WorldWideScience

Sample records for modulates cocaine-induced locomotor

  1. Local field potentials in the ventral tegmental area during cocaine-induced locomotor activation: Measurements in freely moving rats.

    Harris Bozer, Amber L; Li, Ai-Ling; Sibi, Jiny E; Bobzean, Samara A M; Peng, Yuan B; Perrotti, Linda I

    2016-03-01

    The ventral tegmental area (VTA) has been established as a critical nucleus for processing behavioral changes that occur during psychostimulant use. Although it is known that cocaine induced locomotor activity is initiated in the VTA, not much is known about the electrical activity in real time. The use of our custom-designed wireless module for recording local field potential (LFP) activity provides an opportunity to confirm and identify changes in neuronal activity within the VTA of freely moving rats. The purpose of this study was to investigate the changes in VTA LFP activity in real time that underlie cocaine induced changes in locomotor behavior. Recording electrodes were implanted in the VTA of rats. Locomotor behavior and LFP activity were simultaneously recorded at baseline, and after saline and cocaine injections. Results indicate that cocaine treatment caused increases in both locomotor behavior and LFP activity in the VTA. Specifically, LFP activity was highest during the first 30 min following the cocaine injection and was most robust in Delta and Theta frequency bands; indicating the role of low frequency VTA activity in the initiation of acute stimulant-induced locomotor behavior. Our results suggest that LFP recording in freely moving animals can be used in the future to provide valuable information pertaining to drug induced changes in neural activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Decrease of GSK3β phosphorylation in the rat nucleus accumbens core enhances cocaine-induced hyper-locomotor activity.

    Kim, Wha Y; Jang, Ju K; Lee, Jung W; Jang, Hyunduk; Kim, Jeong-Hoon

    2013-06-01

    Glycogen synthase kinase 3β (GSK3β), which is abundantly present in the brain, is known to contribute to psychomotor stimulant-induced locomotor behaviors. However, most studies have been focused in showing that GSK3β is able to attenuate psychomotor stimulants-induced hyperactivity by increasing its phosphorylation levels in the nucleus accumbens (NAcc). So, here we examined in the opposite direction about the effects of decreased phosphorylation of GSK3β in the NAcc core on both basal and cocaine-induced locomotor activity by a bilateral microinjection into this site of an artificially synthesized peptide, S9 (0.5 or 5.0 μg/μL), which contains sequences around N-terminal serine 9 residue of GSK3β. We found that decreased levels of GSK3β phosphorylation in the NAcc core enhance cocaine-induced hyper-locomotor activity, while leaving basal locomotor activity unchanged. This is the first demonstration, to our knowledge, that the selective decrease of GSK3β phosphorylation levels in the NAcc core may contribute positively to cocaine-induced locomotor activity, while this is not sufficient for the generation of locomotor behavior by itself without cocaine. Taken together, these findings importantly suggest that GSK3β may need other molecular targets which are co-activated (or deactivated) by psychomotor stimulants like cocaine to contribute to generation of locomotor behaviors. © 2013 International Society for Neurochemistry.

  3. Cocaine-induced locomotor activity in rats selectively bred for low and high voluntary running behavior.

    Brown, Jacob D; Green, Caroline L; Arthur, Ian M; Booth, Frank W; Miller, Dennis K

    2015-02-01

    The rewarding effects of physical activity and abused drugs are caused by stimulation of similar brain pathways. Low (LVR) and high (HVR) voluntary running lines were developed by selectively breeding Wistar rats on running distance performance on postnatal days 28-34. We hypothesized that LVR rats would be more sensitive to the locomotor-activating effects of cocaine than HVR rats due to their lower motivation for wheel running. We investigated how selection for LVR or HVR behavior affects inherited activity responses: (a) open field activity levels, (b) habituation to an open field environment, and (c) the locomotor response to cocaine. Open field activity was measured for 80 min on three successive days (days 1-3). Data from the first 20 min were analyzed to determine novelty-induced locomotor activity (day 1) and the habituation to the environment (days 1-3). On day 3, rats were acclimated to the chamber for 20 min and then received saline or cocaine (10, 20, or 30 mg/kg) injection. Dopamine transporter (DAT) protein in the nucleus accumbens was measured via Western blot. Selecting for low and high voluntary running behavior co-selects for differences in inherent (HVR > LVR) and cocaine-induced (LVR > HVR) locomotor activity levels. The differences in the selected behavioral measures do not appear to correlate with DAT protein levels. LVR and HVR rats are an intriguing physical activity model for studying the interactions between genes related to the motivation to run, to use drugs of abuse, and to exhibit locomotor activity.

  4. Cocaine- and amphetamine-regulated transcript peptide in the nucleus accumbens shell inhibits cocaine-induced locomotor sensitization to transient over-expression of α-Ca2+ /calmodulin-dependent protein kinase II.

    Xiong, Lixia; Meng, Qing; Sun, Xi; Lu, Xiangtong; Fu, Qiang; Peng, Qinghua; Yang, Jianhua; Oh, Ki-Wan; Hu, Zhenzhen

    2018-01-04

    Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter that attenuates cocaine-induced locomotor activity when injected into the nucleus accumbens (NAc). Our previous work first confirmed that the inhibitory mechanism of the CART peptide on cocaine-induced locomotor activity is related to a reduction in cocaine-enhanced phosphorylated Ca 2+ /calmodulin-dependent protein kinaseIIα (pCaMKIIα) and the enhancement of cocaine-induced D3R function. This study investigated whether CART peptide inhibited cocaine-induced locomotor activity via inhibition of interactions between pCaMKIIα and the D3 dopamine receptor (D3R). We demonstrated that lentivirus-mediated gene transfer transiently increased pCaMKIIα expression, which peaked at 10 days after microinjection into the rat NAc shell, and induced a significant increase in Ca 2+ influx along with greater behavioral sensitivity in the open field test after intraperitoneal injections of cocaine (15 mg/kg). However, western blot analysis and coimmunoprecipitation demonstrated that CART peptide treatment in lentivirus-transfected CaMKIIα-over-expressing NAc rat tissues or cells prior to cocaine administration inhibited the cocaine-induced Ca 2+ influx and attenuated the cocaine-increased pCaMKIIα expression in lentivirus-transfected CaMKIIα-over-expressing cells. CART peptide decreased the cocaine-enhanced phosphorylated cAMP response element binding protein (pCREB) expression via inhibition of the pCaMKIIα-D3R interaction, which may account for the prolonged locomotor sensitization induced by repeated cocaine treatment in lentivirus-transfected CaMKIIα-over-expressing cells. These results provide strong evidence for the inhibitory modulation of CART peptide in cocaine-induced locomotor sensitization. © 2018 International Society for Neurochemistry.

  5. Mephedrone interactions with cocaine: prior exposure to the 'bath salt' constituent enhances cocaine-induced locomotor activation in rats.

    Gregg, Ryan A; Tallarida, Christopher S; Reitz, Allen B; Rawls, Scott M

    2013-12-01

    Concurrent use of mephedrone (4-methylmethcathinone; MEPH) and established drugs of abuse is now commonplace, but knowledge about interactions between these drugs is sparse. The present study was designed to test the hypothesis that prior MEPH exposure enhances the locomotor-stimulant effects of cocaine and methamphetamine (METH). For cocaine experiments, rats pretreated with saline, cocaine (15 mg/kg), or MEPH (15 mg/kg) for 5 days were injected with cocaine after 10 days of drug absence. For METH experiments, rats pretreated with saline, METH (2 mg/kg), or MEPH (15 mg/kg) were injected with METH after 10 days of drug absence. Cocaine challenge produced greater locomotor activity after pretreatment with cocaine or MEPH than after pretreatment with saline. METH challenge produced greater locomotor activity after METH pretreatment than after saline pretreatment; however, locomotor activity in rats pretreated with MEPH or saline and then challenged with METH was not significantly different. The locomotor response to MEPH (15 mg/kg) was not significantly affected by pretreatment with cocaine (15 mg/kg) or METH (0.5, 2 mg/kg). The present demonstration that cocaine-induced locomotor activation is enhanced by prior MEPH exposure suggests that MEPH cross-sensitizes to cocaine and increases cocaine efficacy. Interestingly, MEPH cross-sensitization was not bidirectional and did not extend to METH, suggesting that the phenomenon is sensitive to specific psychostimulants.

  6. The effects of the novel DA D3 receptor antagonist SR 21502 on cocaine reward, cocaine seeking and cocaine-induced locomotor activity in rats.

    Galaj, E; Ananthan, S; Saliba, M; Ranaldi, Robert

    2014-02-01

    There is a focus on developing D3 receptor antagonists as cocaine addiction treatments. We investigated the effects of a novel selective D3 receptor antagonist, SR 21502, on cocaine reward, cocaine-seeking, food reward, spontaneous locomotor activity and cocaine-induced locomotor activity in rats. In Experiment 1, rats were trained to self-administer cocaine under a progressive ratio (PR) schedule of reinforcement and tested with vehicle or one of three doses of SR 21502. In Experiment 2, animals were trained to self-administer cocaine under a fixed ratio schedule of reinforcement followed by extinction of the response. Then, animals were tested with vehicle or one of the SR 21502 doses on cue-induced reinstatement of responding. In Experiment 3, animals were trained to lever press for food under a PR schedule and tested with vehicle or one dose of the compound. In Experiments 4 and 5, in separate groups of animals, the vehicle and three doses of SR 21502 were tested on spontaneous or cocaine (10 mg/kg, IP)-induced locomotor activity, respectively. SR 21502 produced significant, dose-related (3.75, 7.5 and 15 mg/kg) reductions in breakpoint for cocaine self-administration, cue-induced reinstatement (3.75, 7.5 and 15 mg/kg) and cocaine-induced locomotor activity (3.75, 7.5 and 15 mg/kg) but failed to reduce food self-administration and spontaneous locomotor activity. SR 21502 decreases cocaine reward, cocaine-seeking and locomotor activity at doses that have no effect on food reward or spontaneous locomotor activity. These data suggest SR 21502 may selectively inhibit cocaine's rewarding, incentive motivational and stimulant effects.

  7. Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not adolescent rats susceptible to diet-induced obesity

    Oginsky, Max F.; Maust, Joel D.; Corthell, John T.; Ferrario, Carrie R.

    2015-01-01

    Rationale Basal and diet-induced differences in mesolimbic function, particularly within the nucleus accumbens (NAc), may contribute to human obesity; these differences may be more pronounced in susceptible populations. Objectives We determined whether there are differences in cocaine-induced behavioral plasticity in rats that are susceptible vs. resistant to diet-induced obesity, and basal differences in the striatal neuron function in adult and adolescent obesity-prone and obesity-resistant rats. Methods Susceptible and resistant outbred rats were identified based on “junk-food” diet-induced obesity. Then, the induction and expression of cocaine-induced locomotor sensitization, which is mediated by enhanced striatal function and is associated with increased motivation for rewards and reward-paired cues, were evaluated. Basal differences in mesolimbic function were examined in selectively bred obesity-prone and obesity-resistant rats (P70-80 and P30-40) using both cocaine induced locomotion and whole-cell patch clamping approaches in NAc core medium spiny neurons (MSNs). Results In rats that became obese after eating “junk-food”, the expression of locomotor sensitization was enhanced compared to non-obese rats, with similarly strong responses to 7.5 and 15 mg/kg cocaine. Without diet manipulation, obesity-prone rats were hyper-responsive to the acute locomotor-activating effects of cocaine, and the intrinsic excitability of NAc core MSNs was enhanced by ~60% at positive and negative potentials. These differences were present in adult, but not adolescent rats. Post-synaptic glutamatergic transmission was similar between groups. Conclusions Mesolimbic systems, particularly NAc MSNs, are hyper-responsive in obesity-prone individuals; and interactions between predisposition and experience influence neurobehavioral plasticity in ways that may promote weight gain and hamper weight loss in susceptible rats. PMID:26612617

  8. Proteasome phosphorylation regulates cocaine-induced sensitization.

    Gonzales, Frankie R; Howell, Kristin K; Dozier, Lara E; Anagnostaras, Stephan G; Patrick, Gentry N

    2018-04-01

    Repeated exposure to cocaine produces structural and functional modifications at synapses from neurons in several brain regions including the nucleus accumbens. These changes are thought to underlie cocaine-induced sensitization. The ubiquitin proteasome system plays a crucial role in the remodeling of synapses and has recently been implicated in addiction-related behavior. The ATPase Rpt6 subunit of the 26S proteasome is phosphorylated by Ca 2+ /calmodulin-dependent protein kinases II alpha at ser120 which is thought to regulate proteasome activity and distribution in neurons. Here, we demonstrate that Rpt6 phosphorylation is involved in cocaine-induced locomotor sensitization. Cocaine concomitantly increases proteasome activity and Rpt6 S120 phosphorylation in cultured neurons and in various brain regions of wild type mice including the nucleus accumbens and prefrontal cortex. In contrast, cocaine does not increase proteasome activity in Rpt6 phospho-mimetic (ser120Asp) mice. Strikingly, we found a complete absence of cocaine-induced locomotor sensitization in the Rpt6 ser120Asp mice. Together, these findings suggest a critical role for Rpt6 phosphorylation and proteasome function in the regulation cocaine-induced behavioral plasticity. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Distinct sets of locomotor modules control the speed and modes of human locomotion

    Yokoyama, Hikaru; Ogawa, Tetsuya; Kawashima, Noritaka; Shinya, Masahiro; Nakazawa, Kimitaka

    2016-01-01

    Although recent vertebrate studies have revealed that different spinal networks are recruited in locomotor mode- and speed-dependent manners, it is unknown whether humans share similar neural mechanisms. Here, we tested whether speed- and mode-dependence in the recruitment of human locomotor networks exists or not by statistically extracting locomotor networks. From electromyographic activity during walking and running over a wide speed range, locomotor modules generating basic patterns of muscle activities were extracted using non-negative matrix factorization. The results showed that the number of modules changed depending on the modes and speeds. Different combinations of modules were extracted during walking and running, and at different speeds even during the same locomotor mode. These results strongly suggest that, in humans, different spinal locomotor networks are recruited while walking and running, and even in the same locomotor mode different networks are probably recruited at different speeds. PMID:27805015

  10. Palmitoylethanolamide attenuates cocaine-induced behavioral sensitization and conditioned place preference in mice.

    Zambrana-Infantes, Emma; Rosell Del Valle, Cristina; Ladrón de Guevara-Miranda, David; Galeano, Pablo; Castilla-Ortega, Estela; Rodríguez De Fonseca, Fernando; Blanco, Eduardo; Santín, Luis Javier

    2018-03-01

    Cocaine addiction is a chronically relapsing disorder characterized by compulsive drug-seeking and drug-taking behaviors. Previous studies have demonstrated that cocaine, as well as other drugs of abuse, alters the levels of lipid-based signaling molecules, such as N-acylethanolamines (NAEs). Moreover, brain levels of NAEs have shown sensitivity to cocaine self-administration and extinction training in rodents. Given this background, the aim of this study was to investigate the effects of repeated or acute administration of palmitoylethanolamide (PEA), an endogenous NAE, on psychomotor sensitization and cocaine-induced contextual conditioning. To this end, the potential ability of repeated PEA administration (1 or 10 mg/kg, i.p.) to modulate the acquisition of cocaine-induced behavioral sensitization (BS) and conditioned place preference (CPP) was assessed in male C57BL/6J mice. In addition, the expression of cocaine-induced BS and CPP following acute PEA administration were also studied. Results showed that repeated administration of both doses of PEA were able to block the acquisition of cocaine-induced BS. Furthermore, acute administration of both doses of PEA was able to abolish the expression of BS, while the highest dose also abolished the expression of cocaine-induced CPP. Taken together, these results indicate that exogenous administration of PEA attenuated psychomotor sensitization, while the effect of PEA in cocaine-induced CPP depended on whether PEA was administered repeatedly or acutely. These findings could be relevant to understand the role that NAEs play in processes underlying the development and maintenance of cocaine addiction. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Cocaine-induced pulmonary changes: HRCT findings

    Renata Rocha de Almeida

    2015-08-01

    Full Text Available AbstractObjective: To evaluate HRCT scans of the chest in 22 patients with cocaine-induced pulmonary disease.Methods: We included patients between 19 and 52 years of age. The HRCT scans were evaluated by two radiologists independently, discordant results being resolved by consensus. The inclusion criterion was an HRCT scan showing abnormalities that were temporally related to cocaine use, with no other apparent causal factors.Results:In 8 patients (36.4%, the clinical and tomographic findings were consistent with "crack lung", those cases being studied separately. The major HRCT findings in that subgroup of patients included ground-glass opacities, in 100% of the cases; consolidations, in 50%; and the halo sign, in 25%. In 12.5% of the cases, smooth septal thickening, paraseptal emphysema, centrilobular nodules, and the tree-in-bud pattern were identified. Among the remaining 14 patients (63.6%, barotrauma was identified in 3 cases, presenting as pneumomediastinum, pneumothorax, and hemopneumothorax, respectively. Talcosis, characterized as perihilar conglomerate masses, architectural distortion, and emphysema, was diagnosed in 3 patients. Other patterns were found less frequently: organizing pneumonia and bullous emphysema, in 2 patients each; and pulmonary infarction, septic embolism, eosinophilic pneumonia, and cardiogenic pulmonary edema, in 1 patient each.Conclusions: Pulmonary changes induced by cocaine use are varied and nonspecific. The diagnostic suspicion of cocaine-induced pulmonary disease depends, in most of the cases, on a careful drawing of correlations between clinical and radiological findings.

  12. Cocaine-induced pulmonary changes: HRCT findings

    Almeida, Renata Rocha de; Zanetti, Glaucia; Marchiori, Edson; Souza, Luciana Soares de; Silva, Jorge Luiz Pereira e; Mancano, Alexandre Dias; Nobre, Luiz Felipe; Hochhegger, Bruno; Marchiori, Edson

    2015-01-01

    Objective: To evaluate HRCT scans of the chest in 22 patients with cocaine-induced pulmonary disease. Methods: We included patients between 19 and 52 years of age. The HRCT scans were evaluated by two radiologists independently, discordant results being resolved by consensus. The inclusion criterion was an HRCT scan showing abnormalities that were temporally related to cocaine use, with no other apparent causal factors. Results: In 8 patients (36.4%), the clinical and tomographic findings were consistent with 'crack lung', those cases being studied separately. The major HRCT findings in that subgroup of patients included ground-glass opacities, in 100% of the cases; consolidations, in 50%; and the halo sign, in 25%. In 12.5% of the cases, smooth septal thickening, paraseptal emphysema, centrilobular nodules, and the tree-in-bud pattern were identified. Among the remaining 14 patients (63.6%), barotrauma was identified in 3 cases, presenting as pneumomediastinum, pneumothorax, and hemopneumothorax, respectively. Talcosis, characterized as perihilar conglomerate masses, architectural distortion, and emphysema, was diagnosed in 3 patients. Other patterns were found less frequently: organizing pneumonia and bullous emphysema, in 2 patients each; and pulmonary infarction, septic embolism, eosinophilic pneumonia, and cardiogenic pulmonary edema, in 1 patient each. Conclusions: Pulmonary changes induced by cocaine use are varied and nonspecific. The diagnostic suspicion of cocaine-induced pulmonary disease depends, in most of the cases, on a careful drawing of correlations between clinical and radiological findings. (author)

  13. Cocaine-induced pulmonary changes: HRCT findings

    Almeida, Renata Rocha de; Zanetti, Glaucia; Marchiori, Edson, E-mail: edmarchiori@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Programa de Pos-Graduacao em Radiologia; Souza Junior, Arthur Soares [Faculdade de Medicina de Petropolis, Petropolis, RJ (Brazil); Souza, Luciana Soares de [Ultra-X, Sao Jose do Rio Preto, SP (Brazil); Silva, Jorge Luiz Pereira e [Universidade Federal da Bahia (UFBA), Salvador (Brazil). Dep. de Medicina e Apoio Diagnostico; Escuissato, Dante Luiz [Universidade Federal do Parana (UFPR), Curitiba (Brazil). Dept. de Clinica Medica; Irion, Klaus Loureiro [Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool (United Kingdom); Mancano, Alexandre Dias [Hospital Anchieta, Taguatinga, DF (Brazil); Nobre, Luiz Felipe [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Hochhegger, Bruno [Universidade Federal de Ciencias da Saude de Porto Alegre, Porto Alegre, RS (Brazil); Marchiori, Edson [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2015-07-15

    Objective: To evaluate HRCT scans of the chest in 22 patients with cocaine-induced pulmonary disease. Methods: We included patients between 19 and 52 years of age. The HRCT scans were evaluated by two radiologists independently, discordant results being resolved by consensus. The inclusion criterion was an HRCT scan showing abnormalities that were temporally related to cocaine use, with no other apparent causal factors. Results: In 8 patients (36.4%), the clinical and tomographic findings were consistent with 'crack lung', those cases being studied separately. The major HRCT findings in that subgroup of patients included ground-glass opacities, in 100% of the cases; consolidations, in 50%; and the halo sign, in 25%. In 12.5% of the cases, smooth septal thickening, paraseptal emphysema, centrilobular nodules, and the tree-in-bud pattern were identified. Among the remaining 14 patients (63.6%), barotrauma was identified in 3 cases, presenting as pneumomediastinum, pneumothorax, and hemopneumothorax, respectively. Talcosis, characterized as perihilar conglomerate masses, architectural distortion, and emphysema, was diagnosed in 3 patients. Other patterns were found less frequently: organizing pneumonia and bullous emphysema, in 2 patients each; and pulmonary infarction, septic embolism, eosinophilic pneumonia, and cardiogenic pulmonary edema, in 1 patient each. Conclusions: Pulmonary changes induced by cocaine use are varied and nonspecific. The diagnostic suspicion of cocaine-induced pulmonary disease depends, in most of the cases, on a careful drawing of correlations between clinical and radiological findings. (author)

  14. Evaluation of cocaine-induced hepatotoxicity

    Wang, G.J.; Som, P.; Volkow, N.D.; Oster, Z.H.

    1991-01-01

    The effect of repeated administrations (1,5 weeks) of cocaine on the liver was studied using two radiopharmaceuticals, 99m Tc sulfur colloid (SC) and 99m Tc DISIDA. Uptake and clearance kinetics as well as liver enzyme determinations and histopathology were compared. In cocaine-treated animals hepatomegaly was noted (36% increase in liver weight over non-treated animals), and SGPT levels were 5 times higher than in non-treated animals. Periportal necrosis, fatty infiltration, and inflammation were noted on histological sections. The total uptake of 99m Tc SC in cocaine-treated mice was 8% higher, but the concentration (% ID/gm) was 18% lower, than in non-treated animals. Decreased uptake and concentration of 99m Tc SC was seen in the spleen. In contrast, the uptake and clearance of 99m Tc DISIDA were not affected by cocaine treatment. It is concluded that in this model 99m Tc DISIDA was not a sensitive agent for evaluation of cocaine-induced hepatoxicity, and that 99m Tc SC was a more sensitive agent for the determination of hepatic and splenic toxicity due to cocaine. Cocaine-mediated hepato-splenic toxicity warrants further clinical investigations. (orig.) [de

  15. Regulator of G protein signaling-12 modulates the dopamine transporter in ventral striatum and locomotor responses to psychostimulants.

    Gross, Joshua D; Kaski, Shane W; Schroer, Adam B; Wix, Kimberley A; Siderovski, David P; Setola, Vincent

    2018-02-01

    Regulators of G protein signaling are proteins that accelerate the termination of effector stimulation after G protein-coupled receptor activation. Many regulators of G protein signaling proteins are highly expressed in the brain and therefore considered potential drug discovery targets for central nervous system pathologies; for example, here we show that RGS12 is highly expressed in microdissected mouse ventral striatum. Given a role for the ventral striatum in psychostimulant-induced locomotor activity, we tested whether Rgs12 genetic ablation affected behavioral responses to amphetamine and cocaine. RGS12 loss significantly decreased hyperlocomotion to lower doses of both amphetamine and cocaine; however, other outcomes of administration (sensitization and conditioned place preference) were unaffected, suggesting that RGS12 does not function in support of the rewarding properties of these psychostimulants. To test whether observed response changes upon RGS12 loss were caused by changes to dopamine transporter expression and/or function, we prepared crude membranes from the brains of wild-type and RGS12-null mice and measured dopamine transporter-selective [ 3 H]WIN 35428 binding, revealing an increase in dopamine transporter levels in the ventral-but not dorsal-striatum of RGS12-null mice. To address dopamine transporter function, we prepared striatal synaptosomes and measured [ 3 H]dopamine uptake. Consistent with increased [ 3 H]WIN 35428 binding, dopamine transporter-specific [ 3 H]dopamine uptake in RGS12-null ventral striatal synaptosomes was found to be increased. Decreased amphetamine-induced locomotor activity and increased [ 3 H]WIN 35428 binding were recapitulated with an independent RGS12-null mouse strain. Thus, we propose that RGS12 regulates dopamine transporter expression and function in the ventral striatum, affecting amphetamine- and cocaine-induced increases in dopamine levels that specifically elicit acute hyperlocomotor responses.

  16. Sonographic and Endoscopic Findings in Cocaine-Induced Ischemic Colitis

    Leth, Thomas; Wilkens, Rune; Bonderup, Ole Kristian

    2015-01-01

    Cocaine-induced ischemic colitis is a recognized entity. The diagnosis is based on clinical and endoscopic findings. However, diagnostic imaging is helpful in the evaluation of abdominal symptoms and prior studies have suggested specific sonographic findings in ischemic colitis. We report...

  17. Strain-dependent sex differences in the effects of alcohol on cocaine-induced taste aversions.

    Jones, Jermaine D; Busse, Gregory D; Riley, Anthony L

    2006-04-01

    Research using the conditioned taste aversion procedure has reported that a cocaine/alcohol combination induces a significantly stronger taste aversion than either cocaine or alcohol alone. These findings suggest that the co-administration of alcohol intensifies the aversive effects of cocaine. Although the behavioral interaction of cocaine and alcohol is well established, little is known about how the effects of this drug combination might be modulated by a variety of subject variables. The current investigation addressed this by assessing if the ability of alcohol to potentiate cocaine-induced taste aversions is dependent upon the strain and/or sex of the subject. In this series of studies, male and female rats of Long-Evans (Experiment 1) and Sprague-Dawley (Experiment 2) descent were given limited access to a novel saccharin solution to drink and were then injected with either vehicle, cocaine (20 mg/kg), alcohol (0.56 g/kg) or the alcohol/cocaine combination. This procedure was repeated every fourth day for a total of four conditioning trials. All subjects were then compared on an Aversion Test that followed the fourth conditioning cycle. In three of the groups tested (male Long-Evans; male and female Sprague-Dawley), cocaine induced a significant taste aversion that was unaffected by the co-administration of alcohol. However, in female Long-Evans subjects, the addition of alcohol significantly strengthened the avoidance of the saccharin solution. Although the effects of alcohol on cocaine-induced taste aversions are dependent upon an interaction of sex and strain, the basis for this SexxStrain interaction is not known. That such an interaction is evident suggests that attention to such factors in assessing the effects of drug combinations is important to understanding the likelihood of the use and abuse of such drugs.

  18. Septal Glucagon-Like Peptide 1 Receptor Expression Determines Suppression of Cocaine-Induced Behavior

    Harasta, Anne E; Power, John M; von Jonquieres, Georg; Karl, Tim; Drucker, Daniel J; Housley, Gary D; Schneider, Miriam; Klugmann, Matthias

    2015-01-01

    Glucagon-like peptide 1 (GLP-1) and its receptor GLP-1R are a key component of the satiety signaling system, and long-acting GLP-1 analogs have been approved for the treatment of type-2 diabetes mellitus. Previous reports demonstrate that GLP-1 regulates glucose homeostasis alongside the rewarding effects of food. Both palatable food and illicit drugs activate brain reward circuitries, and pharmacological studies suggest that central nervous system GLP-1 signaling holds potential for the treatment of addiction. However, the role of endogenous GLP-1 in the attenuation of reward-oriented behavior, and the essential domains of the mesolimbic system mediating these beneficial effects, are largely unknown. We hypothesized that the central regions of highest Glp-1r gene activity are essential in mediating responses to drugs of abuse. Here, we show that Glp-1r-deficient (Glp-1r−/−) mice have greatly augmented cocaine-induced locomotor responses and enhanced conditional place preference compared with wild-type (Glp-1r+/+) controls. Employing mRNA in situ hybridization we located peak Glp-1r mRNA expression in GABAergic neurons of the dorsal lateral septum, an anatomical site with a crucial function in reward perception. Whole-cell patch-clamp recordings of dorsal lateral septum neurons revealed that genetic Glp-1r ablation leads to increased excitability of these cells. Viral vector-mediated Glp-1r gene delivery to the dorsal lateral septum of Glp-1r−/− animals reduced cocaine-induced locomotion and conditional place preference to wild-type levels. This site-specific genetic complementation did not affect the anxiogenic phenotype observed in Glp-1r−/− controls. These data reveal a novel role of GLP-1R in dorsal lateral septum function driving behavioral responses to cocaine. PMID:25669605

  19. Modulation of spontaneous locomotor and respiratory drives to hindlimb motoneurons temporally related to sympathetic drives as revealed by Mayer waves

    Wienecke, Jacob; Denton, Manuel Enríquez; Stecina, Katinka

    2015-01-01

    In this study we investigated how the networks mediating respiratory and locomotor drives to lumbar motoneurons interact and how this interaction is modulated in relation to periodic variations in blood pressure (Mayer waves). Seven decerebrate cats, under neuromuscular blockade, were used to stu...

  20. Cocaine-induced agitated delirium: a case report and review.

    Plush, Theodore; Shakespeare, Walter; Jacobs, Dorian; Ladi, Larry; Sethi, Sheeba; Gasperino, James

    2015-01-01

    Cocaine use continues to be a major public health problem in the United States. Although many of the initial signs and symptoms of cocaine intoxication result from increased stimulation of the sympathetic nervous system, this condition can present as a spectrum of acuity from hypertension and tachycardia to multiorgan system failure. Classic features of acute intoxication include tachycardia, arterial vasoconstriction, enhanced thrombus formation, mydriasis, psychomotor agitation, and altered level of consciousness. At the extreme end of this toxidrome is a rare condition known as cocaine-induced agitated delirium. This syndrome is characterized by severe cardiopulmonary dysfunction, hyperthermia, and acute neurologic changes frequently leading to death. We report a case of cocaine-induced agitated delirium in a man who presented to our institution in a paradoxical form of circulatory shock. Rapid evaluation, recognition, and proper management enabled our patient not only to survive but also to leave the hospital without neurologic sequelae. © The Author(s) 2013.

  1. Modulation of spontaneous locomotor and respiratory drives to hindlimb motoneurons temporally related to sympathetic drives as revealed by Mayer waves.

    Wienecke, Jacob; Enríquez Denton, Manuel; Stecina, Katinka; Kirkwood, Peter A; Hultborn, Hans

    2015-01-01

    In this study we investigated how the networks mediating respiratory and locomotor drives to lumbar motoneurons interact and how this interaction is modulated in relation to periodic variations in blood pressure (Mayer waves). Seven decerebrate cats, under neuromuscular blockade, were used to study central respiratory drive potentials (CRDPs, usually enhanced by added CO2) and spontaneously occurring locomotor drive potentials (LDPs) in hindlimb motoneurons, together with hindlimb and phrenic nerve discharges. In four of the cats both drives and their voltage-dependent amplification were absent or modest, but in the other three, one or other of these drives was common and the voltage-dependent amplification was frequently strong. Moreover, in these three cats the blood pressure showed marked periodic variation (Mayer waves), with a slow rate (periods 9-104 s, mean 39 ± 17 SD). Profound modulation, synchronized with the Mayer waves was seen in the occurrence and/or in the amplification of the CRDPs or LDPs. In one animal, where CRDPs were present in most cells and the amplification was strong, the CRDP consistently triggered sustained plateaux at one phase of the Mayer wave cycle. In the other two animals, LDPs were common, and the occurrence of the locomotor drive was gated by the Mayer wave cycle, sometimes in alternation with the respiratory drive. Other interactions between the two drives involved respiration providing leading events, including co-activation of flexors and extensors during post-inspiration or a locomotor drive gated or sometimes entrained by respiration. We conclude that the respiratory drive in hindlimb motoneurons is transmitted via elements of the locomotor central pattern generator. The rapid modulation related to Mayer waves suggests the existence of a more direct and specific descending modulatory control than has previously been demonstrated.

  2. Modulation of spontaneous locomotor and respiratory drives to hindlimb motoneurons temporally related to sympathetic drives as revealed by Mayer waves

    Katinka eStecina

    2015-02-01

    Full Text Available In this study we investigated how the networks mediating respiratory and locomotor drives to lumbar motoneurons interact and how this interaction is modulated in relation to periodic variations in blood pressure (Mayer waves. Seven decerebrate cats, under neuromuscular blockade, were used to study central respiratory drive potentials (CRDPs, usually enhanced by added CO2 and spontaneously occurring locomotor drive potentials (LDPs in hindlimb motoneurons, together with hindlimb and phrenic nerve discharges. In four of the cats both drives and their voltage-dependent amplification were absent or modest, but in the other three, one or other of these drives was common and the voltage-dependent amplification was frequently strong. Moreover, in these three cats the blood pressure showed marked periodic variation (Mayer waves, with a slow rate (periods 9 - 104 s, mean 39 ± 17 SD. Profound modulation, synchronized with the Mayer waves was seen in the occurrence and/or in the amplification of the CRDPs or LDPs. In one animal, where CRDPs were present in most cells and the amplification was strong, the CRDP consistently triggered sustained plateaux at one phase of the Mayer wave cycle. In the other two animals, LDPs were common, and the occurrence of the locomotor drive was gated by the Mayer wave cycle, sometimes in alternation with the respiratory drive. Other interactions between the two drives involved respiration providing leading events, including co-activation of flexors and extensors during post-inspiration or a locomotor drive gated or sometimes entrained by respiration. We conclude that the respiratory drive in hindlimb motoneurons is transmitted via elements of the locomotor central pattern generator. The rapid modulation related to Mayer waves suggests the existence of a more direct and specific descending modulatory control than has previously been demonstrated.

  3. Oleoylethanolamide dose-dependently attenuates cocaine-induced behaviours through a PPARα receptor-independent mechanism.

    Bilbao, Ainhoa; Blanco, Eduardo; Luque-Rojas, María Jesús; Suárez, Juan; Palomino, Ana; Vida, Margarita; Araos, Pedro; Bermúdez-Silva, Francisco J; Fernández-Espejo, Emilio; Spanagel, Rainer; Rodríguez de Fonseca, Fernando

    2013-01-01

    Oleoylethanolamide (OEA) is an acylethanolamide that acts as an agonist of nuclear peroxisome proliferator-activated receptor alpha (PPARα) to exert their biological functions, which include the regulation of appetite and metabolism. Increasing evidence also suggests that OEA may participate in the control of reward-related behaviours. However, direct experimental evidence for the role of the OEA-PPARα receptor interaction in drug-mediated behaviours, such as cocaine-induced behavioural phenotypes, is lacking. The present study explored the role of OEA and its receptor PPARα on the psychomotor and rewarding responsiveness to cocaine using behavioural tests indicative of core components of addiction. We found that acute administration of OEA (1, 5 or 20 mg/kg, i.p.) reduced spontaneous locomotor activity and attenuated psychomotor activation induced by cocaine (20 mg/kg) in C57Bl/6 mice. However, PPARα receptor knockout mice showed normal sensitization, although OEA was capable of reducing behavioural sensitization with fewer efficacies. Furthermore, conditioned place preference and reinstatement to cocaine were intact in these mice. Our results indicate that PPARα receptor does not play a critical, if any, role in mediating short- and long-term psychomotor and rewarding responsiveness to cocaine. However, further research is needed for the identification of the targets of OEA for its inhibitory action on cocaine-mediated responses. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  4. Cocaine-induced vasculitis: is this a new trend?

    García Pérez MR

    2013-10-01

    Full Text Available Miraida Reneé García Pérez,1 Vanessa L Ortiz-González,1 Maria Betancourt,1 Rogelio Mercado21Department of Internal Medicine, San Juan City Hospital, 2Department of Dermatology, University of Puerto Rico School of Medicine, San Juan, Puerto RicoAbstract: Cocaine-induced vasculitis is a rare complication found in drug abusers. It occurs due to cocaine adulterated with levamisole. Levamisole was once used as a chemotherapy and immunomodulator for different conditions. One of the side effects of this medication is necrotizing vasculitis which has been reported in the US and Puerto Rico. Here we present another case of cocaine induced vasculitis in Puerto Rico. We describe a 43-year-old female with past medical history of bronchial asthma, migraine, and crack smoking who presented to the emergency room due to blood in her urine for 5 days. She also reported fever, chills, and fatigue. At the physical exam she had a right knee ulcer with swelling erythema, warmth, and pain. Also, she had retiform purpuric plaque lesions in her ears, bilaterally. Eroded plaques with elevated borders at left foot and finger dorsum were also present. Laboratory workup was positive for cocaine. The patient showed leucopenia and microcytic anemia with a normal absolute neutrophil count in her cell blood count. Blood cultures, urine cultures, and ulcer cultures were negative. Urinalysis was positive for proteinuria and hematuria. Also, the patient had positive perinuclear anti-neutrophil cytoplasmic antibody, cytoplasmic anti-neutrophil cytoplasmic antibody, and antinuclear antibody tests and elastase specificity. She showed negative anticardiolipin and lupus anticoagulant antibodies. Her complement levels were decreased. The punch biopsy of her ear showed superficial thrombosis of superficial vascular plexus with perivascular lymphocytic infiltrates and deeper sections showed epidermal necrosis and necrotizing vasculitis. She was started on a high dose of steroids, but

  5. A bacterial cocaine esterase protects against cocaine-induced epileptogenic activity and lethality.

    Jutkiewicz, Emily M; Baladi, Michelle G; Cooper, Ziva D; Narasimhan, Diwahar; Sunahara, Roger K; Woods, James H

    2009-09-01

    Cocaine toxicity results in cardiovascular complications, seizures, and death and accounts for approximately 20% of drug-related emergency department visits every year. Presently, there are no treatments to eliminate the toxic effects of cocaine. The present study hypothesizes that a bacterial cocaine esterase with high catalytic efficiency would provide rapid and robust protection from cocaine-induced convulsions, epileptogenic activity, and lethality. Cocaine-induced paroxysmal activity and convulsions were evaluated in rats surgically implanted with radiotelemetry devices (N=6 per treatment group). Cocaine esterase was administered 1 minute after a lethal dose of cocaine or after cocaine-induced convulsions to determine the ability of the enzyme to prevent or reverse, respectively, the effects of cocaine. The cocaine esterase prevented all cocaine-induced electroencephalographic changes and lethality. This effect was specific for cocaine because the esterase did not prevent convulsions and death induced by a cocaine analog, (-)-2beta-carbomethoxy-3beta-phenyltropane. The esterase prevented lethality even after cocaine-induced convulsions occurred. In contrast, the short-acting benzodiazepine, midazolam, prevented cocaine-induced convulsions but not the lethal effects of cocaine. The data showed that cocaine esterase successfully degraded circulating cocaine to prevent lethality and that cocaine-induced convulsions alone are not responsible for the lethal effects of cocaine in this model. Therefore, further investigation into the use of cocaine esterase for treating cocaine overdose and its toxic effects is warranted.

  6. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity

    Vilela, Luciano R.; Gobira, Pedro H.; Viana, Thercia G.; Medeiros, Daniel C.; Ferreira-Vieira, Talita H.; Doria, Juliana G.; Rodrigues, Flávia; Aguiar, Daniele C.; Pereira, Grace S.; Massessini, André R.; Ribeiro, Fabíola M.; Oliveira, Antonio Carlos P. de; Moraes, Marcio F.D.; Moreira, Fabricio A.

    2015-01-01

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB 1 receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB 1 receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. - Highlights: • Cocaine toxicity is characterized by seizures and hippocampal cell death. • The endocannabinoid anandamide acts as a brain protective mechanism. • Inhibition of anandamide hydrolysis attenuates

  7. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity

    Vilela, Luciano R. [Graduate Program in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Gobira, Pedro H.; Viana, Thercia G. [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Medeiros, Daniel C.; Ferreira-Vieira, Talita H. [Department of Physiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Doria, Juliana G. [Graduate Program in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Rodrigues, Flávia [Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Aguiar, Daniele C. [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Pereira, Grace S.; Massessini, André R. [Department of Physiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Ribeiro, Fabíola M. [Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Oliveira, Antonio Carlos P. de [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Moraes, Marcio F.D., E-mail: mfdm@icb.ufmg.br [Department of Physiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Moreira, Fabricio A., E-mail: fabriciomoreira@icb.ufmg.br [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2015-08-01

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB{sub 1} receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB{sub 1} receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. - Highlights: • Cocaine toxicity is characterized by seizures and hippocampal cell death. • The endocannabinoid anandamide acts as a brain protective mechanism. • Inhibition of anandamide hydrolysis

  8. Oxytocin decreases cocaine taking, cocaine seeking, and locomotor activity in female rats.

    Leong, Kah-Chung; Zhou, Luyi; Ghee, Shannon M; See, Ronald E; Reichel, Carmela M

    2016-02-01

    Oxytocin has been shown to decrease cocaine taking and seeking in male rats, suggesting potential treatment efficacy for drug addiction. In the present study, we extended these findings to the assessment of cocaine seeking and taking in female rats. Further, we made direct comparisons of oxytocin's impact on cocaine induced locomotor activity in both males and females. In females, systemic oxytocin (0.3, 1.0, 3.0 mg/kg) attenuated lever pressing for cocaine during self-administration and oxytocin (1.0 mg/kg) attenuated cue-induced cocaine seeking following extinction. Cocaine increased baseline locomotor activity to a greater degree in females relative to males. Oxytocin (0.1, 0.3, 1.0, and 3.0 mg/kg) reduced cocaine-induced locomotor activity in females, but not significantly in males. These data illustrate sex similarities in oxytocin's attenuation of cocaine seeking, but sex differences in cocaine-induced locomotor effects. While reductions in cocaine seeking cannot be attributed to a reduction in locomotor activity in males, attenuation of locomotor function cannot be entirely ruled out as an explanation for a decrease in cocaine seeking in females suggesting that oxytocin's effect on cocaine seeking may be mediated by different mechanisms in male and females. PsycINFO Database Record (c) 2016 APA, all rights reserved.

  9. Individual differences in food cue responsivity are associated with acute and repeated cocaine-induced vocalizations, but not cue-induced vocalizations.

    Tripi, Jordan A; Dent, Micheal L; Meyer, Paul J

    2017-02-01

    Individuals prone to attribute incentive salience to food-associated stimuli ("cues") are also more sensitive to cues during drug seeking and drug taking. This may be due in part to a difference in sensitivity to the affective or other stimulus properties of the drug. In rats, these properties are associated with 50-kHz ultrasonic vocalizations (USVs), in that they are elicited during putative positive affective and motivational states, including in response to drugs of abuse. We sought to determine whether individual differences in the tendency to attribute incentive salience to a food cue (as measured by approach) were associated with differences in cocaine-induced USVs. We also tested whether the food cue would elicit USVs and if this response was related to approach to the food cue. In experiment 1, rats underwent Pavlovian conditioned approach (PavCA) training where they learned to associate a cue (an illuminated lever) with the delivery of a food pellet into a food cup. Subjects were categorized based on their approach to the cue ("sign-trackers") or to the food cup ("goal-trackers"). Rats subsequently underwent nine testing days in which they were given saline or cocaine (10 mg/kg i.p) and placed into a locomotor chamber. In experiment 2, rats were first tested in the locomotor chambers for one saline-treated day followed by one cocaine-treated day and then trained in PavCA. USVs were recorded from a subset of individuals during the last day of PavCA to determine if the food cue would elicit USVs. Sign-trackers produced 5-24 times more cocaine-induced 50 kHz USVs compared to goal-trackers for all days of experiment 1, and this response sensitized with repeated cocaine, only in sign-trackers. Similarly in experiment 2, individuals that produced the most cocaine-induced USVs on a single exposure also showed the greatest tendency to sign-track during PavCA. Lastly, while sign-trackers produced more USVs during PavCA generally, the cue itself did not elicit

  10. CREB activity in dopamine D1 receptor expressing neurons regulates cocaine-induced behavioral effects

    Bilbao, Ainhoa; Rieker, Claus; Cannella, Nazzareno; Parlato, Rosanna; Golda, Slawomir; Piechota, Marcin; Korostynski, Michal; Engblom, David; Przewlocki, Ryszard; Schütz, Günther; Spanagel, Rainer; Parkitna, Jan R.

    2014-01-01

    It is suggested that striatal cAMP responsive element binding protein (CREB) regulates sensitivity to psychostimulants. To test the cell-specificity of this hypothesis we examined the effects of a dominant-negative CREB protein variant expressed in dopamine receptor D1 (D1R) neurons on cocaine-induced behaviors. A transgenic mouse strain was generated by pronuclear injection of a BAC-derived transgene harboring the A-CREB sequence under the control of the D1R gene promoter. Compared to wild-type, drug-naïve mutants showed moderate alterations in gene expression, especially a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2. The behavioral responses to cocaine were elevated in mutant mice. Locomotor activity after acute treatment, psychomotor sensitization after intermittent drug injections and the conditioned locomotion after saline treatment were increased compared to wild-type littermates. Transgenic mice had significantly higher cocaine conditioned place preference, displayed normal extinction of the conditioned preference, but showed an augmented cocaine-seeking response following priming-induced reinstatement. This enhanced cocaine-seeking response was associated with increased levels of activity-regulated transcripts and prodynorphin. The primary reinforcing effects of cocaine were not altered in the mutant mice as they did not differ from wild-type in cocaine self-administration under a fixed ratio schedule at the training dose. Collectively, our data indicate that expression of a dominant-negative CREB variant exclusively in neurons expressing D1R is sufficient to recapitulate the previously reported behavioral phenotypes associated with virally expressed dominant-negative CREB. PMID:24966820

  11. Speed-Dependent Modulation of the Locomotor Behavior in Adult Mice Reveals Attractor and Transitional Gaits.

    Lemieux, Maxime; Josset, Nicolas; Roussel, Marie; Couraud, Sébastien; Bretzner, Frédéric

    2016-01-01

    Locomotion results from an interplay between biomechanical constraints of the muscles attached to the skeleton and the neuronal circuits controlling and coordinating muscle activities. Quadrupeds exhibit a wide range of locomotor gaits. Given our advances in the genetic identification of spinal and supraspinal circuits important to locomotion in the mouse, it is now important to get a better understanding of the full repertoire of gaits in the freely walking mouse. To assess this range, young adult C57BL/6J mice were trained to walk and run on a treadmill at different locomotor speeds. Instead of using the classical paradigm defining gaits according to their footfall pattern, we combined the inter-limb coupling and the duty cycle of the stance phase, thus identifying several types of gaits: lateral walk, trot, out-of-phase walk, rotary gallop, transverse gallop, hop, half-bound, and full-bound. Out-of-phase walk, trot, and full-bound were robust and appeared to function as attractor gaits (i.e., a state to which the network flows and stabilizes) at low, intermediate, and high speeds respectively. In contrast, lateral walk, hop, transverse gallop, rotary gallop, and half-bound were more transient and therefore considered transitional gaits (i.e., a labile state of the network from which it flows to the attractor state). Surprisingly, lateral walk was less frequently observed. Using graph analysis, we demonstrated that transitions between gaits were predictable, not random. In summary, the wild-type mouse exhibits a wider repertoire of locomotor gaits than expected. Future locomotor studies should benefit from this paradigm in assessing transgenic mice or wild-type mice with neurotraumatic injury or neurodegenerative disease affecting gait.

  12. Imaging of cocaine-induced global and regional myocardial ischemia

    Oster, Z.H.; Som, P.; Wang, G.J.; Weber, D.A.

    1991-01-01

    Severe and often fatal cardiac complications have been reported in cocaine users with narrowed coronary arteries caused by atherosclerosis as well as in young adults with normal coronaries. The authors have found that in normal dogs cocaine induces severe temporary hypoperfusion of the left ventricle as indicated by a significantly lower 201Tl concentration compared to the baseline state. The most significant decrease in uptake occurred 5 min after injection and was more pronounced in the septal and apical segments. Following intravenous administration of cocaine, instead of gradual disappearance of 201Tl from the left ventricle, there was continuous increase in 201Tl concentration in the left ventricle. These imaging experiments indicate that the deleterious effects of cocaine on the heart are probably due to spasm of the coronaries and decreased myocardial perfusion. Since spasm of the large subpericardial vessels does not seem to explain the magnitude of the increased coronary resistance and decreased coronary flow after cocaine as described in the literature, it is suggested that microvascular spasm of smaller vessels plays a major role in the temporary decrease in perfusion. The data may also suggest that severe temporary myocardial ischemia is probably the initiating factor for the cardiac complications induced by cocaine

  13. Trace Amine-Associated Receptor 1 Modulates the Locomotor and Sensitization Effects of Nicotine

    Sukhanov, Ilya; Dorofeikova, Mariia; Dolgorukova, Antonina; Dorotenko, Artem; Gainetdinov, Raul R.

    2018-01-01

    Trace amine-associated receptor 1 (TAAR1) has emerged as a promising target for addiction treatments because it affects dopamine transmission in the mesolimbic pathway. TAAR1 is involved in the effects of addictive drugs, such as amphetamines, cocaine and ethanol, but the impact of TAAR1 on the effects of nicotine, the psychoactive drug responsible for the development and maintenance of tobacco smoking, has not yet been studied. This study was performed to investigate the possible modulatory action of TAAR1 on the effects of nicotine on locomotor behaviors in rats and mice. Pretreatment with the TAAR1 agonist RO5263397 dose-dependently decreased nicotine-induced hyperlocomotion in rats habituated to locomotor boxes, prevented the development of nicotine sensitization and blocked hypermotility in nicotine-sensitized rats at the highest tested dose (10 mg/kg). The lack of TAAR1 failed to affect the effects of nicotine on the locomotion of mutant mice. Based on the results of the present study, TAAR1 activation attenuates the locomotion-stimulating effects of nicotine on rats. These results further support the previously proposed hypothesis that TAAR1 is a promising target for the prevention and treatment of drug addiction. Further studies aimed at analyzing the effects of TAAR1 agonists on animal models of nicotine addiction are warranted. PMID:29681856

  14. Trace Amine-Associated Receptor 1 Modulates the Locomotor and Sensitization Effects of Nicotine

    Ilya Sukhanov

    2018-04-01

    Full Text Available Trace amine-associated receptor 1 (TAAR1 has emerged as a promising target for addiction treatments because it affects dopamine transmission in the mesolimbic pathway. TAAR1 is involved in the effects of addictive drugs, such as amphetamines, cocaine and ethanol, but the impact of TAAR1 on the effects of nicotine, the psychoactive drug responsible for the development and maintenance of tobacco smoking, has not yet been studied. This study was performed to investigate the possible modulatory action of TAAR1 on the effects of nicotine on locomotor behaviors in rats and mice. Pretreatment with the TAAR1 agonist RO5263397 dose-dependently decreased nicotine-induced hyperlocomotion in rats habituated to locomotor boxes, prevented the development of nicotine sensitization and blocked hypermotility in nicotine-sensitized rats at the highest tested dose (10 mg/kg. The lack of TAAR1 failed to affect the effects of nicotine on the locomotion of mutant mice. Based on the results of the present study, TAAR1 activation attenuates the locomotion-stimulating effects of nicotine on rats. These results further support the previously proposed hypothesis that TAAR1 is a promising target for the prevention and treatment of drug addiction. Further studies aimed at analyzing the effects of TAAR1 agonists on animal models of nicotine addiction are warranted.

  15. Neuropeptide Y Y5 receptor antagonism attenuates cocaine-induced effects in mice

    Sørensen, Gunnar; Jensen, Morten; Weikop, Pia

    2012-01-01

    Rationale Several studies suggest a role for neuropeptide Y (NPY) in addiction to drugs of abuse, including cocaine. However, the NPY receptors mediating addiction-related effects remain to be determined. Objectives To explore the potential role of Y5 NPY receptors in cocaine-induced behavioural...... effects. Methods The Y5 antagonist L-152,804 and Y5-knockout (Y5-KO) mice were tested in two models of cocaine addiction-related behaviour: acute self-administration and cocaine-induced hyperactivity. We also studied effects of Y5 receptor antagonism on cocaine-induced c-fos expression and extracellular...... effects, suggesting that Y5 receptors could be a potential therapeutic target in cocaine addiction....

  16. Pre-existing differences in motivation for food and sensitivity to cocaine-induced locomotion in obesity-prone rats.

    Vollbrecht, Peter J; Nobile, Cameron W; Chadderdon, Aaron M; Jutkiewicz, Emily M; Ferrario, Carrie R

    2015-12-01

    Obesity is a significant problem in the United States, with roughly one third of adults having a body mass index (BMI) over thirty. Recent evidence from human studies suggests that pre-existing differences in the function of mesolimbic circuits that mediate motivational processes may promote obesity and hamper weight loss. However, few preclinical studies have examined pre-existing neurobehavioral differences related to the function of mesolimbic systems in models of individual susceptibility to obesity. Here, we used selectively bred obesity-prone and obesity-resistant rats to examine 1) the effect of a novel "junk-food" diet on the development of obesity and metabolic dysfunction, 2) over-consumption of "junk-food" in a free access procedure, 3) motivation for food using instrumental procedures, and 4) cocaine-induced locomotor activity as an index of general mesolimbic function. As expected, eating a sugary, fatty, "junk-food" diet exacerbated weight gain and increased fasted insulin levels only in obesity-prone rats. In addition, obesity-prone rats continued to over-consume junk-food during discrete access testing, even when this same food was freely available in the home cage. Furthermore, when asked to press a lever to obtain food in an instrumental task, rates of responding were enhanced in obesity-prone versus obesity-resistant rats. Finally, obesity-prone rats showed a stronger locomotor response to 15 mg/kg cocaine compared to obesity-resistant rats prior to any diet manipulation. This enhanced sensitivity to this dose of cocaine is indicative of basal differences in the function of mesolimbic circuits in obesity-prone rats. We speculate that pre-existing differences in motivational systems may contribute to over-consumption and enhanced motivation in susceptible individuals. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Pre-existing differences in motivation for food and sensitivity to cocaine-induced locomotion in obesity-prone rats

    Vollbrecht, Peter J.; Nobile, Cameron W.; Chadderdon, Aaron M.; Jutkiewicz, Emily M.; Ferrario, Carrie R.

    2015-01-01

    Obesity is a significant problem in the United States, with roughly one third of adults having a body mass index (BMI) over thirty. Recent evidence from human studies suggests that pre-existing differences in the function of mesolimbic circuits that mediate motivational processes may promote obesity and hamper weight loss. However, few preclinical studies have examined pre-existing neurobehavioral differences related to the function of mesolimbic systems in models of individual susceptibility to obesity. Here, we used selectively bred obesity-prone and obesity-resistant rats to examine 1) the effect of a novel “junk-food” diet on the development of obesity and metabolic dysfunction, 2) over-consumption of “junk-food” in a free access procedure, 3) motivation for food using instrumental procedures, and 4) cocaine-induced locomotor activity as an index of general mesolimbic function. As expected, eating a sugary, fatty, “junk-food” diet exacerbated weight gain and increased fasted insulin levels only in obesity-prone rats. In addition, obesity-prone rats continued to over-consume junk-food during discrete access testing, even when this same food was freely available in the home cage. Furthermore, when asked to press a lever to obtain food in an instrumental task, rates of responding were enhanced in obesity-prone versus obesity-resistant rats. Finally, obesity-prone rats showed a stronger locomotor response to 15 mg/kg cocaine compared to obesity-resistant rats prior to any diet manipulation. This enhanced sensitivity to this dose of cocaine is indicative of basal differences in the function of mesolimbic circuits in obesity-prone rats. We speculate that pre-existing differences in motivational systems may contribute to over-consumption and enhanced motivation in susceptible individuals. PMID:26423787

  18. Norepinephrine signaling through β-adrenergic receptors is critical for expression of cocaine-induced anxiety

    Schank, Jesse R.; Liles, L. Cameron; Weinshenker, David

    2008-01-01

    Background Cocaine is a widely abused psychostimulant that has both rewarding and aversive properties. While the mechanisms underlying cocaine’s rewarding effects have been studied extensively, less attention has been paid to the unpleasant behavioral states induced by cocaine, such as anxiety. Methods In this study we evaluated the performance of dopamine β-hydroxylase knockout (Dbh −/−) mice, which lack norepinephrine (NE), in the elevated plus maze (EPM) to examine the contribution of noradrenergic signaling to cocaine-induced anxiety. Results We found that cocaine dose-dependently increased anxiety-like behavior in control (Dbh +/−) mice, as measured by a decrease in open arm exploration. Dbh −/− mice had normal baseline performance in the EPM, but were completely resistant to the anxiogenic effects of cocaine. Cocaine-induced anxiety was also attenuated in Dbh +/− mice following administration of disulfiram, a DBH inhibitor. In experiments using specific adrenergic antagonists, we found that pretreatment with the β-adrenergic receptor antagonist propranolol blocked cocaine-induced anxiety-like behavior in Dbh +/− and wild-type C57BL6/J mice, while the α1 antagonist prazosin and the α2 antagonist yohimbine had no effect. Conclusions These results indicate that noradrenergic signaling via β-adrenergic receptors is required for cocaine-induced anxiety in mice. PMID:18083142

  19. Norepinephrine signaling through beta-adrenergic receptors is critical for expression of cocaine-induced anxiety.

    Schank, Jesse R; Liles, L Cameron; Weinshenker, David

    2008-06-01

    Cocaine is a widely abused psychostimulant that has both rewarding and aversive properties. While the mechanisms underlying cocaine's rewarding effects have been studied extensively, less attention has been paid to the unpleasant behavioral states induced by cocaine, such as anxiety. In this study, we evaluated the performance of dopamine beta-hydroxylase knockout (Dbh -/-) mice, which lack norepinephrine (NE), in the elevated plus maze (EPM) to examine the contribution of noradrenergic signaling to cocaine-induced anxiety. We found that cocaine dose-dependently increased anxiety-like behavior in control (Dbh +/-) mice, as measured by a decrease in open arm exploration. The Dbh -/- mice had normal baseline performance in the EPM but were completely resistant to the anxiogenic effects of cocaine. Cocaine-induced anxiety was also attenuated in Dbh +/- mice following administration of disulfiram, a dopamine beta-hydroxylase (DBH) inhibitor. In experiments using specific adrenergic antagonists, we found that pretreatment with the beta-adrenergic receptor antagonist propranolol blocked cocaine-induced anxiety-like behavior in Dbh +/- and wild-type C57BL6/J mice, while the alpha(1) antagonist prazosin and the alpha(2) antagonist yohimbine had no effect. These results indicate that noradrenergic signaling via beta-adrenergic receptors is required for cocaine-induced anxiety in mice.

  20. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2′-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned

  1. CRFR1 in the ventromedial caudate putamen modulates acute stress-enhanced expression of cocaine locomotor sensitization.

    Liu, Shuli; Wang, Zhiyan; Li, Yijing; Sun, Xiaowei; Ge, Feifei; Yang, Mingda; Wang, Xinjuan; Wang, Na; Wang, Junkai; Cui, Cailian

    2017-07-15

    Repeated exposure to psychostimulants induces a long-lasting enhancement of locomotor activity called behavioral sensitization, which is often reinforced by stress after drug withdrawal. The mechanisms underlying these phenomena remain elusive. Here we explored the effects of acute stress 3 or 14 days after the cessation of chronic cocaine treatment on the expression of locomotor sensitization induced by a cocaine challenge in rats and the key brain region and molecular mechanism underlying the phenomenon. A single session of forced swimming, as an acute stress (administered 2 days after the cessation of cocaine), significantly enhanced the expression of cocaine locomotor sensitization 14 days after the final cocaine injection (challenge at 12 days after acute stress) but not 3 days after the cessation of cocaine (challenge at 1 day after acute stress). The result indicated that acute stress enhanced the expression of cocaine locomotor sensitization after incubation for 12 days rather than 1 day after the last cocaine injection. Moreover, the enhancement in locomotor sensitization was paralleled by a selective increase in the number of the c-Fos + cells, the level of CRFR1 mRNA in the ventromedial caudate putamen (vmCPu). Furthermore, the enhancement was significantly attenuated by CRFR1 antagonist NBI-27914 into the vmCPu, implying that the up-regulation of CRFR1 in the vmCPu seems to be critical in the acute stress-enhanced expression of cocaine locomotor sensitization. The findings demonstrate that the long-term effect of acute stress on the expression of cocaine locomotor sensitization is partially mediated by CRFR1 in the vmCPu. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Role of perineuronal nets in the anterior dorsal lateral hypothalamic area in the acquisition of cocaine-induced conditioned place preference and self-administration.

    Blacktop, Jordan M; Todd, Ryan P; Sorg, Barbara A

    2017-05-15

    Addiction involves drug-induced neuroplasticity in the circuitry of motivated behavior, which includes the medial forebrain bundle and the lateral hypothalamic area. Emerging at the forefront of neuroplasticity regulation are specialized extracellular matrix (ECM) structures that form perineuronal nets (PNNs) around certain neurons, mainly parvalbumin positive (PV + ), fast-spiking interneurons (FSINs), making them a promising target for the regulation of drug-induced neuroplasticity. Despite the emerging significance of PNNs in drug-induced neuroplasticity and the well-established role of the lateral hypothalamic area (LHA) in reward, reinforcement, and motivation, very little is known about how PNN-expressing neurons control drug-seeking behavior. We found that a discrete region of the anterior dorsal LHA (LHAad) exhibited robust PNN and dense ECM expression. Approximately 87% of parvalbumin positive (PV + ) neurons co-expressed the PNN marker Wisteria floribunda agglutinin (WFA), while 62% of WFA positive (WFA + ) neurons co-expressed PV in the LHAad of drug naïve rats. Removal of PNNs within this brain region via chrondroitinase ABC (Ch-ABC) administration abolished acquisition of cocaine-induced CPP and significantly attenuated the acquisition of cocaine self-administration (SA). Removal of LHAad PNNs did not affect locomotor activity, sucrose intake, sucrose-induced CPP, or acquisition of sucrose SA in separate groups of cocaine naïve animals. These data suggest that PNN-dependent neuroplasticity within the LHAad is critical for the acquisition of both cocaine-induced CPP and SA but is not general to all rewards, and that PNN degradation may have utility for the management of drug-associated behavioral plasticity and memory in cocaine addicts. Published by Elsevier Ltd.

  3. Cocaine-induced vasculitis with cutaneous manifestation: A recurrent episode after 2 years

    Thein Swe

    2016-01-01

    Full Text Available Cocaine is a popular recreational drug in the United States, and up to 70% of the seized cocaine contains levamisole which is an antihelminthic that can cause cutaneous vasculitis with necrosis and positive antineutrophil cytoplasmic antibodies (ANCAs. Here, we report a unique case of recurrent cocaine-induced vasculitis in a patient who smokes cocaine for more than 20 years. A 38-year-old woman complained of painful erythematous rash in her right arm and right thigh which appeared some hours after smoking cocaine. Physical examination revealed tender, erythematous base, retiform purpura with necrosis and bullae. Serological test showed high atypical perinuclear ANCA titer of 1:320 and antimyeloperoxidase antibody level of 20.4 U/mL. Cocaine-induced vasculitis should be one of the differential diagnoses in cocaine abusers who present with painful rash and areas of necrosis. Early diagnosis is important since it is an emerging public health concern.

  4. Neuropeptide Y Y5 receptor antagonism causes faster extinction and attenuates reinstatement in cocaine-induced place preference

    Sørensen, Gunnar; Wörtwein, Gitta; Fink-Jensen, Anders

    2013-01-01

    Several studies have suggested a role for neuropeptide Y (NPY) in addiction to drugs of abuse, including cocaine. Recently, our group showed a role for the NPY Y5 receptor in the modulation of acute reinforcing effects of cocaine using self-administration and hyperlocomotion paradigms. In the pre......Several studies have suggested a role for neuropeptide Y (NPY) in addiction to drugs of abuse, including cocaine. Recently, our group showed a role for the NPY Y5 receptor in the modulation of acute reinforcing effects of cocaine using self-administration and hyperlocomotion paradigms....... In the present study, we further explored potential anti-addiction-related effects of Y5 antagonism in another murine model of cocaine addiction-related behavior: conditioned place-preference (CPP). Using this model, it was tested whether blockade or deficiency of the NPY Y5 receptor could influence......, and reinstatement of cocaine-induced CPP was absent. The development of CPP for cocaine was similar between Y5-KO and WT mice. Taken together, the present data show that Y5 antagonism attenuates relapse to cocaine addiction-related behavior. Prevention of relapse is considered to be of pivotal importance...

  5. Caffeine-supplemented diet modulates oxidative stress markers and improves locomotor behavior in the lobster cockroach Nauphoeta cinerea.

    da Silva, Cícera Simoni; de Cássia Gonçalves de Lima, Rita; Elekofehinti, Olusola Olalekan; Ogunbolude, Yetunde; Duarte, Antonia Eliene; Rocha, João Batista Teixeira; Alencar de Menezes, Irwin Rose; Barros, Luiz Marivando; Tsopmo, Appolinaire; Lukong, Kiven Erique; Kamdem, Jean Paul

    2018-02-25

    The effects of caffeine supplementation is well documented in conventional animal models, however, in the lobster cockroaches Nauphoeta cinerea, they have not been reported. Thus, the aim of this study was to investigate the locomotor behavior and biochemical endpoints in the head of the nymphs of N. cinerea following 60 days exposure to food supplemented with 0, 0.5, 1.0, 2.5, 5.0 and 10.0 mg of caffeine/g of diet. The analysis of the locomotor behavior using the video-tracking software, Any-maze, for 12 min revealed that caffeine supplementation caused significant behavioral improvement. There was increase in distance travelled, velocity, frequency of rotation and turn angle (stereotypical behavior such as circling movements), and this was supported by the representative track plots of the path travelled by cockroaches in the open-field arena. In addition, caffeine supplementation markedly increased total thiol and non-protein thiol glutathione (GSH) levels in the heads of cockroaches, and this was in parallel with significant reduction of lipid peroxidation and free Fe(II) content. Taking together, our results indicate that long-term caffeine supplementation may exert preventive effects against oxidative stress and support the use of N. cinerea as an efficient alternative model to assess the efficacy of food molecules. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Cocaine-induced adaptation of dopamine D2S, but not D2L autoreceptors.

    Robinson, Brooks G; Condon, Alec F; Radl, Daniela; Borrelli, Emiliana; Williams, John T; Neve, Kim A

    2017-11-20

    The dopamine D2 receptor has two splice variants, D2S (Short) and D2L (Long). In dopamine neurons, both variants can act as autoreceptors to regulate neuronal excitability and dopamine release, but the roles of each variant are incompletely characterized. In a previous study we used viral receptor expression in D2 receptor knockout mice to show distinct effects of calcium signaling on D2S and D2L autoreceptor function (Gantz et al., 2015). However, the cocaine-induced plasticity of D2 receptor desensitization observed in wild type mice was not recapitulated with this method of receptor expression. Here we use mice with genetic knockouts of either the D2S or D2L variant to investigate cocaine-induced plasticity in D2 receptor signaling. Following a single in vivo cocaine exposure, the desensitization of D2 receptors from neurons expressing only the D2S variant was reduced. This did not occur in D2L-expressing neurons, indicating differential drug-induced plasticity between the variants.

  7. Oxytocin decreases cocaine taking, cocaine seeking, and locomotor activity in female rats

    Leong, Kah-Chung; Zhou, Luyi; Ghee, Shannon M.; See, Ronald E.; Reichel, Carmela M.

    2016-01-01

    Oxytocin has been shown to decrease cocaine taking and seeking in male rats, suggesting potential treatment efficacy for drug addiction. In the present study, we extended these findings to the assessment of cocaine seeking and taking in female rats. Further, we made direct comparisons of oxytocin’s impact on cocaine induced locomotor activity in both males and females. In females, systemic oxytocin (0.3, 1.0, 3.0 mg/kg) attenuated lever pressing for cocaine during self-administration and oxyt...

  8. Dual orexin receptor antagonists show distinct effects on locomotor performance, ethanol interaction and sleep architecture relative to gamma-aminobutyric acid-A receptor modulators

    Andres D. Ramirez

    2013-12-01

    Full Text Available Dual orexin receptor antagonists (DORAs are a potential treatment for insomnia that function by blocking both the orexin 1 and orexin 2 receptors. The objective of the current study was to further confirm the impact of therapeutic mechanisms targeting insomnia on locomotor coordination and ethanol interaction using DORAs and gamma-aminobutyric acid (GABA-A receptor modulators of distinct chemical structure and pharmacologic properties in the context of sleep-promoting potential. The current study compared rat motor co-ordination after administration of DORAs, DORA-12 and almorexant, and GABA-A receptor modulators, zolpidem, eszopiclone and diazepam, alone or each in combination with ethanol. Motor performance was assessed by measuring time spent walking on a rotarod apparatus. Zolpidem, eszopiclone and diazepam (0.3–30 mg/kg administered orally [PO] impaired rotarod performance in a dose-dependent manner. Furthermore, all three GABA-A receptor modulators potentiated ethanol- (0.25–1.25 g/kg induced impairment on the rotarod. By contrast, neither DORA-12 (10–100 mg/kg, PO nor almorexant (30–300 mg/kg, PO impaired motor performance alone or in combination with ethanol. In addition, distinct differences in sleep architecture were observed between ethanol, GABA-A receptor modulators (zolpidem, eszopiclone and diazepam and DORA-12 in electroencephalogram studies in rats. These findings provide further evidence that orexin receptor antagonists have an improved motor side-effect profile compared with currently available sleep-promoting agents based on preclinical data and strengthen the rationale for further evaluation of these agents in clinical development.

  9. Cocaine-induced renal infarction: report of a case and review of the literature

    Nosrati Saeid M

    2005-09-01

    Full Text Available Abstract Background Cocaine abuse has been known to have detrimental effects on the cardiovascular system. Its toxicity has been associated with myocardial ischemia, cerebrovascular accidents and mesenteric ischemia. The pathophysiology of cocaine-related renal injury is multifactorial and involves renal hemodynamic changes, alterations in glomerular matrix synthesis, degradation and oxidative stress, and possibly induction of renal atherogenesis. Renal infarction as a result of cocaine exposure, however, is rarely reported in the literature. Case presentation A 48 year-old male presented with a four-day history of severe right flank pain following cocaine use. On presentation, he was tachycardic, febrile and had severe right costovertebral angle tenderness. He had significant proteinuria, leukocytosis and elevated serum creatinine and lactate dehydrogenase. Radiographic imaging studies as well as other screening tests for thromboembolic events, hypercoagulability states, collagen vascular diseases and lipid disorders were suggestive of Cocaine-Induced Renal Infarction (CIRI by exclusion. Conclusion In a patient with a history of cocaine abuse presenting with fevers and flank pain suggestive of urinary tract infection or nephrolithiasis, cocaine-induced renal infarction must be considered in the differential diagnosis. In this article, we discuss the prior reported cases of CIRI and thoroughly review the literature available on this disorder. This is important for several reasons. First, it will allow us to discuss and elaborate on the mechanism of renal injury caused by cocaine. In addition, this review will demonstrate the importance of considering the diagnosis of CIRI in a patient with documented cocaine use and an atypical presentation of acute renal injury. Finally, we will emphasize the need for a consensus on optimal treatment of this disease, for which therapy is not yet standardized.

  10. Epac Signaling Is Required for Cocaine-Induced Change in AMPA Receptor Subunit Composition in the Ventral Tegmental Area.

    Liu, Xiaojie; Chen, Yao; Tong, Jiaqing; Reynolds, Ashley M; Proudfoot, Sarah C; Qi, Jinshun; Penzes, Peter; Lu, Youming; Liu, Qing-Song

    2016-04-27

    Exchange protein directly activated by cAMP (Epac) and protein kinase A (PKA) are intracellular receptors for cAMP. Although PKA and its downstream effectors have been studied extensively in the context of drug addiction, whether and how Epac regulates cellular and behavioral effects of drugs of abuse remain essentially unknown. Epac is known to regulate AMPA receptor (AMPAR) trafficking. Previous studies have shown that a single cocaine exposure in vivo leads to an increase in GluA2-lacking AMPARs in dopamine neurons of the ventral tegmental area (VTA). We tested the hypothesis that Epac mediates cocaine-induced changes in AMPAR subunit composition in the VTA. We report that a single cocaine injection in vivo in wild-type mice leads to inward rectification of EPSCs and renders EPSCs sensitive to a GluA2-lacking AMPAR blocker in VTA dopamine neurons. The cocaine-induced increase in GluA2-lacking AMPARs was absent in Epac2-deficient mice but not in Epac1-deficient mice. In addition, activation of Epac with the selective Epac agonist 8-CPT-2Me-cAMP (8-CPT) recapitulated the cocaine-induced increase in GluA2-lacking AMPARs, and the effects of 8-CPT were mediated by Epac2. We also show that conditioned place preference to cocaine was impaired in Epac2-deficient mice and in mice in which Epac2 was knocked down in the VTA but was not significantly altered in Epac1-deficient mice. Together, these results suggest that Epac2 is critically involved in the cocaine-induced change in AMPAR subunit composition and drug-cue associative learning. Addictive drugs, such as cocaine, induce long-lasting adaptions in the reward circuits of the brain. A single intraperitoneal injection of cocaine leads to changes in the composition and property of the AMPAR that carries excitatory inputs to dopamine neurons. Here, we provide evidence that exchange protein directly activated by cAMP (Epac), a cAMP sensor protein, is required for the cocaine-induced changes of the AMPAR. We found that the

  11. Cocaine induces astrocytosis through ER stress-mediated activation of autophagy

    Periyasamy, Palsamy; Guo, Ming-Lei; Buch, Shilpa

    2016-01-01

    ABSTRACT Cocaine is known to induce inflammation, thereby contributing in part, to the pathogenesis of neurodegeneration. A recent study from our lab has revealed a link between macroautophagy/autophagy and microglial activation. The current study was aimed at investigating whether cocaine could also mediate activation of astrocytes and, whether this process involved induction of autophagy. Our findings demonstrated that cocaine mediated the activation of astrocytes by altering the levels of autophagy markers, such as BECN1, ATG5, MAP1LC3B-II, and SQSTM1 in both human A172 astrocytoma cells and primary human astrocytes. Furthermore, cocaine treatment resulted in increased formation of endogenous MAP1LC3B puncta in human astrocytes. Additionally, astrocytes transfected with the GFP-MAP1LC3B plasmid also demonstrated cocaine-mediated upregulation of the green fluorescent MAP1LC3B puncta. Cocaine-mediated induction of autophagy involved upstream activation of ER stress proteins such as EIF2AK3, ERN1, ATF6 since blockage of autophagy using either pharmacological or gene-silencing approaches, had no effect on cocaine-mediated induction of ER stress. Using both pharmacological and gene-silencing approaches to block either ER stress or autophagy, our findings demonstrated that cocaine-induced activation of astrocytes (measured by increased levels of GFAP) involved sequential activation of ER stress and autophagy. Cocaine-mediated-increased upregulation of GFAP correlated with increased expression of proinflammatory mediators such as TNF, IL1B, and IL6. In conclusion, these findings reveal an association between ER stress-mediated autophagy and astrogliosis in cocaine-treated astrocytes. Intervention of ER stress and/or autophagy signaling would thus be promising therapeutic targets for abrogating cocaine-mediated neuroinflammation. PMID:27337297

  12. Cocaine induces state-dependent learning of sexual conditioning in male Japanese quail.

    Gill, Karin E; Rice, Beth Ann; Akins, Chana K

    2015-01-01

    State dependent learning effects have been widely studied in a variety of drugs of abuse. However, they have yet to be studied in relation to sexual motivation. The current study investigated state-dependent learning effects of cocaine in male Japanese quail (Coturnix japonica) using a sexual conditioning paradigm. Cocaine-induced state-dependent learning effects were investigated using a 2×2 factorial design with training state as one factor and test state as the other factor. During a 14-day training phase, male quail were injected once daily with 10mg/kg cocaine or saline and then placed in a test chamber after 15min. In the test chamber, sexual conditioning trials consisted of presentation of a light conditioned stimulus (CS) followed by sexual reinforcement. During the state dependent test, half of the birds received a shift in drug state from training to testing (Coc→Sal or Sal→Coc) while the other half remained in the same drug state (Coc→Coc or Sal→Sal). Results showed that male quail that were trained and tested in the same state (Coc→Coc or Sal→Sal) showed greater sexual conditioning than male quail that were trained and tested in different states (Sal→Coc) except when cocaine was administered chronically prior to the test (Coc→Sal). For the latter condition, sexual conditioning persisted from cocaine training to the saline test. The findings suggest that state dependent effects may alter sexual motivation and that repeated exposure to cocaine during sexual activity may increase sexual motivation which, in turn, may lead to high risk sexual activities. An alternative explanation for the findings is also discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Pharmacological Modulation of 5-HT2C Receptor Activity Produces Bidirectional Changes in Locomotor Activity, Responding for a Conditioned Reinforcer, and Mesolimbic DA Release in C57BL/6 Mice.

    Browne, Caleb J; Ji, Xiaodong; Higgins, Guy A; Fletcher, Paul J; Harvey-Lewis, Colin

    2017-10-01

    Converging lines of behavioral, electrophysiological, and biochemical evidence suggest that 5-HT 2C receptor signaling may bidirectionally influence reward-related behavior through an interaction with the mesolimbic dopamine (DA) system. Here we directly test this hypothesis by examining how modulating 5-HT 2C receptor activity affects DA-dependent behaviors and relate these effects to changes in nucleus accumbens (NAc) DA release. In C57BL/6 mice, locomotor activity and responding for a conditioned reinforcer (CRf), a measure of incentive motivation, were examined following treatment with three 5-HT 2C receptor ligands: the agonist CP809101 (0.25-3 mg/kg), the antagonist SB242084 (0.25-1 mg/kg), or the antagonist/inverse agonist SB206553 (1-5 mg/kg). We further tested whether doses of these compounds that changed locomotor activity and responding for a CRf (1 mg/kg CP809101, 0.5 mg/kg SB242084, or 2.5 mg/kg SB206553) also altered NAc DA release using in vivo microdialysis in anesthetized mice. CP809101 reduced locomotor activity, responding for a CRf, and NAc DA release. In contrast, both SB242084 and SB206553 enhanced locomotor activity, responding for a CRf, and NAc DA release, although higher doses of SB206553 produced opposite behavioral effects. Pretreatment with the non-selective DA receptor antagonist α-flupenthixol prevented SB242084 from enhancing responding for a CRf. Thus blocking tonic 5-HT 2C receptor signaling can release serotonergic inhibition of mesolimbic DA activity and enhance reward-related behavior. The observed bidirectional effects of 5-HT 2C receptor ligands may have important implications when considering the 5-HT 2C receptor as a therapeutic target for psychiatric disorders, particularly those presenting with motivational dysfunctions.

  14. Dopamine and the Brainstem Locomotor Networks: From Lamprey to Human

    Dimitri Ryczko

    2017-05-01

    Full Text Available In vertebrates, dopamine neurons are classically known to modulate locomotion via their ascending projections to the basal ganglia that project to brainstem locomotor networks. An increased dopaminergic tone is associated with increase in locomotor activity. In pathological conditions where dopamine cells are lost, such as in Parkinson's disease, locomotor deficits are traditionally associated with the reduced ascending dopaminergic input to the basal ganglia. However, a descending dopaminergic pathway originating from the substantia nigra pars compacta was recently discovered. It innervates the mesencephalic locomotor region (MLR from basal vertebrates to mammals. This pathway was shown to increase locomotor output in lampreys, and could very well play an important role in mammals. Here, we provide a detailed account on the newly found dopaminergic pathway in lamprey, salamander, rat, monkey, and human. In lampreys and salamanders, dopamine release in the MLR is associated with the activation of reticulospinal neurons that carry the locomotor command to the spinal cord. Dopamine release in the MLR potentiates locomotor movements through a D1-receptor mechanism in lampreys. In rats, stimulation of the substantia nigra pars compacta elicited dopamine release in the pedunculopontine nucleus, a known part of the MLR. In a monkey model of Parkinson's disease, a reduced dopaminergic innervation of the brainstem locomotor networks was reported. Dopaminergic fibers are also present in human pedunculopontine nucleus. We discuss the conserved locomotor role of this pathway from lamprey to mammals, and the hypothesis that this pathway could play a role in the locomotor deficits reported in Parkinson's disease.

  15. Cocaine induces a mixed lysosomal lipidosis in cultured fibroblasts, by inactivation of acid sphingomyelinase and inhibition of phospholipase A1

    Nassogne, Marie-Cecile; Lizarraga, Chantal; N'Kuli, Francisca; Van Bambeke, Francoise; Van Binst, Roger; Wallemacq, Pierre; Tulkens, Paul M.; Mingeot-Leclercq, Marie-Paule; Levade, Thierry; Courtoy, Pierre J.

    2004-01-01

    This paper reports that cocaine may induce a lysosomal storage disorder. Indeed, culture of Rat-1 fibroblasts with 250-500 μM cocaine induced after 2-3 days a major accumulation in lysosomes of electron-dense lamellar structures. By subcellular fractionation, this was reflected by a selective decrease of the buoyant density of several lysosomal enzymes, indicating lysosomal lipid overload. Biochemical analysis confirmed an increased cellular content of major phospholipids and sphingomyelin, but not of cholesterol. Cocaine, a membrane-permeant weak base, is concentrated by acidotropic sequestration, because its accumulation was abrogated by the proton ionophore, monensin and the vacuolar ATPase inhibitor, bafilomycin A 1 . At its estimated lysosomal concentration, cocaine almost completely inhibited phospholipase A 1 activity on liposomes. Cell incubation with cocaine, but not with its inactive metabolite, benzoylecgonine, rapidly inactivated acid sphingomyelinase, as reflected by a 10-fold decrease in V max with identical K m . Acid sphingomyelinase inactivation was fully prevented by the thiol proteinases inhibitors, leupeptin and E64, indicating that cocaine induces selective sphingomyelinase proteolysis. Upon cocaine removal, acid sphingomyelinase activity was rapidly restored, pointing to its fast turnover. In contrast, the cellular content of several other lysosomal hydrolases was increased up to 2-fold. Together, these data show that acidotropic accumulation of cocaine in lysosomes rapidly inhibits acid phospholipase A 1 and inactivates acid sphingomyelinase, which can explain induction of a mixed lysosomal lipidosis

  16. A Biomarker to Differentiate between Primary and Cocaine-Induced Major Depression in Cocaine Use Disorder: The Role of Platelet IRAS/Nischarin (I1-Imidazoline Receptor

    Benjamin Keller

    2017-12-01

    Full Text Available The association of cocaine use disorder (CUD and comorbid major depressive disorder (MDD; CUD/MDD is characterized by high prevalence and poor treatment outcomes. CUD/MDD may be primary (primary MDD or cocaine-induced (CUD-induced MDD. Specific biomarkers are needed to improve diagnoses and therapeutic approaches in this dual pathology. Platelet biomarkers [5-HT2A receptor and imidazoline receptor antisera selected (IRAS/nischarin] were assessed by Western blot in subjects with CUD and primary MDD (n = 16 or CUD-induced MDD (n = 9; antidepressant free, AD−; antidepressant treated, AD+ and controls (n = 10 at basal level and/or after acute tryptophan depletion (ATD. Basal platelet 5-HT2A receptor (monomer was reduced in comorbid CUD/MDD subjects (all patients: 43% compared to healthy controls, and this down-regulation was independent of AD medication (decreases in AD−: 47%, and in AD+: 40%. No basal differences were found for IRAS/nischarin contents in AD+ and AD− comorbid CUD/MDD subjects. The comparison of IRAS/nischarin in the different subject groups during/after ATD showed opposite modulations (i.e., increases and decreases in response to low plasma tryptophan levels with significant differences discriminating between the subgroups of CUD with primary MDD and CUD-induced MDD. These specific alterations suggested that platelet IRAS/nischarin might be useful as a biomarker to discriminate between primary and CUD-induced MDD in this dual pathology.

  17. N-acetyl cysteine mitigates the acute effects of cocaine-induced toxicity in astroglia-like cells.

    Ramesh B Badisa

    Full Text Available Cocaine has a short half-life of only about an hour but its effects, predominantly on the central nervous system (CNS, are fairly long-lasting. Of all cells within the CNS, astrocytes may be the first to display cocaine toxicity owing to their relative abundance in the brain. Cocaine entry could trigger several early response changes that adversely affect their survival, and inhibiting these changes could conversely increase their rate of survival. In order to identify these changes and the minimal concentrations of cocaine that can elicit them in vitro, rat C6 astroglia-like cells were treated with cocaine (2-4 mM for 1h and assayed for alterations in gross cell morphology, cytoplasmic vacuolation, viability, reactive oxygen species (ROS generation, glutathione (GSH levels, cell membrane integrity, F-actin cytoskeleton, and histone methylation. We report here that all of the above identified features are significantly altered by cocaine, and may collectively represent the key pathology underlying acute toxicity-mediated death of astroglia-like cells. Pretreatment of the cells with the clinically available antioxidant N-acetyl cysteine (NAC, 5 mM for 30 min inhibited these changes during subsequent application of cocaine and mitigated cocaine-induced toxicity. Despite repeated cocaine exposure, NAC pretreated cells remained highly viable and post NAC treatment also increased viability of cocaine treated cells to a smaller yet significant level. We show further that this alleviation by NAC is mediated through an increase in GSH levels in the cells. These findings, coupled with the fact that astrocytes maintain neuronal integrity, suggest that compounds which target and mitigate these early toxic changes in astrocytes could have a potentially broad therapeutic role in cocaine-induced CNS damage.

  18. Rats classified as low or high cocaine locomotor responders: A unique model involving striatal dopamine transporters that predicts cocaine addiction-like behaviors

    Yamamoto, Dorothy J.; Nelson, Anna M.; Mandt, Bruce H.; Larson, Gaynor A.; Rorabaugh, Jacki M.; Ng, Christopher M.C.; Barcomb, Kelsey M.; Richards, Toni L.; Allen, Richard M.; Zahniser, Nancy R.

    2013-01-01

    Individual differences are a hallmark of drug addiction. Here, we describe a rat model based on differential initial responsiveness to low dose cocaine. Despite similar brain cocaine levels, individual outbred Sprague-Dawley rats exhibit markedly different magnitudes of acute cocaine-induced locomotor activity and, thereby, can be classified as low or high cocaine responders (LCRs or HCRs). LCRs and HCRs differ in drug-induced, but not novelty-associated, hyperactivity. LCRs have higher basal numbers of striatal dopamine transporters (DATs) than HCRs and exhibit marginal cocaine inhibition of in vivo DAT activity and cocaine-induced increases in extracellular DA. Importantly, lower initial cocaine response predicts greater locomotor sensitization, conditioned place preference and greater motivation to self-administer cocaine following low dose acquisition. Further, outbred Long-Evans rats classified as LCRs, versus HCRs, are more sensitive to cocaine’s discriminative stimulus effects. Overall, results to date with the LCR/HCR model underscore the contribution of striatal DATs to individual differences in initial cocaine responsiveness and the value of assessing the influence of initial drug response on subsequent expression of addiction-like behaviors. PMID:23850581

  19. Neuromodulation of the lumbar spinal locomotor circuit.

    AuYong, Nicholas; Lu, Daniel C

    2014-01-01

    The lumbar spinal cord contains the necessary circuitry to independently drive locomotor behaviors. This function is retained following spinal cord injury (SCI) and is amenable to rehabilitation. Although the effectiveness of task-specific training and pharmacologic modulation has been repeatedly demonstrated in animal studies, results from human studies are less striking. Recently, lumbar epidural stimulation (EDS) along with locomotor training was shown to restore weight-bearing function and lower-extremity voluntary control in a chronic, motor-complete human SCI subject. Related animal studies incorporating EDS as part of the therapeutic regiment are also encouraging. EDS is emerging as a promising neuromodulatory tool for SCI. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Raclopride or high-frequency stimulation of the subthalamic nucleus stops cocaine-induced motor stereotypy and restores related alterations in prefrontal basal ganglia circuits.

    Aliane, Verena; Pérez, Sylvie; Deniau, Jean-Michel; Kemel, Marie-Louise

    2012-11-01

    Motor stereotypy is a key symptom of various neurological or neuropsychiatric disorders. Neuroleptics or the promising treatment using deep brain stimulation stops stereotypies but the mechanisms underlying their actions are unclear. In rat, motor stereotypies are linked to an imbalance between prefrontal and sensorimotor cortico-basal ganglia circuits. Indeed, cortico-nigral transmission was reduced in the prefrontal but not sensorimotor basal ganglia circuits and dopamine and acetylcholine release was altered in the prefrontal but not sensorimotor territory of the dorsal striatum. Furthermore, cholinergic transmission in the prefrontal territory of the dorsal striatum plays a crucial role in the arrest of motor stereotypy. Here we found that, as previously observed for raclopride, high-frequency stimulation of the subthalamic nucleus (HFS STN) rapidly stopped cocaine-induced motor stereotypies in rat. Importantly, raclopride and HFS STN exerted a strong effect on cocaine-induced alterations in prefrontal basal ganglia circuits. Raclopride restored the cholinergic transmission in the prefrontal territory of the dorsal striatum and the cortico-nigral information transmissions in the prefrontal basal ganglia circuits. HFS STN also restored the N-methyl-d-aspartic-acid-evoked release of acetylcholine and dopamine in the prefrontal territory of the dorsal striatum. However, in contrast to raclopride, HFS STN did not restore the cortico-substantia nigra pars reticulata transmissions but exerted strong inhibitory and excitatory effects on neuronal activity in the prefrontal subdivision of the substantia nigra pars reticulata. Thus, both raclopride and HFS STN stop cocaine-induced motor stereotypy, but exert different effects on the related alterations in the prefrontal basal ganglia circuits. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  1. Effects of paternal deprivation on cocaine-induced behavioral response and hypothalamic oxytocin immunoreactivity and serum oxytocin level in female mandarin voles.

    Wang, Jianli; Fang, Qianqian; Yang, Chenxi

    2017-09-15

    Early paternal behavior plays a critical role in behavioral development in monogamous species. The vast majority of laboratory studies investigating the influence of parental behavior on cocaine vulnerability focus on the effects of early maternal separation. However, comparable studies on whether early paternal deprivation influences cocaine-induced behavioral response are substantially lacking. Mandarin vole (Microtus mandarinus) is a monogamous rodent with high levels of paternal care. After mandarin vole pups were subjected to early paternal deprivation, acute cocaine- induced locomotion, anxiety- like behavior and social behavior were examined in 45day old female pups, while hypothalamic oxytocin immunoreactivity and serum oxytocin level were also assessed. We found that cocaine increased locomotion and decreased social investigation, contact behavior and serum oxytocin level regardless of paternal care. Cocaine increased anxiety levels and decreased oxytocin immunoreactive neurons of the paraventricular nuclei and supraoptic nuclei in the bi-parental care group, whilst there were no specific effects in the paternal deprivation group. These results indicate that paternal deprivation results in different behavioral response to acute cocaine exposure in adolescents, which may be in part associated with the alterations in oxytocin immunoreactivity and peripheral OT level. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Cdk5 modulates cocaine reward, motivation, and striatal neuron excitability.

    Benavides, David R; Quinn, Jennifer J; Zhong, Ping; Hawasli, Ammar H; DiLeone, Ralph J; Kansy, Janice W; Olausson, Peter; Yan, Zhen; Taylor, Jane R; Bibb, James A

    2007-11-21

    Cyclin-dependent kinase 5 (Cdk5) regulates dopamine neurotransmission and has been suggested to serve as a homeostatic target of chronic psychostimulant exposure. To study the role of Cdk5 in the modulation of the cellular and behavioral effects of psychoactive drugs of abuse, we developed Cre/loxP conditional knock-out systems that allow temporal and spatial control of Cdk5 expression in the adult brain. Here, we report the generation of Cdk5 conditional knock-out (cKO) mice using the alphaCaMKII promoter-driven Cre transgenic line (CaMKII-Cre). In this model system, loss of Cdk5 in the adult forebrain increased the psychomotor-activating effects of cocaine. Additionally, these CaMKII-Cre Cdk5 cKO mice show enhanced incentive motivation for food as assessed by instrumental responding on a progressive ratio schedule of reinforcement. Behavioral changes were accompanied by increased excitability of medium spiny neurons in the nucleus accumbens (NAc) in Cdk5 cKO mice. To study NAc-specific effects of Cdk5, another model system was used in which recombinant adeno-associated viruses expressing Cre recombinase caused restricted loss of Cdk5 in NAc neurons. Targeted knock-out of Cdk5 in the NAc facilitated cocaine-induced locomotor sensitization and conditioned place preference for cocaine. These results suggest that Cdk5 acts as a negative regulator of neuronal excitability in the NAc and that Cdk5 may govern the behavioral effects of cocaine and motivation for reinforcement.

  3. Cocaine-induced behavioral sensitization decreases the expression of endocannabinoid signaling-related proteins in the mouse hippocampus.

    Blanco, Eduardo; Galeano, Pablo; Palomino, Ana; Pavón, Francisco J; Rivera, Patricia; Serrano, Antonia; Alen, Francisco; Rubio, Leticia; Vargas, Antonio; Castilla-Ortega, Estela; Decara, Juan; Bilbao, Ainhoa; de Fonseca, Fernando Rodríguez; Suárez, Juan

    2016-03-01

    In the reward mesocorticolimbic circuits, the glutamatergic and endocannabinoid systems are implicated in neurobiological mechanisms underlying cocaine addiction. However, the involvement of both systems in the hippocampus, a critical region to process relational information relevant for encoding drug-associated memories, in cocaine-related behaviors remains unknown. In the present work, we studied whether the hippocampal gene/protein expression of relevant glutamate signaling components, including glutamate-synthesizing enzymes and metabotropic and ionotropic receptors, and the hippocampal gene/protein expression of cannabinoid type 1 (CB1) receptor and endocannabinoid metabolic enzymes were altered following acute and/or repeated cocaine administration resulting in conditioned locomotion and locomotor sensitization. Results showed that acute cocaine administration induced an overall down-regulation of glutamate-related gene expression and, specifically, a low phosphorylation level of GluA1. In contrast, locomotor sensitization to cocaine produced an up-regulation of several glutamate receptor-related genes and, specifically, an increased protein expression of the GluN1 receptor subunit. Regarding the endocannabinoid system, acute and repeated cocaine administration were associated with an increased gene/protein expression of CB1 receptors and a decreased gene/protein expression of the endocannabinoid-synthesis enzymes N-acyl phosphatidylethanolamine D (NAPE-PLD) and diacylglycerol lipase alpha (DAGLα). These changes resulted in an overall decrease in endocannabinoid synthesis/degradation ratios, especially NAPE-PLD/fatty acid amide hydrolase and DAGLα/monoacylglycerol lipase, suggesting a reduced endocannabinoid production associated with a compensatory up-regulation of CB1 receptor. Overall, these findings suggest that repeated cocaine administration resulting in locomotor sensitization induces a down-regulation of the endocannabinoid signaling that could

  4. Locomotor training improves premotoneuronal control after chronic spinal cord injury.

    Knikou, Maria; Mummidisetty, Chaithanya K

    2014-06-01

    Spinal inhibition is significantly reduced after spinal cord injury (SCI) in humans. In this work, we examined if locomotor training can improve spinal inhibition exerted at a presynaptic level. Sixteen people with chronic SCI received an average of 45 training sessions, 5 days/wk, 1 h/day. The soleus H-reflex depression in response to low-frequency stimulation, presynaptic inhibition of soleus Ia afferent terminals following stimulation of the common peroneal nerve, and bilateral EMG recovery patterns were assessed before and after locomotor training. The soleus H reflexes evoked at 1.0, 0.33, 0.20, 0.14, and 0.11 Hz were normalized to the H reflex evoked at 0.09 Hz. Conditioned H reflexes were normalized to the associated unconditioned H reflex evoked with subjects seated, while during stepping both H reflexes were normalized to the maximal M wave evoked after the test H reflex at each bin of the step cycle. Locomotor training potentiated homosynaptic depression in all participants regardless the type of the SCI. Presynaptic facilitation of soleus Ia afferents remained unaltered in motor complete SCI patients. In motor incomplete SCIs, locomotor training either reduced presynaptic facilitation or replaced presynaptic facilitation with presynaptic inhibition at rest. During stepping, presynaptic inhibition was modulated in a phase-dependent manner. Locomotor training changed the amplitude of locomotor EMG excitability, promoted intralimb and interlimb coordination, and altered cocontraction between knee and ankle antagonistic muscles differently in the more impaired leg compared with the less impaired leg. The results provide strong evidence that locomotor training improves premotoneuronal control after SCI in humans at rest and during walking. Copyright © 2014 the American Physiological Society.

  5. Modular diversification of the locomotor system in damselfishes (Pomacentridae).

    Aguilar-Medrano, Rosalía; Frédérich, Bruno; Barber, Paul H

    2016-05-01

    As fish move and interact with their aquatic environment by swimming, small morphological variations of the locomotor system can have profound implications on fitness. Damselfishes (Pomacentridae) have inhabited coral reef ecosystems for more than 50 million years. As such, habitat preferences and behavior could significantly constrain the morphology and evolvability of the locomotor system. To test this hypothesis, we used phylogenetic comparative methods on morphometric, ecological and behavioral data. While body elongation represented the primary source of variation in the locomotor system of damselfishes, results also showed a diverse suite of morphological combinations between extreme morphologies. Results show clear associations between behavior, habitat preferences, and morphology, suggesting ecological constraints on shape diversification of the locomotor system. In addition, results indicate that the three modules of the locomotor system are weakly correlated, resulting in versatile and independent characters. These results suggest that Pomacentridae is shape may result from the interaction between (1) integrated parts of morphological variation that maintain overall swimming ability and (2) relatively independent parts of the morphology that facilitate adaptation and diversification. © 2016 Wiley Periodicals, Inc.

  6. Locomotor sensitization to ethanol: Contribution of b-Endorphin

    Stephani eDempsey

    2012-08-01

    Full Text Available Alcohol use disorders, like all drug addictions, involve a constellation of adaptive changes throughout the brain. Neural activity underlying changes in the rewarding properties of alcohol reflect changes in dopamine transmission in mesolimbic and nigrostriatal pathways and these effects are modulated by endogenous opioids such as b-Endorphin. In order to study the role of b-Endorphin in the development of locomotor sensitization to repeated EtOH exposure, we tested transgenic mice that vary in their capacity to synthesize this peptide as a result of constitutive modification of the Pomc gene. Our results indicate that mice deficient in b-Endorphin show attenuated locomotor activation following an acute injection of EtOH (2 g/kg and, in contrast to wildtype mice, fail to demonstrate locomotor sensitization after 12 days of repeated EtOH injections. These data support the idea that b-Endorphin modulates the locomotor effects of EtOH and contributes to the neuroadaptive changes associated with chronic use.

  7. Post-sensitization treatment with rimonabant blocks the expression of cocaine-induced behavioral sensitization and c-Fos protein in mice.

    Marinho, Eduardo A V; Oliveira-Lima, Alexandre J; Yokoyama, Thais S; Santos-Baldaia, Renan; Ribeiro, Luciana T C; Baldaia, Marilia A; da Silva, Raphael Wuo; Hollais, Andre Willian; Talhati, Fernanda; Longo, Beatriz Monteiro; Berro, Lais Fernanda; Frussa-Filho, Roberto

    2017-05-01

    CB1 receptor antagonists have been shown to prevent acute and long-term behavioral effects of cocaine. Here we evaluate the effectiveness of the CB1 receptor antagonist rimonabant to modify sensitized responses to cocaine. Mice were treated with saline or cocaine injections in a 15-day intermittent sensitization treatment and subsequently treated with either vehicle, 1 or 10mg/kg rimonabant in the drug-associated environment for 8 consecutive days. Animals were then challenged with saline and cocaine in the open-field apparatus on subsequent days to evaluate the expression of conditioned and sensitized effects to cocaine. c-Fos protein expression was evaluated in the nucleus accumbens (NAcc), ventral tegmental area (VTA), basolateral amygdala (BLA), medial prefrontal cortex (mPFC) and caudate-putamen (CPu) after the last (cocaine) challenge. Previous treatment with 10mg/kg rimonabant blocked the expression of conditioned hyperlocomotion and behavioral sensitization to cocaine, but not acute cocaine-induced hyperlocomotion. These behavioral effects were accompanied by significant changes in c-Fos expression in the brain reward system. Chronic cocaine sensitization blunted a subsequent acute cocaine-induced increase in c-Fos protein in the NAcc, effect that was reversed by previous treatment with rimonabant. Treatment with 10mg/kg rimonabant also attenuated the significant increase in c-Fos expression in the CPu, mPFC and BLA induced by previous chronic sensitization with cocaine. Our findings add to the evidence that drugs targeting CB1 receptors are good candidates for the treatment of cocaine abuse and provide further insights into the mechanisms underlying endocannabinoid signaling within the brain reward system in the context of cocaine abuse. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The Selective D3 Receptor Antagonist SB277011A Attenuates Morphine-Triggered Reactivation of Expression of Cocaine-Induced Conditioned Place Preference

    Rice, Onarae V.; Heidbreder, Christian A.; Gardner, Eliot L.; Schonhar, Charles D.; Ashby, Charles R.

    2014-01-01

    We examined the effect of acute administration of the selective D3 receptor antagonist SB277011A on morphine-triggered reactivation of cocaine-induced conditioned place preference (CPP) in adult male Sprague-Dawley rats. Repeated pairing of animals with 15 mg/kg i.p. of cocaine HCl or vehicle to cue-specific CPP chambers produced a significant CPP response compared to animals paired only with vehicle in both chambers. Expression of the CPP response to cocaine was then extinguished by repeatedly giving the animals vehicle injections in the cocaine-paired chambers. The magnitude of the CPP response after extinction was not significantly different from that of animals paired only with vehicle. Expression of the extinguished CPP response was reactivated by acute administration of 5 mg/kg i.p. of morphine but not by vehicle. Acute administration of 6 or 12 mg/kg i.p. (but not 3 mg/kg) of SB277011A significantly attenuated morphine-triggered reactivation of the cocaine-induced CPP. SB277011A itself (12 mg/kg i.p.) did not reactivate the extinguished CPP response. Overall, SB277011 decreases the incentive motivational actions of morphine. The present findings suggest that central D3 dopamine receptors are involved in relapse to cocaine-seeking behavior that a final common neural mechanism exists to mediate the incentive motivational effects of psychostimulants and opiates, and that selective dopamine D3 receptor antagonists constitute promising compounds for treating addiction. PMID:23404528

  9. Acute Cocaine Induces Fast Activation of D1 Receptor and Progressive Deactivation of D2 Receptor Strial Neurons: In Vivo Optical Microprobe [Ca2+]i Imaging

    Du, C.; Luo, Z.; Volkow, N.D.; Heintz, N.; Pan, Y.; Du, C.

    2011-01-01

    Cocaine induces fast dopamine increases in brain striatal regions, which are recognized to underlie its rewarding effects. Both dopamine D1 and D2 receptors are involved in cocaine's reward but the dynamic downstream consequences of cocaine effects in striatum are not fully understood. Here we used transgenic mice expressing EGFP under the control of either the D1 receptor (D1R) or the D2 receptor (D2R) gene and microprobe optical imaging to assess the dynamic changes in intracellular calcium ([Ca 2+ ] i ) responses (used as marker of neuronal activation) to acute cocaine in vivo separately for D1R- versus D2R-expressing neurons in striatum. Acute cocaine (8 mg/kg, i.p.) rapidly increased [Ca 2+ ] i in D1R-expressing neurons (10.6 ± 3.2%) in striatum within 8.3 ± 2.3 min after cocaine administration after which the increases plateaued; these fast [Ca 2+ ] i increases were blocked by pretreatment with a D1R antagonist (SCH23390). In contrast, cocaine induced progressive decreases in [Ca 2+ ] i in D2R-expressing neurons (10.4 ± 5.8%) continuously throughout the 30 min that followed cocaine administration; these slower [Ca 2+ ] i decreases were blocked by pretreatment with a D2R antagonist (raclopride). Since activation of striatal D1R-expressing neurons (direct-pathway) enhances cocaine reward, whereas activation of D2R expressing neurons suppresses it (indirect-pathway) (Lobo et al., 2010), this suggests that cocaine's rewarding effects entail both its fast stimulation ofD1R (resulting in abrupt activation of direct-pathway neurons) and a slower stimulation of D2R (resulting in longer-lasting deactivation of indirect-pathway neurons). We also provide direct in vivo evidence of D2R and D1R interactions in the striatal responses to acute cocaine administration.

  10. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors

    DiGiovanna, J.; Dominici, N.; Friedli, L.; Rigosa, J.; Duis, S.; Kreider, J.; Beauparlant, J.; van den Brand, R.; Schieppati, M.; Micera, S.; Courtine, G.

    2016-01-01

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor pr...

  11. Eating high fat chow decreases dopamine clearance in adolescent and adult male rats but selectively enhances the locomotor stimulating effects of cocaine in adolescents.

    Baladi, Michelle G; Horton, Rebecca E; Owens, William A; Daws, Lynette C; France, Charles P

    2015-03-24

    Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  12. Error signals driving locomotor adaptation

    Choi, Julia T; Jensen, Peter; Nielsen, Jens Bo

    2016-01-01

    Locomotor patterns must be adapted to external forces encountered during daily activities. The contribution of different sensory inputs to detecting perturbations and adapting movements during walking is unclear. Here we examined the role of cutaneous feedback in adapting walking patterns to force...... walking (Choi et al. 2013). Sensory tests were performed to measure cutaneous touch threshold and perceptual threshold of force perturbations. Ankle movement were measured while subjects walked on the treadmill over three periods: baseline (1 min), adaptation (1 min) and post-adaptation (3 min). Subjects...

  13. Ghrelin receptor antagonism attenuates cocaine- and amphetamine-induced locomotor stimulation, accumbal dopamine release, and conditioned place preference.

    Jerlhag, Elisabet; Egecioglu, Emil; Dickson, Suzanne L; Engel, Jörgen A

    2010-09-01

    Recently we demonstrated that genetic or pharmacological suppression of the central ghrelin signaling system, involving the growth hormone secretagogue receptor 1A (GHS-R1A), lead to a reduced reward profile from alcohol. As the target circuits for ghrelin in the brain include a mesolimbic reward pathway that is intimately associated with reward-seeking behaviour, we sought to determine whether the central ghrelin signaling system is required for reward from drugs of abuse other than alcohol, namely cocaine or amphetamine. We found that amphetamine-as well as cocaine-induced locomotor stimulation and accumbal dopamine release were reduced in mice treated with a GHS-R1A antagonist. Moreover, the ability of these drugs to condition a place preference was also attenuated by the GHS-R1A antagonist. Thus GHS-R1A appears to be required not only for alcohol-induced reward, but also for reward induced by psychostimulant drugs. Our data suggest that the central ghrelin signaling system constitutes a novel potential target for treatment of addictive behaviours such as drug dependence.

  14. Feedback and feedforward locomotor adaptations to ankle-foot load in people with incomplete spinal cord injury.

    Gordon, Keith E; Wu, Ming; Kahn, Jennifer H; Schmit, Brian D

    2010-09-01

    Humans with spinal cord injury (SCI) modulate locomotor output in response to limb load. Understanding the neural control mechanisms responsible for locomotor adaptation could provide a framework for selecting effective interventions. We quantified feedback and feedforward locomotor adaptations to limb load modulations in people with incomplete SCI. While subjects airstepped (stepping performed with kinematic assistance and 100% bodyweight support), a powered-orthosis created a dorisflexor torque during the "stance phase" of select steps producing highly controlled ankle-load perturbations. When given repetitive, stance phase ankle-load, the increase in hip extension work, 0.27 J/kg above baseline (no ankle-load airstepping), was greater than the response to ankle-load applied during a single step, 0.14 J/kg (P = 0.029). This finding suggests that, at the hip, subjects produced both feedforward and feedback locomotor modulations. We estimate that, at the hip, the locomotor response to repetitive ankle-load was modulated almost equally by ongoing feedback and feedforward adaptations. The majority of subjects also showed after-effects in hip kinetic patterns that lasted 3 min in response to repetitive loading, providing additional evidence of feedforward locomotor adaptations. The magnitude of the after-effect was proportional to the response to repetitive ankle-foot load (R(2) = 0.92). In contrast, increases in soleus EMG amplitude were not different during repetitive and single-step ankle-load exposure, suggesting that ankle locomotor modulations were predominately feedback-based. Although subjects made both feedback and feedforward locomotor adaptations to changes in ankle-load, between-subject variations suggest that walking function may be related to the ability to make feedforward adaptations.

  15. Importance of D1 and D2 receptor stimulation for the induction and expression of cocaine-induced behavioral sensitization in preweanling rats.

    McDougall, Sanders A; Rudberg, Krista N; Veliz, Ana; Dhargalkar, Janhavi M; Garcia, Aleesha S; Romero, Loveth C; Gonzalez, Ashley E; Mohd-Yusof, Alena; Crawford, Cynthia A

    2017-05-30

    The behavioral manifestations of psychostimulant-induced sensitization vary markedly between young and adult rats, suggesting that the neural mechanisms mediating this phenomenon differ across ontogeny. In this project we examined the importance of D1 and D2 receptors for the induction and expression of cocaine-induced behavioral sensitization during the preweanling period. In the behavioral experiments, rats were injected with reversible D1 and/or D2 antagonists (SCH23390 and/or raclopride) or an irreversible receptor antagonist (EEDQ) either before cocaine administration on the pretreatment day (induction) or before cocaine challenge on the test day (expression). In the EEDQ experiments, receptor specificity was assessed by using selective dopamine antagonists to protect D1 and/or D2 receptors from inactivation. Receptor binding assays showed that EEDQ caused substantial reductions in dorsal striatal D1 and D2 binding sites, while SCH23390 and raclopride fully protected D1 and D2 receptors from EEDQ-induced alkylation. Behavioral results showed that neither D1 nor D2 receptor stimulation was necessary for the induction of cocaine sensitization in preweanling rats. EEDQ disrupted the sensitization process, suggesting that another receptor type sensitive to EEDQ alkylation was necessary for the induction process. Expression of the sensitized response was prevented by an acute injection of a D1 receptor antagonist. The pattern of DA antagonist-induced effects described for preweanling rats is, with few exceptions, similar to what is observed when the same drugs are administered to adult rats. Thus, it appears that maturational changes in D1 and D2 receptor systems are not responsible for ontogenetic differences in the behavioral manifestation of cocaine sensitization. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Metabotropic glutamate receptor I (mGluR1) antagonism impairs cocaine-induced conditioned place preference via inhibition of protein synthesis.

    Yu, Fei; Zhong, Peng; Liu, Xiaojie; Sun, Dalong; Gao, Hai-Qing; Liu, Qing-Song

    2013-06-01

    Antagonism of group I metabotropic glutamate receptors (mGluR1 and mGluR5) reduces behavioral effects of drugs of abuse, including cocaine. However, the underlying mechanisms remain poorly understood. Activation of mGluR5 increases protein synthesis at synapses. Although mGluR5-induced excessive protein synthesis has been implicated in the pathology of fragile X syndrome, it remains unknown whether group I mGluR-mediated protein synthesis is involved in any behavioral effects of drugs of abuse. We report that group I mGluR agonist DHPG induced more pronounced initial depression of inhibitory postsynaptic currents (IPSCs) followed by modest long-term depression (I-LTD) in dopamine neurons of rat ventral tegmental area (VTA) through the activation of mGluR1. The early component of DHPG-induced depression of IPSCs was mediated by the cannabinoid CB1 receptors, while DHPG-induced I-LTD was dependent on protein synthesis. Western blotting analysis indicates that mGluR1 was coupled to extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR) signaling pathways to increase translation. We also show that cocaine conditioning activated translation machinery in the VTA via an mGluR1-dependent mechanism. Furthermore, intra-VTA microinjections of mGluR1 antagonist JNJ16259685 and protein synthesis inhibitor cycloheximide significantly attenuated or blocked the acquisition of cocaine-induced conditioned place preference (CPP) and activation of translation elongation factors. Taken together, these results suggest that mGluR1 antagonism inhibits de novo protein synthesis; this effect may block the formation of cocaine-cue associations and thus provide a mechanism for the reduction in CPP to cocaine.

  17. Increased amphetamine-induced locomotor activity, sensitization, and accumbal dopamine release in M5 muscarinic receptor knockout mice

    Schmidt, Lene S; Miller, Anthony D; Lester, Deranda B

    2010-01-01

    showed that M(5) receptor knockout (M (5) (-/-) ) mice are less sensitive to the reinforcing properties of addictive drugs. MATERIALS AND METHODS: Here, we investigate the role of M(5) receptors in the effects of amphetamine and cocaine on locomotor activity, locomotor sensitization, and dopamine release......-induced hyperactivity and dopamine release as well as amphetamine sensitization are enhanced in mice lacking the M(5) receptor. These results support the concept that the M(5) receptor modulates effects of addictive drugs....

  18. The number of postsynaptic currents necessary to produce locomotor- related cyclic information in neurons in the neonatal rat spinal cord

    Raastad, Morten; Johnson, Bruce R.; Kiehn, Ole

    1996-01-01

    To understand better how synaptic signaling contributes to network activity, we analyzed the potential contribution of putative unitary postsynaptic currents (PSCs) to locomotor-related information received by spinal interneurons in neonatal rats. The average cyclic modulation of the whole-cell c......-5) of the synapses contributing to the cyclic information need to be active simultaneously. This suggests that individual presynaptic cells in a central locomotor network can have a powerful influence on other neurons....

  19. Activation of D2 autoreceptors alters cocaine-induced locomotion and slows down local field oscillations in the rat ventral tegmental area.

    Koulchitsky, Stanislav; Delairesse, Charlotte; Beeken, Thom; Monteforte, Alexandre; Dethier, Julie; Quertemont, Etienne; Findeisen, Rolf; Bullinger, Eric; Seutin, Vincent

    2016-09-01

    Psychoactive substances affecting the dopaminergic system induce locomotor activation and, in high doses, stereotypies. Network mechanisms underlying the shift from an active goal-directed behavior to a "seemingly purposeless" stereotypic locomotion remain unclear. In the present study we sought to determine the relationships between the behavioral effects of dopaminergic drugs and their effects on local field potentials (LFPs), which were telemetrically recorded within the ventral tegmental area (VTA) of freely moving rats. We used the D2/D3 agonist quinpirole in a low, autoreceptor-selective (0.1 mg/kg, i.p.) and in a high (0.5 mg/kg, i.p.) dose, and a moderate dose of cocaine (10 mg/kg, i.p.). In the control group, power spectrum analysis revealed a prominent peak of LFP power in the theta frequency range during active exploration. Cocaine alone stimulated locomotion, but had no significant effect on the peak of the LFP power. In contrast, co-administration of low dose quinpirole with cocaine markedly altered the pattern of locomotion, from goal-directed exploratory behavior to recurrent motion resembling locomotor stereotypy. This behavioral effect was accompanied by a shift of the dominant theta power toward a significantly lower (by ∼15%) frequency. High dose quinpirole also provoked an increased locomotor activity with signs of behavioral stereotypies, and also induced a shift of the dominant oscillation frequency toward the lower range. These results demonstrate a correlation between the LFP oscillation frequency within the VTA and a qualitative aspect of locomotor behavior, perhaps due to a variable level of coherence of this region with its input or output areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effects of noradrenaline on locomotor rhythm-generating networks in the isolated neonatal rat spinal cord

    Kiehn, O; Sillar, K T; Kjaerulff, O

    1999-01-01

    locomotor-like rhythm, in which activity alternated between the left and right sides, and between rostral and caudal roots on the same side. As shown previously, stable locomotor activity could be induced by bath application of N-methyl-D-aspartate (NMDA; 4-8.5 microM) and/or serotonin (5-HT; 4-20 micro......M). NA modulated this activity by decreasing the cycle frequency and increasing the ventral root burst duration. These effects were dose dependent in the concentration range 1-5 microM. In contrast, at no concentration tested did NA have consistent effects on burst amplitudes or on the background...... activity of the ongoing rhythm. Moreover, NA did not obviously affect the left/right and rostrocaudal alternation of the NMDA/5-HT rhythm. The NMDA/5-HT locomotor rhythm sometimes displayed a time-dependent breakdown in coordination, ultimately resulting in tonic ventral root activity. However...

  1. Osteological postcranial traits in hylid anurans indicate a morphological continuum between swimming and jumping locomotor modes.

    Soliz, Mónica; Tulli, Maria J; Abdala, Virginia

    2017-03-01

    Anurans exhibit a particularly wide range of locomotor modes that result in wide variations in their skeletal structure. This article investigates the possible correlation between morphological aspects of the hylid postcranial skeleton and their different locomotor modes and habitat use. To do so, we analyzed 18 morphometric postcranial variables in 19 different anuran species representative of a variety of locomotor modes (jumper, hopper, walker, and swimmer) and habitat uses (arboreal, bush, terrestrial, and aquatic). Our results show that the evolution of the postcranial hylid skeleton cannot be explained by one single model, as for example, the girdles suggest modular evolution while the vertebral column suggests other evolutionary modules. In conjunction with data from several other studies, we were able to show a relationship between hylid morphology and habitat use; offering further evidence that the jumper/swimmer and walker/hopper locomotor modes exhibit quite similar morphological architecture. This allowed us to infer that new locomotor modalities are, in fact, generated along a morphological continuum. J. Morphol. 278:403-417, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Statistical Analysis of Zebrafish Locomotor Response.

    Liu, Yiwen; Carmer, Robert; Zhang, Gaonan; Venkatraman, Prahatha; Brown, Skye Ashton; Pang, Chi-Pui; Zhang, Mingzhi; Ma, Ping; Leung, Yuk Fai

    2015-01-01

    Zebrafish larvae display rich locomotor behaviour upon external stimulation. The movement can be simultaneously tracked from many larvae arranged in multi-well plates. The resulting time-series locomotor data have been used to reveal new insights into neurobiology and pharmacology. However, the data are of large scale, and the corresponding locomotor behavior is affected by multiple factors. These issues pose a statistical challenge for comparing larval activities. To address this gap, this study has analyzed a visually-driven locomotor behaviour named the visual motor response (VMR) by the Hotelling's T-squared test. This test is congruent with comparing locomotor profiles from a time period. Different wild-type (WT) strains were compared using the test, which shows that they responded differently to light change at different developmental stages. The performance of this test was evaluated by a power analysis, which shows that the test was sensitive for detecting differences between experimental groups with sample numbers that were commonly used in various studies. In addition, this study investigated the effects of various factors that might affect the VMR by multivariate analysis of variance (MANOVA). The results indicate that the larval activity was generally affected by stage, light stimulus, their interaction, and location in the plate. Nonetheless, different factors affected larval activity differently over time, as indicated by a dynamical analysis of the activity at each second. Intriguingly, this analysis also shows that biological and technical repeats had negligible effect on larval activity. This finding is consistent with that from the Hotelling's T-squared test, and suggests that experimental repeats can be combined to enhance statistical power. Together, these investigations have established a statistical framework for analyzing VMR data, a framework that should be generally applicable to other locomotor data with similar structure.

  3. High Throughput Measurement of Locomotor Sensitization to Volatilized Cocaine in Drosophila melanogaster.

    Filošević, Ana; Al-Samarai, Sabina; Andretić Waldowski, Rozi

    2018-01-01

    Drosophila melanogaster can be used to identify genes with novel functional roles in neuronal plasticity induced by repeated consumption of addictive drugs. Behavioral sensitization is a relatively simple behavioral output of plastic changes that occur in the brain after repeated exposures to drugs of abuse. The development of screening procedures for genes that control behavioral sensitization has stalled due to a lack of high-throughput behavioral tests that can be used in genetically tractable organism, such as Drosophila . We have developed a new behavioral test, FlyBong, which combines delivery of volatilized cocaine (vCOC) to individually housed flies with objective quantification of their locomotor activity. There are two main advantages of FlyBong: it is high-throughput and it allows for comparisons of locomotor activity of individual flies before and after single or multiple exposures. At the population level, exposure to vCOC leads to transient and concentration-dependent increase in locomotor activity, representing sensitivity to an acute dose. A second exposure leads to further increase in locomotion, representing locomotor sensitization. We validate FlyBong by showing that locomotor sensitization at either the population or individual level is absent in the mutants for circadian genes period (per) , Clock (Clk) , and cycle (cyc) . The locomotor sensitization that is present in timeless (tim) and pigment dispersing factor (pdf) mutant flies is in large part not cocaine specific, but derived from increased sensitivity to warm air. Circadian genes are not only integral part of the neural mechanism that is required for development of locomotor sensitization, but in addition, they modulate the intensity of locomotor sensitization as a function of the time of day. Motor-activating effects of cocaine are sexually dimorphic and require a functional dopaminergic transporter. FlyBong is a new and improved method for inducing and measuring locomotor sensitization

  4. High Throughput Measurement of Locomotor Sensitization to Volatilized Cocaine in Drosophila melanogaster

    Ana Filošević

    2018-02-01

    Full Text Available Drosophila melanogaster can be used to identify genes with novel functional roles in neuronal plasticity induced by repeated consumption of addictive drugs. Behavioral sensitization is a relatively simple behavioral output of plastic changes that occur in the brain after repeated exposures to drugs of abuse. The development of screening procedures for genes that control behavioral sensitization has stalled due to a lack of high-throughput behavioral tests that can be used in genetically tractable organism, such as Drosophila. We have developed a new behavioral test, FlyBong, which combines delivery of volatilized cocaine (vCOC to individually housed flies with objective quantification of their locomotor activity. There are two main advantages of FlyBong: it is high-throughput and it allows for comparisons of locomotor activity of individual flies before and after single or multiple exposures. At the population level, exposure to vCOC leads to transient and concentration-dependent increase in locomotor activity, representing sensitivity to an acute dose. A second exposure leads to further increase in locomotion, representing locomotor sensitization. We validate FlyBong by showing that locomotor sensitization at either the population or individual level is absent in the mutants for circadian genes period (per, Clock (Clk, and cycle (cyc. The locomotor sensitization that is present in timeless (tim and pigment dispersing factor (pdf mutant flies is in large part not cocaine specific, but derived from increased sensitivity to warm air. Circadian genes are not only integral part of the neural mechanism that is required for development of locomotor sensitization, but in addition, they modulate the intensity of locomotor sensitization as a function of the time of day. Motor-activating effects of cocaine are sexually dimorphic and require a functional dopaminergic transporter. FlyBong is a new and improved method for inducing and measuring locomotor

  5. Footwear and locomotor skill performance in preschoolers.

    Robinson, Leah E; Rudisill, Mary E; Weimar, Wendi H; Breslin, Casey M; Shroyer, Justin F; Morera, Maria

    2011-10-01

    The effect of footwear on locomotor skill performance was examined. 12 children (4 boys, 8 girls; M age = 56.3 mo., SD = 3.3) served as participants. Participants were randomly assigned to perform the locomotor subscale of Ulrich's Test of Gross Motor Development in two shoe conditions (Condition 1: Stride Rite athletic shoes, and Condition 2: flip flop sandals). Children scored significantly higher when wearing athletic shoes than flip-flop sandals. This finding is relevant for motor performance and safety in physical education and movement programs.

  6. Neuronal control of locomotor handedness in Drosophila.

    Buchanan, Sean M; Kain, Jamey S; de Bivort, Benjamin L

    2015-05-26

    Genetically identical individuals display variability in their physiology, morphology, and behaviors, even when reared in essentially identical environments, but there is little mechanistic understanding of the basis of such variation. Here, we investigated whether Drosophila melanogaster displays individual-to-individual variation in locomotor behaviors. We developed a new high-throughout platform capable of measuring the exploratory behavior of hundreds of individual flies simultaneously. With this approach, we find that, during exploratory walking, individual flies exhibit significant bias in their left vs. right locomotor choices, with some flies being strongly left biased or right biased. This idiosyncrasy was present in all genotypes examined, including wild-derived populations and inbred isogenic laboratory strains. The biases of individual flies persist for their lifetime and are nonheritable: i.e., mating two left-biased individuals does not yield left-biased progeny. This locomotor handedness is uncorrelated with other asymmetries, such as the handedness of gut twisting, leg-length asymmetry, and wing-folding preference. Using transgenics and mutants, we find that the magnitude of locomotor handedness is under the control of columnar neurons within the central complex, a brain region implicated in motor planning and execution. When these neurons are silenced, exploratory laterality increases, with more extreme leftiness and rightiness. This observation intriguingly implies that the brain may be able to dynamically regulate behavioral individuality.

  7. Ablation of kappa-opioid receptors from brain dopamine neurons has anxiolytic-like effects and enhances cocaine-induced plasticity.

    Van't Veer, Ashlee; Bechtholt, Anita J; Onvani, Sara; Potter, David; Wang, Yujun; Liu-Chen, Lee-Yuan; Schütz, Günther; Chartoff, Elena H; Rudolph, Uwe; Cohen, Bruce M; Carlezon, William A

    2013-07-01

    Brain kappa-opioid receptors (KORs) are implicated in states of motivation and emotion. Activation of KORs negatively regulates mesolimbic dopamine (DA) neurons, and KOR agonists produce depressive-like behavioral effects. To further evaluate how KOR function affects behavior, we developed mutant mice in which exon 3 of the KOR gene (Oprk1) was flanked with Cre-lox recombination (loxP) sites. By breeding these mice with lines that express Cre-recombinase (Cre) in early embryogenesis (EIIa-Cre) or only in DA neurons (dopamine transporter (DAT)-Cre), we developed constitutive KOR knockouts (KOR(-/-)) and conditional knockouts that lack KORs in DA-containing neurons (DAT-KOR(lox/lox)). Autoradiography demonstrated complete ablation of KOR binding in the KOR(-/-) mutants, and reduced binding in the DAT-KOR(lox/lox) mutants. Quantitative reverse transcription PCR (qPCR) studies confirmed that KOR mRNA is undetectable in the constitutive mutants and reduced in the midbrain DA systems of the conditional mutants. Behavioral characterization demonstrated that these mutant lines do not differ from controls in metrics, including hearing, vision, weight, and locomotor activity. Whereas KOR(-/-) mice appeared normal in the open field and light/dark box tests, DAT-KOR(lox/lox) mice showed reduced anxiety-like behavior, an effect that is broadly consistent with previously reported effects of KOR antagonists. Sensitization to the locomotor-stimulating effects of cocaine appeared normal in KOR(-/-) mutants, but was exaggerated in DAT-KOR(lox/lox) mutants. Increased sensitivity to cocaine in the DAT-KOR(lox/lox) mutants is consistent with a role for KORs in negative regulation of DA function, whereas the lack of differences in the KOR(-/-) mutants suggests compensatory adaptations after constitutive receptor ablation. These mouse lines may be useful in future studies of KOR function.

  8. Capacity of novelty-induced locomotor activity and the hole-board test to predict sensitivity to the conditioned rewarding effects of cocaine.

    Arenas, M Carmen; Daza-Losada, Manuel; Vidal-Infer, Antonio; Aguilar, Maria A; Miñarro, José; Rodríguez-Arias, Marta

    2014-06-22

    Novelty-seeking in rodents, defined as enhanced specific exploration of novel situations, is considered to predict the response of animals to drugs of abuse and, thus, allow "drug-vulnerable" individuals to be identified. The main objective of this study was to assess the predictive ability of two well-known paradigms of the novelty-seeking trait - novelty-induced locomotor activity (which distinguishes High- and Low-Responder mice, depending on their motor activity) and the hole-board test (which determines High- and Low-Novelty Seeker mice depending on the number of head dips they perform) - to identify subjects that would subsequently be more sensitive to the conditioned rewarding effects of cocaine in a population of young adult (PND 56) and adolescent (PND 35) OF1 mice of both sexes. Conditioned place preference (CPP), a useful tool for evaluating the sensitivity of individuals to the incentive properties of addictive drugs, was induced with a sub-threshold dose of cocaine (1 mg/kg, i.p.). Our results showed that novelty-induced motor activity had a greater predictive capacity to identify "vulnerable-drug" individuals among young-adult mice (PND 56), while the hole-board test was more effective in adolescents (PND 35). High-NR young-adults, which presented higher motor activity in the first ten minutes of the test (novelty-reactivity), were 3.9 times more likely to develop cocaine-induced CPP than Low-NR young-adults. When total activity (1h) was evaluated (novelty-habituation), only High-R (novelty-non-habituating) young-adult male and Low-R (novelty-habituating) female mice produced a high conditioning score. However, only High-Novelty Seeker male and female adolescents and Low-Novelty Seeker female young-adult animals (according to the hole-board test), acquired cocaine-induced CPP. These findings should contribute to the development of screening methods for identifying at-risk human drug users and prevention strategies for those with specific

  9. Development of Testing Methodologies to Evaluate Postflight Locomotor Performance

    Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.; Bloomberg, J. J.

    2006-01-01

    Crewmembers experience locomotor and postural instabilities during ambulation on Earth following their return from space flight. Gait training programs designed to facilitate recovery of locomotor function following a transition to a gravitational environment need to be accompanied by relevant assessment methodologies to evaluate their efficacy. The goal of this paper is to demonstrate the operational validity of two tests of locomotor function that were used to evaluate performance after long duration space flight missions on the International Space Station (ISS).

  10. Acute Cocaine Induces Fast Activation of D1 Receptor and Progressive Deactivation of D2 Receptor Strial Neurons: In Vivo Optical Microprobe [Ca(superscript)2+]subscript)i Imaging

    Du, C.; Luo, Z.; Volkow, N.D.; Heintz, N.; Pan, Y.; Du, C.

    2011-09-14

    Cocaine induces fast dopamine increases in brain striatal regions, which are recognized to underlie its rewarding effects. Both dopamine D1 and D2 receptors are involved in cocaine's reward but the dynamic downstream consequences of cocaine effects in striatum are not fully understood. Here we used transgenic mice expressing EGFP under the control of either the D1 receptor (D1R) or the D2 receptor (D2R) gene and microprobe optical imaging to assess the dynamic changes in intracellular calcium ([Ca{sup 2+}]{sub i} ) responses (used as marker of neuronal activation) to acute cocaine in vivo separately for D1R- versus D2R-expressing neurons in striatum. Acute cocaine (8 mg/kg, i.p.) rapidly increased [Ca{sup 2+}]{sub i} in D1R-expressing neurons (10.6 {+-} 3.2%) in striatum within 8.3 {+-} 2.3 min after cocaine administration after which the increases plateaued; these fast [Ca{sup 2+}]{sub i} increases were blocked by pretreatment with a D1R antagonist (SCH23390). In contrast, cocaine induced progressive decreases in [Ca{sup 2+}]{sub i} in D2R-expressing neurons (10.4 {+-} 5.8%) continuously throughout the 30 min that followed cocaine administration; these slower [Ca{sup 2+}]{sub i} decreases were blocked by pretreatment with a D2R antagonist (raclopride). Since activation of striatal D1R-expressing neurons (direct-pathway) enhances cocaine reward, whereas activation of D2R expressing neurons suppresses it (indirect-pathway) (Lobo et al., 2010), this suggests that cocaine's rewarding effects entail both its fast stimulation ofD1R (resulting in abrupt activation of direct-pathway neurons) and a slower stimulation of D2R (resulting in longer-lasting deactivation of indirect-pathway neurons). We also provide direct in vivo evidence of D2R and D1R interactions in the striatal responses to acute cocaine administration.

  11. Neuropharmacology of light-induced locomotor activation.

    Amato, Davide; Pum, Martin E; Groos, Dominik; Lauber, Andrea C; Huston, Joseph P; Carey, Robert J; de Souza Silva, Maria A; Müller, Christian P

    2015-08-01

    Presentation of non-aversive light stimuli for several seconds was found to reliably induce locomotor activation and exploratory-like activity. Light-induced locomotor activity (LIA) can be considered a convenient simple model to study sensory-motor activation. LIA was previously shown to coincide with serotonergic and dopaminergic activation in specific cortical areas in freely moving and anesthetized animals. In the present study we explore the neuropharmacology of LIA using a receptor antagonist/agonist approach in rats. The non-selective 5-HT2-receptor antagonist ritanserin (1.5-6 mg/kg, i.p.) dose-dependently reduced LIA. Selective antagonism of either the 5-HT2A-receptor by MDL 11,939 (0.1-0.4 mg/kg, i.p.), or the 5-HT2C-receptor by SDZ SER 082 (0.125-0.5 mg/kg, i.p.), alone or in combination, had no significant influence on LIA. Also the selective 5-HT1A-receptor antagonist, WAY 100635 (0.4 mg/kg, i.p.) did not affect LIA. Neither did the preferential dopamine D2-receptor antagonist, haloperidol (0.025-0.1 mg/kg, i.p.) nor the D2/D3-receptor agonist, quinpirole (0.025-0.5 mg/kg, i.p.) affect the expression of LIA. However, blocking the glutamatergic NMDA-receptor with phencyclidine (PCP, 1.5-6 mg/kg, i.p.) dose-dependently reduced LIA. This effect was also observed with ketamine (10 mg/kg, i.p.). These findings suggest that serotonin and dopamine receptors abundantly expressed in the cortex do not mediate light-stimulus triggered locomotor activity. PCP and ketamine effects, however, suggest an important role of NMDA receptors in LIA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The precision of locomotor odometry in humans.

    Durgin, Frank H; Akagi, Mikio; Gallistel, Charles R; Haiken, Woody

    2009-03-01

    Two experiments measured the human ability to reproduce locomotor distances of 4.6-100 m without visual feedback and compared distance production with time production. Subjects were not permitted to count steps. It was found that the precision of human odometry follows Weber's law that variability is proportional to distance. The coefficients of variation for distance production were much lower than those measured for time production for similar durations. Gait parameters recorded during the task (average step length and step frequency) were found to be even less variable suggesting that step integration could be the basis for non-visual human odometry.

  13. Rapid limb-specific modulation of vestibular contributions to ankle muscle activity during locomotion

    Forbes, Patrick A.; Vlutters, Mark; Dakin, Christopher J.; van der Kooij, Herman; Blouin, Jean Sébastien; Schouten, Alfred C.

    2017-01-01

    Key points: -The vestibular influence on human walking is phase-dependent and modulated across both limbs with changes in locomotor velocity and cadence. -Using a split-belt treadmill, we show that vestibular influence on locomotor activity is modulated independently in each limb. -The independent

  14. The evolution of locomotor rhythmicity in tetrapods.

    Ross, Callum F; Blob, Richard W; Carrier, David R; Daley, Monica A; Deban, Stephen M; Demes, Brigitte; Gripper, Janaya L; Iriarte-Diaz, Jose; Kilbourne, Brandon M; Landberg, Tobias; Polk, John D; Schilling, Nadja; Vanhooydonck, Bieke

    2013-04-01

    Differences in rhythmicity (relative variance in cycle period) among mammal, fish, and lizard feeding systems have been hypothesized to be associated with differences in their sensorimotor control systems. We tested this hypothesis by examining whether the locomotion of tachymetabolic tetrapods (birds and mammals) is more rhythmic than that of bradymetabolic tetrapods (lizards, alligators, turtles, salamanders). Species averages of intraindividual coefficients of variation in cycle period were compared while controlling for gait and substrate. Variance in locomotor cycle periods is significantly lower in tachymetabolic than in bradymetabolic animals for datasets that include treadmill locomotion, non-treadmill locomotion, or both. When phylogenetic relationships are taken into account the pooled analyses remain significant, whereas the non-treadmill and the treadmill analyses become nonsignificant. The co-occurrence of relatively high rhythmicity in both feeding and locomotor systems of tachymetabolic tetrapods suggests that the anatomical substrate of rhythmicity is in the motor control system, not in the musculoskeletal components. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  15. The effects of exercise on cocaine self-administration, food-maintained responding, and locomotor activity in female rats: importance of the temporal relationship between physical activity and initial drug exposure.

    Smith, Mark A; Witte, Maryam A

    2012-12-01

    Previous studies have reported that exercise decreases cocaine self-administration in rats with long-term access (8+ weeks) to activity wheels in the home cage. The purpose of this study was to (a) examine the importance of the temporal relationship between physical activity and initial drug exposure, (b) determine the effects of exercise on responding maintained by a nondrug reinforcer (i.e., food), and (c) investigate the effects of exercise on cocaine-induced increases in locomotor activity. To this end, female rats were obtained at weaning and divided into 4 groups: (a) EXE-SED rats were housed in exercise cages for 6 weeks and then transferred to sedentary cages after the first day of behavioral testing; (b) SED-EXE rats were housed in sedentary cages for 6 weeks and then transferred to exercise cages after the first day of behavioral testing; (c) SED-SED rats remained in sedentary cages for the duration of the study; and (d) EXE-EXE rats remained in exercise cages for the duration of the study. Relative to the sedentary group (SED-SED), exercise reduced cocaine self-administration in both groups with access to activity wheels after initial drug exposure (EXE-EXE, SED-EXE) but did not reduce cocaine self-administration in the group with access to activity wheels only before drug exposure (EXE-SED). Exercise also decreased the effects of cocaine on locomotor activity but did not reduce responding maintained by food. These data suggest that exercise may reduce cocaine use in drug-experienced individuals with no prior history of aerobic activity without decreasing other types of positively reinforced behaviors.

  16. Spontaneous locomotor activity correlates with the degranulation of mast cells in the meninges rather than in the thalamus: disruptive effect of cocaine.

    Larson, Alice A; Thomas, Mark J; McElhose, Alex; Kovács, Katalin J

    2011-06-13

    Mast cells are located in the central nervous system (CNS) of many mammals and stress induces their degranulation. We postulated that mast cells are associated with wakefulness and stimulatory tone in the CNS, as reflected by spontaneous motor activity. Because stress also precipitates drug-seeking behavior in cocaine addicts, we also postulated that cocaine manifests its effects through this relationship. We investigated the influence of single and repeated injections of cocaine on circulating corticosterone, motor activity and degranulation of mast cells in both the thalamus and meninges of mice. Mice were subjected to 5 consecutive days of cocaine or saline followed by a single injection of cocaine or saline 11 days later. Spontaneous locomotor activity was measure for 1h after the final injection before death. Neither a single injection nor prior treatment with cocaine increased motor activity compared to saline-injected controls, however, repeated administration of cocaine induced a significant sensitization to its behavioral effect when delivered 11 days later. In mice that received only saline, motor activity correlated positively with mast cell degranulation in the meninges but not in the thalamus. Cocaine, regardless of the treatment schedule, disrupted this correlation. The concentration of corticosterone did not differ amongst groups and did not correlate with either behavior or mast cell parameters in any group. The correlation between behavioral activity and the mast cell degranulation in the meninges suggests that these parameters are linked. The disruptive effect of cocaine on this relationship indicates a role downstream from mast cells in the regulation of motor activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Catalase inhibition in the Arcuate nucleus blocks ethanol effects on the locomotor activity of rats.

    Sanchis-Segura, Carles; Correa, Mercé; Miquel, Marta; Aragon, Carlos M G

    2005-03-07

    Previous studies have demonstrated that there is a bidirectional modulation of ethanol-induced locomotion produced by drugs that regulate brain catalase activity. In the present study we have assessed the effect in rats of intraperitoneal, intraventricular or intracraneal administration of the catalase inhibitor sodium azide in the locomotor changes observed after ethanol (1 g/kg) administration. Our results show that sodium azide prevents the effects of ethanol in rats locomotion not only when sodium azide was systemically administered but also when it was intraventricularly injected, then confirming that the interaction between catalase and ethanol takes place in Central Nervous System (CNS). Even more interestingly, the same results were observed when sodium azide administration was restricted to the hypothalamic Arcuate nucleus (ARC), a brain region which has one of the highest levels of expression of catalase. Therefore, the results of the present study not only confirm a role for brain catalase in the mediation of ethanol-induced locomotor changes in rodents but also point to the ARC as a major neuroanatomical location for this interaction. These results are in agreement with our reports showing that ethanol-induced locomotor changes are clearly dependent of the ARC integrity and, especially of the POMc-synthesising neurons of this nucleus. According to these data we propose a model in which ethanol oxidation via catalase could produce acetaldehyde into the ARC and to promote a release of beta-endorphins that would activate opioid receptors to produce locomotion and other ethanol-induced neurobehavioural changes.

  18. PROBLEMAS LOCOMOTORES EM FRANGOS DE CORTE - REVISÃO. / LOCOMOTOR PROBLEMS IN BROILER CHICKENS - A REVIEW.

    IBIARA CORREIA DE LIMA ALMEIDA PAZ

    2008-12-01

    Full Text Available O bem estar animal é, sem dúvida, um dos pontos em que os produtores de aves devem se atentar para conseguir melhor rentabilidade e colocação no mercado externo. No entanto, é necessário ter uma ampla idéia de que alguns pontos impostos por mercados importadores, muitas vezes não tem fundamento científico e tratam-se mais de barreiras não tarifárias que de problemas de produção propriamente ditos. Dentre os vários fatores que afetam o bem estar animal pode-se destacar a incidência de problemas locomotores, principalmente em animais confinados. Estes distúrbios podem acarretar em perdas de até 6% em lotes comercias de frangos de corte, além de outras perdas não mensuráveis em linhas de abate, por fraturas e hematomas. Existem diversas metodologias para diagnosticar problemas locomotores, entretanto, a mais difundida na indústria avícola é o Gait Score, por sua facilidade de aplicação e por englobar os diferentes tipos de problemas locomotores. Sabe-se, contudo que esta metodologia é bastante subjetiva e pode inferir  em  diferentes  níveis  de  avaliação  dependendo  do método  utilizado. Os  problemas locomotores devem ser prevenidos já que depois de estabelecidos as perdas são inevitáveis.

  19. Locomotor sequence learning in visually guided walking

    Choi, Julia T; Jensen, Peter; Nielsen, Jens Bo

    2016-01-01

    walking. In addition, we determined how age (i.e., healthy young adults vs. children) and biomechanical factors (i.e., walking speed) affected the rate and magnitude of locomotor sequence learning. The results showed that healthy young adults (age 24 ± 5 years, N = 20) could learn a specific sequence...... of step lengths over 300 training steps. Younger children (age 6-10 years, N = 8) have lower baseline performance, but their magnitude and rate of sequence learning was the same compared to older children (11-16 years, N = 10) and healthy adults. In addition, learning capacity may be more limited...... to modify step length from one trial to the next. Our sequence learning paradigm is derived from the serial reaction-time (SRT) task that has been used in upper limb studies. Both random and ordered sequences of step lengths were used to measure sequence-specific and sequence non-specific learning during...

  20. Integrated Locomotor Function Tests for Countermeasure Evaluation

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Landsness, E. C.; Black, F. O.

    2005-01-01

    Following spaceflight crewmembers experience locomotor dysfunction due to inflight adaptive alterations in sensorimotor function. Countermeasures designed to mitigate these postflight gait alterations need to be assessed with a new generation of tests that evaluate the interaction of various sensorimotor sub-systems central to locomotor control. The goal of the present study was to develop new functional tests of locomotor control that could be used to test the efficacy of countermeasures. These tests were designed to simultaneously examine the function of multiple sensorimotor systems underlying the control of locomotion and be operationally relevant to the astronaut population. Traditionally, gaze stabilization has been studied almost exclusively in seated subjects performing target acquisition tasks requiring only the involvement of coordinated eye-head movements. However, activities like walking involve full-body movement and require coordination between lower limbs and the eye-head-trunk complex to achieve stabilized gaze during locomotion. Therefore the first goal of this study was to determine how the multiple, interdependent, full-body sensorimotor gaze stabilization subsystems are functionally coordinated during locomotion. In an earlier study we investigated how alteration in gaze tasking changes full-body locomotor control strategies. Subjects walked on a treadmill and either focused on a central point target or read numeral characters. We measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. In comparison to the point target fixation condition, the results of the number reading task showed that compensatory head pitch movements increased, peak head acceleration was reduced and knee flexion at heel-strike was increased. In a more recent study we investigated the

  1. Effect of thermal acclimation on locomotor energetics and locomotor performance in a lungless salamander, Desmognathus ochrophaeus.

    Feder, M E

    1986-03-01

    To determine the effects of thermal acclimation upon locomotor performance and the rate of oxygen consumption (MO2) during activity, small (less than 3 g), lungless salamanders, Desmognathus ochrophaeus Cope, were acclimated to three temperatures (5, 13 and 21 degrees C) and exercised at various controlled speeds within an exercise wheel while their MO2 was measured. MO2 increased with speed at low speeds (less than 14 cm min-1). Although animals could sustain greater speeds, MO2 did not increase further. These small, exclusively skin-breathing salamanders could increase their MO2 9-11 times during exercise and could sustain nearly half of the oxygen flux expected across a similar surface area of the mammalian lung. However, their maximum aerobic speed was remarkably slow (14 cm min-1) and their net cost of transport remarkably large (15-17 ml O2 g-1 km-1). Thermal acclimation affected MO2 during activity, the maximum sustainable speed and locomotor stamina in different ways. During exercise at 13 degrees C, cold-acclimated animals had a significantly greater MO2 than warm-acclimated animals, but did not differ in stamina or the maximum sustainable speed. During exercise at 21 degrees C, cold acclimation did not affect the MO2 significantly, but it decreased the stamina and increased the rate of lactate accumulation. Thus, these results suggest that thermal acclimation of the MO2 is not tightly coupled to thermal acclimation of locomotor performance in salamanders.

  2. The H2O2 scavenger ebselen decreases ethanol-induced locomotor stimulation in mice.

    Ledesma, Juan Carlos; Font, Laura; Aragon, Carlos M G

    2012-07-01

    In the brain, the enzyme catalase by reacting with H(2)O(2) forms Compound I (catalase-H(2)O(2) system), which is the main system of central ethanol metabolism to acetaldehyde. Previous research has demonstrated that acetaldehyde derived from central-ethanol metabolism mediates some of the psychopharmacological effects produced by ethanol. Manipulations that modulate central catalase activity or sequester acetaldehyde after ethanol administration modify the stimulant effects induced by ethanol in mice. However, the role of H(2)O(2) in the behavioral effects caused by ethanol has not been clearly addressed. The present study investigated the effects of ebselen, an H(2)O(2) scavenger, on ethanol-induced locomotion. Swiss RjOrl mice were pre-treated with ebselen (0-50mg/kg) intraperitoneally (IP) prior to administration of ethanol (0-3.75g/kg; IP). In another experiment, animals were pre-treated with ebselen (0 or 25mg/kg; IP) before caffeine (15mg/kg; IP), amphetamine (2mg/kg; IP) or cocaine (10mg/kg; IP) administration. Following these treatments, animals were placed in an open field to measure their locomotor activity. Additionally, we evaluated the effect of ebselen on the H(2)O(2)-mediated inactivation of brain catalase activity by 3-amino-1,2,4-triazole (AT). Ebselen selectively prevented ethanol-induced locomotor stimulation without altering the baseline activity or the locomotor stimulating effects caused by caffeine, amphetamine and cocaine. Ebselen reduced the ability of AT to inhibit brain catalase activity. Taken together, these data suggest that a decline in H(2)O(2) levels might result in a reduction of the ethanol locomotor-stimulating effects, indicating a possible role for H(2)O(2) in some of the psychopharmacological effects produced by ethanol. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.

    DiGiovanna, Jack; Dominici, Nadia; Friedli, Lucia; Rigosa, Jacopo; Duis, Simone; Kreider, Julie; Beauparlant, Janine; van den Brand, Rubia; Schieppati, Marco; Micera, Silvestro; Courtine, Grégoire

    2016-10-05

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures. We found that the activation of hindlimb motor cortex preceded gait initiation. During overground locomotion, the motor cortex exhibited consistent neuronal population responses that were synchronized with the spatiotemporal activation of hindlimb motoneurons. Behaviors requiring enhanced muscle activity or skilled paw placement correlated with substantial adjustment in neuronal population responses. In contrast, all rats exhibited a reduction of cortical activity during more automated behavior, such as stepping on a treadmill. Despite the facultative role of the motor cortex in the production of locomotion in rats, these results show that the encoding of hindlimb features in motor cortex dynamics is comparable in rats and cats. However, the extent of motor cortex modulations appears linked to the degree of volitional engagement and complexity of the task, reemphasizing the importance of goal-directed behaviors for motor control studies, rehabilitation, and neuroprosthetics. We mapped the neuronal population responses in the hindlimb motor cortex to hindlimb kinematics and hindlimb muscle synergies across a spectrum of natural locomotion behaviors. Robust task-specific neuronal population responses revealed that the rat motor cortex displays similar modulation as other mammals during locomotion. However, the reduced motor cortex activity during more automated behaviors suggests a relationship between the degree of engagement and task complexity. This relationship

  4. Integration of Descending Command Systems for the Generation of Context-Specific Locomotor Behaviors

    Linda H. Kim

    2017-10-01

    Full Text Available Over the past decade there has been a renaissance in our understanding of spinal cord circuits; new technologies are beginning to provide key insights into descending circuits which project onto spinal cord central pattern generators. By integrating work from both the locomotor and animal behavioral fields, we can now examine context-specific control of locomotion, with an emphasis on descending modulation arising from various regions of the brainstem. Here we examine approach and avoidance behaviors and the circuits that lead to the production and arrest of locomotion.

  5. Reliability review of the remote tool delivery system locomotor

    Chesser, J.B.

    1999-04-01

    The locomotor being built by RedZone Robotics is designed to serve as a remote tool delivery (RID) system for waste retrieval, tank cleaning, viewing, and inspection inside the high-level waste tanks 8D-1 and 8D-2 at West Valley Nuclear Services (WVNS). The RTD systm is to be deployed through a tank riser. The locomotor portion of the RTD system is designed to be inserted into the tank and is to be capable of moving around the tank by supporting itself and moving on the tank internal structural columns. The locomotor will serve as a mounting platform for a dexterous manipulator arm. The complete RTD system consists of the locomotor, dexterous manipulator arm, cameras, lights, cables, hoses, cable/hose management system, power supply, and operator control station.

  6. Locomotor differences in Mongolian gerbils with the effects of ...

    Locomotor differences in Mongolian gerbils with the effects of midazolam ... African Health Sciences ... We subjected the gerbils to an adapted “Open Field” to determine the possible effects on central nervous system of midazolam. Gerbils ...

  7. Hesperidin effects on behavior and locomotor activity of diabetic ...

    Tuoyo Aghomotsegin

    2016-11-09

    Nov 9, 2016 ... Author(s) agree that this article remains permanently open access under the terms of the Creative ... diabetes in animals and patients with type1 (Northam et ... measured were, locomotor activities, standing position, the time of.

  8. The anatomy and physiology of the locomotor system.

    Farley, Alistair; McLafferty, Ella; Hendry, Charles

    Mobilisation is one of the activities of living. The term locomotor system refers to those body tissues and organs responsible for movement. Nurses and healthcare workers should be familiar with the body structures that enable mobilisation to assist those in their care with this activity. This article outlines the structure and function of the locomotor system, including the skeleton, joints, muscles and muscle attachments. Two common bone disorders, osteoporosis and osteoarthritis, are also considered.

  9. Limitations to the Generality of Cocaine Locomotor Sensitization

    Marusich, Julie A.; Branch, Marc N.; Dallery, Jesse

    2008-01-01

    Repeated exposure to cocaine often leads to tolerance to effects on operant behavior, whereas sensitization often develops to effects on locomotor activity. The purpose of the present set of experiments was to examine if locomotor sensitization to cocaine would develop in the presence or absence of an operant contingency in rats. In Experiment 1, rats lever pressed on an FR schedule of reinforcement, and were administered chronic cocaine. Tolerance to effects of cocaine on lever pressing deve...

  10. Modular Diversification of the Locomotor System in Damselfishes (Pomacentridae)

    Aguilar-Medrano, Rosalia; Frederich, Bruno; Barber, Paul H.

    2016-01-01

    As fish move and interact with their aquatic environment by swimming, small morphological variations of the locomotor system can have profound implications on fitness. Damselfishes (Pomacentridae) have inhabited coral reef ecosystems for more than 50 million years. As such, habitat preferences and behavior could significantly constrain the morphology and evolvability of the locomotor system. To test this hypothesis, we used phylogenetic comparative methods on morphometric, ecological and beha...

  11. Conditioned place preference and locomotor activity in response to methylphenidate, amphetamine and cocaine in mice lacking dopamine D4 receptors

    Thanos, P.K.; Thanos, P.K.; Bermeo, C.; Rubinstein, M.; Suchland, K.L.; Wang, G.-J.; Grandy, D.K.; Volkow, N.D.

    2010-05-01

    Methylphenidate (MP) and amphetamine (AMPH) are the most frequently prescribed medications for the treatment of attention-deficit/hyperactivity disorder (ADHD). Both drugs are believed to derive their therapeutic benefit by virtue of their dopamine (DA)-enhancing effects, yet an explanation for the observation that some patients with ADHD respond well to one medication but not to the other remains elusive. The dopaminergic effects of MP and AMPH are also thought to underlie their reinforcing properties and ultimately their abuse. Polymorphisms in the human gene that codes for the DA D4 receptor (D4R) have been repeatedly associated with ADHD and may correlate with the therapeutic as well as the reinforcing effects of responses to these psychostimulant medications. Conditioned place preference (CPP) for MP, AMPH and cocaine were evaluated in wild-type (WT) mice and their genetically engineered littermates, congenic on the C57Bl/6J background, that completely lack D4Rs (knockout or KO). In addition, the locomotor activity in these mice during the conditioning phase of CPP was tested in the CPP chambers. D4 receptor KO and WT mice showed CPP and increased locomotor activity in response to each of the three psychostimulants tested. D4R differentially modulates the CPP responses to MP, AMPH and cocaine. While the D4R genotype affected CPP responses to MP (high dose only) and AMPH (low dose only) it had no effects on cocaine. Inasmuch as CPP is considered an indicator of sensitivity to reinforcing responses to drugs these data suggest a significant but limited role of D4Rs in modulating conditioning responses to MP and AMPH. In the locomotor test, D4 receptor KO mice displayed attenuated increases in AMPH-induced locomotor activity whereas responses to cocaine and MP did not differ. These results suggest distinct mechanisms for D4 receptor modulation of the reinforcing (perhaps via attenuating dopaminergic signalling) and locomotor properties of these stimulant drugs

  12. Adaptive locomotor behavior in larval zebrafish.

    Portugues, Ruben; Engert, Florian

    2011-01-01

    In this study we report that larval zebrafish display adaptive locomotor output that can be driven by unexpected visual feedback. We develop a new assay that addresses visuomotor integration in restrained larval zebrafish. The assay involves a closed-loop environment in which the visual feedback a larva receives depends on its own motor output in a way that resembles freely swimming conditions. The experimenter can control the gain of this closed feedback loop, so that following a given motor output the larva experiences more or less visual feedback depending on whether the gain is high or low. We show that increases and decreases in this gain setting result in adaptive changes in behavior that lead to a generalized decrease or increase of motor output, respectively. Our behavioral analysis shows that both the duration and tail beat frequency of individual swim bouts can be modified, as well as the frequency with which bouts are elicited. These changes can be implemented rapidly, following an exposure to a new gain of just 175 ms. In addition, modifications in some behavioral parameters accumulate over tens of seconds and effects last for at least 30 s from trial to trial. These results suggest that larvae establish an internal representation of the visual feedback expected from a given motor output and that the behavioral modifications are driven by an error signal that arises from the discrepancy between this expectation and the actual visual feedback. The assay we develop presents a unique possibility for studying visuomotor integration using imaging techniques available in the larval zebrafish.

  13. β-Adrenergic Receptor Mediation of Stress-Induced Reinstatement of Extinguished Cocaine-Induced Conditioned Place Preference in Mice: Roles for β1 and β2 Adrenergic Receptors

    Vranjkovic, Oliver; Hang, Shona; Baker, David A.

    2012-01-01

    Stress can trigger the relapse of drug use in recovering cocaine addicts and reinstatement in rodent models through mechanisms that may involve norepinephrine release and β-adrenergic receptor activation. The present study examined the role of β-adrenergic receptor subtypes in the stressor-induced reinstatement of extinguished cocaine-induced (15 mg/kg i.p.) conditioned place preference in mice. Forced swim (6 min at 22°C) stress or activation of central noradrenergic neurotransmission by administration of the selective α2 adrenergic receptor antagonist 2-[(4,5-dihydro-1H-imidazol-2-yl)methyl]-2,3-dihydro-1-methyl-1H-isoindole (BRL-44,408) (10 mg/kg i.p.) induced reinstatement in wild-type, but not β- adrenergic receptor-deficient Adrb1/Adrb2 double-knockout, mice. In contrast, cocaine administration (15 mg/kg i.p.) resulted in reinstatement in both wild-type and β-adrenergic receptor knockout mice. Stress-induced reinstatement probably involved β2 adrenergic receptors. The β2 adrenergic receptor antagonist -(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol (ICI-118,551) (1 or 2 mg/kg i.p.) blocked reinstatement by forced swim or BRL-44,408, whereas administration of the nonselective β-adrenergic receptor agonist isoproterenol (2 or 4 mg/kg i.p.) or the β2 adrenergic receptor-selective agonist clenbuterol (2 or 4 mg/kg i.p.) induced reinstatement. Forced swim-induced, but not BRL-44,408-induced, reinstatement was also blocked by a high (20 mg/kg) but not low (10 mg/kg) dose of the β1 adrenergic receptor antagonist betaxolol, and isoproterenol-induced reinstatement was blocked by pretreatment with either ICI-118,551 or betaxolol, suggesting a potential cooperative role for β1 and β2 adrenergic receptors in stress-induced reinstatement. Overall, these findings suggest that targeting β-adrenergic receptors may represent a promising pharmacotherapeutic strategy for preventing drug relapse, particularly in cocaine addicts whose drug use is stress

  14. N-Acetylcysteine Reverses Cocaine Induced Metaplasticity

    Moussawi, Khaled; Pacchioni, Alejandra; Moran, Megan; Olive, M. Foster; Gass, Justin T.; Lavin, Antonieta; Kalivas, Peter W

    2009-01-01

    Cocaine addiction is characterized by an impaired ability to develop adaptive behaviors that can compete with cocaine seeking, implying a deficit in the ability to induce plasticity in cortico-accumbens circuitry critical for regulating motivated behavior. RWe found that rats withdrawn from cocaine self-administration had a marked in vivo deficit in the ability to develop long-term potentation (LTP) and depression (LTD) in the nucleus accumbens core subregion following stimulation of prefrontal cortex. N-acetylcysteine treatment prevents relapse in animal models and craving in humans by activating cystine-glutamate exchange and thereby stimulating extrasynaptic metabotropic glutamate receptors (mGluR). N-acetylcysteine treatment restored the ability to induce LTP and LTD by indirectly stimulating mGluR2/3 and mGluR5, respectively. Cocaine self-administration induces metaplasticity that inhibits the further induction of synaptic plasticity, and this impairment can be reversed by N-acetylcysteine, a drug that also prevents relapse. PMID:19136971

  15. N-Acetylcysteine Reverses Cocaine Induced Metaplasticity

    Moussawi, Khaled; Pacchioni, Alejandra; Moran, Megan; Olive, M. Foster; Gass, Justin T.; Lavin, Antonieta; Kalivas, Peter W

    2009-01-01

    Cocaine addiction is characterized by an impaired ability to develop adaptive behaviors that can compete with cocaine seeking, implying a deficit in the ability to induce plasticity in cortico-accumbens circuitry critical for regulating motivated behavior. RWe found that rats withdrawn from cocaine self-administration had a marked in vivo deficit in the ability to develop long-term potentation (LTP) and depression (LTD) in the nucleus accumbens core subregion following stimulation of prefront...

  16. Quaternary naltrexone reverses radiogenic and morphine-induced locomotor hyperactivity

    Mickley, G.A.; Stevens, K.E.; Galbraith, J.A.; White, G.A.; Gibbs, G.L.

    1984-04-01

    The present study attempted to determine the relative role of the peripheral and central nervous system in the production of morphine-induced or radiation-induced locomotor hyperactivity of the mouse. Toward this end, we used a quaternary derivative of an opiate antagonist (naltrexone methobromide), which presumably does not cross the blood-brain barrier. Quaternary naltrexone was used to challenge the stereotypic locomotor response observed in these mice after either an i.p. injection of morphine or exposure to 1500 rads /sup 60/Co. The quaternary derivative of naltrexone reversed the locomotor hyperactivity normally observed in the C57BL/6J mouse after an injection of morphine. It also significantly attenuated radiation-induced locomotion. The data reported here support the hypothesis of endorphin involvement in radiation-induced and radiogenic behaviors. However, these conclusions are contingent upon further research which more fully evaluates naltrexone methobromide's capacity to cross the blood-brain barrier.

  17. Delineating the Diversity of Spinal Interneurons in Locomotor Circuits.

    Gosgnach, Simon; Bikoff, Jay B; Dougherty, Kimberly J; El Manira, Abdeljabbar; Lanuza, Guillermo M; Zhang, Ying

    2017-11-08

    Locomotion is common to all animals and is essential for survival. Neural circuits located in the spinal cord have been shown to be necessary and sufficient for the generation and control of the basic locomotor rhythm by activating muscles on either side of the body in a specific sequence. Activity in these neural circuits determines the speed, gait pattern, and direction of movement, so the specific locomotor pattern generated relies on the diversity of the neurons within spinal locomotor circuits. Here, we review findings demonstrating that developmental genetics can be used to identify populations of neurons that comprise these circuits and focus on recent work indicating that many of these populations can be further subdivided into distinct subtypes, with each likely to play complementary functions during locomotion. Finally, we discuss data describing the manner in which these populations interact with each other to produce efficient, task-dependent locomotion. Copyright © 2017 the authors 0270-6474/17/3710835-07$15.00/0.

  18. Locomotor adaptability in persons with unilateral transtibial amputation.

    Darter, Benjamin J; Bastian, Amy J; Wolf, Erik J; Husson, Elizabeth M; Labrecque, Bethany A; Hendershot, Brad D

    2017-01-01

    Locomotor adaptation enables walkers to modify strategies when faced with challenging walking conditions. While a variety of neurological injuries can impair locomotor adaptability, the effect of a lower extremity amputation on adaptability is poorly understood. Determine if locomotor adaptability is impaired in persons with unilateral transtibial amputation (TTA). The locomotor adaptability of 10 persons with a TTA and 8 persons without an amputation was tested while walking on a split-belt treadmill with the parallel belts running at the same (tied) or different (split) speeds. In the split condition, participants walked for 15 minutes with the respective belts moving at 0.5 m/s and 1.5 m/s. Temporal spatial symmetry measures were used to evaluate reactive accommodations to the perturbation, and the adaptive/de-adaptive response. Persons with TTA and the reference group of persons without amputation both demonstrated highly symmetric walking at baseline. During the split adaptation and tied post-adaptation walking both groups responded with the expected reactive accommodations. Likewise, adaptive and de-adaptive responses were observed. The magnitude and rate of change in the adaptive and de-adaptive responses were similar for persons with TTA and those without an amputation. Furthermore, adaptability was no different based on belt assignment for the prosthetic limb during split adaptation walking. Reactive changes and locomotor adaptation in response to a challenging and novel walking condition were similar in persons with TTA to those without an amputation. Results suggest persons with TTA have the capacity to modify locomotor strategies to meet the demands of most walking conditions despite challenges imposed by an amputation and use of a prosthetic limb.

  19. Anatomía del Aparato Locomotor, 2010-11

    Juanes Méndez, Juan Antonio

    2010-01-01

    I. Materiales de clase: 1.Sistema Oseo. Las Articulaciones: definición, clasificaciones; 2.Esqueleto Axial; 3.Esqueleto Apendicular; 4. Organización del sistema nervioso periférico. Inervación del Aparato Locomotor; 5. Sistema muscular. II. Bibliografía y atlas Establecer la correlación morfofuncional del aparato locomotor necesaria para la deducción deficitaria derivada de las alteraciones de la dinámica osteoarticular. Esta asignatura se imparte en el primer curso del Grado en Terapia Oc...

  20. Activation of the GABAB receptor prevents nicotine-induced locomotor stimulation in mice

    Carla eLobina

    2011-12-01

    Full Text Available Recent studies demonstrated that activation of the GABAB receptor, either by means of orthosteric agonists or positive allosteric modulators (PAMs, inhibited different nicotine-related behaviors, including intravenous self-administration and conditioned place preference, in rodents. The present study investigated whether the anti-nicotine effects of the GABAB receptor agonist, baclofen, and GABAB PAMs, CGP7930 and GS39783, extend to nicotine stimulant effects. To this end, CD1 mice were initially treated with baclofen (0, 1.25, and 2.5 mg/kg, i.p., CGP7930 (0, 25, and 50 mg/kg, i.g., or GS39783 (0, 25, and 50 mg/kg, i.g., then treated with nicotine (0 and 0.05 mg/kg, s.c., and finally exposed to an automated apparatus for recording of locomotor activity. Pretreatment with doses of baclofen, CGP7930, or GS39783 that did not alter locomotor activity when given with nicotine vehicle fully prevented hyperlocomotion induced by 0.05 mg/kg nicotine. These data extend to nicotine stimulant effects the capacity of baclofen and GABAB PAMs to block the reinforcing, motivational, and rewarding properties of nicotine. These data strengthen the hypothesis that activation of the GABAB receptor may represent a potentially useful, anti-smoking therapeutic strategy.

  1. A neurorobotic platform for locomotor prosthetic development in rats and mice

    von Zitzewitz, Joachim; Asboth, Leonie; Fumeaux, Nicolas; Hasse, Alexander; Baud, Laetitia; Vallery, Heike; Courtine, Grégoire

    2016-04-01

    Objectives. We aimed to develop a robotic interface capable of providing finely-tuned, multidirectional trunk assistance adjusted in real-time during unconstrained locomotion in rats and mice. Approach. We interfaced a large-scale robotic structure actuated in four degrees of freedom to exchangeable attachment modules exhibiting selective compliance along distinct directions. This combination allowed high-precision force and torque control in multiple directions over a large workspace. We next designed a neurorobotic platform wherein real-time kinematics and physiological signals directly adjust robotic actuation and prosthetic actions. We tested the performance of this platform in both rats and mice with spinal cord injury. Main Results. Kinematic analyses showed that the robotic interface did not impede locomotor movements of lightweight mice that walked freely along paths with changing directions and height profiles. Personalized trunk assistance instantly enabled coordinated locomotion in mice and rats with severe hindlimb motor deficits. Closed-loop control of robotic actuation based on ongoing movement features enabled real-time control of electromyographic activity in anti-gravity muscles during locomotion. Significance. This neurorobotic platform will support the study of the mechanisms underlying the therapeutic effects of locomotor prosthetics and rehabilitation using high-resolution genetic tools in rodent models.

  2. Locomotor Behavior of Chickens Anticipating Incline Walking

    Chantal LeBlanc

    2018-01-01

    Full Text Available Keel bone damage (KBD is prevalent in hens raised for egg production, and ramps between different tiers in aviaries have potential to reduce the frequency of falls resulting in KBD. Effective use of ramps requires modulation of locomotion in anticipation of the incline. Inadequate adaptive locomotion may be one explanation why domestic layer hens (Gallus gallus domesticus exhibit high rates of KBD. To improve understanding of the capacity of hens to modulate their locomotion in anticipation of climbing, we measured the effects of incline angle upon the mechanics of the preparatory step before ascending a ramp. Because the energetic challenge of climbing increases with slope, we predicted that as angle of incline increased, birds during foot contact with the ground before starting to climb would increase their peak force and duration of contact and reduce variation in center of pressure (COP under their foot. We tested 20 female domestic chickens on ramp inclines at slopes of +0°, +40°, and +70° when birds were 17, 21, 26, 31, and 36 weeks of age. There were significantly higher vertical peak ground reaction forces in preparation at the steepest slope, and ground contact time increased significantly with each increase in ramp angle. Effects upon variation in COP were not apparent; likewise, effects of limb length, age, body mass were not significant. Our results reveal that domestic chickens are capable of modulating their locomotion in response to incline angle.

  3. Olanzapine affects locomotor activity and meal size in male rats

    van der Zwaal, Esther M.; Luijendijk, Mieneke C. M.; Evers, Simon S.; la Fleur, Susanne E.; Adan, Roger A. H.

    2010-01-01

    Olanzapine is an antipsychotic drug that frequently induces weight gain accompanied by increased fat deposition as a side effect To investigate how olanzapine affects different aspects of energy balance we used male rats to determine effects on meal patterns food preference locomotor activity and

  4. Olanzapine affects locomotor activity and meal size in male rats

    van der Zwaal, Esther M.; Luijendijk, Mieneke C. M.; Evers, Simon S.; la Fleur, Susanne E.; Adan, Roger A. H.

    2010-01-01

    Olanzapine is an antipsychotic drug that frequently induces weight gain accompanied by increased fat deposition as a side effect. To investigate how olanzapine affects different aspects of energy balance, we used male rats to determine effects on meal patterns, food preference, locomotor activity

  5. Inbreeding affects locomotor activity in Drosophila melanogaster at different ages

    Manenti, Tommaso; Pertoldi, Cino; Nasiri Moghadam, Neda

    2015-01-01

    The ability to move is essential for many behavioural traits closely related to fitness. Here we studied the effect of inbreeding on locomotor activity (LA) of Drosophila melanogaster at different ages under both dark and light regimes. We expected to find a decreased LA in inbred lines compared...

  6. Locomotor Sub-functions for Control of Assistive Wearable Robots

    Maziar A. Sharbafi

    2017-09-01

    Full Text Available A primary goal of comparative biomechanics is to understand the fundamental physics of locomotion within an evolutionary context. Such an understanding of legged locomotion results in a transition from copying nature to borrowing strategies for interacting with the physical world regarding design and control of bio-inspired legged robots or robotic assistive devices. Inspired from nature, legged locomotion can be composed of three locomotor sub-functions, which are intrinsically interrelated: Stance: redirecting the center of mass by exerting forces on the ground. Swing: cycling the legs between ground contacts. Balance: maintaining body posture. With these three sub-functions, one can understand, design and control legged locomotory systems with formulating them in simpler separated tasks. Coordination between locomotor sub-functions in a harmonized manner appears then as an additional problem when considering legged locomotion. However, biological locomotion shows that appropriate design and control of each sub-function simplifies coordination. It means that only limited exchange of sensory information between the different locomotor sub-function controllers is required enabling the envisioned modular architecture of the locomotion control system. In this paper, we present different studies on implementing different locomotor sub-function controllers on models, robots, and an exoskeleton in addition to demonstrating their abilities in explaining humans' control strategies.

  7. Locomotor Sub-functions for Control of Assistive Wearable Robots.

    Sharbafi, Maziar A; Seyfarth, Andre; Zhao, Guoping

    2017-01-01

    A primary goal of comparative biomechanics is to understand the fundamental physics of locomotion within an evolutionary context. Such an understanding of legged locomotion results in a transition from copying nature to borrowing strategies for interacting with the physical world regarding design and control of bio-inspired legged robots or robotic assistive devices. Inspired from nature, legged locomotion can be composed of three locomotor sub-functions, which are intrinsically interrelated: Stance : redirecting the center of mass by exerting forces on the ground. Swing : cycling the legs between ground contacts. Balance : maintaining body posture. With these three sub-functions, one can understand, design and control legged locomotory systems with formulating them in simpler separated tasks. Coordination between locomotor sub-functions in a harmonized manner appears then as an additional problem when considering legged locomotion. However, biological locomotion shows that appropriate design and control of each sub-function simplifies coordination. It means that only limited exchange of sensory information between the different locomotor sub-function controllers is required enabling the envisioned modular architecture of the locomotion control system. In this paper, we present different studies on implementing different locomotor sub-function controllers on models, robots, and an exoskeleton in addition to demonstrating their abilities in explaining humans' control strategies.

  8. Efffects of vigabatrin on spontaneous locomotor activity of rats

    Bouwman, B.M.; Rijn, C.M. van; Willems-van Bree, P.C.M.; Coenen, A.M.L.

    2003-01-01

    Effects of vigibatrin (saline, 125, 250, or 500 mg/kg i.p.) on spontaneous locomotor activity in Wistar rats were investigated. There was a dose dependent decrease in amount of locomotion for doses up to 250 mg/kg. This decrease was measurable 2-4 hours after injection and still became more

  9. Development and functional organization of spinal locomotor circuits

    Kiehn, Ole

    2011-01-01

    The coordination and timing of muscle activities during rhythmic movements, like walking and swimming, are generated by intrinsic spinal motor circuits. Such locomotor networks are operational early in development and are found in all vertebrates. This review outlines and compares recent advances...

  10. A Model of Locomotor-Respiratory Coupling in Quadrupeds

    Giuliodori,, Mauricio J.; Lujan, Heidi L.; Briggs, Whitney S.; DiCarlo, Stephen E.

    2009-01-01

    Locomotion and respiration are not independent phenomena in running mammals because locomotion and respiration both rely on cyclic movements of the ribs, sternum, and associated musculature. Thus, constraints are imposed on locomotor and respiratory function by virtue of their linkage. Specifically, locomotion imposes mechanical constraints on…

  11. MRT of the locomotor system. 4. rev. and enl. ed.

    Vahlensieck, Martin; Reiser, Maximilian

    2015-01-01

    The book on MRT of the locomotor system covers the following topics: relevant NMT imaging techniques, spinal cord, shoulder, elbows, wrist and fingers, hip region, knee, lower leg - ankle - foot, temporomandibular joint, skeletal muscles, bone marrow, bone and soft tissue tumors, osteoporosis, sacroiliac joint, jaw and periodontium.

  12. Effects of nutmeg consumption on the open field locomotor activities ...

    ... was a steady significant difference (p < 0.05) in the behaviours of line crossing and walling. There was no much significant changes (P<0.05) in the behaviours of hinding, grooming and defeacation between the Treatments and Control groups of animals. Keywords: Nutmeg, Wistar rats, Open field, Locomotor activities ...

  13. Interpreting locomotor biomechanics from the morphology of human footprints.

    Hatala, Kevin G; Wunderlich, Roshna E; Dingwall, Heather L; Richmond, Brian G

    2016-01-01

    Fossil hominin footprints offer unique direct windows to the locomotor behaviors of our ancestors. These data could allow a clearer understanding of the evolution of human locomotion by circumventing issues associated with indirect interpretations of habitual locomotor patterns from fossil skeletal material. However, before we can use fossil hominin footprints to understand better the evolution of human locomotion, we must first develop an understanding of how locomotor biomechanics are preserved in, and can be inferred from, footprint morphologies. In this experimental study, 41 habitually barefoot modern humans created footprints under controlled conditions in which variables related to locomotor biomechanics could be quantified. Measurements of regional topography (depth) were taken from 3D models of those footprints, and principal components analysis was used to identify orthogonal axes that described the largest proportions of topographic variance within the human experimental sample. Linear mixed effects models were used to quantify the influences of biomechanical variables on the first five principal axes of footprint topographic variation, thus providing new information on the biomechanical variables most evidently expressed in the morphology of human footprints. The footprint's overall depth was considered as a confounding variable, since biomechanics may be linked to the extent to which a substrate deforms. Three of five axes showed statistically significant relationships with variables related to both locomotor biomechanics and substrate displacement; one axis was influenced only by biomechanics and another only by the overall depth of the footprint. Principal axes of footprint morphological variation were significantly related to gait type (walking or running), kinematics of the hip and ankle joints and the distribution of pressure beneath the foot. These results provide the first quantitative framework for developing hypotheses regarding the

  14. The ventromedial hypothalamus oxytocin induces locomotor behavior regulated by estrogen.

    Narita, Kazumi; Murata, Takuya; Matsuoka, Satoshi

    2016-10-01

    Our previous studies demonstrated that excitation of neurons in the rat ventromedial hypothalamus (VMH) induced locomotor activity. An oxytocin receptor (Oxtr) exists in the VMH and plays a role in regulating sexual behavior. However, the role of Oxtr in the VMH in locomotor activity is not clear. In this study we examined the roles of oxytocin in the VMH in running behavior, and also investigated the involvement of estrogen in this behavioral change. Microinjection of oxytocin into the VMH induced a dose-dependent increase in the running behavior in male rats. The oxytocin-induced running activity was inhibited by simultaneous injection of Oxtr-antagonist, (d(CH2)5(1), Try(Me)(2), Orn(8))-oxytocin. Oxytocin injection also induced running behavior in ovariectomized (OVX) female rats. Pretreatment of the OVX rats with estrogen augmented the oxytocin-induced running activity twofold, and increased the Oxtr mRNA in the VMH threefold. During the estrus cycle locomotor activity spontaneously increased in the dark period of proestrus. The Oxtr mRNA was up-regulated in the proestrus afternoon. Blockade of oxytocin neurotransmission by its antagonist before the onset of the dark period of proestrus decreased the following nocturnal locomotor activity. These findings demonstrate that Oxtr in the VMH is involved in the induction of running behavior and that estrogen facilitates this effect by means of Oxtr up-regulation, suggesting the involvement of oxytocin in the locomotor activity of proestrus female rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Serotonergic modulation of spinal motor control

    Perrier, Jean-Francois Marie; Cotel, Florence

    2015-01-01

    Serotonin (5-HT) is a monoamine that powerfully modulates spinal motor control by acting on intrasynaptic and extrasynaptic receptors. Here we review the diversity of 5-HT actions on locomotor and motoneuronal activities. Two approaches have been used on in vitro spinal cord preparations: either...

  16. Apomorphine effects on frog locomotor behavior.

    Chu, Joanne; Wilczynski, Walter

    2007-05-16

    The neuroanatomical pathways of the DA systems have been shown to be largely conserved across many vertebrate taxa. It is less certain whether the structural similarities seen between mammals and amphibians reflect a similar functional homology. DA is well known for its role in facilitating motor behaviors in mammals. We examined whether a similar role for DA exists in amphibians using the Northern Leopard Frog (Rana pipiens). We investigated the effects of the nonspecific DA agonist, apomorphine (APO) on a complex motor task that included two distinct components known to be differentially modulated by DA in mammals: swimming and climbing. We demonstrated that a high single dose of APO (20 mg/kg, body weight) strongly increased the amount of time spent completing the motor task. Furthermore, we showed that although APO did not significantly alter several aspects of swimming behavior, two aspects of climbing behavior were disrupted. Both climbing speed and climbing ability were impaired by APO treatment. These results increase our understanding of DA function in amphibians and add to our understanding of structure-function homologies of dopamine function across vertebrate taxa.

  17. Usability evaluation of a locomotor therapy device considering different strategies

    Langthaler Sonja

    2016-09-01

    Full Text Available Usability of medical devices is one of the main determining factors in preventing use errors in treatment and strongly correlates to patient safety and quality of treatment. This thesis demonstrates the usability testing and evaluation of a prototype for locomotor therapy of infants. Therefore, based on the normative requirements of the EN 62366, a concept combined of evaluation procedures and assessing methods was created to enable extensive testing and analysis of the different aspects of usability. On the basis of gathered information weak points were identified and appropriate measures were presented to increase the usability and operating safety of the locomotor prototype. The overall outcome showed an usability value of 77.4% and an evaluation score of 6.99, which can be interpreted as “satisfactory”.

  18. The peacock train does not handicap cursorial locomotor performance

    Thavarajah, Nathan K.; Tickle, Peter G.; Nudds, Robert L.; Codd, Jonathan R.

    2016-01-01

    Exaggerated traits, like the peacock train, are recognized as classic examples of sexual selection. The evolution of sexual traits is often considered paradoxical as, although they enhance reproductive success, they are widely presumed to hinder movement and survival. Many exaggerated traits represent an additional mechanical load that must be carried by the animal and therefore may influence the metabolic cost of locomotion and constrain locomotor performance. Here we conducted respirometry experiments on peacocks and demonstrate that the exaggerated sexually selected train does not compromise locomotor performance in terms of the metabolic cost of locomotion and its kinematics. Indeed, peacocks with trains had a lower absolute and mass specific metabolic cost of locomotion. Our findings suggest that adaptations that mitigate any costs associated with exaggerated morphology are central in the evolution of sexually selected traits. PMID:27805067

  19. Structural attributes contributing to locomotor performance in the ostrich

    Schaller, Nina U.

    2008-01-01

    As the fastest long-endurance runner, the bipedal ostrich (Struthio camelus) was selected as a prime model organism to investigate the physical attributes underlying this advanced locomotor performance. A specific integrative approach combining morphological, morphometric, kinematic and pedobarographic methods was developed. The comparative morphometric analysis of the hind limbs of all ratite species revealed that leg segment ratios in the ostrich are the most specialised for efficient locom...

  20. Muscle Spindles and Locomotor Control-An Unrecognized Falls Determinant?

    Marks Ray

    2015-01-01

    BACKGROUND: Historically, evidence muscle spindles might be involved in locomotion was provided by their presence in tetrapod antigravity muscles associated with posture and locomotion. Later, Brodal (1962) noted muscle spindles in all muscles of locomotion. To unravel the complexity of the muscle spindle and its role in human locomotor control many investigators have since conducted lesion and/or anaesthesia studies in subhuman species and human contexts. QUESTIONS: How ...

  1. Locomotor Sub-functions for Control of Assistive Wearable Robots

    Sharbafi, Maziar A.; Seyfarth, Andre; Zhao, Guoping

    2017-01-01

    A primary goal of comparative biomechanics is to understand the fundamental physics of locomotion within an evolutionary context. Such an understanding of legged locomotion results in a transition from copying nature to borrowing strategies for interacting with the physical world regarding design and control of bio-inspired legged robots or robotic assistive devices. Inspired from nature, legged locomotion can be composed of three locomotor sub-functions, which are intrinsically interrelated:...

  2. Locomotor therapy with extended-release crystalline glucocorticoids

    Vladimir Vasilyevich Badokin

    2013-01-01

    Full Text Available Topical glucocorticoid (GC therapy for locomotor diseases is an extremely important component of a comprehensive program to treat inflammatory and, to a lesser extent, degenerative diseases. It reduces the time of hospitalization by 5—10 days in this category of patients, has a prompt and potent anti-inflammatory effect, and shows predictable efficiency. This therapy shows good tolerability and high safety and prevents serious adverse reactions to GC treatment.

  3. Limitations imposed by wearing armour on Medieval soldiers' locomotor performance

    Askew, Graham N.; Formenti, Federico; Minetti, Alberto E.

    2011-01-01

    In Medieval Europe, soldiers wore steel plate armour for protection during warfare. Armour design reflected a trade-off between protection and mobility it offered the wearer. By the fifteenth century, a typical suit of field armour weighed between 30 and 50 kg and was distributed over the entire body. How much wearing armour affected Medieval soldiers' locomotor energetics and biomechanics is unknown. We investigated the mechanics and the energetic cost of locomotion in armour, and determined...

  4. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns.

    Andrea Maesani

    2015-11-01

    Full Text Available The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior.

  5. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton

    Kinnaird, Catherine R.; Ferris, Daniel P.

    2013-01-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to “fight” the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations. PMID:23307949

  6. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton.

    Gordon, Keith E; Kinnaird, Catherine R; Ferris, Daniel P

    2013-04-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to "fight" the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations.

  7. Cardiovascular Mitochondrial Dysfunction Induced by Cocaine: Biomarkers and Possible Beneficial Effects of Modulators of Oxidative Stress

    Manuela Graziani

    2017-01-01

    Full Text Available Cocaine abuse has long been known to cause morbidity and mortality due to its cardiovascular toxic effects. The pathogenesis of the cardiovascular toxicity of cocaine use has been largely reviewed, and the most recent data indicate a fundamental role of oxidative stress in cocaine-induced cardiovascular toxicity, indicating that mitochondrial dysfunction is involved in the mechanisms of oxidative stress. The comprehension of the mechanisms involving mitochondrial dysfunction could help in selecting the most appropriate mitochondria injury biological marker, such as superoxide dismutase-2 activity and glutathionylated hemoglobin. The potential use of modulators of oxidative stress (mitoubiquinone, the short-chain quinone idebenone, and allopurinol in the treatment of cocaine cardiotoxic effects is also suggested to promote further investigations on these potential mitochondria-targeted antioxidant strategies.

  8. Locomotor-like leg movements evoked by rhythmic arm movements in humans.

    Francesca Sylos-Labini

    Full Text Available Motion of the upper limbs is often coupled to that of the lower limbs in human bipedal locomotion. It is unclear, however, whether the functional coupling between upper and lower limbs is bi-directional, i.e. whether arm movements can affect the lumbosacral locomotor circuitry. Here we tested the effects of voluntary rhythmic arm movements on the lower limbs. Participants lay horizontally on their side with each leg suspended in an unloading exoskeleton. They moved their arms on an overhead treadmill as if they walked on their hands. Hand-walking in the antero-posterior direction resulted in significant locomotor-like movements of the legs in 58% of the participants. We further investigated quantitatively the responses in a subset of the responsive subjects. We found that the electromyographic (EMG activity of proximal leg muscles was modulated over each cycle with a timing similar to that of normal locomotion. The frequency of kinematic and EMG oscillations in the legs typically differed from that of arm oscillations. The effect of hand-walking was direction specific since medio-lateral arm movements did not evoke appreciably leg air-stepping. Using externally imposed trunk movements and biomechanical modelling, we ruled out that the leg movements associated with hand-walking were mainly due to the mechanical transmission of trunk oscillations. EMG activity in hamstring muscles associated with hand-walking often continued when the leg movements were transiently blocked by the experimenter or following the termination of arm movements. The present results reinforce the idea that there exists a functional neural coupling between arm and legs.

  9. Digestive and locomotor capacity show opposing responses to changing food availability in an ambush predatory fish.

    Fu, Shi-Jian; Peng, Jing; Killen, Shaun S

    2018-06-14

    Metabolic rates vary widely within species, but little is known about how variation in the 'floor' [i.e. standard metabolic rate (SMR) in ectotherms] and 'ceiling' [maximum metabolic rate (MMR)] for an individual's aerobic scope (AS) are linked with digestive and locomotor function. Any links among metabolic traits and aspects of physiological performance may also be modulated by fluctuations in food availability. This study followed changes in SMR, MMR, and digestive and locomotor capacity in southern catfish ( Silurus meridionalis ) throughout 15 days of food deprivation and 15 days of refeeding. Individuals downregulated SMR during food deprivation and showed only a 10% body mass decrease during this time. Whereas critical swim speed ( U crit ) was robust to food deprivation, digestive function decreased after fasting with a reduced peak oxygen uptake during specific dynamic action (SDA) and prolonged SDA duration. During refeeding, individuals displayed rapid growth and digestive function recovered to pre-fasting levels. However, refed fish showed a lower U crit than would be expected for their increased body length and in comparison to measures at the start of the study. Reduced swimming ability may be a consequence of compensatory growth: growth rate was negatively correlated with changes in U crit during refeeding. Southern catfish downregulate digestive function to reduce energy expenditure during food deprivation, but regain digestive capacity during refeeding, potentially at the cost of decreased swimming performance. The plasticity of maintenance requirements suggests that SMR is a key fitness trait for in this ambush predator. Shifts in trait correlations with food availability suggest that the potential for correlated selection may depend on context. © 2018. Published by The Company of Biologists Ltd.

  10. Cardiovascular responses to locomotor activity and feeding in unrestrained three-toed sloths, Bradypus variegatus

    D.P.F. Duarte

    2004-10-01

    Full Text Available Heart rate (HR and systolic (SBP, diastolic (DBP and mean (MBP blood pressure were recorded by biotelemetry in nine conscious unrestrained sloths for 1 min every 15 min over a 24-h period. The animals were allowed to freely move in an acoustically isolated and temperature-controlled (24 ± 1ºC experimental room with light-dark cycle (12/12 h. Behavior was closely monitored through a unidirectional visor and classified as resting (sitting or suspended, feeding (chewing and swallowing embauba leaves, Cecropia adenops, or locomotor activity around the tree trunk or on the room floor. Locomotor activity caused statistically significant increases in SBP (+8%, from 121 ± 22 to 131 ± 18 mmHg, DBP (+7%, from 86 ± 17 to 92 ± 10 mmHg, MBP (+8%, from 97 ± 19 to 105 ± 12 mmHg, and HR (+14%, from 84 ± 15 to 96 ± 15 bpm compared to resting values, indicating a possible major influence of the autonomic nervous system on the modulation of cardiac function during this behavior. During feeding, the increase in blood pressure was even higher (SBP +27%, from 119 ± 21 to 151 ± 21 mmHg; DBP +21%, from 85 ± 16 to 103 ± 15 mmHg; MBP +24%, from 96 ± 17 to 119 ± 17 mmHg, while HR remained at 14% (from 84 ± 15 to 96 ± 10 bpm above resting values. The proportionally greater increase in blood pressure than in HR during feeding suggests an increase in peripheral vascular resistance as part of the overall response to this behavior.

  11. Novelty response and 50 kHz ultrasonic vocalizations: Differential prediction of locomotor and affective response to amphetamine in Sprague-Dawley rats.

    Garcia, Erik J; Cain, Mary E

    2016-02-01

    Novelty and sensation seeking (NSS) predisposes humans and rats to experiment with psychostimulants. In animal models, different tests of NSS predict different phases of drug dependence. Ultrasonic vocalizations (USVs) are evoked by psychomotor stimulants and measure the affective/motivation response to stimuli, yet the role NSS has on USVs in response to amphetamine is not determined. The aim of the present study was to determine if individual differences in NSS and USVs can predict locomotor and USV response to amphetamine (0.0, 0.3, and 1.0 mg/kg) after acute and chronic exposure. Thirty male rats were tested for their response to novelty (IEN), choice to engage in novelty (NPP), and heterospecific play (H-USV). Rats were administered non-contingent amphetamine or saline for seven exposures, and USVs and locomotor activity were measured. After a 14-day rest, rats were administered a challenge dose of amphetamine. Regression analyses indicated that amphetamine dose-dependently increased locomotor activity and the NPP test negatively predicted treatment-induced locomotor activity. The H-USV test predicted treatment-induced frequency-modulated (FM) USVs, but the strength of prediction depended on IEN response. Results provide evidence that locomotor activity and FM USVs induced by amphetamine represent different behavioral responses. The prediction of amphetamine-induced FM USVs by the H-USV screen was changed by the novelty response, indicating that the affective value of amphetamine-measured by FM USVs-depends on novelty response. This provides evidence that higher novelty responders may develop a tolerance faster and may escalate intake faster.

  12. An Integrated Gait and Balance Analysis System to Define Human Locomotor Control

    2016-04-29

    test hypotheses they developed about how people walk. An Integrated Gait and Balance Analysis System to define Human Locomotor Control W911NF-14-R-0009...An Integrated Gait and Balance Analysis System to Define Human Locomotor Control Walking is a complicated task that requires the motor coordination...Gait and Balance Analysis System to Define Human Locomotor Control Report Title Walking is a complicated task that requires the motor coordination across

  13. Locomotor activity: A distinctive index in morphine self-administration in rats

    Kong, Qingyao

    2017-01-01

    Self-administration of addictive drugs is a widely used tool for studying behavioral, neurobiological, and genetic factors in addiction. However, how locomotor activity is affected during self-administration of addictive drugs has not been extensively studied. In our present study, we tested the locomotor activity levels during acquisition, extinction and reinstatement of morphine self-administration in rats. We found that compared with saline self-administration (SA), rats that trained with morphine SA had higher locomotor activity. Rats that successfully acquired SA also showed higher locomotor activity than rats that failed in acquiring SA. Moreover, locomotor activity was correlated with the number of drug infusions but not with the number of inactive pokes. We also tested the locomotor activity in the extinction and the morphine-primed reinstatement session. Interestingly, we found that in the first extinction session, although the number of active pokes did not change, the locomotor activity was significantly lower than in the last acquisition session, and this decrease can be maintained for at least six days. Finally, morphine priming enhanced the locomotor activity during the reinstatement test, regardless of if the active pokes were significantly increased or not. Our results clearly suggest that locomotor activity, which may reflect the pharmacological effects of morphine, is different from drug seeking behavior and is a distinctive index in drug self-administration. PMID:28380023

  14. Locomotor activity: A distinctive index in morphine self-administration in rats.

    Zhang, Jian-Jun; Kong, Qingyao

    2017-01-01

    Self-administration of addictive drugs is a widely used tool for studying behavioral, neurobiological, and genetic factors in addiction. However, how locomotor activity is affected during self-administration of addictive drugs has not been extensively studied. In our present study, we tested the locomotor activity levels during acquisition, extinction and reinstatement of morphine self-administration in rats. We found that compared with saline self-administration (SA), rats that trained with morphine SA had higher locomotor activity. Rats that successfully acquired SA also showed higher locomotor activity than rats that failed in acquiring SA. Moreover, locomotor activity was correlated with the number of drug infusions but not with the number of inactive pokes. We also tested the locomotor activity in the extinction and the morphine-primed reinstatement session. Interestingly, we found that in the first extinction session, although the number of active pokes did not change, the locomotor activity was significantly lower than in the last acquisition session, and this decrease can be maintained for at least six days. Finally, morphine priming enhanced the locomotor activity during the reinstatement test, regardless of if the active pokes were significantly increased or not. Our results clearly suggest that locomotor activity, which may reflect the pharmacological effects of morphine, is different from drug seeking behavior and is a distinctive index in drug self-administration.

  15. Sound stabilizes locomotor-respiratory coupling and reduces energy cost.

    Charles P Hoffmann

    Full Text Available A natural synchronization between locomotor and respiratory systems is known to exist for various species and various forms of locomotion. This Locomotor-Respiratory Coupling (LRC is fundamental for the energy transfer between the two subsystems during long duration exercise and originates from mechanical and neurological interactions. Different methodologies have been used to compute LRC, giving rise to various and often diverging results in terms of synchronization, (de-stabilization via information, and associated energy cost. In this article, the theory of nonlinear-coupled oscillators was adopted to characterize LRC, through the model of the sine circle map, and tested it in the context of cycling. Our specific focus was the sound-induced stabilization of LRC and its associated change in energy consumption. In our experimental study, participants were instructed during a cycling exercise to synchronize either their respiration or their pedaling rate with an external auditory stimulus whose rhythm corresponded to their individual preferential breathing or cycling frequencies. Results showed a significant reduction in energy expenditure with auditory stimulation, accompanied by a stabilization of LRC. The sound-induced effect was asymmetrical, with a better stabilizing influence of the metronome on the locomotor system than on the respiratory system. A modification of the respiratory frequency was indeed observed when participants cycled in synchrony with the tone, leading to a transition toward more stable frequency ratios as predicted by the sine circle map. In addition to the classical mechanical and neurological origins of LRC, here we demonstrated using the sine circle map model that information plays an important modulatory role of the synchronization, and has global energetic consequences.

  16. Locomotor skills and balance strategies in adolescents idiopathic scoliosis.

    Mallau, Sophie; Bollini, Gérard; Jouve, Jean-Luc; Assaiante, Christine

    2007-01-01

    Locomotor balance control assessment was performed to study the effect of idiopathic scoliosis on head-trunk coordination in 17 patients with adolescent idiopathic scoliosis (AIS) and 16 control subjects. The aim of this study was to explore the functional effects of structural spinal deformations like idiopathic scoliosis on the balance strategies used during locomotion. Up to now, the repercussion of the idiopathic scoliosis on head-trunk coordination and balance strategies during locomotion is relatively unknown. Seventeen patients with AIS (mean age 14 years 3 months, 10 degrees 30 degrees) and 16 control subjects (mean age 14 years 1 month) were tested during various locomotor tasks: walking on the ground, walking on a line, and walking on a beam. Balance control was examined in terms of rotation about the vertical axis (yaw) and on a frontal plane (roll). Kinematics of foot, pelvis, trunk, shoulder, and head rotations were measured with an automatic optical TV image processor in order to calculate angular dispersions and segmental stabilizations. Decreasing the walking speed is the main adaptive strategy used in response to balance problems in control subjects as well as patients with AIS. However, patients with AIS performed walking tasks more slowly than normal subjects (around 15%). Moreover, the pelvic stabilization is preserved, despite the structural changes affecting the spine. Lastly, the biomechanical defect resulting from idiopathic scoliosis mainly affects the yaw head stabilization during locomotion. Patients with AIS show substantial similarities with control subjects in adaptive strategies relative to locomotor velocity as well as balance control based on segmental stabilization. In contrast, the loss of the yaw head stabilization strategies, mainly based on the use of vestibular information, probably reflects the presence of vestibular deficits in the patients with AIS.

  17. Low dose radiation enhances the Locomotor activity of D. melanogaster

    Seong, Ki Moon; Lee, Buyng Sub; Nam Seon Young; Kim, Ji Young; Yang, Kwang Hee; Choi, Tae In; Kim, Cha Soon [Radiation Effect Research Team, Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., Gyeongju (Korea, Republic of)

    2013-04-15

    Mild stresses at low level including radiation can induce the beneficial effects in many vertebrate and invertebrate species. However, a large amount of studies in radiation biology have focused on the detrimental effects of high dose radiation (HDR) such as the increased incidence of cancers and developmental diseases. Low dose radiation (LDR) induces biologically favorable effects in diverse fields, for example, cancer development, genomic instability, immune response, and longevity. Our previous data indicated that LDR promotes cells proliferation of which degree is not much but significant, and microarray data explained that LDR irradiated fruit flies showing the augmented immunity significantly changed the program for gene expression of many genes in Gene Ontology (GO) categories related to metabolic process. Metabolic process in development one of major contributors in organism growth, interbreeding, motility, and aging. Therefore, it is valuable to examine whether LDR change the physiological parameters related to metabolism, and how LDR regulates the metabolism in D. melanogaster. In this study, to investigate that LDR influences change of the metabolism, a representative parameter, locomotor activity. In addition, the activation of several cellular signal molecules was determined to investigate the specific molecular mechanism of LDR effects on the metabolism. We explored whether ionizing radiation affects the motility activity. We performed the RING assays to evaluate the locomotor activity, a representative parameter presenting motility of fruit flies. HDR dramatically decreased the motor activity of irradiated flies. Surprisingly, the irradiated flies at low dose radiation in both acute and chronic showed the significantly increased locomotor activity, compared to non-irradiated flies. Irradiation would induce change of the several signal pathways for flies to respond to it. The activation of some proteins involved in the cells proliferation and stress

  18. Sex differences in locomotor effects of morphine in the rat

    Craft, Rebecca M.; Clark, James L.; Hart, Stephen P.; Pinckney, Megan K.

    2006-01-01

    Sex differences in reinforcing, analgesic and other effects of opioids have been demonstrated; however, the extent to which sex differences in motoric effects of opioids contribute to apparent sex differences in their primary effects is not known. The goal of this study was to compare the effects of the prototypic mu opioid agonist morphine on locomotor activity in male vs. female rats. Saline or morphine (1-10 mg/kg) was administered s.c. to adult Sprague-Dawley rats, which were placed into ...

  19. Predictive Measures of Locomotor Performance on an Unstable Walking Surface

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Caldwell, E. E.; Batson, C. D.; De Dios, Y. E.; Gadd, N. E.; Goel, R.; Wood, S. J.; Cohen, H. S.; hide

    2016-01-01

    Locomotion requires integration of visual, vestibular, and somatosensory information to produce the appropriate motor output to control movement. The degree to which these sensory inputs are weighted and reorganized in discordant sensory environments varies by individual and may be predictive of the ability to adapt to novel environments. The goals of this project are to: 1) develop a set of predictive measures capable of identifying individual differences in sensorimotor adaptability, and 2) use this information to inform the design of training countermeasures designed to enhance the ability of astronauts to adapt to gravitational transitions improving balance and locomotor performance after a Mars landing and enhancing egress capability after a landing on Earth.

  20. Designing Functional Clothes for Persons with Locomotor Disabilities

    Curteza Antonela

    2014-12-01

    Full Text Available The life quality improvement issue is a problem of national and international interest. This acquires total different values when it is to refer to a series of disadvantaged categories, that is the persons with locomotor disabilities. It is an inevitable social responsibility to create equal opportunities for disabled people, to prevent any intentional or unintentional discrimination that they face and apply positive discrimination if necessary to improve their living standards and to let them have an equal share from social development as productive individuals of society.

  1. Differential housing and novelty response: Protection and risk from locomotor sensitization.

    Garcia, Erik J; Haddon, Tara N; Saucier, Donald A; Cain, Mary E

    2017-03-01

    High novelty seeking increases the risk for drug experimentation and locomotor sensitization. Locomotor sensitization to psychostimulants is thought to reflect neurological adaptations that promote the transition to compulsive drug taking. Rats reared in enrichment (EC) show less locomotor sensitization when compared to rats reared in isolation (IC) or standard conditions (SC). The current research study was designed to test if novelty response contributed locomotor sensitization and more importantly, if the different housing environments could change the novelty response to protect against the development of locomotor sensitization in both adolescence and adulthood. Experiment 1: rats were tested for their response to novelty using the inescapable novelty test (IEN) and pseudorandomly assigned to enriched (EC), isolated (IC), or standard (SC) housing conditions for 30days. After housing, they were tested with IEN. Rats were then administered amphetamine (0.5mg/kg) or saline and locomotor activity was measured followed by a sensitization test 14days later. Experiment 2: rats were tested in the IEN test early adulthood and given five administrations of amphetamine (0.3mg/kg) or saline and then either stayed in or switched housing environments for 30days. Rats were then re-tested in the IEN test in late adulthood and administered five more injections of their respective treatments and tested for locomotor sensitization. Results indicate that IC and SC increased the response to novelty. EC housing decreased locomotor response to amphetamine and saline, and SC housing increased the locomotor response to amphetamine. Mediation results indicated that the late adult novelty response fully mediates the locomotor response to amphetamine and saline, while the early adulthood novelty response did not. Differential housing changes novelty and amphetamine locomotor response. Novelty response is altered into adulthood and provides evidence that enrichment can be used to reduce

  2. Optimizing learning of a locomotor task: amplifying errors as needed.

    Marchal-Crespo, Laura; López-Olóriz, Jorge; Jaeger, Lukas; Riener, Robert

    2014-01-01

    Research on motor learning has emphasized that errors drive motor adaptation. Thereby, several researchers have proposed robotic training strategies that amplify movement errors rather than decrease them. In this study, the effect of different robotic training strategies that amplify errors on learning a complex locomotor task was investigated. The experiment was conducted with a one degree-of freedom robotic stepper (MARCOS). Subjects were requested to actively coordinate their legs in a desired gait-like pattern in order to track a Lissajous figure presented on a visual display. Learning with three different training strategies was evaluated: (i) No perturbation: the robot follows the subjects' movement without applying any perturbation, (ii) Error amplification: existing errors were amplified with repulsive forces proportional to errors, (iii) Noise disturbance: errors were evoked with a randomly-varying force disturbance. Results showed that training without perturbations was especially suitable for a subset of initially less-skilled subjects, while error amplification seemed to benefit more skilled subjects. Training with error amplification, however, limited transfer of learning. Random disturbing forces benefited learning and promoted transfer in all subjects, probably because it increased attention. These results suggest that learning a locomotor task can be optimized when errors are randomly evoked or amplified based on subjects' initial skill level.

  3. Locomotor problems among rural elderly population in a District of Aligarh, North India.

    Maroof, Mohd; Ahmad, Anees; Khalique, Najam; Ansari, M Athar

    2017-01-01

    Locomotor functions decline with the age along with other physiological changes. This results in deterioration of the quality of life with decreased social and economic role in the society, as well as increased dependency, for the health care and other basic services. The demographic transition resulting in increased proportion of elderly may pose a burden to the health system. To find the prevalence of locomotor problems among the elderly population, and related sociodemographic factors. The study was a community-based cross-sectional study done at field practice area of Rural Health Training Centre, JN Medical College, AMU, Aligarh, Uttar Pradesh, India. A sample of 225 was drawn from 1018 elderly population aged 60 years and above using systematic random sampling with probability proportionate to size. Sociodemographic characteristics were obtained using pretested and predesigned questionnaire. Locomotor problems were assessed using the criteria used by National Sample Survey Organization. Data were analyzed using SPSS version 20. Chi-square test was used to test relationship of locomotor problems with sociodemographic factors. P locomotor problems among the elderly population was 25.8%. Locomotor problems were significantly associated with age, gender, and working status whereas no significant association with literacy status and marital status was observed. The study concluded that approximately one-fourth of the elderly population suffered from locomotor problems. The sociodemographic factors related to locomotor problems needs to be addressed properly to help them lead an independent and economically productive life.

  4. Locomotor recovery after spinal cord contusion injury in rats is improved by spontaneous exercise

    Gispen, W.H.; Meeteren, N.L. van; Eggers, L.; Lankhorst, A.J.; Hamers, F.P.

    2003-01-01

    We have recently shown that enriched environment (EE) housing significantly enhances locomotor recovery following spinal cord contusion injury (SCI) in rats. As the type and intensity of locomotor training with EE housing are rather poorly characterized, we decided to compare the effectiveness of EE

  5. Locomotor Tests Predict Community Mobility in Children and Youth with Cerebral Palsy

    Ferland, Chantale; Moffet, Helene; Maltais, Desiree

    2012-01-01

    Ambulatory children and youth with cerebral palsy have limitations in locomotor capacities and in community mobility. The ability of three locomotor tests to predict community mobility in this population (N = 49, 27 boys, 6-16 years old) was examined. The tests were a level ground walking test, the 6-min-Walk-Test (6MWT), and two tests of advanced…

  6. Dual spinal lesion paradigm in the cat: evolution of the kinematic locomotor pattern.

    Barrière, Grégory; Frigon, Alain; Leblond, Hugues; Provencher, Janyne; Rossignol, Serge

    2010-08-01

    The recovery of voluntary quadrupedal locomotion after an incomplete spinal cord injury can involve different levels of the CNS, including the spinal locomotor circuitry. The latter conclusion was reached using a dual spinal lesion paradigm in which a low thoracic partial spinal lesion is followed, several weeks later, by a complete spinal transection (i.e., spinalization). In this dual spinal lesion paradigm, cats can express hindlimb walking 1 day after spinalization, a process that normally takes several weeks, suggesting that the locomotor circuitry within the lumbosacral spinal cord had been modified after the partial lesion. Here we detail the evolution of the kinematic locomotor pattern throughout the dual spinal lesion paradigm in five cats to gain further insight into putative neurophysiological mechanisms involved in locomotor recovery after a partial spinal lesion. All cats recovered voluntary quadrupedal locomotion with treadmill training (3-5 days/wk) over several weeks. After the partial lesion, the locomotor pattern was characterized by several left/right asymmetries in various kinematic parameters, such as homolateral and homologous interlimb coupling, cycle duration, and swing/stance durations. When no further locomotor improvement was observed, cats were spinalized. After spinalization, the hindlimb locomotor pattern rapidly reappeared, but left/right asymmetries in swing/stance durations observed after the partial lesion could disappear or reverse. It is concluded that, after a partial spinal lesion, the hindlimb locomotor pattern was actively maintained by new dynamic interactions between spinal and supraspinal levels but also by intrinsic changes within the spinal cord.

  7. V3 spinal neurons establish a robust and balanced locomotor rhythm during walking.

    Zhang, Ying; Narayan, Sujatha; Geiman, Eric; Lanuza, Guillermo M; Velasquez, Tomoko; Shanks, Bayle; Akay, Turgay; Dyck, Jason; Pearson, Keir; Gosgnach, Simon; Fan, Chen-Ming; Goulding, Martyn

    2008-10-09

    A robust and well-organized rhythm is a key feature of many neuronal networks, including those that regulate essential behaviors such as circadian rhythmogenesis, breathing, and locomotion. Here we show that excitatory V3-derived neurons are necessary for a robust and organized locomotor rhythm during walking. When V3-mediated neurotransmission is selectively blocked by the expression of the tetanus toxin light chain subunit (TeNT), the regularity and robustness of the locomotor rhythm is severely perturbed. A similar degeneration in the locomotor rhythm occurs when the excitability of V3-derived neurons is reduced acutely by ligand-induced activation of the allatostatin receptor. The V3-derived neurons additionally function to balance the locomotor output between both halves of the spinal cord, thereby ensuring a symmetrical pattern of locomotor activity during walking. We propose that the V3 neurons establish a regular and balanced motor rhythm by distributing excitatory drive between both halves of the spinal cord.

  8. Central GLP-1 receptor activation modulates cocaine-evoked phasic dopamine signaling in the nucleus accumbens core.

    Fortin, Samantha M; Roitman, Mitchell F

    2017-07-01

    Drugs of abuse increase the frequency and magnitude of brief (1-3s), high concentration (phasic) dopamine release events in terminal regions. These are thought to be a critical part of drug reinforcement and ultimately the development of addiction. Recently, metabolic regulatory peptides, including the satiety signal glucagon-like peptide-1 (GLP-1), have been shown to modulate cocaine reward-driven behavior and sustained dopamine levels after cocaine administration. Here, we use fast-scan cyclic voltammetry (FSCV) to explore GLP-1 receptor (GLP-1R) modulation of dynamic dopamine release in the nucleus accumbens (NAc) during cocaine administration. We analyzed dopamine release events in both the NAc shell and core, as these two subregions are differentially affected by cocaine and uniquely contribute to motivated behavior. We found that central delivery of the GLP-1R agonist Exendin-4 suppressed the induction of phasic dopamine release events by intravenous cocaine. This effect was selective for dopamine signaling in the NAc core. Suppression of phasic signaling in the core by Exendin-4 could not be attributed to interference with cocaine binding to one of its major substrates, the dopamine transporter, as cocaine-induced increases in reuptake were unaffected. The results suggest that GLP-1R activation, instead, exerts its suppressive effects by altering dopamine release - possibly by suppressing the excitability of dopamine neurons. Given the role of NAc core dopamine in the generation of conditioned responses based on associative learning, suppression of cocaine-induced dopamine signaling in this subregion by GLP-1R agonism may decrease the reinforcing properties of cocaine. Thus, GLP-1Rs remain viable targets for the treatment and prevention of cocaine seeking, taking and relapse. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Visual and kinesthetic locomotor imagery training integrated with auditory step rhythm for walking performance of patients with chronic stroke.

    Kim, Jin-Seop; Oh, Duck-Won; Kim, Suhn-Yeop; Choi, Jong-Duk

    2011-02-01

    To compare the effect of visual and kinesthetic locomotor imagery training on walking performance and to determine the clinical feasibility of incorporating auditory step rhythm into the training. Randomized crossover trial. Laboratory of a Department of Physical Therapy. Fifteen subjects with post-stroke hemiparesis. Four locomotor imagery trainings on walking performance: visual locomotor imagery training, kinesthetic locomotor imagery training, visual locomotor imagery training with auditory step rhythm and kinesthetic locomotor imagery training with auditory step rhythm. The timed up-and-go test and electromyographic and kinematic analyses of the affected lower limb during one gait cycle. After the interventions, significant differences were found in the timed up-and-go test results between the visual locomotor imagery training (25.69 ± 16.16 to 23.97 ± 14.30) and the kinesthetic locomotor imagery training with auditory step rhythm (22.68 ± 12.35 to 15.77 ± 8.58) (P kinesthetic locomotor imagery training exhibited significantly increased activation in a greater number of muscles and increased angular displacement of the knee and ankle joints compared with the visual locomotor imagery training, and these effects were more prominent when auditory step rhythm was integrated into each form of locomotor imagery training. The activation of the hamstring during the swing phase and the gastrocnemius during the stance phase, as well as kinematic data of the knee joint, were significantly different for posttest values between the visual locomotor imagery training and the kinesthetic locomotor imagery training with auditory step rhythm (P kinesthetic locomotor imagery training than in the visual locomotor imagery training. The auditory step rhythm together with the locomotor imagery training produces a greater positive effect in improving the walking performance of patients with post-stroke hemiparesis.

  10. Locomotor circumvention strategies are altered by stroke: I. Obstacle clearance.

    Darekar, Anuja; Lamontagne, Anouk; Fung, Joyce

    2017-06-15

    Functional locomotion requires the ability to adapt to environmental challenges such as the presence of stationary or moving obstacles. Difficulties in obstacle circumvention often lead to restricted community ambulation in individuals with stroke. The objective of this study was to contrast obstacle circumvention strategies between post-stroke (n = 12) and healthy individuals (n = 12) performing locomotor and perceptuomotor (joystick navigation) tasks with different obstacle approaches. Participants walked and navigated with a joystick towards a central target, in a virtual environment simulating a large room, while avoiding an obstacle that either remained stationary at the pre-determined point of intersection or moved from head-on or diagonally 30° left/right. The outcome measures included dynamic clearance (DC), instantaneous distance from obstacle at crossing (IDC), number of collisions and preferred side of circumvention. These measures were compared between groups (stroke vs. healthy), obstacle parameter (stationary vs. moving head-on) and direction of approach (left/paretic vs. right/non-paretic). DC was significantly larger when circumventing a moving obstacle that approached head-on as compared to a stationary obstacle for both groups during both tasks, while not significantly different in either diagonal approach in either group. IDC was smaller in the stroke group while walking and larger in both groups during joystick navigation when avoiding moving as compared to stationary obstacle. IDC was significantly larger in the stroke group compared to controls for diagonal approaches during walking, wherein two different strategies emerged amongst individuals with stroke: circumventing to the same (V same n = 6) or opposite (V opp n = 4) side of obstacle approach. This behavior was not seen in the perceptuomotor task, wherein post-stroke participants circumvented to opposite side of the obstacle approach as seen in healthy participants. In the

  11. Locomotor pattern fails to predict foramen magnum angle in rodents, strepsirrhine primates, and marsupials.

    Ruth, Aidan A; Raghanti, Mary Ann; Meindl, Richard S; Lovejoy, C Owen

    2016-05-01

    Foramen magnum position has traditionally been used as an indicator of bipedality because it has been thought to favor a more "balanced" skull position. Here, we analyzed foramen magnum angle (FMA) in relation to locomotion in three mammalian orders that include bipedal or orthograde species in addition to quadrupedal or pronograde species. In marsupials and strepsirrhine primates, we found that there is no relationship between locomotor pattern and FMA. In rodents, we found that there is a significant difference in FMA between bipedal and quadrupedal rodents. However, when these species are analyzed in the context of enlarged auditory bullae, this relationship is no longer significant. Additionally, we find a significant relationship between relative brain size and FMA in strepsirrhine primates. Taken together, these data indicate that several developmental modules of the cranium influence FMA, but that locomotion does not. We caution that basicranial evolution is a complex phenomenon that must be explored in the context of each taxon's unique evolutionary and developmental history. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Progesterone receptor antagonist CDB-4124 increases depression-like behavior in mice without affecting locomotor ability.

    Beckley, Ethan H; Scibelli, Angela C; Finn, Deborah A

    2011-07-01

    Progesterone withdrawal has been proposed as an underlying factor in premenstrual syndrome and postpartum depression. Progesterone withdrawal induces forced swim test (FST) immobility in mice, a depression-like behavior, but the contribution of specific receptors to this effect is unclear. The role of progesterone's GABA(A) receptor-modulating metabolite allopregnanolone in depression- and anxiety-related behaviors has been extensively documented, but little attention has been paid to the role of progesterone receptors. We administered the classic progesterone receptor antagonist mifepristone (RU-38486) and the specific progesterone receptor antagonist CDB-4124 to mice that had been primed with progesterone for five days, and found that both compounds induced FST immobility reliably, robustly, and in a dose-dependent fashion. Although CDB-4124 increased FST immobility, it did not suppress initial activity in a locomotor test. These findings suggest that decreased progesterone receptor activity contributes to depression-like behavior in mice, consistent with the hypothesis that progesterone withdrawal may contribute to the symptoms of premenstrual syndrome or postpartum depression. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Progesterone receptor antagonist CDB-4124 increases depression-like behavior in mice without affecting locomotor ability

    Beckley, Ethan H.; Scibelli, Angela C.; Finn, Deborah A.

    2010-01-01

    Progesterone withdrawal has been proposed as an underlying factor in premenstrual syndrome and postpartum depression. Progesterone withdrawal induces forced swim test (FST) immobility in mice, a depression-like behavior, but the contribution of specific receptors to this effect is unclear. The role of progesterone’s GABAA receptor-modulating metabolite allopregnanolone in depression- and anxiety-related behaviors has been extensively documented, but little attention has been paid to the role of progesterone receptors. We administered the classic progesterone receptor antagonist mifepristone (RU-38486) and the specific progesterone receptor antagonist CDB-4124 to mice that had been primed with progesterone for five days, and found that both compounds induced FST immobility reliably, robustly, and in a dose-dependent fashion. Although CDB-4124 increased FST immobility, it did not suppress initial activity in a locomotor test. These findings suggest that decreased progesterone receptor activity contributes to depression-like behavior in mice, consistent with the hypothesis that progesterone withdrawal may contribute to the symptoms of premenstrual syndrome or postpartum depression. PMID:21163582

  14. Control of locomotor stability in stabilizing and destabilizing environments.

    Wu, Mengnan/Mary; Brown, Geoffrey; Gordon, Keith E

    2017-06-01

    To develop effective interventions targeting locomotor stability, it is crucial to understand how people control and modify gait in response to changes in stabilization requirements. Our purpose was to examine how individuals with and without incomplete spinal cord injury (iSCI) control lateral stability in haptic walking environments that increase or decrease stabilization demands. We hypothesized that people would adapt to walking in a predictable, stabilizing viscous force field and unpredictable destabilizing force field by increasing and decreasing feedforward control of lateral stability, respectively. Adaptations in feedforward control were measured using after-effects when fields were removed. Both groups significantly (pfeedforward adaptions to increase control of lateral stability. In contrast, in the destabilizing field, non-impaired subjects increased movement variability (p0.05). When the destabilizing field was removed, increases in movement variability persisted (pfeedforward decreases in resistance to perturbations. Published by Elsevier B.V.

  15. A Multiposture Locomotor Training Device with Force-Field Control

    Jianfeng Sui

    2014-11-01

    Full Text Available This paper introduces a multiposture locomotor training device (MPLTD with a closed-loop control scheme based on joint angle feedback, which is able to overcome various difficulties resulting from mechanical vibration and the weight of trainer to achieve higher accuracy trajectory. By introducing the force-field control scheme used in the closed-loop control, the device can obtain the active-constrained mode including the passive one. The MPLTD is mainly composed of three systems: posture adjusting and weight support system, lower limb exoskeleton system, and control system, of which the lower limb exoskeleton system mainly includes the indifferent equilibrium mechanism with two degrees of freedom (DOF and the driving torque is calculated by the Lagrangian function. In addition, a series of experiments, the weight support and the trajectory accuracy experiment, demonstrate a good performance of mechanical structure and the closed-loop control.

  16. Proprioceptive input resets central locomotor rhythm in the spinal cat

    Conway, B. A.; Hultborn, H.; Kiehn, O.

    1987-01-01

    The reflex regulation of stepping is an important factor in adapting the step cycle to changes in the environment. The present experiments have examined the influence of muscle proprioceptors on centrally generated rhythmic locomotor activity in decerebrate unanesthetized cats with a spinal...... fictive locomotion in a coordinated fashion. An extensor group I volley delivered during a flexor burst would abruptly terminate the flexor activity and initiate an extensor burst. The same stimulus given during an extensor burst prolonged the extensor activity while delaying the appearance...... afferents. Thus an increased load of limb extensors during the stance phase would enhance and prolong extensor activity while simultaneously delaying the transition to the swing phase of the step cycle....

  17. Immature spinal locomotor output in children with Cerebral Palsy

    Germana Cappellini

    2016-10-01

    Full Text Available Detailed descriptions of gait impairments have been reported in cerebral palsy (CP, but it is still unclear how maturation of the spinal motoneuron output is affected. Spatiotemporal alpha-motoneuron activation during walking can be assessed by mapping the electromyographic activity profiles from several, simultaneously recorded muscles onto the anatomical rostrocaudal location of the motoneuron pools in the spinal cord, and by means of factor analysis of the muscle activity profiles. Here, we analysed gait kinematics and EMG activity of 11 pairs of bilateral muscles with lumbosacral innervation in 35 children with CP (19 diplegic, 16 hemiplegic, 2-12 years and 33 typically developing (TD children (1-12 years. TD children showed a progressive reduction of EMG burst durations and a gradual reorganization of the spatiotemporal motoneuron output with increasing age. By contrast, children with CP showed very limited age-related changes of EMG durations and motoneuron output, as well as of limb intersegmental coordination and foot trajectory control (on both sides for diplegic children and the affected side for hemiplegic children. Factorization of the EMG signals revealed a comparable structure of the motor output in children with CP and TD children, but significantly wider temporal activation patterns in children with CP, resembling the patterns of much younger TD infants. A similar picture emerged when considering the spatiotemporal maps of alpha-motoneuron activation. Overall, the results are consistent with the idea that early injuries to developing motor regions of the brain substantially affect the maturation of the spinal locomotor output and consequently the future locomotor behaviour.

  18. Injections of the selective adenosine A2A antagonist MSX-3 into the nucleus accumbens core attenuate the locomotor suppression induced by haloperidol in rats.

    Ishiwari, Keita; Madson, Lisa J; Farrar, Andrew M; Mingote, Susana M; Valenta, John P; DiGianvittorio, Michael D; Frank, Lauren E; Correa, Merce; Hockemeyer, Jörg; Müller, Christa; Salamone, John D

    2007-03-28

    There is considerable evidence of interactions between adenosine A2A receptors and dopamine D2 receptors in striatal areas, and antagonists of the A2A receptor have been shown to reverse the motor effects of DA antagonists in animal models. The D2 antagonist haloperidol produces parkinsonism in humans, and also induces motor effects in rats, such as suppression of locomotion. The present experiments were conducted to study the ability of the adenosine A2A antagonist MSX-3 to reverse the locomotor effects of acute or subchronic administration of haloperidol in rats. Systemic (i.p.) injections of MSX-3 (2.5-10.0 mg/kg) were capable of attenuating the suppression of locomotion induced by either acute or repeated (i.e., 14 day) administration of 0.5 mg/kg haloperidol. Bilateral infusions of MSX-3 directly into the nucleus accumbens core (2.5 microg or 5.0 microg in 0.5 microl per side) produced a dose-related increase in locomotor activity in rats treated with 0.5 mg/kg haloperidol either acutely or repeatedly. There were no overall significant effects of MSX-3 infused directly into the dorsomedial nucleus accumbens shell or the ventrolateral neostriatum. These results indicate that antagonism of adenosine A2A receptors can attenuate the locomotor suppression produced by DA antagonism, and that this effect may be at least partially mediated by A2A receptors in the nucleus accumbens core. These studies suggest that adenosine and dopamine systems interact to modulate the locomotor and behavioral activation functions of nucleus accumbens core.

  19. Rapid limb-specific modulation of vestibular contributions to ankle muscle activity during locomotion

    Forbes, P.A.; Vlutters, M; Dakin, CJ; van der Kooij, H.; Blouin, JS; Schouten, A.C.

    2017-01-01

    During walking, the vestibular influence on locomotor activity is phase-dependent and modulated in both limbs with changes in velocity. It is unclear, however, whether this bilateral modulation is due to a coordinated mechanism between both limbs or instead through limb-specific processes that

  20. Effect of Error Augmentation on Brain Activation and Motor Learning of a Complex Locomotor Task

    Laura Marchal-Crespo

    2017-09-01

    Full Text Available Up to date, the functional gains obtained after robot-aided gait rehabilitation training are limited. Error augmenting strategies have a great potential to enhance motor learning of simple motor tasks. However, little is known about the effect of these error modulating strategies on complex tasks, such as relearning to walk after a neurologic accident. Additionally, neuroimaging evaluation of brain regions involved in learning processes could provide valuable information on behavioral outcomes. We investigated the effect of robotic training strategies that augment errors—error amplification and random force disturbance—and training without perturbations on brain activation and motor learning of a complex locomotor task. Thirty-four healthy subjects performed the experiment with a robotic stepper (MARCOS in a 1.5 T MR scanner. The task consisted in tracking a Lissajous figure presented on a display by coordinating the legs in a gait-like movement pattern. Behavioral results showed that training without perturbations enhanced motor learning in initially less skilled subjects, while error amplification benefited better-skilled subjects. Training with error amplification, however, hampered transfer of learning. Randomly disturbing forces induced learning and promoted transfer in all subjects, probably because the unexpected forces increased subjects' attention. Functional MRI revealed main effects of training strategy and skill level during training. A main effect of training strategy was seen in brain regions typically associated with motor control and learning, such as, the basal ganglia, cerebellum, intraparietal sulcus, and angular gyrus. Especially, random disturbance and no perturbation lead to stronger brain activation in similar brain regions than error amplification. Skill-level related effects were observed in the IPS, in parts of the superior parietal lobe (SPL, i.e., precuneus, and temporal cortex. These neuroimaging findings

  1. Developing the content of a locomotor disability scale for adults in Bangladesh: a qualitative study.

    Mahmud, Ilias; Clarke, Lynda; Ploubidis, George B

    2017-01-01

    Bangladesh has an estimated 17 million adults with disabilities. A significant proportion of them are believed to have locomotor disabilities. There are over 300 non-governmental organizations providing different types of rehabilitation services to them. However, there is no locally developed and validated locomotor disability measurement scale in Bangladesh. The purpose of this study was to develop a locomotor disability scale with disability indicators suitable for adults in Bangladesh. Semi-structured interviews were conducted with 25 purposively selected adults with locomotor disabilities to generate scale items. At the second stage, cognitive interviews were conducted with 12 purposively selected adults with locomotor disabilities in order to refine the measurement questions and response categories. Data were analysed using the framework technique- identifying, abstracting, charting and matching themes across the interviews. For a locomotor disability scale, 70 activities (disability indicators) were identified: 37 mobility activities, 9 activities of daily living, 17 work/productivity activities and 7 leisure activities. Cognitive interviews revealed that when asking the respondents to rate their difficulty in performing the activities, instead of just mentioning the activity name, such as taking a bath or shower, a detailed description of the activity and response options were necessary to ensure consistent interpretation of the disability indicators and response options across all respondents. Identifying suitable disability indicators was the first step in developing a locomotor disability scale for adults in Bangladesh. Interviewing adults with locomotor disabilities in Bangladesh ensured that the locomotor disability scale is of relevance to them and consequently it has excellent content validity. Further research is needed to evaluate the psychometric properties of this scale.

  2. Evolutionary and developmental modules.

    Lacquaniti, Francesco; Ivanenko, Yuri P; d'Avella, Andrea; Zelik, Karl E; Zago, Myrka

    2013-01-01

    The identification of biological modules at the systems level often follows top-down decomposition of a task goal, or bottom-up decomposition of multidimensional data arrays into basic elements or patterns representing shared features. These approaches traditionally have been applied to mature, fully developed systems. Here we review some results from two other perspectives on modularity, namely the developmental and evolutionary perspective. There is growing evidence that modular units of development were highly preserved and recombined during evolution. We first consider a few examples of modules well identifiable from morphology. Next we consider the more difficult issue of identifying functional developmental modules. We dwell especially on modular control of locomotion to argue that the building blocks used to construct different locomotor behaviors are similar across several animal species, presumably related to ancestral neural networks of command. A recurrent theme from comparative studies is that the developmental addition of new premotor modules underlies the postnatal acquisition and refinement of several different motor behaviors in vertebrates.

  3. Acetylcholinesterase inhibition and altered locomotor behavior in the carabid beetle pterostichus

    Jensen, Charlotte S.; Krause-Jensen, Lone; Baatrup, Erik

    1997-01-01

    -aided video tracking, whereupon the whole body AChE activity was measured in the individual beetle. AChE inhibition was strongly correlated with dimethoate dose in both sexes. Alterations in the locomotor behavior were directly correlated with AChE inhibition in male beetles, which responded by reducing...... to locomotor behavior, representing a general effect biomarker at the organismal level. Both sexes of the carabid beetle Pterostichus cupreus were intoxicated with three doses of the organophosphorous insecticide dimethoate. Five elements of their locomotor behavior were measured for 4 h employing computer...... the time in locomotion, average velocity, and path length and by increasing the turning rate and frequency of stops. Females responded similarly at the two highest doses, whereas their locomotor behavior was not significantly different from the control group at the lowest dimethoate dose, suggesting a sex...

  4. Effects of cholestasis on learning and locomotor activity in bile duct ligated rats.

    Hosseini, Nasrin; Alaei, Hojjatallah; Nasehi, Mohammad; Radahmadi, Maryam; Mohammad Reza, Zarrindast

    2014-01-01

    Cognitive functions are impaired in patients with liver disease. Bile duct ligation causes cholestasis that impairs liver function. This study investigated the impact of cholestasis progression on the acquisition and retention times in the passive avoidance test and on the locomotor activity of rats. Cholestasis was induced in male Wistar rats by ligating the main bile duct. Locomotor activity, learning and memory were assessed by the passive avoidance learning test at day 7, day 14, and day 21 post-bile duct ligation. The serum levels of bilirubin, alanine aminotransferase, and alkaline phosphatase were measured. The results showed that acquisition time and locomotor activity were not affected at day 7 and day 14, but they were significantly (P locomotor activity were impaired at 21 days after bile duct ligation following the progression of cholestasis.

  5. Comparative limb proportions reveal differential locomotor morphofunctions of alligatoroids and crocodyloids

    Iijima, Masaya; Kubo, Tai; Kobayashi, Yoshitsugu

    2018-03-01

    Although two major clades of crocodylians (Alligatoroidea and Crocodyloidea) were split during the Cretaceous period, relatively few morphological and functional differences between them have been known. In addition, interaction of multiple morphofunctional systems that differentiated their ecology has barely been assessed. In this study, we examined the limb proportions of crocodylians to infer the differences of locomotor functions between alligatoroids and crocodyloids, and tested the correlation of locomotor and feeding morphofunctions. Our analyses revealed crocodyloids including Gavialis have longer stylopodia (humerus and femur) than alligatoroids, indicating that two groups may differ in locomotor functions. Fossil evidence suggested that alligatoroids have retained short stylopodia since the early stage of their evolution. Furthermore, rostral shape, an indicator of trophic function, is correlated with limb proportions, where slender-snouted piscivorous taxa have relatively long stylopodia and short overall limbs. In combination, trophic and locomotor functions might differently delimit the ecological opportunity of alligatoroids and crocodyloids in the evolution of crocodylians.

  6. Woodlouse locomotor behavior in the assessment of clean and contaminated field sites

    Bayley, M.; Baatrup, E. [Aarhus Univ. (Denmark). Inst. of Biological Sciences; Bjerregaard, P. [Odense Univ. (Denmark). Inst. of Biology

    1997-11-01

    Specimens of the woodlouse Oniscus asellus were collected at four clean field sites and from a recently closed iron foundry heavily contaminated with zinc, lead, chromium, and nickel. Each of the 30 woodlice per group was housed individually and acclimatized to laboratory conditions for 2 d on a humid plaster of paris substrate. Thereafter, the locomotor behavior of each animal was measured for 4 h employing automated computer-aided video tracking. Linear discriminant analysis of five locomotor parameters revealed average velocity and path length as the principle components separating the polluted site and control animals. Post hoc analysis of the discriminant variable for animals from all five sites showed that the animals from the polluted site where significantly hyperactive when compared to all controls. Further, control animals collected from sites separated by several hundred kilometers were remarkably similar in their locomotor behavior. This preliminary study highlights the potential utility of quantitative analysis of animal locomotor behavior in environmental monitoring.

  7. Locomotor activity and tissue levels following acute administration of lambda- and gamma-cyhalothrin in rats

    Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metric...

  8. Locomotor activity: A distinctive index in morphine self-administration in rats

    Zhang, Jian-Jun; Kong, Qingyao

    2017-01-01

    Self-administration of addictive drugs is a widely used tool for studying behavioral, neurobiological, and genetic factors in addiction. However, how locomotor activity is affected during self-administration of addictive drugs has not been extensively studied. In our present study, we tested the locomotor activity levels during acquisition, extinction and reinstatement of morphine self-administration in rats. We found that compared with saline self-administration (SA), rats that trained with ...

  9. V1 spinal neurons regulate the speed of vertebrate locomotor outputs

    Gosgnach, Simon; Lanuza, Guillermo M.; Butt, Simon J B

    2006-01-01

    The neuronal networks that generate vertebrate movements such as walking and swimming are embedded in the spinal cord1-3. These networks, which are referred to as central pattern generators (CPGs), are ideal systems for determining how ensembles of neurons generate simple behavioural outputs...... for inhibition in regulating the frequency of the locomotor CPG rhythm, and also suggest that V1 neurons may have an evolutionarily conserved role in controlling the speed of vertebrate locomotor movements....

  10. Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury

    Varoqui, Deborah; Niu, Xun; Mirbagheri, Mehdi M

    2014-01-01

    Background In incomplete spinal cord injury (iSCI), sensorimotor impairments result in severe limitations to ambulation. To improve walking capacity, physical therapies using robotic-assisted locomotor devices, such as the Lokomat, have been developed. Following locomotor training, an improvement in gait capabilities—characterized by increases in the over-ground walking speed and endurance—is generally observed in patients. To better understand the mechanisms underlying these improvements, we...

  11. Sex differences in the acute locomotor response to methamphetamine in BALB/c mice.

    Ohia-Nwoko, Odochi; Haile, Colin N; Kosten, Therese A

    2017-06-01

    Women use methamphetamine more frequently than men and are more vulnerable to its negative psychological effects. Rodent models have been an essential tool for evaluating the sex-dependent effects of psychostimulants; however, evidence of sex differences in the behavioral responses to methamphetamine in mice is lacking. In the present study, we investigated acute methamphetamine-induced (1mg/kg and 4mg/kg) locomotor activation in female and male BALB/c mice. We also evaluated whether basal locomotor activity was associated with the methamphetamine-induced locomotor response. The results indicated that female BALB/c mice displayed enhanced methamphetamine-induced locomotor activity compared to males, while basal locomotor activity was positively correlated with methamphetamine-induced activity in males, but not females. This study is the first to show sex-dependent locomotor effects of methamphetamine in BALB/c mice. Our observations emphasize the importance of considering sex when assessing behavioral responses to methamphetamine. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Cocaine locomotor activation, sensitization and place preference in six inbred strains of mice

    2011-01-01

    Background The expanding set of genomics tools available for inbred mouse strains has renewed interest in phenotyping larger sets of strains. The present study aims to explore phenotypic variability among six commonly-used inbred mouse strains to both the rewarding and locomotor stimulating effects of cocaine in a place conditioning task, including several strains or substrains that have not yet been characterized for some or all of these behaviors. Methods C57BL/6J (B6), BALB/cJ (BALB), C3H/HeJ (C3H), DBA/2J (D2), FVB/NJ (FVB) and 129S1/SvImJ (129) mice were tested for conditioned place preference to 20 mg/kg cocaine. Results Place preference was observed in most strains with the exception of D2 and 129. All strains showed a marked increase in locomotor activity in response to cocaine. In BALB mice, however, locomotor activation was context-dependent. Locomotor sensitization to repeated exposure to cocaine was most significant in 129 and D2 mice but was absent in FVB mice. Conclusions Genetic correlations suggest that no significant correlation between conditioned place preference, acute locomotor activation, and locomotor sensitization exists among these strains indicating that separate mechanisms underlie the psychomotor and rewarding effects of cocaine. PMID:21806802

  13. Modulating Arm Swing Symmetry with Cognitive Load: A Window on Rhythmic Spinal Locomotor Networks in Humans?

    Killeen, Tim; Easthope, Christopher S; Filli, Linard; Linnebank, Michael; Curt, Armin; Bolliger, Marc; Zörner, Björn

    2017-05-15

    In healthy subjects, changes in arm swing symmetry while walking are observed when a cognitive dual task is added, with a tendency toward left-dominant arm swing as cognitive load increases. We applied a modified Stroop word/color naming paradigm to investigate this effect in spinal cord injured (SCI) patients. Six patients with cervical SCI (cSCI), 6 with thoracic injuries (tSCI; all 12 patients American Spinal Injury Association [ASIA] Injury Score [AIS]D), and 12 healthy, matched controls underwent three-dimensional 3D gait analysis while walking normally at a comfortable speed (NW) and when performing an additional congruent (CS) and incongruent (IS) Stroop task. An arm swing symmetry index (ASI)-in which positive values indicate proportionally more movement on the left and vice versa-was calculated. Even in the baseline NW condition, all three subject groups showed larger arm movements on the left. In controls, ASI increased (NW, 13.7 ± 6.3; CS, 16.6 ± 6.4; IS, 19.6 ± 7.8) as the task became more demanding. A larger shift in tSCI patients (NW, 15.8 ± 6.0; CS, 23.4 ± 3.8; IS, 30.7 ± 4.4) was driven by a significant reduction in right wrist trajectory (p = 0.014), whereas cSCI patients showed a small reduction in mean ASI with high variability (NW, 14.2 ± 10.7; CS, 9.3 ± 13.5; IS, 6.0 ± 12.9). The effect of the IS task on ASI compared to baseline (NW) was significantly different between tSCI (+12.5 ± 6.3) and cSCI (-8.2 ± 6.0) patients (p = 0.011). Disruption of the long propriospinal connections coordinating arm and leg movements during walking may explain the heightened sensitivity to manipulation of cognitive load in tSCI, whereas the more robust automaticity in cSCI may be attributed to impaired supraspinal inputs in the context of preserved intraspinal pathways.

  14. Clinical Holistic Medicine: Chronic Pain in the Locomotor System

    Søren Ventegodt

    2005-01-01

    Full Text Available Most pains from the locomotor system arise due to involuntary, chronic tensions in the muscles or other tissues. When the patient is motivated, the pain is easily cured in most of the cases by using the tools of consciousness-based medicine, primarily therapeutic touch, conversation, and coaching the patient in a positive philosophy of life. The pains are often caused by “blockages” that may cause problems other than just pain. Often it turns out that the blocked areas develop actual physical damage over time: a slipped disk in the back, articular degeneration, or osteoarthritis when the cartilage is affected, can often be explained in this way. Apparently, the exact areas where the blockage is situated cause cellular problems, disrupting cellular order. The holistic process theory of healing and the related quality of life theories state that return to the natural state of being is possible, whenever the person gets the resources needed for existential healing. The resources needed are “holding” in the dimensions of awareness, respect, care, acknowledgment, and acceptance with support and processing in the dimensions of feeling, understanding, and letting go of negative attitudes and beliefs. The preconditions for holistic healing are trust and the intention for the healing to take place. Case stories of holistic treatment of patients with chronic back pain, low back pain, muscle problems, knee pain, and symptoms of rheumatoid arthritis are discussed with exercises relevant for patients with these conditions in the holistic clinic.

  15. Limitations imposed by wearing armour on Medieval soldiers' locomotor performance.

    Askew, Graham N; Formenti, Federico; Minetti, Alberto E

    2012-02-22

    In Medieval Europe, soldiers wore steel plate armour for protection during warfare. Armour design reflected a trade-off between protection and mobility it offered the wearer. By the fifteenth century, a typical suit of field armour weighed between 30 and 50 kg and was distributed over the entire body. How much wearing armour affected Medieval soldiers' locomotor energetics and biomechanics is unknown. We investigated the mechanics and the energetic cost of locomotion in armour, and determined the effects on physical performance. We found that the net cost of locomotion (C(met)) during armoured walking and running is much more energetically expensive than unloaded locomotion. C(met) for locomotion in armour was 2.1-2.3 times higher for walking, and 1.9 times higher for running when compared with C(met) for unloaded locomotion at the same speed. An important component of the increased energy use results from the extra force that must be generated to support the additional mass. However, the energetic cost of locomotion in armour was also much higher than equivalent trunk loading. This additional cost is mostly explained by the increased energy required to swing the limbs and impaired breathing. Our findings can predict age-associated decline in Medieval soldiers' physical performance, and have potential implications in understanding the outcomes of past European military battles.

  16. Not letting the left leg know what the right leg is doing: limb-specific locomotor adaptation to sensory-cue conflict.

    Durgin, Frank H; Fox, Laura F; Hoon Kim, Dong

    2003-11-01

    We investigated the phenomenon of limb-specific locomotor adaptation in order to adjudicate between sensory-cue-conflict theory and motor-adaptation theory. The results were consistent with cue-conflict theory in demonstrating that two different leg-specific hopping aftereffects are modulated by the presence of conflicting estimates of self-motion from visual and nonvisual sources. Experiment 1 shows that leg-specific increases in forward drift during attempts to hop in place on one leg while blindfolded vary according to the relationship between visual information and motor activity during an adaptation to outdoor forward hopping. Experiment 2 shows that leg-specific changes in performance on a blindfolded hopping-to-target task are similarly modulated by the presence of cue conflict during adaptation to hopping on a treadmill. Experiment 3 shows that leg-specific aftereffects from hopping additionally produce inadvertent turning during running in place while blindfolded. The results of these experiments suggest that these leg-specific locomotor aftereffects are produced by sensory-cue conflict rather than simple motor adaptation.

  17. Locomotor damage in rats after x-irradiation in Utero

    Mullenix, P.; Norton, S.; Culver, B.

    1975-01-01

    Alterations in gait were found in rats after whole-body irradiation with 125 R on day 14, 15, and 16 of gestation. No effects on locomotion were detected after irradiation on day 17 with 125 R or after irradiation on day 14 with 50 R. A technique was set up for quantitative evaluation of locomotion based on a modification of other methods. Walking patterns of irradiated rats were recorded, when they were adults, by requiring them to walk up a 10 0 incline through a corridor after their feet had been dipped in ink. Rats irradiated on gestational day 14 had an in-phase, hopping gait with the sine of the angle between the hind feet and the direction of progression over 0.9. Rats irradiated on gestational days 15 and 16 had an alternating, waddling gait with wider stance and broader angle than control rats. Histologic examination of serial sections of the brains of these rats showed that the 14-day rats lacked all telencephalic commissures except for a few fibers which crossed in some rats. There was a progressive improvement in the condition of the anterior and ventral hippocampal commissures up to day 17, but the corpus callosum and doral hippocampal commissure were lacking or markedly reduced in all day 17 rats. No animals showed damage to the mesencephalic posterior commissure. Since rats which used the in-phase mode of locomotion were never observed to use alternating gait, the possible causal relationship of the commissural damage to the altered locomotor patterns was considered. In view of the restricted period of damage found for the anterior and ventral hippocampal commissures and the restriction of altered locomotion to damage in the same period, primary involvement of the corpus callosum and dorsal hippocampal commissure could be excluded, but a possible role for the other telencephalic commissures remained

  18. General and Specific Strategies Used to Facilitate Locomotor Maneuvers.

    Mengnan Wu

    Full Text Available People make anticipatory changes in gait patterns prior to initiating a rapid change of direction. How they prepare will change based on their knowledge of the maneuver. To investigate specific and general strategies used to facilitate locomotor maneuvers, we manipulated subjects' ability to anticipate the direction of an upcoming lateral "lane-change" maneuver. To examine specific anticipatory adjustments, we observed the four steps immediately preceding a maneuver that subjects were instructed to perform at a known time in a known direction. We hypothesized that to facilitate a specific change of direction, subjects would proactively decrease margin of stability in the future direction of travel. Our results support this hypothesis: subjects significantly decreased lateral margin of stability by 69% on the side ipsilateral to the maneuver during only the step immediately preceding the maneuver. This gait adaptation may have improved energetic efficiency and simplified the control of the maneuver. To examine general anticipatory adjustments, we observed the two steps immediately preceding the instant when subjects received information about the direction of the maneuver. When the maneuver direction was unknown, we hypothesized that subjects would make general anticipatory adjustments that would improve their ability to actively initiate a maneuver in multiple directions. This second hypothesis was partially supported as subjects increased step width and stance phase hip flexion during these anticipatory steps. These modifications may have improved subjects' ability to generate forces in multiple directions and maintain equilibrium during the onset and execution of the rapid maneuver. However, adapting these general anticipatory strategies likely incurred an additional energetic cost.

  19. A stochastic locomotor control model for the nurse shark, Ginglymostoma cirratum.

    Gerald, K B; Matis, J H; Kleerekoper, H

    1978-06-12

    The locomotor behavior of the nurse shark (Ginglymostoma cirratum) is characterized by 17 variables (frequency and ratios of left, right, and total turns; their radians; straight paths (steps); distance travelled; and velocity) Within each of these variables there is an internal time dependency the structure of which was elaborated together with an improved statistical model predicting their behavior within 90% confidence limits. The model allows for the sensitive detection of subtle locomotor response to sensory stimulation as values of variables may exceed the established confidence limits within minutes after onset of the stimulus. The locomotor activity is well described by an autoregression time series model and can be predicted by only seven variables. Six of these form two independently operating clusters. The first one consists of: the number of right turns, the distance travelled and the mean velocity; the second one of: the mean size of right turns, of left turns, and of all turns. The same clustering is obtained independently by a cluster analysis of cross-sections of the seven time series. It is apparent that, among a total of 17 locomotor variables, seven behave as individually independent agents, presumably controlled by seven separate and independent centers. The output of each center can only be predicted by its own behavior. In spite of the individual of the seven variables, their internal structure is similar in important aspects which may result from control by a common command center. The shark locomotor model differs in important aspects from the previously constructed for the goldfish. The interdependence of the locomotor variables in both species may be related to the control mechanisms postulated by von Holst for the coordination of rhythmic fin movements in fishes. A locomotor control model for the nurse shark is proposed.

  20. Objective and quantitative equilibriometric evaluation of individual locomotor behaviour in schizophrenia: Translational and clinical implications.

    Haralanov, Svetlozar; Haralanova, Evelina; Milushev, Emil; Shkodrova, Diana; Claussen, Claus-Frenz

    2018-04-17

    Psychiatry is the only medical specialty that lacks clinically applicable biomarkers for objective evaluation of the existing pathology at a single-patient level. On the basis of an original translational equilibriometric method for evaluation of movement patterns, we have introduced in the everyday clinical practice of psychiatry an easy-to-perform computerized objective quantification of the individual locomotor behaviour during execution of the Unterberger stepping test. For the last 20 years, we have gradually collected a large database of more than 1000 schizophrenic patients, their relatives, and matched psychiatric, neurological, and healthy controls via cross-sectional and longitudinal investigations. Comparative analyses revealed transdiagnostic locomotor similarities among schizophrenic patients, high-risk schizotaxic individuals, and neurological patients with multiple sclerosis and cerebellar ataxia, thus suggesting common underlying brain mechanisms. In parallel, intradiagnostic dissimilarities were revealed, which allow to separate out subclinical locomotor subgroups within the diagnostic categories. Prototypical qualitative (dysmetric and ataxic) locomotor abnormalities in schizophrenic patients were differentiated from 2 atypical quantitative ones, manifested as either hypolocomotion or hyperlocomotion. Theoretical analyses suggested that these 3 subtypes of locomotor abnormalities could be conceived as objectively measurable biomarkers of 3 schizophrenic subgroups with dissimilar brain mechanisms, which require different treatment strategies. Analogies with the prominent role of locomotor measures in some well-known animal models of mental disorders advocate for a promising objective translational research in the so far over-subjective field of psychiatry. Distinctions among prototypical, atypical, and diagnostic biomarkers, as well as between neuromotor and psychomotor locomotor abnormalities, are discussed. Conclusions are drawn about the

  1. Determinants of locomotor disability in people aged 55 years and over: The Rotterdam study

    Odding, Else; Valkenburg, Hans A.; Stam, Hendrik J.; Hofman, Albert

    2001-01-01

    Locomotor disability, as defined by difficulties in activities of daily living related to lower limb function, can be the consequence of diseases and impairments of the cardiovascular, pulmonary, nervous, sensory and musculoskeletal system. We estimated the associations between specific diseases and impairments and locomotor disability, and the proportion of disability attributable to each condition, controlling for age and comorbidity. The Rotterdam Study is a prospective follow-up study among people aged 55 years and over in the general population. Locomotor disability in 1219 men and 1856 women was assessed with the Stanford Health Assessment Questionnaire. Diseases and impairments were radiological osteoarthritis, pain of the hips and knees, morning stiffness, fractures, hypertension, vascular disease, ischemic heart disease, stroke, heart failure, chronic obstructive pulmonary disease (COPD), depression, Parkinson's disease, osteoporosis, diabetes mellitus, overweight, and low vision. Adjusted odds ratios, etiologic and attributable fractions were calculated for locomotor disability. The occurrence of locomotor disability can partly be ascribed to joint pain, COPD, morning stiffness, diabetes and heart failure in both men and women. In addition in women osteoarthritis, osteoporosis, low vision, fractures, stroke and Parkinson's disease are significant etiologic fractions. In men with morning stiffness, joint pain, heart failure, diabetes mellitus, and COPD a significant proportion of their disability is attributable to this impairment. In women this was the case for Parkinson's disease, morning stiffness, low vision, heart failure, joint pain, diabetes, radiological osteoarthritis, stroke, COPD, osteoporosis, and fractures of the lower limbs, in that order. We conclude that locomotor complaints, heart failure, COPD and diabetes mellitus contribute considerably to locomotor disability in non-institutionalized elderly people

  2. The Effects of Sex-Ratio and Density on Locomotor Activity in the House Fly, Musca domestica

    Bahrndorff, Simon; Kjærsgaard, Anders; Pertoldi, Cino; Loeschcke, Volker; Schou, Toke M.; Skovgård, Henrik; Hald, Birthe

    2012-01-01

    Although locomotor activity is involved in almost all behavioral traits, there is a lack of knowledge on what factors affect it. This study examined the effects of sex-ratio and density on the circadian rhythm of locomotor activity of adult Musca domestica L. (Diptera: Muscidae) using an infra-red light system. Sex-ratio significantly affected locomotor activity, increasing with the percentage of males in the vials. In accordance with other studies, males were more active than females, but th...

  3. Motor unit recruitment patterns 1: responses to changes in locomotor velocity and incline.

    Hodson-Tole, Emma F; Wakeling, James M

    2008-06-01

    Mammalian skeletal muscles are composed of a mixture of motor unit types, which contribute a range of mechanical and physiological properties to the muscle. For a muscle to effectively contribute to smooth, co-ordinated movement it must activate an appropriate number and combination of motor units to generate the required force over a suitable time period. Much evidence exists indicating that motor units are activated in an orderly fashion, from the slowest through to the fastest. A growing body of evidence, however, indicates that such a recruitment strategy does not always hold true. Here we investigate how motor unit recruitment patterns were influenced by changes in locomotor velocity and incline. Kinematics data and myoelectric signals were collected from three rat ankle extensor muscles during running on a treadmill at nine velocity and incline combinations. Wavelet and principal component analysis were used to simultaneously decompose the signals into time and frequency space. The relative frequency components of the signals were quantified during 20 time windows of a stride from each locomotor condition. Differences in signal frequency components existed between muscles and locomotor conditions. Faster locomotor velocities led to a relative increase in high frequency components, whereas greater inclines led to a relative increase in the low frequency components. These data were interpreted as representing changes in motor unit recruitment patterns in response to changes in the locomotor demand. Motor units were not always recruited in an orderly manner, indicating that recruitment is a multi-factorial phenomenon that is not yet fully understood.

  4. Effect of thiamethoxam on cockroach locomotor activity is associated with its metabolite clothianidin.

    Benzidane, Yassine; Touinsi, Sarra; Motte, Emilie; Jadas-Hécart, Alain; Communal, Pierre-Yves; Leduc, Lionel; Thany, Steeve H

    2010-12-01

    In the present study, the effect of thiamethoxam and clothianidin on the locomotor activity of American cockroach, Periplaneta americana (L.), was evaluated. Because it has been proposed that thiamethoxam is metabolised to clothianidin, high-performance liquid chromatography coupled with mass spectrometry was used to evaluate the amount of clothianidin on thiamethoxam-treated cockroaches. One hour after neonicotinoid treatment, the time spent in the open-field-like apparatus significantly increased, suggesting a decrease in locomotor activity. The percentage of cockroaches displaying locomotor activity was significantly reduced 1 h after haemolymph application of 1 nmol g(-1) neonicotinoid, while no significant effect was found after topical and oral administration. However, at 24 and 48 h, all neonicotinoids were able to reduce locomotor activity, depending on their concentrations and the way they were applied. Interestingly, it was found that thiamethoxam was converted to clothianidin 1 h after application, but the amount of clothianidin did not rise proportionately to thiamethoxam, especially after oral administration. The data suggest that the effect of thiamethoxam on cockroach locomotor activity is due in part to clothianidin action because (1) thiamethoxam levels remained persistent 48 h after application and (2) the amount of clothianidin in cockroach tissues was consistent with the toxicity of thiamethoxam. Copyright © 2010 Society of Chemical Industry.

  5. Effects of caffeine on locomotor activity in streptozotocin-induced diabetic rats.

    Bădescu, S V; Tătaru, C P; Kobylinska, L; Georgescu, E L; Zahiu, D M; Zăgrean, A M; Zăgrean, L

    2016-01-01

    Diabetes mellitus modifies the expression of adenosine receptors in the brain. Caffeine acts as an antagonist of A1 and A2A adenosine receptors and was shown to have a dose-dependent biphasic effect on locomotion in mice. The present study investigated the link between diabetes and locomotor activity in an animal model of streptozotocin-induced diabetes, and the effects of a low-medium dose of caffeine in this relation. The locomotor activity was investigated by using Open Field Test at 6 weeks after diabetes induction and after 2 more weeks of chronic caffeine administration. Diabetes decreased locomotor activity (total distance moved and mobility time). Chronic caffeine exposure impaired the locomotor activity in control rats, but not in diabetic rats. Our data suggested that the medium doses of caffeine might block the A2A receptors, shown to have an increased density in the brain of diabetic rats, and improve or at least maintain the locomotor activity, offering a neuroprotective support in diabetic rats. Abbreviations : STZ = streptozotocin, OFT = Open Field Test.

  6. Using a Split-belt Treadmill to Evaluate Generalization of Human Locomotor Adaptation.

    Vasudevan, Erin V L; Hamzey, Rami J; Kirk, Eileen M

    2017-08-23

    Understanding the mechanisms underlying locomotor learning helps researchers and clinicians optimize gait retraining as part of motor rehabilitation. However, studying human locomotor learning can be challenging. During infancy and childhood, the neuromuscular system is quite immature, and it is unlikely that locomotor learning during early stages of development is governed by the same mechanisms as in adulthood. By the time humans reach maturity, they are so proficient at walking that it is difficult to come up with a sufficiently novel task to study de novo locomotor learning. The split-belt treadmill, which has two belts that can drive each leg at a different speed, enables the study of both short- (i.e., immediate) and long-term (i.e., over minutes-days; a form of motor learning) gait modifications in response to a novel change in the walking environment. Individuals can easily be screened for previous exposure to the split-belt treadmill, thus ensuring that all experimental participants have no (or equivalent) prior experience. This paper describes a typical split-belt treadmill adaptation protocol that incorporates testing methods to quantify locomotor learning and generalization of this learning to other walking contexts. A discussion of important considerations for designing split-belt treadmill experiments follows, including factors like treadmill belt speeds, rest breaks, and distractors. Additionally, potential but understudied confounding variables (e.g., arm movements, prior experience) are considered in the discussion.

  7. Effects of gender on locomotor sensitivity to amphetamine, body weight, and fat mass in regulator of G protein signaling 9 (RGS9) knockout mice.

    Walker, Paul D; Jarosz, Patricia A; Bouhamdan, Mohamad; MacKenzie, Robert G

    2015-01-01

    Regulator of G-protein signaling (RGS) protein 9-2 is enriched in the striatum where it modulates dopamine and opioid receptor-mediated signaling. RGS9 knockout (KO) mice show increased psychostimulant-induced behavioral sensitization, as well as exhibit higher body weights and greater fat accumulation compared to wild-type (WT) littermates. In the present study, we found gender influences on each of these phenotypic characteristics. Female RGS9 KO mice exhibited greater locomotor sensitization to amphetamine (1.0mg/kg) treatment as compared to male RGS9 KO mice. Male RGS9 KO mice showed increased body weights as compared to male WT littermates, while no such differences were detected in female mice. Quantitative magnetic resonance showed that male RGS9 KO mice accumulated greater fat mass vs. WT littermates at 5months of age. Such observations could not be explained by increased caloric consumption since male and female RGS9 KO mice demonstrated equivalent daily food intake as compared to their respective WT littermates. Although indirect calorimetry methods found decreased oxygen consumption and carbon dioxide production during the 12-hour dark phase in male RGS9 KO vs. WT mice which are indicative of less energy expenditure, male RGS9 KO mice exhibited lower levels of locomotor activity during this period. Genotype had no effect on metabolic activities when KO and WT groups were compared under fasting vs. feeding treatments. In summary, these results highlight the importance of factoring gender into the experimental design since many studies conducted in RGS9 KO mice utilize locomotor activity as a measured outcome. Copyright © 2014. Published by Elsevier Inc.

  8. Locomotor circumvention strategies are altered by stroke: II. Postural Coordination.

    Darekar, Anuja; Lamontagne, Anouk; Fung, Joyce

    2017-06-15

    Locomotor strategies for obstacle circumvention require appropriate postural coordination that depends on sensorimotor integration within the central nervous system. It is not known how these strategies are affected by a stroke. The objective of this study was to contrast postural coordination strategies used for obstacle circumvention between post-stroke participants (n = 12) and healthy controls (n = 12). Participants walked towards a target in a virtual environment (11 × 8 m room) with cylindrical obstacles that were stationary or approaching from head-on, or diagonally 30° left/right. Two stepping strategies for obstacle circumvention were identified: 1) side step: increase in step width by the foot ipsilateral to the side of circumvention; 2) cross step: decrease in step width by the foot contralateral to the side of circumvention. The side step strategy was favoured by post-stroke individuals in circumventing stationary and head-on approaching obstacles. In circumventing diagonally approaching obstacles, healthy controls generally veered opposite to obstacle approach (>60% trials), whereas the majority of post-stroke participants (7/12) veered to the same side of obstacle approach (V same ). Post-stroke participants who veered to the opposite side (V opp , 5/12) were more independent and faster ambulators who favoured the side step strategy in circumventing obstacles approaching from the paretic side and cross step strategy for obstacles approaching from the non-paretic side. V same participants generally favoured the side step strategy for both diagonal approaches. Segmental rotation amplitudes and latencies were largest in the V same group, and significantly greater in post-stroke participants than controls for all obstacle conditions. All participants initiated circumvention with the feet followed by the pelvis and thorax, demonstrating a caudal-rostral sequence of reorientation. Postural coordination strategies for obstacle circumvention

  9. Learning a locomotor task: with or without errors?

    Marchal-Crespo, Laura; Schneider, Jasmin; Jaeger, Lukas; Riener, Robert

    2014-03-04

    Robotic haptic guidance is the most commonly used robotic training strategy to reduce performance errors while training. However, research on motor learning has emphasized that errors are a fundamental neural signal that drive motor adaptation. Thus, researchers have proposed robotic therapy algorithms that amplify movement errors rather than decrease them. However, to date, no study has analyzed with precision which training strategy is the most appropriate to learn an especially simple task. In this study, the impact of robotic training strategies that amplify or reduce errors on muscle activation and motor learning of a simple locomotor task was investigated in twenty two healthy subjects. The experiment was conducted with the MAgnetic Resonance COmpatible Stepper (MARCOS) a special robotic device developed for investigations in the MR scanner. The robot moved the dominant leg passively and the subject was requested to actively synchronize the non-dominant leg to achieve an alternating stepping-like movement. Learning with four different training strategies that reduce or amplify errors was evaluated: (i) Haptic guidance: errors were eliminated by passively moving the limbs, (ii) No guidance: no robot disturbances were presented, (iii) Error amplification: existing errors were amplified with repulsive forces, (iv) Noise disturbance: errors were evoked intentionally with a randomly-varying force disturbance on top of the no guidance strategy. Additionally, the activation of four lower limb muscles was measured by the means of surface electromyography (EMG). Strategies that reduce or do not amplify errors limit muscle activation during training and result in poor learning gains. Adding random disturbing forces during training seems to increase attention, and therefore improve motor learning. Error amplification seems to be the most suitable strategy for initially less skilled subjects, perhaps because subjects could better detect their errors and correct them

  10. EphA4 defines a class of excitatory locomotor-related interneurons

    Butt, S. J B; Lundfald, Line; Kiehn, Ole

    2005-01-01

    of these interneurons provide direct excitation to ipsilateral motor neurons as determined by spike-triggered averaging of the local ventral root DC trace. Our findings substantiate the role of EphA4-positive interneurons as significant components of the ipsilateral locomotor network and describe a group of putative...... of the role of these cells in the network. One such marker is the EphA4 axon guidance receptor. EphA4-null mice display an abnormal rabbit-like hopping gait that is thought to be the result of synchronization of the normally alternating, bilateral locomotor network via aberrant crossed connections....... In this study, we have performed whole-cell patch clamp on EphA4-positive interneurons in the flexor region (L2) of the locomotor network. We provide evidence that although EphA4 positive interneurons are not entirely a homogeneous population, most of them fire in a rhythmic manner. Moreover, a subset...

  11. Hesperidin effects on behavior and locomotor activity of diabetic ...

    Tuoyo Aghomotsegin

    2016-11-09

    Nov 9, 2016 ... causing behavioral disorders, depression and cognitive dysfunction .... to control which was analysed using Student's t-test, at P<0.05. RESULTS .... music is used as a therapy that modulates a combined predator and noise ...

  12. Locomotor muscle fatigue does not alter oxygen uptake kinetics during high-intensity exercise

    James Hopker

    2016-10-01

    Full Text Available The slow component (VO2sc that develops during high-intensity aerobic exercise is thought to be strongly associated with locomotor muscle fatigue. We sought to experimentally test this hypothesis by pre-fatiguing the locomotor muscles used during subsequent high-intensity cycling exercise. Over two separate visits, eight healthy male participants were asked to either perform a non-metabolically stressful 100 intermittent drop-jumps protocol (pre fatigue condition or rest for 33 minutes (control condition according to a random and counterbalanced order. Locomotor muscle fatigue was quantified with 6-second maximal sprints at a fixed pedaling cadence of 90 rev·min-1. Oxygen kinetics and other responses (heart rate, capillary blood lactate concentration and rating of perceived exertion, RPE were measured during two subsequent bouts of 6 min cycling exercise at 50% of the delta between the lactate threshold and VO2max determined during a preliminary incremental exercise test. All tests were performed on the same cycle ergometer. Despite significant locomotor muscle fatigue (P = 0.03, the VO2sc was not significantly different between the pre fatigue (464 ± 301 mL·min-1 and the control (556 ± 223 mL·min-1 condition (P = 0.50. Blood lactate response was not significantly different between conditions (P = 0.48 but RPE was significantly higher following the pre-fatiguing exercise protocol compared with the control condition (P < 0.01 suggesting higher muscle recruitment. These results demonstrate experimentally that locomotor muscle fatigue does not significantly alter the VO2 kinetic response to high intensity aerobic exercise, and challenge the hypothesis that the VO2sc is strongly associated with locomotor muscle fatigue.

  13. Altered Patterns of Reflex Excitability, Balance, and Locomotion Following Spinal Cord Injury (SCI and Locomotor Training.

    Prodip K Bose

    2012-07-01

    Full Text Available Spasticity is an important problem that complicates daily living in many individuals with SCI. While previous studies in human and animals revealed significant improvements in locomotor ability with treadmill locomotor training, it is not known to what extent locomotor training influences spasticity. In addition, it would be of considerable practical interest to know how the more ergonomically feasible cycle training compares with treadmill training as therapy to manage SCI-induced spasticity and to improve locomotor function. Our present studies were initiated to evaluate the influence of different types of locomotor training on measures of limb spasticity, gait, and reflex components that contribute to locomotion. For these studies, thirty animals received midthoracic SCI using the standard MASCIS protocol (10 g 2.5 cm weight drop. They were divided randomly into three equal groups: control (contused untrained, contused treadmill trained, and contused cycle trained. Velocity-dependent ankle torque was tested across a wide range of velocities (612 – 49 deg/sec to permit quantitation of tonic (low velocity and dynamic (high velocity contributions to lower limb spasticity. Treadmill and cycle training were started on post-injury day 8. By post-injury weeks 4 and 6, the untrained group revealed significant velocity-dependent ankle extensor spasticity, compared to pre-surgical control values. At these post-injury time points, spasticity was not observed in either of the two training groups. Instead, a significantly milder form of velocity dependent spasticity was detected at postcontusion week 8 through 12 in both treadmill and bicycle training groups at the four fastest ankle rotation velocities (350 - 612 deg/sec. Locomotor training using treadmill or bicycle also produced significant increase in the rate of recovery of limb placement measures (limb axis, base of support, and BBB and reflex rate depression, a quantitative assessment of

  14. Locomotor Muscle Fatigue Does Not Alter Oxygen Uptake Kinetics during High-Intensity Exercise.

    Hopker, James G; Caporaso, Giuseppe; Azzalin, Andrea; Carpenter, Roger; Marcora, Samuele M

    2016-01-01

    The [Formula: see text] slow component ([Formula: see text]) that develops during high-intensity aerobic exercise is thought to be strongly associated with locomotor muscle fatigue. We sought to experimentally test this hypothesis by pre-fatiguing the locomotor muscles used during subsequent high-intensity cycling exercise. Over two separate visits, eight healthy male participants were asked to either perform a non-metabolically stressful 100 intermittent drop-jumps protocol (pre-fatigue condition) or rest for 33 min (control condition) according to a random and counterbalanced order. Locomotor muscle fatigue was quantified with 6-s maximal sprints at a fixed pedaling cadence of 90 rev·min -1 . Oxygen kinetics and other responses (heart rate, capillary blood lactate concentration and rating of perceived exertion, RPE) were measured during two subsequent bouts of 6 min cycling exercise at 50% of the delta between the lactate threshold and [Formula: see text] determined during a preliminary incremental exercise test. All tests were performed on the same cycle ergometer. Despite significant locomotor muscle fatigue ( P = 0.03), the [Formula: see text] was not significantly different between the pre-fatigue (464 ± 301 mL·min -1 ) and the control (556 ± 223 mL·min -1 ) condition ( P = 0.50). Blood lactate response was not significantly different between conditions ( P = 0.48) but RPE was significantly higher following the pre-fatiguing exercise protocol compared with the control condition ( P locomotor muscle fatigue does not significantly alter the [Formula: see text] kinetic response to high intensity aerobic exercise, and challenge the hypothesis that the [Formula: see text] is strongly associated with locomotor muscle fatigue.

  15. Potential contributions of training intensity on locomotor performance in individuals with chronic stroke.

    Holleran, Carey L; Rodriguez, Kelly S; Echauz, Anthony; Leech, Kristan A; Hornby, T George

    2015-04-01

    Many interventions can improve walking ability of individuals with stroke, although the training parameters that maximize recovery are not clear. For example, the contribution of training intensity has not been well established and may contribute to the efficacy of many locomotor interventions. The purpose of this preliminary study was to evaluate the effects of locomotor training intensity on walking outcomes in individuals with gait deficits poststroke. Using a randomized cross-over design, 12 participants with chronic stroke (>6-month duration) performed either high-intensity (70%-80% of heart rate reserve; n = 6) or low-intensity (30%-40% heart rate reserve; n = 6) locomotor training for 12 or fewer sessions over 4 to 5 weeks. Four weeks following completion, the alternate training intervention was performed. Training intensity was manipulated by adding loads or applying resistance during walking, with similar speeds, durations, and amount of stepping practice between conditions. Greater increases in 6-Minute Walk Test performance were observed following high-intensity training compared with low-intensity training. A significant interaction of intensity and order was also observed for 6-Minute Walk Test and peak treadmill speed, with the largest changes in those who performed high-intensity training first. Moderate correlations were observed between locomotor outcomes and measures of training intensity. This study provides the first evidence that the intensity of locomotor practice may be an important independent determinant of walking outcomes poststroke. In the clinical setting, the intensity of locomotor training can be manipulated in many ways, although this represents only 1 parameter to consider.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A90).

  16. Manipulation of dopamine metabolism contributes to attenuating innate high locomotor activity in ICR mice.

    Yamaguchi, Takeshi; Nagasawa, Mao; Ikeda, Hiromi; Kodaira, Momoko; Minaminaka, Kimie; Chowdhury, Vishwajit S; Yasuo, Shinobu; Furuse, Mitsuhiro

    2017-06-15

    Attention-deficit hyperactivity disorder (ADHD) is defined as attention deficiency, restlessness and distraction. The main characteristics of ADHD are hyperactivity, impulsiveness and carelessness. There is a possibility that these abnormal behaviors, in particular hyperactivity, are derived from abnormal dopamine (DA) neurotransmission. To elucidate the mechanism of high locomotor activity, the relationship between innate activity levels and brain monoamines and amino acids was investigated in this study. Differences in locomotor activity between ICR, C57BL/6J and CBA/N mice were determined using the open field test. Among the three strains, ICR mice showed the greatest amount of locomotor activity. The level of striatal and cerebellar DA was lower in ICR mice than in C57BL/6J mice, while the level of L-tyrosine (L-Tyr), a DA precursor, was higher in ICR mice. These results suggest that the metabolic conversion of L-Tyr to DA is lower in ICR mice than it is in C57BL/6J mice. Next, the effects of intraperitoneal injection of (6R)-5, 6, 7, 8-tetrahydro-l-biopterin dihydrochloride (BH 4 ) (a co-enzyme for tyrosine hydroxylase) and L-3,4-dihydroxyphenylalanine (L-DOPA) on DA metabolism and behavior in ICR mice were investigated. The DA level in the brain was increased by BH 4 administration, but the increased DA did not influence behavior. However, L-DOPA administration drastically lowered locomotor activity and increased DA concentration in several parts of the brain. The reduced locomotor activity may have been a consequence of the overproduction of DA. In conclusion, the high level of locomotor activity in ICR mice may be explained by a strain-specific DA metabolism. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Asymmetric operation of the locomotor central pattern generator in the neonatal mouse spinal cord

    Endo, Toshiaki; Kiehn, Ole

    2008-01-01

    The rhythmic voltage oscillations in motor neurons (MNs) during locomotor movements reflect the operation of the pre-MN central pattern generator (CPG) network. Recordings from MNs can thus be used as a method to deduct the organization of CPGs. Here, we use continuous conductance measurements...... of locomotor CPG. The extracted excitatory and inhibitory synaptic conductances varied between 2 and 56% of the mean total conductance. Analysis of the phase tuning of the extracted synaptic conductances in flexor and extensor MNs in the rostral lumbar cord showed that the flexor-phase-related synaptic...

  18. Plasticity of locomotor sensorimotor interactions after peripheral and/or spinal lesions

    Rossignol, Serge; Barrière, Grégory; Frigon, Alain

    2008-01-01

    The present paper reviews aspects of locomotor sensorimotor interactions by focussing on work performed in spinal cats. We provide a brief overview of spinal locomotion and describe the effects of various types of sensory deprivations (e.g. rhizotomies, and lesions of muscle and cutaneous nerves......) to highlight the spinal neuroplasticity necessary for adapting to sensory loss. Recent work on plastic interactions between reflex pathways that could be responsible for such plasticity, in particular changes in proprioceptive and cutaneous pathways that occur during locomotor training of spinal cats...

  19. Glutamatergic mechanisms for speed control and network operation in the rodent locomotor CPG

    Talpalar, Adolfo E.; Kiehn, Ole

    2010-01-01

    in mammals have produced conflicting results regarding the necessity and role of the different ionotropic glutamate receptors (GluRs) in the CPG function. Here, we use electrophysiological and pharmacological techniques in the in vitro neonatal mouse lumbar spinal cord to investigate the role of a broad...... mechanisms acting at various network levels. AMPA and kainate receptors are necessary for generating the highest locomotor frequencies. For coordination, NMDARs are more important than non-NMDARs for conveying the rhythmic signal from the network to the motor neurons during long-lasting and steady locomotor...

  20. Prenatal Iron Deficiency in Guinea Pigs Increases Locomotor Activity but Does Not Influence Learning and Memory

    Fiset, Catherine; Rioux, France M.; Surette, Marc E.; Fiset, Sylvain

    2015-01-01

    The objective of the current study was to determine whether prenatal iron deficiency induced during gestation in guinea pigs affected locomotor activity and learning and memory processes in the progeny. Dams were fed either iron-deficient anemic or iron-sufficient diets throughout gestation and lactation. After weaning, all pups were fed an iron-sufficient diet. On postnatal day 24 and 40, the pups' locomotor activity was observed within an open-field test, and from postnatal day 25 to 40, th...

  1. Sleep pattern and locomotor activity are impaired by doxorubicin in non-tumor-bearing rats.

    Lira, Fabio Santos; Esteves, Andrea Maculano; Pimentel, Gustavo Duarte; Rosa, José Cesar; Frank, Miriam Kannebley; Mariano, Melise Oliveira; Budni, Josiane; Quevedo, João; Santos, Ronaldo Vagner Dos; de Mello, Marco Túlio

    2016-01-01

    We sought explore the effects of doxorubicin on sleep patterns and locomotor activity. To investigate these effects, two groups were formed: a control group and a Doxorubicin (DOXO) group. Sixteen rats were randomly assigned to either the control or DOXO groups. The sleep patterns were examined by polysomnographic recording and locomotor activity was evaluated in an open-field test. In the light period, the total sleep time and slow wave sleep were decreased, while the wake after sleep onset and arousal were increased in the DOXO group compared with the control group (plocomotor activity.

  2. Efficacy of Stochastic Vestibular Stimulation to Improve Locomotor Performance in a Discordant Sensory Environment

    Temple, D. R.; De Dios, Y. E.; Layne, C. S.; Bloomberg, J. J.; Mulavara, A. P.

    2016-01-01

    Astronauts exposed to microgravity face sensorimotor challenges incurred when readapting to a gravitational environment. Sensorimotor Adaptability (SA) training has been proposed as a countermeasure to improve locomotor performance during re-adaptation, and it is suggested that the benefits of SA training may be further enhanced by improving detection of weak sensory signals via mechanisms such as stochastic resonance when a non-zero level of stochastic white noise based electrical stimulation is applied to the vestibular system (stochastic vestibular stimulation, SVS). The purpose of this study was to test the efficacy of using SVS to improve short-term adaptation in a sensory discordant environment during performance of a locomotor task.

  3. Effect of physical exercise prelabyrinthectomy on locomotor balance compensation in the squirrel monkey

    Igarashi, M.; Ohashi, K.; Yoshihara, T.; MacDonald, S.

    1989-01-01

    This study examines the effectiveness of physical exercise, during a prepathology state, on locomotor balance compensation after subsequent unilateral labyrinthectomy in squirrel monkeys. An experimental group underwent 3 hr. of daily running exercise on a treadmill for 3 mo. prior to the surgery, whereas a control group was not exercised. Postoperatively, the locomotor balance function of both groups was tested for 3 mo. There was no significant difference in gait deviation counts in the acute phase of compensation. However, in the chronic compensation maintenance phase, the number of gait deviation counts was fewer in the exercise group, which showed significantly better performance stability.

  4. Activity of Renshaw cells during locomotor-like rhythmic activity in the isolated spinal cord of neonatal mice

    Nishimaru, Hiroshi; Restrepo, Carlos E.; Kiehn, Ole

    2006-01-01

    % of the recorded RCs fired in-phase with the ipsilateral L2 flexor-related rhythm, whereas the rest fired in the extensor phase. Each population of RCs fired throughout the corresponding locomotor phase. All RCs received both excitatory and inhibitory synaptic inputs during the locomotor-like rhythmic activity...

  5. Age-Related Changes in Locomotor Performance Reveal a Similar Pattern for Caenorhabditis elegans, Mus domesticus, Canis familiaris, Equus caballus, and Homo sapiens.

    Marck, Adrien; Berthelot, Geoffroy; Foulonneau, Vincent; Marc, Andy; Antero-Jacquemin, Juliana; Noirez, Philippe; Bronikowski, Anne M; Morgan, Theodore J; Garland, Theodore; Carter, Patrick A; Hersen, Pascal; Di Meglio, Jean-Marc; Toussaint, Jean-François

    2017-04-01

    Locomotion is one of the major physiological functions for most animals. Previous studies have described aging mechanisms linked to locomotor performance among different species. However, the precise dynamics of these age-related changes, and their interactions with development and senescence, are largely unknown. Here, we use the same conceptual framework to describe locomotor performances in Caenorhabditis elegans, Mus domesticus, Canis familiaris, Equus caballus, and Homo sapiens. We show that locomotion is a consistent biomarker of age-related changes, with an asymmetrical pattern throughout life, regardless of the type of effort or its duration. However, there is variation (i) among species for the same mode of locomotion, (ii) within species for different modes of locomotion, and (iii) among individuals of the same species for the same mode of locomotion. Age-related patterns are modulated by genetic (such as selective breeding) as well as environmental conditions (such as temperature). However, in all cases, the intersection of the rising developmental phase and the declining senescent phase reveals neither a sharp transition nor a plateau, but a smooth transition, emphasizing a crucial moment: the age at peak performance. This transition may define a specific target for future investigations on the dynamics of such biological interactions. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Ghrelin and Ghrelin Receptor Modulation of Psychostimulant Action

    Paul Jeff Wellman

    2013-09-01

    Full Text Available Ghrelin (GHR is an orexigenic gut peptide that modulates multiple homeostatic functions including gastric emptying, anxiety, stress, memory, feeding and reinforcement. GHR is known to bind and activate growth-hormone secretagogue receptors (termed GHR-Rs. Of interest to our laboratory has been the assessment of the impact of GHR modulation of the locomotor activation and reward/reinforcement properties of psychostimulants such as cocaine and nicotine. Systemic GHR infusions augment cocaine stimulated locomotion and conditioned place preference (CPP in rats, as does food restriction which elevates plasma ghrelin levels. Ghrelin enhancement of psychostimulant function may occur owing to a direct action on mesolimbic dopamine function or may reflect an indirect action of ghrelin on glucocorticoid pathways. Genomic or pharmacological ablation of GHR-Rs attenuates the acute locomotor-enhancing effects of nicotine, cocaine, amphetamine and alcohol and blunts the CPP induced by food, alcohol, amphetamine and cocaine in mice. The stimulant nicotine can induce CPP and like amphetamine and cocaine, repeated administration of nicotine induces locomotor sensitization in rats. Inactivation of ghrelin circuit function in rats by injection of a ghrelin receptor antagonist (e.g. JMV 2959 diminishes the development of nicotine-induced locomotor sensitization. These results suggest a key permissive role for GHR-R activity for the induction of locomotor sensitization to nicotine. Our finding that GHR-R null rats exhibit diminished patterns of responding for intracranial self-stimulation complements an emerging literature implicating central GHR circuits in drug reward/reinforcement. Finally, antagonism of GHR-Rs may represent a smoking cessation modality that not only blocks nicotine-induced reward but that also may limit weight gain after smoking cessation.

  7. N-Acetylcysteine reverses cocaine-induced metaplasticity.

    Moussawi, Khaled; Pacchioni, Alejandra; Moran, Megan; Olive, M Foster; Gass, Justin T; Lavin, Antonieta; Kalivas, Peter W

    2009-02-01

    Cocaine addiction is characterized by an impaired ability to develop adaptive behaviors that can compete with cocaine seeking, implying a deficit in the ability to induce plasticity in cortico-accumbens circuitry crucial for regulating motivated behavior. We found that rats withdrawn from cocaine self-administration had a marked in vivo deficit in the ability to develop long-term potentiation (LTP) and long-term depression (LTD) in the nucleus accumbens core subregion after stimulation of the prefrontal cortex. N-acetylcysteine (NAC) treatment prevents relapse in animal models and craving in humans by activating cystine-glutamate exchange and thereby stimulating extrasynaptic metabotropic glutamate receptors (mGluR). NAC treatment of rats restored the ability to induce LTP and LTD by indirectly stimulating mGluR2/3 and mGluR5, respectively. Our findings show that cocaine self-administration induces metaplasticity that inhibits further induction of synaptic plasticity, and this impairment can be reversed by NAC, a drug that also prevents relapse.

  8. Cocaine-induced encephalocele: case report and literature review.

    Albert, Ladislau; DeMattia, Joseph A

    2011-01-01

    The abuse of cocaine can lead to significant destruction of midline craniofacial structures. This process occurs secondary to myriad mechanisms, including ischemic necrosis, irritation by chemical adulterants, and direct trauma during its administration. Coupled with a prolonged chronic infection of intranasal and anterior skull base regions, an encephalocele can be formed. We report a case of an encephalocele secondary to cocaine use and its associated complications. A 56-year-old man presented with altered mental status and cerebritis secondary to the presence of an intranasal encephalocele. On computed tomography, extensive destruction of the anterior cranial fossa was observed. The patient had a 30-year history of intranasal cocaine abuse, and his urine tested positive for the presence of cocaine on admission. The patient was treated with intravenous antibiotics and underwent a repair of his cranial defect and resection of the encephalocele. The patient made a good recovery after treatment. Alternative causes of an encephalocele, including trauma, surgery, and congenital malformation, were ruled out in this patient. Histopathological analysis of the necrotic tissue and the absence of renal or pulmonary disease also indicated that the patient did not suffer from Wegener granulomatosis, a known cause of spontaneous intranasal lesions. To the best of our knowledge, this is the first report of an encephalocele likely induced solely by cocaine abuse.

  9. GABAB Receptor Stimulation Accentuates the Locomotor Effects of Morphine in Mice Bred for Extreme Sensitivity to the Stimulant Effects of Ethanol

    Holstein, Sarah E.; Phillips, Tamara J.

    2006-01-01

    Mice selectively bred for divergent sensitivity to the locomotor stimulant effects of ethanol (FAST and SLOW) also differ in their locomotor response to morphine. The GABAB receptor has been implicated in the mediation of locomotor stimulation to both ethanol and morphine, and a reduction in ethanol-induced stimulation has been found with the GABAB receptor agonist baclofen in FAST mice. We hypothesized that GABAB receptor activation would also attenuate the locomotor stimulant responses to m...

  10. Volumetric changes in the aging rat brain and its impact on cognitive and locomotor functions.

    Hamezah, Hamizah Shahirah; Durani, Lina Wati; Ibrahim, Nor Faeizah; Yanagisawa, Daijiro; Kato, Tomoko; Shiino, Akihiko; Tanaka, Sachiko; Damanhuri, Hanafi Ahmad; Ngah, Wan Zurinah Wan; Tooyama, Ikuo

    2017-12-01

    Impairments in cognitive and locomotor functions usually occur with advanced age, as do changes in brain volume. This study was conducted to assess changes in brain volume, cognitive and locomotor functions, and oxidative stress levels in middle- to late-aged rats. Forty-four male Sprague-Dawley rats were divided into four groups: 14, 18, 23, and 27months of age. 1 H magnetic resonance imaging (MRI) was performed using a 7.0-Tesla MR scanner system. The volumes of the lateral ventricles, medial prefrontal cortex (mPFC), hippocampus, striatum, cerebellum, and whole brain were measured. Open field, object recognition, and Morris water maze tests were conducted to assess cognitive and locomotor functions. Blood was taken for measurements of malondialdehyde (MDA), protein carbonyl content, and antioxidant enzyme activity. The lateral ventricle volumes were larger, whereas the mPFC, hippocampus, and striatum volumes were smaller in 27-month-old rats than in 14-month-old rats. In behavioral tasks, the 27-month-old rats showed less exploratory activity and poorer spatial learning and memory than did the 14-month-old rats. Biochemical measurements likewise showed increased MDA and lower glutathione peroxidase (GPx) activity in the 27-month-old rats. In conclusion, age-related increases in oxidative stress, impairment in cognitive and locomotor functions, and changes in brain volume were observed, with the most marked impairments observed in later age. Copyright © 2017. Published by Elsevier Inc.

  11. Human spinal locomotor control is based on flexibly organized burst generators

    Danner, Simon M.; Hofstoetter, Ursula S.; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank; Minassian, Karen

    2015-01-01

    Understanding the organisation of human spinal locomotor circuitry after severe CNS damage is essential for improving neurorehabilitation strategies. Danner et al. present evidence of flexibly organised burst-generating elements within the functionally isolated human lumbosacral spinal cord that generate rhythmic patterns in response to constant, repetitive epidural stimulation.

  12. MRT of the locomotor system. 4. rev. and enl. ed.; MRT des Bewegungsapparats

    Vahlensieck, Martin [Praxisnetz Radiologie und Nuklearmedizin Bonn Bad Godesberg - RheinSieg, Bonn (Germany); Reiser, Maximilian (ed.) [Klinikum Grosshadern, Muenchen (Germany). Inst. fuer Klinische Radiologie

    2015-02-01

    The book on MRT of the locomotor system covers the following topics: relevant NMT imaging techniques, spinal cord, shoulder, elbows, wrist and fingers, hip region, knee, lower leg - ankle - foot, temporomandibular joint, skeletal muscles, bone marrow, bone and soft tissue tumors, osteoporosis, sacroiliac joint, jaw and periodontium.

  13. Gait quality is improved by locomotor training in individuals with SCI regardless of training approach

    Nooijen, C.F.J.; ter Hoeve, N.; Field-Fote, E.C.

    2009-01-01

    Background: While various body weight supported locomotor training (BWSLT) approaches are reported in the literature for individuals with spinal cord injury (SCI), none have evaluated outcomes in terms of gait quality. The purpose of this study was to compare changes in measures of gait quality

  14. S-phenylpiracetam, a selective DAT inhibitor, reduces body weight gain without influencing locomotor activity.

    Zvejniece, Liga; Svalbe, Baiba; Vavers, Edijs; Makrecka-Kuka, Marina; Makarova, Elina; Liepins, Vilnis; Kalvinsh, Ivars; Liepinsh, Edgars; Dambrova, Maija

    2017-09-01

    S-phenylpiracetam is an optical isomer of phenotropil, which is a clinically used nootropic drug that improves physical condition and cognition. Recently, it was shown that S-phenylpiracetam is a selective dopamine transporter (DAT) inhibitor that does not influence norepinephrine (NE) or serotonin (5-HT) receptors. The aim of the present study was to study the effects of S-phenylpiracetam treatment on body weight gain, blood glucose and leptin levels, and locomotor activity. Western diet (WD)-fed mice and obese Zucker rats were treated daily with peroral administration of S-phenylpiracetam for 8 and 12weeks, respectively. Weight gain and plasma metabolites reflecting glucose metabolism were measured. Locomotor activity was detected in an open-field test. S-phenylpiracetam treatment significantly decreased body weight gain and fat mass increase in the obese Zucker rats and in the WD-fed mice. In addition, S-phenylpiracetam reduced the plasma glucose and leptin concentration and lowered hyperglycemia in a glucose tolerance test in both the mice and the rats. S-phenylpiracetam did not influence locomotor activity in the obese Zucker rats or in the WD-fed mice. The results demonstrate that S-phenylpiracetam reduces body weight gain and improves adaptation to hyperglycemia without stimulating locomotor activity. Our findings suggest that selective DAT inhibitors, such as S-phenylpiracetam, could be potentially useful for treating obesity in patients with metabolic syndrome with fewer adverse health consequences compared to other anorectic agents. Copyright © 2017. Published by Elsevier Inc.

  15. Locomotor performance of cane toads differs between native-range and invasive populations.

    Kosmala, Georgia; Christian, Keith; Brown, Gregory; Shine, Richard

    2017-07-01

    Invasive species provide a robust opportunity to evaluate how animals deal with novel environmental challenges. Shifts in locomotor performance-and thus the ability to disperse-(and especially, the degree to which it is constrained by thermal and hydric extremes) are of special importance, because they might affect the rate that an invader can spread. We studied cane toads ( Rhinella marina ) across a broad geographical range: two populations within the species' native range in Brazil, two invasive populations on the island of Hawai'i and eight invasive populations encompassing the eastern, western and southern limits of the toad invasion in Australia. A toad's locomotor performance on a circular raceway was strongly affected by both its temperature and its hydration state, but the nature and magnitude of those constraints differed across populations. In their native range, cane toads exhibited relatively low performance (even under optimal test conditions) and a rapid decrease in performance at lower temperatures and hydration levels. At the other extreme, performance was high in toads from southern Australia, and virtually unaffected by desiccation. Hawai'ian toads broadly resembled their Brazilian conspecifics, plausibly reflecting similar climatic conditions. The invasion of Australia has been accompanied by a dramatic enhancement in the toads' locomotor abilities, and (in some populations) by an ability to maintain locomotor performance even when the animal is cold and/or dehydrated. The geographical divergences in performance among cane toad populations graphically attest to the adaptability of invasive species in the face of novel abiotic challenges.

  16. Disruption of locomotor adaptation with repetitive transcranial magnetic stimulation over the motor cortex

    Choi, Julia Tsok Lam; Bouyer, Laurent J; Nielsen, Jens Bo

    2015-01-01

    Locomotor patterns are adapted on a trial-and-error basis to account for predictable dynamics. Once a walking pattern is adapted, the new calibration is stored and must be actively de-adapted. Here, we tested the hypothesis that storage of newly acquired ankle adaptation in walking is dependent...

  17. NeuroRecovery Network provides standardization of locomotor training for persons with incomplete spinal cord injury.

    Morrison, Sarah A; Forrest, Gail F; VanHiel, Leslie R; Davé, Michele; D'Urso, Denise

    2012-09-01

    To illustrate the continuity of care afforded by a standardized locomotor training program across a multisite network setting within the Christopher and Dana Reeve Foundation NeuroRecovery Network (NRN). Single patient case study. Two geographically different hospital-based outpatient facilities. This case highlights a 25-year-old man diagnosed with C4 motor incomplete spinal cord injury with American Spinal Injury Association Impairment Scale grade D. Standardized locomotor training program 5 sessions per week for 1.5 hours per session, for a total of 100 treatment sessions, with 40 sessions at 1 center and 60 at another. Ten-meter walk test and 6-minute walk test were assessed at admission and discharge across both facilities. For each of the 100 treatment sessions percent body weight support, average, and maximum treadmill speed were evaluated. Locomotor endurance, as measured by the 6-minute walk test, and overground gait speed showed consistent improvement from admission to discharge. Throughout training, the patient decreased the need for body weight support and was able to tolerate faster treadmill speeds. Data indicate that the patient continued to improve on both treatment parameters and walking function. Standardization across the NRN centers provided a mechanism for delivering consistent and reproducible locomotor training programs across 2 facilities without disrupting training or recovery progression. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. Initial locomotor sensitivity to cocaine varies widely among inbred mouse strains.

    Wiltshire, T; Ervin, R B; Duan, H; Bogue, M A; Zamboni, W C; Cook, S; Chung, W; Zou, F; Tarantino, L M

    2015-03-01

    Initial sensitivity to psychostimulants can predict subsequent use and abuse in humans. Acute locomotor activation in response to psychostimulants is commonly used as an animal model of initial drug sensitivity and has been shown to have a substantial genetic component. Identifying the specific genetic differences that lead to phenotypic differences in initial drug sensitivity can advance our understanding of the processes that lead to addiction. Phenotyping inbred mouse strain panels are frequently used as a first step for studying the genetic architecture of complex traits. We assessed locomotor activation following a single, acute 20 mg/kg dose of cocaine (COC) in males from 45 inbred mouse strains and observed significant phenotypic variation across strains indicating a substantial genetic component. We also measured levels of COC, the active metabolite, norcocaine and the major inactive metabolite, benzoylecgonine, in plasma and brain in the same set of inbred strains. Pharmacokinetic (PK) and behavioral data were significantly correlated, but at a level that indicates that PK alone does not account for the behavioral differences observed across strains. Phenotypic data from this reference population of inbred strains can be utilized in studies aimed at examining the role of psychostimulant-induced locomotor activation on drug reward and reinforcement and to test theories about addiction processes. Moreover, these data serve as a starting point for identifying genes that alter sensitivity to the locomotor stimulatory effects of COC. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  19. Slow Versus Fast Robot-Assisted Locomotor Training After Severe Stroke: A Randomized Controlled Trial.

    Rodrigues, Thais Amanda; Goroso, Daniel Gustavo; Westgate, Philip M; Carrico, Cheryl; Batistella, Linamara R; Sawaki, Lumy

    2017-10-01

    Robot-assisted locomotor training on a bodyweight-supported treadmill is a rehabilitation intervention that compels repetitive practice of gait movements. Standard treadmill speed may elicit rhythmic movements generated primarily by spinal circuits. Slower-than-standard treadmill speed may elicit discrete movements, which are more complex than rhythmic movements and involve cortical areas. Compare effects of fast (i.e., rhythmic) versus slow (i.e., discrete) robot-assisted locomotor training on a bodyweight-supported treadmill in subjects with chronic, severe gait deficit after stroke. Subjects (N = 18) were randomized to receive 30 sessions (5 d/wk) of either fast or slow robot-assisted locomotor training on a bodyweight-supported treadmill in an inpatient setting. Functional ambulation category, time up and go, 6-min walk test, 10-m walk test, Berg Balance Scale, and Fugl-Meyer Assessment were administered at baseline and postintervention. The slow group had statistically significant improvement on functional ambulation category (first quartile-third quartile, P = 0.004), 6-min walk test (95% confidence interval [CI] = 1.8 to 49.0, P = 0.040), Berg Balance Scale (95% CI = 7.4 to 14.8, P locomotor training on a bodyweight-supported treadmill after severe stroke, slow training targeting discrete movement may yield greater benefit than fast training.

  20. Functional organization of V2a-related locomotor circuits in the rodent spinal cord

    Dougherty, Kimberly J.; Kiehn, Ole

    2010-01-01

    Studies of mammalian locomotion have been greatly facilitated by the use of the isolated rodent spinal cord preparation that retains the locomotor circuits needed to execute the movement. Physiological and molecular genetic experiments in this preparation have started to unravel the basic circuit...

  1. Self-Motion Perception during Locomotor Recalibration: More than Meets the Eye

    Durgin, Frank H.; Pelah, Adar; Fox, Laura F.; Lewis, Jed; Kane, Rachel; Walley, Katherine A.

    2005-01-01

    Do locomotor after effects depend specifically on visual feedback? In 7 experiments, 116 college students were tested, with closed eyes, at stationary running or at walking to a previewed target after adaptation, with closed eyes, to treadmill locomotion. Subjects showed faster inadvertent drift during stationary running and increased distance…

  2. Temperature and Population Density Effects on Locomotor Activity of Musca domestica (Diptera: Muscidae)

    Schou, T. M.; Faurby, S.; Kjærsgaard, A.

    2013-01-01

    The behavior of ectotherm organisms is affected by both abiotic and biotic factors. However, a limited number of studies have investigated the synergistic effects on behavioral traits. This study examined the effect of temperature and density on locomotor activity of Musca domestica (L.). Locomot...

  3. The morphological development of the locomotor and cardiac muscles of the migratory barnacle goose (Branta leucopsis)

    Bishop, CM; Butler, PJ; ElHaj, AJ; Egginton, S; Loonen, MJJE

    The masses of the locomotor and cardiac muscles of wild barnacle goose goslings, from a migratory population, were examined systematically during development and their values compared to those of pre-migratory geese. Pre-flight development was typified by approximately linear increases of body, leg,

  4. Effects of sex pheromones and sexual maturation on locomotor activity in female sea lamprey (Petromyzon marinus)

    Walaszczyk, Erin J.; Johnson, Nicholas S.; Steibel, Juan Pedro; Li, Weiming

    2013-01-01

    Synchronization of male and female locomotor rhythmicity can play a vital role in ensuring reproductive success. Several physiological and environmental factors alter these locomotor rhythms. As sea lamprey, Petromyzon marinus, progress through their life cycle, their locomotor activity rhythm changes multiple times. The goal of this study was to elucidate the activity patterns of adult female sea lamprey during the sexual maturation process and discern the interactions of these patterns with exposure to male pheromones. During these stages, preovulated and ovulated adult females are exposed to sex pheromone compounds, which are released by spermiated males and attract ovulated females to the nest for spawning. The locomotor behavior of adult females was monitored in a natural stream with a passive integrated tag responder system as they matured, and they were exposed to a sex pheromone treatment (spermiated male washings) or a control (prespermiated male washings). Results showed that, dependent on the hour of day, male sex pheromone compounds reduce total activity (p reproductive synchrony of mature adults, thus increasing reproductive success in this species.

  5. Drugs that Target Dopamine Receptors: Changes in Locomotor Activity in Larval Zebrafish

    As part of an effort at the US Environmental Protection Agency to develop a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae. This includes assessing the acute effects of drugs known...

  6. Efficacy of Static Magnetic Field for Locomotor Activity of Experimental Osteopenia

    Norimasa Taniguchi

    2007-01-01

    Full Text Available In order to examine the effectiveness of applying a static magnetic field (SMF for increasing bone mineral density (BMD, we assessed the degree of osteopenia by dual-energy X-ray absorptiometry (DEXA, the metabolism measuring system, and histological examination of bone tissue in an ovariectomized (OVX rat model. Thirty-six female Wistar rats (8 weeks old, 160–180 g were divided into three groups. The rats in the OVX-M group were exposed to SMF for 12 weeks after ovariectomy. The ovariectomized rats in the OVX-D group were not exposed to SMF as a control. The rats in the normal group received neither ovariectomy nor exposure to SMF. Twelve-week exposure to SMF in the OVX-M group inhibited the reduction in BMD that was observed in the OVX-D group. Moreover, in the OVX rats, before exposure to SMF, there was no clear difference in the level of locomotor activity between the active and resting phases, and the pattern of locomotor activity was irregular. After exposure of OVX rats to SMF, the pattern of locomotor activity became diphasic with clear active and resting phases, as was observed in the normal group. In the OVX-M group, the continuity of the trabecular bone was maintained more favorably and bone mass was higher than the respective parameters in the OVX-D group. These results demonstrate that exposure to SMF increased the level of locomotor activity in OVX rats, thereby increasing BMD.

  7. Fractional-Order Information in the Visual Control of Lateral Locomotor Interception

    Bootsma, Reinoud J.; Ledouit, Simon; Casanova, Remy; Zaal, Frank T. J. M.

    Previous work on locomotor interception of a target moving in the transverse plane has suggested that interception is achieved by maintaining the target's bearing angle (often inadvertently confused and/or confounded with the target heading angle) at a constant value. However, dynamics-based model

  8. Plateau properties in mammalian spinal interneurons during transmitter-induced locomotor activity

    Kiehn, O.; Johnson, B. R.; Raastad, M.

    1996-01-01

    We examined the organization of spinal networks controlling locomotion in the isolated spinal cord of the neonatal rat, and in this study we provide the first demonstration of plateau and bursting mechanisms in mammalian interneurons that show locomotor-related activity. Using tight-seal whole...

  9. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors

    DiGiovanna, J.; Dominici, N.; Friedli, L.; Rigosa, J.; Duis, S.; Kreider, J.; Beauparlant, J.; van den Brand, R.; Schieppati, M.; Micera, S.; Courtine, G.

    2016-01-01

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral

  10. Neurochemical evidence that cocaine- and amphetamine-regulated transcript (CART) 55-102 peptide modulates the dopaminergic reward system by decreasing the dopamine release in the mouse nucleus accumbens.

    Rakovska, Angelina; Baranyi, Maria; Windisch, Katalin; Petkova-Kirova, Polina; Gagov, Hristo; Kalfin, Reni

    2017-09-01

    CART (Cocaine- and Amphetamine-Regulated Transcript) peptide is a neurotransmitter naturally occurring in the CNS and found mostly in nucleus accumbens, ventrotegmental area, ventral pallidum, amygdalae and striatum, brain regions associated with drug addiction. In the nucleus accumbens, known for its significant role in motivation, pleasure, reward and reinforcement learning, CART peptide inhibits cocaine and amphetamine-induced dopamine-mediated increases in locomotor activity and behavior, suggesting a CART peptide interaction with the dopaminergic system. Thus in the present study, we examined the effect of CART (55-102) peptide on the basal, electrical field stimulation-evoked (EFS-evoked) (30V, 2Hz, 120 shocks) and returning basal dopamine (DA) release and on the release of the DA metabolites 3,4-dihydroxyphenyl acetaldehyde (DOPAL), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 3,4-dihydroxyphenylethanol (DOPET), 3-methoxytyramine (3-MT) as well as on norepinephrine (NE) and dopamine-o-quinone (Daq) in isolated mouse nucleus accumbens, in a preparation, in which any CART peptide effects on the dendrites or soma of ventral tegmental projection neurons have been excluded. We further extended our study to assess the effect of CART (55-102) peptide on basal cocaine-induced release of dopamine and its metabolites DOPAL, DOPAC, HVA, DOPET and 3-MT as well as on NE and Daq. To analyze the amount of [ 3 H]dopamine, dopamine metabolites, Daq and NE in the nucleus accumbens superfusate, a high-pressure liquid chromatography (HPLC), coupled with electrochemical, UV and radiochemical detections was used. CART (55-102) peptide, 0.1μM, added alone, exerted: (i) a significant decrease in the basal and EFS-evoked levels of extracellular dopamine (ii) a significant increase in the EFS-evoked and returning basal levels of the dopamine metabolites DOPAC and HVA, major products of dopamine degradation and (iii) a significant decrease in the returning basal

  11. A single exercise bout and locomotor learning after stroke: physiological, behavioural, and computational outcomes.

    Charalambous, Charalambos C; Alcantara, Carolina C; French, Margaret A; Li, Xin; Matt, Kathleen S; Kim, Hyosub E; Morton, Susanne M; Reisman, Darcy S

    2018-05-15

    Previous work demonstrated an effect of a single high-intensity exercise bout coupled with motor practice on the retention of a newly acquired skilled arm movement, in both neurologically intact and impaired adults. In the present study, using behavioural and computational analyses we demonstrated that a single exercise bout, regardless of its intensity and timing, did not increase the retention of a novel locomotor task after stroke. Considering both present and previous work, we postulate that the benefits of exercise effect may depend on the type of motor learning (e.g. skill learning, sensorimotor adaptation) and/or task (e.g. arm accuracy-tracking task, walking). Acute high-intensity exercise coupled with motor practice improves the retention of motor learning in neurologically intact adults. However, whether exercise could improve the retention of locomotor learning after stroke is still unknown. Here, we investigated the effect of exercise intensity and timing on the retention of a novel locomotor learning task (i.e. split-belt treadmill walking) after stroke. Thirty-seven people post stroke participated in two sessions, 24 h apart, and were allocated to active control (CON), treadmill walking (TMW), or total body exercise on a cycle ergometer (TBE). In session 1, all groups exercised for a short bout (∼5 min) at low (CON) or high (TMW and TBE) intensity and before (CON and TMW) or after (TBE) the locomotor learning task. In both sessions, the locomotor learning task was to walk on a split-belt treadmill in a 2:1 speed ratio (100% and 50% fast-comfortable walking speed) for 15 min. To test the effect of exercise on 24 h retention, we applied behavioural and computational analyses. Behavioural data showed that neither high-intensity group showed greater 24 h retention compared to CON, and computational data showed that 24 h retention was attributable to a slow learning process for sensorimotor adaptation. Our findings demonstrated that acute exercise

  12. Effects of respiratory muscle work on respiratory and locomotor blood flow during exercise.

    Dominelli, Paolo B; Archiza, Bruno; Ramsook, Andrew H; Mitchell, Reid A; Peters, Carli M; Molgat-Seon, Yannick; Henderson, William R; Koehle, Michael S; Boushel, Robert; Sheel, A William

    2017-11-01

    What is the central question of this study? Does manipulation of the work of breathing during high-intensity exercise alter respiratory and locomotor muscle blood flow? What is the main finding and its importance? We found that when the work of breathing was reduced during exercise, respiratory muscle blood flow decreased, while locomotor muscle blood flow increased. Conversely, when the work of breathing was increased, respiratory muscle blood flow increased, while locomotor muscle blood flow decreased. Our findings support the theory of a competitive relationship between locomotor and respiratory muscles during intense exercise. Manipulation of the work of breathing (WOB) during near-maximal exercise influences leg blood flow, but the effects on respiratory muscle blood flow are equivocal. We sought to assess leg and respiratory muscle blood flow simultaneously during intense exercise while manipulating WOB. Our hypotheses were as follows: (i) increasing the WOB would increase respiratory muscle blood flow and decrease leg blood flow; and (ii) decreasing the WOB would decrease respiratory muscle blood flow and increase leg blood flow. Eight healthy subjects (n = 5 men, n = 3 women) performed a maximal cycle test (day 1) and a series of constant-load exercise trials at 90% of peak work rate (day 2). On day 2, WOB was assessed with oesophageal balloon catheters and was increased (via resistors), decreased (via proportional assist ventilation) or unchanged (control) during the trials. Blood flow was assessed using near-infrared spectroscopy optodes placed over quadriceps and the sternocleidomastoid muscles, coupled with a venous Indocyanine Green dye injection. Changes in WOB were significantly and positively related to changes in respiratory muscle blood flow (r = 0.73), whereby increasing the WOB increased blood flow. Conversely, changes in WOB were significantly and inversely related to changes in locomotor blood flow (r = 0.57), whereby decreasing the

  13. Oxidized trilinoleate and tridocosahexaenoate induce pica behavior and change locomotor activity.

    Kitamura, Fuki; Watanabe, Hiroyuki; Umeno, Aya; Yoshida, Yasukazu; Kurata, Kenji; Gotoh, Naohiro

    2013-01-01

    Pica behavior, a behavior that is characterized by eating a nonfood material such as kaolin and relates to the degree of discomfort in animals, and the variations of locomotor activity of rats after eating deteriorated fat and oil extracted from instant noodles were examined in our previous study. The result shows that oxidized fat and oil with at least 100 meq/kg in peroxide value (PV) increase pica behavior and decrease locomotor activity. In the present study, the same two behaviors were measured using autoxidized trilinoleate (tri-LA) and tridocosahexaenoate (tri-DHA) as a model of vegetable and fish oil, respectively, to compare fatty acid differences against the induction of two behaviors. The oxidized levels of tri-LA and tri-DHA were analyzed with PV and p-anisidine value (AnV), the method to analyze secondary oxidized products. The oxidation levels of respective triacylglycerol (TAG) samples were carefully adjusted to make them having almost the same PV and AnV. As the results, 600 or more meq/kg in PV of both TAGs significantly increased the consumption of kaolin pellets compared to the control group. Furthermore, 300 or more meq/kg in PV of tri-LA and 200 or more meq/kg in PV of tri-DHA demonstrated significant decrease in locomotor activity compared to control group. These results would indicate that the oxidized TAG having the same PV and/or AnV would induce the same type of pica behavior and locomotor activity. Furthermore, that the structure of oxidized products might not be important and the amount of hydroperoxide group and/or aldehyde group in deteriorated fats and oils might affect the pica behavior and locomotor activity were thought.

  14. The effects of long-term dopaminergic treatment on locomotor behavior in rats.

    Oliveira de Almeida, Welinton Alessandro; Maculano Esteves, Andrea; Leite de Almeida-Júnior, Canuto; Lee, Kil Sun; Kannebley Frank, Miriam; Oliveira Mariano, Melise; Frussa-Filho, Roberto; Tufik, Sergio; Tulio de Mello, Marco

    2014-12-01

    Long-term treatments with dopaminergic agents are associated with adverse effects, including augmentation. Augmentation consists of an exacerbation of restless legs syndrome (a sleep-related movement disorder) symptoms during treatment compared to those experienced during the period before therapy was initiated. The objective of this study was to examine locomotor activity in rats after long-term dopaminergic treatment and its relationship with expression of the D2 receptor, in addition to demonstrating possible evidence of augmentation. The rats were divided into control (CTRL) and drug (Pramipexole-PPX) groups that received daily saline vehicle and PPX treatments, respectively, for 71 days. The locomotor behavior of the animals was evaluated weekly in the Open Field test for 71 days. The expression of the dopamine D2 receptor was evaluated by Western Blot analysis. The animals that received the PPX demonstrated a significant reduction in locomotor activity from day 1 to day 57 and a significant increase in immobility time from day 1 to day 64 relative to baseline values, but these values had returned to baseline levels at 71 days. No changes in the expression of the D2 receptor were demonstrated after treatment with a dopaminergic agonist. This study suggests changes in locomotor activity in rats after long-term PPX treatment that include an immediate reduction of locomotion and an increase in immobilization, and after 64 days, these values returned to baseline levels without evidence of augmentation. In addition, it was not possible to demonstrate a relationship between locomotor activity and the expression of D2 receptors under these conditions.

  15. Predictive and Reactive Locomotor Adaptability in Healthy Elderly: A Systematic Review and Meta-Analysis.

    Bohm, Sebastian; Mademli, Lida; Mersmann, Falk; Arampatzis, Adamantios

    2015-12-01

    Locomotor adaptability is based on the implementation of error-feedback information from previous perturbations to predictively adapt to expected perturbations (feedforward) and to facilitate reactive responses in recurring unexpected perturbations ('savings'). The effect of aging on predictive and reactive adaptability is yet unclear. However, such understanding is fundamental for the design and application of effective interventions targeting fall prevention. We systematically searched the Web of Science, MEDLINE, Embase and Science Direct databases as well as the reference lists of the eligible articles. A study was included if it addressed an investigation of the locomotor adaptability in response to repeated mechanical movement perturbations of healthy older adults (≥60 years). The weighted average effect size (WAES) of the general adaptability (adaptive motor responses to repeated perturbations) as well as predictive (after-effects) and reactive adaptation (feedback responses to a recurring unexpected perturbation) was calculated and tested for an overall effect. A subgroup analysis was performed regarding the factor age group [i.e., young (≤35 years) vs. older adults]. Furthermore, the methodological study quality was assessed. The review process yielded 18 studies [1009 participants, 613 older adults (70 ± 4 years)], which used various kinds of locomotor tasks and perturbations. The WAES for the general locomotor adaptability was 1.21 [95% confidence interval (CI) 0.68-1.74, n = 11] for the older and 1.39 (95% CI 0.90-1.89, n = 10) for the young adults with a significant (p locomotor adaptability in general and predictive and reactive adaptation in particular remain highly effective in the elderly, showing only minor, not statistically significant age-related deficits. Consequently, interventions which use adaptation and learning paradigms including the application of the mechanisms responsible for an effective predictive and reactive dynamic stability

  16. The effects of long-term dopaminergic treatment on locomotor behavior in rats

    Oliveira de Almeida, Welinton Alessandro; Maculano Esteves, Andrea; Leite de Almeida-Júnior, Canuto; Lee, Kil Sun; Kannebley Frank, Miriam; Oliveira Mariano, Melise; Frussa-Filho, Roberto; Tufik, Sergio; Tulio de Mello, Marco

    2014-01-01

    Long-term treatments with dopaminergic agents are associated with adverse effects, including augmentation. Augmentation consists of an exacerbation of restless legs syndrome (a sleep-related movement disorder) symptoms during treatment compared to those experienced during the period before therapy was initiated. The objective of this study was to examine locomotor activity in rats after long-term dopaminergic treatment and its relationship with expression of the D2 receptor, in addition to demonstrating possible evidence of augmentation. The rats were divided into control (CTRL) and drug (Pramipexole—PPX) groups that received daily saline vehicle and PPX treatments, respectively, for 71 days. The locomotor behavior of the animals was evaluated weekly in the Open Field test for 71 days. The expression of the dopamine D2 receptor was evaluated by Western Blot analysis. The animals that received the PPX demonstrated a significant reduction in locomotor activity from day 1 to day 57 and a significant increase in immobility time from day 1 to day 64 relative to baseline values, but these values had returned to baseline levels at 71 days. No changes in the expression of the D2 receptor were demonstrated after treatment with a dopaminergic agonist. This study suggests changes in locomotor activity in rats after long-term PPX treatment that include an immediate reduction of locomotion and an increase in immobilization, and after 64 days, these values returned to baseline levels without evidence of augmentation. In addition, it was not possible to demonstrate a relationship between locomotor activity and the expression of D2 receptors under these conditions. PMID:26483930

  17. The effects of long-term dopaminergic treatment on locomotor behavior in rats

    Welinton Alessandro Oliveira de Almeida

    2014-12-01

    Full Text Available Long-term treatments with dopaminergic agents are associated with adverse effects, including augmentation. Augmentation consists of an exacerbation of restless legs syndrome (a sleep-related movement disorder symptoms during treatment compared to those experienced during the period before therapy was initiated. The objective of this study was to examine locomotor activity in rats after long-term dopaminergic treatment and its relationship with expression of the D2 receptor, in addition to demonstrating possible evidence of augmentation. The rats were divided into control (CTRL and drug (Pramipexole—PPX groups that received daily saline vehicle and PPX treatments, respectively, for 71 days. The locomotor behavior of the animals was evaluated weekly in the Open Field test for 71 days. The expression of the dopamine D2 receptor was evaluated by Western Blot analysis. The animals that received the PPX demonstrated a significant reduction in locomotor activity from day 1 to day 57 and a significant increase in immobility time from day 1 to day 64 relative to baseline values, but these values had returned to baseline levels at 71 days. No changes in the expression of the D2 receptor were demonstrated after treatment with a dopaminergic agonist. This study suggests changes in locomotor activity in rats after long-term PPX treatment that include an immediate reduction of locomotion and an increase in immobilization, and after 64 days, these values returned to baseline levels without evidence of augmentation. In addition, it was not possible to demonstrate a relationship between locomotor activity and the expression of D2 receptors under these conditions.

  18. Flexibility in the patterning and control of axial locomotor networks in lamprey.

    Buchanan, James T

    2011-12-01

    In lower vertebrates, locomotor burst generators for axial muscles generally produce unitary bursts that alternate between the two sides of the body. In lamprey, a lower vertebrate, locomotor activity in the axial ventral roots of the isolated spinal cord can exhibit flexibility in the timings of bursts to dorsally-located myotomal muscle fibers versus ventrally-located myotomal muscle fibers. These episodes of decreased synchrony can occur spontaneously, especially in the rostral spinal cord where the propagating body waves of swimming originate. Application of serotonin, an endogenous spinal neurotransmitter known to presynaptically inhibit excitatory synapses in lamprey, can promote decreased synchrony of dorsal-ventral bursting. These observations suggest the possible existence of dorsal and ventral locomotor networks with modifiable coupling strength between them. Intracellular recordings of motoneurons during locomotor activity provide some support for this model. Pairs of motoneurons innervating myotomal muscle fibers of similar ipsilateral dorsoventral location tend to have higher correlations of fast synaptic activity during fictive locomotion than do pairs of motoneurons innervating myotomes of different ipsilateral dorsoventral locations, suggesting their control by different populations of premotor interneurons. Further, these different motoneuron pools receive different patterns of excitatory and inhibitory inputs from individual reticulospinal neurons, conveyed in part by different sets of premotor interneurons. Perhaps, then, the locomotor network of the lamprey is not simply a unitary burst generator on each side of the spinal cord that activates all ipsilateral body muscles simultaneously. Instead, the burst generator on each side may comprise at least two coupled burst generators, one controlling motoneurons innervating dorsal body muscles and one controlling motoneurons innervating ventral body muscles. The coupling strength between these two

  19. Functional reorganization of the locomotor network in Parkinson patients with freezing of gait.

    Brett W Fling

    Full Text Available Freezing of gait (FoG is a transient inability to initiate or maintain stepping that often accompanies advanced Parkinson's disease (PD and significantly impairs mobility. The current study uses a multimodal neuroimaging approach to assess differences in the functional and structural locomotor neural network in PD patients with and without FoG and relates these findings to measures of FoG severity. Twenty-six PD patients and fifteen age-matched controls underwent resting-state functional magnetic resonance imaging and diffusion tensor imaging along with self-reported and clinical assessments of FoG. After stringent movement correction, fifteen PD patients and fourteen control participants were available for analysis. We assessed functional connectivity strength between the supplementary motor area (SMA and the following locomotor hubs: 1 subthalamic nucleus (STN, 2 mesencephalic and 3 cerebellar locomotor region (MLR and CLR, respectively within each hemisphere. Additionally, we quantified structural connectivity strength between locomotor hubs and assessed relationships with metrics of FoG. FoG+ patients showed greater functional connectivity between the SMA and bilateral MLR and between the SMA and left CLR compared to both FoG- and controls. Importantly, greater functional connectivity between the SMA and MLR was positively correlated with i clinical, ii self-reported and iii objective ratings of freezing severity in FoG+, potentially reflecting a maladaptive neural compensation. The current findings demonstrate a re-organization of functional communication within the locomotor network in FoG+ patients whereby the higher-order motor cortex (SMA responsible for gait initiation communicates with the MLR and CLR to a greater extent than in FoG- patients and controls. The observed pattern of altered connectivity in FoG+ may indicate a failed attempt by the CNS to compensate for the loss of connectivity between the STN and SMA and may reflect a

  20. The Effects of Sex-Ratio and Density on Locomotor Activity in the House Fly, Musca domestica

    Bahrndorff, Simon; Kjærsgaard, Anders; Pertoldi, Cino; Loeschcke, Volker; Schou, Toke M.; Skovgård, Henrik; Hald, Birthe

    2012-01-01

    Although locomotor activity is involved in almost all behavioral traits, there is a lack of knowledge on what factors affect it. This study examined the effects of sex—ratio and density on the circadian rhythm of locomotor activity of adult Musca domestica L. (Diptera: Muscidae) using an infra—red light system. Sex—ratio significantly affected locomotor activity, increasing with the percentage of males in the vials. In accordance with other studies, males were more active than females, but the circadian rhythm of the two sexes was not constant over time and changed during the light period. There was also an effect of density on locomotor activity, where males at intermediate densities showed higher activity. Further, the predictability of the locomotor activity, estimated as the degree of autocorrelation of the activity data, increased with the number of males present in the vials both with and without the presence of females. Overall, this study demonstrates that locomotor activity in M. domestica is affected by sex—ratio and density. Furthermore, the predictability of locomotor activity is affected by both sex—ratio, density, and circadian rhythm. These results add to our understanding of the behavioral interactions between houseflies and highlight the importance of these factors when designing behavioral experiments using M. domestica.

  1. Locomotor training with body weight support in SCI : EMG improvement is more optimally expressed at a low testing speed

    Meyns, P.; Van de Crommert, H. W. A. A.; Rijken, H.; van Kuppevelt, D. H. J. M.; Duysens, J.

    2014-01-01

    Study design: Case series. Objectives: To determine the optimal testing speed at which the recovery of the EMG (electromyographic) activity should be assessed during and after body weight supported (BWS) locomotor training. Setting: Tertiary hospital, Sint Maartenskliniek, Nijmegen, The Netherlands.

  2. Locomotor Dysfunction after Long-duration Space Flight and Development of Countermeasures to Facilitate Faster Recovery

    Mulavara, Ajitkumar; Wood, Scott; Cohen, Helen; Bloomberg, Jacob

    2012-07-01

    movement control and a functional mobility test to investigate overall functional locomotor ability. Postflight sessions were given on days 1, 2, 4, 7 after their return. Subjects walked on a treadmill driven at 1.8 m/s while performing a visual task. Motion data from head and trunk segmental motion data were obtained to calculate the angular head pitch (HP) movements during walking trials while subjects performed the visual task, to estimate the contributions of vestibular reflexive mechanisms in HP movements. Astronauts showed a heterogeneous response pattern of both increases and decreases in the amplitude of HP movement. We investigated the underlying mechanisms of this heterogeneity in postflight responses in head movement control by examining data obtained using the same experimental test paradigm on a vestibular clinical population (VC) and in normal subjects undergoing adaptation to acute body load support unloading. Results showed that exposure to unloaded locomotion caused a significant increase in HP movements, whereas in the VC patients the HP movements were significantly decreased. We infer that BLS-mediated somatosensory input centrally modulates vestibular input and can adaptively modify head-movement control during locomotion. Thus, space flight may cause a central adaptation of the converging vestibular and body load-sensing somatosensory systems. To investigate changes in functional mobility astronaut subjects walked at their preferred pace around an obstacle course consisting of several pylons and obstacles set up on a foam floor, which provided an unstable walking surface. Subjects were instructed to walk around the course as fast as possible without touching any of the objects on the course for a total of six individual trials per test session. One of the dependent measures was time to complete the course (TCC, sec). The learning rate over the six trials performed on preflight and the first day after landing (micro curve) was used to characterize the

  3. The thermal dependency of locomotor performance evolves rapidly within an invasive species.

    Kosmala, Georgia K; Brown, Gregory P; Christian, Keith A; Hudson, Cameron M; Shine, Richard

    2018-05-01

    Biological invasions can stimulate rapid shifts in organismal performance, via both plasticity and adaptation. We can distinguish between these two proximate mechanisms by rearing offspring from populations under identical conditions and measuring their locomotor abilities in standardized trials. We collected adult cane toads ( Rhinella marina ) from invasive populations that inhabit regions of Australia with different climatic conditions. We bred those toads and raised their offspring under common-garden conditions before testing their locomotor performance. At high (but not low) temperatures, offspring of individuals from a hotter location (northwestern Australia) outperformed offspring of conspecifics from a cooler location (northeastern Australia). This disparity indicates that, within less than 100 years, thermal performance in cane toads has adapted to the novel abiotic challenges that cane toads have encountered during their invasion of tropical Australia.

  4. Organization of left-right coordination in the mammalian locomotor network

    Butt, S. J B; Lebret, James M.; Kiehn, Ole

    2002-01-01

    in the spinal cords of a number of aquatic vertebrates including the Xenopus tadpole and the lamprey. However, their function in left-right coordination of limb movements in mammals is poorly understood. In this review we describe the present understanding of commissural pathways in the functioning of spinal......Neuronal circuits involved in left-right coordination are a fundamental feature of rhythmic locomotor movements. These circuits necessarily include commissural interneurons (CINs) that have axons crossing the midline of the spinal cord. The properties of CINs have been described in some detail....... Spinal CINs play an important role in the generation of locomotor output. Increased knowledge as to their function in producing locomotion is likely to provide valuable insights into the spinal networks required for postural control and walking....

  5. [Age-specific dynamics of mental working capacity in different regimens of locomotor activity].

    Miakotnykh, V V; Khodasevich, L S

    2012-01-01

    The present study included a total of 392 practically healthy men aged between 40 and 79 years differing in the character of routine locomotor activity and the training status (from masters of sport of international grade to the subjects who had never been engaged in sporting activities). They were divided into 4 groups each comprised of subjects ranged by age with a ten-year interval. Their mental working capacity was estimated from the results of the correction test. The study demonstrated that the subjects characterized by a high level of day-to-day locomotor activity have higher indices of attention intensity and information processing speed compared with the age-matched ones leading a relatively sedentary lifestyle. Moreover, they have better chances to retain the mental working capacity up to the age of 70 years.

  6. Phenotypic characterization of speed-associated gait changes in mice reveals modular organization of locomotor networks

    Bellardita, Carmelo; Kiehn, Ole

    2015-01-01

    behavioral outcomes expressed at different speeds of locomotion. Here, we use detailed kinematic analyses to search for signatures of a modular organization of locomotor circuits in intact and genetically modified mice moving at different speeds of locomotion. We show that wild-type mice display three...... distinct gaits: two alternating, walk and trot, and one synchronous, bound. Each gait is expressed in distinct ranges of speed with phenotypic inter-limb and intra-limb coordination. A fourth gait, gallop, closely resembled bound in most of the locomotor parameters but expressed diverse inter......-limb coordination. Genetic ablation of commissural V0V neurons completely removed the expression of one alternating gait, trot, but left intact walk, gallop, and bound. Ablation of commissural V0V and V0D neurons led to a loss of walk, trot, and gallop, leaving bound as the default gait. Our study provides...

  7. Shared human-chimpanzee pattern of perinatal femoral shaft morphology and its implications for the evolution of hominin locomotor adaptations.

    Naoki Morimoto

    Full Text Available Acquisition of bipedality is a hallmark of human evolution. How bipedality evolved from great ape-like locomotor behaviors, however, is still highly debated. This is mainly because it is difficult to infer locomotor function, and even more so locomotor kinematics, from fossil hominin long bones. Structure-function relationships are complex, as long bone morphology reflects phyletic history, developmental programs, and loading history during an individual's lifetime. Here we discriminate between these factors by investigating the morphology of long bones in fetal and neonate great apes and humans, before the onset of locomotion.Comparative morphometric analysis of the femoral diaphysis indicates that its morphology reflects phyletic relationships between hominoid taxa to a greater extent than taxon-specific locomotor adaptations. Diaphyseal morphology in humans and chimpanzees exhibits several shared-derived features, despite substantial differences in locomotor adaptations. Orangutan and gorilla morphologies are largely similar, and likely represent the primitive hominoid state.These findings are compatible with two possible evolutionary scenarios. Diaphyseal morphology may reflect retained adaptive traits of ancestral taxa, hence human-chimpanzee shared-derived features may be indicative of the locomotor behavior of our last common ancestor. Alternatively, diaphyseal morphology might reflect evolution by genetic drift (neutral evolution rather than selection, and might thus be more informative about phyletic relationships between taxa than about locomotor adaptations. Both scenarios are consistent with the hypothesis that knuckle-walking in chimpanzees and gorillas resulted from convergent evolution, and that the evolution of human bipedality is unrelated to extant great ape locomotor specializations.

  8. Dissociation of corticotropin-releasing factor receptor subtype involvement in sensitivity to locomotor effects of methamphetamine and cocaine.

    Giardino, William J; Mark, Gregory P; Stenzel-Poore, Mary P; Ryabinin, Andrey E

    2012-02-01

    Enhanced sensitivity to the euphoric and locomotor-activating effects of psychostimulants may influence an individual's predisposition to drug abuse and addiction. While drug-induced behaviors are mediated by the actions of several neurotransmitter systems, past research revealed that the corticotropin-releasing factor (CRF) system is important in driving the acute locomotor response to psychostimulants. We previously reported that genetic deletion of the CRF type-2 receptor (CRF-R2), but not the CRF type-1 receptor (CRF-R1) dampened the acute locomotor stimulant response to methamphetamine (1 mg/kg). These results contrasted with previous studies implicating CRF-R1 in the locomotor effects of psychostimulants. Since the majority of previous studies focused on cocaine, rather than methamphetamine, we set out to test the hypothesis that these drugs differentially engage CRF-R1 and CRF-R2. We expanded our earlier findings by first replicating our previous experiments at a higher dose of methamphetamine (2 mg/kg), and by assessing the effects of the CRF-R1-selective antagonist CP-376,395 (10 mg/kg) on methamphetamine-induced locomotor activity. Next, we used both genetic and pharmacological tools to examine the specific components of the CRF system underlying the acute locomotor response to cocaine (5-10 mg/kg). While genetic deletion of CRF-R2 dampened the locomotor response to methamphetamine (but not cocaine), genetic deletion and pharmacological blockade of CRF-R1 dampened the locomotor response to cocaine (but not methamphetamine). These findings highlight the differential involvement of CRF receptors in acute sensitivity to two different stimulant drugs of abuse, providing an intriguing basis for the development of more targeted therapeutics for psychostimulant addiction.

  9. Development of sensory system s related with postural - locomotor function in toddler ́s age, possibilities of assessmen

    Blažková, Markéta

    2014-01-01

    Bachelor's thesis "Development of sensory systems related with postural-locomotor function in toddler's age, possibilities of assessment" summarizes function of visual, vestibular and somatosensory system and maturation of these systems in toddler's age. Next part describes the development of postural- locomotor function related to maturation of sensory systems. The last part of the work deals with the issue of assessment in toddler's age. Three toddlers are described in the practical part of...

  10. Classification of rhythmic locomotor patterns in electromyographic signals using fuzzy sets

    Thrasher Timothy A

    2011-12-01

    Full Text Available Abstract Background Locomotor control is accomplished by a complex integration of neural mechanisms including a central pattern generator, spinal reflexes and supraspinal control centres. Patterns of muscle activation during walking exhibit an underlying structure in which groups of muscles seem to activate in united bursts. Presented here is a statistical approach for analyzing Surface Electromyography (SEMG data with the goal of classifying rhythmic "burst" patterns that are consistent with a central pattern generator model of locomotor control. Methods A fuzzy model of rhythmic locomotor patterns was optimized and evaluated using SEMG data from a convenience sample of four able-bodied individuals. As well, two subjects with pathological gait participated: one with Parkinson's Disease, and one with incomplete spinal cord injury. Subjects walked overground and on a treadmill while SEMG was recorded from major muscles of the lower extremities. The model was fit to half of the recorded data using non-linear optimization and validated against the other half of the data. The coefficient of determination, R2, was used to interpret the model's goodness of fit. Results Using four fuzzy burst patterns, the model was able to explain approximately 70-83% of the variance in muscle activation during treadmill gait and 74% during overground gait. When five burst functions were used, one function was found to be redundant. The model explained 81-83% of the variance in the Parkinsonian gait, and only 46-59% of the variance in spinal cord injured gait. Conclusions The analytical approach proposed in this article is a novel way to interpret multichannel SEMG signals by reducing the data into basic rhythmic patterns. This can help us better understand the role of rhythmic patterns in locomotor control.

  11. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation

    Anthony Eikema, Diderik Jan A.; Chien, Jung Hung; Stergiou, Nicholas; Myers, Sara A.; Scott-Pandorf, Melissa M.; Bloomberg, Jacob J.; Mukherjee, Mukul

    2015-01-01

    Human locomotor adaptation requires feedback and feed-forward control processes to maintain an appropriate walking pattern. Adaptation may require the use of visual and proprioceptive input to decode altered movement dynamics and generate an appropriate response. After a person transfers from an extreme sensory environment and back, as astronauts do when they return from spaceflight, the prolonged period required for re-adaptation can pose a significant burden. In our previous paper, we showe...

  12. Effects of cocaine on norepinephrine stimulated phosphoinositide hydrolysis and locomotor activity in rat

    Mosaddeghi, M.

    1989-01-01

    The function of α 1 -adrenoceptors was determined by stimulating cortical tissue slices, which were pre-labeled with [ 3 H]inositol, with norepinephrine (NE) in the presence of 8 mM LiCl. Results of in vitro studies showed that cocaine 10 μM potentiated maximal NE-stimulated PI hydrolysis by 30%. In addition, the EC 50 was decreased from 3.93 ± 0.42 to 1.91 ± 0.31 μM NE. Concentrations of 0.1-100 μM and 0.1-10 μM cocaine enhanced PI hydrolysis stimulated by 0.3 and 3 μM NE, respectively. The concentration-effect curves for NE-stimulated PI hydrolysis were shifted to the right 100-fold in the presence of 0.1 μM prazosin. Cocaine (10 μM) did not potentiate NE-stimulated PI hydrolysis in the presence of 0.1 μM prazosin. [ 3 H]Prazosin saturation and NE [ 3 H]prazosin competition binding studies using crude membrane preparations showed that 10 μM cocaine did not alter binding parameters B max , K d , Hill slope, and IC 50 . Together, these results implied that cocaine in vitro potentiated NE-stimulated PI hydrolysis by blocking NE reuptake. For in vivo studies, the locomotor activity was determined after an acute or chronic injections of either cocaine or saline. Cocaine or saline-treated rats were killed after measurement of the locomotor activity, and NE-stimulated PI hydrolysis was measured. Acute administration of cocaine 3.2-42 mg/kg (i.p.) produced an inverted U shaped dose-response curve on locomotor activity. The peak increase in locomotor activity was at 32 mg/kg cocaine. A dose of 42 mg/kg cocaine produced a significant depression of maximal NE-stimulated PI hydrolysis

  13. Effect of temporal organization of the visuo-locomotor coupling on the predictive steering

    Yves Philippe Rybarczyk

    2012-07-01

    Full Text Available Studies on the direction of a driver’s gaze while taking a bend show that the individual looks towards the tangent-point of the inside curve. Mathematically, the direction of this point in relation to the car enables the driver to predict the curvature of the road. In the same way, when a person walking in the street makes a turn at the corner, his/her gaze anticipates the rotation of the body. A current explanation for the visuo-motor anticipation over the locomotion would be that the brain, involved in a steering behaviour, executes an internal model of the trajectory that anticipates the path completion, and not the contrary. This paper proposes to test this hypothesis by studying the effect of an artificial manipulation of the visuo-locomotor coupling on the trajectory prediction. In this experiment, subjects remotely control a mobile robot with a pan-tilt camera. This experimental paradigm is chosen to easily and precisely manipulate the temporal organization of the visuo-locomotor coupling. Results show that only the visuo-locomotor coupling organized from the visual sensor to the locomotor organs enables i a significant smoothness of the trajectory and ii a velocity-curvature relationship that follows the 2/3 Power Law. These findings are consistent with the theory of an anticipatory construction of an internal model of the trajectory. This mental representation used by the brain as a forward prediction of the path formation seems conditioned by the motor program. The overall results are discussed in terms of the sensorimotor scheme bases of the predictive coding.

  14. A cable-driven locomotor training system for restoration of gait in human SCI.

    Wu, Ming; Hornby, T George; Landry, Jill M; Roth, Heidi; Schmit, Brian D

    2011-02-01

    A novel cable-driven robotic locomotor training system was developed to provide compliant assistance/resistance forces to the legs during treadmill training in patients with incomplete spinal cord injury (SCI). Eleven subjects with incomplete SCI were recruited to participate in two experiments to test the feasibility of the robotic gait training system. Specifically, 10 subjects participated in one experimental session to test the characteristics of the robotic gait training system and one subject participated in repeated testing sessions over 8 weeks with the robotic device to test improvements in locomotor function. Limb kinematics were recorded in one experiment to evaluate the system characteristics of the cable-driven locomotor trainer and the overground gait speed and 6 min walking distance were evaluated at pre, 4 and 8 weeks post treadmill training of a single subject as well. The results indicated that the cable driven robotic gait training system improved the kinematic performance of the leg during treadmill walking and had no significant impact on the variability of lower leg trajectory, suggesting a high backdrivability of the cable system. In addition, results from a patient with incomplete SCI indicated that prolonged robotic gait training using the cable robot improved overground gait speed. Results from this study suggested that a cable driven robotic gait training system is effective in improving leg kinematic performance, yet allows variability of gait kinematics. Thus, it seems feasible to improve the locomotor function in human SCI using this cable driven robotic system, warranting testing with a larger group of patients. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Early-life risperidone enhances locomotor responses to amphetamine during adulthood.

    Lee Stubbeman, Bobbie; Brown, Clifford J; Yates, Justin R; Bardgett, Mark E

    2017-10-05

    Antipsychotic drug prescriptions for pediatric populations have increased over the past 20 years, particularly the use of atypical antipsychotic drugs such as risperidone. Most antipsychotic drugs target forebrain dopamine systems, and early-life antipsychotic drug exposure could conceivably reset forebrain neurotransmitter function in a permanent manner that persists into adulthood. This study determined whether chronic risperidone administration during development modified locomotor responses to the dopamine/norepinephrine agonist, D-amphetamine, in adult rats. Thirty-five male Long-Evans rats received an injection of one of four doses of risperidone (vehicle, .3, 1.0, 3.0mg/kg) each day from postnatal day 14 through 42. Locomotor activity was measured for 1h on postnatal days 46 and 47, and then for 24h once a week over the next two weeks. Beginning on postnatal day 75, rats received one of four doses of amphetamine (saline, .3, 1.0, 3.0mg/kg) once a week for four weeks. Locomotor activity was measured for 27h after amphetamine injection. Rats administered risperidone early in life demonstrated increased activity during the 1 and 24h test sessions conducted prior to postnatal day 75. Taking into account baseline group differences, these same rats exhibited significantly more locomotor activity in response to the moderate dose of amphetamine relative to controls. These results suggest that early-life treatment with atypical antipsychotic drugs, like risperidone, permanently alters forebrain catecholamine function and increases sensitivity to drugs that target such function. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Dentate gyrus neurogenesis ablation via cranial irradiation enhances morphine self-administration and locomotor sensitization.

    Bulin, Sarah E; Mendoza, Matthew L; Richardson, Devon R; Song, Kwang H; Solberg, Timothy D; Yun, Sanghee; Eisch, Amelia J

    2018-03-01

    Adult dentate gyrus (DG) neurogenesis is important for hippocampal-dependent learning and memory, but the role of new neurons in addiction-relevant learning and memory is unclear. To test the hypothesis that neurogenesis is involved in the vulnerability to morphine addiction, we ablated adult DG neurogenesis and examined morphine self-administration (MSA) and locomotor sensitization. Male Sprague-Dawley rats underwent hippocampal-focused, image-guided X-ray irradiation (IRR) to eliminate new DG neurons or sham treatment (Sham). Six weeks later, rats underwent either MSA (Sham = 16, IRR = 15) or locomotor sensitization (Sham = 12, IRR = 12). Over 21 days of MSA, IRR rats self-administered ~70 percent more morphine than Sham rats. After 28 days of withdrawal, IRR rats pressed the active lever 40 percent more than Sham during extinction. This was not a general enhancement of learning or locomotion, as IRR and Sham groups had similar operant learning and inactive lever presses. For locomotor sensitization, both IRR and Sham rats sensitized, but IRR rats sensitized faster and to a greater extent. Furthermore, dose-response revealed that IRR rats were more sensitive at a lower dose. Importantly, these increases in locomotor activity were not apparent after acute morphine administration and were not a byproduct of irradiation or post-irradiation recovery time. Therefore, these data, along with other previously published data, indicate that reduced hippocampal neurogenesis confers vulnerability for multiple classes of drugs. Thus, therapeutics to specifically increase or stabilize hippocampal neurogenesis could aid in preventing initial addiction as well as future relapse. © 2017 Society for the Study of Addiction.

  17. Comparative potentialities of X-ray and remote thermographic diagnosis of locomotor system diseases and injuries

    Rozenfel'd, L.G.; Ternovoj, N.K.; Samokhin, A.V.; Likhosherst, E.K.

    1988-01-01

    The advisability of applying remote infrared tomography to diagnoze locomotor system diseases and injuries is substantiated. 764 patients with different bone and tissue system diseases and injuries are examined. Thermosemiotics in the case of deforming arthrosis of knee and hip joints, inflammatory diseases of joints of various ethiologies, acute chronic osteomyelitis and its exacerbation, is described. The place of remote infrared thermography in the complecx diagnostic examination of a given contingent of patients, is determined. 6 refs.; 4 figs

  18. NO INFLUENCE OF HYPOXIA ON COORDINATION BETWEEN RESPIRATORY AND LOCOMOTOR RHYTHMS DURING ROWING AT MODERATE INTENSITY

    Nicolas Fabre

    2007-12-01

    Full Text Available Besides neuro-mechanical constraints, chemical or metabolic stimuli have also been proposed to interfere with the coordination between respiratory and locomotor rhythms. In the light of the conflicting data observed in the literature, this study aimed to assess whether acute hypoxia modifies the degree of coordination between respiratory and locomotor rhythms during rowing exercises in order to investigate competitive interactions between neuro-mechanical (movement and chemical (hypoxia respiratory drives. Nine male healthy subjects performed one submaximal 6-min rowing exercise on a rowing ergometer in both normoxia (altitude: 304 m and acute hypoxia (altitude: 2877 m. The exercise intensity was about 40 % and 35 % (for normoxia and hypoxia conditions, respectively of the individual maximal power output measured during an incremental rowing test to volitional exhaustion carried out in normoxia. Metabolic rate and minute ventilation were continuously collected throughout exercise. Locomotor movement and breathing rhythms were continuously recorded and synchronized cycle-by-cycle. The degree of coordination was expressed as a percentage of breaths starting during the same phase of the locomotor cycle. For a same and a constant metabolic rate, acute hypoxia did not influence significantly the degree of coordination (mean ± SEM, normoxia: 20.0 ± 6.2 %, hypoxia: 21.3 ± 11.1 %, p > 0.05 while ventilation and breathing frequency were significantly greater in hypoxia. Our results may suggest that during rowing exercise at a moderate metabolic load, neuro-mechanical locomotion-linked respiratory stimuli appear "stronger" than peripheral chemoreceptors- linked respiratory stimuli induced by hypoxia, in the context of our study

  19. An Intensive Locomotor Training Paradigm Improves Neuropathic Pain following Spinal Cord Compression Injury in Rats.

    Dugan, Elizabeth A; Sagen, Jacqueline

    2015-05-01

    Spinal cord injury (SCI) is often associated with both locomotor deficits and sensory dysfunction, including debilitating neuropathic pain. Unfortunately, current conventional pharmacological, physiological, or psychological treatments provide only marginal relief for more than two-thirds of patients, highlighting the need for improved treatment options. Locomotor training is often prescribed as an adjunct therapy for peripheral neuropathic pain but is rarely used to treat central neuropathic pain. The goal of this study was to evaluate the potential anti-nociceptive benefits of intensive locomotor training (ILT) on neuropathic pain consequent to traumatic SCI. Using a rodent SCI model for central neuropathic pain, ILT was initiated either 5 d after injury prior to development of neuropathic pain symptoms (the "prevention" group) or delayed until pain symptoms fully developed (∼3 weeks post-injury, the "reversal" group). The training protocol consisted of 5 d/week of a ramping protocol that started with 11 m/min for 5 min and increased in speed (+1 m/min/week) and time (1-4 minutes/week) to a maximum of two 20-min sessions/d at 15 m/min by the fourth week of training. ILT prevented and reversed the development of heat hyperalgesia and cold allodynia, as well as reversed developed tactile allodynia, suggesting analgesic benefits not seen with moderate levels of locomotor training. Further, the analgesic benefits of ILT persisted for several weeks once training had been stopped. The unique ability of an ILT protocol to produce robust and sustained anti-nociceptive effects, as assessed by three distinct outcome measures for below-level SCI neuropathic pain, suggests that this adjunct therapeutic approach has great promise in a comprehensive treatment strategy for SCI pain.

  20. Behavioral and Locomotor Measurements Using an Open Field Activity Monitoring System for Skeletal Muscle Diseases

    Tatem, Kathleen S.; Quinn, James L.; Phadke, Aditi; Yu, Qing; Gordish-Dressman, Heather; Nagaraju, Kanneboyina

    2014-01-01

    The open field activity monitoring system comprehensively assesses locomotor and behavioral activity levels of mice. It is a useful tool for assessing locomotive impairment in animal models of neuromuscular disease and efficacy of therapeutic drugs that may improve locomotion and/or muscle function. The open field activity measurement provides a different measure than muscle strength, which is commonly assessed by grip strength measurements. It can also show how drugs may affect other body sy...

  1. Distributed plasticity of locomotor pattern generators in spinal cord injured patients.

    Grasso, Renato; Ivanenko, Yuri P; Zago, Myrka; Molinari, Marco; Scivoletto, Giorgio; Castellano, Vincenzo; Macellari, Velio; Lacquaniti, Francesco

    2004-05-01

    Recent progress with spinal cord injured (SCI) patients indicates that with training they can recover some locomotor ability. Here we addressed the question of whether locomotor responses developed with training depend on re-activation of the normal motor patterns or whether they depend on learning new motor patterns. To this end we recorded detailed kinematic and EMG data in SCI patients trained to step on a treadmill with body-weight support (BWST), and in healthy subjects. We found that all patients could be trained to step with BWST in the laboratory conditions, but they used new coordinative strategies. Patients with more severe lesions used their arms and body to assist the leg movements via the biomechanical coupling of limb and body segments. In all patients, the phase-relationship of the angular motion of the different lower limb segments was very different from the control, as was the pattern of activity of most recorded muscles. Surprisingly, however, the new motor strategies were quite effective in generating foot motion that closely matched the normal in the laboratory conditions. With training, foot motion recovered the shape, the step-by-step reproducibility, and the two-thirds power relationship between curvature and velocity that characterize normal gait. We mapped the recorded patterns of muscle activity onto the approximate rostrocaudal location of motor neuron pools in the human spinal cord. The reconstructed spatiotemporal maps of motor neuron activity in SCI patients were quite different from those of healthy subjects. At the end of training, the locomotor network reorganized at both supralesional and sublesional levels, from the cervical to the sacral cord segments. We conclude that locomotor responses in SCI patients may not be subserved by changes localized to limited regions of the spinal cord, but may depend on a plastic redistribution of activity across most of the rostrocaudal extent of the spinal cord. Distributed plasticity underlies

  2. Voluntary locomotor activity mitigates oxidative damage associated with isolation stress in the prairie vole (Microtus ochrogaster).

    Fletcher, Kelsey L; Whitley, Brittany N; Treidel, Lisa A; Thompson, David; Williams, Annie; Noguera, Jose C; Stevenson, Jennie R; Haussmann, Mark F

    2015-07-01

    Organismal performance directly depends on an individual's ability to cope with a wide array of physiological challenges. For social animals, social isolation is a stressor that has been shown to increase oxidative stress. Another physiological challenge, routine locomotor activity, has been found to decrease oxidative stress levels. Because we currently do not have a good understanding of how diverse physiological systems like stress and locomotion interact to affect oxidative balance, we studied this interaction in the prairie vole (Microtus ochrogaster). Voles were either pair housed or isolated and within the isolation group, voles either had access to a moving wheel or a stationary wheel. We found that chronic periodic isolation caused increased levels of oxidative stress. However, within the vole group that was able to run voluntarily, longer durations of locomotor activity were associated with less oxidative stress. Our work suggests that individuals who demonstrate increased locomotor activity may be better able to cope with the social stressor of isolation. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Anxiolytics may promote locomotor function recovery in spinal cord injury patients

    Pierre A Guertin

    2008-09-01

    Full Text Available Pierre A GuertinNeuroscience Unit, Laval University Medical Center (CHUL, Quebec City, CanadaAbstract: Recent findings in animal models of paraplegia suggest that specific nonbenzodiazepine anxiolytics may temporarily restore locomotor functions after spinal cord injury (SCI. Experiments using in vitro models have revealed, indeed, that selective serotonin receptor (5-HTR ligands such as 5-HTR1A agonists, known as relatively safe anxiolytics, can acutely elicit episodes of rhythmic neuronal activity refered to as fictive locomotion in isolated spinal cord preparations. Along the same line, in vivo studies have recently shown that this subclass of anxiolytics can induce, shortly after systemic administration (eg, orally or subcutaneously, some locomotor-like hindlimb movements during 45–60 minutes in completely spinal cord-transected (Tx rodents. Using ‘knock-out’ mice (eg, 5-HTR7-/- and selective antagonists, it has been clearly established that both 5-HTR1A and 5-HTR7 were critically involved in mediating the pro-locomotor effects induced by 8-OH-DPAT (typically referred to as a 5-HTR1A agonist in Tx animals. Taken together, these in vitro and in vivo data strongly support the idea that 5-HTR1A agonists may eventually become constitutive elements of a novel first-in-class combinatorial treatment aimed at periodically inducing short episodes of treadmill stepping in SCI patients.Keywords: 5-HT agonists, anxiolytics, locomotion, SCI

  4. Motor hypertonia and lack of locomotor coordination in mutant mice lacking DSCAM.

    Lemieux, Maxime; Laflamme, Olivier D; Thiry, Louise; Boulanger-Piette, Antoine; Frenette, Jérôme; Bretzner, Frédéric

    2016-03-01

    Down syndrome cell adherence molecule (DSCAM) contributes to the normal establishment and maintenance of neural circuits. Whereas there is abundant literature regarding the role of DSCAM in the neural patterning of the mammalian retina, less is known about motor circuits. Recently, DSCAM mutation has been shown to impair bilateral motor coordination during respiration, thus causing death at birth. DSCAM mutants that survive through adulthood display a lack of locomotor endurance and coordination in the rotarod test, thus suggesting that the DSCAM mutation impairs motor control. We investigated the motor and locomotor functions of DSCAM(2J) mutant mice through a combination of anatomical, kinematic, force, and electromyographic recordings. With respect to wild-type mice, DSCAM(2J) mice displayed a longer swing phase with a limb hyperflexion at the expense of a shorter stance phase during locomotion. Furthermore, electromyographic activity in the flexor and extensor muscles was increased and coactivated over 20% of the step cycle over a wide range of walking speeds. In contrast to wild-type mice, which used lateral walk and trot at walking speed, DSCAM(2J) mice used preferentially less coordinated gaits, such as out-of-phase walk and pace. The neuromuscular junction and the contractile properties of muscles, as well as their muscle spindles, were normal, and no signs of motor rigidity or spasticity were observed during passive limb movements. Our study demonstrates that the DSCAM mutation induces dystonic hypertonia and a disruption of locomotor gaits. Copyright © 2016 the American Physiological Society.

  5. Improved gait after repetitive locomotor training in children with cerebral palsy.

    Smania, Nicola; Bonetti, Paola; Gandolfi, Marialuisa; Cosentino, Alessandro; Waldner, Andreas; Hesse, Stefan; Werner, Cordula; Bisoffi, Giulia; Geroin, Christian; Munari, Daniele

    2011-02-01

    The aim of this study was to evaluate the effectiveness of repetitive locomotor training with an electromechanical gait trainer in children with cerebral palsy. In this randomized controlled trial, 18 ambulatory children with diplegic or tetraplegic cerebral palsy were randomly assigned to an experimental group or a control group. The experimental group received 30 mins of repetitive locomotor training with an applied technology (Gait Trainer GT I) plus 10 mins of passive joint mobilization and stretching exercises. The control group received 40 mins of conventional physiotherapy. Each subject underwent a total of 10 treatment sessions over a 2-wk period. Performance on the 10-m walk test, 6-min walk test, WeeFIM scale, and gait analysis was evaluated by a blinded rater before and after treatment and at 1-mo follow-up. The experimental group showed significant posttreatment improvement on the 10-m walk test, 6-min walk test, hip kinematics, gait speed, and step length, all of which were maintained at the 1-mo follow-up assessment. No significant changes in performance parameters were observed in the control group. Repetitive locomotor training with an electromechanical gait trainer may improve gait velocity, endurance, spatiotemporal, and kinematic gait parameters in patients with cerebral palsy.

  6. Dose and time relationships of the radioprotector WR-2721 on locomotor activity in mice

    Landauer, M.R.; Davis, H.D.; Dominitz, J.A.; Weiss, J.F.

    1987-01-01

    The effects of the radioprotector S-2-(3-aminopropylamino)ethylphosphorothioic acid (WR-2721) on locomotor activity were evaluated in CD2F1 male mice. Separate groups of animals (N = 10/group) received an IP injection of vehicle, 25, 50, 100, 200, or 400 mg/kg of WR-2721 immediately before testing. Horizontal and vertical activity were measured using a Digiscan automated animal activity monitor. The latency to onset and duration of action of each dose of the radioprotector were recorded. For both behavioral measures, a significant reduction was observed in activity at doses of 200 and 400 mg/kg. A dose of 200 mg/kg had a 12- to 14-min latency to onset and significantly reduced behavioral activity for 3 hr. Mice injected with 400 mg/kg exhibited locomotor deficits within 8-10 min and were affected for up to 9 hr. The ED50 for horizontal and vertical activities at 1 hr postinjection were determined to be 271 and 105 mg/kg, respectively. The results demonstrate that significant reductions in locomotor activity are exhibited at doses of 200 mg/kg or more and that vertical activity was more sensitive to the disruptive effects of WR-2721 than was horizontal activity

  7. Cognitive Performance and Locomotor Adaptation in Persons With Anterior Cruciate Ligament Reconstruction.

    Stone, Amanda E; Roper, Jaimie A; Herman, Daniel C; Hass, Chris J

    2018-05-01

    Persons with anterior cruciate ligament reconstruction (ACLR) show deficits in gait and neuromuscular control following rehabilitation. This altered behavior extends to locomotor adaptation and learning, however the contributing factors to this observed behavior have yet to be investigated. The purpose of this study was to assess differences in locomotor adaptation and learning between ACLR and controls, and identify underlying contributors to motor adaptation in these individuals. Twenty ACLR individuals and 20 healthy controls (CON) agreed to participate in this study. Participants performed four cognitive and dexterity tasks (local version of Trail Making Test, reaction time test, electronic pursuit rotor test, and the Purdue pegboard). Three-dimensional kinematics were also collected while participants walked on a split-belt treadmill. ACLR individuals completed the local versions of Trails A and Trails B significantly faster than CON. During split-belt walking, ACLR individuals demonstrated smaller step length asymmetry during EARLY and LATE adaptation, smaller double support asymmetry during MID adaptation, and larger stance time asymmetry during DE-ADAPT compared with CON. ACLR individuals performed better during tasks that required visual attention and task switching and were less perturbed during split-belt walking compared to controls. Persons with ACLR may use different strategies than controls, cognitive or otherwise, to adapt locomotor patterns.

  8. The locomotor activity of soccer players based on playing positions during the 2010 World Cup.

    Soroka, Andrzej

    2018-06-01

    The aim of this study was to define the locomotor activity of footballer players during the 2010 World Cup and to assess what differences existed among different playing positions. Research was conducted using research material collected from the Castrol Performance Index, a kinematic game analysis system that records player movements during a game by use of semi-automatic cameras. A total of 599 players who participated in the championships were analyzed. The results were evaluated using one-way analysis of variance (ANOVA) and a post-hoc test that calculated the Honestly Significant Difference (HSD) in order to determine which mean values significantly differed among the player positions. It was found that midfielders covered on average the largest distance during a match (10,777.6 m, Plocomotor activity at high and sprint intensities (2936.8 m and 108.4 m, respectively). Additionally, midfielders also spent the largest amount of time at performing at a high intensity (10.6%). Strikers also featured high levels of the above parameters; the total length of distance covered with high intensities was found to be on average 2586.7 m, the distance covered at sprint intensity was 105 m. The footballers, playing at the championship level feature excellent locomotor preparation. This fact is undoubtedly supported by the aerobic training of high intensity. Such training allows footballers to extend the distance they cover during the match, increase the intensity of locomotor activities and sprint speed distance.

  9. Effects of opioid drugs on dopamine mediated locomotor activity in rats

    Leathern, L L

    1986-01-01

    Opioid drugs influence various behavioural parameters including locomotor activity in experimental animals. The interaction between the opioid and dopaminergic systems is one possible explanation for the effect of opioid drugs on locomotor activity. In this study behavioural and biochemical assays were done to investigate the interaction between the opioid and dopaminergic systems. Behavioural studies were done by measurement of locomotor activity (LA) of rats after acute or chronic pretreatment with opioid andor dopaminergic drugs. Biochemical studies were in the form of radioligand binding assays, the effect on the number (Bmax) and affinity (K/sub D/) of receptors was measured after chronic pretreatment with opioid andor dopaminergic drugs. The opioid drugs used are morphine, nalbuphine and naloxone. Dopaminergic drugs used included: agonists-apomorphine and piribedil; antagonists-pimozide, haloperidol, chlorpromazine. In the acute situation increased LA was obtained with morphine and the DA agonists. A correlation between the behavioural and biochemical assays was found. Chronic pretreatment with morphine enhanced apomorphine induced LA, this supersensitivity was also measured as an increased receptor density (Bmax) of D2 receptors in the striatum. Chronic morphine pretreatment caused a decrease in morphine induced LA, while this subsensitivity was not apparent in the ligand binding assays - where no change in receptor number was observed. Chronic naloxone pretreatment enhanced morphine induced LA, as well as increased the Bmax of opioid receptors in the whole brain. It is concluded that an interaction between the opioid and dopaminergic systems does exist, and may account for the mechanism of action of the opioids.

  10. The influence of an innovative locomotor strategy on the phenotypic diversification of triggerfish (family: Balistidae).

    Dornburg, Alex; Sidlauskas, Brian; Santini, Francesco; Sorenson, Laurie; Near, Thomas J; Alfaro, Michael E

    2011-07-01

    Innovations in locomotor morphology have been invoked as important drivers of vertebrate diversification, although the influence of novel locomotion strategies on marine fish diversification remains largely unexplored. Using triggerfish as a case study, we determine whether the evolution of the distinctive synchronization of enlarged dorsal and anal fins that triggerfish use to swim may have catalyzed the ecological diversification of the group. By adopting a comparative phylogenetic approach to quantify median fin and body shape integration and to assess the tempo of functional and morphological evolution in locomotor traits, we find that: (1) functional and morphological components of the locomotive system exhibit a strong signal of correlated evolution; (2) triggerfish partitioned locomotor morphological and functional spaces early in their history; and (3) there is no strong evidence that a pulse of lineage diversification accompanied the major episode of phenotypic diversification. Together these findings suggest that the acquisition of a distinctive mode of locomotion drove an early radiation of shape and function in triggerfish, but not an early radiation of species. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  11. Effects of lipopolysaccharide and interleukin-6 on cataleptic immobility and locomotor activity in mice.

    Bazovkina, Daria V; Tibeikina, Marina A; Kulikov, Alexander V; Popova, Nina K

    2011-01-10

    Catalepsy (animal hypnosis, tonic immobility) is a type of passive defensive behavior. Its exaggerated form is a syndrome of some psychopathological disorders. Numerous neurotransmitters have impact on the regulation of catalepsy. In this paper we demonstrated the involvement of interleukin-6 (IL-6) in the mechanism of cataleptic immobility. Effects of exogenous IL-6 treatment (7.5 and 10μg/kg, i.p) or stimulation of endogenous IL-6 secretion with lipopolysaccharide (LPS) administration (50, 100 and 200μg/kg, i.p.) on catalepsy and locomotor activity were studied in adult C57BL/6 male mice. IL-6 induced catalepsy in 70% (7.5μg/kg) or 72.7% (10μg/kg) of animals with no effect on locomotor activity. LPS administration reduced distance travelled and number of rears in the open field at any dose used, however, only high doses (100 or 200μg/kg) of the toxin induced catalepsy in 50% of mice. This result indicates that IL-6 is involved in the regulation of catalepsy, this effect is specific and does not arise from inhibition of locomotor activity. The study provides a new evidence on participation of IL-6 in mechanisms of abnormal behavior. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. A disparity between locomotor economy and territory-holding ability in male house mice.

    Morris, Jeremy S; Ruff, James S; Potts, Wayne K; Carrier, David R

    2017-07-15

    Both economical locomotion and physical fighting are important performance traits to many species because of their direct influence on components of Darwinian fitness. Locomotion represents a substantial portion of the total daily energy budget of many animals. Fighting performance often determines individual reproductive fitness through the means of resource control, social dominance and access to mates. However, phenotypic traits that improve either locomotor economy or fighting ability may diminish performance in the other. Here, we tested for a predicted disparity between locomotor economy and competitive ability in wild-derived house mice ( Mus musculus ). We used 8 week social competition trials in semi-natural enclosures to directly measure male competitive ability through territorial control and female occupancy within territories. We also measured oxygen consumption during locomotion for each mouse using running trials in an enclosed treadmill and open-flow respirometry. Our results show that territory-holding males have higher absolute and mass-specific oxygen consumption when running (i.e. reduced locomotor economy) compared with males that do not control territories. This relationship was present both before and after 8 week competition trials in semi-natural enclosures. This disparity between physical competitive ability and economical locomotion may impose viability costs on males in species for which competition over mates is common and may constrain the evolution of behavioral and phenotypic diversity, particularly in natural settings with environmental and resource variability. © 2017. Published by The Company of Biologists Ltd.

  13. [Disorders of locomotor system and effectiveness of physiotherapy in coal miners].

    Bilski, Bartosz; Bednarek, Agata

    2003-01-01

    The aim of the survey was to analyze the efficacy of physiotherapy applied in coal miners as well as to assess their locomotor system load and the effects of working conditions in mines. The questionnaire survey covered a group of 51 miners, aged 28-76 years (mean, 54 years), undergoing physiotherapeutic procedures in the mine out-patient clinic during the first quarter of 2003. The survey revealed that lumbosacral disorders were the most frequent locomotor system complaints reported by miners, especially those who work in a bending down position. According to the clinical data, spondylosis and allied disorders were the main reasons for pain in this part of the body. Having analyzed the relationship between age and occurrence of back pains, the majority of complaints were found in the 46-55 age group (two complaints per one respondent). The analysis of the association between back pains and duration of employment revealed that the complaints for the locomotor system occurred already after a five-year employment. The survey showed that the application of physiotherapeutic procedures diminished the back pain in the study group by 2.83 on average on the 0-10 scale. It was also found that magnetotherapy proved to be the most effective method in treating the spinal degenerative changes.

  14. Enhanced persistency of resting and active periods of locomotor activity in schizophrenia.

    Wataru Sano

    Full Text Available Patients with schizophrenia frequently exhibit behavioral abnormalities associated with its pathological symptoms. Therefore, a quantitative evaluation of behavioral dynamics could contribute to objective diagnoses of schizophrenia. However, such an approach has not been fully established because of the absence of quantitative biobehavioral measures. Recently, we studied the dynamical properties of locomotor activity, specifically how resting and active periods are interwoven in daily life. We discovered universal statistical laws ("behavioral organization" and their alterations in patients with major depressive disorder. In this study, we evaluated behavioral organization of schizophrenic patients (n = 19 and healthy subjects (n = 11 using locomotor activity data, acquired by actigraphy, to investigate whether the laws could provide objective and quantitative measures for a possible diagnosis and assessment of symptoms. Specifically, we evaluated the cumulative distributions of resting and active periods, defined as the periods with physical activity counts successively below and above a predefined threshold, respectively. Here we report alterations in the laws governing resting and active periods; resting periods obeyed a power-law cumulative distribution with significantly lower parameter values (power-law scaling exponents, whereas active periods followed a stretched exponential distribution with significantly lower parameter values (stretching exponents, in patients. Our findings indicate enhanced persistency of both lower and higher locomotor activity periods in patients with schizophrenia, probably reflecting schizophrenic pathophysiology.

  15. Influence of temperature on daily locomotor activity in the crab Uca pugilator.

    Audrey M Mat

    Full Text Available Animals living in the intertidal zone are exposed to prominent temperature changes. To cope with the energetic demands of environmental thermal challenges, ectotherms rely mainly on behavioral responses, which may change depending on the time of the day and seasonally. Here, we analyze how temperature shapes crabs' behavior at 2 different times of the year and show that a transition from constant cold (13.5°C to constant warm (17.5°C water temperature leads to increased locomotor activity levels throughout the day in fiddler crabs (Uca pugilator collected during the summer. In contrast, the same transition in environmental temperature leads to a decrease in the amplitude of the daily locomotor activity rhythm in crabs collected during the winter. In other words, colder temperatures during the cold season favor a more prominent diurnal behavior. We interpret this winter-summer difference in the response of daily locomotor activity to temperature changes within the framework of the circadian thermoenergetics hypothesis, which predicts that a less favorable energetic balance would promote a more diurnal activity pattern. During the winter, when the energetic balance is likely less favorable, crabs would save energy by being more active during the expected high-temperature phase of the day-light phase-and less during the expected low-temperature phase of the day-dark phase. Our results suggest that endogenous rhythms in intertidal ectotherms generate adaptive behavioral programs to cope with thermoregulatory demands of the intertidal habitat.

  16. Dynamic locomotor capabilities revealed by early dinosaur trackmakers from southern Africa.

    Jeffrey A Wilson

    Full Text Available BACKGROUND: A new investigation of the sedimentology and ichnology of the Early Jurassic Moyeni tracksite in Lesotho, southern Africa has yielded new insights into the behavior and locomotor dynamics of early dinosaurs. METHODOLOGY/PRINCIPAL FINDINGS: The tracksite is an ancient point bar preserving a heterogeneous substrate of varied consistency and inclination that includes a ripple-marked riverbed, a bar slope, and a stable algal-matted bar top surface. Several basal ornithischian dinosaurs and a single theropod dinosaur crossed its surface within days or perhaps weeks of one another, but responded to substrate heterogeneity differently. Whereas the theropod trackmaker accommodated sloping and slippery surfaces by gripping the substrate with its pedal claws, the basal ornithischian trackmakers adjusted to the terrain by changing between quadrupedal and bipedal stance, wide and narrow gauge limb support (abduction range = 31 degrees , and plantigrade and digitigrade foot posture. CONCLUSIONS/SIGNIFICANCE: The locomotor adjustments coincide with changes in substrate consistency along the trackway and appear to reflect 'real time' responses to a complex terrain. It is proposed that these responses foreshadow important locomotor transformations characterizing the later evolution of the two main dinosaur lineages. Ornithischians, which shifted from bipedal to quadrupedal posture at least three times in their evolutionary history, are shown to have been capable of adopting both postures early in their evolutionary history. The substrate-gripping behavior demonstrated by the early theropod, in turn, is consistent with the hypothesized function of pedal claws in bird ancestors.

  17. Locomotor Anatomy and Behavior of Patas Monkeys (Erythrocebus patas with Comparison to Vervet Monkeys (Cercopithecus aethiops

    Adrienne L. Zihlman

    2013-01-01

    Full Text Available Patas monkeys (Erythrocebus patas living in African savanna woodlands and grassland habitats have a locomotor system that allows them to run fast, presumably to avoid predators. Long fore- and hindlimbs, long foot bones, short toes, and a digitigrade foot posture were proposed as anatomical correlates with speed. In addition to skeletal proportions, soft tissue and whole body proportions are important components of the locomotor system. To further distinguish patas anatomy from other Old World monkeys, a comparative study based on dissection of skin, muscle, and bone from complete individuals of patas and vervet monkeys (Cercopithecus aethiops was undertaken. Analysis reveals that small adjustments in patas skeletal proportions, relative mass of limbs and tail, and specific muscle groups promote efficient sagittal limb motion. The ability to run fast is based on a locomotor system adapted for long distance walking. The patas’ larger home range and longer daily range than those of vervets give them access to highly dispersed, nutritious foods, water, and sleeping trees. Furthermore, patas monkeys have physiological adaptations that enable them to tolerate and dissipate heat. These features all contribute to the distinct adaptation that is the patas monkeys’ basis for survival in grassland and savanna woodland areas.

  18. Effect of Environmental Conditions and Toxic Compounds on the Locomotor Activity of Pediculus humanus capitis (Phthiraptera: Pediculidae).

    Ortega-Insaurralde, I; Toloza, A C; Gonzalez-Audino, P; Mougabure-Cueto, G A; Alvarez-Costa, A; Roca-Acevedo, G; Picollo, M I

    2015-09-01

    In this work, we evaluated the effect of environmental variables such as temperature, humidity, and light on the locomotor activity of Pediculus humanus capitis. In addition, we used selected conditions of temperature, humidity, and light to study the effects of cypermethrin and N,N-diethyl-3-methylbenzamide (DEET) on the locomotor activity of head lice. Head lice increased their locomotor activity in an arena at 30°C compared with activity at 20°C. When we tested the influence of the humidity level, the locomotor activity of head lice showed no significant differences related to humidity level, both at 30°C and 20°C. Concerning light influence, we observed that the higher the intensity of light, the slower the movement of head lice. We also demonstrated that sublethal doses of toxics may alter locomotor activity in adults of head lice. Sublethal doses of cypermethrin induced hyperactivated responses in adult head lice. Sublethal doses of DEET evocated hypoactivated responses in head lice. The observation of stereotyped behavior in head lice elicited by toxic compounds proved that measuring locomotor activity in an experimental set-up where environmental conditions are controlled would be appropriate to evaluate compounds of biological importance, such as molecules involved in the host-parasite interaction and intraspecific relationships. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Mechanisms of Left-Right Coordination in Mammalian Locomotor Pattern Generation Circuits: A Mathematical Modeling View

    Talpalar, Adolfo E.; Rybak, Ilya A.

    2015-01-01

    The locomotor gait in limbed animals is defined by the left-right leg coordination and locomotor speed. Coordination between left and right neural activities in the spinal cord controlling left and right legs is provided by commissural interneurons (CINs). Several CIN types have been genetically identified, including the excitatory V3 and excitatory and inhibitory V0 types. Recent studies demonstrated that genetic elimination of all V0 CINs caused switching from a normal left-right alternating activity to a left-right synchronized “hopping” pattern. Furthermore, ablation of only the inhibitory V0 CINs (V0D subtype) resulted in a lack of left-right alternation at low locomotor frequencies and retaining this alternation at high frequencies, whereas selective ablation of the excitatory V0 neurons (V0V subtype) maintained the left–right alternation at low frequencies and switched to a hopping pattern at high frequencies. To analyze these findings, we developed a simplified mathematical model of neural circuits consisting of four pacemaker neurons representing left and right, flexor and extensor rhythm-generating centers interacting via commissural pathways representing V3, V0D, and V0V CINs. The locomotor frequency was controlled by a parameter defining the excitation of neurons and commissural pathways mimicking the effects of N-methyl-D-aspartate on locomotor frequency in isolated rodent spinal cord preparations. The model demonstrated a typical left-right alternating pattern under control conditions, switching to a hopping activity at any frequency after removing both V0 connections, a synchronized pattern at low frequencies with alternation at high frequencies after removing only V0D connections, and an alternating pattern at low frequencies with hopping at high frequencies after removing only V0V connections. We used bifurcation theory and fast-slow decomposition methods to analyze network behavior in the above regimes and transitions between them. The model

  20. Descending propriospinal neurons mediate restoration of locomotor function following spinal cord injury

    Benthall, Katelyn N.; Hough, Ryan A.

    2016-01-01

    Following spinal cord injury (SCI) in the lamprey, there is virtually complete recovery of locomotion within a few weeks, but interestingly, axonal regeneration of reticulospinal (RS) neurons is mostly limited to short distances caudal to the injury site. To explain this situation, we hypothesize that descending propriospinal (PS) neurons relay descending drive from RS neurons to indirectly activate spinal central pattern generators (CPGs). In the present study, the contributions of PS neurons to locomotor recovery were tested in the lamprey following SCI. First, long RS neuron projections were interrupted by staggered spinal hemitransections on the right side at 10% body length (BL; normalized from the tip of the oral hood) and on the left side at 30% BL. For acute recovery conditions (≤1 wk) and before axonal regeneration, swimming muscle burst activity was relatively normal, but with some deficits in coordination. Second, lampreys received two spaced complete spinal transections, one at 10% BL and one at 30% BL, to interrupt long-axon RS neuron projections. At short recovery times (3–5 wk), RS and PS neurons will have regenerated their axons for short distances and potentially established a polysynaptic descending command pathway. At these short recovery times, swimming muscle burst activity had only minor coordination deficits. A computer model that incorporated either of the two spinal lesions could mimic many aspects of the experimental data. In conclusion, descending PS neurons are a viable mechanism for indirect activation of spinal locomotor CPGs, although there can be coordination deficits of locomotor activity. NEW & NOTEWORTHY In the lamprey following spinal lesion-mediated interruption of long axonal projections of reticulospinal (RS) neurons, sensory stimulation still elicited relatively normal locomotor muscle burst activity, but with some coordination deficits. Computer models incorporating the spinal lesions could mimic many aspects of the

  1. Conditioned Place Preference to Acetone Inhalation and the Effects on Locomotor Behavior and 18FDG Uptake

    Pai, J.C.; Dewey, S.L.; Schiffer, W.; Lee, D.

    2006-01-01

    Acetone is a component in many inhalants that have been widely abused. While other solvents have addictive potential, such as toluene, it is unclear whether acetone alone contains addictive properties. The locomotor, relative glucose metabolism and abusive effects of acetone inhalation were studied in animals using the conditioned place preference (CPP) paradigm and [18F]2-fluorodeoxy-D-glucose (18FDG) imaging. The CPP apparatus contains two distinct conditioning chambers and a middle adaptation chamber, each lined with photocells to monitor locomotor activity. Adolescent Sprague-Dawley rats (n=16; 90-110 g) were paired with acetone in least preferred conditioning chamber, determined on the pretest day. The animals were exposed to a 10,000 ppm dose for an hour, alternating days with air. A CPP test was conducted after the 3rd, 6th and 12th pairing. In these same animals, the relative glucose metabolism effects were determined using positron emission tomography (PET) imaging with 18FDG. Following the 3rd pairing, there was a significant aversion to the acetone paired chamber (190.9 ± 13.7 sec and 241.7 ± 16.9 sec, acetone and air, respectively). After the 6th pairing, there was no significant preference observed with equal time spent in each chamber (222 ± 21 sec and 207 ± 20 sec, acetone and air-paired, respectively). A similar trend was observed after the 12th pairing (213 ± 21 sec and 221 ± 22 sec, acetone and air-paired, respectively). Locomotor analysis indicated a significant decrease (p<0.05) from air pairings to acetone pairings on the first and sixth pairings. The observed locomotor activity was characteristic of central nervous system (CNS) depressants, without showing clear abusive effects in this CPP model. In these studies, acetone vapors were not as reinforcing as other solvents, shown by overall lack of preference for the acetone paired side of the chamber. PET imaging indicated a regionally specific distribution of 18FDG uptake following

  2. Descending propriospinal neurons mediate restoration of locomotor function following spinal cord injury.

    Benthall, Katelyn N; Hough, Ryan A; McClellan, Andrew D

    2017-01-01

    Following spinal cord injury (SCI) in the lamprey, there is virtually complete recovery of locomotion within a few weeks, but interestingly, axonal regeneration of reticulospinal (RS) neurons is mostly limited to short distances caudal to the injury site. To explain this situation, we hypothesize that descending propriospinal (PS) neurons relay descending drive from RS neurons to indirectly activate spinal central pattern generators (CPGs). In the present study, the contributions of PS neurons to locomotor recovery were tested in the lamprey following SCI. First, long RS neuron projections were interrupted by staggered spinal hemitransections on the right side at 10% body length (BL; normalized from the tip of the oral hood) and on the left side at 30% BL. For acute recovery conditions (≤1 wk) and before axonal regeneration, swimming muscle burst activity was relatively normal, but with some deficits in coordination. Second, lampreys received two spaced complete spinal transections, one at 10% BL and one at 30% BL, to interrupt long-axon RS neuron projections. At short recovery times (3-5 wk), RS and PS neurons will have regenerated their axons for short distances and potentially established a polysynaptic descending command pathway. At these short recovery times, swimming muscle burst activity had only minor coordination deficits. A computer model that incorporated either of the two spinal lesions could mimic many aspects of the experimental data. In conclusion, descending PS neurons are a viable mechanism for indirect activation of spinal locomotor CPGs, although there can be coordination deficits of locomotor activity. In the lamprey following spinal lesion-mediated interruption of long axonal projections of reticulospinal (RS) neurons, sensory stimulation still elicited relatively normal locomotor muscle burst activity, but with some coordination deficits. Computer models incorporating the spinal lesions could mimic many aspects of the experimental results

  3. Validation and pharmacological characterisation of MK-801-induced locomotor hyperactivity in BALB/C mice as an assay for detection of novel antipsychotics.

    Bradford, Andrea M; Savage, Kevin M; Jones, Declan N C; Kalinichev, Mikhail

    2010-10-01

    We evaluated locomotor hyperactivity induced in BALB/C mice by an N-methyl-D-aspartate receptor antagonist MK-801 as an assay for the detection of antipsychotic drugs. We assessed the effects of antipsychotic drugs to validate the assay (study 1), selective dopamine and serotonin ligands for pharmacological characterisation of the model (study 2) and a number of compounds with efficacy in models of schizophrenia to understand the predictive validity of the model (study 3). Adult males (n  = 9/group) were pretreated with a test compound, habituated to locomotor activity cages before receiving MK-801 (0.32 mg/kg) and activity recorded for a further 75 or 120 min. In study 1, we tested haloperidol, clozapine, olanzapine, risperidone, ziprasidone, aripiprazole, sertindole and quetiapine. In study 2, we tested SCH23390 (D(1) antagonist), sulpiride (D(2)/D(3) antagonist), raclopride (D(2)/D(3) antagonist), SB-277011 (D(3) antagonist), L-745,870 (D(4) antagonist), WAY100635 (5-HT(1A) antagonist), 8-OH-DPAT (5-HT(1A) agonist), ketanserin (5-HT(2A)/5-HT(2C) antagonist) and SB-242084 (5-HT(2C) antagonist). In study 3, we tested xanomeline (M(1)/M(4) receptor agonist), LY379268 (mGluR2/3 receptor agonist), diazepam (GABA(A) modulator) and thioperamide (H(3) receptor antagonist). All antipsychotics suppressed MK-801-induced hyperactivity in a dose-dependent and specific manner. The effects of antipsychotics appear to be mediated via dopamine D(1), D(2) and 5-HT(2) receptors. Xanomeline, LY379268 and diazepam were active in this assay while thioperamide was not. MK-801-induced hyperactivity in BALB/C mice model of positive symptoms has shown predictive validity with novel compounds acing at M(1)/M(4), mGluR2/3 and GABA(A) receptors and can be used as a screening assay for detection of novel pharmacotherapies targeting those receptors.

  4. Identification of genetic modifiers of behavioral phenotypes in serotonin transporter knockout rats

    Nijman Isaäc J

    2010-05-01

    Full Text Available Abstract Background Genetic variation in the regulatory region of the human serotonin transporter gene (SLC6A4 has been shown to affect brain functionality and personality. However, large heterogeneity in its biological effects is observed, which is at least partially due to genetic modifiers. To gain insight into serotonin transporter (SERT-specific genetic modifiers, we studied an intercross between the Wistar SERT-/- rat and the behaviorally and genetically divergent Brown Norway rat, and performed a QTL analysis. Results In a cohort of >150 intercross SERT-/- and control (SERT+/+ rats we characterized 12 traits that were previously associated with SERT deficiency, including activity, exploratory pattern, cocaine-induced locomotor activity, and abdominal and subcutaneous fat. Using 325 genetic markers, 10 SERT-/--specific quantitative trait loci (QTLs for parameters related to activity and exploratory pattern (Chr.1,9,11,14, and cocaine-induced anxiety and locomotor activity (Chr.5,8 were identified. No significant QTLs were found for fat parameters. Using in silico approaches we explored potential causal genes within modifier QTL regions and found interesting candidates, amongst others, the 5-HT1D receptor (Chr. 5, dopamine D2 receptor (Chr. 8, cannabinoid receptor 2 (Chr. 5, and genes involved in fetal development and plasticity (across chromosomes. Conclusions We anticipate that the SERT-/--specific QTLs may lead to the identification of new modulators of serotonergic signaling, which may be targets for pharmacogenetic and therapeutic approaches.

  5. Drosophila Clock Is Required in Brain Pacemaker Neurons to Prevent Premature Locomotor Aging Independently of Its Circadian Function.

    Alexandra Vaccaro

    2017-01-01

    Full Text Available Circadian clocks control many self-sustained rhythms in physiology and behavior with approximately 24-hour periodicity. In many organisms, oxidative stress and aging negatively impact the circadian system and sleep. Conversely, loss of the clock decreases resistance to oxidative stress, and may reduce lifespan and speed up brain aging and neurodegeneration. Here we examined the effects of clock disruptions on locomotor aging and longevity in Drosophila. We found that lifespan was similarly reduced in three arrhythmic mutants (ClkAR, cyc0 and tim0 and in wild-type flies under constant light, which stops the clock. In contrast, ClkAR mutants showed significantly faster age-related locomotor deficits (as monitored by startle-induced climbing than cyc0 and tim0, or than control flies under constant light. Reactive oxygen species accumulated more with age in ClkAR mutant brains, but this did not appear to contribute to the accelerated locomotor decline of the mutant. Clk, but not Cyc, inactivation by RNA interference in the pigment-dispersing factor (PDF-expressing central pacemaker neurons led to similar loss of climbing performance as ClkAR. Conversely, restoring Clk function in these cells was sufficient to rescue the ClkAR locomotor phenotype, independently of behavioral rhythmicity. Accelerated locomotor decline of the ClkAR mutant required expression of the PDF receptor and correlated to an apparent loss of dopaminergic neurons in the posterior protocerebral lateral 1 (PPL1 clusters. This neuronal loss was rescued when the ClkAR mutation was placed in an apoptosis-deficient background. Impairing dopamine synthesis in a single pair of PPL1 neurons that innervate the mushroom bodies accelerated locomotor decline in otherwise wild-type flies. Our results therefore reveal a novel circadian-independent requirement for Clk in brain circadian neurons to maintain a subset of dopaminergic cells and avoid premature locomotor aging in Drosophila.

  6. Comparison of locomotor behaviour between white-headed langurs Trachypithecus leucocephalus and François’ langurs T. françoisi in Fusui, China

    Jinrong XIONG; Shihua GONG; Chenggang QIU; Zhaoyuan LI

    2009-01-01

    We studied the locomotor behaviour of white-headed langurs Trachypithecus leucocephalus and François’ langurs T.françoisi to test two hypotheses: (1) these monkeys have evolved locomotor ability to support their activities on limestone hills, and (2) François’ langurs have evolved more diverse locomotor skills than white-headed langurs. Data were collected from 1996–1998 and in 2005 in Fusui Nature Reserve, Guangxi, and showed that the two species had similar locomotor types, but François’ l...

  7. Poststroke Hemiparesis Impairs the Rate but not Magnitude of Adaptation of Spatial and Temporal Locomotor Features

    Savin, Douglas N.; Tseng, Shih-Chiao; Whitall, Jill; Morton, Susanne M.

    2015-01-01

    Background Persons with stroke and hemiparesis walk with a characteristic pattern of spatial and temporal asymmetry that is resistant to most traditional interventions. It was recently shown in nondisabled persons that the degree of walking symmetry can be readily altered via locomotor adaptation. However, it is unclear whether stroke-related brain damage affects the ability to adapt spatial or temporal gait symmetry. Objective Determine whether locomotor adaptation to a novel swing phase perturbation is impaired in persons with chronic stroke and hemiparesis. Methods Participants with ischemic stroke (14) and nondisabled controls (12) walked on a treadmill before, during, and after adaptation to a unilateral perturbing weight that resisted forward leg movement. Leg kinematics were measured bilaterally, including step length and single-limb support (SLS) time symmetry, limb angle center of oscillation, and interlimb phasing, and magnitude of “initial” and “late” locomotor adaptation rates were determined. Results All participants had similar magnitudes of adaptation and similar initial adaptation rates both spatially and temporally. All 14 participants with stroke and baseline asymmetry temporarily walked with improved SLS time symmetry after adaptation. However, late adaptation rates poststroke were decreased (took more strides to achieve adaptation) compared with controls. Conclusions Mild to moderate hemiparesis does not interfere with the initial acquisition of novel symmetrical gait patterns in both the spatial and temporal domains, though it does disrupt the rate at which “late” adaptive changes are produced. Impairment of the late, slow phase of learning may be an important rehabilitation consideration in this patient population. PMID:22367915

  8. Analysis of Indonesian Spice Essential Oil Compounds That Inhibit Locomotor Activity in Mice

    Anas Subarnas

    2011-04-01

    Full Text Available Some fragrance components of spices used for cooking are known to have an effect on human behavior. The aim of this investigation was to examine the effect of the essential oils of basil (Ocimum formacitratum L. leaves, lemongrass (Cymbopogon citrates L. herbs, ki lemo (Litsea cubeba L. bark, and laja gowah (Alpinia malaccencis Roxb. rhizomes on locomotor activity in mice and identify the active component(s that might be responsible for the activity. The effect of the essential oils was studied by a wheel cage method and the active compounds of the essential oils were identified by GC/MS analysis. The essential oils were administered by inhalation at doses of 0.1, 0.3, and 0.5 mL/cage. The results showed that the four essential oils had inhibitory effects on locomotor activity in mice. Inhalation of the essential oils of basil leaves, lemongrass herbs, ki lemo bark, and laja gowah rhizomes showed the highest inhibitory activity at doses of 0.5 (57.64%, 0.1 (55.72%, 0.5 (60.75%, and 0.1 mL/cage (47.09%, respectively. The major volatile compounds 1,8-cineole, α-terpineol, 4-terpineol, citronelol, citronelal, and methyl cinnamate were identified in blood plasma of mice after inhalation of the four oils. These compounds had a significant inhibitory effect on locomotion after inhalation. The volatile compounds of essential oils identified in the blood plasma may correlate with the locomotor-inhibiting properties of the oil when administered by inhalation.

  9. Stimulation of the mesencephalic locomotor region for gait recovery after stroke.

    Fluri, Felix; Malzahn, Uwe; Homola, György A; Schuhmann, Michael K; Kleinschnitz, Christoph; Volkmann, Jens

    2017-11-01

    One-third of all stroke survivors are unable to walk, even after intensive physiotherapy. Thus, other concepts to restore walking are needed. Because electrical stimulation of the mesencephalic locomotor region (MLR) is known to elicit gait movements, this area might be a promising target for restorative neurostimulation in stroke patients with gait disability. The present study aims to delineate the effect of high-frequency stimulation of the MLR (MLR-HFS) on gait impairment in a rodent stroke model. Male Wistar rats underwent photothrombotic stroke of the right sensorimotor cortex and chronic implantation of a stimulating electrode into the right MLR. Gait was assessed using clinical scoring of the beam-walking test and video-kinematic analysis (CatWalk) at baseline and on days 3 and 4 after experimental stroke with and without MLR-HFS. Kinematic analysis revealed significant changes in several dynamic and static gait parameters resulting in overall reduced gait velocity. All rats exhibited major coordination deficits during the beam-walking challenge and were unable to cross the beam. Simultaneous to the onset of MLR-HFS, a significantly higher walking speed and improvements in several dynamic gait parameters were detected by the CatWalk system. Rats regained the ability to cross the beam unassisted, showing a reduced number of paw slips and misses. MLR-HFS can improve disordered locomotor function in a rodent stroke model. It may act by shielding brainstem and spinal locomotor centers from abnormal cortical input after stroke, thus allowing for compensatory and independent action of these circuits. Ann Neurol 2017;82:828-840. © 2017 American Neurological Association.

  10. Developmental Deltamethrin Exposure Causes Persistent Changes in Dopaminergic Gene Expression, Neurochemistry, and Locomotor Activity in Zebrafish.

    Kung, Tiffany S; Richardson, Jason R; Cooper, Keith R; White, Lori A

    2015-08-01

    Pyrethroids are commonly used insecticides that are considered to pose little risk to human health. However, there is an increasing concern that children are more susceptible to the adverse effects of pesticides. We used the zebrafish model to test the hypothesis that developmental exposure to low doses of the pyrethroid deltamethrin results in persistent alterations in dopaminergic gene expression, neurochemistry, and locomotor activity. Zebrafish embryos were treated with deltamethrin (0.25-0.50 μg/l), at concentrations below the LOAEL, during the embryonic period [3-72 h postfertilization (hpf)], after which transferred to fresh water until the larval stage (2-weeks postfertilization). Deltamethrin exposure resulted in decreased transcript levels of the D1 dopamine (DA) receptor (drd1) and increased levels of tyrosine hydroxylase at 72 hpf. The reduction in drd1 transcripts persisted to the larval stage and was associated with decreased D2 dopamine receptor transcripts. Larval fish, exposed developmentally to deltamethrin, had increased levels of homovanillic acid, a DA metabolite. Since the DA system is involved in locomotor activity, we measured the swim activity of larval fish following a transition to darkness. Developmental exposure to deltamethrin significantly increased larval swim activity which was attenuated by concomitant knockdown of the DA transporter. Acute exposure to methylphenidate, a DA transporter inhibitor, increased swim activity in control larva, while reducing swim activity in larva developmentally exposed to deltamethrin. Developmental exposure to deltamethrin causes locomotor deficits in larval zebrafish, which is likely mediated by dopaminergic dysfunction. This highlights the need to understand the persistent effects of low-dose neurotoxicant exposure during development. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Perceptual-motor regulation in locomotor pointing while approaching a curb.

    Andel, Steven van; Cole, Michael H; Pepping, Gert-Jan

    2018-02-01

    Locomotor pointing is a task that has been the focus of research in the context of sport (e.g. long jumping and cricket) as well as normal walking. Collectively, these studies have produced a broad understanding of locomotor pointing, but generalizability has been limited to laboratory type tasks and/or tasks with high spatial demands. The current study aimed to generalize previous findings in locomotor pointing to the common daily task of approaching and stepping on to a curb. Sixteen people completed 33 repetitions of a task that required them to walk up to and step onto a curb. Information about their foot placement was collected using a combination of measures derived from a pressure-sensitive walkway and video data. Variables related to perceptual-motor regulation were analyzed on an inter-trial, intra-step and inter-step level. Similar to previous studies, analysis of the foot placements showed that, variability in foot placement decreased as the participants drew closer to the curb. Regulation seemed to be initiated earlier in this study compared to previous studies, as shown by a decreasing variability in foot placement as early as eight steps before reaching the curb. Furthermore, it was shown that when walking up to the curb, most people regulated their walk in a way so as to achieve minimal variability in the foot placement on top of the curb, rather than a placement in front of the curb. Combined, these results showed a strong perceptual-motor coupling in the task of approaching and stepping up a curb, rendering this task a suitable test for perceptual-motor regulation in walking. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Individual differences in circadian locomotor parameters correlate with anxiety- and depression-like behavior.

    Jeffrey Anyan

    Full Text Available Disrupted circadian rhythms are a core feature of mood and anxiety disorders. Circadian rhythms are coordinated by a light-entrainable master clock located in the suprachiasmatic nucleus. Animal models of mood and anxiety disorders often exhibit blunted rhythms in locomotor activity and clock gene expression. Interestingly, the changes in circadian rhythms correlate with mood-related behaviours. Although animal models of depression and anxiety exhibit aberrant circadian rhythms in physiology and behavior, it is possible that the methodology being used to induce the behavioral phenotype (e.g., brain lesions, chronic stress, global gene deletion affect behavior independently of circadian system. This study investigates the relationship between individual differences in circadian locomotor parameters and mood-related behaviors in healthy rats. The circadian phenotype of male Lewis rats was characterized by analyzing wheel running behavior under standard 12h:12h LD conditions, constant dark, constant light, and rate of re-entrainment to a phase advance. Rats were then tested on a battery of behavioral tests: activity box, restricted feeding, elevated plus maze, forced swim test, and fear conditioning. Under 12h:12h LD conditions, percent of daily activity in the light phase and variability in activity onset were associated with longer latency to immobility in the forced swim test. Variability in onset also correlated positively with anxiety-like behavior in the elevated plus maze. Rate of re-entrainment correlated positively with measures of anxiety in the activity box and elevated plus maze. Lastly, we found that free running period under constant dark was associated with anxiety-like behaviors in the activity box and elevated plus maze. Our results provide a previously uncharacterized relationship between circadian locomotor parameters and mood-related behaviors in healthy rats and provide a basis for future examination into circadian clock

  13. Limb Bone Structural Proportions and Locomotor Behavior in A.L. 288-1 ("Lucy".

    Christopher B Ruff

    Full Text Available While there is broad agreement that early hominins practiced some form of terrestrial bipedality, there is also evidence that arboreal behavior remained a part of the locomotor repertoire in some taxa, and that bipedal locomotion may not have been identical to that of modern humans. It has been difficult to evaluate such evidence, however, because of the possibility that early hominins retained primitive traits (such as relatively long upper limbs of little contemporaneous adaptive significance. Here we examine bone structural properties of the femur and humerus in the Australopithecus afarensis A.L. 288-1 ("Lucy", 3.2 Myr that are known to be developmentally plastic, and compare them with other early hominins, modern humans, and modern chimpanzees. Cross-sectional images were obtained from micro-CT scans of the original specimens and used to derive section properties of the diaphyses, as well as superior and inferior cortical thicknesses of the femoral neck. A.L. 288-1 shows femoral/humeral diaphyseal strength proportions that are intermediate between those of modern humans and chimpanzees, indicating more mechanical loading of the forelimb than in modern humans, and by implication, a significant arboreal locomotor component. Several features of the proximal femur in A.L. 288-1 and other australopiths, including relative femoral head size, distribution of cortical bone in the femoral neck, and cross-sectional shape of the proximal shaft, support the inference of a bipedal gait pattern that differed slightly from that of modern humans, involving more lateral deviation of the body center of mass over the support limb, which would have entailed increased cost of terrestrial locomotion. There is also evidence consistent with increased muscular strength among australopiths in both the forelimb and hind limb, possibly reflecting metabolic trade-offs between muscle and brain development during hominin evolution. Together these findings imply

  14. Circadian locomotor rhythms in the cricket, Gryllodes sigillatus. I. Localization of the pacemaker and the photoreceptor.

    Abe, Y; Ushirogawa, H; Tomioka, K

    1997-10-01

    Circadian locomotor rhythm and its underlying mechanism were investigated in the cricket, Gryllodes sigillatus. Adult male crickets showed a nocturnal locomotor rhythm peaking early in the dark phase of a light to dark cycle. This rhythm persisted under constant darkness (DD) with a free-running period averaging 23.1 +/- 0.3 hr. Although constant bright light made most animals arrhythmic, about 40% of the animals showed free-running rhythms with a period longer than 24 hr under constant dim light condition. On transfer to DD, all arrhythmic animals restored the locomotor rhythm. Bilateral optic nerve severance resulted in free-running of the rhythm even under light-dark cycles. The free-running period of the optic nerve severed animals was significantly longer than sham operated crickets in DD, suggesting that the compound eye plays some role in determining the free-running period. Removal of bilateral lamina-medulla portion of the optic lobe abolished the rhythm under DD. These results demonstrate that the photoreceptor for entrainment is the compound eye and the optic lobe is indispensable for persistence of the rhythm. However, 75% and 54% of the optic lobeless animals showed aberrant rhythms with a period very close to 24 hr under light and temperature cycles, respectively, suggesting that there are neural and/or humoral mechanisms for the aberrant rhythms outside of the optic lobe. Since ocelli removal did not affect the photoperiodically induced rhythm, it is likely that the photoreception for the rhythm is performed through an extraretinal photoreceptor.

  15. The effects of opioid drugs on dopamine mediated locomotor activity in rats

    Leathern, L.L.

    1986-12-01

    Opioid drugs influence various behavioural parameters including locomotor activity in experimental animals. The interaction between the opioid and dopaminergic systems is one possible explanation for the effect of opioid drugs on locomotor activity. In this study behavioural and biochemical assays were done to investigate the interaction between the opioid and dopaminergic systems. Behavioural studies were done by measurement of locomotor activity (LA) of rats after acute or chronic pretreatment with opioid and/or dopaminergic drugs. Biochemical studies were in the form of radioligand binding assays, the effect on the number (Bmax) and affinity (K D ) of receptors was measured after chronic pretreatment with opioid and/or dopaminergic drugs. The opioid drugs used are morphine, nalbuphine and naloxone. Dopaminergic drugs used included: agonists-apomorphine and piribedil; antagonists-pimozide, haloperidol, chlorpromazine. In the acute situation increased LA was obtained with morphine and the DA agonists. A correlation between the behavioural and biochemical assays was found. Chronic pretreatment with morphine enhanced apomorphine induced LA, this supersensitivity was also measured as an increased receptor density (Bmax) of D2 receptors in the striatum. Chronic morphine pretreatment caused a decrease in morphine induced LA, while this subsensitivity was not apparent in the ligand binding assays - where no change in receptor number was observed. Chronic naloxone pretreatment enhanced morphine induced LA, as well as increased the Bmax of opioid receptors in the whole brain. It is concluded that an interaction between the opioid and dopaminergic systems does exist, and may account for the mechanism of action of the opioids

  16. Analysis of Indonesian Spice Essential Oil Compounds That Inhibit Locomotor Activity in Mice

    Muchtaridi; Diantini, Adjeng; Subarnas, Anas

    2011-01-01

    Some fragrance components of spices used for cooking are known to have an effect on human behavior. The aim of this investigation was to examine the effect of the essential oils of basil (Ocimum formacitratum L.) leaves, lemongrass (Cymbopogon citrates L.) herbs, ki lemo (Litsea cubeba L.) bark, and laja gowah (Alpinia malaccencis Roxb.) rhizomes on locomotor activity in mice and identify the active component(s) that might be responsible for the activity. The effect of the essential oils was studied by a wheel cage method and the active compounds of the essential oils were identified by GC/MS analysis. The essential oils were administered by inhalation at doses of 0.1, 0.3, and 0.5 mL/cage. The results showed that the four essential oils had inhibitory effects on locomotor activity in mice. Inhalation of the essential oils of basil leaves, lemongrass herbs, ki lemo bark, and laja gowah rhizomes showed the highest inhibitory activity at doses of 0.5 (57.64%), 0.1 (55.72%), 0.5 (60.75%), and 0.1 mL/cage (47.09%), respectively. The major volatile compounds 1,8-cineole, α-terpineol, 4-terpineol, citronelol, citronelal, and methyl cinnamate were identified in blood plasma of mice after inhalation of the four oils. These compounds had a significant inhibitory effect on locomotion after inhalation. The volatile compounds of essential oils identified in the blood plasma may correlate with the locomotor-inhibiting properties of the oil when administered by inhalation.

  17. Transgenic APP expression during postnatal development causes persistent locomotor hyperactivity in the adult.

    Rodgers, Shaefali P; Born, Heather A; Das, Pritam; Jankowsky, Joanna L

    2012-06-18

    Transgenic mice expressing disease-associated proteins have become standard tools for studying human neurological disorders. Transgenes are often expressed using promoters chosen to drive continuous high-level expression throughout life rather than temporal and spatial fidelity to the endogenous gene. This approach has allowed us to recapitulate diseases of aging within the two-year lifespan of the laboratory mouse, but has the potential for creating aberrant phenotypes by mechanisms unrelated to the human disorder. We show that overexpression of the Alzheimer's-related amyloid precursor protein (APP) during early postnatal development leads to severe locomotor hyperactivity that can be significantly attenuated by delaying transgene onset until adulthood. Our data suggest that exposure to transgenic APP during maturation influences the development of neuronal circuits controlling motor activity. Both when matched for total duration of APP overexpression and when matched for cortical amyloid burden, animals exposed to transgenic APP as juveniles are more active in locomotor assays than animals in which APP overexpression was delayed until adulthood. In contrast to motor activity, the age of APP onset had no effect on thigmotaxis in the open field as a rough measure of anxiety, suggesting that the interaction between APP overexpression and brain development is not unilateral. Our findings indicate that locomotor hyperactivity displayed by the tet-off APP transgenic mice and several other transgenic models of Alzheimer's disease may result from overexpression of mutant APP during postnatal brain development. Our results serve as a reminder of the potential for unexpected interactions between foreign transgenes and brain development to cause long-lasting effects on neuronal function in the adult. The tet-off APP model provides an easy means of avoiding developmental confounds by allowing transgene expression to be delayed until the mice reach adulthood.

  18. Limited interlimb transfer of locomotor adaptations to a velocity-dependent force field during unipedal walking.

    Houldin, Adina; Chua, Romeo; Carpenter, Mark G; Lam, Tania

    2012-08-01

    Several studies have demonstrated that motor adaptations to a novel task environment can be transferred between limbs. Such interlimb transfer of motor commands is consistent with the notion of centrally driven strategies that can be generalized across different frames of reference. So far, studies of interlimb transfer of locomotor adaptations have yielded disparate results. Here we sought to determine whether locomotor adaptations in one (trained) leg show transfer to the other (test) leg during a unipedal walking task. We hypothesized that adaptation in the test leg to a velocity-dependent force field previously experienced by the trained leg will be faster, as revealed by faster recovery of kinematic errors and earlier onset of aftereffects. Twenty able-bodied adults walked unipedally in the Lokomat robotic gait orthosis, which applied velocity-dependent resistance to the legs. The amount of resistance was scaled to 10% of each individual's maximum voluntary contraction of the hip flexors. Electromyography and kinematics of the lower limb were recorded. All subjects were right-leg dominant and were tested for transfer of motor adaptations from the right leg to the left leg. Catch trials, consisting of unexpected removal of resistance, were presented after the first step with resistance and after a period of adaptation to test for aftereffects. We found no significant differences in the sizes of the aftereffects between the two legs, except for peak hip flexion during swing, or in the rate at which peak hip flexion adapted during steps against resistance between the two legs. Our results indicate that interlimb transfer of these types of locomotor adaptation is not a robust phenomenon. These findings add to our current understanding of motor adaptations and provide further evidence that generalization of adaptations may be dependent on the movement task.

  19. Human spinal locomotor control is based on flexibly organized burst generators.

    Danner, Simon M; Hofstoetter, Ursula S; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank; Minassian, Karen

    2015-03-01

    Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. Ten subjects with chronic, motor-complete spinal cord injury were studied. Surface electromyographic responses to lumbar spinal cord stimulation were collected from quadriceps, hamstrings, tibialis anterior, and triceps surae in the supine position. From these data, 10-s segments of rhythmic activity present in the four muscle groups of one limb were extracted. Such samples were found in seven subjects. Physiologically adequate cycle durations and relative extension- and flexion-phase durations similar to those needed for locomotion were generated. The multi-muscle activation patterns exhibited a variety of coactivation, mixed-synergy and locomotor-like configurations. Statistical decomposition of the electromyographic data across subjects, muscles and samples of rhythmic patterns identified three common temporal components, i.e. basic or shared activation patterns. Two of these basic patterns controlled muscles to contract either synchronously or alternatingly during extension- and flexion-like phases. The third basic pattern contributed to the observed muscle activities independently from these extensor- and flexor-related basic patterns. Each bifunctional muscle group was able to express both extensor- and flexor-patterns, with variable ratios across the

  20. [INFLUENCE OF IONIZING RADIATION ON THE LOCOMOTOR ACTIVITY AND BODY WEIGHT OF RATS].

    Saimova, A; Chaizhunusоva, N; Kairkhanova, Y; Uzbеkоv, D; Hоshi, М

    2017-02-01

    The aim of our study was to study influence of ionizing radiation on the locomotor activity and body weight of rats, for this animals was irradiated by via inhalation. Beta- emitter 56Mn was obtained by neutron activation of powdered MnО2 by using nuclear reactor IVG.1M (experimental facility «Baikal-1», Kurchatov, Kazakhstan). Exposure of rats to radioactive powder had two way, the first experiment was contained only air filter for animal's breathing and the second with the system of forced ventilation. Also we developed the method for observation of the locomotor activity of rats, based on quantitative data. The experiment was conducted on 8 «Wistar» breed white laboratory rats. Statistical analysis was performed using descriptive statistics and non-parametric test. Based on our data, we can say that our method has the advantage over the others is that there is no need to move about the animal out of the box in the test field. So we reduce animal stress factor, as the transfer of an animal from one to second place creates additional stress for him. The initial activity of the pulverized powder in both experiments were 2,74х108Bq, but in the second experiment when we used the system of forced ventilation, internal radiation doses were 0.041±0.0075 Gy, this didn't have effect on locomotor activity of rats (Z= -0,841, р=0,4). In the first experiment where we used only air filter for animal's breathing internal radiation doses were 0.15±0.025 Gr, that showed a decrease in locomotor activity in rats (Z=-6,653, р=0,001). After exposure to ionizing radiation changes in the mammals' weight were not found. Thus, based on our data we have made conclusion, that even after a single irradiation at low dose 0.15±0.025 Gr changes occur in the nervous system.

  1. A rapid enhancement of locomotor sensitization to amphetamine by estradiol in female rats.

    Zovkic, Iva B; McCormick, Cheryl M

    2017-11-14

    Estradiol moderates the effects of drugs of abuse in both humans and rodents. Estradiol's enhancement of behavioral effects resulting from high (>2.5mg/kg) doses of amphetamine is established in rats; there is less evidence for the role of estradiol in locomotor effects elicited by lower doses, which are less aversive, increase incentive motivation, involve different neural mechanisms than higher doses, and often more readily reveal group differences than do higher doses. Further, the extent to which estradiol is required for the induction versus the expression of sensitization is unknown. To establish a protocol, we replicated the effects of estradiol on locomotor sensitization to amphetamine reported in a previous study that involved a high locomotor-activating dose (1.5mg/kg) of amphetamine, but with a lower dose. Ovariectomized female rats received 5μg of estradiol benzoate (EB) or OIL 30min before each of 5 treatments of 1.0mg/kg amphetamine or saline; all received a 0.5mg/kg challenge dose three days later. Compared with results for OIL, EB enhanced the locomotor-activating effects of repeated 1.0mg/kg amphetamine across treatment days. In contrast, on challenge day, there was no difference between EB-saline and EB-amphetamine to the lower dose (i.e., no sensitization). Experiments 2 and 3 involved a shorter induction (2days) and a lengthier withdrawal (9days) before the challenge test for the expression of sensitization to better differentiate the induction phase from the expression phase. In Expt2, EB-, and not OIL-, treated rats showed sensitization to 0.5mg/kg amphetamine; neither group showed sensitization to 1.5mg/kg amphetamine (ceiling effect?). In Expt3, rats were treated with EB either in both the induction and expression phases, in one of the phases only, or in neither phase. There was an effect of hormone treatment on challenge day and not on induction day; rats given EB on Challenge day showed sensitization to 0.5mg/kg amphetamine; OIL rats did

  2. Impairment of the organization of locomotor and exploratory behaviors in bile duct-ligated rats

    Leke, Renata; de Oliveira, Diogo L; Mussulini, Ben Hur M.

    2012-01-01

    Hepatic encephalopathy (HE) arises from acute or chronic liver diseases and leads to several problems, including motor impairment. Animal models of chronic liver disease have extensively investigated the mechanisms of this disease. Impairment of locomotor activity has been described in different...... female Wistar rats underwent common bile duct ligation (BDL rats) or the manipulation of common bile duct without ligation (control rats). Six weeks after surgery, control and BDL rats underwent open-field, plus-maze and foot-fault behavioral tasks. The BDL rats developed chronic liver failure...

  3. Clinical efficiency of roentgenopaque study of muscles in patients with disorders of locomotor system

    D'yachkova, G.V.

    1996-01-01

    Radiopaque studies of soft tissues in patients with disorders and diseases of locomotor system in the case of perosseous osteosynthesis were performed. To correct the diagnosis, control the soft tissue state during treatment, assess its results more than 1000 radiopaque studies of muscles were conducted. Application of the radiopaque studies of femur muscles in patients with extension contractures of knee joint permitted to specify the character of contracture, to determine the character of muscles changes in patients with immobilization and arthrogenetic contractures which depended on disease duration

  4. Locomotor Adaptation Improves Balance Control, Multitasking Ability and Reduces the Metabolic Cost of Postural Instability

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Miller, C. A.; Ploutz-Snyder, R. J.; Guined, J. R.; Buxton, R. E.; Cohen, H. S.

    2011-01-01

    During exploration-class missions, sensorimotor disturbances may lead to disruption in the ability to ambulate and perform functional tasks during the initial introduction to a novel gravitational environment following a landing on a planetary surface. The overall goal of our current project is to develop a sensorimotor adaptability training program to facilitate rapid adaptation to these environments. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene. It provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. Greater metabolic cost incurred during balance instability means more physical work is required during adaptation to new environments possibly affecting crewmembers? ability to perform mission critical tasks during early surface operations on planetary expeditions. The goal of this study was to characterize adaptation to a discordant sensory challenge across a number of performance modalities including locomotor stability, multi-tasking ability and metabolic cost. METHODS: Subjects (n=15) walked (4.0 km/h) on a treadmill for an 8 -minute baseline walking period followed by 20-minutes of walking (4.0 km/h) with support surface motion (0.3 Hz, sinusoidal lateral motion, peak amplitude 25.4 cm) provided by the treadmill/motion-base system. Stride frequency and auditory reaction time were collected as measures of locomotor stability and multi-tasking ability, respectively. Metabolic data (VO2) were collected via a portable metabolic gas analysis system. RESULTS: At the onset of lateral support surface motion, subj ects walking on our treadmill showed an increase in stride frequency and auditory reaction time indicating initial balance and multi-tasking disturbances. During the 20-minute adaptation period, balance control and multi-tasking performance improved. Similarly, throughout the 20-minute adaptation period, VO2 gradually

  5. Locomotor activity and tissue levels following acute administration of lambda- and gamma-cyhalothrin in rats

    Moser, Virginia C., E-mail: Moser.ginger@epa.gov [Toxicity Assessment Division, National Health Effects and Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC (United States); Liu, Zhiwei [FMC Corporation, 701 Princeton South Corporate Center, Ewing, NJ (United States); Schlosser, Christopher [Health Effects Division, Office of Pesticide Programs, Office of Chemical Safety and Pollution Prevention, US Environmental Protection Agency, Washington, DC (United States); Spanogle, Terri L.; Chandrasekaran, Appavu [FMC Corporation, 701 Princeton South Corporate Center, Ewing, NJ (United States); McDaniel, Katherine L. [Toxicity Assessment Division, National Health Effects and Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC (United States)

    2016-12-15

    Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metrics. Products of cyhalothrin, a type II pyrethroid, include mixtures of isomers (e.g., λ-cyhalothrin) as well as enriched active isomers (e.g., γ-cyhalothrin). We measured acute changes in locomotor activity in adult male rats and directly correlated these changes to peak brain and plasma concentrations of λ- and γ-cyhalothrin using a within-subject design. One-hour locomotor activity studies were conducted 1.5 h after oral gavage dosing, and immediately thereafter plasma and brains were collected for analyzing tissue levels using LC/MS/MS methods. Both isomers produced dose-related decreases in activity counts, and the effective dose range for γ-cyhalothrin was lower than for λ-cyhalothrin. Doses calculated to decrease activity by 50% were 2-fold lower for the γ-isomer (1.29 mg/kg) compared to λ-cyhalothrin (2.65 mg/kg). Salivation, typical of type II pyrethroids, was also observed at lower doses of γ-cyhalothrin. Administered dose correlated well with brain and plasma concentrations, which furthermore showed good correlations with activity changes. Brain and plasma levels were tightly correlated across doses. While γ-cyhalothrin was 2-fold more potent based on administered dose, the differences based on internal concentrations were less, with γ-cyhalothrin being 1.3- to 1.6-fold more potent than λ-cyhalothrin. These potency differences are consistent with the purity of the λ-isomer (approximately 43%) compared to the enriched isomer γ-cyhalothrin (approximately 98%). Thus, administered dose as well as differences in cyhalothrin isomers is a good predictor of behavioral effects. - Highlights: • Acute changes in locomotor activity were produced by λ- and γ-cyhalothrin. •

  6. Genetic deletion of GPR52 enhances the locomotor-stimulating effect of an adenosine A2A receptor antagonist in mice: A potential role of GPR52 in the function of striatopallidal neurons.

    Nishiyama, Keiji; Suzuki, Hirobumi; Maruyama, Minoru; Yoshihara, Tomoki; Ohta, Hiroyuki

    2017-09-01

    G protein-coupled receptor 52 (GPR52) is largely co-expressed with dopamine D 2 receptor (DRD2) in the striatum and nucleus accumbens, and this expression pattern is similar to that of adenosine A 2A receptor (ADORA2A). GPR52 has been proposed as a therapeutic target for positive symptoms of schizophrenia, based on observations from pharmacological and transgenic mouse studies. However, the physiological role of GPR52 in dopaminergic functions in the basal ganglia remains unclear. Here, we used GPR52 knockout (KO) mice to examine the role of GPR52 in dopamine receptor-mediated and ADORA2A-mediated locomotor activity and dopamine receptor signaling. High expression of GPR52 protein in the striatum, nucleus accumbens, and lateral globus pallidus of wild type (WT) littermates was confirmed by immunohistochemical analysis. GPR52 KO and WT mice exhibited almost identical locomotor responses to the dopamine releaser methamphetamine and the N-methyl-d-aspartate antagonist MK-801. In contrast, the locomotor response to the ADORA2A antagonist istradefylline was significantly augmented in GPR52 KO mice compared to WT mice. Gene expression analysis revealed that striatal expression of DRD2, but not of dopamine D 1 receptor and ADORA2A, was significantly decreased in GPR52 KO mice. Moreover, a significant reduction in the mRNA expression of enkephalin, a marker of the activity of striatopallidal neurons, was observed in the striatum of GPR52 KO mice, suggesting that GPR52 deletion could enhance DRD2 signaling. Taken together, these results imply the physiological relevance of GPR52 in modulating the function of striatopallidal neurons, possibly by interaction of GPR52 with ADORA2A and DRD2. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The effects of sex-ratio and density on locomotor activity in the house fly, Musca domestica

    Bahrndorff, Simon; Kjaersgaard, Anders; Pertoldi, Cino

    2012-01-01

    Although locomotor activity is involved in almost all behavioral traits, there is a lack of knowledge on what factors affect it. This study examined the effects of sex-ratio and density on the circadian rhythm of locomotor activity of adult Musca domestica L. (Diptera: Muscidae) using an infra......-red light system. Sex-ratio significantly affected locomotor activity, increasing with the percentage of males in the vials. In accordance with other studies, males were more active than females, but the circadian rhythm of the two sexes was not constant over time and changed during the light period...... of the behavioral interactions between houseflies and highlight the importance of these factors when designing behavioral experiments using M. domestica....

  8. Effect of injection of antisense oligodeoxynucleotides of GAD isozymes into rat ventromedial hypothalamus on food intake and locomotor activity.

    Bannai, M; Ichikawa, M; Nishihara, M; Takahashi, M

    1998-02-16

    In the ventromedial hypothalamus (VMH), gamma-aminobutyric acid (GABA) plays a role in regulating feeding and running behaviors. The GABA synthetic enzyme, glutamic acid decarboxylase (GAD), consists of two isozymes, GAD65 and GAD67. In the present study, the phosphorothioated antisense oligodeoxynucleotides (ODNs) of each GAD isozyme were injected bilaterally into the VMH of male rats, and food intake, body weight and locomotor activity were monitored. ODNs were incorporated in the water-absorbent polymer (WAP, 0.2 nmol/microliter) so that ODNs were retained at the injection site. Each antisense ODN of GAD65 or GAD67 tended to reduce food intake on day 1 (day of injection=day 0) though not significantly. An injection combining both antisense ODNs significantly decreased food intake only on day 1, but body weight remained significantly lower than the control for 5 days. This suppression of body weight gain could be attributed to a significant increase in locomotor activity between days 3 and 5. Individual treatment with either ODNs did not change locomotor activity. The increase in daily locomotor activity in the group receiving the combined antisense ODNs occurred mainly during the light phase. Neither vehicle (WAP) nor control ODN affected food intake, body weight and locomotor activity. Histological studies indicated that antisense ODN distributed within 800 micron from the edge of the area where WAP was located 24 h after the injection gradually disappeared within days, but still remained within 300 micron m distance even 7 days after the injection. Antisense ODN was effectively incorporated by all the cell types examined, i.e., neurons, astrocytes and microglias. Further, HPLC analysis revealed that antisense ODNs of GAD isozymes, either alone or combined, decreased the content of GABA by 50% in VMH 24 h after the injection. These results indicate that suppression of GABA synthesis by either of the GAD isozymes is synergistically involved in suppressing food

  9. Evidence for a role of orexin/hypocretin system in vestibular lesion-induced locomotor abnormalities in rats

    Leilei Pan

    2016-07-01

    Full Text Available Vestibular damage can induce locomotor abnormalities in both animals and humans. Rodents with bilateral vestibular loss showed vestibular deficits syndrome such as circling, opisthotonus as well as locomotor and exploratory hyperactivity. Previous studies have investigated the changes in the dopamine system after vestibular loss, but the results are inconsistent and inconclusive. Numerous evidences indicate that the orexin system is implicated in central motor control. We hypothesized that orexin may be potentially involved in vestibular loss-induced motor disorders. In this study, we examined the effects of arsanilate- or 3, 3′-iminodipropionitrile (IDPN-induced vestibular lesion (AVL or IVL on the orexin-A (OXA labeling in rat hypothalamus using immunohistochemistry. The vestibular lesion-induced locomotor abnormalities were recorded and verified using a histamine H4 receptor antagonist JNJ7777120 (20 mg/kg, i.p.. The effects of the orexin receptor type 1 antagonist SB334867 (16 μg, i.c.v. on these behavior responses were also investigated. At 72 h post-AVL and IVL, animals exhibited vestibular deficit syndrome and locomotor hyperactivity in the home cages. These responses were significantly alleviated by JNJ7777120 which also eliminated AVL-induced increases in exploratory behavior in an open field. The numbers of OXA-labeled neurons in the hypothalamus were significantly increased in the AVL animals at 72 h post-AVL and in the IVL animals at 24, 48 and 72 h post-IVL. SB334867 significantly attenuated the vestibular deficit syndrome and locomotor hyperactivity at 72 h post-AVL and IVL. It also decreased exploratory behavior in the AVL animals. These results suggested that the alteration of OXA expression might contribute to locomotor abnormalities after acute vestibular lesion. The orexin receptors might be the potential therapeutic targets for vestibular disorders.

  10. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae).

    Haupt, Meghan; Bennett, Nigel C; Oosthuizen, Maria K

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment.

  11. Locomotor Performance During Rehabilitation of People With Lower Limb Amputation and Prosthetic Nonuse 12 Months After Discharge.

    Roffman, Caroline E; Buchanan, John; Allison, Garry T

    2016-07-01

    It is recognized that multifactorial assessments are needed to evaluate balance and locomotor function in people with lower limb amputation. There is no consensus on whether a single screening tool could be used to identify future issues with locomotion or prosthetic use. The purpose of this study was to determine whether different tests of locomotor performance during rehabilitation were associated with significantly greater risk of prosthetic abandonment at 12 months postdischarge. This was a retrospective cohort study. Data for descriptive variables and locomotor tests (ie, 10-Meter Walk Test [10MWT], Timed "Up & Go" Test [TUGT], Six-Minute Walk Test [6MWT], and Four Square Step Test [FSST]) were abstracted from the medical records of 201 consecutive participants with lower limb amputation. Participants were interviewed and classified as prosthetic users or nonusers at 12 months postdischarge. The Mann-Whitney U test was used to analyze whether there were differences in locomotor performance. Receiver operating characteristic curves were generated to determine performance thresholds, and relative risk (RR) was calculated for nonuse. At 12 months postdischarge, 18% (n=36) of the participants had become prosthetic nonusers. Performance thresholds, area under the curve (AUC), and RR of nonuse (95% confidence intervals [CI]) were: for the 10MWT, if walking speed was ≤0.44 ms(-1) (AUC=0.743), RR of nonuse=2.76 (95% CI=1.83, 3.79; PLocomotor performance during rehabilitation may predict future risk of prosthetic nonuse. It may be implied that the 10MWT has the greatest clinical utility as a single screening tool for prosthetic nonuse, given the highest proportion of participants were able to perform this test early in rehabilitation. However, as locomotor skills improve, other tests (in particular, the 6MWT) have specific clinical utility. To fully enable implementation of these locomotor criteria for prosthetic nonuse into clinical practice, validation is warranted

  12. Individual differences in object permanence performance at 8 months: locomotor experience and brain electrical activity.

    Bell, M A; Fox, N A

    1997-12-01

    This work was designed to investigate individual differences in hands-and-knees crawling and frontal brain electrical activity with respect to object permanence performance in 76 eight-month-old infants. Four groups of infants (one prelocomotor and 3 with varying lengths of hands-and-knees crawling experience) were tested on an object permanence scale in a research design similar to that used by Kermoian and Campos (1988). In addition, baseline EEG was recorded and used as an indicator of brain development, as in the Bell and Fox (1992) longitudinal study. Individual differences in frontal and occipital EEG power and in locomotor experience were associated with performance on the object permanence task. Infants successful at A-not-B exhibited greater frontal EEG power and greater occipital EEG power than unsuccessful infants. In contrast to Kermoian and Campos (1988), who noted that long-term crawling experience was associated with higher performance on an object permanence scale, infants in this study with any amount of hands and knees crawling experience performed at a higher level on the object permanence scale than prelocomotor infants. There was no interaction among brain electrical activity, locomotor experience, and object permanence performance. These data highlight the value of electrophysiological research and the need for a brain-behavior model of object permanence performance that incorporates both electrophysiological and behavioral factors.

  13. Locomotor inhibition in adults horses faced to stressors: a single postpartum experience may be enough!

    Virginie eDurier

    2012-10-01

    Full Text Available Despite the number of postpartum handling that a newborn experiences, few studies focus on their long-term consequences. In rats, regular long separations from the mother, during the early life, led to modifications of the locomotor activity when the animal is confronted to a stressor. In horses, one component of the behavioural response to stressful situation is active locomotion. We wondered if the routine postpartum handling undergone by foals, would affect their level of reactivity or the way they express their stress, when older. One single prolonged bout of handling just after birth clearly affected later adult expression of stress reactivity. In social separation associated with novelty, handled and unhandled horses produced an equal amount of whinnies, showing a similar vocal response to stress. However, both groups differed in their locomotor response to the situations. Early-handled foals expressed less of the active forms of locomotion than the control group. Our findings highlight the need of further reflections on long-term effects of routine handlings procedures close to birth.

  14. Effects of Lactuca sativa extract on exploratory behavior pattern, locomotor activity and anxiety in mice

    S.N. Harsha

    2012-05-01

    Full Text Available Objective: To evaluate antianxiety property of Lactuca sativa, an important and commonly used leafy vegetable known for its medicinal properties belongs to Asteraceae family. Methods: Elevated plus maze (EPM, open field test (OFT, rat exposure test, hyponeophagia and marble burying test were performed in mice models to assess the exploratory behaviour and to assess anxiolytic property of hydro-alcohol extract of Lactuca sativa. Diazepam (1 mg/kg body wt. served as the standard anxiolytic agent for all the tests. The dried extract of the plant leaf in doses of 100, 200 and 400 mg/kg body weight was administered orally to mice for duration of 15 or 30 days and evaluated exploratory behaviour, locomotor and anxiolytic activities. Results: Time spent and number of entries into the open arm was measured in EPM followed by total locomotor activity in OFT and latency to enter the food zone in hyponeophagia. Conclusions: The study suggested that hydro-alcohol extract of Lactuca sativa leaves possess potent anxiolytic property.

  15. Sexual differences in post-hatching Saunders's gulls: size, locomotor activity, and foraging skill.

    Yoon, Jongmin; Lee, Seung-Hee; Joo, Eun-Jin; Na, Ki-Jeong; Park, Shi-Ryong

    2013-04-01

    Various selection pressures induce the degree and direction of sexual size dimorphism in animals. Selection favors either larger males for contests over mates or resources, or smaller males are favored for maneuverability; whereas larger females are favored for higher fecundity, or smaller females for earlier maturation for reproduction. In the genus of Larus (seagulls), adult males are generally known to be larger in size than adult females. However, the ontogeny of sexual size dimorphism is not well understood, compared to that in adults. The present study investigates the ontogeny of sexual size dimorphism in Saunders's gulls (Larus saundersi) in captivity. We artificially incubated fresh eggs collected in Incheon, South Korea, and measured body size, locomotor activity, and foraging skill in post-hatching chicks in captivity. Our results indicated that the sexual differences in size and locomotor activity occurred with the post-hatching development. Also, larger males exhibited greater foraging skills for food acquisition than smaller females at 200 days of age. Future studies should assess how the adaptive significance of the sexual size dimorphism in juveniles is linked with sexual divergence in survival rates, intrasexual contests, or parental effort in sexes.

  16. Studies of evolutionary temperature adaptation: muscle function and locomotor performance in Antarctic fish.

    Franklin, C E

    1998-09-01

    1. Studies of evolutionary temperature adaptation of muscle and locomotor performance in fish are reviewed with a focus on the Antarctic fauna living at subzero temperatures. 2. Only limited data are available to compare the sustained and burst swimming kinematics and performance of Antarctic, temperate and tropical species. Available data indicate that low temperatures limit maximum swimming performance and this is especially evident in fish larvae. 3. In a recent study, muscle performance in the Antarctic rock cod Notothenia coriiceps at 0 degree C was found to be sufficient to produce maximum velocities during burst swimming that were similar to those seen in the sculpin Myoxocephalus scorpius at 10 degrees C, indicating temperature compensation of muscle and locomotor performance in the Antarctic fish. However, at 15 degrees C, sculpin produce maximum swimming velocities greater than N. coriiceps at 0 degree C. 4. It is recommended that strict hypothesis-driven investigations using ecologically relevant measures of performance are undertaken to study temperature adaptation in Antarctic fish. Recent detailed phylogenetic analyses of the Antarctic fish fauna and their temperate relatives will allow a stronger experimental approach by helping to separate what is due to adaptation to the cold and what is due to phylogeny alone.

  17. Low doses of ivermectin cause sensory and locomotor disorders in dung beetles

    Verdú, José R.; Cortez, Vieyle; Ortiz, Antonio J.; González-Rodríguez, Estela; Martinez-Pinna, Juan; Lumaret, Jean-Pierre; Lobo, Jorge M.; Numa, Catherine; Sánchez-Piñero, Francisco

    2015-09-01

    Ivermectin is a veterinary pharmaceutical generally used to control the ecto- and endoparasites of livestock, but its use has resulted in adverse effects on coprophilous insects, causing population decline and biodiversity loss. There is currently no information regarding the direct effects of ivermectin on dung beetle physiology and behaviour. Here, based on electroantennography and spontaneous muscle force tests, we show sub-lethal disorders caused by ivermectin in sensory and locomotor systems of Scarabaeus cicatricosus, a key dung beetle species in Mediterranean ecosystems. Our findings show that ivermectin decreases the olfactory and locomotor capacity of dung beetles, preventing them from performing basic biological activities. These effects are observed at concentrations lower than those usually measured in the dung of treated livestock. Taking into account that ivermectin acts on both glutamate-gated and GABA-gated chloride ion channels of nerve and muscle cells, we predict that ivermectin’s effects at the physiological level could influence many members of the dung pat community. The results indicate that the decline of dung beetle populations could be related to the harmful effects of chemical contamination in the dung.

  18. A simple behavioral test for locomotor function after brain injury in mice.

    Tabuse, Masanao; Yaguchi, Masae; Ohta, Shigeki; Kawase, Takeshi; Toda, Masahiro

    2010-11-01

    To establish a simple and reliable test for assessing locomotor function in mice with brain injury, we developed a new method, the rotarod slip test, in which the number of slips of the paralytic hind limb from a rotarod is counted. Brain injuries of different severity were created in adult C57BL/6 mice, by inflicting 1-point, 2-point and 4-point cryo-injuries. These mice were subjected to the rotarod slip test, the accelerating rotarod test and the elevated body swing test (EBST). Histological analyses were performed to assess the severity of the brain damage. Significant and consistent correlations between test scores and severity were observed for the rotarod slip test and the EBST. Only the rotarod slip test detected the mild hindlimb paresis in the acute and sub-acute phase after injury. Our results suggest that the rotarod slip test is the most sensitive and reliable method for assessing locomotor function after brain damage in mice. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Sherlock Holmes and the Curious Case of the Human Locomotor Central Pattern Generator.

    Klarner, Taryn; Zehr, E Paul

    2018-03-14

    Evidence first described in reduced animal models over 100 years ago led to deductions about the control of locomotion through spinal locomotor central pattern generating (CPG) networks. These discoveries in nature were contemporaneous with another form of deductive reasoning found in popular culture-that of Arthur Conan Doyle's detective "Sherlock Holmes". Since the invasive methods used in reduced non-human animal preparations are not amenable to study in humans, we are left instead with deducing from other measures and observations. Using the deductive reasoning approach of Sherlock Holmes as a metaphor for framing research into human CPGs, we speculate and weigh the evidence that should be observable in humans based on knowledge from other species. This review summarizes indirect inference to assess "observable evidence" of pattern generating activity which leads to the logical deduction of CPG contributions to arm and leg activity during locomotion in humans. The question of where a CPG may be housed in the human nervous system remains incompletely resolved at this time. Ongoing understanding, elaboration and application of functioning locomotor CPGs in humans is important for gait rehabilitation strategies in those with neurological injuries.

  20. Circadian locomotor rhythms in the cricket, Gryllodes sigillatus. II. Interactions between bilaterally paired circadian pacemakers.

    Ushirogawa, H; Abe, Y; Tomioka, K

    1997-10-01

    The optic lobe is essential for circadian locomotor rhythms in the cricket, Gryllodes sigillatus. We examined potential interactions between the bilaterally paired optic lobes in circadian rhythm generation. When one optic lobe was removed, the free-running period of the locomotor rhythm slightly but significantly lengthened. When exposed to light-dark cycles (LD) with 26 hr period, intact and sham operated animals were clearly entrained to the light cycle, but a large number of animals receiving unilateral optic nerve severance showed rhythm dissociation. In the dissociation, two rhythmic components appeared; one was readily entrained to the given LD and the other free-ran with a period shorter than 24 hr, and activity was expressed only when they were inphase. The period of the free-running component was significantly longer than that of the animals with a single blinded pacemaker kept in LD13:13, suggesting that the pacemaker on the intact side had some influence on the blinded pacemaker even in the dissociated state. The ratio of animals with rhythm dissociation was greater with the lower light intensity of the LD. The results suggest that the bilaterally distributed pacemakers are only weakly coupled to one another but strongly suppress the activity driven by the partner pacemaker during their subjective day. The strong suppression of activity would be advantageous to keep a stable nocturnality for this cricket living indoors.

  1. Open field locomotor activity and anxiety-related behaviors in mucopolysaccharidosis type IIIA mice.

    Lau, Adeline A; Crawley, Allison C; Hopwood, John J; Hemsley, Kim M

    2008-08-05

    Mucopolysaccharidosis (MPS) IIIA, or Sanfilippo syndrome, is a lysosomal storage disorder characterized by severe and progressive neuropathology. Following an asymptomatic period, patients may present with sleep disturbances, cognitive decline, aggressive tendencies and hyperactivity. A naturally-occurring mouse model of MPS IIIA also exhibits many of these behavioral features and has been recently back-crossed onto a C57BL/6 genetic background. To more thoroughly characterize the behavioral phenotype of congenic MPS IIIA mice, we assessed exploratory activity and unconditioned anxiety-related behavior in the elevated plus maze (EPM) and open field locomotor activity. Although MPS IIIA male mice were less active in the EPM at 18 and 20 weeks of age, they were more likely to explore the open arms than their normal counter-parts suggesting reduced anxiety. Repeated EPM testing reduced exploration of the open arms in MPS IIIA mice. In the open field test, significant reductions in activity were evident in naïve-tested male MPS IIIA mice from 10 weeks of age. Female normal and MPS IIIA mice displayed similar exploratory activity in the open field test. These differences in anxiety and locomotor activity will allow us to evaluate the efficacy of therapeutic regimes for MPS IIIA as a forerunner to developing safe and effective therapies for Sanfilippo patients.

  2. Spinal cord injury: overview of experimental approaches used to restore locomotor activity.

    Fakhoury, Marc

    2015-01-01

    Spinal cord injury affects more than 2.5 million people worldwide and can lead to paraplegia and quadriplegia. Anatomical discontinuity in the spinal cord results in disruption of the impulse conduction that causes temporary or permanent changes in the cord's normal functions. Although axonal regeneration is limited, damage to the spinal cord is often accompanied by spontaneous plasticity and axon regeneration that help improve sensory and motor skills. The recovery process depends mainly on synaptic plasticity in the preexisting circuits and on the formation of new pathways through collateral sprouting into neighboring denervated territories. However, spontaneous recovery after spinal cord injury can go on for several years, and the degree of recovery is very limited. Therefore, the development of new approaches that could accelerate the gain of motor function is of high priority to patients with damaged spinal cord. Although there are no fully restorative treatments for spinal injury, various rehabilitative approaches have been tested in animal models and have reached clinical trials. In this paper, a closer look will be given at the potential therapies that could facilitate axonal regeneration and improve locomotor recovery after injury to the spinal cord. This article highlights the application of several interventions including locomotor training, molecular and cellular treatments, and spinal cord stimulation in the field of rehabilitation research. Studies investigating therapeutic approaches in both animal models and individuals with injured spinal cords will be presented.

  3. Mice Lacking EGR1 Have Impaired Clock Gene (BMAL1) Oscillation, Locomotor Activity, and Body Temperature.

    Riedel, Casper Schwartz; Georg, Birgitte; Jørgensen, Henrik L; Hannibal, Jens; Fahrenkrug, Jan

    2018-01-01

    Early growth response transcription factor 1 (EGR1) is expressed in the suprachiasmatic nucleus (SCN) after light stimulation. We used EGR1-deficient mice to address the role of EGR1 in the clock function and light-induced resetting of the clock. The diurnal rhythms of expression of the clock genes BMAL1 and PER1 in the SCN were evaluated by semi-quantitative in situ hybridization. We found no difference in the expression of PER1 mRNA between wildtype and EGR1-deficient mice; however, the daily rhythm of BMAL1 mRNA was completely abolished in the EGR1-deficient mice. In addition, we evaluated the circadian running wheel activity, telemetric locomotor activity, and core body temperature of the mice. Loss of EGR1 neither altered light-induced phase shifts at subjective night nor affected negative masking. Overall, circadian light entrainment was found in EGR1-deficient mice but they displayed a reduced locomotor activity and an altered temperature regulation compared to wild type mice. When placed in running wheels, a subpopulation of EGR1-deficient mice displayed a more disrupted activity rhythm with no measurable endogenous period length (tau). In conclusion, the present study provides the first evidence that the circadian clock in the SCN is disturbed in mice deficient of EGR1.

  4. Regulation by orexin of feeding behaviour and locomotor activity in the goldfish.

    Nakamachi, T; Matsuda, K; Maruyama, K; Miura, T; Uchiyama, M; Funahashi, H; Sakurai, T; Shioda, S

    2006-04-01

    Orexin is a hypothalamic neuropeptide that is implicated in the regulation of feeding behaviour and the sleep-wakefulness cycle in mammals. However, in spite of a growing body of knowledge concerning orexin in mammals, the orexin system and its function have not been well studied in lower vertebrates. In the present study, we first examined the effect of feeding status on the orexin-like immunoreactivity (orexin-LI) and the expression of orexin mRNA in the goldfish brain. The number of cells showing orexin-LI in the hypothalamus of goldfish brain showed a significant increase in fasted fish and a significant decrease in glucose-injected fish. The expression level of orexin mRNA in the brains of fasted fish increased compared to that of fed fish. We also examined the effect of an i.c.v. injection of orexin or an anti-orexin serum on food intake and locomotor activity in the goldfish. Administration of orexin by i.c.v. injection induced a significant increase of food intake and locomotor activity, whereas i.p. injection of glucose or i.c.v. injection of anti-orexin serum decreased food consumption. These results indicate that the orexin functions as an orexigenic factor in the goldfish brain.

  5. Muscle fiber type distribution in climbing Hawaiian gobioid fishes: ontogeny and correlations with locomotor performance.

    Cediel, Roberto A; Blob, Richard W; Schrank, Gordon D; Plourde, Robert C; Schoenfuss, Heiko L

    2008-01-01

    Three species of Hawaiian amphidromous gobioid fishes are remarkable in their ability to climb waterfalls up to several hundred meters tall. Juvenile Lentipes concolor and Awaous guamensis climb using rapid bursts of axial undulation, whereas juvenile Sicyopterus stimpsoni climb using much slower movements, alternately attaching oral and pelvic sucking disks to the substrate during prolonged bouts of several cycles. Based on these differing climbing styles, we hypothesized that propulsive musculature in juvenile L. concolor and A. guamensis would be dominated by white muscle fibers, whereas S. stimpsoni would exhibit a greater proportion of red muscle fibers than other climbing species. We further predicted that, because adults of these species shift from climbing to burst swimming as their main locomotor behavior, muscle from adult fish of all three species would be dominated by white fibers. To test these hypotheses, we used ATPase assays to evaluate muscle fiber type distribution in Hawaiian climbing gobies for three anatomical regions (midbody, anal, and tail). Axial musculature was dominated by white muscle fibers in juveniles of all three species, but juvenile S. stimpsoni had a significantly greater proportion of red fibers than the other two species. Fiber type proportions of adult fishes did not differ significantly from those of juveniles. Thus, muscle fiber type proportions in juveniles appear to help accommodate differences in locomotor demands among these species, indicating that they overcome the common challenge of waterfall climbing through both diverse behaviors and physiological specializations.

  6. Non-Ocular Circadian Oscillators and Photoreceptors Modulate Long Term Memory Formation in Aplysia

    Lyons, Lisa C.; Rawashdeh, Oliver; Eskin, Arnold

    2006-01-01

    In Aplysia californica, memory formation for long-term sensitization (LTS) and for a more complex type of associative learning, learning that food is inedible (LFI), is modulated by a circadian clock. For both types of learning, formation of long-term memory occurs during the day and significantly less during the night. Aplysia eyes contain a well-characterized circadian oscillator that is strongly coupled to the locomotor activity rhythm. Thus, the authors hypothesized that the ocular circad...

  7. Elevated copper levels during larval development cause altered locomotor behavior in the adult carabid beetle Pterostichus cupreus L. (Coleoptera: Carbidae)

    Bayley, M; Baatrup, E; Heimbach, U

    1995-01-01

    It is generally believed that copper causes changes in carabid communities indirectly by reducing food availability, because these animals are frequently found to have only slightly elevated metal contents even close to pollution sources. Using computer-centered video tracking, the locomotor......, but not to effect the emergence weights of adults of either sex. This toxic effect on the larvae was preserved through pupation to the surviving adults, which were normal in size and appearance, but displayed a dramatically depressed locomotor behavior. Copper analysis of these adults revealed that copper levels...

  8. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-01-01

    these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three...... to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral...

  9. Injury scores and locomotor disorders of Holstein cows in a free-stall facility with different beds

    Cecchin, Daiane; Universidade Federal de Lavras - UFLA Lavras - MG; Campos, Alessandro Torres; Universidade Federal de Lavras - UFLA Lavras - MG; Pires, Maria de Fátima Ávila; Sousa, Francine Aparecida; Universidade Federal de Lavras - UFLA Lavras - MG; Amaral, Pedro Ivo Sodré; Universidade Federal de Lavras - UFLA Lavras - MG; Yanagi Junior, Tadayuki; Universidade Federal de Lavras - UFLA Lavras - MG; Ferreira, Suane Alves; Médica Veterinária – UNIPAC Juiz de Fora, MG.; Souza, Myriam Cristiane Morais; Graduanda em Medicina Veterinária – UNIPAC Juiz de Fora, MG.; Cecchin, Diego; Especialista em Gestão – UPF, Passo Fundo, RS

    2015-01-01

    The aim of the present study was to evaluate hock and knee injuries and locomotor disorders in 36 multiparous Holstein cows confined in a free-stall model system with two types of beds at Embrapa Dairy Cattle in the city of Coronel Pacheco / MG. Rubber composite beds and sand beds were compared and the hock and knee injuries and locomotor disorders were assessed for severity scores. There was no difference between the scores or hock lesions observed at the beginning and end of the trial perio...

  10. Effects of scallop shell extract on scopolamine-induced memory impairment and MK801-induced locomotor activity

    HASEGAWA, Yasushi; INOUE, Tatsuro; KAWAMINAMI, Satoshi; FUJITA, Miho

    2016-01-01

    ObjectiveTo evaluate the neuroprotective effects of the organic components of scallop shells (scallop shell extract) on memory impairment and locomotor activity induced by scopolamine or 5-methyl-10,11-dihydro-5H-dibenzo (a,d) cyclohepten-5,10-imine (MK801).MethodsEffect of the scallop shell extract on memory impairment and locomotor activity was investigated using the Y-maze test, the Morris water maze test, and the open field test.ResultsScallop shell extract significantly reduced scopolami...

  11. Differences in the locomotor-activating effects of indirect serotonin agonists in habituated and non-habituated rats.

    Halberstadt, Adam L; Buell, Mahálah R; Price, Diana L; Geyer, Mark A

    2012-07-01

    The indirect serotonin (5-HT) agonist 3,4-methylenedioxymethamphetamine (MDMA) produces a distinct behavioral profile in rats consisting of locomotor hyperactivity, thigmotaxis, and decreased exploration. The indirect 5-HT agonist α-ethyltryptamine (AET) produces a similar behavioral profile. Using the Behavioral Pattern Monitor (BPM), the present investigation examined whether the effects of MDMA and AET are dependent on the novelty of the testing environment. These experiments were conducted in Sprague-Dawley rats housed on a reversed light cycle and tested during the dark phase of the light/dark cycle. We found that racemic MDMA (RS-MDMA; 3 mg/kg, SC) increased locomotor activity in rats tested in novel BPM chambers, but had no effect on locomotor activity in rats habituated to the BPM chambers immediately prior to testing. Likewise, AET (5 mg/kg, SC) increased locomotor activity in non-habituated animals but not in animals habituated to the test chambers. These results were unexpected because previous reports indicate that MDMA has robust locomotor-activating effects in habituated animals. To further examine the influence of habituation on MDMA-induced locomotor activity, we conducted parametric studies with S-(+)-MDMA (the more active enantiomer) in habituated and non-habituated rats housed on a standard or reversed light cycle. Light cycle was included as a variable due to reported differences in sensitivity to serotonergic ligands during the dark and light phases. In confirmation of our initial studies, rats tested during the dark phase and habituated to the BPM did not show an S-(+)-MDMA (3 mg/kg, SC)-induced increase in locomotor activity, whereas non-habituated rats did. By contrast, in rats tested during the light phase, S-(+)-MDMA increased locomotor activity in both non-habituated and habituated rats, although the response in habituated animals was attenuated. The finding that habituation and light cycle interact to influence MDMA- and AET

  12. Effects of Resveratrol on Daily Rhythms of Locomotor Activity and Body Temperature in Young and Aged Grey Mouse Lemurs

    Fabien Pifferi

    2013-01-01

    Full Text Available In several species, resveratrol, a polyphenolic compound, activates sirtuin proteins implicated in the regulation of energy balance and biological clock processes. To demonstrate the effect of resveratrol on clock function in an aged primate, young and aged mouse lemurs (Microcebus murinus were studied over a 4-week dietary supplementation with resveratrol. Spontaneous locomotor activity and daily variations in body temperature were continuously recorded. Reduction in locomotor activity onset and changes in body temperature rhythm in resveratrol-supplemented aged animals suggest an improved synchronisation on the light-dark cycle. Resveratrol could be a good candidate to restore the circadian rhythms in the elderly.

  13. Methodical aspects of radionuclide study of locomotor system in patients with systemic diseases of connective tissue with single photon emission computed tomography

    Potsibyina, V.V.; Oderyij, Je.A.

    1998-01-01

    The original technique was used to examine 427 patients aged 18-64 with systemic diseases of locomotor system connective tissue and 65 controls. In addition to clinical studies, radionuclide signs of locomotor system lesions was investigated with NUCLETRON APEX SP-6 CT unit using labeled with Tc-99m and osteotropic radiopharmaceuticals

  14. Runners maintain locomotor-respiratory coupling following isocapnic voluntary hyperpnea to task failure.

    Stickford, Abigail S L; Stickford, Jonathon L; Tanner, David A; Stager, Joel M; Chapman, Robert F

    2015-11-01

    Evidence has long suggested that mammalian ventilatory and locomotor rhythms are linked, yet determinants and implications of locomotor-respiratory coupling (LRC) continue to be investigated. Anecdotally, respiratory muscle fatigue seen at the end of heavy exercise may result in an uncoupling of movement-ventilation rhythms; however, there is no scientific evidence to substantiate this claim. We sought to determine whether or not fatigue of the respiratory muscles alters locomotor-respiratory coupling patterns typically observed in highly trained individuals while running. A related query was to examine the relationship between the potential changes in LRC and measures of running economy. Twelve male distance runners ran at four submaximal workloads (68-89 % VO2peak) on two separate days while LRC was quantified. One LRC trial served as a control (CON), while the other was performed following an isocapnic voluntary hyperpnea to task failure to induce respiratory muscle fatigue (FT+). LRC was assessed as stride-to-breathing frequency ratios (SF/fB) and degree of LRC (percentage of breaths occurring during the same decile of the step cycle). Hyperpnea resulted in significant declines in maximal voluntary inspiratory (MIP) and expiratory (MEP) mouth pressures (ΔMIP = -10 ± 12 cm H2O; ΔMEP = -6 ± 9 cm H2O). There were no differences in minute ventilation between CON and FT+ (CON, all speeds pooled = 104 ± 25 L min(-1); FT+ pooled = 106 ± 23 L min(-1)). Stride frequency was not different between trials; however, breathing frequency was significantly greater during FT+ compared to CON at all speeds (CON pooled = 47 ± 10 br min(-1); FT+ pooled = 52 ± 9 br min(-1)), resulting in smaller corresponding SF/fB. Yet, the degree of LRC was the same during CON and FT+ (CON pooled = 63 ± 15 %; FT+ pooled = 64 ± 18 %). The results indicate that trained runners are able to continue entraining breath and step cycles, despite marked changes in exercise breathing frequency

  15. FES-assisted Cycling Improves Aerobic Capacity and Locomotor Function Postcerebrovascular Accident.

    Aaron, Stacey E; Vanderwerker, Catherine J; Embry, Aaron E; Newton, Jennifer H; Lee, Samuel C K; Gregory, Chris M

    2018-03-01

    After a cerebrovascular accident (CVA) aerobic deconditioning contributes to diminished physical function. Functional electrical stimulation (FES)-assisted cycling is a promising exercise paradigm designed to target both aerobic capacity and locomotor function. This pilot study aimed to evaluate the effects of an FES-assisted cycling intervention on aerobic capacity and locomotor function in individuals post-CVA. Eleven individuals with chronic (>6 months) post-CVA hemiparesis completed an 8-wk (three times per week; 24 sessions) progressive FES-assisted cycling intervention. V˙O2peak, self-selected, and fastest comfortable walking speeds, gait, and pedaling symmetry, 6-min walk test (6MWT), balance, dynamic gait movements, and health status were measured at baseline and posttraining. Functional electrical stimulation-assisted cycling significantly improved V˙O2peak (12%, P = 0.006), self-selected walking speed (SSWS, 0.05 ± 0.1 m·s, P = 0.04), Activities-specific Balance Confidence scale score (12.75 ± 17.4, P = 0.04), Berg Balance Scale score (3.91 ± 4.2, P = 0.016), Dynamic Gait Index score (1.64 ± 1.4, P = 0.016), and Stroke Impact Scale participation/role domain score (12.74 ± 16.7, P = 0.027). Additionally, pedal symmetry, represented by the paretic limb contribution to pedaling (paretic pedaling ratio [PPR]) significantly improved (10.09% ± 9.0%, P = 0.016). Although step length symmetry (paretic step ratio [PSR]) did improve, these changes were not statistically significant (-0.05% ± 0.1%, P = 0.09). Exploratory correlations showed moderate association between change in SSWS and 6-min walk test (r = 0.74), and moderate/strong negative association between change in PPR and PSR. These results support FES-assisted cycling as a means to improve both aerobic capacity and locomotor function. Improvements in SSWS, balance, dynamic walking movements, and participation in familial and societal roles are important targets for rehabilitation of individuals

  16. Effects of pregnancy on body temperature and locomotor performance of velvet geckos.

    Dayananda, Buddhi; Ibargüengoytía, Nora; Whiting, Martin J; Webb, Jonathan K

    2017-04-01

    Pregnancy is a challenging period for egg laying squamates. Carrying eggs can encumber females and decrease their locomotor performance, potentially increasing their risk of predation. Pregnant females can potentially reduce this handicap by selecting higher temperatures to increase their sprint speed and ability to escape from predators, or to speed up embryonic development and reduce the period during which they are burdened with eggs ('selfish mother' hypothesis). Alternatively, females might select more stable body temperatures during pregnancy to enhance offspring fitness ('maternal manipulation hypothesis'), even if the maintenance of such temperatures compromises a female's locomotor performance. We investigated whether pregnancy affects the preferred body temperatures and locomotor performance of female velvet geckos Amalosia lesueurii. We measured running speed of females during late pregnancy, and one week after they laid eggs at four temperatures (20°, 25°, 30° and 35°C). Preferred body temperatures of females were measured in a cost-free thermal gradient during late pregnancy and one week after egg-laying. Females selected higher and more stable set-point temperatures when they were pregnant (mean =29.0°C, T set =27.8-30.5°C) than when they were non-pregnant (mean =26.2°C, T set =23.7-28.7°C). Pregnancy was also associated with impaired performance; females sprinted more slowly at all four test temperatures when burdened with eggs. Although females selected higher body temperatures during late pregnancy, this increase in temperature did not compensate for their impaired running performance. Hence, our results suggest that females select higher temperatures during pregnancy to speed up embryogenesis and reduce the period during which they have reduced performance. This strategy may decrease a female's probability of encountering predatory snakes that use the same microhabitats for thermoregulation. Selection of stable temperatures by pregnant

  17. Running behavior and its energy cost in mice selectively bred for high voluntary locomotor activity.

    Rezende, Enrico L; Gomes, Fernando R; Chappell, Mark A; Garland, Theodore

    2009-01-01

    Locomotion is central to behavior and intrinsic to many fitness-critical activities (e.g., migration, foraging), and it competes with other life-history components for energy. However, detailed analyses of how changes in locomotor activity and running behavior affect energy budgets are scarce. We quantified these effects in four replicate lines of house mice that have been selectively bred for high voluntary wheel running (S lines) and in their four nonselected control lines (C lines). We monitored wheel speeds and oxygen consumption for 24-48 h to determine daily energy expenditure (DEE), resting metabolic rate (RMR), locomotor costs, and running behavior (bout characteristics). Daily running distances increased roughly 50%-90% in S lines in response to selection. After we controlled for body mass effects, selection resulted in a 23% increase in DEE in males and a 6% increase in females. Total activity costs (DEE - RMR) accounted for 50%-60% of DEE in both S and C lines and were 29% higher in S males and 5% higher in S females compared with their C counterparts. Energetic costs of increased daily running distances differed between sexes because S females evolved higher running distances by running faster with little change in time spent running, while S males also spent 40% more time running than C males. This increase in time spent running impinged on high energy costs because the majority of running costs stemmed from "postural costs" (the difference between RMR and the zero-speed intercept of the speed vs. metabolic rate relationship). No statistical differences in these traits were detected between S and C females, suggesting that large changes in locomotor behavior do not necessarily effect overall energy budgets. Running behavior also differed between sexes: within S lines, males ran with more but shorter bouts than females. Our results indicate that selection effects on energy budgets can differ dramatically between sexes and that energetic constraints in S

  18. A Drosophila systems model of pentylenetetrazole induced locomotor plasticity responsive to antiepileptic drugs

    Singh Priyanka

    2009-01-01

    Full Text Available Abstract Background Rodent kindling induced by PTZ is a widely used model of epileptogenesis and AED testing. Overlapping pathophysiological mechanisms may underlie epileptogenesis and other neuropsychiatric conditions. Besides epilepsy, AEDs are widely used in treating various neuropsychiatric disorders. Mechanisms of AEDs' long term action in these disorders are poorly understood. We describe here a Drosophila systems model of PTZ induced locomotor plasticity that is responsive to AEDs. Results We empirically determined a regime in which seven days of PTZ treatment and seven days of subsequent PTZ discontinuation respectively cause a decrease and an increase in climbing speed of Drosophila adults. Concomitant treatment with NaVP and LEV, not ETH, GBP and VGB, suppressed the development of locomotor deficit at the end of chronic PTZ phase. Concomitant LEV also ameliorated locomotor alteration that develops after PTZ withdrawal. Time series of microarray expression profiles of heads of flies treated with PTZ for 12 hrs (beginning phase, two days (latent phase and seven days (behaviorally expressive phase showed only down-, not up-, regulation of genes; expression of 23, 2439 and 265 genes were downregulated, in that order. GO biological process enrichment analysis showed downregulation of transcription, neuron morphogenesis during differentiation, synaptic transmission, regulation of neurotransmitter levels, neurogenesis, axonogenesis, protein modification, axon guidance, actin filament organization etc. in the latent phase and of glutamate metabolism, cell communication etc. in the expressive phase. Proteomic interactome based analysis provided further directionality to these events. Pathway overrepresentation analysis showed enrichment of Wnt signaling and other associated pathways in genes downregulated by PTZ. Mining of available transcriptomic and proteomic data pertaining to established rodent models of epilepsy and human epileptic

  19. Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury.

    Varoqui, Deborah; Niu, Xun; Mirbagheri, Mehdi M

    2014-03-31

    In incomplete spinal cord injury (iSCI), sensorimotor impairments result in severe limitations to ambulation. To improve walking capacity, physical therapies using robotic-assisted locomotor devices, such as the Lokomat, have been developed. Following locomotor training, an improvement in gait capabilities-characterized by increases in the over-ground walking speed and endurance-is generally observed in patients. To better understand the mechanisms underlying these improvements, we studied the effects of Lokomat training on impaired ankle voluntary movement, known to be an important limiting factor in gait for iSCI patients. Fifteen chronic iSCI subjects performed twelve 1-hour sessions of Lokomat training over the course of a month. The voluntary movement was qualified by measuring active range of motion, maximal velocity peak and trajectory smoothness for the spastic ankle during a movement from full plantar-flexion (PF) to full dorsi-flexion (DF) at the patient's maximum speed. Dorsi- and plantar-flexor muscle strength was quantified by isometric maximal voluntary contraction (MVC). Clinical assessments were also performed using the Timed Up and Go (TUG), the 10-meter walk (10MWT) and the 6-minute walk (6MWT) tests. All evaluations were performed both before and after the training and were compared to a control group of fifteen iSCI patients. After the Lokomat training, the active range of motion, the maximal velocity, and the movement smoothness were significantly improved in the voluntary movement. Patients also exhibited an improvement in the MVC for their ankle dorsi- and plantar-flexor muscles. In terms of functional activity, we observed an enhancement in the mobility (TUG) and the over-ground gait velocity (10MWT) with training. Correlation tests indicated a significant relationship between ankle voluntary movement performance and the walking clinical assessments. The improvements of the kinematic and kinetic parameters of the ankle voluntary movement

  20. Modern principles of prevention of anophthalmic syndrome: formation of the locomotor stump, the types of orbital implants

    I. V. Zapuskalov

    2017-01-01

    Full Text Available This article analyzes the current state of the problem of the correction of anophthalmic syndrome. Evaluated various methods of formation of the locomotor stump after removal of the eyeball, gave a detailed description of different types of materials for the fabrication of orbital implant, as well as reflect the basic principles of prevention of complications.

  1. [Application of locomotor activity test to evaluate functional injury after global cerebral ischemia in C57BL/6 mice].

    Zhang, Li-quan; Xu, Jia-ni; Wang, Zhen-zhen; Zeng, Li-jun; Ye, Yi-lu; Zhang, Wei-ping; Wei, Er-qing; Zhang, Qi

    2014-05-01

    To evaluate the application of locomotor activity test in functional injury after global cerebral ischemia (GCI) in C57BL/6 mice. GCI was induced by bilateral carotid arteries occlusion for 30 min in C57BL/6 mice. Mice were divided into sham group, GCI group and minocycline group. Saline or minocycline (45 mg/kg) was i.p. injected once daily for 6 d after ischemia. At Day 6 after ischemia, locomotor activity was recorded for 1 h in open field test. Total distance, central distance, central distance ratio, periphery distance, periphery distance ratio, central time and periphery time were used to evaluate the behavior characteristics of locomotor activity in C57BL/6 mice after ischemia. The survival neuron density was detected by Nissl staining in hippocampus, cortex and striatum. Compared with sham group, total distance, central distance and central time increased and periphery time decreased in C57BL/6 mice after GCI (PsLocomotor activity in open field test can objectively evaluate the behavior injury after GCI in mice. Central distance and central time can be used as indexes of quantitative assessment.

  2. Balance and ambulation improvements in individuals with chronic incomplete spinal cord injury using locomotor training-based rehabilitation.

    Harkema, Susan J; Schmidt-Read, Mary; Lorenz, Douglas J; Edgerton, V Reggie; Behrman, Andrea L

    2012-09-01

    To evaluate the effects of intensive locomotor training on balance and ambulatory function at enrollment and discharge during outpatient rehabilitation after incomplete SCI. Prospective observational cohort. Seven outpatient rehabilitation centers from the Christopher and Dana Reeve Foundation NeuroRecovery Network (NRN). Patients (N=196) with American Spinal Injury Association Impairment Scale (AIS) grade C or D SCI who received at least 20 locomotor training treatment sessions in the NRN. Intensive locomotor training, including step training using body-weight support and manual facilitation on a treadmill followed by overground assessment and community integration. Berg Balance Scale; Six-Minute Walk Test; 10-Meter Walk Test. Outcome measures at enrollment showed high variability between patients with AIS grades C and D. Significant improvement from enrollment to final evaluation was observed in balance and walking measures for patients with AIS grades C and D. The magnitude of improvement significantly differed between AIS groups for all measures. Time since SCI was not associated significantly with outcome measures at enrollment, but was related inversely to levels of improvement. Significant variability in baseline values of functional outcome measures is evident after SCI in individuals with AIS grades C and D and significant functional recovery can continue to occur even years after injury when provided with locomotor training. These results indicate that rehabilitation, which provides intensive activity-based therapy, can result in functional improvements in individuals with chronic incomplete SCI. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. Effects of scallop shell extract on scopolamine-induced memory impairment and MK801-induced locomotor activity.

    Hasegawa, Yasushi; Inoue, Tatsuro; Kawaminami, Satoshi; Fujita, Miho

    2016-07-01

    To evaluate the neuroprotective effects of the organic components of scallop shells (scallop shell extract) on memory impairment and locomotor activity induced by scopolamine or 5-methyl-10,11-dihydro-5H-dibenzo (a,d) cyclohepten-5,10-imine (MK801). Effect of the scallop shell extract on memory impairment and locomotor activity was investigated using the Y-maze test, the Morris water maze test, and the open field test. Scallop shell extract significantly reduced scopolamine-induced short-term memory impairment and partially reduced scopolamine-induced spatial memory impairment in the Morris water maze test. Scallop shell extract suppressed scopolamine-induced elevation of acetylcholine esterase activity in the cerebral cortex. Treatment with scallop shell extract reversed the increase in locomotor activity induced by scopolamine. Scallop shell extract also suppressed the increase in locomotor activity induced by MK801. Our results provide initial evidence that scallop shell extract reduces scopolamine-induced memory impairment and suppresses MK-801-induced hyperlocomotion. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  4. Selective brain lesions reduce morphine- and radiation-induced locomotor hyperactivity of the C57BL/6J mouse

    Mickley, G.A.; Stevens, K.E.; White, G.A.; Gibbs, G.L.

    1984-01-01

    The apparent resemblance between the stereotypic locomotor hyperactivity observed after either an injection of morphine or irradiation of the C57BL/6J mouse has suggested the possibility of similar biochemical and neuroanatomical substrates of these behaviors. In this study the authors made selective brain lesions in an attempt to reverse the locomotor response observed after morphine (30 mg/kg) or radiation (1500 rads /sup 60/Co) treatments. Lesions impinging on both the dorso-medial caudate and lateral septal nuclei caused a significant decrease in morphine-induced and radiogenic locomotion. Lesions of the individual brain areas did not significantly alter the opiate locomotor response. This reduction in locomotion could not be attributed to a generalized post-surgical lethargy since other brain lesions of similar size did not significantly suppress these behaviors. These data suggest the possibility of some common central nervous system mechanisms which may support the stereotypic locomotor hyperactivity observed in the C57BL/6J mouse after either morphine or radiation treatment

  5. Syngeneic B16F10 Melanoma Causes Cachexia and Impaired Skeletal Muscle Strength and Locomotor Activity in Mice

    Fabrício A. Voltarelli

    2017-09-01

    Full Text Available Muscle wasting has been emerging as one of the principal components of cancer cachexia, leading to progressive impairment of work capacity. Despite early stages melanomas rarely promotes weight loss, the appearance of metastatic and/or solid tumor melanoma can leads to cachexia development. Here, we investigated the B16F10 tumor-induced cachexia and its contribution to muscle strength and locomotor-like activity impairment. C57BL/6 mice were subcutaneously injected with 5 × 104 B16F10 melanoma cells or PBS as a Sham negative control. Tumor growth was monitored during a period of 28 days. Compared to Sham mice, tumor group depicts a loss of skeletal muscle, as well as significantly reduced muscle grip strength and epididymal fat mass. This data are in agreement with mild to severe catabolic host response promoted by elevated serum tumor necrosis factor-alpha (TNF-α, interleukin-6 (IL-6 and lactate dehydrogenase (LDH activity. Tumor implantation has also compromised general locomotor activity and decreased exploratory behavior. Likewise, muscle loss, and elevated inflammatory interleukin were associated to muscle strength loss and locomotor activity impairment. In conclusion, our data demonstrated that subcutaneous B16F10 melanoma tumor-driven catabolic state in response to a pro-inflammatory environment that is associated with impaired skeletal muscle strength and decreased locomotor activity in tumor-bearing mice.

  6. Relationships between Lower Limb Muscle Strength and Locomotor Capacity in Children and Adolescents with Cerebral Palsy Who Walk Independently

    Ferland, Chantale; Lepage, Celine; Moffet, Helene; Maltais, Desiree B.

    2012-01-01

    This study aimed to quantify relationships between lower limb muscle strength and locomotor capacity for children and adolescents with cerebral palsy (CP) to identify key muscle groups for strength training. Fifty 6- to 16-year-olds with CP (Gross Motor Function Classification System level I or II) participated. Isometric muscle strength of hip…

  7. Results of clinical and radiologic mass-screening tests of the locomotor system of miners in Hungary

    Bene, E.; Temesvary, P.; Szilagyi, M.; Pera, F.

    Clinical and radiological screening tests on the locomotor system of 250 workers being active in mines were accomplished by the authors. The test results of 125 miners working underground were compared with those of a control group consisting of equally 125 workers of the same age category, but engaged in open mining. As a result of the investigation it could be stated that miners working in underground mines were affected by diseases of the organs of motion at a very early stage, and in a greater proportion. The most serious deformations were observed with development irregularities and development variations. The development of degenerative locomotor diseases is promoted in Hungary by the working conditions prevailing underground. The completion of the examination procedure of fitness for work by clinical and radiological examinations of the locomotor system is important and highly recommended. The investigation carried out by the authors may serve as a model for the screening tests to be made on the locomotor system of industrial workers.

  8. Grainyhead-like 3 (Grhl3) deficiency in brain leads to altered locomotor activity and decreased anxiety-like behaviors in aged mice.

    Dworkin, Sebastian; Auden, Alana; Partridge, Darren D; Daglas, Maria; Medcalf, Robert L; Mantamadiotis, Theo; Georgy, Smitha R; Darido, Charbel; Jane, Stephen M; Ting, Stephen B

    2017-06-01

    The highly conserved Grainyhead-like (Grhl) family of transcription factors, comprising three members in vertebrates (Grhl1-3), play critical regulatory roles during embryonic development, cellular proliferation, and apoptosis. Although loss of Grhl function leads to multiple neural abnormalities in numerous animal models, a comprehensive analysis of Grhl expression and function in the mammalian brain has not been reported. Here they show that only Grhl3 expression is detectable in the embryonic mouse brain; particularly within the habenula, an organ known to modulate repressive behaviors. Using both Grhl3-knockout mice (Grhl3 -/- ), and brain-specific conditional deletion of Grhl3 in adult mice (Nestin-Cre/Grhl3 flox/flox ), they performed histological expression analyses and behavioral tests to assess long-term effects of Grhl3 loss on motor co-ordination, spatial memory, anxiety, and stress. They found that complete deletion of Grhl3 did not lead to noticeable structural or cell-intrinsic defects in the embryonic brain; however, aged Grhl3 conditional knockout (cKO) mice showed enlarged lateral ventricles and displayed marked changes in motor function and behaviors suggestive of decreased fear and anxiety. They conclude that loss of Grhl3 in the brain leads to significant alterations in locomotor activity and decreased self-inhibition, and as such, these mice may serve as a novel model of human conditions of impulsive behavior or hyperactivity. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 775-788, 2017. © 2017 Wiley Periodicals, Inc.

  9. Selection towards different adaptive optima drove the early diversification of locomotor phenotypes in the radiation of Neotropical geophagine cichlids.

    Astudillo-Clavijo, Viviana; Arbour, Jessica H; López-Fernández, Hernán

    2015-05-01

    Simpson envisaged a conceptual model of adaptive radiation in which lineages diversify into "adaptive zones" within a macroevolutionary adaptive landscape. However, only a handful of studies have empirically investigated this adaptive landscape and its consequences for our interpretation of the underlying mechanisms of phenotypic evolution. In fish radiations the evolution of locomotor phenotypes may represent an important dimension of ecomorphological diversification given the implications of locomotion for feeding and habitat use. Neotropical geophagine cichlids represent a newly identified adaptive radiation and provide a useful system for studying patterns of locomotor diversification and the implications of selective constraints on phenotypic divergence in general. We use multivariate ordination, models of phenotypic evolution and posterior predictive approaches to investigate the macroevolutionary adaptive landscape and test for evidence of early divergence of locomotor phenotypes in Geophagini. The evolution of locomotor phenotypes was characterized by selection towards at least two distinct adaptive peaks and the early divergence of modern morphological disparity. One adaptive peak included the benthic and epibenthic invertivores and was characterized by fishes with deep, laterally compressed bodies that optimize precise, slow-swimming manoeuvres. The second adaptive peak resulted from a shift in adaptive optima in the species-rich ram-feeding/rheophilic Crenicichla-Teleocichla clade and was characterized by species with streamlined bodies that optimize fast starts and rapid manoeuvres. Evolutionary models and posterior predictive approaches favoured an early shift to a new adaptive peak over decreasing rates of evolution as the underlying process driving the early divergence of locomotor phenotypes. The influence of multiple adaptive peaks on the divergence of locomotor phenotypes in Geophagini is compatible with the expectations of an ecologically driven

  10. Rapid recovery and altered neurochemical dependence of locomotor central pattern generation following lumbar neonatal spinal cord injury.

    Züchner, Mark; Kondratskaya, Elena; Sylte, Camilla B; Glover, Joel C; Boulland, Jean-Luc

    2018-01-15

    Spinal compression injury targeted to the neonatal upper lumbar spinal cord, the region of highest hindlimb locomotor rhythmogenicity, leads to an initial paralysis of the hindlimbs. Behavioural recovery is evident within a few days and approaches normal function within about 3 weeks. Fictive locomotion in the isolated injured spinal cord cannot be elicited by a neurochemical cocktail containing NMDA, dopamine and serotonin 1 day post-injury, but can 3 days post-injury as readily as in the uninjured spinal cord. Low frequency coordinated rhythmic activity can be elicited in the isolated uninjured spinal cord by NMDA + dopamine (without serotonin), but not in the isolated injured spinal cord. In both the injured and uninjured spinal cord, eliciting bona fide fictive locomotion requires the additional presence of serotonin. Following incomplete compression injury in the thoracic spinal cord of neonatal mice 1 day after birth (P1), we previously reported that virtually normal hindlimb locomotor function is recovered within about 3 weeks despite substantial permanent thoracic tissue loss. Here, we asked whether similar recovery occurs following lumbar injury that impacts more directly on the locomotor central pattern generator (CPG). As in thoracic injuries, lumbar injuries caused about 90% neuronal loss at the injury site and increased serotonergic innervation below the injury. Motor recovery was slower after lumbar than thoracic injury, but virtually normal function was attained by P25 in both cases. Locomotor CPG status was tested by eliciting fictive locomotion in isolated spinal cords using a widely used neurochemical cocktail (NMDA, dopamine, serotonin). No fictive locomotion could be elicited 1 day post-injury, but could within 3 days post-injury as readily as in age-matched uninjured control spinal cords. Burst patterning and coordination were largely similar in injured and control spinal cords but there were differences. Notably, in both groups there

  11. Galanin-Expressing GABA Neurons in the Lateral Hypothalamus Modulate Food Reward and Noncompulsive Locomotion.

    Qualls-Creekmore, Emily; Yu, Sangho; Francois, Marie; Hoang, John; Huesing, Clara; Bruce-Keller, Annadora; Burk, David; Berthoud, Hans-Rudolf; Morrison, Christopher D; Münzberg, Heike

    2017-06-21

    The lateral hypothalamus (LHA) integrates reward and appetitive behavior and is composed of many overlapping neuronal populations. Recent studies associated LHA GABAergic neurons (LHA GABA ), which densely innervate the ventral tegmental area (VTA), with modulation of food reward and consumption; yet, LHA GABA projections to the VTA exclusively modulated food consumption, not reward. We identified a subpopulation of LHA GABA neurons that coexpress the neuropeptide galanin (LHA Gal ). These LHA Gal neurons also modulate food reward, but lack direct VTA innervation. We hypothesized that LHA Gal neurons may represent a subpopulation of LHA GABA neurons that mediates food reward independent of direct VTA innervation. We used chemogenetic activation of LHA Gal or LHA GABA neurons in mice to compare their role in feeding behavior. We further analyzed locomotor behavior to understand how differential VTA connectivity and transmitter release in these LHA neurons influences this behavior. LHA Gal or LHA GABA neuronal activation both increased operant food-seeking behavior, but only activation of LHA GABA neurons increased overall chow consumption. Additionally, LHA Gal or LHA GABA neuronal activation similarly induced locomotor activity, but with striking differences in modality. Activation of LHA GABA neurons induced compulsive-like locomotor behavior; while LHA Gal neurons induced locomotor activity without compulsivity. Thus, LHA Gal neurons define a subpopulation of LHA GABA neurons without direct VTA innervation that mediate noncompulsive food-seeking behavior. We speculate that the striking difference in compulsive-like locomotor behavior is also based on differential VTA innervation. The downstream neural network responsible for this behavior and a potential role for galanin as neuromodulator remains to be identified. SIGNIFICANCE STATEMENT The lateral hypothalamus (LHA) regulates motivated feeding behavior via GABAergic LHA neurons. The molecular identity of LHA

  12. Dopamine-independent locomotor actions of amphetamines in a novel acute mouse model of Parkinson disease.

    2005-08-01

    Full Text Available Brain dopamine is critically involved in movement control, and its deficiency is the primary cause of motor symptoms in Parkinson disease. Here we report development of an animal model of acute severe dopamine deficiency by using mice lacking the dopamine transporter. In the absence of transporter-mediated recycling mechanisms, dopamine levels become entirely dependent on de novo synthesis. Acute pharmacological inhibition of dopamine synthesis in these mice induces transient elimination of striatal dopamine accompanied by the development of a striking behavioral phenotype manifested as severe akinesia, rigidity, tremor, and ptosis. This phenotype can be reversed by administration of the dopamine precursor, L-DOPA, or by nonselective dopamine agonists. Surprisingly, several amphetamine derivatives were also effective in reversing these behavioral abnormalities in a dopamine-independent manner. Identification of dopamine transporter- and dopamine-independent locomotor actions of amphetamines suggests a novel paradigm in the search for prospective anti-Parkinsonian drugs.

  13. Stabilizing the Locomotor-Respiratory Coupling Using a Metronome to Save Energy

    Villard Sébastien J.

    2011-12-01

    Full Text Available The Locomotor-Respiratory Coupling (LRC is often evidenced by phase- or frequency-locking patterns. The model of the sine circle map is used here to characterize LRC. Several studies have suggested that a sound emitted by an external metronome can stabilize the LRC. Participants in our task were asked during a cycling exercise to synchronize either their respiration or their pedaling rate with an external auditory stimulus corresponding to their preferred respiratory and pedaling frequencies respectively. Our results showed a significant reduction in energy expenditure when participants breathed in sync with the auditory stimulation, but not accompanied by a change in the stabilization of LRC. A large within- as well as between-participants LRC variability, together with the spontaneous adoption of the most stable pace, contributes to explain this result.

  14. Lower Limb Voluntary Movement Improvement Following a Robot-Assisted Locomotor Training in Spinal Cord Injury

    Mirbagheri Mehdi

    2011-12-01

    Full Text Available Individuals with spinal cord injury (SCI suffer from severe impairments in voluntary movements. Literature reports a reduction in major kinematic and kinetic parameters of lower limbs’ joints. A body weight support treadmill training with robotic assistance has been widely used to improve lower-extremity function and locomotion in persons with SCI. Our objective was to explore the effects of 4-weeks robot-assisted locomotor training on voluntary movement of the ankle musculature in patients with incomplete SCI. In particular, we aimed to characterize the therapeutic effects of Lokomat training on kinematic measures (range of motion, velocity, smoothness during a dorsiflexion movement. We hypothesized that training would improve these measures. Preliminary results show an improvement of kinematic parameters during ankle dorsiflexion voluntary movement after a 4-weeks training in the major part of our participants. Complementary investigations are in progress to confirm these results and understand underlying mechanisms associated with the recovery.

  15. Locomotor activity and catecholamine receptor binding in adult normotensive and spontaneously hypertensive rats

    Hellstrand, K.; Engel, J.

    1980-01-01

    The binding of 3 H-WB 4101, an α 1 -adrenoceptor antagonist, the membranes of the cerebral cortex, the hypothalamus, and the lower brainstem was examined in adult spontaneously hypertensive (SH) rats and in normotensive Wistar Kyoto (WK) controls. The specific binding of 3 H-WB 4101 (0.33 nM) was significantly higher in homogenates from the cerebral cortex of SH rats as compared to WK rats. No differences were detected between SH and WK rats in the specific binding of 3 H-spiroperidol (0.25 nM), a dopamine receptor antagonist, to membranes from the corpus striatum and the limbic forebrain. The locomotor activity was significantly higher in SH rats as compared to WK controls, in all probability due to a lack of habituation to environmental change. It is suggested that the high reactivity of SH rats is related to a disfunction in the noradrenergic neurons in the central nervous system. (author)

  16. Using Tests Designed to Measure Individual Sensorimotor Subsystem Perfomance to Predict Locomotor Adaptability

    Peters, B. T.; Caldwell, E. E.; Batson, C. D.; Guined, J. R.; DeDios, Y. E.; Stepanyan, V.; Gadd, N. E.; Szecsy, D. L.; Mulavara, A. P.; Seidler, R. D.; hide

    2014-01-01

    Astronauts experience sensorimotor disturbances during the initial exposure to microgravity and during the readapation phase following a return to a gravitational environment. These alterations may lead to disruption in the ability to perform mission critical functions during and after these gravitational transitions. Astronauts show significant inter-subject variation in adaptive capability following gravitational transitions. The way each individual's brain synthesizes the available visual, vestibular and somatosensory information is likely the basis for much of the variation. Identifying the presence of biases in each person's use of information available from these sensorimotor subsystems and relating it to their ability to adapt to a novel locomotor task will allow us to customize a training program designed to enhance sensorimotor adaptability. Eight tests are being used to measure sensorimotor subsystem performance. Three of these use measures of body sway to characterize balance during varying sensorimotor challenges. The effect of vision is assessed by repeating conditions with eyes open and eyes closed. Standing on foam, or on a support surface that pitches to maintain a constant ankle angle provide somatosensory challenges. Information from the vestibular system is isolated when vision is removed and the support surface is compromised, and it is challenged when the tasks are done while the head is in motion. The integration and dominance of visual information is assessed in three additional tests. The Rod & Frame Test measures the degree to which a subject's perception of the visual vertical is affected by the orientation of a tilted frame in the periphery. Locomotor visual dependence is determined by assessing how much an oscillating virtual visual world affects a treadmill-walking subject. In the third of the visual manipulation tests, subjects walk an obstacle course while wearing up-down reversing prisms. The two remaining tests include direct

  17. Effects of caffeine and L-phenylisopropyladenosine on locomotor activity of mice

    Buckholtz, N.S.; Middaugh, L.D.

    1987-10-01

    C57BL/6J and DBA/2J mice were used to determine if possible differences in the behavioral response to caffeine might be related to differences in A1 adenosine receptors. Caffeine stimulated locomotor activity of both strains, but the dose-response relationship and time course of drug action differed according to strain. Although their response to caffeine differed, the strains did not differ in response to the A1 adenosine agonist L-phenylisopropyladenosine (PIA) nor in the binding of the A1 agonist (/sup 3/H)N6-cyclohexyladenosine (CHA) in various brain regions. Thus, the behavioral differences in response to caffeine could not be accounted for by differences in adenosine binding. Of alternative mechanisms, strain differences in A2 receptors appear to be the most promising.

  18. Monitoring and Analyzing of Circadian and Ultradian Locomotor Activity Based on Raspberry-Pi

    Vittorio Pasquali

    2016-09-01

    Full Text Available A new device based on the Raspberry-Pi to monitor the locomotion of Arctic marine invertebrates and to analyze chronobiologic data has been made, tested and deployed. The device uses infrared sensors to monitor and record the locomotor activity of the animals, which is later analyzed. The software package consists of two separate scripts: the first designed to manage the acquisition and the evolution of the experiment, the second designed to generate actograms and perform various analyses to detect periodicity in the data (e.g., Fourier power spectra, chi-squared periodograms, and Lomb–Scargle periodograms. The data acquisition hardware and the software has been previously tested during an Arctic mission with an arctic marine invertebrate.

  19. Modality-specific, multitask locomotor deficits persist despite good recovery after a traumatic brain injury.

    McFadyen, Bradford J; Cantin, Jean-François; Swaine, Bonnie; Duchesneau, Guylaine; Doyon, Julien; Dumas, Denyse; Fait, Philippe

    2009-09-01

    To study the effects of sensory modality of simultaneous tasks during walking with and without obstacles after moderate to severe traumatic brain injury (TBI). Group comparison study. Gait analysis laboratory within a postacute rehabilitation facility. Volunteer sample (N=18). Persons with moderate to severe TBI (n=11) (9 men, 3 women; age, 37.56+/-13.79 y) and a comparison group (n=7) of subjects without neurologic problems matched on average for body mass index and age (4 men, 3 women; age, 39.19+/-17.35 y). Not applicable. Magnitudes and variability for walking speeds, foot clearance margins (ratio of foot clearance distance to obstacle height), and response reaction times (both direct and as a relative cost because of obstacle avoidance). The TBI group had well-recovered walking speeds and a general ability to avoid obstacles. However, these subjects did show lower trail limb toe clearances (P=.003) across all conditions. Response reaction times to the Stroop tasks were longer in general for the TBI group (P=.017), and this group showed significant increases in response reaction times for the visual modality within the more challenging obstacle avoidance task that was not observed for control subjects. A measure of multitask costs related to differences in response reaction times between obstructed and unobstructed trials also only showed increased attention costs for the visual over the auditory stimuli for the TBI group (P=.002). Mobility is a complex construct, and the present results provide preliminary findings that, even after good locomotor recovery, subjects with moderate to severe TBI show residual locomotor deficits in multitasking. Furthermore, our results suggest that sensory modality is important, and greater multitask costs occur during sensory competition (ie, visual interference).

  20. Acetylcholinesterase inhibition and locomotor function after motor-sensory cortex impact injury.

    Holschneider, Daniel P; Guo, Yumei; Roch, Margareth; Norman, Keith M; Scremin, Oscar U

    2011-09-01

    Traumatic brain injury (TBI) induces transient or persistent dysfunction of gait and balance. Enhancement of cholinergic transmission has been reported to accelerate recovery of cognitive function after TBI, but the effects of this intervention on locomotor activity remain largely unexplored. The hypothesis that enhancement of cholinergic function by inhibition of acetylcholinesterase (AChE) improves locomotion following TBI was tested in Sprague-Dawley male rats after a unilateral controlled cortical impact (CCI) injury of the motor-sensory cortex. Locomotion was tested by time to fall on the constant speed and accelerating Rotarod, placement errors and time to cross while walking through a horizontal ladder, activity monitoring in the home cages, and rearing behavior. Assessments were performed the 1st and 2nd day and the 1st, 2nd, and 3rd week after TBI. The AChE inhibitor physostigmine hemisulfate (PHY) was administered continuously via osmotic minipumps implanted subcutaneously at the rates of 1.6-12.8 μmol/kg/day. All measures of locomotion were impaired by TBI and recovered to initial levels between 1 and 3 weeks post-TBI, with the exception of the maximum speed achievable on the accelerating Rotarod, as well as rearing in the open field. PHY improved performance in the accelerating Rotarod at 1.6 and 3.2 μmol/kg/day (AChE activity 95 and 78% of control, respectively), however, higher doses induced progressive deterioration. No effect or worsening of outcomes was observed at all PHY doses for home cage activity, rearing, and horizontal ladder walking. Potential benefits of cholinesterase inhibition on locomotor function have to be weighed against the evidence of the narrow range of useful doses.

  1. Locomotor loading mechanics in the hindlimbs of tegu lizards (Tupinambis merianae): comparative and evolutionary implications.

    Sheffield, K Megan; Butcher, Michael T; Shugart, S Katherine; Gander, Jennifer C; Blob, Richard W

    2011-08-01

    Skeletal elements are usually able to withstand several times their usual load before they yield, and this ratio is known as the bone's safety factor. Limited studies on amphibians and non-avian reptiles have shown that they have much higher limb bone safety factors than birds and mammals. It has been hypothesized that this difference is related to the difference in posture between upright birds and mammals and sprawling ectotherms; however, limb bone loading data from a wider range of sprawling species are needed in order to determine whether the higher safety factors seen in amphibians and non-avian reptiles are ancestral or derived conditions. Tegus (family Teiidae) are an ideal lineage with which to expand sampling of limb bone loading mechanics for sprawling taxa, particularly for lizards, because they are from a different clade than previously sampled iguanas and exhibit different foraging and locomotor habits (actively foraging carnivore versus burst-activity herbivore). We evaluated the mechanics of locomotor loading for the femur of the Argentine black and white tegu (Tupinambus merianae) using three-dimensional measurements of the ground reaction force and hindlimb kinematics, in vivo bone strains and femoral mechanical properties. Peak bending stresses experienced by the femur were low (tensile: 10.4 ± 1.1 MPa; compressive: -17.4 ± 0.9 MPa) and comparable to those in other reptiles, with moderate shear stresses and strains also present. Analyses of peak femoral stresses and strains led to estimated safety factor ranges of 8.8-18.6 in bending and 7.8-17.5 in torsion, both substantially higher than typical for birds and mammals but similar to other sprawling tetrapods. These results broaden the range of reptilian and amphibian taxa in which high femoral safety factors have been evaluated and further indicate a trend for the independent evolution of lower limb bone safety factors in endothermic taxa.

  2. Training Enhances Both Locomotor and Cognitive Adaptability to a Novel Sensory Environment

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Ploutz-Snyder, R. J.; Cohen, H. S.

    2010-01-01

    During adaptation to novel gravitational environments, sensorimotor disturbances have the potential to disrupt the ability of astronauts to perform required mission tasks. The goal of this project is to develop a sensorimotor adaptability (SA) training program to facilitate rapid adaptation. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. The goal of our present study was to determine if SA training improved both the locomotor and cognitive responses to a novel sensory environment and to quantify the extent to which training would be retained. Methods: Twenty subjects (10 training, 10 control) completed three, 30-minute training sessions during which they walked on the treadmill while receiving discordant support surface and visual input. Control subjects walked on the treadmill but did not receive any support surface or visual alterations. To determine the efficacy of training all subjects performed the Transfer Test upon completion of training. For this test, subjects were exposed to novel visual flow and support surface movement, not previously experienced during training. The Transfer Test was performed 20 minutes, 1 week, 1, 3 and 6 months after the final training session. Stride frequency, auditory reaction time, and heart rate data were collected as measures of postural stability, cognitive effort and anxiety, respectively. Results: Using mixed effects regression methods we determined that subjects who received SA training showed less alterations in stride frequency, auditory reaction time and heart rate compared to controls. Conclusion: Subjects who received SA training improved performance across a number of modalities including enhanced locomotor function, increased multi-tasking capability and reduced anxiety during adaptation to novel discordant sensory

  3. See and be seen: Infant-caregiver social looking during locomotor free play.

    Franchak, John M; Kretch, Kari S; Adolph, Karen E

    2017-10-26

    Face-to-face interaction between infants and their caregivers is a mainstay of developmental research. However, common laboratory paradigms for studying dyadic interaction oversimplify the act of looking at the partner's face by seating infants and caregivers face to face in stationary positions. In less constrained conditions when both partners are freely mobile, infants and caregivers must move their heads and bodies to look at each other. We hypothesized that face looking and mutual gaze for each member of the dyad would decrease with increased motor costs of looking. To test this hypothesis, 12-month-old crawling and walking infants and their parents wore head-mounted eye trackers to record eye movements of each member of the dyad during locomotor free play in a large toy-filled playroom. Findings revealed that increased motor costs decreased face looking and mutual gaze: Each partner looked less at the other's face when their own posture or the other's posture required more motor effort to gain visual access to the other's face. Caregivers mirrored infants' posture by spending more time down on the ground when infants were prone, perhaps to facilitate face looking. Infants looked more at toys than at their caregiver's face, but caregivers looked at their infant's face and at toys in equal amounts. Furthermore, infants looked less at toys and faces compared to studies that used stationary tasks, suggesting that the attentional demands differ in an unconstrained locomotor task. Taken together, findings indicate that ever-changing motor constraints affect real-life social looking. © 2017 John Wiley & Sons Ltd.

  4. Ontogenetic scaling of locomotor kinetics and kinematics of the ostrich (Struthio camelus).

    Smith, Nicola C; Jespers, Karin J; Wilson, Alan M

    2010-04-01

    Kinematic and kinetic parameters of running gait were investigated through growth in the ostrich, from two weeks up to 10 months of age, in order to investigate the effects of increasing body size. Ontogenetic scaling relationships were compared with published scaling relationships found to exist with increasing body size between species to determine whether dynamic similarity is maintained during growth. During the study, ostrich mass (M(b)) ranged from 0.7 kg to 108.8 kg. Morphological measurements showed that lengths scaled with positive allometry during growth (hip height proportional to M(b)(0.40); foot segment length proportional to M(b)(0.40); tarsometatarsus length proportional to M(b)(0.41); tibiotarsus length proportional to M(b)(0.38); femur length proportional to M(b)(0.37)), significantly exceeding the close to geometric scaling observed between mammalian and avian species of increasing body size. Scaling of kinematic variables largely agreed with predicted scaling for increasing size and demonstrated relationships close to dynamic similarity and, as such, ontogenetic scaling of locomotor parameters was similar to that observed with increasing body mass between species. However, the ways in which these scaling trends were achieved were very different, with ontogenetic scaling of locomotor mechanics largely resulting from simple scaling of the limb segments rather than postural changes, likely to be due to developmental constraints. Small deviations from dynamic similarity of kinematic parameters and a reduction in the predicted scaling of limb stiffness (proportional to M(b)(0.59)) were found to be accounted for by the positive allometric scaling of the limb during growth.

  5. Run don't walk: locomotor performance of geckos on wet substrates.

    Stark, Alyssa Y; Ohlemacher, Jocelyn; Knight, Ashley; Niewiarowski, Peter H

    2015-08-01

    The gecko adhesive system has been under particular scrutiny for over a decade, as the field has recently attracted attention for its application to bio-inspired design. However, little is known about how the adhesive system behaves in ecologically relevant conditions. Geckos inhabit a variety of environments, many of which are characterized by high temperature, humidity and rain. The van der Waals-based gecko adhesive system should be particularly challenged by wet substrates because water can disrupt the intimate contact necessary for adhesion. While a few previous studies have focused on the clinging ability of geckos on wet substrates, we tested a dynamic performance characteristic, sprint velocity. To better understand how substrate wettability and running orientation affect locomotor performance of multiple species on wet substrates, we measured average sprint velocity of five species of gecko on substrates that were either hydrophilic or intermediately wetting and oriented either vertically or horizontally. Surprisingly, we found no indication that wet substrates impact average sprint velocity over 1 m, and rather, in some species, sprint velocity was increased on wet substrates rather than reduced. When investigating physical characteristics and behavior that may be associated with running on wet substrates, such as total number of stops, slips and wet toes at the completion of a race, we found that there may be habitat-related differences between some species. Our results show that in general, unlike clinging and walking, geckos running along wet substrates suffer no significant loss in locomotor performance over short distances. © 2015. Published by The Company of Biologists Ltd.

  6. Vestibular lesion-induced developmental plasticity in spinal locomotor networks during Xenopus laevis metamorphosis.

    Beyeler, Anna; Rao, Guillaume; Ladepeche, Laurent; Jacques, André; Simmers, John; Le Ray, Didier

    2013-01-01

    During frog metamorphosis, the vestibular sensory system remains unchanged, while spinal motor networks undergo a massive restructuring associated with the transition from the larval to adult biomechanical system. We investigated in Xenopus laevis the impact of a pre- (tadpole stage) or post-metamorphosis (juvenile stage) unilateral labyrinthectomy (UL) on young adult swimming performance and underlying spinal locomotor circuitry. The acute disruptive effects on locomotion were similar in both tadpoles and juvenile frogs. However, animals that had metamorphosed with a preceding UL expressed restored swimming behavior at the juvenile stage, whereas animals lesioned after metamorphosis never recovered. Whilst kinematic and electrophysiological analyses of the propulsive system showed no significant differences in either juvenile group, a 3D biomechanical simulation suggested that an asymmetry in the dynamic control of posture during swimming could account for the behavioral restoration observed in animals that had been labyrinthectomized before metamorphosis. This hypothesis was subsequently supported by in vivo electromyography during free swimming and in vitro recordings from isolated brainstem/spinal cord preparations. Specifically, animals lesioned prior to metamorphosis at the larval stage exhibited an asymmetrical propulsion/posture coupling as a post-metamorphic young adult. This developmental alteration was accompanied by an ipsilesional decrease in propriospinal coordination that is normally established in strict left-right symmetry during metamorphosis in order to synchronize dorsal trunk muscle contractions with bilateral hindlimb extensions in the swimming adult. Our data thus suggest that a disequilibrium in descending vestibulospinal information during Xenopus metamorphosis leads to an altered assembly of adult spinal locomotor circuitry. This in turn enables an adaptive compensation for the dynamic postural asymmetry induced by the vestibular imbalance

  7. Loss of Sphingosine Kinase Alters Life History Traits and Locomotor Function in Caenorhabditis elegans

    Jason P. Chan

    2017-09-01

    Full Text Available Sphingolipid metabolism is important to balance the abundance of bioactive lipid molecules involved in cell signaling, neuronal function, and survival. Specifically, the sphingolipid sphingosine mediates cell death signaling, whereas its phosphorylated form, sphingosine-1-phosphate (S1P, mediates cell survival signaling. The enzyme sphingosine kinase produces S1P, and the activity of sphingosine kinase impacts the ability of cells to survive under stress and challenges. To examine the influence of sphingolipid metabolism, particularly enzymes regulating sphingosine and S1P, in mediating aging, neuronal function and stress response, we examined life history traits, locomotor capacities and heat stress responses of young and old animals using the model organism Caenorhabditis elegans. We found that C. elegans sphk-1 mutants, which lack sphingosine kinase, had shorter lifespans, reduced brood sizes, and smaller body sizes compared to wild type animals. By analyzing a panel of young and old animals with genetic mutations in the sphingolipid signaling pathway, we showed that aged sphk-1 mutants exhibited a greater decline in neuromuscular function and locomotor behavior. In addition, aged animals lacking sphk-1 were more susceptible to death induced by acute and prolonged heat exposure. On the other hand, older animals with loss of function mutations in ceramide synthase (hyl-1, which converts sphingosine to ceramide, showed improved neuromuscular function and stress response with age. This phenotype was dependent on sphk-1. Together, our data show that loss of sphingosine kinase contributes to poor animal health span, suggesting that sphingolipid signaling may be important for healthy neuronal function and animal stress response during aging.

  8. Effects of zacopride and BMY25801 (batanopride) on radiation-induced emesis and locomotor behavior in the ferret

    King, G.L.; Landauer, M.R.

    1990-01-01

    The antiemetic and locomotor effects of two substituted benzamides, zacopride and batanopride (BMY25801), were compared in ferrets after bilateral 60Co irradiation at 2, 4 or 6 Gy. Both zacopride and BMY25801 were effective against emesis and related signs. Zacopride, tested at several doses (0.003, 0.03 and 0.3 mg/kg), appeared to be more potent because it abolished emesis at 100-fold lower doses than did BMY25801 (3 mg/kg). The ED50 value for the antiemetic effect of zacopride was 0.026 mg/kg (confidence levels = 0.0095, 0.072 mg/kg). However, analysis of emetic parameters recorded from vomiting animals (e.g., latency to first emesis) demonstrated that BMY25801 provided greater antiemetic protection in this population than zacopride without any apparent side effects. Locomotor activity was significantly depressed by both radiation (all doses) and zacopride alone (0.03 mg/kg and 0.3 mg/kg). BMY25801 alone did not affect locomotor activity, and protected against the radiation-induced locomotor decrement. Although zacopride potentiated the locomotor decrement to radiation, no clear dose-response relationship was evident. Bilateral abdominal vagotomy significantly increased the latency to the first emetic episode and significantly reduced the number of retches, but did not alter the duration of the prodromal response to 4-Gy irradiation. Unilateral vagotomies had no effect. Zacopride (at 0.03 mg/kg and 0.3 mg/kg) remained an effective antiemetic in animals that received a bilateral vagotomy, abolishing emesis in four of eight and two of eight ferrets, respectively. These data suggest that the antiemetic action of zacopride does not fully depend on intact vagal innervation and also acts via other pathways

  9. Circadian Clock Protein Content and Daily Rhythm of Locomotor Activity Are Altered after Chronic Exposure to Lead in Rat

    Sabbar, Mariam; Dkhissi-Benyahya, Ouria; Benazzouz, Abdelhamid; Lakhdar-Ghazal, Nouria

    2017-01-01

    Lead exposure has been reported to produce many clinical features, including parkinsonism. However, its consequences on the circadian rhythms are still unknown. Here we aimed to examine the circadian rhythms of locomotor activity following lead intoxication and investigate the mechanisms by which lead may induce alterations of circadian rhythms in rats. Male Wistar rats were injected with lead or sodium acetate (10 mg/kg/day, i.p.) during 4 weeks. Both groups were tested in the “open field” to quantify the exploratory activity and in the rotarod to evaluate motor coordination. Then, animals were submitted to continuous 24 h recordings of locomotor activity under 14/10 Light/dark (14/10 LD) cycle and in complete darkness (DD). At the end of experiments, the clock proteins BMAL1, PER1-2, and CRY1-2 were assayed in the suprachiasmatic nucleus (SCN) using immunohistochemistry. We showed that lead significantly reduced the number of crossing in the open field, impaired motor coordination and altered the daily locomotor activity rhythm. When the LD cycle was advanced by 6 h, both groups adjusted their daily locomotor activity to the new LD cycle with high onset variability in lead-intoxicated rats compared to controls. Lead also led to a decrease in the number of immunoreactive cells (ir-) of BMAL1, PER1, and PER2 without affecting the number of ir-CRY1 and ir-CRY2 cells in the SCN. Our data provide strong evidence that lead intoxication disturbs the rhythm of locomotor activity and alters clock proteins expression in the SCN. They contribute to the understanding of the mechanism by which lead induce circadian rhythms disturbances. PMID:28970786

  10. Role of spared pathways in locomotor recovery after body-weight-supported treadmill training in contused rats.

    Singh, Anita; Balasubramanian, Sriram; Murray, Marion; Lemay, Michel; Houle, John

    2011-12-01

    Body-weight-supported treadmill training (BWSTT)-related locomotor recovery has been shown in spinalized animals. Only a few animal studies have demonstrated locomotor recovery after BWSTT in an incomplete spinal cord injury (SCI) model, such as contusion injury. The contribution of spared descending pathways after BWSTT to behavioral recovery is unclear. Our goal was to evaluate locomotor recovery in contused rats after BWSTT, and to study the role of spared pathways in spinal plasticity after BWSTT. Forty-eight rats received a contusion, a transection, or a contusion followed at 9 weeks by a second transection injury. Half of the animals in the three injury groups were given BWSTT for up to 8 weeks. Kinematics and the Basso-Beattie-Bresnahan (BBB) test assessed behavioral improvements. Changes in Hoffmann-reflex (H-reflex) rate depression property, soleus muscle mass, and sprouting of primary afferent fibers were also evaluated. BWSTT-contused animals showed accelerated locomotor recovery, improved H-reflex properties, reduced muscle atrophy, and decreased sprouting of small caliber afferent fibers. BBB scores were not improved by BWSTT. Untrained contused rats that received a transection exhibited a decrease in kinematic parameters immediately after the transection; in contrast, trained contused rats did not show an immediate decrease in kinematic parameters after transection. This suggests that BWSTT with spared descending pathways leads to neuroplasticity at the lumbar spinal level that is capable of maintaining locomotor activity. Discontinuing training after the transection in the trained contused rats abolished the improved kinematics within 2 weeks and led to a reversal of the improved H-reflex response, increased muscle atrophy, and an increase in primary afferent fiber sprouting. Thus continued training may be required for maintenance of the recovery. Transected animals had no effect of BWSTT, indicating that in the absence of spared pathways this

  11. Thoracic Hemisection in Rats Results in Initial Recovery Followed by a Late Decrement in Locomotor Movements, with Changes in Coordination Correlated with Serotonergic Innervation of the Ventral Horn

    Leszczyńska, Anna N.; Majczyński, Henryk; Wilczyński, Grzegorz M.; Sławińska, Urszula; Cabaj, Anna M.

    2015-01-01

    Lateral thoracic hemisection of the rodent spinal cord is a popular model of spinal cord injury, in which the effects of various treatments, designed to encourage locomotor recovery, are tested. Nevertheless, there are still inconsistencies in the literature concerning the details of spontaneous locomotor recovery after such lesions, and there is a lack of data concerning the quality of locomotion over a long time span after the lesion. In this study, we aimed to address some of these issues. In our experiments, locomotor recovery was assessed using EMG and CatWalk recordings and analysis. Our results showed that after hemisection there was paralysis in both hindlimbs, followed by a substantial recovery of locomotor movements, but even at the peak of recovery, which occurred about 4 weeks after the lesion, some deficits of locomotion remained present. The parameters that were abnormal included abduction, interlimb coordination and speed of locomotion. Locomotor performance was stable for several weeks, but about 3–4 months after hemisection secondary locomotor impairment was observed with changes in parameters, such as speed of locomotion, interlimb coordination, base of hindlimb support, hindlimb abduction and relative foot print distance. Histological analysis of serotonergic innervation at the lumbar ventral horn below hemisection revealed a limited restoration of serotonergic fibers on the ipsilateral side of the spinal cord, while on the contralateral side of the spinal cord it returned to normal. In addition, the length of these fibers on both sides of the spinal cord correlated with inter- and intralimb coordination. In contrast to data reported in the literature, our results show there is not full locomotor recovery after spinal cord hemisection. Secondary deterioration of certain locomotor functions occurs with time in hemisected rats, and locomotor recovery appears partly associated with reinnervation of spinal circuitry by serotonergic fibers. PMID

  12. Irreducible Specht modules are signed Young modules

    Hemmer, David J.

    2005-01-01

    Recently Donkin defined signed Young modules as a simultaneous generalization of Young and twisted Young modules for the symmetric group. We show that in odd characteristic, if a Specht module $S^\\lambda$ is irreducible, then $S^\\lambda$ is a signed Young module. Thus the set of irreducible Specht modules coincides with the set of irreducible signed Young modules. This provides evidence for our conjecture that the signed Young modules are precisely the class of indecomposable self-dual module...

  13. [The formation of the self-maintenance skills in the pre-school children presenting with locomotor and coordination disorders].

    Poletaeva-Dubrovina, N A; Burkova, A M

    2016-01-01

    The Ministry of Health of the Russian Federation acknowledges the sharp rise in the prevalence of congenital malformation in this country during the past 30 years. In 2010-2011, this pathology was estimated to occur in 3% of the children. It includes a variety of locomotor and coordination disorders of which the most widespread are infantile cerebral paralysis, ataxia, consequences of perinatal lesions of the central nervous system, etc. This article contains a detailed description of these locomotor and coordination disorders. The objective of the present work was to elaborate and evaluate the program for the formation of the self-maintenance skills in the pre-school children presenting with locomotor and coordination disorders under conditions of family guidance and education. The study was carried out from September 2013 till May 2014 based at MUP DOD "Semeiny klub Nadezhda" ("The Hope Family Club", Municipal unitary facility for children's additional education) and supported by B.N. El'tsin Ural Federal University. It included 10 children suffering from locomotor and coordination disorders of different severity and members of their families. The following methods were used: the self-service skills scorecard , monitoring formation of the motor skills, and Wilcoxon's T-test. The use of the program based on the cooperation with the children's families allowed to achieve positive dynamics in the patients' conditions. Moreover, 30% of them acquired the full scope of the self-maintenance skills. The most pronounced changes in the motor abilities were apparent in the movements of the upper and lower extremitis, walking, and motion in space. The proposed program for the formation of the self-maintenance skills in the pre-school children presenting with locomotor and coordination disorders proved to be highly efficacious. The study has demonstrated the importance of the parents' involvement in the process of formation of the self-maintenance skills and motor abilities

  14. Effect of 1 GeV/n Fe particles on cocaine-stimulated locomotor activity

    Vazquez, M.; Bruneus, M.; Gatley, J.; Russell, S.; Billups, A.

    Space travel beyond the Earth's protective magnetic field (for example, to Mars) will involve exposure of astronauts to irradiation by high-energy nuclei such as 56Fe (HZE radiation), which are a component of galactic cosmic rays. These particles have high linear energy transfer (LET) and are expected to irreversibly damage cells they traverse. Our working hypothesis is that long-term behavioral alterations are induced after exposure of the brain to 1 GeV/n iron particles with fluences of 1 to 8 particles/cell targets. Previous studies support this notion but are not definitive, especially with regard to long-term effects. Using the Alternating Gradient Synchrotron (AGS) we expose C57 mice to 1 GeV/n 56Fe radiation (head only) at doses of 0, 15, 30, 60, 120 and 240 cGy. There were originally 19 mice per group. The ability of cocaine to increase locomotor activity in 16 of these animals in response to an intraperitoneal injection of cocaine has been measured so far at 1, 4, 8, 12, 16, 20, 24 and 28 weeks. Cocaine-stimulated locomotor activity was chosen in part because it is a behavioral assay with which we have considerable experience. More importantly, the ability to respond to cocaine is a complex behavior involving many neurotransmitter systems and brain circuits. Therefore, the probability of alteration of this behavior by HZE particles was considered high. However, the central circuit is the nigrostriatal dopamine system, in which dopamine is released in striatum from nerve terminals whose cell bodies are located in the substantia nigra. Cocaine activates behavior by blocking dopamine transporters on striatal nerve terminals and therefore elevating the concentration of dopamine in the synapse. Dopamine activates receptors on striatal GABAergic cells that project via other brain regions to the thalamus. Activation of the motor cortex by glutamatergic projections from the thalamus leads ultimately to increased locomotion. The experimental paradigm involves

  15. Effect of the treadmill training factors on the locomotor ability after space flight

    Lysova, Nataliya; Fomina, Elena

    Training on the treadmill constitutes the central component of the Russian system of countermeasures against the negative effects of microgravity. Effectiveness of the treadmill training is influenced by three main factors. Namely, these are intensity (velocity and regularity), axial loading with the use of elastic bungee cords and percentage of time for training on the non-motorized treadmill within the overall training program. Previously we have demonstrated the significance of each factor separately: intensity (Kozlovskaya I.B. et al., 2011), passive mode (Fomina E.V. et al., 2012) and axial loading (Fomina E.V. et al., 2013). The Russian system of in-flight countermeasures gives preference to interval training sessions in which walking alternates with short episodes of intensive running. Locomotion on the non-motorized treadmill should make approx. 30% of the total time of locomotor training. The ISS RS treadmill can be utilized with the motor in motion (active mode) or out of motion so that the cosmonaut has to push the belt with his feet (passive mode). Axial loading of the cosmonaut must be 60-70% of his body weight. However, there is a huge variety of strategies cosmonauts choose of when they exercise on the treadmill in the course of long-duration ISS missions. Purpose of the investigation was comparative analysis of different locomotion training regimens from the standpoint of their effectiveness in microgravity. Criteria of effectiveness evaluation were the results of the locomotion test that includes walking along the fixed support at the preset rate of 90 steps/min. Peak amplitude on the m. soleus electromyogram was analyzed. The experiment was performed with participation of 18 Russian members of extended ISS missions. Each locomotion training factors was rated using the score scale from 0 to 10: Intensity (0 to 10), Percentage of passive mode training (recommended 30% was taken as 10 and could go down to 0 if the passive mode was not applied) and

  16. Signed Young Modules and Simple Specht Modules

    Danz, Susanne; Lim, Kay Jin

    2015-01-01

    By a result of Hemmer, every simple Specht module of a finite symmetric group over a field of odd characteristic is a signed Young module. While Specht modules are parametrized by partitions, indecomposable signed Young modules are parametrized by certain pairs of partitions. The main result of this article establishes the signed Young module labels of simple Specht modules. Along the way we prove a number of results concerning indecomposable signed Young modules that are of independent inter...

  17. Memory Modulation

    Roozendaal, Benno; McGaugh, James L.

    2011-01-01

    Our memories are not all created equally strong: Some experiences are well remembered while others are remembered poorly, if at all. Research on memory modulation investigates the neurobiological processes and systems that contribute to such differences in the strength of our memories. Extensive

  18. Module descriptor

    Vincenti, Gordon; Klausen, Bodil; Kjær Jensen, Jesper

    2016-01-01

    The Module Descriptor including a Teacher’s Guide explains and describes how to work innovatively and co-creatively with wicked problems and young people. The descriptor shows how interested educators and lecturers in Europe can copy the lessons of the Erasmus+ project HIP when teaching their own...

  19. The relationship between hippocampal EEG theta activity and locomotor behaviour in freely moving rats: effects of vigabatrin.

    Bouwman, B M; van Lier, H; Nitert, H E J; Drinkenburg, W H I M; Coenen, A M L; van Rijn, C M

    2005-01-30

    The relationship between hippocampal electroencephalogram (EEG) theta activity and locomotor speed in both spontaneous and forced walking conditions was studied in rats after vigabatrin injection (500 mg/kg i.p.). Vigabatrin increased the percentage of time that rats spent being immobile. During spontaneous walking in the open field, the speed of locomotion was increased by vigabatrin, while theta peak frequency was decreased. Vigabatrin also reduced the theta peak frequency during forced (speed controlled) walking. There was only a weak positive correlation (r=0.22) between theta peak frequency and locomotor speed for the saline condition. Furthermore, vigabatrin abolishes the weak relationship between speed of locomotion and theta peak frequency. Vigabatrin and saline did not differ in the slope of the regression line, but showed different offset points at the theta peak frequency axis. Thus, other factors than speed of locomotion seem to be involved in determination of the theta peak frequency.

  20. Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: a lesion study

    Kjaerulff, O; Kiehn, O

    1996-01-01

    The isolated spinal cord of the newborn rat contains networks that are able to create a patterned motor output resembling normal locomotor movements. In this study, we sought to localize the regions of primary importance for rhythm and pattern generation using specific mechanical lesions. We used...... ventral root recordings to monitor neuronal activity and tested the ability of various isolated parts of the caudal thoraciclumbar cord to generate rhythmic bursting in a combination of 5-HT and NMDA. In addition, pathways mediating left/right and rostrocaudal burst alternation were localized. We found......, these pathways were distributed along the lumbar enlargement. Both lateral and ventral funiculi were sufficient to coordinate activity in the rostral and caudal regions. We conclude that the networks organizing locomotor-related activity in the spinal cord of the newborn rat are distributed....

  1. Elevated copper levels during larval development cause altered locomotor behavior in the adult carabid beetle Pterostichus cupreus L. (Coleoptera: Carbidae)

    Bayley, M; Baatrup, E; Heimbach, U

    1995-01-01

    behavior of adult Pterostichus cupreus carabid beetles was quantified after being raised on copper-contaminated food and soil during larval development. Copper was found to have an acute toxic effect measured in larval mortality, to cause a slight increase in the developmental period of males......It is generally believed that copper causes changes in carabid communities indirectly by reducing food availability, because these animals are frequently found to have only slightly elevated metal contents even close to pollution sources. Using computer-centered video tracking, the locomotor......, but not to effect the emergence weights of adults of either sex. This toxic effect on the larvae was preserved through pupation to the surviving adults, which were normal in size and appearance, but displayed a dramatically depressed locomotor behavior. Copper analysis of these adults revealed that copper levels...

  2. Comparative anatomy of the arm muscles of the Japanese monkey (Macaca fuscata) with some comments on locomotor mechanics and behavior.

    Aversi-Ferreira, Tales Alexandre; Aversi-Ferreira, Roqueline A G M F; Bretas, Rafael Vieira; Nishimaru, Hiroshi; Nishijo, Hisao

    2016-08-01

    The anatomical literature on the genus Macaca has focused mainly on the rhesus monkey. However, some aspects in the positional behaviors of the Japanese monkey may be different from those in rhesus monkey, suggesting that the anatomical details of these species are divergent. Four thoracic limbs of Macaca fuscata adults were dissected. The arm muscles in Japanese macaques are more similar to rhesus monkeys and Papio; these characteristics are closer to those of bearded capuchins than apes, indicating more proximity of this genus to New World primates. The anatomical features observed favor quadrupedal locomotor behaviors on the ground and in arboreal environments. Japanese monkeys, rhesus monkeys, and bearded capuchins, which share more primitive characteristics in their arm muscles, present features that favor both arboreal and quadrupedal locomotor behaviors, whereas apes, mainly Pan and Gorilla, which spend more time on the ground, present more quadrupedal specializations. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. The possible interaction of dopamine system in nucleus accumbens shell and glutamate system of prelimbic region on locomotor activity in rat

    Hatam Ahmadi

    2013-06-01

    Full Text Available Background: Nucleus accumbens (NAc and prefrontal cortex (PFC dopaminergic and glutamatergic systems are involved in regulating of locomotor activity behaviors. This study has investigated the interaction of NAc shell dopaminergic system and prelimbic glutamatergic systems in regulating locomotor activity and related parameters. Methods: The aim of this study was the effect the drugs injection interaction in the brain of male Wistar rats on locomotor activity and related parameters, in the order of this purpose, open field apparatus that automatically recorded locomotor activity was employed. Unilateral intra-cerebral injection of drugs was done. Results: Unilateral intra-prelimbic injection of D-AP7 (N-methyl-D-aspartic acid= NMDA receptor antagonist; 0.25, 0.5 and 1μg/μl did not alter locomotor activity behaviors. However, infusion of NMDA (0.9μg/μl in this region increased locomotor activity (P<0.01, whereas decreased rearing (P<0.01 and grooming (P<0.01 which was blocked by D-AP7 (0.25μg/μl (P<0.01. Moreover, unilateral infusion of SCH23390 (dopamine D1 receptor antagonist; 0.25, 0.5 and 1μg/μl into the left NAc shell did not alter locomotor activity. However, injection of SKF38393 (dopamine D1 receptor agonist; 4μg/μl into the left NAc shell increased locomotor activity (P<0.05 which was blocked by SCH23390 (0.25μg/μl (P<0.01. Furthermore, the subthreshold dose infusion of SCH23390 (0.25μg/μl into the left NAc shell reduced the effect of intra- prelimbic NMDA on locomotor activity (P<0.01. In addition, intra-NAc shell administration of the subthreshold dose of SKF38393 (1μg/μl potentiated the middle dose (P<0.05, whereas decreased the higher dose of intra-left prelimbic NMDA response (P<0.05 on locomotor activity. Conclusion: The results suggested a modulatory effect of the NAc shell dopaminergic system on increased locomotor activity by activating glutamate system in prelimbic.

  4. Adaptation of a ladder beam walking task to assess locomotor recovery in mice following spinal cord injury

    Cummings, Brian J.; Engesser-Cesar, Christie; Anderson, Aileen J.

    2007-01-01

    Locomotor impairments after spinal cord injury (SCI) are often assessed using open-field rating scales. These tasks have the advantage of spanning the range from complete paralysis to normal walking; however, they lack sensitivity at specific levels of recovery. Additionally, most supplemental assessments were developed in rats, not mice. For example, the horizontal ladder beam has been used to measure recovery in the rat after SCI. This parametric task results in a videotaped archival record...

  5. The effect of the school games on the locomotor skills of male students suffering from attention deficit hyperactivity disorder (ADHD

    fereshte Amouzadeh

    2013-05-01

    Results: The results suggested that the data conformed to a normal distribution, and that school games could significantly improve the manipulation skills of the experimental group. Furthermore, the findings demonstrated that, the experimental group in comparision with the control group is superior in terms of the manipulation skills. Conclusion: Based on the results of this study, it is suggested that the school games be incorporated into the educational curriculum of the ADHD suffering students to ensure the improvement of their locomotor skills.

  6. Locomotor activity and discriminative stimulus effects of a novel series of synthetic cathinone analogs in mice and rats.

    Gatch, Michael B; Dolan, Sean B; Forster, Michael J

    2017-04-01

    Recent years have seen an increase in the recreational use of novel, synthetic psychoactive substances. There are little or no data on the abuse liability of many of the newer compounds. The current study investigated the discriminative stimulus and locomotor effects of a series of synthetic analogs of cathinone: α-pyrrolidinopropiophenone (α-PPP), α-pyrrolidinohexiophenone (α-PHP), α-pyrrolidinopentiothiophenone (α-PVT), 3,4-methylenedioxybutiophenone (MDPBP), and ethylone. Locomotor activity was assessed in an open-field assay using Swiss-Webster mice. Discriminative stimulus effects were assessed in Sprague-Dawley rats trained to discriminate either cocaine or methamphetamine from vehicle. Each of the compounds produced an inverted-U dose-effect on locomotor activity. Maximal effects were similar among the test compounds, but potencies varied with relative potencies of MDPBP > α-PPP = α-PHP > ethylone > α-PVT. Each of the test compounds substituted fully for the discriminative stimulus effects of methamphetamine. α-PPP, α-PHP, and ethylone fully substituted for cocaine. α-PVT produced a maximum of 50% cocaine-appropriate responding, and MDPBP produced an inverted-U-shaped dose-effect curve with maximum effects of 67%. These data provide initial evidence that these structurally similar, emerging novel psychoactive substances demonstrate potential for abuse and may be utilized for their stimulant-like effects, given their ability to stimulate locomotor activity and their substitution for the discriminative stimulus effects of the classical psychostimulants cocaine and/or methamphetamine.

  7. Agomelatine's effect on circadian locomotor rhythm alteration and depressive-like behavior in 6-OHDA lesioned rats.

    Souza, Leonardo C; Martynhak, Bruno J; Bassani, Taysa B; Turnes, Joelle de M; Machado, Meira M; Moura, Eric; Andreatini, Roberto; Vital, Maria A B F

    2018-05-01

    Parkinson's disease (PD) patients often suffer from circadian locomotor rhythms impairment and depression, important non-motor symptoms. It is known that toxin-based animal models of PD can reproduce these features. In a 6-hydroxydopamine (6-OHDA) intranigral model, we first investigated the possible disturbances on circadian rhythms of locomotor activity. The rats were divided into 6-OHDA and Sham groups. After a partial dopaminergic lesion, the 6-OHDA group showed slight alterations in different circadian locomotor rhythms parameters. In a second experiment, we hypothesized agomelatine, an melatoninergic antidepressant with potential to resynchronize disturbed rhythms, could prevent neuronal damage and rhythm alterations in the same 6-OHDA model. The animals were divided into four groups: 6-OHDA+vehicle, 6-OHDA+ago, Sham+vehicle and 6-OHDA+ago. However, the treated animals (agomelatine 50 mg/kg for 22 days) showed an impaired rhythm robustness, and agomelatine did not induce significant changes in the other circadian parameters nor neuroprotection. Finally, in a third experiment, we examined the effects of agomelatine in the 6-OHDA model regarding depressive-like behavior, evaluated by sucrose preference test. The animals were also divided into four groups: 6-OHDA+vehicle, 6-OHDA+ago, Sham+vehicle and 6-OHDA+ago. The toxin infused animals showed a decrease in sucrose preference in comparison with the vehicle infused animals, however, agomelatine did not prevent this decrease. Our findings indicate that agomelatine worsened circadian locomotor rhythm and was not able to reverse the depressive-like behavior of rats in the 6-OHDA PD model. Copyright © 2018. Published by Elsevier Inc.

  8. Locomotor Training and Strength and Balance Exercises for Walking Recovery After Stroke: Response to Number of Training Sessions.

    Rose, Dorian K; Nadeau, Stephen E; Wu, Samuel S; Tilson, Julie K; Dobkin, Bruce H; Pei, Qinglin; Duncan, Pamela W

    2017-11-01

    Evidence-based guidelines are needed to inform rehabilitation practice, including the effect of number of exercise training sessions on recovery of walking ability after stroke. The objective of this study was to determine the response to increasing number of training sessions of 2 interventions-locomotor training and strength and balance exercises-on poststroke walking recovery. This is a secondary analysis of the Locomotor Experience Applied Post-Stroke (LEAPS) randomized controlled trial. Six rehabilitation sites in California and Florida and participants' homes were used. Participants were adults who dwelled in the community (N=347), had had a stroke, were able to walk at least 3 m (10 ft) with assistance, and had completed the required number of intervention sessions. Participants received 36 sessions (3 times per week for 12 weeks), 90 minutes in duration, of locomotor training (gait training on a treadmill with body-weight support and overground training) or strength and balance training. Talking speed, as measured by the 10-Meter Walk Test, and 6-minute walking distance were assessed before training and following 12, 24, and 36 intervention sessions. Participants at 2 and 6 months after stroke gained in gait speed and walking endurance after up to 36 sessions of treatment, but the rate of gain diminished steadily and, on average, was very low during the 25- to 36-session epoch, regardless of treatment type or severity of impairment. Results may not generalize to people who are unable to initiate a step at 2 months after stroke or people with severe cardiac disease. In general, people who dwelled in the community showed improvements in gait speed and walking distance with up to 36 sessions of locomotor training or strength and balance exercises at both 2 and 6 months after stroke. However, gains beyond 24 sessions tended to be very modest. The tracking of individual response trajectories is imperative in planning treatment. Published by Oxford University

  9. Impairment of locomotor activity induced by the novel N-acylhydrazone derivatives LASSBio-785 and LASSBio-786 in mice

    Silva, G.A.P. [Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Kummerle, A.E. [Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Antunes, F. [Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Fraga, C.A.M.; Barreiro, E.J. [Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Zapata-Sudo, G.; Sudo, R.T. [Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil)

    2013-03-19

    The N-acylhydrazone (NAH) analogues N-methyl 2-thienylidene 3,4-benzoylhydrazine (LASSBio-785) and N-benzyl 2-thienylidene 3,4-benzoylhydrazine (LASSBio-786) were prepared from 2-thienylidene 3,4-methylenedioxybenzoylhydrazine (LASSBio-294). The ability of LASSBio-785 and LASSBio-786 to decrease central nervous system activity was investigated in male Swiss mice. LASSBio-785 or LASSBio-786 (30 mg/kg, ip) reduced locomotor activity from 209 ± 26 (control) to 140 ± 18 (P < 0.05) or 146 ± 15 crossings/min (P < 0.05), respectively. LASSBio-785 (15 or 30 mg/kg, iv) also reduced locomotor activity from 200 ± 15 to 116 ± 29 (P < 0.05) or 60 ± 16 crossings/min (P < 0.01), respectively. Likewise, LASSBio-786 (15 or 30 mg/kg, iv) reduced locomotor activity from 200 ± 15 to 127 ± 10 (P < 0.01) or 96 ± 14 crossings/min (P < 0.01), respectively. Pretreatment with flumazenil (20 mg/kg, ip) prevented the locomotor impairment induced by NAH analogues (15 mg/kg, iv), providing evidence that the benzodiazepine (BDZ) receptor is involved. This finding was supported by the structural similarity of NAH analogues to midazolam. However, LASSBio-785 showed weak binding to the BDZ receptor. LASSBio-785 or LASSBio-786 (30 mg/kg, ip, n = 10) increased pentobarbital-induced sleeping time from 42 ± 5 (DMSO) to 66 ± 6 (P < 0.05) or 75 ± 4 min (P < 0.05), respectively. The dose required to achieve 50% hypnosis (HD{sub 50}) following iv injection of LASSBio-785 or LASSBio-786 was 15.8 or 9.5 mg/kg, respectively. These data suggest that both NAH analogues might be useful for the development of new neuroactive drugs for the treatment of insomnia or for use in conjunction with general anesthesia.

  10. Impairment of locomotor activity induced by the novel N-acylhydrazone derivatives LASSBio-785 and LASSBio-786 in mice

    Silva, G.A.P.; Kummerle, A.E.; Antunes, F.; Fraga, C.A.M.; Barreiro, E.J.; Zapata-Sudo, G.; Sudo, R.T.

    2013-01-01

    The N-acylhydrazone (NAH) analogues N-methyl 2-thienylidene 3,4-benzoylhydrazine (LASSBio-785) and N-benzyl 2-thienylidene 3,4-benzoylhydrazine (LASSBio-786) were prepared from 2-thienylidene 3,4-methylenedioxybenzoylhydrazine (LASSBio-294). The ability of LASSBio-785 and LASSBio-786 to decrease central nervous system activity was investigated in male Swiss mice. LASSBio-785 or LASSBio-786 (30 mg/kg, ip) reduced locomotor activity from 209 ± 26 (control) to 140 ± 18 (P < 0.05) or 146 ± 15 crossings/min (P < 0.05), respectively. LASSBio-785 (15 or 30 mg/kg, iv) also reduced locomotor activity from 200 ± 15 to 116 ± 29 (P < 0.05) or 60 ± 16 crossings/min (P < 0.01), respectively. Likewise, LASSBio-786 (15 or 30 mg/kg, iv) reduced locomotor activity from 200 ± 15 to 127 ± 10 (P < 0.01) or 96 ± 14 crossings/min (P < 0.01), respectively. Pretreatment with flumazenil (20 mg/kg, ip) prevented the locomotor impairment induced by NAH analogues (15 mg/kg, iv), providing evidence that the benzodiazepine (BDZ) receptor is involved. This finding was supported by the structural similarity of NAH analogues to midazolam. However, LASSBio-785 showed weak binding to the BDZ receptor. LASSBio-785 or LASSBio-786 (30 mg/kg, ip, n = 10) increased pentobarbital-induced sleeping time from 42 ± 5 (DMSO) to 66 ± 6 (P < 0.05) or 75 ± 4 min (P < 0.05), respectively. The dose required to achieve 50% hypnosis (HD 50 ) following iv injection of LASSBio-785 or LASSBio-786 was 15.8 or 9.5 mg/kg, respectively. These data suggest that both NAH analogues might be useful for the development of new neuroactive drugs for the treatment of insomnia or for use in conjunction with general anesthesia

  11. Age and egg-sac loss determine maternal behaviour and locomotor activity of wolf spiders (Araneae, Lycosidae).

    Ruhland, Fanny; Chiara, Violette; Trabalon, Marie

    2016-11-01

    Wolf spiders' (Lycosidae) maternal behaviour includes a specific phase called "egg brooding" which consists of guarding and carrying an egg-sac throughout the incubation period. The transport of an egg-sac can restrict mothers' exploratory and locomotor activity, in particular when foraging. The present study details the ontogeny of maternal behaviour and assesses the influence of age of egg-sac (or embryos' developmental stage) on vagrant wolf spider Pardosa saltans females' exploration and locomotion. We observed these spiders' maternal behaviour in the laboratory and evaluated their locomotor activity using a digital activity recording device. Our subjects were virgin females (without egg-sac) and first time mothers (with her egg-sac) who were divided into three groups. The first group of mothers were tested on the day the egg-sac was built (day 0), and the females of the other two groups were tested 10 or 15days after they had built their egg-sac. We evaluated the effects of the presence and the loss of egg-sac on mothers' activity. Pardosa saltans females' behaviour depended on mothers' physiological state and/or age of egg-sac (developmental stage of embryos). Virgin females' behaviour was not modified by the presence of an egg-sac in their environment. Mothers' reactions to the presence, the loss and the recovery of their egg-sac varied during the maternal cycle. Maternal behaviour changed with age of egg-sac, but the levels of locomotor activity of mothers with egg-sacs was similar to those of virgin females. Loss of egg-sac modified the maternal behaviour and locomotor activity of all mothers; these modifications were greater on "day 15" when embryos had emerged from eggs. All mothers were able to retrieve their egg-sacs and to re-attach them to their spinnerets. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Buoyancy under control: underwater locomotor performance in a deep diving seabird suggests respiratory strategies for reducing foraging effort.

    Timothée R Cook

    Full Text Available BACKGROUND: Because they have air stored in many body compartments, diving seabirds are expected to exhibit efficient behavioural strategies for reducing costs related to buoyancy control. We study the underwater locomotor activity of a deep-diving species from the Cormorant family (Kerguelen shag and report locomotor adjustments to the change of buoyancy with depth. METHODOLOGY/PRINCIPAL FINDINGS: Using accelerometers, we show that during both the descent and ascent phases of dives, shags modelled their acceleration and stroking activity on the natural variation of buoyancy with depth. For example, during the descent phase, birds increased swim speed with depth. But in parallel, and with a decay constant similar to the one in the equation explaining the decrease of buoyancy with depth, they decreased foot-stroke frequency exponentially, a behaviour that enables birds to reduce oxygen consumption. During ascent, birds also reduced locomotor cost by ascending passively. We considered the depth at which they started gliding as a proxy to their depth of neutral buoyancy. This depth increased with maximum dive depth. As an explanation for this, we propose that shags adjust their buoyancy to depth by varying the amount of respiratory air they dive with. CONCLUSIONS/SIGNIFICANCE: Calculations based on known values of stored body oxygen volumes and on deep-diving metabolic rates in avian divers suggest that the variations of volume of respiratory oxygen associated with a respiration mediated buoyancy control only influence aerobic dive duration moderately. Therefore, we propose that an advantage in cormorants--as in other families of diving seabirds--of respiratory air volume adjustment upon diving could be related less to increasing time of submergence, through an increased volume of body oxygen stores, than to reducing the locomotor costs of buoyancy control.

  13. The correspondence between proximal phalanx morphology and locomotion: implications for inferring the locomotor behavior of fossil catarrhines.

    Rein, Thomas R

    2011-11-01

    Phalanges are considered to be highly informative in the reconstruction of extinct primate locomotor behavior since these skeletal elements directly interact with the substrate during locomotion. Variation in shaft curvature and relative phalangeal length has been linked to differences in the degree of suspension and overall arboreal locomotor activities. Building on previous work, this study investigated these two skeletal characters in a comparative context to analyze function, while taking evolutionary relationships into account. This study examined the correspondence between proportions of suspension and overall substrate usage observed in 17 extant taxa and included angle of curvature and relative phalangeal length. Predictive models based on these traits are reported. Published proportions of different locomotor behaviors were regressed against each phalangeal measurement and a size proxy. The relationship between each behavior and skeletal trait was investigated using ordinary least-squares, phylogenetic generalized least-squares (pGLS), and two pGLS transformation methods to determine the model of best-fit. Phalangeal curvature and relative length had significant positive relationships with both suspension and overall arboreal locomotion. Cross-validation analyses demonstrated that relative length and curvature provide accurate predictions of relative suspensory behavior and substrate usage in a range of extant species when used together in predictive models. These regression equations provide a refined method to assess the amount of suspensory and overall arboreal locomotion characterizing species in the catarrhine fossil record. Copyright © 2011 Wiley-Liss, Inc.

  14. Effects of repeated exposure to malathion on growth, food consumption, and locomotor performance of the western fence lizard (Sceloporus occidentalis)

    Holem, Ryan R. [University of Georgia, Savannah River Ecology Laboratory, Aiken, SC 29801 (United States); ENTRIX, Inc., Okemos, MI 48864 (United States); Hopkins, William A. [University of Georgia, Savannah River Ecology Laboratory, Aiken, SC 29801 (United States); Department of Fisheries and Wildlife Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States)], E-mail: hopkinsw@vt.edu; Talent, Larry G. [Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK 74078 (United States)

    2008-03-15

    Effects of repeated pollutant exposure on growth, locomotor performance, and behavior have rarely been evaluated in reptiles. We administered three doses of malathion (2.0, 20, or 100 mg/kg body weight) to western fence lizards (Sceloporus occidentalis) over an 81 day period. Eight and 23% mortality occurred at 20 and 100 mg/kg (p = 0.079) and 85% of lizards in the 100 mg/kg group exhibited clinical symptoms of poisoning. Growth, food consumption, body condition index, and terrestrial locomotor performance were not significantly influenced by malathion. However, arboreal sprint velocity was significantly reduced in lizards receiving 100 mg/kg. Fifty percent of lizards in the 100 mg/kg group also refused to sprint in the arboreal setting (p = 0.085). Based on these results, arboreal locomotor performance was the most sensitive metric of exposure we evaluated. Further study of compounds such as malathion is warranted due to highly variable application rates and exposure scenarios. - Repeated exposure of western fence lizards to malathion caused reduced arboreal performance and some mortality but growth, food consumption, and terrestrial performance were not affected.

  15. Effect of clozapine on locomotor activity and anxiety-related behavior in the neonatal mice administered MK-801.

    Pınar, Neslihan; Akillioglu, Kubra; Sefil, Fatih; Alp, Harun; Sagir, Mustafa; Acet, Ahmet

    2015-08-11

    Atypical antipsychotics have been used to treat fear and anxiety disturbance that are highly common in schizophrenic patients. It is suggested that disruptions of N-methyl-d-aspartate (NMDA)-mediated transmission of glutamate may underlie the pathophysiology of schizophrenia. The present study was conducted to analyze the effectiveness of clozapine on the anxiety-related behavior and locomotor function of the adult brain, which had previously undergone NMDA receptor blockade during a developmental period. In order to block the NMDA receptor, male mice were administered 0.25 mg/kg of MK-801 on days 7 to 10 postnatal. In adulthood, they were administered intraperitoneally 0.5 mg/kg of clozapine and tested with open-field and elevated plus maze test, to assess their emotional behavior and locomotor activity. In the group receiving MK-801 in the early developmental period the elevated plus maze test revealed a reduction in the anxiety-related behavior (ptest indicated a decrease in locomotor activity (plocomotor activity and anxiety-related behavior, induced by administration of the MK-801 in neonatal period.

  16. Early application of tail nerve electrical stimulation-induced walking training promotes locomotor recovery in rats with spinal cord injury.

    Zhang, S-X; Huang, F; Gates, M; Shen, X; Holmberg, E G

    2016-11-01

    This is a randomized controlled prospective trial with two parallel groups. The objective of this study was to determine whether early application of tail nerve electrical stimulation (TANES)-induced walking training can improve the locomotor function. This study was conducted in SCS Research Center in Colorado, USA. A contusion injury to spinal cord T10 was produced using the New York University impactor device with a 25 -mm height setting in female, adult Long-Evans rats. Injured rats were randomly divided into two groups (n=12 per group). One group was subjected to TANES-induced walking training 2 weeks post injury, and the other group, as control, received no TANES-induced walking training. Restorations of behavior and conduction were assessed using the Basso, Beattie and Bresnahan open-field rating scale, horizontal ladder rung walking test and electrophysiological test (Hoffmann reflex). Early application of TANES-induced walking training significantly improved the recovery of locomotor function and benefited the restoration of Hoffmann reflex. TANES-induced walking training is a useful method to promote locomotor recovery in rats with spinal cord injury.

  17. Quantitative inferences on the locomotor behaviour of extinct species applied to Simocyon batalleri (Ailuridae, Late Miocene, Spain)

    Fabre, Anne-Claire; Salesa, Manuel J.; Cornette, Raphael; Antón, Mauricio; Morales, Jorge; Peigné, Stéphane

    2015-06-01

    Inferences of function and ecology in extinct taxa have long been a subject of interest because it is fundamental to understand the evolutionary history of species. In this study, we use a quantitative approach to investigate the locomotor behaviour of Simocyon batalleri, a key taxon related to the ailurid family. To do so, we use 3D surface geometric morphometric approaches on the three long bones of the forelimb of an extant reference sample. Next, we test the locomotor strategy of S. batalleri using a leave-one-out cross-validated linear discriminant analysis. Our results show that S. batalleri is included in the morphospace of the living species of musteloids. However, each bone of the forelimb appears to show a different functional signal suggesting that inferring the lifestyle or locomotor behaviour of fossils can be difficult and dependent on the bone investigated. This highlights the importance of studying, where possible, a maximum of skeletal elements to be able to make robust inferences on the lifestyle of extinct species. Finally, our results suggest that S. batalleri may be more arboreal than previously suggested.

  18. Effects of repeated exposure to malathion on growth, food consumption, and locomotor performance of the western fence lizard (Sceloporus occidentalis)

    Holem, Ryan R.; Hopkins, William A.; Talent, Larry G.

    2008-01-01

    Effects of repeated pollutant exposure on growth, locomotor performance, and behavior have rarely been evaluated in reptiles. We administered three doses of malathion (2.0, 20, or 100 mg/kg body weight) to western fence lizards (Sceloporus occidentalis) over an 81 day period. Eight and 23% mortality occurred at 20 and 100 mg/kg (p = 0.079) and 85% of lizards in the 100 mg/kg group exhibited clinical symptoms of poisoning. Growth, food consumption, body condition index, and terrestrial locomotor performance were not significantly influenced by malathion. However, arboreal sprint velocity was significantly reduced in lizards receiving 100 mg/kg. Fifty percent of lizards in the 100 mg/kg group also refused to sprint in the arboreal setting (p = 0.085). Based on these results, arboreal locomotor performance was the most sensitive metric of exposure we evaluated. Further study of compounds such as malathion is warranted due to highly variable application rates and exposure scenarios. - Repeated exposure of western fence lizards to malathion caused reduced arboreal performance and some mortality but growth, food consumption, and terrestrial performance were not affected

  19. Using step width to compare locomotor biomechanics between extinct, non-avian theropod dinosaurs and modern obligate bipeds.

    Bishop, P J; Clemente, C J; Weems, R E; Graham, D F; Lamas, L P; Hutchinson, J R; Rubenson, J; Wilson, R S; Hocknull, S A; Barrett, R S; Lloyd, D G

    2017-07-01

    How extinct, non-avian theropod dinosaurs locomoted is a subject of considerable interest, as is the manner in which it evolved on the line leading to birds. Fossil footprints provide the most direct evidence for answering these questions. In this study, step width-the mediolateral (transverse) distance between successive footfalls-was investigated with respect to speed (stride length) in non-avian theropod trackways of Late Triassic age. Comparable kinematic data were also collected for humans and 11 species of ground-dwelling birds. Permutation tests of the slope on a plot of step width against stride length showed that step width decreased continuously with increasing speed in the extinct theropods ( p < 0.001), as well as the five tallest bird species studied ( p < 0.01). Humans, by contrast, showed an abrupt decrease in step width at the walk-run transition. In the modern bipeds, these patterns reflect the use of either a discontinuous locomotor repertoire, characterized by distinct gaits (humans), or a continuous locomotor repertoire, where walking smoothly transitions into running (birds). The non-avian theropods are consequently inferred to have had a continuous locomotor repertoire, possibly including grounded running. Thus, features that characterize avian terrestrial locomotion had begun to evolve early in theropod history. © 2017 The Author(s).

  20. A wider pelvis does not increase locomotor cost in humans, with implications for the evolution of childbirth.

    Anna G Warrener

    Full Text Available The shape of the human female pelvis is thought to reflect an evolutionary trade-off between two competing demands: a pelvis wide enough to permit the birth of large-brained infants, and narrow enough for efficient bipedal locomotion. This trade-off, known as the obstetrical dilemma, is invoked to explain the relative difficulty of human childbirth and differences in locomotor performance between men and women. The basis for the obstetrical dilemma is a standard static biomechanical model that predicts wider pelves in females increase the metabolic cost of locomotion by decreasing the effective mechanical advantage of the hip abductor muscles for pelvic stabilization during the single-leg support phase of walking and running, requiring these muscles to produce more force. Here we experimentally test this model against a more accurate dynamic model of hip abductor mechanics in men and women. The results show that pelvic width does not predict hip abductor mechanics or locomotor cost in either women or men, and that women and men are equally efficient at both walking and running. Since a wider birth canal does not increase a woman's locomotor cost, and because selection for successful birthing must be strong, other factors affecting maternal pelvic and fetal size should be investigated in order to help explain the prevalence of birth complications caused by a neonate too large to fit through the birth canal.

  1. What Is Being Trained? How Divergent Forms of Plasticity Compete To Shape Locomotor Recovery after Spinal Cord Injury.

    Huie, J Russell; Morioka, Kazuhito; Haefeli, Jenny; Ferguson, Adam R

    2017-05-15

    Spinal cord injury (SCI) is a devastating syndrome that produces dysfunction in motor and sensory systems, manifesting as chronic paralysis, sensory changes, and pain disorders. The multi-faceted and heterogeneous nature of SCI has made effective rehabilitative strategies challenging. Work over the last 40 years has aimed to overcome these obstacles by harnessing the intrinsic plasticity of the spinal cord to improve functional locomotor recovery. Intensive training after SCI facilitates lower extremity function and has shown promise as a tool for retraining the spinal cord by engaging innate locomotor circuitry in the lumbar cord. As new training paradigms evolve, the importance of appropriate afferent input has emerged as a requirement for adaptive plasticity. The integration of kinematic, sensory, and loading force information must be closely monitored and carefully manipulated to optimize training outcomes. Inappropriate peripheral input may produce lasting maladaptive sensory and motor effects, such as central pain and spasticity. Thus, it is important to closely consider the type of afferent input the injured spinal cord receives. Here we review preclinical and clinical input parameters fostering adaptive plasticity, as well as those producing maladaptive plasticity that may undermine neurorehabilitative efforts. We differentiate between passive (hindlimb unloading [HU], limb immobilization) and active (peripheral nociception) forms of aberrant input. Furthermore, we discuss the timing of initiating exposure to afferent input after SCI for promoting functional locomotor recovery. We conclude by presenting a candidate rapid synaptic mechanism for maladaptive plasticity after SCI, offering a pharmacological target for restoring the capacity for adaptive spinal plasticity in real time.

  2. Locomotor training with body weight support in SCI: EMG improvement is more optimally expressed at a low testing speed.

    Meyns, P; Van de Crommert, H W A A; Rijken, H; van Kuppevelt, D H J M; Duysens, J

    2014-12-01

    Case series. To determine the optimal testing speed at which the recovery of the EMG (electromyographic) activity should be assessed during and after body weight supported (BWS) locomotor training. Tertiary hospital, Sint Maartenskliniek, Nijmegen, The Netherlands. Four participants with incomplete chronic SCI were included for BWS locomotor training; one AIS-C and three AIS-D (according to the ASIA (American Spinal Injury Association) Impairment Scale or AIS). All were at least 5 years after injury. The SCI participants were trained three times a week for a period of 6 weeks. They improved their locomotor function in terms of higher walking speed, less BWS and less assistance needed. To investigate which treadmill speed for EMG assessment reflects the functional improvement most adequately, all participants were assessed weekly using the same two speeds (0.5 and 1.5 km h(-1), referred to as low and high speed, respectively) for 6 weeks. The change in root mean square EMG (RMS EMG) was assessed in four leg muscles; biceps femoris, rectus femoris, gastrocnemius medialis and tibialis anterior. The changes in RMS EMG occurred at similar phases of the step cycle for both walking conditions, but these changes were larger when the treadmill was set at a low speed (0.5 km h(-1)). Improvement in gait is feasible with BWS treadmill training even long after injury. The EMG changes after treadmill training are more optimally expressed using a low rather than a high testing treadmill speed.

  3. Neurotensin Agonist Attenuates Nicotine Potentiation to Cocaine Sensitization

    Paul Fredrickson

    2014-01-01

    Full Text Available Tobacco usage typically precedes illicit drug use in adolescent and young adult populations. Several animal studies suggest nicotine increases the risk for subsequent cocaine abuse, and may be a negative prognostic factor for treatment of cocaine addiction; i.e., a “gateway drug”. Neurotensin (NT is a 13-amino acid neuropeptide that modulates dopamine, acetylcholine, glutamate, and GABA neurotransmission in brain reward pathways. NT69L, a NT(8-13 analog, blocks behavioral sensitization (an animal model for psychostimulant addiction to nicotine, and nicotine self-administration in rats. The present study tested the effect of NT69L on the potentiating effects of nicotine on cocaine-induced locomotor sensitization. Male Wistar rats were injected daily for seven days with nicotine or saline (control followed by four daily injections of cocaine. NT69L was administered 30 min prior to the last cocaine injection. Behavior was recorded with the use of activity chambers. Subchronic administration of nicotine enhanced cocaine-induced behavioral sensitization in Wistar rats, consistent with an hypothesized gateway effect. These behavioral effects of cocaine were attenuated by pretreatment with NT69L. The effect of the neurotensin agonist on cocaine sensitization in the nicotine treated group indicated a possible therapeutic effect for cocaine addiction, even in the presence of enhanced behavioral sensitization induced by nicotine.

  4. Either brain-derived neurotrophic factor or neurotrophin-3 only neurotrophin-producing grafts promote locomotor recovery in untrained spinalized cats.

    Ollivier-Lanvin, Karen; Fischer, Itzhak; Tom, Veronica; Houlé, John D; Lemay, Michel A

    2015-01-01

    Background. Transplants of cellular grafts expressing a combination of 2 neurotrophic factors, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) have been shown to promote and enhance locomotor recovery in untrained spinalized cats. Based on the time course of recovery and the absence of axonal growth through the transplants, we hypothesized that recovery was due to neurotrophin-mediated plasticity within the existing locomotor circuitry of the lumbar cord. Since BDNF and NT-3 have different effects on axonal sprouting and synaptic connectivity/strengthening, it becomes important to ascertain the contribution of each individual neurotrophins to recovery. Objective. We studied whether BDNF or NT-3 only producing cellular grafts would be equally effective at restoring locomotion in untrained spinal cats. Methods. Rat fibroblasts secreting one of the 2 neurotrophins were grafted into the T12 spinal transection site of adult cats. Four cats in each group (BDNF alone or NT-3 alone) were evaluated. Locomotor recovery was tested on a treadmill at 3 and 5 weeks post-transection/grafting. Results. Animals in both groups were capable of plantar weight-bearing stepping at speed up to 0.8 m/s as early as 3 weeks and locomotor capabilities were similar at 3 and 5 weeks for both types of graft. Conclusions. Even without locomotor training, either BDNF or NT-3 only producing grafts promote locomotor recovery in complete spinal animals. More clinically applicable delivery methods need to be developed. © The Author(s) 2014.

  5. The effects of variable practice on locomotor adaptation to a novel asymmetric gait.

    Hinkel-Lipsker, Jacob W; Hahn, Michael E

    2017-09-01

    Very little is known about the effects of specific practice on motor learning of predictive balance control during novel bipedal gait. This information could provide an insight into how the direction and magnitude of predictive errors during acquisition of a novel gait task influence transfer of balance control, as well as yield a practice protocol for the restoration of balance for those with locomotor impairments. This study examined the effect of a variable practice paradigm on transfer of a novel asymmetric gait pattern in able-bodied individuals. Using a split-belt treadmill, one limb was driven at a constant velocity (constant limb) and the other underwent specific changes in velocity (variable limb) during practice according to one of three prescribed practice paradigms: serial, where the variable limb velocity increased linearly; random blocked, where variable limb underwent random belt velocity changes every 20 strides; and random practice, where the variable limb underwent random step-to-step changes in velocity. Random practice showed the highest balance control variability during acquisition compared to serial and random blocked practice which demonstrated the best transfer of balance control on one transfer test. Both random and random blocked practices showed significantly less balance control variability during a second transfer test compared to serial practice. These results indicate that random blocked practice may be best for generalizability of balance control while learning a novel gait, perhaps, indicating that individuals who underwent this practice paradigm were able to find the most optimal balance control solution during practice.

  6. Adaptive evolution in locomotor performance: How selective pressures and functional relationships produce diversity.

    Scales, Jeffrey A; Butler, Marguerite A

    2016-01-01

    Despite the complexity of nature, most comparative studies of phenotypic evolution consider selective pressures in isolation. When competing pressures operate on the same system, it is commonly expected that trade-offs will occur that will limit the evolution of phenotypic diversity, however, it is possible that interactions among selective pressures may promote diversity instead. We explored the evolution of locomotor performance in lizards in relation to possible selective pressures using the Ornstein-Uhlenbeck process. Here, we show that a combination of selection based on foraging mode and predator escape is required to explain variation in performance phenotypes. Surprisingly, habitat use contributed little explanatory power. We find that it is possible to evolve very different abilities in performance which were previously thought to be tightly correlated, supporting a growing literature that explores the many-to-one mapping of morphological design. Although we generally find the expected trade-off between maximal exertion and speed, this relationship surprisingly disappears when species experience selection for both performance types. We conclude that functional integration need not limit adaptive potential, and that an integrative approach considering multiple major influences on a phenotype allows a more complete understanding of adaptation and the evolution of diversity. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  7. Mouse short- and long-term locomotor activity analyzed by video tracking software.

    York, Jason M; Blevins, Neil A; McNeil, Leslie K; Freund, Gregory G

    2013-06-20

    Locomotor activity (LMA) is a simple and easily performed measurement of behavior in mice and other rodents. Improvements in video tracking software (VTS) have allowed it to be coupled to LMA testing, dramatically improving specificity and sensitivity when compared to the line crossings method with manual scoring. In addition, VTS enables high-throughput experimentation. While similar to automated video tracking used for the open field test (OFT), LMA testing is unique in that it allows mice to remain in their home cage and does not utilize the anxiogenic stimulus of bright lighting during the active phase of the light-dark cycle. Traditionally, LMA has been used for short periods of time (mins), while longer movement studies (hrs-days) have often used implanted transmitters and biotelemetry. With the option of real-time tracking, long-, like short-term LMA testing, can now be conducted using videography. Long-term LMA testing requires a specialized, but easily constructed, cage so that food and water (which is usually positioned on the cage top) does not obstruct videography. Importantly, videography and VTS allows for the quantification of parameters, such as path of mouse movement, that are difficult or unfeasible to measure with line crossing and/or biotelemetry. In sum, LMA testing coupled to VTS affords a more complete description of mouse movement and the ability to examine locomotion over an extended period of time.

  8. Effects of Egg Incubation Methods on Locomotor Performances of Green Turtle (Chelonia mydas) Hatchlings

    Mohd Uzair Rusli; Joseph, J.; Hock-Chark, L.; Zainudin Bachol

    2015-01-01

    Effects of different incubation methods on crawling and swimming ability of post-emergence green sea turtle (Chelonia mydas) hatchlings at Cherating (Kuantan, Pahang) and Chagar Hutang (Pulau Redang, Terengganu) Turtle Sanctuary were analysed during nesting season in 2009. Mean crawling speed of hatchlings incubated in styrofoam box, beach hatchery and in situ were at 0.042±0.008, 0.136±0.026 and 0.143±0.045 m/ s, respectively. Crawling performance of hatclings from styrofoam box can be improved by keeping them for at least 48 h after their emergence. For swimming performance, all types of incubation methods showed significant differences in mean power-stroke rate during their early swimming effort ranging at 93-114 strokes/ min. However, no correlation was found between morphological characteristics of hatchlings and swimming performance. The results from this study may give different perspective in evaluating hatchling production, which is in terms of hatchling morphological characteristics and their locomotor performance. (author)

  9. Physiological Costs of Repetitive Courtship Displays in Cockroaches Handicap Locomotor Performance

    Mowles, Sophie L.; Jepson, Natalie M.

    2015-01-01

    Courtship displays are typically thought to have evolved via female choice, whereby females select mates based on the characteristics of a display that is expected to honestly reflect some aspect of the male’s quality. Honesty is typically enforced by mechanistic costs and constraints that limit the level at which a display can be performed. It is becoming increasingly apparent that these costs may be energetic costs involved in the production of dynamic, often repetitive displays. A female attending to such a display may thus be assessing the physical fitness of a male as an index of his quality. Such assessment would provide information on his current physical quality as well as his ability to carry out other demanding activities, qualities with which a choosy female should want to provision her offspring. In the current study we use courtship interactions in the Cuban burrowing cockroach, Byrsotria fumigata to directly test whether courtship is associated with a signaler’s performance capacity. Males that had produced courtship displays achieved significantly lower speeds and distances in locomotor trials than non-courting control males. We also found that females mated more readily with males that produced a more vigorous display. Thus, males of this species have developed a strategy where they produce a demanding courtship display, while females choose males based on their ability to produce this display. Courtship displays in many taxa often involve dynamic repetitive actions and as such, signals of stamina in courtship may be more widespread than previously thought. PMID:26606147

  10. Three-axis optical force plate for studies in small animal locomotor mechanics

    Hsieh, S. Tonia

    2006-01-01

    The use of force plates to measure whole-body locomotor mechanics is a well-established technique. However, commercially available force plates are not sensitive enough for use on small-bodied vertebrates or invertebrates. The standard design for single- and multiple-axis, high-sensitivity force plates built by individual research groups uses semiconductor foil strain gauges to measure deflections; yet foil strain gauges are highly temperature and position sensitive, resulting in a drifting base line and nonlinear responses. I present here a design for a three-axis optical force plate that was successfully calibrated to measure forces as small as 1.5 mN and is capable of determining the position of center of pressure with a mean error of 0.07 cm along the X axis and 0.13 cm along the Y axis. Using optical sensors instead of foil strain gauges to measure deflection, this force plate is not subject to temperature-related drift and is more robust against slight positioning inaccuracies. This force plate was used to measure forces produced by amphibious fishes weighing less than 2 g as they jumped off the force platform

  11. A locomotor innovation enables water-land transition in a marine fish.

    Shi-Tong Tonia Hsieh

    Full Text Available BACKGROUND: Morphological innovations that significantly enhance performance capacity may enable exploitation of new resources and invasion of new ecological niches. The invasion of land from the aquatic realm requires dramatic structural and physiological modifications to permit survival in a gravity-dominated, aerial environment. Most fishes are obligatorily aquatic, with amphibious fishes typically making slow-moving and short forays on to land. METHODOLOGY/PRINCIPAL FINDINGS: Here I describe the behaviors and movements of a little known marine fish that moves extraordinarily rapidly on land. I found that the Pacific leaping blenny, Alticus arnoldorum, employs a tail-twisting movement on land, previously unreported in fishes. Focal point behavioral observations of Alticus show that they have largely abandoned the marine realm, feed and reproduce on land, and even defend terrestrial territories. Comparisons of these blennies' terrestrial kinematic and kinetic (i.e., force measurements with those of less terrestrial sister genera show A. arnoldorum move with greater stability and locomotor control, and can move away more rapidly from impending threats. CONCLUSIONS/SIGNIFICANCE: My results demonstrate that axial tail twisting serves as a key innovation enabling invasion of a novel marine niche. This paper highlights the potential of using this system to address general evolutionary questions about water-land transitions and niche invasions.

  12. Regulatory modes and time management: how locomotors and assessors plan and perceive time.

    Amato, Clara; Pierro, Antonio; Chirumbolo, Antonio; Pica, Gennaro

    2014-06-01

    This research investigated the relationship between regulatory mode orientations (locomotion and assessment), time management behaviours and the perceived control of time. "Locomotion" refers to the aspect of self-regulation involving the movement from state to state, whereas "assessment" is the comparative aspect of self-regulation that refers to the critical evaluation of alternative goals and the means for achieving them. The Italian versions of the Time Management Behavior Scale and the Perceived Control of Time Scale, as well as the Locomotion and Assessment Regulatory Modes Scales were administered to 339 Italian participants (249 students and 90 employees). The results supported the notion that locomotors and assessors differ in the ways they perceive the control of time. Locomotion was found to be positively related to perceived control of time. In contrast, assessment was negatively related to perceived control of time. Furthermore, the two time management dimensions of setting goals and priorities and preference for organisation were shown to mediate the relationship between locomotion and perceived control of time, whereas assessment proved to be unrelated to all time management behaviours. These findings highlight the importance of regulatory modes for human behaviour regarding time management and perceived control of time. © 2014 International Union of Psychological Science.

  13. Corticospinal Reorganization after Locomotor Training in a Person with Motor Incomplete Paraplegia

    Nupur Hajela

    2013-01-01

    Full Text Available Activity-dependent plasticity as a result of reorganization of neural circuits is a fundamental characteristic of the central nervous system that occurs simultaneously in multiple sites. In this study, we established the effects of subthreshold transcranial magnetic stimulation (TMS over the primary motor cortex region on the tibialis anterior (TA long-latency flexion reflex. Neurophysiological tests were conducted before and after robotic gait training in one person with a motor incomplete spinal cord injury (SCI while at rest and during robotic-assisted stepping. The TA flexion reflex was evoked following nonnociceptive sural nerve stimulation and was conditioned by TMS at 0.9 TA motor evoked potential resting threshold at conditioning-test intervals that ranged from 70 to 130 ms. Subthreshold TMS induced a significant facilitation on the TA flexion reflex before training, which was reversed to depression after training with the subject seated at rest. During stepping, corticospinal facilitation of the flexion reflex at early and midstance phases before training was replaced with depression at early and midswing followed by facilitation at late swing after training. These results constitute the first neurophysiologic evidence that locomotor training reorganizes the cortical control of spinal interneuronal circuits that generate patterned motor activity, modifying spinal reflex function, in the chronic lesioned human spinal cord.

  14. The time of day differently influences fatigue and locomotor activity: is body temperature a key factor?

    Machado, Frederico Sander Mansur; Rodovalho, Gisele Vieira; Coimbra, Cândido Celso

    2015-03-01

    The aim of this study was to verify the possible interactions between exercise capacity and spontaneous locomotor activity (SLA) during the oscillation of core body temperature (Tb) that occurs during the light/dark cycle. Wistar rats (n=11) were kept at an animal facility under a light/dark cycle of 14/10h at an ambient temperature of 23°C and water and food ad libitum. Initially, in order to characterize the daily oscillation in SLA and Tb of the rats, these parameters were continuously recorded for 24h using an implantable telemetric sensor (G2 E-Mitter). The animals were randomly assigned to two progressive exercise test protocols until fatigue during the beginning of light and dark-phases. Fatigue was defined as the moment rats could not keep pace with the treadmill. We assessed the time to fatigue, workload and Tb changes induced by exercise. Each test was separated by 3days. Our results showed that exercise capacity and heat storage were higher during the light-phase (plocomotor physical activity have an important inherent component (r=0.864 and r=0.784, respectively, plocomotor activity are not directly associated, both are strongly influenced by daily cycles of light and dark. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Locomotor Sensory Organization Test: How Sensory Conflict Affects the Temporal Structure of Sway Variability During Gait.

    Chien, Jung Hung; Mukherjee, Mukul; Siu, Ka-Chun; Stergiou, Nicholas

    2016-05-01

    When maintaining postural stability temporally under increased sensory conflict, a more rigid response is used where the available degrees of freedom are essentially frozen. The current study investigated if such a strategy is also utilized during more dynamic situations of postural control as is the case with walking. This study attempted to answer this question by using the Locomotor Sensory Organization Test (LSOT). This apparatus incorporates SOT inspired perturbations of the visual and the somatosensory system. Ten healthy young adults performed the six conditions of the traditional SOT and the corresponding six conditions on the LSOT. The temporal structure of sway variability was evaluated from all conditions. The results showed that in the anterior posterior direction somatosensory input is crucial for postural control for both walking and standing; visual input also had an effect but was not as prominent as the somatosensory input. In the medial lateral direction and with respect to walking, visual input has a much larger effect than somatosensory input. This is possibly due to the added contributions by peripheral vision during walking; in standing such contributions may not be as significant for postural control. In sum, as sensory conflict increases more rigid and regular sway patterns are found during standing confirming the previous results presented in the literature, however the opposite was the case with walking where more exploratory and adaptive movement patterns are present.

  16. A model-based exploration of the role of pattern generating circuits during locomotor adaptation.

    Marjaninejad, Ali; Finley, James M

    2016-08-01

    In this study, we used a model-based approach to explore the potential contributions of central pattern generating circuits (CPGs) during adaptation to external perturbations during locomotion. We constructed a neuromechanical modeled of locomotion using a reduced-phase CPG controller and an inverted pendulum mechanical model. Two different forms of locomotor adaptation were examined in this study: split-belt treadmill adaptation and adaptation to a unilateral, elastic force field. For each simulation, we first examined the effects of phase resetting and varying the model's initial conditions on the resulting adaptation. After evaluating the effect of phase resetting on the adaptation of step length symmetry, we examined the extent to which the results from these simple models could explain previous experimental observations. We found that adaptation of step length symmetry during split-belt treadmill walking could be reproduced using our model, but this model failed to replicate patterns of adaptation observed in response to force field perturbations. Given that spinal animal models can adapt to both of these types of perturbations, our findings suggest that there may be distinct features of pattern generating circuits that mediate each form of adaptation.

  17. Behavioral and locomotor measurements using an open field activity monitoring system for skeletal muscle diseases.

    Tatem, Kathleen S; Quinn, James L; Phadke, Aditi; Yu, Qing; Gordish-Dressman, Heather; Nagaraju, Kanneboyina

    2014-09-29

    The open field activity monitoring system comprehensively assesses locomotor and behavioral activity levels of mice. It is a useful tool for assessing locomotive impairment in animal models of neuromuscular disease and efficacy of therapeutic drugs that may improve locomotion and/or muscle function. The open field activity measurement provides a different measure than muscle strength, which is commonly assessed by grip strength measurements. It can also show how drugs may affect other body systems as well when used with additional outcome measures. In addition, measures such as total distance traveled mirror the 6 min walk test, a clinical trial outcome measure. However, open field activity monitoring is also associated with significant challenges: Open field activity measurements vary according to animal strain, age, sex, and circadian rhythm. In addition, room temperature, humidity, lighting, noise, and even odor can affect assessment outcomes. Overall, this manuscript provides a well-tested and standardized open field activity SOP for preclinical trials in animal models of neuromuscular diseases. We provide a discussion of important considerations, typical results, data analysis, and detail the strengths and weaknesses of open field testing. In addition, we provide recommendations for optimal study design when using open field activity in a preclinical trial.

  18. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice.

    Seibenhener, Michael L; Wooten, Michael C

    2015-02-06

    Animal models have proven to be invaluable to researchers trying to answer questions regarding the mechanisms of behavior. The Open Field Maze is one of the most commonly used platforms to measure behaviors in animal models. It is a fast and relatively easy test that provides a variety of behavioral information ranging from general ambulatory ability to data regarding the emotionality of the subject animal. As it relates to rodent models, the procedure allows the study of different strains of mice or rats both laboratory bred and wild-captured. The technique also readily lends itself to the investigation of different pharmacological compounds for anxiolytic or anxiogenic effects. Here, a protocol for use of the open field maze to describe mouse behaviors is detailed and a simple analysis of general locomotor ability and anxiety-related emotional behaviors between two strains of C57BL/6 mice is performed. Briefly, using the described protocol we show Wild Type mice exhibited significantly less anxiety related behaviors than did age-matched Knock Out mice while both strains exhibited similar ambulatory ability.

  19. Lumbar Myeloid Cell Trafficking into Locomotor Networks after Thoracic Spinal Cord Injury

    Hansen, Christopher N.; Norden, Diana M.; Faw, Timothy D.; Deibert, Rochelle; S.Wohleb, Eric; Sheridan, John F.; P.Godbout, Jonathan; Basso, D. Michele

    2016-01-01

    Spinal cord injury (SCI) promotes inflammation along the neuroaxis that jeopardizes plasticity, intrinsic repair and recovery. While inflammation at the injury site is well-established, less is known within remote spinal networks. The presence of bone marrow-derived immune (myeloid) cells in these areas may further impede functional recovery. Previously, high levels of the gelatinase, matrix metalloproteinase-9 (MMP-9) occurred within the lumbar enlargement after thoracic SCI and impeded activity-dependent recovery. Since SCI-induced MMP-9 potentially increases vascular permeability, myeloid cell infiltration may drive inflammatory toxicity in locomotor networks. Therefore, we examined neurovascular reactivity and myeloid cell infiltration in the lumbar cord after thoracic SCI. We show evidence of region-specific recruitment of myeloid cells into the lumbar but not cervical region. Myeloid infiltration occurred with concomitant increases in chemoattractants (CCL2) and cell adhesion molecules (ICAM-1) around lumbar vasculature 24 hours and 7 days post injury. Bone marrow GFP chimeric mice established robust infiltration of bone marrow-derived myeloid cells into the lumbar gray matter 24 hours after SCI. This cell infiltration occurred when the blood-spinal cord barrier was intact, suggesting active recruitment across the endothelium. Myeloid cells persisted as ramified macrophages at 7 days post injury in parallel with increased inhibitory GAD67 labeling. Importantly, macrophage infiltration required MMP-9. PMID:27191729

  20. Microgeographic variation in locomotor traits among lizards in a human-built environment

    Colin Donihue

    2016-03-01

    Full Text Available Microgeographic variation in fitness-relevant traits may be more common than previously appreciated. The fitness of many vertebrates is directly related to their locomotor capacity, a whole-organism trait integrating behavior, morphology, and physiology. Because locomotion is inextricably related to context, I hypothesized that it might vary with habitat structure in a wide-ranging lizard, Podarcis erhardii, found in the Greek Cyclade Islands. I compared lizard populations living on human-built rock walls, a novel habitat with complex vertical structure, with nearby lizard populations that are naive to human-built infrastructure and live in flat, loose-substrate habitat. I tested for differences in morphology, behavior, and performance. Lizards from built sites were larger and had significantly (and relatively longer forelimbs and hindlimbs. The differences in hindlimb morphology were especially pronounced for distal components—the foot and longest toe. These morphologies facilitated a significant behavioral shift in jumping propensity across a rocky experimental substrate. I found no difference in maximum velocity between these populations; however, females originating from wall sites potentially accelerated faster over the rocky experimental substrate. The variation between these closely neighboring populations suggests that the lizards inhabiting walls have experienced a suite of trait changes enabling them to take advantage of the novel habitat structure created by humans.

  1. Assaying locomotor, learning, and memory deficits in Drosophila models of neurodegeneration.

    Ali, Yousuf O; Escala, Wilfredo; Ruan, Kai; Zhai, R Grace

    2011-03-11

    Advances in genetic methods have enabled the study of genes involved in human neurodegenerative diseases using Drosophila as a model system. Most of these diseases, including Alzheimer's, Parkinson's and Huntington's disease are characterized by age-dependent deterioration in learning and memory functions and movement coordination. Here we use behavioral assays, including the negative geotaxis assay and the aversive phototaxic suppression assay (APS assay), to show that some of the behavior characteristics associated with human neurodegeneration can be recapitulated in flies. In the negative geotaxis assay, the natural tendency of flies to move against gravity when agitated is utilized to study genes or conditions that may hinder locomotor capacities. In the APS assay, the learning and memory functions are tested in positively-phototactic flies trained to associate light with aversive bitter taste and hence avoid this otherwise natural tendency to move toward light. Testing these trained flies 6 hours post-training is used to assess memory functions. Using these assays, the contribution of any genetic or environmental factors toward developing neurodegeneration can be easily studied in flies.

  2. New insights on equid locomotor evolution from the lumbar region of fossil horses.

    Jones, Katrina Elizabeth

    2016-04-27

    The specialization of equid limbs for cursoriality is a classic case of adaptive evolution, but the role of the axial skeleton in this famous transition is not well understood. Extant horses are extremely fast and efficient runners, which use a stiff-backed gallop with reduced bending of the lumbar region relative to other mammals. This study tests the hypothesis that stiff-backed running in horses evolved in response to evolutionary increases in body size by examining lumbar joint shape from a broad sample of fossil equids in a phylogenetic context. Lumbar joint shape scaling suggests that stability of the lumbar region does correlate with size through equid evolution. However, scaling effects were dampened in the posterior lumbar region, near the sacrum, which suggests strong selection for sagittal mobility in association with locomotor-respiratory coupling near the lumbosacral joint. I hypothesize that small-bodied fossil horses may have used a speed-dependent running gait, switching between stiff-backed and flex-backed galloping as speed increased. © 2016 The Author(s).

  3. Locomotor adaptations in Plio-Pleistocene large carnivores from the Italian Peninsula: Palaeoecological implications

    Carlo MELORO

    2011-06-01

    Full Text Available Mammalian carnivores are rarely considered for environmental reconstructions because they are extremely adaptable and their geographic range is usually large. However, the functional morphology of carnivore long bones can be indicative of locomotor behaviour as well as adaptation to specific kind of habitats. Here, different long bone ratios belonging to a subsample of extant large carnivores are used to infer palaeoecology of a comparative sample of Plio-Pleistocene fossils belonging to Italian paleo-communities. A multivariate long bone shape space reveals similarities between extant and fossil carnivores and multiple logistic regression models suggest that specific indices (the brachial and the Mt/F can be applied to predict adaptations to grassland and tropical biomes. These functional indices exhibit also a phylogenetic signal to different degree. The brachial index is a significant predictor of adaptations to tropical biomes when phylogeny is taken into account, while Mt/F is not correlated anymore to habitat adaptations. However, the proportion of grassland-adapted carnivores in Italian paleo-communities exhibits a negative relationship with mean oxygen isotopic values, which are indicative of past climatic oscillations. As climate became more unstable during the Ice Ages, large carnivore guilds from the Italian peninsula were invaded by tropical/closed-adapted species. These species take advantage of the temperate forest cover that was more spread after 1.0 Ma than in the initial phase of the Quaternary (2.0 Ma when the climate was more arid [Current Zoology 57 (3: 269–283, 2011].

  4. Spreadsheet software to assess locomotor disability to quantify permanent physical impairment

    Sunderraj Ellur

    2012-01-01

    Full Text Available Context: Assessment of physical disability is an important duty of a plastic surgeon especially for those of us who are in an institutional practice. Aim: The Gazette of India notification gives a guideline regarding the assessment of the disability. However, the calculations as per the guidelines are time consuming. In this article, a spreadsheet program which is based on the notification is presented. The aim of this article is to design a spreadsheet program which is simple, reproducible, user friendly, less time consuming and accurate. Materials and Methods: This spreadsheet program was designed using the Microsoft Excel. The spreadsheet program was designed on the basis of the guidelines in the Gazette of India Notification regarding the assessment of Locomotor Disability to Quantify Permanent Physical Impairment. Two representative examples are presented to help understand the application of this program. Results: Two spreadsheet programs, one for upper limb and another for the lower limb are presented. The representative examples show the accuracy of the program to match the results of the traditional method of calculation. Conclusion: A simple spreadsheet program can be designed to assess disability as per the Gazette of India Notification. This program is easy to use and is accurate.

  5. Double blind comparative study of piroxicam and indomethacin in acute locomotor affections linked with sports activity.

    Commandre, F

    1983-01-01

    181 patients suffering from acute locomotor affections linked with sports activities were included in a multi-center study. The indications most frequently seen were sprains and tendinitis. 92 patients received piroxicam in a daily dosage of 4 capsules (40 mg) during the first two days, then 20 mg during the following days. 89 patients received a daily dose of indomethacin in a daily dose of 6 capsules (150 mg) for the first two days, and then 100 mg daily thereafter. Treatment lasted from 5 to seven days. Efficacy was judged to be very good or good in 89% of the patients treated with piroxicam against 76% of those treated with indomethacin, a statistically significant difference. Tolerance was also judged better with piroxicam. 4 patients suffered side effects with piroxicam, of which one stopped treatment after the second administration due to allergic reaction. 18 patients treated with indomethacin suffered from side effects, of which 5 stopped the treatment. In total, the use of piroxicam seems particularly interesting in sports medicine in comparison with indomethacin.

  6. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M.; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N.

    2014-01-01

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α)–dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level. PMID:25082895

  7. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera.

    Charreton, Mercédès; Decourtye, Axel; Henry, Mickaël; Rodet, Guy; Sandoz, Jean-Christophe; Charnet, Pierre; Collet, Claude

    2015-01-01

    The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee's locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48 h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case of

  8. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera.

    Mercédès Charreton

    Full Text Available The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee's locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…, before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence since (i few studies are available on locomotion at this stage and (ii in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48 h, three pyrethroids, namely cypermethrin (2.5 ng/bee, tetramethrin (70 ng/bee, tau-fluvalinate (33 ng/bee and the neonicotinoid thiamethoxam (3.8 ng/bee caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field

  9. Peripheral afferent mechanisms underlying acupuncture inhibition of cocaine behavioral effects in rats.

    Seol Ah Kim

    Full Text Available Administration of cocaine increases locomotor activity by enhancing dopamine transmission. To explore the peripheral mechanisms underlying acupuncture treatment for drug addiction, we developed a novel mechanical acupuncture instrument (MAI for objective mechanical stimulation. The aim of this study was to evaluate whether acupuncture inhibition of cocaine-induced locomotor activity is mediated through specific peripheral nerves, the afferents from superficial or deep tissues, or specific groups of nerve fibers. Mechanical stimulation of acupuncture point HT7 with MAI suppressed cocaine-induced locomotor activity in a stimulus time-dependent manner, which was blocked by severing the ulnar nerve or by local anesthesia. Suppression of cocaine-induced locomotor activity was elicited after HT7 stimulation at frequencies of either 50 (for Meissner corpuscles or 200 (for Pacinian corpuscles Hz and was not affected by block of C/Aδ-fibers in the ulnar nerve with resiniferatoxin, nor generated by direct stimulation of C/Aδ-fiber afferents with capsaicin. These findings suggest that HT7 inhibition of cocaine-induced locomotor activity is mediated by A-fiber activation of ulnar nerve that originates in superficial and deep tissue.

  10. The C-2 derivatives of salvinorin A, ethoxymethyl ether Sal B and β-tetrahydropyran Sal B, have anti-cocaine properties with minimal side effects.

    Ewald, Amy W M; Bosch, Peter J; Culverhouse, Aimee; Crowley, Rachel Saylor; Neuenswander, Benjamin; Prisinzano, Thomas E; Kivell, Bronwyn M

    2017-08-01

    Kappa-opioid receptor (KOPr) agonists have pre-clinical anti-cocaine and analgesic effects. However, side effects including sedation, dysphoria, aversion, anxiety and depression limit their therapeutic development. The unique structure of salvinorin A has been used to develop longer acting KOPr agonists. We evaluate two novel C-2 analogues of salvinorin A, ethoxymethyl ether Sal B (EOM Sal B) and β-tetrahydropyran Sal B (β-THP Sal B) alongside U50,488 for their ability to modulate cocaine-induced behaviours and side effects, pre-clinically. Anti-cocaine properties of EOM Sal B were evaluated using the reinstatement model of drug seeking in self-administering rats. EOM Sal B and β-THP Sal B were evaluated for effects on cocaine-induced hyperactivity, spontaneous locomotor activity and sucrose self-administration. EOM Sal B and β-THP Sal B were evaluated for aversive, anxiogenic and depressive-like effects using conditioned place aversion (CPA), elevated plus maze (EPM) and forced swim tests (FSTs), respectively. EOM Sal B (0.1, 0.3 mg/kg, intraperitoneally (i.p.)) dose dependently attenuated drug seeking, and EOM Sal B (0.1 mg/kg, i.p.) and β-THP Sal B (1 mg/kg, i.p.) attenuated cocaine-induced hyperactivity. No effects on locomotor activity, open arm times (EPM) or swimming behaviours (FST) were seen with EOM (0.1 or 0.3 mg/kg, i.p.) or β-THP Sal B (1 or 2 mg/kg, i.p.). However, β-THP Sal B decreased time spent in the drug-paired chamber. EOM Sal B is more potent than Sal A and β-THP Sal B in reducing drug-seeking behaviour with fewer side effects. EOM Sal B showed no effects on sucrose self-administration (0.1 mg/kg), locomotor, depressive-like, aversive-like or anxiolytic effects.

  11. Locomotor adaptation to a powered ankle-foot orthosis depends on control method

    Gordon Keith E

    2007-12-01

    Full Text Available Abstract Background We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control. Both controllers activated an artificial pneumatic muscle providing plantar flexion torque. Methods Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6 or myoelectric control (n = 6. We recorded lower limb electromyography (EMG, joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time. Results During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis. Conclusion These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control.

  12. Evolution of morphology and locomotor performance in anurans: relationships with microhabitat diversification.

    Citadini, J M; Brandt, R; Williams, C R; Gomes, F R

    2018-03-01

    The relationships between morphology, performance, behavior and ecology provide evidence for multiple and complex phenotypic adaptations. The anuran body plan, for example, is evolutionarily conserved and shows clear specializations to jumping performance back at least to the early Jurassic. However, there are instances of more recent adaptation to habit diversity in the post-cranial skeleton, including relative limb length. The present study tested adaptive models of morphological evolution in anurans associated with the diversity of microhabitat use (semi-aquatic arboreal, fossorial, torrent, and terrestrial) in species of anuran amphibians from Brazil and Australia. We use phylogenetic comparative methods to determine which evolutionary models, including Brownian motion (BM) and Ornstein-Uhlenbeck (OU) are consistent with morphological variation observed across anuran species. Furthermore, this study investigated the relationship of maximum distance jumped as a function of components of morphological variables and microhabitat use. We found there are multiple optima of limb lengths associated to different microhabitats with a trend of increasing hindlimbs in torrent, arboreal, semi-aquatic whereas fossorial and terrestrial species evolve toward optima with shorter hindlimbs. Moreover, arboreal, semi-aquatic and torrent anurans have higher jumping performance and longer hindlimbs, when compared to terrestrial and fossorial species. We corroborate the hypothesis that evolutionary modifications of overall limb morphology have been important in the diversification of locomotor performance along the anuran phylogeny. Such evolutionary changes converged in different phylogenetic groups adapted to similar microhabitat use in two different zoogeographical regions. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  13. Locomotor-Respiratory Coupling in Wheelchair Racing Athletes: A Pilot Study.

    Perret, Claudio; Wenger, Martin; Leicht, Christof A; Goosey-Tolfrey, Victoria L

    2016-01-01

    In wheelchair racing, respiratory muscles of the rib cage are concomitantly involved in non-ventilatory functions during wheelchair propulsion. However, the relationship between locomotor-respiratory coupling (LRC: the ratio between push and breathing frequency), respiratory parameters and work efficiency is unknown. Therefore, the aim of the present study was to investigate the LRC in wheelchair racers over different race distances. Eight trained and experienced wheelchair racers completed three time-trials over the distances of 400, 800, and 5000 m on a training roller in randomized order. During the time trials, ventilatory and gas exchange variables as well as push frequency were continuously registered to determine possible LRC strategies. Four different coupling ratios were identified, namely 1:1; 2:1, 3:1 as well as a 1:1/2:1 alternating type, respectively. The 2:1 coupling was the most dominant type. The 1:1/2:1 alternating coupling type was found predominantly during the 400 m time-trial. Longer race distances tended to result in an increased coupling ratio (e.g., from 1:1 toward 2:1), and an increase in coupling ratio toward a more efficient respiration was found over the 5000 m distance. A significant correlation (r = 0.80, p respiratory frequency and the respiratory equivalent for oxygen was found for the 400 m and the 800 m time-trials. These findings suggest that a higher coupling ratio indicates enhanced breathing work efficiency with a concomitant deeper and slower respiration during wheelchair racing. Thus, the selection of an appropriate LRC strategy may help to optimize wheelchair racing performance.

  14. Comparative locomotor costs of domestic dogs reveal energetic economy of wolf-like breeds.

    Bryce, Caleb M; Williams, Terrie M

    2017-01-15

    The broad diversity in morphology and geographic distribution of the 35 free-ranging members of the family Canidae is only rivaled by that of the domesticated dog, Canis lupus familiaris. Considered to be among nature's most elite endurance athletes, both domestic and wild canids provide a unique opportunity to examine the variability in mammalian aerobic exercise performance and energy expenditure. To determine the potential effects of domestication and selective breeding on locomotor gait and economy in canids, we measured the kinematics and mass-specific metabolism of three large (>20 kg) dog breed groups (northern breeds, retrievers and hounds) of varying morphological and genomic relatedness to their shared progenitor, the gray wolf. By measuring all individuals moving in preferred steady-state gaits along a level transect and on a treadmill, we found distinct biomechanical, kinematic and energetic patterns for each breed group. While all groups exhibited reduced total cost of transport (COT) at faster speeds, the total COT and net COT during trotting and galloping were significantly lower for northern breed dogs (3.0 and 2.1 J kg -1  m -1 , respectively) relative to hound (4.2 and 3.4 J kg -1  m -1 , respectively) and retriever dogs (3.8 and 3.0 J kg -1  m -1 , respectively) of comparable mass. Similarly, northern breeds expended less energy per stride (3.5 J kg -1  stride -1 ) than hounds or retrievers (5.0 and 4.0 J kg -1  stride -1 , respectively). These results suggest that, in addition to their close genetic and morphological ties to gray wolves, northern breed dogs have retained highly cursorial kinematic and physiological traits that promote economical movement across the landscape. © 2017. Published by The Company of Biologists Ltd.

  15. Locomotor adjustments for circumvention of an obstacle in the travel path.

    Vallis, Lori Ann; McFadyen, Bradford J

    2003-10-01

    Independent living requires the navigation of a surrounding environment which is often cluttered with obstacles. When walking around an obstacle in the travel path, safe clearance requires some degree of body-segment reorientation. While body-segmental coordination strategies have been well studied for steering tasks that require moving the body in a new walking direction, it has never been established just what coordination strategies are used in different walking tasks. To address this issue, the current study was designed to investigate the timing of body segment coordination strategies and whole-body anticipatory locomotor adjustments employed when circumventing an obstacle placed in the travel path. Six healthy adults were asked to walk at their natural pace during unobstructed walking, as well as during avoidance to the right or left of a cylindrical obstacle (OBS) located in the travel path. Data analyzed were center of mass (COM) clearance from the OBS, forward velocity, step length and width, yaw angles of the head and trunk, roll angle of the trunk, and medial-lateral COM displacement. Onset of change in these variables from unobstructed walking was calculated as the time from OBS crossing. Avoidance involved two equally used strategies: lead limb close to or away from the OBS during the crossing step. Medial-lateral COM deviations were controlled by changes in step width without changes in trunk roll. There were no differences in the onset times of body segment reorientation for path deviation. These results are in contrast to previous studies on change in travel direction where the head segment initiates the body reorientation. Contrary to a steering task, circumventing an obstacle requires a different coordination for a transient change in COM trajectory with the underlying travel-direction maintained.

  16. Locomotor Training Restores Walking in a Nonambulatory Child With Chronic, Severe, Incomplete Cervical Spinal Cord Injury

    Behrman, Andrea L; Nair, Preeti M; Bowden, Mark G; Dauser, Robert C; Herget, Benjamin R; Martin, Jennifer B; Phadke, Chetan P; Reier, Paul J; Senesac, Claudia R; Thompson, Floyd J; Howland, Dena R

    2008-01-01

    Background and Purpose: Locomotor training (LT) enhances walking in adult experimental animals and humans with mild-to-moderate spinal cord injuries (SCIs). The animal literature suggests that the effects of LT may be greater on an immature nervous system than on a mature nervous system. The purpose of this study was to evaluate the effects of LT in a child with chronic, incomplete SCI. Subject: The subject was a nonambulatory 4½-year-old boy with an American Spinal Injury Association Impairment Scale (AIS) C Lower Extremity Motor Score (LEMS) of 4/50 who was deemed permanently wheelchair-dependent and was enrolled in an LT program 16 months after a severe cervical SCI. Methods: A pretest-posttest design was used in the study. Over 16 weeks, the child received 76 LT sessions using both treadmill and over-ground settings in which graded sensory cues were provided. The outcome measures were ASIA Impairment Scale score, gait speed, walking independence, and number of steps. Result: One month into LT, voluntary stepping began, and the child progressed from having no ability to use his legs to community ambulation with a rolling walker. By the end of LT, his walking independence score had increased from 0 to 13/20, despite no change in LEMS. The child's final self-selected gait speed was 0.29 m/s, with an average of 2,488 community-based steps per day and a maximum speed of 0.48 m/s. He then attended kindergarten using a walker full-time. Discussion and Conclusion: A simple, context-dependent stepping pattern sufficient for community ambulation was recovered in the absence of substantial voluntary isolated lower-extremity movement in a child with chronic, severe SCI. These novel data suggest that some children with severe, incomplete SCI may recover community ambulation after undergoing LT and that the LEMS cannot identify this subpopulation. PMID:18326054

  17. Intermittent long-wavelength red light increases the period of daily locomotor activity in mice

    Hughes Amanda M

    2005-05-01

    Full Text Available Abstract Background We observed that a dim, red light-emitting diode (LED triggered by activity increased the circadian periods of lab mice compared to constant darkness. It is known that the circadian period of rats increases when vigorous wheel-running triggers full-spectrum lighting; however, spectral sensitivity of photoreceptors in mice suggests little or no response to red light. Thus, we decided to test the following hypotheses: dim red light illumination triggered by activity (LEDfb increases the circadian period of mice compared to constant dark (DD; covering the LED prevents the effect on period; and DBA2/J mice have a different response to LEDfb than C57BL6/J mice. Methods The irradiance spectra of the LEDs were determined by spectrophotometer. Locomotor activity of C57BL/6J and DBA/2J mice was monitored by passive-infrared sensors and circadian period was calculated from the last 10 days under each light condition. For constant dark (DD, LEDs were switched off. For LED feedback (LEDfb, the red LED came on when the mouse was active and switched off seconds after activity stopped. For taped LED the red LED was switched on but covered with black tape. Single and multifactorial ANOVAs and post-hoc t-tests were done. Results The circadian period of mice was longer under LEDfb than under DD. Blocking the light eliminated the effect. There was no difference in period change in response to LEDfb between C57BL/6 and DBA/2 mice. Conclusion An increase in mouse circadian period due to dim far-red light (1 lux at 652 nm exposure was unexpected. Since blocking the light stopped the response, sound from the sensor's electronics was not the impetus of the response. The results suggest that red light as background illumination should be avoided, and indicator diodes on passive infrared motion sensors should be switched off.

  18. Locomotor sensory organization test: a novel paradigm for the assessment of sensory contributions in gait.

    Chien, Jung Hung; Eikema, Diderik-Jan Anthony; Mukherjee, Mukul; Stergiou, Nicholas

    2014-12-01

    Feedback based balance control requires the integration of visual, proprioceptive and vestibular input to detect the body's movement within the environment. When the accuracy of sensory signals is compromised, the system reorganizes the relative contributions through a process of sensory recalibration, for upright postural stability to be maintained. Whereas this process has been studied extensively in standing using the Sensory Organization Test (SOT), less is known about these processes in more dynamic tasks such as locomotion. In the present study, ten healthy young adults performed the six conditions of the traditional SOT to quantify standing postural control when exposed to sensory conflict. The same subjects performed these six conditions using a novel experimental paradigm, the Locomotor SOT (LSOT), to study dynamic postural control during walking under similar types of sensory conflict. To quantify postural control during walking, the net Center of Pressure sway variability was used. This corresponds to the Performance Index of the center of pressure trajectory, which is used to quantify postural control during standing. Our results indicate that dynamic balance control during locomotion in healthy individuals is affected by the systematic manipulation of multisensory inputs. The sway variability patterns observed during locomotion reflect similar balance performance with standing posture, indicating that similar feedback processes may be involved. However, the contribution of visual input is significantly increased during locomotion, compared to standing in similar sensory conflict conditions. The increased visual gain in the LSOT conditions reflects the importance of visual input for the control of locomotion. Since balance perturbations tend to occur in dynamic tasks and in response to environmental constraints not present during the SOT, the LSOT may provide additional information for clinical evaluation on healthy and deficient sensory processing.

  19. Transvertebral direct current stimulation paired with locomotor training in chronic spinal cord injury: A case study.

    Powell, Elizabeth Salmon; Carrico, Cheryl; Raithatha, Ravi; Salyers, Emily; Ward, Andrea; Sawaki, Lumy

    2016-01-01

    This double-blind, sham-controlled, crossover case study combined transvertebral direct current stimulation (tvDCS) and locomotor training on a robot-assisted gait orthosis (LT-RGO). Determine whether cathodal tvDCS paired with LT-RGO leads to greater changes in function and neuroplasticity than sham tvDCS paired with LT-RGO. University of Kentucky (UK) HealthCare Stroke and Spinal Cord Neurorehabilitation Research at HealthSouth Cardinal Hill Hospital. A single subject with motor incomplete spinal cord injury (SCI) participated in 24 sessions of sham tvDCS paired with LT-RGO before crossover to 24 sessions of cathodal tvDCS paired with LT-RGO. Functional outcomes were measured with 10 Meter Walk Test (10MWT), 6 Minute Walk Test (6MWT), Spinal Cord Independence Measure-III (SCIM-III) mobility component, lower extremity manual muscle test (MMT), and Berg Balance Scale (BBS). Corticospinal changes were assessed using transcranial magnetic stimulation. Improvement in 10MWT speed, SCIM-III mobility component, and BBS occurred with both conditions. 6MWT worsened after sham tvDCS and improved after cathodal tvDCS. MMT scores for both lower extremities improved following sham tvDCS but decreased following cathodal tvDCS. Corticospinal excitability increased following cathodal tvDCS but not sham tvDCS. These results suggest that combining cathodal tvDCS and LT-RGO may improve functional outcomes, increase corticospinal excitability, and possibly decrease spasticity. Randomized controlled trials are needed to confirm these conclusions. This publication was supported by the National Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant UL1TR000117, and the HealthSouth Cardinal Hill Stroke and Spinal Cord Endowment (1215375670).

  20. Gender differences in locomotor and stereotypic behavior associated with l-carnitine treatment in mice.

    Benvenga, Salvatore; Itri, Elenora; Hauser, Peter; De Tolla, Louis; Yu, Sui-Foh; Testa, Giuseppe; Pappalardo, Maria Angela; Trimarchi, Francesco; Amato, Antonino

    2011-02-01

    The carnitines exert neuroprotective and neuromodulatory actions, and carnitine supplementation increases locomotor activity (LMA) in experimental animals. We measured 13 indexes of LMA and 3 indexes of stereotypic activity (STA) in adult male and female caged mice. In a randomized 4-week trial, 10 males and 10 females received 50 mg/kg body weight PO l-carnitine, and another 10 males and 10 females received placebo. Compared with placebo-treated females, placebo-treated males had a greater number of stereotypies (NSTs), stereotypy counts (STCs), stereotypy time (STT), and right front time (RFT), but smaller total distance traveled (TDT), margin distance (MD), number of vertical movements (NVMs), and left rear time (LRT). Compared with placebo-treated males, carnitine-treated males had greater horizontal activity (HA), movement time (MT), NVM, STT, TDT, STC, MD, LRT, and clockwise revolutions (CRs), but smaller left front time (LFT) and RFT. Compared with placebo-treated females, carnitine-treated females had greater NST, STC, STT, LFT, and RFT, but smaller NM, HA, NVM, VA, MT, anticlockwise revolutions (ACRs), CR, TDT, and MD; right rear time (RRT) remained statistically insignificant across all comparisons. In summary, l-carnitine caused gender differences to persist for STC, diminish for NST and STT, disappear for LRT and NVM, change in the opposite direction for TDT and MD, appear de novo for HA, VA, NM, MT, and LFT, and remain absent for RRT and ACR. Some indexes of LMA and STA are sexually dimorphic in adult mice, and l-carnitine differentially maintains, diminishes/cancels, inverts, or creates the sexual dimorphism of particular indexes. Copyright © 2011 Elsevier HS Journals, Inc. All rights reserved.

  1. Attenuated food anticipatory activity and abnormal circadian locomotor rhythms in Rgs16 knockdown mice.

    Naoto Hayasaka

    Full Text Available Regulators of G protein signaling (RGS are a multi-functional protein family, which functions in part as GTPase-activating proteins (GAPs of G protein α-subunits to terminate G protein signaling. Previous studies have demonstrated that the Rgs16 transcripts exhibit robust circadian rhythms both in the suprachiasmatic nucleus (SCN, the master circadian light-entrainable oscillator (LEO of the hypothalamus, and in the liver. To investigate the role of RGS16 in the circadian clock in vivo, we generated two independent transgenic mouse lines using lentiviral vectors expressing short hairpin RNA (shRNA targeting the Rgs16 mRNA. The knockdown mice demonstrated significantly shorter free-running period of locomotor activity rhythms and reduced total activity as compared to the wild-type siblings. In addition, when feeding was restricted during the daytime, food-entrainable oscillator (FEO-driven elevated food-anticipatory activity (FAA observed prior to the scheduled feeding time was significantly attenuated in the knockdown mice. Whereas the restricted feeding phase-advanced the rhythmic expression of the Per2 clock gene in liver and thalamus in the wild-type animals, the above phase shift was not observed in the knockdown mice. This is the first in vivo demonstration that a common regulator of G protein signaling is involved in the two separate, but interactive circadian timing systems, LEO and FEO. The present study also suggests that liver and/or thalamus regulate the food-entrained circadian behavior through G protein-mediated signal transduction pathway(s.

  2. Locomotor problems in broilers reared on new and re-used litter

    Ibiara Correia Lima Almeida Paz

    2013-06-01

    Full Text Available Two field trials were conducted to assess locomotor problems in broilers. Males and females broilers were used from two commercial strains reared on two different litter materials, new and re-used. In the first experiment (E1 rice husks and wood shavings were used as new litter, and in the second experiment (E2 the same litter was re-used. A batch of one-day-old chicks (2968 was reared randomly distributed in experimental pens, in a 2x2x2 factorial scheme (two genetic strains, two sexes and two litter materials. The same fodder and water were available to all birds ad libitum. Broilers locomotion problems were evaluated using the characteristics of gait score, incidence of valgus and varus, foot-pad lesions, degeneration, femoral, tibial dyschondroplasia, spondylolisthesis and breast calluses. The number of birds with high gait score was less than 30% in the two experiments. Males presented higher gait score (GS (28.46% GS 1 and 2 compared to females, 20.98%; greater incidence of angular deformities (26.62% with valgus compared to 14.71% of the female; and femoral degenerative joint lesions (70.83% in average, compared to 55.16% of the female, and the correlation between these traits varied from 0.18 to 0.87 (P<0.05. There was an increase of foot-pad lesions in re-used litter leading to poor welfare. The use of rice husks in deep litter for broiler production might be a viable alternative of wood shavings.

  3. Genetic and Pharmacological Inhibition of p38α Improves Locomotor Recovery after Spinal Cord Injury

    Umezawa, Hiroki; Naito, Yusuke; Tanaka, Kensuke; Yoshioka, Kento; Suzuki, Kenichi; Sudo, Tatsuhiko; Hagihara, Masahiko; Hatano, Masahiko; Tatsumi, Koichiro; Kasuya, Yoshitoshi

    2017-01-01

    One of the mitogen-activated protein kinases, p38α plays a crucial role in various inflammatory diseases and apoptosis of various types of cells. In this study, we investigated the pathophysiological roles of p38α in spinal cord injury (SCI), using a mouse model. Lateral hemisection at T9 of the SC was performed in wild type (WT) and p38α+/- mice (p38α-/- showed embryonic lethality). p38α+/- mice showed a better functional recovery from SCI-associated paralyzed hindlimbs compared to WT mice at 7 days post-injury (dpi), which remained until 28 dpi (an end time point of monitoring the behavior). In histopathological analysis at 28 dpi, there was more axonal regeneration with remyelination on the caudal side of the lesion epicenter in p38α+/- mice than in WT mice. At 7 dpi, infiltration of inflammatory cells into the lesion and expression of cytokines in the lesion were reduced in p38α+/- mice compared with WT mice. At the same time point, the number of apoptotic oligodendrocytes in the white matter at the caudal boarder of the lesion of p38α+/- mice was lower than that of WT mice. At 14 dpi, more neural and oligodendrocyte precursor cells in the gray matter and white matter, respectively, were observed around the lesion epicenter of p38α+/- mice compared with the case of WT mice. At the same time point, astrocytic scar formation was less apparent in p38α+/- than in WT mice, while compaction of inflammatory immune cells associated with the wound contraction was more apparent in p38α+/- than in WT mice. Furthermore, we verified the effectiveness of oral administration of SB239063, a p38α inhibitor on the hindlimb locomotor recovery after SCI. These results suggest that p38α deeply contributes to the pathogenesis of SCI and that inhibition of p38α is a beneficial strategy to recovery from SCI. PMID:28261102

  4. Paraquat affects mitochondrial bioenergetics, dopamine system expression, and locomotor activity in zebrafish (Danio rerio).

    Wang, Xiao H; Souders, Christopher L; Zhao, Yuan H; Martyniuk, Christopher J

    2018-01-01

    The dipyridyl herbicide paraquat induces oxidative stress in cells and is implicated in adult neurodegenerative diseases. However, less is known about paraquat toxicity in early stages of vertebrate development. To address this gap, zebrafish (Danio rerio) embryos were exposed to 1, 10 and 100 μM paraquat for 96 h. Paraquat did not induce significant mortality nor deformity in embryos and larvae, but it did accelerate time to hatch. To evaluate whether mitochondrial respiration was related to earlier hatch times, oxygen consumption rate was measured in whole embryos. Maximal respiration of embryos exposed to 100 μM paraquat for 24 h was reduced by more than 70%, suggesting that paraquat negatively impacts mitochondrial bioenergetics in early development. Based upon this evidence for mitochondrial dysfunction, transcriptional responses of oxidative stress- and apoptosis-related genes were measured. Fish exposed to 1 μM paraquat showed higher expression levels of superoxide dismutase 2, heat shock protein 70, Bcl-2-associated X protein, and B-cell CLL/lymphoma 2a compared to control fish. No differences among groups were detected in larvae exposed to 10 and 100 μM paraquat, suggesting a non-monotonic response. We also measured endpoints related to larval behavior and dopaminergic signaling as paraquat is associated with degeneration of dopamine neurons. Locomotor activity was stimulated with 100 μM paraquat and dopamine transporter and dopamine receptor 3 mRNA levels were increased in larvae exposed to 1 μM paraquat, interpreted to be a compensatory response at lower concentrations. This study improves mechanistic understanding into the toxic actions of paraquat on early developmental stages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs.

    Allen, Vivian; Bates, Karl T; Li, Zhiheng; Hutchinson, John R

    2013-05-02

    Locomotion in living birds (Neornithes) has two remarkable features: feather-assisted flight, and the use of unusually crouched hindlimbs for bipedal support and movement. When and how these defining functional traits evolved remains controversial. However, the advent of computer modelling approaches and the discoveries of exceptionally preserved key specimens now make it possible to use quantitative data on whole-body morphology to address the biomechanics underlying this issue. Here we use digital body reconstructions to quantify evolutionary trends in locomotor biomechanics (whole-body proportions and centre-of-mass position) across the clade Archosauria. We use three-dimensional digital reconstruction to estimate body shape from skeletal dimensions for 17 archosaurs along the ancestral bird line, including the exceptionally preserved, feathered taxa Microraptor, Archaeopteryx, Pengornis and Yixianornis, which represent key stages in the evolution of the avian body plan. Rather than a discrete transition from more-upright postures in the basal-most birds (Avialae) and their immediate outgroup deinonychosauria, our results support hypotheses of a gradual, stepwise acquisition of more-crouched limb postures across much of theropod evolution, although we find evidence of an accelerated change within the clade Maniraptora (birds and their closest relatives, such as deinonychosaurs). In addition, whereas reduction of the tail is widely accepted to be the primary morphological factor correlated with centre-of-mass position and, hence, evolution of hindlimb posture, we instead find that enlargement of the pectoral limb and several associated trends have a much stronger influence. Intriguingly, our support for the onset of accelerated morpho-functional trends within Maniraptora is closely correlated with the evolution of flight. Because we find that the evolution of enlarged forelimbs is strongly linked, via whole-body centre of mass, to hindlimb function during

  6. Functional locomotor consequences of uneven forefeet for trot symmetry in individual riding horses.

    Nathan Wiggers

    Full Text Available Left-right symmetrical distal limb conformation can be an important prerequisite for a successful performance, and it is often hypothesized that asymmetric or uneven feet are important enhancing factors for the development of lameness. On a population level, it has been demonstrated that uneven footed horses are retiring earlier from elite level competition, but the biomechanical consequences are not yet known. The objectives of this study were to compare the functional locomotor asymmetries of horses with uneven to those with even feet. Hoof kinetics and distal limb kinematics were collected from horses (n = 34 at trot. Dorsal hoof wall angle was used to classify horses as even or uneven (1.5° difference between forefeet respectively and individual feet as flat (55°. Functional kinetic parameters were compared between even and uneven forefeet using MANOVA followed by ANOVA. The relative influences of differences in hoof angle between the forefeet and of absolute hoof angle on functional parameters were analysed using multiple regression analysis (P<0.05. In horses with uneven feet, the side with the flatter foot showed a significantly larger maximal horizontal braking and vertical ground reaction force, a larger vertical fetlock displacement and a suppler fetlock spring. The foot with a steeper hoof angle was linearly correlated with an earlier braking-propulsion transition. The conformational differences between both forefeet were more important for loading characteristics than the individual foot conformation of each individual horse. The differences in vertical force and braking force between uneven forefeet could imply either an asymmetrical loading pattern without a pathological component or a subclinical lameness as a result of a pathological development in the steeper foot.

  7. Neural control and modulation of swimming speed in the larval zebrafish.

    Severi, Kristen E; Portugues, Ruben; Marques, João C; O'Malley, Donald M; Orger, Michael B; Engert, Florian

    2014-08-06

    Vertebrate locomotion at different speeds is driven by descending excitatory connections to central pattern generators in the spinal cord. To investigate how these inputs determine locomotor kinematics, we used whole-field visual motion to drive zebrafish to swim at different speeds. Larvae match the stimulus speed by utilizing more locomotor events, or modifying kinematic parameters such as the duration and speed of swimming bouts, the tail-beat frequency, and the choice of gait. We used laser ablations, electrical stimulation, and activity recordings in descending neurons of the nucleus of the medial longitudinal fasciculus (nMLF) to dissect their contribution to controlling forward movement. We found that the activity of single identified neurons within the nMLF is correlated with locomotor kinematics, and modulates both the duration and oscillation frequency of tail movements. By identifying the contribution of individual supraspinal circuit elements to locomotion kinematics, we build a better understanding of how the brain controls movement. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Gender-specific alteration of energy balance and circadian locomotor activity in the Crtc1 knockout mouse model of depression

    Rossetti, Clara

    2017-12-06

    Obesity and depression are major public health concerns, and there is increasing evidence that they share etiological mechanisms. CREB-regulated transcription coactivator 1 (CRTC1) participates in neurobiological pathways involved in both mood and energy balance regulation. Crtc1 -/- mice rapidly develop a depressive-like and obese phenotype in early adulthood, and are therefore a relevant animal model to explore possible common mechanisms underlying mood disorders and obesity. Here, the obese phenotype of male and female Crtc1 -/- mice was further characterized by investigating CRTC1\\'s role in the homeostatic and hedonic regulation of food intake, as well as its influence on daily locomotor activity. Crtc1 -/- mice showed a strong gender difference in the homeostatic regulation of energy balance. Mutant males were hyperphagic and rapidly developed obesity on normal chow diet, whereas Crtc1 -/- females exhibited mild late-onset obesity without hyperphagia. Overeating of mutant males was accompanied by alterations in the expression of several orexigenic and anorexigenic hypothalamic genes, thus confirming a key role of CRTC1 in the central regulation of food intake. No alteration in preference and conditioned response for saccharine was observed in Crtc1 -/- mice, suggesting that mutant males\\' hyperphagia was not due to an altered hedonic regulation of food intake. Intriguingly, mutant males exhibited a hyperphagic behavior only during the resting (diurnal) phase of the light cycle. This abnormal feeding behavior was associated with a higher diurnal locomotor activity indicating that the lack of CRTC1 may affect circadian rhythmicity. Collectively, these findings highlight the male-specific involvement of CRTC1 in the central control of energy balance and circadian locomotor activity.

  9. Gender-specific alteration of energy balance and circadian locomotor activity in the Crtc1 knockout mouse model of depression

    Rossetti, Clara; Sciarra, Daniel; Petit, Jean-Marie; Eap, Chin B.; Halfon, Olivier; Magistretti, Pierre J.; Boutrel, Benjamin; Cardinaux, Jean-René

    2017-01-01

    Obesity and depression are major public health concerns, and there is increasing evidence that they share etiological mechanisms. CREB-regulated transcription coactivator 1 (CRTC1) participates in neurobiological pathways involved in both mood and energy balance regulation. Crtc1 -/- mice rapidly develop a depressive-like and obese phenotype in early adulthood, and are therefore a relevant animal model to explore possible common mechanisms underlying mood disorders and obesity. Here, the obese phenotype of male and female Crtc1 -/- mice was further characterized by investigating CRTC1's role in the homeostatic and hedonic regulation of food intake, as well as its influence on daily locomotor activity. Crtc1 -/- mice showed a strong gender difference in the homeostatic regulation of energy balance. Mutant males were hyperphagic and rapidly developed obesity on normal chow diet, whereas Crtc1 -/- females exhibited mild late-onset obesity without hyperphagia. Overeating of mutant males was accompanied by alterations in the expression of several orexigenic and anorexigenic hypothalamic genes, thus confirming a key role of CRTC1 in the central regulation of food intake. No alteration in preference and conditioned response for saccharine was observed in Crtc1 -/- mice, suggesting that mutant males' hyperphagia was not due to an altered hedonic regulation of food intake. Intriguingly, mutant males exhibited a hyperphagic behavior only during the resting (diurnal) phase of the light cycle. This abnormal feeding behavior was associated with a higher diurnal locomotor activity indicating that the lack of CRTC1 may affect circadian rhythmicity. Collectively, these findings highlight the male-specific involvement of CRTC1 in the central control of energy balance and circadian locomotor activity.

  10. Improvements in bladder, bowel and sexual outcomes following task-specific locomotor training in human spinal cord injury.

    Charles H Hubscher

    Full Text Available Locomotor training (LT as a therapeutic intervention following spinal cord injury (SCI is an effective rehabilitation strategy for improving motor outcomes, but its impact on non-locomotor functions is unknown. Given recent results of our labs' pre-clinical animal SCI LT studies and existing overlap of lumbosacral spinal circuitries controlling pelvic-visceral and locomotor functions, we addressed whether LT can improve bladder, bowel and sexual function in humans at chronic SCI time-points (> two years post-injury.Prospective cohort study; pilot trial with small sample size.Eight SCI research participants who were undergoing 80 daily one-hour sessions of LT on a treadmill using body-weight support, or one-hour of LT and stand training on alternate days, as part of another research study conducted at the Kentucky Spinal Cord Injury Research Center, University of Louisville, were enrolled in this pilot trial. Urodynamic assessments were performed and International Data Set questionnaire forms completed for bladder, bowel and sexual functions at pre-and post-training time points. Four usual care (non-trained; regular at-home routine research participants were also enrolled in this study and had the same assessments collected twice, at least 3 months apart.Filling cystometry documented significant increases in bladder capacity, voiding efficiency and detrusor contraction time as well as significant decreases in voiding pressure post-training relative to baseline. Questionnaires revealed a decrease in the frequency of nocturia and urinary incontinence for several research participants as well as a significant decrease in time required for defecation and a significant increase in sexual desire post-training. No significant differences were found for usual care research participants.These results suggest that an appropriate level of sensory information provided to the spinal cord, generated through task-specific stepping and/or loading, can positively

  11. Improvements in bladder, bowel and sexual outcomes following task-specific locomotor training in human spinal cord injury

    Williams, Carolyn S.; Montgomery, Lynnette R.; Willhite, Andrea M.; Angeli, Claudia A.; Harkema, Susan J.

    2018-01-01

    Objective Locomotor training (LT) as a therapeutic intervention following spinal cord injury (SCI) is an effective rehabilitation strategy for improving motor outcomes, but its impact on non-locomotor functions is unknown. Given recent results of our labs’ pre-clinical animal SCI LT studies and existing overlap of lumbosacral spinal circuitries controlling pelvic-visceral and locomotor functions, we addressed whether LT can improve bladder, bowel and sexual function in humans at chronic SCI time-points (> two years post-injury). Study design Prospective cohort study; pilot trial with small sample size. Methods Eight SCI research participants who were undergoing 80 daily one-hour sessions of LT on a treadmill using body-weight support, or one-hour of LT and stand training on alternate days, as part of another research study conducted at the Kentucky Spinal Cord Injury Research Center, University of Louisville, were enrolled in this pilot trial. Urodynamic assessments were performed and International Data Set questionnaire forms completed for bladder, bowel and sexual functions at pre-and post-training time points. Four usual care (non-trained; regular at-home routine) research participants were also enrolled in this study and had the same assessments collected twice, at least 3 months apart. Results Filling cystometry documented significant increases in bladder capacity, voiding efficiency and detrusor contraction time as well as significant decreases in voiding pressure post-training relative to baseline. Questionnaires revealed a decrease in the frequency of nocturia and urinary incontinence for several research participants as well as a significant decrease in time required for defecation and a significant increase in sexual desire post-training. No significant differences were found for usual care research participants. Conclusions These results suggest that an appropriate level of sensory information provided to the spinal cord, generated through task

  12. The Rewarding and Locomotor-Sensitizing Effects of Repeated Cocaine Administration are Distinct and Separable in Mice

    Riday, Thorfinn T.; Kosofsky, Barry E.; Malanga, C.J.

    2011-01-01

    Repeated psychostimulant exposure progressively increases their potency to stimulate motor activity in rodents. This behavioral or locomotor sensitization is considered a model for some aspects of drug addiction in humans, particularly drug craving during abstinence. However, the role of increased motor behavior in drug reward remains incompletely understood. Intracranial self-stimulation (ICSS) was measured concurrently with locomotor activity to determine if acute intermittent cocaine administration had distinguishable effects on motor behavior and perception of brain stimulation-reward (BSR) in the same mice. Sensitization is associated with changes in neuronal activity and glutamatergic neurotransmission in brain reward circuitry. Expression of AMPA receptor subunits (GluR1 and GluR2) and CRE binding protein (CREB) was measured in the ventral tegmental area (VTA), dorsolateral striatum (STR) and nucleus accumbens (NAc) before and after a sensitizing regimen of cocaine, with and without ICSS. Repeated cocaine administration sensitized mice to its locomotor stimulating effects but not its ability to potentiate BSR. ICSS increased GluR1 in the VTA but not NAc or STR, demonstrating selective changes in protein expression with electrical stimulation of discrete brain structures. Repeated cocaine reduced GluR1, GluR2 and CREB expression in the NAc, and reductions of GluR1 and GluR2 but not CREB were further enhanced by ICSS. These data suggest that the effects of repeated cocaine exposure on reward and motor processes are dissociable in mice, and that reduction of excitatory neurotransmission in the NAc may predict altered motor function independently from changes in reward perception. PMID:22197517

  13. MEMORY MODULATION

    Roozendaal, Benno; McGaugh, James L.

    2011-01-01

    Our memories are not all created equally strong: Some experiences are well remembered while others are remembered poorly, if at all. Research on memory modulation investigates the neurobiological processes and systems that contribute to such differences in the strength of our memories. Extensive evidence from both animal and human research indicates that emotionally significant experiences activate hormonal and brain systems that regulate the consolidation of newly acquired memories. These effects are integrated through noradrenergic activation of the basolateral amygdala which regulates memory consolidation via interactions with many other brain regions involved in consolidating memories of recent experiences. Modulatory systems not only influence neurobiological processes underlying the consolidation of new information, but also affect other mnemonic processes, including memory extinction, memory recall and working memory. In contrast to their enhancing effects on consolidation, adrenal stress hormones impair memory retrieval and working memory. Such effects, as with memory consolidation, require noradrenergic activation of the basolateral amygdala and interactions with other brain regions. PMID:22122145

  14. Genetic Ablation of V2a Ipsilateral Interneurons Disrupts Left-Right Locomotor Coordination in Mammalian Spinal Cord

    Crone, Steven A.; Quinlan, Katharina A.; Zagoraiou, Laskaro

    2008-01-01

    The initiation and coordination of activity in limb muscles are the main functions of neural circuits that control locomotion. Commissural neurons connect locomotor circuits on the two sides of the spinal cord, and represent the known neural substrate for left-right coordination. Here we......-extensor coordination is unaffected. Anatomical tracing studies reveal a direct excitatory input of V2a interneurons onto commissural interneurons, including a set of molecularly defined V0 neurons that drive left-right alternation. Our findings imply that the neural substrate for left-right coordination consists...... of at least two components; commissural neurons and a class of ipsilateral interneurons that activate commissural pathways....

  15. Impairment of locomotor activity induced by the novel N-acylhydrazone derivatives LASSBio-785 and LASSBio-786 in mice

    G.A.P. Silva

    Full Text Available The N-acylhydrazone (NAH analogues N-methyl 2-thienylidene 3,4-benzoylhydrazine (LASSBio-785 and N-benzyl 2-thienylidene 3,4-benzoylhydrazine (LASSBio-786 were prepared from 2-thienylidene 3,4-methylenedioxybenzoylhydrazine (LASSBio-294. The ability of LASSBio-785 and LASSBio-786 to decrease central nervous system activity was investigated in male Swiss mice. LASSBio-785 or LASSBio-786 (30 mg/kg, ip reduced locomotor activity from 209 ± 26 (control to 140 ± 18 (P < 0.05 or 146 ± 15 crossings/min (P < 0.05, respectively. LASSBio-785 (15 or 30 mg/kg, iv also reduced locomotor activity from 200 ± 15 to 116 ± 29 (P < 0.05 or 60 ± 16 crossings/min (P < 0.01, respectively. Likewise, LASSBio-786 (15 or 30 mg/kg, iv reduced locomotor activity from 200 ± 15 to 127 ± 10 (P < 0.01 or 96 ± 14 crossings/min (P < 0.01, respectively. Pretreatment with flumazenil (20 mg/kg, ip prevented the locomotor impairment induced by NAH analogues (15 mg/kg, iv, providing evidence that the benzodiazepine (BDZ receptor is involved. This finding was supported by the structural similarity of NAH analogues to midazolam. However, LASSBio-785 showed weak binding to the BDZ receptor. LASSBio-785 or LASSBio-786 (30 mg/kg, ip, n = 10 increased pentobarbital-induced sleeping time from 42 ± 5 (DMSO to 66 ± 6 (P < 0.05 or 75 ± 4 min (P < 0.05, respectively. The dose required to achieve 50% hypnosis (HD50 following iv injection of LASSBio-785 or LASSBio-786 was 15.8 or 9.5 mg/kg, respectively. These data suggest that both NAH analogues might be useful for the development of new neuroactive drugs for the treatment of insomnia or for use in conjunction with general anesthesia.

  16. Enkephalin and dynorphin neuropeptides are differently correlated with locomotor hypersensitivity and levodopa-induced dyskinesia in parkinsonian rats.

    Sgroi, Stefania; Capper-Loup, Christine; Paganetti, Paolo; Kaelin-Lang, Alain

    2016-06-01

    The opioidergic neuropeptides dynorphin (DYN) and enkephalin (ENK) and the D1 and D2 dopaminergic receptors (D1R, D2R) are involved in the striatal control of motor and behavioral function. In Parkinson's disease, motor disturbances such as "on-off" motor fluctuations and involuntary movements (dyskinesia) are severe complications that often arise after chronic l-dihydroxyphenylalanine (l-DOPA) treatment. Changes in the striatal expression of preproENK (PPENK), proDYN (PDYN), D1R, and D2R mRNA have been observed in parkinsonian animals treated with l-DOPA. Enhanced opioidergic transmission has been found in association with l-DOPA-induced dyskinesia, but the connection of PPENK, PDYN, D1R, and D2R mRNA expression with locomotor activity remains unclear. In this study, we measured PPENK, PDYN, D1R and D2R mRNA levels by in situ hybridization in