost membranes with ATP results in an increase free calcium level as measured with the help of Ca/sup 2 +/ electrode and /sup 45/Ca. This effect could not be observed in the presence of p/sup -/ chloromercuric benzoate, an inhibitor of kinases. The rise in the free calcium due to phosphorylation of the membrane was accompanied by a decrease in the level of phosphatidylinositol (PI) and an increase in phosphatidylinositolmonophosphate (PIP) and phosphatidylinositolbisphosphate (PIP/sub 2/). These results support the proposal that an inositol shuttle, PI in equilibrium PIP in equilibrium PIP/sub 2/, operates to maintain the intracellular calcium concentration. The cation is believed to be sequestered in a cage formed by the head groups of two acidic phospholipid molecules, e.g., phosphatidylserine and phosphatidylinositol, with the participation of both PO and fatty acid ester CO groups. When the inositol group of such a cage is phosphorylated, inter-headgroup hydrogen bonding between the lipids is broken. As a result the cage opens and calcium is released.

  15. Phosphorylation of Astrin Regulates Its Kinetochore Function.

    Science.gov (United States)

    Chung, Hee Jin; Park, Ji Eun; Lee, Nam Soo; Kim, Hongtae; Jang, Chang-Young

    2016-08-19

    The error-free segregation of chromosomes, which requires the precisely timed search and capture of chromosomes by spindles during early mitotic and meiotic cell division, is responsible for genomic stability and is achieved by the spindle assembly checkpoint in the metaphase-anaphase transition. Mitotic kinases orchestrate M phase events, such as the reorganization of cell architecture and kinetochore (KT) composition with the exquisite phosphorylation of mitotic regulators, to ensure timely and temporal progression. However, the molecular mechanisms underlying the changes of KT composition for stable spindle attachment during mitosis are poorly understood. Here, we show that the sequential action of the kinase Cdk1 and the phosphatase Cdc14A control spindle attachment to KTs. During prophase, the mitotic spindle protein Spag5/Astrin is transported into centrosomes by Kinastrin and phosphorylated at Ser-135 and Ser-249 by Cdk1, which, in prometaphase, is loaded onto the spindle and targeted to KTs. We also demonstrate that Cdc14A dephosphorylates Astrin, and therefore the overexpression of Cdc14A sequesters Astrin in the centrosome and results in aberrant chromosome alignment. Mechanistically, Plk1 acts as an upstream kinase for Astrin phosphorylation by Cdk1 and targeting phospho-Astrin to KTs, leading to the recruitment of outer KT components, such as Cenp-E, and the stable attachment of spindles to KTs. These comprehensive findings reveal a regulatory circuit for protein targeting to KTs that controls the KT composition change of stable spindle attachment and chromosome integrity.

  16. Control mechanisms in mitochondrial oxidative phosphorylation

    Institute of Scientific and Technical Information of China (English)

    Jana Hroudová; Zdeněk Fi(s)ar

    2013-01-01

    Distribution and activity of mitochondria are key factors in neuronal development, synaptic plasticity and axogenesis. The majority of energy sources, necessary for cellular functions, originate from oxidative phosphorylation located in the inner mitochondrial membrane. The adenosine-5'- triphosphate production is regulated by many control mechanism–firstly by oxygen, substrate level, adenosine-5'-diphosphate level, mitochondrial membrane potential, and rate of coupling and proton leak. Recently, these mechanisms have been implemented by "second control mechanisms," such as reversible phosphorylation of the tricarboxylic acid cycle enzymes and electron transport chain complexes, allosteric inhibition of cytochrome c oxidase, thyroid hormones, effects of fatty acids and uncoupling proteins. Impaired function of mitochondria is implicated in many diseases ranging from mitochondrial myopathies to bipolar disorder and schizophrenia. Mitochondrial dysfunctions are usually related to the ability of mitochondria to generate adenosine-5'-triphosphate in response to energy demands. Large amounts of reactive oxygen species are released by defective mitochondria, similarly, decline of antioxidative enzyme activities (e.g. in the elderly) enhances reactive oxygen species production. We reviewed data concerning neuroplasticity, physiology, and control of mitochondrial oxidative phosphorylation and reactive oxygen species production.

  17. Protein kinase A (PKA) phosphorylation of Na+/K+-ATPase opens intracellular C-terminal water pathway leading to third Na+-binding site in molecular dynamics simulations

    DEFF Research Database (Denmark)

    Poulsen, Hanne; Nissen, Poul; Mouritsen, Ole G.;

    2012-01-01

    Phosphorylation is one of the major mechanisms for posttranscriptional modification of proteins. The addition of a compact, negatively charged moiety to a protein can significantly change its function and localization by affecting its structure and interaction network. We have used all-atom Molec...... the effects of S936 phosphorylation. The results establish a structural association of S936 with the C-terminus of NKA and indicate that phosphorylation of S936 can modulate pumping activity by changing the accessibility to the ion-binding site....

  18. Inhibition of MLC phosphorylation restricts replication of influenza virus--a mechanism of action for anti-influenza agents.

    Directory of Open Access Journals (Sweden)

    Mehran Haidari

    Full Text Available Influenza A viruses are a severe threat worldwide, causing large epidemics that kill thousands every year. Prevention of influenza infection is complicated by continuous viral antigenic changes. Newer anti-influenza agents include MEK/ERK and protein kinase C inhibitors; however, the downstream effectors of these pathways have not been determined. In this study, we identified a common mechanism for the inhibitory effects of a significant group of anti-influenza agents. Our studies showed that influenza infection activates a series of signaling pathways that converge to induce myosin light chain (MLC phosphorylation and remodeling of the actin cytoskeleton. Inhibiting MLC phosphorylation by blocking RhoA/Rho kinase, phospholipase C/protein kinase C, and HRas/Raf/MEK/ERK pathways with the use of genetic or chemical manipulation leads to the inhibition of influenza proliferation. In contrast, the induction of MLC phosphorylation enhances influenza proliferation, as does activation of the HRas/Raf/MEK/ERK signaling pathway. This effect is attenuated by inhibiting MLC phosphorylation. Additionally, in intracellular trafficking studies, we found that the nuclear export of influenza ribonucleoprotein depends on MLC phosphorylation. Our studies provide evidence that modulation of MLC phosphorylation is an underlying mechanism for the inhibitory effects of many anti-influenza compounds.

  19. Mdm2 Phosphorylation Regulates Its Stability and Has Contrasting Effects on Oncogene and Radiation-Induced Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Michael I. Carr

    2016-09-01

    Full Text Available ATM phosphorylation of Mdm2-S394 is required for robust p53 stabilization and activation in DNA-damaged cells. We have now utilized Mdm2S394A knockin mice to determine that phosphorylation of Mdm2-S394 regulates p53 activity and the DNA damage response in lymphatic tissues in vivo by modulating Mdm2 stability. Mdm2-S394 phosphorylation delays lymphomagenesis in Eμ-myc transgenic mice, and preventing Mdm2-S394 phosphorylation obviates the need for p53 mutation in Myc-driven tumorigenesis. However, irradiated Mdm2S394A mice also have increased hematopoietic stem and progenitor cell functions, and we observed decreased lymphomagenesis in sub-lethally irradiated Mdm2S394A mice. These findings document contrasting effects of ATM-Mdm2 signaling on p53 tumor suppression and reveal that destabilizing Mdm2 by promoting its phosphorylation by ATM would be effective in treating oncogene-induced malignancies, while inhibiting Mdm2-S394 phosphorylation during radiation exposure or chemotherapy would ameliorate bone marrow failure and prevent the development of secondary hematological malignancies.

  20. Does progesterone show neuroprotective effects on traumatic brain injury through increasing phosphorylation of Akt in the hippocampus?

    Institute of Scientific and Technical Information of China (English)

    Richard Justin Garling; Lora Talley Watts; Shane Sprague; Lauren Fletcher; David F Jimenez; Murat Digicaylioglu

    2014-01-01

    There are currently no federally approved neuroprotective agents to treat traumatic brain injury. Progesterone, a hydrophobic steroid hormone, has been shown in recent studies to exhibit neu-roprotective effects in controlled cortical impact rat models. Akt is a protein kinase known to play a role in cell signaling pathways that reduce edema, inlfammation, apoptosis, and promote cell growth in the brain. This study aims to determine if progesterone modulates the phosphor-ylation of Aktvia its threonine 308 phosphorylation site. Phosphorylation at the threonine 308 site is one of several sites responsible for activating Akt and enabling the protein kinase to carry out its neuroprotective effects. To assess the effects of progesterone on Akt phosphorylation, C57BL/6 mice were treated with progesterone (8 mg/kg) at 1 (intraperitonally), 6, 24, and 48 hours (subcutaneously) post closed-skull traumatic brain injury. The hippocampus was harvest-ed at 72 hours post injury and prepared for western blot analysis. Traumatic brain injury caused a signiifcant decrease in Akt phosphorylation compared to sham operation. However, mice treat-ed with progesterone following traumatic brain injury had an increase in phosphorylation of Akt compared to traumatic brain injury vehicle. Our ifndings suggest that progesterone is a viable treatment option for activating neuroprotective pathways after traumatic brain injury.

  1. Phosphorylation of the cytoskeletal protein CAP1 controls its association with cofilin and actin.

    Science.gov (United States)

    Zhou, Guo-Lei; Zhang, Haitao; Wu, Huhehasi; Ghai, Pooja; Field, Jeffrey

    2014-12-01

    Cell signaling can control the dynamic balance between filamentous and monomeric actin by modulating actin regulatory proteins. One family of actin regulating proteins that controls actin dynamics comprises cyclase-associated proteins 1 and 2 (CAP1 and 2, respectively). However, cell signals that regulate CAPs remained unknown. We mapped phosphorylation sites on mouse CAP1 and found S307 and S309 to be regulatory sites. We further identified glycogen synthase kinase 3 as a kinase phosphorylating S309. The phosphomimetic mutant S307D/S309D lost binding to its partner cofilin and, when expressed in cells, caused accumulation of actin stress fibers similar to that in cells with reduced CAP expression. In contrast, the non-phosphorylatable S307A/S309A mutant showed drastically increased cofilin binding and reduced binding to actin. These results suggest that the phosphorylation serves to facilitate release of cofilin for a subsequent cycle of actin filament severing. Moreover, our results suggest that S307 and S309 function in tandem; neither the alterations in binding cofilin and/or actin, nor the defects in rescuing the phenotype of the enlarged cell size in CAP1 knockdown cells was observed in point mutants of either S307 or S309. In summary, we identify a novel regulatory mechanism of CAP1 through phosphorylation.

  2. Glycation alter the process of Tau phosphorylation to change Tau isoforms aggregation property.

    Science.gov (United States)

    Liu, Kefu; Liu, Yutong; Li, Lingyun; Qin, Peibin; Iqbal, Javed; Deng, Yulin; Qing, Hong

    2016-02-01

    The risk of tauopathies depends in part on the levels and modified composition of six Tau isoforms in the human brain. Abnormal phosphorylation of the Tau protein and the shift of the ratio of 3R Tau to 4R Tau are presumed to result in neurofibrillary pathology and neurodegeneration. Glycation has recently been linked to dementia and metabolic syndrome. To determine the contribution of Tau protein glycation and phosphorylation on Tau aggregation propensity, the assembled kinetics were examined in vitro using Thioflavin T fluorescence assays. We found that glycation and phosphorylation have different effects on aggregation propensity in different Tau isoforms. Different Tau proteins play important parts in each tauopathies, but 3R0N, fetal Tau protein, has no effect on tauopathies. Conversely, 4R2N has more modified sites and a higher tendency to aggregate, playing the most important role in 4R tauopathies. Finally, Glycation, which could modulate Tau phosphorylation, may occur before any other modification. It also regulates the 3R to 4R ratio and promotes 4R2N Tau protein aggregation. Decreasing the sites of glycation, as well as shifting other Tau proteins to 3R0N Tau proteins has potential therapeutic implications for tauopathies.

  3. GluA1 Phosphorylation Alters Evoked Firing Pattern In Vivo

    Directory of Open Access Journals (Sweden)

    Balázs Barkóczi

    2012-01-01

    Full Text Available AMPA and NMDA receptors convey fast synaptic transmission in the CNS. Their relative contribution to synaptic output and phosphorylation state regulate synaptic plasticity. The AMPA receptor subunit GluA1 is central in synaptic plasticity. Phosphorylation of GluA1 regulates channel properties and trafficking. The firing rate averaged over several hundred ms is used to monitor cellular input. However, plasticity requires the timing of spiking within a few ms; therefore, it is important to understand how phosphorylation governs these events. Here, we investigate whether the GluA1 phosphorylation (p-GluA1 alters the spiking patterns of CA1 cells in vivo. The antidepressant Tianeptine was used for inducing p-GluA1, which resulted in enhanced AMPA-evoked spiking. By comparing the spiking patterns of AMPA-evoked activity with matched firing rates, we show that the spike-trains after Tianeptine application show characteristic features, distinguishing from spike-trains triggered by strong AMPA stimulation. The interspike-interval distributions are different between the two groups, suggesting that neuronal output may differ when new inputs are activated compared to increasing the gain of previously activated receptors. Furthermore, we also show that NMDA evokes spiking with different patterns to AMPA spike-trains. These results support the role of the modulation of NMDAR/AMPAR ratio and p-GluA1 in plasticity and temporal coding.

  4. p38beta2-mediated phosphorylation and sumoylation of ATF7 are mutually exclusive.

    Science.gov (United States)

    Camuzeaux, Barbara; Diring, Jessica; Hamard, Pierre-Jacques; Oulad-Abdelghani, Mustapha; Donzeau, Mariel; Vigneron, Marc; Kedinger, Claude; Chatton, Bruno

    2008-12-26

    The ubiquitous activating transcription factor (ATF) 7 binds as a homodimer to the cAMP response element/TPA response element motifs present in the promoters of its target genes. ATF7 is homologous to ATF2 and heterodimerizes with Jun or Fos proteins, modulating their DNA-binding specificities. We previously demonstrated that TAF12, a component of the TFIID general transcription factor, mediates ATF7 transcriptional activity through direct interactions between the two proteins. By contrast, ATF7, but not ATF2, is modified in vivo by sumoylation, which restricts its subcellular localization, thereby inhibiting its transcriptional activity. In the present study, we dissect the mechanism of this functional switch. We characterized the multisite phosphorylation of the ATF7 activation domain and identified one of the involved kinase, p38beta2 mitogen-activated protein kinase. In addition, we show that epidermal growth factor treatment results in a two-step modification mechanism of ATF7 activation domain. The Thr53 residue is phosphorylated first by a presently unknown kinase, allowing p38beta2 mitogen-activated protein kinase to modify the Thr51 residue, excluding the sumoylation of ATF7 protein. The resulting activation of transcription is related to an increased association of TAF12 with this phosphorylated form of ATF7. Our data therefore conclusively establish that sumoylation and phosphorylation of ATF7 are two antagonistic posttranslational modifications.

  5. MOF phosphorylation by ATM regulates 53BP1-mediated double-strand break repair pathway choice.

    Science.gov (United States)

    Gupta, Arun; Hunt, Clayton R; Hegde, Muralidhar L; Chakraborty, Sharmistha; Chakraborty, Sharmistha; Udayakumar, Durga; Horikoshi, Nobuo; Singh, Mayank; Ramnarain, Deepti B; Hittelman, Walter N; Namjoshi, Sarita; Asaithamby, Aroumougame; Hazra, Tapas K; Ludwig, Thomas; Pandita, Raj K; Tyler, Jessica K; Pandita, Tej K

    2014-07-10

    Cell-cycle phase is a critical determinant of the choice between DNA damage repair by nonhomologous end-joining (NHEJ) or homologous recombination (HR). Here, we report that double-strand breaks (DSBs) induce ATM-dependent MOF (a histone H4 acetyl-transferase) phosphorylation (p-T392-MOF) and that phosphorylated MOF colocalizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A) impedes DNA repair in S and G2 phase but not G1 phase cells. Expression of MOF-T392A also blocks the reduction in DSB-associated 53BP1 seen in wild-type S/G2 phase cells, resulting in enhanced 53BP1 and reduced BRCA1 association. Decreased BRCA1 levels at DSB sites correlates with defective repairosome formation, reduced HR repair, and decreased cell survival following irradiation. These data support a model whereby ATM-mediated MOF-T392 phosphorylation modulates 53BP1 function to facilitate the subsequent recruitment of HR repair proteins, uncovering a regulatory role for MOF in DSB repair pathway choice during S/G2 phase.

  6. Change in metallothionein phosphorylation state in Mya arenaria clams: implication in metal metabolism and oxidative stress

    Directory of Open Access Journals (Sweden)

    F Gagné

    2010-01-01

    Full Text Available The contamination of the benthic environment poses a threat to long-lived sessile organisms such as clams. The purpose of this study was to investigate metal contamination in tissues and changes in metallothioneins (MT in respect to its redox status in Mya arenaria clams collected at three polluted sites. The phosphorylation state of MT was also investigated to determine whether this state is changed in clams collected at heavy-metal contaminated site and its involvement in cytoprotective signaling during stress contamination. The results show that clams collected at least one of the three polluted sites presented significantly higher concentrations of silver (Ag, arsenic (As, cobalt (Co, copper (Cu, mercury (Hg, nickel (Ni, tin (Sn and lead (Pb in tissues. In the visceral tissue, total MT levels and the reduced, metal-binding form of the protein were significantly induced at the sites. The phosphorylation of MT and mitochondrial activity, as determined by electron transport and cytochrome c oxidase activities, were also significantly reduced at the contaminated sites. Reduced phosphate levels in MT were negatively correlated with total MT levels, suggesting that decreased phosphorylation was involved in kinase-mediated signaling during cellular stress and could possibly alter the protein’s affinity to confer cytoprotection against heavy metal contamination. These preliminary investigations revealed that the phosphorylation state could change in polluted environment and provide some clues on the modulation of binding affinities during heavy-metal and oxidative stress in clams.

  7. Telmisartan Activates Endothelial Nitric Oxide Synthase via Ser1177 Phosphorylation in Vascular Endothelial Cells

    Science.gov (United States)

    Myojo, Masahiro; Nagata, Daisuke; Fujita, Daishi; Kiyosue, Arihiro; Takahashi, Masao; Satonaka, Hiroshi; Morishita, Yoshiyuki; Akimoto, Tetsu; Nagai, Ryozo; Komuro, Issei; Hirata, Yasunobu

    2014-01-01

    Because endothelial nitric oxide synthase (eNOS) has anti-inflammatory and anti-arteriosclerotic functions, it has been recognized as one of the key molecules essential for the homeostatic control of blood vessels other than relaxation of vascular tone. Here, we examined whether telmisartan modulates eNOS function through its pleiotropic effect. Administration of telmisartan to mice significantly increased the phosphorylation level of eNOS (Ser1177) in the aortic endothelium, but administration of valsartan had no effect. Similarly, telmisartan treatment of human umbilical vein endothelial cells significantly increased the phosphorylation levels of AMP-activated protein kinase (Thr172) and eNOS and the concentration of intracellular guanosine 3′,5′-cyclic monophosphate (cGMP). Furthermore, pretreatment with a p38 mitogen-activated protein kinase (p38 MAPK) inhibitor suppressed the increased phosphorylation level of eNOS and intracellular cGMP concentration. These data show that telmisartan increases eNOS activity through Ser1177 phosphorylation in vascular endothelial cells mainly via p38 MAPK signaling. PMID:24827148

  8. Telmisartan activates endothelial nitric oxide synthase via Ser1177 phosphorylation in vascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Masahiro Myojo

    Full Text Available Because endothelial nitric oxide synthase (eNOS has anti-inflammatory and anti-arteriosclerotic functions, it has been recognized as one of the key molecules essential for the homeostatic control of blood vessels other than relaxation of vascular tone. Here, we examined whether telmisartan modulates eNOS function through its pleiotropic effect. Administration of telmisartan to mice significantly increased the phosphorylation level of eNOS (Ser1177 in the aortic endothelium, but administration of valsartan had no effect. Similarly, telmisartan treatment of human umbilical vein endothelial cells significantly increased the phosphorylation levels of AMP-activated protein kinase (Thr172 and eNOS and the concentration of intracellular guanosine 3',5'-cyclic monophosphate (cGMP. Furthermore, pretreatment with a p38 mitogen-activated protein kinase (p38 MAPK inhibitor suppressed the increased phosphorylation level of eNOS and intracellular cGMP concentration. These data show that telmisartan increases eNOS activity through Ser1177 phosphorylation in vascular endothelial cells mainly via p38 MAPK signaling.

  9. MOF Phosphorylation by ATM Regulates 53BP1-Mediated Double-Strand Break Repair Pathway Choice

    Directory of Open Access Journals (Sweden)

    Arun Gupta

    2014-07-01

    Full Text Available Cell-cycle phase is a critical determinant of the choice between DNA damage repair by nonhomologous end-joining (NHEJ or homologous recombination (HR. Here, we report that double-strand breaks (DSBs induce ATM-dependent MOF (a histone H4 acetyl-transferase phosphorylation (p-T392-MOF and that phosphorylated MOF colocalizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A impedes DNA repair in S and G2 phase but not G1 phase cells. Expression of MOF-T392A also blocks the reduction in DSB-associated 53BP1 seen in wild-type S/G2 phase cells, resulting in enhanced 53BP1 and reduced BRCA1 association. Decreased BRCA1 levels at DSB sites correlates with defective repairosome formation, reduced HR repair, and decreased cell survival following irradiation. These data support a model whereby ATM-mediated MOF-T392 phosphorylation modulates 53BP1 function to facilitate the subsequent recruitment of HR repair proteins, uncovering a regulatory role for MOF in DSB repair pathway choice during S/G2 phase.

  10. MOF phosphorylation by ATM regulates 53BP1-mediated DSB repair pathway choice

    Science.gov (United States)

    Gupta, Arun; Hunt, Clayton R.; Hegdec, Muralidhar L.; Chakraborty, Sharmistha; Udayakumar, Durga; Horikoshi, Nobuo; Singh1, Mayank; Ramnarain, Deepti B.; Hittelman, Walter N.; Namjoshi, Sarita; Asaithamby, Aroumougame; Hazra, Tapas K.; Ludwig, Thomas; Pandita, Raj K.; Tyler, Jessica K.; Pandita, Tej K.

    2014-01-01

    Cell cycle phase is a critical determinant of the choice between DNA damage repair by non-homologous end joining (NHEJ) or homologous recombination (HR). Here we report that DSBs induce ATM-dependent MOF (a histone H4 acetyl-transferase) phosphorylation (p-T392-MOF) and that phosphorylated MOF co-localizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A) impedes DNA repair in S- and G2-phase but not G1-phase cells. Expression of MOF-T392A also reverses the reduction in DSB associated 53BP1 seen in wild type S/G2-phase cells, resulting in enhanced 53BP1 and reduced BRCA1 association. Decreased BRCA1 levels at DSB sites correlates with defective repairosome formation, reduced HR repair and decreased cell survival following irradiation. These data support a model whereby ATM mediated MOF-T392 phosphorylation modulates 53BP1 function to facilitate the subsequent recruitment of HR repair proteins, uncovering a regulatory role for MOF in DSB repair pathway choice during S/G2-phase. PMID:24953651

  11. Sites of regulated phosphorylation that control K-Cl cotransporter activity.

    Science.gov (United States)

    Rinehart, Jesse; Maksimova, Yelena D; Tanis, Jessica E; Stone, Kathryn L; Hodson, Caleb A; Zhang, Junhui; Risinger, Mary; Pan, Weijun; Wu, Dianqing; Colangelo, Christopher M; Forbush, Biff; Joiner, Clinton H; Gulcicek, Erol E; Gallagher, Patrick G; Lifton, Richard P

    2009-08-07

    Modulation of intracellular chloride concentration ([Cl(-)](i)) plays a fundamental role in cell volume regulation and neuronal response to GABA. Cl(-) exit via K-Cl cotransporters (KCCs) is a major determinant of [Cl(-)](I); however, mechanisms governing KCC activities are poorly understood. We identified two sites in KCC3 that are rapidly dephosphorylated in hypotonic conditions in cultured cells and human red blood cells in parallel with increased transport activity. Alanine substitutions at these sites result in constitutively active cotransport. These sites are highly phosphorylated in plasma membrane KCC3 in isotonic conditions, suggesting that dephosphorylation increases KCC3's intrinsic transport activity. Reduction of WNK1 expression via RNA interference reduces phosphorylation at these sites. Homologous sites are phosphorylated in all human KCCs. KCC2 is partially phosphorylated in neonatal mouse brain and dephosphorylated in parallel with KCC2 activation. These findings provide insight into regulation of [Cl(-)](i) and have implications for control of cell volume and neuronal function.

  12. Tyrosine phosphorylation of the human guanylyl cyclase C receptor

    Indian Academy of Sciences (India)

    Rashna Bhandari; Roy Mathew; K Vijayachandra; Sandhya S Visweswariah

    2000-12-01

    Tyrosine phosphorylation events are key components of several cellular signal transduction pathways. This study describes a novel method for identification of substrates for tyrosine kinases. Co-expression of the tyrosine kinase EphB1 with the intracellular domain of guanylyl cyclase C (GCC) in Escherichia coli cells resulted in tyrosine phosphorylation of GCC, indicating that GCC is a potential substrate for tyrosine kinases. Indeed, GCC expressed in mammalian cells is tyrosine phosphorylated, suggesting that tyrosine phosphorylation may play a role in regulation of GCC signalling. This is the first demonstration of tyrosine phosphorylation of any member of the family of membrane-associated guanylyl cyclases.

  13. Extracellular regulated kinase phosphorylates mitofusin 1 to control mitochondrial morphology and apoptosis.

    Science.gov (United States)

    Pyakurel, Aswin; Savoia, Claudia; Hess, Daniel; Scorrano, Luca

    2015-04-16

    Controlled changes in mitochondrial morphology participate in cellular signaling cascades. However, the molecular mechanisms modifying mitochondrial shape are largely unknown. Here we show that the mitogen-activated protein (MAP) kinase cascade member extracellular-signal-regulated kinase (ERK) phosphorylates the pro-fusion protein mitofusin (MFN) 1, modulating its participation in apoptosis and mitochondrial fusion. Phosphoproteomic and biochemical analyses revealed that MFN1 is phosphorylated at an atypical ERK site in its heptad repeat (HR) 1 domain. This site proved essential to mediate MFN1-dependent mitochondrial elongation and apoptosis regulation by the MEK/ERK cascade. A mutant mimicking constitutive MFN1 phosphorylation was less efficient in oligomerizing and mitochondria tethering but bound more avidly to the proapoptotic BCL-2 family member BAK, facilitating its activation and cell death. Moreover, neuronal apoptosis following oxygen glucose deprivation and MEK/ERK activation required an intact MFN1(T562). Our data identify MFN1 as an ERK target to modulate mitochondrial shape and apoptosis.

  14. Zerumbone ameliorates high glucose-induced reduction in AMPK phosphorylation in tubular kidney cells.

    Science.gov (United States)

    Shrikant, Chomanahalli B; Chilkunda, Nandini D

    2017-10-03

    AMP-activated protein kinase (AMPK) plays an important role in pathophysiology of diabetes and its complications. In recent years, its role in kidney as a therapeutic target in ameliorating diabetic kidney damage is receiving renewed attention. Efforts on identifying AMPK modulators from dietary sources have gained prominence because of the tremendous potential it harbours. We therefore, examined the effect of a few bioactives on AMPK phosphorylation in kidney tubular cells. AMPK phosphorylation at Thr172 was reduced (0.42 ± 0.05 - fold change compared to control; p<0.01 vs. control) after treatment with high glucose (30 mM) for 48 h and restored by zerumbone (1.59 ± 0.20; p<0.01 vs. high glucose) but not by other tested modulators. Zerumbone also increased the phosphorylation of downstream target of AMPK, the acetyl-CoA carboxylase (ACC) without affecting the mitochondrial membrane potential and ADP/ATP ratio. Thus, zerumbone could potentially be explored as a therapeutic agent in bringing about energy homeostasis in diabetes where high glucose suppresses AMPK pathway.

  15. Extracellular Regulated Kinase Phosphorylates Mitofusin 1 to Control Mitochondrial Morphology and Apoptosis

    Science.gov (United States)

    Pyakurel, Aswin; Savoia, Claudia; Hess, Daniel; Scorrano, Luca

    2015-01-01

    Summary Controlled changes in mitochondrial morphology participate in cellular signaling cascades. However, the molecular mechanisms modifying mitochondrial shape are largely unknown. Here we show that the mitogen-activated protein (MAP) kinase cascade member extracellular-signal-regulated kinase (ERK) phosphorylates the pro-fusion protein mitofusin (MFN) 1, modulating its participation in apoptosis and mitochondrial fusion. Phosphoproteomic and biochemical analyses revealed that MFN1 is phosphorylated at an atypical ERK site in its heptad repeat (HR) 1 domain. This site proved essential to mediate MFN1-dependent mitochondrial elongation and apoptosis regulation by the MEK/ERK cascade. A mutant mimicking constitutive MFN1 phosphorylation was less efficient in oligomerizing and mitochondria tethering but bound more avidly to the proapoptotic BCL-2 family member BAK, facilitating its activation and cell death. Moreover, neuronal apoptosis following oxygen glucose deprivation and MEK/ERK activation required an intact MFN1T562. Our data identify MFN1 as an ERK target to modulate mitochondrial shape and apoptosis. PMID:25801171

  16. -Regular Modules

    Directory of Open Access Journals (Sweden)

    Areej M. Abduldaim

    2013-01-01

    Full Text Available We introduced and studied -regular modules as a generalization of -regular rings to modules as well as regular modules (in the sense of Fieldhouse. An -module is called -regular if for each and , there exist and a positive integer such that . The notion of -pure submodules was introduced to generalize pure submodules and proved that an -module is -regular if and only if every submodule of is -pure iff   is a -regular -module for each maximal ideal of . Many characterizations and properties of -regular modules were given. An -module is -regular iff is a -regular ring for each iff is a -regular ring for finitely generated module . If is a -regular module, then .

  17. A phosphorylation cascade controls the degradation of active SREBP1.

    Science.gov (United States)

    Bengoechea-Alonso, Maria T; Ericsson, Johan

    2009-02-27

    Sterol regulatory element-binding proteins (SREBPs) are a family of transcription factors that regulates cholesterol and lipid metabolism. The active forms of these transcription factors are targeted by a number of post-translational modifications, including phosphorylation. Phosphorylation of Thr-426 and Ser-430 in SREBP1a creates a docking site for the ubiquitin ligase Fbw7, resulting in the degradation of the transcription factor. Here, we identify a novel phosphorylation site in SREBP1a, Ser-434, which regulates the Fbw7-dependent degradation of SREBP1. We demonstrate that both SREBP1a and SREBP1c are phosphorylated on this residue (Ser-410 in SREBP1c). Importantly, we demonstrate that the mature form of endogenous SREBP1 is phosphorylated on Ser-434. Glycogen synthase kinase-3 phosphorylates Ser-434, and the phosphorylation of this residue is attenuated in response to insulin signaling. Interestingly, phosphorylation of Ser-434 promotes the glycogen synthase kinase-3-dependent phosphorylation of Thr-426 and Ser-430 and destabilizes SREBP1. Consequently, mutation of Ser-434 blocks the interaction between SREBP1 and Fbw7 and attenuates Fbw7-dependent degradation of SREBP1. Importantly, insulin fails to enhance the levels of mature SREBP1 in cells lacking Fbw7. Thus, the degradation of mature SREBP1 is controlled by cross-talk between multiple phosphorylated residues in its C-terminal domain and the phosphorylation of Ser-434 could function as a molecular switch to control these processes.

  18. A strategy to quantitate global phosphorylation of bone matrix proteins.

    Science.gov (United States)

    Sroga, Grażyna E; Vashishth, Deepak

    2016-04-15

    Current studies of protein phosphorylation focus primarily on the importance of specific phosphoproteins and their landscapes of phosphorylation in the regulation of different cellular functions. However, global changes in phosphorylation of extracellular matrix phosphoproteins measured "in bulk" are equally important. For example, correct global phosphorylation of different bone matrix proteins is critical to healthy tissue biomineralization. To study changes of bone matrix global phosphorylation, we developed a strategy that combines a procedure for in vitro phosphorylation/dephosphorylation of fully mineralized bone in addition to quantitation of the global phosphorylation levels of bone matrix proteins. For the first time, we show that it is possible to enzymatically phosphorylate/dephosphorylate fully mineralized bone originating from either cadaveric human donors or laboratory animals (mice). Using our strategy, we detected the difference in the global phosphorylation levels of matrix proteins isolated from wild-type and osteopontin knockout mice. We also observed that the global phosphorylation levels of matrix proteins isolated from human cortical bone were lower than those isolated from trabecular bone. The developed strategy has the potential to open new avenues for studies on the global phosphorylation of bone matrix proteins and their role in biomineralization as well for other tissues/cells and protein-based materials.

  19. Multistep phosphorylation systems: tunable components of biological signaling circuits.

    Science.gov (United States)

    Valk, Evin; Venta, Rainis; Ord, Mihkel; Faustova, Ilona; Kõivomägi, Mardo; Loog, Mart

    2014-11-05

    Multisite phosphorylation of proteins is a powerful signal processing mechanism that plays crucial roles in cell division and differentiation as well as in disease. We recently demonstrated a novel phenomenon in cell cycle regulation by showing that cyclin-dependent kinase-dependent multisite phosphorylation of a crucial substrate is performed sequentially in the N-to-C terminal direction along the disordered protein. The process is controlled by key parameters, including the distance between phosphorylation sites, the distribution of serines and threonines in sites, and the position of docking motifs. According to our model, linear patterns of phosphorylation along disordered protein segments determine the signal-response function of a multisite phosphorylation switch. Here we discuss the general advantages and engineering principles of multisite phosphorylation networks as processors of kinase signals. We also address the idea of using the mechanistic logic of linear multisite phosphorylation networks to design circuits for synthetic biology applications.

  20. Calcium regulation of oxidative phosphorylation in rat skeletal muscle mitochondria.

    Science.gov (United States)

    Kavanagh, N I; Ainscow, E K; Brand, M D

    2000-02-24

    Activation of oxidative phosphorylation by physiological levels of calcium in mitochondria from rat skeletal muscle was analysed using top-down elasticity and regulation analysis. Oxidative phosphorylation was conceptually divided into three subsystems (substrate oxidation, proton leak and phosphorylation) connected by the membrane potential or the protonmotive force. Calcium directly activated the phosphorylation subsystem and (with sub-saturating 2-oxoglutarate) the substrate oxidation subsystem but had no effect on the proton leak kinetics. The response of mitochondria respiring on 2-oxoglutarate at two physiological concentrations of free calcium was quantified using control and regulation analysis. The partial integrated response coefficients showed that direct stimulation of substrate oxidation contributed 86% of the effect of calcium on state 3 oxygen consumption, and direct activation of the phosphorylation reactions caused 37% of the increase in phosphorylation flux. Calcium directly activated phosphorylation more strongly than substrate oxidation (78% compared to 45%) to achieve homeostasis of mitochondrial membrane potential during large increases in flux.

  1. Tryptanthrin Inhibits Angiogenesis by Targeting the VEGFR2-Mediated ERK1/2 Signalling Pathway

    OpenAIRE

    2013-01-01

    Angiogenesis is a key step for tumour growth and metastasis, and anti-angiogenesis has been proposed as an important strategy for cancer therapy. Tryptanthrin is a weakly basic alkaloid isolated from the dried roots of medicinal indigo plants and has been shown to possess anti-tumour activities on various cancer cell types. This study aims to investigate the in vitro and in vivo anti-angiogenic activities of tryptanthrin and to unravel its underlying molecular action mechanisms. Our results s...

  2. Novel angiogenesis inhibitory activity in cinnamon extract blocks VEGFR2 kinase and downstream signaling

    Science.gov (United States)

    VEGF is one of the most critical factors that induce angiogenesis, and has thus become an attractive target for anti-angiogenesis treatment. However, most of the current anti-VEGF agents that often cause side effects cannot be recommended for long term use. Identification of natural VEGF inhibitors...

  3. Genetic Manipulation of Neurofilament Protein Phosphorylation.

    Science.gov (United States)

    Jones, Maria R; Villalón, Eric; Garcia, Michael L

    2016-01-01

    Neurofilament biology is important to understanding structural properties of axons, such as establishment of axonal diameter by radial growth. In order to study the function of neurofilaments, a series of genetically modified mice have been generated. Here, we describe a brief history of genetic modifications used to study neurofilaments, as well as an overview of the steps required to generate a gene-targeted mouse. In addition, we describe steps utilized to analyze neurofilament phosphorylation status using immunoblotting. Taken together, these provide comprehensive analysis of neurofilament function in vivo, which can be applied to many systems.

  4. Convergence of Ubiquitylation and Phosphorylation Signaling in Rapamycin-Treated Yeast Cells

    DEFF Research Database (Denmark)

    Iesmantavicius, Vytautas; Weinert, Brian Tate; Choudhary, Chuna Ram

    2014-01-01

    The target of rapamycin (TOR) kinase senses the availability of nutrients and coordinates cellular growth and proliferation with nutrient abundance. Inhibition of TOR mimics nutrient starvation and leads to the reorganization of many cellular processes, including autophagy, protein translation......, phosphorylation, and proteome changes in rapamycin-treated yeast cells. Our data constitutes a detailed proteomic analysis of rapamycin-treated yeast with 3,590 proteins, 8,961 phosphorylation sites, and 2,498 di-Gly modified lysines (putative ubiquitylation sites) quantified. The phosphoproteome was extensively...... modulated by rapamycin treatment, with more than 900 up-regulated sites one hour after rapamycin treatment. Dynamically regulated phosphoproteins were involved in diverse cellular processes, prominently including transcription, membrane organization, vesicle-mediated transport, and autophagy. Several...

  5. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast.

    Science.gov (United States)

    Miao, Yansong; Han, Xuemei; Zheng, Liangzhen; Xie, Ying; Mu, Yuguang; Yates, John R; Drubin, David G

    2016-01-01

    Actin cables, composed of actin filament bundles nucleated by formins, mediate intracellular transport for cell polarity establishment and maintenance. We previously observed that metaphase cells preferentially promote actin cable assembly through cyclin-dependent kinase 1 (Cdk1) activity. However, the relevant metaphase Cdk1 targets were not known. Here we show that the highly conserved actin filament crosslinking protein fimbrin is a critical Cdk1 target for actin cable assembly regulation in budding yeast. Fimbrin is specifically phosphorylated on threonine 103 by the metaphase cyclin-Cdk1 complex, in vivo and in vitro. On the basis of conformational simulations, we suggest that this phosphorylation stabilizes fimbrin's N-terminal domain, and modulates actin filament binding to regulate actin cable assembly and stability in cells. Overall, this work identifies fimbrin as a key target for cell cycle regulation of actin cable assembly in budding yeast, and suggests an underlying mechanism.

  6. DIXDC1 Phosphorylation and Control of Dendritic Morphology Are Impaired by Rare Genetic Variants

    Directory of Open Access Journals (Sweden)

    Vickie Kwan

    2016-11-01

    Full Text Available The development of neural connectivity is essential for brain function, and disruption of this process is associated with autism spectrum disorders (ASDs. DIX domain containing 1 (DIXDC1 has previously been implicated in neurodevelopmental disorders, but its role in postnatal brain function remains unknown. Using a knockout mouse model, we determined that DIXDC1 is a regulator of excitatory neuron dendrite development and synapse function in the cortex. We discovered that MARK1, previously linked to ASDs, phosphorylates DIXDC1 to regulate dendrite and spine development through modulation of the cytoskeletal network in an isoform-specific manner. Finally, rare missense variants in DIXDC1 were identified in ASD patient cohorts via genetic sequencing. Interestingly, the variants inhibit DIXDC1 isoform 1 phosphorylation, causing impairment to dendrite and spine growth. These data reveal that DIXDC1 is a regulator of cortical dendrite and synaptic development and provide mechanistic insight into morphological defects associated with neurodevelopmental disorders.

  7. Serine 1179 Phosphorylation of Endothelial Nitric Oxide Synthase Increases Superoxide Generation and Alters Cofactor Regulation.

    Science.gov (United States)

    Peng, Hu; Zhuang, Yugang; Harbeck, Mark C; He, Donghong; Xie, Lishi; Chen, Weiguo

    2015-01-01

    Endothelial nitric oxide synthase (eNOS) is responsible for maintaining systemic blood pressure, vascular remodeling and angiogenesis. In addition to producing NO, eNOS can also generate superoxide (O2-.) in the absence of the cofactor tetrahydrobiopterin (BH4). Previous studies have shown that bovine eNOS serine 1179 (Serine 1177/human) phosphorylation critically modulates NO synthesis. However, the effect of serine 1179 phosphorylation on eNOS superoxide generation is unknown. Here, we used the phosphomimetic form of eNOS (S1179D) to determine the effect of S1179 phosphorylation on superoxide generating activity, and its sensitivity to regulation by BH4, Ca2+, and calmodulin (CAM). S1179D eNOS exhibited significantly increased superoxide generating activity and NADPH consumption compared to wild-type eNOS (WT eNOS). The superoxide generating activities of S1179D eNOS and WT eNOS did not differ significantly in their sensitivity to regulation by either Ca2+ or CaM. The sensitivity of the superoxide generating activity of S1179D eNOS to inhibition by BH4 was significantly reduced compared to WT eNOS. In eNOS-overexpressing 293 cells, BH4 depletion with 10mM DAHP for 48 hours followed by 50ng/ml VEGF for 30 min to phosphorylate eNOS S1179 increased ROS accumulation compared to DAHP-only treated cells. Meanwhile, MTT assay indicated that overexpression of eNOS in HEK293 cells decreased cellular viability compared to control cells at BH4 depletion condition (Psuperoxide generation: S1179 phosphorylation increases superoxide production while decreasing sensitivity to the inhibitory effect of BH4 on this activity.

  8. Top-down control analysis of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes.

    Science.gov (United States)

    Ainscow, E K; Brand, M D

    1999-08-01

    Control analysis was used to analyse the internal control of rat hepatocyte metabolism. The reactions of the cell were grouped into nine metabolic blocks linked by five key intermediates. The blocks were glycogen breakdown, glucose release, glycolysis, lactate production, NADH oxidation, pyruvate oxidation, mitochondrial proton leak, mitochondrial phosphorylation and ATP consumption. The linking intermediates were intracellular glucose-6-phosphate, pyruvate and ATP levels, cytoplasmic NADH/NAD ratio and mitochondrial membrane potential. The steady-state fluxes through the blocks and the levels of the intermediates were measured in the absence and presence of specific effectors of hepatocyte metabolism. Application of the multiple modulation approach gave the kinetic responses of each block to each intermediate (the elasticities). These were then used to calculate all of the control coefficients, which describe the degree of control each block had over the level of each intermediate, and over the rate of each process. Within this full description of control, many different interactions could be identified. One key finding was that the processes that consumed ATP had only 35% of the control over the rate of ATP consumption. Instead, the reactions that produced ATP exerted the most control over ATP consumption rate; particularly important were mitochondrial phosphorylation (30% of control) and glycolysis (19%). The rate of glycolysis was positively controlled by the glycolytic enzymes themselves (66% of control) and by ATP consumption (47%). Mitochondrial production of ATP, including oxidative, proton leak and phosphorylation processes, had negative control over glycolysis (-26%; the Pasteur effect). In contrast, glycolysis had little control over the rate of ATP production by the mitochondria (-10%; the Crabtree effect). Control over the flux through the mitochondrial phosphorylation block was shared between pyruvate oxidation (23%), ATP consumption (28%) and the

  9. Phosphorylated LIM kinases colocalize with gamma-tubulin in centrosomes during early stages of mitosis.

    Science.gov (United States)

    Chakrabarti, Ratna; Jones, Jennifer L; Oelschlager, Denise K; Tapia, Tenekua; Tousson, Albert; Grizzle, William E

    2007-12-01

    LIM kinases (LIMK1 and LIMK2) are LIM domain containing serine/threonine kinases that modulate reorganization of actin cytoskeleton through inactivating phosphorylation of cofilin. The Rho family of small GTPases regulates the catalytic activity of LIMK1 and LIMK2 through activating phosphorylation by ROCK or by p21 kinase. Recent studies have suggested that LIMK1 could play a role in modulation of cellular growth by alteration of the cell cycle in breast and prostate tumor cells; however, the direct mitogenic effects of LIMK1 in these tumor cells is yet to be elucidated. Via immunofluorescence, in this study, we show that phosphorylated LIM kinases (pLIMK1/2) are colocalized with gamma-tubulin in the centrosomes during the early mitotic phases of human breast and prostate cancer cells (MDA-MB-231 and DU145); apparent colocalization begins in the centrosomes in prophase. As shown by both bright field (MDA-MB-231) and fluorescent immunohistochemistry (MDA-MB-231 and DU145), pLIMK1/2 does not localize to centrosomes during interphase. By bright field immunohistochemistry, the largest area of the centrosome that is stained with pLIMK1/2 occurs at anaphase. In early telophase, reduced staining of pLIMK1/2 at the spindle poles and concomitant accumulation of pLIMK1/2 at the cleavage furrow begins to occur. In late telophase, loss of staining of pLIMK1/2 and of colocalization with gamma-tubulin occurs at the poles and pLIMK1/2 became further concentrated at the junction between the two daughter cells. Co-immunoprecipitation studies indicated that gamma-tubulin associates with phosphorylated LIMK1 and LIMK2 but not with dephosphorylated LIMK1 or LIMK2. The results suggest that activated LIMK1/2 may associate with gamma-tubulin and play a role in mitotic spindle assembly.

  10. Regulation of endothelial permeability and transendothelial migration of cancer cells by tropomyosin-1 phosphorylation

    Directory of Open Access Journals (Sweden)

    Simoneau Bryan

    2012-11-01

    Full Text Available Abstract Background Loss of endothelial cell integrity and selective permeability barrier is an early event in the sequence of oxidant-mediated injury and may result in atherosclerosis, hypertension and facilitation of transendothelial migration of cancer cells during metastasis. We already reported that endothelial cell integrity is tightly regulated by the balanced co-activation of p38 and ERK pathways. In particular, we showed that phosphorylation of tropomyosin-1 (tropomyosin alpha-1 chain = Tm1 at Ser283 by DAP kinase, downstream of the ERK pathway might be a key event required to maintain the integrity and normal functions of the endothelium in response to oxidative stress. Methods Endothelial permeability was assayed by monitoring the passage of Dextran-FITC through a tight monolayer of HUVECs grown to confluence in Boyden chambers. Actin and Tm1 dynamics and distribution were evaluated by immunofluorescence. We modulated the expression of Tm1 by siRNA and lentiviral-mediated expression of wild type and mutated forms of Tm1 insensitive to the siRNA. Transendothelial migration of HT-29 colon cancer cells was monitored in Boyden chambers similarly as for permeability. Results We provide evidence indicating that Tm1 phosphorylation at Ser283 is essential to regulate endothelial permeability under oxidative stress by modulating actin dynamics. Moreover, the transendothelial migration of colon cancer cells is also regulated by the phosphorylation of Tm1 at Ser283. Conclusion Our finding strongly support the role for the phosphorylation of endothelial Tm1 at Ser283 to prevent endothelial barrier dysfunction associated with oxidative stress injury.

  11. Phenobarbital Meets Phosphorylation of Nuclear Receptors.

    Science.gov (United States)

    Negishi, Masahiko

    2017-05-01

    Phenobarbital was the first therapeutic drug to be characterized for its induction of hepatic drug metabolism. Essentially at the same time, cytochrome P450, an enzyme that metabolizes drugs, was discovered. After nearly 50 years of investigation, the molecular target of phenobarbital induction has now been delineated to phosphorylation at threonine 38 of the constitutive androstane receptor (NR1I3), a member of the nuclear receptor superfamily. Determining this mechanism has provided us with the molecular basis to understand drug induction of drug metabolism and disposition. Threonine 38 is conserved as a phosphorylation motif in the majority of both mouse and human nuclear receptors, providing us with an opportunity to integrate diverse functions of nuclear receptors. Here, I review the works and accomplishments of my laboratory at the National Institutes of Health National Institute of Environmental Health Sciences and the future research directions of where our study of the constitutive androstane receptor might take us. U.S. Government work not protected by U.S. copyright.

  12. Modelling the Krebs cycle and oxidative phosphorylation.

    Science.gov (United States)

    Korla, Kalyani; Mitra, Chanchal K

    2014-01-01

    The Krebs cycle and oxidative phosphorylation are the two most important sets of reactions in a eukaryotic cell that meet the major part of the total energy demands of a cell. In this paper, we present a computer simulation of the coupled reactions using open source tools for simulation. We also show that it is possible to model the Krebs cycle with a simple black box with a few inputs and outputs. However, the kinetics of the internal processes has been modelled using numerical tools. We also show that the Krebs cycle and oxidative phosphorylation together can be combined in a similar fashion - a black box with a few inputs and outputs. The Octave script is flexible and customisable for any chosen set-up for this model. In several cases, we had no explicit idea of the underlying reaction mechanism and the rate determining steps involved, and we have used the stoichiometric equations that can be easily changed as and when more detailed information is obtained. The script includes the feedback regulation of the various enzymes of the Krebs cycle. For the electron transport chain, the pH gradient across the membrane is an essential regulator of the kinetics and this has been modelled empirically but fully consistent with experimental results. The initial conditions can be very easily changed and the simulation is potentially very useful in a number of cases of clinical importance.

  13. Prebiotic Phosphorylation Reactions on the Early Earth

    Directory of Open Access Journals (Sweden)

    Maheen Gull

    2014-07-01

    Full Text Available Phosphorus (P is an essential element for life. It occurs in living beings in the form of phosphate, which is ubiquitous in biochemistry, chiefly in the form of C-O-P (carbon, oxygen and phosphorus, C-P, or P-O-P linkages to form life. Within prebiotic chemistry, several key questions concerning phosphorus chemistry have developed: what were the most likely sources of P on the early Earth? How did it become incorporated into the biological world to form the P compounds that life employs today? Can meteorites be responsible for the delivery of P? What were the most likely solvents on the early Earth and out of those which are favorable for phosphorylation? Or, alternatively, were P compounds most likely produced in relatively dry environments? What were the most suitable temperature conditions for phosphorylation? A route to efficient formation of biological P compounds is still a question that challenges astrobiologists. This article discusses these important issues related to the origin of biological P compounds.

  14. Phosphorylation regulates coilin activity and RNA association

    Directory of Open Access Journals (Sweden)

    Hanna J. Broome

    2013-02-01

    The Cajal body (CB is a domain of concentrated components found within the nucleus of cells in an array of species that is functionally important for the biogenesis of telomerase and small nuclear ribonucleoproteins. The CB is a dynamic structure whose number and size change during the cell cycle and is associated with other nuclear structures and gene loci. Coilin, also known as the marker protein for the CB, is a phosphoprotein widely accepted for its role in maintaining CB integrity. Recent studies have been done to further elucidate functional activities of coilin apart from its structural role in the CB in an attempt to explore the rationale for coilin expression in cells that have few CBs or lack them altogether. Here we show that the RNA association profile of coilin changes in mitosis with respect to that during interphase. We provide evidence of transcriptional and/or processing dysregulation of several CB-related RNA transcripts as a result of ectopic expression of both wild-type and phosphomutant coilin proteins. We also show apparent changes in transcription and/or processing of these transcripts upon coilin knockdown in both transformed and primary cell lines. Additionally, we provide evidence of specific coilin RNase activity regulation, on both U2 and hTR transcripts, by phosphorylation of a single residue, serine 489. Collectively, these results point to additional functions for coilin that are regulated by phosphorylation.

  15. Phosphorylation of KasB regulates virulence and acid-fastness in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Catherine Vilchèze

    2014-05-01

    Full Text Available Mycobacterium tuberculosis bacilli display two signature features: acid-fast staining and the capacity to induce long-term latent infections in humans. However, the mechanisms governing these two important processes remain largely unknown. Ser/Thr phosphorylation has recently emerged as an important regulatory mechanism allowing mycobacteria to adapt their cell wall structure/composition in response to their environment. Herein, we evaluated whether phosphorylation of KasB, a crucial mycolic acid biosynthetic enzyme, could modulate acid-fast staining and virulence. Tandem mass spectrometry and site-directed mutagenesis revealed that phosphorylation of KasB occurred at Thr334 and Thr336 both in vitro and in mycobacteria. Isogenic strains of M. tuberculosis with either a deletion of the kasB gene or a kasB_T334D/T336D allele, mimicking constitutive phosphorylation of KasB, were constructed by specialized linkage transduction. Biochemical and structural analyses comparing these mutants to the parental strain revealed that both mutant strains had mycolic acids that were shortened by 4-6 carbon atoms and lacked trans-cyclopropanation. Together, these results suggested that in M. tuberculosis, phosphorylation profoundly decreases the condensing activity of KasB. Structural/modeling analyses reveal that Thr334 and Thr336 are located in the vicinity of the catalytic triad, which indicates that phosphorylation of these amino acids would result in loss of enzyme activity. Importantly, the kasB_T334D/T336D phosphomimetic and deletion alleles, in contrast to the kasB_T334A/T336A phosphoablative allele, completely lost acid-fast staining. Moreover, assessing the virulence of these strains indicated that the KasB phosphomimetic mutant was attenuated in both immunodeficient and immunocompetent mice following aerosol infection. This attenuation was characterized by the absence of lung pathology. Overall, these results highlight for the first time the role of

  16. Phosphorylation of KasB regulates virulence and acid-fastness in Mycobacterium tuberculosis.

    Science.gov (United States)

    Vilchèze, Catherine; Molle, Virginie; Carrère-Kremer, Séverine; Leiba, Jade; Mourey, Lionel; Shenai, Shubhada; Baronian, Grégory; Tufariello, Joann; Hartman, Travis; Veyron-Churlet, Romain; Trivelli, Xavier; Tiwari, Sangeeta; Weinrick, Brian; Alland, David; Guérardel, Yann; Jacobs, William R; Kremer, Laurent

    2014-05-01

    Mycobacterium tuberculosis bacilli display two signature features: acid-fast staining and the capacity to induce long-term latent infections in humans. However, the mechanisms governing these two important processes remain largely unknown. Ser/Thr phosphorylation has recently emerged as an important regulatory mechanism allowing mycobacteria to adapt their cell wall structure/composition in response to their environment. Herein, we evaluated whether phosphorylation of KasB, a crucial mycolic acid biosynthetic enzyme, could modulate acid-fast staining and virulence. Tandem mass spectrometry and site-directed mutagenesis revealed that phosphorylation of KasB occurred at Thr334 and Thr336 both in vitro and in mycobacteria. Isogenic strains of M. tuberculosis with either a deletion of the kasB gene or a kasB_T334D/T336D allele, mimicking constitutive phosphorylation of KasB, were constructed by specialized linkage transduction. Biochemical and structural analyses comparing these mutants to the parental strain revealed that both mutant strains had mycolic acids that were shortened by 4-6 carbon atoms and lacked trans-cyclopropanation. Together, these results suggested that in M. tuberculosis, phosphorylation profoundly decreases the condensing activity of KasB. Structural/modeling analyses reveal that Thr334 and Thr336 are located in the vicinity of the catalytic triad, which indicates that phosphorylation of these amino acids would result in loss of enzyme activity. Importantly, the kasB_T334D/T336D phosphomimetic and deletion alleles, in contrast to the kasB_T334A/T336A phosphoablative allele, completely lost acid-fast staining. Moreover, assessing the virulence of these strains indicated that the KasB phosphomimetic mutant was attenuated in both immunodeficient and immunocompetent mice following aerosol infection. This attenuation was characterized by the absence of lung pathology. Overall, these results highlight for the first time the role of Ser/Thr kinase

  17. Serine 1179 Phosphorylation of Endothelial Nitric Oxide Synthase Increases Superoxide Generation and Alters Cofactor Regulation.

    Directory of Open Access Journals (Sweden)

    Hu Peng

    Full Text Available Endothelial nitric oxide synthase (eNOS is responsible for maintaining systemic blood pressure, vascular remodeling and angiogenesis. In addition to producing NO, eNOS can also generate superoxide (O2-. in the absence of the cofactor tetrahydrobiopterin (BH4. Previous studies have shown that bovine eNOS serine 1179 (Serine 1177/human phosphorylation critically modulates NO synthesis. However, the effect of serine 1179 phosphorylation on eNOS superoxide generation is unknown. Here, we used the phosphomimetic form of eNOS (S1179D to determine the effect of S1179 phosphorylation on superoxide generating activity, and its sensitivity to regulation by BH4, Ca2+, and calmodulin (CAM. S1179D eNOS exhibited significantly increased superoxide generating activity and NADPH consumption compared to wild-type eNOS (WT eNOS. The superoxide generating activities of S1179D eNOS and WT eNOS did not differ significantly in their sensitivity to regulation by either Ca2+ or CaM. The sensitivity of the superoxide generating activity of S1179D eNOS to inhibition by BH4 was significantly reduced compared to WT eNOS. In eNOS-overexpressing 293 cells, BH4 depletion with 10mM DAHP for 48 hours followed by 50ng/ml VEGF for 30 min to phosphorylate eNOS S1179 increased ROS accumulation compared to DAHP-only treated cells. Meanwhile, MTT assay indicated that overexpression of eNOS in HEK293 cells decreased cellular viability compared to control cells at BH4 depletion condition (P<0.01. VEGF-mediated Serine 1179 phosphorylation further decreased the cellular viability in eNOS-overexpressing 293 cells (P<0.01. Our data demonstrate that eNOS serine 1179 phosphorylation, in addition to enhancing NO production, also profoundly affects superoxide generation: S1179 phosphorylation increases superoxide production while decreasing sensitivity to the inhibitory effect of BH4 on this activity.

  18. Modulation of mitochondrial morphology by bioenergetics defects in primary human fibroblasts

    DEFF Research Database (Denmark)

    Guillery, O.; Malka, F.; Frachon, P.

    2008-01-01

    Mitochondria are dynamic organelles with continuous fusion and fission, the equilibrium of which results in mitochondrial morphology. Evidence points to there being an intricate relationship between mitochondrial dynamics and oxidative phosphorylation. We investigated the bioenergetics modulation...

  19. Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides

    Science.gov (United States)

    Bertran-Vicente, Jordi; Penkert, Martin; Nieto-Garcia, Olaia; Jeckelmann, Jean-Marc; Schmieder, Peter; Krause, Eberhard; Hackenberger, Christian P. R.

    2016-09-01

    In contrast to protein O-phosphorylation, studying the function of the less frequent N- and S-phosphorylation events have lagged behind because they have chemical features that prevent their manipulation through standard synthetic and analytical methods. Here we report on the development of a chemoselective synthetic method to phosphorylate Cys side-chains in unprotected peptides. This approach makes use of a reaction between nucleophilic phosphites and electrophilic disulfides accessible by standard methods. We achieve the stereochemically defined phosphorylation of a Cys residue and verify the modification using electron-transfer higher-energy dissociation (EThcD) mass spectrometry. To demonstrate the use of the approach in resolving biological questions, we identify an endogenous Cys phosphorylation site in IICBGlc, which is known to be involved in the carbohydrate uptake from the bacterial phosphotransferase system (PTS). This new chemical and analytical approach finally allows further investigating the functions and significance of Cys phosphorylation in a wide range of crucial cellular processes.

  20. Phosphorylation modifies the molecular stability of β-amyloid deposits

    Science.gov (United States)

    Rezaei-Ghaleh, Nasrollah; Amininasab, Mehriar; Kumar, Sathish; Walter, Jochen; Zweckstetter, Markus

    2016-04-01

    Protein aggregation plays a crucial role in neurodegenerative diseases. A key feature of protein aggregates is their ubiquitous modification by phosphorylation. Little is known, however, about the molecular consequences of phosphorylation of protein aggregates. Here we show that phosphorylation of β-amyloid at serine 8 increases the stability of its pathogenic aggregates against high-pressure and SDS-induced dissociation. We further demonstrate that phosphorylation results in an elevated number of hydrogen bonds at the N terminus of β-amyloid, the region that is critically regulated by a variety of post-translational modifications. Because of the increased lifetime of phosphorylated β-amyloid aggregates, phosphorylation can promote the spreading of β-amyloid in Alzheimer pathogenesis. Our study suggests that regulation of the molecular stability of protein aggregates by post-translational modifications is a crucial factor for disease progression in the brain.

  1. Control of Collagen Triple Helix Stability by Phosphorylation.

    Science.gov (United States)

    Acevedo-Jake, Amanda M; Ngo, Daniel H; Hartgerink, Jeffrey D

    2017-03-10

    The phosphorylation of the collagen triple helix plays an important role in collagen synthesis, assembly, signaling, and immune response, although no reports detailing the effect this modification has on the structure and stability of the triple helix exist. Here we investigate the changes in stability and structure resulting from the phosphorylation of collagen. Additionally, the formation of pairwise interactions between phosphorylated residues and lysine is examined. In all tested cases, phosphorylation increases helix stability. When charged-pair interactions are possible, stabilization via phosphorylation can play a very large role, resulting inasmuch as a 13.0 °C increase in triple helix stability. Two-dimensional NMR and molecular modeling are used to study the local structure of the triple helix. Our results suggest a mechanism of action for phosphorylation in the regulation of collagen and also expand upon our understanding of pairwise amino acid stabilization of the collagen triple helix.

  2. Chemical Approaches to Studying Labile Amino Acid Phosphorylation.

    Science.gov (United States)

    Marmelstein, Alan M; Moreno, Javier; Fiedler, Dorothea

    2017-04-01

    Phosphorylation of serine, threonine, and tyrosine residues is the archetypal posttranslational modification of proteins. While phosphorylation of these residues has become standard textbook knowledge, phosphorylation of other amino acid side chains is underappreciated and minimally characterized by comparison. This disparity is rooted in the relative instability of these chemically distinct amino acid side chain moieties, namely phosphoramidates, acyl phosphates, thiophosphates, and phosphoanhydrides. In the case of the O-phosphorylated amino acids, synthetic constructs were critical to assessing their stability and developing tools for their study. As the chemical biology community has become more aware of these alternative phosphorylation sites, methodology has been developed for the synthesis of well-characterized standards and close mimics of these phosphorylated amino acids as well. In this article, we review the synthetic chemistry that is a prerequisite to progress in this field.

  3. Modulation of androgen receptor and Akt phosphorylation in prostate cancer C4-2 cells with mTORC1 and mTORC2%mTORC1和mTORC2调控前列腺癌雄激素受体和Akt磷酸化

    Institute of Scientific and Technical Information of China (English)

    陈先国; 庄乾元; 梁朝朝; 杜立环; 叶章群

    2011-01-01

    Objective To investigate the role of mTORC1 and mTORC2 in prostate cancer C4-2 cells. Methods The growth inhibition and apoptosis rate were examined by methyl thiazol tetrazolium ( MTT) assay and flow cytometry ( FCM) after knockouting raptor and rictor in prostate cancer C4-2 cells.The expression of androgen receptor ( AR) and Akt phosphorylation after transfection of siRNA raptor and rictor was detected by Western blotting. Results The growth inhibition of C4-2 cells had no significant change after transfecting siRNA raptor [(25. 37 ± 2. 63) % vs (27.49 ± 2. 96) % , P > 0.05] , and the apoptosis rate was markedly increased [(11. 76 ± 1. 45) % vs (38. 23 ± 3. 71) % ,P <0. 01]. The inhibition of mTORC2 (rictor) markedly decreased the growth of C4-2 cells [(25.37 ±2.63)% vs (62.86 ±5.61)% ,P<0.01] , and the apoptosis rate had no significant change [(11.76 ±1.45)% vs (14.25±1.68)%,P>0.05]. The expression of AR [(0.21 ±0.04)% vs (0. 73 ±0. 12)% ,P<0. 01] and Akt phosphorylation [(0. 23 ± 0. 06 ) % vs ( 0. 68 ± 0. 11 ) % , P < 0. 01] were significantly increased after knocking down mTORC1 (raptor) in C4-2 cells, andt the inhibition of mTORC2 (rictor) markedly decreased the expression of AR [( 0. 21 ± 0. 04 ) % vs ( 0. 07 ± 0. 02 ) % , P < 0. 01] and Akt phosphorylation [(0. 23 ± 0. 06) % vs ( 0. 06 ± 0. 03) % , P < 0. 01]. Conclusion mTORC2 not only is required for the survival of prostate cancer, but also a promising therapic target.%目的 观察mTORC1和mTORC2在前列腺癌C4-2细胞中的作用.方法 噻唑蓝(MTY)比色法检测转染siRNA raptor和siRNA rictor后C4-2细胞增殖改变;流式细胞术(FCM)检测敲除mTORC1(raptor)和mTORC2(rictor)后C4-2细胞凋亡;Western blot检测siRNA raptor和siRNArictor后C4-2细胞雄激素受体(AR)和Akt磷酸化表达.结果 MTT显示敲除raptor生长抑制率无显著变化[(25.37±2.63)%比(27.49±2.96)%,P>0.05],而敲除rictor组[(25.37±2.63)%比(62.86±5.61)%,P<0.01]显著

  4. Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria.

    Science.gov (United States)

    Gnad, Florian; Forner, Francesca; Zielinska, Dorota F; Birney, Ewan; Gunawardena, Jeremy; Mann, Matthias

    2010-12-01

    High accuracy mass spectrometry has proven to be a powerful technology for the large scale identification of serine/threonine/tyrosine phosphorylation in the living cell. However, despite many described phosphoproteomes, there has been no comparative study of the extent of phosphorylation and its evolutionary conservation in all domains of life. Here we analyze the results of phosphoproteomics studies performed with the same technology in a diverse set of organisms. For the most ancient organisms, the prokaryotes, only a few hundred proteins have been found to be phosphorylated. Applying the same technology to eukaryotic species resulted in the detection of thousands of phosphorylation events. Evolutionary analysis shows that prokaryotic phosphoproteins are preferentially conserved in all living organisms, whereas-site specific phosphorylation is not. Eukaryotic phosphosites are generally more conserved than their non-phosphorylated counterparts (with similar structural constraints) throughout the eukaryotic domain. Yeast and Caenorhabditis elegans are two exceptions, indicating that the majority of phosphorylation events evolved after the divergence of higher eukaryotes from yeast and reflecting the unusually large number of nematode-specific kinases. Mitochondria present an interesting intermediate link between the prokaryotic and eukaryotic domains. Applying the same technology to this organelle yielded 174 phosphorylation sites mapped to 74 proteins. Thus, the mitochondrial phosphoproteome is similarly sparse as the prokaryotic phosphoproteomes. As expected from the endosymbiotic theory, phosphorylated as well as non-phosphorylated mitochondrial proteins are significantly conserved in prokaryotes. However, mitochondrial phosphorylation sites are not conserved throughout prokaryotes, consistent with the notion that serine/threonine phosphorylation in prokaryotes occurred relatively recently in evolution. Thus, the phosphoproteome reflects major events in the

  5. Synthesis of O-Phosphorylated Oligopeptides Using Phosphoramidite

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Reversible protein phosphorylation is of great importance in the regulation of many cellular processes. Structurally well-defined compounds are needed for the study of the roles of the phospho-proteins in biological processes. In this paper, O-phosphorylated oligopeptides were synthesized using bis-alkyloxy-N,N-dialkylphosphoramidite reacting with the oligopeptide followed by oxidation. Many hydroxyl groups in oligopeptides can be phosphorylated in one step.

  6. Constitutive phosphorylation of Shc proteins in human tumors

    DEFF Research Database (Denmark)

    Pelicci, G; Lanfrancone, L; Salcini, A E

    1995-01-01

    cells. In tumor cells with known TK gene alterations Shc proteins were constitutively phosphorylated and complexed with the activated TK. No constitutive Shc phosphorylation was found in primary cell cultures and normal tissues. In 14 of 27 tumor cell lines with no reported TK alterations, Shc proteins...... activated TKs and that the analysis of Shc phosphorylation allow the identification of tumors with constitutive TK activation....

  7. A New Intermolecular Phosphoryl Transfer between Serine and Histidine Residues

    Institute of Scientific and Technical Information of China (English)

    SU,Yu-Qian; NIU,Ming-Yu; CAO,Shu-Xia; ZHANG,Jian-Chen; QU,Ling-Bo; LIAO,Xin-Cheng; ZHAO,Yu-Fen

    2004-01-01

    @@ Phosphoryl transfer constitutes one of the most important reactions in functionalized molecules, bioorganic chemistry and biochemistry.[1] The transformations are involved in diverse processes, such as activated state change of phosphorus, DNA/RNA synthesis, energy metabolism and signal transduction. So, phosphoryl transfer reaction which can be performed by either intramolecular or intermolecular phosphorylation and dephosphorylation mechanism has been investigated by many scientists in wide fields.

  8. Molecular dynamics simulation of phosphorylation-induced conformational transitions in the mycobacterium tuberculosis response regulator PrrA

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guo [Los Alamos National Laboratory; Mcmahon, Benjamin H [Los Alamos National Laboratory; Tung, Chang - Shung [Los Alamos National Laboratory

    2008-01-01

    Phosphorylation-activated modulation of response regulators (RR) is predominantly used by bacteria as a strategy in regulating their two-component signaling (TCS) systems, the underlying molecular mechanisms are however far from fully understood. In this work we have conducted a molecular dynamics (MD) simulation of the phosphorylation-induced conformational transitions of RRs with the Mycobacterium Tuberculosis PrrA as a particular example. Starting from the full-length inactive structure of PrrA we introduced a local disturbance by phosphorylating the conserved aspartic acid residue, Asp-58, in the regulatory domain. A Go-model-type algorithm packaged with AMBER force fields was then applied to simulate the dynamics upon phosphorylation. The MD simulation shows that the phosphorylation of Asp-58 facilitates PrrA, whose inactive state has a compact conformation with a closed interdomain interface, to open up with its interdomain separation being increased by an average of about 1.5 {angstrom} for a simulation of 20 ns. The trans-activation loop, which is completely buried within the interdomain interface in the inactive PrrA, is found to become more exposed with the phosphorylated structure as well. These results provide more structural details of how the phosphorylation of a local aspartate activates PrrA to undergo a global conformational rearrangement toward its extended active state. This work also indicates that MD simulations can serve as a fast tool to unravel the regulation mechanisms of all RRs, which is especially valuable when the structures of full-length active RRs are currently unavailable.

  9. Etk/Bmx transactivates vascular endothelial growth factor 2 and recruits phosphatidylinositol 3-kinase to mediate the tumor necrosis factor-induced angiogenic pathway.

    Science.gov (United States)

    Zhang, Rong; Xu, Yingqian; Ekman, Niklas; Wu, Zhenhua; Wu, Jiong; Alitalo, Kari; Min, Wang

    2003-12-19

    Tumor necrosis factor (TNF), via its receptor 2 (TNFR2), induces Etk (or Bmx) activation and Etk-dependent endothelial cell (EC) migration and tube formation. Because TNF receptor 2 lacks an intrinsic kinase activity, we examined the kinase(s) mediating TNF-induced Etk activation. TNF induces a coordinated phosphorylation of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) and Etk, which is blocked by VEGFR2-specific inhibitors. In response to TNF, Etk and VEGFR2 form a complex resulting in a reciprocal activation between the two kinases. Subsequently, the downstream phosphatidylinositol 3-kinase (PI3K)-Akt signaling (but not signaling through phospholipase C-gamma) was initiated and directly led to TNF-induced EC migration, which was significantly inhibited by VEGFR2-, PI3K-, or Akt-specific inhibitors. Phosphorylation of VEGFR2 at Tyr-801 and Tyr-1175, the critical sites for VEGF-induced PI3K-Akt signaling, was not involved in TNF-mediated Akt activation. However, TNF induces phosphorylation of Etk at Tyr-566, directly mediating the recruitment of the p85 subunit of PI3K. Furthermore, TNF- but not VEGF-induced activation of VEGFR2, Akt, and EC migration are blunted in EC genetically deficient with Etk. Taken together, our data demonstrated that TNF induces transactivation between Etk and VEGFR2, and Etk directly activates PI3K-Akt angiogenic signaling independent of VEGF-induced VEGFR2-PI3K-Akt signaling pathway.

  10. Membrane tethering of APP c-terminal fragments is a prerequisite for T668 phosphorylation preventing nuclear sphere generation.

    Science.gov (United States)

    Bukhari, Hassan; Kolbe, Katharina; Leonhardt, Gregor; Loosse, Christina; Schröder, Elisabeth; Knauer, Shirley; Marcus, Katrin; Müller, Thorsten

    2016-11-01

    A central molecular hallmark of Alzheimer's disease (AD) is the β- and γ-secretase-mediated cleavage of the amyloid precursor protein (APP), which causes the generation of different c-terminal fragments like C99, AICD57, or AICD50 that fully or in part contain the APP transmembrane domain. In this study, we demonstrate that membrane-tethered C99 is phosphorylated by JNK3A at residue T668 (APP695 numbering) to a higher extent than AICD57, whereas AICD50 is not capable of being phosphorylated. The modification decreases the turnover of APP, while the blockade of APP cleavage increases APP phosphorylation. Generation of nuclear spheres, complexes consisting of the translocated AICD, FE65 and other proteins, is significantly reduced as soon as APP c-terminal fragments are accessible for phosphorylation. This APP modification, which we identified as significantly reduced in high plaque-load areas of the human brain, is linearly dependent on the level of APP expression. Accordingly, we show that APP abundance is likewise capable of modulating nuclear sphere generation. Thus, the precise and complex regulation of APP phosphorylation, abundance, and cleavage impacts the generation of nuclear spheres, which are under discussion of being of relevance in neurodegeneration and dementia. Future pharmacological manipulation of nuclear sphere generation may be a promising approach for AD treatment.

  11. Phosphorylation of cardiac myosin binding protein C releases myosin heads from the surface of cardiac thick filaments

    Science.gov (United States)

    Kensler, Robert W.; Craig, Roger; Moss, Richard L.

    2017-01-01

    Cardiac myosin binding protein C (cMyBP-C) has a key regulatory role in cardiac contraction, but the mechanism by which changes in phosphorylation of cMyBP-C accelerate cross-bridge kinetics remains unknown. In this study, we isolated thick filaments from the hearts of mice in which the three serine residues (Ser273, Ser282, and Ser302) that are phosphorylated by protein kinase A in the m-domain of cMyBP-C were replaced by either alanine or aspartic acid, mimicking the fully nonphosphorylated and the fully phosphorylated state of cMyBP-C, respectively. We found that thick filaments from the cMyBP-C phospho-deficient hearts had highly ordered cross-bridge arrays, whereas the filaments from the cMyBP-C phospho-mimetic hearts showed a strong tendency toward disorder. Our results support the hypothesis that dephosphorylation of cMyBP-C promotes or stabilizes the relaxed/superrelaxed quasi-helical ordering of the myosin heads on the filament surface, whereas phosphorylation weakens this stabilization and binding of the heads to the backbone. Such structural changes would modulate the probability of myosin binding to actin and could help explain the acceleration of cross-bridge interactions with actin when cMyBP-C is phosphorylated because of, for example, activation of β1-adrenergic receptors in myocardium. PMID:28167762

  12. Raf kinase inhibitory protein function is regulated via a flexible pocket and novel phosphorylation-dependent mechanism.

    Science.gov (United States)

    Granovsky, Alexey E; Clark, Matthew C; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich

    2009-03-01

    Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics.

  13. Adenylyl cyclase activating polypeptide reduces phosphorylation and toxicity of the polyglutamine-expanded androgen receptor in spinobulbar muscular atrophy.

    Science.gov (United States)

    Polanco, Maria Josè; Parodi, Sara; Piol, Diana; Stack, Conor; Chivet, Mathilde; Contestabile, Andrea; Miranda, Helen C; Lievens, Patricia M-J; Espinoza, Stefano; Jochum, Tobias; Rocchi, Anna; Grunseich, Christopher; Gainetdinov, Raul R; Cato, Andrew C B; Lieberman, Andrew P; La Spada, Albert R; Sambataro, Fabio; Fischbeck, Kenneth H; Gozes, Illana; Pennuto, Maria

    2016-12-21

    Spinobulbar muscular atrophy (SBMA) is an X-linked neuromuscular disease caused by polyglutamine (polyQ) expansion in the androgen receptor (AR) gene. SBMA belongs to the family of polyQ diseases, which are fatal neurodegenerative disorders mainly caused by protein-mediated toxic gain-of-function mechanisms and characterized by deposition of misfolded proteins in the form of aggregates. The neurotoxicity of the polyQ proteins can be modified by phosphorylation at specific sites, thereby providing the rationale for the development of disease-specific treatments. We sought to identify signaling pathways that modulate polyQ-AR phosphorylation for therapy development. We report that cyclin-dependent kinase 2 (CDK2) phosphorylates polyQ-AR specifically at Ser(96) Phosphorylation of polyQ-AR by CDK2 increased protein stabilization and toxicity and is negatively regulated by the adenylyl cyclase (AC)/protein kinase A (PKA) signaling pathway. To translate these findings into therapy, we developed an analog of pituitary adenylyl cyclase activating polypeptide (PACAP), a potent activator of the AC/PKA pathway. Chronic intranasal administration of the PACAP analog to knock-in SBMA mice reduced Ser(96) phosphorylation, promoted polyQ-AR degradation, and ameliorated disease outcome. These results provide proof of principle that noninvasive therapy based on the use of PACAP analogs is a therapeutic option for SBMA.

  14. Docosahexaenoic acid inhibits cancer cell growth via p27Kip1, CDK2, ERK1/ERK2, and retinoblastoma phosphorylation.

    Science.gov (United States)

    Khan, Naim A; Nishimura, Kazuhiro; Aires, Virginie; Yamashita, Tomoko; Oaxaca-Castillo, David; Kashiwagi, Keiko; Igarashi, Kazuei

    2006-10-01

    Docosahexaenoic acid (DHA), a PUFA of the n-3 family, inhibited the growth of FM3A mouse mammary cancer cells by arresting their progression from the late-G(1) to the S phase of the cell cycle. DHA upregulated p27(Kip1) levels by inhibiting phosphorylation of mitogen-activated protein (MAP) kinases, i.e., ERK1/ERK2. Indeed, inhibition of ERK1/ERK2 phosphorylation by DHA, U0126 [chemical MAPK extracellularly signal-regulated kinase kinase (MEK) inhibitor], and MEK(SA) (cells expressing dominant negative constructs of MEK) resulted in the accumulation of p27(Kip1). MAP kinase (MAPK) inhibition by DHA did not increase p27(Kip1) mRNA levels. Rather, this fatty acid stabilized p27(Kip1) contents and inhibited MAPK-dependent proteasomal degradation of this protein. DHA also diminished cyclin E phosphorylation, cyclin-dependent kinase-2 (CDK2) activity, and phosphorylation of retinoblastoma protein in these cells. Our study shows that DHA arrests cell growth by modulating the phosphorylation of cell cycle-related proteins.

  15. A Crystallographic Snapshot of Tyrosine Trans-phosphorylation in Action

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Xu, C; Ma, J; Eliseenkova, A; Li, W; Pollock, P; Pitteloud, N; Miller, W; Neubert, T; Mohammadi, M

    2008-01-01

    Tyrosine trans-phosphorylation is a key event in receptor tyrosine kinase signaling, yet, the structural basis for this process has eluded definition. Here, we present the crystal structure of the FGF receptor 2 kinases caught in the act of trans-phosphorylation of Y769, the major C-terminal phosphorylation site. The structure reveals that enzyme- and substrate-acting kinases engage each other through elaborate and specific interactions not only in the immediate vicinity of Y769 and the enzyme active site, but also in regions that are as much of 18 {angstrom} away from D626, the catalytic base in the enzyme active site. These interactions lead to an unprecedented level of specificity and precision during the trans-phosphorylation on Y769. Time-resolved mass spectrometry analysis supports the observed mechanism of trans-phosphorylation. Our data provide a molecular framework for understanding the mechanism of action of Kallmann syndrome mutations and the order of trans-phosphorylation reactions in FGFRs. We propose that the salient mechanistic features of Y769 trans-phosphorylation are applicable to trans-phosphorylation of the equivalent major phosphorylation sites in many other RTKs.

  16. Post-Translational Phosphorylation of Serine 74 of Human Deoxycytidine Kinase Favors the Enzyme Adopting the Open Conformation Making It Competent for Nucleoside Binding and Release

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, Saugata; Szewczak, Andrzej; Ort, Stephan; Konrad, Manfred; Lavie, Arnon (UIC); (MXPL-G)

    2012-03-26

    Deoxycytidine kinase (dCK) uses either ATP or UTP as a phosphoryl donor to catalyze the phosphorylation of nucleoside acceptors. The kinetic properties of human dCK are modulated in vivo by phosphorylation of serine 74. This residue is a part of the insert region and is distant from the active site. Replacing the serine with a glutamic acid (S74E variant) can mimic phosphorylation of Ser74. To understand how phosphorylation affects the catalytic properties of dCK, we examined the S74E variant of dCK both structurally and kinetically. We observe that the presence of a glutamic acid at position 74 favors the adoption by the enzyme of the open conformation. Glu74 stabilizes the open conformation by directly interacting with the indole side chain of Trp58, a residue that is in the proximity of the base of the nucleoside substrate. The open dCK conformation is competent for the binding of nucleoside but not for phosphoryl transfer. In contrast, the closed conformation is competent for phosphoryl transfer but not for product release. Thus, dCK must make the transition between the open and closed states during the catalytic cycle. We propose a reaction scheme for dCK that incorporates the transition between the open and closed states, and this serves to rationalize the observed kinetic differences between wild-type dCK and the S74E variant.

  17. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta.

    Science.gov (United States)

    Sheppard, Kelly-Ann; Fitz, Lori J; Lee, Julie M; Benander, Christina; George, Judith A; Wooters, Joe; Qiu, Yongchang; Jussif, Jason M; Carter, Laura L; Wood, Clive R; Chaudhary, Divya

    2004-09-10

    Engagement of the immunoinhibitory receptor, programmed death-1 (PD-1) attenuates T-cell receptor (TCR)-mediated activation of IL-2 production and T-cell proliferation. Here, we demonstrate that PD-1 modulation of T-cell function involves inhibition of TCR-mediated phosphorylation of ZAP70 and association with CD3zeta. In addition, PD-1 signaling attenuates PKCtheta activation loop phosphorylation in a cognate TCR signal. PKCtheta has been shown to be required for T-cell IL-2 production. A phosphorylated PD-1 peptide, corresponding to the C-terminal immunoreceptor tyrosine-switch motif (ITSM), acts as a docking site in vitro for both SHP-2 and SHP-1, while the phosphorylated peptide containing the N-terminal PD-1 immunoreceptor tyrosine based inhibitory motif (ITIM) associates only with SHP-2.

  18. Role of metabolic modulator Bet-CA in altering mitochondrial hyperpolarization to suppress cancer associated angiogenesis and metastasis

    Science.gov (United States)

    Saha, Suchandrima; Ghosh, Monisankar; Dutta, Samir Kumar

    2016-01-01

    Solid tumors characteristically reflect a metabolic switching from glucose oxidation to glycolysis that plays a fundamental role in angiogenesis and metastasis to facilitate aggressive tumor outcomes. Hyperpolarized mitochondrial membrane potential is a manifestation of malignant cells that compromise the intrinsic pathways of apoptosis and confer a suitable niche to promote the cancer associated hallmark traits. We have previously reported that co-drug Bet-CA selectively targets cancer cells by inducing metabolic catastrophe without a manifest in toxicity. Here we report that the same molecule at a relatively lower concentration deregulates the cardinal phenotypes associated with angiogenesis and metastasis. In mice syngeneic 4T1 breast cancer model, Bet-CA exhibited effective abrogation of angiogenesis and concomitantly obliterated lung metastasis consistent with altered mitochondrial bioenergetics. Furthermore, Bet-CA significantly lowered vascular endothelial growth factor (VEGF) levels and obviated matrix metalloproteases (MMP-2/9) production directly to the criterion where abrogation of autocrine VEGF/VEGFR2 signalling loop was documented. In vitro studies anticipatedly documented the role of Bet-CA in inhibiting actin remodeling, lamellipodia formation and cell membrane ruffling to constitutively suppress cell motility and invasion. Results comprehensively postulate that Bet-CA, a mitochondria targeting metabolic modulator may serve as an excellent candidate for combating angiogenesis and metastasis. PMID:27003027

  19. Modulating the function of ATP-binding cassette subfamily G member 2 (ABCG2) with inhibitor cabozantinib.

    Science.gov (United States)

    Zhang, Guan-Nan; Zhang, Yun-Kai; Wang, Yi-Jun; Barbuti, Anna Maria; Zhu, Xi-Jun; Yu, Xin-Yue; Wen, Ai-Wen; Wurpel, John N D; Chen, Zhe-Sheng

    2017-01-25

    Cabozantinib (XL184) is a small molecule tyrosine kinase receptor inhibitor, which targets c-Met and VEGFR2. Cabozantinib has been approved by the Food and Drug Administration to treat advanced medullary thyroid cancer and renal cell carcinoma. In the present study, we evaluated the ability of cabozantinib to modulate the function of the ATP-binding cassette subfamily G member 2 (ABCG2) by sensitizing cells that are resistant to ABCG2 substrate antineoplastic drugs. We used a drug-selected resistant cell line H460/MX20 and three ABCG2 stable transfected cell lines ABCG2-482-R2, ABCG2-482-G2, and ABCG2-482-T7, which overexpress ABCG2. Cabozantinib, at non-toxic concentrations (3 or 5μM), sensitized the ABCG2-overexpressing cells to mitoxantrone, SN-38, and topotecan. Our results indicate that cabozantinib reverses ABCG2-mediated multidrug resistance by antagonizing the drug efflux function of the ABCG2 transporter instead of downregulating its expression. The molecular docking analysis indicates that cabozantinib binds to the drug-binding site of the ABCG2 transporter. Overall, our findings demonstrate that cabozantinib inhibits the ABCG2 transporter function and consequently enhances the effect of the antineoplastic agents that are substrates of ABCG2. Cabozantinib may be a useful agent in anticancer treatment regimens for patients who are resistant to ABCG2 substrate drugs.

  20. Modulation of VEGF signaling in a mouse model of diabetes by xanthohumol and 8-prenylnaringenin: Unveiling the angiogenic paradox and metabolism interplay.

    Science.gov (United States)

    Costa, Raquel; Rodrigues, Ilda; Guardão, Luísa; Lima, Joana Quelhas; Sousa, Emília; Soares, Raquel; Negrão, Rita

    2017-04-01

    Imbalance in kidney and heart neovascularization is common in type2 diabetes (T2DM) patients. Nevertheless, the mechanisms governing this angiogenic paradox have not been elucidated. Xanthohumol (XN) and 8-prenylnaringenin (8PN) beer polyphenols modulate angiogenesis, being thus targets for T2DM-related complications. Our work examined whether polyphenols consumption affects angiogenic paradox and metabolism in a T2DM mouse model. An increase in kidney and a reduction in left ventricle (LV) microvessels of diabetic C57Bl/6 mice were observed. XN consumption reduced angiogenesis, VEGFR-2 expression/activity, VEGF-A and phosphofructokinase-2/fructose-2,6-bisphosphatase-3 enzyme expression, a metabolic marker present in endothelial tip cells in T2DM mice kidney. 8PN had opposite effects in T2DM mice LV. These XN and 8PN effects were dependent on VEGF levels as revealed by in vitro assays. These findings were accompanied by tissue and plasma reduced expression levels of VEGF-B and its receptors, VEGFR1 and neuropilin-1, by both polyphenols. Beer polyphenols modulate T2DM angiogenic paradox in a tissue-dependent manner. We also show for the first time that both polyphenols decreased VEGF-B pathway, which is implicated in endothelial-to-tissue lipid metabolism. Altogether, the effects of these polyphenols in the crosstalk between angiogenesis and metabolism render them potent agents for novel diabetic therapeutic interventions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A grammar inference approach for predicting kinase specific phosphorylation sites.

    Science.gov (United States)

    Datta, Sutapa; Mukhopadhyay, Subhasis

    2015-01-01

    Kinase mediated phosphorylation site detection is the key mechanism of post translational mechanism that plays an important role in regulating various cellular processes and phenotypes. Many diseases, like cancer are related with the signaling defects which are associated with protein phosphorylation. Characterizing the protein kinases and their substrates enhances our ability to understand the mechanism of protein phosphorylation and extends our knowledge of signaling network; thereby helping us to treat such diseases. Experimental methods for predicting phosphorylation sites are labour intensive and expensive. Also, manifold increase of protein sequences in the databanks over the years necessitates the improvement of high speed and accurate computational methods for predicting phosphorylation sites in protein sequences. Till date, a number of computational methods have been proposed by various researchers in predicting phosphorylation sites, but there remains much scope of improvement. In this communication, we present a simple and novel method based on Grammatical Inference (GI) approach to automate the prediction of kinase specific phosphorylation sites. In this regard, we have used a popular GI algorithm Alergia to infer Deterministic Stochastic Finite State Automata (DSFA) which equally represents the regular grammar corresponding to the phosphorylation sites. Extensive experiments on several datasets generated by us reveal that, our inferred grammar successfully predicts phosphorylation sites in a kinase specific manner. It performs significantly better when compared with the other existing phosphorylation site prediction methods. We have also compared our inferred DSFA with two other GI inference algorithms. The DSFA generated by our method performs superior which indicates that our method is robust and has a potential for predicting the phosphorylation sites in a kinase specific manner.

  2. PCTAIRE1 phosphorylates p27 and regulates mitosis in cancer cells.

    Science.gov (United States)

    Yanagi, Teruki; Krajewska, Maryla; Matsuzawa, Shu-ichi; Reed, John C

    2014-10-15

    PCTAIRE1 is distant relative of the cyclin-dependent kinase family that has been implicated in spermatogenesis and neuronal development, but it has not been studied in cancer. Here, we report that PCTAIRE1 is expressed in prostate, breast, and cervical cancer cells, where its RNAi-mediated silencing causes growth inhibition with aberrant mitosis due to defects in centrosome dynamics. PCTAIRE1 was not similarly involved in proliferation of nontransformed cells, including diploid human IMR-90 fibroblasts. Through yeast two-hybrid screening, we identified tumor suppressor p27 as a PCTAIRE1 interactor. In vitro kinase assays showed PCTAIRE1 phosphorylates p27 at Ser10. PCTAIRE1 silencing modulated Ser10 phosphorylation on p27 and led to its accumulation in cancer cells but not in nontransformed cells. In a mouse xenograft model of PPC1 prostate cancer, conditional silencing of PCTAIRE1 restored p27 protein expression and suppressed tumor growth. Mechanistic studies in HeLa cells showed that PCTAIRE1 phosphorylates p27 during the S and M phases of the cell cycle. Notably, p27 silencing was sufficient to rescue cells from mitotic arrest caused by PCTAIRE1 silencing. Clinically, PCTAIRE1 was highly expressed in primary breast and prostate tumors compared with adjacent normal epithelial tissues. Together our findings reveal an unexpected role for PCTAIRE1 in regulating p27 stability, mitosis, and tumor growth, suggesting PCTAIRE1 as a candidate cancer therapeutic target.

  3. Phosphorylation of InhA inhibits mycolic acid biosynthesis and growth of Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Molle, Virginie; Gulten, Gulcin; Vilchèze, Catherine; Veyron-Churlet, Romain; Zanella-Cléon, Isabelle; Sacchettini, James C.; Jacobs, Jr, William R.; Kremer, Laurent (CNRS-UMR); (Einstein); (TAM)

    2011-08-24

    The remarkable survival ability of Mycobacterium tuberculosis in infected hosts is related to the presence of cell wall-associated mycolic acids. Despite their importance, the mechanisms that modulate expression of these lipids in response to environmental changes are unknown. Here we demonstrate that the enoyl-ACP reductase activity of InhA, an essential enzyme of the mycolic acid biosynthetic pathway and the primary target of the anti-tubercular drug isoniazid, is controlled via phosphorylation. Thr-266 is the unique kinase phosphoacceptor, both in vitro and in vivo. The physiological relevance of Thr-266 phosphorylation was demonstrated using inhA phosphoablative (T266A) or phosphomimetic (T266D/E) mutants. Enoyl reductase activity was severely impaired in the mimetic mutants in vitro, as a consequence of a reduced binding affinity to NADH. Importantly, introduction of inhA{_}T266D/E failed to complement growth and mycolic acid defects of an inhA-thermosensitive Mycobacterium smegmatis strain, in a similar manner to what is observed following isoniazid treatment. This study suggests that phosphorylation of InhA may represent an unusual mechanism that allows M. tuberculosis to regulate its mycolic acid content, thus offering a new approach to future anti-tuberculosis drug development.

  4. Effects of keratin phosphorylation on the mechanical properties of keratin filaments in living cells.

    Science.gov (United States)

    Fois, Giorgio; Weimer, Michael; Busch, Tobias; Felder, Erika T; Oswald, Franz; von Wichert, Götz; Seufferlein, Thomas; Dietl, Paul; Felder, Edward

    2013-04-01

    Keratin filaments impart resilience against mechanical extension of the cell. Despite the pathophysiological relevance of this function, very little is known about the mechanical properties of intermediate filaments in living cells and how these properties are modulated. We used keratin mutants that mimic or abrogate phosphorylation of keratin 8-serine(431) and keratin 18-serine(52) and investigated their effect on keratin tortuousness after cell stretch release in squamous cell carcinoma cells. Cells transfected with the wild-type keratins were used as controls. We can show that keratin dephosphorylation alters the stretch response of keratin in living cells since keratin tortuousness was abolished when phosphorylation of keratin18-serine(52) was abrogated. Additional experiments demonstrate that keratin tortuousness is not simply caused by a plastic overextension of keratin filaments because tortuousness is reversible and requires an intact actin-myosin system. The role of actin in this process remains unclear, but we suggest anchorage of keratin filaments to actin during stretch that leads to buckling on stretch release. Dephosphorylated keratin18-serine(52) might strengthen the recoil force of keratin filaments and hence explain the abolished buckling. The almost exclusive immunolabeling for phosphorylated keratin18-serine (52) in the cell periphery points at a particular role of the peripheral keratin network in this regard.

  5. Phosphorylation regulates activity of 7-dehydrocholesterol reductase (DHCR7), a terminal enzyme of cholesterol synthesis.

    Science.gov (United States)

    Prabhu, Anika V; Luu, Winnie; Sharpe, Laura J; Brown, Andrew J

    2017-01-01

    Cholesterol is essential for survival, but too much or too little can cause disease. Thus, cholesterol levels must be kept within close margins. 7-dehydrocholesterol reductase (DHCR7) is a terminal enzyme of cholesterol synthesis, and is essential for embryonic development. Largely, DHCR7 research is associated with the developmental disease Smith-Lemli-Opitz syndrome, which is caused by mutations in the DHCR7 gene. However, little is known about what regulates DHCR7 activity. Here we provide evidence that phosphorylation plays a role in controlling DHCR7 activity, which may provide a means to divert flux from cholesterol synthesis to vitamin D production. DHCR7 activity was significantly decreased when we used pharmacological inhibitors against two important kinases, AMP-activated protein kinase and protein kinase A. Moreover, mutating a known phosphorylated residue, S14, also decreased DHCR7 activity. Thus, we demonstrate that phosphorylation modulates DHCR7 activity in cells, and contributes to the overall synthesis of cholesterol, and probably vitamin D. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Phosphorylation-dependent Trafficking of Plasma Membrane Proteins in Animal and Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Remko Offringa; and Fang Huang

    2013-01-01

    In both unicellular and multicellular organisms, transmembrane (TM) proteins are sorted to and retained at specific membrane domains by endomembrane trafficking mechanisms that recognize sorting signals in the these proteins. The trafficking and distribution of plasma membrane (PM)-localized TM proteins (PM proteins), especially of those PM proteins that show an asymmetric distribution over the PM, has received much attention, as their proper PM localization is crucial for elementary signaling and transport processes, and defects in their localization often lead to severe disease symptoms or developmental defects. The subcellular localization of PM proteins is dynamically regulated by post-translational modifications, such as phosphorylation and ubiquitination. These modificaitons mostly occur on sorting signals that are located in the larger cytosolic domains of the cargo proteins. Here we review the effects of phosphorylation of PM proteins on their trafficking, and present the key examples from the animal field that have been subject to studies for already several decades, such as that of aquaporin 2 and the epidermal growth factor receptor. Our knowledge on cargo trafficking in plants is largely based on studies of the family of PIN FORMED (PIN) carriers that mediate the efflux of the plant hormone auxin. We will review what is known on the subcellular distribution and trafficking of PIN proteins, with a focus on how this is modulated by phosphorylation, and identify and discuss analogies and differences in trafficking with the well-studied animal examples.

  7. Phosphorylation-dependent trafficking of plasma membrane proteins in animal and plant cells.

    Science.gov (United States)

    Offringa, Remko; Huang, Fang

    2013-09-01

    In both unicellular and multicellular organisms, transmembrane (TM) proteins are sorted to and retained at specific membrane domains by endomembrane trafficking mechanisms that recognize sorting signals in the these proteins. The trafficking and distribution of plasma membrane (PM)-localized TM proteins (PM proteins), especially of those PM proteins that show an asymmetric distribution over the PM, has received much attention, as their proper PM localization is crucial for elementary signaling and transport processes, and defects in their localization often lead to severe disease symptoms or developmental defects. The subcellular localization of PM proteins is dynamically regulated by post-translational modifications, such as phosphorylation and ubiquitination. These modificaitons mostly occur on sorting signals that are located in the larger cytosolic domains of the cargo proteins. Here we review the effects of phosphorylation of PM proteins on their trafficking, and present the key examples from the animal field that have been subject to studies for already several decades, such as that of aquaporin 2 and the epidermal growth factor receptor. Our knowledge on cargo trafficking in plants is largely based on studies of the family of PIN FORMED (PIN) carriers that mediate the efflux of the plant hormone auxin. We will review what is known on the subcellular distribution and trafficking of PIN proteins, with a focus on how this is modulated by phosphorylation, and identify and discuss analogies and differences in trafficking with the well-studied animal examples.

  8. Degradation of phosphorylated p53 by viral protein-ECS E3 ligase complex.

    Directory of Open Access Journals (Sweden)

    Yoshitaka Sato

    2009-07-01

    Full Text Available p53-signaling is modulated by viruses to establish a host cellular environment advantageous for their propagation. The Epstein-Barr virus (EBV lytic program induces phosphorylation of p53, which prevents interaction with MDM2. Here, we show that induction of EBV lytic program leads to degradation of p53 via an ubiquitin-proteasome pathway independent of MDM2. The BZLF1 protein directly functions as an adaptor component of the ECS (Elongin B/C-Cul2/5-SOCS-box protein ubiquitin ligase complex targeting p53 for degradation. Intringuingly, C-terminal phosphorylation of p53 resulting from activated DNA damage response by viral lytic replication enhances its binding to BZLF1 protein. Purified BZLF1 protein-associated ECS could be shown to catalyze ubiquitination of phospho-mimetic p53 more efficiently than the wild-type in vitro. The compensation of p53 at middle and late stages of the lytic infection inhibits viral DNA replication and production during lytic infection, suggesting that the degradation of p53 is required for efficient viral propagation. Taken together, these findings demonstrate a role for the BZLF1 protein-associated ECS ligase complex in regulation of p53 phosphorylated by activated DNA damage signaling during viral lytic infection.

  9. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); College of Food Safety, Guizhou Medical University, Guiyang 550025 (China); Ruan, Zheng, E-mail: ruanzheng@ncu.edu.cn [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Zhou, Lili; Shu, Xugang [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Sun, Xiaohong [College of Food Safety, Guizhou Medical University, Guiyang 550025 (China); Mi, Shumei; Yang, Yuhui [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Yin, Yulong, E-mail: yinyulong@isa.ac.cn [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China)

    2016-01-22

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. - Highlights: • Dietary supplementation with chlorogenic acid (CGA) improved endotoxin-induced liver injury. • Chlorogenic acid enhances ATP increase and shifts energy metabolism, which is correlated with up-regulation AMPK and PGC-1α. • The possible mechanism of CGA on mitochondrial biogenesis was correlated with up-regulation AMPK and PGC-1α.

  10. Iron-dependent changes in cellular energy metabolism: influence on citric acid cycle and oxidative phosphorylation.

    Science.gov (United States)

    Oexle, H; Gnaiger, E; Weiss, G

    1999-11-10

    Iron modulates the expression of the critical citric acid cycle enzyme aconitase via a translational mechanism involving iron regulatory proteins. Thus, the present study was undertaken to investigate the consequences of iron perturbation on citric acid cycle activity, oxidative phosphorylation and mitochondrial respiration in the human cell line K-562. In agreement with previous data iron increases the activity of mitochondrial aconitase while it is reduced upon addition of the iron chelator desferrioxamine (DFO). Interestingly, iron also positively affects three other citric acid cycle enzymes, namely citrate synthase, isocitric dehydrogenase, and succinate dehydrogenase, while DFO decreases the activity of these enzymes. Consequently, iron supplementation results in increased formation of reducing equivalents (NADH) by the citric acid cycle, and thus in increased mitochondrial oxygen consumption and ATP formation via oxidative phosphorylation as shown herein. This in turn leads to downregulation of glucose utilization. In contrast, all these metabolic pathways are reduced upon iron depletion, and thus glycolysis and lactate formation are significantly increased in order to compensate for the decrease in ATP production via oxidative phosphorylation in the presence of DFO. Our results point to a complex interaction between iron homeostasis, oxygen supply and cellular energy metabolism in human cells.

  11. The in vivo phosphorylation sites of rat brain dynamin I

    DEFF Research Database (Denmark)

    Graham, Mark E; Anggono, Victor; Bache, Nicolai

    2007-01-01

    tail splice variant dynIxa and was not hierarchical. Co-purified, (32)P-labeled dynIII was phosphorylated at Ser(759), Ser(763), and Ser(853). Ser(853) is homologous to Ser(851) in dynIxa. The results identify all major and several minor phosphorylation sites in dynI and provide the first measure...

  12. Phosphorylation of proteins during human myometrial contractions: A phosphoproteomic approach.

    Science.gov (United States)

    Hudson, Claire A; López Bernal, Andrés

    2017-01-22

    Phasic myometrial contractility is a key component of human parturition and the contractions are driven by reversible phosphorylation of myosin light chains catalyzed by the calcium (Ca(2+))-dependent enzyme myosin light chain kinase (MYLK). Other yet unknown phosphorylation or de-phosphorylation events may contribute to myometrial contraction and relaxation. In this study we have performed a global phosphoproteomic analysis of human myometrial tissue using tandem mass tagging to detect changes in the phosphorylation status of individual myometrial proteins during spontaneous and oxytocin-driven phasic contractions. We were able to detect 22 individual phosphopeptides whose relative ratio changed (fold > 2 or contraction. The most significant changes in phosphorylation were to MYLK on serine 1760, a site associated with reductions in calmodulin binding and subsequent kinase activity. Phosphorylated MYLK (ser1760) increased significantly during spontaneous (9.83 ± 3.27 fold, P contractions and we were able to validate these data using immunoblotting. Pathway analysis suggested additional proteins involved in calcium signalling, cGMP-PRKG signalling, adrenergic signalling and oxytocin signalling were also phosphorylated during contractions. This study demonstrates that a global phosphoproteomic analysis of myometrial tissue is a sensitive approach to detect changes in the phosphorylation of proteins during myometrial contractions, and provides a platform for further validation of these changes and for identification of their functional significance.

  13. Intermolecular Phosphoryl Transfer Between Serine and Histidine Residues

    Institute of Scientific and Technical Information of China (English)

    Yu Qian SU; Ming Yu NIU; Shu Xia CAO; Jian Chen ZHANG; Yu Fen ZHAO

    2004-01-01

    A novel intermolecular phosphoryl transfer from O-trimethylsilyl-N-(O, O-diisopropyl) phosphoryl serine trimethylsilyl ester to N, N'-bis(trimethylsilyl) histidine trimethylsilyl ester was studied through electrospray ionization mass spectrometry (ESI-MS). It was proposed that the transfer reaction went through penta-coordinated phosphorus intermediate.

  14. Phosphorylation of the Epstein-Barr virus nuclear antigen 2

    DEFF Research Database (Denmark)

    Grässer, F A; Göttel, S; Haiss, P

    1992-01-01

    A major in vivo phosphorylation site of the Epstein-Barr virus nuclear antigen 2 (EBNA-2) was found to be localized at the C-terminus of the protein. In vitro phosphorylation studies using casein kinase 1 (CK-1) and casein kinase 2 (CK-2) revealed that EBNA-2 is a substrate for CK-2, but not for CK...

  15. Phosphorylation of the Goodpasture antigen by type A protein kinases.

    Science.gov (United States)

    Revert, F; Penadés, J R; Plana, M; Bernal, D; Johansson, C; Itarte, E; Cervera, J; Wieslander, J; Quinones, S; Saus, J

    1995-06-02

    Collagen IV is the major component of basement membranes. The human alpha 3 chain of collagen IV contains an antigenic domain called the Goodpasture antigen that is the target for the circulating immunopathogenic antibodies present in patients with Goodpasture syndrome. Characteristically, the gene region encoding the Goodpasture antigen generates multiple alternative products that retain the antigen amino-terminal region with a five-residue motif (KRGDS). The serine therein appears to be the major in vitro cAMP-dependent protein kinase phosphorylation site in the isolated antigen and can be phosphorylated in vitro by two protein kinases of approximately 50 and 41 kDa associated with human kidney plasma membrane, suggesting that it can also be phosphorylated in vivo. Consistent with this, the Goodpasture antigen is isolated from human kidney in phosphorylated and non-phosphorylated forms and only the non-phosphorylated form is susceptible to phosphorylation in vitro. Since this motif is exclusive to the human alpha 3(IV) chain and includes the RGD cell adhesion motif, its phosphorylation might play a role in pathogenesis and influence cell attachment to basement membrane.

  16. Phosphorylation and Ionic Strength Alter the LRAP-HAP Interface in the N-terminus

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Junxia; Xu, Yimin; Shaw, Wendy J.

    2013-04-02

    The conditions present during enamel crystallite development change dramatically as a function of time, including the pH, protein concentration, surface type and ionic strength. In this work, we investigate the role that two of these changing conditions, pH and ionic strength, have in modulating the interaction of amelogenin, LRAP, with hydroxyapatite (HAP). Using solid state NMR dipolar recoupling and chemical shift data, we investigate the structure, orientation and dynamics of three regions in the N-terminus of the protein, L15 to V19, V19 to L23 and K24 to S28. These regions are also near the only phosphorylated residue in the protein, pS16, therefore, changes in the LRAP-HAP interaction as a function of phosphorylation (LRAP(-P) vs. LRAP(+P)) were also investigated. All of the regions and conditions studies for the surface immobilized proteins showed restricted motion, with more mobility under all conditions for L15(+P) and K24(-P). The structure and orientation of the LRAP-HAP interaction in the N-terminus of the phosphorylated protein is very stable to changing solution conditions. From REDOR dipolar recoupling data, the structure and orientation in the region L15V19(+P) did not change significantly as a function of pH or ionic strength. The structure and orientation of the region V19L23(+P) were also stable to changes in pH, with the only significant change observed at high ionic strength, where the region becomes extended, suggesting this may be an important region in regulating mineral development. Chemical shift studies also suggest minimal changes in all three regions studied for both LRAP(-P) and LRAP(+P) as a function of pH or ionic strength. Phosphorylation also alters the LRAP-HAP interface. All of the three residues investigated (L15, V19, and K24) are closer to the surface in LRAP(+P), but K24S28 also changes structure as a result of phosphorylation, from a random coil to a largely helical structure, and V19L23 becomes more extended at high ionic

  17. Characterization of a novel phosphorylation site in the sodium–chloride cotransporter, NCC

    Science.gov (United States)

    Rosenbaek, L L; Assentoft, M; Pedersen, N B; MacAulay, N; Fenton, R A

    2012-01-01

    The sodium–chloride cotransporter, NCC, is essential for renal electrolyte balance. NCC function can be modulated by protein phosphorylation. In this study, we characterized the role and physiological regulation of a novel phosphorylation site in NCC at Ser124 (S124). Novel phospho-specific antibodies targeting pS124-NCC demonstrated a band of 160 kDa in the kidney cortex, but not medulla, which was preabsorbed by a corresponding phosphorylated peptide. Confocal microscopy with kidney tubule segment-specific markers localized pS124-NCC to all distal convoluted tubule cells. Double immunogold electron microscopy demonstrated that pS124-NCC co-localized with total NCC in the apical plasma membrane of distal convoluted tubule cells and intracellular vesicles. Acute treatment of Munich–Wistar rats or vasopressin-deficient Brattleboro rats with the vasopressin type 2 receptor-specific agonist dDAVP significantly increased pS124-NCC abundance, with no changes in total NCC plasma membrane abundance. pS124-NCC levels also increased in abundance in rats after stimulation of the renin–angiotensin–aldosterone system by dietary low sodium intake. In contrast to other NCC phosphorylation sites, the STE20/SPS1-related proline–alanine-rich kinase and oxidative stress-response kinases (SPAK and OSR1) were not able to phosphorylate NCC at S124. Protein kinase arrays identified multiple kinases that were able to bind to the region surrounding S124. Four of these kinases (IRAK2, CDK6/Cyclin D1, NLK and mTOR/FRAP) showed weak but significant phosphorylation activity at S124. In oocytes, 36Cl uptake studies combined with biochemical analysis showed decreased activity of plasma membrane-associated NCC when replacing S124 with alanine (A) or aspartic acid (D). In novel tetracycline-inducible MDCKII-NCC cell lines, S124A and S124D mutants were able to traffic to the plasma membrane similarly to wildtype NCC. PMID:22966159

  18. Characterization of a novel phosphorylation site in the sodium-chloride cotransporter, NCC.

    Science.gov (United States)

    Rosenbaek, L L; Assentoft, M; Pedersen, N B; MacAulay, N; Fenton, R A

    2012-12-01

    The sodium-chloride cotransporter, NCC, is essential for renal electrolyte balance. NCC function can be modulated by protein phosphorylation. In this study, we characterized the role and physiological regulation of a novel phosphorylation site in NCC at Ser124 (S124). Novel phospho-specific antibodies targeting pS124-NCC demonstrated a band of 160 kDa in the kidney cortex, but not medulla, which was preabsorbed by a corresponding phosphorylated peptide. Confocal microscopy with kidney tubule segment-specific markers localized pS124-NCC to all distal convoluted tubule cells. Double immunogold electron microscopy demonstrated that pS124-NCC co-localized with total NCC in the apical plasma membrane of distal convoluted tubule cells and intracellular vesicles. Acute treatment of Munich-Wistar rats or vasopressin-deficient Brattleboro rats with the vasopressin type 2 receptor-specific agonist dDAVP significantly increased pS124-NCC abundance, with no changes in total NCC plasma membrane abundance. pS124-NCC levels also increased in abundance in rats after stimulation of the renin-angiotensin-aldosterone system by dietary low sodium intake. In contrast to other NCC phosphorylation sites, the STE20/SPS1-related proline-alanine-rich kinase and oxidative stress-response kinases (SPAK and OSR1) were not able to phosphorylate NCC at S124. Protein kinase arrays identified multiple kinases that were able to bind to the region surrounding S124. Four of these kinases (IRAK2, CDK6/Cyclin D1, NLK and mTOR/FRAP) showed weak but significant phosphorylation activity at S124. In oocytes, (36)Cl uptake studies combined with biochemical analysis showed decreased activity of plasma membrane-associated NCC when replacing S124 with alanine (A) or aspartic acid (D). In novel tetracycline-inducible MDCKII-NCC cell lines, S124A and S124D mutants were able to traffic to the plasma membrane similarly to wildtype NCC.

  19. Exploring the diversity of protein modifications: special bacterial phosphorylation systems

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Grangeasse, Christophe; Turgay, Kürşad

    2016-01-01

    that has been most thoroughly investigated. Unlike in eukarya, a large diversity of enzyme families has been shown to phosphorylate and dephosphorylate proteins on various amino acids with different chemical properties in bacteria. In this review, after a brief overview of the known bacterial...... phosphorylation systems, we focus on more recently discovered and less widely known kinases and phosphatases. Namely, we describe in detail tyrosine- and arginine-phosphorylation together with some examples of unusual serine-phosphorylation systems and discuss their potential role and function in bacterial...... physiology, and regulatory networks. Investigating these unusual bacterial kinase and phosphatases is not only important to understand their role in bacterial physiology but will help to generally understand the full potential and evolution of protein phosphorylation for signal transduction, protein...

  20. Systematic inference of functional phosphorylation events in yeast metabolism

    DEFF Research Database (Denmark)

    Chen, Yu; Wang, Yonghong; Nielsen, Jens

    2017-01-01

    Motivation: Protein phosphorylation is a post-translational modification that affects proteins by changing their structure and conformation in a rapid and reversible way, and it is an important mechanism for metabolic regulation in cells. Phosphoproteomics enables high-throughput identification...... of phosphorylation events on metabolic enzymes, but identifying functional phosphorylation events still requires more detailed biochemical characterization. Therefore, development of computational methods for investigating unknown functions of a large number of phosphorylation events identified by phosphoproteomics...... has received increased attention.Results: We developed a mathematical framework that describes the relationship between phosphorylation level of a metabolic enzyme and the corresponding flux through the enzyme. Using this framework, it is possible to quantitatively estimate contribution...

  1. Phosphorylation of the Epstein-Barr virus nuclear antigen 2

    DEFF Research Database (Denmark)

    Grässer, F A; Göttel, S; Haiss, P

    1992-01-01

    A major in vivo phosphorylation site of the Epstein-Barr virus nuclear antigen 2 (EBNA-2) was found to be localized at the C-terminus of the protein. In vitro phosphorylation studies using casein kinase 1 (CK-1) and casein kinase 2 (CK-2) revealed that EBNA-2 is a substrate for CK-2, but not for CK......-1. The CK-2 specific phosphorylation site was localized in the 140 C-terminal amino acids using a recombinant trpE-C-terminal fusion protein. In a similar experiment, the 58 N-terminal amino acids expressed as a recombinant trpE-fusion protein were not phosphorylated. Phosphorylation of a synthetic...

  2. Sequential phosphorylation of GRASP65 during mitotic Golgi disassembly

    Directory of Open Access Journals (Sweden)

    Danming Tang

    2012-09-01

    GRASP65 phosphorylation during mitosis and dephosphorylation after mitosis are required for Golgi disassembly and reassembly during the cell cycle. At least eight phosphorylation sites on GRASP65 have been identified, but whether they are modified in a coordinated fashion during mitosis is so far unknown. In this study, we raised phospho-specific antibodies that recognize phosphorylated T220/T224, S277 and S376 residues of GRASP65, respectively. Biochemical analysis showed that cdc2 phosphorylates all three sites, while plk1 enhances the phosphorylation. Microscopic studies using these antibodies for double and triple labeling demonstrate sequential phosphorylation and dephosphorylation during the cell cycle. S277 and S376 are phosphorylated from late G2 phase through metaphase until telophase when the new Golgi is reassembled. T220/224 is not modified until prophase, but is highly modified from prometaphase to anaphase. In metaphase, phospho-T220/224 signal localizes on both Golgi haze and mitotic Golgi clusters that represent dispersed Golgi vesicles and Golgi remnants, respectively, while phospho-S277 and S376 labeling is more concentrated on mitotic Golgi clusters. Expression of a phosphorylation-resistant GRASP65 mutant T220A/T224A inhibited mitotic Golgi fragmentation to a much larger extent than the expression of the S277A and S376A mutants. In cytokinesis, T220/224 dephosphorylation occurs prior to that of S277, but after S376. This study provides evidence that GRASP65 is sequentially phosphorylated and dephosphorylated during mitosis at different sites to orchestrate Golgi disassembly and reassembly during cell division, with phosphorylation of the T220/224 site being most critical in the process.

  3. Phosphorylation of the mitochondrial ATP-sensitive potassium channel occurs independently of PKCε in turtle brain.

    Science.gov (United States)

    Hawrysh, Peter John; Miles, Ashley Rebecca; Buck, Leslie Thomas

    2016-10-01

    Neurons from the western painted turtle (Chrysemys picta bellii) are remarkably resilient to anoxia. This is partly due to a reduction in the permeability of excitatory glutamatergic ion channels, initiated by mitochondrial ATP-sensitive K(+) (mK(+)ATP) channel activation. The aim of this study was to determine if: 1) PKCε, a kinase associated with hypoxic stress tolerance, is more highly expressed in turtle brain than the anoxia-intolerant rat brain; 2) PKCε translocates to the mitochondrial membrane during anoxia; 3) PKCε modulates mK(+)ATP channels at the Thr-224 phosphorylation site on the Kir6.2 subunit; and 4) Thr-224 phosphorylation sensitises mK(+)ATP channels to anoxia. Soluble and mitochondrial-rich particulate fractions of turtle and rat cerebral cortex were isolated and PKCε expression was determined by Western blot, which revealed that turtle cortical PKCε expression was half that of the rat. Following the transition to anoxia, no changes in PKCε expression in either the soluble or particulate fraction of the turtle cortex were observed. Furthermore, incubation of tissue with tat-conjugated activator or inhibitor peptides had no effect on the amount of PKCε in either fraction. However, we observed a 2-fold increase in Thr-224 phosphorylation following 1h of anoxia. The increased Thr-224 phosphorylation was blocked by the general kinase inhibitor staurosporine but this did not affect the latency or magnitude of mK(+)ATP channel-mediated mitochondrial depolarization following anoxia, as indicated by rhodamine-123. We conclude that PKCε does not play a role in the onset of mitochondrial depolarization and therefore glutamatergic channel arrest in turtle cerebral cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Phosphorylation and Internalization of Lysophosphatidic Acid Receptors LPA1, LPA2, and LPA3.

    Directory of Open Access Journals (Sweden)

    Rocío Alcántara-Hernández

    Full Text Available The lysophosphatidic acid receptors LPA1, LPA2, and LPA3 were individually expressed in C9 cells and their signaling and regulation were studied. Agonist-activation increases intracellular calcium concentration in a concentration-dependent fashion. Phorbol myristate acetate markedly inhibited LPA1- and LPA3-mediated effect, whereas that mediated by LPA2 was only partially diminished; the actions of the phorbol ester were inhibited by bisindolylmaleimide I and by overnight incubation with the protein kinase C activator, which leads to down regulation of this protein kinase. Homologous desensitization was also observed for the three LPA receptors studied, with that of LPA2 receptors being consistently of lesser magnitude; neither inhibition nor down-regulation of protein kinase C exerted any effect on homologous desensitization. Activation of LPA1-3 receptors induced ERK 1/2 phosphorylation; this effect was markedly attenuated by inhibition of epidermal growth factor receptor tyrosine kinase activity, suggesting growth factor receptor transactivation in this effect. Lysophosphatidic acid and phorbol myristate acetate were able to induce LPA1-3 phosphorylation, in time- and concentration-dependent fashions. It was also clearly observed that agonists and protein kinase C activation induced internalization of these receptors. Phosphorylation of the LPA2 subtype required larger concentrations of these agents and its internalization was less intense than that of the other subtypes.Our data show that these three LPA receptors are phosphoproteins whose phosphorylation state is modulated by agonist-stimulation and protein kinase C-activation and that differences in regulation and cellular localization exist, among the subtypes.

  5. Endothelin-1 stimulates catalase activity through the PKCδ-mediated phosphorylation of serine 167.

    Science.gov (United States)

    Rafikov, Ruslan; Kumar, Sanjiv; Aggarwal, Saurabh; Hou, Yali; Kangath, Archana; Pardo, Daniel; Fineman, Jeffrey R; Black, Stephen M

    2014-02-01

    Our previous studies have shown that endothelin-1 (ET-1) stimulates catalase activity in endothelial cells and in lambs with acute increases in pulmonary blood flow (PBF), without altering gene expression. The purpose of this study was to investigate the molecular mechanism by which this occurs. Exposing pulmonary arterial endothelial cells to ET-1 increased catalase activity and decreased cellular hydrogen peroxide (H2O2) levels. These changes correlated with an increase in serine-phosphorylated catalase. Using the inhibitory peptide δV1.1, this phosphorylation was shown to be protein kinase Cδ (PKCδ) dependent. Mass spectrometry identified serine 167 as the phosphorylation site. Site-directed mutagenesis was used to generate a phospho-mimic (S167D) catalase. Activity assays using recombinant protein purified from Escherichia coli or transiently transfected COS-7 cells demonstrated that S167D catalase had an increased ability to degrade H2O2 compared to the wild-type enzyme. Using a phospho-specific antibody, we were able to verify that pS167 catalase levels are modulated in lambs with acute increases in PBF in the presence and absence of the ET receptor antagonist tezosentan. S167 is located on the dimeric interface, suggesting it could be involved in regulating the formation of catalase tetramers. To evaluate this possibility we utilized analytical gel filtration to examine the multimeric structure of recombinant wild-type and S167D catalase. We found that recombinant wild-type catalase was present as a mixture of monomers and dimers, whereas S167D catalase was primarily tetrameric. Further, the incubation of wild-type catalase with PKCδ was sufficient to convert wild-type catalase into a tetrameric structure. In conclusion, this is the first report indicating that the phosphorylation of catalase regulates its multimeric structure and activity.

  6. Phosphoryl functionalized mesoporous silica for uranium adsorption

    Science.gov (United States)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun; Hongyu, Gong; Yujun, Zhang

    2017-04-01

    Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N2 adsorption-desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG0, ΔH0 and ΔS0) confirmed that the adsorption process was endothermic and spontaneous.

  7. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments.

    Science.gov (United States)

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2016-05-24

    Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease.

  8. Neurotensin Phosphorylates GSK-3α/β through the Activation of PKC in Human Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Qingding Wang

    2006-09-01

    Full Text Available Neurotensin (NT, a gastrointestinal hormone, binds its receptor [neurotensin receptor (NTR] to regulate the growth of normal and neoplastic intestinal cells; molecular mechanisms remain largely undefined. Glycogen synthase kinase-3 (GSK-3 regulates diverse cellular processes, including cell growth and apoptosis. Here, we show that NT induces the phosphorylation of GSK-3α/β in the human colon cancer cell line HT29, HCT116, or SW480, which possesses high-affinity NTR. The effect of NT was blocked by inhibitors of protein kinase C (PKC, but not by inhibitors of mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK1 or phosphatidylinositol-3 kinase, suggesting a predominant role for PKC in GSK-3β phosphorylation by NT. Pretreatment with Gö6976 (which inhibits PKCα and PKCβ1 or downregulation of endogenous PKCα or PKCβ1 blocked NT-mediated GSK-3β (but not GSK-3α phosphorylation. Moreover, a selective PKCβ inhibitor, LY379196, reduced NT-mediated GSK-3β (but not GSK-3α phosphorylation, suggesting a role for PKCbβ in the NT-mediated phosphorylation of GSK-3β and an undefined kinase in the NT-mediated phosphorylation of GSK-3α. Treatment with NT or the GSK-3 inhibitor SB216763 increased the expression of cyclin D1, a downstream effector protein of GSK-3 and a critical protein for the proliferation of various cells. Our results indicate that NT uses PKC-dependent pathways to modulate GSK-3, which may play a role in the NT regulation of intestinal cell growth.

  9. Bacillus subtilis Two-Component System Sensory Kinase DegS Is Regulated by Serine Phosphorylation in Its Input Domain

    Science.gov (United States)

    Jers, Carsten; Kobir, Ahasanul; Søndergaard, Elsebeth Oline; Jensen, Peter Ruhdal; Mijakovic, Ivan

    2011-01-01

    Bacillus subtilis two-component system DegS/U is well known for the complexity of its regulation. The cytosolic sensory kinase DegS does not receive a single predominant input signal like most two-component kinases, instead it integrates a wide array of metabolic inputs that modulate its activity. The phosphorylation state of the response regulator DegU also does not confer a straightforward “on/off” response; it is fine-tuned and at different levels triggers different sub-regulons. Here we describe serine phosphorylation of the DegS sensing domain, which stimulates its kinase activity. We demonstrate that DegS phosphorylation can be carried out by at least two B. subtilis Hanks-type kinases in vitro, and this stimulates the phosphate transfer towards DegU. The consequences of this process were studied in vivo, using phosphomimetic (Ser76Asp) and non-phosphorylatable (Ser76Ala) mutants of DegS. In a number of physiological assays focused on different processes regulated by DegU, DegS S76D phosphomimetic mutant behaved like a strain with intermediate levels of DegU phosphorylation, whereas DegS S76A behaved like a strain with lower levels of DegU phophorylation. These findings suggest a link between DegS phosphorylation at serine 76 and the level of DegU phosphorylation, establishing this post-translational modification as an additional trigger for this two-component system. PMID:21304896

  10. Bacillus subtilis two-component system sensory kinase DegS is regulated by serine phosphorylation in its input domain.

    Directory of Open Access Journals (Sweden)

    Carsten Jers

    Full Text Available Bacillus subtilis two-component system DegS/U is well known for the complexity of its regulation. The cytosolic sensory kinase DegS does not receive a single predominant input signal like most two-component kinases, instead it integrates a wide array of metabolic inputs that modulate its activity. The phosphorylation state of the response regulator DegU also does not confer a straightforward "on/off" response; it is fine-tuned and at different levels triggers different sub-regulons. Here we describe serine phosphorylation of the DegS sensing domain, which stimulates its kinase activity. We demonstrate that DegS phosphorylation can be carried out by at least two B. subtilis Hanks-type kinases in vitro, and this stimulates the phosphate transfer towards DegU. The consequences of this process were studied in vivo, using phosphomimetic (Ser76Asp and non-phosphorylatable (Ser76Ala mutants of DegS. In a number of physiological assays focused on different processes regulated by DegU, DegS S76D phosphomimetic mutant behaved like a strain with intermediate levels of DegU phosphorylation, whereas DegS S76A behaved like a strain with lower levels of DegU phophorylation. These findings suggest a link between DegS phosphorylation at serine 76 and the level of DegU phosphorylation, establishing this post-translational modification as an additional trigger for this two-component system.

  11. Menin and PRMT5 suppress GLP1 receptor transcript and PKA-mediated phosphorylation of FOXO1 and CREB.

    Science.gov (United States)

    Muhammad, Abdul Bari; Xing, Bowen; Liu, Chengyang; Naji, Ali; Ma, Xiaosong; Simmons, Rebecca A; Hua, Xianxin

    2017-08-01

    Menin is a scaffold protein that interacts with several epigenetic mediators to regulate gene transcription, and suppresses pancreatic β-cell proliferation. Tamoxifen-inducible deletion of multiple endocrine neoplasia type 1 (MEN1) gene, which encodes the protein menin, increases β-cell mass in multiple murine models of diabetes and ameliorates diabetes. Glucagon-like-peptide-1 (GLP1) is another key physiological modulator of β-cell mass and glucose homeostasis. However, it is not clearly understood whether menin crosstalks with GLP1 signaling. Here, we show that menin and protein arginine methyltransferase 5 (PRMT5) suppress GLP1 receptor (GLP1R) transcript levels. Notably, a GLP1R agonist induces phosphorylation of forkhead box protein O1 (FOXO1) at S253, and the phosphorylation is mediated by PKA. Interestingly, menin suppresses GLP1-induced and PKA-mediated phosphorylation of both FOXO1 and cAMP response element binding protein (CREB), likely through a protein arginine methyltransferase. Menin-mediated suppression of FOXO1 and CREB phosphorylation increases FOXO1 levels and suppresses CREB target genes, respectively. A small-molecule menin inhibitor reverses menin-mediated suppression of both FOXO1 and CREB phosphorylation. In addition, ex vivo treatment of both mouse and human pancreatic islets with a menin inhibitor increases levels of proliferation marker Ki67. In conclusion, our results suggest that menin and PRMT5 suppress GLP1R transcript levels and PKA-mediated phosphorylation of FOXO1 and CREB, and a menin inhibitor may reverse this suppression to induce β-cell proliferation. Copyright © 2017 the American Physiological Society.

  12. Expression and phosphorylation of neurofilament protein in different neuronal tissues

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The neurofilament proteins (NFPs) from different neuronal tissues including Alzheimer and Huntington disease gray matter, rat brain gray, white matter and spinal cord were separated biochemically into two major fractions. A systematic investigation on the distribution, expression and phosphorylation of NFPs in those fractions was undertaken in the present study. It was found that only non-phosphorylated NF-H and NF-M, but not NF-L subunit were detected in Alzheimer brain gray matter high speed supernatant, whereas all neurofilament subunits including non-phosphorylated and phosphorylated were measured in high speed pellet fraction of the same tissue. The hyperphosphorylation of NF-H and NF-M in Alzheimer brain was shown by phosphorylation dependent monoclonal antibodies SMI31 and SMI34. This hyperphosphorylation was confirmed by non-phosphorylation dependent antibody SMI32 with dephosphosphorylation of the samples. Furthermore, an increased amount of NF-H, NH-M and NF-L, detected by SMI33 and NR4 respectively, was also observed in Alzheimer samples, in which the elevation in NF-L was significant. A significantly different immunoblot patterns in distribution, expression and phosphorylation were determined in various position of the neural system and alternative fractions. To our best knowledge, this is the first data shown definite abnormality of NFPs in Alzheimer disease. The information obtained in the present study will be extremely valuable in further study of the proteins both in physiological and pathological conditions.

  13. Phosphorylation sites of Arabidopsis MAP Kinase Substrate 1 (MKS1)

    DEFF Research Database (Denmark)

    Caspersen, M.B.; Qiu, J.-L.; Zhang, X.

    2007-01-01

    The Arabidopsis MAP kinase 4 (MPK4) substrate MKS1 was expressed in Escherichia coli and purified, full-length, 6x histidine (His)-tagged MKS1 was phosphorylated in vitro by hemagglutinin (HA)-tagged MPK4 immuno-precipitated from plants. MKS1 phosphorylation was initially verified by electrophore......The Arabidopsis MAP kinase 4 (MPK4) substrate MKS1 was expressed in Escherichia coli and purified, full-length, 6x histidine (His)-tagged MKS1 was phosphorylated in vitro by hemagglutinin (HA)-tagged MPK4 immuno-precipitated from plants. MKS1 phosphorylation was initially verified...... phosphopeptide detection. As MAP kinases generally phosphorylate serine or threonine followed by proline (Ser/Thr-Pro), theoretical masses of potentially phosphorylated peptides were calculated and mass spectrometric peaks matching these masses were fragmented and searched for a neutral-loss signal...... at approximately 98 Da indicative of phosphorylation. Additionally, mass spectrometric peaks present in the MPK4-treated MKS1, but not in the control peptide map of untreated MKS1, were fragmented. Fragmentation spectra were subjected to a MASCOT database search which identified three of the twelve Ser-Pro serine...

  14. Phosphorylation of ribosomal protein S6 mediates compensatory renal hypertrophy

    Science.gov (United States)

    Xu, Jinxian; Chen, Jianchun; Dong, Zheng; Meyuhas, Oded; Chen, Jian-Kang

    2014-01-01

    The molecular mechanism underlying renal hypertrophy and progressive nephron damage remains poorly understood. Here we generated congenic ribosomal protein S6 (rpS6) knockin mice expressing non-phosphorylatable rpS6 and found that uninephrectomy-induced renal hypertrophy was significantly blunted in these knockin mice. Uninephrectomy-induced increases in cyclin D1 and decreases in cyclin E in the remaining kidney were attenuated in the knockin mice compared to their wild-type littermates. Uninephrectomy induced rpS6 phosphorylation in the wild type mice; however, no rpS6 phosphorylation was detected in uninephrectomized or sham-operated knockin mice. Nonetheless, uninephrectomy stimulated comparable 4E-BP1 phosphorylation in both knockin and wild type mice, indicating that mTORC1 was still activated in the knockin mice. Moreover, the mTORC1 inhibitor rapamycin prevented both rpS6 and 4E-BP1 phosphorylation, significantly blunted uninephrectomy-induced renal hypertrophy in wild type mice, but did not prevent residual renal hypertrophy despite inhibiting 4E-BP1 phosphorylation in uninephrectomized knockin mice. Thus, both genetic and pharmacological approaches unequivocally demonstrate that phosphorylated rpS6 is a downstream effector of the mTORC1-S6K1 signaling pathway mediating renal hypertrophy. Hence, rpS6 phosphorylation facilitates the increase in cyclin D1 and decrease in cyclin E1 that underlie the hypertrophic nature of uninephrectomy-induced kidney growth. PMID:25229342

  15. Cytochrome C is tyrosine 97 phosphorylated by neuroprotective insulin treatment.

    Directory of Open Access Journals (Sweden)

    Thomas H Sanderson

    Full Text Available Recent advancements in isolation techniques for cytochrome c (Cytc have allowed us to discover post-translational modifications of this protein. We previously identified two distinct tyrosine phosphorylated residues on Cytc in mammalian liver and heart that alter its electron transfer kinetics and the ability to induce apoptosis. Here we investigated the phosphorylation status of Cytc in ischemic brain and sought to determine if insulin-induced neuroprotection and inhibition of Cytc release was associated with phosphorylation of Cytc. Using an animal model of global brain ischemia, we found a ∼50% decrease in neuronal death in the CA1 hippocampal region with post-ischemic insulin administration. This insulin-mediated increase in neuronal survival was associated with inhibition of Cytc release at 24 hours of reperfusion. To investigate possible changes in the phosphorylation state of Cytc we first isolated the protein from ischemic pig brain and brain that was treated with insulin. Ischemic brains demonstrated no detectable tyrosine phosphorylation. In contrast Cytc isolated from brains treated with insulin showed robust phosphorylation of Cytc, and the phosphorylation site was unambiguously identified as Tyr97 by immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry. We next confirmed these results in rats by in vivo application of insulin in the absence or presence of global brain ischemia and determined that Cytc Tyr97-phosphorylation is strongly induced under both conditions but cannot be detected in untreated controls. These data suggest a mechanism whereby Cytc is targeted for phosphorylation by insulin signaling, which may prevent its release from the mitochondria and the induction of apoptosis.

  16. PKC isoforms interact with and phosphorylate DNMT1

    Directory of Open Access Journals (Sweden)

    Pradhan Sriharsa

    2011-05-01

    Full Text Available Abstract Background DNA methyltransferase 1 (DNMT1 has been shown to be phosphorylated on multiple serine and threonine residues, based on cell type and physiological conditions. Although recent studies have suggested that protein kinase C (PKC may be involved, the individual contribution of PKC isoforms in their ability to phosphorylate DNMT1 remains unknown. The PKC family consists of at least 12 isoforms that possess distinct differences in structure, substrate requirement, expression and localization. Results Here we show that PKCα, βI, βII, δ, γ, η, ζ and μ preferentially phosphorylate the N-terminal domain of human DNMT1. No such phosphorylation of DNMT1 was observed with PKCε. Using PKCζ as a prototype model, we also found that PKC physically interacts with and phosphorylates DNMT1. In vitro phosphorylation assays conducted with recombinant fragments of DNMT1 showed that PKCζ preferentially phosphorylated the N-terminal region of DNMT1. The interaction of PKCζ with DNMT1 was confirmed by GST pull-down and co-immunoprecipitation experiments. Co-localization experiments by fluorescent microscopy further showed that endogenous PKCζ and DNMT1 were present in the same molecular complex. Endogenous PKCζ activity was also detected when DNMT1 was immunoprecipitated from HEK-293 cells. Overexpression of both PKCζ and DNMT1 in HEK-293 cells, but not of either alone, reduced the methylation status of genes distributed across the genome. Moreover, in vitro phosphorylation of DNMT1 by PKCζ reduced its methytransferase activity. Conclusions Our results indicate that phosphorylation of human DNMT1 by PKC is isoform-specific and provides the first evidence of cooperation between PKCζ and DNMT1 in the control of the DNA methylation patterns of the genome.

  17. Rosamines targeting the cancer oxidative phosphorylation pathway.

    Directory of Open Access Journals (Sweden)

    Siang Hui Lim

    Full Text Available Reprogramming of energy metabolism is pivotal to cancer, so mitochondria are potential targets for anticancer therapy. A prior study has demonstrated the anti-proliferative activity of a new class of mitochondria-targeting rosamines. This present study describes in vitro cytotoxicity of second-generation rosamine analogs, their mode of action, and their in vivo efficacies in a tumor allografted mouse model. Here, we showed that these compounds exhibited potent cytotoxicity (average IC50<0.5 µM, inhibited Complex II and ATP synthase activities of the mitochondrial oxidative phosphorylation pathway and induced loss of mitochondrial transmembrane potential. A NCI-60 cell lines screen further indicated that rosamine analogs 4 and 5 exhibited potent antiproliferative effects with Log10GI50 = -7 (GI50 = 0.1 µM and were more effective against a colorectal cancer sub-panel than other cell lines. Preliminary in vivo studies on 4T1 murine breast cancer-bearing female BALB/c mice indicated that treatment with analog 5 in a single dosing of 5 mg/kg or a schedule dosing of 3 mg/kg once every 2 days for 6 times (q2d×6 exhibited only minimal induction of tumor growth delay. Our results suggest that rosamine analogs may be further developed as mitochondrial targeting agents. Without a doubt proper strategies need to be devised to enhance tumor uptake of rosamines, i.e. by integration to carrier molecules for better therapeutic outcome.

  18. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Thingholm, Tine E; Jensen, Ole N

    2005-01-01

    Reversible phosphorylation of proteins regulates the majority of all cellular processes, e.g. proliferation, differentiation, and apoptosis. A fundamental understanding of these biological processes at the molecular level requires characterization of the phosphorylated proteins. Phosphorylation i...

  19. Expression and phosphorylation of the Na+-Cl- cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1.

    Science.gov (United States)

    Vallon, Volker; Schroth, Jana; Lang, Florian; Kuhl, Dietmar; Uchida, Shinichi

    2009-09-01

    The Na-Cl cotransporter NCC is expressed in the distal convoluted tubule, activated by phosphorylation, and has been implicated in renal NaCl and K(+) homeostasis. The serum and glucocorticoid inducible kinase 1 (SGK1) contributes to renal NaCl retention and K(+) excretion, at least in part, by stimulating the epithelial Na(+) channel and Na(+)-K(+)-ATPase in the downstream segments of aldosterone-sensitive Na(+)/K(+) exchange. In this study we confirmed in wild-type mice (WT) that dietary NaCl restriction increases renal NCC expression and its phosphorylation at Thr(53), Thr(58), and Ser(71), respectively. This response, however, was attenuated in mice lacking SGK1 (Sgk1(-/-)), which may contribute to impaired NaCl retention in those mice. Total renal NCC expression and phosphorylation at Thr(53), Thr(58), and Ser(71) in WT were greater under low- compared with high-K(+) diet. This finding is consistent with a regulation of NCC to modulate Na(+) delivery to downstream segments of Na(+)/K(+) exchange, thereby modulating K(+) excretion. Dietary K(+)-dependent variation in renal expression of total NCC and phosphorylated NCC were not attenuated in Sgk1(-/-) mice. In fact, high-K(+) diet-induced NCC suppression was enhanced in Sgk1(-/-) mice. The hyperkalemia induced in Sgk1(-/-) mice by a high-K(+) diet may have augmented NCC suppression, thereby increasing Na(+) delivery and facilitating K(+) excretion in downstream segments of impaired Na(+)/K(+) exchange. In summary, changes in NaCl and K(+) intake altered NCC expression and phosphorylation, an observation consistent with a role of NCC in NaCl and K(+) homeostasis. The two maneuvers dissociated plasma aldosterone levels from NCC expression and phosphorylation, implicating additional regulators. Regulation of NCC expression and phosphorylation by dietary NaCl restriction appears to involve SGK1.

  20. Increased hepatic fatty acids uptake and oxidation by LRPPRC-driven oxidative phosphorylation reduces blood lipid levels

    Directory of Open Access Journals (Sweden)

    Ping Zhou

    2016-07-01

    Full Text Available Hyperlipidemia is one of the major risk factors of atherosclerosis and other cardiovascular diseases. This study aimed to investigate the impact of leucine rich pentatricopeptide repeat containing protein (LRPPRC-driven hepatic oxidative phoshorylation on blood lipid levels. The hepatic LRPPRC level was modulated by liver-specific transgenic or adeno-associated virus 8 carried shRNA targeting Lrpprc (aav-shLrpprc. Mice were fed with a high fat