WorldWideScience

Sample records for modulated temperature differential

  1. Temperature modulated differential scanning calorimetry. Modelling and applications

    International Nuclear Information System (INIS)

    Jiang, Z.

    2000-01-01

    DSC. Some shortcomings of TMDSC have been noticed in both modelling and application work. Firstly, any experiments for purpose of either understanding or the quantitative measurements of TMDSC output quantities should be performed under carefully selected conditions which can satisfy the linear response assumption. Secondly, some signals in particular those associated with kinetic processes may not be fully sampled by TMDSC due to the limit of the observing window of a modulation. Thirdly, the TMDSC evaluation procedure introduces mathematical artefacts into the output signals. As a consequence, it is preferable to include as many temperature modulations as possible within any transition being studied in order obtain good quality experimental signals by eliminating or minimising these artefacts. (author)

  2. On the Frequency Correction in Temperature-Modulated Differential Scanning Calorimetry of Glass Transition

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Mauro, J.C.; Allan, D.C.

    2012-01-01

    Temperature-modulated differential scanning calorimetry (TMDSC) is based on conventional DSC but with a sinusoidally modulated temperature path. Simulations of TMDSC signals were performed for Corning EAGLE XG® glass over a wide range of modulation frequencies. Our results reveal that the frequency...... correction commonly used in the interpretation of TMDSC signals leads to a master nonreversing heat flow curve independent of modulation frequency, provided that sufficiently high frequencies are employed in the TMDSC measurement. A master reversing heat flow curve can also be generated through the frequency...

  3. Insights into glass transition and relaxation behavior using temperature-modulated differential scanning calorimetry

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Mauro, J.C.; Allan, D.C.

    Temperature-modulated differential scanning calorimetry (TMDSC) is based on conventional DSC but with a sinusoidally modulated temperature path. Our simulations of TMDSC signals prove that the frequency correction of non-reversing heat flow can give a master curve within a certain range...... of frequencies. This frequency range is dependent not only on the measurement parameters such as linear heating/cooling rate and frequency and amplitude of the modulation, but also on the previous thermal history before the TMDSC measurement. The frequency correction for the reversing heat flow gives more...

  4. Modulated Temperature Differential Scanning Calorimetry Theoretical and Practical Applications in Polymer Characterisation

    CERN Document Server

    Reading, Mike

    2006-01-01

    MTDSC provides a step-change increase in the power of calorimetry to characterize virtually all polymer systems including curing systems, blends and semicrystalline polymers. It enables hidden transitions to be revealed, miscibility to be accurately assessed, and phases and interfaces in complex blends to be quantified. It also enables crystallinity in complex systems to be measured and provides new insights into melting behaviour. All of this is achieved by a simple modification of conventional DSC. In 1992 a new calorimetric technique was introduced that superimposed a small modulation on top of the conventional linear temperature program typically used in differential scanning calorimetry. This was combined with a method of data analysis that enabled the sample’s response to the linear component of the temperature program to be separated from its response to the periodic component. In this way, for the first time, a signal equivalent to that of conventional DSC was obtained simultaneously with a measure ...

  5. Thermal behavior and phase identification of Valsartan by standard and temperature-modulated differential scanning calorimetry.

    Science.gov (United States)

    Skotnicki, Marcin; Gaweł, Agnieszka; Cebe, Peggy; Pyda, Marek

    2013-10-01

    Thermal behavior of angiotensin II type 1 (AT1) receptor antagonist, Valsartan (VAL), was examined employing thermogravimetric analysis (TGA), standard differential scanning calorimetry (DSC) and temperature-modulated differential scanning calorimetry (TMDSC). The stability of VAL was measured by TGA from 25 to 600°C. Decomposition of Valsartan starts around 160°C. The DSC curve shows two endotherms, occurring around 80°C and 100°C, related to evaporation of water and enthalpy relaxation, respectively. Valsartan was identified by DSC as an amorphous material and it was confirmed by X-ray powder diffraction. The glass transition of fresh Valsartan appears around 76°C (fictive temperature). TMDSC allows separation of the total heat flow rate into reversing and nonreversing parts. The nonreversing curve corresponds to the enthalpy relaxation and the reversing curve shows changes of heat capacity around 94°C. In the second run, TMDSC curve shows the glass transition process occurring at around 74°C. Results from standard DSC and TMDSC of Valsartan were compared over the whole range of temperature.

  6. Study of gamma irradiated polyethylenes by temperature modulated differential scanning calorimetry

    International Nuclear Information System (INIS)

    Secerov, B.; Galovic, S.; Trifunovic, S.; Milicevic, D.; Suljovrujic, E.

    2011-01-01

    Complete text of publication follows. The various polyethylenes (PEs) and effects of high energy radiation on theirs structures were widely studied in the past using conventional Differential Scanning Calorimetry (DSC) measurements. In this work, we applied the Temperature Modulated Differential Scanning Calorimetry (TMDSC) technique in order to obtain more information about the influence of initial structural differences and gamma radiation on the evolution in structure and thermal properties of different polyethylenes. For this reason, low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and high density polyethylene (HDPE) samples were exposed to gamma radiation, in air, to a wide range of absorbed doses (up to 2400 kGy). The separation of the total heat flow TMDSC signal into a reversing and nonreversing part enabled to observed the low temperature enthalpy relaxation (related to the existence of the 'rigid amorphous phase') and recrystallization processes as well as to follow their and/or radiation-induced evolution of melting in a more revealing manner compared to the case of the conventional DSC. Consequently, our results indicate that TMDSC could improve the understanding of radiation-induced effects in polymers.

  7. A study of gamma-irradiated polyethylenes by temperature modulated differential scanning calorimetry

    Science.gov (United States)

    Galovic, S.; Secerov, B.; Trifunovic, S.; Milicevic, D.; Suljovrujic, E.

    2012-09-01

    Various polyethylenes (PEs) and the effects of high-energy radiation on their structures were widely studied in the past using conventional Differential Scanning Calorimetry (DSC) measurements. In this work, we used the Temperature Modulated Differential Scanning Calorimetry (TMDSC) technique in order to obtain more information about the influence of the initial structural differences and gamma radiation on the evolution in structure and thermal properties of different polyethylenes. For this reason, low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and high density polyethylene (HDPE) samples were exposed to gamma radiation, in air, to a wide range of absorbed doses (up to 2400 kGy). The separation of the total heat flow TMDSC signal into a reversing and non-reversing part enabled us to observe the low-temperature enthalpy relaxation (related to the existence of the "rigid amorphous phase") and recrystallisation processes, as well as to follow their radiation-induced evolution and/or that of melting in a more revealing manner compared to the case of the conventional DSC. Consequently, our results indicate that TMDSC could improve the understanding of radiation-induced effects in polymers.

  8. Differential scanning calorimetry (DSC) and temperature-modulated DSC study of three mouthguard materials.

    Science.gov (United States)

    Meng, Frank H; Schricker, Scott R; Brantley, William A; Mendel, Deborah A; Rashid, Robert G; Fields, Henry W; Vig, Katherine W L; Alapati, Satish B

    2007-12-01

    Employ differential scanning calorimetry (DSC) and temperature-modulated DSC (TMDSC) to investigate thermal transformations in three mouthguard materials and provide insight into their previously investigated energy absorption. Samples (13-21mg) were obtained from (a) conventional ethylene vinyl acetate (EVA), (b) Pro-form, another EVA polymer, and (c) PolyShok, an EVA polymer containing polyurethane. Conventional DSC (n=5) was first performed from -80 to 150 degrees C at a heating rate of 10 degrees C/min to determine the temperature range for structural transformations. Subsequently, TMDSC (n=5) was performed from -20 to 150 degrees C at a heating rate of 1 degrees C/min. Onset and peak temperatures were compared using ANOVA and the Tukey-Kramer HSD test. Other samples were coated with a gold-palladium film and examined with an SEM. DSC and TMDSC curves were similar for both conventional EVA and Pro-form, showing two endothermic peaks suggestive of melting processes, with crystallization after the higher-temperature peak. Evidence for crystallization and the second endothermic peak were much less prominent for PolyShok, which had no peaks associated with the polyurethane constituent. The onset of the lower-temperature endothermic transformation is near body temperature. No glass transitions were observed in the materials. SEM examination revealed different surface morphology and possible cushioning effect for PolyShok, compared to Pro-form and EVA. The difference in thermal behavior for PolyShok is tentatively attributed to disruption of EVA crystal formation, which may contribute to its superior impact resistance. The lower-temperature endothermic peak suggests that impact testing of these materials should be performed at 37 degrees C.

  9. Optimization of flavanones extraction by modulating differential solvent densities and centrifuge temperatures.

    Science.gov (United States)

    Chebrolu, Kranthi K; Jayaprakasha, G K; Jifon, J; Patil, Bhimanagouda S

    2011-07-15

    Understanding the factors influencing flavonone extraction is critical for the knowledge in sample preparation. The present study was focused on the extraction parameters such as solvent, heat, centrifugal speed, centrifuge temperature, sample to solvent ratio, extraction cycles, sonication time, microwave time and their interactions on sample preparation. Flavanones were analyzed in a high performance liquid chromatography (HPLC) and later identified by liquid chromatography and mass spectrometry (LC-MS). The five flavanones were eluted by a binary mobile phase with 0.03% phosphoric acid and acetonitrile in 20 min and detected at 280 nm, and later identified by mass spectral analysis. Dimethylsulfoxide (DMSO) and dimethyl formamide (DMF) had optimum extraction levels of narirutin, naringin, neohesperidin, didymin and poncirin compared to methanol (MeOH), ethanol (EtOH) and acetonitrile (ACN). Centrifuge temperature had a significant effect on flavanone distribution in the extracts. The DMSO and DMF extracts had homogeneous distribution of flavanones compared to MeOH, EtOH and ACN after centrifugation. Furthermore, ACN showed clear phase separation due to differential densities in the extracts after centrifugation. The number of extraction cycles significantly increased the flavanone levels during extraction. Modulating the sample to solvent ratio increased naringin quantity in the extracts. Current research provides critical information on the role of centrifuge temperature, extraction solvent and their interactions on flavanone distribution in extracts. Published by Elsevier B.V.

  10. Application of TZERO calibrated modulated temperature differential scanning calorimetry to characterize model protein formulations.

    Science.gov (United States)

    Badkar, Aniket; Yohannes, Paulos; Banga, Ajay

    2006-02-17

    The objective of this study was to evaluate the feasibility of using T(ZERO) modulated temperature differential scanning calorimetry (MDSC) as a novel technique to characterize protein solutions using lysozyme as a model protein and IgG as a model monoclonal antibody. MDSC involves the application of modulated heating program, along with the standard heating program that enables the separation of overlapping thermal transitions. Although characterization of unfolding transitions for protein solutions requires the application of high sensitive DSC, separation of overlapping transitions like aggregation and other exothermic events may be possible only by use of MDSC. A newer T(ZERO) calibrated MDSC model from TA instruments that has improved sensitivity than previous models was used. MDSC analysis showed total, reversing and non-reversing heat flow signals. Total heat flow signals showed a combination of melting endotherms and overlapping exothermic events. Under the operating conditions used, the melting endotherms were seen in reversing heat flow signal while the exothermic events were seen in non-reversing heat flow signal. This enabled the separation of overlapping thermal transitions, improved data analysis and decreased baseline noise. MDSC was used here for characterization of lysozyme solutions, but its feasibility for characterizing therapeutic protein solutions needs further assessment.

  11. Heat capacity measurements on ThO2 by temperature modulated differential scanning calorimetry (TMDSC)

    International Nuclear Information System (INIS)

    Venkatakrishnan, R.; Nagarajan, K.; Vasudeva Rao, P.R.

    2001-01-01

    Heat capacity measurements were carried out on ThO 2 in the temperature range 330-820 K by using temperature modulated DSC. An underlying heating rate of 5 K. min -1 , a temperature modulation with an amplitude of 0.398K and a period of 150s were used for these measurements. The heat capacity values are within ± 2-4% of the literature data. (author)

  12. Application of the modulated temperature differential scanning calorimetry technique for the determination of the specific heat of copper nanofluids

    International Nuclear Information System (INIS)

    De Robertis, E.; Cosme, E.H.H.; Neves, R.S.; Kuznetsov, A.Yu.; Campos, A.P.C.; Landi, S.M.; Achete, C.A.

    2012-01-01

    The purpose of this work is to investigate the applicability of the modulated temperature differential scanning calorimetry technique to measure specific heat of copper nanofluids by using the ASTM E2719 standard procedure, which is generally applied to thermally stable solids and liquids. The one-step method of preparation of copper nanofluid samples is described. The synthesized nanoparticles were separated from the base fluid and examined by X-ray diffraction and transmission electron microscopy in order to evaluate their structure, morphology and chemical nature. The presence of copper nanoparticles in the base fluid alters the characteristics of crystallization and melting processes and reduces the specific heat values of nanofluids in the whole studied temperature range. - Highlights: ► Copper nanofluids prepared by one-step method. ► Methodology of synthesis improved nanofluid stability. ► Specific heat determinations using modulated temperature differential scanning calorimetry. ► Good agreement between theoretical and experimental values.

  13. Development of frost tolerance in winter wheat as modulated by differential root and shoot temperature

    NARCIS (Netherlands)

    Windt, C.W.; van Hasselt, P.R

    Winter wheat plants (Triticum aestivum L. cv. Urban), grown in nutrient solution, were exposed to differential shoot/root temperatures (i.e., 4/4, 4/20, 20/4 and 20/20 degrees C) for six weeks. Leaves grown at 4 degrees C showed an increase in frost tolerance from - 4 degrees C down to -11 degrees

  14. Quantitative determination of the specific heat and the glass transition of moist samples by temperature modulated differential scanning calorimetry.

    Science.gov (United States)

    Schubnell, M; Schawe, J E

    2001-04-17

    In differential scanning calorimetry (DSC), remnant moisture loss in samples often overlaps and distorts other thermal events, e.g. glass transitions. To separate such overlapping processes, temperature modulated DSC (TMDSC) has been widely used. In this contribution we discuss the quantitative determination of the heat capacity of a moist sample from TMDSC measurements. The sample was a spray-dried pharmaceutical compound run in different pans (hermetically-sealed pan, pierced lid pan [50 microm] and open pan). The apparent heat capacity was corrected for the remaining amount of moisture. Using this procedure we could clearly identify the glass transition of the dry and the moist sample. We found that a moisture content of about 6.2% shifts the glass transition by about 50 degrees C.

  15. Applications of Modulated Temperature Differential Scanning Calorimetry to Polymer Blends and Related Systems

    Science.gov (United States)

    Hourston, Douglas J.; Song, Mo

    It has been shown in this chapter that the MTDSC technique is a very useful tool in the study of several aspects of polymer blends and related materials including structured latexes and interpenetrating polymer networks. It is important to note that the dC p/dT versus temperature signal may be used not only qualitatively as a sensitive detector of transitions impossible to spot by other thermal techniques such as conventional DSC and DMTA, but it may also be used to significant advantage in a quantitative way. It has been shown that it is sensitive to the diffuse interface between phases. Thus, from dC p/dT versus temperature signals, the weight fraction of the diffuse interface can be quantified. There are many situations where this will prove to be very valuable.

  16. Power Generator with Thermo-Differential Modules

    Science.gov (United States)

    Saiz, John R.; Nguyen, James

    2010-01-01

    A thermoelectric power generator consists of an oven box and a solar cooker/solar reflector unit. The solar reflector concentrates sunlight into heat and transfers the heat into the oven box via a heat pipe. The oven box unit is surrounded by five thermoelectric modules and is located at the bottom end of the solar reflector. When the heat is pumped into one side of the thermoelectric module and ejected from the opposite side at ambient temperatures, an electrical current is produced. Typical temperature accumulation in the solar reflector is approximately 200 C (392 F). The heat pipe then transfers heat into the oven box with a loss of about 40 percent. At the ambient temperature of about 20 C (68 F), the temperature differential is about 100 C (180 F) apart. Each thermoelectric module, generates about 6 watts of power. One oven box with five thermoelectric modules produces about 30 watts. The system provides power for unattended instruments in remote areas, such as space colonies and space vehicles, and in polar and other remote regions on Earth.

  17. Stochastic temperature modulation: A new technique in temperature-modulated DSC

    International Nuclear Information System (INIS)

    Schawe, J.E.K.; Huetter, T.; Heitz, C.; Alig, I.; Lellinger, D.

    2006-01-01

    A new temperature-modulated differential scanning calorimetry (TMDSC) technique is introduced. The technique is based on stochastic temperature modulation and has been developed as a consequence of a generalized theory of a temperature-modulated DSC. The quasi-static heat capacity and the frequency-dependent complex heat capacity can be determined over a wide frequency range in one single measurement without further calibration. Furthermore, the reversing and non-reversing heat flows are determined directly from the measured data. Examples show the frequency dependence of the glass transition, the isothermal curing of thermosets and a solid-solid transition

  18. Differential Expression of Histone H3.3 Genes and Their Role in Modulating Temperature Stress Response in Caenorhabditis elegans.

    Science.gov (United States)

    Delaney, Kamila; Mailler, Jonathan; Wenda, Joanna M; Gabus, Caroline; Steiner, Florian A

    2018-04-10

    Replication-independent variant histones replace canonical histones in nucleosomes and act as important regulators of chromatin function. H3.3 is a major variant of histone H3 that is remarkably conserved across all taxa and is distinguished from canonical H3 by just four key amino acids. Most genomes contain two or more genes expressing H3.3, and complete loss of the protein usually causes sterility or embryonic lethality. Here we investigated the developmental expression pattern of the five Caenorhabditis elegans H3.3 homologues and identified two previously uncharacterized homologues to be restricted to the germ line. We demonstrate an essential role for the conserved histone chaperone HIRA in the nucleosomal loading of all H3.3 variants. This requirement can be bypassed by mutation of the H3.3-specific residues to those found in H3. Analysis of H3.3 knockout mutants revealed a surprising absence of developmental phenotypes. While removal of all H3.3 homologues did not result in lethality, it led to reduced fertility and viability in response to high temperature stress. Our results thus show that H3.3 is non-essential in C. elegans , but is critical for ensuring adequate response to stress. Copyright © 2018, Genetics.

  19. The Use of Quasi-Isothermal Modulated Temperature Differential Scanning Calorimetry for the Characterization of Slow Crystallization Processes in Lipid-Based Solid Self-Emulsifying Systems

    OpenAIRE

    Otun, Sarah O.; Meehan, Elizabeth; Qi, Sheng; Craig, Duncan Q. M.

    2014-01-01

    Purpose Slow or incomplete crystallization may be a significant manufacturing issue for solid lipid-based dosage forms, yet little information is available on this phenomenon. In this investigation we suggest a novel means by which slow solidification may be monitored in Gelucire 44/14 using quasi-isothermal modulated temperature DSC (QiMTDSC). Methods Conventional linear heating and cooling DSC methods were employed, along with hot stage microscopy (HSM), for basic thermal profiling of Geluc...

  20. Temperature Modulated Nanomechanical Thermal Analysis

    DEFF Research Database (Denmark)

    Alves, Gustavo Marcati A.; Bose-Goswami, Sanjukta; Mansano, Ronaldo D.

    2018-01-01

    The response of microcantilever deflection to complex heating profiles was used to study thermal events like glass transition and enthalpy relaxation on nanograms of the biopolymer Poly(lactic-co-glycolic acid) (PLGA). The use of two heating rates enables the separation of effects on the deflection...... response that depends on previous thermal history (non-reversing signal) and effects that depends only on the heating rate variation (reversing signal). As these effects may appear superposed in the total response, temperature modulation can increase the measurement sensitivity to some thermal events when...

  1. The use of quasi-isothermal modulated temperature differential scanning calorimetry for the characterization of slow crystallization processes in lipid-based solid self-emulsifying systems.

    Science.gov (United States)

    Otun, Sarah O; Meehan, Elizabeth; Qi, Sheng; Craig, Duncan Q M

    2015-04-01

    Slow or incomplete crystallization may be a significant manufacturing issue for solid lipid-based dosage forms, yet little information is available on this phenomenon. In this investigation we suggest a novel means by which slow solidification may be monitored in Gelucire 44/14 using quasi-isothermal modulated temperature DSC (QiMTDSC). Conventional linear heating and cooling DSC methods were employed, along with hot stage microscopy (HSM), for basic thermal profiling of Gelucire 44/14. QiMTDSC experiments were performed on cooling from the melt, using a range of incremental decreases in temperature and isothermal measurement periods. DSC and HSM highlighted the main (primary) crystallization transition; solid fat content analysis and kinetic analysis were used to profile the solidification process. The heat capacity profile from QiMTDSC indicated that after an initial energetic primary crystallisation, the lipid underwent a slower period of crystallization which continued to manifest at much lower temperatures than indicated by standard DSC. We present evidence that Gelucire 44/14 undergoes an initial crystallization followed by a secondary, slower process. QIMTDSC appears to be a promising tool in the investigation of this secondary crystallization process.

  2. Crystallization of Polymers Investigated by Temperature-Modulated DSC

    OpenAIRE

    Maria Cristina Righetti

    2017-01-01

    The aim of this review is to summarize studies conducted by temperature-modulated differential scanning calorimetry (TMDSC) on polymer crystallization. This technique can provide several advantages for the analysis of polymers with respect to conventional differential scanning calorimetry. Crystallizations conducted by TMDSC in different experimental conditions are analysed and discussed, in order to illustrate the type of information that can be deduced. Isothermal and non-isothermal crystal...

  3. Crystallization of Polymers Investigated by Temperature-Modulated DSC

    Directory of Open Access Journals (Sweden)

    Maria Cristina Righetti

    2017-04-01

    Full Text Available The aim of this review is to summarize studies conducted by temperature-modulated differential scanning calorimetry (TMDSC on polymer crystallization. This technique can provide several advantages for the analysis of polymers with respect to conventional differential scanning calorimetry. Crystallizations conducted by TMDSC in different experimental conditions are analysed and discussed, in order to illustrate the type of information that can be deduced. Isothermal and non-isothermal crystallizations upon heating and cooling are examined separately, together with the relevant mathematical treatments that allow the evolution of the crystalline, mobile amorphous and rigid amorphous fractions to be determined. The phenomena of ‘reversing’ and ‘reversible‘ melting are explicated through the analysis of the thermal response of various semi-crystalline polymers to temperature modulation.

  4. Crossed Module Bundle Gerbes; Classification, String Group and Differential Geometry

    OpenAIRE

    Jurco, Branislav

    2005-01-01

    We discuss nonabelian bundle gerbes and their differential geometry using simplicial methods. Associated to any crossed module there is a simplicial group NC, the nerve of the 1-category defined by the crossed module and its geometric realization |NC|. Equivalence classes of principal bundles with structure group |NC| are shown to be one-to-one with stable equivalence classes of what we call crossed module gerbes bundle gerbes. We can also associate to a crossed module a 2-category C'. Then t...

  5. Temperature effects in differential mobility spectrometry

    Science.gov (United States)

    Krylov, Evgeny V.; Coy, Stephen L.; Nazarov, Erkinjon G.

    2009-01-01

    Drift gas temperature and pressure influence differential mobility spectrometer (DMS) performance, changing DMS peak positions, heights and widths. This study characterizes the effect of temperature on DMS peak positions. Positive ions of methyl salicylate, DMMP, and toluene, and negative ions of methyl salicylate and the reactant ion peaks were observed in purified nitrogen in the Sionex microDMx planar DMS. Measurements were made at ambient pressure (1 atm) at temperatures from 25 °C to 150 °C in a planar sensor with height 0.5 mm. Peak value of the separation voltage asymmetric waveform was scanned from 500 V to 1500 V. Compensation voltage (DMS peak position) showed a strong variation with temperature for all investigated ions. By generalizing the concept of effective ion temperature to include the effects of inelastic ion-molecular collisions, we have been able to condense peak position dependence on separation field and temperature to dependence on a redefined effective temperature including a smoothly varying inelasticity correction. It allows prediction and correction of the gas temperature effect on DMS peak positions.

  6. Multilinear intertwining differential operators from new generalized Verma modules

    International Nuclear Information System (INIS)

    Dobrev, V.K.

    1998-01-01

    The present contribution contains two interrelated developments. First are proposed new generalized Verma modules. They are called k-Verma modules (k is a natural number) and coincide with the usual Verma modules for k=1. As a vector space, a k-Verma module is isomorphic to the symmetric tensor product of k copies of the universal enveloping algebra U(G -1 ) of the lowering generators of any simple Lie algebra G. The second development is the proposal of a procedure for constructing multilinear intertwining differential operators for semisimple Lie groups G. This procedure uses the k-Verma modules and, for k=1, coincides with our procedure for constructing linear intertwining differential operators. For all k, a central role is played by the singular vectors of the k-Verma modules. Explicit formulas for series of such singular vectors are given. With the aid of these, many new examples of multilinear intertwining differential operators are given explicitly. In particular, all bilinear intertwining differential operators are given explicitly for G=SL(2R). With the aid of the latter, (n/2)-differentials for all even natural n are constructed as an application, the ordinary Schwarzian corresponding to the case of n=4. As another application, a new hierarchy of nonlinear equations is proposed, the lowest member being the KdV equation

  7. Differential Heating in the Indian Ocean Differentially Modulates Precipitation in the Ganges and Brahmaputra Basins

    Directory of Open Access Journals (Sweden)

    Md Shahriar Pervez

    2016-10-01

    Full Text Available Indo-Pacific sea surface temperature dynamics play a prominent role in Asian summer monsoon variability. Two interactive climate modes of the Indo-Pacific—the El Niño/Southern Oscillation (ENSO and the Indian Ocean dipole mode—modulate the amount of precipitation over India, in addition to precipitation over Africa, Indonesia, and Australia. However, this modulation is not spatially uniform. The precipitation in southern India is strongly forced by the Indian Ocean dipole mode and ENSO. In contrast, across northern India, encompassing the Ganges and Brahmaputra basins, the climate mode influence on precipitation is much less. Understanding the forcing of precipitation in these river basins is vital for food security and ecosystem services for over half a billion people. Using 28 years of remote sensing observations, we demonstrate that (i the tropical west-east differential heating in the Indian Ocean influences the Ganges precipitation and (ii the north-south differential heating in the Indian Ocean influences the Brahmaputra precipitation. The El Niño phase induces warming in the warm pool of the Indian Ocean and exerts more influence on Ganges precipitation than Brahmaputra precipitation. The analyses indicate that both the magnitude and position of the sea surface temperature anomalies in the Indian Ocean are important drivers for precipitation dynamics that can be effectively summarized using two new indices, one tuned for each basin. These new indices have the potential to aid forecasting of drought and flooding, to contextualize land cover and land use change, and to assess the regional impacts of climate change.

  8. Differential heating in the Indian Ocean differentially modulates precipitation in the Ganges and Brahmaputra basins

    Science.gov (United States)

    Pervez, Md Shahriar; Henebry, Geoffrey M.

    2016-01-01

    Indo-Pacific sea surface temperature dynamics play a prominent role in Asian summer monsoon variability. Two interactive climate modes of the Indo-Pacific—the El Niño/Southern Oscillation (ENSO) and the Indian Ocean dipole mode—modulate the amount of precipitation over India, in addition to precipitation over Africa, Indonesia, and Australia. However, this modulation is not spatially uniform. The precipitation in southern India is strongly forced by the Indian Ocean dipole mode and ENSO. In contrast, across northern India, encompassing the Ganges and Brahmaputra basins, the climate mode influence on precipitation is much less. Understanding the forcing of precipitation in these river basins is vital for food security and ecosystem services for over half a billion people. Using 28 years of remote sensing observations, we demonstrate that (i) the tropical west-east differential heating in the Indian Ocean influences the Ganges precipitation and (ii) the north-south differential heating in the Indian Ocean influences the Brahmaputra precipitation. The El Niño phase induces warming in the warm pool of the Indian Ocean and exerts more influence on Ganges precipitation than Brahmaputra precipitation. The analyses indicate that both the magnitude and position of the sea surface temperature anomalies in the Indian Ocean are important drivers for precipitation dynamics that can be effectively summarized using two new indices, one tuned for each basin. These new indices have the potential to aid forecasting of drought and flooding, to contextualize land cover and land use change, and to assess the regional impacts of climate change.

  9. Modulation of chromatin access during adipocyte differentiation

    DEFF Research Database (Denmark)

    Mandrup, Susanne; Hager, Gordon L

    2012-01-01

    identified; however, it is not until recently that we have begun to understand how these factors act at a genome-wide scale. In a recent publication we have mapped the genome-wide changes in chromatin structure during differentiation of 3T3-L1 preadipocytes and shown that a major reorganization...... of the chromatin landscape occurs within few hours following the addition of the adipogenic cocktail. In addition, we have mapped the genome-wide profiles of several of the early adipogenic transcription factors and shown that they act in a highly cooperative manner to drive this dramatic remodeling process....

  10. Operating Cell Temperature Determination in Flat-Plate Photovoltaic Modules

    International Nuclear Information System (INIS)

    Chenlo, F.

    2002-01-01

    Two procedures (simplified and complete) to determine me operating cell temperature in photovoltaic modules operating in real conditions assuming isothermal stationary modules are presented in this work. Some examples are included that show me dependence of this temperature on several environmental (sky, ground and ambient temperatures, solar irradiance, wind speed, etc.) and structural (module geometry and size, encapsulating materials, anti reflexive optical coatings, etc.) factors and also on electrical module performance. In a further step temperature profiles for non-isothermal modules are analysed besides transitory effects due to variable irradiance and wind gusts. (Author) 27 refs

  11. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.; Yang, P.E.; Lin, Y.P.; Lin, B.Y.; Chen, H.J.; Lai, R.C.; Cheng, J.S.

    2011-01-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well

  12. Robust fractional order differentiators using generalized modulating functions method

    KAUST Repository

    Liu, Dayan; Laleg-Kirati, Taous-Meriem

    2015-01-01

    This paper aims at designing a fractional order differentiator for a class of signals satisfying a linear differential equation with unknown parameters. A generalized modulating functions method is proposed first to estimate the unknown parameters, then to derive accurate integral formulae for the left-sided Riemann-Liouville fractional derivatives of the studied signal. Unlike the improper integral in the definition of the left-sided Riemann-Liouville fractional derivative, the integrals in the proposed formulae can be proper and be considered as a low-pass filter by choosing appropriate modulating functions. Hence, digital fractional order differentiators applicable for on-line applications are deduced using a numerical integration method in discrete noisy case. Moreover, some error analysis are given for noise error contributions due to a class of stochastic processes. Finally, numerical examples are given to show the accuracy and robustness of the proposed fractional order differentiators.

  13. Robust fractional order differentiators using generalized modulating functions method

    KAUST Repository

    Liu, Dayan

    2015-02-01

    This paper aims at designing a fractional order differentiator for a class of signals satisfying a linear differential equation with unknown parameters. A generalized modulating functions method is proposed first to estimate the unknown parameters, then to derive accurate integral formulae for the left-sided Riemann-Liouville fractional derivatives of the studied signal. Unlike the improper integral in the definition of the left-sided Riemann-Liouville fractional derivative, the integrals in the proposed formulae can be proper and be considered as a low-pass filter by choosing appropriate modulating functions. Hence, digital fractional order differentiators applicable for on-line applications are deduced using a numerical integration method in discrete noisy case. Moreover, some error analysis are given for noise error contributions due to a class of stochastic processes. Finally, numerical examples are given to show the accuracy and robustness of the proposed fractional order differentiators.

  14. Neuronal Differentiation Modulated by Polymeric Membrane Properties.

    Science.gov (United States)

    Morelli, Sabrina; Piscioneri, Antonella; Drioli, Enrico; De Bartolo, Loredana

    2017-01-01

    In this study, different collagen-blend membranes were successfully constructed by blending collagen with chitosan (CHT) or poly(lactic-co-glycolic acid) (PLGA) to enhance their properties and thus create new biofunctional materials with great potential use for neuronal tissue engineering and regeneration. Collagen blending strongly affected membrane properties in the following ways: (i) it improved the surface hydrophilicity of both pure CHT and PLGA membranes, (ii) it reduced the stiffness of CHT membranes, but (iii) it did not modify the good mechanical properties of PLGA membranes. Then, we investigated the effect of the different collagen concentrations on the neuronal behavior of the membranes developed. Morphological observations, immunocytochemistry, and morphometric measures demonstrated that the membranes developed, especially CHT/Col30, PLGA, and PLGA/Col1, provided suitable microenvironments for neuronal growth owing to their enhanced properties. The most consistent neuronal differentiation was obtained in neurons cultured on PLGA-based membranes, where a well-developed neuronal network was achieved due to their improved mechanical properties. Our findings suggest that tensile strength and elongation at break are key material parameters that have potential influence on both axonal elongation and neuronal structure and organization, which are of fundamental importance for the maintenance of efficient neuronal growth. Hence, our study has provided new insights regarding the effects of membrane mechanical properties on neuronal behavior, and thus it may help to design and improve novel instructive biomaterials for neuronal tissue engineering. © 2017 S. Karger AG, Basel.

  15. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms.

    Science.gov (United States)

    Wei, Min; Li, Song; Le, Weidong

    2017-10-25

    Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells' fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.

  16. Temperature dependence of photovoltaic cells, modules, and systems

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Burdick, J.; Caiyem, Y. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    Photovoltaic (PV) cells and modules are often rated in terms of a set of standard reporting conditions defined by a temperature, spectral irradiance, and total irradiance. Because PV devices operates over a wide range of temperatures and irradiances, the temperature and irradiance related behavior must be known. This paper surveys the temperature dependence of crystalline and thin-film, state-of-the-art, research-size cells, modules, and systems measured by a variety of methods. The various error sources and measurement methods that contribute to cause differences in the temperature coefficient for a given cell or module measured with various methods are discussed.

  17. Body/bone-marrow differential-temperature sensor

    Science.gov (United States)

    Anselmo, V. J.; Berdahl, C. M.

    1978-01-01

    Differential-temperature sensor developed to compare bone-marrow and body temperature in leukemia patients uses single stable amplifier to monitor temperature difference recorded by thermocouples. Errors are reduced by referencing temperatures to each other, not to separate calibration points.

  18. Platinum-Resistor Differential Temperature Sensor

    Science.gov (United States)

    Kolbly, R. B.; Britcliffe, M. J.

    1985-01-01

    Platinum resistance elements used in bridge circuit for measuring temperature difference between two flowing liquids. Temperature errors with circuit are less than 0.01 degrees C over range of 100 degrees C.

  19. Modulation of neuronal differentiation by CD40 isoforms

    International Nuclear Information System (INIS)

    Hou Huayu; Obregon, Demian; Lou, Deyan; Ehrhart, Jared; Fernandez, Frank; Silver, Archie; Tan Jun

    2008-01-01

    Neuron differentiation is a complex process involving various cell-cell interactions, and multiple signaling pathways. We showed previously that CD40 is expressed and functional on mouse and human neurons. In neurons, ligation of CD40 protects against serum withdrawal-induced injury and plays a role in survival and differentiation. CD40 deficient mice display neuron dysfunction, aberrant neuron morphologic changes, and associated gross brain abnormalities. Previous studies by Tone and colleagues suggested that five isoforms of CD40 exist with two predominant isoforms expressed in humans: signal-transducible CD40 type I and a C-terminal truncated, non-signal-transducible CD40 type II. We hypothesized that differential expression of CD40 isoform type I and type II in neurons may modulate neuron differentiation. Results show that adult wild-type, and CD40 -/- deficient mice predominantly express CD40 type I and II isoforms. Whereas adult wild-type mice express mostly CD40 type I in cerebral tissues at relatively high levels, in age and gender-matched CD40 -/- mice CD40 type I expression was almost completely absent; suggesting a predominance of the non-signal-transducible CD40 type II isoform. Younger, 1 day old wild-type mice displayed less CD40 type I, and more CD40 type II, as well as, greater expression of soluble CD40 (CD40L/CD40 signal inhibitor), compared with 1 month old mice. Neuron-like N2a cells express CD40 type I and type II isoforms while in an undifferentiated state, however once induced to differentiate, CD40 type I predominates. Further, differentiated N2a cells treated with CD40 ligand express high levels of neuron specific nuclear protein (NeuN); an effect reduced by anti-CD40 type I siRNA, but not by control (non-targeting) siRNA. Altogether these data suggest that CD40 isoforms may act in a temporal fashion to modulate neuron differentiation during brain development. Thus, modulation of neuronal CD40 isoforms and CD40 signaling may represent

  20. Polymeric membranes modulate human keratinocyte differentiation in specific epidermal layers.

    Science.gov (United States)

    Salerno, Simona; Morelli, Sabrina; Giordano, Francesca; Gordano, Amalia; Bartolo, Loredana De

    2016-10-01

    In vitro models of human bioengineered skin substitutes are an alternative to animal experimentation for testing the effects and toxicity of drugs, cosmetics and pollutants. For the first time specific and distinct human epidermal strata were engineered by using membranes and keratinocytes. To this purpose, biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT-PCL were prepared by phase-inversion technique and characterized in order to evaluate their morphological, physico-chemical and mechanical properties. The capability of membranes to modulate keratinocyte differentiation inducing specific interactions in epidermal membrane systems was investigated. The overall results demonstrated that the membrane properties strongly influence the cell morpho-functional behaviour of human keratinocytes, modulating their terminal differentiation, with the creation of specific epidermal strata or a fully proliferative epidermal multilayer system. In particular, human keratinocytes adhered on CHT and CHT-PCL membranes, forming the structure of the epidermal top layers, such as the corneum and granulosum strata, characterized by withdrawal or reduction from the cell cycle and cell proliferation. On the PCL membrane, keratinocytes developed an epidermal basal lamina, with high proliferating cells that stratified and migrated over time to form a complete differentiating epidermal multilayer system. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Simulated Microgravity Modulates Differentiation Processes of Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Vaibhav Shinde

    2016-04-01

    Full Text Available Background/Aims: Embryonic developmental studies under microgravity conditions in space are very limited. To study the effects of altered gravity on the embryonic development processes we established an in vitro methodology allowing differentiation of mouse embryonic stem cells (mESCs under simulated microgravity within a fast-rotating clinostat (clinorotation and capture of microarray-based gene signatures. Methods: The differentiating mESCs were cultured in a 2D pipette clinostat. The microarray and bioinformatics tools were used to capture genes that are deregulated by simulated microgravity and their impact on developmental biological processes. Results: The data analysis demonstrated that differentiation of mESCs in pipettes for 3 days resultet to early germ layer differentiation and then to the different somatic cell types after further 7 days of differentiation in the Petri dishes. Clinorotation influences differentiation as well as non-differentiation related biological processes like cytoskeleton related 19 genes were modulated. Notably, simulated microgravity deregulated genes Cyr61, Thbs1, Parva, Dhrs3, Jun, Tpm1, Fzd2 and Dll1 are involved in heart morphogenesis as an acute response on day 3. If the stem cells were further cultivated under normal gravity conditions (1 g after clinorotation, the expression of cardiomyocytes specific genes such as Tnnt2, Rbp4, Tnni1, Csrp3, Nppb and Mybpc3 on day 10 was inhibited. This correlated well with a decreasing beating activity of the 10-days old embryoid bodies (EBs. Finally, we captured Gadd45g, Jun, Thbs1, Cyr61and Dll1 genes whose expressions were modulated by simulated microgravity and by real microgravity in various reported studies. Simulated microgravity also deregulated genes belonging to the MAP kinase and focal dhesion signal transduction pathways. Conclusion: One of the most prominent biological processes affected by simulated microgravity was the process of cardiomyogenesis. The

  2. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.

    2011-02-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well as the cell junction in thermal equilibrium with the chamber. The open-circuit voltage of PV module Voc is then measured using a short pulse of solar irradiation provided by a solar simulator. Repeating the measurements at different environment temperature (40-80°C) and solar irradiation S (200-1000W/m2), the correlation between the open-circuit voltage Voc, the junction temperature Tj, and solar irradiation S is derived.The fundamental correlation of the PV module is utilized for on-site monitoring of solar cell junction temperature using the measured Voc and S at a short time instant with open circuit. The junction temperature Tj is then determined using the measured S and Voc through the fundamental correlation. The outdoor test results show that the junction temperature measured using the present method, Tjo, is more accurate. The maximum error using the average surface temperature Tave as the junction temperature is 4.8 °C underestimation; while the maximum error using the present method is 1.3 °C underestimation. © 2010 Elsevier Ltd.

  3. Subthalamic stimulation differentially modulates declarative and nondeclarative memory.

    Science.gov (United States)

    Hälbig, Thomas D; Gruber, Doreen; Kopp, Ute A; Scherer, Peter; Schneider, Gerd-Helge; Trottenberg, Thomas; Arnold, Guy; Kupsch, Andreas

    2004-03-01

    Declarative memory has been reported to rely on the medial temporal lobe system, whereas non-declarative memory depends on basal ganglia structures. We investigated the functional role of the subthalamic nucleus (STN), a structure closely connected with the basal ganglia for both types of memory. Via deep brain high frequency stimulation (DBS) we manipulated neural activity of the STN in humans. We found that DBS-STN differentially modulated memory performance: declarative memory was impaired, whereas non-declarative memory was improved in the presence of STN-DBS indicating a specific role of the STN in the activation of memory systems. Copyright 2004 Lippincott Williams & Wilkins

  4. Thermal modelling of PV module performance under high ambient temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Diarra, D.C.; Harrison, S.J. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab; Akuffo, F.O. [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2005-07-01

    When predicting the performance of photovoltaic (PV) generators, the actual performance is typically lower than test results conducted under standard test conditions because the radiant energy absorbed in the module under normal operation raises the temperature of the cell and other multilayer components. The increase in temperature translates to a lower conversion efficiency of the solar cells. In order to address these discrepancies, a thermal model of a characteristic PV module was developed to assess and predict its performance under real field-conditions. The PV module consisted of monocrystalline silicon cells in EVA between a glass cover and a tedlar backing sheet. The EES program was used to compute the equilibrium temperature profile in the PV module. It was shown that heat is dissipated towards the bottom and the top of the module, and that its temperature can be much higher than the ambient temperature. Modelling results indicate that 70-75 per cent of the absorbed solar radiation is dissipated from the solar cells as heat, while 4.7 per cent of the solar energy is absorbed in the glass cover and the EVA. It was also shown that the operating temperature of the PV module decreases with increased wind speed. 2 refs.

  5. Fragility Variation of Lithium Borate Glasses Studied by Temperature-Modulated DSC

    Science.gov (United States)

    Matsuda, Yu; Fukawa, Yasuteru; Kawashima, Mitsuru; Kojima, Seiji

    2008-02-01

    The fragility of lithium borate glass system has been investigated by Temperature-Modulated Differential Scanning Calorimetry (TMDSC). The frequency and temperature dependences of dynamic specific heat have been observed in the vicinity of a glass transition temperature Tg. It is shown that the value of the fragility index m can be determined from the temperature dependence of the α-relaxation times observed by TMDSC, when the raw phase angle is properly corrected. The composition dependence of the fragility has been also discussed.

  6. Two pore channel 2 differentially modulates neural differentiation of mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Zhe-Hao Zhang

    Full Text Available Nicotinic acid adenine dinucleotide phosphate (NAADP is an endogenous Ca(2+ mobilizing nucleotide presented in various species. NAADP mobilizes Ca(2+ from acidic organelles through two pore channel 2 (TPC2 in many cell types and it has been previously shown that NAADP can potently induce neuronal differentiation in PC12 cells. Here we examined the role of TPC2 signaling in the neural differentiation of mouse embryonic stem (ES cells. We found that the expression of TPC2 was markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebounded during the late stages of neurogenesis. Correspondingly, TPC2 knockdown accelerated mouse ES cell differentiation into neural progenitors but inhibited these neural progenitors from committing to neurons. Overexpression of TPC2, on the other hand, inhibited mouse ES cell from entering the early neural lineage. Interestingly, TPC2 knockdown had no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Taken together, our data indicate that TPC2 signaling plays a temporal and differential role in modulating the neural lineage entry of mouse ES cells, in that TPC2 signaling inhibits ES cell entry to early neural progenitors, but is required for late neuronal differentiation.

  7. Differential network analysis reveals genetic effects on catalepsy modules.

    Directory of Open Access Journals (Sweden)

    Ovidiu D Iancu

    Full Text Available We performed short-term bi-directional selective breeding for haloperidol-induced catalepsy, starting from three mouse populations of increasingly complex genetic structure: an F2 intercross, a heterogeneous stock (HS formed by crossing four inbred strains (HS4 and a heterogeneous stock (HS-CC formed from the inbred strain founders of the Collaborative Cross (CC. All three selections were successful, with large differences in haloperidol response emerging within three generations. Using a custom differential network analysis procedure, we found that gene coexpression patterns changed significantly; importantly, a number of these changes were concordant across genetic backgrounds. In contrast, absolute gene-expression changes were modest and not concordant across genetic backgrounds, in spite of the large and similar phenotypic differences. By inferring strain contributions from the parental lines, we are able to identify significant differences in allelic content between the selected lines concurrent with large changes in transcript connectivity. Importantly, this observation implies that genetic polymorphisms can affect transcript and module connectivity without large changes in absolute expression levels. We conclude that, in this case, selective breeding acts at the subnetwork level, with the same modules but not the same transcripts affected across the three selections.

  8. HDAC inhibitors: modulating leukocyte differentiation, survival, proliferation and inflammation.

    Science.gov (United States)

    Sweet, Matthew J; Shakespear, Melanie R; Kamal, Nabilah A; Fairlie, David P

    2012-01-01

    Therapeutic effects of histone deacetylase (HDAC) inhibitors in cancer models were first linked to their ability to cause growth arrest and apoptosis of tumor cells. It is now clear that these agents also have pleiotropic effects on angiogenesis and the immune system, and some of these properties are likely to contribute to their anti-cancer activities. It is also emerging that inhibitors of specific HDACs affect the differentiation, survival and/or proliferation of distinct immune cell populations. This is true for innate immune cells such as macrophages, as well as cells of the acquired immune system, for example, T-regulatory cells. These effects may contribute to therapeutic profiles in some autoimmune and chronic inflammatory disease models. Here, we review our current understanding of how classical HDACs (HDACs 1-11) and their inhibitors impact on differentiation, survival and proliferation of distinct leukocyte populations, as well as the likely relevance of these effects to autoimmune and inflammatory disease processes. The ability of HDAC inhibitors to modulate leukocyte survival may have implications for the rationale of developing selective inhibitors as anti-inflammatory drugs.

  9. Temperature Effect on Power Drop of Different Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Emad Talib Hahsim

    2016-05-01

    Full Text Available Solar module operating temperature is the second major factor affects the performance of solar photovoltaic panels after the amount of solar radiation. This paper presents a performance comparison of mono-crystalline Silicon (mc-Si, poly-crystalline Silicon (pc-Si, amorphous Silicon (a-Si and Cupper Indium Gallium di-selenide (CIGS photovoltaic technologies under Climate Conditions of Baghdad city. Temperature influence on the solar modules electric output parameters was investigated experimentally and their temperature coefficients was calculated. These temperature coefficients are important for all systems design and sizing. The experimental results revealed that the pc-Si module showed a decrease in open circuit voltage by -0.0912V/ºC while mc-Si and a-Si had nearly -0.07V/ºC and the CIGS has -0.0123V/ºC. The results showed a slightly increase in short circuit current with temperature increasing about 0.3mA/ºC ,4.4mA/ºC and 0.9mA/ºC for mc-Si , pc-Si and both a-Si and CIGS. The mc-Si had the largest drop in output power about -0.1353W/ºC while -0.0915, -0.0114 and -0.0276 W/ºC for pc-Si, a-Si and CIGS respectively. The amorphous silicon is the more suitable module for high operation temperature but it has the lowest conversion efficiency between the tested modules.

  10. Relaxation dynamics of glass transition in PMMA + SWCNT composites by temperature-modulated DSC

    Science.gov (United States)

    Pradhan, N. R.; Iannacchione, G. S.

    2010-03-01

    The experimental technique offered by temperature-modulated differential scanning calorimeter (TMDSC) used to investigate the thermal relaxation dynamics through the glass transition as a function of frequency was studied for pure PMMA and PMMA-single wall carbon nanotubes (SWCNTs) composites. A strong dependence of the temperature dependence peak in the imaginary part of complex heat capacity (Tmax) is found during the transition from the glass-like to the liquid-like region. The frequency dependence of Tmax of the imaginary part of heat capacity (Cp) is described by Arrhenius law. The activation energy obtained from the fitting shows increases while the characteristic relaxation time decreases with increasing mass fraction (phim) of SWCNTs. The dynamics of the composites during glass transition, at slow and high scan rates, are also the main focus of this experimental study. The change in enthalpy during heating and cooling is also reported as a function of scan rate and frequency of temperature modulation. The glass transition temperature (Tg) shows increases with increasing frequency of temperature modulation and phim of SWCNTs inside the polymer host. Experimental results show that Tg is higher at higher scan rates but as the frequency of temperature modulation increases, the Tg values of different scan rates coincide with each other and alter the scan rate dependence. From the imaginary part of heat capacity, it is obvious that Tmax is not the actual glass transition temperature of pure polymer but Tmax and Tg values can be superimposed when phim increases in the polymer host or when the sample undergoes a transition with a certain frequency of temperature modulation.

  11. Temperature effect compensation for fast differential pressure decay testing

    International Nuclear Information System (INIS)

    Shi, Yan; Tong, Xiaomeng; Cai, Maolin

    2014-01-01

    To avoid the long temperature recovery period with differential pressure decay for leak detection, a novel method with temperature effect compensation is proposed to improve the testing efficiency without full stabilization of temperature. The mathematical model of conventional differential pressure decay testing is established to analyze the changes of temperature and pressure during the measuring period. Then the differential pressure is divided into two parts: the exponential part caused by temperature recovery and the linear part caused by leak. With prior information obtained from samples, parameters of the exponential part can be identified precisely, and the temperature effect will be compensated before it fully recovers. To verify the effect of the temperature compensated method, chambers with different volumes are tested under various pressures and the experiments show that the improved method is faster with satisfactory precision, and an accuracy less than 0.25 cc min −1  can be achieved when the compensation time is proportional to four times the theoretical thermal-time constant. (paper)

  12. Interacting temperature and water activity modulate production of ...

    African Journals Online (AJOL)

    West African Journal of Applied Ecology ... Concentrations of DA were further modulated by interactions of temperature and aw. ... was at 0.98 aw and 35°C while the lowest was at 0.96 aw and 35°C. The abiotic interactions that supported biomass production appeared different from what was required for production of DA.

  13. Optimized Feature Extraction for Temperature-Modulated Gas Sensors

    Directory of Open Access Journals (Sweden)

    Alexander Vergara

    2009-01-01

    Full Text Available One of the most serious limitations to the practical utilization of solid-state gas sensors is the drift of their signal. Even if drift is rooted in the chemical and physical processes occurring in the sensor, improved signal processing is generally considered as a methodology to increase sensors stability. Several studies evidenced the augmented stability of time variable signals elicited by the modulation of either the gas concentration or the operating temperature. Furthermore, when time-variable signals are used, the extraction of features can be accomplished in shorter time with respect to the time necessary to calculate the usual features defined in steady-state conditions. In this paper, we discuss the stability properties of distinct dynamic features using an array of metal oxide semiconductors gas sensors whose working temperature is modulated with optimized multisinusoidal signals. Experiments were aimed at measuring the dispersion of sensors features in repeated sequences of a limited number of experimental conditions. Results evidenced that the features extracted during the temperature modulation reduce the multidimensional data dispersion among repeated measurements. In particular, the Energy Signal Vector provided an almost constant classification rate along the time with respect to the temperature modulation.

  14. Relaxation Dynamics of the Glass Transition in PMMA+SWCNT Composites by Temperature-Modulated DSC

    Science.gov (United States)

    Pradhan, Nihar; Iannacchione, Germano

    2010-03-01

    Temperature Modulated Differential Scanning Calorimeter (TMDSC) used to investigate the thermal relaxation dynamics of PMMA-Single wall carbon nanotubes (SWCNTs) through the glass transition as a function of frequency. A strong dependence of the temperature dependence peak in imaginary part of complex heat capacity (Tmax) was found during the transition from glass like to liquid like region and can be described by Arhenius law. The activation energy shows increases while the charactersistic time decreases with increasing mass fraction (φm) of SWCNTs. Decreasing of enthalpy, while heating and slowly increasing while cooling at 2.0 K/min scan rate was observed and as frequency of temperature modulation increases. There is no relative change of enthalpy in heating and cooling observed at sufficiently slow scan rate. The glass transition temperature (Tg) shows increases as a function of frequency of temperature modulation, φm of SWCNTs and with increasing scan rate. From imaginary part of heat capacity, it obvious that Tmax is not the actual glass transition temperature of pure polymer but Tmax and Tg values can be superimpose when φm of SWCNT increases in polymer.

  15. Oxytocin differentially modulates pavlovian cue and context fear acquisition.

    Science.gov (United States)

    Cavalli, Juliana; Ruttorf, Michaela; Pahi, Mario Rosero; Zidda, Francesca; Flor, Herta; Nees, Frauke

    2017-06-01

    Fear acquisition and extinction have been demonstrated as core mechanisms for the development and maintenance of mental disorders, with different contributions of processing cues vs contexts. The hypothalamic peptide oxytocin (OXT) may have a prominent role in this context, as it has been shown to affect fear learning. However, investigations have focused on cue conditioning, and fear extinction. Its differential role for cue and context fear acquisition is still not known. In a randomized, double-blind, placebo (PLC)-controlled design, we administered an intranasal dose of OXT or PLC before the acquisition of cue and context fear conditioning in healthy individuals (n = 52), and assessed brain responses, skin conductance responses and self-reports (valence/arousal/contingency). OXT compared with PLC significantly induced decreased responses in the nucleus accumbens during early cue and context acquisition, and decreased responses of the anterior cingulate cortex and insula during early as well as increased hippocampal response during late context, but not cue acquisition. The OXT group additionally showed significantly higher arousal in late cue and context acquisition. OXT modulates various aspects of cue and context conditioning, which is relevant from a mechanism-based perspective and might have implications for the treatment of fear and anxiety. © The Author (2017). Published by Oxford University Press.

  16. Selective Sensing of Gas Mixture via a Temperature Modulation Approach: New Strategy for Potentiometric Gas Sensor Obtaining Satisfactory Discriminating Features.

    Science.gov (United States)

    Li, Fu-An; Jin, Han; Wang, Jinxia; Zou, Jie; Jian, Jiawen

    2017-03-12

    A new strategy to discriminate four types of hazardous gases is proposed in this research. Through modulating the operating temperature and the processing response signal with a pattern recognition algorithm, a gas sensor consisting of a single sensing electrode, i.e., ZnO/In₂O₃ composite, is designed to differentiate NO₂, NH₃, C₃H₆, CO within the level of 50-400 ppm. Results indicate that with adding 15 wt.% ZnO to In₂O₃, the sensor fabricated at 900 °C shows optimal sensing characteristics in detecting all the studied gases. Moreover, with the aid of the principle component analysis (PCA) algorithm, the sensor operating in the temperature modulation mode demonstrates acceptable discrimination features. The satisfactory discrimination features disclose the future that it is possible to differentiate gas mixture efficiently through operating a single electrode sensor at temperature modulation mode.

  17. Comparison of photovoltaic cell temperatures in modules operating with exposed and enclosed back surfaces

    Science.gov (United States)

    Namkoong, D.; Simon, F. F.

    1981-01-01

    Four different photovoltaic module designs were tested to determine the cell temperature of each design. The cell temperatures were compared to those obtained on identical design, using the same nominal operating cell temperature (NOCT) concept. The results showed that the NOCT procedure does not apply to the enclosed configurations due to continuous transient conditions. The enclosed modules had higher cell temperatures than the open modules, and insulated modules higher than the uninsulated. The severest performance loss - when translated from cell temperatures - 17.5 % for one enclosed, insulated module as a compared to that module mounted openly.

  18. The heat capacity of polyethylene fibers measured by multi-frequency temperature-modulated calorimetry

    International Nuclear Information System (INIS)

    Pyda, M.; Nowak-Pyda, E.; Wunderlich, B.

    2006-01-01

    The apparent heat capacity of polyethylene fibers in the melting region was measured by quasi-isothermal, temperature-modulated differential scanning calorimetry (TMDSC) and compared with results from standard differential scanning calorimetry (DSC) and the solid and liquid thermodynamic heat capacity as references from the ATHAS Data Bank. Using a multi-frequency, complex sawtooth modulation in the quasi-isothermal mode disclosed for the first time that the uncorrected apparent heat capacity C p =A Φ /(A T s ω) of the liquid polyethylene fiber increases with increasing frequency (A Φ is the differential heat-flow rate and A T s is the sample temperature). The frequency-dependent heat capacity cannot be represented by the expression: C p =A Φ /(A T s νω)[1+(τνω) 2 ] 0.5 because of a negative τ 2 . The results were later confirmed by independent measurements on single sinusoidal quasi-isothermal TMDSC on the same material. The error is caused by shrinking of the fiber, which deforms the sample pan

  19. Temperature modulates phototrophic periphyton response to chronic copper exposure

    International Nuclear Information System (INIS)

    Lambert, Anne Sophie; Dabrin, Aymeric; Morin, Soizic; Gahou, Josiane; Foulquier, Arnaud; Coquery, Marina; Pesce, Stéphane

    2016-01-01

    Streams located in vineyard areas are highly prone to metal pollution. In a context of global change, aquatic systems are generally subjected to multi-stress conditions due to multiple chemical and/or physical pressures. Among various environmental factors that modulate the ecological effects of toxicants, special attention should be paid to climate change, which is driving an increase in extreme climate events such as sharp temperature rises. In lotic ecosystems, periphyton ensures key ecological functions such as primary production and nutrient cycling. However, although the effects of metals on microbial communities are relatively well known, there is scant data on possible interactions between temperature increase and metal pollution. Here we led a study to evaluate the influence of temperature on the response of phototrophic periphyton to copper (Cu) exposure. Winter communities, collected in a 8 °C river water, were subjected for six weeks to four thermal conditions in microcosms in presence or not of Cu (nominal concentration of 15 μg L"−"1). At the initial river temperature (8 °C), our results confirmed the chronic impact of Cu on periphyton, both in terms of structure (biomass, distribution of algal groups, diatomic composition) and function (photosynthetic efficiency). At higher temperatures (13, 18 and 23 °C), Cu effects were modulated. Indeed, temperature increase reduced Cu effects on algal biomass, algal class proportions, diatom assemblage composition and photosynthetic efficiency. This reduction of Cu effects on periphyton may be related to lower bioaccumulation of Cu and/or to selection of more Cu-tolerant species at higher temperatures. - Highlights: • At in situ temperature, Cu impacted structure and activity of phototrophic biofilms. • Cu effects were reduced with increasing temperature (from +5 °C to +15 °C). • The decrease in Cu effects may be related to lower Cu bioaccumulation in biofilms. • Changes in diatom

  20. Resolving glass transition in Te-based phase-change materials by modulated differential scanning calorimetry

    Science.gov (United States)

    Chen, Yimin; Mu, Sen; Wang, Guoxiang; Shen, Xiang; Wang, Junqiang; Dai, Shixun; Xu, Tiefeng; Nie, Qiuhua; Wang, Rongping

    2017-10-01

    Glass transitions of Te-based phase-change materials (PCMs) were studied by modulated differential scanning calorimetry. It was found that both Ge2Sb2Te5 and GeTe are marginal glass formers with ΔT (= T x - T g) less than 2.1 °C when the heating rate is below 3 °C min-1. The fragilities of Ge2Sb2Te5 and GeTe can be estimated as 46.0 and 39.7, respectively, around the glass transition temperature, implying that a fragile-to-strong transition would be presented in such Te-based PCMs. The above results provide direct experimental evidence to support the investigation of crystallization kinetics in supercooled liquid PCMs.

  1. A discussion of the principles and applications of Modulated Temperature DSC (MTDSC).

    Science.gov (United States)

    Verdonck, E; Schaap, K; Thomas, L C

    1999-12-01

    The benefits of Modulated Temperature DSC (MTDSC) over conventional differential scanning calorimetry (DSC) for studying thermal transitions in materials are reviewed by means of examples. These include the separation of overlapping phenomena such as melting/recrystallization in semi-crystalline materials, the heat capacity variation and enthalpic relaxation at the glass transition, and transitions from the different components of a blend. In addition, examples are presented demonstrating the ability of MTDSC to detect subtle transitions more readily and without loss of resolution. The possibility of measuring heat capacity in quasi-isothermal conditions and the evaluation of the thermal conductivity of a material are explained.

  2. Modulation of DNA base excision repair during neuronal differentiation

    DEFF Research Database (Denmark)

    Sykora, Peter; Yang, Jenq-Lin; Ferrarelli, Leslie K

    2013-01-01

    DNA damage susceptibility and base excision DNA repair (BER) capacity in undifferentiated and differentiated human neural cells. The results show that undifferentiated human SH-SY5Y neuroblastoma cells are less sensitive to oxidative damage than their differentiated counterparts, in part because...

  3. Differentiable absorption of Hilbert C*-modules, connections and lifts of unbounded operators

    DEFF Research Database (Denmark)

    Kaad, Jens

    2017-01-01

    . The differentiable absorption theorem is then applied to construct densely defined connections (or correpondences) on Hilbert C∗C∗-modules. These connections can in turn be used to define selfadjoint and regular "lifts" of unbounded operators which act on an auxiliary Hilbert C∗C∗-module....

  4. Divergent modulation of neuronal differentiation by caspase-2 and -9.

    Directory of Open Access Journals (Sweden)

    Giuseppa Pistritto

    Full Text Available Human Ntera2/cl.D1 (NT2 cells treated with retinoic acid (RA differentiate towards a well characterized neuronal phenotype sharing many features with human fetal neurons. In view of the emerging role of caspases in murine stem cell/neural precursor differentiation, caspases activity was evaluated during RA differentiation. Caspase-2, -3 and -9 activity was transiently and selectively increased in differentiating and non-apoptotic NT2-cells. SiRNA-mediated selective silencing of either caspase-2 (si-Casp2 or -9 (si-Casp9 was implemented in order to dissect the role of distinct caspases. The RA-induced expression of neuronal markers, i.e. neural cell adhesion molecule (NCAM, microtubule associated protein-2 (MAP2 and tyrosine hydroxylase (TH mRNAs and proteins, was decreased in si-Casp9, but markedly increased in si-Casp2 cells. During RA-induced NT2 differentiation, the class III histone deacetylase Sirt1, a putative caspase substrate implicated in the regulation of the proneural bHLH MASH1 gene expression, was cleaved to a ∼100 kDa fragment. Sirt1 cleavage was markedly reduced in si-Casp9 cells, even though caspase-3 was normally activated, but was not affected (still cleaved in si-Casp2 cells, despite a marked reduction of caspase-3 activity. The expression of MASH1 mRNA was higher and occurred earlier in si-Casp2 cells, while was reduced at early time points during differentiation in si-Casp9 cells. Thus, caspase-2 and -9 may perform opposite functions during RA-induced NT2 neuronal differentiation. While caspase-9 activation is relevant for proper neuronal differentiation, likely through the fine tuning of Sirt1 function, caspase-2 activation appears to hinder the RA-induced neuronal differentiation of NT2 cells.

  5. Pressure-modulated differential scanning calorimetry. An approach to the continuous, simultaneous determination of heat capacities and expansion coefficients.

    Science.gov (United States)

    Boehm, K; Rösgen, J; Hinz, H-J

    2006-02-15

    A new method is described that permits the continuous and synchronous determination of heat capacity and expansibility data. We refer to it as pressure-modulated differential scanning calorimetry (PMDSC), as it involves a standard DSC temperature scan and superimposes on it a pressure modulation of preselected format. The power of the method is demonstrated using salt solutions for which the most accurate heat capacity and expansibility data exist in the literature. As the PMDSC measurements could reproduce the parameters with high accuracy and precision, we applied the method also to an aqueous suspension of multilamellar DSPC vesicles for which no expansibility data had been reported previously for the transition region. Excellent agreement was obtained between data from PMDSC and values from independent direct differential scanning densimetry measurements. The basic theoretical background of the method when using sawtooth-like pressure ramps is given under Supporting Information, and a complete statistical thermodynamic derivation of the general equations is presented in the accompanying paper.

  6. High-Temperature, Wirebondless, Ultracompact Wide Bandgap Power Semiconductor Modules

    Science.gov (United States)

    Elmes, John

    2015-01-01

    Silicon carbide (SiC) and other wide bandgap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and ultrahigh power density for both space and commercial power electronic systems. However, this great potential is seriously limited by the lack of reliable high-temperature device packaging technology. This Phase II project developed an ultracompact hybrid power module packaging technology based on the use of double lead frames and direct lead frame-to-chip transient liquid phase (TLP) bonding that allows device operation up to 450 degC. The new power module will have a very small form factor with 3-5X reduction in size and weight from the prior art, and it will be capable of operating from 450 degC to -125 degC. This technology will have a profound impact on power electronics and energy conversion technologies and help to conserve energy and the environment as well as reduce the nation's dependence on fossil fuels.

  7. Temperature modulation with an esophageal heat transfer device- a pediatric swine model study

    OpenAIRE

    Kulstad, Erik B; Naiman, Melissa; Shanley, Patrick; Garrett, Frank; Haryu, Todd; Waller, Donald; Azarafrooz, Farshid; Courtney, Daniel Mark

    2015-01-01

    Background An increasing number of conditions appear to benefit from control and modulation of temperature, but available techniques to control temperature often have limitations, particularly in smaller patients with high surface to mass ratios. We aimed to evaluate a new method of temperature modulation with an esophageal heat transfer device in a pediatric swine model, hypothesizing that clinically significant modulation in temperature (both increases and decreases of more than 1?C) would ...

  8. Differential modulation of FXR activity by chlorophacinone and ivermectin analogs

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chia-Wen [NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD (United States); Hsieh, Jui-Hua [National Toxicology Program, National Institutes of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (United States); Huang, Ruili [NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD (United States); Pijnenburg, Dirk [PamGene International B.V., Wolvenhoek 10, 5211 HH ' s-Hertogenbosch (Netherlands); Khuc, Thai [NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD (United States); Hamm, Jon [Integrated Laboratory System, Inc., Morrisville, NC (United States); Zhao, Jinghua; Lynch, Caitlin [NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD (United States); Beuningen, Rinie van [PamGene International B.V., Wolvenhoek 10, 5211 HH ' s-Hertogenbosch (Netherlands); Chang, Xiaoqing [Integrated Laboratory System, Inc., Morrisville, NC (United States); Houtman, René [PamGene International B.V., Wolvenhoek 10, 5211 HH ' s-Hertogenbosch (Netherlands); Xia, Menghang, E-mail: mxia@mail.nih.gov [NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD (United States)

    2016-12-15

    Chemicals that alter normal function of farnesoid X receptor (FXR) have been shown to affect the homeostasis of bile acids, glucose, and lipids. Several structural classes of environmental chemicals and drugs that modulated FXR transactivation were previously identified by quantitative high-throughput screening (qHTS) of the Tox21 10 K chemical collection. In the present study, we validated the FXR antagonist activity of selected structural classes, including avermectin anthelmintics, dihydropyridine calcium channel blockers, 1,3-indandione rodenticides, and pyrethroid pesticides, using in vitro assay and quantitative structural-activity relationship (QSAR) analysis approaches. (Z)-Guggulsterone, chlorophacinone, ivermectin, and their analogs were profiled for their ability to alter CDCA-mediated FXR binding using a panel of 154 coregulator motifs and to induce or inhibit transactivation and coactivator recruitment activities of constitutive androstane receptor (CAR), liver X receptor alpha (LXRα), or pregnane X receptor (PXR). Our results showed that chlorophacinone and ivermectin had distinct modes of action (MOA) in modulating FXR-coregulator interactions and compound selectivity against the four aforementioned functionally-relevant nuclear receptors. These findings collectively provide mechanistic insights regarding compound activities against FXR and possible explanations for in vivo toxicological observations of chlorophacinone, ivermectin, and their analogs. - Highlights: • A subset of Tox21 chemicals was investigated for FXR antagonism. • In vitro and computational approaches were used to evaluate FXR antagonists. • Chlorophacinone and ivermectin had distinct patterns in modulating FXR activity.

  9. A Temperature-Hardened Sensor Interface with a 12-Bit Digital Output Using a Novel Pulse Width Modulation Technique

    Directory of Open Access Journals (Sweden)

    Emna Chabchoub

    2018-04-01

    Full Text Available A fully integrated sensor interface for a wide operational temperature range is presented. It translates the sensor signal into a pulse width modulated (PWM signal that is then converted into a 12-bit digital output. The sensor interface is based on a pair of injection locked oscillators used to implement a differential time-domain architecture with low sensitivity to temperature variations. A prototype has been fabricated using a 180 nm partially depleted silicon-on-insulator (SOI technology. Experimental results demonstrate a thermal stability as low as 65 ppm/°C over a large temperature range from −20 °C up to 220 °C.

  10. Selective AR Modulators that Distinguish Proliferative from Differentiative Gene Promoters

    Science.gov (United States)

    2017-08-01

    Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author(s) and should not be...Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT...recognition, we performed a high -throughput screen for compounds eliciting differential AR activity on cARE vs. sARE reporters. Of 10,000 compounds

  11. Selective AR Modulators that Distinguish Proliferative from Differentiative Gene Promoters

    Science.gov (United States)

    2016-08-01

    levels, and in some cases be useful in early stage disease or watchful waiting, and in other cases castration resistant prostate cancer (CRPC...dependent kinase inhibitor p21 gene through an androgen response element in the proximal promoter. Molecular endocrinology 13, 376 (Mar, 1999). 9...analyses and in mouse xenograft experiments, as planned. We will also continue to probe the molecular mechanism by which dox elicits these differential

  12. Differential modulation of nitric oxide synthases in aging: therapeutic opportunities

    Directory of Open Access Journals (Sweden)

    Stêfany Bruno De Assis Cau

    2012-06-01

    Full Text Available Vascular aging is the term that describes the structural and functional disturbances of the vasculature with advancing aging. The molecular mechanisms of aging-associated endothelial dysfunction are complex, but reduced nitric oxide (NO bioavailability and altered vascular expression and activity of NO synthase (NOS enzymes have been implicated as major players. Impaired vascular relaxation in aging has been attributed to reduced endothelial NOS (eNOS-derived NO, while increased inducible NOS (iNOS expression seems to account for nitrosative stress and disrupted vascular homeostasis. Although eNOS is considered the main source of NO in the vascular endothelium, neuronal NOS (nNOS also contributes to endothelial cells-derived NO, a mechanism that is reduced in aging. Pharmacological modulation of NO generation and expression/activity of NOS isoforms may represent a therapeutic alternative to prevent the progression of cardiovascular diseases. Accordingly, this review will focus on drugs that modulate NO bioavailability, such as nitrite anions and NO-releasing non-steroidal anti-inflammatory drugs, hormones (dehydroepiandrosterone and estrogen, statins, resveratrol and folic acid, since they may be useful to treat/to prevent aging-associated vascular dysfunction. The impact of these therapies on life quality in elderly and longevity will be discussed.

  13. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    Science.gov (United States)

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior. Copyright © 2014 the authors 0270-6474/14/347067-10$15.00/0.

  14. TOPEM, a new temperature modulated DSC technique - Application to the glass transition of polymers

    OpenAIRE

    Fraga Rivas, Iria; Montserrat Ribas, Salvador; Hutchinson, John M.

    2007-01-01

    TOPEM is a new temperature modulated DSC technique, introduced by Mettler-Toledo in late 2005, in which stochastic temperature modulations are superimposed on the underlying rate of a conventional DSC scan. These modulations consist of temperature pulses, of fixed magnitude and alternating sign, with random durations within limits specified by the user. The resulting heat flow signal is analysed by a parameter estimation method which yields a so-called ‘quasi-static’ specific heat capac...

  15. Differential paralog divergence modulates genome evolution across yeast species.

    Directory of Open Access Journals (Sweden)

    Monica R Sanchez

    2017-02-01

    Full Text Available Evolutionary outcomes depend not only on the selective forces acting upon a species, but also on the genetic background. However, large timescales and uncertain historical selection pressures can make it difficult to discern such important background differences between species. Experimental evolution is one tool to compare evolutionary potential of known genotypes in a controlled environment. Here we utilized a highly reproducible evolutionary adaptation in Saccharomyces cerevisiae to investigate whether experimental evolution of other yeast species would select for similar adaptive mutations. We evolved populations of S. cerevisiae, S. paradoxus, S. mikatae, S. uvarum, and interspecific hybrids between S. uvarum and S. cerevisiae for ~200-500 generations in sulfate-limited continuous culture. Wild-type S. cerevisiae cultures invariably amplify the high affinity sulfate transporter gene, SUL1. However, while amplification of the SUL1 locus was detected in S. paradoxus and S. mikatae populations, S. uvarum cultures instead selected for amplification of the paralog, SUL2. We measured the relative fitness of strains bearing deletions and amplifications of both SUL genes from different species, confirming that, converse to S. cerevisiae, S. uvarum SUL2 contributes more to fitness in sulfate limitation than S. uvarum SUL1. By measuring the fitness and gene expression of chimeric promoter-ORF constructs, we were able to delineate the cause of this differential fitness effect primarily to the promoter of S. uvarum SUL1. Our data show evidence of differential sub-functionalization among the sulfate transporters across Saccharomyces species through recent changes in noncoding sequence. Furthermore, these results show a clear example of how such background differences due to paralog divergence can drive changes in genome evolution.

  16. Identification of Gene Modules Associated with Low Temperatures Response in Bambara Groundnut by Network-Based Analysis.

    Directory of Open Access Journals (Sweden)

    Venkata Suresh Bonthala

    Full Text Available Bambara groundnut (Vigna subterranea (L. Verdc. is an African legume and is a promising underutilized crop with good seed nutritional values. Low temperature stress in a number of African countries at night, such as Botswana, can effect the growth and development of bambara groundnut, leading to losses in potential crop yield. Therefore, in this study we developed a computational pipeline to identify and analyze the genes and gene modules associated with low temperature stress responses in bambara groundnut using the cross-species microarray technique (as bambara groundnut has no microarray chip coupled with network-based analysis. Analyses of the bambara groundnut transcriptome using cross-species gene expression data resulted in the identification of 375 and 659 differentially expressed genes (p<0.01 under the sub-optimal (23°C and very sub-optimal (18°C temperatures, respectively, of which 110 genes are commonly shared between the two stress conditions. The construction of a Highest Reciprocal Rank-based gene co-expression network, followed by its partition using a Heuristic Cluster Chiseling Algorithm resulted in 6 and 7 gene modules in sub-optimal and very sub-optimal temperature stresses being identified, respectively. Modules of sub-optimal temperature stress are principally enriched with carbohydrate and lipid metabolic processes, while most of the modules of very sub-optimal temperature stress are significantly enriched with responses to stimuli and various metabolic processes. Several transcription factors (from MYB, NAC, WRKY, WHIRLY & GATA classes that may regulate the downstream genes involved in response to stimulus in order for the plant to withstand very sub-optimal temperature stress were highlighted. The identified gene modules could be useful in breeding for low-temperature stress tolerant bambara groundnut varieties.

  17. Research on channel characteristics of differential multi pulse position modulation without background noise

    Science.gov (United States)

    Gao, Zhuo; Zhan, Weida; Sun, Quan; Hao, Ziqiang

    2018-04-01

    Differential multi-pulse position modulation (DMPPM) is a new type of modulation technology. There is a fast transmission rate, high bandwidth utilization, high modulation rate characteristics. The study of DMPPM modulation has important scientific value and practical significance. Channel capacity is one of the important indexes to measure the communication capability of communication system, and studying the channel capacity of DMPPM without background noise is the key to analyze the characteristics of DMPPM. The DMPPM theoretical model is established. The symbol structure of DMPPM with guard time slot is analyzed, and the channel capacity expression of DMPPM is deduced. Simulation analysis by MATLAB. The curves of unit channel capacity and capacity efficiency at different pulse and photon counting rates are analyzed. The results show that DMPPM is more advantageous than multi-pulse position modulation (MPPM), and is more suitable for future wireless optical communication system.

  18. Modulation of neonatal microbial recognition: TLR-mediated innate immune responses are specifically and differentially modulated by human milk.

    Science.gov (United States)

    LeBouder, Emmanuel; Rey-Nores, Julia E; Raby, Anne-Catherine; Affolter, Michael; Vidal, Karine; Thornton, Catherine A; Labéta, Mario O

    2006-03-15

    The mechanisms controlling innate microbial recognition in the neonatal gut are still to be fully understood. We have sought specific regulatory mechanisms operating in human breast milk relating to TLR-mediated microbial recognition. In this study, we report a specific and differential modulatory effect of early samples (days 1-5) of breast milk on ligand-induced cell stimulation via TLRs. Although a negative modulation was exerted on TLR2 and TLR3-mediated responses, those via TLR4 and TLR5 were enhanced. This effect was observed in human adult and fetal intestinal epithelial cell lines, monocytes, dendritic cells, and PBMC as well as neonatal blood. In the latter case, milk compensated for the low capacity of neonatal plasma to support responses to LPS. Cell stimulation via the IL-1R or TNFR was not modulated by milk. This, together with the differential effect on TLR activation, suggested that the primary effect of milk is exerted upstream of signaling proximal to TLR ligand recognition. The analysis of TLR4-mediated gene expression, used as a model system, showed that milk modulated TLR-related genes differently, including those coding for signal intermediates and regulators. A proteinaceous milk component of > or =80 kDa was found to be responsible for the effect on TLR4. Notably, infant milk formulations did not reproduce the modulatory activity of breast milk. Together, these findings reveal an unrecognized function of human milk, namely, its capacity to influence neonatal microbial recognition by modulating TLR-mediated responses specifically and differentially. This in turn suggests the existence of novel mechanisms regulating TLR activation.

  19. Modulated differential photoacoustic cell to study the gelatinization in a starch-water suspension

    Science.gov (United States)

    Villada, J. A.; Herrera, W.; Espinosa-Arbeláez, D. G.; Mosquera, J. C.; Rodríguez-García, M. E.

    2014-06-01

    In this paper the design and implementation of a novel Differential Photoacoustic Cell (DPC) system is presented. The system was used to study the thermo optic transition in water-starch suspension called gelatinization. The melting temperature of Gallium was used to calibrate the temperature of the system. Both temperature values for starch gelatinization and gallium melting were agreed with those obtained using differential scanning calorimetry (DSC). The results show that this system is suitable to study other thermal processes in food or any thermal transition at low temperature.

  20. Modulated differential photoacoustic cell to study the gelatinization in a starch-water suspension

    Directory of Open Access Journals (Sweden)

    J. A. Villada

    2014-06-01

    Full Text Available In this paper the design and implementation of a novel Differential Photoacoustic Cell (DPC system is presented. The system was used to study the thermo optic transition in water-starch suspension called gelatinization. The melting temperature of Gallium was used to calibrate the temperature of the system. Both temperature values for starch gelatinization and gallium melting were agreed with those obtained using differential scanning calorimetry (DSC. The results show that this system is suitable to study other thermal processes in food or any thermal transition at low temperature.

  1. Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation.

    Science.gov (United States)

    Schwingshackl, Clemens; Petitta, Marcello; Ernst Wagner, Jochen; Belluardo, Giorgio; Moser, David; Castelli, Mariapina; Zebisch, Marc; Tetzlaff, Anke

    2013-04-01

    In this abstract a study on the influence of wind to model the PV module temperature is presented. This study is carried out in the framework of the PV-Alps INTERREG project in which the potential of different photovoltaic technologies is analysed for alpine regions. The PV module temperature depends on different parameters, such as ambient temperature, irradiance, wind speed and PV technology [1]. In most models, a very simple approach is used, where the PV module temperature is calculated from NOCT (nominal operating cell temperature), ambient temperature and irradiance alone [2]. In this study the influence of wind speed on the PV module temperature was investigated. First, different approaches suggested by various authors were tested [1], [2], [3], [4], [5]. For our analysis, temperature, irradiance and wind data from a PV test facility at the airport Bolzano (South Tyrol, Italy) from the EURAC Institute of Renewable Energies were used. The PV module temperature was calculated with different models and compared to the measured PV module temperature at the single panels. The best results were achieved with the approach suggested by Skoplaki et al. [1]. Preliminary results indicate that for all PV technologies which were tested (monocrystalline, amorphous, microcrystalline and polycrystalline silicon and cadmium telluride), modelled and measured PV module temperatures show a higher agreement (RMSE about 3-4 K) compared to standard approaches in which wind is not considered. For further investigation the in-situ measured wind velocities were replaced with wind data from numerical weather forecast models (ECMWF, reanalysis fields). Our results show that the PV module temperature calculated with wind data from ECMWF is still in very good agreement with the measured one (R² > 0.9 for all technologies). Compared to the previous analysis, we find comparable mean values and an increasing standard deviation. These results open a promising approach for PV module

  2. Wafer defect detection by a polarization-insensitive external differential interference contrast module.

    Science.gov (United States)

    Nativ, Amit; Feldman, Haim; Shaked, Natan T

    2018-05-01

    We present a system that is based on a new external, polarization-insensitive differential interference contrast (DIC) module specifically adapted for detecting defects in semiconductor wafers. We obtained defect signal enhancement relative to the surrounding wafer pattern when compared with bright-field imaging. The new DIC module proposed is based on a shearing interferometer that connects externally at the output port of an optical microscope and enables imaging thin samples, such as wafer defects. This module does not require polarization optics (such as Wollaston or Nomarski prisms) and is insensitive to polarization, unlike traditional DIC techniques. In addition, it provides full control of the DIC shear and orientation, which allows obtaining a differential phase image directly on the camera (with no further digital processing) while enhancing defect detection capabilities, even if the size of the defect is smaller than the resolution limit. Our technique has the potential of future integration into semiconductor production lines.

  3. Differential Space-Time Block Code Modulation for DS-CDMA Systems

    Directory of Open Access Journals (Sweden)

    Liu Jianhua

    2002-01-01

    Full Text Available A differential space-time block code (DSTBC modulation scheme is used to improve the performance of DS-CDMA systems in fast time-dispersive fading channels. The resulting scheme is referred to as the differential space-time block code modulation for DS-CDMA (DSTBC-CDMA systems. The new modulation and demodulation schemes are especially studied for the down-link transmission of DS-CDMA systems. We present three demodulation schemes, referred to as the differential space-time block code Rake (D-Rake receiver, differential space-time block code deterministic (D-Det receiver, and differential space-time block code deterministic de-prefix (D-Det-DP receiver, respectively. The D-Det receiver exploits the known information of the spreading sequences and their delayed paths deterministically besides the Rake type combination; consequently, it can outperform the D-Rake receiver, which employs the Rake type combination only. The D-Det-DP receiver avoids the effect of intersymbol interference and hence can offer better performance than the D-Det receiver.

  4. New hybrid reverse differential pulse position width modulation scheme for wireless optical communication

    Science.gov (United States)

    Liao, Renbo; Liu, Hongzhan; Qiao, Yaojun

    2014-05-01

    In order to improve the power efficiency and reduce the packet error rate of reverse differential pulse position modulation (RDPPM) for wireless optical communication (WOC), a hybrid reverse differential pulse position width modulation (RDPPWM) scheme is proposed, based on RDPPM and reverse pulse width modulation. Subsequently, the symbol structure of RDPPWM is briefly analyzed, and its performance is compared with that of other modulation schemes in terms of average transmitted power, bandwidth requirement, and packet error rate over ideal additive white Gaussian noise (AWGN) channels. Based on the given model, the simulation results show that the proposed modulation scheme has the advantages of improving the power efficiency and reducing the bandwidth requirement. Moreover, in terms of error probability performance, RDPPWM can achieve a much lower packet error rate than that of RDPPM. For example, at the same received signal power of -28 dBm, the packet error rate of RDPPWM can decrease to 2.6×10-12, while that of RDPPM is 2.2×10. Furthermore, RDPPWM does not need symbol synchronization at the receiving end. These considerations make RDPPWM a favorable candidate to select as the modulation scheme in the WOC systems.

  5. Exogenous hydrogen sulfide promotes cell proliferation and differentiation by modulating autophagy in human keratinocytes

    International Nuclear Information System (INIS)

    Xie, Xin; Dai, Hui; Zhuang, Binyu; Chai, Li; Xie, Yanguang; Li, Yuzhen

    2016-01-01

    The effects and the underlying mechanisms of hydrogen sulfide (H 2 S) on keratinocyte proliferation and differentiation are still less known. In the current study, we investigated the effects and the underlying mechanisms of exogenous H 2 S on keratinocyte proliferation and differentiation. Human keratinocytes (HaCaT cells) were treated with various concentrations (0.05, 0.25, 0.5 and 1 mM) of sodium hydrosulfide (NaHS, a donor of H 2 S) for 24 h. A CCK-8 assay was used to assess cell viability. Western blot analysis was performed to determine the expression levels of proteins associated with differentiation and autophagy. Transmission electron microscopy was performed to observe autophagic vacuoles, and flow cytometry was applied to evaluate apoptosis. NaHS promoted the viability, induced the differentiation, and enhanced autophagic activity in a dose-dependent manner in HaCaT cells but had no effect on cell apoptosis. Blockage of autophagy by ATG5 siRNA inhibited NaHS-induced cell proliferation and differentiation. The current study demonstrated that autophagy in response to exogenous H 2 S treatment promoted keratinocyte proliferation and differentiation. Our results provide additional insights into the potential role of autophagy in keratinocyte proliferation and differentiation. - Highlights: • Exogenous H 2 S promotes keratinocyte proliferation and differentiation. • The effects of H 2 S on proliferation and differentiation is modulated by autophagy. • Exogenous H 2 S has no effect on keratinocyte apoptosis.

  6. Estudio cinético del efecto de polifenilsulfona sobre el curado de una resina epoxi/amina mediante calorimetría diferencial de barrido convencional y modulada con temperatura: parte II Kinetic study on the effect of curing polyphenylsulfone epoxy resin/amina by differential calorimetry scanning conventional and modulated temperature: part II

    Directory of Open Access Journals (Sweden)

    Asdrúbal J. Cedeño

    2010-01-01

    Full Text Available En este trabajo se estudió el efecto de la adición del termoplástico lineal polifenilsulfona (PPSU, sobre la cinética de reacción y las propiedades térmicas de una resina epoxídica basada en diglicidil éter de bisfenol - A (DGEBA, curada con diaminodifenilsulfona (DDS. El estudio cinético y la caracterización se realizaron mediante calorimetría diferencial de barrido, DSC estándar y modulado, bajo condiciones isotérmicas y dinámicas. La cinética del curado se discutió en el marco de tres modelos cinéticos: Kissinger, Flynn-Wall-Ozawa y el modelo cinético de orden n. Para describir la reacción de curado en su última etapa, se usó la relación semiempírica propuesta por Chern y Poehlein para considerar la influencia de la difusión sobre la rapidez de reacción. El mecanismo de curado, para todos los sistemas, se ajustó a una cinética de orden n, a pesar del contenido de PPSU, y se observó que éste se hace muy controlado por la difusión conforme aumenta el contenido de PPSU y conforme la temperatura de curado disminuye. El tiempo de vitrificación de los sistemas exhibió una fuerte dependencia con el contenido de PPSU.In this work we studied the effect of the addition of the linear thermoplastic polyphenyl sulfone (PPSU on the cure kinetics and the thermal properties of a resin based on diglycidyl ether of bisphenol-A (DGEBA, cured with 4,4´-diaminodiphenyl sulfone (DDS. The kinetic study and the characterization process have been carried out by using differential scanning calorimetry, DSC, and temperature modulated DSC (TMDSC, under isothermal and dynamic conditions. The curing kinetics was discussed in the framework of three kinetic models: Kissinger, Flynn-Wall-Ozawa, and the model of reaction of order n. To describe the cured reaction in its last stage, we have used the semiempirical relationship proposed by Chern and Poehlein to take into account the influence of diffusion on the reaction rate. The cure mechanism

  7. Parallelism between gradient temperature raman spectroscopy and differential scanning calorimetry results

    Science.gov (United States)

    Temperature dependent Raman spectroscopy (TDR) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDR and D...

  8. Some tests of flat plate photovoltaic module cell temperatures in simulated field conditions

    Science.gov (United States)

    Griffith, J. S.; Rathod, M. S.; Paslaski, J.

    1981-01-01

    The nominal operating cell temperature (NOCT) of solar photovoltaic (PV) modules is an important characteristic. Typically, the power output of a PV module decreases 0.5% per deg C rise in cell temperature. Several tests were run with artificial sun and wind to study the parametric dependencies of cell temperature on wind speed and direction and ambient temperature. It was found that the cell temperature is extremely sensitive to wind speed, moderately so to wind direction and rather insensitive to ambient temperature. Several suggestions are made to obtain data more typical of field conditions.

  9. Investigations on 3-dimensional temperature distribution in a FLATCON-type CPV module

    Science.gov (United States)

    Wiesenfarth, Maike; Gamisch, Sebastian; Kraus, Harald; Bett, Andreas W.

    2013-09-01

    The thermal flow in a FLATCON®-type CPV module is investigated theoretically and experimentally. For the simulation a model in the computational fluid dynamics (CFD) software SolidWorks Flow Simulation was established. In order to verify the simulation results the calculated and measured temperatures were compared assuming the same operating conditions (wind speed and direction, direct normal irradiance (DNI) and ambient temperature). Therefore, an experimental module was manufactured and equipped with temperature sensors at defined positions. In addition, the temperature distribution on the back plate of the module was displayed by infrared images. The simulated absolute temperature and the distribution compare well with an average deviation of only 3.3 K to the sensor measurements. Finally, the validated model was used to investigate the influence of the back plate material on the temperature distribution by replacing the glass material by aluminum. The simulation showed that it is important to consider heat dissipation by radiation when designing a CPV module.

  10. An accurate modelling of the two-diode model of PV module using a hybrid solution based on differential evolution

    International Nuclear Information System (INIS)

    Chin, Vun Jack; Salam, Zainal; Ishaque, Kashif

    2016-01-01

    Highlights: • An accurate computational method for the two-diode model of PV module is proposed. • The hybrid method employs analytical equations and Differential Evolution (DE). • I PV , I o1 , and R p are computed analytically, while a 1 , a 2 , I o2 and R s are optimized. • This allows the model parameters to be computed without using costly assumptions. - Abstract: This paper proposes an accurate computational technique for the two-diode model of PV module. Unlike previous methods, it does not rely on assumptions that cause the accuracy to be compromised. The key to this improvement is the implementation of a hybrid solution, i.e. by incorporating the analytical method with the differential evolution (DE) optimization technique. Three parameters, i.e. I PV , I o1 , and R p are computed analytically, while the remaining, a 1 , a 2 , I o2 and R s are optimized using the DE. To validate its accuracy, the proposed method is tested on three PV modules of different technologies: mono-crystalline, poly-crystalline and thin film. Furthermore, its performance is evaluated against two popular computational methods for the two-diode model. The proposed method is found to exhibit superior accuracy for the variation in irradiance and temperature for all module types. In particular, the improvement in accuracy is evident at low irradiance conditions; the root-mean-square error is one order of magnitude lower than that of the other methods. In addition, the values of the model parameters are consistent with the physics of PV cell. It is envisaged that the method can be very useful for PV simulation, in which accuracy of the model is of prime concern.

  11. M19 modulates skeletal muscle differentiation and insulin secretion in pancreatic β-cells through modulation of respiratory chain activity.

    Directory of Open Access Journals (Sweden)

    Linda Cambier

    Full Text Available Mitochondrial dysfunction due to nuclear or mitochondrial DNA alterations contributes to multiple diseases such as metabolic myopathies, neurodegenerative disorders, diabetes and cancer. Nevertheless, to date, only half of the estimated 1,500 mitochondrial proteins has been identified, and the function of most of these proteins remains to be determined. Here, we characterize the function of M19, a novel mitochondrial nucleoid protein, in muscle and pancreatic β-cells. We have identified a 13-long amino acid sequence located at the N-terminus of M19 that targets the protein to mitochondria. Furthermore, using RNA interference and over-expression strategies, we demonstrate that M19 modulates mitochondrial oxygen consumption and ATP production, and could therefore regulate the respiratory chain activity. In an effort to determine whether M19 could play a role in the regulation of various cell activities, we show that this nucleoid protein, probably through its modulation of mitochondrial ATP production, acts on late muscle differentiation in myogenic C2C12 cells, and plays a permissive role on insulin secretion under basal glucose conditions in INS-1 pancreatic β-cells. Our results are therefore establishing a functional link between a mitochondrial nucleoid protein and the modulation of respiratory chain activities leading to the regulation of major cellular processes such as myogenesis and insulin secretion.

  12. A high-stability non-contact dilatometer for low-amplitude temperature-modulated measurements

    Energy Technology Data Exchange (ETDEWEB)

    Luckabauer, Martin; Sprengel, Wolfgang; Würschum, Roland [Institute of Materials Physics, Graz University of Technology, A-8010 Graz (Austria)

    2016-07-15

    Temperature modulated thermophysical measurements can deliver valuable insights into the phase transformation behavior of many different materials. While especially for non-metallic systems at low temperatures numerous powerful methods exist, no high-temperature device suitable for modulated measurements of bulk metallic alloy samples is available for routine use. In this work a dilatometer for temperature modulated isothermal and non-isothermal measurements in the temperature range from room temperature to 1300 K is presented. The length measuring system is based on a two-beam Michelson laser interferometer with an incremental resolution of 20 pm. The non-contact measurement principle allows for resolving sinusoidal length change signals with amplitudes in the sub-500 nm range and physically decouples the length measuring system from the temperature modulation and heating control. To demonstrate the low-amplitude capabilities, results for the thermal expansion of nickel for two different modulation frequencies are presented. These results prove that the novel method can be used to routinely resolve length-change signals of metallic samples with temperature amplitudes well below 1 K. This high resolution in combination with the non-contact measurement principle significantly extends the application range of modulated dilatometry towards high-stability phase transformation measurements on complex alloys.

  13. Differentiation-inducing factor-1 and -2 function also as modulators for Dictyostelium chemotaxis.

    Directory of Open Access Journals (Sweden)

    Hidekazu Kuwayama

    Full Text Available BACKGROUND: In the early stages of development of the cellular slime mold Dictyostelium discoideum, chemotaxis toward cAMP plays a pivotal role in organizing discrete cells into a multicellular structure. In this process, a series of signaling molecules, such as G-protein-coupled cell surface receptors for cAMP, phosphatidylinositol metabolites, and cyclic nucleotides, function as the signal transducers for controlling dynamics of cytoskeleton. Differentiation-inducing factor-1 and -2 (DIF-1 and DIF-2 were originally identified as the factors (chlorinated alkylphenones that induce Dictyostelium stalk cell differentiation, but it remained unknown whether the DIFs had any other physiologic functions. METHODOLOGY/PRINCIPAL FINDINGS: To further elucidate the functions of DIFs, in the present study we investigated their effects on chemotaxis under various conditions. Quite interestingly, in shallow cAMP gradients, DIF-1 suppressed chemotaxis whereas DIF-2 promoted it greatly. Analyses with various mutants revealed that DIF-1 may inhibit chemotaxis, at least in part, via GbpB (a phosphodiesterase and a decrease in the intracellular cGMP concentration ([cGMP](i. DIF-2, by contrast, may enhance chemotaxis, at least in part, via RegA (another phosphodiesterase and an increase in [cGMP](i. Using null mutants for DimA and DimB, the transcription factors that are required for DIF-dependent prestalk differentiation, we also showed that the mechanisms for the modulation of chemotaxis by DIFs differ from those for the induction of cell differentiation by DIFs, at least in part. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that DIF-1 and DIF-2 function as negative and positive modulators for Dictyostelium chemotaxis, respectively. To our knowledge, this is the first report in any organism of physiologic modulators (small molecules for chemotaxis having differentiation-inducing activity.

  14. Dopamine modulates metabolic rate and temperature sensitivity in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Taro Ueno

    Full Text Available Homeothermal animals, such as mammals, maintain their body temperature by heat generation and heat dissipation, while poikilothermal animals, such as insects, accomplish it by relocating to an environment of their favored temperature. Catecholamines are known to regulate thermogenesis and metabolic rate in mammals, but their roles in other animals are poorly understood. The fruit fly, Drosophila melanogaster, has been used as a model system for the genetic studies of temperature preference behavior. Here, we demonstrate that metabolic rate and temperature sensitivity of some temperature sensitive behaviors are regulated by dopamine in Drosophila. Temperature-sensitive molecules like dTrpA1 and shi(ts induce temperature-dependent behavioral changes, and the temperature at which the changes are induced were lowered in the dopamine transporter-defective mutant, fumin. The mutant also displays a preference for lower temperatures. This thermophobic phenotype was rescued by the genetic recovery of the dopamine transporter in dopamine neurons. Flies fed with a dopamine biosynthesis inhibitor (3-iodo-L-tyrosine, which diminishes dopamine signaling, exhibited preference for a higher temperature. Furthermore, we found that the metabolic rate is up-regulated in the fumin mutant. Taken together, dopamine has functions in the temperature sensitivity of behavioral changes and metabolic rate regulation in Drosophila, as well as its previously reported functions in arousal/sleep regulation.

  15. Effect of PV module output power on module temperature; Taiyo denchi no shutsuryoku henka ga module hyomen ondo ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Hongo, T; Kitamura, A [Kansai Electric Power Co. Inc., Osaka (Japan); Igaki, K; Mizumoto, T [Kanden Kako Co. Inc., Osaka (Japan)

    1996-10-27

    Effect of the photovoltaic (PV) module output power variation on the module surface temperature has been investigated by field measurements. PV modules with capacity of 54 W were used for the temperature measurements. Three 2 kW-class PV systems were operated. T-type thermocouples were used for measuring temperatures. Measurement time intervals were 15 minutes, 30 minutes, 60 minutes, and 24 hours. Measurement period was between May 25, 1995 and June 25, 1996. The surface temperature increased during non-loaded PV output, and decreased during load-carrying PV output. Difference of the surface temperature between non-loaded PV output and load-carrying PV output was 3.5{degree}C at maximum through a year. The surface temperature was saturated within 30 minutes. When PV output was changed in 30 or 60 minutes interval, the variation of surface temperature was distinctly observed. When PV output was changed in 15 minutes interval, it was not observed distinctly. There was no difference of the surface temperatures during the time zones with less solar radiation, such as in the morning and evening, and at night. Except these time zones, difference of the surface temperatures was 3.5{degree}C at maximum. 4 figs.

  16. Process, Voltage and Temperature Compensation Technique for Cascode Modulated PAs

    DEFF Research Database (Denmark)

    Sira, Daniel; Larsen, Torben

    2013-01-01

    , that represents a transistor level model (empirical model) of the cascode modulated PA, is utilized in a PA analog predistorter. The analog predistorter linearizes and compensates for PVT variation of the cascode modulated PA. The empirical model is placed in the negative feedback of an operational...... transconductance amplifier. The predistorted varying envelope signal is applied to the cascode gate of the PA. It is shown that the proposed PVT compensation technique significantly reduces the PVT spread of the PA linearity indicators and improves the PA linearity. Simulations were performed in a 0.13 μm CMOS...

  17. Exogenous hydrogen sulfide promotes cell proliferation and differentiation by modulating autophagy in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xin [Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province (China); Dai, Hui [Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province (China); Zhuang, Binyu [Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province (China); Chai, Li; Xie, Yanguang [Institute of Dermatology of Heilongjiang Province, Harbin, 150001, Heilongjiang Province (China); Li, Yuzhen, E-mail: liyuzhen@medmail.com.cn [Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province (China)

    2016-04-08

    The effects and the underlying mechanisms of hydrogen sulfide (H{sub 2}S) on keratinocyte proliferation and differentiation are still less known. In the current study, we investigated the effects and the underlying mechanisms of exogenous H{sub 2}S on keratinocyte proliferation and differentiation. Human keratinocytes (HaCaT cells) were treated with various concentrations (0.05, 0.25, 0.5 and 1 mM) of sodium hydrosulfide (NaHS, a donor of H{sub 2}S) for 24 h. A CCK-8 assay was used to assess cell viability. Western blot analysis was performed to determine the expression levels of proteins associated with differentiation and autophagy. Transmission electron microscopy was performed to observe autophagic vacuoles, and flow cytometry was applied to evaluate apoptosis. NaHS promoted the viability, induced the differentiation, and enhanced autophagic activity in a dose-dependent manner in HaCaT cells but had no effect on cell apoptosis. Blockage of autophagy by ATG5 siRNA inhibited NaHS-induced cell proliferation and differentiation. The current study demonstrated that autophagy in response to exogenous H{sub 2}S treatment promoted keratinocyte proliferation and differentiation. Our results provide additional insights into the potential role of autophagy in keratinocyte proliferation and differentiation. - Highlights: • Exogenous H{sub 2}S promotes keratinocyte proliferation and differentiation. • The effects of H{sub 2}S on proliferation and differentiation is modulated by autophagy. • Exogenous H{sub 2}S has no effect on keratinocyte apoptosis.

  18. Incorporation of Biomaterials in Multicellular Aggregates Modulates Pluripotent Stem Cell Differentiation

    Science.gov (United States)

    Bratt-Leal, Andrés M.; Carpenedo, Richard L.; Ungrin, Mark; Zandstra, Peter W.; McDevitt, Todd C.

    2010-01-01

    Biomaterials are increasingly being used to engineer the biochemical and biophysical properties of the extracellular stem cell microenvironment in order to tailor niche characteristics and direct cell phenotype. To date, stem cell-biomaterial interactions have largely been studied by introducing stem cells into artificial environments, such as 2D cell culture on biomaterial surfaces, encapsulation of cell suspensions within hydrogel materials, or cell seeding on 3D polymeric scaffolds. In this study, microparticles fabricated from different materials, such as agarose, PLGA and gelatin, were stably integrated, in a dose-dependent manner, within aggregates of pluripotent stem cells (PSCs) prior to differentiation as a means to directly examine stem cell-biomaterial interactions in 3D. Interestingly, the presence of the materials within the stem cell aggregates differentially modulated the gene and protein expression patterns of several differentiation markers without adversely affecting cell viability. Microparticle incorporation within 3D stem cell aggregates can control the spatial presentation of extracellular environmental cues (i.e. soluble factors, extracellular matrix and intercellular adhesion molecules) as a means to direct the differentiation of stem cells for tissue engineering and regenerative medicine applications. In addition, these results suggest that the physical presence of microparticles within stem cell aggregates does not compromise PSC differentiation, but in fact the choice of biomaterials can impact the propensity of stem cells to adopt particular differentiated cell phenotypes. PMID:20864164

  19. Neuronal differentiation modulates the dystrophin Dp71d binding to the nuclear matrix

    International Nuclear Information System (INIS)

    Rodriguez-Munoz, Rafael; Villarreal-Silva, Marcela; Gonzalez-Ramirez, Ricardo; Garcia-Sierra, Francisco; Mondragon, Monica; Mondragon, Ricardo; Cerna, Joel; Cisneros, Bulmaro

    2008-01-01

    The function of dystrophin Dp71 in neuronal cells remains unknown. To approach this issue, we have selected the PC12 neuronal cell line. These cells express both a Dp71f cytoplasmic variant and a Dp71d nuclear isoform. In this study, we demonstrated by electron and confocal microscopy analyses of in situ nuclear matrices and Western blotting evaluation of cell extracts that Dp71d associates with the nuclear matrix. Interestingly, this binding is modulated during NGF-induced neuronal differentiation of PC12 cells with a twofold increment in the differentiated cells, compared to control cells. Also, distribution of Dp71d along the periphery of the nuclear matrix observed in the undifferentiated cells is replaced by intense fluorescent foci localized in Center of the nucleoskeletal structure. In summary, we revealed that Dp71d is a dynamic component of nuclear matrix that might participate in the nuclear modeling occurring during neuronal differentiation

  20. Segmented Thermoelectric Oxide-Based Module for High-Temperature Waste Heat Harvesting

    DEFF Research Database (Denmark)

    Le, Thanh Hung; Van Nong, Ngo; Han, Li

    2015-01-01

    the efficiency and to evaluate the influence of the electrical and thermal losses on the performance of TE modules. Initial long-term stability tests of the module at the hot and the cold side temperatures of 1073 K and 444 K, respectively, showed a promising result with 4% degradation for 48 h operating in air....

  1. Nanostructured oxide materials and modules for high temperature power generation from waste heat

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    2013-01-01

    are not easily satisfied by conventional thermoelectric materials. Not only they must possess a sufficient thermoelectric performance, they should also be stable at high temperatures, nontoxic and low-cost comprising elements, and must be also able to be processed and shaped cheaply. Oxides are among...... the strongest candidate materials for this purpose. In this review, the progress in the development of two representative p- and n-type novel oxide materials based on Ca3Co4O9 and doped-ZnO is presented. Thermoelectric modules built up from these oxides were fabricated, tested at high temperatures, and compared...... with other similar oxide modules reported in the literature. A maximum power density of 4.5 kW/m2 was obtained for an oxide module comprising of 8 p-n couples at a temperature difference of 496 K, an encouraging result in the context of the present high temperature oxide modules....

  2. Differential protein modulation in midguts of Aedes aegypti infected with chikungunya and dengue 2 viruses.

    Directory of Open Access Journals (Sweden)

    Stéphane Tchankouo-Nguetcheu

    Full Text Available BACKGROUND: Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. METHODOLOGY AND PRINCIPAL FINDINGS: Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE, we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI with dengue 2 (DENV-2 and chikungunya (CHIKV viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. CONCLUSION/SIGNIFICANCE: Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha

  3. Differential protein modulation in midguts of Aedes aegypti infected with chikungunya and dengue 2 viruses.

    Science.gov (United States)

    Tchankouo-Nguetcheu, Stéphane; Khun, Huot; Pincet, Laurence; Roux, Pascal; Bahut, Muriel; Huerre, Michel; Guette, Catherine; Choumet, Valérie

    2010-10-05

    Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour virus survival, replication and transmission, suggesting a subversion of

  4. Differential pulse amplitude modulation for multiple-input single-output OWVLC

    Science.gov (United States)

    Yang, S. H.; Kwon, D. H.; Kim, S. J.; Son, Y. H.; Han, S. K.

    2015-01-01

    White light-emitting diodes (LEDs) are widely used for lighting due to their energy efficiency, eco-friendly, and small size than previously light sources such as incandescent, fluorescent bulbs and so on. Optical wireless visible light communication (OWVLC) based on LED merges lighting and communications in applications such as indoor lighting, traffic signals, vehicles, and underwater communications because LED can be easily modulated. However, physical bandwidth of LED is limited about several MHz by slow time constant of the phosphor and characteristics of device. Therefore, using the simplest modulation format which is non-return-zero on-off-keying (NRZ-OOK), the data rate reaches only to dozens Mbit/s. Thus, to improve the transmission capacity, optical filtering and pre-, post-equalizer are adapted. Also, high-speed wireless connectivity is implemented using spectrally efficient modulation methods: orthogonal frequency division multiplexing (OFDM) or discrete multi-tone (DMT). However, these modulation methods need additional digital signal processing such as FFT and IFFT, thus complexity of transmitter and receiver is increasing. To reduce the complexity of transmitter and receiver, we proposed a novel modulation scheme which is named differential pulse amplitude modulation. The proposed modulation scheme transmits different NRZ-OOK signals with same amplitude and unit time delay using each LED chip, respectively. The `N' parallel signals from LEDs are overlapped and directly detected at optical receiver. Received signal is demodulated by power difference between unit time slots. The proposed scheme can overcome the bandwidth limitation of LEDs and data rate can be improved according to number of LEDs without complex digital signal processing.

  5. Brillouin suppression in a fiber optical parametric amplifier by combining temperature distribution and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2008-01-01

    We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation.......We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation....

  6. Compact temperature-insensitive modulator based on a silicon microring assistant Mach—Zehnder interferometer

    International Nuclear Information System (INIS)

    Zhang Xue-Jian; Feng Xue; Zhang Deng-Ke; Huang Yi-Dong

    2012-01-01

    On the silicon-on-insulator platform, an ultra compact temperature-insensitive modulator based on a cascaded microring assistant Mach—Zehnder interferometer is proposed and demonstrated with numerical simulation. According to the calculated results, the tolerated variation of ambient temperature can be as high as 134 °C while the footprint of such a silicon modulator is only 340 μm 2 . (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  7. A Temperature-Dependent Thermal Model of IGBT Modules Suitable for Circuit-Level Simulations

    DEFF Research Database (Denmark)

    Wu, Rui; Wang, Huai; Ma, Ke

    2014-01-01

    Thermal impedance of IGBT modules may vary with operating conditions due to that the thermal conductivity and heat capacity of materials are temperature dependent. This paper proposes a Cauer thermal model for a 1700 V/1000 A IGBT module with temperature-dependent thermal resistances and thermal ...... relevant reliability aspect performance. A test bench is built up with an ultra-fast infrared (IR) camera to validate the proposed thermal impedance model....

  8. Perceived state of self during motion can differentially modulate numerical magnitude allocation.

    Science.gov (United States)

    Arshad, Q; Nigmatullina, Y; Roberts, R E; Goga, U; Pikovsky, M; Khan, S; Lobo, R; Flury, A-S; Pettorossi, V E; Cohen-Kadosh, R; Malhotra, P A; Bronstein, A M

    2016-09-01

    Although a direct relationship between numerical allocation and spatial attention has been proposed, recent research suggests that these processes are not directly coupled. In keeping with this, spatial attention shifts induced either via visual or vestibular motion can modulate numerical allocation in some circumstances but not in others. In addition to shifting spatial attention, visual or vestibular motion paradigms also (i) elicit compensatory eye movements which themselves can influence numerical processing and (ii) alter the perceptual state of 'self', inducing changes in bodily self-consciousness impacting upon cognitive mechanisms. Thus, the precise mechanism by which motion modulates numerical allocation remains unknown. We sought to investigate the influence that different perceptual experiences of motion have upon numerical magnitude allocation while controlling for both eye movements and task-related effects. We first used optokinetic visual motion stimulation (OKS) to elicit the perceptual experience of either 'visual world' or 'self'-motion during which eye movements were identical. In a second experiment, we used a vestibular protocol examining the effects of perceived and subliminal angular rotations in darkness, which also provoked identical eye movements. We observed that during the perceptual experience of 'visual world' motion, rightward OKS-biased judgments towards smaller numbers, whereas leftward OKS-biased judgments towards larger numbers. During the perceptual experience of 'self-motion', judgments were biased towards larger numbers irrespective of the OKS direction. Contrastingly, vestibular motion perception was found not to modulate numerical magnitude allocation, nor was there any differential modulation when comparing 'perceived' vs. 'subliminal' rotations. We provide a novel demonstration that numerical magnitude allocation can be differentially modulated by the perceptual state of self during visual but not vestibular mediated motion

  9. Modulating functions-based method for parameters and source estimation in one-dimensional partial differential equations

    KAUST Repository

    Asiri, Sharefa M.; Laleg-Kirati, Taous-Meriem

    2016-01-01

    In this paper, modulating functions-based method is proposed for estimating space–time-dependent unknowns in one-dimensional partial differential equations. The proposed method simplifies the problem into a system of algebraic equations linear

  10. Temperature modulation with an esophageal heat transfer device - a pediatric swine model study.

    Science.gov (United States)

    Kulstad, Erik B; Naiman, Melissa; Shanley, Patrick; Garrett, Frank; Haryu, Todd; Waller, Donald; Azarafrooz, Farshid; Courtney, Daniel Mark

    2015-01-01

    An increasing number of conditions appear to benefit from control and modulation of temperature, but available techniques to control temperature often have limitations, particularly in smaller patients with high surface to mass ratios. We aimed to evaluate a new method of temperature modulation with an esophageal heat transfer device in a pediatric swine model, hypothesizing that clinically significant modulation in temperature (both increases and decreases of more than 1°C) would be possible. Three female Yorkshire swine averaging 23 kg were anesthetized with inhalational isoflurane prior to placement of the esophageal device, which was powered by a commercially available heat exchanger. Swine temperature was measured rectally and cooling and warming were performed by selecting the appropriate external heat exchanger mode. Temperature was recorded over time in order to calculate rates of temperature change. Histopathology of esophageal tissue was performed after study completion. Average swine baseline temperature was 38.3°C. Swine #1 exhibited a cooling rate of 3.5°C/hr; however, passive cooling may have contributed to this rate. External warming blankets maintained thermal equilibrium in swine #2 and #3, demonstrating maximum temperature decrease of 1.7°C/hr. Warming rates averaged 0.29°C/hr. Histopathologic analysis of esophageal tissue showed no adverse effects. An esophageal heat transfer device successfully modulated the temperature in a pediatric swine model. This approach to temperature modulation may offer a useful new modality to control temperature in conditions warranting temperature management (such as maintenance of normothermia, induction of hypothermia, fever control, or malignant hyperthermia).

  11. Gαq Regulates the Development of Rheumatoid Arthritis by Modulating Th1 Differentiation.

    Science.gov (United States)

    Wang, Dashan; Liu, Yuan; Li, Yan; He, Yan; Zhang, Jiyun; Shi, Guixiu

    2017-01-01

    The G α q-containing G protein, an important member of G q/11 class, is ubiquitously expressed in mammalian cells. G α q has been found to play an important role in immune regulation and development of autoimmune disease such as rheumatoid arthritis (RA). However, how G α q participates in the pathogenesis of RA is still not fully understood. In the present study, we aimed to find out whether G α q controls RA via regulation of Th1 differentiation. We observed that the expression of G α q was negatively correlated with the expression of signature Th1 cytokine (IFN- γ ) in RA patients, which suggests a negative role of G α q in differentiation of Th1 cells. By using G α q knockout ( Gnaq-/- ) mice, we demonstrated that loss of G α q led to enhanced Th1 cell differentiation. G α q negative regulated the differentiation of Th1 cell by modulating the expression of T-bet and the activity of STAT4. Furthermore, we detected the increased ratio of Th1 cells in Gnaq-/- bone marrow (BM) chimeras spontaneously developing inflammatory arthritis. In conclusion, results presented in the study demonstrate that loss of G α q promotes the differentiation of Th1 cells and contributes to the pathogenesis of RA.

  12. Mediator Med23 deficiency enhances neural differentiation of murine embryonic stem cells through modulating BMP signaling.

    Science.gov (United States)

    Zhu, Wanqu; Yao, Xiao; Liang, Yan; Liang, Dan; Song, Lu; Jing, Naihe; Li, Jinsong; Wang, Gang

    2015-02-01

    Unraveling the mechanisms underlying early neural differentiation of embryonic stem cells (ESCs) is crucial to developing cell-based therapies of neurodegenerative diseases. Neural fate acquisition is proposed to be controlled by a 'default' mechanism, for which the molecular regulation is not well understood. In this study, we investigated the functional roles of Mediator Med23 in pluripotency and lineage commitment of murine ESCs. Unexpectedly, we found that, despite the largely unchanged pluripotency and self-renewal of ESCs, Med23 depletion rendered the cells prone to neural differentiation in different differentiation assays. Knockdown of two other Mediator subunits, Med1 and Med15, did not alter the neural differentiation of ESCs. Med15 knockdown selectively inhibited endoderm differentiation, suggesting the specificity of cell fate control by distinctive Mediator subunits. Gene profiling revealed that Med23 depletion attenuated BMP signaling in ESCs. Mechanistically, MED23 modulated Bmp4 expression by controlling the activity of ETS1, which is involved in Bmp4 promoter-enhancer communication. Interestingly, med23 knockdown in zebrafish embryos also enhanced neural development at early embryogenesis, which could be reversed by co-injection of bmp4 mRNA. Taken together, our study reveals an intrinsic, restrictive role of MED23 in early neural development, thus providing new molecular insights for neural fate determination. © 2015. Published by The Company of Biologists Ltd.

  13. Influence of Temperature on the Performance of Photovoltaic Polycrystalline Silicon Module in the Bruneian Climate

    Directory of Open Access Journals (Sweden)

    A. Q. Malik

    2017-11-01

    Full Text Available The influence of working temperature for  a  polysilicon module has been investigated in Brunei Darussalam for a period of two years.  The rise in temperature produces thermal agitation which not only increases the dark current but also enhances the losses of free carriers in a polycrystalline module. The efficiency and the output power decreases with an increase in the working temperature. A maximum decline in the output power of 97% has been measured under a dominated diffused radiation environment. The temperature coefficients have been obtained and equations are developed to evaluate the change in the rating of module at any working temperature with reference to their values at STC.

  14. Micro-XRD and temperature-modulated DSC investigation of nickel-titanium rotary endodontic instruments.

    Science.gov (United States)

    Alapati, Satish B; Brantley, William A; Iijima, Masahiro; Schricker, Scott R; Nusstein, John M; Li, Uei-Ming; Svec, Timothy A

    2009-10-01

    Employ Micro-X-ray diffraction and temperature-modulated differential scanning calorimetry to investigate microstructural phases, phase transformations, and effects of heat treatment for rotary nickel-titanium instruments. Representative as-received and clinically used ProFile GT and ProTaper instruments were principally studied. Micro-XRD analyses (Cu Kalpha X-rays) were performed at 25 degrees C on areas of approximately 50 microm diameter near the tip and up to 9 mm from the tip. TMDSC analyses were performed from -80 to 100 degrees C and back to -80 degrees C on segments cut from instruments, using a linear heating and cooling rate of 2 degrees C/min, sinusoidal oscillation of 0.318 degrees C, and period of 60s. Instruments were also heat treated 15 min in a nitrogen atmosphere at 400, 500, 600 and 850 degrees C, and analyzed. At all Micro-XRD analysis regions the strongest peak occurred near 42 degrees , indicating that instruments were mostly austenite, with perhaps some R-phase and martensite. Tip and adjacent regions had smallest peak intensities, indicative of greater work hardening, and the intensity at other sites depended on the instrument. TMDSC heating and cooling curves had single peaks for transformations between martensite and austenite. Austenite-finish (A(f)) temperatures and enthalpy changes were similar for as-received and used instruments. Heat treatments at 400, 500 and 600 degrees C raised the A(f) temperature to 45-50 degrees C, and heat treatment at 850 degrees C caused drastic changes in transformation behavior. Micro-XRD provides novel information about NiTi phases at different positions on instruments. TMDSC indicates that heat treatment might yield instruments with substantial martensite and improved clinical performance.

  15. Effect of Junction Temperature Swing Durations on a Lifetime of a Transfer Molded IGBT Module

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Jorgensen, Soren

    2016-01-01

    results under 6 different conditions and it may improve a lifetime model for lifetime prediction of IGBT modules under various mission profiles of converters. The power cycling tests are performed by an advanced power cycling test setup which enables tested modules to be operated under more realistic......In this paper, the effect of junction temperature swing duration on the lifetime of a transfer molded Intelligent Power IGBT Module is studied and a relevant lifetime factor is modeled. A temperature swing duration dependent lifetime factor is defined based on 38 accelerated power cycling test...

  16. Study on Effect of Junction Temperature Swing Duration on Lifetime of Transfer Molded Power IGBT Modules

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Jørgensen, Søren

    2017-01-01

    levels are presented. This study enables to include the tΔTj effect on lifetime model of IGBT modules for its lifetime estimation and it may result in improved lifetime prediction of IGBT modules under given mission profiles of converters. A postfailure analysis of the tested IGBT modules is also......In this paper, the effect of junction temperature swing duration on lifetime of transfer molded power insulated gate bipolar transistor (IGBT) modules is studied and a relevant lifetime factor is modeled. This study is based on 39 accelerated power cycling test results under six different...

  17. CD4+CD25+ regulatory T cells control CD8+ T-cell effector differentiation by modulating IL-2 homeostasis

    Science.gov (United States)

    McNally, Alice; Hill, Geoffrey R.; Sparwasser, Tim; Thomas, Ranjeny; Steptoe, Raymond J.

    2011-01-01

    CD4+CD25+ regulatory T cells (Treg) play a crucial role in the regulation of immune responses. Although many mechanisms of Treg suppression in vitro have been described, the mechanisms by which Treg modulate CD8+ T cell differentiation and effector function in vivo are more poorly defined. It has been proposed, in many instances, that modulation of cytokine homeostasis could be an important mechanism by which Treg regulate adaptive immunity; however, direct experimental evidence is sparse. Here we demonstrate that CD4+CD25+ Treg, by critically regulating IL-2 homeostasis, modulate CD8+ T-cell effector differentiation. Expansion and effector differentiation of CD8+ T cells is promoted by autocrine IL-2 but, by competing for IL-2, Treg limit CD8+ effector differentiation. Furthermore, a regulatory loop exists between Treg and CD8+ effector T cells, where IL-2 produced during CD8+ T-cell effector differentiation promotes Treg expansion. PMID:21502514

  18. Operating Cell Temperature Determination in Flat-Plate Photovoltaic Modules; Calculo de la Temperature de Operacion de Celulas Solares en un Panel Fotovoltaico Plano

    Energy Technology Data Exchange (ETDEWEB)

    Chenlo, F.

    2002-07-01

    Two procedures (simplified and complete) to determine the operating cell temperature in photovoltaic modules operating in real conditions assuming isothermal stationary modules are presented in this work. Some examples are included that show the dependence of this temperature on several environment (sky, ground and ambient temperatures, solar irradiance, wind speed, etc.) and structural (module geometry and size, encapsulating materials, antirreflexive optical coatings, etc) factors and also on electrical module performance. In a further step temperature profiles for non-isothermal modules are analysed besides transitory effects due to variable irradiance and wind gusts. (Author)

  19. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  20. Temperature Regulation of Photovoltaic Module Using Phase Change Material: A Numerical Analysis and Experimental Investigation

    Directory of Open Access Journals (Sweden)

    Hasan Mahamudul

    2016-01-01

    Full Text Available This work represents an effective design of a temperature regulated PV module by integrating phase change materials for Malaysian weather condition. Through the numerical analysis and experimental investigation it has been shown that if a PCM layer of width 0.02 m of RT 35 is used as a cooling arrangement with a PV module, the surface temperature of the module is reduced by 10°C, which remains constant for a period of 4–6 hours. This reduction of temperature implies the increase in conversion efficiency of the module. Experiment as well as investigation has been carried out considering typical Malaysian weather. Obtained result has been validated by using experimental prototype and comparative analysis.

  1. Long-term storage life of light source modules by temperature cycling accelerated life test

    International Nuclear Information System (INIS)

    Sun Ningning; Tan Manqing; Li Ping; Jiao Jian; Guo Xiaofeng; Guo Wentao

    2014-01-01

    Light source modules are the most crucial and fragile devices that affect the life and reliability of the interferometric fiber optic gyroscope (IFOG). While the light emitting chips were stable in most cases, the module packaging proved to be less satisfactory. In long-term storage or the working environment, the ambient temperature changes constantly and thus the packaging and coupling performance of light source modules are more likely to degrade slowly due to different materials with different coefficients of thermal expansion in the bonding interface. A constant temperature accelerated life test cannot evaluate the impact of temperature variation on the performance of a module package, so the temperature cycling accelerated life test was studied. The main failure mechanism affecting light source modules is package failure due to solder fatigue failure including a fiber coupling shift, loss of cooling efficiency and thermal resistor degradation, so the Norris-Landzberg model was used to model solder fatigue life and determine the activation energy related to solder fatigue failure mechanism. By analyzing the test data, activation energy was determined and then the mean life of light source modules in different storage environments with a continuously changing temperature was simulated, which has provided direct reference data for the storage life prediction of IFOG. (semiconductor devices)

  2. Nouns referring to tools and natural objects differentially modulate the motor system.

    Science.gov (United States)

    Gough, Patricia M; Riggio, Lucia; Chersi, Fabian; Sato, Marc; Fogassi, Leonardo; Buccino, Giovanni

    2012-01-01

    While increasing evidence points to a critical role for the motor system in language processing, the focus of previous work has been on the linguistic category of verbs. Here we tested whether nouns are effective in modulating the motor system and further whether different kinds of nouns - those referring to artifacts or natural items, and items that are graspable or ungraspable - would differentially modulate the system. A Transcranial Magnetic Stimulation (TMS) study was carried out to compare modulation of the motor system when subjects read nouns referring to objects which are Artificial or Natural and which are Graspable or Ungraspable. TMS was applied to the primary motor cortex representation of the first dorsal interosseous (FDI) muscle of the right hand at 150 ms after noun presentation. Analyses of Motor Evoked Potentials (MEPs) revealed that across the duration of the task, nouns referring to graspable artifacts (tools) were associated with significantly greater MEP areas. Analyses of the initial presentation of items revealed a main effect of graspability. The findings are in line with an embodied view of nouns, with MEP measures modulated according to whether nouns referred to natural objects or artifacts (tools), confirming tools as a special class of items in motor terms. Additionally our data support a difference for graspable versus non graspable objects, an effect which for natural objects is restricted to initial presentation of items. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Differential on-on keying: A robust non-coherent digital modulation scheme

    KAUST Repository

    Kaddoum, Georges

    2015-05-01

    A robust digital modulation scheme, called differential on-on keying (DOOK), is presented in this paper which outperforms the conventional on-off keying (OOK). In this scheme, a sinusoidal signal is transmitted during the first half of the bit duration while a replica or an inverted version of the sinusoidal signal is transmitted during the second half for logic one or logic zero, respectively. Non-coherent receiver correlates the two halves of the received signal over half bit duration to construct a decision variable. Bit error performance is analyzed over AWGN and Rayleigh fading channels and compared to the conventional OOK.

  4. Differential on-on keying: A robust non-coherent digital modulation scheme

    KAUST Repository

    Kaddoum, Georges; Ahmed, Mohammed F. A.; Al-Naffouri, Tareq Y.

    2015-01-01

    A robust digital modulation scheme, called differential on-on keying (DOOK), is presented in this paper which outperforms the conventional on-off keying (OOK). In this scheme, a sinusoidal signal is transmitted during the first half of the bit duration while a replica or an inverted version of the sinusoidal signal is transmitted during the second half for logic one or logic zero, respectively. Non-coherent receiver correlates the two halves of the received signal over half bit duration to construct a decision variable. Bit error performance is analyzed over AWGN and Rayleigh fading channels and compared to the conventional OOK.

  5. Characterization of the phase transformations in shape-memory alloys by modulated differential scanning calorimetry

    International Nuclear Information System (INIS)

    Wei, Z.G.; Sandstroem, R.

    1999-01-01

    Modulated differential scanning calorimetry (MDSC) is a recently developed calorimetric technique, which has demonstrated some significant advantages over the conventional differential scanning calorimetry (DSC). By separating the reversing quantity from the non-reversing component in the total thermal events, it provides some new information that can not be obtained from the conventional DSC. The technique has been applied to various polycrystalline and single crystalline shape-memory alloys, including Cu-Zn-Al, Cu-Al-Ni, Ti-Ni(Cu), Ni-Mn-Ga and Fe-Mn-Si, to characterize the martensitic transformations, bainitic transformation, chemical and magnetic ordering transitions, atomic reordering and other kinetic relaxation processes in the alloys. The preliminary results of the MDSC measurements are summarized and the interpretation of the MDSC results and some factors affecting the results are discussed. (orig.)

  6. Fucoidan, a Sulfated Polysaccharide, Inhibits Osteoclast Differentiation and Function by Modulating RANKL Signaling

    Directory of Open Access Journals (Sweden)

    Young Woo Kim

    2014-10-01

    Full Text Available Multinucleated osteoclasts differentiate from hematopoietic progenitors of the monocyte/macrophage lineage. Because of its pivotal role in bone resorption, regulation of osteoclast differentiation is a potential therapeutic approach to the treatment of erosive bone disease. In this study, we have found that fucoidan, a sulfated polysaccharide extracted from brown seaweed, inhibited osteoclast differentiation. In particular, addition of fucoidan into the early stage osteoclast cultures significantly inhibited receptor activator of nuclear factor kappa B (NF-κB ligand (RANKL-induced osteoclast formation, thus suggesting that fucoidan affects osteoclast progenitors. Furthermore, fucoidan significantly inhibited the activation of RANKL-dependent mitogen-activated protein kinases (MAPKs such as JNK, ERK, and p38, and also c-Fos and NFATc1, which are crucial transcription factors for osteoclastogenesis. In addition, the activation of NF-κB, which is an upstream transcription factor modulating NFATc1 expression, was alleviated in the fucoidan-treated cells. These results collectively suggest that fucoidan inhibits osteoclastogenesis from bone marrow macrophages by inhibiting RANKL-induced p38, JNK, ERK and NF-κB activation, and by downregulating the expression of genes that partake in both osteoclast differentiation and resorption.

  7. Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin.

    Science.gov (United States)

    Khalil, Omar S; Yeh, Shu-Jen; Lowery, Michael G; Wu, Xiaomao; Hanna, Charles F; Kantor, Stanislaw; Jeng, Tzyy-Wen; Kanger, Johannes S; Bolt, Rene A; de Mul, Frits F

    2003-04-01

    We determine temperature effect on the absorption and reduced scattering coefficients (mu(a) and mu(s)(')) of human forearm skin. Optical and thermal simulation data suggest that mu( a) and mu(s)(') are determined within a temperature-controlled depth of approximately 2 mm. Cutaneous mu(s)(') change linearly with temperature. Change in mu(a) was complex and irreversible above body normal temperatures. Light penetration depth (delta) in skin increased on cooling, with considerable person-to-person variations. We attribute the effect of temperature on mu(s)(') to change in refractive index mismatch, and its effect on mu(a) to perfusion changes. The reversible temperature effect on mu (s)(' ) was maintained during more than 90 min. contact between skin and the measuring probe, where temperature was modulated between 38 and 22 degrees C for multiple cycles While temperature modulated mu(s)(' ) instantaneously and reversibly, mu(a) exhibited slower response time and consistent drift. There was a statistically significant upward drift in mu(a) and a mostly downward drift in mu( s)(') over the contact period. The drift in temperature-induced fractional change in mu(s)(') was less statistically significant than the drift in mu(s)('). Deltamu( s)(') values determined under temperature modulation conditions may have less nonspecific drift than mu(s)(') which may have significance for noninvasive determination of analytes in human tissue.

  8. Prediction Model of Photovoltaic Module Temperature for Power Performance of Floating PVs

    Directory of Open Access Journals (Sweden)

    Waithiru Charles Lawrence Kamuyu

    2018-02-01

    Full Text Available Rapid reduction in the price of photovoltaic (solar PV cells and modules has resulted in a rapid increase in solar system deployments to an annual expected capacity of 200 GW by 2020. Achieving high PV cell and module efficiency is necessary for many solar manufacturers to break even. In addition, new innovative installation methods are emerging to complement the drive to lower $/W PV system price. The floating PV (FPV solar market space has emerged as a method for utilizing the cool ambient environment of the FPV system near the water surface based on successful FPV module (FPVM reliability studies that showed degradation rates below 0.5% p.a. with new encapsulation material. PV module temperature analysis is another critical area, governing the efficiency performance of solar cells and module. In this paper, data collected over five-minute intervals from a PV system over a year is analyzed. We use MATLAB to derived equation coefficients of predictable environmental variables to derive FPVM’s first module temperature operation models. When comparing the theoretical prediction to real field PV module operation temperature, the corresponding model errors range between 2% and 4% depending on number of equation coefficients incorporated. This study is useful in validation results of other studies that show FPV systems producing 10% more energy than other land based systems.

  9. Determination of Temperature Rise and Temperature Differentials of CEMII/B-V Cement for 20MPa Mass Concrete using Adiabatic Temperature Rise Data

    Science.gov (United States)

    Chee Siang, GO

    2017-07-01

    Experimental test was carried out to determine the temperature rise characteristics of Portland-Fly-Ash Cement (CEM II/B-V, 42.5N) of Blaine fineness 418.6m2/kg and 444.6m2/kg respectively for 20MPa mass concrete under adiabatic condition. The estimation on adiabatic temperature rise by way of CIRIA C660 method (Construction Industry Research & Information Information) was adopted to verify and validate the hot-box test results by simulating the heat generation curve of the concrete under semi-adiabatic condition. Test result found that Portland fly-ash cement has exhibited decrease in the peak value of temperature rise and maximum temperature rise rate. The result showed that the temperature development and distribution profile, which is directly contributed from the heat of hydration of cement with time, is affected by the insulation, initial placing temperature, geometry and size of concrete mass. The mock up data showing the measured temperature differential is significantly lower than the technical specifications 20°C temperature differential requirement and the 27.7°C limiting temperature differential for granite aggregate concrete as stipulated in BS8110-2: 1985. The concrete strength test result revealed that the 28 days cubes compressive strength was above the stipulated 20MPa characteristic strength at 90 days. The test demonstrated that with proper concrete mix design, the use of Portland flyash cement, combination of chilled water and flake ice, and good insulation is effective in reducing peak temperature rise, temperature differential, and lower adiabatic temperature rise for mass concrete pours. As far as the determined adiabatic temperature rise result was concern, the established result could be inferred for in-situ thermal properties of 20MPa mass concrete application, as the result could be repeatable on account of similar type of constituent materials and concrete mix design adopted for permanent works at project site.

  10. Temperature-modulated DSC provides new insight about nickel-titanium wire transformations.

    Science.gov (United States)

    Brantley, William A; Iijima, Masahiro; Grentzer, Thomas H

    2003-10-01

    Differential scanning calorimetry (DSC) is a well-known method for investigating phase transformations in nickel-titanium orthodontic wires; the microstructural phases and phase transformations in these wires have central importance for their clinical performance. The purpose of this study was to use the more recently developed technique of temperature-modulated DSC (TMDSC) to gain insight into transformations in 3 nickel-titanium orthodontic wires: Neo Sentalloy (GAC International, Islandia, NY), 35 degrees C Copper Ni-Ti (Ormco, Glendora, Calif) and Nitinol SE (3M Unitek, Monrovia, Calif). In the oral environment, the first 2 superelastic wires have shape memory, and the third wire has superelastic behavior but not shape memory. All wires had cross-section dimensions of 0.016 x 0.022 in. Archwires in the as-received condition and after bending 135 degrees were cut into 5 or 6 segments for test specimens. TMDSC analyses (Model 2910 DSC, TA Instruments, Wilmington, Del) were conducted between -125 degrees C and 100 degrees C, using a linear heating and cooling rate of 2 degrees C per min, an oscillation amplitude of 0.318 degrees C with a period of 60 seconds, and helium as the purge gas. For all 3 wire alloys, strong low-temperature martensitic transformations, resolved on the nonreversing heat-flow curves, were not present on the reversing heat-flow curves, and bending appeared to increase the enthalpy change for these peaks in some cases. For Neo Sentalloy, TMDSC showed that transformation between martensitic and austenitic nickel-titanium, suggested as occurring directly in the forward and reverse directions by conventional DSC, was instead a 2-step process involving the R-phase. Two-step transformations in the forward and reverse directions were also found for 35 degrees C Copper Ni-Ti and Nitinol SE. The TMDSC results show that structural transformations in these wires are complex. Some possible clinical implications of these observations are discussed.

  11. The influence of wind on the temperature of PV modules in tropical environments, evaluated on an hourly basis

    NARCIS (Netherlands)

    Veldhuis, A.J.; Nobre, A.; Reindl, T.; Ruther, R.; Reinders, Angelina H.M.E.

    2013-01-01

    It is well known that the efficiency of PV modules decreases with increasing module temperatures. Many studies have paid attention to the development and validation of heuristic models to calculate the PV module temperature in higher latitudes, however only a few focus on the thermal behaviour of PV

  12. Wavelength Modulation Spectroscopy for Temperature and Species Concentration in the Plume of a Supersonic Nozzle (Conference Paper with Briefing Charts)

    Science.gov (United States)

    2017-07-12

    Paper with Briefing Charts 22 May 2017 - 30 July 2017 Wavelength Modulation Spectroscopy for Temperature and Species Concentration in the Plume of a...environments. Wavelength modulation spectroscopy (WMS) is a laser absorption spectroscopy technique that allows for quantitative, time-resolved...American Institute of Aeronautics and Astronautics 1 Wavelength Modulation Spectroscopy for Temperature and Species Concentration in the

  13. Intracellular calcium levels determine differential modulation of allosteric interactions within G protein-coupled receptor heteromers.

    Science.gov (United States)

    Navarro, Gemma; Aguinaga, David; Moreno, Estefania; Hradsky, Johannes; Reddy, Pasham P; Cortés, Antoni; Mallol, Josefa; Casadó, Vicent; Mikhaylova, Marina; Kreutz, Michael R; Lluís, Carme; Canela, Enric I; McCormick, Peter J; Ferré, Sergi

    2014-11-20

    The pharmacological significance of the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer is well established and it is being considered as an important target for the treatment of Parkinson’s disease and other neuropsychiatric disorders. However, the physiological factors that control its distinctive biochemical properties are still unknown. We demonstrate that different intracellular Ca2+ levels exert a differential modulation of A2AR-D2R heteromer-mediated adenylyl-cyclase and MAPK signaling in striatal cells. This depends on the ability of low and high Ca2+ levels to promote a selective interaction of the heteromer with the neuronal Ca2+-binding proteins NCS-1 and calneuron-1, respectively. These Ca2+-binding proteins differentially modulate allosteric interactions within the A2AR-D2R heteromer, which constitutes a unique cellular device that integrates extracellular (adenosine and dopamine) and intracellular (Ca+2) signals to produce a specific functional response.

  14. Heat capacity and transition behavior of sucrose by standard, fast scanning and temperature-modulated calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Magoń, A. [Department of Chemistry, University of Technology, 35-959 Rzeszów (Poland); Wurm, A.; Schick, C. [Department of Physics, University of Rostock, 18057 Rostock (Germany); Pangloli, Ph.; Zivanovic, S. [Department of Food Science and Technology, University of Tennessee, Knoxville, TN 37996 (United States); Skotnicki, M. [Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań (Poland); Pyda, M., E-mail: mpyda@utk.edu [Department of Chemistry, University of Technology, 35-959 Rzeszów (Poland)

    2014-08-10

    Highlights: • Experimental, apparent heat capacity of sucrose was investigated by advanced thermal analysis. • Vibrational heat capacity of solid state was linked with a low temperature experimental heat capacity of sucrose. • Equilibrium melting parameters of sucrose were determined. • Decomposition, superheating of crystalline sucrose during melting process were presented. • TGA, DSC, TMDSC, and FSC are useful tools for characterization of sucrose. - Abstract: The heat capacity (C{sub p}) of crystalline and amorphous sucrose was determined using standard and quasi-isothermal temperature modulated differential scanning calorimetry. The results were combined with the published data determined by adiabatic calorimetry, and the C{sub p} values are now reported for the wide 5–600 K range. The experimental C{sub p} of solid sucrose at 5–300 K was used to calculate the vibrational, solid C{sub p} based on the vibrational molecular motions. The calculated solid and liquid C{sub p} together with the transition parameters for equilibrium conditions were used as references for detailed quantitative thermal analysis of crystalline and amorphous sucrose. Melting temperature (T{sub m}) of the crystalline sucrose was identified in a broad 442–465 K range with a heat of fusion of 40–46 J/mol determined at heating rates 0.5–20 K/min, respectively. The equilibrium T{sub m} and heat of fusion of crystalline sucrose were estimated at zero heating rate as T{sup o}{sub m} = 424.4 K and ΔH{sup o}{sub f} = 32 kJ/mol, respectively. The glass transition temperature (T{sub g}) of amorphous sucrose was at 331 K with a change in C{sub p} of 267 J/(mol K) as it was estimated from reversing heat capacity by quasi-isothermal TMDSC on cooling. At heating rates less than 30 K/min, thermal decomposition occurred during melting, while at extreme rate of 1000 K/s, degradation was not observed. Data obtained by fast scanning calorimetry (FSC) at 1000 K/s, showed that T{sub m} was

  15. Standard Test Method for Saltwater Pressure Immersion and Temperature Testing of Photovoltaic Modules for Marine Environments

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method provides a procedure for determining the ability of photovoltaic modules to withstand repeated immersion or splash exposure by seawater as might be encountered when installed in a marine environment, such as a floating aid-to-navigation. A combined environmental cycling exposure with modules repeatedly submerged in simulated saltwater at varying temperatures and under repetitive pressurization provides an accelerated basis for evaluation of aging effects of a marine environment on module materials and construction. 1.2 This test method defines photovoltaic module test specimens and requirements for positioning modules for test, references suitable methods for determining changes in electrical performance and characteristics, and specifies parameters which must be recorded and reported. 1.3 This test method does not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of this test method. 1.4 The values stated in SI units are to be ...

  16. Mesenchymal Stem Cells Modulate Differentiation of Myeloid Progenitor Cells During Inflammation.

    Science.gov (United States)

    Amouzegar, Afsaneh; Mittal, Sharad K; Sahu, Anuradha; Sahu, Srikant K; Chauhan, Sunil K

    2017-06-01

    Mesenchymal stem cells (MSCs) possess distinct immunomodulatory properties and have tremendous potential for use in therapeutic applications in various inflammatory diseases. MSCs have been shown to regulate pathogenic functions of mature myeloid inflammatory cells, such as macrophages and neutrophils. Intriguingly, the capacity of MSCs to modulate differentiation of myeloid progenitors (MPs) to mature inflammatory cells remains unknown to date. Here, we report the novel finding that MSCs inhibit the expression of differentiation markers on MPs under inflammatory conditions. We demonstrate that the inhibitory effect of MSCs is dependent on direct cell-cell contact and that this intercellular contact is mediated through interaction of CD200 expressed by MSCs and CD200R1 expressed by MPs. Furthermore, using an injury model of sterile inflammation, we show that MSCs promote MP frequencies and suppress infiltration of inflammatory cells in the inflamed tissue. We also find that downregulation of CD200 in MSCs correlates with abrogation of their immunoregulatory function. Collectively, our study provides unequivocal evidence that MSCs inhibit differentiation of MPs in the inflammatory environment via CD200-CD200R1 interaction. Stem Cells 2017;35:1532-1541. © 2017 AlphaMed Press.

  17. Phylogeographic differentiation versus transcriptomic adaptation to warm temperatures in Zostera marina, a globally important seagrass.

    Science.gov (United States)

    Jueterbock, A; Franssen, S U; Bergmann, N; Gu, J; Coyer, J A; Reusch, T B H; Bornberg-Bauer, E; Olsen, J L

    2016-11-01

    Populations distributed across a broad thermal cline are instrumental in addressing adaptation to increasing temperatures under global warming. Using a space-for-time substitution design, we tested for parallel adaptation to warm temperatures along two independent thermal clines in Zostera marina, the most widely distributed seagrass in the temperate Northern Hemisphere. A North-South pair of populations was sampled along the European and North American coasts and exposed to a simulated heatwave in a common-garden mesocosm. Transcriptomic responses under control, heat stress and recovery were recorded in 99 RNAseq libraries with ~13 000 uniquely annotated, expressed genes. We corrected for phylogenetic differentiation among populations to discriminate neutral from adaptive differentiation. The two southern populations recovered faster from heat stress and showed parallel transcriptomic differentiation, as compared with northern populations. Among 2389 differentially expressed genes, 21 exceeded neutral expectations and were likely involved in parallel adaptation to warm temperatures. However, the strongest differentiation following phylogenetic correction was between the three Atlantic populations and the Mediterranean population with 128 of 4711 differentially expressed genes exceeding neutral expectations. Although adaptation to warm temperatures is expected to reduce sensitivity to heatwaves, the continued resistance of seagrass to further anthropogenic stresses may be impaired by heat-induced downregulation of genes related to photosynthesis, pathogen defence and stress tolerance. © 2016 John Wiley & Sons Ltd.

  18. Modeling and Simulation of the Multi-module High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Liu Dan; Sun Jun; Sui Zhe; Xu Xiaolin; Ma Yuanle; Sun Yuliang

    2014-01-01

    The modular high temperature gas-cooled reactor (MHTGR) is characterized with the inherent safety. To enhance its economic benefit, the capital cost of MHTGR can be decreased by combining more reactor modules into one unit and realize the batch constructions in the concept of modularization. In the research and design of the multi-module reactors, one difficulty is to clarify the coupling effects of different modules in operating the reactors due to the shared feed water and main steam systems in the secondary loop. In the advantages of real-time simulation and coupling calculations of different modules and sub-systems, the operation of multi-module reactors can be studied and analyzed to understand the range and extent of the coupling effects. In the current paper; the engineering simulator for the multi-module reactors was realized and able to run in high performance computers, based on the research experience of the HTR-PM engineering simulator. The models were detailed introduced including the primary and secondary loops. The steady state of full power operation was demonstrated to show the good performance of six-module reactors. Typical dynamic processes, such as adjusting feed water flow rates and shutting down one reactor; were also tested to study the coupling effects in multi-module reactors. (author)

  19. Design of capacitance measurement module for determining critical cold temperature of tea leaves

    Directory of Open Access Journals (Sweden)

    Yongzong Lu

    2016-12-01

    Full Text Available Critical cold temperature is one of the most crucial control factors for crop frost protection. Tea leaf's capacitance has a significant response to cold injury and appears as a peak response to a typical low temperature which is the critical temperature. However, the testing system is complex and inconvenient. In view of these, a tea leaf's critical temperature detector based on capacitance measurement module was designed and developed to measure accurately and conveniently the capacitance. Software was also designed to measure parameters, record data, query data as well as data deletion module. The detector utilized the MSP430F149 MCU as the control core and ILI9320TFT as the display module, and its software was compiled by IAR5.3. Capacitance measurement module was the crucial part in the overall design which was based on the principle of oscillator. Based on hardware debugging and stability analysis of capacitance measurement module, it was found that the output voltage of the capacitance measurement circuit is stable with 0.36% average deviation. The relationship between capacitance and 1/Uc2 was found to be linear distribution with the determination coefficient above 0.99. The result indicated that the output voltage of capacitance measurement module well corresponded to the change in value of the capacitance. The measurement error of the circuit was also within the required range of 0 to 100 pF which meets the requirement of tea leaf's capacitance. Keywords: Tea leaves, Critical cold temperature, Capacitance peak response, Frost protection, Detector

  20. Short-term PV/T module temperature prediction based on PCA-RBF neural network

    Science.gov (United States)

    Li, Jiyong; Zhao, Zhendong; Li, Yisheng; Xiao, Jing; Tang, Yunfeng

    2018-02-01

    Aiming at the non-linearity and large inertia of temperature control in PV/T system, short-term temperature prediction of PV/T module is proposed, to make the PV/T system controller run forward according to the short-term forecasting situation to optimize control effect. Based on the analysis of the correlation between PV/T module temperature and meteorological factors, and the temperature of adjacent time series, the principal component analysis (PCA) method is used to pre-process the original input sample data. Combined with the RBF neural network theory, the simulation results show that the PCA method makes the prediction accuracy of the network model higher and the generalization performance stronger than that of the RBF neural network without the main component extraction.

  1. Junction temperature estimation method for a 600 V, 30A IGBT module during converter operation

    DEFF Research Database (Denmark)

    Choi, U. M.; Blaabjerg, F.; Iannuzzo, F.

    2015-01-01

    This paper proposes an accurate method to estimate the junction temperature using the on-state collector-emitter voltage at high current. By means of the proposed method, the estimation error which comes from the different temperatures of the interconnection materials in the module is compensated....... Finally, it leads to satisfactory estimated results. The proposed method has been verified by means of an IR (Infra-Red) camera during power converter operations when the loading current is sinusoidal....

  2. Current Sharing inside a High Power IGBT Module at the Negative Temperature Coefficient Operating Region

    CERN Document Server

    AUTHOR|(CDS)2084596; Papastergiou, Konstantinos; Bongiorno, M; Thiringer, T

    2016-01-01

    This work investigates the current sharing effect of a high power Soft Punch Through IGBT module in the Negative Temperature Coefficient region. The unbalanced current sharing between two of the substrates is demonstrated for different current and temperature levels and its impact on the thermal stressing of the device is evaluated. The results indicate that the current asymmetry does not lead to a significant thermal stressing unbalance between the substrates.

  3. A moderate increase in ambient temperature modulates the Atlantic cod (Gadus morhua spleen transcriptome response to intraperitoneal viral mimic injection

    Directory of Open Access Journals (Sweden)

    Hori Tiago S

    2012-08-01

    Full Text Available Abstract Background Atlantic cod (Gadus morhua reared in sea-cages can experience large variations in temperature, and these have been shown to affect their immune function. We used the new 20K Atlantic cod microarray to investigate how a water temperature change which, simulates that seen in Newfoundland during the spring-summer (i.e. from 10°C to 16°C, 1°C increase every 5 days impacted the cod spleen transcriptome response to the intraperitoneal injection of a viral mimic (polyriboinosinic polyribocytidylic acid, pIC. Results The temperature regime alone did not cause any significant increases in plasma cortisol levels and only minor changes in spleen gene transcription. However, it had a considerable impact on the fish spleen transcriptome response to pIC [290 and 339 significantly differentially expressed genes between 16°C and 10°C at 6 and 24 hours post-injection (HPI, respectively]. Seventeen microarray-identified transcripts were selected for QPCR validation based on immune-relevant functional annotations. Fifteen of these transcripts (i.e. 88%, including DHX58, STAT1, IRF7, ISG15, RSAD2 and IκBα, were shown by QPCR to be significantly induced by pIC. Conclusions The temperature increase appeared to accelerate the spleen immune transcriptome response to pIC. We found 41 and 999 genes differentially expressed between fish injected with PBS vs. pIC at 10°C and sampled at 6HPI and 24HPI, respectively. In contrast, there were 656 and 246 genes differentially expressed between fish injected with PBS vs. pIC at 16°C and sampled at 6HPI and 24HPI, respectively. Our results indicate that the modulation of mRNA expression of genes belonging to the NF-κB and type I interferon signal transduction pathways may play a role in controlling temperature-induced changes in the spleen’s transcript expression response to pIC. Moreover, interferon effector genes such as ISG15 and RSAD2 were differentially expressed between fish injected with

  4. Low-temperature transitions in cod and tuna determined by differential scanning calorimetry

    DEFF Research Database (Denmark)

    Jensen, Kristina Nedenskov; Jørgensen, Bo; Nielsen, Jette

    2003-01-01

    Differential scanning calorimetry measurements have revealed different thermal transitions in cod and tuna samples. Transition temperatures detected Lit -11degreesC, -15degreesC and -21degreesC were highly dependent on the annealing temperature. In tuna muscle an additional transition was observed...... at -72degreesC. This transition appeared differently than the thermal events observed at higher temperatures, as it spanned a broad temperature interval of 25degreesC. The transition was comparable to low-temperature glass transitions reported in protein-rich systems. No transition at this low...... temperature was detected in cod samples. The transitions observed at higher temperatures (-11degreesC to -21degreesC) may possibly stein from a glassy matrix containing muscle proteins. However, the presence of a glass transition at - 11degreesC was in disagreement with the low storage stability at -18degrees...

  5. Differential growth factor induction and modulation of human gastric epithelial regeneration

    International Nuclear Information System (INIS)

    Tetreault, Marie-Pier; Chailler, Pierre; Rivard, Nathalie; Menard, Daniel

    2005-01-01

    While several autocrine/paracrine growth factors (GFs) can all stimulate epithelial regeneration in experimentally wounded primary gastric cultures, clinical relevance for their non-redundant cooperative actions in human gastric ulcer healing is suggested by the sequential pattern of GF gene induction in vivo. Using new HGE cell lines able to form a coherent monolayer with tight junctions as well as using primary human gastric epithelial cultures, we show that EGF, TGFα, HGF and IGFs accelerate epithelial restitution upon wounding, independently of the TGFβ pathway (as opposed to intestinal cells). However, they differently modulate cell behavior: TGFα exerts strong effects (even more than EGF) on cytoplasmic spreading and non-oriented protruding activity of bordering cells whereas HGF preferentially coordinates single lamella formation, cell elongation and migration into the wound. IGF-I and IGF-II rather induce the alignment of bordering cells and maintain a compact monolayer front. The number of mitotic cells maximally increases with EGF, followed by TGFα and IGF-I,-II. The current study demonstrates that GFs differentially regulate the regeneration of human gastric epithelial cells through specific modulation of cell shape adaptation, migration and proliferation, further stressing that a coordination of GF activities would be necessary for the normal progression of post-wounding epithelial repair

  6. Sequential attack with intensity modulation on the differential-phase-shift quantum-key-distribution protocol

    International Nuclear Information System (INIS)

    Tsurumaru, Toyohiro

    2007-01-01

    In this paper, we discuss the security of the differential-phase-shift quantum-key-distribution (DPSQKD) protocol by introducing an improved version of the so-called sequential attack, which was originally discussed by Waks et al. [Phys. Rev. A 73, 012344 (2006)]. Our attack differs from the original form of the sequential attack in that the attacker Eve modulates not only the phases but also the amplitude in the superposition of the single-photon states which she sends to the receiver. Concentrating especially on the 'discretized Gaussian' intensity modulation, we show that our attack is more effective than the individual attack, which had been the best attack up to present. As a result of this, the recent experiment with communication distance of 100 km reported by Diamanti et al. [Opt. Express 14, 13073 (2006)] turns out to be insecure. Moreover, it can be shown that in a practical experimental setup which is commonly used today, the communication distance achievable by the DPSQKD protocol is less than 95 km

  7. A temperature dependent simple spice based modeling platform for power IGBT modules

    NARCIS (Netherlands)

    Sfakianakis, G.; Nawaz, M.; Chimento, F.

    2014-01-01

    This paper deals with the development of a PSpice based temperature dependent modelling platform for the evaluation of silicon based IGBT power modules. The developed device modelling platform is intended to be used for the design and assessment of converter valves/cells for potential high power

  8. A High Temperature Experimental Characterization Procedure for Oxide-Based Thermoelectric Generator Modules under Transient Conditions

    DEFF Research Database (Denmark)

    Man, Elena Anamaria; Schaltz, Erik; Rosendahl, Lasse

    2015-01-01

    Characterization methods for thermoelectric generator (TEG) modules play an important role in studying their behavior and in enhancing the performance and simulation of TEG systems also. The purpose of this study is to analyze the behavior in transient and steady-state of the temperature applied...

  9. Amphipaths Differentially Modulate Membrane Surface Deformation in Rat Peritoneal Mast Cells During Exocytosis

    Directory of Open Access Journals (Sweden)

    Itsuro Kazama

    2013-04-01

    Full Text Available Background/Aims: Salicylate and chlorpromazine exert differential effects on the chemokine release from mast cells. Since these drugs are amphiphilic and preferentially partitioned into the lipid bilayers of the plasma membranes, they would induce some morphological changes in mast cells and thus affect the process of exocytosis. Methods: Employing the standard patch-clamp whole-cell recording technique, we examined the effects of salicylate and chlorpromazine on the membrane capacitance (Cm during exocytosis in rat peritoneal mast cells. Using confocal imaging of a water-soluble fluorescent dye, lucifer yellow, we also examined their effects on plasma membrane deformation of the cells. Results: Salicylate dramatically accelerated the GTP-γ-S-induced increase in the Cm immediately after its application, whereas chlorpromazine significantly suppressed the increase. Treatment with salicylate increased the trapping of the dye on the cell surface, while treatment with chlorpromazine completely washed it out, indicating that both drugs induced membrane surface deformation in mast cells. Conclusion: This study demonstrated for the first time that membrane amphipaths, such as salicylate and chlorpromazine, may oppositely modulate the process of exocytosis in mast cells, as detected by the changes in the Cm. The plasma membrane deformation induced by the drugs was thought to be responsible for their differential effects.

  10. Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana.

    Science.gov (United States)

    Ibañez, Carla; Poeschl, Yvonne; Peterson, Tom; Bellstädt, Julia; Denk, Kathrin; Gogol-Döring, Andreas; Quint, Marcel; Delker, Carolin

    2017-07-06

    Global increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best. Here, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown under long day conditions in four different temperatures ranging from 16 to 28 °C. We used Q 10 , GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions. Genotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.

  11. Differential calorimeter and temperature controller for stored energy measurements in irradiated alkali halides

    International Nuclear Information System (INIS)

    Delgado Martinez, L.

    1977-01-01

    The design and performance of a simple temperature-controlled differential calorimeter are presented. This system allows to measure radiation-induced stored energy in insulators, above room temperature with a differential thermal analysis method. With platelets of KC1 single crystals, the base lines obtained for T 2 T 1 (with T 2 : irradiated sample temperature and T 1 : reference sample temperature) show a smooth drift less of 0,2 degree centigree in the interval from 25 to 400 degree centigree. The discrepancy between two consecutive base lines is less than ± 0,02 degree centigree which implies a calorimeter sensitivity of about ±0,004 cal/g. This sensitivity allows to measure stored energy release in samples with a color center concentration low enough to be directly measured with a spectrophotometer so that a search for correlations among the features of the stored energy spectrum and the color center annealing can be made. (Author) 13 refs

  12. The temperature tracking system based on fiber Bragg grating and Peltier module

    Science.gov (United States)

    Ławrynowicz, Radosław; GÄ sior, Paweł; Markowski, Konrad

    2017-08-01

    Temperature measurement is regarded to be straightforward by means of standard electronic sensors, however, it becomes considerably more challenging if the sensor is exposed to strong electromagnetic interference or harsh environmental conditions such as e.g. chemical agents. In some cases, the problem may be solved by remote sensors, as pyrometers, but their application is conditioned by the possibility of the direct object observation, which is often excluded. In this contribution a solution is presented which allows for the temperature tracking in the fiber optic system which facilitates temperature measurements of distant, subjected to the harsh environment objects by transferring their temperatures to the Peltier module. The idea of the system is to adjust the temperature of the reference FBG (at the measurement stage) to the temperature of the sensor FBG with the use of the Peltier module and thus recover its temperature to have it measured with an arbitrary method. As all electronic part of the system can be installed far from the harsh environment and the system consists of low-cost optical and electronic components, the idea may be found competitive with other methods of the temperature measurements in onerous applications.

  13. Probing Temperature Inside Planar SOFC Short Stack, Modules, and Stack Series

    Science.gov (United States)

    Yu, Rong; Guan, Wanbing; Zhou, Xiao-Dong

    2017-02-01

    Probing temperature inside a solid oxide fuel cell (SOFC) stack lies at the heart of the development of high-performance and stable SOFC systems. In this article, we report our recent work on the direct measurements of the temperature in three types of SOFC systems: a 5-cell short stack, a 30-cell stack module, and a stack series consisting of two 30-cell stack modules. The dependence of temperature on the gas flow rate and current density was studied under a current sweep or steady-state operation. During the current sweep, the temperature inside the 5-cell stack decreased with increasing current, while it increased significantly at the bottom and top of the 30-cell stack. During a steady-state operation, the temperature of the 5-cell stack was stable while it was increased in the 30-cell stack. In the stack series, the maximum temperature gradient reached 190°C when the gas was not preheated. If the gas was preheated and the temperature gradient was reduced to 23°C in the stack series with the presence of a preheating gas and segmented temperature control, this resulted in a low degradation rate.

  14. A new module in neural differentiation control: two microRNAs upregulated by retinoic acid, miR-9 and -103, target the differentiation inhibitor ID2.

    Directory of Open Access Journals (Sweden)

    Daniela Annibali

    Full Text Available The transcription factor ID2 is an important repressor of neural differentiation strongly implicated in nervous system cancers. MicroRNAs (miRNAs are increasingly involved in differentiation control and cancer development. Here we show that two miRNAs upregulated on differentiation of neuroblastoma cells--miR-9 and miR-103--restrain ID2 expression by directly targeting the coding sequence and 3' untranslated region of the ID2 encoding messenger RNA, respectively. Notably, the two miRNAs show an inverse correlation with ID2 during neuroblastoma cell differentiation induced by retinoic acid. Overexpression of miR-9 and miR-103 in neuroblastoma cells reduces proliferation and promotes differentiation, as it was shown to occur upon ID2 inhibition. Conversely, an ID2 mutant that cannot be targeted by either miRNA prevents retinoic acid-induced differentiation more efficient than wild-type ID2. These findings reveal a new regulatory module involving two microRNAs upregulated during neural differentiation that directly target expression of the key differentiation inhibitor ID2, suggesting that its alteration may be involved in neural cancer development.

  15. Numerical examination of temperature control in helium-cooled high flux test module of IFMIF

    International Nuclear Information System (INIS)

    Ebara, Shinji; Yokomine, Takehiko; Shimizu, Akihiko

    2007-01-01

    For long term irradiation of the International Fusion Materials Irradiation Facility (IFMIF), test specimens are needed to retain constant temperature to avoid change of its irradiation characteristics. The constant temperatures control is one of the most challenging issues for the IFMIF test facilities. We have proposed a new concept of test module which is capable of precisely measuring temperature, keeping uniform temperature with enhanced cooling performance. In the system according to the new design, cooling performances and temperature distributions of specimens were examined numerically under diverse conditions. Some transient behaviors corresponding to the prescribed temperature control mode were perseveringly simulated. It was confirmed that the thermal characteristics of the new design satisfied the severe requirement of IFMIF

  16. Embryonic developmental temperatures modulate thermal acclimation of performance curves in tadpoles of the frog Limnodynastes peronii.

    Directory of Open Access Journals (Sweden)

    Frank Seebacher

    Full Text Available Performance curves of physiological rates are not fixed, and determining the extent to which thermal performance curves can change in response to environmental signals is essential to understand the effect of climate variability on populations. The aim of this study was to determine whether and how temperatures experienced during early embryonic development affect thermal performance curves of later life history stages in the frog Limnodynastes peronii. We tested the hypotheses that a the embryonic environment affects mean trait values only; b temperature at which performance of tadpoles is maximal shifts with egg incubation temperatures so that performance is maximised at the incubation temperatures, and c incubation temperatures modulate the capacity for reversible acclimation in tadpoles. Growth rates were greater in warm (25°C compared to cold (15°C acclimated (6 weeks tadpoles regardless of egg developmental temperatures (15°C or 25°C, representing seasonal means. The breadth of the performance curve of burst locomotor performance (measured at 10, 15, 20, 25, and 30°C, representing annual range is greatest when egg developmental and acclimation temperatures coincide. The mode of the performance curves shifted with acclimation conditions and maximum performance was always at higher temperatures than acclimation conditions. Performance curves of glycolytic (lactate dehydrogenase activities and mitochondrial (citrate synthase and cytochrome c oxidase enzymes were modulated by interactions between egg incubation and acclimation temperatures. Lactate dehydrogenase activity paralleled patterns seen in burst locomotor performance, but oxygen consumption rates and mitochondrial enzyme activities did not mirror growth or locomotor performance. We show that embryonic developmental conditions can modulate performance curves of later life-history stages, thereby conferring flexibilty to respond to environmental conditions later in life.

  17. T cell activation and differentiation is modulated by a CD6 domain 1 antibody Itolizumab.

    Directory of Open Access Journals (Sweden)

    Usha Bughani

    Full Text Available CD6 is associated with T-cell modulation and is implicated in several autoimmune diseases. We previously demonstrated that Itolizumab, a CD6 domain 1 (CD6D1 specific humanized monoclonal antibody, inhibited the proliferation and cytokine production by T lymphocytes stimulated with anti-CD3 antibody or when co-stimulated with ALCAM. Aberrant IL-17 producing CD4+ helper T-cells (Th17 have been identified as pivotal for the pathogenesis of certain inflammatory autoimmune disorders, including psoriasis. Itolizumab has demonstrated efficacy in human diseases known to have an IL-17 driven pathogenesis. Here, in in vitro experiments we show that by day 3 of human PBMC activation using anti-CD3 and anti-CD28 co-stimulation in a Th17 polarizing milieu, 15-35% of CD4+ T-cells overexpress CD6 and there is an establishment of differentiated Th17 cells. Addition of Itolizumab reduces the activation and differentiation of T cells to Th17 cells and decreases production of IL-17. These effects are associated with the reduction of key transcription factors pSTAT3 and RORγT. Further, transcription analysis studies in these conditions indicate that Itolizumab suppressed T cell activation by primarily reducing cell cycle, DNA transcription and translation associated genes. To understand the mechanism of this inhibition, we evaluated the effect of this anti-human CD6D1 mAb on ALCAM-CD6 as well as TCR-mediated T cell activation. We show that Itolizumab but not its F(ab'2 fragment directly inhibits CD6 receptor hyper-phosphorylation and leads to subsequent decrease in associated ZAP70 kinase and docking protein SLP76. Since Itolizumab binds to CD6 expressed only on human and chimpanzee, we developed an antibody binding specifically to mouse CD6D1. This antibody successfully ameliorated the incidence of experimental autoimmune encephalitis in the mice model. These results position CD6 as a key molecule in sustaining the activation and differentiation of T cells and an

  18. Characterisation of moisture uptake effects on the glass transitional behaviour of an amorphous drug using modulated temperature DSC.

    Science.gov (United States)

    Royall, P G; Craig, D Q; Doherty, C

    1999-12-01

    The purpose of this study was to investigate the depression of the glass transition temperature, T(g), of the protease inhibitor saquinavir in the first heating scan as a function of the quantity of sorbed water by the application of modulated temperature differential scanning calorimetry (MTDSC). Samples of amorphous saquinavir were pretreated under various humidity conditions and the quantity of sorbed water measured by thermogravimetric analysis. MTDSC runs were performed using hermetically and non-hermetically sealed pans in order to determine the glass transition temperature. MTDSC allowed the separation of the glass transition from the enthalpic relaxation, thereby allowing clear visualisation of T(g) for amorphous saquinavir in the first heating scan. The plasticizing effects of water were assessed, with the depression in T(g) related to the mole fraction of water sorbed via the Gordon-Taylor relationship. An expression has been derived which allows estimation of the water content which lowers the T(g) to the storage temperature, thereby considerably increasing the risk of recrystallisation. It is argued that this model may aid prediction of the optimal storage conditions for amorphous drugs.

  19. Online Monitoring of Temperature Using Wireless Module in a Rotating Drum-Applicable to Leather Industries

    Directory of Open Access Journals (Sweden)

    T. Narayani

    2015-07-01

    Full Text Available In order to ensure safe and efficient operation of unit processes, foremost requirement is accurate measurement of process variables, with which quality can be monitored and controlled. Understanding the necessity of online monitoring of process temperature in tanning/dyeing process, the article is focused on wireless measurement of physical parameters involved in wet processing of hides/ skins and monitoring through digital computer for further analysis. It’s a challenging task to measure and communicate the process information from a closed rotating drum. Wireless communication is proposed because of its enhanced security, superfast operating speed, and increased mobility. The physical parameters which are predominant in tanning process are temperature, pH, conductivity etc. of the process fluid. It is necessary to carryout dyeing at 65 0C for producing raw to wet blue process. As a first attempt, wireless module for temperature measurement has been developed. The module includes signal transmitter and receiver section. In the transmitter section, the temperature which is measured by an integrated sensor is converted into frequency signal and imposed on a radio frequency signal (career signal and get transmitted in air. On the other side, receiver section receives the radio frequency signal and converts that into electrical signals to interface with the digital computer for online monitoring. The module is able to receive and control temperature of tanning drum within a distance of 100 meters. Real time experiments on the fabricated model show interesting results for commercialization.

  20. Experimentally Investigating the Effect of Temperature Differences in the Particle Deposition Process on Solar Photovoltaic (PV Modules

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2016-10-01

    Full Text Available This paper reports an experimental investigation of the dust particle deposition process on solar photovoltaic (PV modules with different surface temperatures by a heating plate to illustrate the effect of the temperature difference (thermophoresis between the module surface and the surrounding air on the dust accumulation process under different operating temperatures. In general, if the temperature of PV modules is increased, the energy conversion efficiency of the modules is decreased. However, in this study, it is firstly found that higher PV module surface temperature differences result in a higher energy output compared with those modules with lower temperature differences because of a reduced accumulation of dust particles. The measured deposition densities of dust particles were found to range from 0.54 g/m2 to 0.85 g/m2 under the range of experimental conditions and the output power ratios were found to increase from 0.861 to 0.965 with the increase in the temperature difference from 0 to 50 °C. The PV module with a higher temperature difference experiences a lower dust density because of the effect of the thermophoresis force arising from the temperature gradient between the module surface and its surrounding air. In addition, dust particles have a significant impact on the short circuit current, as well as the output power. However, the influence of particles on open circuit voltage can be negligible.

  1. Temperature-modulated direct thermoelectric gas sensors: thermal modeling and results for fast hydrocarbon sensors

    International Nuclear Information System (INIS)

    Rettig, Frank; Moos, Ralf

    2009-01-01

    Direct thermoelectric gas sensors are a promising alternative to conductometric gas sensors. For accurate results, a temperature modulation technique in combination with a regression analysis is advantageous. However, the thermal time constant of screen-printed sensors is quite large. As a result, up to now the temperature modulation frequency (20 mHz) has been too low and the corresponding principle-related response time (50 s) has been too high for many applications. With a special design, respecting the physical properties of thermal waves and the use of signal processing similar to a lock-in-amplifier, it is possible to achieve response times of about 1 s. As a result, direct thermoelectric gas sensors with SnO 2 as a gas-sensitive material respond fast and are reproducible to the propane concentration in the ambient atmosphere. Due to the path-independent behavior of the thermovoltage and the temperature, the measured thermopower of two sensors is almost identical

  2. pH- and temperature-sensitive polymeric microspheres for drug delivery: the dissolution of copolymers modulates drug release.

    Science.gov (United States)

    Fundueanu, Gheorghe; Constantin, Marieta; Stanciu, Cristina; Theodoridis, Georgios; Ascenzi, Paolo

    2009-12-01

    Most pH-/temperature-responsive polymers for controlled release of drugs are used as cross-linked hydrogels. However, the solubility properties of the linear polymers below and above the lower critical solution temperature (LCST) are not exploited. Here, the preparation and characterization of poly (N-isopropylacrylamide-co-methacrylic acid-co-methyl methacrylate) (poly (NIPAAm-co-MA-co-MM)) and poly (N-isopropylacrylamide-co-acrylamide) (poly (NIPAAm-co-AAm)), known as "smart" polymers (SP), is reported. Both poly (NIPAAm-co-MA-co-MM) and poly (NIPAAm-co-AAm) display pH- and temperature-responsive properties. Poly (NIPAAm-co-MA-co-MM) was designed to be insoluble in the gastric fluid (pH = 1.2), but soluble in the intestinal fluid (pH = 6.8 and 7.4), at the body temperature (37 degrees C). Poly (NIPAAm-co-AAm) was designed to have a lower critical solution temperature (LCST) corresponding to 37 degrees C at pH = 7.4, therefore it is not soluble above the LCST. The solubility characteristics of these copolymers were exploited to modulate the rate of release of drugs by changing pH and/or temperature. These copolymers were solubilized with hydrophobic cellulose acetate butyrate (CAB) and vitamin B(12) (taken as a water soluble drug model system) in an acetone/methanol mixture and dispersed in mineral oil. By a progressive evaporation of the solvent, the liquid droplets were transformed into loaded CAB/SP microspheres. Differential scanning calorimetric studies and scanning electron microscopy analysis demonstrated that the polymeric components of the microspheres precipitated separately during solvent evaporation forming small microdomains. Moreover, vitamin B(12) was found to be molecularly dispersed in both microdomains with no specific affinity for any polymeric component of microspheres. The release of vitamin B(12) was investigated as a function of temperature, pH, and the CAB/SP ratio.

  3. Modulating Function-Based Method for Parameter and Source Estimation of Partial Differential Equations

    KAUST Repository

    Asiri, Sharefa M.

    2017-10-08

    Partial Differential Equations (PDEs) are commonly used to model complex systems that arise for example in biology, engineering, chemistry, and elsewhere. The parameters (or coefficients) and the source of PDE models are often unknown and are estimated from available measurements. Despite its importance, solving the estimation problem is mathematically and numerically challenging and especially when the measurements are corrupted by noise, which is often the case. Various methods have been proposed to solve estimation problems in PDEs which can be classified into optimization methods and recursive methods. The optimization methods are usually heavy computationally, especially when the number of unknowns is large. In addition, they are sensitive to the initial guess and stop condition, and they suffer from the lack of robustness to noise. Recursive methods, such as observer-based approaches, are limited by their dependence on some structural properties such as observability and identifiability which might be lost when approximating the PDE numerically. Moreover, most of these methods provide asymptotic estimates which might not be useful for control applications for example. An alternative non-asymptotic approach with less computational burden has been proposed in engineering fields based on the so-called modulating functions. In this dissertation, we propose to mathematically and numerically analyze the modulating functions based approaches. We also propose to extend these approaches to different situations. The contributions of this thesis are as follows. (i) Provide a mathematical analysis of the modulating function-based method (MFBM) which includes: its well-posedness, statistical properties, and estimation errors. (ii) Provide a numerical analysis of the MFBM through some estimation problems, and study the sensitivity of the method to the modulating functions\\' parameters. (iii) Propose an effective algorithm for selecting the method\\'s design parameters

  4. Reactive oxygen species modulator 1, a novel protein, combined with carcinoembryonic antigen in differentiating malignant from benign pleural effusion.

    Science.gov (United States)

    Chen, Xianmeng; Zhang, Na; Dong, Jiahui; Sun, Gengyun

    2017-05-01

    The differential diagnosis of malignant pleural effusion and benign pleural effusion remains a clinical problem. Reactive oxygen species modulator 1 is a novel protein overexpressed in various human tumors. The objective of this study was to evaluate the diagnostic value of joint detection of reactive oxygen species modulator 1 and carcinoembryonic antigen in the differential diagnosis of malignant pleural effusion and benign pleural effusion. One hundred two consecutive patients with pleural effusion (including 52 malignant pleural effusion and 50 benign pleural effusion) were registered in this study. Levels of reactive oxygen species modulator 1 and carcinoembryonic antigen were measured by enzyme-linked immunosorbent assay and radioimmunoassay, respectively. Results showed that the concentrations of reactive oxygen species modulator 1 both in pleural fluid and serum of patients with malignant pleural effusion were significantly higher than those of benign pleural effusion (both p pleural fluid reactive oxygen species modulator 1 were 61.54% and 82.00%, respectively, with the optimized cutoff value of 589.70 pg/mL. However, the diagnostic sensitivity and specificity of serum reactive oxygen species modulator 1 were only 41.38% and 86.21%, respectively, with the cutoff value of 27.22 ng/mL, indicating that serum reactive oxygen species modulator 1 may not be a good option in the differential diagnosis of malignant pleural effusion and benign pleural effusion. The sensitivity and specificity of pleural fluid carcinoembryonic antigen were 69.23% and 88.00%, respectively, at the cutoff value of 3.05 ng/mL, while serum carcinoembryonic antigen were 80.77% and 72.00% at the cutoff value of 2.60 ng/mL. The sensitivity could be raised to 88.17% in parallel detection of plural fluid reactive oxygen species modulator 1 and carcinoembryonic antigen concentration, and the specificity could be improved to 97.84% in serial detection.

  5. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation

    International Nuclear Information System (INIS)

    Sundaram, Kumaran; Nishimura, Riko; Senn, Joseph; Youssef, Rimon F.; London, Steven D.; Reddy, Sakamuri V.

    2007-01-01

    the absence of RANKL. Taken together, our results suggest that RANKL signals through TRAF6 and that NFATc1 is a downstream effector of RANKL signaling to modulate MMP-9 gene expression during osteoclast differentiation

  6. E2F6: a member of the E2F family that does not modulate squamous differentiation

    International Nuclear Information System (INIS)

    Wong, C.F.; Barnes, Liam M.; Smith, Louise; Popa, Claudia; Serewko-Auret, Magdalena M.; Saunders, Nicholas A.

    2004-01-01

    The inhibition of E2F has been demonstrated to be important in the initiation of squamous differentiation by two independent manners: promotion of growth arrest and the relief of the differentiation-suppressive properties of E2Fs. E2F6 is reported to behave as a transcriptional repressor of the E2F family. In this study, we examined the ability of E2F6 to act as the molecular switch required for E2F inhibition in order for keratinocytes to enter a terminal differentiation programme. Results demonstrated that whilst E2F6 was able to suppress E2F activity in proliferating keratinocytes, it did not modulate squamous differentiation in a differentiated keratinocyte. Furthermore, inhibition of E2F, by overexpressing E2F6, was not sufficient to sensitise either proliferating keratinocytes or the squamous cell carcinoma cell line, KJD-1/SV40, to differentiation-inducing agents. Significantly, although E2F6 could suppress E2F activity in proliferating cells, it could not inhibit proliferation of KJD-1/SV40 cells. These results demonstrate that E2F6 does not contain the domains required for modulation of squamous differentiation and imply isoform-specific functions for individual E2F family members

  7. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-3: High Temperature Gas Cooled Reactor Thermal-Hydraulics.

    Science.gov (United States)

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical high temperature gas-cooled reactor (HTGR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating its use with a simplified model. The heart of the module…

  8. Solving Differential Equations Analytically. Elementary Differential Equations. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Unit 335.

    Science.gov (United States)

    Goldston, J. W.

    This unit introduces analytic solutions of ordinary differential equations. The objective is to enable the student to decide whether a given function solves a given differential equation. Examples of problems from biology and chemistry are covered. Problem sets, quizzes, and a model exam are included, and answers to all items are provided. The…

  9. Reliable and repeatable bonding technology for high temperature automotive power modules for electrified vehicles

    International Nuclear Information System (INIS)

    Yoon, Sang Won; Shiozaki, Koji; Glover, Michael D; Mantooth, H Alan

    2013-01-01

    This paper presents the feasibility of highly reliable and repeatable copper–tin transient liquid phase (Cu–Sn TLP) bonding as applied to die attachment in high temperature operational power modules. Electrified vehicles are attracting particular interest as eco-friendly vehicles, but their power modules are challenged because of increasing power densities which lead to high temperatures. Such high temperature operation addresses the importance of advanced bonding technology that is highly reliable (for high temperature operation) and repeatable (for fabrication of advanced structures). Cu–Sn TLP bonding is employed herein because of its high remelting temperature and desirable thermal and electrical conductivities. The bonding starts with a stack of Cu–Sn–Cu metal layers that eventually transforms to Cu–Sn alloys. As the alloys have melting temperatures (Cu 3 Sn: > 600 °C, Cu 6 Sn 5 : > 400 °C) significantly higher than the process temperature, the process can be repeated without damaging previously bonded layers. A Cu–Sn TLP bonding process was developed using thin Sn metal sheets inserted between copper layers on silicon die and direct bonded copper substrates, emulating the process used to construct automotive power modules. Bond quality is characterized using (1) proof-of-concept fabrication, (2) material identification using scanning electron microscopy and energy-dispersive x-ray spectroscopy analysis, and (3) optical analysis using optical microscopy and scanning acoustic microscope. The feasibility of multiple-sided Cu–Sn TLP bonding is demonstrated by the absence of bondline damage in multiple test samples fabricated with double- or four-sided bonding using the TLP bonding process. (paper)

  10. A Receiver for Differential Space-Time -Shifted BPSK Modulation Based on Scalar-MSDD and the EM Algorithm

    Directory of Open Access Journals (Sweden)

    Kim Jae H

    2005-01-01

    Full Text Available In this paper, we consider the issue of blind detection of Alamouti-type differential space-time (ST modulation in static Rayleigh fading channels. We focus our attention on a -shifted BPSK constellation, introducing a novel transformation to the received signal such that this binary ST modulation, which has a second-order transmit diversity, is equivalent to QPSK modulation with second-order receive diversity. This equivalent representation allows us to apply a low-complexity detection technique specifically designed for receive diversity, namely, scalar multiple-symbol differential detection (MSDD. To further increase receiver performance, we apply an iterative expectation-maximization (EM algorithm which performs joint channel estimation and sequence detection. This algorithm uses minimum mean square estimation to obtain channel estimates and the maximum-likelihood principle to detect the transmitted sequence, followed by differential decoding. With receiver complexity proportional to the observation window length, our receiver can achieve the performance of a coherent maximal ratio combining receiver (with differential decoding in as few as a single EM receiver iteration, provided that the window size of the initial MSDD is sufficiently long. To further demonstrate that the MSDD is a vital part of this receiver setup, we show that an initial ST conventional differential detector would lead to strange convergence behavior in the EM algorithm.

  11. The APC/C Coordinates Retinal Differentiation with G1 Arrest through the Nek2-Dependent Modulation of Wingless Signaling.

    Science.gov (United States)

    Martins, Torcato; Meghini, Francesco; Florio, Francesca; Kimata, Yuu

    2017-01-09

    The cell cycle is coordinated with differentiation during animal development. Here we report a cell-cycle-independent developmental role for a master cell-cycle regulator, the anaphase-promoting complex or cyclosome (APC/C), in the regulation of cell fate through modulation of Wingless (Wg) signaling. The APC/C controls both cell-cycle progression and postmitotic processes through ubiquitin-dependent proteolysis. Through an RNAi screen in the developing Drosophila eye, we found that partial APC/C inactivation severely inhibits retinal differentiation independently of cell-cycle defects. The differentiation inhibition coincides with hyperactivation of Wg signaling caused by the accumulation of a Wg modulator, Drosophila Nek2 (dNek2). The APC/C degrades dNek2 upon synchronous G1 arrest prior to differentiation, which allows retinal differentiation through local suppression of Wg signaling. We also provide evidence that decapentaplegic signaling may posttranslationally regulate this APC/C function. Thus, the APC/C coordinates cell-fate determination with the cell cycle through the modulation of developmental signaling pathways. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Differential modulation of auditory responses to attended and unattended speech in different listening conditions.

    Science.gov (United States)

    Kong, Ying-Yee; Mullangi, Ala; Ding, Nai

    2014-10-01

    This study investigates how top-down attention modulates neural tracking of the speech envelope in different listening conditions. In the quiet conditions, a single speech stream was presented and the subjects paid attention to the speech stream (active listening) or watched a silent movie instead (passive listening). In the competing speaker (CS) conditions, two speakers of opposite genders were presented diotically. Ongoing electroencephalographic (EEG) responses were measured in each condition and cross-correlated with the speech envelope of each speaker at different time lags. In quiet, active and passive listening resulted in similar neural responses to the speech envelope. In the CS conditions, however, the shape of the cross-correlation function was remarkably different between the attended and unattended speech. The cross-correlation with the attended speech showed stronger N1 and P2 responses but a weaker P1 response compared to the cross-correlation with the unattended speech. Furthermore, the N1 response to the attended speech in the CS condition was enhanced and delayed compared with the active listening condition in quiet, while the P2 response to the unattended speaker in the CS condition was attenuated compared with the passive listening in quiet. Taken together, these results demonstrate that top-down attention differentially modulates envelope-tracking neural activity at different time lags and suggest that top-down attention can both enhance the neural responses to the attended sound stream and suppress the responses to the unattended sound stream. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Sex Differences in Behavioral Outcomes Following Temperature Modulation During Induced Neonatal Hypoxic Ischemic Injury in Rats

    Directory of Open Access Journals (Sweden)

    Amanda L. Smith

    2015-05-01

    Full Text Available Neonatal hypoxia ischemia (HI; reduced oxygen and/or blood flow to the brain can cause various degrees of tissue damage, as well as subsequent cognitive/behavioral deficits such as motor, learning/memory, and auditory impairments. These outcomes frequently result from cardiovascular and/or respiratory events observed in premature infants. Data suggests that there is a sex difference in HI outcome, with males being more adversely affected relative to comparably injured females. Brain/body temperature may play a role in modulating the severity of an HI insult, with hypothermia during an insult yielding more favorable anatomical and behavioral outcomes. The current study utilized a postnatal day (P 7 rodent model of HI injury to assess the effect of temperature modulation during injury in each sex. We hypothesized that female P7 rats would benefit more from lowered body temperatures as compared to male P7 rats. We assessed all subjects on rota-rod, auditory discrimination, and spatial/non-spatial maze tasks. Our results revealed a significant benefit of temperature reduction in HI females as measured by most of the employed behavioral tasks. However, HI males benefitted from temperature reduction as measured on auditory and non-spatial tasks. Our data suggest that temperature reduction protects both sexes from the deleterious effects of HI injury, but task and sex specific patterns of relative efficacy are seen.

  14. Sex differences in behavioral outcomes following temperature modulation during induced neonatal hypoxic ischemic injury in rats.

    Science.gov (United States)

    Smith, Amanda L; Garbus, Haley; Rosenkrantz, Ted S; Fitch, Roslyn Holly

    2015-05-22

    Neonatal hypoxia ischemia (HI; reduced oxygen and/or blood flow to the brain) can cause various degrees of tissue damage, as well as subsequent cognitive/behavioral deficits such as motor, learning/memory, and auditory impairments. These outcomes frequently result from cardiovascular and/or respiratory events observed in premature infants. Data suggests that there is a sex difference in HI outcome, with males being more adversely affected relative to comparably injured females. Brain/body temperature may play a role in modulating the severity of an HI insult, with hypothermia during an insult yielding more favorable anatomical and behavioral outcomes. The current study utilized a postnatal day (P) 7 rodent model of HI injury to assess the effect of temperature modulation during injury in each sex. We hypothesized that female P7 rats would benefit more from lowered body temperatures as compared to male P7 rats. We assessed all subjects on rota-rod, auditory discrimination, and spatial/non-spatial maze tasks. Our results revealed a significant benefit of temperature reduction in HI females as measured by most of the employed behavioral tasks. However, HI males benefitted from temperature reduction as measured on auditory and non-spatial tasks. Our data suggest that temperature reduction protects both sexes from the deleterious effects of HI injury, but task and sex specific patterns of relative efficacy are seen.

  15. Supernatant from bifidobacterium differentially modulates transduction signaling pathways for biological functions of human dendritic cells.

    Directory of Open Access Journals (Sweden)

    Cyrille Hoarau

    Full Text Available BACKGROUND: Probiotic bacteria have been shown to modulate immune responses and could have therapeutic effects in allergic and inflammatory disorders. However, the signaling pathways engaged by probiotics are poorly understood. We have previously reported that a fermentation product from Bifidobacterium breve C50 (BbC50sn could induce maturation, high IL-10 production and prolonged survival of DCs via a TLR2 pathway. We therefore studied the roles of mitogen-activated protein kinases (MAPK, glycogen synthase kinase-3 (GSK3 and phosphatidylinositol 3-kinase (PI3K pathways on biological functions of human monocyte-derived DCs treated with BbC50sn. METHODOLOGY/PRINCIPAL FINDINGS: DCs were differentiated from human monocytes with IL-4 and GM-CSF for 5 days and cultured with BbC50sn, lipopolysaccharide (LPS or Zymosan, with or without specific inhibitors of p38MAPK (SB203580, ERK (PD98059, PI3K (LY294002 and GSK3 (SB216763. We found that 1 the PI3K pathway was positively involved in the prolonged DC survival induced by BbC50sn, LPS and Zymosan in contrast to p38MAPK and GSK3 which negatively regulated DC survival; 2 p38MAPK and PI3K were positively involved in DC maturation, in contrast to ERK and GSK3 which negatively regulated DC maturation; 3 ERK and PI3K were positively involved in DC-IL-10 production, in contrast to GSK3 that was positively involved in DC-IL-12 production whereas p38MAPK was positively involved in both; 4 BbC50sn induced a PI3K/Akt phosphorylation similar to Zymosan and a p38MAPK phosphorylation similar to LPS. CONCLUSION/SIGNIFICANCE: We report for the first time that a fermentation product of a bifidobacteria can differentially activate MAPK, GSK3 and PI3K in order to modulate DC biological functions. These results give new insights on the fine-tuned balance between the maintenance of normal mucosal homeostasis to commensal and probiotic bacteria and the specific inflammatory immune responses to pathogen bacteria.

  16. Pitavastatin Differentially Modulates MicroRNA-Associated Cholesterol Transport Proteins in Macrophages.

    Directory of Open Access Journals (Sweden)

    Haijun Zhang

    Full Text Available There is emerging evidence identifying microRNAs (miRNAs as mediators of statin-induced cholesterol efflux, notably through the ATP-binding cassette transporter A1 (ABCA1 in macrophages. The objective of this study was to assess the impact of an HMG-CoA reductase inhibitor, pitavastatin, on macrophage miRNAs in the presence and absence of oxidized-LDL, a hallmark of a pro-atherogenic milieu. Treatment of human THP-1 cells with pitavastatin prevented the oxLDL-mediated suppression of miR-33a, -33b and -758 mRNA in these cells, an effect which was not uniquely attributable to induction of SREBP2. Induction of ABCA1 mRNA and protein by oxLDL was inhibited (30% by pitavastatin, while oxLDL or pitavastatin alone significantly induced and repressed ABCA1 expression, respectively. These findings are consistent with previous reports in macrophages. miRNA profiling was also performed using a miRNA array. We identified specific miRNAs which were up-regulated (122 and down-regulated (107 in THP-1 cells treated with oxLDL plus pitavastatin versus oxLDL alone, indicating distinct regulatory networks in these cells. Moreover, several of the differentially expressed miRNAs identified are functionally associated with cholesterol trafficking (six miRNAs in cells treated with oxLDL versus oxLDL plus pitavastatin. Our findings indicate that pitavastatin can differentially modulate miRNA in the presence of oxLDL; and, our results provide evidence that the net effect on cholesterol homeostasis is mediated by a network of miRNAs.

  17. Analogue demonstration of a high temperature superconducting sigma-delta modulator with 27 GHz sampling

    Energy Technology Data Exchange (ETDEWEB)

    Forrester, M.G.; Hunt, B.D.; Miller, D.L.; Talvacchio, J.; Young, R.M. [Northrop Grumman Science and Technology Center, Pittsburgh, PA 15235-5098 (United States)

    1999-11-01

    We have successfully fabricated and tested a high temperature superconducting (HTS) sigma-delta modulator for analogue-to-digital conversion. This is the first demonstration of a GHz sampling A-to-D in HTS. The 15-junction single-flux-quantum (SFQ) circuit, fabricated using an epitaxial multilayer HTS process with YBCO/Co-YBCO/YBCO edge junctions, was internally clocked at 27 GHz and used to convert a 5.01 MHz signal. The modulator demonstrated a spur-free dynamic range of more than 75 dB. Two-tone measurements with 5.01 MHz and 5.51 MHz signals demonstrated third-order intermodulation products to be lower than -59 dBc. Demonstration of a functional HTS modulator represents a significant milestone in the development of high dynamic range ADCs suitable for such applications as surveillance radar. (author)

  18. Magnesium sulfate differentially modulates fetal membrane inflammation in a time-dependent manner.

    Science.gov (United States)

    Cross, Sarah N; Nelson, Rachel A; Potter, Julie A; Norwitz, Errol R; Abrahams, Vikki M

    2018-04-30

    Chorioamnionitis and infection-associated inflammation are major causes of preterm birth. Magnesium sulfate (MgSO 4 ) is widely used in obstetrics as a tocolytic; however, its mechanism of action is unclear. This study sought to investigate how MgSO 4 modulates infection-associated inflammation in fetal membranes (FMs), and whether the response was time dependent. Human FM explants were treated with or without bacterial lipopolysaccharide (LPS); with or without MgSO 4 added either: 1 hour before LPS; at the same time as LPS; 1 hour post-LPS; or 2 hours post-LPS. Explants were also treated with or without viral dsRNA and LPS, alone or in combination; and MgSO 4 added 1 hour post-LPS After 24 hours, supernatants were measured for cytokines/chemokines; and tissue lysates measured for caspase-1 activity. Lipopolysaccharide-induced FM inflammation by upregulating the secretion of a number of inflammatory cytokines/chemokines. Magnesium sulfate administered 1-hour post-LPS inhibited FM secretion of IL-1β, IL-6, G-CSF, RANTES, and TNFα. Magnesium sulfate administered 2 hours post-LPS augmented FM secretion of these factors as well as IL-8, IFNγ, VEGF, GROα and IP-10. Magnesium sulfate delivered 1- hour post-LPS inhibited LPS-induced caspase-1 activity, and inhibited the augmented IL-1β response triggered by combination viral dsRNA and LPS. Magnesium sulfate differentially modulates LPS-induced FM inflammation in a time-dependent manner, in part through its modulation of caspase-1 activity. Thus, the timing of MgSO 4 administration may be critical in optimizing its anti-inflammatory effects in the clinical setting. MgSO 4 might also be useful at preventing FM inflammation triggered by a polymicrobial viral-bacterial infection. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. [Response of indica rice spikelet differentiation and degeneration to air temperature and solar radiation of different sowing dates].

    Science.gov (United States)

    Wang, Ya Liang; Zhang, Yu Ping; Xiang, Jing; Wang, Lei; Chen, Hui Zhe; Zhang, Yi Kai; Zhang, Wen Qian; Zhu, De Feng

    2017-11-01

    In this study, three rice varieties, including three-line hybrid indica rice Wuyou308 and Tianyouhuazhan, and inbred indica rice Huanghuazhan were used to investigate the effects of air temperature and solar radiation on rice growth duration and spikelet differentiation and degeneration. Ten sowing-date treatments were conducted in this field experiment. The results showed that the growth duration of three indica rice varieties were more sensitive to air temperature than to day-length. With average temperature increase of 1 ℃, panicle initiation advanced 1.5 days, but the panicle growth duration had no significant correlation with the temperature and day-length. The number of spikelets and differentiated spikelets revealed significant differences among different sowing dates. Increases in average temperature, maximum temperature, minimum temperature, effective accumulated temperature, temperature gap and the solar radiation benefited dry matter accumulation and spikelet differentiation of all varieties. With increases of effective accumulated temperature, diurnal temperature gap and solar radiation by 50 ℃, 1 ℃, 50 MJ·m -2 during panicle initiation stage, the number of differentiated spikelets increased 10.5, 14.3, 17.1 respectively. The rate of degenerated spikelets had a quadratic correlation with air temperature, extreme high and low temperature aggravated spikelets degeneration, and low temperature stress made worse effect than high temperature stress. The rate of spikelet degeneration dramatically rose with the temperature falling below the critical temperature, the critical effective accumulated temperature, daily average temperature, daily maximum temperature and minimum temperature during panicle initiation were 550-600 ℃, 24.0-26.0 ℃, 32.0-34.0 ℃, 21.0-23.0 ℃, respectively. In practice, the natural condition of appropriate high temperature, large diurnal temperature gap and strong solar radiation were conducive to spikelet differentiation

  20. Response Optimization of a Chemical Gas Sensor Array using Temperature Modulation

    Directory of Open Access Journals (Sweden)

    Cristhian Durán

    2018-04-01

    Full Text Available This paper consists of the design and implementation of a simple conditioning circuit to optimize the electronic nose performance, where a temperature modulation method was applied to the heating resistor to study the sensor’s response and confirm whether they are able to make the discrimination when exposed to different volatile organic compounds (VOC’s. This study was based on determining the efficiency of the gas sensors with the aim to perform an electronic nose, improving the sensitivity, selectivity and repeatability of the measuring system, selecting the type of modulation (e.g., pulse width modulation for the analytes detection (i.e., Moscatel wine samples (2% of alcohol and ethyl alcohol (70%. The results demonstrated that by using temperature modulation technique to the heating resistors, it is possible to realize the discrimination of VOC’s in fast and easy way through a chemical sensors array. Therefore, a discrimination model based on principal component analysis (PCA was implemented to each sensor, with data responses obtaining a variance of 94.5% and accuracy of 100%.

  1. Utilizing the response patterns of a temperature modulated chemoresistive gas sensor for gas diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Amini, Amir [Jannatabad College, Sama Organization, Islamic Azad University, Tehran (Iran, Islamic Republic of); Ghafarinia, Vahid, E-mail: amir.amini.elec@gmail.com, E-mail: ghafarinia@ee.kntu.ac.ir [Electrical Engineering Department, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of)

    2011-02-15

    The observed features in the temporal response patterns of a temperature-modulated chemoresistive gas sensor were used for gas diagnosis. The patterns were recorded for clean air and air contaminated with different levels of some volatile organic compounds while a staircase heating voltage waveform had been applied to the microheater of a tin oxide gas sensor that modulated its operating temperature. Combining the steady-state and transient parameters of the recorded responses in the 50-400 deg. C range resulted in discriminatory feature vectors which were utilized for contaminant classification. The information content of these feature vectors was proved sufficient for discrimination of methanol, ethanol, 1-butanol, and acetone contaminations in a wide concentration range.

  2. Utilizing the response patterns of a temperature modulated chemoresistive gas sensor for gas diagnosis

    International Nuclear Information System (INIS)

    Amini, Amir; Ghafarinia, Vahid

    2011-01-01

    The observed features in the temporal response patterns of a temperature-modulated chemoresistive gas sensor were used for gas diagnosis. The patterns were recorded for clean air and air contaminated with different levels of some volatile organic compounds while a staircase heating voltage waveform had been applied to the microheater of a tin oxide gas sensor that modulated its operating temperature. Combining the steady-state and transient parameters of the recorded responses in the 50-400 deg. C range resulted in discriminatory feature vectors which were utilized for contaminant classification. The information content of these feature vectors was proved sufficient for discrimination of methanol, ethanol, 1-butanol, and acetone contaminations in a wide concentration range.

  3. 25 Gbit/s differential phase-shift-keying signal generation using directly modulated quantum-dot semiconductor optical amplifiers

    International Nuclear Information System (INIS)

    Zeghuzi, A.; Schmeckebier, H.; Stubenrauch, M.; Bimberg, D.; Meuer, C.; Schubert, C.; Bunge, C.-A.

    2015-01-01

    Error-free generation of 25-Gbit/s differential phase-shift keying (DPSK) signals via direct modulation of InAs quantum-dot (QD) based semiconductor optical amplifiers (SOAs) is experimentally demonstrated with an input power level of −5 dBm. The QD SOAs emit in the 1.3-μm wavelength range and provide a small-signal fiber-to-fiber gain of 8 dB. Furthermore, error-free DPSK modulation is achieved for constant optical input power levels from 3 dBm down to only −11 dBm for a bit rate of 20 Gbit/s. Direct phase modulation of QD SOAs via current changes is thus demonstrated to be much faster than direct gain modulation

  4. Consolidation differentially modulates schema effects on memory for items and associations.

    Science.gov (United States)

    van Kesteren, Marlieke T R; Rijpkema, Mark; Ruiter, Dirk J; Fernández, Guillén

    2013-01-01

    Newly learned information that is congruent with a preexisting schema is often better remembered than information that is incongruent. This schema effect on memory has previously been associated to more efficient encoding and consolidation mechanisms. However, this effect is not always consistently supported in the literature, with differential schema effects reported for different types of memory, different retrieval cues, and the possibility of time-dependent effects related to consolidation processes. To examine these effects more directly, we tested participants on two different types of memory (item recognition and associative memory) for newly encoded visuo-tactile associations at different study-test intervals, thus probing memory retrieval accuracy for schema-congruent and schema-incongruent items and associations at different time points (t = 0, t = 20, and t = 48 hours) after encoding. Results show that the schema effect on visual item recognition only arises after consolidation, while the schema effect on associative memory is already apparent immediately after encoding, persisting, but getting smaller over time. These findings give further insight into different factors influencing the schema effect on memory, and can inform future schema experiments by illustrating the value of considering effects of memory type and consolidation on schema-modulated retrieval.

  5. A Differential Evolution Based MPPT Method for Photovoltaic Modules under Partial Shading Conditions

    Directory of Open Access Journals (Sweden)

    Kok Soon Tey

    2014-01-01

    Full Text Available Partially shaded photovoltaic (PV modules have multiple peaks in the power-voltage (P-V characteristic curve and conventional maximum power point tracking (MPPT algorithm, such as perturbation and observation (P&O, which is unable to track the global maximum power point (GMPP accurately due to its localized search space. Therefore, this paper proposes a differential evolution (DE based optimization algorithm to provide the globalized search space to track the GMPP. The direction of mutation in the DE algorithm is modified to ensure that the mutation always converges to the best solution among all the particles in the generation. This helps to provide the rapid convergence of the algorithm. Simulation of the proposed PV system is carried out in PSIM and the results are compared to P&O algorithm. In the hardware implementation, a high step-up DC-DC converter is employed to verify the proposed algorithm experimentally on partial shading conditions, load variation, and solar intensity variation. The experimental results show that the proposed algorithm is able to converge to the GMPP within 1.2 seconds with higher efficiency than P&O.

  6. Consolidation differentially modulates schema effects on memory for items and associations.

    Directory of Open Access Journals (Sweden)

    Marlieke T R van Kesteren

    Full Text Available Newly learned information that is congruent with a preexisting schema is often better remembered than information that is incongruent. This schema effect on memory has previously been associated to more efficient encoding and consolidation mechanisms. However, this effect is not always consistently supported in the literature, with differential schema effects reported for different types of memory, different retrieval cues, and the possibility of time-dependent effects related to consolidation processes. To examine these effects more directly, we tested participants on two different types of memory (item recognition and associative memory for newly encoded visuo-tactile associations at different study-test intervals, thus probing memory retrieval accuracy for schema-congruent and schema-incongruent items and associations at different time points (t = 0, t = 20, and t = 48 hours after encoding. Results show that the schema effect on visual item recognition only arises after consolidation, while the schema effect on associative memory is already apparent immediately after encoding, persisting, but getting smaller over time. These findings give further insight into different factors influencing the schema effect on memory, and can inform future schema experiments by illustrating the value of considering effects of memory type and consolidation on schema-modulated retrieval.

  7. Differential Amplitude Pulse-Position Modulation for Indoor Wireless Optical Communications

    Directory of Open Access Journals (Sweden)

    Sethakaset Ubolthip

    2005-01-01

    Full Text Available We propose a novel differential amplitude pulse-position modulation (DAPPM for indoor optical wireless communications. DAPPM yields advantages over PPM, DPPM, and DH-PIM in terms of bandwidth requirements, capacity, and peak-to-average power ratio (PAPR. The performance of a DAPPM system with an unequalized receiver is examined over nondispersive and dispersive channels. DAPPM can provide better bandwidth and/or power efficiency than PAM, PPM, DPPM, and DH-PIM depending on the number of amplitude levels and the maximum length of a symbol. We also show that, given the same maximum length, DAPPM has better bandwidth efficiency but requires about and more power than PPM and DPPM, respectively, at high bit rates over a dispersive channel. Conversely, DAPPM requires less power than DH-PIM . When the number of bits per symbol is the same, PAM requires more power, and DH-PIM less power, than DAPPM. Finally, it is shown that the performance of DAPPM can be improved with MLSD, chip-rate DFE, and multichip-rate DFE.

  8. Recent advances and potential applications of modulated differential scanning calorimetry (mDSC) in drug development.

    Science.gov (United States)

    Knopp, Matthias Manne; Löbmann, Korbinian; Elder, David P; Rades, Thomas; Holm, René

    2016-05-25

    Differential scanning calorimetry (DSC) is frequently the thermal analysis technique of choice within preformulation and formulation sciences because of its ability to provide detailed information about both the physical and energetic properties of a substance and/or formulation. However, conventional DSC has shortcomings with respect to weak transitions and overlapping events, which could be solved by the use of the more sophisticated modulated DSC (mDSC). mDSC has multiple potential applications within the pharmaceutical field and the present review provides an up-to-date overview of these applications. It is aimed to serve as a broad introduction to newcomers, and also as a valuable reference for those already practising in the field. Complex mDSC was introduced more than two decades ago and has been an important tool for the quantification of amorphous materials and development of freeze-dried formulations. However, as discussed in the present review, a number of other potential applications could also be relevant for the pharmaceutical scientist. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Differential preparation intervals modulate repetition processes in task switching: an ERP study

    Directory of Open Access Journals (Sweden)

    Min eWang

    2016-02-01

    Full Text Available In task-switching paradigms, reaction times (RTs switch cost (SC and the neural correlates underlying the SC are affected by different preparation intervals. However, little is known about the effect of the preparation interval on the repetition processes in task-switching. To examine this effect we utilized a cued task-switching paradigm with long sequences of repeated trials. Response-stimulus intervals (RSI and cue-stimulus intervals (CSI were manipulated in short and long conditions. Electroencephalography (EEG and behavioral data were recorded. We found that with increasing repetitions, RTs were faster in the short CSI conditions, while P3 amplitudes decreased in the LS (long RSI and short CSI conditions. Positive correlations between RT benefit and P3 activation decrease (repeat 1 minus repeat 5, and between the slope of the RT and P3 regression lines were observed only in the LS condition. Our findings suggest that differential preparation intervals modulate repetition processes in task switching.

  10. Glucose-ABL1-TOR Signaling Modulates Cell Cycle Tuning to Control Terminal Appressorial Cell Differentiation.

    Science.gov (United States)

    Marroquin-Guzman, Margarita; Sun, Guangchao; Wilson, Richard A

    2017-01-01

    The conserved target of rapamycin (TOR) pathway integrates growth and development with available nutrients, but how cellular glucose controls TOR function and signaling is poorly understood. Here, we provide functional evidence from the devastating rice blast fungus Magnaporthe oryzae that glucose can mediate TOR activity via the product of a novel carbon-responsive gene, ABL1, in order to tune cell cycle progression during infection-related development. Under nutrient-free conditions, wild type (WT) M. oryzae strains form terminal plant-infecting cells (appressoria) at the tips of germ tubes emerging from three-celled spores (conidia). WT appressorial development is accompanied by one round of mitosis followed by autophagic cell death of the conidium. In contrast, Δabl1 mutant strains undergo multiple rounds of accelerated mitosis in elongated germ tubes, produce few appressoria, and are abolished for autophagy. Treating WT spores with glucose or 2-deoxyglucose phenocopied Δabl1. Inactivating TOR in Δabl1 mutants or glucose-treated WT strains restored appressorium formation by promoting mitotic arrest at G1/G0 via an appressorium- and autophagy-inducing cell cycle delay at G2/M. Collectively, this work uncovers a novel glucose-ABL1-TOR signaling axis and shows it engages two metabolic checkpoints in order to modulate cell cycle tuning and mediate terminal appressorial cell differentiation. We thus provide new molecular insights into TOR regulation and cell development in response to glucose.

  11. ODEion--a software module for structural identification of ordinary differential equations.

    Science.gov (United States)

    Gennemark, Peter; Wedelin, Dag

    2014-02-01

    In the systems biology field, algorithms for structural identification of ordinary differential equations (ODEs) have mainly focused on fixed model spaces like S-systems and/or on methods that require sufficiently good data so that derivatives can be accurately estimated. There is therefore a lack of methods and software that can handle more general models and realistic data. We present ODEion, a software module for structural identification of ODEs. Main characteristic features of the software are: • The model space is defined by arbitrary user-defined functions that can be nonlinear in both variables and parameters, such as for example chemical rate reactions. • ODEion implements computationally efficient algorithms that have been shown to efficiently handle sparse and noisy data. It can run a range of realistic problems that previously required a supercomputer. • ODEion is easy to use and provides SBML output. We describe the mathematical problem, the ODEion system itself, and provide several examples of how the system can be used. Available at: http://www.odeidentification.org.

  12. Relaxation dynamics of femtosecond-laser-induced temperature modulation on the surfaces of metals and semiconductors

    Czech Academy of Sciences Publication Activity Database

    Levy, Yoann; Derrien, Thibault; Bulgakova, Nadezhda M.; Gurevich, E.L.; Mocek, Tomáš

    2016-01-01

    Roč. 374, Jun (2016), s. 157-164 ISSN 0169-4332 R&D Projects: GA MŠk ED2.1.00/01.0027 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : LIPSS * modulated temperature relaxation * two-temperature model * nano-melting Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.387, year: 2016

  13. Significant modulation of the hepatic proteome induced by exposure to low temperature in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Kazumichi Nagasawa

    2013-08-01

    The African clawed frog, Xenopus laevis, is an ectothermic vertebrate that can survive at low environmental temperatures. To gain insight into the molecular events induced by low body temperature, liver proteins were evaluated at the standard laboratory rearing temperature (22°C, control and a low environmental temperature (5°C, cold exposure. Using nano-flow liquid chromatography coupled with tandem mass spectrometry, we identified 58 proteins that differed in abundance. A subsequent Gene Ontology analysis revealed that the tyrosine and phenylalanine catabolic processes were modulated by cold exposure, which resulted in decreases in hepatic tyrosine and phenylalanine, respectively. Similarly, levels of pyruvate kinase and enolase, which are involved in glycolysis and glycogen synthesis, were also decreased, whereas levels of glycogen phosphorylase, which participates in glycogenolysis, were increased. Therefore, we measured metabolites in the respective pathways and found that levels of hepatic glycogen and glucose were decreased. Although the liver was under oxidative stress because of iron accumulation caused by hepatic erythrocyte destruction, the hepatic NADPH/NADP ratio was not changed. Thus, glycogen is probably utilized mainly for NADPH supply rather than for energy or glucose production. In conclusion, X. laevis responds to low body temperature by modulating its hepatic proteome, which results in altered carbohydrate metabolism.

  14. Analytic modeling of a high temperature thermoelectric module for wireless sensors

    International Nuclear Information System (INIS)

    Köhler, J E; Staaf, L G H; Palmqvist, A E C; Enoksson, P

    2014-01-01

    A novel high temperature thermoelectric module with thermoelectric materials never before combined in a module is currently researched. The module placement in the cooling channels of a jet engine where the cold side will be cooled by high flow cooling air (550° C) and the hot side will be at the wall (800° C). The aim of the project is to drastically reduce the length of the wires by replacing wired sensors with wireless sensors and power these (3-10mW) with thermoelectric harvesters. To optimize the design for the temperature range and the environment an analytic model was constructed. Using known models for this purpose was not possible for this project, as many of the models have too many assumptions, e.g. that the temperature gradient is relatively low, that thick electrodes with very low resistance can be used, that the heat transfer through the base plates are perfect or that the aim of the design is to maximize the efficiency. The analytical model in this paper is a combination of several known models with the aim to examine what materials to use in this specific environment to achieve the highest possible specific power (mW/g)

  15. Pulse width modulation-based temperature tracking for feedback control of a shape memory alloy actuator.

    Science.gov (United States)

    Ayvali, Elif; Desai, Jaydev P

    2014-04-01

    This work presents a temperature-feedback approach to control the radius of curvature of an arc-shaped shape memory alloy (SMA) wire. The nonlinear properties of the SMA such as phase transformation and its dependence on temperature and stress make SMA actuators difficult to control. Tracking a desired trajectory is more challenging than controlling just the position of the SMA actuator since the desired path is continuously changing. Consequently, tracking the desired strain directly or tracking the parameters such as temperature and electrical resistance that are related to strain with a model is a challenging task. Temperature-feedback is an attractive approach when direct measurement of strain is not practical. Pulse width modulation (PWM) is an effective method for SMA actuation and it can be used along with a compensator to control the temperature of the SMA. Using the constitutive model of the SMA, the desired temperature profile can be obtained for a given strain trajectory. A PWM-based nonlinear PID controller with a feed-forward heat transfer model is proposed to use temperature-feedback for tracking a desired temperature trajectory. The proposed controller is used during the heating phase of the SMA actuator. The controller proves to be effective in tracking step-wise and continuous trajectories.

  16. DEG/ENaC ion channels involved in sensory transduction are modulated by cold temperature

    Science.gov (United States)

    Askwith, Candice C.; Benson, Christopher J.; Welsh, Michael J.; Snyder, Peter M.

    2001-01-01

    Several DEG/ENaC cation channel subunits are expressed in the tongue and in cutaneous sensory neurons, where they are postulated to function as receptors for salt and sour taste and for touch. Because these tissues are exposed to large temperature variations, we examined how temperature affects DEG/ENaC channel function. We found that cold temperature markedly increased the constitutively active Na+ currents generated by epithelial Na+ channels (ENaC). Half-maximal stimulation occurred at 25°C. Cold temperature did not induce current from other DEG/ENaC family members (BNC1, ASIC, and DRASIC). However, when these channels were activated by acid, cold temperature potentiated the currents by slowing the rate of desensitization. Potentiation was abolished by a “Deg” mutation that alters channel gating. Temperature changes in the physiologic range had prominent effects on current in cells heterologously expressing acid-gated DEG/ENaC channels, as well as in dorsal root ganglion sensory neurons. The finding that cold temperature modulates DEG/ENaC channel function may provide a molecular explanation for the widely recognized ability of temperature to modify taste sensation and mechanosensation. PMID:11353858

  17. Temperature-dependent modulation of regional lymphatic contraction frequency and flow.

    Science.gov (United States)

    Solari, Eleonora; Marcozzi, Cristiana; Negrini, Daniela; Moriondo, Andrea

    2017-11-01

    Lymph drainage and propulsion are sustained by an extrinsic mechanism, based on mechanical forces acting from the surrounding tissues against the wall of lymphatic vessels, and by an intrinsic mechanism attributable to active spontaneous contractions of the lymphatic vessel muscle. Despite being heterogeneous, the mechanisms underlying the generation of spontaneous contractions share a common biochemical nature and are thus modulated by temperature. In this study, we challenged excised tissues from rat diaphragm and hindpaw, endowed with spontaneously contracting lymphatic vessels, to temperatures from 24°C (hindpaw) or 33°C (diaphragmatic vessels) to 40°C while measuring lymphatic contraction frequency ( f c ) and amplitude. Both vessel populations displayed a sigmoidal relationship between f c and temperature, each centered around the average temperature of surrounding tissue (36.7 diaphragmatic and 32.1 hindpaw lymphatics). Although the slope factor of the sigmoidal fit to the f c change of hindpaw vessels was 2.3°C·cycles -1 ·min -1 , a value within the normal range displayed by simple biochemical reactions, the slope factor of the diaphragmatic lymphatics was 0.62°C·cycles -1 ·min -1 , suggesting the added involvement of temperature-sensing mechanisms. Lymph flow calculated as a function of temperature confirmed the relationship observed on f c data alone and showed that none of the two lymphatic vessel populations would be able to adapt to the optimal working temperature of the other tissue district. This poses a novel question whether lymphatic vessels might not adapt their function to accommodate the change if exposed to a surrounding temperature, which is different from their normal condition. NEW & NOTEWORTHY This study demonstrates to what extent lymphatic vessel intrinsic contractility and lymph flow are modulated by temperature and that this modulation is dependent on the body district that the vessels belong to, suggesting a possible

  18. Morphology and cardiac physiology are differentially affected by temperature in developing larvae of the marine fish mahi-mahi (Coryphaena hippurus

    Directory of Open Access Journals (Sweden)

    Prescilla Perrichon

    2017-06-01

    Full Text Available Cardiovascular performance is altered by temperature in larval fishes, but how acute versus chronic temperature exposures independently affect cardiac morphology and physiology in the growing larva is poorly understood. Consequently, we investigated the influence of water temperature on cardiac plasticity in developing mahi-mahi. Morphological (e.g. standard length, heart angle and physiological cardiac variables (e.g. heart rate fH, stroke volume, cardiac output were recorded under two conditions by imaging: (i under acute temperature exposure where embryos were reared at 25°C up to 128 h post-fertilization (hpf and then acutely exposed to 25 (rearing temperature, 27 and 30°C; and (ii at two rearing (chronic temperatures of 26 and 30°C and performed at 32 and 56 hpf. Chronic elevated temperature improved developmental time in mahi-mahi. Heart rates were 1.2–1.4-fold higher under exposure of elevated acute temperatures across development (Q10≥2.0. Q10 for heart rate in acute exposure was 1.8-fold higher compared to chronic exposure at 56 hpf. At same stage, stroke volume was temperature independent (Q10∼1.0. However, larvae displayed higher stroke volume later in stage. Cardiac output in developing mahi-mahi is mainly dictated by chronotropic rather than inotropic modulation, is differentially affected by temperature during development and is not linked to metabolic changes.

  19. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    Science.gov (United States)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  20. Apparent heat capacity measurements and thermodynamic functions of D(−)-fructose by standard and temperature-modulated calorimetry

    International Nuclear Information System (INIS)

    Magoń, A.; Pyda, M.

    2013-01-01

    Highlights: ► Experimental, apparent heat capacity of fructose was investigated by advanced thermal analysis. ► Equilibrium melting parameters of fructose were determined. ► Decomposition, superheating of crystalline fructose during melting process were presented. ► TGA, DSC, and TMDSC are useful tools for characterisation of fructose. - Abstract: The qualitative and quantitative thermal analyses of crystalline and amorphous D(−)-fructose were studied utilising methods of standard differential scanning calorimetry (DSC), quasi-isothermal temperature-modulated differential scanning calorimetry (quasi-isothermal TMDSC), and thermogravimetric analysis (TGA). Advanced thermal analysis of fructose was performed based on heat capacity. The apparent total and apparent reversing heat capacities, as well as phase transition parameters were examined on heating and cooling. The melting temperature, T m , of crystalline D(−)-fructose shows a heating rate dependency, which increases with raising the heating rate and leads to superheating. The equilibrium melting temperatures: T m ∘ (onset) = 370 K and T m ∘ (peak) = 372 K, and the equilibrium enthalpy of fusion Δ fus H ° = 30.30 kJ · mol −1 , of crystalline D(−)-fructose were estimated on heating for the results at zero heating rate. Anomalies in the heat capacity in the liquid state of D(−)-fructose, assigned as possible tautomerisation equilibrium, were analysed by DSC and quasi-isothermal TMDSC, both on heating and cooling. Thermal stability of crystals in the region of the melting temperature was examined by TGA and quasi-isothermal TMDSC. Melting, mutarotation, and degradation processes occur simultaneously and there are differences in values of the liquid heat capacity of D(−)-fructose with varied thermal history, measured by quasi-isothermal TMDSC. Annealing of amorphous D(−)-fructose between the glass transition temperature, T g , and the melting temperature, T m , also leads to

  1. Modulating functions-based method for parameters and source estimation in one-dimensional partial differential equations

    KAUST Repository

    Asiri, Sharefa M.

    2016-10-20

    In this paper, modulating functions-based method is proposed for estimating space–time-dependent unknowns in one-dimensional partial differential equations. The proposed method simplifies the problem into a system of algebraic equations linear in unknown parameters. The well-posedness of the modulating functions-based solution is proved. The wave and the fifth-order KdV equations are used as examples to show the effectiveness of the proposed method in both noise-free and noisy cases.

  2. Differential signaling spread-spectrum modulation of the LED visible light wireless communications using a mobile-phone camera

    Science.gov (United States)

    Chen, Shih-Hao; Chow, Chi-Wai

    2015-02-01

    Visible light communication (VLC) using spread spectrum modulation (SSM) and differential signaling (DS), detected by a mobile-phone camera is proposed and demonstrated for the first time to provide high immunity to background ambient light interference. The SSM signal provides the coding gain while the DS scheme enhances the clock recovery particular under high background ambient light. Experiment results confirm the feasibility of the proposed scheme, showing that the proposed system has 6-dB gain comparing with the traditional on-off keying (OOK) modulation under background ambient light of 3000 lux. The direct incident ambient light to the mobile-phone camera is 520 lux.

  3. Double modulation pyrometry: A radiometric method to measure surface temperatures of directly irradiated samples

    Science.gov (United States)

    Potamias, Dimitrios; Alxneit, Ivo; Wokaun, Alexander

    2017-09-01

    The design, implementation, calibration, and assessment of double modulation pyrometry to measure surface temperatures of radiatively heated samples in our 1 kW imaging furnace is presented. The method requires that the intensity of the external radiation can be modulated. This was achieved by a rotating blade mounted parallel to the optical axis of the imaging furnace. Double modulation pyrometry independently measures the external radiation reflected by the sample as well as the sum of thermal and reflected radiation and extracts the thermal emission as the difference of these signals. Thus a two-step calibration is required: First, the relative gains of the measured signals are equalized and then a temperature calibration is performed. For the latter, we transfer the calibration from a calibrated solar blind pyrometer that operates at a different wavelength. We demonstrate that the worst case systematic error associated with this procedure is about 300 K but becomes negligible if a reasonable estimate of the sample's emissivity is used. An analysis of the influence of the uncertainties in the calibration coefficients reveals that one (out of the five) coefficient contributes almost 50% to the final temperature error. On a low emission sample like platinum, the lower detection limit is around 1700 K and the accuracy typically about 20 K. Note that these moderate specifications are specific for the use of double modulation pyrometry at the imaging furnace. It is mainly caused by the difficulty to achieve and maintain good overlap of the hot zone with a diameter of about 3 mm Full Width at Half Height and the measurement spot both of which are of similar size.

  4. Double modulation pyrometry: A radiometric method to measure surface temperatures of directly irradiated samples.

    Science.gov (United States)

    Potamias, Dimitrios; Alxneit, Ivo; Wokaun, Alexander

    2017-09-01

    The design, implementation, calibration, and assessment of double modulation pyrometry to measure surface temperatures of radiatively heated samples in our 1 kW imaging furnace is presented. The method requires that the intensity of the external radiation can be modulated. This was achieved by a rotating blade mounted parallel to the optical axis of the imaging furnace. Double modulation pyrometry independently measures the external radiation reflected by the sample as well as the sum of thermal and reflected radiation and extracts the thermal emission as the difference of these signals. Thus a two-step calibration is required: First, the relative gains of the measured signals are equalized and then a temperature calibration is performed. For the latter, we transfer the calibration from a calibrated solar blind pyrometer that operates at a different wavelength. We demonstrate that the worst case systematic error associated with this procedure is about 300 K but becomes negligible if a reasonable estimate of the sample's emissivity is used. An analysis of the influence of the uncertainties in the calibration coefficients reveals that one (out of the five) coefficient contributes almost 50% to the final temperature error. On a low emission sample like platinum, the lower detection limit is around 1700 K and the accuracy typically about 20 K. Note that these moderate specifications are specific for the use of double modulation pyrometry at the imaging furnace. It is mainly caused by the difficulty to achieve and maintain good overlap of the hot zone with a diameter of about 3 mm Full Width at Half Height and the measurement spot both of which are of similar size.

  5. Color of hot soup modulates postprandial satiety, thermal sensation, and body temperature in young women.

    Science.gov (United States)

    Suzuki, Maki; Kimura, Rie; Kido, Yasue; Inoue, Tomoko; Moritani, Toshio; Nagai, Narumi

    2017-07-01

    The color of food is known to modulate not only consumers' motivation to eat, but also thermal perception. Here we investigated whether the colors of hot soup can influence thermal sensations and body temperature, in addition to the food acceptability and appetite. Twelve young female participants consumed commercial white potage soup, modified to yellow or blue by adding food dyes, at 9 a.m. on 3 separated days. During the test, visual impression (willingness to eat, palatability, comfort, warmth, and anxiety) and thermal sensations were self-reported using visual analog scales. Core (intra-aural) and peripheral (toe) temperatures were continuously recorded 10 min before and 60 min after ingestion. Blue soup significantly decreased willingness to eat, palatability, comfort, and warmth ratings, and significantly increased anxiety feelings compared to the white and yellow soups. After ingestion, the blue soup showed significantly smaller satiety ratings and the tendency of lower thermal sensation scores of the whole body compared to the white and yellow soups. Moreover, a significantly greater increase in toe temperature was found with the yellow soup than the white or blue soup. In conclusion, this study provides new evidence that the colors of hot food may modulate postprandial satiety, thermal sensations and peripheral temperature. Such effects of color may be useful for dietary strategies for individuals who need to control their appetite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Economic analysis of multiple-module high temperature gas-cooled reactor (MHTR) nuclear power plants

    International Nuclear Information System (INIS)

    Liu Yu; Dong Yujie

    2011-01-01

    In recent years, as the increasing demand of energy all over the world, and the pressure on greenhouse emissions, there's a new opportunity for the development of nuclear energy. Modular High Temperature Gas-cooled Reactor (MHTR) received recognition for its inherent safety feature and high outlet temperature. Whether the Modular High Temperature Gas-cooled Reactor would be accepted extensively, its economy is a key point. In this paper, the methods of qualitative analysis and the method of quantitative analysis, the economic models designed by Economic Modeling Working Group (EMWG) of the Generation IV International Forum (GIF), as well as the HTR-PM's main technical features, are used to analyze the economy of the MHTR. A prediction is made on the basis of summarizing High Temperature Gas-cooled Reactor module characteristics, construction cost, total capital cost, fuel cost and operation and maintenance (O and M) cost and so on. In the following part, comparative analysis is taken measures to the economy and cost ratio of different designs, to explore the impacts of modularization and standardization on the construction of multiple-module reactor nuclear power plant. Meanwhile, the analysis is also adopted in the research of key factors such as the learning effect and yield to find out their impacts on the large scale development of MHTR. Furthermore, some reference would be provided to its wide application based on these analysis. (author)

  7. Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO₂.

    Directory of Open Access Journals (Sweden)

    Scarlett Sett

    Full Text Available Increasing atmospheric CO₂ concentrations are expected to impact pelagic ecosystem functioning in the near future by driving ocean warming and acidification. While numerous studies have investigated impacts of rising temperature and seawater acidification on planktonic organisms separately, little is presently known on their combined effects. To test for possible synergistic effects we exposed two coccolithophore species, Emiliania huxleyi and Gephyrocapsa oceanica, to a CO₂ gradient ranging from ∼0.5-250 µmol kg⁻¹ (i.e. ∼20-6000 µatm pCO₂ at three different temperatures (i.e. 10, 15, 20°C for E. huxleyi and 15, 20, 25°C for G. oceanica. Both species showed CO₂-dependent optimum-curve responses for growth, photosynthesis and calcification rates at all temperatures. Increased temperature generally enhanced growth and production rates and modified sensitivities of metabolic processes to increasing CO₂. CO₂ optimum concentrations for growth, calcification, and organic carbon fixation rates were only marginally influenced from low to intermediate temperatures. However, there was a clear optimum shift towards higher CO₂ concentrations from intermediate to high temperatures in both species. Our results demonstrate that the CO₂ concentration where optimum growth, calcification and carbon fixation rates occur is modulated by temperature. Thus, the response of a coccolithophore strain to ocean acidification at a given temperature can be negative, neutral or positive depending on that strain's temperature optimum. This emphasizes that the cellular responses of coccolithophores to ocean acidification can only be judged accurately when interpreted in the proper eco-physiological context of a given strain or species. Addressing the synergistic effects of changing carbonate chemistry and temperature is an essential step when assessing the success of coccolithophores in the future ocean.

  8. Non-uniform-tilt-modulated fiber Bragg grating for temperature-immune micro-displacement measurement

    International Nuclear Information System (INIS)

    Guo, Tuan; Chen, Chengkun; Albert, Jacques

    2009-01-01

    Temperature-immune micro-displacement measurement is demonstrated by using a Gaussian-chirped tilted fiber Bragg grating (TFBG). The internal tilt angles of the sensing TFBG are effectively modulated via a displacement-induced Gaussian-strain-gradient along the specially designed bending cantilever beam. The phase mismatch between different effective pitches and tilt angles weakens the core-to-cladding mode coupling as the beam is displaced. While the power of the ghost mode resonance in transmission shows a strong sensitivity to the displacement, it is immune from spatially uniform temperature changes. Ghost-power-referenced displacement measurement and temperature-insensitive property are experimentally achieved for this cost-effective sensing device

  9. Low-Temperature Presynthesized Crystalline Tin Oxide for Efficient Flexible Perovskite Solar Cells and Modules.

    Science.gov (United States)

    Bu, Tongle; Shi, Shengwei; Li, Jing; Liu, Yifan; Shi, Jielin; Chen, Li; Liu, Xueping; Qiu, Junhao; Ku, Zhiliang; Peng, Yong; Zhong, Jie; Cheng, Yi-Bing; Huang, Fuzhi

    2018-05-02

    Organic-inorganic metal halide perovskite solar cells (PSCs) have been emerging as one of the most promising next generation photovoltaic technologies with a breakthrough power conversion efficiency (PCE) over 22%. However, aiming for commercialization, it still encounters challenges for the large-scale module fabrication, especially for flexible devices which have attracted intensive attention recently. Low-temperature processed high-performance electron-transporting layers (ETLs) are still difficult. Herein, we present a facile low-temperature synthesis of crystalline SnO 2 nanocrystals (NCs) as efficient ETLs for flexible PSCs including modules. Through thermal and UV-ozone treatments of the SnO 2 ETLs, the electron transporting resistance of the ETLs and the charge recombination at the interface of ETL/perovskite were decreased. Thus, the hysteresis-free highly efficient rigid and flexible PSCs were obtained with PCEs of 19.20 and 16.47%, respectively. Finally, a 5 × 5 cm 2 flexible PSC module with a PCE of 12.31% (12.22% for forward scan and 12.40% for reverse scan) was fabricated with the optimized perovskite/ETL interface. Thus, employing presynthesized SnO 2 NCs to fabricate ETLs has showed promising for future manufacturing.

  10. Standard Test Methods for Photovoltaic Modules in Cyclic Temperature and Humidity Environments

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 These test methods provide procedures for stressing photovoltaic modules in simulated temperature and humidity environments. Environmental testing is used to simulate aging of module materials on an accelerated basis. 1.2 Three individual environmental test procedures are defined by these test methods: a thermal cycling procedure, a humidity-freeze cycling procedure, and an extended duration damp heat procedure. Electrical biasing is utilized during the thermal cycling procedure to simulate stresses that are known to occur in field-deployed modules. 1.3 These test methods define mounting methods for modules undergoing environmental testing, and specify parameters that must be recorded and reported. 1.4 These test methods do not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of these test methods. 1.5 Any of the individual environmental tests may be performed singly, or may be combined into a test sequence with other environmental or non-envir...

  11. Sex determination and differentiation in Aurelia sp.1: the absence of temperature dependence

    Science.gov (United States)

    Liu, Chunsheng; Gu, Zhifeng; Xing, Mengxin; Sun, Yun; Chen, Siqing; Chen, Zhaoting

    2018-03-01

    Cnidarians, being regarded as `basal' metazoan animals, are considered to have relatively high plasticity in terms of sex reversal. In this study we used an experimental approach to demonstrate sexual differentiation and plasticity in benthic polyps and pelagic medusae of Aurelia sp.1 maintained at different temperatures. Results indicated that in Aurelia sp.1, sex differentiation has been determined at the polyp stage and that all medusae originating from a given polyp are, phenotypically, of the same sex. In addition, the sex of polyps budding from the same clone (either male or female) at different temperatures appears to be the same as that of the parent. The sex of medusae that had originated from a known-sex polyp was observed to remain the same as that of the parent, irrespective of differences in strobilation or rearing temperatures. These results indicate that the mechanism of sex determination of Aurelia sp.1. is not influenced by prevailing temperature regimes. A comparison of variability in terms of sexual plasticity of Aurelia sp.1 with that of Hydrozoa and Anthozoa suggests that species characterized by a free-swimming medusa life stage have a high dispersal potential, which probably results in a lower rate of sex reversal.

  12. Global Model of Time-Modulated Electronegative Discharges for Neutral Radical and Electron Temperature Control

    Science.gov (United States)

    Kim, Sungjin; Lieberman, M. A.; Lichtenberg, A. J.

    2003-10-01

    Control and reduction of neutral radical flux/ion flux ratio and electron temperature Te is required for next generation etching in the microelectronics industry. We investigate time-modulated power for these purposes using a volume-averaged (global) oxygen discharge model, We consider pressures of 10-50 mTorr and plasma densities of 10^10-10^11 cm-3. In this regime, the discharge is found to be weakly electronegative. The modulation period and the duty ratio (on-time/period) are varied to determine the optimum conditions for reduction of FR= O-atom flux/ion flux and T_e. Two chambers with different height/diameter ratios (SMART Contract SM99-10051.

  13. Power Cycling Test Method for Reliability Assessment of Power Device Modules in Respect to Temperature Stress

    DEFF Research Database (Denmark)

    Choi, Ui-Min; Blaabjerg, Frede; Jørgensen, Søren

    2018-01-01

    Power cycling test is one of the important tasks to investigate the reliability performance of power device modules in respect to temperature stress. From this, it is able to predict the lifetime of a component in power converters. In this paper, representative power cycling test circuits......, measurement circuits of wear-out failure indicators as well as measurement strategies for different power cycling test circuits are discussed in order to provide the current state of knowledge of this topic by organizing and evaluating current literature. In the first section of this paper, the structure...... of a conventional power device module and its related wear-out failure mechanisms with degradation indicators are discussed. Then, representative power cycling test circuits are introduced. Furthermore, on-state collector-emitter voltage (VCE ON) and forward voltage (VF) measurement circuits for wear-out condition...

  14. Reference-free fatigue crack detection using nonlinear ultrasonic modulation under various temperature and loading conditions

    Science.gov (United States)

    Lim, Hyung Jin; Sohn, Hoon; DeSimio, Martin P.; Brown, Kevin

    2014-04-01

    This study presents a reference-free fatigue crack detection technique using nonlinear ultrasonic modulation. When low frequency (LF) and high frequency (HF) inputs generated by two surface-mounted lead zirconate titanate (PZT) transducers are applied to a structure, the presence of a fatigue crack can provide a mechanism for nonlinear ultrasonic modulation and create spectral sidebands around the frequency of the HF signal. The crack-induced spectral sidebands are isolated using a combination of linear response subtraction (LRS), synchronous demodulation (SD) and continuous wavelet transform (CWT) filtering. Then, a sequential outlier analysis is performed on the extracted sidebands to identify the crack presence without referring any baseline data obtained from the intact condition of the structure. Finally, the robustness of the proposed technique is demonstrated using actual test data obtained from simple aluminum plate and complex aircraft fitting-lug specimens under varying temperature and loading variations.

  15. Effect of temperature on studtite stability: Thermogravimetry and differential scanning calorimetry investigations

    International Nuclear Information System (INIS)

    Rey, A.; Casas, I.; Gimenez, J.; Quinones, J.; Pablo, J. de

    2009-01-01

    The main objective of this work is the study of the influence of temperature on the stability of the uranyl peroxide tetrahydrate (UO 2 O 2 . 4H 2 O) studtite, which may form on the spent nuclear fuel surface as a secondary solid phase. Preliminary results on the synthesis of studtite in the laboratory at different temperatures have shown that the solid phases formed when mixing hydrogen peroxide and uranyl nitrate depends on temperature. Studtite is obtained at 298 K, meta-studtite (UO 2 O 2 . 2H 2 O) at 373 K, and meta-schoepite (UO 3 . nH 2 O, with n 3 O 8 . By means of the differential scanning calorimetry the molar enthalpies of the transformations occurring at 403 and 504 K have been determined to be -42 ± 10 and -46 ± 2 kJ mol -1 , respectively

  16. Melting temperature and enthalpy variations of phase change materials (PCMs): a differential scanning calorimetry (DSC) analysis

    Science.gov (United States)

    Sun, Xiaoqin; Lee, Kyoung Ok; Medina, Mario A.; Chu, Youhong; Li, Chuanchang

    2018-06-01

    Differential scanning calorimetry (DSC) analysis is a standard thermal analysis technique used to determine the phase transition temperature, enthalpy, heat of fusion, specific heat and activation energy of phase change materials (PCMs). To determine the appropriate heating rate and sample mass, various DSC measurements were carried out using two kinds of PCMs, namely N-octadecane paraffin and calcium chloride hexahydrate. The variations in phase transition temperature, enthalpy, heat of fusion, specific heat and activation energy were observed within applicable heating rates and sample masses. It was found that the phase transition temperature range increased with increasing heating rate and sample mass; while the heat of fusion varied without any established pattern. The specific heat decreased with the increase of heating rate and sample mass. For accuracy purpose, it is recommended that for PCMs with high thermal conductivity (e.g. hydrated salt) the focus will be on heating rate rather than sample mass.

  17. Diagnostic of the temperature and differential emission measure (DEM based on Hinode/XRT data

    Directory of Open Access Journals (Sweden)

    P. Rudawy

    2008-10-01

    Full Text Available We discuss here various methodologies and an optimal strategy of the temperature and emission measure diagnostics based on Hinode X-Ray Telescope data. As an example of our results we present the determination of the temperature distribution of the X-rays emitting plasma using a filters ratio method and three various methods of the calculation of the differential emission measure (DEM. We have found that all these methods give results similar to the two filters ratio method. Additionally, all methods of the DEM calculation gave similar solutions. We can state that the majority of the pairs of the Hinode filters allows one to derive the temperature and emission measure in the isothermal plasma approximation using standard diagnostics based on the two filters ratio method. In cases of strong flares one can also expect good conformity of the results obtained using a Withbroe – Sylwester, genetic algorithm and least-squares methods of the DEM evaluation.

  18. Solar Spectral and Module Temperature Influence on the Outdoor Performance of Thin Film PV Modules Deployed on a Sunny Inland Site

    Directory of Open Access Journals (Sweden)

    G. Nofuentes

    2013-01-01

    Full Text Available This work aims at analysing the influence of both module temperature and solar spectrum distribution on the outdoor performance of the following thin film technologies: hydrogenated amorphous silicon (a-Si:H, cadmium telluride (CdTe, copper indium gallium selenide sulfide (CIGS, and hydrogenated amorphous silicon/hydrogenated microcrystalline silicon hetero-junction (a-Si:H/μc-Si:H. A 12-month experimental campaign carried out in a sunny inland site in which a module of each one of these technologies was tested and measured outdoors has provided the necessary empirical data. Results show that module temperature exerts a limited influence on the performance of the tested a-Si:H, CdTe, and a-Si:H/μc-Si:H modules. In contrast, the outdoor behaviour of the CIGS module is the most affected by its temperature. Blue-rich spectra enhance the outdoor behaviour of the a-Si:H and a-Si:H/μc-Si:H modules while it is the other way round for the CIGS module. However, the CdTe specimen shows little sensitivity to the solar spectrum distribution. Anyway, spectral effects are scarcely relevant on an annual basis, ranging from gains for the CIGS module (1.5% to losses for the a-Si:H module (1.0%. However, the seasonal impact of the spectrum shape is more noticeable in these two materials; indeed, spectral issues may cause performance gains or losses of up to some 4% when winter and summer periods are considered.

  19. Forecasting the Cell Temperature of PV Modules with an Adaptive System

    Directory of Open Access Journals (Sweden)

    Giuseppina Ciulla

    2013-01-01

    Full Text Available The need to reduce energy consumptions and to optimize the processes of energy production has pushed the technology towards the implementation of hybrid systems for combined production of electric and thermal energies. In particular, recent researches look with interest at the installation of hybrid system PV/T. To improve the energy performance of these systems, it is necessary to know the operating temperature of the photovoltaic modules. The determination of the operating temperature is a key parameter for the assessment of the actual performance of photovoltaic panels. In the literature, it is possible to find different correlations that evaluate the referring to standard test conditions and/or applying some theoretical simplifications/assumptions. Nevertheless, the application of these different correlations, for the same conditions, does not lead to unequivocal results. In this work an alternative method, based on the employment of artificial neural networks (ANNs, was proposed to predict the operating temperature of a PV module. This methodology does not require any simplification or physical assumptions. In the paper is described the ANN that obtained the best performance: a multilayer perception network. The results have been compared with experimental monitored data and with some of the most cited empirical correlations proposed by different authors.

  20. Nonlinear dynamics analysis of a low-temperature-differential kinematic Stirling heat engine

    Science.gov (United States)

    Izumida, Yuki

    2018-03-01

    The low-temperature-differential (LTD) Stirling heat engine technology constitutes one of the important sustainable energy technologies. The basic question of how the rotational motion of the LTD Stirling heat engine is maintained or lost based on the temperature difference is thus a practically and physically important problem that needs to be clearly understood. Here, we approach this problem by proposing and investigating a minimal nonlinear dynamic model of an LTD kinematic Stirling heat engine. Our model is described as a driven nonlinear pendulum where the motive force is the temperature difference. The rotational state and the stationary state of the engine are described as a stable limit cycle and a stable fixed point of the dynamical equations, respectively. These two states coexist under a sufficient temperature difference, whereas the stable limit cycle does not exist under a temperature difference that is too small. Using a nonlinear bifurcation analysis, we show that the disappearance of the stable limit cycle occurs via a homoclinic bifurcation, with the temperature difference being the bifurcation parameter.

  1. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region

    Science.gov (United States)

    Browell, Edward V.; Ismail, Syed; Grossmann, Benoist E.

    1991-01-01

    Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evalute the temperature sensitivity of differential absorption lidar (Dial) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717-733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E-double-prime, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for 67 H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E-double-prime values in the 100-300/cm range were found to be optimum for Dial measurements of H2O number densities, while E-double-prime values in the 250-500/cm range were found to be optimum for H2O mixing ratio measurements.

  2. Electroabsorption modulator laser for cost-effective 40 Gbit/s networks with low drive voltage, chirp and temperature dependence

    DEFF Research Database (Denmark)

    Aubin, G.; Seoane, Jorge; Merghem, K.

    2009-01-01

    The performances of a novel low-chirp electroabsorption modulator laser module are presented. Transmission is analysed in standard singlermode fibre at 40 Gbit/s. Propagation without chromatic dispersion compensation up to 2 km exhibits a low penalty variation over a wide temperature range. A pro....... A propagation scheme with compensation leads to negligible impairment at 88 km....

  3. Fringe Controls Naïve CD4+T Cells Differentiation through Modulating Notch Signaling in Asthmatic Rat Models

    Science.gov (United States)

    Gu, Wen; Xu, Weiguo; Ding, Tao; Guo, Xuejun

    2012-01-01

    The ability of Notch signaling to regulate T helper cell development and differentiation has been widely accepted. Fringe, O-fucose-β1,3-N-acetylglucosaminyltransferases modulate Notch receptor expression and promote the Notch signaling pathway through receptor-ligand binding. In this study, we assayed the expression levels of three Fringe homologs in naive CD4+T cells in asthmatic rats. We found that Radical Fringe (Rfng) was highly expressed, whereas both Lunatic Fringe (Lfng) and Manic Fringe (Mfng) were expressed at low levels. Down-regulation of Rfng using siRNA, and overexpression of Lfng or Mfng enhanced Th1 subset lineages and diminished Th2 subset lineages. Notch signaling was more activated in asthmatic naïve CD4+T cells than in control cells, and Lfng, but not Mfng or Rfng, partly inhibited Notch signaling in asthmatic naïve CD4+T lymphocytes. Lfng overexpression resulted in significantly decreased Th2 cytokine production in asthma, which was the same effect as the GSI (γ-secretase inhibitor) treatment alone, but had an increased effect on Th1 cytokines than GSI treatment. Collectively, these data identify the essential role of Fringe modulating naïve CD4+T cells differentiation through Notch signaling. Lfng regulated Th2 cells differentiation via a Notch-dependent manner and Th1 cells differentiation via a Notch-independent manner. Fringe could be a therapeutic strategy for the management and prevention of allergic asthma. PMID:23071776

  4. Fringe controls naïve CD4(+)T cells differentiation through modulating notch signaling in asthmatic rat models.

    Science.gov (United States)

    Gu, Wen; Xu, Weiguo; Ding, Tao; Guo, Xuejun

    2012-01-01

    The ability of Notch signaling to regulate T helper cell development and differentiation has been widely accepted. Fringe, O-fucose-β1,3-N-acetylglucosaminyltransferases modulate Notch receptor expression and promote the Notch signaling pathway through receptor-ligand binding. In this study, we assayed the expression levels of three Fringe homologs in naive CD4(+)T cells in asthmatic rats. We found that Radical Fringe (Rfng) was highly expressed, whereas both Lunatic Fringe (Lfng) and Manic Fringe (Mfng) were expressed at low levels. Down-regulation of Rfng using siRNA, and overexpression of Lfng or Mfng enhanced Th1 subset lineages and diminished Th2 subset lineages. Notch signaling was more activated in asthmatic naïve CD4(+)T cells than in control cells, and Lfng, but not Mfng or Rfng, partly inhibited Notch signaling in asthmatic naïve CD4(+)T lymphocytes. Lfng overexpression resulted in significantly decreased Th2 cytokine production in asthma, which was the same effect as the GSI (γ-secretase inhibitor) treatment alone, but had an increased effect on Th1 cytokines than GSI treatment. Collectively, these data identify the essential role of Fringe modulating naïve CD4(+)T cells differentiation through Notch signaling. Lfng regulated Th2 cells differentiation via a Notch-dependent manner and Th1 cells differentiation via a Notch-independent manner. Fringe could be a therapeutic strategy for the management and prevention of allergic asthma.

  5. Impact Factors Analysis of the Hot Side Temperature of Thermoelectric Module

    Science.gov (United States)

    Zhang, Xingyu; Tan, Gangfeng; Yang, Bo

    2018-03-01

    The thermoelectric generator (TEG) plays a crucial role in converting the waste energy of exhaust into electricity, which ensures energy saving and increased fuel utilization efficiency. In the urban driving cycle, frequent vehicle operation, like deceleration or acceleration, results in continuous variation of the exhaust temperature. In order to make the operating performance stable, and to weaken the adverse effects of the frequent variation of the exhaust temperature on the lifetime and work efficiency of the electronic components of TEG systems, the output voltage of the thermoelectric (TE) module should stay more stable. This article provides an improved method for the temperature stability of the TE material hot side based on sandwiching material. From the view of the TEG system's average output power and the hot side temperature stability of the TE material, the analyzing factors, including the fluctuation frequency of the exhaust temperature and the physical properties and thickness of the sandwiching material are evaluated, respectively, in the sine and new European driving cycle (NEDC) fluctuation condition of the exhaust temperature. The results show few effects of sandwiching material thickness with excellent thermal conductivity on the average output power. During the 150-170 s of the NEDC test condition, the minimum hot side temperatures with a BeO ceramic thickness of 2 mm and 6 mm are, respectively, 537.19 K and 685.70 K, which shows the obvious effect on the hot side temperature stability of the BeO ceramic thickness in the process of acceleration and deceleration of vehicle driving.

  6. Coupling Temperature Control with Electrochemically Modulated Liquid Chromatography: Fundamental Aspects and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ponton, Lisa M. [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    The primary focus of the doctoral research presented herein has been the integration of temperature control into electrochemically modulated liquid chromatography (EMLC). The combination of temperature control and the tunable characteristics of carbonaceous EMLC stationary phases have been invaluable in deciphering the subtleties of the retention mechanism. The effects of temperature and Eapp on the retention of several naphthalene disulfonates were therefore examined by the van' Hoff relationship. The results indicate that while the retention of both compounds is exothermic at levels comparable to that in many reversed-phase separations, the potential dependence of the separation is actually entropically affected in a manner paralleling that of several classical ion exchange systems. Furthermore, the retention of small inorganic anions at constant temperature also showed evidence of an ion exchange type of mechanism. While a more complete mechanistic description will come from examining the thermodynamics of retention for a wider variety of analytes, this research has laid the groundwork for full exploitation of temperature as a tool to develop retention rules for EMLC. Operating EMLC at elevated temperature and flow conditions has decreased analysis time and has enabled the separation of analytes not normally achievable on a carbon stationary phase. The separation of several aromatic sulfonates was achieved in less than 1 min, a reduction of analysis time by more than a factor of 20 as compared to room temperature separations. The use of higher operating temperatures also facilitated the separation of this mixture with an entirely aqueous mobile phase in less than 2 min. This methodology was extended to the difficult separation of polycyclic aromatic hydrocarbons on PGC. This study also brought to light the mechanistic implications of the unique retention behavior of these analytes through variations of the mobile phase composition.

  7. A Simple Differential Modulation Scheme for Quasi-Orthogonal Space-Time Block Codes with Partial Transmit Diversity

    Directory of Open Access Journals (Sweden)

    Lingyang Song

    2007-04-01

    Full Text Available We report a simple differential modulation scheme for quasi-orthogonal space-time block codes. A new class of quasi-orthogonal coding structures that can provide partial transmit diversity is presented for various numbers of transmit antennas. Differential encoding and decoding can be simplified for differential Alamouti-like codes by grouping the signals in the transmitted matrix and decoupling the detection of data symbols, respectively. The new scheme can achieve constant amplitude of transmitted signals, and avoid signal constellation expansion; in addition it has a linear signal detector with very low complexity. Simulation results show that these partial-diversity codes can provide very useful results at low SNR for current communication systems. Extension to more than four transmit antennas is also considered.

  8. Chromatin- and temperature-dependent modulation of radiation-induced double-strand breaks.

    Science.gov (United States)

    Elmroth, K; Nygren, J; Stenerlöw, B; Hultborn, R

    2003-10-01

    To investigate the influence of chromatin organization and scavenging capacity in relation to irradiation temperature on the induction of double-strand breaks (DSB) in structures derived from human diploid fibroblasts. Agarose plugs with different chromatin structures (intact cells+/-wortmannin, permeabilized cells with condensed chromatin, nucleoids and DNA) were prepared and irradiated with X-rays at 2 or 37 degrees C and lysed using two different lysis protocols (new ice-cold lysis or standard lysis at 37 degrees C). Induction of DSB was determined by constant-field gel electrophoresis. The dose-modifying factor (DMF(temp)) for irradiation at 37 compared with 2 degrees C was 0.92 in intact cells (i.e. more DSB induced at 2 degrees C), but gradually increased to 1.5 in permeabilized cells, 2.2 in nucleoids and 2.6 in naked DNA, suggesting a role of chromatin organization for temperature modulation of DNA damage. In addition, DMF(temp) was influenced by the presence of 0.1 M DMSO or 30 mM glutathione, but not by post-irradiation temperature. The protective effect of low temperature was correlated to the indirect effects of ionizing radiation and was not dependent on post-irradiation temperature. Reasons for a dose modifying factor <1 in intact cells are discussed.

  9. miR-146a modulates autoreactive Th17 cell differentiation and regulates organ-specific autoimmunity.

    Science.gov (United States)

    Li, Bo; Wang, Xi; Choi, In Young; Wang, Yu-Chen; Liu, Siyuan; Pham, Alexander T; Moon, Heesung; Smith, Drake J; Rao, Dinesh S; Boldin, Mark P; Yang, Lili

    2017-10-02

    Autoreactive CD4 T cells that differentiate into pathogenic Th17 cells can trigger autoimmune diseases. Therefore, investigating the regulatory network that modulates Th17 differentiation may yield important therapeutic insights. miR-146a has emerged as a critical modulator of immune reactions, but its role in regulating autoreactive Th17 cells and organ-specific autoimmunity remains largely unknown. Here, we have reported that miR-146a-deficient mice developed more severe experimental autoimmune encephalomyelitis (EAE), an animal model of human multiple sclerosis (MS). We bred miR-146a-deficient mice with 2D2 T cell receptor-Tg mice to generate 2D2 CD4 T cells that are deficient in miR-146a and specific for myelin oligodendrocyte glycoprotein (MOG), an autoantigen in the EAE model. miR-146a-deficient 2D2 T cells induced more severe EAE and were more prone to differentiate into Th17 cells. Microarray analysis revealed enhancements in IL-6- and IL-21-induced Th17 differentiation pathways in these T cells. Further study showed that miR-146a inhibited the production of autocrine IL-6 and IL-21 in 2D2 T cells, which in turn reduced their Th17 differentiation. Thus, our study identifies miR-146a as an important molecular brake that blocks the autocrine IL-6- and IL-21-induced Th17 differentiation pathways in autoreactive CD4 T cells, highlighting its potential as a therapeutic target for treating autoimmune diseases.

  10. The assessment of different models to predict solar module temperature, output power and efficiency for Nis, Serbia

    International Nuclear Information System (INIS)

    Pantic, Lana S.; Pavlović, Tomislav M.; Milosavljević, Dragana D.; Radonjic, Ivana S.; Radovic, Miodrag K.; Sazhko, Galina

    2016-01-01

    Five different models for calculating solar module temperature, output power and efficiency for sunny days with different solar radiation intensities and ambient temperatures are assessed in this paper. Thereafter, modeled values are compared to the experimentally obtained values for the horizontal solar module in Nis, Serbia. The criterion for determining the best model was based on the statistical analysis and the agreement between the calculated and the experimental values. The calculated values of solar module temperature are in good agreement with the experimentally obtained ones, with some variations over and under the measured values. The best agreement between calculated and experimentally obtained values was for summer months with high solar radiation intensity. The nonlinear model for calculating the output power is much better than the linear model and at the same time predicts better the total electrical energy generated by the solar module during the day. The nonlinear model for calculating the solar module efficiency predicts the efficiency higher than the STC (Standard Test Conditions) value of solar module efficiency for all conditions, while the linear model predicts the solar module efficiency very well. This paper provides a simple and efficient guideline to estimate relevant parameters of a monocrystalline silicon solar module under the moderate-continental climate conditions. - Highlights: • Linear model for solar module temperature gives accurate predictions for August. • The nonlinear model better predicts the solar module power than the linear model. • For calculating solar module power for Nis we propose the nonlinear model. • For calculating solar model efficiency for Nis we propose adoption of linear model. • The adopted models can be used for calculations throughout the year.

  11. Serotonin receptors expressed in Drosophila mushroom bodies differentially modulate larval locomotion.

    Directory of Open Access Journals (Sweden)

    Bryon Silva

    Full Text Available Drosophila melanogaster has been successfully used as a simple model to study the cellular and molecular mechanisms underlying behaviors, including the generation of motor programs. Thus, it has been shown that, as in vertebrates, CNS biogenic amines (BA including serotonin (5HT participate in motor control in Drosophila. Several evidence show that BA systems innervate an important association area in the insect brain previously associated to the planning and/or execution of motor programs, the Mushroom Bodies (MB. The main objective of this work is to evaluate the contribution of 5HT and its receptors expressed in MB to motor behavior in fly larva. Locomotion was evaluated using an automated tracking system, in Drosophila larvae (3(rd-instar exposed to drugs that affect the serotonergic neuronal transmission: alpha-methyl-L-dopa, MDMA and fluoxetine. In addition, animals expressing mutations in the 5HT biosynthetic enzymes or in any of the previously identified receptors for this amine (5HT1AR, 5HT1BR, 5HT2R and 5HT7R were evaluated in their locomotion. Finally, RNAi directed to the Drosophila 5HT receptor transcripts were expressed in MB and the effect of this manipulation on motor behavior was assessed. Data obtained in the mutants and in animals exposed to the serotonergic drugs, suggest that 5HT systems are important regulators of motor programs in fly larvae. Studies carried out in animals pan-neuronally expressing the RNAi for each of the serotonergic receptors, support this idea and further suggest that CNS 5HT pathways play a role in motor control. Moreover, animals expressing an RNAi for 5HT1BR, 5HT2R and 5HT7R in MB show increased motor behavior, while no effect is observed when the RNAi for 5HT1AR is expressed in this region. Thus, our data suggest that CNS 5HT systems are involved in motor control, and that 5HT receptors expressed in MB differentially modulate motor programs in fly larvae.

  12. The design of a device for hearer and feeler differentiation, part A. [speech modulated hearing device

    Science.gov (United States)

    Creecy, R.

    1974-01-01

    A speech modulated white noise device is reported that gives the rhythmic characteristics of a speech signal for intelligible reception by deaf persons. The signal is composed of random amplitudes and frequencies as modulated by the speech envelope characteristics of rhythm and stress. Time intensity parameters of speech are conveyed through the vibro-tactile sensation stimuli.

  13. Study on development of differential transformer for use in high-temperature environments

    International Nuclear Information System (INIS)

    Ara, Katsuyuki

    1983-11-01

    Today, in many fields of industrial science and technology, various efforts are being directed to the development of new technology aiming the technological inovation of the coming generation. Under these circumstances, new requirements are called for in instrumentation and measurement; one is the measurement at very severe environments such as high-temperature and high-pressure. Especially in the field of nuclear energy development, various kinds of measurements are needed under a high-temperature, high-pressure and high-radiation environments, and many sensors have been developed for such purposes. One of the most excellent heat-resisting sensors is the sensor based on and utilizing electromagnetic induction. Various electromagnetic sensors have been, therefore, developed and used in in-core environments of nuclear reactors. The author has been engaged in the development of differential transformers for use in in-core environments of Light Water Reactors: this paper compiles the results obtained through the development. (author)

  14. Post-stimulus endogenous and exogenous oscillations are differentially modulated by task difficulty.

    Science.gov (United States)

    Li, Yun; Lou, Bin; Gao, Xiaorong; Sajda, Paul

    2013-01-01

    We investigate the modulation of post-stimulus endogenous and exogenous oscillations when a visual discrimination is made more difficult. We use exogenous frequency tagging to induce steady-state visually evoked potentials (SSVEP) while subjects perform a face-car discrimination task, the difficulty of which varies on a trial-to-trial basis by varying the noise (phase coherence) in the image. We simultaneously analyze amplitude modulations of the SSVEP and endogenous alpha activity as a function of task difficulty. SSVEP modulation can be viewed as a neural marker of attention toward/away from the primary task, while modulation of post-stimulus alpha is closely related to cortical information processing. We find that as the task becomes more difficult, the amplitude of SSVEP decreases significantly, approximately 250-450 ms post-stimulus. Significant changes in endogenous alpha amplitude follow SSVEP modulation, occurring at approximately 400-700 ms post-stimulus and, unlike the SSVEP, the alpha amplitude is increasingly suppressed as the task becomes less difficult. Our results demonstrate simultaneous measurement of endogenous and exogenous oscillations that are modulated by task difficulty, and that the specific timing of these modulations likely reflects underlying information processing flow during perceptual decision-making.

  15. 2D surface temperature measurement of plasma facing components with modulated active pyrometry

    International Nuclear Information System (INIS)

    Amiel, S.; Loarer, T.; Pocheau, C.; Roche, H.; Gauthier, E.; Aumeunier, M.-H.; Courtois, X.; Jouve, M.; Balorin, C.; Moncada, V.; Le Niliot, C.; Rigollet, F.

    2014-01-01

    In nuclear fusion devices, such as Tore Supra, the plasma facing components (PFC) are in carbon. Such components are exposed to very high heat flux and the surface temperature measurement is mandatory for the safety of the device and also for efficient plasma scenario development. Besides this measurement is essential to evaluate these heat fluxes for a better knowledge of the physics of plasma-wall interaction, it is also required to monitor the fatigue of PFCs. Infrared system (IR) is used to manage to measure surface temperature in real time. For carbon PFCs, the emissivity is high and known (ε ∼ 0.8), therefore the contribution of the reflected flux from environment and collected by the IR cameras can be neglected. However, the future tokamaks such as WEST and ITER will be equipped with PFCs in metal (W and Be/W, respectively) with low and variable emissivities (ε ∼ 0.1–0.4). Consequently, the reflected flux will contribute significantly in the collected flux by IR camera. The modulated active pyrometry, using a bicolor camera, proposed in this paper allows a 2D surface temperature measurement independently of the reflected fluxes and the emissivity. Experimental results with Tungsten sample are reported and compared with simultaneous measurement performed with classical pyrometry (monochromatic and bichromatic) with and without reflective flux demonstrating the efficiency of this method for surface temperature measurement independently of the reflected flux and the emissivity

  16. Low temperature synthesis of Mo2C/W2C superlattices via ultra-thin modulated reactants

    International Nuclear Information System (INIS)

    Johnson, C.D.; Johnson, D.C.

    1996-01-01

    The authors report here a synthesis method of preparing carbide superlattices using ultra-thin modulated reactants. Initial investigations into the synthesis of the binary systems, Mo 2 C and W 2 C using ultra-thin modulated reactants revealed that both can be formed at relatively low temperatures (500 and 600 C respectively). DSC and XRD data suggested a two step reaction pathway involving interdiffusion of the initial modulated reactant followed by crystallization of the final product, if the modulation length is on the order of 10 angstrom. This information was used to form Mo 2 C/W 2 C superlattices using the structure of the ultra-thin modulated reactant to control the final superlattice period. Relatively large superlattice modulations were kinetically trapped by having several repeat units of each binary within the total repeat of the initial reactant. DSC and XRD data again are consistent with a two step reaction pathway leading to the formation of carbide superlattices

  17. RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation

    Science.gov (United States)

    Fuchs, Gilad; Shema, Efrat; Vesterman, Rita; Kotler, Eran; Wolchinsky, Zohar; Wilder, Sylvia; Golomb, Lior; Pribluda, Ariel; Zhang, Feng; Haj-Yahya, Mahmood; Feldmesser, Ester; Brik, Ashraf; Yu, Xiaochun; Hanna, Jacob; Aberdam, Daniel; Domany, Eytan; Oren, Moshe

    2012-01-01

    Summary Embryonic stem cells (ESC) maintain high genomic plasticity, essential for their capacity to enter diverse differentiation pathways. Post-transcriptional modifications of chromatin histones play a pivotal role in maintaining this plasticity. We now report that one such modification, monoubiquitylation of histone H2B on lysine 120 (H2Bub1), catalyzed by the E3 ligase RNF20, increases during ESC differentiation and is required for efficient execution of this process. This increase is particularly important for the transcriptional induction of relatively long genes during ESC differentiation. Furthermore, we identify the deubiquitinase USP44 as a negative regulator of H2B ubiquitylation, whose downregulation during ESC differentiation contributes to the increase in H2Bub1. Our findings suggest that optimal ESC differentiation requires dynamic changes in H2B ubiquitylation patterns, which must occur in a timely and well-coordinated manner. PMID:22681888

  18. Suppression of Brillouin scattering in fibre-optical parametric amplifier by applying temperature control and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2009-01-01

    An increased gain in a fibre-optical parametric amplifier through suppression of stimulated Brillouin scattering is demonstrated by applying a temperature distribution along the fibre for a fixed phase modulation of the pump. The temperature distribution slightly impacts the gain spectrum....

  19. A real time measurement of junction temperature variation in high power IGBT modules for wind power converter application

    DEFF Research Database (Denmark)

    Ghimire, Pramod; Pedersen, Kristian Bonderup; de Vega, Angel Ruiz

    2014-01-01

    This paper presents a real time measurement of on-state forward voltage and estimating the junction temperature for a high power IGBT module during a power converter operation. The power converter is realized as it can be used for a wind turbine system. The peak of the junction temperature is dec...

  20. Room temperature negative differential resistance in terahertz quantum cascade laser structures

    Energy Technology Data Exchange (ETDEWEB)

    Albo, Asaf, E-mail: asafalbo@gmail.com; Hu, Qing [Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Reno, John L. [Center for Integrated Nanotechnologies, Sandia National Laboratories, MS 1303, Albuquerque, New Mexico 87185-1303 (United States)

    2016-08-22

    The mechanisms that limit the temperature performance of GaAs/Al{sub 0.15}GaAs-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated LO-phonon scattering and leakage of charge carriers into the continuum. Consequently, the combination of highly diagonal optical transition and higher barriers should significantly reduce the adverse effects of both mechanisms and lead to improved temperature performance. Here, we study the temperature performance of highly diagonal THz-QCLs with high barriers. Our analysis uncovers an additional leakage channel which is the thermal excitation of carriers into bounded higher energy levels, rather than the escape into the continuum. Based on this understanding, we have designed a structure with an increased intersubband spacing between the upper lasing level and excited states in a highly diagonal THz-QCL, which exhibits negative differential resistance even at room temperature. This result is a strong evidence for the effective suppression of the aforementioned leakage channel.

  1. Characterization and evaluation of 5-fluorouracil-loaded solid lipid nanoparticles prepared via a temperature-modulated solidification technique.

    Science.gov (United States)

    Patel, Meghavi N; Lakkadwala, Sushant; Majrad, Mohamed S; Injeti, Elisha R; Gollmer, Steven M; Shah, Zahoor A; Boddu, Sai Hanuman Sagar; Nesamony, Jerry

    2014-12-01

    The aim of this research was to advance solid lipid nanoparticle (SLN) preparation methodology by preparing glyceryl monostearate (GMS) nanoparticles using a temperature-modulated solidification process. The technique was reproducible and prepared nanoparticles without the need of organic solvents. An anticancer agent, 5-fluorouracil (5-FU), was incorporated in the SLNs. The SLNs were characterized by particle size analysis, zeta potential analysis, differential scanning calorimetry (DSC), infrared spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), drug encapsulation efficiency, in vitro drug release, and in vitro cell viability studies. Particle size of the SLN dispersion was below 100 nm, and that of redispersed lyophilizates was ~500 nm. DSC and infrared spectroscopy suggested that the degree of crystallinity did not decrease appreciably when compared to GMS. TEM and AFM images showed well-defined spherical to oval particles. The drug encapsulation efficiency was found to be approximately 46%. In vitro drug release studies showed that 80% of the encapsulated drug was released within 1 h. In vitro cell cultures were biocompatible with blank SLNs but demonstrated concentration-dependent changes in cell viability to 5-FU-loaded SLNs. The 5-FU-loaded SLNs can potentially be utilized in an anticancer drug delivery system.

  2. High Temperature Heat Exchanger Design and Fabrication for Systems with Large Pressure Differentials

    Energy Technology Data Exchange (ETDEWEB)

    Chordia, Lalit [Thar Energy, LLC, Pittsburgh, PA (United States); Portnoff, Marc A. [Thar Energy, LLC, Pittsburgh, PA (United States); Green, Ed [Thar Energy, LLC, Pittsburgh, PA (United States)

    2017-03-31

    The project’s main purpose was to design, build and test a compact heat exchanger for supercritical carbon dioxide (sCO2) power cycle recuperators. The compact recuperator is required to operate at high temperature and high pressure differentials, 169 bar (~2,500 psi), between streams of sCO2. Additional project tasks included building a hot air-to-sCO2 Heater heat exchanger (HX) and design, build and operate a test loop to characterize the recuperator and heater heat exchangers. A novel counter-current microtube recuperator was built to meet the high temperature high differential pressure criteria and tested. The compact HX design also incorporated a number of features that optimize material use, improved reliability and reduced cost. The air-to-sCO2 Heater HX utilized a cross flow, counter-current, micro-tubular design. This compact HX design was incorporated into the test loop and exceeded design expectations. The test loop design to characterize the prototype Brayton power cycle HXs was assembled, commissioned and operated during the program. Both the prototype recuperator and Heater HXs were characterized. Measured results for the recuperator confirmed the predictions of the heat transfer models developed during the project. Heater HX data analysis is ongoing.

  3. Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection.

    Science.gov (United States)

    Tomosada, Yohsuke; Chiba, Eriko; Zelaya, Hortensia; Takahashi, Takuya; Tsukida, Kohichiro; Kitazawa, Haruki; Alvarez, Susana; Villena, Julio

    2013-08-15

    Some studies have shown that nasally administered immunobiotics had the potential to improve the outcome of influenza virus infection. However, the capacity of immunobiotics to improve protection against respiratory syncytial virus (RSV) infection was not investigated before. The aims of this study were: a) to evaluate whether the nasal administration of Lactobacillus rhamnosus CRL1505 (Lr05) and L. rhamnosus CRL1506 (Lr06) are able to improve respiratory antiviral defenses and beneficially modulate the immune response triggered by TLR3/RIG-I activation; b) to investigate whether viability of Lr05 or Lr06 is indispensable to modulate respiratory immunity and; c) to evaluate the capacity of Lr05 and Lr06 to improve the resistance of infant mice against RSV infection. Nasally administered Lr05 and Lr06 differentially modulated the TLR3/RIG-I-triggered antiviral respiratory immune response. Lr06 administration significantly modulated the production of IFN-α, IFN-β and IL-6 in the response to poly(I:C) challenge, while nasal priming with Lr05 was more effective to improve levels of IFN-γ and IL-10. Both viable Lr05 and Lr06 strains increased the resistance of infant mice to RSV infection while only heat-killed Lr05 showed a protective effect similar to those observed with viable strains. The present work demonstrated that nasal administration of immunobiotics is able to beneficially modulate the immune response triggered by TLR3/RIG-I activation in the respiratory tract and to increase the resistance of mice to the challenge with RSV. Comparative studies using two Lactobacillus rhamnosus strains of the same origin and with similar technological properties showed that each strain has an specific immunoregulatory effect in the respiratory tract and that they differentially modulate the immune response after poly(I:C) or RSV challenges, conferring different degree of protection and using distinct immune mechanisms. We also demonstrated in this work that it is possible

  4. An investigation into the effects of residual water on the glass transition temperature of polylactide microspheres using modulated temperature DSC.

    Science.gov (United States)

    Passerini, N; Craig, D Q

    2001-05-18

    The objective of the study was to ascertain residual water levels in polylactide and polylactide-co-glycolide microspheres prepared using the solvent evaporation technique and to investigate the effects of that water on the glass transitional behaviour of the microspheres. Microspheres were prepared from polylactic acid (PLA) and polylactide-co-glycolide (PLGA) 50:50 and 75:25 using a standard solvent evaporation technique. The glass transition was measured as a function of drying conditions using modulated temperature DSC. The microspheres were found to contain very low levels of dichloromethane, while residual water levels of up to circa 3% w/w were noted after freeze or oven drying, these levels being higher for microspheres containing higher glycolic acid levels. The residual water was found to lower the T(g) following the Gordon-Taylor relationship. The data indicate that the microparticles may retain significant water levels following standard preparation and drying protocols and that this drying may markedly lower the T(g) of the spheres.

  5. Differential saturation study of radial and angular modulation mechanisms of electron spin--lattice relaxation for trapped hydrogen atoms in sulfuric acid glasses. [X radiation

    Energy Technology Data Exchange (ETDEWEB)

    Plonka, A; Kevan, L

    1976-11-01

    A differential ESR saturation study of allowed transitions and forbidden proton spin-flip satellite transitions for trapped hydrogen atoms in sulfuric acid glasses indicates that angular modulation dominates the spin-lattice relaxation mechanisms and suggests that the modulation arises from motion of the H atom.

  6. Hypoxia modulates the differentiation potential of stem cells of the apical papilla.

    Science.gov (United States)

    Vanacker, Julie; Viswanath, Aiswarya; De Berdt, Pauline; Everard, Amandine; Cani, Patrice D; Bouzin, Caroline; Feron, Olivier; Diogenes, Anibal; Leprince, Julian G; des Rieux, Anne

    2014-09-01

    Stem cells from the apical papilla (SCAP) are a population of mesenchymal stem cells likely involved in regenerative endodontic procedures and have potential use as therapeutic agents in other tissues. In these situations, SCAP are exposed to hypoxic conditions either within a root canal devoid of an adequate blood supply or in a scaffold material immediately after implantation. However, the effect of hypoxia on SCAP proliferation and differentiation is largely unknown. Therefore, the objective of this study was to evaluate the effect of hypoxia on the fate of SCAP. SCAP were cultured under normoxia (21% O2) or hypoxia (1% O2) in basal or differentiation media. Cellular proliferation, gene expression, differentiation, and protein secretion were analyzed by live imaging, quantitative reverse-transcriptase polymerase chain reaction, cellular staining, and enzyme-linked immunosorbent assay, respectively. Hypoxia had no effect on SCAP proliferation, but it evoked the up-regulation of genes specific for osteogenic differentiation (runt-related transcription factor 2, alkaline phosphatase, and transforming growth factor-β1), neuronal differentiation ( 2'-3'-cyclic nucleotide 3' phosphodiesterase, SNAIL, neuronspecific enolase, glial cell-derived neurotrophic factor and neurotrophin 3), and angiogenesis (vascular endothelial growth factor A and B). Hypoxia also increased the sustained production of VEGFa by SCAP. Moreover, hypoxia augmented the neuronal differentiation of SCAP in the presence of differentiation exogenous factors as detected by the up-regulation of NSE, VEGFB, and GDNF and the expression of neuronal markers (PanF and NeuN). This study shows that hypoxia induces spontaneous differentiation of SCAP into osteogenic and neurogenic lineages while maintaining the release of the proangiogenic factor VEGFa. This highlights the potential of SCAP to promote pulp-dentin regeneration. Moreover, SCAP may represent potential therapeutic agents for neurodegenerative

  7. Mechanisms of masked evaluative priming: task sets modulate behavioral and electrophysiological priming for picture and words differentially.

    Science.gov (United States)

    Kiefer, Markus; Liegel, Nathalie; Zovko, Monika; Wentura, Dirk

    2017-04-01

    Research with the evaluative priming paradigm has shown that affective evaluation processes reliably influence cognition and behavior, even when triggered outside awareness. However, the precise mechanisms underlying such subliminal evaluative priming effects, response activation vs semantic processing, are matter of a debate. In this study, we determined the relative contribution of semantic processing and response activation to masked evaluative priming with pictures and words. To this end, we investigated the modulation of masked pictorial vs verbal priming by previously activated perceptual vs semantic task sets and assessed the electrophysiological correlates of priming using event-related potential (ERP) recordings. Behavioral and electrophysiological effects showed a differential modulation of pictorial and verbal subliminal priming by previously activated task sets: Pictorial priming was only observed during the perceptual but not during the semantic task set. Verbal priming, in contrast, was found when either task set was activated. Furthermore, only verbal priming was associated with a modulation of the N400 ERP component, an index of semantic processing, whereas a priming-related modulation of earlier ERPs, indexing visuo-motor S-R activation, was found for both picture and words. The results thus demonstrate that different neuro-cognitive processes contribute to unconscious evaluative priming depending on the stimulus format. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Temperature Modulation with Specified Detection Point on Metal Oxide Semiconductor Gas Sensors for E-Nose Application

    Directory of Open Access Journals (Sweden)

    Arief SUDARMAJI

    2015-03-01

    Full Text Available Temperature modulation technique, some called dynamic measurement mode, on Metal-Oxide Semiconductor (MOS/MOX gas sensor has been widely observed and employed in many fields. We present its development, a Specified Detection Point (SDP on modulated sensing element of MOS sensor is applied which associated to its temperature modulation, temperature modulation-SDP so-named. We configured the rectangular modulation signal for MOS gas sensors (TGSs and FISs using PSOC CY8C28445-24PVXI (Programmable System on Chip which also functioned as acquisition unit and interface to a computer. Initial responses and selectivity evaluations were performed using statistical tool and Principal Component Analysis (PCA to differ sample gases (Toluene, Ethanol and Ammonia on dynamic chamber measurement under various frequencies (0.25 Hz, 1 Hz, 4 Hz and duty-cycles (25 %, 50 %, 75 %. We found that at lower frequency the response waveform of the sensors becomes more sloping and distinct, and selected modulations successfully increased the selectivity either on singular or array sensors rather than static temperature measurement.

  9. Glass transition in thin supported polystyrene films probed by temperature-modulated ellipsometry in vacuum.

    Science.gov (United States)

    Efremov, Mikhail Yu; Kiyanova, Anna V; Last, Julie; Soofi, Shauheen S; Thode, Christopher; Nealey, Paul F

    2012-08-01

    Glass transition in thin (1-200 nm thick) spin-cast polystyrene films on silicon surfaces is probed by ellipsometry in a controlled vacuum environment. A temperature-modulated modification of the method is used alongside a traditional linear temperature scan. A clear glass transition is detected in films with thicknesses as low as 1-2 nm. The glass transition temperature (T(g)) shows no substantial dependence on thickness for coatings greater than 20 nm. Thinner films demonstrate moderate T(g) depression achieving 18 K for thicknesses 4-7 nm. Less than 4 nm thick samples are excluded from the T(g) comparison due to significant thickness nonuniformity (surface roughness). The transition in 10-20 nm thick films demonstrates excessive broadening. For some samples, the broadened transition is clearly resolved into two separate transitions. The thickness dependence of the glass transition can be well described by a simple 2-layer model. It is also shown that T(g) depression in 5 nm thick films is not sensitive to a wide range of experimental factors including molecular weight characteristics of the polymer, specifications of solvent used for spin casting, substrate composition, and pretreatment of the substrate surface.

  10. Tunable Synthesis of SiC/SiO2 Heterojunctions via Temperature Modulation

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-05-01

    Full Text Available A large-scale production of necklace-like SiC/SiO2 heterojunctions was obtained by a molten salt-mediated chemical vapor reaction technique without a metallic catalyst or flowing gas. The effect of the firing temperature on the evolution of the phase composition, microstructure, and morphology of the SiC/SiO2 heterojunctions was studied. The necklace-like SiC/SiO2 nanochains, several centimeters in length, were composed of SiC/SiO2 core-shell chains and amorphous SiO2 beans. The morphologies of the as-prepared products could be tuned by adjusting the firing temperature. In fact, the diameter of the SiO2 beans decreased, whereas the diameter of the SiC fibers and the thickness of the SiO2 shell increased as the temperature increased. The growth mechanism of the necklace-like structure was controlled by the vapor-solid growth procedure and the modulation procedure via a molten salt-mediated chemical vapor reaction process.

  11. Modulating Function-Based Method for Parameter and Source Estimation of Partial Differential Equations

    KAUST Repository

    Asiri, Sharefa M.

    2017-01-01

    Partial Differential Equations (PDEs) are commonly used to model complex systems that arise for example in biology, engineering, chemistry, and elsewhere. The parameters (or coefficients) and the source of PDE models are often unknown

  12. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry.

    Science.gov (United States)

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  13. High SNR BER comparison of coherent and differentially coherent modulation schemes in lognormal fading channels

    KAUST Repository

    Song, Xuegui; Cheng, Julian; Alouini, Mohamed-Slim

    2014-01-01

    Using an auxiliary random variable technique, we prove that binary differential phase-shift keying and binary phase-shift keying have the same asymptotic bit-error rate performance in lognormal fading channels. We also show that differential quaternary phase-shift keying is exactly 2.32 dB worse than quaternary phase-shift keying over the lognormal fading channels in high signal-to-noise ratio regimes.

  14. Modulation of Mitochondrial DNA Copy Number to Induce Hepatocytic Differentiation of Human Amniotic Epithelial Cells.

    Science.gov (United States)

    Vaghjiani, Vijesh; Cain, Jason E; Lee, William; Vaithilingam, Vijayaganapathy; Tuch, Bernard E; St John, Justin C

    2017-10-15

    Mitochondrial deoxyribonucleic acid (mtDNA) copy number is tightly regulated during pluripotency and differentiation. There is increased demand of cellular adenosine triphosphate (ATP) during differentiation for energy-intensive cell types such as hepatocytes and neurons to meet the cell's functional requirements. During hepatocyte differentiation, mtDNA copy number should be synchronously increased to generate sufficient ATP through oxidative phosphorylation. Unlike bone marrow mesenchymal cells, mtDNA copy number failed to increase by 28 days of differentiation of human amniotic epithelial cells (hAEC) into hepatocyte-like cells (HLC) despite their expression of some end-stage hepatic markers. This was due to higher levels of DNA methylation at exon 2 of POLGA, the mtDNA-specific replication factor. Treatment with a DNA demethylation agent, 5-azacytidine, resulted in increased mtDNA copy number, reduced DNA methylation at exon 2 of POLGA, and reduced hepatic gene expression. Depletion of mtDNA followed by subsequent differentiation did not increase mtDNA copy number, but reduced DNA methylation at exon 2 of POLGA and increased expression of hepatic and pluripotency genes. We encapsulated hAEC in barium alginate microcapsules and subsequently differentiated them into HLC. Encapsulation resulted in no net increase of mtDNA copy number but a significant reduction in DNA methylation of POLGA. RNAseq analysis showed that differentiated HLC express hepatocyte-specific genes but also increased expression of inflammatory interferon genes. Differentiation in encapsulated cells showed suppression of inflammatory genes as well as increased expression of genes associated with hepatocyte function pathways and networks. This study demonstrates that an increase in classical hepatic gene expression can be achieved in HLC through encapsulation, although they fail to effectively regulate mtDNA copy number.

  15. High SNR BER comparison of coherent and differentially coherent modulation schemes in lognormal fading channels

    KAUST Repository

    Song, Xuegui

    2014-09-01

    Using an auxiliary random variable technique, we prove that binary differential phase-shift keying and binary phase-shift keying have the same asymptotic bit-error rate performance in lognormal fading channels. We also show that differential quaternary phase-shift keying is exactly 2.32 dB worse than quaternary phase-shift keying over the lognormal fading channels in high signal-to-noise ratio regimes.

  16. Myc Decoy Oligodeoxynucleotide Inhibits Growth and Modulates Differentiation of Mouse Embryonic Stem Cells as a Model of Cancer Stem Cells.

    Science.gov (United States)

    Johari, Behrooz; Ebrahimi-Rad, Mina; Maghsood, Faezeh; Lotfinia, Majid; Saltanatpouri, Zohreh; Teimoori-Toolabi, Ladan; Sharifzadeh, Zahra; Karimipoor, Morteza; Kadivar, Mehdi

    2017-01-01

    Myc (c-Myc) alone activates the embryonic stem cell-like transcriptional module in both normal and transformed cells. Its dysregulation might lead to increased cancer stem cells (CSCs) population in some tumor cells. In order to investigate the potential of Myc decoy oligodeoxynucleotides for differentiation therapy, mouse embryonic stem cells (mESCs) were used in this study as a model of CSCs. To our best of knowledge this is the first report outlining the application of Myc decoy in transcription factor decoy "TFD" strategy for inducing differentiation in mESCs. A 20-mer double-stranded Myc transcription factor decoy and scrambled oligodeoxynucleotides (ODNs) were designed, analyzed by electrophoretic mobility shift (EMSA) assay and transfected into the mESCs under 2 inhibitors (2i) condition. Further investigations were carried out using fluorescence and confocal microscopy, cell proliferation and apoptosis analysis, alkaline phosphatase and embryoid body formation assay, real-time PCR and western blotting. EMSA data showed that Myc decoy ODNs bound specifically to c-Myc protein. They were found to be localized in both cytoplasm and nucleus of mESCs. Our results revealed the potential capability of Myc decoy ODNs to decrease cell viability by (16.1±2%), to increase the number of cells arrested in G0/G1 phases and apoptosis by (14.2±3.1%) and (12.1±3.2%), respectively regarding the controls. Myc decoy could also modulate differentiation in mESCs despite the presence of 2i/LIF in our medium the presence of 2i/LIF in our medium. The optimized Myc decoy ODNs approach might be considered as a promising alternative strategy for differentiation therapy investigations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. γ-Secretase modulators reduce endogenous amyloid β42 levels in human neural progenitor cells without altering neuronal differentiation

    Science.gov (United States)

    D’Avanzo, Carla; Sliwinski, Christopher; Wagner, Steven L.; Tanzi, Rudolph E.; Kim, Doo Yeon; Kovacs, Dora M.

    2015-01-01

    Soluble γ-secretase modulators (SGSMs) selectively decrease toxic amyloid β (Aβ) peptides (Aβ42). However, their effect on the physiologic functions of γ-secretase has not been tested in human model systems. γ-Secretase regulates fate determination of neural progenitor cells. Thus, we studied the impact of SGSMs on the neuronal differentiation of ReNcell VM (ReN) human neural progenitor cells (hNPCs). Quantitative PCR analysis showed that treatment of neurosphere-like ReN cell aggregate cultures with γ-secretase inhibitors (GSIs), but not SGSMs, induced a 2- to 4-fold increase in the expression of the neuronal markers Tuj1 and doublecortin. GSI treatment also induced neuronal marker protein expression, as shown by Western blot analysis. In the same conditions, SGSM treatment selectively reduced endogenous Aβ42 levels by ∼80%. Mechanistically, we found that Notch target gene expressions were selectively inhibited by a GSI, not by SGSM treatment. We can assert, for the first time, that SGSMs do not affect the neuronal differentiation of hNPCs while selectively decreasing endogenous Aβ42 levels in the same conditions. Our results suggest that our hNPC differentiation system can serve as a useful model to test the impact of GSIs and SGSMs on both endogenous Aβ levels and γ-secretase physiologic functions including endogenous Notch signaling.—D’Avanzo, C., Sliwinski, C., Wagner, S. L., Tanzi, R. E., Kim, D. Y., Kovacs, D. M. γ-Secretase modulators reduce endogenous amyloid β42 levels in human neural progenitor cells without altering neuronal differentiation. PMID:25903103

  18. Msx1-modulated muscle satellite cells retain a primitive state and exhibit an enhanced capacity for osteogenic differentiation

    International Nuclear Information System (INIS)

    Ding, Ke; Liu, Wen-ying; Zeng, Qiang; Hou, Fang; Xu, Jian-zhong; Yang, Zhong

    2017-01-01

    Multipotent muscle satellite cells (MuSCs) have been identified as potential seed cells for bone tissue engineering. However, MuSCs exhibit a rapid loss of stemness after in vitro culturing, thereby compromising their therapeutic efficiency. Muscle segment homeobox gene 1 (msx1) has been found to induce the dedifferentiation of committed progenitor cells, as well as terminally differentiated myotubes. In this study, a Tet-off retroviral gene delivery system was used to modulate msx1 expression. After ten passages, MuSCs that did not express msx-1 (e.g., the non-msx1 group) were compared with MuSCs with induced msx-1 expression (e.g., the msx1 group). The latter group exhibited a more juvenile morphology, it contained a significantly lower percentage of senescent cells characterized by positive β-galactosidase staining, and it exhibited increased proliferation and a higher proliferation index. Immunocytochemical stainings further detected a more primitive gene expression profile for the msx1 group, while osteogenic differentiation assays and ectopic bone formation assays demonstrated an improved capacity for the msx1 group to undergo osteogenic differentiation. These results suggest that transient expression of msx1 in MuSCs can retain a primitive state, thereby enhancing their capacity for osteogenic differentiation and restoring the potential for MuSCs to serve as seed cells for bone tissue engineering.

  19. Msx1-modulated muscle satellite cells retain a primitive state and exhibit an enhanced capacity for osteogenic differentiation.

    Science.gov (United States)

    Ding, Ke; Liu, Wen-Ying; Zeng, Qiang; Hou, Fang; Xu, Jian-Zhong; Yang, Zhong

    2017-03-01

    Multipotent muscle satellite cells (MuSCs) have been identified as potential seed cells for bone tissue engineering. However, MuSCs exhibit a rapid loss of stemness after in vitro culturing, thereby compromising their therapeutic efficiency. Muscle segment homeobox gene 1 (msx1) has been found to induce the dedifferentiation of committed progenitor cells, as well as terminally differentiated myotubes. In this study, a Tet-off retroviral gene delivery system was used to modulate msx1 expression. After ten passages, MuSCs that did not express msx-1 (e.g., the non-msx1 group) were compared with MuSCs with induced msx-1 expression (e.g., the msx1 group). The latter group exhibited a more juvenile morphology, it contained a significantly lower percentage of senescent cells characterized by positive β-galactosidase staining, and it exhibited increased proliferation and a higher proliferation index. Immunocytochemical stainings further detected a more primitive gene expression profile for the msx1 group, while osteogenic differentiation assays and ectopic bone formation assays demonstrated an improved capacity for the msx1 group to undergo osteogenic differentiation. These results suggest that transient expression of msx1 in MuSCs can retain a primitive state, thereby enhancing their capacity for osteogenic differentiation and restoring the potential for MuSCs to serve as seed cells for bone tissue engineering. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Msx1-modulated muscle satellite cells retain a primitive state and exhibit an enhanced capacity for osteogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ke, E-mail: dingke@med.uestc.edu.cn [Department of Pediatric Surgery, School of medicine, University of Electronic Science and Technology of China, Chengdu 610072 (China); Sichuan Academy of Medical Sciences & Sichuan Provincial People' s Hospital, Chengdu 610072 (China); Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Liu, Wen-ying; Zeng, Qiang; Hou, Fang [Department of Pediatric Surgery, School of medicine, University of Electronic Science and Technology of China, Chengdu 610072 (China); Sichuan Academy of Medical Sciences & Sichuan Provincial People' s Hospital, Chengdu 610072 (China); Xu, Jian-zhong, E-mail: xjzspine@163.com [Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Yang, Zhong, E-mail: zyang1999@163.com [Department of Clinical Hematology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China)

    2017-03-01

    Multipotent muscle satellite cells (MuSCs) have been identified as potential seed cells for bone tissue engineering. However, MuSCs exhibit a rapid loss of stemness after in vitro culturing, thereby compromising their therapeutic efficiency. Muscle segment homeobox gene 1 (msx1) has been found to induce the dedifferentiation of committed progenitor cells, as well as terminally differentiated myotubes. In this study, a Tet-off retroviral gene delivery system was used to modulate msx1 expression. After ten passages, MuSCs that did not express msx-1 (e.g., the non-msx1 group) were compared with MuSCs with induced msx-1 expression (e.g., the msx1 group). The latter group exhibited a more juvenile morphology, it contained a significantly lower percentage of senescent cells characterized by positive β-galactosidase staining, and it exhibited increased proliferation and a higher proliferation index. Immunocytochemical stainings further detected a more primitive gene expression profile for the msx1 group, while osteogenic differentiation assays and ectopic bone formation assays demonstrated an improved capacity for the msx1 group to undergo osteogenic differentiation. These results suggest that transient expression of msx1 in MuSCs can retain a primitive state, thereby enhancing their capacity for osteogenic differentiation and restoring the potential for MuSCs to serve as seed cells for bone tissue engineering.

  1. High temperature reactor module power plant. Plant and safety concept June 1986 - 38.07126.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-06-15

    The modular HTR power plant is a universally applicable energy source for the co-generation of electricity, process steam or district heating. The modular HTR concept is characterized by the fact that standardized reactor units with power ratings of 200 MJ/s (so-called modules) can be combined to form power plants with a higher power rating. Consequently the special safety features of small high-temperature reactors (HTR) are also available at higher power plant ratings. The safety features, the technical design and the mode of operation are briefly described in the following, taking a power plant with two HTR-Modules for the co-generation of electricity and process steam as an example. Due to its universal applicability and excellent safety features, the modular HTR power plant is suitable for erection on any site, but particularly on sites near other industrial plants or in densely populated areas. The co-generation of electricity and process steam or district heating with a modular HTR power plant as described here is primarily tailored to the requirements of industrial and communal consumers. The site for such a plant is a typical industrial one. The anticipated features of such sites were taken into consideration in the design of the modular HTR power plant.

  2. High temperature reactor module power plant. Plant and safety concept June 1986 - 38.07126.2

    International Nuclear Information System (INIS)

    1986-06-01

    The modular HTR power plant is a universally applicable energy source for the co-generation of electricity, process steam or district heating. The modular HTR concept is characterized by the fact that standardized reactor units with power ratings of 200 MJ/s (so-called modules) can be combined to form power plants with a higher power rating. Consequently the special safety features of small high-temperature reactors (HTR) are also available at higher power plant ratings. The safety features, the technical design and the mode of operation are briefly described in the following, taking a power plant with two HTR-Modules for the co-generation of electricity and process steam as an example. Due to its universal applicability and excellent safety features, the modular HTR power plant is suitable for erection on any site, but particularly on sites near other industrial plants or in densely populated areas. The co-generation of electricity and process steam or district heating with a modular HTR power plant as described here is primarily tailored to the requirements of industrial and communal consumers. The site for such a plant is a typical industrial one. The anticipated features of such sites were taken into consideration in the design of the modular HTR power plant

  3. Response to a temperature modulation as a signature of chemical mechanisms.

    Science.gov (United States)

    Berthoumieux, H; Jullien, L; Lemarchand, A

    2007-11-01

    We consider n reactive species involved in unimolecular reactions and submitted to a temperature modulation of small amplitude. We determine the conditions on the rate constants for which the deviations from the equilibrium concentrations of each species can be optimized and find the analytical expression of the frequency associated with an extremum of concentration shift in the case n=3. We prove that the frequency dependence of the displacement of equilibrium gives access to the number n of species involved in the mechanism. We apply the results to the case of the transformation of a reactant into a product through a possible reactive intermediate and find the order relation obeyed by the activation energies of the different barriers. The results typically apply to enzymatic catalysis with kinetics of Michaelis-Menten type.

  4. Towards a 20 kA high temperature superconductor current lead module using REBCO tapes

    Science.gov (United States)

    Heller, R.; Bagrets, N.; Fietz, W. H.; Gröner, F.; Kienzler, A.; Lange, C.; Wolf, M. J.

    2018-01-01

    Most of the large fusion devices presently under construction or in operation consisting of superconducting magnets like EAST, Wendelstein 7-X (W7-X), JT-60SA, and ITER, use high temperature superconductor (HTS) current leads (CL) to reduce the cryogenic load and operational cost. In all cases, the 1st generation HTS material Bi-2223 is used which is embedded in a low-conductivity matrix of AgAu. In the meantime, industry worldwide concentrates on the production of the 2nd generation HTS REBCO material because of the better field performance in particular at higher temperature. As the new material can only be produced in a multilayer thin-film structure rather than as a multi-filamentary tape, the technology developed for Bi-2223-based current leads cannot be transferred directly to REBCO. Therefore, several laboratories are presently investigating the design of high current HTS current leads made of REBCO. Karlsruhe Institute of Technology is developing a 20 kA HTS current lead using brass-stabilized REBCO tapes—as a further development to the Bi-2223 design used in the JT-60SA current leads. The same copper heat exchanger module as in the 20 kA JT-60SA current lead will be used for simplicity, which will allow a comparison of the newly developed REBCO CL with the earlier produced and investigated CL for JT-60SA. The present paper discusses the design and accompanying test of single tape and stack REBCO mock-ups. Finally, the fabrication of the HTS module using REBCO stacks is described.

  5. Reprint of “Heat capacity and transition behavior of sucrose by standard, fast scanning and temperature-modulated calorimetry”

    Energy Technology Data Exchange (ETDEWEB)

    Magoń, A. [Department of Chemistry, University of Technology, 35-959 Rzeszów (Poland); Wurm, A.; Schick, C. [Department of Physics, University of Rostock, 18057 Rostock (Germany); Pangloli, Ph.; Zivanovic, S. [Department of Food Science and Technology, University of Tennessee, Knoxville, TN 37996 (United States); Skotnicki, M. [Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań (Poland); Pyda, M., E-mail: mpyda@utk.edu [Department of Chemistry, University of Technology, 35-959 Rzeszów (Poland)

    2015-03-10

    Highlights: • Experimental, apparent heat capacity of sucrose was investigated by advanced thermal analysis. • Vibrational heat capacity of solid state was linked with a low temperature experimental heat capacity of sucrose. • Equilibrium melting parameters of sucrose were determined. • Decomposition, superheating of crystalline sucrose during melting process were presented. • TGA, DSC, TMDSC, and FSC are useful tools for characterization of sucrose. - Abstract: The heat capacity (C{sub p}) of crystalline and amorphous sucrose was determined using standard and quasi-isothermal temperature modulated differential scanning calorimetry. The results were combined with the published data determined by adiabatic calorimetry, and the C{sub p} values are now reported for the wide 5–600 K range. The experimental C{sub p} of solid sucrose at 5–300 K was used to calculate the vibrational, solid C{sub p} based on the vibrational molecular motions. The calculated solid and liquid C{sub p} together with the transition parameters for equilibrium conditions were used as references for detailed quantitative thermal analysis of crystalline and amorphous sucrose. Melting temperature (T{sub m}) of the crystalline sucrose was identified in a broad 442–465 K range with a heat of fusion of 40–46 J/mol determined at heating rates 0.5–20 K/min, respectively. The equilibrium T{sub m} and heat of fusion of crystalline sucrose were estimated at zero heating rate as T{sup o}{sub m} = 424.4 K and ΔH{sup o}{sub f} = 32 kJ/mol, respectively. The glass transition temperature (T{sub g}) of amorphous sucrose was at 331 K with a change in C{sub p} of 267 J/(mol K) as it was estimated from reversing heat capacity by quasi-isothermal TMDSC on cooling. At heating rates less than 30 K/min, thermal decomposition occurred during melting, while at extreme rate of 1000 K/s, degradation was not observed. Data obtained by fast scanning calorimetry (FSC) at 1000 K/s, showed that T{sub m} was

  6. Measuring the temperature dependent thermal diffusivity of geomaterials using high-speed differential scanning calorimetry

    Science.gov (United States)

    von Aulock, Felix W.; Wadsworth, Fabian B.; Vasseur, Jeremie; Lavallée, Yan

    2016-04-01

    Heat diffusion in the Earth's crust is critical to fundamental geological processes, such as the cooling of magma, heat dissipation during and following transient heating events (e.g. during frictional heating along faults), and to the timescales of contact metamorphosis. The complex composition and multiphase nature of geomaterials prohibits the accurate modeling of thermal diffusivities and measurements over a range of temperatures are sparse due to the specialized nature of the equipment and lack of instrument availability. We present a novel method to measure the thermal diffusivity of geomaterials such as minerals and rocks with high precision and accuracy using a commercially available differential scanning calorimeter (DSC). A DSC 404 F1 Pegasus® equipped with a Netzsch high-speed furnace was used to apply a step-heating program to corundum single crystal standards of varying thicknesses. The standards were cylindrical discs of 0.25-1 mm thickness with 5.2-6 mm diameter. Heating between each 50 °C temperature interval was conducted at a rate of 100 °C/min over the temperature range 150-1050 °C. Such large heating rates induces temperature disequilibrium in the samples used. However, isothermal segments of 2 minutes were used during which the temperature variably equilibrated with the furnace between the heating segments and thus the directly-measured heat-flow relaxed to a constant value before the next heating step was applied. A finite-difference 2D conductive heat transfer model was used in cylindrical geometry for which the measured furnace temperature was directly applied as the boundary condition on the sample-cylinder surfaces. The model temperature was averaged over the sample volume per unit time and converted to heat-flow using the well constrained thermal properties for corundum single crystals. By adjusting the thermal diffusivity in the model solution and comparing the resultant heat-flow with the measured values, we obtain a model

  7. A modulated differential scanning calorimetry and small-angle x-ray scattering study of the interfacial region in structured latices

    Directory of Open Access Journals (Sweden)

    Hourston Douglas J.

    2001-01-01

    Full Text Available The interfacial structure of poly(styrene (PS-poly(methyl acrylate (PMA structured latices has been investigated by means of modulated-temperature differential scanning calorimetry (M-TDSC and small-angle x-ray scattering (SAXS. The differential of heat capacity, dCp/dT, signal from M-TDSC was used to quantify the weight fraction of interface in these latices. For PS-PMA (50:50 by weight structured latices in which the PS component had different crosslink densities (0, 1, 3, 5 and 10 mol% of crosslinking agent, the weight fraction of interface was about 13%. With increasing crosslink density, the fraction of interface increased only slightly. A core-shell model has been used to analyse SAXS data for these PS-PMA latices. M-TDSC can only provide information about the weight fraction of interface, but the combination of M-TDSC and SAXS can provide much more information on the morphology of such structured latices.

  8. Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry.

    Science.gov (United States)

    Shen, Jiacheng; Igathinathane, C; Yu, Manlu; Pothula, Anand Kumar

    2015-06-01

    Integral reaction heats of switchgrass, big bluestem, and corn stalks were determined using thermogravimetric analysis/differential scanning calorimetry (TGA/DSC). Iso-conversion differential reaction heats using TGA/DSC pyrolysis and combustion of biomass were not available, despite reports available on heats required and released. A concept of iso-conversion differential reaction heats was used to determine the differential reaction heats of each thermal characteristics segment of these materials. Results showed that the integral reaction heats were endothermic from 30 to 700°C for pyrolysis of switchgrass and big bluestem, but they were exothermic for corn stalks prior to 587°C. However, the integral reaction heats for combustion of the materials followed an endothermic to exothermic transition. The differential reaction heats of switchgrass pyrolysis were predominantly endothermic in the fraction of mass loss (0.0536-0.975), and were exothermic for corn stalks (0.0885-0.850) and big bluestem (0.736-0.919). Study results provided better insight into biomass thermal mechanism. Published by Elsevier Ltd.

  9. Vce-based methods for temperature estimation of high power IGBT modules during power cycling - A comparison

    DEFF Research Database (Denmark)

    Amoiridis, Anastasios; Anurag, Anup; Ghimire, Pramod

    2015-01-01

    . This experimental work evaluates the validity and accuracy of two Vce based methods applied on high power IGBT modules during power cycling tests. The first method estimates the chip temperature when low sense current is applied and the second method when normal load current is present. Finally, a correction factor......Temperature estimation is of great importance for performance and reliability of IGBT power modules in converter operation as well as in active power cycling tests. It is common to be estimated through Thermo-Sensitive Electrical Parameters such as the forward voltage drop (Vce) of the chip...

  10. Application of assembly module to high-temperature gas-cooled reactor full-scope simulation system

    International Nuclear Information System (INIS)

    Li Sifeng; Li Fu; Ma Yuanle; Shi Lei

    2007-01-01

    According to the circumstances that exist in the reactor full-scope simulators development as long development cycle, very difficult upgrade and narrow range of applicability, a kind of new model was developed based on assembly module which root in Linux kernel and successfully applied to the design of high-temperature gas-cooled reactor full-scope simulator system. The simulation results are coincident with the experimental ones, and it indicates that the new model based on assembly module is feasible to design of high-temperature gas cooled reactor simulation system. (authors)

  11. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways

    Science.gov (United States)

    Guo, Fang; Zhao, Qiong; Cheng, Junjun; Qi, Yonghe; Su, Qing; Wei, Lai; Li, Wenhui; Chang, Jinhong

    2017-01-01

    Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or “empty” capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B. PMID:28945802

  12. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways.

    Science.gov (United States)

    Guo, Fang; Zhao, Qiong; Sheraz, Muhammad; Cheng, Junjun; Qi, Yonghe; Su, Qing; Cuconati, Andrea; Wei, Lai; Du, Yanming; Li, Wenhui; Chang, Jinhong; Guo, Ju-Tao

    2017-09-01

    Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or "empty" capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B.

  13. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways.

    Directory of Open Access Journals (Sweden)

    Fang Guo

    2017-09-01

    Full Text Available Hepatitis B virus (HBV core protein assembles viral pre-genomic (pg RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs and sulfamoylbenzamides (SBAs, have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or "empty" capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B.

  14. A two-level voltage source inverter with differentially sinusoidal pulse width modulation used in the interconnection system of a wind turbine generator

    Directory of Open Access Journals (Sweden)

    Alexandros C. Charalampidis

    2014-10-01

    Full Text Available This study analyses an interconnection system based on differentially sinusoidal pulse width modulation, used for the interconnection to the grid of a variable speed wind turbine. The modulation technique used provides specific advantages in comparison with the commonly used sinusoidal pulse width modulation (SPWM technique, such as lower DC bus voltage requirements, smaller switching losses for the same switching frequency as well as less higher harmonic content in the voltage waveforms produced. The respective control system is also described in detail. Thus this study provides a guide enabling the design of any interconnection system based on this modulation technique.

  15. Protein kinase C prevents oligodendrocyte differentiation : Modulation of actin cytoskeleton and cognate polarized membrane traffic

    NARCIS (Netherlands)

    Baron, W; de Vries, EJ; de Vries, H; Hoekstra, D

    1999-01-01

    In a previous study, we showed that activation of protein kinase C (PKC) prevents oligodendrocyte differentiation at the pro-oligodendrocyte stage. The present study was undertaken to identify downstream targets of PKC action in oligodendrocyte progenitor cells. Activation of PKC induced the

  16. p62 modulates Akt activity via association with PKCζ in neuronal survival and differentiation

    International Nuclear Information System (INIS)

    Joung, Insil; Kim, Hak Jae; Kwon, Yunhee Kim

    2005-01-01

    p62 is a ubiquitously expressed phosphoprotein that interacts with a number of signaling molecules and a major component of neurofibrillary tangles in the brain of Alzheimer's disease patients. It has been implicated in important cellular functions such as cell proliferation and anti-apoptotic pathways. In this study, we have addressed the potential role of p62 during neuronal differentiation and survival using HiB5, a rat neuronal progenitor cell. We generated a recombinant adenovirus encoding T7-epitope tagged p62 to reliably transfer p62 cDNA into the neuronal cells. The results show that an overexpression of p62 led not only to neuronal differentiation, but also to decreased cell death induced by serum withdrawal in HiB5 cells. In this process p62-dependent Akt phosphorylation occurred via the release of Akt from PKCζ by association of p62 and PKCζ, which is known as a negative regulator of Akt activation. These findings indicate that p62 facilitates cell survival through novel signaling cascades that result in Akt activation. Furthermore, we found that p62 expression was induced during neuronal differentiation. Taken together, the data suggest p62 is a regulator of neuronal cell survival and differentiation

  17. NMDA modulates oligodendrocyte differentiation of subventricular zone cells through PKC activation

    Directory of Open Access Journals (Sweden)

    Fabio eCavaliere

    2013-12-01

    Full Text Available Multipotent cells from the juvenile subventricular zone (SVZ possess the ability to differentiate into new neural cells. Depending on local signals, SVZ can generate new neurons, astrocytes or oligodendrocytes. We previously demonstrated that activation of NMDA receptors in SVZ progenitors increases the rate of oligodendrocyte differentiation. Here we investigated the mechanisms involved in NMDA receptor-dependent differentiation. Using functional studies performed with the reporter gene luciferase we found that activation of NMDA receptor stimulates PKC. In turn, stimulation of PKC precedes the activation of NADPH oxidase (NOX as demonstrated by translocation of the p67phox subunit to the cellular membrane. We propose that NOX2 is involved in the transduction of the signal from NMDA receptors through PKC activation as the inhibitor gp91 reduced their pro-differentiation effect. In addition, our data and that from other groups suggest that signaling through the NMDA receptor/PKC/NOX2 cascade generates ROS that activate the PI3/mTOR pathway and finally leads to the generation of new oligodendrocytes.

  18. Momordica charantia (bitter melon inhibits primary human adipocyte differentiation by modulating adipogenic genes

    Directory of Open Access Journals (Sweden)

    Nerurkar Vivek R

    2010-06-01

    Full Text Available Abstract Background Escalating trends of obesity and associated type 2 diabetes (T2D has prompted an increase in the use of alternative and complementary functional foods. Momordica charantia or bitter melon (BM that is traditionally used to treat diabetes and complications has been demonstrated to alleviate hyperglycemia as well as reduce adiposity in rodents. However, its effects on human adipocytes remain unknown. The objective of our study was to investigate the effects of BM juice (BMJ on lipid accumulation and adipocyte differentiation transcription factors in primary human differentiating preadipocytes and adipocytes. Methods Commercially available cryopreserved primary human preadipocytes were treated with and without BMJ during and after differentiation. Cytotoxicity, lipid accumulation, and adipogenic genes mRNA expression was measured by commercial enzymatic assay kits and semi-quantitative RT-PCR (RT-PCR. Results Preadipocytes treated with varying concentrations of BMJ during differentiation demonstrated significant reduction in lipid content with a concomitant reduction in mRNA expression of adipocyte transcription factors such as, peroxisome proliferator-associated receptor γ (PPARγ and sterol regulatory element-binding protein 1c (SREBP-1c and adipocytokine, resistin. Similarly, adipocytes treated with BMJ for 48 h demonstrated reduced lipid content, perilipin mRNA expression, and increased lipolysis as measured by the release of glycerol. Conclusion Our data suggests that BMJ is a potent inhibitor of lipogenesis and stimulator of lipolysis activity in human adipocytes. BMJ may therefore prove to be an effective complementary or alternative therapy to reduce adipogenesis in humans.

  19. Adrenal-Derived Hormones Differentially Modulate Intestinal Immunity in Experimental Colitis

    OpenAIRE

    Souza, Patrícia Reis de; Sales-Campos, Helioswilton; Basso, Paulo José; Nardini, Viviani; Silva, Angelica; Banquieri, Fernanda; Alves, Vanessa Beatriz Freitas; Chica, Javier Emílio Lazo; Nomizo, Auro; Cardoso, Cristina Ribeiro de Barros

    2016-01-01

    The adrenal glands are able to modulate immune responses through neuroimmunoendocrine interactions and cortisol secretion that could suppress exacerbated inflammation such as in inflammatory bowel disease (IBD). Therefore, here we evaluated the role of these glands in experimental colitis induced by 3% dextran sulfate sodium (DSS) in C57BL/6 mice subjected to adrenalectomy, with or without glucocorticoid (GC) replacement. Mice succumbed to colitis without adrenals with a higher clinical score...

  20. Cannabinoids as modulators of cancer cell viability, neuronal differentiation, and embryonal development

    OpenAIRE

    Gustafsson, Sofia

    2012-01-01

    Cannabinoids (CBs) are compounds that activate the CB1 and CB2 receptors. CB receptors mediate many different physiological functions, and cannabinoids have been reported to decrease tumor cell viability, proliferation, migration, as well as to modulate metastasis. In this thesis, the effects of cannabinoids on human colorectal carcinoma Caco-2 cells (Paper I) and mouse P19 embryonal carcinoma (EC) cells (Paper III) were studied.  In both cell lines, the compounds examined produced a concentr...

  1. Perceived state of self during motion can differentially modulate numerical magnitude allocation.

    OpenAIRE

    Arshad, Q; Nigmatullina, Y; Roberts, RE; Goga, U; Pikovsky, M; Khan, S; Lobo, R; Flury, AS; Pettorossi, VE; Cohen-Kadosh, R; Malhotra, PA; Bronstein, AM

    2016-01-01

    Although a direct relationship between numerical-allocation and spatial-attention has been proposed, recent research suggests these processes are not directly coupled. In keeping with this, spatial attention shifts induced either via visual or vestibular motion can modulate numerical allocation in some circumstances but not in others. In addition to shifting spatial attention, visual or vestibular motion-paradigms also (i) elicit compensatory eye-movements which themselves can influence numer...

  2. Differential Potency of 2,6-Dimethylcyclohexanol Isomers for Positive Modulation of GABAA Receptor Currents.

    Science.gov (United States)

    Chowdhury, Luvana; Croft, Celine J; Goel, Shikha; Zaman, Naina; Tai, Angela C-S; Walch, Erin M; Smith, Kelly; Page, Alexandra; Shea, Kevin M; Hall, C Dennis; Jishkariani, D; Pillai, Girinath G; Hall, Adam C

    2016-06-01

    GABAA receptors meet all of the pharmacological requirements necessary to be considered important targets for the action of general anesthetic agents in the mammalian brain. In the following patch-clamp study, the relative modulatory effects of 2,6-dimethylcyclohexanol diastereomers were investigated on human GABAA (α1β3γ2s) receptor currents stably expressed in human embryonic kidney cells. Cis,cis-, trans,trans-, and cis,trans-isomers were isolated from commercially available 2,6-dimethylcyclohexanol and were tested for positive modulation of submaximal GABA responses. For example, the addition of 30 μM cis,cis-isomer resulted in an approximately 2- to 3-fold enhancement of the EC20 GABA current. Coapplications of 30 μM 2,6-dimethylcyclohexanol isomers produced a range of positive enhancements of control GABA responses with a rank order for positive modulation: cis,cis > trans,trans ≥ mixture of isomers > > cis,trans-isomer. In molecular modeling studies, the three cyclohexanol isomers bound with the highest binding energies to a pocket within transmembrane helices M1 and M2 of the β3 subunit through hydrogen-bonding interactions with a glutamine at the 224 position and a tyrosine at the 220 position. The energies for binding to and hydrogen-bond lengths within this pocket corresponded with the relative potencies of the agents for positive modulation of GABAA receptor currents (cis,cis > trans,trans > cis,trans-2,6-dimethylcyclohexanol). In conclusion, the stereochemical configuration within the dimethylcyclohexanols is an important molecular feature in conferring positive modulation of GABAA receptor activity and for binding to the receptor, a consideration that needs to be taken into account when designing novel anesthetics with enhanced therapeutic indices. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Distinct Thalamic Reticular Cell Types Differentially Modulate Normal and Pathological Cortical Rhythms

    Directory of Open Access Journals (Sweden)

    Alexandra Clemente-Perez

    2017-06-01

    Full Text Available Integrative brain functions depend on widely distributed, rhythmically coordinated computations. Through its long-ranging connections with cortex and most senses, the thalamus orchestrates the flow of cognitive and sensory information. Essential in this process, the nucleus reticularis thalami (nRT gates different information streams through its extensive inhibition onto other thalamic nuclei, however, we lack an understanding of how different inhibitory neuron subpopulations in nRT function as gatekeepers. We dissociated the connectivity, physiology, and circuit functions of neurons within rodent nRT, based on parvalbumin (PV and somatostatin (SOM expression, and validated the existence of such populations in human nRT. We found that PV, but not SOM, cells are rhythmogenic, and that PV and SOM neurons are connected to and modulate distinct thalamocortical circuits. Notably, PV, but not SOM, neurons modulate somatosensory behavior and disrupt seizures. These results provide a conceptual framework for how nRT may gate incoming information to modulate brain-wide rhythms.

  4. Accelerated iTBS treatment in depressed patients differentially modulates reward system activity based on anhedonia.

    Science.gov (United States)

    Duprat, Romain; Wu, Guo-Rong; De Raedt, Rudi; Baeken, Chris

    2017-08-09

    Accelerated intermittent theta-burst stimulation (aiTBS) anti-depressive working mechanisms are still unclear. Because aiTBS may work through modulating the reward system and the level of anhedonia may influence this modulation, we investigated the effect of aiTBS on reward responsiveness in high and low anhedonic MDD patients. In this registered RCT (NCT01832805), 50 MDD patients were randomised to a sham-controlled cross-over aiTBS treatment protocol over the left dorsolateral prefrontal cortex (DLPFC). Patients performed a probabilistic learning task in fMRI before and after each week of stimulation. Task performance analyses did not show any significant effects of aiTBS on reward responsiveness, nor differences between both groups of MDD patients. However, at baseline, low anhedonic patients displayed higher neural activity in the caudate and putamen. After the first week of aiTBS treatment, in low anhedonic patients we found a decreased neural activity within the reward system, in contrast to an increased activity observed in high anhedonic patients. No changes were observed in reward related neural regions after the first week of sham stimulation. Although both MDD groups showed no differences in task performance, our brain imaging findings suggest that left DLPFC aiTBS treatment modulates the reward system differently according to anhedonia severity.

  5. Downregulation of monocytic differentiation via modulation of CD147 by 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors.

    Directory of Open Access Journals (Sweden)

    Manda V Sasidhar

    Full Text Available CD147 is an activation induced glycoprotein that promotes the secretion and activation of matrix metalloproteinases (MMPs and is upregulated during the differentiation of macrophages. Interestingly, some of the molecular functions of CD147 rely on its glycosylation status: the highly glycosylated forms of CD147 induce MMPs whereas the lowly glycosylated forms inhibit MMP activation. Statins are hydroxy-methylglutaryl coenzyme A reductase inhibitors that block the synthesis of mevalonate, thereby inhibiting all mevalonate-dependent pathways, including isoprenylation, N-glycosylation and cholesterol synthesis. In this study, we investigated the role of statins in the inhibition of macrophage differentiation and the associated process of MMP secretion through modulation of CD147. We observed that differentiation of the human monocytic cell line THP-1 to a macrophage phenotype led to upregulation of CD147 and CD14 and that this effect was inhibited by statins. At the molecular level, statins altered CD147 expression, structure and function by inhibiting isoprenylation and N-glycosylation. In addition, statins induced a shift of CD147 from its highly glycosylated form to its lowly glycosylated form. This shift in N-glycosylation status was accompanied by a decrease in the production and functional activity of MMP-2 and MMP-9. In conclusion, these findings describe a novel molecular mechanism of immune regulation by statins, making them interesting candidates for autoimmune disease therapy.

  6. Downregulation of monocytic differentiation via modulation of CD147 by 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors.

    Science.gov (United States)

    Sasidhar, Manda V; Chevooru, Sai Krishnaveni; Eickelberg, Oliver; Hartung, Hans-Peter; Neuhaus, Oliver

    2017-01-01

    CD147 is an activation induced glycoprotein that promotes the secretion and activation of matrix metalloproteinases (MMPs) and is upregulated during the differentiation of macrophages. Interestingly, some of the molecular functions of CD147 rely on its glycosylation status: the highly glycosylated forms of CD147 induce MMPs whereas the lowly glycosylated forms inhibit MMP activation. Statins are hydroxy-methylglutaryl coenzyme A reductase inhibitors that block the synthesis of mevalonate, thereby inhibiting all mevalonate-dependent pathways, including isoprenylation, N-glycosylation and cholesterol synthesis. In this study, we investigated the role of statins in the inhibition of macrophage differentiation and the associated process of MMP secretion through modulation of CD147. We observed that differentiation of the human monocytic cell line THP-1 to a macrophage phenotype led to upregulation of CD147 and CD14 and that this effect was inhibited by statins. At the molecular level, statins altered CD147 expression, structure and function by inhibiting isoprenylation and N-glycosylation. In addition, statins induced a shift of CD147 from its highly glycosylated form to its lowly glycosylated form. This shift in N-glycosylation status was accompanied by a decrease in the production and functional activity of MMP-2 and MMP-9. In conclusion, these findings describe a novel molecular mechanism of immune regulation by statins, making them interesting candidates for autoimmune disease therapy.

  7. Sustained release of melatonin from TiO2 nanotubes for modulating osteogenic differentiation of mesenchymal stem cells in vitro.

    Science.gov (United States)

    Lai, Min; Jin, Ziyang; Tang, Qiang; Lu, Min

    2017-10-01

    To control the sustained release of melatonin and modulate the osteogenic differentiation of mesenchymal stem cells (MSCs), melatonin was firstly loaded onto TiO 2 nanotubes by direct dropping method, and then a multilayered film was coated by a spin-assisted layer-by-layer technique, which was composed of chitosan (Chi) and gelatin (Gel). Successful fabrication was characterized by field emission scanning electron microscopy, atomic force microscope, X-ray photoelectron spectroscopy and contact angle measurement, respectively. The efficient sustained release of melatonin was measured by UV-visible-spectrophotometer. After 2 days of culture, well-spread morphology was observed in MSCs grown on the Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates as compared to different groups. After 4, 7, 14 and 21 days of culture, the multilayered-coated melatonin-loaded TiO 2 nanotube substrates increased cell proliferation, increased alkaline phosphatase (ALP) and mineralization, increased expression of mRNA levels for runt-related transcription factor 2 (Runx2), ALP, osteopontin (OPN) and osteocalcin (OC), indicative of osteoblastic differentiation. These results demonstrated that Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates promoted cell adhesion, spreading, proliferation and differentiation and could provide an alternative fabrication method for titanium-based implants to enhance the osteointegration between bone tissues and implant surfaces.

  8. Elimination of bus voltage impact on temperature sensitive electrical parameter during turn-on transition for junction temperature estimation of high-power IGBT modules

    DEFF Research Database (Denmark)

    Luo, Haoze; Iannuzzo, Francesco; Blaabjerg, Frede

    2017-01-01

    Junction temperature is of great importance to safe operating area of IGBT modules. Various information of the IGBT operating state is reflected on electrical characteristics during turn-on transient. A unified extraction method for internal junction temperature via dynamic thermo......-sensitive electrical parameters (DTSEP) during turn-on transient is proposed. Two DTSEP, turn-on delay time (tdon) and the maximum increasing rate of collector current dic/dt(max), are combined to eliminate the bus voltage impact. Using the inherent emitter-auxiliary inductor LeE in high-power modules, the temperature......-dependent DTSEPs can be converted into a low-voltage and measurable signal. Finally, experiment results are exhibited to verify the effectiveness of proposed method....

  9. Wavelength-Modulated Differential Photoacoustic (WM-DPA) imaging: a high dynamic range modality towards noninvasive diagnosis of cancer

    Science.gov (United States)

    Dovlo, Edem; Lashkari, Bahman; Choi, Sung soo Sean; Mandelis, Andreas

    2016-03-01

    This study explores wavelength-modulated differential photo-acoustic (WM-DPA) imaging for non-invasive early cancer detection via sensitive characterization of functional information such as hemoglobin oxygenation (sO2) levels. Well-known benchmarks of tumor formation such as angiogenesis and hypoxia can be addressed this way. While most conventional photo-acoustic imaging has almost entirely employed high-power pulsed lasers, frequency-domain photo-acoustic radar (FD-PAR) has seen significant development as an alternative technique. It employs a continuous wave laser source intensity-modulated and driven by frequency-swept waveforms. WM-DPA imaging utilizes chirp modulated laser beams at two distinct wavelengths for which absorption differences between oxy- and deoxygenated hemoglobin are minimum (isosbestic point, 805 nm) and maximum (680 nm) to simultaneously generate two signals detected using a standard commercial array transducer as well as a single-element transducer that scans the sample. Signal processing is performed using Lab View and Matlab software developed in-house. Minute changes in total hemoglobin concentration (tHb) and oxygenation levels are detectable using this method since background absorption is suppressed due to the out-of-phase modulation of the laser sources while the difference between the two signals is amplified, thus allowing pre-malignant tumors to become identifiable. By regulating the signal amplitude ratio and phase shift the system can be tuned to applications like cancer screening, sO2 quantification and hypoxia monitoring in stroke patients. Experimental results presented demonstrate WM-DPA imaging of sheep blood phantoms in comparison to single-wavelength FD-PAR imaging. Future work includes the functional PA imaging of small animals in vivo.

  10. Temperature Dependence of Charge Localization in High-Mobility, Solution-Crystallized Small Molecule Semiconductors Studied by Charge Modulation Spectroscopy

    DEFF Research Database (Denmark)

    Meneau, Aurélie Y. B.; Olivier, Yoann; Backlund, Tomas

    2016-01-01

    In solution-processable small molecule semiconductors, the extent of charge carrier wavefunction localization induced by dynamic disorder can be probed spectroscopically as a function of temperature using charge modulation spectroscopy (CMS). Here, it is shown based on combined fi eld-effect tran......In solution-processable small molecule semiconductors, the extent of charge carrier wavefunction localization induced by dynamic disorder can be probed spectroscopically as a function of temperature using charge modulation spectroscopy (CMS). Here, it is shown based on combined fi eld......-effect transistor and CMS measurements as a function of temperature that in certain molecular semiconductors, such as solution-processible pentacene, charge carriers become trapped at low temperatures in environments in which the charges become highly localized on individual molecules, while in some other molecules...

  11. 2-Bromopalmitate modulates neuronal differentiation through the regulation of histone acetylation

    Directory of Open Access Journals (Sweden)

    Xueran Chen

    2014-03-01

    Full Text Available In order to evaluate the functional significance of palmitoylation during multi-potent neural stem/progenitor cell proliferation and differentiation, retinoic acid-induced P19 cells were used in this study as a model system. Cell behaviour was monitored in the presence of the protein palmitoylation inhibitor 2-bromopalmitate (2BP. Here, we observed a significant reduction in neuronal differentiation in the 2BP-treated cell model. We further explored the underlying mechanisms and found that 2BP resulted in the decreased acetylation of histones H3 and H4 and interfered with cell cycle withdrawal and neural stem/progenitor cells' renewal. Our results established a direct link between palmitoylation and the regulation of neural cell fate specification and revealed the epigenetic regulatory mechanisms that are involved in the effects of palmitoylation during neural development.

  12. MeCP2 interacts with HP1 and modulates its heterochromatin association during myogenic differentiation

    Science.gov (United States)

    Agarwal, Noopur; Hardt, Tanja; Brero, Alessandro; Nowak, Danny; Rothbauer, Ulrich; Becker, Annette; Leonhardt, Heinrich; Cardoso, M. Cristina

    2007-01-01

    There is increasing evidence of crosstalk between epigenetic modifications such as histone and DNA methylation, recognized by HP1 and methyl CpG-binding proteins, respectively. We have previously shown that the level of methyl CpG-binding proteins increased dramatically during myogenesis leading to large-scale heterochromatin reorganization. In this work, we show that the level of HP1 isoforms did not change significantly throughout myogenic differentiation but their localization did. In particular, HP1γ relocalization to heterochromatin correlated with MeCP2 presence. Using co-immunoprecipitation assays, we found that these heterochromatic factors interact in vivo via the chromo shadow domain of HP1 and the first 55 amino acids of MeCP2. We propose that this dynamic interaction of HP1 and MeCP2 increases their concentration at heterochromatin linking two major gene silencing pathways to stabilize transcriptional repression during differentiation. PMID:17698499

  13. Oxidative stress modulates the cytokine response of differentiated Th17 and Th1 cells.

    Science.gov (United States)

    Abimannan, Thiruvaimozhi; Peroumal, Doureradjou; Parida, Jyoti R; Barik, Prakash K; Padhan, Prasanta; Devadas, Satish

    2016-10-01

    Reactive oxygen species (ROS) signaling is critical in T helper (Th) cell differentiation; however its role in differentiated Th cell functions is unclear. In this study, we investigated the role of oxidative stress on the effector functions of in vitro differentiated mouse Th17 and Th1 cells or CD4 + T cells from patients with Rheumatoid Arthritis using pro-oxidants plumbagin (PB) and hydrogen peroxide. We found that in mouse Th cells, non-toxic concentration of pro-oxidants inhibited reactivation induced expression of IL-17A in Th17 and IFN-γ in Th1 cells by reducing the expression of their respective TFs, RORγt and T-bet. Interestingly, in both the subsets, PB increased the expression of IL-4 by enhancing reactivation induced ERK1/2 phosphorylation. We further investigated the cytokine modulatory effect of PB on CD4 + T cells isolated from PBMCs of patients with Rheumatoid Arthritis, a well-known Th17 and or Th1 mediated disease. In human CD4 + T cells from Rheumatoid Arthritis patients, PB reduced the frequencies of IL-17A + (Th17), IFN - γ + (Th1) and IL-17A + /IFN - γ + (Th17/1) cells and also inhibited the production of pro-inflammatory cytokines TNF-α and IL-6. N-Acetyl Cysteine (NAC) an antioxidant completely reversed PB mediated cytokine modulatory effects in both mouse and human cells indicating a direct role for ROS. Together our data suggest that oxidative microenvironment can alter cytokine response of terminally differentiated cells and thus altering intracellular ROS could be a potential way to target Th17 and Th1 cells in autoimmune disorders. Copyright © 2016. Published by Elsevier Inc.

  14. CD147 modulates the differentiation of T-helper 17 cells in patients with rheumatoid arthritis.

    Science.gov (United States)

    Yang, Hui; Wang, Jian; Li, Yu; Yin, Zhen-Jie; Lv, Ting-Ting; Zhu, Ping; Zhang, Yan

    2017-01-01

    The role of CD147 in regulation of rheumatoid arthritis (RA) is not fully elucidated. The aim of this study was to investigate the effect of cell-to-cell contact of activated CD14 + monocytes with CD4 + T cells, and the modulatory role of CD147 on T-helper 17 (Th17) cells differentiation in patients with RA. Twenty confirmed active RA patients and twenty normal controls were enrolled. CD4 + T cells and CD14 + monocytes were purified by magnetic beads cell sorting. Cells were cultured under different conditions in CD4 + T cells alone, direct cell-to-cell contact co-culture of CD4 + and CD14 + cells, or indirect transwell co-culture of CD4 + /CD14 + cells in response to LPS and anti-CD3 stimulation with or without anti-CD147 antibody pretreatments. The proportion of IL-17-producing CD4 + T cells (defined as Th17 cells) was determined by flow cytometry. The levels of interleukin (IL)-17, IL-6, and IL-1β in the supernatants of cultured cells were measured by ELISA. The optimal condition for in vitro induction of Th17 cells differentiation was co-stimulation with 0.1 μg/mL of LPS and 100 ng/mL of anti-CD3 for 3 days under direct cell-to-cell contact co-culture of CD4 + and CD14 + cells. Anti-CD147 antibody reduced the proportion of Th17 cells, and also inhibited the productions of IL-17, IL-6, and IL-1β in PBMC culture from RA patients. The current results revealed that Th17 differentiation required cell-to-cell contact with activated monocytes. CD147 promoted the differentiation of Th17 cells by regulation of cytokine production, which provided the evidence for pathogenesis and potential therapeutic targets for RA. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  15. The Small Alternatively Spliced Amelogenin LRAP Modulates Early Stage Ameloblast Differentiation

    Science.gov (United States)

    2014-01-30

    proteins are cleaved and degraded, mineral deposition in the form of hydroxyapatite crystals occurs in a well-ordered pattern (Wen et al., 2001). It...differentiation. In additional studies I developed cell culture models to further investigate LRAP function and used LRAP overexpression compare the molar...occurs. 15 The removal of amelogenins from the enamel matrix directs matrix mineralization and creates space for the hydroxyapatite crystals to expand

  16. Recent advances and potential applications of modulated differential scanning calorimetry (mDSC) in drug development

    DEFF Research Database (Denmark)

    Knopp, Matthias Manne; Löbmann, Korbinian; Elder, David P.

    2016-01-01

    Differential scanning calorimetry (DSC) is frequently the thermal analysis technique of choice within preformulation and formulation sciences because of its ability to provide detailed information about both the physical and energetic properties of a substance and/or formulation. However, convent......-dried formulations. However, as discussed in the present review, a number of other potential applications could also be relevant for the pharmaceutical scientist....

  17. Treatment with at Homeopathic Complex Medication Modulates Mononuclear Bone Marrow Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Beatriz Cesar

    2011-01-01

    Full Text Available A homeopathic complex medication (HCM, with immunomodulatory properties, is recommended for patients with depressed immune systems. Previous studies demonstrated that the medication induces an increase in leukocyte number. The bone marrow microenvironment is composed of growth factors, stromal cells, an extracellular matrix and progenitor cells that differentiate into mature blood cells. Mice were our biological model used in this research. We now report in vivo immunophenotyping of total bone marrow cells and ex vivo effects of the medication on mononuclear cell differentiation at different times. Cells were examined by light microscopy and cytokine levels were measured in vitro. After in vivo treatment with HCM, a pool of cells from the new marrow microenvironment was analyzed by flow cytometry to detect any trend in cell alteration. The results showed decreases, mainly, in CD11b and TER-119 markers compared with controls. Mononuclear cells were used to analyze the effects of ex vivo HCM treatment and the number of cells showing ring nuclei, niche cells and activated macrophages increased in culture, even in the absence of macrophage colony-stimulating factor. Cytokines favoring stromal cell survival and differentiation in culture were induced in vitro. Thus, we observe that HCM is immunomodulatory, either alone or in association with other products.

  18. DNER, an epigenetically modulated gene, regulates glioblastoma-derived neurosphere cell differentiation and tumor propagation.

    Science.gov (United States)

    Sun, Peng; Xia, Shuli; Lal, Bachchu; Eberhart, Charles G; Quinones-Hinojosa, Alfredo; Maciaczyk, Jarek; Matsui, William; Dimeco, Francesco; Piccirillo, Sara M; Vescovi, Angelo L; Laterra, John

    2009-07-01

    Neurospheres derived from glioblastoma (GBM) and other solid malignancies contain neoplastic stem-like cells that efficiently propagate tumor growth and resist cytotoxic therapeutics. The primary objective of this study was to use histone-modifying agents to elucidate mechanisms by which the phenotype and tumor-promoting capacity of GBM-derived neoplastic stem-like cells are regulated. Using established GBM-derived neurosphere lines and low passage primary GBM-derived neurospheres, we show that histone deacetylase (HDAC) inhibitors inhibit growth, induce differentiation, and induce apoptosis of neoplastic neurosphere cells. A specific gene product induced by HDAC inhibition, Delta/Notch-like epidermal growth factor-related receptor (DNER), inhibited the growth of GBM-derived neurospheres, induced their differentiation in vivo and in vitro, and inhibited their engraftment and growth as tumor xenografts. The differentiating and tumor suppressive effects of DNER, a noncanonical Notch ligand, contrast with the previously established tumor-promoting effects of canonical Notch signaling in brain cancer stem-like cells. Our findings are the first to implicate noncanonical Notch signaling in the regulation of neoplastic stem-like cells and suggest novel neoplastic stem cell targeting treatment strategies for GBM and potentially other solid malignancies.

  19. The role of surface microtopography in the modulation of osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    JS Hayes

    2010-07-01

    Full Text Available The osteoinductive and conductive capabilities of commercially pure titanium and its alloys is well documented, as is their ability to provide long-term stability for permanent implantable devices. Fracture fixation in paediatric and trauma patients generally requires transient fixation after which the implant becomes redundant and requires removal. Removal can be complicated due to excessive bony over-growth which is encouraged by the standard micro-rough implant surface. We have shown in vivo that removal related morbidity can be significantly reduced with surface polishing, a technique which reduces the micro-roughness of clinically available materials. However, tissue integration at the bone-implant interface requires activation of key regulatory pathways which influences osteoblastic differentiation and maturation therefore we do not believe this effect to be purely mechanical. To elucidate potential mechanisms by which surface polishing exerts its effect on bone regeneration this study assessed in vitro the effect of surface polishing commercially pure titanium on cell growth, morphology and on the regulation of core binding factor 1, osterix, collagen I, alkaline phosphatase, bone sialoprotein and osteocalcin for primary rat calvarial osteoblasts. Results indicate that polishing differentially influences osteoblast differentiation in a surface dependent manner and that these changes are potentially linked to surface dependent morphology, but not to differences in cell proliferation.

  20. High-Temperature Monitoring of Refractory Wall Recession Using Frequency-Modulated Continuous-wave (FM-CW) Radar Techniques

    International Nuclear Information System (INIS)

    Varghese, B.; DeConick, C.; Cartee, G.; Zoughi, R.; Velez, M.; Moore, R.

    2005-01-01

    Furnaces are among the most crucial components in the glass and metallurgical industry. Nowadays, furnaces are being operated at higher temperatures and for longer periods of time thus increasing the rate of wear on the furnace refractory lining. Consequently, there is a great need for a nondestructive tool that can accurately measure refractory wall thickness at high temperatures. In this paper the utility of a frequency-modulated continuous-wave (FM-CW) radar is investigated for this purpose

  1. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells

    DEFF Research Database (Denmark)

    Christensen, Hanne Risager; Frøkiær, Hanne; Pestka, J.J.

    2002-01-01

    Dendritic cells (DC) play a pivotal immunoregulatory role in the Th1, Th2, and Th3 cell balance and are present throughout the gastrointestinal tract. Thus, DC may be targets for modulation by gut microbes, including ingested probiotics. In the present study, we tested the hypothesis that species...... reduced L casei-induced up-regulation of B7-2. These results suggest that different species of Lactobacillus exert very different DC activation patterns and, furthermore, at least one species may be capable of inhibiting activities of other species in the genus. Thus, the potential exists for Th1/Th2/Th3...

  2. A minimization procedure for estimating the power deposition and heat transport from the temperature response to auxiliary power modulation

    International Nuclear Information System (INIS)

    Eester, Dirk van

    2004-01-01

    A method commonly used for determining where externally launched power is absorbed inside a tokamak plasma is to examine the temperature response to modulation of the launched power. Strictly speaking, this response merely provides a first good guess of the actual power deposition rather than the deposition profile itself: not only local heat sources but also heat losses and heat wave propagation affect the temperature response at a given position. Making use of this, at first sight non-desirable, effect modulation becomes a useful tool for conducting transport studies. In this paper a minimization method based on a simple conduction-convection model is proposed for deducing the power deposition and transport characteristics from the experimentally measured (electron) energy density response to a modulation of the auxiliary heating power. An L-mode JET example illustrates the potential of the technique

  3. Effect of rotational speed modulation on heat transport in a fluid layer with temperature dependent viscosity and internal heat source

    Directory of Open Access Journals (Sweden)

    B.S. Bhadauria

    2014-12-01

    Full Text Available In this paper, a theoretical investigation has been carried out to study the combined effect of rotation speed modulation and internal heating on thermal instability in a temperature dependent viscous horizontal fluid layer. Rayleigh–Bénard momentum equation with Coriolis term has been considered to describe the convective flow. The system is rotating about it is own axis with non-uniform rotational speed. In particular, a time-periodic and sinusoidally varying rotational speed has been considered. A weak nonlinear stability analysis is performed to find the effect of modulation on heat transport. Nusselt number is obtained in terms of amplitude of convection and internal Rayleigh number, and depicted graphically for showing the effects of various parameters of the system. The effect of modulated rotation speed is found to have a stabilizing effect for different values of modulation frequency. Further, internal heating and thermo-rheological parameters are found to destabilize the system.

  4. An online Vce measurement and temperature estimation method for high power IGBT module in normal PWM operation

    DEFF Research Database (Denmark)

    Ghimire, Pramod; de Vega, Angel Ruiz; Beczkowski, Szymon

    2014-01-01

    An on-state collector-emitter voltage (Vce) measurement and thereby an estimation of average temperature in space for high power IGBT module is presented while power converter is in operation. The proposed measurement circuit is able to measure both high and low side IGBT and anti parallel diode...

  5. Olfactory or auditory stimulation and their hedonic valúes differentially modulate visual working memory

    Directory of Open Access Journals (Sweden)

    ANA M DONOSO

    2008-12-01

    Full Text Available Working memory (WM designates the retention of objects or events in conscious awareness when these are not present in the environment. Many studies have focused on the interference properties of distracter stimuli in working memory, but these studies have mainly examined the influence of the intensity of these stimuli. Little is known about the memory modulation of hedonic content of distracter stimuli as they also may affect WM performance or attentional tasks. In this paper, we have studied the performance of a visual WM task where subjects recollect from five to eight visually presented objects while they are simultaneously exposed to additional - albeit weak- auditory or olfactory distracter stimulus. We found that WM performance decreases as the number of Ítems to remember increases, but this performance was unaltered by any of the distracter stimuli. However, when performance was correlated to the subject's perceived hedonic valúes, distracter stimuli classified as negative exhibit higher error rates than positive, neutral or control stimuli. We demónstrate that some hedonic content of otherwise neutral stimuli can strongly modulate memory processes.

  6. Binding of histone H1 to DNA is differentially modulated by redox state of HMGB1.

    Directory of Open Access Journals (Sweden)

    Eva Polanská

    Full Text Available HMGB1 is an architectural protein in chromatin, acting also as a signaling molecule outside the cell. Recent reports from several laboratories provided evidence that a number of both the intracellular and extracellular functions of HMGB1 may depend on redox-sensitive cysteine residues of the protein. In this study we demonstrate that redox state of HMGB1 can significantly modulate the ability of the protein to bind and bend DNA, as well as to promote DNA end-joining. We also report a high affinity binding of histone H1 to hemicatenated DNA loops and DNA minicircles. Finally, we show that reduced HMGB1 can readily displace histone H1 from DNA, while oxidized HMGB1 has limited capacity for H1 displacement. Our results suggested a novel mechanism for the HMGB1-mediated modulation of histone H1 binding to DNA. Possible biological consequences of linker histones H1 replacement by HMGB1 for the functioning of chromatin are discussed.

  7. wALADin benzimidazoles differentially modulate the function of porphobilinogen synthase orthologs.

    Science.gov (United States)

    Lentz, Christian S; Halls, Victoria S; Hannam, Jeffrey S; Strassel, Silke; Lawrence, Sarah H; Jaffe, Eileen K; Famulok, Michael; Hoerauf, Achim; Pfarr, Kenneth M

    2014-03-27

    The heme biosynthesis enzyme porphobilinogen synthase (PBGS) is a potential drug target in several human pathogens. wALADin1 benzimidazoles have emerged as species-selective PBGS inhibitors against Wolbachia endobacteria of filarial worms. In the present study, we have systematically tested wALADins against PBGS orthologs from bacteria, protozoa, metazoa, and plants to elucidate the inhibitory spectrum. However, the effect of wALADin1 on different PBGS orthologs was not limited to inhibition: several orthologs were stimulated by wALADin1; others remained unaffected. We demonstrate that wALADins allosterically modulate the PBGS homooligomeric equilibrium with inhibition mediated by favoring low-activity oligomers, while 5-aminolevulinic acid, Mg(2+), or K(+) stabilized high-activity oligomers. Pseudomonas aeruginosa PBGS could be inhibited or stimulated by wALADin1 depending on these factors and pH. We have defined the wALADin chemotypes responsible for either inhibition or stimulation, facilitating the design of tailored PBGS modulators for potential application as antimicrobial agents, herbicides, or drugs for porphyric disorders.

  8. Socio-Cognitive Phenotypes Differentially Modulate Large-Scale Structural Covariance Networks.

    Science.gov (United States)

    Valk, Sofie L; Bernhardt, Boris C; Böckler, Anne; Trautwein, Fynn-Mathis; Kanske, Philipp; Singer, Tania

    2017-02-01

    Functional neuroimaging studies have suggested the existence of 2 largely distinct social cognition networks, one for theory of mind (taking others' cognitive perspective) and another for empathy (sharing others' affective states). To address whether these networks can also be dissociated at the level of brain structure, we combined behavioral phenotyping across multiple socio-cognitive tasks with 3-Tesla MRI cortical thickness and structural covariance analysis in 270 healthy adults, recruited across 2 sites. Regional thickness mapping only provided partial support for divergent substrates, highlighting that individual differences in empathy relate to left insular-opercular thickness while no correlation between thickness and mentalizing scores was found. Conversely, structural covariance analysis showed clearly divergent network modulations by socio-cognitive and -affective phenotypes. Specifically, individual differences in theory of mind related to structural integration between temporo-parietal and dorsomedial prefrontal regions while empathy modulated the strength of dorsal anterior insula networks. Findings were robust across both recruitment sites, suggesting generalizability. At the level of structural network embedding, our study provides a double dissociation between empathy and mentalizing. Moreover, our findings suggest that structural substrates of higher-order social cognition are reflected rather in interregional networks than in the the local anatomical markup of specific regions per se. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Meta-Analysis of Microarray Data of Rainbow Trout Fry Gonad Differentiation Modulated by Ethynylestradiol.

    Directory of Open Access Journals (Sweden)

    Sophie Depiereux

    Full Text Available Sex differentiation in fish is a highly labile process easily reversed by the use of exogenous hormonal treatment and has led to environmental concerns since low doses of estrogenic molecules can adversely impact fish reproduction. The goal of this study was to identify pathways altered by treatment with ethynylestradiol (EE2 in developing fish and to find new target genes to be tested further for their possible role in male-to-female sex transdifferentiation. To this end, we have successfully adapted a previously developed bioinformatics workflow to a meta-analysis of two datasets studying sex reversal following exposure to EE2 in juvenile rainbow trout. The meta-analysis consisted of retrieving the intersection of the top gene lists generated for both datasets, performed at different levels of stringency. The intersecting gene lists, enriched in true positive differentially expressed genes (DEGs, were subjected to over-representation analysis (ORA which allowed identifying several statistically significant enriched pathways altered by EE2 treatment and several new candidate pathways, such as progesterone-mediated oocyte maturation and PPAR signalling. Moreover, several relevant key genes potentially implicated in the early transdifferentiation process were selected. Altogether, the results show that EE2 has a great effect on gene expression in juvenile rainbow trout. The feminization process seems to result from the altered transcription of genes implicated in normal female gonad differentiation, resulting in expression similar to that observed in normal females (i.e. the repression of key testicular markers cyp17a1, cyp11b, tbx1, as well as from other genes (including transcription factors that respond specifically to the EE2 treatment. The results also showed that the bioinformatics workflow can be applied to different types of microarray platforms and could be generalized to (ecotoxicogenomics studies for environmental risk assessment

  10. Vascular smooth muscle cell differentiation to an osteogenic phenotype involves matrix metalloproteinase-2 modulation by homocysteine.

    Science.gov (United States)

    Liu, Tingjiao; Lin, Jinghan; Ju, Ting; Chu, Lei; Zhang, Liming

    2015-08-01

    Arterial calcification is common in vascular diseases and involves conversion of vascular smooth muscle cells (VSMCs) to an osteoblast phenotype. Clinical studies suggest that the development of atherosclerosis can be promoted by homocysteine (HCY), but the mechanisms remain unclear. Here, we determined whether increases in HCY levels lead to an increase in VSMC calcification and differentiation, and examined the role of an extracellular matrix remodeler, matrix metalloproteinase-2 (MMP-2). Rat VSMCs were exposed to calcification medium in the absence or presence of HCY (10, 100 or 200 μmol/L) or an MMP-2 inhibitor (10(-6) or 10(-5) mol/L). MTT assays were performed to determine the cytotoxicity of the MMP-2 inhibitor in calcification medium containing 200 μmol/L HCY. Calcification was assessed by measurements of calcium deposition and alkaline phosphatase (ALP) activity as well as von Kossa staining. Expression of osteocalcin, bone morphogenetic protein (BMP)-2, and osteopontin, and MMP-2 was determined by immunoblotting. Calcification medium induced osteogenic differentiation of VSMCs. HCY promoted calcification, increased osteocalcin and BMP-2 expression, and decreased expression of osteopontin. MMP-2 expression was increased by HCY in a dose-dependent manner in VSMCs exposed to both control and calcification medium. The MMP-2 inhibitor decreased the calcium content and ALP activity, and attenuated the osteoblastic phenotype of VSMCs. Vascular calcification and osteogenic differentiation of VSMCs were positively regulated by HCY through increased/restored MMP-2 expression, increased expression of calcification proteins, and decreased anti-calcification protein levels. In summary, MMP-2 inhibition may be a protective strategy against VSMC calcification.

  11. Dopamine receptors D3 and D5 regulate CD4(+)T-cell activation and differentiation by modulating ERK activation and cAMP production.

    Science.gov (United States)

    Franz, Dafne; Contreras, Francisco; González, Hugo; Prado, Carolina; Elgueta, Daniela; Figueroa, Claudio; Pacheco, Rodrigo

    2015-07-15

    Dopamine receptors have been described in T-cells, however their signalling pathways coupled remain unknown. Since cAMP and ERKs play key roles regulating T-cell physiology, we aim to determine whether cAMP and ERK1/2-phosphorylation are modulated by dopamine receptor 3 (D3R) and D5R, and how this modulation affects CD4(+) T-cell activation and differentiation. Our pharmacologic and genetic evidence shows that D3R-stimulation reduced cAMP levels and ERK2-phosphorylation, consequently increasing CD4(+) T-cell activation and Th1-differentiation, respectively. Moreover, D5R expression reinforced TCR-triggered ERK1/2-phosphorylation and T-cell activation. In conclusion, these findings demonstrate how D3R and D5R modulate key signalling pathways affecting CD4(+) T-cell activation and Th1-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Modulating Functions Based Algorithm for the Estimation of the Coefficients and Differentiation Order for a Space-Fractional Advection-Dispersion Equation

    KAUST Repository

    Aldoghaither, Abeer

    2015-12-01

    In this paper, a new method, based on the so-called modulating functions, is proposed to estimate average velocity, dispersion coefficient, and differentiation order in a space-fractional advection-dispersion equation, where the average velocity and the dispersion coefficient are space-varying. First, the average velocity and the dispersion coefficient are estimated by applying the modulating functions method, where the problem is transformed into a linear system of algebraic equations. Then, the modulating functions method combined with a Newton\\'s iteration algorithm is applied to estimate the coefficients and the differentiation order simultaneously. The local convergence of the proposed method is proved. Numerical results are presented with noisy measurements to show the effectiveness and robustness of the proposed method. It is worth mentioning that this method can be extended to general fractional partial differential equations.

  13. Modulating Functions Based Algorithm for the Estimation of the Coefficients and Differentiation Order for a Space-Fractional Advection-Dispersion Equation

    KAUST Repository

    Aldoghaither, Abeer; Liu, Da-Yan; Laleg-Kirati, Taous-Meriem

    2015-01-01

    In this paper, a new method, based on the so-called modulating functions, is proposed to estimate average velocity, dispersion coefficient, and differentiation order in a space-fractional advection-dispersion equation, where the average velocity and the dispersion coefficient are space-varying. First, the average velocity and the dispersion coefficient are estimated by applying the modulating functions method, where the problem is transformed into a linear system of algebraic equations. Then, the modulating functions method combined with a Newton's iteration algorithm is applied to estimate the coefficients and the differentiation order simultaneously. The local convergence of the proposed method is proved. Numerical results are presented with noisy measurements to show the effectiveness and robustness of the proposed method. It is worth mentioning that this method can be extended to general fractional partial differential equations.

  14. Temperature modulation and quadrature detection for selective titration of two-state exchanging reactants.

    Science.gov (United States)

    Zrelli, K; Barilero, T; Cavatore, E; Berthoumieux, H; Le Saux, T; Croquette, V; Lemarchand, A; Gosse, C; Jullien, L

    2011-04-01

    Biological samples exhibit huge molecular diversity over large concentration ranges. Titrating a given compound in such mixtures is often difficult, and innovative strategies emphasizing selectivity are thus demanded. To overcome limitations inherent to thermodynamics, we here present a generic technique where discrimination relies on the dynamics of interaction between the target of interest and a probe introduced in excess. Considering an ensemble of two-state exchanging reactants submitted to temperature modulation, we first demonstrate that the amplitude of the out-of-phase concentration oscillations is maximum for every compound involved in a reaction whose equilibrium constant is equal to unity and whose relaxation time is equal to the inverse of the excitation angular frequency. Taking advantage of this feature, we next devise a highly specific detection protocol and validate it using a microfabricated resistive heater and an epifluorescence microscope, as well as labeled oligonucleotides to model species displaying various dynamic properties. As expected, quantification of a sought for strand is obtained even if interfering reagents are present in similar amounts. Moreover, our approach does not require any separation and is compatible with imaging. It could then benefit some of the numerous binding assays performed every day in life sciences.

  15. Highly efficient low color temperature organic LED using blend carrier modulation layer

    Science.gov (United States)

    Hsieh, Yao-Ching; Chen, Szu-Hao; Shen, Shih-Ming; Wang, Ching-Chiun; Chen, Chien-Chih; Jou, Jwo-Huei

    2012-10-01

    Color temperature (CT) of light has great effect on human physiology and psychology, and low CT light, minimizing melatonin suppression and decreasing the risk of breast, colorectal, and prostate cancer. We demonstrates the incorporation of a blend carrier modulation interlayer (CML) between emissive layers to improve the device performance of low CT organic light emitting diodes, which exhibits an external quantum efficiency of 22.7% and 36 lm W-1 (54 cd A-1) with 1880 K at 100 cd m-2, or 20.8% and 29 lm W-1 (50 cd A-1) with 1940 K at 1000 cd m-2. The result shows a CT much lower than that of incandescent bulbs, which is 2500 K with 15 lmW-1 efficiency, and even as low as that of candles, which is 2000 K with 0.1 lmW-1. The high efficiency of the proposed device may be attributed to its CML, which helps effectively distribute the entering carriers into the available recombination zones.

  16. Modulating Pluronics micellar rupture with cyclodextrins and drugs: effect of pH and temperature

    International Nuclear Information System (INIS)

    Valero, M; Dreiss, C A

    2014-01-01

    Micelles of the triblock copolymer Pluronic F127 can encapsulate drugs with various chemical structures and their architecture has been studied by small-angle neutron scattering (SANS). Interaction with a derivative of β-cyclodextrin, namely, heptakis(2,6-di-O- methyl)-β-cyclodextrin (DIMEB), induces a complete break-up of the micelles, providing a mechanism for drug release. In the presence of drugs partitioned within the micelles, competitive interactions between polymer, drug and cyclodextrin lead to a modulation of the micellar rupture, depending on the nature of the drug and the exact composition of the ternary system. These interactions can be further adjusted by temperature and pH. While the most widely accepted mechanism for the interaction between Pluronics and cyclodextrins is through polypseudorotaxane (PR) formation, involving the threading of β-CD on the polymer backbone, time-resolved SANS experiments show that de-micellisation takes place in less than 100 ms, thus unambiguously ruling out an inclusion complex between the cyclodextrin and the polymer chains

  17. Low-Temperature Blanching as a Tool to Modulate the Structure of Pectin in Blueberry Purees.

    Science.gov (United States)

    Chevalier, Laura M; Rioux, Laurie-Eve; Angers, Paul; Turgeon, Sylvie L

    2017-09-01

    Blueberry composition was characterized for 6 cultivars. It contains a good amount of dietary fiber (10% to 20%) and pectin (4% to 7%) whose degree of methylation (DM) is sensitive to food processing. A low temperature blanching (LTB: 60 °C/1 h) was applied on blueberry purees to decrease pectin DM, in order to modulate puree properties and functionalities (that is, viscosity and stability), and to enhance pectin affinity toward other components within food matrices. Fiber content, viscosity, pectin solubility, DM, and monosaccharide composition were determined for both pasteurized, and LTB+pasteurized blueberry purees. The results showed that neither the amount of fiber, nor the viscosity were affected by LTB, indicating that this treatment did not result in any significant pectin depolymerization and degradation. LTB caused a decrease both in pectin DM from 58-67% to 45-47% and in the amount of water-soluble pectin fraction, the latter remaining the major fraction of total pectin at 52% to 57%. A LTB is a simple and mild process to produce blueberry purees with mostly soluble and low-methylated pectin in order to extend functionality and opportunities for interactions with other food ingredients. © 2017 Institute of Food Technologists®.

  18. Lipopolysaccharide from Crypt-Specific Core Microbiota Modulates the Colonic Epithelial Proliferation-to-Differentiation Balance

    Directory of Open Access Journals (Sweden)

    Tomoaki Naito

    2017-10-01

    Full Text Available We identified a crypt-specific core microbiota (CSCM dominated by strictly aerobic, nonfermentative bacteria in murine cecal and proximal colonic (PC crypts and hypothesized that, among its possible functions, it may affect epithelial regeneration. In the present work, we isolated representative CSCM strains using selective media based upon our initial 16S rRNA-based molecular identification (i.e., Acinetobacter, Delftia, and Stenotrophomonas. Their tropism for the crypt was confirmed, and their influence on epithelial regeneration was demonstrated in vivo by monocolonization of germfree mice. We also showed that lipopolysaccharide (LPS, through its endotoxin activity, was the dominant bacterial agonist controlling proliferation. The relevant molecular mechanisms were analyzed using colonic crypt-derived organoids exposed to bacterial sonicates or highly purified LPS as agonists. We identified a Toll-like receptor 4 (TLR4-dependent program affecting crypts at different stages of epithelial differentiation. LPS played a dual role: it repressed cell proliferation through RIPK3-mediated necroptosis of stem cells and cells of the transit-amplifying compartment and concurrently enhanced cell differentiation, particularly the goblet cell lineage.

  19. Tensile loading modulates bone marrow stromal cell differentiation and the development of engineered fibrocartilage constructs.

    Science.gov (United States)

    Connelly, John T; Vanderploeg, Eric J; Mouw, Janna K; Wilson, Christopher G; Levenston, Marc E

    2010-06-01

    Mesenchymal progenitors such as bone marrow stromal cells (BMSCs) are an attractive cell source for fibrocartilage tissue engineering, but the types or combinations of signals required to promote fibrochondrocyte-specific differentiation remain unclear. The present study investigated the influences of cyclic tensile loading on the chondrogenesis of BMSCs and the development of engineered fibrocartilage. Cyclic tensile displacements (10%, 1 Hz) were applied to BMSC-seeded fibrin constructs for short (24 h) or extended (1-2 weeks) periods using a custom loading system. At early stages of chondrogenesis, 24 h of cyclic tension stimulated both protein and proteoglycan synthesis, but at later stages, tension increased protein synthesis only. One week of intermittent cyclic tension significantly increased the total sulfated glycosaminoglycan and collagen contents in the constructs, but these differences were lost after 2 weeks of loading. Constraining the gels during the extended culture periods prevented contraction of the fibrin matrix, induced collagen fiber alignment, and increased sulfated glycosaminoglycan release to the media. Cyclic tension specifically stimulated collagen I mRNA expression and protein synthesis, but had no effect on collagen II, aggrecan, or osteocalcin mRNA levels. Overall, these studies suggest that the combination of chondrogenic stimuli and tensile loading promotes fibrochondrocyte-like differentiation of BMSCs and has the potential to direct fibrocartilage development in vitro.

  20. Green tea polyphenol epigallocatechin-3-gallate differentially modulates oxidative stress in PC12 cell compartments

    International Nuclear Information System (INIS)

    Raza, Haider; John, Annie

    2005-01-01

    Tea polyphenols have been reported to be potent antioxidants and beneficial in oxidative stress related diseases. Prooxidant effects of tea polyphenols have also been reported in cell culture systems. In the present study, we have studied oxidative stress in the subcellular compartments of PC12 cells after treatment with different concentrations of the green tea polyphenol, epigallocatechin-3-gallate (EGCG). We have demonstrated that EGCG has differentially affected the production of reactive oxygen species (ROS), glutathione (GSH) metabolism and cytochrome P450 2E1 activity in the different subcellular compartments in PC12 cells. Our results have shown that although the cell survival was not inhibited by EGCG, there was, however, an increased DNA breakdown and activation of apoptotic markers, caspase 3 and poly- (ADP-ribose) polymerase (PARP) at higher concentrations of EGCG treatment. Our results suggest that the differential effects of EGCG might be related to the alterations in oxidative stress, GSH pools and CYP2E1 activity in different cellular compartments. These results may have implications in determining the chemopreventive therapeutic use of tea polyphenols in vivo

  1. Equivalent electrical network model approach applied to a double acting low temperature differential Stirling engine

    International Nuclear Information System (INIS)

    Formosa, Fabien; Badel, Adrien; Lottin, Jacques

    2014-01-01

    Highlights: • An equivalent electrical network modeling of Stirling engine is proposed. • This model is applied to a membrane low temperate double acting Stirling engine. • The operating conditions (self-startup and steady state behavior) are defined. • An experimental engine is presented and tested. • The model is validated against experimental results. - Abstract: This work presents a network model to simulate the periodic behavior of a double acting free piston type Stirling engine. Each component of the engine is considered independently and its equivalent electrical circuit derived. When assembled in a global electrical network, a global model of the engine is established. Its steady behavior can be obtained by the analysis of the transfer function for one phase from the piston to the expansion chamber. It is then possible to simulate the dynamic (steady state stroke and operation frequency) as well as the thermodynamic performances (output power and efficiency) for given mean pressure, heat source and heat sink temperatures. The motion amplitude especially can be determined by the spring-mass properties of the moving parts and the main nonlinear effects which are taken into account in the model. The thermodynamic features of the model have then been validated using the classical isothermal Schmidt analysis for a given stroke. A three-phase low temperature differential double acting free membrane architecture has been built and tested. The experimental results are compared with the model and a satisfactory agreement is obtained. The stroke and operating frequency are predicted with less than 2% error whereas the output power discrepancy is of about 30%. Finally, some optimization routes are suggested to improve the design and maximize the performances aiming at waste heat recovery applications

  2. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    Science.gov (United States)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  3. Computation of temperature-dependent legendre moments of a double-differential elastic cross section

    International Nuclear Information System (INIS)

    Arbanas, G.; Dunn, M.E.; Larson, N.M.; Leal, L.C.; Williams, M.L.; Becker, B.; Dagan, R.

    2011-01-01

    A general expression for temperature-dependent Legendre moments of a double-differential elastic scattering cross section was derived by Ouisloumen and Sanchez [Nucl. Sci. Eng. 107, 189-200 (1991)]. Attempts to compute this expression are hindered by the three-fold nested integral, limiting their practical application to just the zeroth Legendre moment of an isotropic scattering. It is shown that the two innermost integrals could be evaluated analytically to all orders of Legendre moments, and for anisotropic scattering, by a recursive application of the integration by parts method. For this method to work, the anisotropic angular distribution in the center of mass is expressed as an expansion in Legendre polynomials. The first several Legendre moments of elastic scattering of neutrons on 238 U are computed at T=1000 K at incoming energy 6.5 eV for isotropic scattering in the center of mass frame. Legendre moments of the anisotropic angular distribution given via Blatt-Biedenharn coefficients are computed at 1 keV. The results are in agreement with those computed by the Monte Carlo method. (author)

  4. Osmolality, temperature, and membrane lipid composition modulate the activity of betaine transporter BetP in Corynebacterium glutamicum

    DEFF Research Database (Denmark)

    Ozcan, Nuran; Ejsing, Christer S.; Shevchenko, Andrej

    2007-01-01

    The gram-positive soil bacterium Corynebacterium glutamicum, a major amino acid-producing microorganism in biotechnology, is equipped with several osmoregulated uptake systems for compatible solutes, which is relevant for the physiological response to osmotic stress. The most significant carrier......P activity. We further correlated the change in BetP regulation properties in cells grown at different temperatures to changes in the lipid composition of the plasma membrane. For this purpose, the glycerophospholipidome of C. glutamicum grown at different temperatures was analyzed by mass spectrometry using...... quantitative multiple precursor ion scanning. The molecular composition of glycerophospholipids was strongly affected by the growth temperature. The modulating influence of membrane lipid composition on BetP function was further corroborated by studying the influence of artificial modulation of membrane...

  5. Modulation of differentiation and self-renewal of tissue specific stem cells for effective mitigation of radiation injury

    International Nuclear Information System (INIS)

    Bandekar, Mayuri; Patwardhan, R.S.; Maurya, Dharmendra K.; Bhilwade, Hari N.; Sharma, Deepak; Sandur, Santosh Kumar

    2017-01-01

    The use of stem cells in regenerative medicine for the treatment of various human diseases is one of the active research areas. The aim of regenerative medicine is to restore normal tissue functions by replenishing injured tissues using either cell-based therapy or by inducing certain factors that can aid endogenous repair and regeneration. The approach for inducing endogenous repair and regeneration requires in vivo modulation of tissue-specific stem cells by therapeutic agents and enhance their abundance through activation, proliferation, differentiation, or reprogramming. Here we describe three different approaches to enhance the abundance of hematopoietic stem cells in vivo for mitigation of radiation induced toxicity. Baicalein, a flavonoid derived from Chinese and Indian medicinal plants like Scutellaria baicalensis and Terminalia ariuna enhanced the abundance of hematopoietic stem cells through activation of Nrf-2 in the lineage negative cells. Another anti-oxidant, chlorophyllin derived from green plant pigment, chlorophyll also enhanced the abundance of hematopoietic stem cells through modulation of cell cycle in cells of the bone marrow. Treatment of mice with Cobaltus chloride (CoCl_2), a well-known activator of hypoxia inducible factor-1α (HIP-1α), also led to increase in the number of hematopoietic stem cells in the bone marrow. Whereas chlorophyllin offered up to 100 % protection against whole body irradiation (WBI, 8 Gy) induced mortality in mice, baicalein offered up to70%protection. Cobaltus chloride treatment offered 40% protection against 8 Gy of WBI. These studies indicate potential use of stem cell modulating agents as effective mitigators of radiation induced toxicity in vivo. (author)

  6. A chaotic modulation scheme based on algebraic observability and sliding mode differentiators

    International Nuclear Information System (INIS)

    Cannas, Barbara; Cincotti, Silvano; Usai, Elio

    2005-01-01

    A chaotic communication technique for the transmission of secure information signals is presented. The proposed method allows the reconstruction of the system input (i.e., the information signal) from a scalar observable (i.e., the transmitted signal) and its derivatives. The approach is based on the concept of algebraic observability. A systematic procedure for the chaotic demodulation of the class of algebraic chaotic systems is described and discussed. The proposed procedure also allows one to directly identify a suitable 'response' system and the 'drive signal'. Moreover, it is shown that sliding differentiators can be used to reconstruct the time derivatives of the observable, and thus the information signal is recovered at the receiving end through some simple signal-processing operations such as multiplication, addition and subtraction. This allows the estimation of the system state and of the input signal (i.e., the information recovery) in a finite time

  7. Telomerase activity promotes osteoblast differentiation by modulating IGF-signaling pathway

    DEFF Research Database (Denmark)

    Saeed, Hamid; Qiu, Weimin; Li, Chen

    2015-01-01

    -regulation of several components of insulin-like growth factor (IGF) signaling. Specifically, a significant increase in IGF-induced AKT phosphorylation and alkaline phosphatase (ALP) activity were observed in hMSC-TERT. Enhanced ALP activity was reduced in presence of IGF1 receptor inhibitor: picropodophyllin....... In addition, telomerase deficiency caused significant reduction in IGF signaling proteins in osteoblastic cells cultured from telomerase deficient mice (Terc (-/-)). The low bone mass exhibited by Terc (-/-) mice was associated with significant reduction in serum levels of IGF1 and IGFBP3 as well as reduced...... skeletal mRNA expression of Igf1, Igf2, Igf2r, Igfbp5 and Igfbp6. IGF1-induced osteoblast differentiation was also impaired in Terc (-/-) MSC. In conclusion, our data demonstrate that impaired IGF/AKT signaling contributes to the observed decreased bone mass and bone formation exhibited by telomerase...

  8. Exogenous nitric oxide (NO) generated by NO-plasma treatment modulates osteoprogenitor cells early differentiation

    International Nuclear Information System (INIS)

    Elsaadany, Mostafa; Subramanian, Gayathri; Ayan, Halim; Yildirim-Ayan, Eda

    2015-01-01

    In this study, we investigated whether nitric oxide (NO) generated using a non-thermal plasma system can mediate osteoblastic differentiation of osteoprogenitor cells without creating toxicity. Our objective was to create an NO delivery mechanism using NO-dielectric barrier discharge (DBD) plasma that can generate and transport NO with controlled concentration to the area of interest to regulate osteoprogenitor cell activity. We built a non-thermal atmospheric pressure DBD plasma nozzle system based on our previously published design and similar designs in the literature. The electrical and spectral analyses demonstrated that N 2 dissociated into NO under typical DBD voltage–current characteristics. We treated osteoprogenitor cells (MC3T3-E1) using NO-plasma treatment system. Our results demonstrated that we could control NO concentration within cell culture media and could introduce NO into the intracellular space using NO-plasma treatment with various treatment times. We confirmed that NO-plasma treatment maintained cell viability and did not create any toxicity even with prolonged treatment durations. Finally, we demonstrated that NO-plasma treatment induced early osteogenic differentiation in the absence of pro-osteogenic growth factors/proteins. These findings suggest that through the NO-plasma treatment system we are able to generate and transport tissue-specific amounts of NO to an area of interest to mediate osteoprogenitor cell activity without subsequent toxicity. This opens up the possibility to develop DBD plasma-assisted tissue-specific NO delivery strategies for therapeutic intervention in the prevention and treatment of bone diseases. (paper)

  9. Hepatic farnesoid X-receptor isoforms α2 and α4 differentially modulate bile salt and lipoprotein metabolism in mice.

    Directory of Open Access Journals (Sweden)

    Marije Boesjes

    Full Text Available The nuclear receptor FXR acts as an intracellular bile salt sensor that regulates synthesis and transport of bile salts within their enterohepatic circulation. In addition, FXR is involved in control of a variety of crucial metabolic pathways. Four FXR splice variants are known, i.e. FXRα1-4. Although these isoforms show differences in spatial and temporal expression patterns as well as in transcriptional activity, the physiological relevance hereof has remained elusive. We have evaluated specific roles of hepatic FXRα2 and FXRα4 by stably expressing these isoforms using liver-specific self-complementary adeno-associated viral vectors in total body FXR knock-out mice. The hepatic gene expression profile of the FXR knock-out mice was largely normalized by both isoforms. Yet, differential effects were also apparent; FXRα2 was more effective in reducing elevated HDL levels and transrepressed hepatic expression of Cyp8b1, the regulator of cholate synthesis. The latter coincided with a switch in hydrophobicity of the bile salt pool. Furthermore, FXRα2-transduction caused an increased neutral sterol excretion compared to FXRα4 without affecting intestinal cholesterol absorption. Our data show, for the first time, that hepatic FXRα2 and FXRα4 differentially modulate bile salt and lipoprotein metabolism in mice.

  10. Effects of tomato variety, temperature differential and post-stem removal time on internalization of Salmonella Thompson into tomatoes

    Science.gov (United States)

    Tomatoes have been implicated in several Salmonellosis outbreaks due to possible contamination through bacterial infiltration into tomatoes during post-harvest handling. The aim of this study was to determine the effects of tomato variety, dump tank water to tomato pulp temperature differential, and...

  11. Nonlinear intersubband absorption and refractive index changes in square and graded quantum well modulated by temperature and Hydrostatic pressure

    International Nuclear Information System (INIS)

    Ozturk, Emine; Sokmen, Ismail

    2013-01-01

    In this study, the effects of hydrostatic pressure and temperature on the linear and nonlinear intersubband transitions and the refractive index changes in the conduction band of square and graded quantum well (QW) are theoretically calculated within the framework of effective mass approximation. Results obtained show that the energy levels in different QWs and intersubband properties can be modified and controlled by the hydrostatic pressure and temperature. The modulation of the absorption coefficients and the refractive index changes which can be suitable for good performance optical modulators and various infrared optical device applications can be easily obtained by tuning the temperature and the hydrostatic pressure. - Highlights: ► Linear and nonlinear optical processes can be changed by pressure and temperature. ► Magnitude and energy of absorption peaks decrease as pressure increases. ► Refractive index changes in magnitude and energy decrease by increasing pressure. ► Energy differences are dependent on pressure, temperature and QW shapes. ► By increasing pressure we can obtain redshift in the optical transitions. ► For SQW, the absorption spectrum shows blueshift as the temperature increases. ► For GQW, the absorption spectrum shows redshift by temperature.

  12. Differential pain modulation in patients with peripheral neuropathic pain and fibromyalgia.

    Science.gov (United States)

    Gormsen, Lise; Bach, Flemming W; Rosenberg, Raben; Jensen, Troels S

    2017-12-29

    Background The definition of neuropathic pain has recently been changed by the International Association for the Study of Pain. This means that conditions such as fibromyalgia cannot, as sometimes discussed, be included in the neuropathic pain conditions. However, fibromyalgia and peripheral neuropathic pain share common clinical features such as spontaneous pain and hypersensitivity to external stimuli. Therefore, it is of interest to directly compare the conditions. Material and methods In this study we directly compared the pain modulation in neuropathic pain versus fibromyalgia by recording responses to a cold pressor test in 30 patients with peripheral neuropathic pain, 28 patients with fibromyalgia, and 26 pain-free age-and gender-matched healthy controls. Patients were asked to rate their spontaneous pain on a visual analog scale (VAS (0-100 mm) immediately before and immediately after the cold pressor test. Furthermore the duration (s) of extremity immersion in cold water was used as a measure of the pain tolerance threshold, and the perceived pain intensity at pain tolerance on the VAS was recorded on the extremity in the water after the cold pressor test. In addition, thermal (thermo tester) and mechanical stimuli (pressure algometer) were used to determine sensory detection, pain detection, and pain tolerance thresholds in different body parts. All sensory tests were done by the same examiner, in the same room, and with each subject in a supine position. The sequence of examinations was the following: (1) reaction time, (2) pressure thresholds, (3) thermal thresholds, and (4) cold pressor test. Reaction time was measured to ensure that psychomotoric inhibitions did not influence pain thresholds. Results Pain modulation induced by a cold pressor test reduced spontaneous pain by 40% on average in neuropathic pain patients, but increased spontaneous pain by 2.6% in fibromyalgia patients. This difference between fibromyalgia and neuropathic pain patients was

  13. Differential responses of the somatotropic and thyroid axes to environmental temperature changes in the green iguana.

    Science.gov (United States)

    Ávila-Mendoza, José; Carranza, Martha; Villalobos, Patricia; Olvera, Aurora; Orozco, Aurea; Luna, Maricela; Arámburo, Carlos

    2016-05-01

    5.3±0.58ng/ml, after 2weeks at 18°C) and T3 (from 0.87±0.09 to 0.05±0.01ng/ml, under chronic conditions at 25°C), and Type-2 deiodinase (D2) activity (from 992.5±224 to 213.6±26.4fmolI(125)T4/mgh). The reduction in thyroid activity correlates with the down-regulation of metabolism as suggested by the decrease in the serum glucose and free fatty acid levels. These changes apparently were independent of a possible stress response, at least under acute exposure to both temperatures and in chronic treatment to 25°C, since serum corticosterone had no significant changes in these conditions, while at chronic 18°C exposure, a slight increase (0.38 times above control) was found. Thus, these data suggest that the reptilian somatotropic and thyroid axes have differential responses to cold exposure, and that GH and TRH may play important roles associated to adaptation mechanisms that support temperature acclimation in the green iguana. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Vasopressin differentially modulates aggression and anxiety in adolescent hamsters administered anabolic steroids.

    Science.gov (United States)

    Morrison, Thomas R; Ricci, Lesley A; Melloni, Richard H

    2016-11-01

    Adolescent Syrian hamsters (Mesocricetus auratus) treated with anabolic/androgenic steroids display increased offensive aggression and decreased anxiety correlated with an increase in vasopressin afferent development, synthesis, and neural signaling within the anterior hypothalamus. Upon withdrawal from anabolic/androgenic steroids, this neurobehavioral relationship shifts as hamsters display decreased offensive aggression and increased anxiety correlated with a decrease in anterior hypothalamic vasopressin. This study investigated the hypothesis that alterations in anterior hypothalamic vasopressin neural signaling modulate behavioral shifting between adolescent anabolic/androgenic steroid-induced offensive aggression and anxiety. To test this, adolescent male hamsters were administered anabolic/androgenic steroids and tested for offensive aggression or anxiety following direct pharmacological manipulation of vasopressin V1A receptor signaling within the anterior hypothalamus. Blockade of anterior hypothalamic vasopressin V1A receptor signaling suppressed offensive aggression and enhanced general and social anxiety in hamsters administered anabolic/androgenic steroids during adolescence, effectively reversing the pattern of behavioral response pattern normally observed during the adolescent exposure period. Conversely, activation of anterior hypothalamic vasopressin V1A receptor signaling enhanced offensive aggression in hamsters exposed to anabolic/androgenic steroids during adolescence. Together, these findings suggest that the state of vasopressin neural development and signaling in the anterior hypothalamus plays an important role in behavioral shifting between aggression and anxiety following adolescent exposure to anabolic/androgenic steroids. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Differential modulation of apoptotic processes by proanthocyanidins as a dietary strategy for delaying chronic pathologies.

    Science.gov (United States)

    Puiggròs, Francesc; Salvadó, Maria-Josepa; Bladé, Cinta; Arola, Lluís

    2014-01-01

    Apoptosis is a biological process necessary for maintaining cellular homeostasis. Several diseases can result if it is deregulated. For example, inhibition of apoptotic signaling pathways is linked to the survival of pathological cells, which contributes to cancer, whereas excessive apoptosis is linked to neurodegenerative diseases, partially via oxidative stress. The activation or restoration of apoptosis via extrinsic or intrinsic pathways combined with cell signaling pathways triggered by reactive oxygen specises (ROS) formation is considered a key strategy by which bioactive foods can exert their health effects. Proanthocyanidins, a class of flavonoids naturally found in fruits, vegetables, and beverages, have attracted a great deal of attention not only because they are strong antioxidants but also because they appear to exert a different modulation of apoptosis, stimulating apoptosis in damaged cells, thus preventing cancer or reducing apoptosis in healthy cells, and as a result, preserving the integrity of normal cells and protecting against neurodegenerative diseases. Therefore, proanthocyanidins could provide a defense against apoptosis induced by oxidative stress or directly inhibit apoptosis, and they could also provide a promising treatment for a variety of diseases. Emerging data suggest that proanthocyanidins, especially those that humans can be persuaded to consume, may be used to prevent and manage cancer and mental disorders.

  16. The Primary Visual Cortex Is Differentially Modulated by Stimulus-Driven and Top-Down Attention

    Science.gov (United States)

    Bekisz, Marek; Bogdan, Wojciech; Ghazaryan, Anaida; Waleszczyk, Wioletta J.; Kublik, Ewa; Wróbel, Andrzej

    2016-01-01

    Selective attention can be focused either volitionally, by top-down signals derived from task demands, or automatically, by bottom-up signals from salient stimuli. Because the brain mechanisms that underlie these two attention processes are poorly understood, we recorded local field potentials (LFPs) from primary visual cortical areas of cats as they performed stimulus-driven and anticipatory discrimination tasks. Consistent with our previous observations, in both tasks, we found enhanced beta activity, which we have postulated may serve as an attention carrier. We characterized the functional organization of task-related beta activity by (i) cortical responses (EPs) evoked by electrical stimulation of the optic chiasm and (ii) intracortical LFP correlations. During the anticipatory task, peripheral stimulation that was preceded by high-amplitude beta oscillations evoked large-amplitude EPs compared with EPs that followed low-amplitude beta. In contrast, during the stimulus-driven task, cortical EPs preceded by high-amplitude beta oscillations were, on average, smaller than those preceded by low-amplitude beta. Analysis of the correlations between the different recording sites revealed that beta activation maps were heterogeneous during the bottom-up task and homogeneous for the top-down task. We conclude that bottom-up attention activates cortical visual areas in a mosaic-like pattern, whereas top-down attentional modulation results in spatially homogeneous excitation. PMID:26730705

  17. Pentosan polysulfate inhibits atherosclerosis in Watanabe heritable hyperlipidemic rabbits: differential modulation of metalloproteinase-2 and -9.

    Science.gov (United States)

    Lupia, Enrico; Zheng, Feng; Grosjean, Fabrizio; Tack, Ivan; Doublier, Sophie; Elliot, Sharon J; Vlassara, Helen; Striker, Gary E

    2012-02-01

    Pentosan polysulfate (PPS), a heparinoid compound essentially devoid of anticoagulant activity, modulates cell growth and decreases inflammation. We investigated the effect of PPS on the progression of established atherosclerosis in Watanabe heritable hyperlipidemic (WHHL) rabbits. After severe atherosclerosis developed on an atherogenic diet, WHHL rabbits were treated with oral PPS or tap water for 1 month. The aortic intima-to-media ratio and macrophage infiltration were reduced, plaque collagen content was increased, and plaque fibrous caps were preserved by PPS treatment. Plasma lipid levels and post-heparin hepatic lipase activity remained unchanged. However, net collagenolytic activity in aortic extracts was decreased, and the levels of matrix metalloproteinase (MMP)-2 and tissue inhibitor of metalloproteinase (TIMP) activity were increased by PPS. Moreover, PPS treatment decreased tumor necrosis factor α (TNFα)-stimulated proinflammatory responses, in particular activation of nuclear factor-κB and p38, and activation of MMPs in macrophages. In conclusion, oral PPS treatment prevents progression of established atherosclerosis in WHHL rabbits. This effect may be partially mediated by increased MMP-2 and TIMP activities in the aortic wall and reduced TNFα-stimulated inflammation and MMP activation in macrophages. Thus, PPS may be a useful agent in inhibiting the progression of atherosclerosis.

  18. Differential Modulation of Transcription Factors and Cytoskeletal Proteins in Prostate Carcinoma Cells by a Bacterial Lactone

    Directory of Open Access Journals (Sweden)

    Senthil R. Kumar

    2018-01-01

    Full Text Available The present study tested the effect of a bacterial lactone N-(3-oxododecanoyl-homoserine lactone (C12-HSL on the cytoskeletal and transcriptional genes and proteins in prostate adenocarcinoma (PA cells (DU145 and LNCaP and prostate small cell neuroendocrine carcinoma (SCNC PC3 cells including their cellular viability and apoptosis. Our data indicate that cell migration and colony formation were affected in the presence of C12-HSL. C12-HSL induced apoptosis and altered viability of both PA and SCNC cells in a concentration dependent manner as measured by fluorescence and chemiluminescence assays. Compared to PCa cells, noncancerous prostate epithelial cells (RWPE1 were resistant to modification by C12-HSL. Further, the viability of PC3 cells in 3D matrix was suppressed by C12-HSL treatment as detected using calcein AM fluorescence in situ. C12-HSL treatment induced cytoskeletal associated protein expression of vinculin and RhoC, which may have implications in cancer cell motility, adhesion, and metastasis. IQGAP protein expression was reduced in DU145 and RWPE1 cells in the presence of C12-HSL. C12-HSL decreased STAT3 phosphorylation in DU145 cells but increased STAT1 protein phosphorylation in PC3 and LNCaP cells. Overall, these studies indicate that C12-HSL can trigger changes in transcription factors and cytoskeletal proteins and thereby modulate growth and migration properties of PCa cells.

  19. Does Knee Osteoarthritis Differentially Modulate Proprioceptive Acuity in the Frontal and Sagittal Planes of the Knee?

    Science.gov (United States)

    Cammarata, Martha L; Schnitzer, Thomas J; Dhaher, Yasin Y

    2012-01-01

    Objective Impaired proprioception may alter joint loading and contribute to the progression of knee osteoarthritis (OA). Though frontal plane loading at the knee contributes to OA, proprioception and its modulation with OA in this direction have not been examined. The aim of this study was to assess knee proprioceptive acuity in the frontal and sagittal planes in knee OA and healthy participants. We hypothesized that proprioceptive acuity will be decreased in the OA population in both planes of movement. Methods Thirteen persons with knee OA and fourteen healthy age-matched subjects participated. Proprioceptive acuity was assessed in varus, valgus, flexion, and extension using the threshold to detection of passive movement (TDPM). Repeated measures analysis of variance was used to assess differences in TDPM between subject groups and across movement directions. Linear regression analyses were performed to assess the correlation of TDPM between and within planes of movement. Results TDPM was found to be significantly higher (Pplanes of movement were only weakly correlated, especially in the OA group. Conclusions Consistent differences in TDPM between the OA and control groups across all movement directions suggest a global, not direction-specific, reduction in sensation in knee OA patients. PMID:21547895

  20. N,N-dimethylglycine differentially modulates psychotomimetic and antidepressant-like effects of ketamine in mice.

    Science.gov (United States)

    Lin, Jen-Cheng; Chan, Ming-Huan; Lee, Mei-Yi; Chen, Yi-Chyan; Chen, Hwei-Hsien

    2016-11-03

    Ketamine, a dissociative anesthetic, produces rapid and sustained antidepressant effects at subanesthtic doses. However, it still inevitably induces psychotomimetic side effects. N,N-dimethylglycine (DMG) is a derivative of the amino acid glycine and is used as a dietary supplement. Recently, DMG has been found acting at glycine binding site of the N-methyl-d-aspartate receptor (NMDAR). As blockade of NMDARs is one of the main mechanisms responsible for the action of ketamine on central nervous system, DMG might modulate the behavioral responses to ketamine. The present study determined the effects of DMG on the ketamine-induced psychotomimetic, anesthetic and antidepressant-like effects in mice. DMG pretreatment reversed the ketamine-induced locomotor hyperactivity and impairment in the rotarod performance, novel location and novel object recognition tests, and prepulse inhibition. In addition, DMG alone exhibited antidepressant-like effects in the forced swim test and produced additive effects when combined with ketamine. However, DMG did not affect ketamine-induced anesthesia. These results reveal that DMG could antagonize ketamine's psychotomimetic effects, yet produce additive antidepressant-like effects with ketamine, suggesting that DMG might have antipsychotic potential and be suitable as an add-on therapy to ketamine for patients with treatment-resistant depression. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Modulation of cadmium-induced mitochondrial dysfunction and volume changes by temperature in rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Onukwufor, John O.; Kibenge, Fred; Stevens, Don; Kamunde, Collins

    2015-01-01

    Highlights: • Interactions of Cd and temperature exacerbate mitochondrial dysfunction and enhance Cd accumulation. • Cd uptake by mitochondria occurs through the Ca uniporter. • Temperature exacerbates Cd-induced mitochondrial volume changes. • Low concentrations of Cd inhibit mitochondrial swelling. - Abstract: We investigated how temperature modulates cadmium (Cd)-induced mitochondrial bioenergetic disturbances, metal accumulation and volume changes in rainbow trout (Oncorhynchus mykiss). In the first set of experiments, rainbow trout liver mitochondrial function and Cd content were measured in the presence of complex I substrates, malate and glutamate, following exposure to Cd (0–100 μM) at three (5, 13 and 25 °C) temperatures. The second set of experiments assessed the effect of temperature on Cd-induced mitochondrial volume changes, including the underlying mechanisms, at 15 and 25 °C. Although temperature stimulated both state 3 and 4 rates of respiration, the coupling efficiency was reduced at temperature extremes due to greater inhibition of state 3 at low temperature and greater stimulation of state 4 at the high temperature. Cadmium exposure reduced the stimulatory effect of temperature on state 3 respiration but increased that on state 4, consequently exacerbating mitochondrial uncoupling. The interaction of Cd and temperature yielded different responses on thermal sensitivity of state 3 and 4 respiration; the Q 10 values for state 3 respiration increased at low temperature (5–13 °C) while those for state 4 increased at high temperature (13–25 °C). Importantly, the mitochondria accumulated more Cd at high temperature suggesting that the observed greater impairment of oxidative phosphorylation with temperature was due, at least in part, to a higher metal burden. Cadmium-induced mitochondrial volume changes were characterized by an early phase of contraction followed by swelling, with temperature changing the kinetics and intensifying

  2. Modulation of cadmium-induced mitochondrial dysfunction and volume changes by temperature in rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Onukwufor, John O. [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Kibenge, Fred [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Stevens, Don [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Kamunde, Collins, E-mail: ckamunde@upei.ca [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada)

    2015-01-15

    Highlights: • Interactions of Cd and temperature exacerbate mitochondrial dysfunction and enhance Cd accumulation. • Cd uptake by mitochondria occurs through the Ca uniporter. • Temperature exacerbates Cd-induced mitochondrial volume changes. • Low concentrations of Cd inhibit mitochondrial swelling. - Abstract: We investigated how temperature modulates cadmium (Cd)-induced mitochondrial bioenergetic disturbances, metal accumulation and volume changes in rainbow trout (Oncorhynchus mykiss). In the first set of experiments, rainbow trout liver mitochondrial function and Cd content were measured in the presence of complex I substrates, malate and glutamate, following exposure to Cd (0–100 μM) at three (5, 13 and 25 °C) temperatures. The second set of experiments assessed the effect of temperature on Cd-induced mitochondrial volume changes, including the underlying mechanisms, at 15 and 25 °C. Although temperature stimulated both state 3 and 4 rates of respiration, the coupling efficiency was reduced at temperature extremes due to greater inhibition of state 3 at low temperature and greater stimulation of state 4 at the high temperature. Cadmium exposure reduced the stimulatory effect of temperature on state 3 respiration but increased that on state 4, consequently exacerbating mitochondrial uncoupling. The interaction of Cd and temperature yielded different responses on thermal sensitivity of state 3 and 4 respiration; the Q{sub 10} values for state 3 respiration increased at low temperature (5–13 °C) while those for state 4 increased at high temperature (13–25 °C). Importantly, the mitochondria accumulated more Cd at high temperature suggesting that the observed greater impairment of oxidative phosphorylation with temperature was due, at least in part, to a higher metal burden. Cadmium-induced mitochondrial volume changes were characterized by an early phase of contraction followed by swelling, with temperature changing the kinetics and

  3. Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study.

    Science.gov (United States)

    Gao, Patrick P; Zhang, Jevin W; Fan, Shu-Juan; Sanes, Dan H; Wu, Ed X

    2015-12-01

    gain modulation is mediated primarily through direct projections and they point to future investigations of the differential roles of the direct and indirect projections in corticofugal modulation. In summary, our imaging findings demonstrate the large-scale descending influences, from both the auditory and visual cortices, on sound processing in different IC subdivisions. They can guide future studies on the coordinated activity across multiple regions of the auditory network, and its dysfunctions. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Transient Features in Nanosecond Pulsed Electric Fields Differentially Modulate Mitochondria and Viability

    Science.gov (United States)

    Beebe, Stephen J.; Chen, Yeong-Jer; Sain, Nova M.; Schoenbach, Karl H.; Xiao, Shu

    2012-01-01

    It is hypothesized that high frequency components of nanosecond pulsed electric fields (nsPEFs), determined by transient pulse features, are important for maximizing electric field interactions with intracellular structures. For monopolar square wave pulses, these transient features are determined by the rapid rise and fall of the pulsed electric fields. To determine effects on mitochondria membranes and plasma membranes, N1-S1 hepatocellular carcinoma cells were exposed to single 600 ns pulses with varying electric fields (0–80 kV/cm) and short (15 ns) or long (150 ns) rise and fall times. Plasma membrane effects were evaluated using Fluo-4 to determine calcium influx, the only measurable source of increases in intracellular calcium. Mitochondria membrane effects were evaluated using tetramethylrhodamine ethyl ester (TMRE) to determine mitochondria membrane potentials (ΔΨm). Single pulses with short rise and fall times caused electric field-dependent increases in calcium influx, dissipation of ΔΨm and cell death. Pulses with long rise and fall times exhibited electric field-dependent increases in calcium influx, but diminished effects on dissipation of ΔΨm and viability. Results indicate that high frequency components have significant differential impact on mitochondria membranes, which determines cell death, but lesser variances on plasma membranes, which allows calcium influxes, a primary determinant for dissipation of ΔΨm and cell death. PMID:23284682

  5. Low Power Operation of Temperature-Modulated Metal Oxide Semiconductor Gas Sensors

    Directory of Open Access Journals (Sweden)

    Javier Burgués

    2018-01-01

    Full Text Available Mobile applications based on gas sensing present new opportunities for low-cost air quality monitoring, safety, and healthcare. Metal oxide semiconductor (MOX gas sensors represent the most prominent technology for integration into portable devices, such as smartphones and wearables. Traditionally, MOX sensors have been continuously powered to increase the stability of the sensing layer. However, continuous power is not feasible in many battery-operated applications due to power consumption limitations or the intended intermittent device operation. This work benchmarks two low-power, duty-cycling, and on-demand modes against the continuous power one. The duty-cycling mode periodically turns the sensors on and off and represents a trade-off between power consumption and stability. On-demand operation achieves the lowest power consumption by powering the sensors only while taking a measurement. Twelve thermally modulated SB-500-12 (FIS Inc. Jacksonville, FL, USA sensors were exposed to low concentrations of carbon monoxide (0–9 ppm with environmental conditions, such as ambient humidity (15–75% relative humidity and temperature (21–27 °C, varying within the indicated ranges. Partial Least Squares (PLS models were built using calibration data, and the prediction error in external validation samples was evaluated during the two weeks following calibration. We found that on-demand operation produced a deformation of the sensor conductance patterns, which led to an increase in the prediction error by almost a factor of 5 as compared to continuous operation (2.2 versus 0.45 ppm. Applying a 10% duty-cycling operation of 10-min periods reduced this prediction error to a factor of 2 (0.9 versus 0.45 ppm. The proposed duty-cycling powering scheme saved up to 90% energy as compared to the continuous operating mode. This low-power mode may be advantageous for applications that do not require continuous and periodic measurements, and which can tolerate

  6. Low Power Operation of Temperature-Modulated Metal Oxide Semiconductor Gas Sensors.

    Science.gov (United States)

    Burgués, Javier; Marco, Santiago

    2018-01-25

    Mobile applications based on gas sensing present new opportunities for low-cost air quality monitoring, safety, and healthcare. Metal oxide semiconductor (MOX) gas sensors represent the most prominent technology for integration into portable devices, such as smartphones and wearables. Traditionally, MOX sensors have been continuously powered to increase the stability of the sensing layer. However, continuous power is not feasible in many battery-operated applications due to power consumption limitations or the intended intermittent device operation. This work benchmarks two low-power, duty-cycling, and on-demand modes against the continuous power one. The duty-cycling mode periodically turns the sensors on and off and represents a trade-off between power consumption and stability. On-demand operation achieves the lowest power consumption by powering the sensors only while taking a measurement. Twelve thermally modulated SB-500-12 (FIS Inc. Jacksonville, FL, USA) sensors were exposed to low concentrations of carbon monoxide (0-9 ppm) with environmental conditions, such as ambient humidity (15-75% relative humidity) and temperature (21-27 °C), varying within the indicated ranges. Partial Least Squares (PLS) models were built using calibration data, and the prediction error in external validation samples was evaluated during the two weeks following calibration. We found that on-demand operation produced a deformation of the sensor conductance patterns, which led to an increase in the prediction error by almost a factor of 5 as compared to continuous operation (2.2 versus 0.45 ppm). Applying a 10% duty-cycling operation of 10-min periods reduced this prediction error to a factor of 2 (0.9 versus 0.45 ppm). The proposed duty-cycling powering scheme saved up to 90% energy as compared to the continuous operating mode. This low-power mode may be advantageous for applications that do not require continuous and periodic measurements, and which can tolerate slightly higher

  7. KIR2DL4 differentially signals downstream functions in human NK cells through distinct structural modules.

    Science.gov (United States)

    Miah, S M Shahjahan; Hughes, Tracey L; Campbell, Kerry S

    2008-03-01

    KIR2DL4 (2DL4) is a member of the killer cell Ig-like receptor (KIR) family in human NK cells. It can stimulate potent cytokine production and weak cytolytic activity in resting NK cells, but the mechanism for 2DL4-mediated signaling remains unclear. In this study we characterized the signaling pathways stimulated by 2DL4 engagement. In a human NK-like cell line, KHYG-1, cross-linking of 2DL4 activated MAPKs including JNK, ERK, and p38. Furthermore, 2DL4 cross-linking resulted in phosphorylation of IkappaB kinase beta (IKKbeta) and the phosphorylation and degradation of IkappaBalpha, which indicate activation of the classical NF-kappaB pathway. Engagement of 2DL4 was also shown to activate the transcription and translation of a variety of cytokine genes, including TNF-alpha, IFN-gamma, MIP1alpha, MIP1beta, and IL-8. Pharmacological inhibitors of JNK, MEK1/2 and p38, blocked IFN-gamma, IL-8, and MIP1alpha production, suggesting that MAPKs are regulating 2DL4-mediated cytokine production in a nonredundant manner. Activation of both p38 and ERK appear to be upstream of the stimulation of NF-kappaB. Mutation of a transmembrane arginine in 2DL4 to glycine (R/G mutant) abrogated FcepsilonRI-gamma association, as well as receptor-mediated cytolytic activity and calcium responses. Surprisingly, the R/G mutant still activated MAPKs and the NF-kappaB pathway and selectively stimulated the production of MIP1alpha, but not that of IFN-gamma or IL-8. In conclusion, we provide evidence that the activating functions of 2DL4 can be compartmentalized into two distinct structural modules: 1) through transmembrane association with FcepsilonRI-gamma; and 2) through another receptor domain independent of the transmembrane arginine.

  8. Concentration-dependent activation of dopamine receptors differentially modulates GABA release onto orexin neurons.

    Science.gov (United States)

    Linehan, Victoria; Trask, Robert B; Briggs, Chantalle; Rowe, Todd M; Hirasawa, Michiru

    2015-08-01

    Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups: orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying the action of DA on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using the whole-cell patch-clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration-dependent bidirectional manner. Low (1 μM) and high (100 μM) concentrations of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G-protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Differential modulation of Beta-adrenergic receptor signaling by trace amine-associated receptor 1 agonists.

    Directory of Open Access Journals (Sweden)

    Gunnar Kleinau

    Full Text Available Trace amine-associated receptors (TAAR are rhodopsin-like G-protein-coupled receptors (GPCR. TAAR are involved in modulation of neuronal, cardiac and vascular functions and they are potentially linked with neurological disorders like schizophrenia and Parkinson's disease. Subtype TAAR1, the best characterized TAAR so far, is promiscuous for a wide set of ligands and is activated by trace amines tyramine (TYR, phenylethylamine (PEA, octopamine (OA, but also by thyronamines, dopamine, and psycho-active drugs. Unfortunately, effects of trace amines on signaling of the two homologous β-adrenergic receptors 1 (ADRB1 and 2 (ADRB2 have not been clarified yet in detail. We, therefore, tested TAAR1 agonists TYR, PEA and OA regarding their effects on ADRB1/2 signaling by co-stimulation studies. Surprisingly, trace amines TYR and PEA are partial allosteric antagonists at ADRB1/2, whereas OA is a partial orthosteric ADRB2-antagonist and ADRB1-agonist. To specify molecular reasons for TAAR1 ligand promiscuity and for observed differences in signaling effects on particular aminergic receptors we compared TAAR, tyramine (TAR octopamine (OAR, ADRB1/2 and dopamine receptors at the structural level. We found especially for TAAR1 that the remarkable ligand promiscuity is likely based on high amino acid similarity in the ligand-binding region compared with further aminergic receptors. On the other hand few TAAR specific properties in the ligand-binding site might determine differences in ligand-induced effects compared to ADRB1/2. Taken together, this study points to molecular details of TAAR1-ligand promiscuity and identified specific trace amines as allosteric or orthosteric ligands of particular β-adrenergic receptor subtypes.

  10. Spinal cord activation differentially modulates ischaemic electrical responses to different stressors in canine ventricles.

    Science.gov (United States)

    Cardinal, René; Ardell, Jeffrey L; Linderoth, Bengt; Vermeulen, Michel; Foreman, Robert D; Armour, J Andrew

    2004-03-31

    Spinal cord stimulation (SCS) represents an acceptable treatment modality for patients with chronic angina pectoris refractory to standard therapy, but its mechanism of action remains unclear. To develop an experimental paradigm to study this issue, ameroid (AM) constrictors were implanted around the left circumflex coronary artery (LCx) in canines. Six weeks later, unipolar electrograms were recorded from 191 sites in the LCx territory in the open-chest, anesthetized state under basal pacing at 150 beats/min. We investigated the effect of SCS on ST segment displacements induced in the collateral-dependent myocardium in response to two stressors: (i) transient bouts of rapid ventricular pacing (TRP: 240/min for 1 min) and (ii) angiotensin II administered to right atrial neurons via their coronary artery blood supply. ST segment responses to TRP consisted of ST segment elevation in central areas of the LCx territory and ST depression at more peripheral areas. Such responses were unchanged when TRP was applied under SCS. Shortening of repolarization intervals in the metabolically compromised myocardium in response to TRP was also unaffected by SCS. In contrast, ST segment responses to intracoronary angiotensin II, which consisted of increased ST elevation, were attenuated by SCS in 6/8 preparations. The modulator effects of SCS were greatest at sites at which the greatest responses to angiotensin II occurred in the absence of SCS. These data indicate that spinal cord stimulation may attenuate the deleterious effects that stressors exert on the myocardium with reduced coronary reserve, particularly stressors associated with chemical activation of the intrinsic cardiac nervous system. Copyright 2004 Elsevier B.V.

  11. Histones Differentially Modulate the Anticoagulant and Profibrinolytic Activities of Heparin, Heparin Derivatives, and Dabigatran.

    Science.gov (United States)

    Ammollo, Concetta Tiziana; Semeraro, Nicola; Carratù, Maria Rosaria; Colucci, Mario; Semeraro, Fabrizio

    2016-02-01

    The antithrombin activity of unfractionated heparin (UFH) is offset by extracellular histones, which, along with DNA, represent a novel mediator of thrombosis and a structural component of thrombi. Here, we systematically evaluated the effect of histones, DNA, and histone-DNA complexes on the anticoagulant and profibrinolytic activities of UFH, its derivatives enoxaparin and fondaparinux, and the direct thrombin inhibitor dabigatran. Thrombin generation was assessed by calibrated automated thrombinography, inhibition of factor Xa and thrombin by synthetic substrates, tissue plasminogen activator-mediated clot lysis by turbidimetry, and thrombin-activatable fibrinolysis inhibitor (TAFI) activation by a functional assay. Histones alone delayed coagulation and slightly stimulated fibrinolysis. The anticoagulant activity of UFH and enoxaparin was markedly inhibited by histones, whereas that of fondaparinux was enhanced. Histones neutralized both the anti-Xa and anti-IIa activities of UFH and preferentially blocked the anti-IIa activity of enoxaparin. The anti-Xa activity of fondaparinux was not influenced by histones when analyzed by chromogenic substrates, but was potentiated in a plasma prothrombinase assay. Histones inhibited the profibrinolytic activity of UFH and enoxaparin and enhanced that of fondaparinux by acting on the modulation of TAFI activation by anticoagulants. Histone H1 was mainly responsible for these effects. Histone-DNA complexes, as well as intact neutrophil extracellular traps, impaired the activities of UFH, enoxaparin, and fondaparinux. Dabigatran was not noticeably affected by histones and/or DNA, whatever the assay performed. In conclusion, histones and DNA present in the forming clot may variably influence the antithrombotic activities of anticoagulants, suggesting a potential therapeutic advantage of dabigatran and fondaparinux over heparins. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Recombinant guinea pig CCL5 (RANTES) differentially modulates cytokine production in alveolar and peritoneal macrophages.

    Science.gov (United States)

    Skwor, Troy A; Cho, Hyosun; Cassidy, Craig; Yoshimura, Teizo; McMurray, David N

    2004-12-01

    The CC chemokine ligand 5 (CCL5; regulated on activation, normal T expressed and secreted) is known to recruit and activate leukocytes; however, its role in altering the responses of host cells to a subsequent encounter with a microbial pathogen has rarely been studied. Recombinant guinea pig (rgp)CCL5 was prepared, and its influence on peritoneal and alveolar macrophage activation was examined by measuring cytokine and chemokine mRNA expression in cells stimulated with rgpCCL5 alone or exposed to rgpCCL5 prior to lipopolysaccharide (LPS) stimulation. Levels of mRNA for guinea pig tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1beta, CCL2 (monocyte chemoattractant protein-1), and CXC chemokine ligand 8 (IL-8) were analyzed by reverse transcription followed by real-time polymerase chain reaction analysis using SYBR Green. Bioactive TNF-alpha protein concentration was measured using the L929 bioassay. Both macrophage populations displayed significant enhancement of all the genes and TNF-alpha protein levels when stimulated with rgpCCL5, except for CCL2 in alveolar macrophages. When peritoneal or alveolar macrophages were pretreated with rgpCCL5 for 2 h and then exposed to low concentrations of LPS, diminished cytokine and chemokine mRNA levels were apparent at 6 h compared with LPS alone. At the protein level, there was a reduction in TNF-alpha protein at 6 h in the CCL5-pretreated cells compared with LPS alone. These results further support a role for CCL5 in macrophage activation in addition to chemotactic properties and suggest a role in regulating the inflammatory response to LPS in the guinea pig by modulating the production of proinflammatory cytokines by macrophages.

  13. Differential modulation of thresholds for intracranial self-stimulation by mGlu5 positive and negative allosteric modulators: implications for effects on drug self-administration

    Directory of Open Access Journals (Sweden)

    M. Foster eOlive

    2012-01-01

    Full Text Available Pharmacological manipulation of the type 5 metabotropic glutamate (mGlu5 receptor alters various addiction related behaviors such as drug self-administration and the extinction and reinstatement of drug-seeking behavior. However, the effects of pharmacological modulation of mGlu5 receptors on brain reward function have not been widely investigated. We examined the effects of acute administration of positive and negative allosteric modulators (PAMs and NAMs, respectively on brain reward function by assessing thresholds for intracranial self-stimulation (ICSS. In addition, when acute effects were observed, we examined potential changes in altered ICSS thresholds following repeated administration. Male Sprague-Dawley rats were implanted with bipolar electrodes into the medial forebrain bundle and trained to respond for ICSS, followed by assessment of effects of mGlu5 ligands on ICSS thresholds using a discrete trials current intensity threshold determination procedure. Acute administration of the selective mGlu5 NAMs MTEP (0, 0.3, 1 or 3 mg/kg and fenobam (0, 3, 10, or 30 mg/kg dose-dependently increased ICSS thresholds (~70% at the highest dose tested, suggesting a deficit in brain reward function. Acute administration of the mGlu5 PAMs CDPPB (0, 10, 30 and 60 mg/kg or ADX47273 (0, 10, 30 and 60 mg/kg was without effect at any dose tested. When administered once daily for 5 consecutive days, the development of tolerance to the ability of threshold-elevating doses of MTEP and fenobam to increase ICSS thresholds was observed. We conclude that mGlu5 PAMs and NAMs differentially affect brain reward function, and that tolerance to the ability of mGlu5 NAMs to reduce brain reward function develops with repeated administration. These brain reward deficits should be taken into consideration when interpreting acute effects of mGlu5 NAMs on drug self-administration, and repeated administration may be an effective method to reduce these deficits.

  14. Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes

    International Nuclear Information System (INIS)

    Koc, Michal; Mayerová, Veronika; Kračmerová, Jana; Mairal, Aline; Mališová, Lucia; Štich, Vladimír; Langin, Dominique; Rossmeislová, Lenka

    2015-01-01

    Background: Adipocytes are cells specialized for storage of neutral lipids. This storage capacity is dependent on lipogenesis and is diminished in obesity. The reason for the decline in lipogenic activity of adipocytes in obesity remains unknown. Recent data show that lipogenesis in liver is regulated by pathways initiated by endoplasmic reticulum stress (ERS). Thus, we aimed at investigating the effect of ERS on lipogenesis in adipose cells. Methods: Preadipocytes were isolated from subcutaneous abdominal adipose tissue from obese volunteers and in vitro differentiated into adipocytes. ERS was induced pharmacologically by thapsigargin (TG) or tunicamycin (TM). Activation of Unfolded Protein Response pathway (UPR) was monitored on the level of eIF2α phosphorylation and mRNA expression of downstream targets of UPR sensors. Adipogenic and lipogenic capacity was evaluated by Oil Red O staining, measurement of incorporation of radio-labelled glucose or acetic acid into lipids and mRNA analysis of adipogenic/lipogenic markers. Results: Exposition of adipocytes to high doses of TG (100 nM) and TM (1 μg/ml) for 1–24 h enhanced expression of several UPR markers (HSPA5, EDEM1, ATF4, XBP1s) and phosphorylation of eIF2α. This acute ERS substantially inhibited expression of lipogenic genes (DGAT2, FASN, SCD1) and glucose incorporation into lipids. Moreover, chronic exposure of preadipocytes to low dose of TG (2.5 nM) during the early phases of adipogenic conversion of preadipocytes impaired both, lipogenesis and adipogenesis. On the other hand, chronic low ERS had no apparent effect on lipogenesis in mature adipocytes. Conclusions: Acute ERS weakened a capacity of mature adipocytes to store lipids and chronic ERS diminished adipogenic potential of preadipocytes. - Highlights: • High intensity ERS inhibits lipogenic capacity of adipocytes. • ERS impairs adipogenesis when present in early stages of adipogenesis. • Lipogenesis in mature adipocytes is not

  15. Microglial response to Alzheimer's disease is differentially modulated by voluntary wheel running and enriched environments.

    Science.gov (United States)

    Rodríguez, J J; Noristani, H N; Verkhratsky, A

    2015-03-01

    Alzheimer's disease (AD) is an untreatable neurodegenerative disease that deteriorates memory. Increased physical/cognitive activity reduces dementia risk by promoting neuronal and glial response. Although few studies have investigated microglial response in wild-type rodents following exposure to physical/cognitive stimulation, environmental-induced changes of microglia response to AD have been neglected. We investigated effects of running (RUN) and enriched (ENR) environments on numerical density (N v, #/mm(3)) and morphology of microglia in a triple transgenic (3×Tg-AD) mouse model of AD that closely mimics AD pathology in humans. We used immunohistochemical approach to characterise microglial domain by measuring their overall cell surface, volume and somata volume. 3×Tg-AD mice housed in standard control (STD) environment showed significant increase in microglial N v (11.7 %) in CA1 stratum lacunosum moleculare (S.Mol) of the hippocampus at 12 months compared to non-transgenic (non-Tg) animals. Exposure to combined RUN and ENR environments prevented an increase in microglial N v in 3×Tg-AD and reduced microglial numbers to non-Tg control levels. Interestingly, 3×Tg-AD mice housed solely in ENR environment displayed significant decrease in microglial N v in CA1 subfield (9.3 % decrease), stratum oriens (11.5 % decrease) and S.Mol (7.6 % decrease) of the hippocampus compared to 3×Tg-AD mice housed in STD environment. Morphological analysis revealed microglial hypertrophy due to pronounced increase in microglia surface, volume and somata volume (61, 78 and 41 %) in 3×Tg-AD mice housed in RUN (but not in ENR) compared to STD environment. These results indicate that exposure to RUN and ENR environments have differential effects on microglial density and activation-associated changes in microglial morphology.

  16. Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Koc, Michal; Mayerová, Veronika; Kračmerová, Jana [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00 (Czech Republic); Mairal, Aline [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, Cedex 4 (France); Mališová, Lucia; Štich, Vladimír [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00 (Czech Republic); Langin, Dominique [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, Cedex 4 (France); University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse, Cedex 4 (France); Toulouse University Hospitals, Department of Clinical Biochemistry, 31059 Toulouse, Cedex 9 (France); Rossmeislová, Lenka, E-mail: Lenka.Rossmeislova@lf3.cuni.cz [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00 (Czech Republic)

    2015-05-08

    Background: Adipocytes are cells specialized for storage of neutral lipids. This storage capacity is dependent on lipogenesis and is diminished in obesity. The reason for the decline in lipogenic activity of adipocytes in obesity remains unknown. Recent data show that lipogenesis in liver is regulated by pathways initiated by endoplasmic reticulum stress (ERS). Thus, we aimed at investigating the effect of ERS on lipogenesis in adipose cells. Methods: Preadipocytes were isolated from subcutaneous abdominal adipose tissue from obese volunteers and in vitro differentiated into adipocytes. ERS was induced pharmacologically by thapsigargin (TG) or tunicamycin (TM). Activation of Unfolded Protein Response pathway (UPR) was monitored on the level of eIF2α phosphorylation and mRNA expression of downstream targets of UPR sensors. Adipogenic and lipogenic capacity was evaluated by Oil Red O staining, measurement of incorporation of radio-labelled glucose or acetic acid into lipids and mRNA analysis of adipogenic/lipogenic markers. Results: Exposition of adipocytes to high doses of TG (100 nM) and TM (1 μg/ml) for 1–24 h enhanced expression of several UPR markers (HSPA5, EDEM1, ATF4, XBP1s) and phosphorylation of eIF2α. This acute ERS substantially inhibited expression of lipogenic genes (DGAT2, FASN, SCD1) and glucose incorporation into lipids. Moreover, chronic exposure of preadipocytes to low dose of TG (2.5 nM) during the early phases of adipogenic conversion of preadipocytes impaired both, lipogenesis and adipogenesis. On the other hand, chronic low ERS had no apparent effect on lipogenesis in mature adipocytes. Conclusions: Acute ERS weakened a capacity of mature adipocytes to store lipids and chronic ERS diminished adipogenic potential of preadipocytes. - Highlights: • High intensity ERS inhibits lipogenic capacity of adipocytes. • ERS impairs adipogenesis when present in early stages of adipogenesis. • Lipogenesis in mature adipocytes is not

  17. Anabolic/androgenic steroid administration during adolescence and adulthood differentially modulates aggression and anxiety.

    Science.gov (United States)

    Morrison, Thomas R; Ricci, Lesley A; Melloni, Richard H

    2015-03-01

    Anabolic/androgenic steroid (AAS) use remains high in both teens and adults in the U.S. and worldwide despite studies showing that AAS use is associated with a higher incidence of aggression and anxiety. Recently we showed that chronic exposure to AAS through adolescence increases aggression and decreases anxious behaviors, while during AAS-withdrawal aggression is lowered to species-normative levels and anxiety increases. AAS exposure is known to differentially alter behaviors and their underlying neural substrates between adults and adolescents and thus the current study investigated whether exposure to AAS during adulthood affects the relationship between aggression and anxiety in a manner similar to that previously observed in adolescents. Male hamsters were administered a moderate dose of AAS (5.0mg/kg/day×30days) during adolescence (P27-56) or young adulthood (P65-P94) and then tested for aggression and anxiety during AAS exposure (i.e., on P57 or P95) and during AAS withdrawal (i.e., 30days later on P77 or P115). Adolescent exposure to AAS increased aggressive responding during the AAS exposure period and anxiety-like responding during AAS withdrawal. Neither behavior was similarly influenced by adult exposure to AAS. Adult AAS exposure produced no difference in aggressive responding during AAS exposure (P95) or AAS withdrawal (P115); however, while AAS exposure during adulthood produced no difference in anxiety-like responding during AAS exposure, adult hamsters administered AAS were less anxious than vehicle control animals following AAS withdrawal. Together these data suggest that the aggression and anxiety provoking influence of AAS are likely a developmental phenomenon and that adult exposure to AAS may be anxiolytic over the long term. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Characterization of phase change materials for thermal control of photovoltaics using Differential Scanning Calorimetry and Temperature History Method

    International Nuclear Information System (INIS)

    Hasan, A.; McCormack, S.J.; Huang, M.J.; Norton, B.

    2014-01-01

    Highlights: • Five PCM are characterized using tow techniques for PV temperature regulation. • Thermophysical properties of interest are determined and compared with literature. • Determined PCM properties are discussed as criteria for PV temperature regulation. • One PCM identified as potential candidate for PV temperature regulation. - Abstract: Five solid–liquid phase change materials comprising three basic classes, paraffin waxes, salt hydrates and mixtures of fatty acids were thermophysically characterized for thermal regulation applications in photovoltaics. The PCM were investigated using Differential Scanning Calorimetry and Temperature History Method to find their thermophysical properties of interest. The relationship between thermophysical properties of the PCM and their choice as temperature regulators in photovoltaics is discussed in relation to the ambient conditions under which PV systems operate

  19. Measurements of temperature characteristics and estimation of terahertz negative differential conductance in resonant-tunneling-diode oscillators

    Directory of Open Access Journals (Sweden)

    M. Asada

    2017-11-01

    Full Text Available The temperature dependences of output power, oscillation frequency, and current-voltage curve are measured for resonant-tunneling-diode terahertz (THz oscillators. The output power largely changes with temperature owing to the change in Ohmic loss. In contrast to the output power, the oscillation frequency and current-voltage curve are almost insensitive to temperature. The measured temperature dependence of output power is compared with the theoretical calculation including the negative differential conductance (NDC as a fitting parameter assumed to be independent of temperature. Very good agreement was obtained between the measurement and calculation, and the NDC in the THz frequency region is estimated. The results show that the absolute values of NDC in the THz region significantly decrease relative to that at DC, and increases with increasing frequency in the measured frequency range.

  20. Phase behavior in blends of ethylene oxide-propylene oxide copolymer and poly(ether sulfone) studied by modulated-temperature DSC and NMR relaxometry.

    Science.gov (United States)

    Van Lokeren, Luk; Gotzen, Nicolaas-Alexander; Pieters, Ronny; Van Assche, Guy; Biesemans, Monique; Willem, Rudolph; Van Mele, Bruno

    2009-01-01

    The state diagram of a blend consisting of a copolymer containing ethylene oxide and propylene oxide, P(EO-ran-PO), and poly(ether sulfone), PES, is constructed by using modulated-temperature differential scanning calorimetry (MTDSC), T(2) NMR relaxometry, and light scattering. The apparent heat capacity signal in MTDSC is used for the characterization of polymer miscibility and morphology development. T(2) NMR relaxometry is used to detect the onset of phase separation, which is in good agreement with the onset of phase separation in the apparent heat capacity from MTDSC and the cloud-point temperature as determined from light scattering. The coexistence curve can be constructed from T(2) values at various temperatures by using a few blends with well-chosen compositions. These T(2) values also allow the detection of the boundary between the demixing zones with and without interference of partial vitrification and are in good agreement with stepwise quasi-isothermal MTDSC heat capacity measurements. Important interphases are detected in the heterogeneous P(EO-ran-PO)/PES blends.

  1. Temperature analysis with voltage-current time differential operation of electrochemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay; Wang, Gangqiang; Henderson, Brett Tamatea; Lourdhusamy, Anthoniraj; Steppan, James John; Allmendinger, Klaus Karl

    2018-01-02

    A method for temperature analysis of a gas stream. The method includes identifying a temperature parameter of an affected waveform signal. The method also includes calculating a change in the temperature parameter by comparing the affected waveform signal with an original waveform signal. The method also includes generating a value from the calculated change which corresponds to the temperature of the gas stream.

  2. Atg12 Maintains Skeletal Integrity by Modulating Pro-Osteoclastogenic Signals and Chondrocyte Differentiation

    Science.gov (United States)

    Tahimic, Candice; Bahl, Disha; Shirazi-Fard, Yasaman; Marsh, Timothy; Schreurs, Anne-Sofie; Rael, Victoria E.; Glikbarg, Chloe; Debnath, Jayantha; Globus, Ruth K.

    2016-01-01

    thickness and periosteal perimeter consistent with bone loss; and a longer primary spongiosa in male Atg12 iKOs display compared to male controls. These decrements were less pronounced in the female Atg12 iKOs. Cancellous bone structure was not significantly different between iKOs and controls in both genders. Histological analysis also revealed that compared to male controls, male iKOs showed a profound increase in chondrocyte column length of the growth plate with hyper-expansion of both proliferating and hypertrophic zones. Taken together, these findings indicate that autophagy plays an important role in the maintenance of bone structural integrity by mediating the production of proosteoclastogenic signals and regulating chondrocyte proliferation and differentiation.

  3. The D(+) + H2 reaction: differential and integral cross sections at low energy and rate constants at low temperature.

    Science.gov (United States)

    González-Lezana, Tomás; Scribano, Yohann; Honvault, Pascal

    2014-08-21

    The D(+) + H2 reaction is investigated by means of a time independent quantum mechanical (TIQM) and statistical quantum mechanical (SQM) methods. Differential cross sections and product rotational distributions obtained with these two theoretical approaches for collision energies between 1 meV and 0.1 eV are compared to analyze the dynamics of the process. The agreement observed between the TIQM differential cross sections and the SQM predictions as the energy increases revealed the role played by the complex-forming mechanism. The importance of a good description of the asymptotic regions is also investigated by calculating rate constants for the title reaction at low temperature.

  4. Vapor Measurement System of Essential Oil Based on MOS Gas Sensors Driven with Advanced Temperature Modulation Technique

    Science.gov (United States)

    Sudarmaji, A.; Margiwiyatno, A.; Ediati, R.; Mustofa, A.

    2018-05-01

    The aroma/vapor of essential oils is complex compound which depends on the content of the gases and volatiles generated from essential oil. This paper describes a design of quick, simple, and low-cost static measurement system to acquire vapor profile of essential oil. The gases and volatiles are captured in a chamber by means of 9 MOS gas sensors which driven with advance temperature modulation technique. A PSoC CY8C28445-24PVXI based-interface unit is built to generate the modulation signal and acquire all sensor output into computer wirelessly via radio frequency serial communication using Digi International Inc., XBee (IEEE 802.15.4) through developed software under Visual.Net. The system was tested to measure 2 kinds of essential oil (Patchouli and Clove Oils) in 4 temperature modulations (without, 0.25 Hz, 1 Hz, and 4 Hz). A cycle measurement consists of reference and sample measurement sequentially which is set during 2 minutes in every 1 second respectively. It is found that the suitable modulation is 0,25Hz; 75%, and the results of Principle Component Analysis show that the system is able to distinguish clearly between Patchouli Oil and Clove Oil.

  5. Evidence for differential modulation of primary and nonprimary auditory cortex by forward masking in tinnitus.

    Science.gov (United States)

    Roberts, Larry E; Bosnyak, Daniel J; Bruce, Ian C; Gander, Phillip E; Paul, Brandon T

    2015-09-01

    effect). In contrast to these findings for the ASSR, N1 amplitude was larger in tinnitus than control groups at both probe frequencies under baseline conditions, decreased after masking in all conditions, and did not relate to RI. These results suggest that aberrant neural activity occurring in the TFR of A1 underlies tinnitus and its modulation during RI. They indicate further that while neural changes occur in A2 in tinnitus, these changes do not reflect the tinnitus percept. Models for tinnitus and forward masking are described that integrate these findings within a common framework. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Visual attention to food cues is differentially modulated by gustatory-hedonic and post-ingestive attributes.

    Science.gov (United States)

    Garcia-Burgos, David; Lao, Junpeng; Munsch, Simone; Caldara, Roberto

    2017-07-01

    Although attentional biases towards food cues may play a critical role in food choices and eating behaviours, it remains largely unexplored which specific food attribute governs visual attentional deployment. The allocation of visual attention might be modulated by anticipatory postingestive consequences, from taste sensations derived from eating itself, or both. Therefore, in order to obtain a comprehensive understanding of the attentional mechanisms involved in the processing of food-related cues, we recorded the eye movements to five categories of well-standardised pictures: neutral non-food, high-calorie, good taste, distaste and dangerous food. In particular, forty-four healthy adults of both sexes were assessed with an antisaccade paradigm (which requires the generation of a voluntary saccade and the suppression of a reflex one) and a free viewing paradigm (which implies the free visual exploration of two images). The results showed that observers directed their initial fixations more often and faster on items with high survival relevance such as nutrient and possible dangers; although an increase in antisaccade error rates was only detected for high-calorie items. We also found longer prosaccade fixation duration and initial fixation duration bias score related to maintained attention towards high-calorie, good taste and danger categories; while shorter reaction times to correct an incorrect prosaccade related to less difficulties in inhibiting distasteful images. Altogether, these findings suggest that visual attention is differentially modulated by both the accepted and rejected food attributes, but also that normal-weight, non-eating disordered individuals exhibit enhanced approach to food's postingestive effects and avoidance of distasteful items (such as bitter vegetables or pungent products). Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Hydrogen atom temperature measured with wavelength-modulated laser absorption spectroscopy in large scale filament arc negative hydrogen ion source

    International Nuclear Information System (INIS)

    Nakano, H.; Goto, M.; Tsumori, K.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Nishiyama, S.; Sasaki, K.

    2015-01-01

    The velocity distribution function of hydrogen atoms is one of the useful parameters to understand particle dynamics from negative hydrogen production to extraction in a negative hydrogen ion source. Hydrogen atom temperature is one of the indicators of the velocity distribution function. To find a feasibility of hydrogen atom temperature measurement in large scale filament arc negative hydrogen ion source for fusion, a model calculation of wavelength-modulated laser absorption spectroscopy of the hydrogen Balmer alpha line was performed. By utilizing a wide range tunable diode laser, we successfully obtained the hydrogen atom temperature of ∼3000 K in the vicinity of the plasma grid electrode. The hydrogen atom temperature increases as well as the arc power, and becomes constant after decreasing with the filling of hydrogen gas pressure

  8. Investigation of effective base transit time and current gain modulation of light-emitting transistors under different ambient temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao-Hsiang; Tu, Wen-Chung; Wang, Hsiao-Lun [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Wu, Chao-Hsin, E-mail: chaohsinwu@ntu.edu.tw [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Graduate Institute of Electronics Engineering, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei106, Taiwan (China)

    2014-11-03

    In this report, the modulation of current gain of InGaP/GaAs light-emitting transistors under different ambient temperatures are measured and analyzed using thermionic emission model of quantum well embedded in the transistor base region. Minority carriers captured by quantum wells gain more energy at high temperatures and escape from quantum wells resulting in an increase of current gain and lower optical output, resulting in different I-V characteristics from conventional heterojunction bipolar transistors. The effect of the smaller thermionic lifetime thus reduces the effective base transit time of transistors at high temperatures. The unique current gain enhancement of 27.61% is achieved when operation temperature increase from 28 to 85 °C.

  9. A non-correlator-based digital communication system using interleaved chaotic differential peaks keying (I-CDPK) modulation and chaotic synchronization

    International Nuclear Information System (INIS)

    Chien, T.-I; Hung, Y.-C.; Liao, T.-L.

    2006-01-01

    This paper presents a novel non-correlator-based digital communication system with the application of interleaved chaotic differential peaks keying (I-CDPK) modulation technique. The proposed communication system consists of four major modules: I-CDPK modulator (ICM), frequency modulation (FM) transmitter, FM receiver and I-CDPK demodulator (ICDM). In the ICM module, there are four components: a chaotic circuit to generate the chaotic signals, A/D converter, D/A converter and a digital processing mechanism to control all signal flows and performs I-CDPK modulation corresponding to the input digital bits. For interleaving every input digital bit set, every state of the chaotic system is used to represent one portion of it, but only a scalar state variable (i.e. the system output) is sent to the ICDM's chaotic circuit through both FM transmitter and FM receiver. An observer-based chaotic synchronization scheme is designed to synchronize the chaotic circuits of the ICM and ICDM. Meanwhile, the bit detector in ICDM is devoted to recover the transmitted input digital bits. Some numerical simulations of an illustrative communication system are given to demonstrate its theoretical effectiveness. Furthermore, the performance of bit error rate of the proposed system is analyzed and compared with those of the correlator-based communication systems adopting coherent binary phase shift keying (BPSK) and coherent differential chaotic shift keying (DCSK) schemes

  10. An evaluation of the use of modulated temperature DSC as a means of assessing the relaxation behaviour of amorphous lactose.

    Science.gov (United States)

    Craig, D Q; Barsnes, M; Royall, P G; Kett, V L

    2000-06-01

    To evaluate the use of Modulated Temperature DSC (MTDSC) as a means of assessing the relaxation behaviour of amorphous lactose via measurement of the heat capacity, glass transition (Tg) and relaxation endotherm. Samples of amorphous lactose were prepared by freeze drying. MTDSC was conducted using a TA Instruments 2920 MDSC using a heating rate of 2 degrees C/minute, a modulation amplitude of +/-0.3 degrees C and a period of 60 seconds. Samples were cycled by heating to 140 degrees C and cooling to a range of annealing temperatures between 80 degrees C and 100 degrees C, followed by reheating through the Tg region. Systems were then recooled to allow for correction of the Tg shift effect. MTDSC enabled separation of the glass transition from the relaxation endotherm, thereby facilitating calculation of the relaxation time as a function of temperature. The relative merits of using MTDSC for the assessment of relaxation processes are discussed. In addition, the use of the fictive temperature rather than the experimentally derived Tg is outlined. MTDSC allows assessment of the glass transition temperature, the magnitude of the relaxation endotherm and the value of the heat capacity, thus facilitating calculation of relaxation times. Limitations identified with the approach include the slow scanning speed, the need for careful choice of experimental parameters and the Tg shift effect.

  11. Differential diagnosis of sensory modulation dysfunction (SMD and attention deficit hyperactivity disorder (ADHD: participation, sensation and attention

    Directory of Open Access Journals (Sweden)

    Aviva eYochman

    2013-12-01

    Full Text Available Differential diagnosis between sensory modulation disorder (SMD and attention deficit hyperactivity disorder (ADHD is often challenging, since these disorders occur at a high rate of co-morbidity and share several clinical characteristics. Preliminary studies providing evidence that these are distinct disorders have focused solely on body functions, using sophisticated laboratory measurements. Moreover, no studies have compared participation profiles of these populations. This study is the first to compare the profiles of these populations regarding both ‘body functions’(attention and sensation and ‘participation,’ using measures applicable for clinical use. The study included 19 children with ADHD without SMD and 19 with SMD without ADHD (diagnosed by both pediatric neurologists and occupational therapists, aged 6 to 9, and matched by age and gender. All children underwent a broad battery of evaluations: The Evaluation of Sensory Processing, Fabric Prickliness Test and Von Frey Test to evaluate sensory processing, and Test of Everyday Attention to evaluate attention components. The Participation in Childhood Occupations Questionnaire was used to evaluate participation. Results support significant group differences in all sensory components, including pain intensity to suprathreshold stimuli and pain 'after sensation', as well as in tactile, vestibular, taste and olfactory processing. No differences were found in attention components and participation. This study has both theoretical and clinical importance, inter alia, providing further evidence of two distinct disorders as well as indications of specific clinical instruments that might enable clinicians to implement differential diagnoses. In addition, results accord with other previous statements, which indicate that the clinical diagnosis of children with disabilities may not be a major factor in determining their participation profile.

  12. Expression of biomarkers modulating prostate cancer angiogenesis: Differential expression of annexin II in prostate carcinomas from India and USA

    Directory of Open Access Journals (Sweden)

    Dinda Amit K

    2003-10-01

    Full Text Available Abstract Background Prostate cancer (PCa incidences vary with genetic, geographical and ethnic dietary background of patients while angiogenesis is modulated through exquisite interplay of tumor-stromal interactions of biological macromolecules. We hypothesized that comprehensive analysis of four biomarkers modulating angiogenesis in PCa progression in two diverse populations might explain the variance in the incidence rates. Results Immunohistochemical analysis of 42 PCa biopsies reveals that though Anx-II expression is lost in both the Indian and American population with Gleason scores (GS ranging between 6 and 10, up to 25 % of cells in the entire high grade (GS > 8 PD PCa samples from US show intense focal membrane staining for Anx-II unlike similarly graded specimens from India. Consistent with this observation, the prostate cancer cell lines PC-3, DU-145 and MDA PCa 2A, but not LNCaP-R, LNCAP-UR or MDA PCa 2B cell lines, express Anx-II. Transcriptional reactivation of Anx-II gene with Aza-dC could not entirely account for loss of Anx-II protein in primary PCa. Cyclooxygenase-2 (COX-2 was moderately expressed in most of high grade PIN and some MD PCa and surrounding stroma. COX-2 was not expressed in PD PCa (GS ~7–10, while adjacent smooth muscles cells stained weakly positive. Decorin expression was observed only in high grade PIN but not in any of the prostate cancers, atrophy or BPH while stromal areas of BPH stained intensively for DCN and decreased with advancing stages of PCa. Versican expression was weak in most of the MD PCa, moderate in all of BPH, moderately focal in PD PC, weak and focal in PIN, atrophy and adjacent stroma. Conclusions Expression of pro- and anti-angiogenic modulators changes with stage of PCa but correlates with angiogenic status. Focal membrane staining of Anx-II reappears in high grade PCa specimens only from US indicating differential expression of Anx-II. COX-2 stained stronger in American specimens

  13. Radiation-induced apoptosis in differentially modulated by PTK inhibitora in K562 cells

    International Nuclear Information System (INIS)

    Lee, Hyung Sik; Moon, Chang Woo; Hur, Won Joo; Jeong, Su Jin; Jeong Min Ho; Lee, Jeong Hyeon; Lim, Young Jin; Park, Heon Joo

    2000-01-01

    The effect of PTK inhibitors (herbimycin A and genistein) on the induction of radiation-induced apoptosis in Ph-positive K562 leukemia cell line was investigated. K562 cells in exponential growth phase were irradiated with a linear accelerator at room temperature. For 6 MV X-ray irradiation and drug treatment, cultures were initiated at 2x10 6 cells/ml. The cells were irradiated with 10Gy. Stock solutions of herbimycin A and genistein were prepared in dimethyl sulphoxide (DMSO). After incubation at 37 .deg. for 0-48 h, the extent of apoptosis was determined using agarose gel electrophoresis and TUNEL assay. The progression of cells through the cell cycle after irradiation and drug treatment was also determined with flow cytometry. Western blot analysis was used to monitor bcl-2, bcl-X-L and bax protein levels. Treatment with 10 Gy X-irradiation did not result in the induction of apoptosis. The HMA alone (500 nM) also failed to induce apoptosis. By contrast, incubation of K562 cells with HMA after irradiation resulted in a substantial induction of nuclear condensation and fragmentation by agarose gel electrophoresis and TUNEL assay. Genistein failed to enhance the ability of X-irradiation to induce DNA fragmentation. Enhancement of apoptosis by HMA was not attributable to downregulation of the bcl-2 or bcl-X-L anti-apoptotic proteins. When the cells were irradiated and maintained with HMA, the percentage of cells in G2/M phase decreased to 30-40% at 48 h. On the other hand, cells exposed to 10 Gy X-irradiation alone or maintained with genistein did not show marked cell cycle redistribution. We have shown that nanomolar concentrations of the PTK inhibitor HMA synergize with X-irradiation in inducing the apoptosis in Ph (+) K562 leukemia cell line. While, genistein, a PTK inhibitor which is not selective for p210 bcr/abl failed to enhance the radiation induced apoptosis in K562 cells. It is unlikely that the ability of HMA to enhance apoptosis in K562 cells is

  14. Does Temperature and UV Exposure History Modulate the Effects of Temperature and UV Stress on Symbiodinium Growth Rates?

    Science.gov (United States)

    Temperature and ultraviolet radiation (UV) alone or in combination are known to inhibit the growth of Symbiodinium isolates. This conclusion was drawn from a number of studies having widely different exposure scenarios. Here we have examined the effects of pre-exposure acclimat...

  15. Deep Drawing for high LDR by a new Hydro-rim Forming Process with Differential Temperature- Analysis and Experiments

    International Nuclear Information System (INIS)

    Simon, Y. Ben; Tirosh, J.; Rubinski, Ludmila

    2005-01-01

    The purpose of this study is to analyze and test a possible increase of the Limit Drawing Ratio (LDR) in Deep Drawing by Hydro-rim process (a certain subset of the classical Hydroforming) which includes the newly differential temperature effect. The idea is to facilitate the plastic flow by local heating along the flange and to cool the area where strength is needed. The suggested analysis is based on the dual bounds approach (upper and lower bounds simultaneously) using the highly versatile Johnson-Cook constitutive material model. The advantage of combined high hydraulic pressure (about 1000 bar) with relatively high blank temperature (with magnitude of about one third the melting temperature of the considered material) in the same operation is discussed. Emphasis is given to the rule of blank temperature difference (between the flange and the wall of the product) conjugate with optimal hydro rim pressure in increasing the limit drawing ratio of the products (Aluminum, Copper and various Steels)

  16. The Critical Role of Redox Homeostasis in Shikonin-Induced HL-60 Cell Differentiation via Unique Modulation of the Nrf2/ARE Pathway

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2012-01-01

    Full Text Available Among various cancer cell lines, the leukemia cell line HL-60 was most sensitive to Shikonin, with evidence showing both the prooxidative activities and proapoptotic effects of micromolar concentrations of Shikonin. However, the mechanism involved in the cytotoxicity of Shikonin in the submicromolar range has not been fully characterized. Using biochemical and free radical biological experiments in vitro, we identified the prodifferentiated profiles of Shikonin and evaluated the redox homeostasis during HL-60 differentiation. The data showed a strong dose-response relationship between Shikonin exposure and the characteristics of HL-60 differentiation in terms of morphology changes, nitroblue tetrazolium (NBT reductive activity, and the expression level of surface antigens CD11b/CD14. During drug exposure, intercellular redox homeostasis changes towards oxidation are necessary to support Shikonin-induced differentiation, which was proven by additional enzymatic and non-enzymatic redox modulators. A statistically significant and dose-dependent increase (P<0.05 was recorded with regard to the unique expression levels of the Nrf2/ARE downstream target genes in HL-60 cells undergoing late differentiation, which were restored with further antioxidants employed with the Shikonin treatment. Our research demonstrated that Shikonin is a differentiation-inducing agent, and its mechanisms involve the Nrf2/ARE pathway to modulate the intercellular redox homeostasis, thus facilitating differentiation.

  17. Omega-3 Fatty Acids Supplementation Differentially Modulates the SDF-1/CXCR-4 Cell Homing Axis in Hypertensive and Normotensive Rats.

    Science.gov (United States)

    Halmenschlager, Luiza; Lehnen, Alexandre Machado; Marcadenti, Aline; Markoski, Melissa Medeiros

    2017-08-01

    We assessed the effect of acute and chronic dietary supplementation of ω-3 on lipid metabolism and cardiac regeneration, through its influence on the Stromal Derived Factor-1 (SDF-1) and its receptor (CXCR4) axis in normotensive and hypertensive rats. Male Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) were allocated in eight groups (of eight animals each), which received daily orogastric administration of ω-3 (1 g) for 24 h, 72 h or 2 weeks. Blood samples were collected for the analysis of the lipid profile and SDF-1 systemic levels (ELISA). At the end of the treatment period, cardiac tissue was collected for CXCR4 expression analysis (Western blot). The use of ω-3 caused a reduction in total cholesterol levels ( p = 0.044), and acutely activated the SDF-1/CXCR4 axis in normotensive animals ( p = 0.037). In the presence of the ω-3, after 72 h, SDF-1 levels decreased in WKY and increased in SHR ( p = 0.017), and tissue expression of the receptor CXCR4 was higher in WKY than in SHR ( p = 0.001). The ω-3 fatty acid supplementation differentially modulates cell homing mediators in normotensive and hypertensive animals. While WKY rats respond acutely to omega-3 supplementation, showing increased release of SDF-1 and CXCR4, SHR exhibit a weaker, delayed response.

  18. Differential modulation of host genes in the kidney of brown trout Salmo trutta during sporogenesis of Tetracapsuloides bryosalmonae (Myxozoa).

    Science.gov (United States)

    Kumar, Gokhlesh; Abd-Elfattah, Ahmed; El-Matbouli, Mansour

    2014-10-04

    Tetracapsuloides bryosalmonae (Myxozoa) is the causative agent of proliferative kidney disease in various species of salmonids in Europe and North America. In Europe, spores of T. bryosalmonae develop in the kidney of infected brown trout Salmo trutta and are released via urine to infect the freshwater bryozoan Fredericella sultana. The transcriptomes of kidneys of infected and non-infected brown trout were compared by suppressive subtractive hybridization. Differential screening and a subsequent NCBI BLAST analysis of expressed sequence tags revealed 21 transcripts with functions that included cell stress and cell growth, ribonucleoprotein, signal transduction, ion transporter, immune response, hemoglobin and calcium metabolisms. Quantitative real time PCR was used to verify the presence of these selected transcripts in brown trout kidney at sporogonic stages of T. bryosalmonae development. Expression of cold-inducible RNA-binding protein, cyclin-dependent kinase inhibitor 2A, prothymosin alpha, transforming protein RhoA, immunoglobulin light chain and major histocompatibility complex class I were up-regulated significantly in infected brown trout. Expression of both the hemoglobin subunit beta and stanniocalcin precursor were down-regulated significantly in infected brown trout. This study suggests that cell stress and cell growth processes, signal transduction activities, erythropoiesis and calcium homeostasis of the host are modulated during sporogonic stages of parasite development, which may support the sporogenesis of T. bryosalmonae in the kidney of brown trout.

  19. Sprouty4 is an endogenous negative modulator of TrkA signaling and neuronal differentiation induced by NGF.

    Directory of Open Access Journals (Sweden)

    Fernando C Alsina

    Full Text Available The Sprouty (Spry family of proteins represents endogenous regulators of downstream signaling pathways induced by receptor tyrosine kinases (RTKs. Using real time PCR, we detect a significant increase in the expression of Spry4 mRNA in response to NGF, indicating that Spry4 could modulate intracellular signaling pathways and biological processes induced by NGF and its receptor TrkA. In this work, we demonstrate that overexpression of wild-type Spry4 causes a significant reduction in MAPK and Rac1 activation and neurite outgrowth induced by NGF. At molecular level, our findings indicate that ectopic expression of a mutated form of Spry4 (Y53A, in which a conserved tyrosine residue was replaced, fail to block both TrkA-mediated Erk/MAPK activation and neurite outgrowth induced by NGF, suggesting that an intact tyrosine 53 site is required for the inhibitory effect of Spry4 on NGF signaling. Downregulation of Spry4 using small interference RNA knockdown experiments potentiates PC12 cell differentiation and MAPK activation in response to NGF. Together, these findings establish a new physiological mechanism through which Spry4 regulates neurite outgrowth reducing not only the MAPK pathway but also restricting Rac1 activation in response to NGF.

  20. Spine formation pattern of adult-born neurons is differentially modulated by the induction timing and location of hippocampal plasticity.

    Directory of Open Access Journals (Sweden)

    Noriaki Ohkawa

    Full Text Available In the adult hippocampus dentate gyrus (DG, newly born neurons are functionally integrated into existing circuits and play important roles in hippocampus-dependent memory. However, it remains unclear how neural plasticity regulates the integration pattern of new neurons into preexisting circuits. Because dendritic spines are major postsynaptic sites for excitatory inputs, spines of new neurons were visualized by retrovirus-mediated labeling to evaluate integration. Long-term potentiation (LTP was induced at 12, 16, or 21 days postinfection (dpi, at which time new neurons have no, few, or many spines, respectively. The spine expression patterns were investigated at one or two weeks after LTP induction. Induction at 12 dpi increased later spinogenesis, although the new neurons at 12 dpi didn't respond to the stimulus for LTP induction. Induction at 21 dpi transiently mediated spine enlargement. Surprisingly, LTP induction at 16 dpi reduced the spine density of new neurons. All LTP-mediated changes specifically appeared within the LTP-induced layer. Therefore, neural plasticity differentially regulates the integration of new neurons into the activated circuit, dependent on their developmental stage. Consequently, new neurons at different developmental stages may play distinct roles in processing the acquired information by modulating the connectivity of activated circuits via their integration.

  1. On the relationship factor between the PV module temperature and the solar radiation on it for various BIPV configurations

    Energy Technology Data Exchange (ETDEWEB)

    Kaplanis, S., E-mail: kaplanis@teipat.gr; Kaplani, E., E-mail: kaplanis@teipat.gr [Renewable Energy Systems Lab., Mechanical Engineering Dept., Technological Educational Institute of Western Greece, Koukouli 26 334, Patra (Greece)

    2014-10-06

    Temperatures of c-Si, pc-Si and a-Si PV modules making part of a roof in a building or hanging outside windows with various inclinations were measured with respect to the Intensity of the solar radiation on them under various environmental conditions. A relationship coefficient f was provided whose values are compared to those from a PV array operating in a free standing mode on a terrace. A theoretical model to predict f was elaborated. According to the analysis, the coefficient f takes higher values for PV modules embedded on a roof compared to the free standing PV array. The wind effect is much stronger for the free standing PV than for any BIPV configuration, either the PV is part of the roof, or placed upon the roof, or is placed outside a window like a shadow hanger. The f coefficient depends on various parameters such as angle of inclination, wind speed and direction, as well as solar radiation. For very low wind speeds the effect of the angle of inclination, β, of the PV module with respect to the horizontal on PV temperature is clear. As the wind speed increases, the heat transfer from the PV module shifts from natural flow to forced flow and this effect vanishes. The coefficient f values range from almost 0.01 m{sup 2°}C/W for free standing PV arrays at strong wind speeds, v{sub W}>7m/s, up to around 0.05 m{sup 2°}C/W for the case of flexible PV modules which make part of the roof in a BIPV system.

  2. On the relationship factor between the PV module temperature and the solar radiation on it for various BIPV configurations

    Science.gov (United States)

    Kaplanis, S.; Kaplani, E.

    2014-10-01

    Temperatures of c-Si, pc-Si and a-Si PV modules making part of a roof in a building or hanging outside windows with various inclinations were measured with respect to the Intensity of the solar radiation on them under various environmental conditions. A relationship coefficient f was provided whose values are compared to those from a PV array operating in a free standing mode on a terrace. A theoretical model to predict f was elaborated. According to the analysis, the coefficient f takes higher values for PV modules embedded on a roof compared to the free standing PV array. The wind effect is much stronger for the free standing PV than for any BIPV configuration, either the PV is part of the roof, or placed upon the roof, or is placed outside a window like a shadow hanger. The f coefficient depends on various parameters such as angle of inclination, wind speed and direction, as well as solar radiation. For very low wind speeds the effect of the angle of inclination, β, of the PV module with respect to the horizontal on PV temperature is clear. As the wind speed increases, the heat transfer from the PV module shifts from natural flow to forced flow and this effect vanishes. The coefficient f values range from almost 0.01 m2°C/W for free standing PV arrays at strong wind speeds, vW>7m/s, up to around 0.05 m2°C/W for the case of flexible PV modules which make part of the roof in a BIPV system.

  3. On the relationship factor between the PV module temperature and the solar radiation on it for various BIPV configurations

    International Nuclear Information System (INIS)

    Kaplanis, S.; Kaplani, E.

    2014-01-01

    Temperatures of c-Si, pc-Si and a-Si PV modules making part of a roof in a building or hanging outside windows with various inclinations were measured with respect to the Intensity of the solar radiation on them under various environmental conditions. A relationship coefficient f was provided whose values are compared to those from a PV array operating in a free standing mode on a terrace. A theoretical model to predict f was elaborated. According to the analysis, the coefficient f takes higher values for PV modules embedded on a roof compared to the free standing PV array. The wind effect is much stronger for the free standing PV than for any BIPV configuration, either the PV is part of the roof, or placed upon the roof, or is placed outside a window like a shadow hanger. The f coefficient depends on various parameters such as angle of inclination, wind speed and direction, as well as solar radiation. For very low wind speeds the effect of the angle of inclination, β, of the PV module with respect to the horizontal on PV temperature is clear. As the wind speed increases, the heat transfer from the PV module shifts from natural flow to forced flow and this effect vanishes. The coefficient f values range from almost 0.01 m 2° C/W for free standing PV arrays at strong wind speeds, v W >7m/s, up to around 0.05 m 2° C/W for the case of flexible PV modules which make part of the roof in a BIPV system

  4. Low but contrasting neutral genetic differentiation shaped by winter temperature in European great tits.

    NARCIS (Netherlands)

    Lemoine, M.; Lucek, K.; Perrier, C.; Saladin, V.; Adriaensen, F.; Barba, E.; Belda, E.J.; Charmantier, A.; Cichoń, M.; Eeva, T.; Grégoire, A.; Hinde, C.A.; Johnsen, A.; Komdeur, J.; Mänd, R.; Matthysen, E.; Norte, A.C.; Pitala, N.; Sheldon, B.C.; Slagsvold, T.; Tinbergen, J.M.; Török, J.; Ubels, R.; van Oers, K.; Visser, M.E.; Doligez, Blandine; Richner, Heinz

    2016-01-01

    Gene flow is usually thought to reduce genetic divergence and impede local adaptation by homogenising gene pools between populations. However, evidence for local adaptation and phenotypic differentiation in highly mobile species, experiencing high levels of gene flow, is emerging. Assessing

  5. Temperature modulates dengue virus epidemic growth rates through its effects on reproduction numbers and generation intervals.

    Science.gov (United States)

    Siraj, A. S.; Oidtman, R. J.; Huber, J. H.; Kraemer, M. U.; Brady, O. J.; Johansson, M. A.; Perkins, T. A.

    2017-12-01

    Epidemic growth rate, r, provides a more complete description of the potential for epidemics than the more commonly studied basic reproduction number, R0, yet the former has never been described as a function of temperature for dengue virus or other pathogens with temperature-sensitive transmission. The need to understand the drivers of epidemics of these pathogens is acute, with arthropod-borne virus epidemics becoming increasingly problematic. We addressed this need by developing temperature-dependent descriptions of the two components of r—R0 and the generation interval—to obtain a temperature-dependent description of r. Our results show that the generation interval is highly sensitive to temperature, decreasing twofold between 25 and 35 °C and suggesting that dengue virus epidemics may accelerate as temperatures increase, not only because of more infections per generation but also because of faster generations. Under the empirical temperature relationships that we considered, we found that r peaked at a temperature threshold that was robust to uncertainty in model parameters that do not depend on temperature. Although the precise value of this temperature threshold could be refined following future studies of empirical temperature relationships, the framework we present for identifying such temperature thresholds offers a new way to classify regions in which dengue virus epidemic intensity could either increase or decrease under future climate change.

  6. A CFD parametric study on the performance of a low-temperature-differential γ-type Stirling engine

    International Nuclear Information System (INIS)

    Chen, Wen-Lih; Yang, Yu-Ching; Salazar, Jose Leon

    2015-01-01

    Highlights: • A parametric study on a low-temperature-differential Stirling engine has been conducted by using CFD. • The effects of three geometric and two operational parameters on engine performance have been investigated. • It is found that each parameter produces different effects except power piston stroke and power piston radius. • The results are useful for guiding the design of new low-temperature-differential Stirling engines. - Abstract: An in-house CFD code has been applied to a low-temperature-differential (LTD) γ-type Stirling engine to understand the effects posed by several geometrical and operational parameters on engine performance. The results include variations of pressure, temperature, and heat transfer rates within an engine cycle as well as variations of engine’s power and efficiency versus these parameters. It is found that power piston stroke and radius influence engine performance very similarly, and power and efficiency both increase as these two parameters increase. In fact, the effects of the two parameters can be assimilated into those by the parameter of compression ratio. The stroke of displacer is observed to affect strongly on heat input but weakly on power, thus causing the efficiency to decrease as it increases. As expected, both power and efficiency increase as temperature difference between the hot and cold ends increases. Lastly, engine speed is observed to pose strong positive effects on power but exert weak effects on efficiency. This study reveals the effects produced by several important parameters on engine performance, and such information is very useful for the design of new LTD Stirling engines.

  7. Continuous gradient temperature Raman spectroscopy and differential scanning calorimetry of N-3DPA and DHA from -100 to 10°C.

    Science.gov (United States)

    Broadhurst, C Leigh; Schmidt, Walter F; Nguyen, Julie K; Qin, Jianwei; Chao, Kuanglin; Aubuchon, Steven R; Kim, Moon S

    2017-04-01

    Docosahexaenoic acid (DHA, 22:6n-3) is exclusively utilized in fast signal processing tissues such as retinal, neural and cardiac. N-3 docosapentaenoic acid (n-3DPA, 22:5n-3), with just one less double bond, is also found in the marine food chain yet cannot substitute for DHA. Gradient temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS and both conventional and modulated DSC to n-3DPA and DHA from -100 to 20°C. Three-dimensional data arrays with 0.2°C increments and first derivatives allowed complete assignment of solid, liquid and transition state vibrational modes. Melting temperatures n-3DPA (-45°C) and DHA (-46°C) are similar and show evidence for solid-state phase transitions not seen in n-6DPA (-27°C melt). The C6H2 site is an elastic marker for temperature perturbation of all three lipids, each of which has a distinct three dimensional structure. N-3 DPA shows the spectroscopic signature of saturated fatty acids from C1 to C6. DHA does not have three aliphatic carbons in sequence; n-6DPA does but they occur at the methyl end, and do not yield the characteristic signal. DHA appears to have uniform twisting from C6H2 to C12H2 to C18H2 whereas n-6DPA bends from C12 to C18, centered at C15H2. For n-3DPA, twisting is centered at C6H2 adjacent to the C2-C3-C4-C5 aliphatic moiety. These molecular sites are the most elastic in the solid phase and during premelting. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. An evaluation of the transition temperature range of super-elastic orthodontic NiTi springs using differential scanning calorimetry.

    Science.gov (United States)

    Barwart, O; Rollinger, J M; Burger, A

    1999-10-01

    Differential scanning calorimetry (DSC) was used to determine the transition temperature ranges (TTR) of four types of super-elastic orthodontic nickel-titanium coil springs (Sentalloy). A knowledge of the TTR provides information on the temperature at which a NiTi wire or spring can assume superelastic properties and when this quality disappears. The spring types in this study can be distinguished from each other by their characteristic TTR during cooling and heating. For each tested spring type a characteristic TTR during heating (austenite transformation) and cooling (martensite transformation) was evaluated. The hysteresis of the transition temperature, found between cooling and heating, was 3.4-5.2 K. Depending on the spring type the austenite transformation started (As) at 9.7-17.1 degrees C and finished (Af) at 29.2-37 degrees C. The martensite transformation starting temperature (Ms) was evaluated at 32.6-25.4 degrees C, while Mf (martensite transformation finishing temperature) was 12.7-6.5 degrees C. The results show that the springs become super-elastic when the temperature increases and As is reached. They undergo a loss of super-elastic properties and a rapid decrease in force delivery when they are cooled to Mf. For the tested springs, Mf and As were found to be below room temperature. Thus, at room temperature and some degrees lower, all the tested springs exert super-elastic properties. For orthodontic treatment this means the maintenance of super-elastic behaviour, even when mouth temperature decreases to about room temperature as can occur, for example, during meals.

  9. A room temperature LSO/PIN photodiode PET detector module that measures depth of interaction

    International Nuclear Information System (INIS)

    Moses, W.W.; Derenzo, S.E.; Melcher, C.L.; Manente, R.A.

    1994-11-01

    We present measurements of a 4 element PET detector module that uses a 2x2 array of 3 mm square PIN photodiodes to both measure the depth of interaction (DOI) and identify the crystal of interaction. Each photodiode is coupled to one end of a 3x3x25 mm LSO crystal, with the opposite ends of all 4 crystals attached to a single PMT that provides a timing signal and initial energy discrimination. Each LSO crystal is coated with a open-quotes lossyclose quotes reflector, so the ratio of light detected in the photodiode and PMT depends on the position of interaction in the crystal, and is used to determine this position on an event by event basis. This module is operated at +25 degrees C with a photodiode amplifier peaking time of 2 μs. When excited by a collimated beam of 511 keV photons at the photodiode end of the module (i.e. closest to the patient), the DOI resolution is 4 mm fwhm and the crystal of interaction is identified correctly 95% of the time. When excited at the opposite end of the module, the DOI resolution is 13 mm fwhm and the crystal of interaction is identified correctly 73% of the time. The channel to channel variations in performance are minimal

  10. Simulation tests for temperature mixing in a core bottom model of the HTR-module

    International Nuclear Information System (INIS)

    Damm, G.; Wehrlein, R.

    1992-01-01

    Interatom and Siemens are developing a helium-cooled Modular High Temperature Reactor. Under nominal operating conditions temperature differences of up to 120deg C will occur in the 700deg C hot helium flow leaving the core. In addition, cold gas leakages into the hot gas header can produce even higher temperature differences in the coolant flow. At the outlet of the reactor only a very low temperature difference of maximum ± 15deg C is allowed in order to avoid damages at the heat exchanging components due to alternating thermal loads. Since it is not possible to calculate the complex flow behaviour, experimental investigations of the temperature mixing in the core bottom had to be carried out in order to guarantee the necessary reduction of temperature differences in the helium. The presented air simulation tests in a 1:2.9 scaled plexiglas model of the core bottom showed an extremely high mixing rate of the hot gas header and the hot gas duct of the reactor. The temperature mixing of the simulated coolant flow as well as the leakage flows was larger than 95%. Transfered to reactor conditions this means a temperature difference of only ± 3deg C for the main flow at a quite resonable pressure drop. For the cold gas leakages temperature differences in the hot gas up to 400deg C proved to be permissible. The results of the simulation experiments in the Aerodynamic Test Facility of Interatom permitted to design a shorter bottom reflector of the core. (orig.)

  11. Temperature differentially regulates the two kisspeptin systems in the brain of zebrafish.

    Science.gov (United States)

    Shahjahan, Md; Kitahashi, Takashi; Ogawa, Satoshi; Parhar, Ishwar S

    2013-11-01

    Kisspeptins encoded by the kiss1 and kiss2 genes play an important role in reproduction through the stimulation of gonadotropin-releasing hormone (GnRH) secretion by activating their receptors (KissR1 EU047918 and KissR2 EU047917). To understand the mechanism through which temperature affects reproduction, we examined kiss1 and kiss2 and their respective receptor (kissr1 and kissr2) gene expression in the brain of male zebrafish exposed to a low temperature (15°C), normal temperature (27°C), and high temperature (35°C) for 7-days. kiss1 mRNA levels in the brain were significantly increased (2.9-fold) in the low temperature compared to the control (27°C), while no noticeable change was observed in the high temperature conditions. Similarly, kissr1 mRNA levels were significantly increased (1.5-2.2-folds) in the low temperature conditions in the habenula, the nucleus of the medial longitudinal fascicle, oculomotor nucleus, and the interpeduncular nucleus. kiss2 mRNA levels were significantly decreased (0.5-fold) in the low and high temperature conditions, concomitant with kissr2 mRNA levels (0.5-fold) in the caudal zone of the periventricular hypothalamus and the posterior tuberal nucleus. gnrh3 but not gnrh2 mRNA levels were also decreased (0.5-fold) in the low and high temperature conditions. These findings suggest that while the kiss1/kissr1 system is sensitive to low temperature, the kiss2/kissr2 system is sensitive to both extremes of temperature, which leads to failure in reproduction. Copyright © 2013. Published by Elsevier Inc.

  12. Phylogeographic differentiation versus transcriptomic adaptation to warm temperatures in Zostera marina, a globally important seagrass

    NARCIS (Netherlands)

    Jueterbock, Alexander; Franssen, S. U.; Bergmann, N.; Gu, J.; Coyer, J. A.; Reusch, T. B. H.; Bornberg-Bauer, E.; Olsen, J. L.

    2016-01-01

    Populations distributed across a broad thermal cline are instrumental in addressing adaptation to increasing temperatures under global warming. Using a space-for-time substitution design, we tested for parallel adaptation to warm temperatures along two independent thermal clines in Zostera marina,

  13. Levels of Interference in Long and Short-Term Memory Differentially Modulate Non-REM and REM Sleep.

    Science.gov (United States)

    Fraize, Nicolas; Carponcy, Julien; Joseph, Mickaël Antoine; Comte, Jean-Christophe; Luppi, Pierre-Hervé; Libourel, Paul-Antoine; Salin, Paul-Antoine; Malleret, Gaël; Parmentier, Régis

    2016-12-01

    It is commonly accepted that sleep is beneficial to memory processes, but it is still unclear if this benefit originates from improved memory consolidation or enhanced information processing. It has thus been proposed that sleep may also promote forgetting of undesirable and non-essential memories, a process required for optimization of cognitive resources. We tested the hypothesis that non-rapid eye movement sleep (NREMS) promotes forgetting of irrelevant information, more specifically when processing information in working memory (WM), while REM sleep (REMS) facilitates the consolidation of important information. We recorded sleep patterns of rats trained in a radial maze in three different tasks engaging either the long-term or short-term storage of information, as well as a gradual level of interference. We observed a transient increase in REMS amount on the day the animal learned the rule of a long-term/reference memory task (RM), and, in contrast, a positive correlation between the performance of rats trained in a WM task involving an important processing of interference and the amount of NREMS or slow wave activity. Various oscillatory events were also differentially modulated by the type of training involved. Notably, NREMS spindles and REMS rapid theta increase with RM training, while sharp-wave ripples increase with all types of training. These results suggest that REMS, but also rapid oscillations occurring during NREMS would be specifically implicated in the long-term memory in RM, whereas NREMS and slow oscillations could be involved in the forgetting of irrelevant information required for WM. © 2016 Associated Professional Sleep Societies, LLC.

  14. Antiseptic solutions modulate the paracrine-like activity of bone chips: differential impact of chlorhexidine and sodium hypochlorite.

    Science.gov (United States)

    Sawada, Kosaku; Caballé-Serrano, Jordi; Bosshardt, Dieter D; Schaller, Benoit; Miron, Richard J; Buser, Daniel; Gruber, Reinhard

    2015-09-01

    Chemical decontamination increases the availability of bone grafts; however, it remains unclear whether antiseptic processing changes the biological activity of bone. Bone chips were incubated with four different antiseptic solutions including (1) povidone-iodine (0.5%), (2) chlorhexidine diguluconate (0.2%), (3) hydrogen peroxide (1%) and (4) sodium hypochlorite (0.25%). After 10 min. of incubation, changes in the capacity of the bone-conditioned medium (BCM) to modulate gene expression of gingival fibroblasts was investigated. Conditioned medium obtained from freshly prepared bone chips increased the expression of TGF-β target genes interleukin 11 (IL11), proteoglycan4 (PRG4), NADPH oxidase 4 (NOX4), and decreased the expression of adrenomedullin (ADM), and pentraxin 3 (PTX3) in gingival fibroblasts. Incubation of bone chips with 0.2% chlorhexidine, followed by vigorously washing resulted in a BCM with even higher expression of IL11, PRG4 and NOX4. These findings were also detected with a decrease in cell viability and an activation of apoptosis signalling. Chlorhexidine alone, at low concentrations, increased IL11, PRG4 and NOX4 expression, independent of the TGF-β receptor I kinase activity. In contrast, 0.25% sodium hypochlorite almost entirely abolished the activity of BCM, whereas the other two antiseptic solutions, 1% hydrogen peroxide and 0.5% povidone-iodine, had relatively no impact respectively. These in vitro findings demonstrate that incubation of bone chips with chlorhexidine differentially affects the activity of the respective BCM compared to the other antiseptic solutions. The data further suggest that the main effects are caused by chlorhexidine remaining in the BCM after repeated washing of the bone chips. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Khellin and visnagin differentially modulate AHR signaling and downstream CYP1A activity in human liver cells.

    Directory of Open Access Journals (Sweden)

    Radim Vrzal

    Full Text Available Khellin and visnagin are two furanochromones that can be frequently found in ethnomedical formulations in Asia and the Middle East. Both compounds possess anti-inflammatory and analgesic properties, therefore modern medicine uses these compounds or structurally related derivatives for treatment of vitiligo, bronchial asthma and renal colics. Despite their frequent usage, the potential toxic properties of visnagin and khellin are not well characterized up-to-now. Many natural compounds modulate the expression and activity of cytochrome P450 1A1 (CYP1A1, which is well-known to bioactivate pro-carcinogens. The expression of this enzyme is controlled by the aryl hydrocarbon receptor (AHR, a ligand-activated transcription factor and regulator of drug metabolism. Here, we investigated the influence of both furanochromones on AHR signaling in human HepG2 hepatocarcinoma cells and primary human hepatocytes. Both compounds transactivated xenobiotic response element (XRE-driven reporter gene activity in a dose-dependent manner and induced CYP1A1 transcription in HepG2 cells and primary hepatocytes. The latter was abolished in presence of a specific AHR antagonist. CYP1A enzyme activity assays done in HepG2 cells and primary hepatocytes revealed an inhibition of enzyme activity by both furanochromones, which may become relevant regarding the metabolism of xenobiotics and co-administered therapeutic drugs. The observed induction of several other members of the AHR gene battery, whose gene products are involved in regulation of cell growth, differentiation and migration, indicates that a further toxicological characterization of visnagin and khelllin is urgently required in order to minimize potential drug-drug interactions and other toxic side-effects that may occur during therapeutic usage of these furanochromones.

  16. Aqueous solutions of proline and NaCl studied by differential scanning calorimetry at subzero temperatures

    DEFF Research Database (Denmark)

    Rasmussen, Peter Have; Jørgensen, Bo; Nielsen, Jette

    1997-01-01

    The hydration properties of proline are studied by differential scanning calorimetry (DSC) in aqueous solutions during freezing to -60 degrees C and subsequent heating to +20 degrees C. The concentration of proline in the freeze concentrated solution was estimated to approximately 50 wt% (w/w) in...... plants and insects living under water stress conditions is discussed. (C) 1997 Elsevier Science B.V....

  17. Differential scanning calorimetry of the effects of temperature and humidity on phenol-formaldehyde resin cure

    Science.gov (United States)

    X.-M. Wang; B. Riedl; A.W. Christiansen; R.L. Geimer

    1994-01-01

    Phenol-formaldehyde (PF) resin is a widely used adhesive in the manufacture of wood composites. However, curing behaviour of the resin under various environmental conditions is not well known. A differential scanning calorimeter was employed to characterize the degree of resin cure in this study. Resin-impregnated glass cloth samples with varied moisture contents (0,31...

  18. A Temperature-Dependent Thermal Model of IGBT Modules Suitable for Circuit-Level Simulations

    DEFF Research Database (Denmark)

    Wu, Rui; Wang, Huai; Pedersen, Kristian Bonderup

    2016-01-01

    A basic challenge in the IGBT transient simulation study is to obtain the realistic junction temperature, which demands not only accurate electrical simulations but also precise thermal impedance. This paper proposed a transient thermal model for IGBT junction temperature simulations during short...

  19. Small-signal modulation and differential gain of red-emitting (λ = 630 nm) InGaN/GaN quantum dot lasers

    Energy Technology Data Exchange (ETDEWEB)

    Frost, Thomas; Banerjee, Animesh; Bhattacharya, Pallab, E-mail: pkb@eecs.umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122 (United States)

    2013-11-18

    We report small-signal modulation bandwidth and differential gain measurements of a ridge waveguide In{sub 0.4}Ga{sub 0.6}N/GaN quantum dot laser grown by molecular beam epitaxy. The laser peak emission is at λ = 630 nm. The −3 dB bandwidth of an 800 μm long device was measured to be 2.4 GHz at 250 mA under pulsed biasing, demonstrating the possibility of high-speed operation of these devices. The differential gain was measured to be 5.3 × 10{sup −17} cm{sup 2}, and a gain compression factor of 2.87 × 10{sup −17} cm{sup 3} is also derived from the small-signal modulation response.

  20. Temperature modulates the cell wall mechanical properties of rice coleoptiles by altering the molecular mass of hemicellulosic polysaccharides

    Science.gov (United States)

    Nakamura, Yukiko; Wakabayashi, Kazuyuki; Hoson, Takayuki

    2003-01-01

    The present study was conducted to investigate the mechanism inducing the difference in the cell wall extensibility of rice (Oryza sativa L. cv. Koshihikari) coleoptiles grown under various temperature (10-50 degrees C) conditions. The growth rate and the cell wall extensibility of rice coleoptiles exhibited the maximum value at 30-40 degrees C, and became smaller as the growth temperature rose or dropped from this temperature range. The amounts of cell wall polysaccharides per unit length of coleoptile increased in coleoptiles grown at 40 degrees C, but not at other temperature conditions. On the other hand, the molecular size of hemicellulosic polysaccharides was small at temperatures where the cell wall extensibility was high (30-40 degrees C). The autolytic activities of cell walls obtained from coleoptiles grown at 30 and 40 degrees C were substantially higher than those grown at 10, 20 and 50 degrees C. Furthermore, the activities of (1-->3),(1-->4)-beta-glucanases extracted from coleoptile cell walls showed a similar tendency. When oat (1-->3),(1-->4)-beta-glucans with high molecular mass were incubated with the cell wall enzyme preparations from coleoptiles grown at various temperature conditions, the extensive molecular mass downshifts were brought about only by the cell wall enzymes obtained from coleoptiles grown at 30-40 degrees C. There were close correlations between the cell wall extensibility and the molecular mass of hemicellulosic polysaccharides or the activity of beta -glucanases. These results suggest that the environmental temperature regulates the cell wall extensibility of rice coleoptiles by modifying mainly the molecular mass of hemicellulosic polysaccharides. Modulation of the activity of beta-glucanases under various temperature conditions may be involved in the alteration of the molecular size of hemicellulosic polysaccharides.

  1. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences

    International Nuclear Information System (INIS)

    Kamra, Leena

    2015-01-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10 m in a 68 m deep borehole. The analysis of long time series for 2006–2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=−0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. - Highlights: • Seasonal variability of radon in borehole. • Influence of atmospheric temperature and pressure on radon variability. • Partial correlation coefficient.

  2. Progress report on irradiation experiment on small size specimens in high temperature flux module

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, M.; Jacquet, P.; Chaouadi, R.

    2011-02-15

    This report describes the progress made in IFREC/DEMO Research and Development Program during the year 2010 at SCK/CEN. This task is part of demonstrating the possibility to irradiate small specimens in the HFTM modules that will be used in DEMO. Different small specimens of three candidate materials of DEMO fusion reactor will be irradiated with the objective of validating the specimen geometry and size to reliably characterize the mechanical properties of unirradiated and in future of irradiated materials.

  3. Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors.

    Science.gov (United States)

    Mälkiä, Annika; Madrid, Rodolfo; Meseguer, Victor; de la Peña, Elvira; Valero, María; Belmonte, Carlos; Viana, Félix

    2007-05-15

    TRPM8, a member of the melastatin subfamily of transient receptor potential (TRP) cation channels, is activated by voltage, low temperatures and cooling compounds. These properties and its restricted expression to small sensory neurons have made it the ion channel with the most advocated role in cold transduction. Recent work suggests that activation of TRPM8 by cold and menthol takes place through shifts in its voltage-activation curve, which cause the channel to open at physiological membrane potentials. By contrast, little is known about the actions of inhibitors on the function of TRPM8. We investigated the chemical and thermal modulation of TRPM8 in transfected HEK293 cells and in cold-sensitive primary sensory neurons. We show that cold-evoked TRPM8 responses are effectively suppressed by inhibitor compounds SKF96365, 4-(3-chloro-pyridin-2-yl)-piperazine-1-carboxylic acid (4-tert-butyl-phenyl)-amide (BCTC) and 1,10-phenanthroline. These antagonists exert their effect by shifting the voltage dependence of TRPM8 activation towards more positive potentials. An opposite shift towards more negative potentials is achieved by the agonist menthol. Functionally, the bidirectional shift in channel gating translates into a change in the apparent temperature threshold of TRPM8-expressing cells. Accordingly, in the presence of the antagonist compounds, the apparent response-threshold temperature of TRPM8 is displaced towards colder temperatures, whereas menthol sensitizes the response, shifting the threshold in the opposite direction. Co-application of agonists and antagonists produces predictable cancellation of these effects, suggesting the convergence on a common molecular process. The potential for half maximal activation of TRPM8 activation by cold was approximately 140 mV more negative in native channels compared to recombinant channels, with a much higher open probability at negative membrane potentials in the former. In functional terms, this difference translates

  4. Complex magnetic differentiation of cobalts in Na x CoO2 with 22 K Néel temperature

    Science.gov (United States)

    Mukhamedshin, I. R.; Gilmutdinov, I. F.; Salosin, M. A.; Alloul, H.

    2014-06-01

    Single crystals of sodium cobaltates Na x CoO2 with x ≈ 0.8 were grown by the floating zone technique. Using electrochemical Na de-intercalation method we reduced the sodium content in the as-grown crystals down to pure phase with 22 K Néel temperature and x ≈ 0.77. The 59Co NMR study in the paramagnetic state of the T N = 22 K phase permitted us to evidence that at least 6 Co sites are differentiated. They could be separated by their magnetic behavior into three types: a single site with cobalt close to non-magnetic Co3+, two sites with the most magnetic cobalts in the system, and the remaining three sites displaying an intermediate behavior. This unusual magnetic differentiation calls for more detailed NMR experiments on our well characterized samples.

  5. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences.

    Science.gov (United States)

    Kamra, Leena

    2015-11-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10m in a 68m deep borehole. The analysis of long time series for 2006-2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=-0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Differential Aging Trajectories of Modulation of Activation to Cognitive Challenge in APOE ε4 Groups: Reduced Modulation Predicts Poorer Cognitive Performance.

    Science.gov (United States)

    Foster, Chris M; Kennedy, Kristen M; Rodrigue, Karen M

    2017-07-19

    The present study was designed to investigate the effect of a genetic risk factor for Alzheimer's disease (AD), ApolipoproteinE ε4 (APOEε4), on the ability of the brain to modulate activation in response to cognitive challenge in a lifespan sample of healthy human adults. A community-based sample of 181 cognitively intact, healthy adults were recruited from the Dallas-Fort Worth metroplex. Thirty-one APOEε4+ individuals (48% women), derived from the parent sample, were matched based on sex, age, and years of education to 31 individuals who were APOEε4-negative (APOEε4-). Ages ranged from 20 to 86 years of age. Blood oxygen level-dependent functional magnetic resonance imaging was collected during the performance of a visuospatial distance judgment task with three parametric levels of difficulty. Multiple regression was used in a whole-brain analysis with age, APOE group, and their interaction predicting functional brain modulation in response to difficulty. Results revealed an interaction between age and APOE in a large cluster localized primarily to the bilateral precuneus. APOEε4- individuals exhibited age-invariant modulation in response to task difficulty, whereas APOEε4+ individuals showed age-related reduction of modulation in response to increasing task difficulty compared with ε4- individuals. Decreased modulation in response to cognitive challenge was associated with reduced task accuracy as well as poorer name-face associative memory performance. Findings suggest that APOEε4 is associated with a reduction in the ability of the brain to dynamically modulate in response to cognitive challenge. Coupled with a significant genetic risk factor for AD, changes in modulation may provide additional information toward identifying individuals potentially at risk for cognitive decline associated with preclinical AD. SIGNIFICANCE STATEMENT Understanding how risk factors for Alzheimer's disease (AD) affect brain function and cognition in healthy adult samples

  7. Modulation of extreme temperatures in Europe under extreme values of the North Atlantic Oscillation Index.

    Science.gov (United States)

    Beniston, Martin

    2018-03-10

    This paper reports on the influence that extreme values in the tails of the North Atlantic Oscillation (NAO) Index probability density function (PDF) can exert on temperatures in Europe. When the NAO Index enters into its lowest (10% quantile or less) and highest (90% quantile or higher) modes, European temperatures often exhibit large negative or positive departures from their mean values, respectively. Analyses of the joint quantiles of the Index and temperatures (i.e., the simultaneous exceedance of particular quantile thresholds by the two variables) show that temperatures enter into the upper or lower tails of their PDF when the NAO Index also enters into its extreme tails, more often that could be expected from random statistics. Studies of this nature help further our understanding of the manner by which mechanisms of decadal-scale climate variability can influence extremes of temperature-and thus perhaps improve the forecasting of extreme temperatures in weather and climate models. © 2018 New York Academy of Sciences.

  8. De novo transcriptome sequencing and comparative analysis of differentially expressed genes in dryoperis fragrans under temperature stress

    International Nuclear Information System (INIS)

    Wang, W.Z.; Tong, W.S.; Gao, R.

    2016-01-01

    Dryopteris fragrans is a species of fern and contains flavonoids compounds with medicinal value. This study explain the temperature stress impact flavonoids synthesis in D. fragrans tissue culture seedlings under the low temperature at 4 degree C, high temperature at 35 degree C and moderate temperature at 25 degree C. By using Illumina HiSeq 2000 sequencing, 80.9 million raw sequence reads were de novo assembled into 66,716 non-redundant unigenes. 38,486 unigenes (57.7%) were annotated for their function. 13,973 unigenes and 29,598 unigenes were allocated to gene ontology (GO) and clusters of orthologous group (COG), respectively. 18,989 sequences mapped to 118 Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG), 204 genes were involved in flavonoid biosynthesis, regulation and transport. 25,292 and 16,817 unigenes exhibited marked differential expression in response to temperature shifts of 25 degree C to 4 degree C and 25 degree C to 35 degree C, respectively. 4CL and CHS genes involved in flavonoid biosynthesis were tested and suggested that they were responsible for biosynthesis of flavonoids. This study provides the first published data to describe the D. fragrans transcriptome and should accelerate understanding of flavonoids biosynthesis, regulation and transport mechanisms. Since most unigenes described here were successfully annotated, these results should facilitate future functional genomic understanding and research of D. fragrans. (author)

  9. Differential effects of ambient temperature on warm cell responses to infrared radiation in the bloodsucking bug Rhodnius prolixus.

    Science.gov (United States)

    Zopf, Lydia M; Lazzari, Claudio R; Tichy, Harald

    2014-03-01

    Thermoreceptors provide animals with background information about the thermal environment, which is at least indirectly a prerequisite for thermoregulation and assists bloodsucking insects in the search for their host. Recordings from peg-in-pit sensilla and tapered hairs on the antennae of the bug Rhodnius prolixus revealed two physiologically different types of warm cells. Both types responded more strongly to temperature pulses produced by switching between two air streams at different constant temperatures than to infrared radiation pulses employed in still air. In addition, both warm cells were better able to discriminate small changes in air temperature than in infrared radiation. As convective and radiant heat determines the discharge, it is impossible for a single warm cell to signal the nature of the stimulus unequivocally. Individual responses are ambiguous, not with regard to temperature change, but with regard to its source. We argue that the bugs use mechanical flow information to differentiate between pulses of convective and radiant heat. However, if pulses of radiant heat occur together with a constant temperature air stream, the mechanical cues would not allow avoiding ambiguity that convective heat introduces into radiant heat stimulation. In this situation, the warm cell in the tapered hairs produced stronger responses than those in the peg-in-pit sensilla. The reversal in the excitability of the two types of warm cells provides a criterion by which to distinguish the combination of convective and radiant heat from the stimuli presented alone.

  10. NEU3 sialidase strictly modulates GM3 levels in skeletal myoblasts C2C12 thus favoring their differentiation and protecting them from apoptosis.

    Science.gov (United States)

    Anastasia, Luigi; Papini, Nadia; Colazzo, Francesca; Palazzolo, Giacomo; Tringali, Cristina; Dileo, Loredana; Piccoli, Marco; Conforti, Erika; Sitzia, Clementina; Monti, Eugenio; Sampaolesi, Maurilio; Tettamanti, Guido; Venerando, Bruno

    2008-12-26

    Membrane-bound sialidase NEU3, often referred to as the "ganglioside sialidase," has a critical regulatory function on the sialoglycosphingolipid pattern of the cell membrane, with an anti-apoptotic function, especially in cancer cells. Although other sialidases have been shown to be involved in skeletal muscle differentiation, the role of NEU3 had yet to be disclosed. Herein we report that NEU3 plays a key role in skeletal muscle differentiation by strictly modulating the ganglioside content of adjacent cells, with special regard to GM3. Induced down-regulation of NEU3 in murine C2C12 myoblasts, even when partial, totally inhibits their capability to differentiate by increasing the GM3 level above a critical point, which causes epidermal growth factor receptor inhibition (and ultimately its down-regulation) and an higher responsiveness of myoblasts to the apoptotic stimuli.

  11. Intramuscular temperature modulates glutamate-evoked masseter muscle pain intensity in humans.

    Science.gov (United States)

    Sato, Hitoshi; Castrillon, Eduardo E; Cairns, Brian E; Bendixen, Karina H; Wang, Kelun; Nakagawa, Taneaki; Wajima, Koichi; Svensson, Peter

    2015-01-01

    To determine whether glutamate-evoked jaw muscle pain is altered by the temperature of the solution injected. Sixteen healthy volunteers participated and received injections of hot (48°C), neutral (36°C), or cold (3°C) solutions (0.5 mL) of glutamate or isotonic saline into the masseter muscle. Pain intensity was assessed with an electronic visual analog scale (eVAS). Numeric rating scale (NRS) scores of unpleasantness and temperature perception, pain-drawing areas, and pressure pain thresholds (PPTs) were also measured. Participants filled out the McGill Pain Questionnaire (MPQ). Two-way or three-way repeated measures ANOVA were used for data analyses. Injection of hot glutamate and cold glutamate solutions significantly increased and decreased, respectively, the peak pain intensity compared with injection of neutral glutamate solution. The duration of glutamate-evoked pain was significantly longer when hot glutamate was injected than when cold glutamate was injected. No significant effect of temperature on pain intensity was observed when isotonic saline was injected. No effect of solution temperature was detected on unpleasantness, heat perception, cold perception, area of pain drawings, or PPTs. There was a significantly greater use of the "numb" term in the MPQ to describe the injection of cold solutions compared to the injection of both neutral and hot solutions. Glutamate-evoked jaw muscle pain was significantly altered by the temperature of the injection solution. Although temperature perception in the jaw muscle is poor, pain intensity is increased when the muscle tissue temperature is elevated.

  12. Correlation between Temperature-dependent Fatigue Resistance and Differential Scanning Calorimetry Analysis for 2 Contemporary Rotary Instruments.

    Science.gov (United States)

    Arias, Ana; Macorra, José C; Govindjee, Sanjay; Peters, Ove A

    2018-04-01

    The aim of this study was to assess differences in cyclic fatigue (CF) life of contemporary heat-treated nickel-titanium rotary instruments at room and body temperatures and to document corresponding phase transformations. Forty Hyflex EDM (H-EDM) files (Coltene, Cuyahoga Falls, OH [#25/.08, manufactured by electrical discharge machining]) and 40 TRUShape (TS) files (Dentsply Tulsa Dental Specialties, Tulsa, OK [#25/.06v, manufactured by grinding and shape setting]) were divided into 2 groups (n = 20) for CF resistance tests in a water bath either at room (22°C ± 0.5°C) or body temperature (37°C ± 0.5°C). Instruments were rotated in a simulated canal (angle = 60°, radius = 3 mm, and center of the curvature 5 mm from the tip) until fracture occurred. The motor was controlled by an electric circuit that was interrupted after instrument fracture. The mean half-life and beta and eta Weibull parameters were determined and compared. Two instruments of each brand were subjected to differential scanning calorimetry (DSC). While TS instruments lasted significantly longer at room temperature (mean life = 234.7 seconds; 95% confidence interval [CI], 209-263.6) than at body temperature (mean life = 83.2 seconds; 95% CI, 76-91.1), temperature did not affect H-EDM behavior (room temperature mean life = 725.4 seconds; 95% CI, 658.8-798.8 and body temperature mean life = 717.9 seconds; 95% CI, 636.8-809.3). H-EDM instruments significantly outlasted TS instruments at both temperatures. At body temperature, TS was predominantly austenitic, whereas H-EDM was martensitic or in R-phase. TS was in a mixed austenitic/martensitic phase at 22°C, whereas H-EDM was in the same state as at 37°C. H-EDM had a longer fatigue life than TS, which showed a marked decrease in fatigue life at body temperature; neither the life span nor the state of the microstructure in the DSC differed for H-EDM between room or body temperature. Copyright © 2017 American Association of

  13. Extended-bandwidth frequency sweeps of a distributed feedback laser using combined injection current and temperature modulation.

    Science.gov (United States)

    Hefferman, Gerald; Chen, Zhen; Wei, Tao

    2017-07-01

    This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.

  14. Extended-bandwidth frequency sweeps of a distributed feedback laser using combined injection current and temperature modulation

    Science.gov (United States)

    Hefferman, Gerald; Chen, Zhen; Wei, Tao

    2017-07-01

    This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.

  15. Correlation Feature Selection and Mutual Information Theory Based Quantitative Research on Meteorological Impact Factors of Module Temperature for Solar Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Yujing Sun

    2016-12-01

    Full Text Available The module temperature is the most important parameter influencing the output power of solar photovoltaic (PV systems, aside from solar irradiance. In this paper, we focus on the interdisciplinary research that combines the correlation analysis, mutual information (MI and heat transfer theory, which aims to figure out the correlative relations between different meteorological impact factors (MIFs and PV module temperature from both quality and quantitative aspects. The identification and confirmation of primary MIFs of PV module temperature are investigated as the first step of this research from the perspective of physical meaning and mathematical analysis about electrical performance and thermal characteristic of PV modules based on PV effect and heat transfer theory. Furthermore, the quantitative description of the MIFs influence on PV module temperature is mathematically formulated as several indexes using correlation-based feature selection (CFS and MI theory to explore the specific impact degrees under four different typical weather statuses named general weather classes (GWCs. Case studies for the proposed methods were conducted using actual measurement data of a 500 kW grid-connected solar PV plant in China. The results not only verified the knowledge about the main MIFs of PV module temperatures, more importantly, but also provide the specific ratio of quantitative impact degrees of these three MIFs respectively through CFS and MI based measures under four different GWCs.

  16. Research for Brazing Materials of High-Temperature Thermoelectric Modules with CoSb3 Thermoelectric Materials

    Science.gov (United States)

    Lee, Yu Seong; Kim, Suk Jun; Kim, Byeong Geun; Lee, Soonil; Seo, Won-Seon; Kim, Il-Ho; Choi, Soon-Mok

    2017-05-01

    Metallic glass (MG) can be a candidate for an alternative brazing material of high-temperature thermoelectric modules, since we can expect both a lower brazing temperature and a high operating temperature for the junction from the MG brazers. Another advantage of MG powders is their outstanding oxidation resistance, namely, high-temperature durability in atmosphere. We fabricated three compositions of Al-based MGs—Al-Y-Ni, Al-Y-Ni-Co, and Al-Y-Ni-Co-La—by using the melt spinning process, and their T gs were 273°C, 264°C, and 249°C, respectively. The electrical resistivity of the Al-Y-Ni MG ribbon dropped significantly after annealing at 300°C. The electrical resistivity of crystallized Al-Y-Ni reduced down to 0.03 mΩ cm, which is an order of magnitude lower than that of the amorphous one. After the MG ribbons were pulverized to sub-100 μm, the average particle size was about 400 μm.

  17. Extended Kalman Filtering to estimate temperature and irradiation for maximum power point tracking of a photovoltaic module

    International Nuclear Information System (INIS)

    Docimo, D.J.; Ghanaatpishe, M.; Mamun, A.

    2017-01-01

    This paper develops an algorithm for estimating photovoltaic (PV) module temperature and effective irradiation level. The power output of a PV system depends directly on both of these states. Estimating the temperature and irradiation allows for improved state-based control methods while eliminating the need of additional sensors. Thermal models and irradiation estimators have been developed in the literature, but none incorporate feedback for estimation. This paper outlines an Extended Kalman Filter for temperature and irradiation estimation. These estimates are, in turn, used within a novel state-based controller that tracks the maximum power point of the PV system. Simulation results indicate this state-based controller provides up to an 8.5% increase in energy produced per day as compared to an impedance matching controller. A sensitivity analysis is provided to examine the impact state estimate errors have on the ability to find the optimal operating point of the PV system. - Highlights: • Developed a temperature and irradiation estimator for photovoltaic systems. • Designed an Extended Kalman Filter to handle model and measurement uncertainty. • Developed a state-based controller for maximum power point tracking (MPPT). • Validated combined estimator/controller algorithm for different weather conditions. • Algorithm increases energy captured up to 8.5% over traditional MPPT algorithms.

  18. Circadian genes, xBmal1 and xNocturnin, modulate the timing and differentiation of somites in Xenopus laevis.

    Directory of Open Access Journals (Sweden)

    Kristen L Curran

    Full Text Available We have been investigating whether xBmal1 and xNocturnin play a role in somitogenesis, a cyclic developmental process with an ultradian period. Previous work from our lab shows that circadian genes (xPeriod1, xPeriod2, xBmal1, and xNocturnin are expressed in developing somites. Somites eventually form the vertebrae, muscles of the back, and dermis. In Xenopus, a pair of somites is formed about every 50 minutes from anterior to posterior. We were intrigued by the co-localization of circadian genes in an embryonic tissue known to be regulated by an ultradian clock. Cyclic expression of genes involved in Notch signaling has been implicated in the somite clock. Disruption of Notch signaling in humans has been linked to skeletal defects in the vertebral column. We found that both depletion (morpholino and overexpression (mRNA of xBMAL1 protein (bHLH transcription factor or xNOCTURNIN protein (deadenylase on one side of the developing embryo led to a significant decrease in somite number with respect to the untreated side (p<0.001. These manipulations also significantly affect expression of a somite clock component (xESR9; p<0.05. We observed opposing effects on somite size. Depletion of xBMAL1 or xNOCTURNIN caused a statistically significant decrease in somite area (quantified using NIH ImageJ; p<0.002, while overexpression of these proteins caused a significant dose dependent increase in somite area (p<0.02; p<0.001, respectively. We speculate that circadian genes may play two separate roles during somitogenesis. Depletion and overexpression of xBMAL1 and NOCTURNIN both decrease somite number and influence expression of a somite clock component, suggesting that these proteins may modulate the timing of the somite clock in the undifferentiated presomitic mesoderm. The dosage dependent effects on somite area suggest that xBMAL1 and xNOCTURNIN may also act during somite differentiation to promote myogenesis.

  19. Tumor suppressors TSC1 and TSC2 differentially modulate actin cytoskeleton and motility of mouse embryonic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Elena A Goncharova

    Full Text Available TSC1 and TSC2 mutations cause neoplasms in rare disease pulmonary LAM and neuronal pathfinding in hamartoma syndrome TSC. The specific roles of TSC1 and TSC2 in actin remodeling and the modulation of cell motility, however, are not well understood. Previously, we demonstrated that TSC1 and TSC2 regulate the activity of small GTPases RhoA and Rac1, stress fiber formation and cell adhesion in a reciprocal manner. Here, we show that Tsc1(-/- MEFs have decreased migration compared to littermate-derived Tsc1(+/+ MEFs. Migration of Tsc1(-/- MEFs with re-expressed TSC1 was comparable to Tsc1(+/+ MEF migration. In contrast, Tsc2(-/- MEFs showed an increased migration compared to Tsc2(+/+ MEFs that were abrogated by TSC2 re-expression. Depletion of TSC1 and TSC2 using specific siRNAs in wild type MEFs and NIH 3T3 fibroblasts also showed that TSC1 loss attenuates cell migration while TSC2 loss promotes cell migration. Morphological and immunochemical analysis demonstrated that Tsc1(-/- MEFs have a thin protracted shape with a few stress fibers; in contrast, Tsc2(-/- MEFs showed a rounded morphology and abundant stress fibers. Expression of TSC1 in either Tsc1(-/- or Tsc2(-/- MEFs promoted stress fiber formation, while TSC2 re-expression induced stress fiber disassembly and the formation of cortical actin. To assess the mechanism(s by which TSC2 loss promotes actin re-arrangement and cell migration, we explored the role of known downstream effectors of TSC2, mTORC1 and mTORC2. Increased migration of Tsc2(-/- MEFs is inhibited by siRNA mTOR and siRNA Rictor, but not siRNA Raptor. siRNA mTOR or siRNA Rictor promoted stress fiber disassembly in TSC2-null cells, while siRNA Raptor had little effect. Overexpression of kinase-dead mTOR induced actin stress fiber disassembly and suppressed TSC2-deficient cell migration. Our data demonstrate that TSC1 and TSC2 differentially regulate actin stress fiber formation and cell migration, and that only TSC2 loss promotes

  20. Porphyromonas gingivalis Differentially Modulates Cell Death Profile in Ox-LDL and TNF-α Pre-Treated Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Isaac Maximiliano Bugueno

    Full Text Available Clinical studies demonstrated a potential link between atherosclerosis and periodontitis. Porphyromonas gingivalis (Pg, one of the main periodontal pathogen, has been associated to atheromatous plaque worsening. However, synergism between infection and other endothelial stressors such as oxidized-LDL or TNF-α especially on endothelial cell (EC death has not been investigated. This study aims to assess the role of Pg on EC death in an inflammatory context and to determine potential molecular pathways involved.Human umbilical vein ECs (HUVECs were infected with Pg (MOI 100 or stimulated by its lipopolysaccharide (Pg-LPS (1μg/ml for 24 to 48 hours. Cell viability was measured with AlamarBlue test, type of cell death induced was assessed using Annexin V/propidium iodide staining. mRNA expression regarding caspase-1, -3, -9, Bcl-2, Bax-1 and Apaf-1 has been evaluated with RT-qPCR. Caspases enzymatic activity and concentration of APAF-1 protein were evaluated to confirm mRNA results.Pg infection and Pg-LPS stimulation induced EC death. A cumulative effect has been observed in Ox-LDL pre-treated ECs infected or stimulated. This effect was not observed in TNF-α pre-treated cells. Pg infection promotes EC necrosis, however, in infected Ox-LDL pre-treated ECs, apoptosis was promoted. This effect was not observed in TNF-α pre-treated cells highlighting specificity of molecular pathways activated. Regarding mRNA expression, Pg increased expression of pro-apoptotic genes including caspases-1,-3,-9, Bax-1 and decreased expression of anti-apoptotic Bcl-2. In Ox-LDL pre-treated ECs, Pg increased significantly the expression of Apaf-1. These results were confirmed at the protein level.This study contributes to demonstrate that Pg and its Pg-LPS could exacerbate Ox-LDL and TNF-α induced endothelial injury through increase of EC death. Interestingly, molecular pathways are differentially modulated by the infection in function of the pre-stimulation.

  1. Amino-termini isoforms of the Slack K+ channel, regulated by alternative promoters, differentially modulate rhythmic firing and adaptation.

    Science.gov (United States)

    Brown, Maile R; Kronengold, Jack; Gazula, Valeswara-Rao; Spilianakis, Charalampos G; Flavell, Richard A; von Hehn, Christian A A; Bhattacharjee, Arin; Kaczmarek, Leonard K

    2008-11-01

    these locations. Our data suggest that alternative promoters of the Slack gene differentially modulate the properties of neurones.

  2. Conical : An extended module for computing a numerically satisfactory pair of solutions of the differential equation for conical functions

    NARCIS (Netherlands)

    T.M. Dunster (Mark); A. Gil (Amparo); J. Segura (Javier); N.M. Temme (Nico)

    2017-01-01

    textabstractConical functions appear in a large number of applications in physics and engineering. In this paper we describe an extension of our module Conical (Gil et al., 2012) for the computation of conical functions. Specifically, the module includes now a routine for computing the function

  3. High-bandwidth scanned-wavelength-modulation spectroscopy sensors for temperature and H2O in a rotating detonation engine

    International Nuclear Information System (INIS)

    Goldenstein, Christopher S; Almodóvar, Christopher A; Jeffries, Jay B; Hanson, Ronald K; Brophy, Christopher M

    2014-01-01

    The design and use of two-color tunable diode laser (TDL) absorption sensors for measurements of temperature and H 2 O in a rotating detonation engine (RDE) are presented. Both sensors used first-harmonic-normalized scanned-wavelength-modulation spectroscopy with second-harmonic detection (scanned-WMS-2f/1f) to account for non-absorbing transmission losses and emission encountered in the harsh combustion environment. One sensor used two near-infrared (NIR) TDLs near 1391.7 nm and 1469.3 nm that were modulated at 225 kHz and 285 kHz, respectively, and sinusoidally scanned across the peak of their respective H 2 O absorption transitions to provide a measurement rate of 50 kHz and a detection limit in the RDE of 0.2% H 2 O by mole. The other sensor used two mid-infrared (MIR) TDLs near 2551 nm and 2482 nm that were modulated at 90 kHz and 112 kHz, respectively, and sinusoidally scanned across the peak of their respective H 2 O transitions to provide a measurement rate of 10 kHz and a detection limit in the RDE of 0.02% H 2 O by mole. Four H 2 O absorption transitions with different lower-state energies were used to assess the homogeneity of temperature in the measurement plane. Experimentally derived spectroscopic parameters that enable temperature and H 2 O sensing to within 1.5–3.5% of known values are reported. The sensor design enabling the high-bandwidth scanned-WMS-2f/1f measurements is presented. The two sensors were deployed across two orthogonal and coplanar lines-of-sight (LOS) located in the throat of a converging-diverging nozzle at the RDE combustor exit. Measurements in the non-premixed H 2 -fueled RDE indicate that the temperature and H 2 O oscillate at the detonation frequency (≈3.25 kHz) and that production of H 2 O is a weak function of global equivalence ratio. (paper)

  4. High-bandwidth scanned-wavelength-modulation spectroscopy sensors for temperature and H2O in a rotating detonation engine

    Science.gov (United States)

    Goldenstein, Christopher S.; Almodóvar, Christopher A.; Jeffries, Jay B.; Hanson, Ronald K.; Brophy, Christopher M.

    2014-10-01

    The design and use of two-color tunable diode laser (TDL) absorption sensors for measurements of temperature and H2O in a rotating detonation engine (RDE) are presented. Both sensors used first-harmonic-normalized scanned-wavelength-modulation spectroscopy with second-harmonic detection (scanned-WMS-2f/1f) to account for non-absorbing transmission losses and emission encountered in the harsh combustion environment. One sensor used two near-infrared (NIR) TDLs near 1391.7 nm and 1469.3 nm that were modulated at 225 kHz and 285 kHz, respectively, and sinusoidally scanned across the peak of their respective H2O absorption transitions to provide a measurement rate of 50 kHz and a detection limit in the RDE of 0.2% H2O by mole. The other sensor used two mid-infrared (MIR) TDLs near 2551 nm and 2482 nm that were modulated at 90 kHz and 112 kHz, respectively, and sinusoidally scanned across the peak of their respective H2O transitions to provide a measurement rate of 10 kHz and a detection limit in the RDE of 0.02% H2O by mole. Four H2O absorption transitions with different lower-state energies were used to assess the homogeneity of temperature in the measurement plane. Experimentally derived spectroscopic parameters that enable temperature and H2O sensing to within 1.5-3.5% of known values are reported. The sensor design enabling the high-bandwidth scanned-WMS-2f/1f measurements is presented. The two sensors were deployed across two orthogonal and coplanar lines-of-sight (LOS) located in the throat of a converging-diverging nozzle at the RDE combustor exit. Measurements in the non-premixed H2-fueled RDE indicate that the temperature and H2O oscillate at the detonation frequency (≈3.25 kHz) and that production of H2O is a weak function of global equivalence ratio.

  5. Method translation and full metadata transfer from thermal to differential flow modulated comprehensive two dimensional gas chromatography: Profiling of suspected fragrance allergens.

    Science.gov (United States)

    Cordero, Chiara; Rubiolo, Patrizia; Reichenbach, Stephen E; Carretta, Andrea; Cobelli, Luigi; Giardina, Matthew; Bicchi, Carlo

    2017-01-13

    The possibility to transfer methods from thermal to differential-flow modulated comprehensive two-dimensional gas chromatographic (GC×GC) platforms is of high interest to improve GC×GC flexibility and increase the compatibility of results from different platforms. The principles of method translation are here applied to an original method, developed for a loop-type thermal modulated GC×GC-MS/FID system, suitable for quali-quantitative screening of suspected fragrance allergens. The analysis conditions were translated to a reverse-injection differential flow modulated platform (GC×2GC-MS/FID) with a dual-parallel secondary column and dual detection. The experimental results, for a model mixture of suspected volatile allergens and for raw fragrance mixtures of different composition, confirmed the feasibility of translating methods by preserving 1 D elution order, as well as the relative alignment of resulting 2D peak patterns. A correct translation produced several benefits including an effective transfer of metadata (compound names, MS fragmentation pattern, response factors) by automatic template transformation and matching from the original/reference method to its translated counterpart. The correct translation provided: (a) 2D pattern repeatability, (b) MS fragmentation pattern reliability for identity confirmation, and (c) comparable response factors and quantitation accuracy within a concentration range of three orders of magnitude. The adoption of a narrow bore (i.e. 0.1mm d c ) first-dimension column to operate under close-to-optimal conditions with the differential-flow modulation GC×GC platform was also advantageous in halving the total analysis under the translated conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Novel function of the chromosome 7 open reading frame 41 gene to promote leukemic megakaryocyte differentiation by modulating TPA-induced signaling.

    Science.gov (United States)

    Sun, X; Lu, B; Hu, B; Xiao, W; Li, W; Huang, Z

    2014-03-28

    12-O-tetradecanoylphorbol-13-acetate (TPA) activates multiple signaling pathways, alters gene expression and causes leukemic cell differentiation. How TPA-induced genes contribute to leukemic cell differentiation remains elusive. We noticed that chromosome 7 open reading frame 41 (C7ORF41) was a TPA-responsive gene and its upregulation concurred with human megakaryocyte differentiation. In K562 cells, ectopic expression of C7ORF41 significantly increased CD61 expression, enhanced ERK and JNK signaling, and upregulated RUNX1 and FLI1, whereas C7ORF41 knockdown caused an opposite phenotype. These observations suggest that C7ORF41 may promote megakaryocyte differentiation partially through modulating ERK and JNK signaling that leads to upregulation of RUNX1 and FLI1. In supporting this, C7ORF41 overexpression rescued megakaryocyte differentiation blocked by ERK inhibition while JNK inhibition abrogated the upregulation of FLI1 by C7ORF41. Furthermore, we found that Y34F mutant C7ORF41 inhibited megakaryocyte differentiation. nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) was the major activator of C7ORF41 that in turn repressed NF-κB activity by inhibiting its phosphorylation at serine 536, while MAPK/ERK was the potent repressor of C7ORF41. Finally, we showed that C7ORF41 knockdown in mouse fetal liver cells impaired megakaryocyte differentiation. Taken together, we have identified the function of a novel gene C7ORF41 that forms interplaying regulatory network in TPA-induced signaling and promotes leukemic and normal megakaryocyte differentiation.

  7. Novel function of the chromosome 7 open reading frame 41 gene to promote leukemic megakaryocyte differentiation by modulating TPA-induced signaling

    International Nuclear Information System (INIS)

    Sun, X; Lu, B; Hu, B; Xiao, W; Li, W; Huang, Z

    2014-01-01

    12-O-tetradecanoylphorbol-13-acetate (TPA) activates multiple signaling pathways, alters gene expression and causes leukemic cell differentiation. How TPA-induced genes contribute to leukemic cell differentiation remains elusive. We noticed that chromosome 7 open reading frame 41 (C7ORF41) was a TPA-responsive gene and its upregulation concurred with human megakaryocyte differentiation. In K562 cells, ectopic expression of C7ORF41 significantly increased CD61 expression, enhanced ERK and JNK signaling, and upregulated RUNX1 and FLI1, whereas C7ORF41 knockdown caused an opposite phenotype. These observations suggest that C7ORF41 may promote megakaryocyte differentiation partially through modulating ERK and JNK signaling that leads to upregulation of RUNX1 and FLI1. In supporting this, C7ORF41 overexpression rescued megakaryocyte differentiation blocked by ERK inhibition while JNK inhibition abrogated the upregulation of FLI1 by C7ORF41. Furthermore, we found that Y34F mutant C7ORF41 inhibited megakaryocyte differentiation. nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) was the major activator of C7ORF41 that in turn repressed NF-κB activity by inhibiting its phosphorylation at serine 536, while MAPK/ERK was the potent repressor of C7ORF41. Finally, we showed that C7ORF41 knockdown in mouse fetal liver cells impaired megakaryocyte differentiation. Taken together, we have identified the function of a novel gene C7ORF41 that forms interplaying regulatory network in TPA-induced signaling and promotes leukemic and normal megakaryocyte differentiation

  8. Circadian and age-related modulation of thermoception and temperature regulation: mechanisms and functional implications.

    NARCIS (Netherlands)

    van Someren, E.J.W.; Raymann, RJEM; Scherder, E.J.A.; Daanen, H.A.M.; Swaab, D.F.

    2002-01-01

    At older ages, the circadian rhythm of body temperature shows a decreased amplitude, an advanced phase, and decreased stability. The present review evaluates to what extent these changes may result from age-related deficiencies at several levels of the thermoregulatory system, including

  9. Circadian and age-related modulation of thermoreception and temperature regulation: mechanisms and functional implications

    NARCIS (Netherlands)

    van Someren, Eus J. W.; Raymann, Roy J. E. M.; Scherder, Erik J. A.; Daanen, Hein A. M.; Swaab, Dick F.

    2002-01-01

    At older ages, the circadian rhythm of body temperature shows a decreased amplitude, an advanced phase, and decreased stability. The present review evaluates to what extent these changes may result from age-related deficiencies at several levels of the thermoregulatory system, including

  10. Differential Gene Expression in Response to Salinity and Temperature in a Haloarcula Strain from Great Salt Lake, Utah

    Directory of Open Access Journals (Sweden)

    Swati Almeida-Dalmet

    2018-01-01

    Full Text Available Haloarchaea that inhabit Great Salt Lake (GSL, a thalassohaline terminal lake, must respond to the fluctuating climate conditions of the elevated desert of Utah. We investigated how shifting environmental factors, specifically salinity and temperature, affected gene expression in the GSL haloarchaea, NA6-27, which we isolated from the hypersaline north arm of the lake. Combined data from cultivation, microscopy, lipid analysis, antibiotic sensitivity, and 16S rRNA gene alignment, suggest that NA6-27 is a member of the Haloarcula genus. Our prior study demonstrated that archaea in the Haloarcula genus were stable in the GSL microbial community over seasons and years. In this study, RNA arbitrarily primed PCR (RAP-PCR was used to determine the transcriptional responses of NA6-27 grown under suboptimal salinity and temperature conditions. We observed alteration of the expression of genes related to general stress responses, such as transcription, translation, replication, signal transduction, and energy metabolism. Of the ten genes that were expressed differentially under stress, eight of these genes responded in both conditions, highlighting this general response. We also noted gene regulation specific to salinity and temperature conditions, such as osmoregulation and transport. Taken together, these data indicate that the GSL Haloarcula strain, NA6-27, demonstrates both general and specific responses to salinity and/or temperature stress, and suggest a mechanistic model for homeostasis that may explain the stable presence of this genus in the community as environmental conditions shift.

  11. Temperature dependence of differential conductance in Co-based Heusler alloy Co2TiSn and superconductor Pb junctions

    Science.gov (United States)

    Ooka, Ryutaro; Shigeta, Iduru; Umetsu, Rie Y.; Nomura, Akiko; Yubuta, Kunio; Yamauchi, Touru; Kanomata, Takeshi; Hiroi, Masahiko

    2018-05-01

    We investigated temperature dependence of differential conductance G (V) in planar junctions consisting of Co-based Heusler alloy Co2TiSn and superconductor Pb. Ferromagnetic Co2TiSn was predicted to be half-metal by first-principles band calculations. The spin polarization P of Co2TiSn was deduced to be 60.0% at 1.4 K by the Andreev reflection spectroscopy. The G (V) spectral shape was smeared gradually with increasing temperature and its structure was disappeared above the superconducting transition temperature Tc. Theoretical model analysis revealed that the superconducting energy gap Δ was 1.06 meV at 1.4 K and the Tc was 6.8 K , indicating that both values were suppressed from bulk values. However, the temperature dependent Δ (T) behavior was in good agreement with that of the Bardeen-Cooper-Schrieffer (BCS) theory. The experimental results exhibit that the superconductivity of Pb attached to half-metallic Co2TiSn was kept the conventional BCS mechanism characterized strong-coupling superconductors while its superconductivity was slightly suppressed by the superconducting proximity effect at the Co2TiSn/Pb interface.

  12. Natural convection in square enclosures differentially heated at sides using alumina-water nanofluids with temperature-dependent physical properties

    Directory of Open Access Journals (Sweden)

    Cianfrini Marta

    2015-01-01

    Full Text Available Laminar natural convection of Al2O3 + H2O nanofluids inside square cavities differentially heated at sides is studied numerically. A computational code based on the SIMPLE-C algorithm is used for the solution of the system of the mass, momentum and energy transfer governing equations. Assuming that the nanofluid behaves like a single-phase fluid, these equations are the same as those valid for a pure fluid, provided that the thermophysical properties appearing in them are the nanofluid effective properties. The thermal conductivity and dynamic viscosity of the nanofluid are calculated by means of a couple of empirical equations based on a wide variety of experimental data reported in the literature. The other effective properties are evaluated by the conventional mixing theory. Simulations are performed for different values of the nanoparticle volume fraction in the range 0-0.06, the diameter of the suspended nanoparticles in the range 25-100 nm, the temperature of the cooled sidewall in the range 293-313 K, the temperature of the heated sidewall in the range 298-343 K, and the Rayleigh number of the base fluid in the range 103-107. All computations are executed in the hypothesis of temperature-dependent effective properties. The main result obtained is the existence of an optimal particle loading for maximum heat transfer, that is found to increase as the size of the suspended nanoparticles is decreased, and the nanofluid average temperature is increased.

  13. Natural blood feeding and temperature shift modulate the global transcriptional profile of Rickettsia rickettsii infecting its tick vector.

    Directory of Open Access Journals (Sweden)

    Maria Fernanda B M Galletti

    Full Text Available Rickettsia rickettsii is an obligate intracellular tick-borne bacterium that causes Rocky Mountain Spotted Fever (RMSF, the most lethal spotted fever rickettsiosis. When an infected starving tick begins blood feeding from a vertebrate host, R. rickettsii is exposed to a temperature elevation and to components in the blood meal. These two environmental stimuli have been previously associated with the reactivation of rickettsial virulence in ticks, but the factors responsible for this phenotype conversion have not been completely elucidated. Using customized oligonucleotide microarrays and high-throughput microfluidic qRT-PCR, we analyzed the effects of a 10°C temperature elevation and of a blood meal on the transcriptional profile of R. rickettsii infecting the tick Amblyomma aureolatum. This is the first study of the transcriptome of a bacterium in the genus Rickettsia infecting a natural tick vector. Although both stimuli significantly increased bacterial load, blood feeding had a greater effect, modulating five-fold more genes than the temperature upshift. Certain components of the Type IV Secretion System (T4SS were up-regulated by blood feeding. This suggests that this important bacterial transport system may be utilized to secrete effectors during the tick vector's blood meal. Blood feeding also up-regulated the expression of antioxidant enzymes, which might correspond to an attempt by R. rickettsii to protect itself against the deleterious effects of free radicals produced by fed ticks. The modulated genes identified in this study, including those encoding hypothetical proteins, require further functional analysis and may have potential as future targets for vaccine development.

  14. Monitoring of Optical Emission from High Temperature Plasma Based on Chromatic Modulation

    International Nuclear Information System (INIS)

    Dimitrios, Tomtsis

    2009-01-01

    An integrated experimental approach is presented for processing the optical emission produced from electric arc plasma. The method is based on chromatic modulation techniques to provide a holistic measurement of the persistence of particle decays within the environment of high power circuit breakers. Chromaticity changes in a number of chromatic parameters are related to changes in physical electric arc plasma environment (e.g. particle concentration). The results are in the form of chromatic maps which show how the overall electric arc plasma and its environment behave and respond. Such maps show the totality of information which can be accessed about the arcing event and the level of monitoring discrimination which is achievable with the chromatic methodology in a simple and easy to understand manner. The suggested method provides easier data analysis and high levels of data compression.

  15. Differential stability of TATA box binding proteins from archaea with different optimal growth temperatures

    Science.gov (United States)

    Kopitz, Annette; Soppa, Jörg; Krejtschi, Carsten; Hauser, Karin

    2009-09-01

    The TATA box binding protein (TBP) is involved in promoter recognition, the first step of transcription initiation. TBP is universally conserved and essential in archaea and eukaryotes. In archaea, TBPs have to be stable and to function in species that cover an extremely wide range of optimal growth temperatures (OGTs), from below 0 °C to more than 100 °C. Thus, the archaeal TBP family is ideally suited to study the evolutionary adaptation of proteins to an extremely wide range of temperatures. We characterized the thermostability of one mesophilic and one thermophilic TBP by infrared spectroscopy. Transition temperatures ( Tms) of thermal unfolding have been determined using TBPs from Methanosarcina mazei (OGT 37 °C) and from Methanothermobacter thermautotrophicus (OGT 65 °C). Furthermore, the influence of protein and salt concentration on thermostability has been characterized. Together with previous studies, our results reveal that the Tms of archaeal TBPs are closely correlated with the OGTs of the respective species. Noteworthy, this is also true for the TBP from M. mazei representing the first characterized TBP from a mesophilic archaeon. In contrast, the only characterized eukaryotic TBP of the mesophilic plant Arabidopsis thaliana has a Tm more than 40 °C above the OGT.

  16. Fabrication of Metallic Glass Powder for Brazing Paste for High-Temperature Thermoelectric Modules

    Science.gov (United States)

    Seo, Seung-Ho; Kim, Suk Jun; Lee, Soonil; Seo, Won-Seon; Kim, Il-Ho; Choi, Soon-Mok

    2018-06-01

    Metallic glass (MG) offers the advantage of outstanding oxidation resistance, since it has disordered atomic-scale structure without grain boundaries. We fabricated Al-based MG ribbons (Al84.5Y10Ni5.5) by a melt spinning process. We evaluated the adhesion strength of interfaces between the Al-based MG and a Ni-coated Cu electrode formed under various conditions at high temperature. In addition, we attempted to optimize the process conditions for pulverizing MG ribbons to high-energy ball milling and planetary milling. We confirmed that the electrical resistivity of the Al-based MG ribbon was substantially reduced after annealing at high temperature (over 300°C) due to crystallization.

  17. Assessment of the Operating Temperature of Crystalline PV Modules Based on Real Use Conditions

    Directory of Open Access Journals (Sweden)

    Giuseppina Ciulla

    2014-01-01

    Full Text Available Determining the operating temperature Tc of photovoltaic panels PV is important in evaluating the actual performance of these systems. In the literature, different correlations exist, in either explicit or implicit forms, which often do not account for the electrical behaviour of panels; in this way, estimating Tc is based only on the passive behaviour of the PV. In this paper, the authors propose a new implicit correlation that takes into account the standard weather variables and the electricity production regimes of a PV panel in terms of the proximity to the maximum power points. To validate its reliability, the new correlation was tested on two different PV panels (Sanyo and Kyocera panels and the results were compared with values obtained from other common correlations already available in the literature. The data show that the quality of the new correlation drastically improves the estimation of the photovoltaic operating temperature.

  18. Temperature Dependence of Soil Respiration Modulated by Thresholds in Soil Water Availability Across European Shrubland Ecosystems

    DEFF Research Database (Denmark)

    Lellei-Kovács, Eszter; Botta-Dukát, Zoltán; de Dato, Giovanbattista

    2016-01-01

    that improved the model fit in all cases. The direct soil moisture effect on SR, however, was weak at the annual time scale. We conclude that the exponential soil temperature function may only be a good predictor for SR in a narrow temperature range, and that extrapolating predictions for future climate based...... on this function should be treated with caution as modelled outputs may underestimate SR. The addition of soil moisture thresholds improved the model fit at all sites, but had a far greater ecological significance in the wet Atlantic shrubland where a fundamental change in the soil CO2 efflux would likely have......Soil respiration (SR) is a major component of the global carbon cycle and plays a fundamental role in ecosystem feedback to climate change. Empirical modelling is an essential tool for predicting ecosystem responses to environmental change, and also provides important data for calibrating...

  19. ROCK inhibitor primes human induced pluripotent stem cells to selectively differentiate towards mesendodermal lineage via epithelial-mesenchymal transition-like modulation.

    Science.gov (United States)

    Maldonado, Maricela; Luu, Rebeccah J; Ramos, Michael E P; Nam, Jin

    2016-09-01

    Robust control of human induced pluripotent stem cell (hIPSC) differentiation is essential to realize its patient-tailored therapeutic potential. Here, we demonstrate a novel application of Y-27632, a small molecule Rho-associated protein kinase (ROCK) inhibitor, to significantly influence the differentiation of hIPSCs in a lineage-specific manner. The application of Y-27632 to hIPSCs resulted in a decrease in actin bundling and disruption of colony formation in a concentration and time-dependent manner. Such changes in cell and colony morphology were associated with decreased expression of E-cadherin, a cell-cell junctional protein, proportional to the increased exposure to Y-27632. Interestingly, gene and protein expression of pluripotency markers such as NANOG and OCT4 were not downregulated by an exposure to Y-27632 up to 36h. Simultaneously, epithelial-to-mesenchymal (EMT) transition markers were upregulated with an exposure to Y-27632. These EMT-like changes in the cells with longer exposure to Y-27632 resulted in a significant increase in the subsequent differentiation efficiency towards mesendodermal lineage. In contrast, an inhibitory effect was observed when cells were subjected to ectodermal differentiation after prolonged exposure to Y-27632. Collectively, these results present a novel method for priming hIPSCs to modulate their differentiation potential with a simple application of Y-27632. Copyright © 2016 Helmholtz Zentrum München. Published by Elsevier B.V. All rights reserved.

  20. ROCK inhibitor primes human induced pluripotent stem cells to selectively differentiate towards mesendodermal lineage via epithelial-mesenchymal transition-like modulation

    Directory of Open Access Journals (Sweden)

    Maricela Maldonado

    2016-09-01

    Full Text Available Robust control of human induced pluripotent stem cell (hIPSC differentiation is essential to realize its patient-tailored therapeutic potential. Here, we demonstrate a novel application of Y-27632, a small molecule Rho-associated protein kinase (ROCK inhibitor, to significantly influence the differentiation of hIPSCs in a lineage-specific manner. The application of Y-27632 to hIPSCs resulted in a decrease in actin bundling and disruption of colony formation in a concentration and time-dependent manner. Such changes in cell and colony morphology were associated with decreased expression of E-cadherin, a cell-cell junctional protein, proportional to the increased exposure to Y-27632. Interestingly, gene and protein expression of pluripotency markers such as NANOG and OCT4 were not downregulated by an exposure to Y-27632 up to 36 h. Simultaneously, epithelial-to-mesenchymal (EMT transition markers were upregulated with an exposure to Y-27632. These EMT-like changes in the cells with longer exposure to Y-27632 resulted in a significant increase in the subsequent differentiation efficiency towards mesendodermal lineage. In contrast, an inhibitory effect was observed when cells were subjected to ectodermal differentiation after prolonged exposure to Y-27632. Collectively, these results present a novel method for priming hIPSCs to modulate their differentiation potential with a simple application of Y-27632.

  1. Cholera Toxin Promotes Th17 Cell Differentiation by Modulating Expression of Polarizing Cytokines and the Antigen-Presenting Potential of Dendritic Cells.

    Science.gov (United States)

    Kang, Jung-Ok; Lee, Jee-Boong; Chang, Jun

    2016-01-01

    Cholera toxin (CT), an exotoxin produced by Vibrio cholera, acts as a mucosal adjuvant. In a previous study, we showed that CT skews differentiation of CD4 T cells to IL-17-producing Th17 cells. Here, we found that intranasal administration of CT induced migration of migratory dendritic cell (DC) populations, CD103+ DCs and CD11bhi DCs, to the lung draining mediastinal lymph nodes (medLN). Among those DC subsets, CD11bhi DCs that were relatively immature had a major role in Th17 cell differentiation after administration of CT. CT-treated BMDCs showed reduced expression of MHC class II and CD86, similar to CD11bhi DCs in medLN, and these BMDCs promoted Th17 cell differentiation more potently than other BMDCs expressing higher levels of MHC class II and CD86. By analyzing the expression of activation markers such as CD25 and CD69, proliferation and IL-2 production, we determined that CT-treated BMDCs showed diminished antigen-presenting potential to CD4+ T cells compared with normal BMDCs. We also found that CT-stimulated BMDCs promote activin A expression as well as IL-6 and IL-1β, and activin A had a synergic role with TGF-β1 in CT-mediated Th17 cell differentiation. Taken together, our results suggest that CT-stimulated DCs promote Th17 cell differentiation by not only modulating antigen-presenting potential but also inducing Th polarizing cytokines.

  2. Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies.

    Science.gov (United States)

    Wei, Gang; Xu, Hui; Ding, Ping Tian; Li, San Ming; Zheng, Jun Min

    2002-09-18

    For ophthalmic drug delivery, Pluronic F127 solutions have a phase transition temperature too low for them to be instilled into the eye at room temperature. Refrigerator storage is usually required to make administration easier, whereas the potential irritation of cold to the sensitive ocular tissues may result in poor topical bioavailability. The purpose of this study is to develop a thermosetting gel with a suitable phase transition temperature by combining Pluronic analogs and to examine the influence of incorporating mucoadhesive polysaccharide, sodium hyaluronate (HA-Na), on the ocular retention of the gel. Dynamic rheological method and single photon emission computing tomography (SPECT) technique were used to ex/in vivo evaluate the thermosetting gels, respectively. An optimized formulation containing 21% F127 and 10% F68 increased the phase transition temperature by 9 degrees C as evaluated by elasticity modulus compared to that of individual 21% F127 solution. Rheological behaviors of the Pluronic solutions showed that the combined Pluronic formulation was free flowing liquid below 25 degrees C and converted to a firm gel under the physiological condition. Furthermore, this formulation possessed the highest viscosity both before and after tear dilution at 35 degrees C. Gamma scintigraphic data demonstrated that the clearance of the thermosetting gel labeled with 99mTc-DTPA was significantly delayed with respect to the phosphate buffered solution, and at least a threefold increase of the corneal residence time was achieved. However, no further improvement in the ocular retention was observed when adding HA-Na into the thermosetting gel due to the substantially decreased gel strength. Copyright 2002 Elsevier Science B.V.

  3. Tidal modulation of temperature oscillations monitored in borehole Yaxcopoil-1 (Yucatán, Mexico)

    Czech Academy of Sciences Publication Activity Database

    Čermák, Vladimír; Bodri, L.; Šafanda, Jan

    2009-01-01

    Roč. 282, č. 1-4 (2009), s. 131-139 ISSN 0012-821X R&D Projects: GA AV ČR(CZ) IAA300120603; GA ČR(CZ) GA205/06/1181 Institutional research plan: CEZ:AV0Z30120515 Keywords : temperature monitoring * borehole convection * tidal forcing * recurrence quantification interval * (RQI) analysis * histograms cumulation technique Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 4.062, year: 2009

  4. Calculations of heat transfer and liquid temperature for inspection vessel with irradiated center fuel module

    International Nuclear Information System (INIS)

    Harris, P.A.

    1978-01-01

    The operating environment for fuel requalification personnel has been reviewed. The review included both the use of heating and ventilating equipment and the waste-heat removal capabilities of the containment building during this operation. The results of the review indicate that the environment is acceptable for operating personnel without further modification to equipment designs. Operations personnel have stated that the major portion of the heating and ventilating system will be in continuous operation during all phases of LOFT reactor tests. Full isolation of the containment building will be used only when monitors indicate that a serious contamination hazard is present. The peak containment air temperature for the hottest summer day is calculated at 90F. Normal in-containment air temperature should be 75 to 85F. This temperature range is acceptable for operating personnel dressed in Anit-C clothing. Calculations of waste heat removal were prepared using three sets of assumptions and three pre-removal cooldown periods. A graphical representation of the results is attached

  5. Evidence for cosmic ray modulation in temperature records from the South Atlantic Magnetic Anomaly region

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, E. [Sao Paulo Univ. (Brazil). Dept. de Geofisica; Federal do Pampa Univ., Cacapava do Sul (Brazil); Pacca, I.G. [Sao Paulo Univ. (Brazil). Dept. de Geofisica; Pereira-Filho, A.J. [Sao Paulo Univ. (Brazil). Dept. de Ciencias Atmosfericas; Rampelloto, P.H. [Federal do Pampa Univ., Sao Gabriel (Brazil); Rigozo, N.R. [Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos (Brazil). Div. de Geofisica Espacial

    2013-11-01

    Possible direct or indirect climatic effects related to solar variability and El Nino-Southern Oscillation (ENSO) were investigated in the southern Brazil region by means of the annual mean temperatures from four weather stations 2 degrees of latitude apart over the South Atlantic Magnetic Anomaly (SAMA) region. Four maximum temperature peaks are evident at all stations in 1940, 1958, 1977 and 2002. A spectral analysis indicates the occurrence of periodicities between 2 and 7 yr, most likely associated with ENSO, and periodicities of approximately 11 and 22 yr, normally associated with solar variability. Cross-wavelet analysis indicated that the signal associated with the 22 yr solar magnetic cycle was more persistent in the last decades, while the 11 yr sunspot cycle and ENSO periodicities were intermittent. Phase-angle analysis revealed that temperature variations and the 22 yr solar cycle were in anti-phase near the SAMA center. Results show an indirect indication of possible relationships between the variability of galactic cosmic rays and climate change on a regional scale.

  6. Power Modulation Investigation for High Temperature (175-200 degrees Celcius) Automotive Application

    Energy Technology Data Exchange (ETDEWEB)

    McCluskey, F. P.

    2007-04-30

    advancing has been the development of electronics that can operate in the high temperature environments present in hybrid vehicles. The temperatures under the hood for a gasoline-electric hybrid vehicle are comparable to those for traditional internal combustion engines. This is known to be a difficult environment with respect to commercial-grade electronics, as there are surface and ambient temperatures ranging from 125 C to 175 C. In addition, some hybrid drive electronics are placed in even harsher environments, such as on or near the brakes, where temperatures can reach 250 C. Furthermore, number of temperature cycles experienced by electronics in a hybrid vehicle is different from that experienced in a traditional vehicle. A traditional internal combustion vehicle will have the engine running for longer periods, whereas a mild or micro-hybrid engine will experience many more starts and stops.[3] This means that hybrid automotive electronics will undergo more cycles of a potential wider temperature cycle than standard automotive electronics, which in turn see temperature cycles of 2 to 3 times the magnitude of the {Delta}T = 50 C-75 C experienced by commercial-grade electronics. This study will discuss the effects of these harsh environments on the failure mechanisms and ultimate reliability of electronic systems developed for gasoline-electric hybrid vehicles. In addition, it will suggest technologies and components that can reasonably be expected to perform well in these environments. Finally, it will suggest areas where further research is needed or desirable. Areas for further research will be highlighted in bold, italic type. It should be noted that the first area where further research is desirable is in developing a clearer understanding of the actual hybrid automotive electronics environment and how to simulate it through accelerated testing, thus: Developing specific mission profiles and accelerated testing protocols for the underhood environment for hybrid

  7. Parameter Estimation of the Thermal Network Model of a Machine Tool Spindle by Self-made Bluetooth Temperature Sensor Module

    Directory of Open Access Journals (Sweden)

    Yuan-Chieh Lo

    2018-02-01

    Full Text Available Thermal characteristic analysis is essential for machine tool spindles because sudden failures may occur due to unexpected thermal issue. This article presents a lumped-parameter Thermal Network Model (TNM and its parameter estimation scheme, including hardware and software, in order to characterize both the steady-state and transient thermal behavior of machine tool spindles. For the hardware, the authors develop a Bluetooth Temperature Sensor Module (BTSM which accompanying with three types of temperature-sensing probes (magnetic, screw, and probe. Its specification, through experimental test, achieves to the precision ±(0.1 + 0.0029|t| °C, resolution 0.00489 °C, power consumption 7 mW, and size Ø40 mm × 27 mm. For the software, the heat transfer characteristics of the machine tool spindle correlative to rotating speed are derived based on the theory of heat transfer and empirical formula. The predictive TNM of spindles was developed by grey-box estimation and experimental results. Even under such complicated operating conditions as various speeds and different initial conditions, the experiments validate that the present modeling methodology provides a robust and reliable tool for the temperature prediction with normalized mean square error of 99.5% agreement, and the present approach is transferable to the other spindles with a similar structure. For realizing the edge computing in smart manufacturing, a reduced-order TNM is constructed by Model Order Reduction (MOR technique and implemented into the real-time embedded system.

  8. Temperature-dependent sex determination modulates cardiovascular maturation in embryonic snapping turtles Chelydra serpentina.

    Science.gov (United States)

    Alvine, Travis; Rhen, Turk; Crossley, Dane A

    2013-03-01

    We investigated sex differences in cardiovascular maturation in embryos of the snapping turtle Chelydra serpentina, a species with temperature-dependent sex determination. One group of eggs was incubated at 26.5°C to produce males. Another group of eggs was incubated at 26.5°C until embryos reached stage 17; eggs were then shifted to 31°C for 6 days to produce females, and returned to 26.5°C for the rest of embryogenesis. Thus, males and females were at the same temperature when autonomic tone was determined and for most of development. Cholinergic blockade increased resting blood pressure (P(m)) and heart rate (f(H)) in both sexes at 75% and 90% of incubation. However, the magnitude of the f(H) response was enhanced in males compared with females at 90% of incubation. β-adrenergic blockade increased P(m) at 75% of incubation in both sexes but had no effect at 90% of incubation. β-adrenergic blockade reduced f(H) at both time points but produced a stronger response at 90% versus 75% of incubation. We found that α-adrenergic blockade decreased P(m) in both sexes at 75% and 90% of incubation and decreased f(H) at 75% of incubation in both sexes. At 90% of incubation, f(H) decreased in females but not males. Although these data clearly demonstrate sexual dimorphism in the autonomic regulation of cardiovascular physiology in embryos, further studies are needed to test whether differences are caused by endocrine signals from gonads or by a hormone-independent temperature effect.

  9. Temperature dependence and GABA modulation of [3H]triazolam binding in the rat brain

    International Nuclear Information System (INIS)

    Earle, M.E.; Concas, A.; Wamsley, J.K.; Yamamura, H.I.

    1987-01-01

    The hypnotic triazolam (TZ), a triazolobenzodiazepine displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. The authors major objectives were the direct measurement of the temperature dependence and the gamma-aminobutyric acid (GABA) effect of [ 3 H]TZ binding in the rat brain. Saturation studies showed a shift to lower affinity with increasing temperatures (K/sub d/ = 0.27 +/- 08 nM at 0 0 C; K/sub d/ = 1.96 +/- 0.85 nM at 37 0 C) while the B/sub max/ values remained unchanged (1220 +/- 176 fmoles/mg protein at 0 0 C and 1160 +/- 383 fmoles/mg protein at 37 0 C). Saturation studies of [ 3 H]TZ binding in the presence or absence of GABA (100μM) showed a GABA-shift. At 0 0 C the K/sub d/ values were (K/sub d/ = 0.24 +/- 0.03 nM/-GABA; K/sub d/ = 0.16 +/- 0.04/+GABA) and at 37 0 C the K/sub d/ values were (K/sub d/ = 1.84 +/- 0.44 nM/-GABA; K/sub d/ = 0.95 +/- 0.29 nM/+GABA). In contrast to reported literature, the authors findings show that TZ interacts with benzodiazepine receptors with a temperature dependence and GABA-shift consistent with predicted behavior for benzodiazepine agonists. 20 references, 3 tables

  10. Differential chromosomal and mitochondrial DNA synthesis in temperature-sensitive mutants of Ustilago maydis

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.

    1977-01-01

    The amount and type of residual DNA synthesis was determined in eight temperature-sensitive mutants of the smut fungus Ustilago maydis after incubation at the restrictive temperature (32/sup 0/C) for eight hours. Mutants ts-220, ts-207, ts-432 and ts-346 were found to have an overall reduction in the synthesis of both nuclear and mitochondrial DNA in comparison to the wild-type. In mutants ts-20, tsd 1-1, ts-84 and pol 1-1 nuclear DNA synthesis was depressed relative to mitochondrial synthesis. The DNA-polymerase mutant pol 1-1 had persistent nuclear synthesis at about 50% of the rate of synthesis of mitochondrial DNA and similar behavior was observed in a diploid homozygous strain. Mutant ts-84 had an initial burst of DNA synthesis which was reduced for nuclear but not mitochondrial synthesis after three hours preincubation at 32/sup 0/C. tsd 1-1 and ts-20 had nuclear residual synthesis amounting to about 25% of the relative rate of mitochondrial synthesis which correlates to increasing UV sensitivity of these strains on incubation at 32/sup 0/C. A pol 1-1 ts-84 double mutant had an additive loss of nuclear DNA synthesis which indicates that the steps of replication involved may be sequential.

  11. Growth temperature exerts differential physiological and transcriptional responses in laboratory and wine strains of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Pizarra, Francisco J.; Jewett, Michael Christopher; Nielsen, Jens

    2008-01-01

    Laboratory strains of Saccharomyces cerevisiae have been widely used as a model for studying eukaryotic cells and mapping the molecular mechanisms of many different human diseases. Industrial wine yeasts, on the other hand, have been selected on the basis of their adaptation to stringent environm......Laboratory strains of Saccharomyces cerevisiae have been widely used as a model for studying eukaryotic cells and mapping the molecular mechanisms of many different human diseases. Industrial wine yeasts, on the other hand, have been selected on the basis of their adaptation to stringent...... environmental conditions and the organoleptic properties that they confer to wine. Here, we used a two-factor design to study the responses of a standard laboratory strain, CEN.PK113-7D, and an industrial wine yeast strain, EC1118, to growth temperatures of 15 degrees C and 30 degrees C in nitrogen......-limited, anaerobic, steady-state chemostat cultures. Physiological characterization revealed that the growth temperature strongly impacted the biomass yield of both strains. Moreover, we found that the wine yeast was better adapted to mobilizing resources for biomass production and that the laboratory yeast...

  12. Experiments on electron temperature profile resilience in FTU tokamak with continuous and modulated ECRH

    International Nuclear Information System (INIS)

    Cirant, S.

    2002-01-01

    Experiments performed on FTU tokamak, aiming at validation of physics-based transport models of the electron temperature profile resilience, are presented. ECRH is used to probe transport features, both in steady-state and in response to perturbations, while ECCD and LHCD are used for current density profile shaping. Observed confinement behaviour shows agreement with a critical temperature gradient length modelling. Central, low gradient plasma is characterized by low stiffness and low electron thermal diffusivity. Strong stiffness and high conduction are found in the confinement region. Resilience is experimentally characterized by an index of the resistance of the profile to adapt its shape to localized ECRH, while the diffusivity and its low-high transition are measured both by power balance and heat pulse propagation analysis. A particular attention is given to the investigation of the transition layer between low-high diffusivity and low-high stiffness regions. A dependence of LTc on magnetic shear, similar to what found in Tore Supra, and consistent with ETG based anomalous transport, is found. (author)

  13. IBR5 Modulates Temperature-Dependent, R Protein CHS3-Mediated Defense Responses in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jingyan Liu

    2015-10-01

    Full Text Available Plant responses to low temperature are tightly associated with defense responses. We previously characterized the chilling-sensitive mutant chs3-1 resulting from the activation of the Toll and interleukin 1 receptor-nucleotide binding-leucine-rich repeat (TIR-NB-LRR-type resistance (R protein harboring a C-terminal LIM (Lin-11, Isl-1 and Mec-3 domains domain. Here we report the identification of a suppressor of chs3, ibr5-7 (indole-3-butyric acid response 5, which largely suppresses chilling-activated defense responses. IBR5 encodes a putative dual-specificity protein phosphatase. The accumulation of CHS3 protein at chilling temperatures is inhibited by the IBR5 mutation. Moreover, chs3-conferred defense phenotypes were synergistically suppressed by mutations in HSP90 and IBR5. Further analysis showed that IBR5, with holdase activity, physically associates with CHS3, HSP90 and SGT1b (Suppressor of the G2 allele of skp1 to form a complex that protects CHS3. In addition to the positive role of IBR5 in regulating CHS3, IBR5 is also involved in defense responses mediated by R genes, including SNC1 (Suppressor of npr1-1, Constitutive 1, RPS4 (Resistance to P. syringae 4 and RPM1 (Resistance to Pseudomonas syringae pv. maculicola 1. Thus, the results of the present study reveal a role for IBR5 in the regulation of multiple R protein-mediated defense responses.

  14. Higher acclimation temperature modulates the composition of muscle fatty acid of Tor putitora juveniles

    Directory of Open Access Journals (Sweden)

    M.S. Akhtar

    2014-08-01

    Full Text Available A 30-day acclimation trial was conducted using golden mahseer, Tor putitora juveniles to study its muscle fatty acid composition at five acclimation temperatures (AT. Ninety juveniles of T. putitora were distributed among five treatment groups (20, 23, 26, 29 and 32±0.5 °C. At the end of 30 days trial, highest percentage of monounsaturated fatty acids was found at 20 °C and lowest at 26 °C. The highest percentage of n-6 polyunsaturated fatty acid (PUFA was found at 23 °C and a decreasing trend was observed with increase in AT. However, highest percentage of n-3 PUFA was found at 32 °C and lowest at 29 °C. The maximum n-6 to n-3 ratio was observed at 23 °C and ratio decreased to a minimum at 32 °C. The results revealed that T. putitora juveniles could adapt to higher acclimation temperatures by altering its muscle fatty acid composition mainly by increasing its total saturated fatty acids especially stearic acid.

  15. MicroRNA-378 regulates neural stem cell proliferation and differentiation in vitro by modulating Tailless expression

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanxia [Department of Psychology and Psychiatry, The Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004 (China); Department of Rehabilitation, Xi' an Children' s Hospital, Xi' an 710003 (China); Liu, Xiaoguai [The 3rd Department of Infectious Diseases, Xi' an Children' s Hospital, Xi' an 710003 (China); Wang, Yaping, E-mail: yapwangyy@163.com [Department of Psychology and Psychiatry, The Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004 (China)

    2015-10-16

    Previous studies have suggested that microRNAs (miRNAs) play an important role in regulating neural stem cell (NSC) proliferation and differentiation. However, the precise role of miRNAs in NSC remains largely unexplored. In this study, we showed that miR-378 can target Tailless (TLX), a critical regulator of NSC, to regulate NSC proliferation and differentiation. By bioinformatic algorithms, miR-378 was found to have a predicted target site in the 3′-untranslated region of TLX, which was verified by a dual-luciferase reporter assay. The expression of miR-378 was increased during NSC differentiation and inversely correlated with TLX expression. qPCR and Western blot analysis also showed that miR-378 negatively regulated TLX mRNA and protein expression in neural stem cells (NSCs). Intriguingly, overexpression of miR-378 increased NSC differentiation and reduced NSC proliferation, whereas suppression of miR-378 led to decreased NSC differentiation and increased NSC proliferation. Moreover, the downstream targets of TLX, including p21, PTEN and Wnt/β-catenin were also found to be regulated by miR-378. Additionally, overexpression of TLX rescued the NSC proliferation deficiency induced by miR-378 overexpression and abolished miR-378-promoted NSC differentiation. Taken together, our data suggest that miR-378 is a novel miRNA that regulates NSC proliferation and differentiation via targeting TLX. Therefore, manipulating miR-378 in NSCs could be a novel strategy to develop novel interventions for the treatment of relevant neurological disorders. - Highlights: • miR-378 targeted and regulated TLX. • miR-378 was increased during NSC differentiation. • miR-378 regulated NSC proliferation and differentiation. • miR-378 regulated NSC self-renew through TLX.

  16. MicroRNA-378 regulates neural stem cell proliferation and differentiation in vitro by modulating Tailless expression

    International Nuclear Information System (INIS)

    Huang, Yanxia; Liu, Xiaoguai; Wang, Yaping

    2015-01-01

    Previous studies have suggested that microRNAs (miRNAs) play an important role in regulating neural stem cell (NSC) proliferation and differentiation. However, the precise role of miRNAs in NSC remains largely unexplored. In this study, we showed that miR-378 can target Tailless (TLX), a critical regulator of NSC, to regulate NSC proliferation and differentiation. By bioinformatic algorithms, miR-378 was found to have a predicted target site in the 3′-untranslated region of TLX, which was verified by a dual-luciferase reporter assay. The expression of miR-378 was increased during NSC differentiation and inversely correlated with TLX expression. qPCR and Western blot analysis also showed that miR-378 negatively regulated TLX mRNA and protein expression in neural stem cells (NSCs). Intriguingly, overexpression of miR-378 increased NSC differentiation and reduced NSC proliferation, whereas suppression of miR-378 led to decreased NSC differentiation and increased NSC proliferation. Moreover, the downstream targets of TLX, including p21, PTEN and Wnt/β-catenin were also found to be regulated by miR-378. Additionally, overexpression of TLX rescued the NSC proliferation deficiency induced by miR-378 overexpression and abolished miR-378-promoted NSC differentiation. Taken together, our data suggest that miR-378 is a novel miRNA that regulates NSC proliferation and differentiation via targeting TLX. Therefore, manipulating miR-378 in NSCs could be a novel strategy to develop novel interventions for the treatment of relevant neurological disorders. - Highlights: • miR-378 targeted and regulated TLX. • miR-378 was increased during NSC differentiation. • miR-378 regulated NSC proliferation and differentiation. • miR-378 regulated NSC self-renew through TLX.

  17. Differential scanning calorimetry techniques: applications in biology and nanoscience.

    Science.gov (United States)

    Gill, Pooria; Moghadam, Tahereh Tohidi; Ranjbar, Bijan

    2010-12-01

    This paper reviews the best-known differential scanning calorimetries (DSCs), such as conventional DSC, microelectromechanical systems-DSC, infrared-heated DSC, modulated-temperature DSC, gas flow-modulated DSC, parallel-nano DSC, pressure perturbation calorimetry, self-reference DSC, and high-performance DSC. Also, we describe here the most extensive applications of DSC in biology and nanoscience.

  18. Differential Scanning Calorimetry Techniques: Applications in Biology and Nanoscience

    OpenAIRE

    Gill, Pooria; Moghadam, Tahereh Tohidi; Ranjbar, Bijan

    2010-01-01

    This paper reviews the best-known differential scanning calorimetries (DSCs), such as conventional DSC, microelectromechanical systems-DSC, infrared-heated DSC, modulated-temperature DSC, gas flow-modulated DSC, parallel-nano DSC, pressure perturbation calorimetry, self-reference DSC, and high-performance DSC. Also, we describe here the most extensive applications of DSC in biology and nanoscience.

  19. The reexamination of thermal expansion of ferromagnetic superconductors and the pressure differential of its superconducting transition temperature-possible application to UGe2

    International Nuclear Information System (INIS)

    Konno, Rikio; Hatayama, Nobukuni

    2011-01-01

    The temperature dependence of thermal expansion of ferromagnetic superconductors below the superconducting transition temperature T scu of a majority spin conduction band is reexamined. In the previous study [to be published in J. M. Phys. B] the volume differential of the kinetic energy of conduction electrons is constant. However, in this study the volume differential of the kinetic energy of conduction electrons is inconstant. The superconducting gap of the majority spin conduction band used in this study has a line node. It is appropriate to UGe 2 . The pressure differential of its superconducting transition temperature is also investigated. We find that the thermal expansion coefficient has the divergence at the superconducting transition temperature. The thermodynamic Grueneisen's relation is satisfied.

  20. Nonlinear convective flows in a two-layer system under the action of spatial temperature modulation of heat release/consumption at the interface

    Science.gov (United States)

    Simanovskii, Ilya B.; Viviani, Antonio; Dubois, Frank

    2018-06-01

    An influence of a spatial temperature modulation of the interfacial heat release/consumption on nonlinear convective flows in the 47v2 silicone oil - water system, is studied. Rigid heat-insulated lateral walls, corresponding to the case of closed cavities, have been considered. Transitions between the flows with different spatial structures, have been investigated. It is shown that the spatial modulation can change the sequence of bifurcations and lead to the appearance of specific steady and oscillatory flows in the system.

  1. Response Analysis on Electrical Pulses under Severe Nuclear Accident Temperature Conditions Using an Abnormal Signal Simulation Analysis Module

    Directory of Open Access Journals (Sweden)

    Kil-Mo Koo

    2012-01-01

    Full Text Available Unlike design basis accidents, some inherent uncertainties of the reliability of instrumentations are expected while subjected to harsh environments (e.g., high temperature and pressure, high humidity, and high radioactivity occurring in severe nuclear accident conditions. Even under such conditions, an electrical signal should be within its expected range so that some mitigating actions can be taken based on the signal in the control room. For example, an industrial process control standard requires that the normal signal level for pressure, flow, and resistance temperature detector sensors be in the range of 4~20 mA for most instruments. Whereas, in the case that an abnormal signal is expected from an instrument, such a signal should be refined through a signal validation process so that the refined signal could be available in the control room. For some abnormal signals expected under severe accident conditions, to date, diagnostics and response analysis have been evaluated with an equivalent circuit model of real instruments, which is regarded as the best method. The main objective of this paper is to introduce a program designed to implement a diagnostic and response analysis for equivalent circuit modeling. The program links signal analysis tool code to abnormal signal simulation engine code not only as a one body order system, but also as a part of functions of a PC-based ASSA (abnormal signal simulation analysis module developed to obtain a varying range of the R-C circuit elements in high temperature conditions. As a result, a special function for abnormal pulse signal patterns can be obtained through the program, which in turn makes it possible to analyze the abnormal output pulse signals through a response characteristic of a 4~20 mA circuit model and a range of the elements changing with temperature under an accident condition.

  2. Thermal conductivity of the cryoprotective cocktail DP6 in cryogenic temperatures, in the presence and absence of synthetic ice modulators.

    Science.gov (United States)

    Ehrlich, Lili E; Malen, Jonathan A; Rabin, Yoed

    2016-10-01

    The thermal conductivity of the cryoprotective agent (CPA) cocktail DP6 in combination with synthetic ice modulators (SIMs) is measured in this study, using a transient hot-wire method. DP6 is a mixture of 3 M dimethyl sulfoxide (DMSO) and 3 M propylene glycol, which received significant attention in the cryobiology community in recent years. Tested SIMs include 6% 1,3Cyclohexanediol, 6% 2,3Butanediol, and 12% PEG400 (percentage by volume). This study integrates the scanning cryomacroscope for visual verification of crystallization and vitrification events. It is demonstrated that the thermal conductivity of the vitrifying CPA cocktail decreases monotonically with the decreasing temperature down to -180 °C. By contrast, the thermal conductivity of the crystalline material increases with decreasing temperature in the same temperature range. Results of this study demonstrate that the thermal conductivity may vary by three fold between the amorphous and crystalline phases of DP6 below the glass transition temperature of DP6 (Tg = -119 °C). The selected SIMs demonstrate the ability to inhibit crystallization in DP6, even at subcritical cooling rates. An additional ice suppression capability is observed by the Euro-Collins as a vehicle solution, disproportionate to its volume ratio in the cocktail. The implication of the observed thermal conductivity differences between the amorphous and crystalline phases of the same cocktail on cryopreservation simulations is significant in some cases and must be taken into account in thermal analyses of cryopreservation protocols. Copyright © 2016. Published by Elsevier Inc.

  3. Room-temperature Coulomb staircase in semiconducting InP nanowires modulated with light illumination.

    Science.gov (United States)

    Yamada, Toshishige; Yamada, Hidenori; Lohn, Andrew J; Kobayashi, Nobuhiko P

    2011-02-04

    Detailed electron transport analysis is performed for an ensemble of conical indium phosphide nanowires bridging two hydrogenated n(+)-silicon electrodes. The current-voltage (I-V) characteristics exhibit a Coulomb staircase in the dark with a period of ∼ 1 V at room temperature. The staircase is found to disappear under light illumination. This observation can be explained by assuming the presence of a tiny Coulomb island, and its existence is possible due to the large surface depletion region created within contributing nanowires. Electrons tunnel in and out of the Coulomb island, resulting in the Coulomb staircase I-V. Applying light illumination raises the electron quasi-Fermi level and the tunneling barriers are buried, causing the Coulomb staircase to disappear.

  4. Morphology evolution of hierarchical ZnO nanostructures modulated by supersaturation and growth temperature

    Science.gov (United States)

    Yan, Youguo; Zhou, Lixia; Yu, Lianqing; Zhang, Ye

    2008-07-01

    Three kinds of ZnO hierarchical structures, nanocombs with tube- and needle-shaped teeth and hierarchical nanorod arrays, were successfully synthesized through the chemical vapor deposition method. Combining the experimental parameters, the microcosmic growing conditions (growth temperature and supersaturation) along the flux was discussed at length, and, based on the conclusions, three reasonable growth processes were proposed. The results and discussions were beneficial to further realize the relation between the growing behavior of the nanomaterial and microcosmic conditions, and the hierarchical nanostructures obtained were also expected to have potential applications as functional blocks in future nanodevices. Furthermore, the study of photoluminescence further indicated that the physical properties were strongly dependent on the crystal structure.

  5. Temperature modulates the effects of ocean acidification on intestinal ion transport in Atlantic cod, Gadus morhua

    Directory of Open Access Journals (Sweden)

    Marian Yong-An Hu

    2016-06-01

    Full Text Available CO2-driven seawater acidification has been demonstrated to enhance intestinal bicarbonate secretion rates in teleosts, leading to an increased release of CaCO3 under simulated ocean acidification scenarios. In this study, we investigated if increasing CO2 levels stimulate the intestinal acid–base regulatory machinery of Atlantic cod (Gadus morhua and whether temperatures at the upper limit of thermal tolerance stimulate or counteract ion regulatory capacities. Juvenile G. morhua were acclimated for four weeks to three CO2 levels (550, 1,200 and 2,200 μatm covering present and near-future natural variability, at optimum (10°C and summer maximum temperature (18°C, respectively. Immunohistochemical analyses revealed the subcellular localization of ion transporters, including Na+/K+-ATPase (NKA, Na+/H+-exchanger 3 (NHE3, Na+/HCO3- cotransporter (NBC1, pendrin-like Cl-/HCO3- exchanger (SLC26a6, V-type H+-ATPase subunit a (VHA and Cl- channel 3 (CLC3 in epithelial cells of the anterior intestine. At 10°C, proteins and mRNA were generally up-regulated for most transporters in the intestinal epithelium after acclimation to higher CO2 levels. This supports recent findings demonstrating increased intestinal HCO3- secretion rates in response to CO2 induced seawater acidification. At 18°C, mRNA expression and protein concentrations of most ion transporters remained unchanged or were even decreased, suggesting thermal compensation. This response may be energetically favorable to retain blood HCO3- levels to stabilize pHe, but may negatively affect intestinal salt and water resorption of marine teleosts in future oceans.

  6. Differentiation Affects the Release of Exosomes from Colon Cancer Cells and Their Ability to Modulate the Behavior of Recipient Cells.

    Science.gov (United States)

    Lucchetti, Donatella; Calapà, Federica; Palmieri, Valentina; Fanali, Caterina; Carbone, Federica; Papa, Alfredo; De Maria, Ruggero; De Spirito, Marco; Sgambato, Alessandro

    2017-07-01

    Exosomes are involved in intercellular communication. We previously reported that sodium butyrate-induced differentiation of HT29 colon cancer cells is associated with a reduced CD133 expression. Herein, we analyzed the role of exosomes in the differentiation of HT29 cells. Exosomes were prepared using ultracentrifugation. Gene expression levels were evaluated by real-time PCR. The cell proliferation rate was assessed by MTT assay and with the electric cell-substrate impedance sensing system, whereas cell motility was assessed using the scratch test and confocal microscopy. Sodium butyrate-induced differentiation of HT29 and Caco-2 cells increased the levels of released exosomes and their expression of CD133. Cell differentiation and the decrease of cellular CD133 expression levels were prevented by blocking multivesicular body maturation. Exosomes released by HT29 differentiating cells carried increased levels of miRNAs, induced an increased proliferation and motility of both colon cancer cells and normal fibroblasts, increased the colony-forming efficiency of cancer cells, and reduced the sodium butyrate-induced differentiation of HT29 cells. Such effects were associated with an increased phosphorylation level of both Src and extracellular signal regulated kinase proteins and with an increased expression of epithelial-to-mesenchymal transition-related genes. Release of exosomes is affected by differentiation of colon cancer cells; exosomes might be used by differentiating cells to get rid of components that are no longer necessary but might continue to exert their effects on recipient cells. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. 3-bromopyruvate ameliorate autoimmune arthritis by modulating Th17/Treg cell differentiation and suppressing dendritic cell activation

    OpenAIRE

    Okano, Takaichi; Saegusa, Jun; Nishimura, Keisuke; Takahashi, Soshi; Sendo, Sho; Ueda, Yo; Morinobu, Akio

    2017-01-01

    Recent studies have shown that cellular metabolism plays an important role in regulating immune cell functions. In immune cell differentiation, both interleukin-17-producing T (Th17) cells and dendritic cells (DCs) exhibit increased glycolysis through the upregulation of glycolytic enzymes, such as hexokinase-2 (HK2). Blocking glycolysis with 2-deoxyglucose was recently shown to inhibit Th17 cell differentiation while promoting regulatory T (Treg) cell generation. However, 2-DG inhibits all i...

  8. Differential responses of invasive and native plants to warming with simulated changes in diurnal temperature ranges.

    Science.gov (United States)

    Chen, Bao-Ming; Gao, Yang; Liao, Hui-Xuan; Peng, Shao-Lin

    2017-07-01

    Although many studies have documented the effects of global warming on invasive plants, little is known about whether the effects of warming on plant invasion differ depending on the imposed change in different diurnal temperature ranges (DTR). We tested the impact of warming with DTR change on seed germination and seedling growth of eight species in the family Asteraceae. Four of these are invasive ( Eupatorium catarium , Mikania micrantha , Biodens pilosa var. radiate , Ageratum conyzoides ) in China, and four are native ( Sonchus arvensis , Senecios candens , Pterocypsela indica , Eupatorium fortunei ). Four temperature treatments were set in growth chambers (three warming by 3 °C with different DTRs and control), and experiments were run to mimic wintertime and summertime conditions. The control treatment ( T c ) was set to the mean temperature for the corresponding time of year, and the three warming treatments were symmetric (i.e. equal night-and-day) (DTR sym ), asymmetric warming with increased (DTR inc ) and decreased (DTR dec ) DTR. The warming treatments did not affect seed germination of invasive species under any of the conditions, but DTR sym and DTR inc increased seed germination of natives relative to the control, suggesting that warming may not increase success of these invasive plant species via effects on seed germination of invasive plants relative to native plants. The invasive plants had higher biomass and greater stem allocation than the native ones under all of the warming treatments. Wintertime warming increased the biomass of the invasive and wintertime DTR sym and DTR inc increased that of the native plants, whereas summertime asymmetric warming decreased the biomass of the invasives but not the natives. Therefore, warming may not facilitate invasion of these invasive species due to the suppressive effects of summertime warming (particularly the asymmetric warming) on growth. Compared with DTR sym , DTR dec decreased the biomass of

  9. Standard deviation analysis of the mastoid fossa temperature differential reading: a potential model for objective chiropractic assessment.

    Science.gov (United States)

    Hart, John

    2011-03-01

    This study describes a model for statistically analyzing follow-up numeric-based chiropractic spinal assessments for an individual patient based on his or her own baseline. Ten mastoid fossa temperature differential readings (MFTD) obtained from a chiropractic patient were used in the study. The first eight readings served as baseline and were compared to post-adjustment readings. One of the two post-adjustment MFTD readings fell outside two standard deviations of the baseline mean and therefore theoretically represents improvement according to pattern analysis theory. This study showed how standard deviation analysis may be used to identify future outliers for an individual patient based on his or her own baseline data. Copyright © 2011 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  10. Assessment of the potential activity of major dietary compounds as selective estrogen receptor modulators in two distinct cell models for proliferation and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte, Sylvain; Lelong, Marie; Bourgine, Gaëlle [Institut de Recherche en Santé-Environnement-Travail (IRSET), Inserm UMR 1085, Team Transcription, Environment and Cancer, University of Rennes 1, 9 Avenue du Pr Léon Bernard, 35000 Rennes (France); Efstathiou, Theo [Laboratoire Nutrinov, Technopole Atalante Champeaux, 8 rue Jules Maillard de la Gournerie, 35012 Rennes Cedex (France); Saligaut, Christian [Institut de Recherche en Santé-Environnement-Travail (IRSET), Inserm UMR 1085, Team Transcription, Environment and Cancer, University of Rennes 1, 9 Avenue du Pr Léon Bernard, 35000 Rennes (France); Pakdel, Farzad, E-mail: farzad.pakdel@univ-rennes1.fr [Institut de Recherche en Santé-Environnement-Travail (IRSET), Inserm UMR 1085, Team Transcription, Environment and Cancer, University of Rennes 1, 9 Avenue du Pr Léon Bernard, 35000 Rennes (France)

    2017-06-15

    Estrogen receptors (ERs) α and β are distributed in most tissues of women and men. ERs are bound by estradiol (E2), a natural hormone, and mediate the pleiotropic and tissue-specific effects of E2, such as proliferation of breast epithelial cells or protection and differentiation of neuronal cells. Numerous environmental molecules, called endocrine disrupting compounds, also interact with ERs. Phytoestrogens belong to this large family and are considered potent therapeutic molecules that act through their selective estrogen receptor modulator (SERM) activity. Using breast cancer cell lines as a model of estrogen-dependent proliferation and a stably ER-expressing PC12 cell line as a model of neuronal differentiating cells, we studied the SERM activity of major dietary compounds, such as apigenin, liquiritigenin, daidzein, genistein, coumestrol, resveratrol and zearalenone. The ability of these compounds to induce ER-transactivation and breast cancer cell proliferation and enhance Nerve Growth Factor (NGF) -induced neuritogenesis was assessed. Surprisingly, although all compounds were able to activate the ER through an estrogen responsive element reporter gene, they showed differential activity toward proliferation or differentiation. Apigenin and resveratrol showed a partial or no proliferative effect on breast cancer cells but fully contributed to the neuritogenesis effect of NGF. However, daidzein and zearalenone showed full effects on cellular proliferation but did not induce cellular differentiation. In summary, our results suggest that the therapeutic potential of phytoestrogens can diverge depending on the molecule and the phenotype considered. Hence, apigenin and resveratrol might be used in the development of therapeutics for breast cancer and brain diseases. - Highlights: • SERM activity of dietary compounds on proliferation and differentiation is studied. • All the dietary compounds tested transactivate estrogen receptors. • Apigenin and

  11. Mosquito control pesticides and sea surface temperatures have differential effects on the survival and oxidative stress response of coral larvae.

    Science.gov (United States)

    Ross, Cliff; Olsen, Kevin; Henry, Michael; Pierce, Richard

    2015-04-01

    The declining health of coral reefs is intensifying worldwide at an alarming rate due to the combined effects of land-based sources of pollution and climate change. Despite the persistent use of mosquito control pesticides in populated coastal areas, studies examining the survival and physiological impacts of early life-history stages of non-targeted marine organisms are limited. In order to better understand the combined effects of mosquito pesticides and rising sea surface temperatures, we exposed larvae from the coral Porites astreoides to selected concentrations of two major mosquito pesticide ingredients, naled and permethrin, and seawater elevated +3.5 °C. Following 18-20 h of exposure, larvae exposed to naled concentrations of 2.96 µg L(-1) or greater had significantly reduced survivorship compared to controls. These effects were not detected in the presence of permethrin or elevated temperature. Furthermore, larval settlement, post-settlement survival and zooxanthellae density were not impacted by any treatment. To evaluate the sub-lethal stress response of larvae, several oxidative stress endpoints were utilized. Biomarker responses to pesticide exposure were variable and contingent upon pesticide type as well as the specific biomarker being employed. In some cases, such as with protein carbonylation and catalase gene expression, the effects of naled exposure and temperature were interactive. In other cases pesticide exposure failed to induce any sub-lethal stress response. Overall, these results demonstrate that P. astreoides larvae have a moderate degree of resistance against short-term exposure to ecologically relevant concentrations of pesticides even in the presence of elevated temperature. In addition, this work highlights the importance of considering the complexity and differential responses encountered when examining the impacts of combined stressors that occur on varying spatial scales.

  12. An H3K9/S10 methyl-phospho switch modulates Polycomb and Pol II binding at repressed genes during differentiation.

    Science.gov (United States)

    Sabbattini, Pierangela; Sjoberg, Marcela; Nikic, Svetlana; Frangini, Alberto; Holmqvist, Per-Henrik; Kunowska, Natalia; Carroll, Tom; Brookes, Emily; Arthur, Simon J; Pombo, Ana; Dillon, Niall

    2014-03-01

    Methylated histones H3K9 and H3K27 are canonical epigenetic silencing modifications in metazoan organisms, but the relationship between the two modifications has not been well characterized. H3K9me3 coexists with H3K27me3 in pluripotent and differentiated cells. However, we find that the functioning of H3K9me3 is altered by H3S10 phosphorylation in differentiated postmitotic osteoblasts and cycling B cells. Deposition of H3K9me3/S10ph at silent genes is partially mediated by the mitogen- and stress-activated kinases (MSK1/2) and the Aurora B kinase. Acquisition of H3K9me3/S10ph during differentiation correlates with loss of paused S5 phosphorylated RNA polymerase II, which is present on Polycomb-regulated genes in embryonic stem cells. Reduction of the levels of H3K9me3/S10ph by kinase inhibition results in increased binding of RNAPIIS5ph and the H3K27 methyltransferase Ezh1 at silent promoters. Our results provide evidence of a novel developmentally regulated methyl-phospho switch that modulates Polycomb regulation in differentiated cells and stabilizes repressed states.

  13. Study Modules for Calculus-Based General Physics. [Includes Modules 18-20: Sound; Temperature, Heat, and Thermodynamics: First Law; and Kinetic Theory of Gases].

    Science.gov (United States)

    Fuller, Robert G., Ed.; And Others

    This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  14. A module of human peripheral blood mononuclear cell transcriptional network containing primitive and differentiation markers is related to specific cardiovascular health variables.

    Directory of Open Access Journals (Sweden)

    Leni Moldovan

    Full Text Available Peripheral blood mononuclear cells (PBMCs, including rare circulating stem and progenitor cells (CSPCs, have important yet poorly understood roles in the maintenance and repair of blood vessels and perfused organs. Our hypothesis was that the identities and functions of CSPCs in cardiovascular health could be ascertained by analyzing the patterns of their co-expressed markers in unselected PBMC samples. Because gene microarrays had failed to detect many stem cell-associated genes, we performed quantitative real-time PCR to measure the expression of 45 primitive and tissue differentiation markers in PBMCs from healthy and hypertensive human subjects. We compared these expression levels to the subjects' demographic and cardiovascular risk factors, including vascular stiffness. The tested marker genes were expressed in all of samples and organized in hierarchical transcriptional network modules, constructed by a bottom-up approach. An index of gene expression in one of these modules (metagene, defined as the average standardized relative copy numbers of 15 pluripotency and cardiovascular differentiation markers, was negatively correlated (all p<0.03 with age (R2 = -0.23, vascular stiffness (R2 = -0.24, and central aortic pressure (R2 = -0.19 and positively correlated with body mass index (R2 = 0.72, in women. The co-expression of three neovascular markers was validated at the single-cell level using mRNA in situ hybridization and immunocytochemistry. The overall gene expression in this cardiovascular module was reduced by 72±22% in the patients compared with controls. However, the compactness of both modules was increased in the patients' samples, which was reflected in reduced dispersion of their nodes' degrees of connectivity, suggesting a more primitive character of the patients' CSPCs. In conclusion, our results show that the relationship between CSPCs and vascular function is encoded in modules of the PBMCs transcriptional

  15. Arboreal Day Geckos (Phelsuma madagascariensis Differentially Modulate Fore- and Hind Limb Kinematics in Response to Changes in Habitat Structure.

    Directory of Open Access Journals (Sweden)

    Mingna V Zhuang

    Full Text Available By using adhesion, geckos can move through incredibly challenging habitats. However, continually changing terrain may necessitate modulation of the adhesive apparatus in order to maximize its effectiveness over a range of challenges. Behaviorally modulating how the adhesive system is applied can occur by altering the alignment of the foot relative to the long axis of the body and/or the angles between the digits (interdigital angle. Given the directionality of the adhesive system, geckos likely vary the application of the system via these mechanisms as they run. We quantified 3D movements (using high-speed video of the day gecko, Phelsuma madagascariensis, running on a range of ecologically relevant inclines (0°, 45°, 90° and perch diameters (1.5 cm, 10 cm and broad. We measured the instantaneous sum of interdigital angles and foot alignment relative to the body, as well as other kinematic variables, throughout each stride and across treatments. Modulation of foot alignment at 45° and 90° was similar between the forelimb and hind limb, but differed at 0°, suggesting that P. madagascariensis is able to exert an adhesive force using multiple strategies. Both the sum of interdigital angles and alignment in the fore- and hind foot were modulated. Differences in modulation between the limbs are likely related to the underlying morphology. The modulation of interdigital angle and foot alignment suggests that aspects other than the mechanism of adhesion, such as joint morphology, are important for arboreal movement in geckos. Our study of foot usage in arboreal locomotion reveals patterns that may be widespread across pad-bearing lizards. In addition to understanding the constraints exerted by the adhesive apparatus, we highlight how biomechanical traits may respond to the evolution of novel adaptations and morphologies.

  16. Arboreal Day Geckos (Phelsuma madagascariensis) Differentially Modulate Fore- and Hind Limb Kinematics in Response to Changes in Habitat Structure.

    Science.gov (United States)

    Zhuang, Mingna V; Higham, Timothy E

    2016-01-01

    By using adhesion, geckos can move through incredibly challenging habitats. However, continually changing terrain may necessitate modulation of the adhesive apparatus in order to maximize its effectiveness over a range of challenges. Behaviorally modulating how the adhesive system is applied can occur by altering the alignment of the foot relative to the long axis of the body and/or the angles between the digits (interdigital angle). Given the directionality of the adhesive system, geckos likely vary the application of the system via these mechanisms as they run. We quantified 3D movements (using high-speed video) of the day gecko, Phelsuma madagascariensis, running on a range of ecologically relevant inclines (0°, 45°, 90°) and perch diameters (1.5 cm, 10 cm and broad). We measured the instantaneous sum of interdigital angles and foot alignment relative to the body, as well as other kinematic variables, throughout each stride and across treatments. Modulation of foot alignment at 45° and 90° was similar between the forelimb and hind limb, but differed at 0°, suggesting that P. madagascariensis is able to exert an adhesive force using multiple strategies. Both the sum of interdigital angles and alignment in the fore- and hind foot were modulated. Differences in modulation between the limbs are likely related to the underlying morphology. The modulation of interdigital angle and foot alignment suggests that aspects other than the mechanism of adhesion, such as joint morphology, are important for arboreal movement in geckos. Our study of foot usage in arboreal locomotion reveals patterns that may be widespread across pad-bearing lizards. In addition to understanding the constraints exerted by the adhesive apparatus, we highlight how biomechanical traits may respond to the evolution of novel adaptations and morphologies.

  17. Low Frequency Modulation of Extreme Temperature Regimes in a Changing Climate

    Energy Technology Data Exchange (ETDEWEB)

    Black, Robert X. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2014-11-24

    The project examines long-term changes in extreme temperature episodes (ETE) associated with planetary climate modes (PCMs) in both the real atmospheric and climate model simulations. The focus is on cold air outbreaks (CAOs) and warm waves (WWs) occurring over the continental US during the past 60 winters. No significant long-term trends in either WWs or CAOs are observed over the US. The annual frequency of CAOs is affected by the (i) North Atlantic Oscillation (NAO) over the Southeast US and (ii) Pacific–North American (PNA) pattern over the Northwest US. WW frequency is influenced by the (i) NAO over the eastern US and (ii) combined influence of PNA, Pacific decadal oscillation (PDO), and ENSO over the southern US. The collective influence of PCMs accounts for as much as 50% of the regional variability in ETE frequency. During CAO (WW) events occurring over the southeast US, there are low (high) pressure anomalies at higher atmospheric levels over the southeast US with oppositely-signed pressure anomalies in the lower atmosphere over the central US. These patterns lead to anomalous northerly (for CAOs) or southerly (for WWs) flow into the southeast leading to cold or warm surface air temperature anomalies, respectively. One distinction is that CAOs involve substantial air mass transport while WW formation is more local in nature. The primary differences among event categories are in the origin and nature of the pressure anomaly features linked to ETE onset. In some cases, PCMs help to provide a favorable environment for event onset. Heat budget analyses indicate that latitudinal transport in the lower atmosphere is the main contributor to regional cooling during CAO onset. This is partly offset by adiabatic warming associated with subsiding air. Additional diagnoses reveal that this latitudinal transport is partly due to the remote physical influence of a shallow cold pool of air trapped along the east side of the Rocky Mountains. ETE and PCM behavior is also

  18. Human pancreatic islet-derived extracellular vesicles modulate insulin expression in 3D-differentiating iPSC clusters.

    Directory of Open Access Journals (Sweden)

    Diana Ribeiro

    Full Text Available It has been suggested that extracellular vesicles (EVs can mediate crosstalk between hormones and metabolites within pancreatic tissue. However, the possible effect of pancreatic EVs on stem cell differentiation into pancreatic lineages remains unknown. Herein, human islet-derived EVs (h-Islet-EVs were isolated, characterized and subsequently added to human induced pluripotent stem cell (iPSC clusters during pancreatic differentiation. The h-islet-EVs had a mean size of 117±7 nm and showed positive expression of CD63 and CD81 EV markers as measured by ELISA. The presence of key pancreatic transcription factor mRNA, such as NGN3, MAFA and PDX1, and pancreatic hormone proteins such as C-peptide and glucagon, were confirmed in h-Islet-EVs. iPSC clusters were differentiated in suspension and at the end stages of the differentiation protocol, the mRNA expression of the main pancreatic transcription factors and pancreatic hormones was increased. H-Islet-EVs were supplemented to the iPSC clusters in the later stages of differentiation. It was observed that h-Islet-EVs were able to up-regulate the intracellular levels of C-peptide in iPSC clusters in a concentration-dependent manner. The effect of h-Islet-EVs on the differentiation of iPSC clusters cultured in 3D-collagen hydrogels was also assessed. Although increased mRNA expression for pancreatic markers was observed when culturing the iPSC clusters in 3D-collagen hydrogels, delivery of EVs did not affect the insulin or C-peptide intracellular content. Our results provide new information on the role of h-Islet-EVs in the regulation of insulin expression in differentiating iPSC clusters, and are highly relevant for pancreatic tissue engineering applications.

  19. MicroRNA-378 regulates neural stem cell proliferation and differentiation in vitro by modulating Tailless expression.

    Science.gov (United States)

    Huang, Yanxia; Liu, Xiaoguai; Wang, Yaping

    2015-10-16

    Previous studies have suggested that microRNAs (miRNAs) play an important role in regulating neural stem cell (NSC) proliferation and differentiation. However, the precise role of miRNAs in NSC remains largely unexplored. In this study, we showed that miR-378 can target Tailless (TLX), a critical regulator of NSC, to regulate NSC proliferation and differentiation. By bioinformatic algorithms, miR-378 was found to have a predicted target site in the 3'-untranslated region of TLX, which was verified by a dual-luciferase reporter assay. The expression of miR-378 was increased during NSC differentiation and inversely correlated with TLX expression. qPCR and Western blot analysis also showed that miR-378 negatively regulated TLX mRNA and protein expression in neural stem cells (NSCs). Intriguingly, overexpression of miR-378 increased NSC differentiation and reduced NSC proliferation, whereas suppression of miR-378 led to decreased NSC differentiation and increased NSC proliferation. Moreover, the downstream targets of TLX, including p21, PTEN and Wnt/β-catenin were also found to be regulated by miR-378. Addi