WorldWideScience

Sample records for modulated radiotherapy ig-imrt

  1. Definitive Upfront Stereotactic Ablative Radiotherapy Combined with Image-Guided, Intensity Modulated Radiotherapy (IG-IMRT or IG-IMRT Alone for Locally Advanced Non-Small Cell Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Alexander Chi

    Full Text Available Image-guided (IG intensity-modulated radiotherapy (IMRT enables maximal tumor margin reduction for the sparing of organs at risk (OARs when used to treat locally advanced non-small cell lung cancer (NSCLC with definitive chemo-radiation. It also allows for the incorporation of stereotactic ablative radiotherapy (SABR into the treatment regimen. Here, we describe our initial experience in combining definitive upfront SABR to the primary lesion with chemo-radiation delivered with conventionally fractionated IG-IMRT to the remaining regional disease; along with clinical outcome following chemo-radiation with conventionally fractionated IG-IMRT alone in the treatment of locally advanced NSCLC.The clinical outcome of 29 patients with locally advanced NSCLC who underwent conventionally fractionated IG-IMRT, or definitive upfront SABR followed by IG-IMRT combined with chemotherapy (induction, concurrent, or both was retrospectively reviewed.After a median follow up of 23.7 months, the median overall survival (OS and progression-free survival (PFS were 19.8 and 11.3 months, respectively. The 2 year local, regional, and distant control was 60%, 62%, and 38%, respectively. No local failure was observed in 3 patients following SABR + IG-IMRT while 6/26 patients failed locally following IG-IMRT alone. SABR + IG-IMRT was well tolerated. No ≥ grade 3 radiation-related toxicity was observed.Definitive upfront SABR followed by IG-IMRT in selected patients with locally advanced NSCLC warrants further investigation in future clinical trials, while chemo-radiation with IG-IMRT alone was well tolerated.

  2. Intensity modulated radiotherapy (IMRT) in bilateral retinoblastoma

    International Nuclear Information System (INIS)

    Atalar, Banu; Ozyar, Enis; Gunduz, Kaan; Gungor, Gorkem

    2010-01-01

    External beam radiotherapy (EBRT) for retinoblastoma has traditionally been done with conventional radiotherapy techniques which resulted high doses to the surrounding normal tissues. A 20 month-old girl with group D bilateral retinoblastoma underwent intensity modulated radiotherapy (IMRT) to both eyes after failing chemoreduction and focal therapies including cryotherapy and transpupillary thermotherapy. In this report, we discuss the use of IMRT as a method for reducing doses to adjacent normal tissues while delivering therapeutic doses to the tumour tissues compared with 3-dimensional conformal radiotherapy (3DCRT). At one year follow-up, the patient remained free of any obvious radiation complications. Image guided IMRT provides better dose distribution than 3DCRT in retinoblastoma eyes, delivering the therapeutic dose to the tumours and minimizing adjacent tissue damage

  3. Intensity modulated radiotherapy (IMRT) with compensators

    International Nuclear Information System (INIS)

    Salz, H.; Wiezorek, T.; Scheithauer, M.; Kleen, W.; Schwedas, M.; Wendt, T.G.

    2002-01-01

    The irradiation with intensity-modulated fields is possible with static as well as dynamic methods. In our university hospital, the intensity-modulated radiotherapy (IMRT) with compensators was prepared and used for the first time for patient irradiation in July 2001. The compensators consist of a mixture of tin granulate and wax, which is filled in a milled negative mould. The treatment planning is performed with Helax-TMS (MDS Nordion). An additional software is used for editing the modulation matrix ('Modifix'). Before irradiation of the first patient, extensive measurements have been carried out in terms of quality assurance of treatment planning and production of compensators. The results of the verification measurements have shown that IMRT with compensators possesses high spatial and dosimetric exactness. The calculated dose distributions are applied correctly. The accuracy of the calculated monitor units is normally better than 3%; in small volumes, further dosimetric inaccuracies between calculated and measured dose distributions are mostly less than 3%. Therefore, the compensators contribute to the achievement of high-level IMRT even when apparatuses without MLC are used. This paper describes the use of the IMRT with compensators, presents the limits of this technology, and discusses the first practical experiences. (orig.) [de

  4. Image-guided, intensity-modulated radiation therapy (IG-IMRT) for skull base chordoma and chondrosarcoma: preliminary outcomes.

    Science.gov (United States)

    Sahgal, Arjun; Chan, Michael W; Atenafu, Eshetu G; Masson-Cote, Laurence; Bahl, Gaurav; Yu, Eugene; Millar, Barbara-Ann; Chung, Caroline; Catton, Charles; O'Sullivan, Brian; Irish, Jonathan C; Gilbert, Ralph; Zadeh, Gelareh; Cusimano, Michael; Gentili, Fred; Laperriere, Normand J

    2015-06-01

    We report our preliminary outcomes following high-dose image-guided intensity modulated radiotherapy (IG-IMRT) for skull base chordoma and chondrosarcoma. Forty-two consecutive IG-IMRT patients, with either skull base chordoma (n = 24) or chondrosarcoma (n = 18) treated between August 2001 and December 2012 were reviewed. The median follow-up was 36 months (range, 3-90 mo) in the chordoma cohort, and 67 months (range, 15-125) in the chondrosarcoma cohort. Initial surgery included biopsy (7% of patients), subtotal resection (57% of patients), and gross total resection (36% of patients). The median IG-IMRT total doses in the chondrosarcoma and chordoma cohorts were 70 Gy and 76 Gy, respectively, delivered with 2 Gy/fraction. For the chordoma and chondrosarcoma cohorts, the 5-year overall survival and local control rates were 85.6% and 65.3%, and 87.8% and 88.1%, respectively. In total, 10 patients progressed locally: 8 were chordoma patients and 2 chondrosarcoma patients. Both chondrosarcoma failures were in higher-grade tumors (grades 2 and 3). None of the 8 patients with grade 1 chondrosarcoma failed, with a median follow-up of 77 months (range, 34-125). There were 8 radiation-induced late effects-the most significant was a radiation-induced secondary malignancy occurring 6.7 years following IG-IMRT. Gross total resection and age were predictors of local control in the chordoma and chondrosarcoma patients, respectively. We report favorable survival, local control and adverse event rates following high dose IG-IMRT. Further follow-up is needed to confirm long-term efficacy. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Development of a quality control system in intensity modulated radiotherapy (IMRT)

    International Nuclear Information System (INIS)

    Souza, Roberto Salomon de; Braz, Delson

    2013-01-01

    The more complex the technique of radiotherapy is, the more refined the quality control must be. The technique of Intensity Modulated Radiotherapy (IMRT) is one of the technological innovations that gained space in the whole worlds in the last decade whose parameters of quality control are not fully established yet. The present work developed a phantom for quality control in IMRT to be implemented in the routine of the Radiotherapy Quality Control Program (PQRT) of the Brazilian National Cancer Institute (INCa). The device consists of a block formed by several polystyrene slice with TDLs and radiochromic film inserted. It should be sent (or taken) to the Program participating institutions to be irradiated under certain conditions and then be returned to the PQRT., where the discrepancy degree between the planned treatment and those effectively delivered will be evaluated. The system was validated through the test cases and the pilot program preformed in nine radiotherapy centers that perform IMRT in the southeast region of Brazil. (author)

  6. Can All Centers Plan Intensity-Modulated Radiotherapy (IMRT) Effectively? An External Audit of Dosimetric Comparisons Between Three-Dimensional Conformal Radiotherapy and IMRT for Adjuvant Chemoradiation for Gastric Cancer

    International Nuclear Information System (INIS)

    Chung, Hans T.; Lee, Brian; Park, Eileen; Lu, Jiade J.; Xia Ping

    2008-01-01

    Purpose: To compare dosimetric endpoints between three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) at our center with limited IMRT experience, and to perform an external audit of the IMRT plans. Methods and Materials: Ten patients, who received adjuvant chemoradiation for gastric cancer, formed the study cohort. For standardization, the planning target volume (PTV) and organs at risk were recontoured with the assistance of a study protocol radiologic atlas. The cohort was replanned with CMS Xio to generate coplanar 3D-CRT and IMRT plans. All 10 datasets, including volumes but without the plans (i.e., blinded), were transmitted to an experienced center where IMRT plans were designed using Nomos Corvus (IMRT-C) and ADAC Pinnacle (IMRT-P). All IMRT plans were normalized to D95% receiving 45 Gy. Results: Intensity-modulated radiotherapy yielded higher PTV V45 (volume that receives ≥45 Gy) (p < 0.001) than 3D-CRT. No difference in V20 was seen in the right (p = 0.9) and left (p 0.3) kidneys, but the liver mean dose (p < 0.001) was superior with IMRT. For the external audit, IMRT-C (p = 0.002) and IMRT-P (p < 0.001) achieved significantly lower left kidney V20 than IMRT, and IMRT-P (p < 0.001) achieved lower right kidney V20 than IMRT. The IMRT-C (p = 0.003) but not IMRT-P (p = 0.6) had lower liver mean doses than IMRT. Conclusions: At our institution with early IMRT experience, IMRT improved PTV dose coverage and liver doses but not kidney doses. An external audit of IMRT plans showed that an experienced center can yield superior IMRT plans

  7. Intensity-modulated radiotherapy (IMRT) for carcinoma of the maxillary sinus: A comparison of IMRT planning systems

    International Nuclear Information System (INIS)

    Ahmed, Raef S.; Ove, Roger; Duan, Jun; Popple, Richard; Cobb, Glenn

    2006-01-01

    The treatment of maxillary sinus carcinoma with forward planning can be technically difficult when the neck also requires radiotherapy. This difficulty arises because of the need to spare the contralateral face while treating the bilateral neck. There is considerable potential for error in clinical setup and treatment delivery. We evaluated intensity-modulated radiotherapy (IMRT) as an improvement on forward planning, and compared several inverse planning IMRT platforms. A composite dose-volume histogram (DVH) was generated from a complex forward planned case. We compared the results with those generated by sliding window fixed field dynamic multileaf collimator (MLC) IMRT, using sets of coplanar beams. All setups included an anterior posterior (AP) beam, and 3-, 5-, 7-, and 9-field configurations were evaluated. The dose prescription and objective function priorities were invariant. We also evaluated 2 commercial tomotherapy IMRT delivery platforms. DVH results from all of the IMRT approaches compared favorably with the forward plan. Results for the various inverse planning approaches varied considerably across platforms, despite an attempt to prescribe the therapy similarly. The improvement seen with the addition of beams in the fixed beam sliding window case was modest. IMRT is an effective means of delivering radiotherapy reliably in the complex setting of maxillary sinus carcinoma with neck irradiation. Differences in objective function definition and optimization algorithms can lead to unexpected differences in the final dose distribution, and our evaluation suggests that these factors are more significant than the beam arrangement or number of beams

  8. Improvement in toxicity in high risk prostate cancer patients treated with image-guided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance.

    Science.gov (United States)

    Sveistrup, Joen; af Rosenschöld, Per Munck; Deasy, Joseph O; Oh, Jung Hun; Pommer, Tobias; Petersen, Peter Meidahl; Engelholm, Svend Aage

    2014-02-04

    Image-guided radiotherapy (IGRT) facilitates the delivery of a very precise radiation dose. In this study we compare the toxicity and biochemical progression-free survival between patients treated with daily image-guided intensity-modulated radiotherapy (IG-IMRT) and 3D conformal radiotherapy (3DCRT) without daily image guidance for high risk prostate cancer (PCa). A total of 503 high risk PCa patients treated with radiotherapy (RT) and endocrine treatment between 2000 and 2010 were retrospectively reviewed. 115 patients were treated with 3DCRT, and 388 patients were treated with IG-IMRT. 3DCRT patients were treated to 76 Gy and without daily image guidance and with 1-2 cm PTV margins. IG-IMRT patients were treated to 78 Gy based on daily image guidance of fiducial markers, and the PTV margins were 5-7 mm. Furthermore, the dose-volume constraints to both the rectum and bladder were changed with the introduction of IG-IMRT. The 2-year actuarial likelihood of developing grade > = 2 GI toxicity following RT was 57.3% in 3DCRT patients and 5.8% in IG-IMRT patients (p analysis, 3DCRT was associated with a significantly increased risk of developing grade > = 2 GI toxicity compared to IG-IMRT (p analysis there was no difference in biochemical progression-free survival between 3DCRT and IG-IMRT. The difference in toxicity can be attributed to the combination of the IMRT technique with reduced dose to organs-at-risk, daily image guidance and margin reduction.

  9. Improvement in toxicity in high risk prostate cancer patients treated with image-guided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance

    International Nuclear Information System (INIS)

    Sveistrup, Joen; Rosenschöld, Per Munck af; Deasy, Joseph O; Oh, Jung Hun; Pommer, Tobias; Petersen, Peter Meidahl; Engelholm, Svend Aage

    2014-01-01

    Image-guided radiotherapy (IGRT) facilitates the delivery of a very precise radiation dose. In this study we compare the toxicity and biochemical progression-free survival between patients treated with daily image-guided intensity-modulated radiotherapy (IG-IMRT) and 3D conformal radiotherapy (3DCRT) without daily image guidance for high risk prostate cancer (PCa). A total of 503 high risk PCa patients treated with radiotherapy (RT) and endocrine treatment between 2000 and 2010 were retrospectively reviewed. 115 patients were treated with 3DCRT, and 388 patients were treated with IG-IMRT. 3DCRT patients were treated to 76 Gy and without daily image guidance and with 1–2 cm PTV margins. IG-IMRT patients were treated to 78 Gy based on daily image guidance of fiducial markers, and the PTV margins were 5–7 mm. Furthermore, the dose-volume constraints to both the rectum and bladder were changed with the introduction of IG-IMRT. The 2-year actuarial likelihood of developing grade > = 2 GI toxicity following RT was 57.3% in 3DCRT patients and 5.8% in IG-IMRT patients (p < 0.001). For GU toxicity the numbers were 41.8% and 29.7%, respectively (p = 0.011). On multivariate analysis, 3DCRT was associated with a significantly increased risk of developing grade > = 2 GI toxicity compared to IG-IMRT (p < 0.001, HR = 11.59 [CI: 6.67-20.14]). 3DCRT was also associated with an increased risk of developing GU toxicity compared to IG-IMRT. The 3-year actuarial biochemical progression-free survival probability was 86.0% for 3DCRT and 90.3% for IG-IMRT (p = 0.386). On multivariate analysis there was no difference in biochemical progression-free survival between 3DCRT and IG-IMRT. The difference in toxicity can be attributed to the combination of the IMRT technique with reduced dose to organs-at-risk, daily image guidance and margin reduction

  10. Parotid-sparing intensity-modulated radiotherapy (IMRT) for nasopharyngeal carcinoma: Preserved parotid function after IMRT on quantitative salivary scintigraphy, and comparison with historical data after conventional radiotherapy

    International Nuclear Information System (INIS)

    Hsiung, C.-Y.; Ting, H.-M.; Huang, H.-Y.; Lee, C.-H.; Huang, E.-Y.; Hsu, H.-C.

    2006-01-01

    Purpose: To evaluate the parotid function after parotid-sparing intensity-modulated radiotherapy (IMRT) in patients with nasopharyngeal carcinoma (NPC). Methods and Materials: From March 2003 to May 2004, 16 patients with nonmetastatic NPC underwent parotid-sparing IMRT. Eight of these patients had Stage III or IV NPC based on the 1997 American Joint Committee on Cancer staging system. The post-IMRT parotid function was evaluated by quantitative salivary scintigraphy and represented by the maximal excretion ratio (MER) of the parotid gland after sialogogue stimulation. The parotid function of 16 NPC patients who were previously treated with conventional radiotherapy was reviewed as the historical control. Results: In the parotid-sparing IMRT group, all 16 patients were alive and without cancer at the end of follow-up period (median, 24.2 months). The mean parotid MER was 53.5% before radiotherapy, 10.7% at 1 month post-IMRT, and 23.3% at 9 months post-IMRT. In the conventional radiotherapy group, the mean parotid MER was 0.6% at 6 to 12 months postradiotherapy. The difference was statistically significant (23.3% vs. 0.6%, p < 0.001, Mann-Whitney test). In the IMRT group, the mean parotid doses ranged from 33.2 Gy to 58.8 Gy (average, 43.9 Gy). The correlation between the mean parotid dose and the percentage decrease of parotid MER at 9 months post-IMRT (dMER) was statically significant (p = 0.008, Pearson correlation). Conclusions: Although the mean parotid doses are relatively high, the significant preservation of parotid function is achieved with IMRT for NPC patients. The significant correlation between mean parotid dose and parotid dMER demonstrates the dose-function relationship of the parotid gland

  11. DARS: a phase III randomised multicentre study of dysphagia- optimised intensity- modulated radiotherapy (Do-IMRT) versus standard intensity- modulated radiotherapy (S-IMRT) in head and neck cancer

    International Nuclear Information System (INIS)

    Petkar, Imran; Rooney, Keith; Roe, Justin W. G.; Patterson, Joanne M.; Bernstein, David; Tyler, Justine M.; Emson, Marie A.; Morden, James P.; Mertens, Kathrin; Miles, Elizabeth; Beasley, Matthew; Roques, Tom; Bhide, Shreerang A.; Newbold, Kate L.; Harrington, Kevin J.; Hall, Emma; Nutting, Christopher M.

    2016-01-01

    Persistent dysphagia following primary chemoradiation (CRT) for head and neck cancers can have a devastating impact on patients’ quality of life. Single arm studies have shown that the dosimetric sparing of critical swallowing structures such as the pharyngeal constrictor muscle and supraglottic larynx can translate to better functional outcomes. However, there are no current randomised studies to confirm the benefits of such swallow sparing strategies. The aim of Dysphagia/Aspiration at risk structures (DARS) trial is to determine whether reducing the dose to the pharyngeal constrictors with dysphagia-optimised intensity- modulated radiotherapy (Do-IMRT) will lead to an improvement in long- term swallowing function without having any detrimental impact on disease-specific survival outcomes. The DARS trial (CRUK/14/014) is a phase III multicentre randomised controlled trial (RCT) for patients undergoing primary (chemo) radiotherapy for T1-4, N0-3, M0 pharyngeal cancers. Patients will be randomised (1:1 ratio) to either standard IMRT (S-IMRT) or Do-IMRT. Radiotherapy doses will be the same in both groups; however in patients allocated to Do-IMRT, irradiation of the pharyngeal musculature will be reduced by delivering IMRT identifying the pharyngeal muscles as organs at risk. The primary endpoint of the trial is the difference in the mean MD Anderson Dysphagia Inventory (MDADI) composite score, a patient-reported outcome, measured at 12 months post radiotherapy. Secondary endpoints include prospective and longitudinal evaluation of swallow outcomes incorporating a range of subjective and objective assessments, quality of life measures, loco-regional control and overall survival. Patients and speech and language therapists (SLTs) will both be blinded to treatment allocation arm to minimise outcome-reporting bias. DARS is the first RCT investigating the effect of swallow sparing strategies on improving long-term swallowing outcomes in pharyngeal cancers. An integral

  12. The technical feasibility of an image-guided intensity-modulated radiotherapy (IG-IMRT) to perform a hypofractionated schedule in terms of toxicity and local control for patients with locally advanced or recurrent pancreatic cancer

    International Nuclear Information System (INIS)

    Son, Seok Hyun; Song, Jin Ho; Choi, Byung Ock; Kang, Young-nam; Lee, Myung Ah; Kang, Ki Mun; Jang, Hong Seok

    2012-01-01

    The purpose of this study was to evaluate the technical feasibility of an image-guided intensity modulated radiotherapy (IG-IMRT) using involved-field technique to perform a hypofractionated schedule for patients with locally advanced or recurrent pancreatic cancer. From May 2009 to November 2011, 12 patients with locally advanced or locally recurrent pancreatic cancer received hypofractionated CCRT using TomoTherapy Hi-Art with concurrent and sequential chemotherapy at Seoul St. Mary’s Hospital, the Catholic University of Korea. The total dose delivered was 45 Gy in 15 fractions or 50 Gy in 20 fractions. The target volume did not include the uninvolved regional lymph nodes. Treatment planning and delivery were performed using the IG-IMRT technique. The follow-up duration was a median of 31.1 months (range: 5.7-36.3 months). Grade 2 or worse acute toxicities developed in 7 patients (58%). Grade 3 or worse gastrointestinal and hematologic toxicity occurred in 0% and 17% of patients, respectively. In the response evaluation, the rates of partial response and stable disease were 58% and 42%, respectively. The rate of local failure was 8% and no regional failure was observed. Distant failure was the main cause of treatment failure. The progression-free survival and overall survival durations were 7.6 and 12.1 months, respectively. The involved-field technique and IG-IMRT delivered via a hypofractionated schedule are feasible for patients with locally advanced or recurrent pancreatic cancer

  13. A retrospective comparison of outcome and toxicity of preoperative image-guided intensity-modulated radiotherapy versus conventional pelvic radiotherapy for locally advanced rectal carcinoma

    International Nuclear Information System (INIS)

    Huang, Chun-Ming; Huang, Ming-Yii; Tsai, Hsiang-Lin; Huang, Ching-Wen; Ma, Cheng-Jen; Lin, Chih-Hung; Huang, Chih-Jen; Wang, Jaw-Yuan

    2017-01-01

    The aim of the study was to compare clinical outcomes and toxicity between 3D conformal radiotherapy (3DCRT) and image-guided intensity-modulated radiotherapy (IG-IMRT) administered through helical tomotherapy in locally advanced rectal cancer (LARC) patients receiving preoperative chemoradiotherapy. We reviewed 144 patients with Stage II–III rectal cancer receiving preoperative fluoropyrimidine-based chemoradiotherapy followed by radical resection. Tumor responses following chemoradiotherapy were evaluated using the Dworak tumor regression grade (TRG). Of the 144 patients, 45 received IG-IMRT and 99 received 3DCRT. A significant reduction in Grade 3 or 4 acute gastrointestinal toxicity (IG-IMRT, 6.7%; 3DCRT, 15.1%; P = 0.039) was observed by IG-IMRT. The pathologic complete response (pCR) rate did not differ between the IG-IMRT and the 3DCRT group (17.8% vs 15.1%, P = 0.52). Patients in the IG-IMRT group had the trend of favorable tumor regressions (TRG 3 or 4) compared with those in the 3DCRT group (66.7% vs 43.5%, P = 0.071). The median follow-up was 53 months (range, 18–95 months) in the 3DCRT group and 43 months (range, 17–69 months) in the IG-IMRT group. Four-year overall, disease-free, and local failure–free survival rates of the IG-IMRT and 3DCRT groups were 81.6% and 67.9% (P = 0.12), 53.8% and 51.8% (P = 0.51), and 88% and 75.1% (P = 0.031), respectively. LARC patients treated with preoperative IG-IMRT achieved lower acute gastrointestinal adverse effects and a higher local control rate than those treated with 3DCRT, but there was no prominent difference in distant metastasis rate and overall survival between two treatment modalities.

  14. Long-term decision regret after post-prostatectomy image-guided intensity-modulated radiotherapy.

    Science.gov (United States)

    Shakespeare, Thomas P; Chin, Stephen; Manuel, Lucy; Wen, Shelly; Hoffman, Matthew; Wilcox, Shea W; Aherne, Noel J

    2017-02-01

    Decision regret (DR) may occur when a patient believes their outcome would have been better if they had decided differently about their management. Although some studies investigate DR after treatment for localised prostate cancer, none report DR in patients undergoing surgery and post-prostatectomy radiotherapy. We evaluated DR in this group of patients overall, and for specific components of therapy. We surveyed 83 patients, with minimum 5 years follow-up, treated with radical prostatectomy (RP) and post-prostatectomy image-guided intensity-modulated radiotherapy (IG-IMRT) to 64-66 Gy following www.EviQ.org.au protocols. A validated questionnaire identified DR if men either indicated that they would have been better off had they chosen another treatment, or they wished they could change their mind about treatment. There was an 85.5% response rate, with median follow-up post-IMRT 78 months. Adjuvant IG-IMRT was used in 28% of patients, salvage in 72% and ADT in 48%. A total of 70% of patients remained disease-free. Overall, 16.9% of patients expressed DR for treatment, with fourfold more regret for the RP component of treatment compared to radiotherapy (16.9% vs 4.2%, P = 0.01). DR for androgen deprivation was 14.3%. Patients were regretful of surgery due to toxicity, not being adequately informed about radiotherapy as an alternative, positive margins and surgery costs (83%, 33%, 25% and 8% of regretful patients respectively). Toxicity caused DR in the three radiotherapy-regretful and four ADT-regretful patients. Patients were twice as regretful overall, and of surgery, for salvage vs adjuvant approaches (both 19.6% vs 10.0%). Decision regret after RP and post-prostatectomy IG-IMRT is uncommon, although patients regret RP more than post-operative IG-IMRT. This should reassure urologists referring patients for post-prostatectomy IG-IMRT, particularly in the immediate adjuvant setting. Other implications include appropriate patient selection for RP (and

  15. Study on the possibility of using a 60 Co therapeutical unity in Intensity Modulated Radiotherapy (IMRT)

    International Nuclear Information System (INIS)

    Dantas, Samuel Cesar

    2009-06-01

    With the increasing advances in complex treatment techniques, there is a tendency to obtain more sophisticated equipment to deliver the dose. The use of 3D conformal radiotherapy is now routine in many radiotherapy facilities as well as the utilization of intensity modulated radiotherapy (IMRT). Both are usually implemented using linear accelerators equipped with multi leaves collimators, which create the conformity and the fluence distributions required. However, the complexity of increasingly sophisticated equipment, such as linear accelerators, requires a frequent quality control of their operation, as well as a detailed and constant maintenance. Even carrying out these procedures, the accelerators may present technical problems interrupting for a long time a treatment using the IMRT technique. Despite the clear practical and technological advantages that linear accelerators have on 60 Co irradiators, these devices occupy an important place in radiotherapy, mainly due to the low cost of equipment installation and maintenance when compared to those required by accelerators. Many radiotherapy facilities that work with IMRT have tele therapeutic isocentric 60 Co units. In principle, such equipment would be able to be used for treatment with IMRT using compensating blocks to modulate the beam. This study investigates this possibility and shows that it is feasible. The comparison of treatment plans of a head-and-neck cancer and other of a cancer of the central nervous system, based on a 60 Co irradiator and a Linac 2300 C/D, presented advantages for the 60 Co irradiator. Furthermore; the delivery of dose obtained with the two systems showed themselves equivalent when compared to their respective plans. (author)

  16. Intensity-modulated radiotherapy (IMRT) and conventional three-dimensional conformal radiotherapy for high-grade gliomas: Does IMRT increase the integral dose to normal brain?

    International Nuclear Information System (INIS)

    Hermanto, Ulrich; Frija, Erik K.; Lii, MingFwu J.; Chang, Eric L.; Mahajan, Anita; Woo, Shiao Y.

    2007-01-01

    Purpose: To determine whether intensity-modulated radiotherapy (IMRT) treatment increases the total integral dose of nontarget tissue relative to the conventional three-dimensional conformal radiotherapy (3D-CRT) technique for high-grade gliomas. Methods and Materials: Twenty patients treated with 3D-CRT for glioblastoma multiforme were selected for a comparative dosimetric evaluation with IMRT. Original target volumes, organs at risk (OAR), and dose-volume constraints were used for replanning with IMRT. Predicted isodose distributions, cumulative dose-volume histograms of target volumes and OAR, normal tissue integral dose, target coverage, dose conformity, and normal tissue sparing with 3D-CRT and IMRT planning were compared. Statistical analyses were performed to determine differences. Results: In all 20 patients, IMRT maintained equivalent target coverage, improved target conformity (conformity index [CI] 95% 1.52 vs. 1.38, p mean by 19.8% and D max by 10.7%), optic chiasm (D mean by 25.3% and D max by 22.6%), right optic nerve (D mean by 37.3% and D max by 28.5%), and left optic nerve (D mean by 40.6% and D max by 36.7%), p ≤ 0.01. This was achieved without increasing the total nontarget integral dose by greater than 0.5%. Overall, total integral dose was reduced by 7-10% with IMRT, p < 0.001, without significantly increasing the 0.5-5 Gy low-dose volume. Conclusions: These results indicate that IMRT treatment for high-grade gliomas allows for improved target conformity, better critical tissue sparing, and importantly does so without increasing integral dose and the volume of normal tissue exposed to low doses of radiation

  17. Dosimetric comparison of standard three-dimensional conformal radiotherapy followed by intensity-modulated radiotherapy boost schedule (sequential IMRT plan) with simultaneous integrated boost-IMRT (SIB IMRT) treatment plan in patients with localized carcinoma prostate.

    Science.gov (United States)

    Bansal, A; Kapoor, R; Singh, S K; Kumar, N; Oinam, A S; Sharma, S C

    2012-07-01

    DOSIMETERIC AND RADIOBIOLOGICAL COMPARISON OF TWO RADIATION SCHEDULES IN LOCALIZED CARCINOMA PROSTATE: Standard Three-Dimensional Conformal Radiotherapy (3DCRT) followed by Intensity Modulated Radiotherapy (IMRT) boost (sequential-IMRT) with Simultaneous Integrated Boost IMRT (SIB-IMRT). Thirty patients were enrolled. In all, the target consisted of PTV P + SV (Prostate and seminal vesicles) and PTV LN (lymph nodes) where PTV refers to planning target volume and the critical structures included: bladder, rectum and small bowel. All patients were treated with sequential-IMRT plan, but for dosimetric comparison, SIB-IMRT plan was also created. The prescription dose to PTV P + SV was 74 Gy in both strategies but with different dose per fraction, however, the dose to PTV LN was 50 Gy delivered in 25 fractions over 5 weeks for sequential-IMRT and 54 Gy delivered in 27 fractions over 5.5 weeks for SIB-IMRT. The treatment plans were compared in terms of dose-volume histograms. Also, Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) obtained with the two plans were compared. The volume of rectum receiving 70 Gy or more (V > 70 Gy) was reduced to 18.23% with SIB-IMRT from 22.81% with sequential-IMRT. SIB-IMRT reduced the mean doses to both bladder and rectum by 13% and 17%, respectively, as compared to sequential-IMRT. NTCP of 0.86 ± 0.75% and 0.01 ± 0.02% for the bladder, 5.87 ± 2.58% and 4.31 ± 2.61% for the rectum and 8.83 ± 7.08% and 8.25 ± 7.98% for the bowel was seen with sequential-IMRT and SIB-IMRT plans respectively. For equal PTV coverage, SIB-IMRT markedly reduced doses to critical structures, therefore should be considered as the strategy for dose escalation. SIB-IMRT achieves lesser NTCP than sequential-IMRT.

  18. BENEFITS OF INTENSITY-MODULATED RADIOTHERAPY (IMRT IN PATIENTS WITH HEAD AND NECK MALIGNANCIES- A SINGLE INSTITUTION EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Sherry Seasor Abraham

    2017-09-01

    Full Text Available BACKGROUND Radiotherapy and surgery are the principal curative modalities in treatment of head and neck cancer. Conventional twodimensional and three-dimensional conformal radiotherapy result in significant side effects and altered quality of life. IntensityModulated Radiotherapy (IMRT can spare the normal tissues, while delivering a curative dose to the tumour-bearing tissues. This study reveals the role of IMRT in head and neck cancer in view of normal tissue sparing with good tumour control. MATERIALS AND METHODS Radical radiotherapy was given using linear accelerator up to a dose of 66 to 70 gray in 30 to 33 fractions (intensity-modulated radiotherapy with simultaneous integrated boost over 6 to 7 weeks to 56 eligible patients. Concurrent cisplatin was given to patients with locally-advanced disease up to a dose of 40 mg/m2 weekly once along with radiation. The patients were monitored weekly once during the treatment for acute skin and mucosal toxicities using the RTOG scoring criteria. After the treatment, locoregional response was assessed and recorded at 6 weeks, 3 months and 6 months intervals. RESULTS Severe skin toxicity (grade III or more was seen in approximately 7% patients. Severe mucosal toxicity (grade III or more was seen in approximately 80% of patients. IMRT technique showed better skin sparing compared to 3D conformal radiotherapy. Severe mucosal toxicity was slightly higher in this study due to the simultaneous integrated boost technique used for dose intensification to the mucosa, which results in better primary tumour control. At the end of 6 months, 75% patients achieved locoregional control and residual/recurrent disease was seen in 25% of patients. IMRT offered good locoregional control with less skin toxicity and acceptable mucosal toxicity. The results were similar to the previous study reports using IMRT. CONCLUSION IMRT is a better treatment option in locally-advanced head and neck malignancies providing good

  19. Single-arc volumetric-modulated arc therapy (sVMAT) as adjuvant treatment for gastric cancer: Dosimetric comparisons with three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT)

    International Nuclear Information System (INIS)

    Wang, Xin; Li, Guangjun; Zhang, Yingjie; Bai, Sen; Xu, Feng; Wei, Yuquan; Gong, Youling

    2013-01-01

    To compare the dosimetric differences between the single-arc volumetric-modulated arc therapy (sVMAT), 3-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for gastric cancer as adjuvant radiotherapy. Twelve patients were retrospectively analyzed. In each patient's case, the parameters were compared based on the dose-volume histogram (DVH) of the sVMAT, 3D-CRT, and IMRT plans, respectively. Three techniques showed similar target dose coverage. The maximum and mean doses of the target were significantly higher in the sVMAT plans than that in 3D-CRT plans and in the 3D-CRT/IMRT plans, respectively, but these differences were clinically acceptable. The IMRT and sVMAT plans successfully achieved better target dose conformity, reduced the V 20/30 , and mean dose of the left kidney, as well as the V 20/30 of the liver, compared with the 3D-CRT plans. And the sVMAT technique reduced the V 20 of the liver much significantly. Although the maximum dose of the spinal cord were much higher in the IMRT and sVMAT plans, respectively (mean 36.4 vs 39.5 and 40.6 Gy), these data were still under the constraints. Not much difference was found in the analysis of the parameters of the right kidney, intestine, and heart. The IMRT and sVMAT plans achieved similar dose distribution to the target, but superior to the 3D-CRT plans, in adjuvant radiotherapy for gastric cancer. The sVMAT technique improved the dose sparings of the left kidney and liver, compared with the 3D-CRT technique, but showed few dosimetric advantages over the IMRT technique. Studies are warranted to evaluate the clinical benefits of the VMAT treatment for patients with gastric cancer after surgery in the future

  20. Conformal intensity-modulated radiotherapy (IMRT) delivered by robotic linac - testing IMRT to the limit?

    International Nuclear Information System (INIS)

    Webb, S.

    1999-01-01

    In this paper it is proposed that intensity-modulated radiotherapy (IMRT) could be delivered optimally by a short-length linac mounted on a robotic arm. The robot would allow the linac to 'plant' narrow pencils of photon radiation with any orientation (excluding zones within which the linac and couch might collide) relative to the planning target volume (PTV). The treatment is specified by the trajectory of the robot and by the number of monitor units (MUs) delivered at each robotic orientation. An inverse-planning method to determine the optimum robotic trajectory is presented. It is shown that for complex PTVs, specifically those with concavities in their outline, the conformality of the treatment is improved by the use of a complex trajectory in comparison with a less complex constrained trajectory and this improvement is quantified. It is concluded that robotic linac delivery would lead to a great flexibility in those IMRT treatments requiring very complicated dose distributions with complex 3D shapes. However, even using very fast computers, the goal of determining whether robotic linac delivery is the ultimate IMRT cannot be conclusively reached at present. (author)

  1. The development of intensity modulated radiotherapy (IMRT) for prostate cancer at Austin and Repatriation Medical Centre (ARMC)

    International Nuclear Information System (INIS)

    Joon, D.L.; Mantle, C.; Viotto, A.; Rolfo, A.; Rykers, K.; Fernando, W.; Grace, M.; Liu, G.; Quong, G.; Feigen, M.; Wada, M.; Joon, M.L.; Fogarty, G.; Chao, M.W.; Khoo, V.

    2003-01-01

    To describe the protocol development of the IMRT program for prostate cancer at the ARMC. A series of protocols were defined and developed to facilitate the delivery of intensity modulated radiotherapy for prostate cancer. These included the following: 1. Physical Simulation including bowel and bladder preparation and immobilization 2. Image Acquisition including CT and MRI simulation scans with image co-registration 3. Contouring Definitions including target and organ at risk volumes as well as IMRT optimization and evaluation volumes 4. Radiotherapy Planning including constraint definition, inverse planning and CMS Focus specific parameters 5. DICOM RT interface including data transfer between CMS Focus and the Elekta Linac Desktop record and verify system 6. Verification including action limits and pre-treatment online EPID verification 7. Radiotherapy Delivery being that of step and shoot 8. Quality Assurance including physics testing and documentation The protocol development and testing has lead to the precise clinical delivery of IMRT for prostate cancer at ARMC that exceeds most of the parameters that were previously measured with our conventional and 3D conformal radiotherapy. Further development is now underway to allow it to be implemented as the routine treatment of prostate cancer at ARMC. The clinical implementation of IMRT for prostate cancer involves a collaborative team approach including radiation oncologists, radiation therapists, and radiation physics. This is necessary to develop the appropriate protocols and quality assurance for precision radiotherapy that is required for IMRT

  2. Impact of gantry rotation time on plan quality and dosimetric verification. Volumetric modulated arc therapy (VMAT) vs. intensity modulated radiotherapy (IMRT)

    Energy Technology Data Exchange (ETDEWEB)

    Pasler, Marlies; Wirtz, Holger; Lutterbach, Johannes [Gemeinschaftspraxis fuer Strahlentherapie Singen-Friedrichshafen, Singen (Germany)

    2011-12-15

    To compare plan quality criteria and dosimetric accuracy of step-and-shoot intensity-modulated radiotherapy (ss-IMRT) and volumetric modulated arc radiotherapy (VMAT) using two different gantry rotation times. This retrospective planning study based on 20 patients was comprised of 10 prostate cancer (PC) and 10 head and neck (HN) cancer cases. Each plan contained two target volumes: a primary planning target volume (PTV) and a boost volume. For each patient, one ss-IMRT plan and two VMAT plans at 90 s (VMAT90) and 120 s (VMAT120) per arc were generated with the Pinnacle {sup copyright} planning system. Two arcs were provided for the PTV plans and a single arc for boost volumes. Dosimetric verification of the plans was performed using a 2D ionization chamber array placed in a full scatter phantom. VMAT reduced delivery time and monitor units for both treatment sites compared to IMRT. VMAT120 vs. VMAT90 increased delivery time and monitor units in PC plans without improving plan quality. For HN cases, VMAT120 provided comparable organs at risk sparing and better target coverage and conformity than VMAT90. In the VMAT plan verification, an average of 97.1% of the detector points passed the 3 mm, 3% {gamma} criterion, while in IMRT verification it was 98.8%. VMAT90, VMAT120, and IMRT achieved comparable treatment plans. Slower gantry movement in VMAT120 plans only improves dosimetric quality for highly complex targets.

  3. Impact of gantry rotation time on plan quality and dosimetric verification. Volumetric modulated arc therapy (VMAT) vs. intensity modulated radiotherapy (IMRT)

    International Nuclear Information System (INIS)

    Pasler, Marlies; Wirtz, Holger; Lutterbach, Johannes

    2011-01-01

    To compare plan quality criteria and dosimetric accuracy of step-and-shoot intensity-modulated radiotherapy (ss-IMRT) and volumetric modulated arc radiotherapy (VMAT) using two different gantry rotation times. This retrospective planning study based on 20 patients was comprised of 10 prostate cancer (PC) and 10 head and neck (HN) cancer cases. Each plan contained two target volumes: a primary planning target volume (PTV) and a boost volume. For each patient, one ss-IMRT plan and two VMAT plans at 90 s (VMAT90) and 120 s (VMAT120) per arc were generated with the Pinnacle copyright planning system. Two arcs were provided for the PTV plans and a single arc for boost volumes. Dosimetric verification of the plans was performed using a 2D ionization chamber array placed in a full scatter phantom. VMAT reduced delivery time and monitor units for both treatment sites compared to IMRT. VMAT120 vs. VMAT90 increased delivery time and monitor units in PC plans without improving plan quality. For HN cases, VMAT120 provided comparable organs at risk sparing and better target coverage and conformity than VMAT90. In the VMAT plan verification, an average of 97.1% of the detector points passed the 3 mm, 3% γ criterion, while in IMRT verification it was 98.8%. VMAT90, VMAT120, and IMRT achieved comparable treatment plans. Slower gantry movement in VMAT120 plans only improves dosimetric quality for highly complex targets.

  4. Assessment of renal function after conformal radiotherapy and intensity-modulated radiotherapy by functional 1H-MRI and 23Na-MRI

    International Nuclear Information System (INIS)

    Haneder, S.; Michaely, H.J.; Schoenberg, S.O.; Konstandin, S.; Schad, L.R.; Siebenlist, K.; Wertz, H.; Wenz, F.; Lohr, F.; Boda-Heggemann, J.

    2012-01-01

    Purpose: Adjuvant radiochemotherapy (RCHT) improves survival of patients with locally advanced gastric cancer. Conventional three-dimensional conformal radiotherapy (3D-CRT) results in ablative doses to a significant amount of the left kidney, while image-guided intensity-modulated radiotherapy (IG-IMRT) provides excellent target coverage with improved kidney sparing. Few long-term results on IMRT for gastric cancer, however, have been published. Functional magnetic resonance imaging (fMRI) at 3.0 T including blood oxygenation-level dependent (BOLD) imaging, diffusion-weighted imaging (DWI) and, for the first time, 23 Na imaging was used to evaluate renal status after radiotherapy with 3D-CRT or IG-IMRT. Patients and methods Four disease-free patients (2 after 3D-CRT and 2 after IMRT; FU for all patients > 5 years) were included in this feasibility study. Morphological sequences, axial DWI images, 2D-gradient echo (GRE)-BOLD images, and 23 Na images were acquired. Mean values/standard deviations for ( 23 Na), the apparent diffusion coefficient (ADC), and R2 * values were calculated for the upper/middle/lower parts of both kidneys. Corticomedullary 23 Na-concentration gradients were determined. Results: Surprisingly, IG-IMRT patients showed no morphological alterations and no statistically significant differences of ADC and R2 * values in all renal parts. Values for mean corticomedullary 23 Na-concentration matched those for healthy volunteers. Results were similar in 3D-CRT patients, except for the cranial part of the left kidney. This was atrophic and presented significantly reduced functional parameters (p = 0.001 - p = 0.033). Reduced ADC values indicated reduced cell density and reduced extracellular space. Cortical and medullary R2 * values of the left cranial kidney in the 3D-CRT group were higher, indicating more deoxygenated hemoglobin due to reduced blood flow/oxygenation. ( 23 Na) of the renal cranial parts in the 3D-CRT group was significantly reduced

  5. Intensity modulated radiotherapy (IMRT) for patients of the Brazilian unified health system (SUS): an analysis of 508 treatments two years after the technique implementation

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Harley Francisco de; Trevisan, Felipe Amstalden; Bighetti, Viviane Marques; Guimaraes, Flavio da Silva; Amaral, Leonardo Lira; Barbi, Gustavo Lazaro; Borges, Leandro Federiche; Peria, Fernanda Maris, E-mail: harley@fmrp.usp.br [Universidade de Sao Paulo (FMRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina

    2014-11-15

    Objective: the offering of high-technology radiotherapy to the population assisted by the Brazilian unified health system (SUS) is limited since it is not included in the system’s list of procedures and, many times, because of the insufficient installed capacity and lack of specialized human resources. Thus the access to intensity-modulated radiotherapy (IMRT) is restricted to few centers in Brazil. The present study is aimed at presenting the characteristics of the first 508 cases treated with IMRT during the first years after the technique implementation in a university hospital. Materials and methods: the first consecutive 508 cases of IMRT treatment completed in the period from May/2011 to September/2013 were reviewed. Static multi leaf was the technique employed. Results: amongst 4,233 treated patients, 12.5% were submitted to IMRT. Main indications for the treatment included cancers located in the skull, head and neck and prostate. Intensity modulated radiotherapy was utilized in about 30% of cranial and 50% of prostate treatments. Treatment toxicity was observed in 4% of the patients. Conclusion: because of restricted access to radiotherapy in addition to lack of coverage for the procedure, IMRT indications for SUS patients should be based on institutional clinical protocols, with special attention to the reduction of toxicity. (author)

  6. Comparison between intensity modulated radiotherapy (IMRT) and 3D tangential beams technique used in patients with early-stage breast cancer who received breast-conserving therapy

    International Nuclear Information System (INIS)

    Sas-Korczynska, B.; Kokoszka, A.; Korzeniowski, S.; Sladowska, A.; Rozwadowska-Bogusz, B.; Lesiak, J.; Dyczek, S.

    2010-01-01

    Background: The most often found complications in patients with breast cancer who received radiotherapy are cardiac and pulmonary function disorders and development of second malignancies. Aim: To compare the intensity modulated radiotherapy with the 3D tangential beams technique in respect of dose distribution in target volume and critical organs they generate in patients with early-stage breast cancer who received breast-conserving therapy. Materials and methods: A dosimetric analysis was performed to assess the three radiotherapy techniques used in each of 10 consecutive patients with early-stage breast cancer treated with breast-conserving therapy. Radiotherapy was planned with the use of all the three techniques: 3D tangential beams with electron boost, IMRT with electron boost, and intensity modulated radiotherapy with simultaneous integrated boost. Results: The use of the IMRT techniques enables more homogenous dose distribution in target volume. The range of mean and median dose to the heart and lung was lower with the IMRT techniques in comparison to the 3D tangential beams technique. The range of mean dose to the heart amounted to 0.3 - 3.5 Gy for the IMRT techniques and 0.4 - 4.3 for the tangential beams technique. The median dose to the lung on the irradiated side amounted to 4.9 - 5 Gy for the IMRT techniques and 5.6 Gy for the 3D tangential beams technique. Conclusion: The application of the IMRT techniques in radiotherapy patients with early-stage breast cancer allows to obtain more homogenous dose distribution in target volume, while permitting to reduce the dose to critical organs. (authors)

  7. Conformal intensity-modulated radiotherapy (IMRT) delivered by robotic linac-conformality versus efficiency of dose delivery

    International Nuclear Information System (INIS)

    Webb, Steve

    2000-01-01

    Intensity-modulated radiotherapy (IMRT) may be delivered with a high-energy-photon linac mounted on a robotic gantry and executing a complex trajectory. In a previous paper an inverse-planning technique was developed for such an application. Here the work is extended to demonstrate the dependence of conformality on the size of the elemental pencil beam, on the complexity of the trajectory and on the sampling of azimuth and elevation of the collimated source. The improved conformality of complex trajectories is demonstrated and benchmarked relative to simpler trajectories, more representative of existing non-robotic IMRT techniques. Specifically, by choosing a very fine pencil beam, exquisitely conformal dose distributions have been obtained. Important sampling considerations have been determined. Expressions have been derived for the dosimetry and monitor-unit efficiency of robotic IMRT. Equivalent trajectories were computed for executing the complex robotic trajectories instead by using a conventional linac. The work benchmarks an ideal in IMRT against which more practical and more common techniques may be measured. (author)

  8. Chest wall desmoid tumours treated with definitive radiotherapy: a plan comparison of 3D conformal radiotherapy, intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy

    International Nuclear Information System (INIS)

    Liu, Jia; Ng, Diana; Lee, James; Stalley, Paul; Hong, Angela

    2016-01-01

    Definitive radiotherapy is often used for chest wall desmoid tumours due to size or anatomical location. The delivery of radiotherapy is challenging due to the large size and constraints of normal surrounding structures. We compared the dosimetry of 3D conformal radiotherapy (3DCRT), intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc radiotherapy (VMAT) to evaluate the best treatment option. Ten consecutive patients with inoperable chest wall desmoid tumours (PTV range 416–4549 cm 3 ) were selected. For each patient, 3DCRT, IMRT and VMAT plans were generated and the Conformity Index (CI), organ at risk (OAR) doses and monitor unit (MU) were evaluated. The Wilcoxon signed-rank test was used to compare dose delivered to both target and OARs. The mean number of fields for 3DCRT and IMRT were 6.3 ± 2.1, 7.2 ± 1.8. The mean number of arcs for VMAT was 3.7 ± 1.1. The mean conformity index of VMAT (0.98 ± 0.14) was similar to that of IMRT (1.03 ± 0.13), both of which were significantly better than 3DCRT (1.35 ± 0.20; p = 0.005). The mean dose to lung was significantly higher for 3DCRT (11.9Gy ± 7.9) compared to IMRT (9.4Gy ± 5.4, p = 0.014) and VMAT (8.9Gy ± 4.5, p = 0.017). For the 3 females, the low dose regions in the ipsilateral breast for VMAT were generally less with VMAT. IMRT plans required 1427 ± 532 MU per fraction which was almost 4-fold higher than 3DCRT (313 ± 112, P = 0.005). Compared to IMRT, VMAT plans required 60 % less MU (570 ± 285, P = 0.005). For inoperable chest wall desmoid tumours, VMAT delivered equivalent target coverage when compared to IMRT but required 60 % less MU. Both VMAT and IMRT were superior to 3DCRT in terms of better PTV coverage and sparing of lung tissue

  9. Integral test phantom for dosimetric quality assurance of image guided and intensity modulated stereotactic radiotherapy.

    Science.gov (United States)

    Létourneau, Daniel; Keller, Harald; Sharpe, Michael B; Jaffray, David A

    2007-05-01

    The objective of this work is to develop a dosimetric phantom quality assurance (QA) of linear accelerators capable of cone-beam CT (CBCT) image guided and intensity-modulated radiotherapy (IG-IMRT). This phantom is to be used in an integral test to quantify in real-time both the performance of the image guidance and the dose delivery systems in terms of dose localization. The prototype IG-IMRT QA phantom consisted of a cylindrical imaging phantom (CatPhan) combined with an array of 11 radiation diodes mounted on a 10 cm diameter disk, oriented perpendicular to the phantom axis. Basic diode response characterization was performed for 6 and 18 MV photons. The diode response was compared to planning system calculations in the open and penumbrae regions of simple and complex beam arrangements. The clinical use of the QA phantom was illustrated in an integral test of an IG-IMRT treatment designed for a clinical spinal radiosurgery case. The sensitivity of the phantom to multileaf collimator (MLC) calibration and setup errors in the clinical setting was assessed by introducing errors in the IMRT plan or by displacing the phantom. The diodes offered good response linearity and long-term reproducibility for both 6 and 18 MV. Axial dosimetry of coplanar beams (in a plane containing the beam axes) was made possible with the nearly isoplanatic response of the diodes over 360 degrees of gantry (usually within +/-1%). For single beam geometry, errors in phantom placement as small as 0.5 mm could be accurately detected (in gradient > or = 1% /mm). In clinical setting, MLC systematic errors of 1 mm on a single MLC bank introduced in the IMRT plan were easily detectable with the QA phantom. The QA phantom demonstrated also sufficient sensitivity for the detection of setup errors as small as 1 mm for the IMRT delivery. These results demonstrated that the prototype can accurately and efficiently verify the entire IG-IMRT process. This tool, in conjunction with image guidance

  10. Integral test phantom for dosimetric quality assurance of image guided and intensity modulated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Letourneau, Daniel; Keller, Harald; Sharpe, Michael B.; Jaffray, David A.

    2007-01-01

    The objective of this work is to develop a dosimetric phantom quality assurance (QA) of linear accelerators capable of cone-beam CT (CBCT) image guided and intensity-modulated radiotherapy (IG-IMRT). This phantom is to be used in an integral test to quantify in real-time both the performance of the image guidance and the dose delivery systems in terms of dose localization. The prototype IG-IMRT QA phantom consisted of a cylindrical imaging phantom (CatPhan) combined with an array of 11 radiation diodes mounted on a 10 cm diameter disk, oriented perpendicular to the phantom axis. Basic diode response characterization was performed for 6 and 18 MV photons. The diode response was compared to planning system calculations in the open and penumbrae regions of simple and complex beam arrangements. The clinical use of the QA phantom was illustrated in an integral test of an IG-IMRT treatment designed for a clinical spinal radiosurgery case. The sensitivity of the phantom to multileaf collimator (MLC) calibration and setup errors in the clinical setting was assessed by introducing errors in the IMRT plan or by displacing the phantom. The diodes offered good response linearity and long-term reproducibility for both 6 and 18 MV. Axial dosimetry of coplanar beams (in a plane containing the beam axes) was made possible with the nearly isoplanatic response of the diodes over 360 deg. of gantry (usually within ±1%). For single beam geometry, errors in phantom placement as small as 0.5 mm could be accurately detected (in gradient ≥1%/mm). In clinical setting, MLC systematic errors of 1 mm on a single MLC bank introduced in the IMRT plan were easily detectable with the QA phantom. The QA phantom demonstrated also sufficient sensitivity for the detection of setup errors as small as 1 mm for the IMRT delivery. These results demonstrated that the prototype can accurately and efficiently verify the entire IG-IMRT process. This tool, in conjunction with image guidance capabilities

  11. Radiation therapy technology innovations applied to the treatment of head and neck patients: - Clinical results of Intensity Modulated Radiotherapy (IMRT), - Contribution of Image Guided Radiotherapy (IGRT) in the management of head and neck patients treated with IMRT

    International Nuclear Information System (INIS)

    Graff-Cailleaud, Pierre

    2011-01-01

    Numerous and exciting technological innovations were recently developed in radiotherapy. We aimed to assess benefits in two specific fields. 1) Clinical results of Intensity Modulated Radiotherapy (IMRT) applied to the treatment of Head and Neck (H and N) patients. The first study was a long-term mono-centric prospective registration of all H and N patients treated with IMRT in our institution. Locoregional control was excellent and toxicities limited. Recurrences were in-field. Dosimetric recommendations (parotids mean dose) were established. The second study assessed the impact of IMRT on health-related quality of life for H and N patients through a multicentric matched-pair comparison with conventional radiotherapy. Outstanding benefits were observed particularly in the fields of salivary dysfunction and oral discomfort. 2) Contribution of Image Guided Radiotherapy (IGRT) in the management of H and N patients treated with IMRT. The first study was a monitoring of delivered dose, using 3D dose recalculation from Megavoltage Cone-Beam CT (CBCT), as a quality assurance measure of a panel of H and N IMRT patients aligned with IGRT. Dosimetric consequences of anatomical changes were assessed. Contribution of color-coded MVCBCT dose-difference maps was studied. The aim of the second study was to quantify the inherent relative mobility between anatomic regions of the H and N area and to assess the dosimetric impact of several different matching procedures. Recommendations for the use of CBCT images in a daily practice were established. (author) [fr

  12. Assessment of renal function after conformal radiotherapy and intensity-modulated radiotherapy by functional {sup 1}H-MRI and {sup 23}Na-MRI

    Energy Technology Data Exchange (ETDEWEB)

    Haneder, S.; Michaely, H.J.; Schoenberg, S.O. [Universitaetsmedizin Mannheim, Heidelberg Univ., Mannheim (Germany). Inst. of Clinical Radiology and Nuclear Medicine; Konstandin, S.; Schad, L.R. [Universitaetsmedizin Mannheim, Heidelberg Univ., Mannheim (Germany). Computer-Assisted Clinical Medicine; Siebenlist, K.; Wertz, H.; Wenz, F.; Lohr, F.; Boda-Heggemann, J. [Universitaetsmedizin Mannheim, Heidelberg Univ., Mannheim (Germany). Dept. of Radiation Oncology

    2012-12-15

    Purpose: Adjuvant radiochemotherapy (RCHT) improves survival of patients with locally advanced gastric cancer. Conventional three-dimensional conformal radiotherapy (3D-CRT) results in ablative doses to a significant amount of the left kidney, while image-guided intensity-modulated radiotherapy (IG-IMRT) provides excellent target coverage with improved kidney sparing. Few long-term results on IMRT for gastric cancer, however, have been published. Functional magnetic resonance imaging (fMRI) at 3.0 T including blood oxygenation-level dependent (BOLD) imaging, diffusion-weighted imaging (DWI) and, for the first time, {sup 23}Na imaging was used to evaluate renal status after radiotherapy with 3D-CRT or IG-IMRT. Patients and methods Four disease-free patients (2 after 3D-CRT and 2 after IMRT; FU for all patients > 5 years) were included in this feasibility study. Morphological sequences, axial DWI images, 2D-gradient echo (GRE)-BOLD images, and {sup 23}Na images were acquired. Mean values/standard deviations for ({sup 23}Na), the apparent diffusion coefficient (ADC), and R2{sup *} values were calculated for the upper/middle/lower parts of both kidneys. Corticomedullary {sup 23}Na-concentration gradients were determined. Results: Surprisingly, IG-IMRT patients showed no morphological alterations and no statistically significant differences of ADC and R2{sup *} values in all renal parts. Values for mean corticomedullary {sup 23}Na-concentration matched those for healthy volunteers. Results were similar in 3D-CRT patients, except for the cranial part of the left kidney. This was atrophic and presented significantly reduced functional parameters (p = 0.001 - p = 0.033). Reduced ADC values indicated reduced cell density and reduced extracellular space. Cortical and medullary R2{sup *} values of the left cranial kidney in the 3D-CRT group were higher, indicating more deoxygenated hemoglobin due to reduced blood flow/oxygenation. ({sup 23}Na) of the renal cranial parts in

  13. Dosimetric comparison of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) in total scalp irradiation: a single institutional experience

    International Nuclear Information System (INIS)

    Ostheimer, Christian; Huebsch, Patrick; Janich, Martin; Gerlach, Reinhard; Vordermark, Dirk

    2016-01-01

    Total scalp irradiation (TSI) is a rare but challenging indication. We previously reported that non-coplanar intensity-modulated radiotherapy (IMRT) was superior to coplanar IMRT in organ-at-risk (OAR) protection and target dose distribution. This consecutive treatment planning study compared IMRT with volumetric-modulated arc therapy (VMAT). A retrospective treatment plan databank search was performed and 5 patient cases were randomly selected. Cranial imaging was restored from the initial planning computed tomography (CT) and target volumes and OAR were redelineated. For each patients, three treatment plans were calculated (coplanar/non-coplanar IMRT, VMAT; prescribed dose 50 Gy, single dose 2 Gy). Conformity, homogeneity and dose volume histograms were used for plan. VMAT featured the lowest monitor units and the sharpest dose gradient (1.6 Gy/mm). Planning target volume (PTV) coverage and homogeneity was better in VMAT (coverage, 0.95; homogeneity index [HI], 0.118) compared to IMRT (coverage, 0.94; HI, 0.119) but coplanar IMRT produced the most conformal plans (conformity index [CI], 0.43). Minimum PTV dose range was 66.8% –88.4% in coplanar, 77.5%–88.2% in non-coplanar IMRT and 82.8%–90.3% in VMAT. Mean dose to the brain, brain stem, optic system (maximum dose) and lenses were 18.6, 13.2, 9.1, and 5.2 Gy for VMAT, 21.9, 13.4, 14.5, and 6.3 Gy for non-coplanar and 22.8, 16.5, 11.5, and 5.9 Gy for coplanar IMRT. Maximum optic chiasm dose was 7.7, 8.4, and 11.1 Gy (non-coplanar IMRT, VMAT, and coplanar IMRT). Target coverage, homogeneity and OAR protection, was slightly superior in VMAT plans which also produced the sharpest dose gradient towards healthy tissue

  14. Dosimetric comparison of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) in total scalp irradiation: a single institutional experience

    Energy Technology Data Exchange (ETDEWEB)

    Ostheimer, Christian; Huebsch, Patrick; Janich, Martin; Gerlach, Reinhard; Vordermark, Dirk [Dept. of Radiation Oncology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Germany)

    2016-12-15

    Total scalp irradiation (TSI) is a rare but challenging indication. We previously reported that non-coplanar intensity-modulated radiotherapy (IMRT) was superior to coplanar IMRT in organ-at-risk (OAR) protection and target dose distribution. This consecutive treatment planning study compared IMRT with volumetric-modulated arc therapy (VMAT). A retrospective treatment plan databank search was performed and 5 patient cases were randomly selected. Cranial imaging was restored from the initial planning computed tomography (CT) and target volumes and OAR were redelineated. For each patients, three treatment plans were calculated (coplanar/non-coplanar IMRT, VMAT; prescribed dose 50 Gy, single dose 2 Gy). Conformity, homogeneity and dose volume histograms were used for plan. VMAT featured the lowest monitor units and the sharpest dose gradient (1.6 Gy/mm). Planning target volume (PTV) coverage and homogeneity was better in VMAT (coverage, 0.95; homogeneity index [HI], 0.118) compared to IMRT (coverage, 0.94; HI, 0.119) but coplanar IMRT produced the most conformal plans (conformity index [CI], 0.43). Minimum PTV dose range was 66.8% –88.4% in coplanar, 77.5%–88.2% in non-coplanar IMRT and 82.8%–90.3% in VMAT. Mean dose to the brain, brain stem, optic system (maximum dose) and lenses were 18.6, 13.2, 9.1, and 5.2 Gy for VMAT, 21.9, 13.4, 14.5, and 6.3 Gy for non-coplanar and 22.8, 16.5, 11.5, and 5.9 Gy for coplanar IMRT. Maximum optic chiasm dose was 7.7, 8.4, and 11.1 Gy (non-coplanar IMRT, VMAT, and coplanar IMRT). Target coverage, homogeneity and OAR protection, was slightly superior in VMAT plans which also produced the sharpest dose gradient towards healthy tissue.

  15. Intensity-Modulated Radiotherapy for Sinonasal Cancer: Improved Outcome Compared to Conventional Radiotherapy

    International Nuclear Information System (INIS)

    Dirix, Piet; Vanstraelen, Bianca; Jorissen, Mark; Vander Poorten, Vincent; Nuyts, Sandra

    2010-01-01

    Purpose: To evaluate clinical outcome and toxicity of postoperative intensity-modulated radiotherapy (IMRT) for malignancies of the nasal cavity and paranasal sinuses. Methods and Materials: Between 2003 and 2008, 40 patients with cancer of the paranasal sinuses (n = 34) or nasal cavity (n = 6) received postoperative IMRT to a dose of 60 Gy (n = 21) or 66 Gy (n = 19). Treatment outcome and toxicity were retrospectively compared with that of a previous patient group (n = 41) who were also postoperatively treated to the same doses but with three-dimensional conformal radiotherapy without intensity modulation, from 1992 to 2002. Results: Median follow-up was 30 months (range, 4-74 months). Two-year local control, overall survival, and disease-free survival were 76%, 89%, and 72%, respectively. Compared to the three-dimensional conformal radiotherapy treatment, IMRT resulted in significantly improved disease-free survival (60% vs. 72%; p = 0.02). No grade 3 or 4 toxicity was reported in the IMRT group, either acute or chronic. The use of IMRT significantly reduced the incidence of acute as well as late side effects, especially regarding skin toxicity, mucositis, xerostomia, and dry-eye syndrome. Conclusions: Postoperative IMRT for sinonasal cancer significantly improves disease-free survival and reduces acute as well as late toxicity. Consequently, IMRT should be considered the standard treatment modality for malignancies of the nasal cavity and paranasal sinuses.

  16. Multi-centre experience of implementing image-guided intensity-modulated radiotherapy using the TomoTherapy platform

    International Nuclear Information System (INIS)

    Dean, J.C.; Tudor, G.S.J.; Mott, J.H.; Dunlop, P.R.; Morris, S.L.; Harron, E.C.; Christian, J.A.; Sanghera, P.; Elsworthy, M.; Burnet, N.G.

    2013-01-01

    Use of image guided (IG) intensity modulated radiotherapy (IMRT) is increasing, and helical tomotherapy provides an effective, integrated solution. Practical experience of implementation, shared at a recent UK TomoTherapy Users' meeting, may help centres introducing these techniques using TomoTherapy or other platforms. Seven centres participated, with data shared from 6, varying from 2500 - 4800 new patients per year. Case selection of patients “most likely” to benefit from IG-IMRT was managed in all centres by multi-professional groups comprising clinical oncologists, physicists, treatment planners and radiographers. Radical treatments ranged from 94% to 100%. The proportions of tumour types varied substantially: head and neck: range 0%–100% (mean of centres 50%), prostate: 3%–96% (mean of centres 28%). Head and neck cases were considered most likely to benefit from IMRT, prostate cases from IGRT, or IG-IMRT if pelvic nodes were being treated. IMRT was also selected for complex target volumes, to avoid field junctions, for technical treatment difficulties, and retreatments. Across the centres, every patient was imaged every day, with positional correction before treatment. In one centre, for prostate patients including pelvic treatment, the pelvis was also imaged weekly. All centres had designed a ‘ramp up’ of patient numbers, which was similar in 5. One centre, treating 96% prostate patients, started with 3 and increased to 36 patients per day within 3 months. The variation in case mix implies wide applicability of IG-IMRT. Daily on-line IGRT with IMRT can be routinely implemented into busy departments

  17. Intensity modulated radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Riou, O.; Fenoglietto, P.; Lemanski, C.; Azria, D.

    2012-01-01

    Intensity modulated radiotherapy (IMRT) is a technique allowing dose escalation and normal tissue sparing for various cancer types. For breast cancer, the main goals when using IMRT were to improve dose homogeneity within the breast and to enhance coverage of complex target volumes. Nonetheless, better heart and lung protections are achievable with IMRT as compared to standard irradiation for difficult cases. Three prospective randomized controlled trials of IMRT versus standard treatment showed that a better breast homogeneity can translate into better overall cosmetic results. Dosimetric and clinical studies seem to indicate a benefit of IMRT for lymph nodes irradiation, bilateral treatment, left breast and chest wall radiotherapy, or accelerated partial breast irradiation. The multiple technical IMRT solutions available tend to indicate a widespread use for breast irradiation. Nevertheless, indications for breast IMRT should be personalized and selected according to the expected benefit for each individual. (authors)

  18. Norwegian Oncologists' Expectations of Intensity-modulated Radiotherapy

    International Nuclear Information System (INIS)

    Muren, Ludvig P.; Mella, Olav; Hafslund, Rune; Dahl, Olav

    2002-01-01

    Although intensity-modulated radiotherapy (IMRT) may increase the therapeutic ratio of radiotherapy for a range of malignancies, only a few IMRT treatments have yet been performed in the Nordic countries. The scores derived from a national survey to assess Norwegian oncologists' expectations of IMRT are presented. A questionnaire was distributed to all consultants in oncology at Norwegian radiotherapy clinics. Summary scores of daily general radiotherapy workload (DGRTW), acquaintance with IMRT (AI) and expectations of IMRT (EI) were derived. Thirty-nine questionnaires (67%) were returned from a total of 58 oncologists. The oncologists' scores on the AI scale (mean score: 7.5 out of 21) were rather low. Their AI scores were found to be positively correlated with their DGRTW. Higher scores on the EI scale were documented (mean score: 6.2 out of 14): 15 oncologists (39%) rated IMRT as one of the three major contributors to potentially increased cancer survival. Oncologists treating patients with prostate, head and neck, gastrointestinal and CNS tumours had higher EI scores than the other oncologists (7.7 vs. 5.1; p=0.01). The Norwegian radiation oncologists' expectations of IMRT are high in terms of both the potential clinical benefit and the rate of implementation. This should encourage the radiotherapy communities to continue (or rapidly initiate) their efforts in providing the routines required for safe implementation of IMRT

  19. Simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) in nasopharyngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Studer, Gabriela [Dept. of Radiation Oncology, Univ. Hospital, Zurich (Switzerland); Peponi, Evangelia; Glanzmann, Christoph; Kunz, Guntram; Renner, Christoph; Tomuschat, Katja

    2010-03-15

    Purpose: To assess the efficacy and safety of using simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) to treat nasopharyngeal cancer (NPC) in a Caucasian cohort. Outcome was analyzed with respect to dose-volume histogram (DVH) values. Patients and Methods: Between 03/2002 and 01/2008, 39 NPC patients underwent SIB-IMRT (37 Caucasians; 31 males; mean age 53 years [16-78 years]). 41% presented with WHO (World Health Organization) type 1 unfavorable histology, 85% with stage III/IV disease. 19 patients had total gross tumor volume (GTV) 16-70 cm{sup 3} (mean 36 cm{sup 3}), while 16 had GTV > 70 cm{sup 3} (73-217 cm{sup 3}; mean 115 cm{sup 3}). All patients with stage II-IV disease received concomitant cisplatin. The prescribed SIB dose delivered to the planning target volume (PTV) was 70 Gy (2.00 Gy/fraction) in 17, 69.6 Gy (2.11 Gy/fraction) in 19, and 66 Gy (2.20 Gy/fraction) in three patients. Results: 3-year local relapse-free, nodal relapse-free, distant metastases-free, disease-free rates and overall survival were 86%, 89%, 85%, 72%, and 85% (median follow-up 30 months [8-71 months]). Histology was a significant prognostic factor concerning overall survival, with worst prognosis in WHO type 1 compared to type 2/3 (75% vs. 93%; p = 0.03). There was a trend in favor of WHO type 2/3 regarding local control (74% vs. 94%; p = 0.052). The PTV DVHs showed a slight left shift compared to reported series. Three patients developed grade 3 late effects (xerostomia [n=2], dysphagia [n=1], hearing loss [n=1]). Conclusion: In comparison with predominantly Asian NPC IMRT series in the literature, chemo-IMRT in the own Caucasian cohort, characterized by less radioresponsive WHO type 1, was equally effective. Treatment tolerance was excellent. (orig.)

  20. Long-term outcomes from dose-escalated image-guided intensity-modulated radiotherapy with androgen deprivation: encouraging results for intermediate- and high-risk prostate cancer.

    Science.gov (United States)

    Wilcox, Shea W; Aherne, Noel J; Benjamin, Linus C; Wu, Bosco; de Campos Silva, Thomaz; McLachlan, Craig S; McKay, Michael J; Last, Andrew J; Shakespeare, Thomas P

    2014-01-01

    Dose-escalated (DE) radiotherapy in the setting of localized prostate cancer has been shown to improve biochemical disease-free survival (bDFS) in several studies. In the same group of patients, androgen deprivation therapy (ADT) has been shown to confer a survival benefit when combined with radiotherapy doses of up to 70 Gy; however, there is currently little long-term data on patients who have received high-dose intensity-modulated radiotherapy (IMRT) with ADT. We report the long-term outcomes in a large cohort of patients treated with the combination of DE image-guided IMRT (IG-IMRT) and ADT. Patients with localized prostate cancer were identified from a centralized database across an integrated cancer center. All patients received DE IG-IMRT, combined with ADT, and had a minimum follow up of 12 months post-radiotherapy. All relapse and toxicity data were collected prospectively. Actuarial bDFS, metastasis-free survival, prostate cancer-specific survival, and multivariate analyses were calculated using the SPSS v20.0 statistical package. Seven hundred and eighty-two eligible patients were identified with a median follow up of 46 months. Overall, 4.3% of patients relapsed, 2.0% developed distant metastases, and 0.6% died from metastatic prostate cancer. At 5-years, bDFS was 88%, metastasis-free survival was 95%, and prostate cancer-specific survival was 98%. Five-year grade 2 genitourinary and gastrointestinal toxicity was 2.1% and 3.4%, respectively. No grade 3 or 4 late toxicities were reported. Pretreatment prostate specific antigen (P=0.001) and Gleason score (P=0.03) were significant in predicting biochemical failure on multivariate analysis. There is a high probability of tumor control with DE IG-IMRT combined with androgen deprivation, and this is a technique with a low probability of significant late toxicity. Our long term results corroborate the safety and efficacy of treating with IG-IMRT to high doses and compares favorably with published series for

  1. Intensity-modulated radiotherapy significantly reduces xerostomia compared with conventional radiotherapy

    International Nuclear Information System (INIS)

    Braam, Petra M.; Terhaard, Chris H.J. M.D.; Roesink, Judith M.; Raaijmakers, Cornelis P.J.

    2006-01-01

    Purpose: Xerostomia is a severe complication after radiotherapy for oropharyngeal cancer, as the salivary glands are in close proximity with the primary tumor. Intensity-modulated radiotherapy (IMRT) offers theoretical advantages for normal tissue sparing. A Phase II study was conducted to determine the value of IMRT for salivary output preservation compared with conventional radiotherapy (CRT). Methods and Materials: A total of 56 patients with oropharyngeal cancer were prospectively evaluated. Of these, 30 patients were treated with IMRT and 26 with CRT. Stimulated parotid salivary flow was measured before, 6 weeks, and 6 months after treatment. A complication was defined as a stimulated parotid flow rate <25% of the preradiotherapy flow rate. Results: The mean dose to the parotid glands was 48.1 Gy (SD 14 Gy) for CRT and 33.7 Gy (SD 10 Gy) for IMRT (p < 0.005). The mean parotid flow ratio 6 weeks and 6 months after treatment was respectively 41% and 64% for IMRT and respectively 11% and 18% for CRT. As a result, 6 weeks after treatment, the number of parotid flow complications was significantly lower after IMRT (55%) than after CRT (87%) (p = 0.002). The number of complications 6 months after treatment was 56% for IMRT and 81% for CRT (p = 0.04). Conclusions: IMRT significantly reduces the number of parotid flow complications for patients with oropharyngeal cancer

  2. Comparison of mucous and cutaneous toxicity of IMRT and of conventional radiotherapy associated with cetuximab

    International Nuclear Information System (INIS)

    Kreps, S.; Tamby, E.; Dessard Diana, B.; Berges, O.; Botti, M.; Deberne, M.; Henni, M.; Durdux, C.; Housset, M.; Giraud, P.

    2011-01-01

    The authors report a retrospective assessment of acute, cutaneous and mucous toxicity resulting from an association of cetuximab and conventional conformational radiotherapy, and from an intensity-modulated conformational radiotherapy (IMRT). Seven patients presenting nasopharyngeal, oropharyngeal or hypopharyngeal tumours have been irradiated with intensity modulation, and seven without. It appears that the association of cetuximab and radiotherapy is not well tolerated and requires a close monitoring. Intensity-modulated radiotherapy allows a significant reduction of dose and of toxicity. However, mucous toxicity remains significant. Short communication

  3. Intensity Modulated Radiotherapy (IMRT) in the postoperative treatment of an adenocarcinoma of the endometrium complicated by a pelvic kidney

    International Nuclear Information System (INIS)

    Castilho, Marcus S; Jacinto, Alexandre A; Viani, Gustavo A; Campana, Andre; Carvalho, Juliana; Ferrigno, Robson; Novaes, Paulo ERS; Fogaroli, Ricardo C; Salvajoli, Joao V

    2006-01-01

    Pelvic Radiotherapy (RT) as a postoperative treatment for endometrial cancer improves local regional control. Brachytherapy also improves vaginal control. Both treatments imply significant side effects that a fine RT technique can help avoiding. Intensity Modulated RT (IMRT) enables the treatment of the target volume while protecting normal tissue. It therefore reduces the incidence and severity of side effects. We report on a 50 year-old patient with a serous-papiliferous adenocarcinoma of the uterus who was submitted to surgical treatment without lymph node sampling followed by Brachytherapy, and Chemotherapy. The patient had a pelvic kidney, and was therefore treated with IMRT. So far, the patient has been free from relapse and with normal kidney function. IMRT is a valid technique to prevent the kidney from radiation damage

  4. PET/CT Staging Followed by Intensity-Modulated Radiotherapy (IMRT) Improves Treatment Outcome of Locally Advanced Pharyngeal Carcinoma: a matched-pair comparison

    International Nuclear Information System (INIS)

    Rothschild, Sacha; Studer, Gabriela; Seifert, Burkhardt; Huguenin, Pia; Glanzmann, Christoph; Davis, J Bernard; Lütolf, Urs M; Hany, Thomas F; Ciernik, I Frank

    2007-01-01

    Impact of non-pharmacological innovations on cancer cure rates is difficult to assess. It remains unclear, whether outcome improves with 2- [18-F]-fluoro-2-deoxyglucose-positron emission tomography and integrated computer tomography (PET/CT) and intensity-modulated radiotherapy (IMRT) for curative treatment of advanced pharyngeal carcinoma. Forty five patients with stage IVA oro- or hypopharyngeal carcinoma were staged with an integrated PET/CT and treated with definitive chemoradiation with IMRT from 2002 until 2005. To estimate the impact of PET/CT with IMRT on outcome, a case-control analysis on all patients with PET/CT and IMRT was done after matching with eighty six patients treated between 1991 and 2001 without PET/CT and 3D-conformal radiotherapy with respect to gender, age, stage, grade, and tumor location with a ratio of 1:2. Median follow-up was eighteen months (range, 6–49 months) for the PET/CT-IMRT group and twenty eight months (range, 1–168 months) for the controls. PET/CT and treatment with IMRT improved cure rates compared to patients without PET/CT and IMRT. Overall survival of patients with PET/CT and IMRT was 97% and 91% at 1 and 2 years respectively, compared to 74% and 54% for patients without PET/CT or IMRT (p = 0.002). The event-free survival rate of PET/CT-IMRT group was 90% and 80% at 1 and 2 years respectively, compared to 72% and 56% in the control group (p = 0.005). PET/CT in combination with IMRT and chemotherapy for pharyngeal carcinoma improve oncological therapy of pharyngeal carcinomas. Long-term follow-up is needed to confirm these findings

  5. Image-guided intensity-modulated radiotherapy of prostate cancer. Analysis of interfractional errors and acute toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Rudat, Volker; Nour, A.; Hammoud, M.; Alaradi, A.; Mohammed, A. [Saad Specialist Hospital, Department of Radiation Oncology, Al Khobar (Saudi Arabia)

    2016-02-15

    The aim of the study was to estimate interfractional deviations in patient and prostate position, the impact of the frequency of online verification on the treatment margins, and to assess acute radiation reactions of high-dose external beam image-guided intensity-modulated radiotherapy (IG-IMRT) of localized prostate cancer. IG-IMRT was performed by daily online verification of implanted fiducial prostate markers using a megavoltage electronic portal imaging device (EPID). A total of 1011 image-guided treatment fractions from 23 consecutive unselected prostate cancer patients were analyzed. The median total dose was 79.2 Gy (range 77.4-81.0 Gy). Acute radiation reactions were assessed weekly during radiotherapy using the Common Terminology Criteria for Adverse Events (CTCAE) v.4.03. A relevant combined patient set-up and prostate motion population random error of 4-5 mm was observed. Compared to daily IGRT, image guidance every other day required an expansion of the CTV-PTV (clinical target volume-planning target volume) margin of 8.1, 6.6, and 4.1 mm in the longitudinal, vertical, and lateral directions, thereby, increasing the PTV by approximately 30-40 %. No grade 3 or 4 acute radiation reactions were observed with daily IG-IMRT. A high dose with surprisingly low acute toxicity can be applied with daily IG-IMRT using implanted fiducial prostate markers. Daily image guidance is clearly superior to image guidance every other fraction concerning adequate target coverage with minimal margins. (orig.) [German] Ziel der Studie war es, die interfraktionelle Variabilitaet der Patientenlagerung und Prostataposition, den Einfluss der Bildgebungsfrequenz und die akuten Strahlenreaktionen bei einer hochdosierten bildgesteuerten intensitaetsmodulierten Strahlentherapie (IG-IMRT) des Prostatakarzinoms zu untersuchen. IG-IMRT wurde durch taegliche Verifikation von implantierten roentgendichten Prostatamarkern mittels Megavolt-Bildgebung (''electronic portal imaging

  6. Intensity modulated radiotherapy (IMRT) for pediatric cancer patients: The advantage and fear of second malignant neoplasm

    International Nuclear Information System (INIS)

    Zaghloul, M.S.

    2013-01-01

    Intensity-modulated radiotherapy is used for delivering more efficient homogenous dose to the target and lowering of dose to the surrounding normal tissues. However, a second malignant neoplasm may develop after prolonged latent period. The use of modern precise radiotherapy techniques in the pediatric age group has many controversial issues in spite of its proven dosimetric distribution advantages and the considerable decrease of normal tissue complication probability (NTCP). This concern is due to many factors; mainly the exposure of a larger volume of normal tissues to low dose radiotherapy. Children have more proliferating tissues compared to the adults. However, the epidemiological data did not detect an increase in the incidence of radiation-induced second malignancy. This issue is still controversial as IMRT and other precise radiotherapy techniques were not widely used except recently. This may entail a thorough careful follow up for children treated with these techniques to detect any incidence increase

  7. Exclusive image guided IMRT vs. radical prostatectomy followed by postoperative IMRT for localized prostate cancer: a matched-pair analysis based on risk-groups

    International Nuclear Information System (INIS)

    Azelie, Caroline; Créhange, Gilles; Gauthier, Mélanie; Mirjolet, Céline; Cormier, Luc; Martin, Etienne; Peignaux-Casasnovas, Karine; Truc, Gilles; Chamois, Jérôme; Maingon, Philippe

    2012-01-01

    To investigate whether patients treated for a localized prostate cancer (PCa) require a radical prostatectomy followed by postoperative radiotherapy or exclusive radiotherapy, in the modern era of image guided IMRT. 178 patients with PCa were referred for daily exclusive image guided IMRT (IG-IMRT) using an on-line 3D ultra-sound based system and 69 patients were referred for postoperative IMRT without image guidance after radical prostatectomy (RP + IMRT). Patients were matched in a 1:1 ratio according to their baseline risk group before any treatment. Late toxicity was scored using the CTV v3.0 scale. Biochemical failure was defined as a postoperative PSA ≤ 0.1 ng/mL followed by 1 consecutive rising PSA for the postoperative group of patients and by the Phoenix definition (nadir + 2 ng/mL) for the group of patients treated with exclusive radiotherapy. A total of 98 patients were matched (49:49). From the start of any treatment, the median follow-up was 56.6 months (CI 95% = [49.6-61.2], range [18.2-115.1]). No patient had late gastrointestinal grade ≥ 2 toxicity in the IG-IMRT group vs. 4% in the RP + IMRT group. Forty two percent of the patients in both groups had late grade ≥ 2 genitourinary toxicity. The 5-year FFF rates in the IG-IMRT group and in the RP + IMRT groups were 93.1% [80.0-97.8] and 76.5% [58.3-87.5], respectively (p = 0.031). Patients with a localized PCa treated with IG-IMRT had better oncological outcome than patients treated with RP + IMRT. Further improvements in postoperative IMRT using image guidance and dose escalation are urgently needed

  8. Intensity Modulated Radiotherapy (IMRT in the postoperative treatment of an adenocarcinoma of the endometrium complicated by a pelvic kidney

    Directory of Open Access Journals (Sweden)

    Novaes Paulo ERS

    2006-11-01

    Full Text Available Abstract Background Pelvic Radiotherapy (RT as a postoperative treatment for endometrial cancer improves local regional control. Brachytherapy also improves vaginal control. Both treatments imply significant side effects that a fine RT technique can help avoiding. Intensity Modulated RT (IMRT enables the treatment of the target volume while protecting normal tissue. It therefore reduces the incidence and severity of side effects. Case We report on a 50 year-old patient with a serous-papiliferous adenocarcinoma of the uterus who was submitted to surgical treatment without lymph node sampling followed by Brachytherapy, and Chemotherapy. The patient had a pelvic kidney, and was therefore treated with IMRT. So far, the patient has been free from relapse and with normal kidney function. Conclusion IMRT is a valid technique to prevent the kidney from radiation damage.

  9. Contribution of PET and PET/CT in CTV/PTV-modulation for planning of intensity modulated radiotherapy (IMRT)

    International Nuclear Information System (INIS)

    Oehler, W.; Baum, R.P.

    2004-01-01

    PET and PET/CT enlarge the possibilities of purely anatomic imaging by opening up new horizons in determining the metabolic and molecular properties of tumors. This enables to determine the spread of tumors with higher accuracy, especially concerning the primary staging and the diagnosis of recurrences. Patients with locoregional disease which are curable by surgery or local radiotherapy (eventually in combination with chemotherapy) can be differentiated from those patients, where only palliative treatment is indicated. Novel nuclear medicine procedures, which use specific tracers, open the door for the molecular treatment of tumors. This will be especially important for radiation oncology. In future it will be possible to define specific tumor areas within a morphologically homogeneous tumor (e.g. areas of tumor hypoxia, increased local tumor stem cell concentration, tumor parts with higher proliferative activity etc.). With IMRT (intensity modulated radiotherapy) we have already now the opportunity, to concentrate the dose to these specific tumor areas, without overloading normal tissues and organs at risk. (orig.)

  10. Toxicity after post-prostatectomy image-guided intensity-modulated radiotherapy using Australian guidelines.

    Science.gov (United States)

    Chin, Stephen; Aherne, Noel J; Last, Andrew; Assareh, Hassan; Shakespeare, Thomas P

    2017-12-01

    We evaluated single institution toxicity outcomes after post-prostatectomy radiotherapy (PPRT) via image-guided intensity-modulated radiation therapy (IG-IMRT) with implanted fiducial markers following national eviQ guidelines, for which late toxicity outcomes have not been published. Prospectively collected toxicity data were retrospectively reviewed for 293 men who underwent 64-66 Gy IG-IMRT to the prostate bed between 2007 and 2015. Median follow-up after PPRT was 39 months. Baseline grade ≥2 genitourinary (GU), gastrointestinal (GI) and sexual toxicities were 20.5%, 2.7% and 43.7%, respectively, reflecting ongoing toxicity after radical prostatectomy. Incidence of new (compared to baseline) acute grade ≥2 GU and GI toxicity was 5.8% and 10.6%, respectively. New late grade ≥2 GU, GI and sexual toxicity occurred in 19.1%, 4.7% and 20.2%, respectively. However, many patients also experienced improvements in toxicities. For this reason, prevalence of grade ≥2 GU, GI and sexual toxicities 4 years after PPRT was similar to or lower than baseline (21.7%, 2.6% and 17.4%, respectively). There were no grade ≥4 toxicities. Post-prostatectomy IG-IMRT using Australian contouring guidelines appears to have tolerable acute and late toxicity. The 4-year prevalence of grade ≥2 GU and GI toxicity was virtually unchanged compared to baseline, and sexual toxicity improved over baseline. This should reassure radiation oncologists following these guidelines. Late toxicity rates of surgery and PPRT are higher than following definitive IG-IMRT, and this should be taken into account if patients are considering surgery and likely to require PPRT. © 2017 The Royal Australian and New Zealand College of Radiologists.

  11. IMRT plan verification in radiotherapy

    International Nuclear Information System (INIS)

    Vlk, P.

    2006-01-01

    This article describes the procedure for verification of IMRT (Intensity modulated radiation therapy) plan, which is used in the Oncological Institute of St. Elisabeth in Bratislava. It contains basic description of IMRT technology and developing a deployment plan for IMRT planning system CORVUS 6.0, the device Mimic (Multilammelar intensity modulated collimator) and the overall process of verifying the schedule created. The aim of verification is particularly good control of the functions of MIMIC and evaluate the overall reliability of IMRT planning. (author)

  12. Adjuvant whole abdominal intensity modulated radiotherapy (IMRT) for high risk stage FIGO III patients with ovarian cancer (OVAR-IMRT-01) – Pilot trial of a phase I/II study: study protocol

    International Nuclear Information System (INIS)

    Rochet, Nathalie; Jensen, Alexandra D; Sterzing, Florian; Munter, Marc W; Eichbaum, Michael H; Schneeweiss, Andreas; Sohn, Christof; Debus, Juergen; Harms, Wolfgang

    2007-01-01

    The prognosis for patients with advanced epithelial ovarian cancer remains poor despite aggressive surgical resection and platinum-based chemotherapy. More than 60% of patients will develop recurrent disease, principally intraperitoneal, and die within 5 years. The use of whole abdominal irradiation (WAI) as consolidation therapy would appear to be a logical strategy given its ability to sterilize small tumour volumes. Despite the clinically proven efficacy of whole abdominal irradiation, the use of radiotherapy in ovarian cancer has profoundly decreased mainly due to high treatment-related toxicity. Modern intensity-modulated radiation therapy (IMRT) could allow to spare kidneys, liver, and bone marrow while still adequately covering the peritoneal cavity with a homogenous dose. The OVAR-IMRT-01 study is a single center pilot trial of a phase I/II study. Patients with advanced ovarian cancer stage FIGO III (R1 or R2< 1 cm) after surgical resection and platinum-based chemotherapy will be treated with whole abdomen irradiation as consolidation therapy using intensity modulated radiation therapy (IMRT) to a total dose of 30 Gy in 1.5 Gy fractions. A total of 8 patients will be included in this trial. For treatment planning bone marrow, kidneys, liver, spinal cord, vertebral bodies and pelvic bones are defined as organs at risk. The planning target volume includes the entire peritoneal cavity plus pelvic and para-aortic node regions. The primary endpoint of the study is the evaluation of the feasibility of intensity-modulated WAI and the evaluation of the study protocol. Secondary endpoint is evaluation of the toxicity of intensity modulated WAI before continuing with the phase I/II study. The aim is to explore the potential of IMRT as a new method for WAI to decrease the dose to kidneys, liver, bone marrow while covering the peritoneal cavity with a homogenous dose, and to implement whole abdominal intensity-modulated radiotherapy into the adjuvant multimodal

  13. Comparison of 3DCRT,VMAT and IMRT techniques in metastatic vertebra radiotherapy: A phantom Study

    Directory of Open Access Journals (Sweden)

    Gedik Sonay

    2017-01-01

    Full Text Available Vertebra metastases can be seen during the prognosis of cancer patients. Treatment ways of the metastasis are radiotherapy, chemotherapy and surgery. Three-dimensional conformal therapy (3D-CRT is widely used in the treatment of vertebra metastases. Also, Intensity Modulated Radiotherapy (IMRT and Volumetric Arc Therapy (VMAT are used too. The aim of this study is to examine the advantages and disadvantages of the different radiotherapy techniques. In the aspect of this goal, it is studied with a randophantom in Uludag University Medicine Faculty, Radiation Oncology Department. By using a computerized tomography image of the phantom, one 3DCRT plan, two VMAT and three IMRT plans for servical vertebra and three different 3DCRT plans, two VMAT and two IMRT plans for lomber vertebra are calculated. To calculate 3DCRT plans, CMS XiO Treatment System is used and to calculate VMAT and IMRT plans Monaco Treatment Planning System is used in the department. The study concludes with the dosimetric comparison of the treatment plans in the spect of critical organ doses, homogeneity and conformity index. As a result of this study, all critical organ doses are suitable for QUANTEC Dose Limit Report and critical organ doses depend on the techniques which used in radiotherapy. According to homogeneity and conformity indices, VMAT and IMRT plans are better than one in 3DCRT plans in servical and lomber vertebra radiotherapy plans.

  14. Implementation of an image guided intensity-modulated protocol for post-prostatectomy radiotherapy: planning data and acute toxicity outcomes.

    Science.gov (United States)

    Chua, Benjamin; Min, Myo; Wood, Maree; Edwards, Sarah; Hoffmann, Matthew; Greenham, Stuart; Kovendy, Andrew; McKay, Michael J; Shakespeare, Thomas P

    2013-08-01

    There is substantial interest in implementation of image-guided intensity-modulated radiotherapy (IG-IMRT) in the post-prostatectomy setting. We describe our implementation of IG-IMRT, and examine how often published organ-at-risk (OAR) constraints were met. Furthermore, we evaluate the incidence of acute genitourinary and gastrointestinal toxicities when patients were treated according to our protocol. Patients were eligible if they received post-prostatectomy radiotherapy (PPRT). Planning data were collected prospectively, and toxicity assessments were collected before, during and after treatment. Seventy-five eligible patients received either 64 Gy (19%) or 66 Gy (81%) in a single phase to the prostate bed. Suggested rectal dose-constraints of V40Gy < 60% and V60Gy < 40% were met in 64 (85%) and 75 (100%) patients, respectively. IMRT-specific rectal dose-constraints of V40Gy < 35% and V65Gy < 17% were achieved in 5 (7%) and 57 (76%) of patients. Bladder dose-constraint (V50Gy < 50%) was met in 58 (77%) patients. Two patients (3%) experienced new grade 3 genitourinary toxicity and one patient (1%) experienced new grade 3 gastroinestinal toxicity. All grade 3 toxicities had improved by 3-month review. Overall deterioration in urinary and gastrointestinal symptoms occurred in 33 (44%) and 35 (47%) of patients respectively. We report on our implementation of PPRT which takes into account nationally adopted guidelines, with a margin reduction supported by use of daily image guidance. Non-IMRT OAR constraints were met in most cases. IMRT-specific constraints were less often achieved despite margin reductions, suggesting the need for review of guidelines. Severe toxicity was rare, and most patients did not experience deterioration in urinary or bowel function attributable to radiotherapy. © 2013 The Authors. Journal of Medical Imaging and Radiation Oncology © 2013 The Royal Australian and New Zealand College of Radiologists.

  15. Implementation of an image guided intensity-modulated protocol for post-prostatectomy radiotherapy: planning data and acute toxicity outcomes

    International Nuclear Information System (INIS)

    Chua, Benjamin; Min, Myo; Wood, Maree; Edwards, Sarah; Hoffmann, Matthew; Greenham, Stuart; Kovendy, Andrew; McKay, Michael J.; Shakespeare, Thomas P.

    2013-01-01

    There is substantial interest in implementation of image-guided intensity-modulated radiotherapy (IG-IMRT) in the post-prostatectomy setting. We describe our implementation of IG-IMRT, and examine how often published organ-at-risk (OAR) constraints were met. Furthermore, we evaluate the incidence of acute genitourinary and gastrointestinal toxicities when patients were treated according to our protocol. Patients were eligible if they received post-prostatectomy radiotherapy (PPRT). Planning data were collected prospectively, and toxicity assessments were collected before, during and after treatment. Seventy-five eligible patients received either 64Gy (19%) or 66Gy (81%) in a single phase to the prostate bed. Suggested rectal dose-constraints of V40Gy<60% and V60Gy<40% were met in 64 (85%) and 75 (100%) patients, respectively. IMRT-specific rectal dose-constraints of V40Gy<35% and V65Gy<17% were achieved in 5 (7%) and 57 (76%) of patients. Bladder dose-constraint (V50Gy<50%) was met in 58 (77%) patients. Two patients (3%) experienced new grade 3 genitourinary toxicity and one patient (1%) experienced new grade 3 gastrointestinal toxicity. All grade 3 toxicities had improved by 3-month review. Overall deterioration in urinary and gastrointestinal symptoms occurred in 33 (44%) and 35 (47%) of patients respectively. We report on our implementation of PPRT which takes into account nationally adopted guidelines, with a margin reduction supported by use of daily image guidance. Non-IMRT OAR constraints were met in most cases. IMRT-specific constraints were less often achieved despite margin reductions, suggesting the need for review of guidelines. Severe toxicity was rare, and most patients did not experience deterioration in urinary or bowel function attributable to radiotherapy.

  16. Intensity Modulated Radiotherapy (IMRT) in the postoperative treatment of an adenocarcinoma of the endometrium complicated by a pelvic kidney

    OpenAIRE

    Castilho, Marcus S; Jacinto, Alexandre A; Viani, Gustavo A; Campana, Andre; Carvalho, Juliana; Ferrigno, Robson; Novaes, Paulo ERS; Fogaroli, Ricardo C; Salvajoli, Joao V

    2006-01-01

    Abstract Background Pelvic Radiotherapy (RT) as a postoperative treatment for endometrial cancer improves local regional control. Brachytherapy also improves vaginal control. Both treatments imply significant side effects that a fine RT technique can help avoiding. Intensity Modulated RT (IMRT) enables the treatment of the target volume while protecting normal tissue. It therefore reduces the incidence and severity of side effects. Case We report on a 50 year-old patient with a serous-papilif...

  17. Dosimetric comparison of three-dimensional conformal and intensity modulated radiotherapy in brain glioma

    International Nuclear Information System (INIS)

    Lu Jie; Zhang Guifang; Bai Tong; Yin Yong; Fan Tingyong; Wu Chaoxia

    2009-01-01

    Objective: To investigate the dosimetry advantages of intensity modulated radiotherapy (IMRT)of brain glioma compared with that of three-dimensional conformal radiotherapy (SD CRT). Methods: Ten patients with brain glioma were enrolled in this study. Three-dimensional conf0rmal and intensity modulated radiotherapy plans were performed for each patient. The dose distributions of target volume and normal tissues, conformal index (CI) and heterogeneous index (HI) were analyzed using the dose-volume histogram (DVH). The prescription dose was 60 Gy in 30 fractions. Results: IMRT plans decrease the maximum dose and volume of brainstem, mean dose of affected side parotid and maximum dose of spinal-cord. The CI for PTV of IMRT was superior to that of SD CRT, the HI for PTV has no statistical significance of the two model plans. Conclusions: IMRT plans can obviously decrease the dose and volume of brainstem. IMRT is a potential method in the treatment of brain glioma, and dose escalation was possible in patients with brain glioma. (authors)

  18. Simple Carotid-Sparing Intensity-Modulated Radiotherapy Technique and Preliminary Experience for T1-2 Glottic Cancer

    International Nuclear Information System (INIS)

    Rosenthal, David I.; Fuller, Clifton D.; Barker, Jerry L.; Mason, Bryan M.S.; Garcia, John A. C.; Lewin, Jan S.; Holsinger, F. Christopher; Stasney, C. Richard; Frank, Steven J.; Schwartz, David L.; Morrison, William H.; Garden, Adam S.; Ang, K. Kian

    2010-01-01

    Purpose: To investigate the dosimetry and feasibility of carotid-sparing intensity-modulated radiotherapy (IMRT) for early glottic cancer and to report preliminary clinical experience. Methods and Materials: Digital Imaging and Communications in Medicine radiotherapy (DICOM-RT) datasets from 6 T1-2 conventionally treated glottic cancer patients were used to create both conventional IMRT plans. We developed a simplified IMRT planning algorithm with three fields and limited segments. Conventional and IMRT plans were compared using generalized equivalent uniform dose and dose-volume parameters for in-field carotid arteries, target volumes, and organs at risk. We have treated 11 patients with this simplified IMRT technique. Results: Intensity-modulated radiotherapy consistently reduced radiation dose to the carotid arteries (p < 0.05) while maintaining the clinical target volume coverage. With conventional planning, median carotid V35, V50, and V63 were 100%, 100%, and 69.0%, respectively. With IMRT planning these decreased to 2%, 0%, and 0%, respectively (p < 0.01). Radiation planning and treatment times were similar for conventional radiotherapy and IMRT. Treatment results have been excellent thus far. Conclusions: Intensity-modulated radiotherapy significantly reduced unnecessary radiation dose to the carotid arteries compared with conventional lateral fields while maintaining clinical target volume coverage. Further experience and longer follow-up will be required to demonstrate outcomes for cancer control and carotid artery effects.

  19. The clinical implementation of respiratory-gated intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Keall, Paul; Vedam, Sastry; George, Rohini; Bartee, Chris; Siebers, Jeffrey; Lerma, Fritz; Weiss, Elisabeth; Chung, Theodore

    2006-01-01

    The clinical use of respiratory-gated radiotherapy and the application of intensity-modulated radiotherapy (IMRT) are 2 relatively new innovations to the treatment of lung cancer. Respiratory gating can reduce the deleterious effects of intrafraction motion, and IMRT can concurrently increase tumor dose homogeneity and reduce dose to critical structures including the lungs, spinal cord, esophagus, and heart. The aim of this work is to describe the clinical implementation of respiratory-gated IMRT for the treatment of non-small cell lung cancer. Documented clinical procedures were developed to include a tumor motion study, gated CT imaging, IMRT treatment planning, and gated IMRT delivery. Treatment planning procedures for respiratory-gated IMRT including beam arrangements and dose-volume constraints were developed. Quality assurance procedures were designed to quantify both the dosimetric and positional accuracy of respiratory-gated IMRT, including film dosimetry dose measurements and Monte Carlo dose calculations for verification and validation of individual patient treatments. Respiratory-gated IMRT is accepted by both treatment staff and patients. The dosimetric and positional quality assurance test results indicate that respiratory-gated IMRT can be delivered accurately. If carefully implemented, respiratory-gated IMRT is a practical alternative to conventional thoracic radiotherapy. For mobile tumors, respiratory-gated radiotherapy is used as the standard of care at our institution. Due to the increased workload, the choice of IMRT is taken on a case-by-case basis, with approximately half of the non-small cell lung cancer patients receiving respiratory-gated IMRT. We are currently evaluating whether superior tumor coverage and limited normal tissue dosing will lead to improvements in local control and survival in non-small cell lung cancer

  20. Serial tomotherapy vs. MLC-IMRT (Multileaf Collimator Intensity Modulated Radiotherapy) for simultaneous boost treatment large intracerebral lesions

    International Nuclear Information System (INIS)

    Wolff, Dirk; Lohr, Frank; Mai, Sabine; Polednik, Martin; Wenz, Frederik; Dobler, Barbara

    2009-01-01

    Introduction: Recent data suggest that a radiosurgery boost treatment for up to three brain metastases in addition to whole brain radiotherapy (WBRT) is beneficial. Sequential treatment of multiple metastatic lesions is time-consuming and optimal normal tissue sparing is not trivial for larger metastases when separate plans are created and are only superimposed afterwards. Sequential Tomotherapy with noncoplanar arcs and Multi-field IMRT may streamline the process and enable easy simultaneous treatment. We compared plans for 2-3 intracerebral targets calculated with Intensity Modulated Radiotherapy (IMRT) based on treatment with MLC or sequential Tomotherapy using the Peacock-System. Treatment time was not to exceed 90 min on a linac with standart dose rate. MIMiC plans without treatment-time restrictions were created as a benchmark. Materials and methods: Calculations are based on a Siemens KD2 linac with a dose rate of 200 MU/min. Step-and-Shoot IMRT is performed with a standard MLC (2 x 29 leaves, 1 cm), serial Tomotherapy with the Multivane-Collimator MIMiC (NOMOS Inc. USA). Treatment plans are created with Corvus 5.0. To create plans with good conformity we chose a noncoplanar beam- and arc geometry for each approach (IMRT 4-, MIMiC 5-couch angles). The benchmark MIMiC plans with maximally steep dose gradients had 9 couch angles. For plan comparison reasons, 10Gy were prescribed to 90% of the PTV. Steepness of dose gradients, homogeneity and conformity were assessed by the following parameters: Volume encompassed by certain isodoses outside the target as well as homogeneity and conformity as indicated by Homogeneity- and Conformity-Index. Results: Plans without treatment-time restrictions had slightest dose to organ at risk (OAR), normal tissue and least Conformity-index. MIMiC- and MLC-IMRT based plans can be treated within the intended period of 90 min, all plans met the required dose. MLC based plans resulted in higher dose to organs at risk (OAR) and dose

  1. Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario.

    Science.gov (United States)

    Yong, J H E; McGowan, T; Redmond-Misner, R; Beca, J; Warde, P; Gutierrez, E; Hoch, J S

    2016-06-01

    Radiotherapy is a common treatment for many cancers, but up-to-date estimates of the costs of radiotherapy are lacking. In the present study, we estimated the unit costs of intensity-modulated radiotherapy (imrt) and 3-dimensional conformal radiotherapy (3D-crt) in Ontario. An activity-based costing model was developed to estimate the costs of imrt and 3D-crt in prostate cancer. It included the costs of equipment, staff, and supporting infrastructure. The framework was subsequently adapted to estimate the costs of radiotherapy in breast cancer and head-and-neck cancer. We also tested various scenarios by varying the program maturity and the use of volumetric modulated arc therapy (vmat) alongside imrt. From the perspective of the health care system, treating prostate cancer with imrt and 3D-crt respectively cost $12,834 and $12,453 per patient. The cost of radiotherapy ranged from $5,270 to $14,155 and was sensitive to analytic perspective, radiation technique, and disease site. Cases of head-and-neck cancer were the most costly, being driven by treatment complexity and fractions per treatment. Although imrt was more costly than 3D-crt, its cost will likely decline over time as programs mature and vmat is incorporated. Our costing model can be modified to estimate the costs of 3D-crt and imrt for various disease sites and settings. The results demonstrate the important role of capital costs in studies of radiotherapy cost from a health system perspective, which our model can accommodate. In addition, our study established the need for future analyses of imrt cost to consider how vmat affects time consumption.

  2. SU-E-T-809: Volumetric Modulated Arc Radiotherapy Vs. Intensity-Modulated Radiotherapy for Locally Advanced Laryngeal Carcinoma: A Dosimetric Study

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J-Y; Huang, B-T; Zhang, W-Z; Yan, L-J [Cancer Hospital of Shantou University Medical College, Shantou, Guangdong (China)

    2015-06-15

    Purpose: To compare volumetric modulated arc radiotherapy (VMAT) technique with fixed-gantry intensity-modulated radiotherapy (IMRT) technique for locally advanced laryngeal carcinoma. Methods: CT datasets of eleven patients were included. Dual-arc VMAT and 7-field IMRT plans, which were created based on the Eclipse treatment planning system, were compared in terms of dose-volume parameters, conformity index (CI) and homogeneity index (HI) of planning target volume (PTV), as well as organ-at-risk (OAR) sparing, planning time, monitor units (MUs) and delivery time. Results: Compared with the IMRT plans, the VMAT plans provided lower D2% and better CI/HI for the high-risk PTV (PTV1), and provided better CI and comparable HI for the low-risk PTV (PTV2). Concerning the OAR sparing, the VMAT plans demonstrated significantly lower Dmax of the spinal cord (planning OAR volume, PRV) and brainstem (PRV), as well as lower Dmean and V30Gy of the right parotid. No significant differences were observed between the two plans concerning the doses delivered to the thyroid, carotid, oral cavity and left parotid. Moreover, the VMAT planning (147 ± 18 min) consumed 213% more time than the IMRT planning (48 ± 10 min). The MUs of the VMAT plans (556 ± 52) were 64% less than those of the IMRT plans (1684 ± 409), and the average delivery time (2.1 ± 0.1 min) was 66% less than that of the IMRT plans (6.3 ± 0.7 min). Conclusion: Compared with the IMRT technique, the VMAT technique can achieve superior target dose distribution and better sparing of the spinal cord, brainstem and right parotid, with less MUs and less delivery time. It is recommended for the radiotherapy of locally advanced laryngeal carcinoma.

  3. Comparison of simple and complex liver intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Lee, Mark T; Purdie, Thomas G; Eccles, Cynthia L; Sharpe, Michael B; Dawson, Laura A

    2010-01-01

    Intensity-modulated radiotherapy (IMRT) may allow improvement in plan quality for treatment of liver cancer, however increasing radiation modulation complexity can lead to increased uncertainties and requirements for quality assurance. This study assesses whether target coverage and normal tissue avoidance can be maintained in liver cancer intensity-modulated radiotherapy (IMRT) plans by systematically reducing the complexity of the delivered fluence. An optimal baseline six fraction individualized IMRT plan for 27 patients with 45 liver cancers was developed which provided a median minimum dose to 0.5 cc of the planning target volume (PTV) of 38.3 Gy (range, 25.9-59.5 Gy), in 6 fractions, while maintaining liver toxicity risk <5% and maximum luminal gastrointestinal structure doses of 30 Gy. The number of segments was systematically reduced until normal tissue constraints were exceeded while maintaining equivalent dose coverage to 95% of PTV (PTVD95). Radiotherapy doses were compared between the plans. Reduction in the number of segments was achieved for all 27 plans from a median of 48 segments (range 34-52) to 19 segments (range 6-30), without exceeding normal tissue dose objectives and maintaining equivalent PTVD95 and similar PTV Equivalent Uniform Dose (EUD(-20)) IMRT plans with fewer segments had significantly less monitor units (mean, 1892 reduced to 1695, p = 0.012), but also reduced dose conformity (mean, RTOG Conformity Index 1.42 increased to 1.53 p = 0.001). Tumour coverage and normal tissue objectives were maintained with simplified liver IMRT, at the expense of reduced conformity

  4. A Comparison of Helical Intensity-Modulated Radiotherapy, Intensity-Modulated Radiotherapy, and 3D-Conformal Radiation Therapy for Pancreatic Cancer

    International Nuclear Information System (INIS)

    Poppe, Matthew M.; Narra, Venkat; Yue, Ning J.; Zhou Jinghao; Nelson, Carl; Jabbour, Salma K.

    2011-01-01

    We assessed dosimetric differences in pancreatic cancer radiotherapy via helical intensity-modulated radiotherapy (HIMRT), linac-based IMRT, and 3D-conformal radiation therapy (3D-CRT) with regard to successful plan acceptance and dose to critical organs. Dosimetric analysis was performed in 16 pancreatic cases that were planned to 54 Gy; both post-pancreaticoduodenectomy (n = 8) and unresected (n = 8) cases were compared. Without volume modification, plans met constraints 75% of the time with HIMRT and IMRT and 13% with 3D-CRT. There was no statistically significantly improvement with HIMRT over conventional IMRT in reducing liver V35, stomach V45, or bowel V45. HIMRT offers improved planning target volume (PTV) dose homogeneity compared with IMRT, averaging a lower maximum dose and higher volume receiving the prescription dose (D100). HIMRT showed an increased mean dose over IMRT to bowel and liver. Both HIMRT and IMRT offer a statistically significant improvement over 3D-CRT in lowering dose to liver, stomach, and bowel. The results were similar for both unresected and resected patients. In pancreatic cancer, HIMRT offers improved dose homogeneity over conventional IMRT and several significant benefits to 3D-CRT. Factors to consider before incorporating IMRT into pancreatic cancer therapy are respiratory motion, dose inhomogeneity, and mean dose.

  5. Effects of intensity-modulated radiotherapy on human oral microflora

    International Nuclear Information System (INIS)

    Shao Ziyang; Tang Zisheng; Jiang Yuntao; Ma Rui; Liu Zheng; Huang Zhengwei; Yan Chao

    2011-01-01

    This study aimed to evaluate changes in the biodiversity of the oral microflora of patients with head and neck cancer treated with postoperative intensity-modulated radiotherapy (IMRT) or conventional radiotherapy (CRT). Pooled dental plaque samples were collected during the radiation treatment from patients receiving IMRT (n=13) and CRT (n=12). Denaturing gradient gel electrophoresis (DGGE) was used to analyze the temporal variation of these plaque samples. The stimulated and unstimulated salivary flow rates were also compared between IMRT and CRT patients. Reductions in the severity of hyposalivation were observed in IMRT patients compared with CRT patients. We also observed that the temporal stability of the oral ecosystem was significantly higher in the IMRT group (69.96±7.82%) than in the CRT group (51.98±10.45%) (P<0.05). The findings of the present study suggest that IMRT is more conducive to maintaining the relative stability of the oral ecosystem than CRT. (author)

  6. Long-term outcomes from dose-escalated image-guided intensity-modulated radiotherapy with androgen deprivation: encouraging results for intermediate- and high-risk prostate cancer

    Directory of Open Access Journals (Sweden)

    Wilcox SW

    2014-08-01

    Full Text Available Shea W Wilcox,1,4 Noel J Aherne,2,4 Linus C Benjamin,1 Bosco Wu,1 Thomaz de Campos Silva,3 Craig S McLachlan,4 Michael J McKay,3,5 Andrew J Last,1 Thomas P Shakespeare1–4 1North Coast Cancer Institute, Port Macquarie, NSW, Australia; 2North Coast Cancer Institute, Coffs Harbour, NSW, Australia; 3North Coast Cancer Institute, Lismore, NSW, Australia; 4The University of New South Wales, Rural Clinical School, Sydney, NSW, Australia; 5The University of Sydney, Sydney, NSW, Australia Purpose: Dose-escalated (DE radiotherapy in the setting of localized prostate cancer has been shown to improve biochemical disease-free survival (bDFS in several studies. In the same group of patients, androgen deprivation therapy (ADT has been shown to confer a survival benefit when combined with radiotherapy doses of up to 70 Gy; however, there is currently little long-term data on patients who have received high-dose intensity-modulated radiotherapy (IMRT with ADT. We report the long-term outcomes in a large cohort of patients treated with the combination of DE image-guided IMRT (IG-IMRT and ADT. Methods and materials: Patients with localized prostate cancer were identified from a centralized database across an integrated cancer center. All patients received DE IG-IMRT, combined with ADT, and had a minimum follow up of 12 months post-radiotherapy. All relapse and toxicity data were collected prospectively. Actuarial bDFS, metastasis-free survival, prostate cancer-specific survival, and multivariate analyses were calculated using the SPSS v20.0 statistical package. Results: Seven hundred and eighty-two eligible patients were identified with a median follow up of 46 months. Overall, 4.3% of patients relapsed, 2.0% developed distant metastases, and 0.6% died from metastatic prostate cancer. At 5-years, bDFS was 88%, metastasis-free survival was 95%, and prostate cancer-specific survival was 98%. Five-year grade 2 genitourinary and gastrointestinal toxicity was 2

  7. Stereotactic Image-Guided Intensity Modulated Radiotherapy Using the HI-ART II Helical Tomotherapy System

    International Nuclear Information System (INIS)

    Holmes, Timothy W.; Hudes, Richard; Dziuba, Sylwester; Kazi, Abdul; Hall, Mark; Dawson, Dana

    2008-01-01

    The highly integrated adaptive radiation therapy (HI-ART II) helical tomotherapy unit is a new radiotherapy machine designed to achieve highly precise and accurate treatments at all body sites. The precision and accuracy of the HI-ART II is similar to that provided by stereotactic radiosurgery systems, hence the historical distinction between external beam radiotherapy and stereotactic procedures based on differing precision requirements is removed for this device. The objectives of this work are: (1) to describe stereotactic helical tomotherapy processes (SRS, SBRT); (2) to show that the precision and accuracy of the HI-ART meet the requirements defined for SRS and SBRT; and (3) to describe the clinical implementation of a stereotactic image-guided intensity modulated radiation therapy (IG-IMRT) system that incorporates optical motion management

  8. A Dosimetric Evaluation of Conventional Helmet Field Irradiation Versus Two-Field Intensity-Modulated Radiotherapy Technique

    International Nuclear Information System (INIS)

    Yu, James B.; Shiao, Stephen L.; Knisely, Jonathan

    2007-01-01

    Purpose: To compare dosimetric differences between conventional two-beam helmet field irradiation (external beam radiotherapy, EBRT) of the brain and a two-field intensity-modulated radiotherapy (IMRT) technique. Methods and Materials: Ten patients who received helmet field irradiation at our institution were selected for study. External beam radiotherapy portals were planned per usual practice. Intensity-modulated radiotherapy fields were created using the identical field angles as the EBRT portals. Each brain was fully contoured along with the spinal cord to the bottom of the C2 vertebral body. This volume was then expanded symmetrically by 0.5 cm to construct the planning target volume. An IMRT plan was constructed using uniform optimization constraints. For both techniques, the nominal prescribed dose was 3,000 cGy in 10 fractions of 300 cGy using 6-MV photons. Comparative dose-volume histograms were generated for each patient and analyzed. Results: Intensity-modulated radiotherapy improved dose uniformity over EBRT for whole brain radiotherapy. The mean percentage of brain receiving >105% of dose was reduced from 29.3% with EBRT to 0.03% with IMRT. The mean maximum dose was reduced from 3,378 cGy (113%) for EBRT to 3,162 cGy (105%) with IMRT. The mean percent volume receiving at least 98% of the prescribed dose was 99.5% for the conventional technique and 100% for IMRT. Conclusions: Intensity-modulated radiotherapy reduces dose inhomogeneity, particularly for the midline frontal lobe structures where hot spots occur with conventional two-field EBRT. More study needs to be done addressing the clinical implications of optimizing dose uniformity and its effect on long-term cognitive function in selected long-lived patients

  9. Dosimetric comparison of intensity modulated radiotherapy techniques and standard wedged tangents for whole breast radiotherapy

    International Nuclear Information System (INIS)

    Fong, Andrew; Bromley, Regina; Beat, Mardi; Vien, Din; Dineley, Jude; Morgan, Graeme

    2009-01-01

    Full text: Prior to introducing intensity modulated radiotherapy (IMRT) for whole breast radiotherapy (WBRT) into our department we undertook a comparison of the dose parameters of several IMRT techniques and standard wedged tangents (SWT). Our aim was to improve the dose distribution to the breast and to decrease the dose to organs at risk (OAR): heart, lung and contralateral breast (Contra Br). Treatment plans for 20 women (10 right-sided and 10 left-sided) previously treated with SWT for WBRT were used to compare (a) SWT; (b) electronic compensators IMRT (E-IMRT); (c) tangential beam IMRT (T-IMRT); (d) coplanar multi-field IMRT (CP-IMRT); and (e) non-coplanar multi-field IMRT (NCP-IMRT). Plans for the breast were compared for (i) dose homogeneity (DH); (ii) conformity index (CI); (iii) mean dose; (iv) maximum dose; (v) minimum dose; and dose to OAR were calculated (vi) heart; (vii) lung and (viii) Contra Br. Compared with SWT, all plans except CP-IMRT gave improvement in at least two of the seven parameters evaluated. T-IMRT and NCP-IMRT resulted in significant improvement in all parameters except DH and both gave significant reduction in doses to OAR. As on initial evaluation NCP-IMRT is likely to be too time consuming to introduce on a large scale, T-IMRT is the preferred technique for WBRT for use in our department.

  10. Integral dose delivered to normal brain with conventional intensity-modulated radiotherapy (IMRT) and helical tomotherapy IMRT during partial brain radiotherapy for high-grade gliomas with and without selective sparing of the hippocampus, limbic circuit and neural stem cell compartment

    International Nuclear Information System (INIS)

    Marsh, James C.; Ziel, Ellis G; Diaz, Aidnag Z; Turian, Julius V; Wendt, Julie A.; Gobole, Rohit

    2013-01-01

    We compared integral dose with uninvolved brain (ID brain ) during partial brain radiotherapy (PBRT) for high-grade glioma patients using helical tomotherapy (HT) and seven field traditional inverse-planned intensity-modulated radiotherapy (IMRT) with and without selective sparing (SPA) of contralateral hippocampus, neural stem cell compartment (NSC) and limbic circuit. We prepared four PBRT treatment plans for four patients with high-grade gliomas (60Gy in 30 fractions delivered to planning treatment volume (PTV60Gy)). For all plans, a structure denoted 'uninvolved brain' was created, which included all brain tissue not part of PTV or standard (STD) organs at risk (OAR). No dosimetric constraints were included for uninvolved brain. Selective SPA plans were prepared with IMRT and HT; contralateral hippocampus, NSC and limbic circuit were contoured; and dosimetric constraints were entered for these structures without compromising dose to PTV or STD OAR. We compared V100 and D95 for PTV46Gy and PTV60Gy, and ID brain for all plans. There were no significant differences in V100 and D95 for PTV46Gy and PTV60Gy. ID brain was lower in traditional IMRT versus HT plans for STD and SPA plans (mean ID brain 23.64Gy vs. 28Gy and 18.7Gy vs. 24.5Gy, respectively) and in SPA versus STD plans both with IMRT and HT (18.7Gy vs. 23.64Gy and 24.5Gy vs. 28Gy, respectively). n the setting of PBRT for high-grade gliomas, IMRT reduces ID brain compared with HT with or without selective SPA of contralateral hippocampus, limbic circuit and NSC, and the use of selective SPA reduces ID brain compared with STD PBRT delivered with either traditional IMRT or HT.

  11. Evaluations of secondary cancer risk in spine radiotherapy using 3DCRT, IMRT, and VMAT: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Jalil ur, E-mail: jalil_khanphy@yahoo.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur (Pakistan); Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX (United States); Tailor, Ramesh C. [Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX (United States); Isa, Muhammad [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur (Pakistan); Princess Margaret Cancer Center, University Health Network, Toronto, Ontario (Canada); Afzal, Muhammad [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur (Pakistan); Chow, James [Princess Margaret Cancer Center, University Health Network, Toronto, Ontario (Canada); Ibbott, Geoffrey S. [Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-04-01

    This study evaluated the secondary cancer risk from volumetric-modulated arc therapy (VMAT) for spine radiotherapy compared with intensity-modulated radiotherapy (IMRT) and 3-dimensional conformal radiotherapy (3DCRT). Computed tomography images of an Radiological Physics Center spine anthropomorphic phantom were exported to a treatment planning system (Pinnacle{sup 3}, version 9.4). Radiation treatment plans for spine were prepared using VMAT (dual-arc), 7-field IMRT (beam angles: 110°, 130°, 150°, 180°, 210°, 230°, and 250°), and 4-field 3DCRT technique. The mean and maximum doses, dose-volume histograms, and volumes receiving more than 2 and 4 Gy to organs at risk (OARs) were calculated and compared. The lifetime risk for secondary cancers was estimated according to the National Cancer Registry Programme Report 116. VMAT delivered the lowest maximum dose to the esophagus (4.03 Gy), bone (8.11 Gy), heart (2.11 Gy), spinal cord (6.45 Gy), and whole lung (5.66 Gy) as compared with other techniques (IMRT and 3DCRT). The volumes of OAR (esophagus) receiving more than 4 Gy were 0% for VMAT, 27.06% for IMRT, and up to 32.35% for 3DCRT. The estimated risk for secondary cancer in the respective OAR is considerably lower in VMAT compared with other techniques. The results of maximum doses and volumes of OARs suggest that the risk of secondary cancer induction for the spine in VMAT is lower than IMRT and 3DCRT, whereas VMAT has the best target coverage compared with the other techniques.

  12. IMRT, IGRT, SBRT - Advances in the Treatment Planning and Delivery of Radiotherapy

    CERN Document Server

    Meyer, JL

    2011-01-01

    Over the last 4 years, IMRT, IGRT, SBRT: Advances in the Treatment Planning and Delivery of Radiotherapy has become a standard reference in the field. During this time, however, significant progress in high-precision technologies for the planning and delivery of radiotherapy in cancer treatment has called for a second edition to include these new developments. Thoroughly updated and extended, this new edition offers a comprehensive guide and overview of these new technologies and the many clinical treatment programs that bring them into practical use. Advances in intensity-modulated radiothera

  13. Intensity-Modulated Radiotherapy for Cervical Lymph Node Metastases From Unknown Primary Cancer

    International Nuclear Information System (INIS)

    Madani, Indira; Vakaet, Luc; Bonte, Katrien; Boterberg, Tom; Neve, Wilfried de

    2008-01-01

    Purpose: To compare the effectiveness of intensity-modulated radiotherapy (IMRT) and conventional (two-dimensional) radiotherapy in the treatment of cervical lymph node metastases from unknown primary cancer (UPC). Methods and Materials: Between February 2003 and September 2006, 23 patients with UPC of squamous cell carcinoma were treated with IMRT. Extended putative mucosal and bilateral nodal sites were irradiated to a median dose of 66 Gy. In 19 patients, IMRT was performed after lymph node dissection, and in 4 patients primary radiotherapy was given. The conventional radiotherapy group (historical control group) comprised 18 patients treated to a median dose of 66 Gy between August 1994 and October 2003. Results: Twenty patients completed treatment. As compared with conventional radiotherapy, the incidence of Grade 3 acute dysphagia was significantly lower in the IMRT group (4.5% vs. 50%, p = 0.003). By 6 months, Grade 3 xerostomia was detected in 11.8% patients in the IMRT group vs. 53.4% in the historical control group (p = 0.03). No Grade 3 dysphagia or skin fibrosis was observed after IMRT but these were noted after conventional radiotherapy (26.7%, p = 0.01) and 26.7%, p = 0.03) respectively). With median follow-up of living patients of 17 months, there was no emergence of primary cancer. One patient had persistent nodal disease and another had nodal relapse at 5 months. Distant metastases were detected in 4 patients. The 2-year overall survival and distant disease-free probability after IMRT did not differ significantly from those for conventional radiotherapy (74.8% vs. 61.1% and 76.3% vs. 68.4%, respectively). Conclusions: Use of IMRT for UPC resulted in lower toxicity than conventional radiotherapy, and was similar in efficacy

  14. Radiation-Induced Cancers From Modern Radiotherapy Techniques: Intensity-Modulated Radiotherapy Versus Proton Therapy

    International Nuclear Information System (INIS)

    Yoon, Myonggeun; Ahn, Sung Hwan; Kim, Jinsung; Shin, Dong Ho; Park, Sung Yong; Lee, Se Byeong; Shin, Kyung Hwan; Cho, Kwan Ho

    2010-01-01

    Purpose: To assess and compare secondary cancer risk resulting from intensity-modulated radiotherapy (IMRT) and proton therapy in patients with prostate and head-and-neck cancer. Methods and Materials: Intensity-modulated radiotherapy and proton therapy in the scattering mode were planned for 5 prostate caner patients and 5 head-and-neck cancer patients. The secondary doses during irradiation were measured using ion chamber and CR-39 detectors for IMRT and proton therapy, respectively. Organ-specific radiation-induced cancer risk was estimated by applying organ equivalent dose to dose distributions. Results: The average secondary doses of proton therapy for prostate cancer patients, measured 20-60cm from the isocenter, ranged from 0.4 mSv/Gy to 0.1 mSv/Gy. The average secondary doses of IMRT for prostate patients, however, ranged between 3 mSv/Gy and 1 mSv/Gy, approximately one order of magnitude higher than for proton therapy. Although the average secondary doses of IMRT were higher than those of proton therapy for head-and-neck cancers, these differences were not significant. Organ equivalent dose calculations showed that, for prostate cancer patients, the risk of secondary cancers in out-of-field organs, such as the stomach, lungs, and thyroid, was at least 5 times higher for IMRT than for proton therapy, whereas the difference was lower for head-and-neck cancer patients. Conclusions: Comparisons of organ-specific organ equivalent dose showed that the estimated secondary cancer risk using scattering mode in proton therapy is either significantly lower than the cases in IMRT treatment or, at least, does not exceed the risk induced by conventional IMRT treatment.

  15. Conformal radiotherapy by intensity modulation of pediatrics tumors; Radiotherapie conformationnelle par modulation d'intensite des tumeurs pediatriques

    Energy Technology Data Exchange (ETDEWEB)

    Leseur, J.; Le Prise, E. [Centre Eugene-Marquis, 35 - Rennes (France); Carrie, C. [Centre Leon Berard, 69 - Lyon (France); Bernier, V. [Centre Alexis-Vautrin, 54 - Nancy (France); Beneyton, V. [Centre Paul-Strauss, 67 - Strasbourg (France); Mahe, M.A.; Supiot, S. [Centre Rene-Gauducheau, 44 - Nantes (France)

    2009-10-15

    The objective of this study is to take stock on the validated and potential indications of the conformal radiotherapy with intensity modulation ( intensity modulated radiotherapy I.M.R.T.) in pediatrics and to propose recommendations for its use as well as the adapted dose constraints. About 40 to 50% of children treated for a cancer are irradiated. The I.M.R.T., by linear accelerator or helical tomo-therapy has for aim to give a homogenous dose to the target volume and to save organs at risk. Its use in pediatrics seems particularly interesting because of the complexity of target volumes and the closeness of organs at risk. In compensation for these positive elements, the importance of low doses irradiation given in big volumes makes fear event consequences on growth and an increased incidence of secondary cancers in children suffering from tumors with high cure rates and long life expectancy. (N.C.)

  16. Evidence-based review: Quality of life following head and neck intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Scott-Brown, Martin; Miah, Aisha; Harrington, Kevin; Nutting, Chris

    2010-01-01

    Inverse planned Intensity modulated radiotherapy (IMRT) can minimize the dose to normal structures and therefore can reduce long-term radiotherapy-related morbidity and may improve patients' long-term quality of life. Despite overwhelming evidence that IMRT can reduce late functional deficits in patients with head and neck cancer, treated with radiotherapy, a review of the published literature produced conflicting results with regard to quality of life outcomes. Following a critical appraisal of the literature, reasons for the discrepant outcomes are proposed.

  17. SU-E-T-302: Dosimetric Comparison Between Volumetric Modulated Arc Radiotherapy and Intensity-Modulated Radiotherapy for Locally Recurrent Nasopharyngeal Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J-Y; Huang, B-T; Zhang, J-Y; Ma, C-C [Cancer Hospital of Shantou University Medical College, Shantou, Guangdong (China)

    2015-06-15

    Purpose: To compare volumetric modulated arc radiotherapy (VMAT) technique with fixed-gantry intensity-modulated radiotherapy (IMRT) technique for locally recurrent nasopharyngeal carcinoma. Methods: CT datasets of eleven nasopharyngeal-carcinoma patients were included. Dual-arc VMAT and seven-field IMRT plans were created for each case, and were then compared in terms of conformity index (CI), homogeneity index (HI) of the planning target volume (PTV), organ-at-risk (OAR) sparing, monitor unit (MU) and delivery time. Results: The D98% (near-minimal dose) of PTV in the VMAT plans was slightly lower than that of the IMRT plans (P < 0.05), while the CI was higher than that of the IMRT plans (P < 0.05). No significant difference was found in the HI between the two plans (P > 0.05). Compared with the IMRT plans, the VMAT plans demonstrated lower Dmean (mean dose) of the bilateral temporal lobes and the whole surrounding normal tissue (P < 0.05), but slightly higher Dmean of brainstem (P < 0.05). In terms of the other OARs, no significant differences were found (P > 0.05). The MUs of the VMAT plans (672 ± 112) was significantly lower than that of the IMRT plans (917 ± 206), by 25 ± 13% (P < 0.05). The average delivery time of the VMAT plans (2.3 ± 0.1 min) was less than that of the IMRT plans (5.1 ± 0.4 min), by 54 ± 3%. Conclusion: For locally recurrent nasopharyngeal carcinoma, the VMAT technique could achieve equivalent or superior dose distribution of the target and better protect the bilateral temporal lobes, compared with the IMRT technique. Moreover, it could reduce the MU and delivery time effectively.

  18. Pre-trial quality assurance processes for an intensity-modulated radiation therapy (IMRT) trial: PARSPORT, a UK multicentre Phase III trial comparing conventional radiotherapy and parotid-sparing IMRT for locally advanced head and neck cancer.

    Science.gov (United States)

    Clark, C H; Miles, E A; Urbano, M T Guerrero; Bhide, S A; Bidmead, A M; Harrington, K J; Nutting, C M

    2009-07-01

    The purpose of this study was to compare conventional radiotherapy with parotid gland-sparing intensity-modulated radiation therapy (IMRT) using the PARSPORT trial. The validity of such a trial depends on the radiotherapy planning and delivery meeting a defined standard across all centres. At the outset, many of the centres had little or no experience of delivering IMRT; therefore, quality assurance processes were devised to ensure consistency and standardisation of all processes for comparison within the trial. The pre-trial quality assurance (QA) programme and results are described. Each centre undertook exercises in target volume definition and treatment planning, completed a resource questionnaire and produced a process document. Additionally, the QA team visited each participating centre. Each exercise had to be accepted before patients could be recruited into the trial. 10 centres successfully completed the quality assurance exercises. A range of treatment planning systems, linear accelerators and delivery methods were used for the planning exercises, and all the plans created reached the standard required for participation in this multicentre trial. All 10 participating centres achieved implementation of a comprehensive and robust IMRT programme for treatment of head and neck cancer.

  19. Protocol for the isotoxic intensity modulated radiotherapy (IMRT) in stage III non-small cell lung cancer (NSCLC): a feasibility study.

    Science.gov (United States)

    Haslett, Kate; Franks, Kevin; Hanna, Gerard G; Harden, Susan; Hatton, Matthew; Harrow, Stephen; McDonald, Fiona; Ashcroft, Linda; Falk, Sally; Groom, Nicki; Harris, Catherine; McCloskey, Paula; Whitehurst, Philip; Bayman, Neil; Faivre-Finn, Corinne

    2016-04-15

    The majority of stage III patients with non-small cell lung cancer (NSCLC) are unsuitable for concurrent chemoradiotherapy, the non-surgical gold standard of care. As the alternative treatment options of sequential chemoradiotherapy and radiotherapy alone are associated with high local failure rates, various intensification strategies have been employed. There is evidence to suggest that altered fractionation using hyperfractionation, acceleration, dose escalation, and individualisation may be of benefit. The MAASTRO group have pioneered the concept of 'isotoxic' radiotherapy allowing for individualised dose escalation using hyperfractionated accelerated radiotherapy based on predefined normal tissue constraints. This study aims to evaluate whether delivering isotoxic radiotherapy using intensity modulated radiotherapy (IMRT) is achievable. Isotoxic IMRT is a multicentre feasibility study. From June 2014, a total of 35 patients from 7 UK centres, with a proven histological or cytological diagnosis of inoperable NSCLC, unsuitable for concurrent chemoradiotherapy will be recruited. A minimum of 2 cycles of induction chemotherapy is mandated before starting isotoxic radiotherapy. The dose of radiation will be increased until one or more of the organs at risk tolerance or the maximum dose of 79.2 Gy is reached. The primary end point is feasibility, with accrual rates, local control and overall survival our secondary end points. Patients will be followed up for 5 years. The study has received ethical approval (REC reference: 13/NW/0480) from the National Research Ethics Service (NRES) Committee North West-Greater Manchester South. The trial is conducted in accordance with the Declaration of Helsinki and Good Clinical Practice (GCP). The trial results will be published in a peer-reviewed journal and presented internationally. NCT01836692; Pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence

  20. Dosimetric aspects of breast radiotherapy with three-dimensional and intensity-modulated radiotherapy helical tomotherapy planning modules

    International Nuclear Information System (INIS)

    Yadav, Poonam; Yan, Yue; Ignatowski, Tasha; Olson, Anna

    2017-01-01

    In this work, we investigated the dosimetric differences between the intensity-modulated radiotherapy (IMRT) plans and the three-dimensional (3D) helical plans based on the TomoTherapy system. A total of 15 patients with supine setup were randomly selected from the data base. For patients with lumpectomy planning target volume (PTV), regional lymph nodes were also included as part of the target. For dose sparing, the significant differences between the helical IMRT and helical 3D were only found in the heart and contralateral breast. For the dose to the heart, helical IMRT reduced the maximum point dose by 6.98 Gy compared to the helical 3D plan (p = 0.01). For contralateral breast, the helical IMRT plans significantly reduced the maximum point dose by 5.6 Gy compared to the helical 3D plan. However, compared to the helical 3D plan, the helical IMRT plan increased the volume for lower dose (13.08% increase in V 5 Gy , p = 0.01). In general, there are no significant differences in dose sparing between helical IMRT and helical 3D plans.

  1. Promising results with image guided intensity modulated radiotherapy for muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Whalley, D.; Caine, H.; McCloud, P.; Guo, L.; Kneebone, A.; Eade, T.

    2015-01-01

    To describe the feasibility of image guided intensity modulated radiotherapy (IG-IMRT) using daily soft tissue matching in the treatment of bladder cancer. Twenty-eight patients with muscle-invasive carcinoma of the bladder were recruited to a protocol of definitive radiation using IMRT with accelerated hypofractionation with simultaneous integrated boost (SIB). Isotropic margins of .5 and 1 cm were used to generate the high risk and intermediate risk planning target volumes respectively. Cone beam CT (CBCT) was acquired daily and a soft tissue match was performed. Cystoscopy was scheduled 6 weeks post treatment. The median age was 83 years (range 58-92). Twenty patients had stage II or III disease, and eight were stage IV. Gross disease received 66 Gy in 30 fractions in 11 patients (ten with concurrent chemotherapy) or 55 Gy in 20 fractions for those of poorer performance status or with palliative intent. All patients completed radiation treatment as planned. Three patients ceased chemotherapy early due to toxicity. Six patients (21 %) had acute Grade ≥ 2 genitourinary (GU) toxicity and six (21 %) had acute Grade ≥ 2 gastrointestinal (GI) toxicity. Five patients (18 %) developed Grade ≥2 late GU toxicity and no ≥2 late GI toxicity was observed. Nineteen patients underwent cystoscopy following radiation, with complete response (CR) in 16 cases (86 %), including all patients treated with chemoradiotherapy. Eight patients relapsed, four of which were local relapses. Of the patients with local recurrence, one underwent salvage cystectomy. For patients treated with definitive intent, freedom from locoregional recurrence (FFLR) and overall survival (OS) was 90 %/100 % for chemoradiotherapy versus 86 %/69 % for radiotherapy alone. IG- IMRT using daily soft tissue matching is a feasible in the treatment of bladder cancer, enabling the delivery of accelerated synchronous integrated boost with good early local control outcomes and low toxicity

  2. Intensity-Modulated Radiotherapy versus 3-Dimensional Conformal Radiotherapy Strategies for Locally Advanced Non-Small-Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Uğur Selek

    2014-12-01

    Full Text Available Chemoradiotherapy is the current standard of care in patients with advanced inoperable stage IIIA or IIIB non-small cell lung cancer (NSCLC. Three-dimensional radiotherapy (3DCRT has been a trusted method for a long time and has well-known drawbacks, most of which could be improved by Intensity Modulated Radiotherapy (IMRT. IMRT is not currently the standard treatment of locally advanced NSCLC, but almost all patients could benefit to a degree in organ at risk sparing, dose coverage conformality, or dose escalation. The most critical step for a radiation oncology department is to strictly evaluate its own technical and physical capabilities to determine the ability of IMRT to deliver an optimal treatment plan. This includes calculating the internal tumor motion (ideally 4DCT or equivalent techniques, treatment planning software with an up-to-date heterogeneity correction algorithm, and daily image guidance. It is crucial to optimise and individualise the therapeutic ratio for each patient during the decision of 3DCRT versus IMRT. The current literature rationalises the increasing use of IMRT, including 4D imaging plus PET/CT, and encourages the applicable knowledge-based and individualised dose escalation using advanced daily image-guided radiotherapy.

  3. Health-Related Quality-of-Life Outcomes Following IMRT Versus Conventional Radiotherapy for Oropharyngeal Squamous Cell Carcinoma

    International Nuclear Information System (INIS)

    Yao Min; Karnell, Lucy H.; Funk, Gerry F.; Lu Heming; Dornfeld, Ken; Buatti, John M.

    2007-01-01

    Purpose: To compare health-related quality-of-life (HRQOL) outcomes of patients with oropharyngeal squamous cell carcinoma treated using intensity-modulated radiotherapy (IMRT) vs. conventional radiotherapy (CRT). Patients and Methods: Patients with oropharyngeal squamous cell carcinoma were extracted from the database of an ongoing longitudinal Outcome Assessment Project. Eligible criteria included (1) treated with definitive radiation, and (2) provided 12-month posttreatment HRQOL data. Excluded were 7 patients who received IMRT before October 1, 2002, during this institution's developmental phase of the IMRT technique. The HRQOL outcomes of patients treated with IMRT were compared with those of patients who received CRT. Results: Twenty-six patients treated using IMRT and 27 patients treated using CRT were included. Patients in the IMRT group were older and had more advanced-stage diseases and more patients received concurrent chemotherapy. However, the IMRT group had higher mean Head and Neck Cancer Inventory scores (which represent better outcomes) for each of the four head-and-neck cancer-specific domains, including eating, speech, aesthetics, and social disruption, at 12 months after treatment. A significantly greater percentage of patients in the CRT group had restricted diets compared with those in the IMRT group (48.0% vs. 16.0%, p = 0.032). At 3 months after treatment, both groups had significant decreases from pretreatment eating scores. However, the IMRT group had a significant improvement during the first year, but the CRT group had only small improvement. Conclusions: Proper delivery of IMRT can improve HRQOL for patients with oropharyngeal cancer compared with CRT

  4. Optimization of the primary collimator settings for fractionated IMRT stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Tobler, Matt; Leavitt, Dennis D.; Watson, Gordon

    2004-01-01

    Advances in field-shaping techniques for stereotactic radiosurgery/radiotherapy have allowed dynamic adjustment of field shape with gantry rotation (dynamic conformal arc) in an effort to minimize dose to critical structures. Recent work evaluated the potential for increased sparing of dose to normal tissues when the primary collimator setting is optimized to only the size necessary to cover the largest shape of the dynamic micro multi leaf field. Intensity-modulated radiotherapy (IMRT) is now a treatment option for patients receiving stereotactic radiotherapy treatments. This multisegmentation of the dose delivered through multiple fixed treatment fields provides for delivery of uniform dose to the tumor volume while allowing sparing of critical structures, particularly for patients whose tumor volumes are less suited for rotational treatment. For these segmented fields, the total number of monitor units (MUs) delivered may be much greater than the number of MUs required if dose delivery occurred through an unmodulated treatment field. As a result, undesired dose delivered, as leakage through the leaves to tissues outside the area of interest, will be proportionally increased. This work will evaluate the role of optimization of the primary collimator setting for these IMRT treatment fields, and compare these results to treatment fields where the primary collimator settings have not been optimized

  5. Change of tumor target volume during waiting time for intensity-modulated radiotherapy (IMRT) in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Chen Bo; Yi Junlin; Gao Li; Xu Guozhen; Huang Xiaodong; Zhang Zhong; Luo Jingwei; Li Suyan

    2007-01-01

    Objective: To determine the influence of change in tumor target volume of nasopharyngeal carcinoma (NPC) while waiting for intensity modulated radiation therapy (IMRT). Methods: From March 2005 to December 2005, 31 patients with nasopharyngeal carcinoma received IMRT as the initial treatment at the Cancer Hospital of Chinese Academic of Medical Sciences. The original simulation CT scan was acquired before IMRT planning. A second CT scan was acquired before the start of radiotherapy. Wait- ing time was defined as the duration between CT simulation and start of radiotherapy. CT-CT fusion was used to minimize the error of delineation between the first tumor target volume (GTV) and the second tumor target volume (sGTV). Tumor target volume was calculated by treatment planning system. T test was carried out to analyse the difference between GTV and sGTV. Pearson correlation and multivariate linear regression was used to analyse the influence factor of the change betweent GTV and sGTV. Results: Median waiting time was 18 days (range, 9-27 days). There were significant differences between GTV and sGTV of both primary tumor (P=0.009) and metastatic lymphoma (P=0.005 ). Both Pearson correlation and multivariate linear regression showed that the change of primary tumor target volume had significant correlation with the first tumor target volume but had no significant correlation with the waiting time, sex, age, T stage and N stage (1992 Chinese Fuzhou Staging Classification). Conclusions: Within the range of the waiting time ob- served in our study, large volume primary tumor would have had a significant increase in volume, but whether the therapeutic effect would be influenced or not would need to be proved by study of large number of cases. Patients with large volume tumor should be considered to reduce the influence of waiting time by enlarging gross target volume and clinical targe volume and by neoadjuveant chemotherapy. For avoiding the unnecessary high-dose to normal

  6. Comparison of mucous and cutaneous toxicity of IMRT and of conventional radiotherapy associated with cetuximab; Comparaison de la toxicite muqueuse et cutanee de la RCMI et de la radiotherapie classique associee au cetuximab

    Energy Technology Data Exchange (ETDEWEB)

    Kreps, S.; Tamby, E.; Dessard Diana, B.; Berges, O.; Botti, M.; Deberne, M.; Henni, M.; Durdux, C.; Housset, M.; Giraud, P. [Hopital europeen Georges-Pompidou, Paris (France)

    2011-10-15

    The authors report a retrospective assessment of acute, cutaneous and mucous toxicity resulting from an association of cetuximab and conventional conformational radiotherapy, and from an intensity-modulated conformational radiotherapy (IMRT). Seven patients presenting nasopharyngeal, oropharyngeal or hypopharyngeal tumours have been irradiated with intensity modulation, and seven without. It appears that the association of cetuximab and radiotherapy is not well tolerated and requires a close monitoring. Intensity-modulated radiotherapy allows a significant reduction of dose and of toxicity. However, mucous toxicity remains significant. Short communication

  7. SU-E-T-808: Volumetric Modulated Arc Radiotherapy Vs. Intensity-Modulated Radiotherapy for Early-Stage Nasopharyngeal Carcinoma: A Dosimetric Study

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J-Y; Huang, B-T; Zhang, W-Z [Cancer Hospital of Shantou University Medical College, Shantou, Guangdong (China)

    2015-06-15

    Purpose: To compare volumetric modulated arc radiotherapy (VMAT) technique with fixed-gantry intensity-modulated radiotherapy (IMRT) technique for early-stage nasopharyngeal carcinoma. Methods: CT datasets of ten patients with early-stage nasopharyngeal carcinoma were included. Dual-arc VMAT and nine-field IMRT plans were generated for each case, and were then compared in terms of planning-target-volume (PTV) coverage, conformity index (CI) and homogeneity index (HI), as well as organ-at-risk (OAR) sparing, planning time, monitor units (MUs) and delivery time. Results: Compared with the IMRT plans, the VMAT plans provided comparable HI and CI of PTVnx (PTV of primary tumor of nasopharynx), superior CI and inferior HI of PTVnd (PTV of lymph nodes), as well as superior CI and comparable HI of PTV60 (high-risk PTV). The VMAT plans provided better sparing of the spinal cord, oral cavity and normal tissue, but inferior sparing of the brainstem planning OAR volume (PRV), larynx and parotids, as well as comparable sparing of the spinal cord PRV, brainstem, lenses, optic nerves, optic chiasm. Moreover, the average planning time (181.6 ± 36.0 min) for the VMAT plans was 171% more than that of the IMRT plans (68.1 ± 7.6 min). The MUs of the VMAT plans (609 ± 43) were 70% lower than those of the IMRT plans (2071 ± 262), while the average delivery time (2.2 ± 0.1 min) was 66% less than that of the IMRT plans (6.6 ± 0.4 min). Conclusion: Compared with the IMRT technique, the VMAT technique can achieve similar or slightly superior target dose distribution, with no significant advantages on OAR sparing, and it can achieve significant reductions of MUs and delivery time.

  8. SU-E-T-808: Volumetric Modulated Arc Radiotherapy Vs. Intensity-Modulated Radiotherapy for Early-Stage Nasopharyngeal Carcinoma: A Dosimetric Study

    International Nuclear Information System (INIS)

    Lu, J-Y; Huang, B-T; Zhang, W-Z

    2015-01-01

    Purpose: To compare volumetric modulated arc radiotherapy (VMAT) technique with fixed-gantry intensity-modulated radiotherapy (IMRT) technique for early-stage nasopharyngeal carcinoma. Methods: CT datasets of ten patients with early-stage nasopharyngeal carcinoma were included. Dual-arc VMAT and nine-field IMRT plans were generated for each case, and were then compared in terms of planning-target-volume (PTV) coverage, conformity index (CI) and homogeneity index (HI), as well as organ-at-risk (OAR) sparing, planning time, monitor units (MUs) and delivery time. Results: Compared with the IMRT plans, the VMAT plans provided comparable HI and CI of PTVnx (PTV of primary tumor of nasopharynx), superior CI and inferior HI of PTVnd (PTV of lymph nodes), as well as superior CI and comparable HI of PTV60 (high-risk PTV). The VMAT plans provided better sparing of the spinal cord, oral cavity and normal tissue, but inferior sparing of the brainstem planning OAR volume (PRV), larynx and parotids, as well as comparable sparing of the spinal cord PRV, brainstem, lenses, optic nerves, optic chiasm. Moreover, the average planning time (181.6 ± 36.0 min) for the VMAT plans was 171% more than that of the IMRT plans (68.1 ± 7.6 min). The MUs of the VMAT plans (609 ± 43) were 70% lower than those of the IMRT plans (2071 ± 262), while the average delivery time (2.2 ± 0.1 min) was 66% less than that of the IMRT plans (6.6 ± 0.4 min). Conclusion: Compared with the IMRT technique, the VMAT technique can achieve similar or slightly superior target dose distribution, with no significant advantages on OAR sparing, and it can achieve significant reductions of MUs and delivery time

  9. Intensity modulated radiotherapy (IMRT in the treatment of children and Adolescents - a single institution's experience and a review of the literature

    Directory of Open Access Journals (Sweden)

    Huber Peter

    2009-09-01

    Full Text Available Abstract Background While IMRT is widely used in treating complex oncological cases in adults, it is not commonly used in pediatric radiation oncology for a variety of reasons. This report evaluates our 9 year experience using stereotactic-guided, inverse planned intensity-modulated radiotherapy (IMRT in children and adolescents in the context of the current literature. Methods Between 1999 and 2008 thirty-one children and adolescents with a mean age of 14.2 years (1.5 - 20.5 were treated with IMRT in our department. This heterogeneous group of patients consisted of 20 different tumor entities, with Ewing's sarcoma being the largest (5 patients, followed by juvenile nasopharyngeal fibroma, esthesioneuroblastoma and rhabdomyosarcoma (3 patients each. In addition a review of the available literature reporting on technology, quality, toxicity, outcome and concerns of IMRT was performed. Results With IMRT individualized dose distributions and excellent sparing of organs at risk were obtained in the most challenging cases. This was achieved at the cost of an increased volume of normal tissue receiving low radiation doses. Local control was achieved in 21 patients. 5 patients died due to progressive distant metastases. No severe acute or chronic toxicity was observed. Conclusion IMRT in the treatment of children and adolescents is feasible and was applied safely within the last 9 years at our institution. Several reports in literature show the excellent possibilities of IMRT in selective sparing of organs at risk and achieving local control. In selected cases the quality of IMRT plans increases the therapeutic ratio and outweighs the risk of potentially increased rates of secondary malignancies by the augmented low dose exposure.

  10. Phase II study evaluating consolidation whole abdominal intensity-modulated radiotherapy (IMRT in patients with advanced ovarian cancer stage FIGO III - The OVAR-IMRT-02 Study

    Directory of Open Access Journals (Sweden)

    Eichbaum Michael H

    2011-01-01

    Full Text Available Abstract Background The prognosis for patients with advanced FIGO stage III epithelial ovarian cancer remains poor despite the aggressive standard treatment, consisting of maximal cytoreductive surgery and platinum-based chemotherapy. The median time to recurrence is less than 2 years, with a 5-years survival rate of -20-25%. Recurrences of the disease occur mostly intraperitoneally. Ovarian cancer is a radiosensitive tumor, so that the use of whole abdominal radiotherapy (WAR as a consolidation therapy would appear to be a logical strategy. WAR used to be the standard treatment after surgery before the chemotherapy era; however, it has been almost totally excluded from the treatment of ovarian cancer during the past decade because of its high toxicity. Modern intensity-modulated radiation therapy (IMRT has the potential of sparing organs at risk like kidneys, liver, and bone marrow while still adequately covering the peritoneal cavity with a homogenous dose. Our previous phase I study showed for the first time the clinical feasibility of intensity-modulated WAR and pointed out promising results concerning treatment tolerance. The current phase-II study succeeds to the phase-I study to further evaluate the toxicity of this new treatment. Methods/design The OVAR-IMRT-02 study is a single-center one arm phase-II trial. Thirty seven patients with optimally debulked ovarian cancer stage FIGO III having a complete remission after chemotherapy will be treated with intensity-modulated WAR as a consolidation therapy. A total dose of 30 Gy in 20 fractions of 1.5 Gy will be applied to the entire peritoneal cavity including the liver surface and the pelvic and para-aortic node regions. Organ at risk are kidneys, liver (except the 1 cm-outer border, heart, vertebral bodies and pelvic bones. Primary endpoint is tolerability; secondary objectives are toxicity, quality of life, progression-free and overall survival. Discussion Intensity-modulated WAR provides

  11. Phase II study evaluating consolidation whole abdominal intensity-modulated radiotherapy (IMRT) in patients with advanced ovarian cancer stage FIGO III - The OVAR-IMRT-02 Study

    International Nuclear Information System (INIS)

    Rochet, Nathalie; Debus, Juergen; Kieser, Meinhard; Sterzing, Florian; Krause, Sonja; Lindel, Katja; Harms, Wolfgang; Eichbaum, Michael H; Schneeweiss, Andreas; Sohn, Christof

    2011-01-01

    The prognosis for patients with advanced FIGO stage III epithelial ovarian cancer remains poor despite the aggressive standard treatment, consisting of maximal cytoreductive surgery and platinum-based chemotherapy. The median time to recurrence is less than 2 years, with a 5-years survival rate of -20-25%. Recurrences of the disease occur mostly intraperitoneally. Ovarian cancer is a radiosensitive tumor, so that the use of whole abdominal radiotherapy (WAR) as a consolidation therapy would appear to be a logical strategy. WAR used to be the standard treatment after surgery before the chemotherapy era; however, it has been almost totally excluded from the treatment of ovarian cancer during the past decade because of its high toxicity. Modern intensity-modulated radiation therapy (IMRT) has the potential of sparing organs at risk like kidneys, liver, and bone marrow while still adequately covering the peritoneal cavity with a homogenous dose. Our previous phase I study showed for the first time the clinical feasibility of intensity-modulated WAR and pointed out promising results concerning treatment tolerance. The current phase-II study succeeds to the phase-I study to further evaluate the toxicity of this new treatment. The OVAR-IMRT-02 study is a single-center one arm phase-II trial. Thirty seven patients with optimally debulked ovarian cancer stage FIGO III having a complete remission after chemotherapy will be treated with intensity-modulated WAR as a consolidation therapy. A total dose of 30 Gy in 20 fractions of 1.5 Gy will be applied to the entire peritoneal cavity including the liver surface and the pelvic and para-aortic node regions. Organ at risk are kidneys, liver (except the 1 cm-outer border), heart, vertebral bodies and pelvic bones. Primary endpoint is tolerability; secondary objectives are toxicity, quality of life, progression-free and overall survival. Intensity-modulated WAR provides a new promising option in the consolidation treatment of

  12. Transition from 2-D radiotherapy to 3-D conformal and intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    2008-05-01

    Cancer is one of the leading causes of death globally and radiotherapy is currently an essential component in the management of cancer patients, either alone or in combination with surgery or chemotherapy, both for cure or palliation. It is now recognized that safe and effective radiotherapy service needs not only substantial capital investment in radiotherapy equipment and specially designed facilities but also continuous investment in maintenance and upgrading of the equipment to comply with the technical progress, but also in training the staff. The recent IAEA-TECDOC publication 'Setting up a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection and Safety Aspects' provides general guidelines for designing and implementing radiotherapy services in Member States. Advances in computer technology have enabled the possibility of transitioning from basic 2- dimensional treatment planning and delivery (2-D radiotherapy) to a more sophisticated approach with 3-dimensional conformal radiotherapy (3-D CRT). Whereas 2-D radiotherapy can be applied with simple equipment, infrastructure and training, transfer to 3-D conformal treatments requires more resources in technology, equipment, staff and training. A novel radiation treatment approach using Intensity Modulated Radiation Therapy (IMRT) that optimizes the delivery of radiation to irregularly shaped tumour volumes demands even more sophisticated equipment and seamless teamwork, and consequentially more resources, advanced training and more time for treatment planning and verification of dose delivery than 3-D CRT. Whereas 3-D CRT can be considered as a standard, IMRT is still evolving. Due to the increased interest of Member States to the modern application of radiotherapy the IAEA has received a number of requests for guidance coming from radiotherapy departments that wish to upgrade their facilities to 3-D CRT and IMRT through Technical Cooperation programme. These requests are expected to increase

  13. Effects of three-dimensional conformal radiotherapy, indensity modulated radiotherapy, and conventional radiotherapy ON treatment of esophageal cancer

    Directory of Open Access Journals (Sweden)

    Jian-Jun Han

    2016-07-01

    Full Text Available Objective: To compare the irradiation volume, short-term and long-term efficacy of conventional radiotherapy (CR, three-dimensional conformal radiotherapy (3D-CRT, and indensity modulated radiotherapy (IMRT in the treatment of esophageal cancer. Methods: A retrospective analysis method was adopted. The patients were divided into CR group (n=42, 3D-CRT group (n=45, and IMRT group (n=40. A follow-up visit was paid to collect the short-term and long-term efficacy, and the occurrence of adverse reactions. The gross tumor voluem (GTV, clinical target volume (CTV, planning target volume (PTV, and irradiation volume of organs (bilateral lungs, spinal cord, and heart at risk (OAR in the three groups were compared. Results: It was found by target volume comparison that the mean values of GTV, CTV, and PTV in the three groups were significantly increased (P0.05. The occurrence rate of adverse reactions in 3D-CRT group and IMRT group was significantly lower than that in CR group (P0.05. The difference of 1-year survival rate among the three groups was not statistically significant (P=0.144, but 3-year and 5-year survival rates in 3D-CRT group and IMRT group were significantly higher than those in CR group (P<0.05. Conclusions: 3D-CRT and IMRT can significantly enhance the short-term and long-term efficacy for esophageal cancer patients, and alleviate the radioactive damage; therefore, they are deserved to be widely recommended in the clinic.

  14. Is IMRT Superior or Inferior to 3DCRT in Radiotherapy for NSCLC? A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Xingsheng Hu

    Full Text Available There are no adequate data to determine whether intensity-modulated radiotherapy (IMRT is superior to three-dimensional conformal radiotherapy (3DCRT in the treatment of non-small cell lung cancer (NSCLC. This meta-analysis was conducted to compare the clinical outcomes of IMRT and 3DCRT in the treatment of NSCLC.No exclusions were made based on types of study design. We performed a literature search in PubMed, EMBASE and the Cochrane library databases from their inceptions to April 30, 2015. The overall survival (OS and relative risk (RR of radiation pneumonitis and radiation oesophagitis were evaluated. Two authors independently assessed the methodological quality and extracted data. Publication bias was evaluated by funnel plot using Egger's test results.From the literature search, 10 retrospective studies were collected, and of those, 5 (12,896 patients were selected for OS analysis, 4 (981 patients were selected for radiation pneumonitis analysis, and 4 (1339 patients were selected for radiation oesophagitis analysis. Cox multivariate proportional hazards models revealed that 3DCRT and IMRT had similar OS (HR = 0.96, P = 0.477 but that IMRT reduced the incidence of grade 2 radiation pneumonitis (RR = 0.74, P = 0.009 and increased the incidence of grade 3 radiation oesophagitis (RR = 2.47, P = 0.000.OS of IMRT for NSCLC is not inferior to that of 3DCRT, but IMRT significantly reduces the risk of radiation pneumonitis and increases the risk of radiation oesophagitis compared to 3DCRT.

  15. Dosimetric aspects of breast radiotherapy with three-dimensional and intensity-modulated radiotherapy helical tomotherapy planning modules

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Poonam [Department of Human Oncology, University of Wisconsin-Madison, Madison, WI (United States); Service of Radiation Therapy, University of Wisconsin Aspirus Cancer Center, Wisconsin Rapids, WI (United States); Yan, Yue, E-mail: yyan5@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Ignatowski, Tasha [Service of Radiation Therapy, University of Wisconsin Aspirus Cancer Center, Wisconsin Rapids, WI (United States); Olson, Anna [Department of Human Oncology, University of Wisconsin-Madison, Madison, WI (United States); Service of Radiation Therapy, University of Wisconsin Aspirus Cancer Center, Wisconsin Rapids, WI (United States)

    2017-04-01

    In this work, we investigated the dosimetric differences between the intensity-modulated radiotherapy (IMRT) plans and the three-dimensional (3D) helical plans based on the TomoTherapy system. A total of 15 patients with supine setup were randomly selected from the data base. For patients with lumpectomy planning target volume (PTV), regional lymph nodes were also included as part of the target. For dose sparing, the significant differences between the helical IMRT and helical 3D were only found in the heart and contralateral breast. For the dose to the heart, helical IMRT reduced the maximum point dose by 6.98 Gy compared to the helical 3D plan (p = 0.01). For contralateral breast, the helical IMRT plans significantly reduced the maximum point dose by 5.6 Gy compared to the helical 3D plan. However, compared to the helical 3D plan, the helical IMRT plan increased the volume for lower dose (13.08% increase in V{sub 5} {sub Gy}, p = 0.01). In general, there are no significant differences in dose sparing between helical IMRT and helical 3D plans.

  16. Pelvic Ewing sarcomas. Three-dimensional conformal vs. intensity-modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mounessi, F.S.; Lehrich, P.; Haverkamp, U.; Eich, H.T. [Muenster Univ. (Germany). Dept. of Radiation Oncology; Willich, N. [Muenster Univ. (Germany). Dept. of Radiation Oncology; Universitaetsklinikum Muenster (Germany). RiSK - Registry for the Evaluation of Late Side Effects after Radiotherapy in Childhood and Adolescence; Boelling, T. [Center for Radiation Oncology, Osnabrueck (Germany)

    2013-04-15

    The goal of the present work was to assess the potential advantage of intensity-modulated radiotherapy (IMRT) over three-dimensional conformal radiotherapy (3D-CRT) planning in pelvic Ewing's sarcoma. A total of 8 patients with Ewing sarcoma of the pelvis undergoing radiotherapy were analyzed. Plans for 3D-CRT and IMRT were calculated for each patient. Dose coverage of the planning target volume (PTV), conformity and homogeneity indices, as well as further parameters were evaluated. Results The average dose coverage values for PTV were comparable in 3D-CRT and IMRT plans. Both techniques had a PTV coverage of V{sub 95} > 98 % in all patients. Whereas the IMRT plans achieved a higher conformity index compared to the 3D-CRT plans (conformity index 0.79 {+-} 0.12 vs. 0.54 {+-} 0.19, p = 0.012), the dose distribution across the target volumes was less homogeneous with IMRT planning than with 3D-CRT planning. This difference was statistically significant (homogeneity index 0.11 {+-} 0.03 vs. 0.07 {+-} 0.0, p = 0.035). For the bowel, D{sub mean} and D{sub 1%}, as well as V{sub 2} to V{sub 60} were reduced in IMRT plans. For the bladder and the rectum, there was no significant difference in D{sub mean}. However, the percentages of volumes receiving at least doses of 30, 40, 45, and 50 Gy (V{sub 30} to V{sub 50}) were lower for the rectum in IMRT plans. The volume of normal tissue receiving at least 2 Gy (V{sub 2}) was significantly higher in IMRT plans compared with 3D-CRT, whereas at high dose levels (V{sub 30}) it was significantly lower. Compared to 3D-CRT, IMRT showed significantly better results regarding dose conformity (p = 0.012) and bowel sparing at dose levels above 30 Gy (p = 0.012). Thus, dose escalation in the radiotherapy of pelvic Ewing's sarcoma can be more easily achieved using IMRT. (orig.)

  17. Conformal radiotherapy by intensity modulation of pediatrics tumors

    International Nuclear Information System (INIS)

    Leseur, J.; Le Prise, E.; Carrie, C.; Bernier, V.; Beneyton, V.; Mahe, M.A.; Supiot, S.

    2009-01-01

    The objective of this study is to take stock on the validated and potential indications of the conformal radiotherapy with intensity modulation ( intensity modulated radiotherapy I.M.R.T.) in pediatrics and to propose recommendations for its use as well as the adapted dose constraints. About 40 to 50% of children treated for a cancer are irradiated. The I.M.R.T., by linear accelerator or helical tomo-therapy has for aim to give a homogenous dose to the target volume and to save organs at risk. Its use in pediatrics seems particularly interesting because of the complexity of target volumes and the closeness of organs at risk. In compensation for these positive elements, the importance of low doses irradiation given in big volumes makes fear event consequences on growth and an increased incidence of secondary cancers in children suffering from tumors with high cure rates and long life expectancy. (N.C.)

  18. Intensity-modulated radiotherapy for cancers in childhood

    International Nuclear Information System (INIS)

    Leseur, J.; Le Prise, E.; Leseur, J.; Carrie, C.; Beneyton, V.; Bernier, V.; Beneyton, V.; Mahee, M.A.; Supiot, S.

    2009-01-01

    Approximately 40-50% of children with cancer will be irradiated during their treatment. Intensity-modulated radiotherapy (I.M.R.T.) by linear accelerator or helical tomo-therapy improves dose distribution in target volumes and normal tissue sparing. This technology could be particularly useful for pediatric patients to achieve an optimal dose distribution in complex volumes close to critical structures. The use of I.M.R.T. can increase the volume of tissue receiving low-dose radiation, and consequently carcinogenicity in childhood population with a good overall survival and long period of life expectancy. This review will present the current and potential I.M.R.T. indications for cancers in childhood, and discuss the benefits and problems of this technology aiming to define recommendations in the use of I.M.R.T. and specific doses constraints in Pediatrics. (authors)

  19. Head and neck cancers: clinical benefits of three-dimensional conformal radiotherapy and of intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Giraud, P.; Jaulerry, C.; Brunin, F.; Zefkili, S.; Helfre, S.; Chauvet, I.; Rosenwald, J.C.; Cosset, J.M.

    2002-01-01

    The conformal radiotherapy approach, three-dimensional conformal radiotherapy (3DCRT) or intensity-modulated radiotherapy (IMRT), is based on modern imaging modalities, efficient 3-D treatment planning systems, sophisticated immobilization systems and rigorous quality assurance and treatment verification. The central objective of conformal radiotherapy is to ensure a high dose distribution tailored to the limits of the target volume while reducing exposure of normal tissues. These techniques would then allow further tumor dose escalation. Head-and-neck tumors are some of the most attractive localizations to test conformal radiotherapy. They combine ballistic difficulties due to particularly complex shapes (nasopharynx, ethmoid) and problems due to the number and low tolerance of neighbouring organs like parotids, eyes, brainstem and spinal cord. The therapeutic irradiation of head-and-neck tumors thus remains a challenge for the radiation oncologist. Conformal radiotherapy does have a significant potential for improving local control and reducing toxicity when compared to standard radiotherapy. However, in the absence of prospective randomized trials, it is somewhat difficult at present to evaluate the real benefits drawn from 3DCRT and IMRT. The published clinical reports on the use of conformal radiotherapy are essentially dealing with dosimetric comparisons on relatively small numbers of patients. Recently, a few publications have emphasized the clinical experience several precursor teams with a suitable follow-up. This paper describes the current state-of-the-art of 3DCRT and IMRT in order to evaluate the impact of these techniques on head-and-neck cancers irradiation. (authors)

  20. The impact of introducing intensity modulated radiotherapy into routine clinical practice.

    Science.gov (United States)

    Miles, Elizabeth A; Clark, Catharine H; Urbano, M Teresa Guerrero; Bidmead, Margaret; Dearnaley, David P; Harrington, Kevin J; A'Hern, Roger; Nutting, Christopher M

    2005-12-01

    Intensity modulated radiotherapy (IMRT) at the Royal Marsden Hospital London was introduced in July 2001. Treatment delivery was dynamic using a single-phase technique. Concerns were raised regarding increased clinical workload due to introduction of new technology. The potential increased use of resources was assessed. IMRT patient selection was within guidelines of clinical trials and included patients undergoing prostate plus pelvic lymph node (PPN) irradiation and head and neck cancer (HNC) treatment. Patient planning, quality assurance and treatment times were collected for an initial IMRT patient group. A comparative group of patients with advanced HNC undergoing two- or three-phase conventional radiotherapy, requiring matched photon and electron fields, were also timed. The median overall total planning time for IMRT was greater for HNC patients compared to the PPN cohort. For HNC the overall IMRT planning time was significantly longer than for conventional. The median treatment time for conventional two- or three-phase HNC treatments, encompassing similar volumes to those treated with IMRT, was greater than that for the IMRT HNC patient cohort. A reduction in radiographer man hours per patient of 4.8h was recorded whereas physics time was increased by 4.9h per patient. IMRT currently increases overall planning time. Additional clinician input is required for target volume localisation. Physics time is increased, a significant component of this being patient specific QA. Radiographer time is decreased. For HNC a single phase IMRT treatment has proven to be more efficient than a multiple phase conventional treatment. IMRT has been integrated smoothly and efficiently into the existing treatment working day. This preliminary study suggests that IMRT could be a routine treatment with efficient use of current radiotherapy resources.

  1. Current status of intensity-modulated radiation therapy (IMRT)

    International Nuclear Information System (INIS)

    Hatano, Kazuo; Araki, Hitoshi; Sakai, Mitsuhiro

    2007-01-01

    External-beam radiation therapy has been one of the treatment options for prostate cancer. The dose response has been observed for a dose range of 64.8-81 Gy. The problem of external-beam radiotherapy (RT) for prostate cancer is that as the dose increases, adverse effects also increase. Three-dimensional conformal radiation therapy (3D-CRT) has enabled us to treat patients with up to 72-76 Gy to the prostate, with a relatively acceptable risk of late rectal bleeding. Recently, intensity-modulated radiation therapy (IMRT) has been shown to deliver a higher dose to the target with acceptable low rates of rectal and bladder complications. The most important things to keep in mind when using an IMRT technique are that there is a significant trade-off between coverage of the target, avoidance of adjacent critical structures, and the inhomogeneity of the dose within the target. Lastly, even with IMRT, it should be kept in mind that a ''perfect'' plan that creates completely homogeneous coverage of the target volume and zero or small dose to the adjacent organs at risk is not always obtained. Participating in many treatment planning sessions and arranging the beams and beam weights create the best approach to the best IMRT plan. (author)

  2. Comparison of intensity-modulated radiotherapy and 3-dimensional conformal radiotherapy as adjuvant therapy for gastric cancer.

    Science.gov (United States)

    Minn, A Yuriko; Hsu, Annie; La, Trang; Kunz, Pamela; Fisher, George A; Ford, James M; Norton, Jeffrey A; Visser, Brendan; Goodman, Karyn A; Koong, Albert C; Chang, Daniel T

    2010-08-15

    The current study was performed to compare the clinical outcomes and toxicity in patients treated with postoperative chemoradiotherapy for gastric cancer using intensity-modulated radiotherapy (IMRT) versus 3-dimensional conformal radiotherapy (3D CRT). Fifty-seven patients with gastric or gastroesophageal junction cancer were treated postoperatively: 26 with 3D CRT and 31 with IMRT. Concurrent chemotherapy was capecitabine (n=31), 5-fluorouracil (5-FU) (n=25), or none (n=1). The median radiation dose was 45 Gy. Dose volume histogram parameters for kidney and liver were compared between treatment groups. The 2-year overall survival rates for 3D CRT versus IMRT were 51% and 65%, respectively (P=.5). Four locoregional failures occurred each in the 3D CRT (15%) and the IMRT (13%) patients. Grade>or=2 acute gastrointestinal toxicity was found to be similar between the 3D CRT and IMRT patients (61.5% vs 61.2%, respectively) but more treatment breaks were needed (3 vs 0, respectively). The median serum creatinine from before radiotherapy to most recent creatinine was unchanged in the IMRT group (0.80 mg/dL) but increased in the 3D CRT group from 0.80 mg/dL to 1.0 mg/dL (P=.02). The median kidney mean dose was higher in the IMRT versus the 3D CRT group (13.9 Gy vs 11.1 Gy; P=.05). The median kidney V20 was lower for the IMRT versus the 3D CRT group (17.5% vs 22%; P=.17). The median liver mean dose for IMRT and 3D CRT was 13.6 Gy and 18.6 Gy, respectively (P=.19). The median liver V30 was 16.1% and 28%, respectively (PCancer Society.

  3. Comparison of Heart and Coronary Artery Doses Associated With Intensity-Modulated Radiotherapy Versus Three-Dimensional Conformal Radiotherapy for Distal Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kole, Thomas P.; Aghayere, Osarhieme; Kwah, Jason [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Yorke, Ellen D. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Goodman, Karyn A., E-mail: goodmank@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2012-08-01

    Purpose: To compare heart and coronary artery radiation exposure using intensity-modulated radiotherapy (IMRT) vs. four-field three-dimensional conformal radiotherapy (3D-CRT) treatment plans for patients with distal esophageal cancer undergoing chemoradiation. Methods and Materials: Nineteen patients with distal esophageal cancers treated with IMRT from March 2007 to May 2008 were identified. All patients were treated to 50.4 Gy with five-field IMRT plans. Theoretical 3D-CRT plans with four-field beam arrangements were generated. Dose-volume histograms of the planning target volume, heart, right coronary artery, left coronary artery, and other critical normal tissues were compared between the IMRT and 3D-CRT plans, and selected parameters were statistically evaluated using the Wilcoxon rank-sum test. Results: Intensity-modulated radiotherapy treatment planning showed significant reduction (p < 0.05) in heart dose over 3D-CRT as assessed by average mean dose (22.9 vs. 28.2 Gy) and V30 (24.8% vs. 61.0%). There was also significant sparing of the right coronary artery (average mean dose, 23.8 Gy vs. 35.5 Gy), whereas the left coronary artery showed no significant improvement (mean dose, 11.2 Gy vs. 9.2 Gy), p = 0.11. There was no significant difference in percentage of total lung volume receiving at least 10, 15, or 20 Gy or in the mean lung dose between the planning methods. There were also no significant differences observed for the kidneys, liver, stomach, or spinal cord. Intensity-modulated radiotherapy achieved a significant improvement in target conformity as measured by the conformality index (ratio of total volume receiving 95% of prescription dose to planning target volume receiving 95% of prescription dose), with the mean conformality index reduced from 1.56 to 1.30 using IMRT. Conclusions: Treatment of patients with distal esophageal cancer using IMRT significantly decreases the exposure of the heart and right coronary artery when compared with 3D

  4. Clinical Outcome in Posthysterectomy Cervical Cancer Patients Treated With Concurrent Cisplatin and Intensity-Modulated Pelvic Radiotherapy: Comparison With Conventional Radiotherapy

    International Nuclear Information System (INIS)

    Chen, M.-F.; Tseng, C.-J.; Tseng, C.-C.; Kuo, Y.-C.; Yu, C.-Y.; Chen, W.-C.

    2007-01-01

    Purpose: To assess local control and acute and chronic toxicity with intensity-modulated radiation therapy (IMRT) as adjuvant treatment of cervical cancer. Methods and Materials: Between April 2002 and February 2006, 68 patients at high risk of cervical cancer after hysterectomy were treated with adjuvant pelvic radiotherapy and concurrent chemotherapy. Adjuvant chemotherapy consisted of cisplatin (50 mg/m 2 ) for six cycles every week. Thirty-three patients received adjuvant radiotherapy by IMRT. Before the IMRT series was initiated, 35 other patients underwent conventional four-field radiotherapy (Box-RT). The two groups did not differ significantly in respect of clinicopathologic and treatment factors. Results: IMRT provided compatible local tumor control compared with Box-RT. The actuarial 1-year locoregional control for patients in the IMRT and Box-RT groups was 93% and 94%, respectively. IMRT was well tolerated, with significant reduction in acute gastrointestinal (GI) and genitourinary (GU) toxicities compared with the Box-RT group (GI 36 vs. 80%, p = 0.00012; GU 30 vs. 60%, p = 0.022). Furthermore, the IMRT group had lower rates of chronic GI and GU toxicities than the Box-RT patients (GI 6 vs. 34%, p = 0.002; GU 9 vs. 23%, p = 0.231). Conclusion: Our results suggest that IMRT significantly improved the tolerance to adjuvant chemoradiotherapy with compatible locoregional control compared with conventional Box-RT. However, longer follow-up and more patients are needed to confirm the benefits of IMRT

  5. Intra-fractional uncertainties in image-guided intensity-modulated radiotherapy (IMRT) of prostate cancer

    International Nuclear Information System (INIS)

    Polat, Buelent; Guenther, Iris; Wilbert, Juergen; Goebel, Joachim; Sweeney, Reinhart A.; Flentje, Michael; Guckenberger, Matthias

    2008-01-01

    To evaluate intra-fractional uncertainties during intensity-modulated radiotherapy (IMRT) of prostate cancer. During IMRT of 21 consecutive patients, kilovolt (kV) cone-beam computed tomography (CBCT) images were acquired prior to and immediately after treatment: a total of 252 treatment fractions with 504 CBCT studies were basis of this analysis. The prostate position in anterior-posterior (AP) direction was determined using contour matching; patient set-up based on the pelvic bony anatomy was evaluated using automatic image registration. Internal variability of the prostate position was the difference between absolute prostate and patient position errors. Intra-fractional changes of prostate position, patient position, rectal distension in AP direction and bladder volume were analyzed. With a median treatment time of 16 min, intra-fractional drifts of the prostate were > 5 mm in 12% of all fractions and a margin of 6 mm was calculated for compensation of this uncertainty. Mobility of the prostate was independent from the bony anatomy with poor correlation between absolute prostate motion and motion of the bony anatomy (R 2 = 0.24). A systematic increase of bladder filling by 41 ccm on average was observed; however, these changes did not influence the prostate position. Small variations of the prostate position occurred independently from intra-fractional changes of the rectal distension; a weak correlation between large internal prostate motion and changes of the rectal volume was observed (R 2 = 0.55). Clinically significant intra-fractional changes of the prostate position were observed and margins of 6 mm were calculated for this intra-fractional uncertainty. Repeated or continuous verification of the prostate position may allow further margin reduction. (orig.)

  6. Intra-fractional uncertainties in image-guided intensity-modulated radiotherapy (IMRT) of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Buelent; Guenther, Iris; Wilbert, Juergen; Goebel, Joachim; Sweeney, Reinhart A.; Flentje, Michael; Guckenberger, Matthias [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology

    2008-12-15

    To evaluate intra-fractional uncertainties during intensity-modulated radiotherapy (IMRT) of prostate cancer. During IMRT of 21 consecutive patients, kilovolt (kV) cone-beam computed tomography (CBCT) images were acquired prior to and immediately after treatment: a total of 252 treatment fractions with 504 CBCT studies were basis of this analysis. The prostate position in anterior-posterior (AP) direction was determined using contour matching; patient set-up based on the pelvic bony anatomy was evaluated using automatic image registration. Internal variability of the prostate position was the difference between absolute prostate and patient position errors. Intra-fractional changes of prostate position, patient position, rectal distension in AP direction and bladder volume were analyzed. With a median treatment time of 16 min, intra-fractional drifts of the prostate were > 5 mm in 12% of all fractions and a margin of 6 mm was calculated for compensation of this uncertainty. Mobility of the prostate was independent from the bony anatomy with poor correlation between absolute prostate motion and motion of the bony anatomy (R{sup 2} = 0.24). A systematic increase of bladder filling by 41 ccm on average was observed; however, these changes did not influence the prostate position. Small variations of the prostate position occurred independently from intra-fractional changes of the rectal distension; a weak correlation between large internal prostate motion and changes of the rectal volume was observed (R{sup 2} = 0.55). Clinically significant intra-fractional changes of the prostate position were observed and margins of 6 mm were calculated for this intra-fractional uncertainty. Repeated or continuous verification of the prostate position may allow further margin reduction. (orig.)

  7. The impact of introducing intensity modulated radiotherapy into routine clinical practice

    International Nuclear Information System (INIS)

    Miles, Elizabeth A.; Clark, Catharine H.; Urbano, M. Teresa Guerrero; Bidmead, Margaret; Dearnaley, David P.; Harrington, Kevin J.; A'Hern, Roger; Nutting, Christopher M.

    2005-01-01

    Background and purpose: Intensity modulated radiotherapy (IMRT) at Royal Marsden Hospital London was introduced in July 2001. Treatment delivery was dynamic using a single-phase technique. Concerns were raised regarding increased clinical workload due to introduction of new technology. The potential increased use of resources was assessed. Patients and methods: IMRT patient selection was within guidelines of clinical trials and included patients undergoing prostate plus pelvic lymph node (PPN) irradiation and head and neck cancer (HNC) treatment. Patient planning, quality assurance and treatment times were collected for an initial IMRT patient group. A comparative group of patients with advanced HNC undergoing two- or three-phase conventional radiotherapy, requiring matched photon and electron fields, were also timed. Results: The median overall total planning time for IMRT was greater for HNC patients compared to the PPN cohort. For HNC the overall IMRT planning time was significantly longer than for conventional. The median treatment time for conventional two- or three-phase HNC treatments, encompassing similar volumes to those treated with IMRT, was greater than that for the IMRT HNC patient cohort. A reduction in radiographer man hours per patient of 4.8 h was recorded whereas physics time was increased by 4.9 h per patient. Conclusions: IMRT currently increases overall planning time. Additional clinician input is required for target volume localisation. Physics time is increased, a significant component of this being patient specific QA. Radiographer time is decreased. For HNC a single phase IMRT treatment has proven to be more efficient than a multiple phase conventional treatment. IMRT has been integrated smoothly and efficiently into the existing treatment working day. This preliminary study suggests that IMRT could be a routine treatment with efficient use of current radiotherapy resources

  8. Multi-institutional comparison of simulated treatment delivery errors in ssIMRT, manually planned VMAT and autoplan-VMAT plans for nasopharyngeal radiotherapy

    DEFF Research Database (Denmark)

    Pogson, Elise M; Aruguman, Sankar; Hansen, Christian R

    2017-01-01

    PURPOSE: To quantify the impact of simulated errors for nasopharynx radiotherapy across multiple institutions and planning techniques (auto-plan generated Volumetric Modulated Arc Therapy (ap-VMAT), manually planned VMAT (mp-VMAT) and manually planned step and shoot Intensity Modulated Radiation...... Therapy (mp-ssIMRT)). METHODS: Ten patients were retrospectively planned with VMAT according to three institution's protocols. Within one institution two further treatment plans were generated using differing treatment planning techniques. This resulted in mp-ssIMRT, mp-VMAT, and ap-VMAT plans. Introduced...

  9. Simultaneous Integrated Boost Using Intensity-Modulated Radiotherapy Compared With Conventional Radiotherapy in Patients Treated With Concurrent Carboplatin and 5-Fluorouracil for Locally Advanced Oropharyngeal Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Clavel, Sebastien, E-mail: sebastien.clavel@umontreal.ca [Department of Radiation Oncology, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Nguyen, David H.A.; Fortin, Bernard [Department of Radiation Oncology, Hopital Maisonneuve-Rosemont, Montreal, QC (Canada); Despres, Philippe [Department of Radiation Oncology, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Khaouam, Nader [Department of Radiation Oncology, Hopital Maisonneuve-Rosemont, Montreal, QC (Canada); Donath, David [Department of Radiation Oncology, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Soulieres, Denis [Department of Medical Oncology, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Guertin, Louis [Department of Head and Neck Surgery, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Nguyen-Tan, Phuc Felix [Department of Radiation Oncology, Hopital Maisonneuve-Rosemont, Montreal, QC (Canada)

    2012-02-01

    Purpose: To compare, in a retrospective study, the toxicity and efficacy of simultaneous integrated boost using intensity-modulated radiotherapy (IMRT) vs. conventional radiotherapy (CRT) in patients treated with concomitant carboplatin and 5-fluorouracil for locally advanced oropharyngeal cancer. Methods and Materials: Between January 2000 and December 2007, 249 patients were treated with definitive chemoradiation. One hundred patients had 70 Gy in 33 fractions using IMRT, and 149 received CRT at 70 Gy in 35 fractions. Overall survival, disease-free survival, and locoregional control were estimated using the Kaplan-Meier method. Results: Median follow-up was 42 months. Three-year actuarial rates for locoregional control, disease-free survival, and overall survival were 95.1% vs. 84.4% (p = 0.005), 85.3% vs. 69.3% (p = 0.001), and 92.1% vs. 75.2% (p < 0.001) for IMRT and CRT, respectively. The benefit of the radiotherapy regimen on outcomes was also observed with a Cox multivariate analysis. Intensity-modulated radiotherapy was associated with less acute dermatitis and less xerostomia at 6, 12, 24, and 36 months. Conclusions: This study suggests that simultaneous integrated boost using IMRT is associated with favorable locoregional control and survival rates with less xerostomia and acute dermatitis than CRT when both are given concurrently with chemotherapy.

  10. Simultaneous Integrated Boost Using Intensity-Modulated Radiotherapy Compared With Conventional Radiotherapy in Patients Treated With Concurrent Carboplatin and 5-Fluorouracil for Locally Advanced Oropharyngeal Carcinoma

    International Nuclear Information System (INIS)

    Clavel, Sébastien; Nguyen, David H.A.; Fortin, Bernard; Després, Philippe; Khaouam, Nader; Donath, David; Soulières, Denis; Guertin, Louis; Nguyen-Tan, Phuc Felix

    2012-01-01

    Purpose: To compare, in a retrospective study, the toxicity and efficacy of simultaneous integrated boost using intensity-modulated radiotherapy (IMRT) vs. conventional radiotherapy (CRT) in patients treated with concomitant carboplatin and 5-fluorouracil for locally advanced oropharyngeal cancer. Methods and Materials: Between January 2000 and December 2007, 249 patients were treated with definitive chemoradiation. One hundred patients had 70 Gy in 33 fractions using IMRT, and 149 received CRT at 70 Gy in 35 fractions. Overall survival, disease-free survival, and locoregional control were estimated using the Kaplan-Meier method. Results: Median follow-up was 42 months. Three-year actuarial rates for locoregional control, disease-free survival, and overall survival were 95.1% vs. 84.4% (p = 0.005), 85.3% vs. 69.3% (p = 0.001), and 92.1% vs. 75.2% (p < 0.001) for IMRT and CRT, respectively. The benefit of the radiotherapy regimen on outcomes was also observed with a Cox multivariate analysis. Intensity-modulated radiotherapy was associated with less acute dermatitis and less xerostomia at 6, 12, 24, and 36 months. Conclusions: This study suggests that simultaneous integrated boost using IMRT is associated with favorable locoregional control and survival rates with less xerostomia and acute dermatitis than CRT when both are given concurrently with chemotherapy.

  11. Beam angle selection for intensity-modulated radiotherapy (IMRT) treatment of unresectable pancreatic cancer: are noncoplanar beam angles necessary?

    Science.gov (United States)

    Chang, D S; Bartlett, G K; Das, I J; Cardenes, H R

    2013-09-01

    External beam radiation therapy with concurrent chemotherapy (CRT) is widely used for the treatment of unresectable pancreatic cancer. Noncoplanar (NCP) 3D conformal radiotherapy (3DCRT) and coplanar (CP) IMRT have been reported to lower the radiation dose to organs at risk (OARs). The purpose of this article is to examine the utility of noncoplanar beam angles in IMRT for the management of pancreatic cancer. Sixteen patients who were treated with CRT for unresectable adenocarcinoma of the pancreatic head or neck were re-planned using CP and NCP beams in 3DCRT and IMRT with the Varian Eclipse treatment planning system. Compared to CP IMRT, NCP IMRT had similar target coverage with slightly increased maximum point dose, 5,799 versus 5,775 cGy (p = 0.008). NCP IMRT resulted in lower mean kidney dose, 787 versus 1,210 cGy (p kidney dose, but did not improve other dose-volume criteria. The use of NCP beam angles is preferred only in patients with risk factors for treatment-related kidney dysfunction.

  12. A project proposal for implementing intensity modulated radiotherapy (IMRT) for treatment of head and neck tumors

    International Nuclear Information System (INIS)

    Napoles Morales, Misleidy; Garcia Yip, Fernando; Rodriguez Machado, Jorge; Yanes Lopez, Yaima; Pomares Gomez, Yenes; Mena, Yailen

    2009-01-01

    Malignant tumors located in the structures of the head and neck, excluding the skull and its contents, constitute 10% of all cancers, remains the most frequent locations, which correspond to the oral cavity between 40 to 60%. Diagnosed between 60 to 80% in early stages and a 15 to 30% in more advanced forms of the disease. Radiotherapy and surgery are the essential therapeutic tools in the treatment of these tumors planning processes and administration of radiotherapy treatments currently in a situation of rapid and radical change. Since the beginning of radiotherapy to this day the greatest advances in treatment have been linked to a better definition of the tumor irradiation thus get a reduced dose in healthy tissue. The use of radiation, can be severe sequelae affecting quality of life of the patient, organs at risk receiving high dose and advanced technique of IMRT treatment planning and allows treatments shaped fields, especially when the target of radiation is irregular, with fewer side effects by limiting the dose in the tumor tissues and organs at risk and to allow us to increase the doses in the tumor. So we decided to develop a protocol for the implementation of IMRT, taking into account that we have the appropriate equipment, trained staff to develop this technique. (Author)

  13. Dosimetric Evaluation of Intensity Modulated Radiotherapy and 4-Field 3-D Conformal Radiotherapy in Prostate Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Bora Uysal

    2013-03-01

    Full Text Available Objective: The purpose of this dosimetric study is the targeted dose homogeneity and critical organ dose comparison of 7-field Intensity Modulated Radiotherapy (IMRT and 3-D 4-field conformal radiotherapy. Study Design: Cross sectional study. Material and Methods: Twenty patients with low and moderate risk prostate cancer treated at Gülhane Military Medical School Radiation Oncology Department between January 2009 and December 2009 are included in this study. Two seperate dosimetric plans both for 7-field IMRT and 3D-CRT have been generated for each patient to comparatively evaluate the dosimetric status of both techniques and all the patients received 7-field IMRT. Results: Dose-comparative evaluation of two techniques revealed the superiority of IMRT technique with statistically significantly lower femoral head doses along with reduced critical organ dose-volume parameters of bladder V60 (the volume receiving 60 Gy and rectal V40 (the volume receiving 40 Gy and V60. Conclusion: It can be concluded that IMRT is an effective definitive management tool for prostate cancer with improved critical organ sparing and excellent dose homogenization in target organs of prostate and seminal vesicles.

  14. Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity modulated and volumetric modulated arc radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, Scott B [Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland (Australia); Kairn, Tanya [Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland (Australia); Premion, Wesley Medical Centre, Brisbane, Queensland (Australia); Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T [Premion, Wesley Medical Centre, Brisbane, Queensland (Australia); Kenny, John [Australian Clinical Dosimetry Services, Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Victoria (Australia); Langton, Christian M; Trapp, Jamie V [Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland (Australia)

    2013-12-15

    This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT.

  15. Intensity modulated radiotherapy and 3D conformal radiotherapy for whole breast irradiation: a comparative dosimetric study and introduction of a novel qualitative index for plan evaluation, the normal tissue index

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Jackie; Suttie, Clare; Bromley, Regina; Morgia, Marita; Lamoury, Gillian [Department of Radiation Oncology, Royal North Shore Hospital, St Leonards, New South Wales (Australia)

    2015-09-15

    We report on a retrospective dosimetric study, comparing 3D conformal radiotherapy (3DCRT) and hybrid intensity modulated radiotherapy (hIMRT). We evaluated plans based on their planning target volume coverage, dose homogeneity, dose to organs at risk (OARs) and exposure of normal tissue to radiation. The Homogeneity Index (HI) was used to assess the dose homogeneity in the target region, and we describe a new index, the normal tissue index (NTI), to assess the dose in the normal tissue inside the tangent treatment portal. Plans were generated for 25 early-stage breast cancer patients, using a hIMRT technique. These were compared with the 3DCRT plans of the treatment previously received by the patients. Plan quality was evaluated using the HI, NTI and dose to OARs. The hIMRT technique was significantly more homogenous than the 3DCRT technique, while maintaining target coverage. The hIMRT technique was also superior at minimising the amount of tissue receiving D{sub 105%} and above (P < 0.0001). The ipsilateral lung and contralateral breast maximum were significantly lower in the hIMRT plans (P < 0.05 and P < 0.005), but the 3DCRT technique achieved a lower mean heart dose in left-sided breast cancer patients (P < 0.05). Hybrid intensity modulated radiotherapy plans achieved improved dose homogeneity compared to the 3DCRT plans and superior outcome with regard to dose to normal tissues. We propose that the addition of both HI and NTI in evaluating the quality of intensity modulated radiotherapy (IMRT) breast plans provides clinically relevant comparators which more accurately reflect the new paradigm of treatment goals and outcomes in the era of breast IMRT.

  16. Intensity modulated radiotherapy and 3D conformal radiotherapy for whole breast irradiation: a comparative dosimetric study and introduction of a novel qualitative index for plan evaluation, the normal tissue index

    International Nuclear Information System (INIS)

    Yim, Jackie; Suttie, Clare; Bromley, Regina; Morgia, Marita; Lamoury, Gillian

    2015-01-01

    We report on a retrospective dosimetric study, comparing 3D conformal radiotherapy (3DCRT) and hybrid intensity modulated radiotherapy (hIMRT). We evaluated plans based on their planning target volume coverage, dose homogeneity, dose to organs at risk (OARs) and exposure of normal tissue to radiation. The Homogeneity Index (HI) was used to assess the dose homogeneity in the target region, and we describe a new index, the normal tissue index (NTI), to assess the dose in the normal tissue inside the tangent treatment portal. Plans were generated for 25 early-stage breast cancer patients, using a hIMRT technique. These were compared with the 3DCRT plans of the treatment previously received by the patients. Plan quality was evaluated using the HI, NTI and dose to OARs. The hIMRT technique was significantly more homogenous than the 3DCRT technique, while maintaining target coverage. The hIMRT technique was also superior at minimising the amount of tissue receiving D 105% and above (P < 0.0001). The ipsilateral lung and contralateral breast maximum were significantly lower in the hIMRT plans (P < 0.05 and P < 0.005), but the 3DCRT technique achieved a lower mean heart dose in left-sided breast cancer patients (P < 0.05). Hybrid intensity modulated radiotherapy plans achieved improved dose homogeneity compared to the 3DCRT plans and superior outcome with regard to dose to normal tissues. We propose that the addition of both HI and NTI in evaluating the quality of intensity modulated radiotherapy (IMRT) breast plans provides clinically relevant comparators which more accurately reflect the new paradigm of treatment goals and outcomes in the era of breast IMRT

  17. Intensity modulated radiotherapy for sinonasal malignancies with a focus on optic pathway preservation

    Directory of Open Access Journals (Sweden)

    Chi Alexander

    2013-01-01

    Full Text Available Abstract Purpose To assess if intensity-modulated radiotherapy (IMRT can possibly lead to improved local control and lower incidence of vision impairment/blindness in comparison to non-IMRT techniques when treating sinonasal malignancies; what is the most optimal dose constraints for the optic pathway; and the impact of different IMRT strategies on optic pathway sparing in this setting. Methods and materials A literature search in the PubMed databases was conducted in July, 2012. Results Clinical studies on IMRT and 2D/3D (2 dimensional/3 dimensional RT for sinonasal malignancies suggest improved local control and lower incidence of severe vision impairment with IMRT in comparison to non-IMRT techniques. As observed in the non-IMRT studies, blindness due to disease progression may occur despite a lack of severe toxicity possibly due to the difficulty of controlling locally very advanced disease with a dose ≤ 70 Gy. Concurrent chemotherapy’s influence on the the risk of severe optic toxicity after radiotherapy is unclear. A maximum dose of ≤ 54 Gy with conventional fractionation to the optic pathway may decrease the risk of blindness. Increased magnitude of intensity modulation through increasing the number of segments, beams, and using a combination of coplanar and non-coplanar arrangements may help increase dose conformality and optic pathway sparing when IMRT is used. Conclusion IMRT optimized with appropriate strategies may be the treatment of choice for the most optimal local control and optic pathway sparing when treating sinonasal malignancy.

  18. Outcome after intensity modulated radiotherapy for anaplastic thyroid carcinoma

    International Nuclear Information System (INIS)

    He, Xiayun; Li, Duanshu; Hu, Chaosu; Wang, Zhuoying; Ying, Hongmei; Wu, Yi

    2014-01-01

    Anaplastic thyroid carcinoma (ATC) is a malignancy with one of the highest fatality rates. We reviewed our recent clinical experience with intensity modulated radiotherapy (IMRT) combined with surgery and chemotherapy for the management of ATC. 13 patients with ATC who were treated by IMRT in our institution between October 2008 and February 2011, have been analyzed. The target volume for IMRT was planned to include Gross tumor volume (GTV): primary tumor plus any N + disease (66 Gy/33 F/6.6 W), with elective irradiation of thyroid bed, bilateral level II through VI and mediastinal lymph nodes to the level of the carina (54-60 Gy). Seven patients received surgical intervention and eleven patients had chemotherapy. The median radiotherapy dose to GTV was 60 Gy/30 fractions/6 weeks. The median survival time of the 13 patients was 9 months. The direct causes of death were distant metastases (75%) and progression of the locoregional disease (25%). Ten patients were spared dyspnea and tracheostomy because their primary neck lesion did not progress. The results showed that IMRT combined by surgery and chemotherapy for ATC might be beneficial to improve locoregional control. Further new therapies are needed to control metastases

  19. A review of stereotactic body radiotherapy – is volumetric modulated arc therapy the answer?

    International Nuclear Information System (INIS)

    Sapkaroski, Daniel; Osborne, Catherine; Knight, Kellie A

    2015-01-01

    Stereotactic body radiotherapy (SBRT) is a high precision radiotherapy technique used for the treatment of small to moderate extra-cranial tumours. Early studies utilising SBRT have shown favourable outcomes. However, major disadvantages of static field SBRT include long treatment times and toxicity complications. Volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) may potentially mitigate these disadvantages. This review aims to assess the feasibility of emerging VMAT and IMRT-based SBRT treatment techniques and qualify which offers the best outcome for patients, whilst identifying any emerging and advantageous SBRT planning trends. A review and synthesis of data from current literature up to September 2013 was conducted on EMBASE, Medline, PubMed, Science Direct, Proquest central, Google Scholar and the Cochrane Database of Systematic reviews. Only full text papers comparing VMAT and or IMRT and or Static SBRT were included. Ten papers were identified that evaluated the results of VMAT/IMRT SBRT. Five related to medically inoperable stage 1 and 2 non-small-cell lung cancer (NSCLC), three to spinal metastasis, one related to abdominal lymph node malignancies, with the final one looking at pancreatic adenocarcinoma. Overall treatment times with VMAT were reduced by 66–70% for lung, 46–58% for spine, 42% and 21% for lymph node and pancreatic metastasis respectively, planning constraints were met with several studies showing improved organs at risk sparing with IMRT/VMAT to static SBRT. Both IMRT and VMAT were able to meet all planning constraints in the studies reviewed, with VMAT offering the greatest treatment efficiency. Early clinical outcomes with VMAT and IMRT SBRT have demonstrated excellent local control and favourable survival outcomes

  20. A review of stereotactic body radiotherapy – is volumetric modulated arc therapy the answer?

    Energy Technology Data Exchange (ETDEWEB)

    Sapkaroski, Daniel, E-mail: daniel.sapkaroski@gmail.com; Osborne, Catherine; Knight, Kellie A [Department of Medical Imaging and Radiation Sciences, Faculty of Medicine, Nursing and Health Sciences, School of Biomedical Sciences, Monash University, Clayton, Vic. (Australia)

    2015-06-15

    Stereotactic body radiotherapy (SBRT) is a high precision radiotherapy technique used for the treatment of small to moderate extra-cranial tumours. Early studies utilising SBRT have shown favourable outcomes. However, major disadvantages of static field SBRT include long treatment times and toxicity complications. Volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) may potentially mitigate these disadvantages. This review aims to assess the feasibility of emerging VMAT and IMRT-based SBRT treatment techniques and qualify which offers the best outcome for patients, whilst identifying any emerging and advantageous SBRT planning trends. A review and synthesis of data from current literature up to September 2013 was conducted on EMBASE, Medline, PubMed, Science Direct, Proquest central, Google Scholar and the Cochrane Database of Systematic reviews. Only full text papers comparing VMAT and or IMRT and or Static SBRT were included. Ten papers were identified that evaluated the results of VMAT/IMRT SBRT. Five related to medically inoperable stage 1 and 2 non-small-cell lung cancer (NSCLC), three to spinal metastasis, one related to abdominal lymph node malignancies, with the final one looking at pancreatic adenocarcinoma. Overall treatment times with VMAT were reduced by 66–70% for lung, 46–58% for spine, 42% and 21% for lymph node and pancreatic metastasis respectively, planning constraints were met with several studies showing improved organs at risk sparing with IMRT/VMAT to static SBRT. Both IMRT and VMAT were able to meet all planning constraints in the studies reviewed, with VMAT offering the greatest treatment efficiency. Early clinical outcomes with VMAT and IMRT SBRT have demonstrated excellent local control and favourable survival outcomes.

  1. Feasibility of intensity-modulated and image-guided radiotherapy for locally advanced esophageal cancer

    International Nuclear Information System (INIS)

    Nguyen, Nam P; Desai, Anand; Smith-Raymond, Lexie; Jang, Siyoung; Vock, Jacqueline; Vinh-Hung, Vincent; Chi, Alexander; Vos, Paul; Pugh, Judith; Vo, Richard A; Ceizyk, Misty

    2014-01-01

    In this study the feasibility of intensity-modulated radiotherapy (IMRT) and tomotherapy-based image-guided radiotherapy (IGRT) for locally advanced esophageal cancer was assessed. A retrospective study of ten patients with locally advanced esophageal cancer who underwent concurrent chemotherapy with IMRT (1) and IGRT (9) was conducted. The gross tumor volume was treated to a median dose of 70 Gy (62.4-75 Gy). At a median follow-up of 14 months (1-39 months), three patients developed local failures, six patients developed distant metastases, and complications occurred in two patients (1 tracheoesophageal fistula, 1 esophageal stricture requiring repeated dilatations). No patients developed grade 3-4 pneumonitis or cardiac complications. IMRT and IGRT may be effective for the treatment of locally advanced esophageal cancer with acceptable complications

  2. A dosimetric selectivity intercomparison of HDR brachytherapy, IMRT and helical tomotherapy in prostate cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hermesse, Johanne; Biver, Sylvie; Jansen, Nicolas; Coucke, Philippe [Dept. of Radiation Oncology, Liege Univ. Hospital (Belgium); Lenaerts, Eric [Dept. of Medical Physics, Liege Univ. Hospital (Belgium); De Patoul, Nathalie; Vynckier, Stefaan [Dept. of Medical Physics, St Luc Univ. Hospital, Brussels (Belgium); Scalliet, Pierre [Dept. of Radiation Oncology, St Luc Univ. Hospital, Brussels (Belgium); Nickers, Philippe [Dept. of Radiation Oncology, Oscar Lambret Center, Lille (France)

    2009-11-15

    Background and purpose: dose escalation in order to improve the biochemical control in prostate cancer requires the application of irradiation techniques with high conformality. The dosimetric selectivity of three radiation modalities is compared: high-dose-rate brachytherapy (HDR-BT), intensity-modulated radiation radiotherapy (IMRT), and helical tomotherapy (HT). Patients and methods: ten patients with prostate adenocarcinoma treated by a 10-Gy HDR-BT boost after external-beam radiotherapy were investigated. For each patient, HDR-BT, IMRT and HT theoretical treatment plans were realized using common contour sets. A 10-Gy dose was prescribed to the planning target volume (PTV). The PTVs and critical organs' dose-volume histograms obtained were compared using Student's t-test. Results: HDR-BT delivers spontaneously higher mean doses to the PTV with smaller cold spots compared to IMRT and HT. 33% of the rectal volume received a mean HDR-BT dose of 3.86 {+-} 0.3 Gy in comparison with a mean IMRT dose of 6.57 {+-} 0.68 Gy and a mean HT dose of 5.58 {+-} 0.71 Gy (p < 0.0001). HDR-BT also enables to better spare the bladder. The hot spots inside the urethra are greater with HDR-BT. The volume of healthy tissue receiving 10% of the prescribed dose is reduced at least by a factor of 8 with HDR-BT (p < 0.0001). Conclusion: HDR-BT offers better conformality in comparison with HT and IMRT and reduces the volume of healthy tissue receiving a low dose. (orig.)

  3. Intensity-Modulated Radiotherapy (IMRT) vs Helical Tomotherapy (HT) in Concurrent Chemoradiotherapy (CRT) for Patients with Anal Canal Carcinoma (ACC): an analysis of dose distribution and toxicities

    International Nuclear Information System (INIS)

    Yeung, Rosanna; McConnell, Yarrow; Warkentin, Heather; Graham, Darren; Warkentin, Brad; Joseph, Kurian; Doll, Corinne M

    2015-01-01

    Intensity-modulated radiotherapy (IMRT) and helical tomotherapy (HT) have been adopted for radiotherapy treatment of anal canal carcinoma (ACC) due to better conformality, dose homogeneity and normal-tissue sparing compared to 3D-CRT. To date, only one published study compares dosimetric parameters of IMRT vs HT in ACC, but there are no published data comparing toxicities. Our objectives were to compare dosimetry and toxicities between these modalities. This is a retrospective study of 35 ACC patients treated with radical chemoradiotherapy at two tertiary cancer institutions from 2008–2010. The use of IMRT vs HT was primarily based on center availability. The majority of patients received fluorouracil (5-FU) and 1–2 cycles of mitomycin C (MMC); 2 received 5-FU and cisplatin. Primary tumor and elective nodes were prescribed to ≥54Gy and ≥45Gy, respectively. Patients were grouped into two cohorts: IMRT vs HT. The primary endpoint was a dosimetric comparison between the cohorts; the secondary endpoint was comparison of toxicities. 18 patients were treated with IMRT and 17 with HT. Most IMRT patients received 5-FU and 1 MMC cycle, while most HT patients received 2 MMC cycles (p < 0.01), based on center policy. HT achieved more homogenous coverage of the primary tumor (HT homogeneity and uniformity index 0.14 and 1.02 vs 0.29 and 1.06 for IMRT, p = 0.01 and p < 0.01). Elective nodal coverage did not differ. IMRT achieved better bladder, femoral head and peritoneal space sparing (V30 and V40, p ≤ 0.01), and lower mean skin dose (p < 0.01). HT delivered lower bone marrow (V10, p < 0.01) and external genitalia dose (V20 and V30, p < 0.01). Grade 2+ hematological and non-hematological toxicities were similar. Febrile neutropenia and unscheduled treatment breaks did not differ (both p = 0.13), nor did 3-year overall and disease-free survival (p = 0.13, p = 0.68). Chemoradiotherapy treatment of ACC using IMRT vs HT results in differences in dose homogenity and

  4. Intensity-modulated radiotherapy vs. parotid-sparing 3D conformal radiotherapy. Effect on outcome and toxicity in locally advanced head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lambrecht, M.; Nevens, D.; Nuyts, S. [University Hospitals Leuven (Belgium). Dept. of Radiation Oncology

    2013-03-15

    Background and purpose: Intensity-modulated radiotherapy (IMRT) has rapidly become standard of care in the management of locally advanced head and neck squamous cell carcinoma (HNSCC). In this study, our aim was to retrospectively investigate the effect of the introducing IMRT on outcome and treatment-related toxicity compared to parotid-sparing 3D conformal radiotherapy (3DCRT). Material and methods: A total of 245 patients with stage III and IV HNSCC treated with primary radiotherapy between January 2003 and December 2010 were included in this analysis: 135 patients were treated with 3DCRT, 110 patients with IMRT. Groups were compared for acute and late toxicity, locoregional control (LRC), and overall survival (OS). Oncologic outcomes were estimated using Kaplan-Meier analysis and compared using a log-rank test. Acute toxicity was analyzed according to the Common Terminology Criteria for Adverse Events v3.0 and late toxicity was scored using the RTOG/EORTC late toxicity scoring system. Results: Median follow-up was 35 months in the IMRT group and 68 months in the 3DCRT group. No significant differences were found in 3-year LRC and OS rates between the IMRT group and 3DCRT group. Significantly less acute mucositis {>=} grade 3 was observed in the IMRT group (32% vs. 44%, p = 0.03). There was significantly less late xerostomia {>=} grade 2 in the IMRT group than in the 3DCRT group (23% vs. 68%, p < 0.001). After 24 months, there was less dysphagia {>=} grade 2 in the IMRT group although differences failed to reach statistical significance. Conclusion: The introduction of IMRT in the radiotherapeutic management of locally advanced head and neck cancer significantly improved late toxicity without compromising tumor control compared to a parotid-sparing 3D conformal radiotherapy technique. (orig.)

  5. Intensity-modulated radiotherapy -the State of the Art

    International Nuclear Information System (INIS)

    Ling, C.

    2002-01-01

    Full text: In the last two decades of the last century, the development of three-dimensional conformal radiotherapy (3D-CRT) has substantially reduces the volume of critical organs irradiated to high doses, and has permitted the increase of tumor dose without concomitant increase in normal tissue complication. At Memorial Sloan Kettering Cancer Center, a clinical trial in cancer of the prostate has accrued >1600 patient and the prescription dose has been escalated to 81 Gy with 3D-CRT, and to 86.4 Gy using intensity modulated radiotherapy (IMRT), with promising results. 3D-CRT and IMRT involves the delineation of target and non-target structures from patient-specific 3D image data-sets (primarily CT, sometimes supplemented with MRI, PET etc.), the calculation and display of 3D dose distributions, the analysis and evaluation of structure-specific dose-volume data (DVH-dose volume histogram), radiation delivery with computer-controlled multileaf collimators (MLC), and treatment verification with electronic portal images. However, the dose distribution conformality achieved with 3D-CRT can be further improved by the use of computer-optimized IMRT. In addition, the treatment design phase of 3D-CRT involves several iterative steps and can be time-consuming, particularly when the anatomical geometry is complex. Thus, IMRT is an incremental advance from 3D-CRT with two key enhancements: 1) computerized iterative treatment plan optimization, and 2) the use of intensity-modulated radiation beams. To deliver the IM beams, one efficacious approach is to use MLC in the dynamic mode, using the so-called sliding-window technique, i.e. the leaves of the MLC are in motion while the radiation is being delivered. Since 1995, we have treated over 1500 patients with IMRT. This discussion shall describe the physical aspects of IMRT, emphasizing those features and benefits unique to this approach. Pertinent clinical results will also be briefly presented

  6. A comparison of conformal and intensity-modulated techniques for oesophageal radiotherapy

    International Nuclear Information System (INIS)

    Nutting, Christopher M.; Bedford, James L.; Cosgrove, Vivian P.; Tait, Diana M.; Dearnaley, David P.; Webb, Steve

    2001-01-01

    Background and purpose: To investigate the potential of intensity-modulated radiotherapy (IMRT) to reduce lung irradiation in the treatment of oesophageal carcinoma with radical radiotherapy. Materials and methods: A treatment planning study was performed to compare two-phase conformal radiotherapy (CFRT) with IMRT in five patients. The CFRT plans consisted of anterior, posterior and bilateral posterior oblique fields, while the IMRT plans consisted of either nine equispaced fields (9F), or four fields (4F) with orientations equal to the CFRT plans. IMRT plans with seven, five or three equispaced fields were also investigated in one patient. Treatment plans were compared using dose-volume histograms and normal tissue complication probabilities. Results: The 9F IMRT plan was unable to improve on the homogeneity of dose to the planning target volume (PTV), compared with the CFRT plan (dose range, 16.9±4.5 (1 SD) vs. 12.4±3.9%; P=0.06). Similarly, the 9F IMRT plan was unable to reduce the mean lung dose (11.7±3.2 vs. 11.0±2.9 Gy; P=0.2). Similar results were obtained for seven, five and three equispaced fields in the single patient studied. The 4F IMRT plan provided comparable PTV dose homogeneity with the CFRT plan (11.8±3.3 vs. 12.4±3.9%; P=0.6), with reduced mean lung dose (9.5±2.3 vs 11.0±2.9 Gy; P=0.001). Conclusions: IMRT using nine equispaced fields provided no improvement over CFRT. This was because the larger number of fields in the IMRT plan distributed a low dose over the entire lung. In contrast, IMRT using four fields equal to the CFRT fields offered an improvement in lung sparing. Thus, IMRT with a few carefully chosen field directions may lead to a modest reduction in pneumonitis, or allow tumour dose escalation within the currently accepted lung toxicity

  7. Contribution of PET and PET/CT in CTV/PTV-modulation for planning of intensity modulated radiotherapy (IMRT); Aktueller Beitrag der PET und PET/CT zur Zielvolumenmodulation fuer die biologischmedizinische Planung im Rahmen der intensitaetsmodulierten Strahlentherapie (IMRT)

    Energy Technology Data Exchange (ETDEWEB)

    Oehler, W. [Klinik fuer Radioonkologie und Strahlentherapie, Suedharz-Krankenhaus Nordhausen (Germany); Baum, R.P. [Klinik fuer Nuklearmedizin/PET-Zentrum, Zentralklinik Bad Berka (Germany)

    2004-12-01

    PET and PET/CT enlarge the possibilities of purely anatomic imaging by opening up new horizons in determining the metabolic and molecular properties of tumors. This enables to determine the spread of tumors with higher accuracy, especially concerning the primary staging and the diagnosis of recurrences. Patients with locoregional disease which are curable by surgery or local radiotherapy (eventually in combination with chemotherapy) can be differentiated from those patients, where only palliative treatment is indicated. Novel nuclear medicine procedures, which use specific tracers, open the door for the molecular treatment of tumors. This will be especially important for radiation oncology. In future it will be possible to define specific tumor areas within a morphologically homogeneous tumor (e.g. areas of tumor hypoxia, increased local tumor stem cell concentration, tumor parts with higher proliferative activity etc.). With IMRT (intensity modulated radiotherapy) we have already now the opportunity, to concentrate the dose to these specific tumor areas, without overloading normal tissues and organs at risk. (orig.)

  8. Comparison of long-term survival and toxicity of simultaneous integrated boost vs conventional fractionation with intensity-modulated radiotherapy for the treatment of nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Tao HM

    2016-03-01

    Full Text Available Hengmin Tao,1,2 Yumei Wei,1 Wei Huang,1 Xiujuan Gai,1,2 Baosheng Li11Department of 6th Radiation Oncology, Shandong Cancer Hospital and Institute, 2School of Medicine and Life Sciences, Jinan University-Shandong Academy of Medical Sciences, Jinan, People’s Republic of ChinaAim: In recent years, the intensity-modulated radiotherapy with simultaneous integrated boost (IMRT-SIB and intensity-modulated radiotherapy with conventional fractionation (IMRT-CF have been involved in the treatment of nasopharyngeal carcinoma (NPC. However, the potential clinical effects and toxicities are still controversial.Methods: Here, 107 patients with biopsy-proven locally advanced NPC between March 2004 and January 2011 were enrolled in the retrospective study. Among them, 54 patients received IMRT-SIB, and 53 patients received IMRT-CF. Subsequently, overall survival (OS, 5-year progression-free survival (PFS, 5-year locoregional recurrence-free survival (LRFS, and relevant toxicities were analyzed.Results: In the present study, all patients completed the treatment, and the overall median follow-up time was 80 months (range: 8–126 months. The 5-year OS analysis revealed no significant difference between the IMRT-SIB and IMRT-CF groups (80.9% vs 80.5%, P=0.568. In addition, there were also no significant between-group differences in 5-year PFS (73.3% vs 74.4%, P=0.773 and 5-year LRFS (88.1% vs 90.8%, P=0.903. Notably, the dose to critical organs (spinal cord, brainstem, and parotid gland in patients treated by IMRT-CF was significantly lower than that in patients treated by IMRT-SIB (all P<0.05.Conclusion: Both IMRT-SIB and IMRT-CF techniques are effective in treating locally advanced NPC, with similar OS, PFS, and LRFS. However, IMRT-CF has more advantages than IMRT-SIB in protecting spinal cord, brainstem, and parotid gland from acute and late toxicities, such as xerostomia. Further prospective study is warranted to confirm our findings.Keywords: intensity-modulated

  9. Dosimetric study of volumetric arc modulation with RapidArc and intensity-modulated radiotherapy in patients with cervical cancer and comparison with 3-dimensional conformal technique for definitive radiotherapy in patients with cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Guy, Jean-Baptiste [Department of Radiation Oncology, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest en Jarez (France); Falk, Alexander T. [Department of Radiation Oncology, Centre Antoine Lacassagne, Nice (France); Auberdiac, Pierre [Department of Radiation Oncology, Clinique Claude Bernard, Albi (France); Cartier, Lysian; Vallard, Alexis [Department of Radiation Oncology, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest en Jarez (France); Ollier, Edouard [Department of Pharmacology-Toxicology, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Priest en Jarez (France); Trone, Jane-Chloé; Khodri, Moustapha [Department of Radiation Oncology, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest en Jarez (France); Chargari, Cyrus [Department of Radiation Oncology, Hôpital d’instruction de Armées du Val-de-Grâce, Paris (France); Magné, Nicolas, E-mail: nicolas.magne@icloire.fr [Department of Radiation Oncology, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest en Jarez (France)

    2016-04-01

    Introduction: For patients with cervical cancer, intensity-modulated radiation therapy (IMRT) improves target coverage and allows dose escalation while reducing the radiation dose to organs at risk (OARs). In this study, we compared dosimetric parameters among 3-dimensional conformal radiotherapy (3D-CRT), “step-and-shoot” IMRT, and volumetric intensity-modulated arc radiotherapy (VMAT) in a series of patients with cervical cancer receiving definitive radiotherapy. Computed tomography (CT) scans of 10 patients with histologically proven cervical cancer treated with definitive radiation therapy (RT) from December 2008 to March 2010 at our department were selected for this study. The gross tumor volume (GTV) and clinical target volume (CTV) were delineated following the guidelines of the Gyn IMRT consortium that included cervix, uterus, parametrial tissues, and the pelvic nodes including presacral. The median age was 57 years (range: 30 to 85 years). All 10 patients had squamous cell carcinoma with Federation of Gynecology and Obstetrics (FIGO) stage IB-IIIB. All patients were treated by VMAT. OAR doses were significantly reduced for plans with intensity-modulated technique compared with 3D-CRT except for the dose to the vagina. Between the 2 intensity-modulated techniques, significant difference was observed for the mean dose to the small intestine, to the benefit of VMAT (p < 0.001). There was no improvement in terms of OARs sparing for VMAT although there was a tendency for a slightly decreased average dose to the rectum: − 0.65 Gy but not significant (p = 0.07). The intensity modulation techniques have many advantages in terms of quality indexes, and particularly OAR sparing, compared with 3D-CRT. Following the ongoing technologic developments in modern radiotherapy, it is essential to evaluate the intensity-modulated techniques on prospective studies of a larger scale.

  10. Intensity modulated radiotherapy with fixed collimator jaws for locoregional left-sided breast cancer irradiation.

    Science.gov (United States)

    Wang, Juanqi; Yang, Zhaozhi; Hu, Weigang; Chen, Zhi; Yu, Xiaoli; Guo, Xiaomao

    2017-05-16

    The purpose of this study is to evaluate the intensity modulated radiotherapy (IMRT) with the fixed collimator jaws technique (FJT) for the left breast and regional lymph node. The targeted breast tissue and the lymph nodes, and the normal tissues were contoured for 16 left-sided breast cancer patients previously treated with radiotherapy after lumpectomy. For each patient, treatment plans using different planning techniques, i.e., volumetric modulated arc therapy (VMAT), tangential IMRT (tangential-IMRT), and IMRT with FJT (FJT-IMRT) were developed for dosimetric comparisons. A dose of 50Gy was prescribed to the planning target volume. The dose-volume histograms were generated, and the paired t-test was used to analyze the dose differences. FJT-IMRT had similar mean heart volume receiving 30Gy (V30 Gy) with tangential-IMRT (1.5% and 1.6%, p = 0.41), but inferior to the VMAT (0.8%, p < 0.001). In the average heart mean dose comparison, FJT-IMRT had the lowest value, and it was 0.6Gy lower than that for the VMAT plans (p < 0.01). A significant dose increase in the contralateral breast and lung was observed in VMAT plans. Compared with tangential-IMRT and VMAT plans, FJT-IMRT reduced the mean dose of thyroid, humeral head and cervical esophageal by 47.6% (p < 0.01) and 45.7% (p < 0.01), 74.3% (p =< 0.01) and 73% (p =< 0.01), and 26.7% (p =< 0.01) and 29.2% (p =< 0.01). In conclusion, compared with tangential-IMRT and VMAT, FJT-IMRT plan has the lowest thyroid, humeral head and cervical esophageal mean dose and it can be a reasonable treatment option for a certain subgroup of patients, such as young left-breast cancer patients and/or patients with previous thyroid disease.

  11. Xerostomia and quality of life after intensity-modulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: Initial report on a randomized controlled clinical trial

    International Nuclear Information System (INIS)

    Pow, Edmond; Kwong, Dora; McMillan, Anne S.; Wong, May; Sham, Jonathan; Leung, Lucullus; Leung, W. Keung

    2006-01-01

    Purpose: To compare directly the effect of intensity-modulated radiotherapy (IMRT) vs. conventional radiotherapy (CRT) on salivary flow and quality of life (QoL) in patients with early-stage nasopharyngeal carcinoma (NPC). Methods and Materials: Fifty-one patients with T2, N0/N1, M0 NPC took part in a randomized controlled clinical study and received IMRT or CRT. Stimulated whole (SWS) and parotid (SPS) saliva flow were measured and Medical Outcomes Short Form 36 (SF-36), European Organization for Research and Treatment of Cancer (EORTC) core quetionnaire, and EORTC head-and-neck module (QLQ-H and N35) were completed at baseline and 2, 6, and 12 months after radiotherapy. Results: Forty-six patients (88%) were in disease remission 12 months after radiotherapy. At 12 months postradiotherapy, 12 (50.0%) and 20 patients (83.3%) in the IMRT group had recovered at least 25% of preradiotherapy SWS and SPS flow respectively, compared with 1 (4.8%) and 2 patients (9.5%), respectively, in the CRT group. Global health scores showed continuous improvement in QoL after both treatments (p < 0.001). However, after 12 months subscale scores for role-physical, bodily pain, and physical function were significantly higher in the IMRT group, indicating a better condition (p < 0.05). Dry mouth and sticky saliva were problems in both groups 2 months after treatment. In the IMRT group, there was consistent improvement over time with xerostomia-related symptoms significantly less common than in the CRT group at 12 months postradiotherapy. Conclusions: IMRT was significantly better than CRT in terms of parotid sparing and improved QoL for early-stage disease. The findings support the case for assessment of health-related QoL in relation to head-and-neck cancer using a site-specific approach

  12. Quantitative comparison of volumetric modulated arc therapy and intensity modulated radiotherapy plan quality in sino-nasal cancer

    International Nuclear Information System (INIS)

    Sankaralingam, Marimuthu; Glegg, Martin; Smith, Suzanne; James, Allan; Rizwanullah, Mohammed

    2012-01-01

    The aim of this study was to compare various dosimetric parameters of dynamic mlc intensity modulated radiotherapy (IMRT) plans with volumetric modulated arc therapy (VMAT) plans for sino-nasal cancers, which are rare and complex tumors to treat with radiotherapy. IMRT using five fields, coplanar in the sagittal plane and VMAT employing two coplanar arc plans were created for five patients. The plans were assessed by comparing Conformity Index and Sigma Index (dose homogeneity) in the Planning Target Volume (PTV) and through comparison of dose-volume characteristics to the following organs at risk (OARs): Spinal cord, brainstem, eye, ipsilateral and contralateral optic nerve and the volume of brain receiving 10% of the prescribed dose (V 10% ). The total monitor units required to deliver the plan were also compared. Conformity Index was found to be superior in VMAT plans for three patients and in IMRT plans for two patients. Dose homogeneity within the PTV was better with VMAT plans for all five cases. The mean difference in Sigma Index was 0.68%. There was no significant difference in dose between IMRT and VMAT plans for any of the OARs assessed in these patients. The monitor units were significantly reduced in the VMAT plan in comparison to the IMRT plan for four out of five patients, with mean reduction of 66%. It was found in this study that for the treatment of sino-nasal cancer, VMAT produced minimal, and statistically insignificant improvement in dose homogeneity within the PTV when compared with IMRT. VMAT plans were delivered using significantly fewer monitor units. We conclude in this study that VMAT does not offer significant improvement of treatment for sino-nasal cancer over the existing IMRT techniques, but the findings may change with a larger sample of patients in this rare condition. (author)

  13. Intensity-Modulated Radiotherapy for Craniospinal Irradiation: Target Volume Considerations, Dose Constraints, and Competing Risks

    International Nuclear Information System (INIS)

    Parker, William; Filion, Edith; Roberge, David; Freeman, Carolyn R.

    2007-01-01

    Purpose: To report the results of an analysis of dose received to tissues and organs outside the target volume, in the setting of spinal axis irradiation for the treatment of medulloblastoma, using three treatment techniques. Methods and Materials: Treatment plans (total dose, 23.4 Gy) for a standard two-dimensional (2D) technique, a three-dimensional (3D) technique using a 3D imaging-based target volume, and an intensity-modulated radiotherapy (IMRT) technique, were compared for 3 patients in terms of dose-volume statistics for target coverage, as well as organ at risk (OAR) and overall tissue sparing. Results: Planning target volume coverage and dose homogeneity was superior for the IMRT plans for V 95% (IMRT, 100%; 3D, 96%; 2D, 98%) and V 107% (IMRT, 3%; 3D, 38%; 2D, 37%). In terms of OAR sparing, the IMRT plan was better for all organs and whole-body contour when comparing V 10Gy , V 15Gy , and V 20Gy . The 3D plan was superior for V 5Gy and below. For the heart and liver in particular, the IMRT plans provided considerable sparing in terms of V 10Gy and above. In terms of the integral dose, the IMRT plans were superior for liver (IMRT, 21.9 J; 3D, 28.6 J; 2D, 38.6 J) and heart (IMRT, 9 J; 3D, 14.1J; 2D, 19.4 J), the 3D plan for the body contour (IMRT, 349 J; 3D, 337 J; 2D, 555 J). Conclusions: Intensity-modulated radiotherapy is a valid treatment option for spinal axis irradiation. We have shown that IMRT results in sparing of organs at risk without a significant increase in integral dose

  14. Decreasing Temporal Lobe Dose With Five-Field Intensity-Modulated Radiotherapy for Treatment of Pituitary Macroadenomas

    International Nuclear Information System (INIS)

    Parhar, Preeti K.; Duckworth, Tamara; Shah, Parinda; DeWyngaert, J. Keith; Narayana, Ashwatha; Formenti, Silvia C.; Shah, Jinesh N.

    2010-01-01

    Purpose: To compare temporal lobe dose delivered by three pituitary macroadenoma irradiation techniques: three-field three-dimensional conformal radiotherapy (3D-CRT), three-field intensity-modulated radiotherapy (3F IMRT), and a proposed novel alternative of five-field IMRT (5F IMRT). Methods and Materials: Computed tomography-based external beam radiotherapy planning was performed for 15 pituitary macroadenoma patients treated at New York University between 2002 and 2007 using: 3D-CRT (two lateral, one midline superior anterior oblique [SAO] beams), 3F IMRT (same beam angles), and 5F IMRT (same beam angles with additional right SAO and left SAO beams). Prescription dose was 45 Gy. Target volumes were: gross tumor volume (GTV) = macroadenoma, clinical target volume (CTV) = GTV, and planning target volume = CTV + 0.5 cm. Structure contouring was performed by two radiation oncologists guided by an expert neuroradiologist. Results: Five-field IMRT yielded significantly decreased temporal lobe dose delivery compared with 3D-CRT and 3F IMRT. Temporal lobe sparing with 5F IMRT was most pronounced at intermediate doses: mean V25Gy (% of total temporal lobe volume receiving ≥25 Gy) of 13% vs. 28% vs. 29% for right temporal lobe and 14% vs. 29% vs. 30% for left temporal lobe for 5F IMRT, 3D-CRT, and 3F IMRT, respectively (p -7 for 5F IMRT vs. 3D-CRT and 5F IMRT vs. 3F IMRT). Five-field IMRT plans did not compromise target coverage, exceed normal tissue dose constraints, or increase estimated brain integral dose. Conclusions: Five-field IMRT irradiation technique results in a statistically significant decrease in the dose to the temporal lobes and may thus help prevent neurocognitive sequelae in irradiated pituitary macroadenoma patients.

  15. Postoperative Irradiation of Gynecologic Malignancies: Improving Treatment Delivery Using Aperture-Based Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Nadeau, Sylvain; Bouchard, Myriam; Germain, Isabelle; Raymond, Paul-Emile; Beaulieu, Frederic; Beaulieu, Luc; Roy, Rene; Gingras, Luc

    2007-01-01

    Purpose: To evaluate dosimetric and treatment delivery advantages of aperture-based intensity-modulated radiotherapy (AB-IMRT) for the treatment of patients receiving whole pelvic radiotherapy for gynecologic malignancies. Methods and Materials: Nineteen patients undergoing pelvic radiotherapy after resection of endometrial cancers were selected. A 45-Gy dose was prescribed to the target volume delineated on a planning CT scan. An in-house inverse planning system, Ballista, was used to develop a treatment plan using aperture-based multileaf collimator segments. This approach was compared with conventional four-field, enlarged four-field, and static beamlet-based IMRT (BB-IMRT) techniques in terms of target coverage, dose-volume histogram statistics for surrounding normal tissues, and numbers of segments and monitor units (MU). Results: Three quarters (76.4%) of the planning target volume received the prescription dose with conventional four-field plans. With adequate target coverage, the Ballista plans significantly reduced the volume of bowel and bladder irradiated at the prescribed dose (p < 0.001), whereas the two approaches provided equivalent results for the rectum (p 0.5). On the other hand, AB-IMRT and BB-IMRT plans showed only small differences in dose-volume histogram statistics of unknown clinical impact, whereas Ballista plan delivery required on average 73% and 59% fewer segments and MU, respectively. Conclusion: With respect to conventional techniques, AB-IMRT for the treatment of gynecologic malignancies provides dosimetric advantages similar to those with BB-IMRT but with clear treatment delivery improvements

  16. IMRT vs. 2D-radiotherapy or 3D-conformal radiotherapy of nasopharyngeal carcinoma. Survival outcome in a Korean multi-institutional retrospective study (KROG 11-06)

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Ho; Cho, Kwan Ho [Proton Therapy Center, Research Institute and Hospital, National Cancer Center, Ilsandong-gu, Goyang-si Gyeonggi-do (Korea, Republic of); Lee, Chang-Geol; Keum, Ki Chang [Yonsei University College of Medicine, Department of Radiation Oncology, Seodaemun-gu, Seoul (Korea, Republic of); Kim, Yeon-Sil [Seoul St. Mary' s Hospital, College of Medicine, the Catholic University of Korea, Department of Radiation Oncology, Seocho-gu, Seoul (Korea, Republic of); Wu, Hong-Gyun; Kim, Jin Ho [Seoul National University College of Medicine, Department of Radiation Oncology, Jongno-gu, Seoul (Korea, Republic of); Ahn, Yong Chan; Oh, Dongryul [Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Radiation Oncology, Gangnam-gu, Seoul (Korea, Republic of); Lee, Jong Hoon [The Catholic University of Korea, College of Medicine, Department of Radiation Oncology, Paldal-gu, Suwon, Gyeonggi-do (Korea, Republic of)

    2016-06-15

    We compared treatment outcomes of two-dimensional radiotherapy (2D-RT), three-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) in patients with nasopharyngeal carcinoma (NPC). In total, 1237 patients with cT1-4N0-3M0 NPC were retrospectively analyzed. Of these, 350, 390, and 497 were treated with 2D-RT, 3D-CRT, and IMRT, respectively. 3D-CRT and IMRT showed better 5-year overall survival (OS) rates (73.6 and 76.7 %, respectively) than did 2D-RT (5-year OS of 59.7 %, all p < 0.001). In T3-4 subgroup, IMRT was associated with a significantly better 5-year OS than was 2D-RT (70.7 vs. 50.4 %, respectively; p ≤ 0.001) and 3D-CRT (70.7 vs. 57.8 %, respectively; p = 0.011); however, the difference between the 2D-RT and 3D-CRT groups did not reach statistical significance (p = 0.063). In multivariate analyses of all patients, IMRT was a predictive factor for OS when compared with 2D-RT or 3D-CRT, as was 3D-CRT when compared with 2D-RT. Our study showed that 3D-CRT and IMRT were associated with a better local progression-free survival and OS than was 2D-RT in NPC. IMRT was significantly superior in terms of OS for advanced primary tumors (T3-4). (orig.) [German] Wir verglichen die Behandlungsergebnisse von zweidimensionaler Strahlentherapie (2D-RT), dreidimensionaler konformer Strahlentherapie (3D-CRT) und intensitaetsmodulierter Strahlentherapie (IMRT) bei Patienten mit Nasopharynxkarzinom (NPC). Insgesamt 1237 Patienten mit NPC im Stadium cT1-4/N0-3/M0 wurden rueckwirkend analysiert. Von diesen wurden jeweils 350, 390 und 497 mit 2D-RT, 3D-CRT und IMRT behandelt. 3D-CRT und IMRT zeigten eine bessere 5-Jahres-Gesamtueberlebensrate (5y-OS; jeweils 73,6 und 76,7%) als 2D-RT (59,7%; alle p < 0,001). In der Untergruppe T3-4 war die IMRT mit einer erheblich besseren 5y-OS verbunden als 2D-RT (jeweils 70,7 vs. 50,4%; p ≤ 0,001) und 3D-CRT (jeweils 70,7 vs. 57,8%; p = 0,011); jedoch gab es keinen Unterschied zwischen den Gruppen 2D

  17. Prone Hypofractionated Whole-Breast Radiotherapy Without a Boost to the Tumor Bed: Comparable Toxicity of IMRT Versus a 3D Conformal Technique

    Energy Technology Data Exchange (ETDEWEB)

    Hardee, Matthew E.; Raza, Shahzad; Becker, Stewart J.; Jozsef, Gabor; Lymberis, Stella C. [Department of Radiation Oncology, New York University School of Medicine, New York, NY (United States); Hochman, Tsivia; Goldberg, Judith D. [Division of Biostatistics, New York University School of Medicine, New York, NY (United States); DeWyngaert, Keith J. [Department of Radiation Oncology, New York University School of Medicine, New York, NY (United States); Formenti, Silvia C., E-mail: silvia.formenti@nyumc.org [Department of Radiation Oncology, New York University School of Medicine, New York, NY (United States)

    2012-03-01

    Purpose: We report a comparison of the dosimetry and toxicity of three-dimensional conformal radiotherapy (3D-CRT) vs. intensity-modulated radiotherapy (IMRT) among patients treated in the prone position with the same fractionation and target of the hypofractionation arm of the Canadian/Whelan trial. Methods and Materials: An institutional review board-approved protocol identified a consecutive series of early-stage breast cancer patients treated according to the Canadian hypofractionation regimen but in the prone position. Patients underwent IMRT treatment planning and treatment if the insurance carrier approved reimbursement for IMRT; in case of refusal, a 3D-CRT plan was used. A comparison of the dosimetric and toxicity outcomes during the acute, subacute, and long-term follow-up of the two treatment groups is reported. Results: We included 97 consecutive patients with 100 treatment plans in this study (3 patients with bilateral breast cancer); 40 patients were treated with 3D-CRT and 57 with IMRT. IMRT significantly reduced the maximum dose (Dmax median, 109.96% for 3D-CRT vs. 107.28% for IMRT; p < 0.0001, Wilcoxon test) and improved median dose homogeneity (median, 1.15 for 3D-CRT vs. 1.05 for IMRT; p < 0.0001, Wilcoxon test) when compared with 3D-CRT. Acute toxicity consisted primarily of Grade 1 to 2 dermatitis and occurred in 92% of patients. Grade 2 dermatitis occurred in 13% of patients in the 3D-CRT group and 2% in the IMRT group. IMRT moderately decreased rates of acute pruritus (p = 0.03, chi-square test) and Grade 2 to 3 subacute hyperpigmentation (p = 0.01, Fisher exact test). With a minimum of 6 months' follow-up, the treatment was similarly well tolerated in either group, including among women with large breast volumes. Conclusion: Hypofractionated breast radiotherapy is well tolerated when treating patients in the prone position, even among those with large breast volumes. Breast IMRT significantly improves dosimetry but yields only a modest

  18. Comparison of Toxicity Between Intensity-Modulated Radiotherapy and 3-Dimensional Conformal Radiotherapy for Locally Advanced Non-small-cell Lung Cancer.

    Science.gov (United States)

    Ling, Diane C; Hess, Clayton B; Chen, Allen M; Daly, Megan E

    2016-01-01

    The role of intensity-modulated radiotherapy (IMRT) in reducing treatment-related toxicity for locally advanced non-small-cell lung cancer (NSCLC) remains incompletely defined. We compared acute toxicity and oncologic outcomes in a large cohort of patients treated with IMRT or 3-dimensional conformal radiotherapy (3-DCRT), with or without elective nodal irradiation (ENI). A single-institution retrospective review was performed evaluating 145 consecutive patients with histologically confirmed stage III NSCLC treated with definitive chemoradiotherapy. Sixty-five (44.8%) were treated with 3-DCRT using ENI, 43 (30.0%) with 3-DCRT using involved-field radiotherapy (IFRT), and 37 (25.5%) with IMRT using IFRT. All patients received concurrent chemotherapy. Comparison of acute toxicities by treatment technique (IMRT vs. 3-DCRT) and extent of nodal irradiation (3-DCRT-IFRT vs. 3-DCRT-ENI) was performed for grade 2 or higher esophagitis or pneumonitis, number of acute hospitalizations, incidence of opioid requirement, percutaneous endoscopic gastrostomy utilization, and percentage weight loss during treatment. Local control and overall survival were analyzed by the Kaplan-Meier method. We identified no significant differences in any measures of acute toxicity by treatment technique or extent of nodal irradiation. There was a trend toward lower rates of grade 2 or higher pneumonitis among IMRT patients compared to 3-DCRT patients (5.4% vs. 23.0%; P = .065). Local control and overall survival were similar between cohorts. Acute and subacute toxicities were similar for patients treated with IMRT and with 3-DCRT with or without ENI, with a nonsignificant trend toward a reduction in pneumonitis with IMRT. Larger studies are needed to better define which patients will benefit from IMRT. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Anal wall sparing effect of an endorectal balloon in 3D conformal and intensity-modulated prostate radiotherapy.

    NARCIS (Netherlands)

    Smeenk, R.J.; Lin, E.N.J.T. van; Kollenburg, P. van; Kunze-Busch, M.C.; Kaanders, J.H.A.M.

    2009-01-01

    BACKGROUND AND PURPOSE: To investigate the anal wall (Awall) sparing effect of an endorectal balloon (ERB) in 3D conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) for prostate cancer. MATERIALS AND METHODS: In 24 patients with localized prostate carcinoma, two planning

  20. Advances in conformal radiotherapy using Monte Carlo Code to design new IMRT and IORT accelerators and interpret CT numbers

    CERN Document Server

    Wysocka-Rabin, A

    2013-01-01

    The introductory chapter of this monograph, which follows this Preface, provides an overview of radiotherapy and treatment planning. The main chapters that follow describe in detail three significant aspects of radiotherapy on which the author has focused her research efforts. Chapter 2 presents studies the author worked on at the German National Cancer Institute (DKFZ) in Heidelberg. These studies applied the Monte Carlo technique to investigate the feasibility of performing Intensity Modulated Radiotherapy (IMRT) by scanning with a narrow photon beam. This approach represents an alternative to techniques that generate beam modulation by absorption, such as MLC, individually-manufactured compensators, and special tomotherapy modulators. The technical realization of this concept required investigation of the influence of various design parameters on the final small photon beam. The photon beam to be scanned should have a diameter of approximately 5 mm at Source Surface Distance (SSD) distance, and the penumbr...

  1. Investigation of the added value of high-energy electrons in intensity-modulated radiotherapy: four clinical cases

    International Nuclear Information System (INIS)

    Korevaar, Erik W.; Huizenga, Henk; Loef, Johan; Stroom, Joep C.; Leer, Jan Willem H.; Brahme, Anders

    2002-01-01

    Purpose: Intensity-modulated radiotherapy (IMRT) with photon beams is currently pursued in many clinics. Theoretically, inclusion of intensity- and energy-modulated high-energy electron beams (15-50 MeV) offers additional possibilities to improve radiotherapy treatments of deep-seated tumors. In this study the added value of high-energy electron beams in IMRT treatments was investigated. Methods and Materials: In a comparative treatment planning study, conventional treatment plans and various types of IMRT plans were constructed for four clinical cases (cancer of the bladder, pancreas, chordoma of the sacrum, and breast). The conventional plans were used for the actual treatment of the patients. The IMRT plans were optimized using the Orbit optimization code (Loef et al., 2000) with a radiobiologic objective function. The IMRT plans were either photon or combined electron and photon beam plans, with or without dose homogeneity constraints assuming standard or increased radiosensitivities of organs at risk. Results: Large improvements in expected treatment outcome are found using IMRT plans compared to conventional plans, but differences in tumor control probability (TCP) and normal tissue complication probabilities (NTCP) values between IMRT plans with and without electrons are small. However, the use of electrons improves the dose-volume histograms for organs at risk, especially at lower dose levels (e.g., 0-40 Gy). Conclusions: This preliminary study indicates that addition of higher energy electrons to IMRT can only marginally improve treatment outcome for the selected cases. The dose-volume histograms of organs at risk show improvements for IMRT with higher energy electrons, which may reduce tumor induction but does not substantially reduce NTCP

  2. Functional Image-Guided Radiotherapy Planning in Respiratory-Gated Intensity-Modulated Radiotherapy for Lung Cancer Patients With Chronic Obstructive Pulmonary Disease

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp [Department of Radiation Oncology, Hiroshima University, Graduate School of Biomedical Sciences, Hiroshima City (Japan); Nishibuchi, Ikuno; Murakami, Yuji; Kenjo, Masahiro; Kaneyasu, Yuko; Nagata, Yasushi [Department of Radiation Oncology, Hiroshima University, Graduate School of Biomedical Sciences, Hiroshima City (Japan)

    2012-03-15

    Purpose: To investigate the incorporation of functional lung image-derived low attenuation area (LAA) based on four-dimensional computed tomography (4D-CT) into respiratory-gated intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT) in treatment planning for lung cancer patients with chronic obstructive pulmonary disease (COPD). Methods and Materials: Eight lung cancer patients with COPD were the subjects of this study. LAA was generated from 4D-CT data sets according to CT values of less than than -860 Hounsfield units (HU) as a threshold. The functional lung image was defined as the area where LAA was excluded from the image of the total lung. Two respiratory-gated radiotherapy plans (70 Gy/35 fractions) were designed and compared in each patient as follows: Plan A was an anatomical IMRT or VMAT plan based on the total lung; Plan F was a functional IMRT or VMAT plan based on the functional lung. Dosimetric parameters (percentage of total lung volume irradiated with {>=}20 Gy [V20], and mean dose of total lung [MLD]) of the two plans were compared. Results: V20 was lower in Plan F than in Plan A (mean 1.5%, p = 0.025 in IMRT, mean 1.6%, p = 0.044 in VMAT) achieved by a reduction in MLD (mean 0.23 Gy, p = 0.083 in IMRT, mean 0.5 Gy, p = 0.042 in VMAT). No differences were noted in target volume coverage and organ-at-risk doses. Conclusions: Functional IGRT planning based on LAA in respiratory-guided IMRT or VMAT appears to be effective in preserving a functional lung in lung cancer patients with COPD.

  3. Stereotactic intensity-modulated radiation therapy (IMRT) and inverse treatment planning for advanced pleural mesothelioma. Feasibility and initial results

    Energy Technology Data Exchange (ETDEWEB)

    Muenter, M.W.; Thilmann, C.; Hof, H.; Debus, J. [Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg (Germany); Nill, S.; Hoess, A.; Partridge, M. [Dept. of Medical Physics, German Cancer Research Center (dkfz), Heidelberg (Germany); Haering, P. [Dept. of Central Dosimetry, German Cancer Research Center (dkfz), Heidelberg (Germany); Manegold, C. [Dept. of Medical Oncology/Internal Medicine, Thoraxklinik Heidelberg gGmbH, Heidelberg (Germany); Wannenmacher, M. [Dept. of Clinical Radiology, Univ. of Heidelberg, Heidelberg (Germany)

    2003-08-01

    Background and Purpose: Complex-shaped malignant pleural mesotheliomas (MPMs) with challenging volumes are extremely difficult to treat by conventional radiotherapy due to tolerance doses of the surrounding normal tissue. In a feasibility study, we evaluated if inversely planned stereotactic intensity-modulated radiation therapy (IMRT) could be applied in the treatment of MPM. Patients and Methods: Eight patients with unresectable lesions were treated after failure of chemotherapy. All patients were positioned using noninvasive patient fixation techniques which can be attached to the applied extracranial stereotactic system. Due to craniocaudal extension of the tumor, it was necessary to develop a special software attached to the inverse planning program KonRad, which can connect two inverse treatment plans and consider the applied dose of the first treatment plan in the area of the matchline of the second treatment plan. Results: Except for one patient, in whom radiotherapy was canceled due to abdominal metastasis, treatment could be completed in all patients and was well tolerated. Median survival after diagnosis was 20 months and after IMRT 6.5 months. Therefore, both the 1-year actuarial overall survival from the start of radiotherapy and the 2-year actuarial overall survival since diagnosis were 28%. IMRT did not result in clinically significant acute side effects. By using the described inverse planning software, over- or underdosage in the region of the field matchline could be prevented. Pure treatment time ranged between 10 and 21 min. Conclusion: This study showed that IMRT is feasible in advanced unresectable MPM. The presented possibilities of stereotactic IMRT in the treatment of MPM will justify the evaluation of IMRT in early-stage pleural mesothelioma combined with chemotherapy in a study protocol, in order to improve the outcome of these patients. Furthermore, dose escalation should be possible by using IMRT. (orig.)

  4. Evaluation of dose coverage to target volume and normal tissue sparing in the adjuvant radiotherapy of gastric cancers: 3D-CRT compared with dynamic IMRT.

    Science.gov (United States)

    Murthy, Kk; Shukeili, Ka; Kumar, Ss; Davis, Ca; Chandran, Rr; Namrata, S

    2010-01-01

    To assess the potential advantage of intensity-modulated radiotherapy (IMRT) over 3D-conformal radiotherapy (3D-CRT) planning in postoperative adjuvant radiotherapy for patients with gastric carcinoma. In a retrospective study, for plan comparison, dose distribution was recalculated in 15 patients treated with 3D-CRT on the contoured structures of same CT images using an IMRT technique. 3D-conformal plans with three fields and four-fields were compared with seven-field dynamic IMRT plans. The different plans were compared by analyzing the dose coverage of planning target volume using TV(95), D(mean), uniformity index, conformity index and homogeneity index parameters. To assess critical organ sparing, D(mean), D(max), dose to one-third and two-third volumes of the OARs and percentage of volumes receiving more than their tolerance doses were compared. The average dose coverage values of PTV with 3F-CRT and 4F-CRT plans were comparable, where as IMRT plans achieved better target coverage(p3D-CRT plans. The doses to the liver and bowel reduced significantly (p3D-CRT plans. For all OARs the percentage of volumes receiving more than their tolerance doses were reduced with the IMRT plans. This study showed that a better target coverage and significant dose reduction to OARs could be achieved with the IMRT plans. The IMRT can be preferred with caution for organ motion. The authors are currently studying organ motion in the upper abdomen to use IMRT for patient treatment.

  5. SU-E-T-309: Dosimetric Comparison of Simultaneous Integrated Boost Treatment Plan Between Intensity Modulated Radiotherapies (IMRTs), Dual Arc Volumetric Modulated Arc Therapy (DA-VMAT) and Single Arc Volumetric Modulated Arc Therapy (SA-VMAT) for Nasopharyngeal Carcinoma (NPC)

    International Nuclear Information System (INIS)

    Sivakumar, R; Janardhan, N; Bhavani, P; Surendran, J; Saranganathan, B; Ibrahim, S; Jhonson, B; Madhuri, B; Anuradha, C

    2015-01-01

    Purpose: To compare the plan quality and performance of Simultaneous Integrated Boost (SIB) Treatment plan between Seven field (7F) and Nine field(9F) Intensity Modulated Radiotherapies and Single Arc (SA) and Dual Arc (DA) Volumetric Modulated Arc Therapy( VMAT). Methods: Retrospective planning study of 16 patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with 7F-IMRT, Single Arc VMAT and Dual Arc VMAT using CMS, Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation done as per Radiation Therapy Oncology Protocols (RTOG 0225&0615). Dose Prescribed as 70Gy to Planning Target Volumes (PTV70) and 61Gy to PTV61 in 33 fraction as a SIB technique. Conformity Index(CI), Homogeneity Index(HI) were used as analysis parameter for Target Volumes as well as Mean dose and Max dose for Organ at Risk(OAR,s).Treatment Delivery Time(min), Monitor unit per fraction (MU/fraction), Patient specific quality assurance were also analysed. Results: A Poor dose coverage and Conformity index (CI) was observed in PTV70 by 7F-IMRT among other techniques. SA-VMAT achieved poor dose coverage in PTV61. No statistical significance difference observed in OAR,s except Spinal cord (P= 0.03) and Right optic nerve (P=0.03). DA-VMAT achieved superior target coverage, higher CI (P =0.02) and Better HI (P=0.03) for PTV70 other techniques (7F-IMRT/9F-IMRT/SA-VMAT). A better dose spare for Parotid glands and spinal cord were seen in DA-VMAT. The average treatment delivery time were 5.82mins, 6.72mins, 3.24mins, 4.3mins for 7F-IMRT, 9F-IMRT, SA-VMAT and DA-VMAT respectively. Significance difference Observed in MU/fr (P <0.001) and Patient quality assurance pass rate were >95% (Gamma analysis (Γ3mm, 3%). Conclusion: DA-VAMT showed better target dose coverage and achieved better or equal performance in sparing OARs among other techniques. SA-VMAT offered least Treatment Time than other techniques but achieved poor target coverage. DA-VMAT offered

  6. SU-E-T-309: Dosimetric Comparison of Simultaneous Integrated Boost Treatment Plan Between Intensity Modulated Radiotherapies (IMRTs), Dual Arc Volumetric Modulated Arc Therapy (DA-VMAT) and Single Arc Volumetric Modulated Arc Therapy (SA-VMAT) for Nasopharyngeal Carcinoma (NPC)

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar, R; Janardhan, N; Bhavani, P; Surendran, J; Saranganathan, B; Ibrahim, S; Jhonson, B; Madhuri, B [Omega Hospitals, Hyderabad, Telangana (India); Anuradha, C [Vit University, Vellore, Tamil Nadu (India)

    2015-06-15

    Purpose: To compare the plan quality and performance of Simultaneous Integrated Boost (SIB) Treatment plan between Seven field (7F) and Nine field(9F) Intensity Modulated Radiotherapies and Single Arc (SA) and Dual Arc (DA) Volumetric Modulated Arc Therapy( VMAT). Methods: Retrospective planning study of 16 patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with 7F-IMRT, Single Arc VMAT and Dual Arc VMAT using CMS, Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation done as per Radiation Therapy Oncology Protocols (RTOG 0225&0615). Dose Prescribed as 70Gy to Planning Target Volumes (PTV70) and 61Gy to PTV61 in 33 fraction as a SIB technique. Conformity Index(CI), Homogeneity Index(HI) were used as analysis parameter for Target Volumes as well as Mean dose and Max dose for Organ at Risk(OAR,s).Treatment Delivery Time(min), Monitor unit per fraction (MU/fraction), Patient specific quality assurance were also analysed. Results: A Poor dose coverage and Conformity index (CI) was observed in PTV70 by 7F-IMRT among other techniques. SA-VMAT achieved poor dose coverage in PTV61. No statistical significance difference observed in OAR,s except Spinal cord (P= 0.03) and Right optic nerve (P=0.03). DA-VMAT achieved superior target coverage, higher CI (P =0.02) and Better HI (P=0.03) for PTV70 other techniques (7F-IMRT/9F-IMRT/SA-VMAT). A better dose spare for Parotid glands and spinal cord were seen in DA-VMAT. The average treatment delivery time were 5.82mins, 6.72mins, 3.24mins, 4.3mins for 7F-IMRT, 9F-IMRT, SA-VMAT and DA-VMAT respectively. Significance difference Observed in MU/fr (P <0.001) and Patient quality assurance pass rate were >95% (Gamma analysis (Γ3mm, 3%). Conclusion: DA-VAMT showed better target dose coverage and achieved better or equal performance in sparing OARs among other techniques. SA-VMAT offered least Treatment Time than other techniques but achieved poor target coverage. DA-VMAT offered

  7. Lhermitte's Sign Developing after IMRT for Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    Dong C. Lim

    2010-01-01

    Full Text Available Background. Lhermitte's sign (LS is a benign form of myelopathy with neck flexion producing an unpleasant electric-shock sensation radiating down the extremities. Although rare, it can occur after head and neck radiotherapy. Results. We report a case of Lhermitte's developing after curative intensity-modulated radiotherapy (IMRT for a patient with locoregionally advanced oropharyngeal cancer. IMRT delivers a conformal dose of radiation in head and neck cancer resulting in a gradient of radiation dose throughout the spinal cord. Using IMRT, more dose is delivered to the anterior spinal cord than the posterior cord. Conclusions. Lhermitte's sign can develop after IMRT for head and neck cancer. We propose an anterior spinal cord structure, the spinothalamic tract to be the target of IMRT-caused LS.

  8. Hippocampal-Sparing Whole-Brain Radiotherapy: A 'How-To' Technique Using Helical Tomotherapy and Linear Accelerator-Based Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Gondi, Vinai; Tolakanahalli, Ranjini; Mehta, Minesh P.; Tewatia, Dinesh; Rowley, Howard; Kuo, John S.; Khuntia, Deepak; Tome, Wolfgang A.

    2010-01-01

    Purpose: Sparing the hippocampus during cranial irradiation poses important technical challenges with respect to contouring and treatment planning. Herein we report our preliminary experience with whole-brain radiotherapy using hippocampal sparing for patients with brain metastases. Methods and Materials: Five anonymous patients previously treated with whole-brain radiotherapy with hippocampal sparing were reviewed. The hippocampus was contoured, and hippocampal avoidance regions were created using a 5-mm volumetric expansion around the hippocampus. Helical tomotherapy and linear accelerator (LINAC)-based intensity-modulated radiotherapy (IMRT) treatment plans were generated for a prescription dose of 30 Gy in 10 fractions. Results: On average, the hippocampal avoidance volume was 3.3 cm 3 , occupying 2.1% of the whole-brain planned target volume. Helical tomotherapy spared the hippocampus, with a median dose of 5.5 Gy and maximum dose of 12.8 Gy. LINAC-based IMRT spared the hippocampus, with a median dose of 7.8 Gy and maximum dose of 15.3 Gy. On a per-fraction basis, mean dose to the hippocampus (normalized to 2-Gy fractions) was reduced by 87% to 0.49 Gy 2 using helical tomotherapy and by 81% to 0.73 Gy 2 using LINAC-based IMRT. Target coverage and homogeneity was acceptable with both IMRT modalities, with differences largely attributed to more rapid dose fall-off with helical tomotherapy. Conclusion: Modern IMRT techniques allow for sparing of the hippocampus with acceptable target coverage and homogeneity. Based on compelling preclinical evidence, a Phase II cooperative group trial has been developed to test the postulated neurocognitive benefit.

  9. Kidney-Sparing Methods for Extended-Field Intensity-Modulated Radiotherapy (EF-IMRT) in Cervical Carcinoma Treatment.

    Science.gov (United States)

    Kunogi, Hiroaki; Yamaguchi, Nanae; Terao, Yasuhisa; Sasai, Keisuke

    2016-01-01

    Coplanar extended-field intensity-modulated radiation therapy (EF-IMRT) targeting the whole-pelvic and para-aortic lymph nodes in patients with advanced cervical cancer results in impaired creatinine clearance. An improvement in renal function cannot be expected unless low-dose (approximately 10 Gy) kidney exposure is reduced. The dosimetric method should be considered during EF-IMRT planning to further reduce low-dose exposure to the kidneys. To assess the usefulness of non-coplanar EF-IMRT with kidney-avoiding beams to spare the kidneys during cervical carcinoma treatment in dosimetric analysis between non-coplanar and coplanar EF-IMRT, we compared the doses of the target organ and organs at risk, including the kidney, in 10 consecutive patients. To estimate the influence of EFRT on renal dysfunction, creatinine clearance values after treatment were also examined in 18 consecutive patients. Of these 18 patients, 10 patients who were included in the dosimetric analysis underwent extended field radiation therapy (EFRT) with concurrent chemotherapy, and eight patients underwent whole-pelvis radiation therapy with concurrent chemotherapy to treat cervical carcinoma between April 2012 and March 2015 at our institution. In the dosimetric analysis, non-coplanar EF-IMRT was effective at reducing low-dose (approximately 10 Gy) exposure to the kidneys, thus maintaining target coverage and sparing other organs at risk, such as the small bowel, rectum, and bladder, compared with coplanar EF-IMRT. Renal function in all 10 patients who underwent EFRT, including coplanar EF-IMRT (with kidney irradiation), was low after treatment, and differed significantly from that of the eight patients who underwent WPRT (no kidney irradiation) 6 months after the first day of treatment (P = 0.005). In conclusion, non-coplanar EF-IMRT should be considered in patients with advanced cervical cancer, particularly in patients with a long life expectancy or with pre-existing renal dysfunction.

  10. Implementation of dosimetric quality control on IMRT and VMAT treatments in radiotherapy using diodes

    International Nuclear Information System (INIS)

    Gonzales, A.; Garcia, B.; Ramirez, J.; Marquina, J.

    2014-08-01

    To implement quality control of IMRT and VMAT treatments Rapid Arc radiotherapy using diode array. Were tested 90 patients with IMRT and VMAT Rapid Arc, comparing the planned dose to the dose administered, used the Map-Check-2 and Arc-Check of Sun Nuclear, they using the gamma factor for calculating and using comparison parameters 3% / 3m m. The statistic shows that the quality controls of the 90 patients analyzed, presented a percentage of diodes that pass the test between 96,7% and 100,0% of the irradiated diodes. Implemented in Clinical ALIADA Oncologia Integral, the method for quality control of IMRT and VMAT treatments Rapid Arc radiotherapy using diode array. (Author)

  11. Toxicity and dosimetric analysis of non-small cell lung cancer patients undergoing radiotherapy with 4DCT and image-guided intensity modulated radiotherapy: a regional centre's experience.

    Science.gov (United States)

    Livingston, Gareth C; Last, Andrew J; Shakespeare, Thomas P; Dwyer, Patrick M; Westhuyzen, Justin; McKay, Michael J; Connors, Lisa; Leader, Stephanie; Greenham, Stuart

    2016-09-01

    For patients receiving radiotherapy for locally advance non-small cell lung cancer (NSCLC), the probability of experiencing severe radiation pneumonitis (RP) appears to rise with an increase in radiation received by the lungs. Intensity modulated radiotherapy (IMRT) provides the ability to reduce planned doses to healthy organs at risk (OAR) and can potentially reduce treatment-related side effects. This study reports toxicity outcomes and provides a dosimetric comparison with three-dimensional conformal radiotherapy (3DCRT). Thirty curative NSCLC patients received radiotherapy using four-dimensional computed tomography and five-field IMRT. All were assessed for early and late toxicity using common terminology criteria for adverse events. All plans were subsequently re-planned using 3DCRT to the same standard as the clinical plans. Dosimetric parameters for lungs, oesophagus, heart and conformity were recorded for comparison between the two techniques. IMRT plans achieved improved high-dose conformity and reduced OAR doses including lung volumes irradiated to 5-20 Gy. One case each of oesophagitis and erythema (3%) were the only Grade 3 toxicities. Rates of Grade 2 oesophagitis were 40%. No cases of Grade 3 RP were recorded and Grade 2 RP rates were as low as 3%. IMRT provides a dosimetric benefit when compared to 3DCRT. While the clinical benefit appears to increase with increasing target size and increasing complexity, IMRT appears preferential to 3DCRT in the treatment of NSCLC.

  12. Intensity modulated radiotherapy (IMRT) with concurrent chemotherapy as definitive treatment of locally advanced esophageal cancer

    International Nuclear Information System (INIS)

    Roeder, Falk; Nicolay, Nils H; Nguyen, Tam; Saleh-Ebrahimi, Ladan; Askoxylakis, Vasilis; Bostel, Tilman; Zwicker, Felix; Debus, Juergen; Timke, Carmen; Huber, Peter E

    2014-01-01

    To report our experience with increased dose intensity-modulated radiation and concurrent systemic chemotherapy as definitive treatment of locally advanced esophageal cancer. We analyzed 27 consecutive patients with histologically proven esophageal cancer, who were treated with increased-dose IMRT as part of their definitive therapy. The majority of patients had T3/4 and/or N1 disease (93%). Squamous cell carcinoma was the dominating histology (81%). IMRT was delivered in step-and-shoot technique in all patients using an integrated boost concept. The boost volume was covered with total doses of 56-60 Gy (single dose 2-2.14 Gy), while regional nodal regions received 50.4 Gy (single dose 1.8 Gy) in 28 fractions. Concurrent systemic therapy was scheduled in all patients and administered in 26 (96%). 17 patients received additional adjuvant systemic therapy. Loco-regional control, progression-free and overall survival as well as acute and late toxicities were retrospectively analyzed. In addition, quality of life was prospectively assessed according to the EORTC QLQs (QLQ-OG25, QLQ-H&N35 and QLQ-C30). Radiotherapy was completed as planned in all but one patient (96%), and 21 patients received more than 80% of the planned concurrent systemic therapy. We observed ten locoregional failures, transferring into actuarial 1-, 2- and 3-year-locoregional control rates of 77%, 65% and 48%. Seven patients developed distant metastases, mainly to the lung (71%). The actuarial 1-, 2- and 3-year-disease free survival rates were 58%, 48% and 36%, and overall survival rates were 82%, 61% and 56%. The concept was well tolerated, both in the clinical objective examination and also according to the subjective answers to the QLQ questionnaire. 14 patients (52%) suffered from at least one acute CTC grade 3/4 toxicity, mostly hematological side effects or dysphagia. Severe late toxicities were reported in 6 patients (22%), mostly esophageal strictures and ulcerations. Severe side effects to

  13. Simultaneous integrated boost intensity-modulated radiotherapy versus 3-dimensional conformal radiotherapy in preoperative concurrent chemoradiotherapy for locally advanced rectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Bong Kyung; Kang, Min Kyul; Kim, Jae Chul [Dept. of Radiation Oncology, Kyungpook National University School of Medicine, Daegu (Korea, Republic of); Kim, Min Young; Choi, Gyu Seog; Kim, Jong Gwang; Kang, Byung Woog; Kim, Hye Jin; Park, Soo Yeun [Kyungpook National University Chilgok Hospital, Kyungpook National University School of Medicine, Daegu (Korea, Republic of)

    2017-09-15

    To evaluate the feasibility of simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) for preoperative concurrent chemoradiotherapy (PCRT) in locally advanced rectal cancer (LARC), by comparing with 3-dimensional conformal radiotherapy (3D-CRT). Patients who were treated with PCRT for LARC from 2015 January to 2016 December were retrospectively enrolled. Total doses of 45 Gy to 50.4 Gy with 3D-CRT or SIB-IMRT were administered concomitantly with 5-fluorouracil plus leucovorin or capecitabine. Surgery was performed 8 weeks after PCRT. Between PCRT and surgery, one cycle of additional chemotherapy was administered. Pathologic tumor responses were compared between SIB-IMRT and 3D-CRT groups. Acute gastrointestinal, genitourinary, hematologic, and skin toxicities were compared between the two groups based on the RTOG toxicity criteria. SIB-IMRT was used in 53 patients, and 3D-CRT in 41 patients. After PCRT, no significant differences were noted in tumor responses, pathologic complete response (9% vs. 7%; p = 1.000), pathologic tumor regression Grade 3 or higher (85% vs. 71%; p = 0.096), and R0 resection (87% vs. 85%; p = 0.843). Grade 2 genitourinary toxicities were significantly lesser in the SIB-IMRT group (8% vs. 24%; p = 0.023), but gastrointestinal toxicities were not different across the two groups. SIB-IMRT showed lower GU toxicity and similar tumor responses when compared with 3D-CRT in PCRT for LARC.

  14. Intensity-modulated radiotherapy for neoadjuvant treatment of gastric cancer

    International Nuclear Information System (INIS)

    Knab, Brian; Rash, Carla; Farrey, Karl; Jani, Ashesh B.

    2006-01-01

    Radiation therapy plays an integral role in the treatment of gastric cancer in the postsurgery setting, the inoperable/palliative setting, and, as in the case of the current report, in the setting of neoadjuvant therapy prior to surgery. Typically, anterior-posterior/posterior-anterior (AP/PA) or 3-field techniques are used. In this report, we explore the use of intensity-modulated radiotherapy (IMRT) treatment in a patient whose care was transferred to our institution after 3-field radiotherapy (RT) was given to a dose of 30 Gy at an outside institution. If the 3-field plan were continued to 50 Gy, the volume of irradiated liver receiving greater than 30 Gy would have been unacceptably high. To deliver the final 20 Gy, an opposed parallel AP/PA plan and an IMRT plan were compared to the initial 3-field technique for coverage of the target volume as well as dose to the kidneys, liver, small bowel, and spinal cord. Comparison of the 3 treatment techniques to deliver the final 20 Gy revealed reduced median and maximum dose to the whole kidney with the IMRT plan. For this 20-Gy boost, the volume of irradiated liver was lower for both the IMRT plan and the AP/PA plan vs. the 3-field plan. Comparing the IMRT boost plan to the AP/PA boost-dose range ( 10 Gy) in comparison to the AP/PA plan. The IMRT boost plan also irradiated a smaller volume of the small bowel compared to both the 3-field plan and the AP/PA plan, and also delivered lower dose to the spinal cord in comparison to the AP/PA plan. Comparison of the composite plans revealed reduced dose to the whole kidney using IMRT. The V20 for the whole kidney volume for the composite IMRT plan was 30% compared to approximately 60% for the composite AP/PA plan. Overall, the dose to the liver receiving greater than 30 Gy was lower for the composite IMRT plan and was well below acceptable limits. In conclusion, our study suggests a dosimetric benefit of IMRT over conventional planning, and suggests an important role for

  15. Cardiac Exposure in the Dynamic Conformal Arc Therapy, Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy of Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Xin Ming

    Full Text Available To retrospectively evaluate the cardiac exposure in three cohorts of lung cancer patients treated with dynamic conformal arc therapy (DCAT, intensity-modulated radiotherapy (IMRT, or volumetric modulated arc therapy (VMAT at our institution in the past seven years.A total of 140 lung cancer patients were included in this institutional review board approved study: 25 treated with DCAT, 70 with IMRT and 45 with VMAT. All plans were generated in a same commercial treatment planning system and have been clinically accepted and delivered. The dose distribution to the heart and the effects of tumor laterality, the irradiated heart volume and the beam-to-heart distance on the cardiac exposure were investigated.The mean dose to the heart among all 140 plans was 4.5 Gy. Specifically, the heart received on average 2.3, 5.2 and 4.6 Gy in the DCAT, IMRT and VMAT plans, respectively. The mean heart doses for the left and right lung tumors were 4.1 and 4.8 Gy, respectively. No patients died with evidence of cardiac disease. Three patients (2% with preexisting cardiac condition developed cardiac disease after treatment. Furthermore, the cardiac exposure was found to increase linearly with the irradiated heart volume while decreasing exponentially with the beam-to-heart distance.Compared to old technologies for lung cancer treatment, modern radiotherapy treatment modalities demonstrated better heart sparing. But the heart dose in lung cancer radiotherapy is still higher than that in the radiotherapy of breast cancer and Hodgkin's disease where cardiac complications have been extensively studied. With strong correlations of mean heart dose with beam-to-heart distance and irradiated heart volume, cautions should be exercised to avoid long-term cardiac toxicity in the lung cancer patients undergoing radiotherapy.

  16. IMRT and 3D conformal radiotherapy with or without elective nodal irradiation in locally advanced NSCLC: A direct comparison of PET-based treatment planning.

    Science.gov (United States)

    Fleckenstein, Jochen; Kremp, Katharina; Kremp, Stephanie; Palm, Jan; Rübe, Christian

    2016-02-01

    The potential of intensity-modulated radiation therapy (IMRT) as opposed to three-dimensional conformal radiotherapy (3D-CRT) is analyzed for two different concepts of fluorodeoxyglucose positron emission tomography (FDG PET)-based target volume delineation in locally advanced non-small cell lung cancer (LA-NSCLC): involved-field radiotherapy (IF-RT) vs. elective nodal irradiation (ENI). Treatment planning was performed for 41 patients with LA-NSCLC, using four different planning approaches (3D-CRT-IF, 3D-CRT-ENI, IMRT-IF, IMRT-ENI). ENI included a boost irradiation after 50 Gy. For each plan, maximum dose escalation was calculated based on prespecified normal tissue constraints. The maximum prescription dose (PD), tumor control probability (TCP), conformal indices (CI), and normal tissue complication probabilities (NTCP) were analyzed. IMRT resulted in statistically significant higher prescription doses for both target volume concepts as compared with 3D-CRT (ENI: 68.4 vs. 60.9 Gy, p ENI, there was a considerable theoretical increase in TCP (IMRT: 27.3 vs. 17.7 %, p ENI: 12.3 vs. 30.9 % p < 0.0001; IF: 15.9 vs. 24.1 %; p < 0.001). The IMRT technique and IF target volume delineation allow a significant dose escalation and an increase in TCP. IMRT results in an improved sparing of OARs as compared with 3D-CRT at equivalent dose levels.

  17. Nasopharyngeal Carcinoma Treated with Precision-Oriented Radiation Therapy Techniques Including Intensity-Modulated Radiotherapy: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Wen-Shan Liu

    2004-02-01

    Full Text Available This paper reports preliminary results with intensity-modulated radiotherapy (IMRT in nasopharyngeal carcinoma (NPC. Between August 2000 and May 2001, we treated 19 patients with NPC using IMRT. Twelve patients had stage I-II disease and seven had stage III-IV disease. Six patients received 9.0-19.8 Gy three-dimensional conformal radiotherapy (3D-CRT before IMRT and 18 patients received a brachytherapy boost after IMRT. The mean follow-up time was 13.0 months. All patients with stage II-IV disease except one received two cycles of chemoradiotherapy with cisplatin and 5-fluorouracil (5-FU during radiotherapy, followed by two to four cycles of chemotherapy after radiotherapy. Tumor response was assessed using clinical examination and computerized tomography or magnetic resonance imaging. The mean doses administered to the gross tumor volume and clinical tumor volume were 70.9 Gy and 63.2 Gy, respectively. The mean doses administered to the right and left parotid glands were 38.1 Gy and 38.6 Gy, respectively. All 19 patients had a complete response of primary and lymph node disease. Grade III mucositis developed during chemoradiotherapy in 15 patients (79%. In addition, clinical grade I xerostomia was recorded in nine patients, grade II in nine, and grade III in one. This study demonstrated that 3D-CRT, IMRT, intracavitary brachytherapy, and chemotherapy are effective and safe methods to treat NPC. Although IMRT treatment spared parotid gland function, its efficacy may be significantly influenced by disease stage and location of the neck lymph nodes. More cases and a longer follow-up to assess survival and complications are planned.

  18. Quality Assurance Analysis of a Large Multicenter Practice: Does Increased Complexity of Intensity-Modulated Radiotherapy Lead to Increased Error Frequency?

    International Nuclear Information System (INIS)

    Olson, Adam C.; Wegner, Rodney E.; Scicutella, Carol; Heron, Dwight E.; Greenberger, Joel S.; Huq, M. Saiful; Bednarz, Gregory; Flickinger, John C.

    2012-01-01

    Purpose: Error reduction is an important concern in clinical medicine. Intensity-modulated radiotherapy (IMRT) is an important advancement in radiation oncology that increases the complexity of treatment, potentially increasing the error risk. We studied the frequency and severity of errors in a large multicenter practice to ascertain the impact of quality improvement interventions over time, IMRT, and type of practice. Methods and Materials: We analyzed prospective data from three academic and 16 community practice sites with 24,775 courses of radiotherapy (9,210 IMRT courses and 15,565 non-IMRT) between January 2006 and December 2009. All IMRT treatment was performed using one centralized dose planning center for all sites. Results: We prospectively identified various errors or potential errors in 0.14 % vs. 0.40 % of the IMRT vs. non-IMRT courses (13/9,210 vs. 62/15,565, p = 0.0004) and excluding potential errors: 0.03 % for IMRT vs. 0.21% for non-IMRT. We developed the Clinical Radiotherapy Error Severity Scale (CRESS) to classify error severity from 1 to 10, with 1 to 3 for potential or completely correctable errors, 4 to 5 for dose variations 5%. Multivariate analyses of CRESS values, severity >4, and any error (including potential) correlated significantly reduced errors with IMRT (p = 0.0001–0.0024) but found no significant difference between the academic and community practice sites and no change in error frequency over time despite implementation of 39 system-wide policy changes by the centralized quality improvement committee. Conclusions: Despite the increase in complexity with IMRT compared with conventional radiotherapy, it can be delivered with reduced error frequency.

  19. Minimising contralateral breast dose in post-mastectomy intensity-modulated radiotherapy by incorporating conformal electron irradiation

    NARCIS (Netherlands)

    van der Laan, Hans Paul; Korevaar, Erik W; Dolsma, Willemtje; Maduro, John H; Langendijk, Johannes A

    PURPOSE: To assess the potential benefit of incorporating conformal electron irradiation in intensity-modulated radiotherapy (IMRT) for loco-regional post-mastectomy RT. PATIENTS AND METHODS: Ten consecutive patients that underwent left-sided mastectomy were selected for this comparative planning

  20. Stereotactic IMRT using a MMLC

    International Nuclear Information System (INIS)

    Hoban, P.; Short, R.; Biggs, D.; Rose, A.; Smee, R.; Schneider, M.

    2001-01-01

    Full text: The leaf width of the multileaf collimator (MLC) used for intensity modulated radiotherapy (IMRT ) largely determines the resolution of the intensity maps that define the entire profile of each beam. In turn it is this resolution, and consequently the achievable degree of beam modulation, that determines the ability to conform the 3D dose distribution to complex target volumes. As such, the leaf width is of more importance than in fixed-field MLC treatments where only the beam edges are affected.A Radionics micro-multileaf collimator (MMLC) with 4 mm leaf width, attached to a Siemens Primus linear accelerator, is in use for stereotactic IMRT at PbWH. Treatment planning is performed with the XPlan system including an integrated IMRT module. Cases treated have so far been with conventional fractionation, including both malignant and benign cranial lesions. Meningiomas in particular often require a complex dose distribution because of their en-plaque nature and/or proximity to the brainstem. Stereotactic localisation and fixation is with the Gill-Thomas-Cosman head-ring or Head and Neck localiser. Cases are typically planned both for fixed-field treatment and IMRT, with IMRT being used if significant benefit is seen. IMRT treatment with the Siemens MLC is also an option. A quality assurance system has been set up, including a flowchart/checklist and phantom dosimetry using TLDs. As expected, treatment plans show IMRT with the MMLC to consistently be the best option dosimetrically. In particular, for a given target coverage there is always better sparing of nearby organs at risk (OARs) with MMLC rather than MLC-based IMRT. Adjustments such as the inclusion of a margin around the target volume or an increase in the penalty for target underdosage improve coverage for MLC plans but generally at the expense of increased OAR involvement. MMLC IMRT treatments commonly require 30-50 fields and can be delivered in approximately 10-15 minutes using an autosequence

  1. Volumetric Modulated Arc Therapy for Spine Radiosurgery: Superior Treatment Planning and Delivery Compared to Static Beam Intensity Modulated Radiotherapy.

    Science.gov (United States)

    Zach, Leor; Tsvang, Lev; Alezra, Dror; Ben Ayun, Maoz; Harel, Ran

    2016-01-01

    Spine stereotactic radiosurgery (SRS) delivers an accurate and efficient high radiation dose to vertebral metastases in 1-5 fractions. We aimed to compare volumetric modulated arc therapy (VMAT) to static beam intensity modulated radiotherapy (IMRT) for spine SRS. Ten spine lesions of previously treated SRS patients were planned retrospectively using both IMRT and VMAT with a prescribed dose of 16 Gy to 100% of the planning target volume (PTV). The plans were compared for conformity, homogeneity, treatment delivery time, and safety (spinal cord dose). All evaluated parameters favored the VMAT plan over the IMRT plans. D min in the IMRT was significantly lower than in the VMAT plan (7.65 Gy/10.88 Gy, p DSC) was found to be significantly better for the VMAT plans compared to the IMRT plans (0.77/0.58, resp., p  value < 0.01), and an almost 50% reduction in the net treatment time was calculated for the VMAT compared to the IMRT plans (6.73 min/12.96 min, p < 0.001). In our report, VMAT provides better conformity, homogeneity, and safety profile. The shorter treatment time is a major advantage and not only provides convenience to the painful patient but also contributes to the precision of this high dose radiation therapy.

  2. Bladder radiotherapy treatment: A retrospective comparison of 3-dimensional conformal radiotherapy, intensity-modulated radiation therapy, and volumetric-modulated arc therapy plans

    Energy Technology Data Exchange (ETDEWEB)

    Pasciuti, Katia, E-mail: k.pasciuti@virgilio.it [Department of Radiotherapy Physics, Royal Free Hospital, London (United Kingdom); Kuthpady, Shrinivas [Department of Radiotherapy, Royal Free Hospital, London (United Kingdom); Anderson, Anne; Best, Bronagh [Department of Radiotherapy Physics, Royal Free Hospital, London (United Kingdom); Waqar, Saleem; Chowdhury, Subhra [Department of Radiotherapy, Royal Free Hospital, London (United Kingdom)

    2017-04-01

    To examine tumor's and organ's response when different radiotherapy plan techniques are used. Ten patients with confirmed bladder tumors were first treated using 3-dimensional conformal radiotherapy (3DCRT) and subsequently the original plans were re-optimized using the intensity-modulated radiation treatment (IMRT) and volumetric-modulated arc therapy (VMAT)-techniques. Targets coverage in terms of conformity and homogeneity index, TCP, and organs' dose limits, including integral dose analysis were evaluated. In addition, MUs and treatment delivery times were compared. Better minimum target coverage (1.3%) was observed in VMAT plans when compared to 3DCRT and IMRT ones confirmed by a statistically significant conformity index (CI) results. Large differences were observed among techniques in integral dose results of the femoral heads. Even if no statistically significant differences were reported in rectum and tissue, a large amount of energy deposition was observed in 3DCRT plans. In any case, VMAT plans provided better organs and tissue sparing confirmed also by the normal tissue complication probability (NTCP) analysis as well as a better tumor control probability (TCP) result. Our analysis showed better overall results in planning using VMAT techniques. Furthermore, a total time reduction in treatment observed among techniques including gantry and collimator rotation could encourage using the more recent one, reducing target movements and patient discomfort.

  3. Limited benefit of inversely optimised intensity modulation in breast conserving radiotherapy with simultaneously integrated boost

    International Nuclear Information System (INIS)

    Laan, Hans Paul van der; Dolsma, Wil V.; Schilstra, Cornelis; Korevaar, Erik W.; Bock, Geertruida H. de; Maduro, John H.; Langendijk, Johannes A.

    2010-01-01

    Background and purpose: To examine whether in breast-conserving radiotherapy (RT) with simultaneously integrated boost (SIB), application of inversely planned intensity-modulated radiotherapy (IMRT-SIB) instead of three-dimensional RT (3D-CRT-SIB) has benefits that justify the additional costs, and to evaluate whether a potential benefit of IMRT-SIB depends on specific patient characteristics. Material and methods: 3D-CRT-SIB and various IMRT-SIB treatment plans were constructed and optimised for 30 patients with early stage left-sided breast cancer. Coverage of planning target volumes (PTVs) and dose delivered to organs at risk (OARs) were determined for each plan. Overlap between heart and breast PTV (OHB), size of breast and boost PTVs and boost location were examined in their ability to identify patients that might benefit from IMRT-SIB. Results: All plans had adequate PTV coverage. IMRT-SIB generally reduced dose levels delivered to heart, lungs, and normal breast tissue relative to 3D-CRT-SIB. However, IMRT-SIB benefit differed per patient. For many patients, comparable results were obtained with 3D-CRT-SIB, while patients with OHB > 1.4 cm and a relatively large boost PTV volume (>125 cm 3 ) gained most from the use of IMRT-SIB. Conclusions: In breast-conserving RT, results obtained with 3D-CRT-SIB and IMRT-SIB are generally comparable. Patient characteristics could be used to identify patients that are most likely to benefit from IMRT-SIB.

  4. Anal wall sparing effect of an endorectal balloon in 3D conformal and intensity-modulated prostate radiotherapy.

    Science.gov (United States)

    Smeenk, Robert Jan; van Lin, Emile N J Th; van Kollenburg, Peter; Kunze-Busch, Martina; Kaanders, Johannes H A M

    2009-10-01

    To investigate the anal wall (Awall) sparing effect of an endorectal balloon (ERB) in 3D conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) for prostate cancer. In 24 patients with localized prostate carcinoma, two planning CT-scans were performed: with and without ERB. A prostate planning target volume (PTV) was defined, and the Awall was delineated, using two different methods. Three-field and 4-field 3D-CRT plans, and IMRT plans were generated with a prescription dose of 78Gy. In 144 treatment plans, the minimum dose (D(min)), maximum dose (D(max)), and mean dose (D(mean)) to the Awall were calculated, as well as the Awall volumes exposed to doses ranging from >or=20Gy to >or=70Gy (V(20)-V(70), respectively). In the 3D-CRT plans, an ERB significantly reduced D(mean), D(max), and V(30)-V(70). For IMRT all investigated dose parameters were significantly reduced by the ERB. The absolute reduction of D(mean) was 12Gy in 3D-CRT and was 7.5Gy in IMRT for both methods of Awall delineation. Application of an ERB showed a significant Awall sparing effect in both 3D-CRT and IMRT. This may lead to reduced late anal toxicity in prostate radiotherapy.

  5. SU-E-T-368: Evaluating Dosimetric Outcome of Modulated Photon Radiotherapy (XMRT) Optimization for Head and Neck Patients

    Energy Technology Data Exchange (ETDEWEB)

    McGeachy, P; Villarreal-Barajas, JE; Khan, R [University of Calgary, Calgary, AB (Canada); Tom Baker Cancer Centre, Calgary, AB (Canada); Zinchenko, Y [University of Calgary, Calgary, AB (Canada)

    2015-06-15

    Purpose: The dosimetric outcome of optimized treatment plans obtained by modulating the photon beamlet energy and fluence on a small cohort of four Head and Neck (H and N) patients was investigated. This novel optimization technique is denoted XMRT for modulated photon radiotherapy. The dosimetric plans from XMRT for H and N treatment were compared to conventional, 6 MV intensity modulated radiotherapy (IMRT) optimization plans. Methods: An arrangement of two non-coplanar and five coplanar beams was used for all four H and N patients. Both XMRT and IMRT were subject to the same optimization algorithm, with XMRT optimization allowing both 6 and 18 MV beamlets while IMRT was restricted to 6 MV only. The optimization algorithm was based on a linear programming approach with partial-volume constraints implemented via the conditional value-at-risk method. H and N constraints were based off of those mentioned in the Radiation Therapy Oncology Group 1016 protocol. XMRT and IMRT solutions were assessed using metrics suggested by International Commission on Radiation Units and Measurements report 83. The Gurobi solver was used in conjunction with the CVX package to solve each optimization problem. Dose calculations and analysis were done in CERR using Monte Carlo dose calculation with VMC{sub ++}. Results: Both XMRT and IMRT solutions met all clinical criteria. Trade-offs were observed between improved dose uniformity to the primary target volume (PTV1) and increased dose to some of the surrounding healthy organs for XMRT compared to IMRT. On average, IMRT improved dose to the contralateral parotid gland and spinal cord while XMRT improved dose to the brainstem and mandible. Conclusion: Bi-energy XMRT optimization for H and N patients provides benefits in terms of improved dose uniformity to the primary target and reduced dose to some healthy structures, at the expense of increased dose to other healthy structures when compared with IMRT.

  6. A dosimetric comparison of two-phase adaptive intensity-modulated radiotherapy for locally advanced nasopharyngeal cancer

    OpenAIRE

    Chitapanarux, Imjai; Chomprasert, Kittisak; Nobnaop, Wannapa; Wanwilairat, Somsak; Tharavichitkul, Ekasit; Jakrabhandu, Somvilai; Onchan, Wimrak; Traisathit, Patrinee; Van Gestel, Dirk

    2015-01-01

    The purpose of this investigation was to evaluate the potential dosimetric benefits of a two-phase adaptive intensity-modulated radiotherapy (IMRT) protocol for patients with locally advanced nasopharyngeal cancer (NPC). A total of 17 patients with locally advanced NPC treated with IMRT had a second computed tomography (CT) scan after 17 fractions in order to apply and continue the treatment with an adapted plan after 20 fractions. To simulate the situation without adaptation, a hybrid plan w...

  7. Dosimetric comparison of the related parameters between simultaneous integrated boost intensity-modulated radiotherapy and sequential boost conformal radiotherapy for postoperative malignant glioma of the brain

    International Nuclear Information System (INIS)

    Shao Qian; Lu Jie; Li Jianbin; Sun Tao; Bai Tong; Liu Tonghai; Yin Yong

    2011-01-01

    Objective: To compare the dosimetric of different parameter of simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) with sequential boost conformal radiotherapy (SB-CRT) for postoperative malignant glioma of the brain. Methods: Ten patients with malignant glioma of brain were selected to study. Each patient was simulated all by CT and MRI, and the imagings of CT and MRI were all sent to Pinnacle 3 planning system. The fusion technology with MR-CT imaging was used on Pinnacle 3 planning system. The target volume was delineated and defined based on MRI. The postoperative residual lesion and resection cavity were defined as gross tumor volume (GTV) and expanded GTV some scope was defined as clinical target volume (CTV). The margins of GTV expanded 10 mm and 25 mm were defined as CTV1 and CTV2 respectively. CTV1 and CTV2 all enlarged 5 mm were defined as PTV1 and PTV2 respectively. The plans of simultaneous integrated boost intensity-modulated radiotherapy and sequential boost conformal radiotherapy were respectively designed for each patient using Pinnacle 3 planning system and the dosimetric of different parameter was compared. The prescribe dose of SIB-IMRT was PTV1: 62.5 Gy/25 f, PTV2: 50.0 Gy/25 f; and SB-CRT was PTV1: 66.0 Gy/33 f, PTV2: 50.0 Gy/25 f. The dosimetries of different parameters of SIB-IMRT and SB-CRT were compared by using Paired-Samples T Test. Results: The maximum and mean dose of PTV1, PTV2, and brainstem were of significant difference (P 0.05). Conclusion: The SIB-IMRT plan is better than the SB-CRT plan. The CI and HI of SIB-IMRT are superior to SB-CRT. At the same time, it can preserve the important organs such as brainstem and reduce the mean dose of whole brain. On the other hand it can shorten the total period of therapy time. (authors)

  8. Photon energy-modulated radiotherapy: Monte Carlo simulation and treatment planning study

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Min; Kim, Jung-in; Heon Choi, Chang; Chie, Eui Kyu; Kim, Il Han; Ye, Sung-Joon [Interdiciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, 110-744, Korea and Department of Radiation Oncology, Seoul National University Hospital, Seoul, 110-744 (Korea, Republic of); Interdiciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, 110-744 (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul, 110-744 (Korea, Republic of); Interdiciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, 110-744 (Korea, Republic of) and Department of Radiation Oncology, Seoul National University Hospital, Seoul, 110-744 (Korea, Republic of); Interdiciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, 110-744 (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul, 110-744 (Korea, Republic of) and Department of Intelligent Convergence Systems, Seoul National University, Seoul, 151-742 (Korea, Republic of)

    2012-03-15

    Purpose: To demonstrate the feasibility of photon energy-modulated radiotherapy during beam-on time. Methods: A cylindrical device made of aluminum was conceptually proposed as an energy modulator. The frame of the device was connected with 20 tubes through which mercury could be injected or drained to adjust the thickness of mercury along the beam axis. In Monte Carlo (MC) simulations, a flattening filter of 6 or 10 MV linac was replaced with the device. The thickness of mercury inside the device varied from 0 to 40 mm at the field sizes of 5 x 5 cm{sup 2} (FS5), 10 x 10 cm{sup 2} (FS10), and 20 x 20 cm{sup 2} (FS20). At least 5 billion histories were followed for each simulation to create phase space files at 100 cm source to surface distance (SSD). In-water beam data were acquired by additional MC simulations using the above phase space files. A treatment planning system (TPS) was commissioned to generate a virtual machine using the MC-generated beam data. Intensity modulated radiation therapy (IMRT) plans for six clinical cases were generated using conventional 6 MV, 6 MV flattening filter free, and energy-modulated photon beams of the virtual machine. Results: As increasing the thickness of mercury, Percentage depth doses (PDD) of modulated 6 and 10 MV after the depth of dose maximum were continuously increased. The amount of PDD increase at the depth of 10 and 20 cm for modulated 6 MV was 4.8% and 5.2% at FS5, 3.9% and 5.0% at FS10 and 3.2%-4.9% at FS20 as increasing the thickness of mercury from 0 to 20 mm. The same for modulated 10 MV was 4.5% and 5.0% at FS5, 3.8% and 4.7% at FS10 and 4.1% and 4.8% at FS20 as increasing the thickness of mercury from 0 to 25 mm. The outputs of modulated 6 MV with 20 mm mercury and of modulated 10 MV with 25 mm mercury were reduced into 30%, and 56% of conventional linac, respectively. The energy-modulated IMRT plans had less integral doses than 6 MV IMRT or 6 MV flattening filter free plans for tumors located in the

  9. A comparison of swallowing dysfunction after three-dimensional conformal and intensity-modulated radiotherapy. A systematic review by the Italian Head and Neck Radiotherapy Study Group

    International Nuclear Information System (INIS)

    Ursino, Stefano; Morganti, Riccardo; Cristaudo, Agostino; Paiar, Fabiola; D'Angelo, Elisa; Lohr, Frank; Mazzola, Rosario; Merlotti, Anna; Russi, Elvio Grazioso; Musio, Daniela; Alterio, Daniela; Bacigalupo, Almalina

    2017-01-01

    Dysphagia is one of the most important treatment-related side effects in head and neck cancer (HNC), as it can lead to severe life-threating complications such as aspiration pneumonia and malnutrition. Intensity-modulated radiotherapy (IMRT) could reduce swallowing dysfunction by producing a concave dose distribution and reducing doses to the swallowing-related organs at risk (SWOARs). The aim of this study was to review the current literature in order to compare swallowing outcomes between IMRT and three-dimensional conformal radiotherapy (3DCRT). A search was conducted in the PubMed and Embase databases to identify studies on swallowing outcomes, both clinically and/or instrumentally assessed, after 3DCRT and IMRT. Dysphagia-specific quality of life and objective instrumental data are summarized and discussed. A total of 262 papers were retrieved from the searched databases. An additional 23 papers were retrieved by hand-searching the reference lists. Ultimately, 22 papers were identified which discussed swallowing outcomes after 3DCRT and IMRT for HNC. No outcomes from randomized trials were identified. Despite several methodological limitations, reports from the current literature seem to suggest better swallowing outcomes with IMRT compared to 3DCRT. Further improvements are likely to result from the increased use of IMRT plans optimized for SWOAR sparing. (orig.) [de

  10. Reduced Acute Bowel Toxicity in Patients Treated With Intensity-Modulated Radiotherapy for Rectal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Samuelian, Jason M. [Department of Radiation Oncology, Mayo Clinic, Scottsdale, AZ (United States); Callister, Matthew D., E-mail: Callister.matthew@mayo.edu [Department of Radiation Oncology, Mayo Clinic, Scottsdale, AZ (United States); Ashman, Jonathan B. [Department of Radiation Oncology, Mayo Clinic, Scottsdale, AZ (United States); Young-Fadok, Tonia M. [Division of Colorectal Surgery, Mayo Clinic, Scottsdale, AZ (United States); Borad, Mitesh J. [Division of Hematology-Oncology, Mayo Clinic, Scottsdale, AZ (United States); Gunderson, Leonard L. [Department of Radiation Oncology, Mayo Clinic, Scottsdale, AZ (United States)

    2012-04-01

    Purpose: We have previously shown that intensity-modulated radiotherapy (IMRT) can reduce dose to small bowel, bladder, and bone marrow compared with three-field conventional radiotherapy (CRT) technique in the treatment of rectal cancer. The purpose of this study was to review our experience using IMRT to treat rectal cancer and report patient clinical outcomes. Methods and Materials: A retrospective review was conducted of patients with rectal cancer who were treated at Mayo Clinic Arizona with pelvic radiotherapy (RT). Data regarding patient and tumor characteristics, treatment, acute toxicity according to the Common Terminology Criteria for Adverse Events v 3.0, tumor response, and perioperative morbidity were collected. Results: From 2004 to August 2009, 92 consecutive patients were treated. Sixty-one (66%) patients were treated with CRT, and 31 (34%) patients were treated with IMRT. All but 2 patients received concurrent chemotherapy. There was no significant difference in median dose (50.4 Gy, CRT; 50 Gy, IMRT), preoperative vs. postoperative treatment, type of concurrent chemotherapy, or history of previous pelvic RT between the CRT and IMRT patient groups. Patients who received IMRT had significantly less gastrointestinal (GI) toxicity. Sixty-two percent of patients undergoing CRT experienced {>=}Grade 2 acute GI side effects, compared with 32% among IMRT patients (p = 0.006). The reduction in overall GI toxicity was attributable to fewer symptoms from the lower GI tract. Among CRT patients, {>=}Grade 2 diarrhea and enteritis was experienced among 48% and 30% of patients, respectively, compared with 23% (p = 0.02) and 10% (p = 0.015) among IMRT patients. There was no significant difference in hematologic or genitourinary acute toxicity between groups. In addition, pathologic complete response rates and postoperative morbidity between treatment groups did not differ significantly. Conclusions: In the management of rectal cancer, IMRT is associated with a

  11. Reduced Acute Bowel Toxicity in Patients Treated With Intensity-Modulated Radiotherapy for Rectal Cancer

    International Nuclear Information System (INIS)

    Samuelian, Jason M.; Callister, Matthew D.; Ashman, Jonathan B.; Young-Fadok, Tonia M.; Borad, Mitesh J.; Gunderson, Leonard L.

    2012-01-01

    Purpose: We have previously shown that intensity-modulated radiotherapy (IMRT) can reduce dose to small bowel, bladder, and bone marrow compared with three-field conventional radiotherapy (CRT) technique in the treatment of rectal cancer. The purpose of this study was to review our experience using IMRT to treat rectal cancer and report patient clinical outcomes. Methods and Materials: A retrospective review was conducted of patients with rectal cancer who were treated at Mayo Clinic Arizona with pelvic radiotherapy (RT). Data regarding patient and tumor characteristics, treatment, acute toxicity according to the Common Terminology Criteria for Adverse Events v 3.0, tumor response, and perioperative morbidity were collected. Results: From 2004 to August 2009, 92 consecutive patients were treated. Sixty-one (66%) patients were treated with CRT, and 31 (34%) patients were treated with IMRT. All but 2 patients received concurrent chemotherapy. There was no significant difference in median dose (50.4 Gy, CRT; 50 Gy, IMRT), preoperative vs. postoperative treatment, type of concurrent chemotherapy, or history of previous pelvic RT between the CRT and IMRT patient groups. Patients who received IMRT had significantly less gastrointestinal (GI) toxicity. Sixty-two percent of patients undergoing CRT experienced ≥Grade 2 acute GI side effects, compared with 32% among IMRT patients (p = 0.006). The reduction in overall GI toxicity was attributable to fewer symptoms from the lower GI tract. Among CRT patients, ≥Grade 2 diarrhea and enteritis was experienced among 48% and 30% of patients, respectively, compared with 23% (p = 0.02) and 10% (p = 0.015) among IMRT patients. There was no significant difference in hematologic or genitourinary acute toxicity between groups. In addition, pathologic complete response rates and postoperative morbidity between treatment groups did not differ significantly. Conclusions: In the management of rectal cancer, IMRT is associated with a

  12. Can Intensity-Modulated Radiotherapy Preserve Oral Health-Related Quality of Life of Nasopharyngeal Carcinoma Patients?

    International Nuclear Information System (INIS)

    Pow, Edmond H.N.; Kwong, Dora L.W.; Sham, Jonathan S.T.; Lee, Victor H.F.; Ng, Sherry C.Y.

    2012-01-01

    Purpose: To investigate the changes in salivary function and oral health-related quality of life for patients with nasopharyngeal carcinoma treated by intensity-modulated radiotherapy (IMRT). Methods and Materials: A total of 57 patients with early-stage nasopharyngeal carcinoma received IMRT. The parotid and whole saliva flow was measured, and the Medical Outcomes Study 36-item short form, European Organization for Research and Treatment of Cancer Quality of Life questionnaire-C30, European Organization for Research and Treatment of Cancer Quality of Life questionnaire 35-item head-and-neck module, and Oral Health Impact Profile questionnaires were completed at baseline and 2, 6, 12, 18, and 24 months after IMRT. Results: Parotid saliva flow recovered fully after 1 year and maintained. Whole saliva flow recovered partially to 40% of baseline. A general trend of deterioration in most quality of life scales was observed after IMRT, followed by gradual recovery. Persistent oral-related symptoms were found 2 years after treatment. Conclusion: IMRT for early-stage nasopharyngeal carcinoma could only partially preserve the whole salivary function and oral health-related quality of life.

  13. Can Intensity-Modulated Radiotherapy Preserve Oral Health-Related Quality of Life of Nasopharyngeal Carcinoma Patients?

    Energy Technology Data Exchange (ETDEWEB)

    Pow, Edmond H.N., E-mail: ehnpow@hku.hk [Oral Rehabilitation, University of Hong Kong Faculty of Dentistry, Hong Kong Special Administrative Region (China); Kwong, Dora L.W.; Sham, Jonathan S.T.; Lee, Victor H.F.; Ng, Sherry C.Y. [Department of Clinical Oncology, University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong Special Administrative Region (Hong Kong)

    2012-06-01

    Purpose: To investigate the changes in salivary function and oral health-related quality of life for patients with nasopharyngeal carcinoma treated by intensity-modulated radiotherapy (IMRT). Methods and Materials: A total of 57 patients with early-stage nasopharyngeal carcinoma received IMRT. The parotid and whole saliva flow was measured, and the Medical Outcomes Study 36-item short form, European Organization for Research and Treatment of Cancer Quality of Life questionnaire-C30, European Organization for Research and Treatment of Cancer Quality of Life questionnaire 35-item head-and-neck module, and Oral Health Impact Profile questionnaires were completed at baseline and 2, 6, 12, 18, and 24 months after IMRT. Results: Parotid saliva flow recovered fully after 1 year and maintained. Whole saliva flow recovered partially to 40% of baseline. A general trend of deterioration in most quality of life scales was observed after IMRT, followed by gradual recovery. Persistent oral-related symptoms were found 2 years after treatment. Conclusion: IMRT for early-stage nasopharyngeal carcinoma could only partially preserve the whole salivary function and oral health-related quality of life.

  14. Optimisation of radiotherapy for carcinoma of the parotid gland: a comparison of conventional, three-dimensional conformal, and intensity-modulated techniques

    International Nuclear Information System (INIS)

    Nutting, Christopher M.; Rowbottom, Carl G.; Cosgrove, Vivian P.; Henk, J. Michael; Dearnaley, David P.; Robinson, Martin H.; Conway, John; Webb, Steve

    2001-01-01

    Background and purpose: To compare external beam radiotherapy techniques for parotid gland tumours using conventional radiotherapy (RT), three-dimensional conformal radiotherapy (3DCRT), and intensity-modulated radiotherapy (IMRT). To optimise the IMRT techniques, and to produce an IMRT class solution. Materials and methods: The planning target volume (PTV), contra-lateral parotid gland, oral cavity, brain-stem, brain and cochlea were outlined on CT planning scans of six patients with parotid gland tumours. Optimised conventional RT and 3DCRT plans were created and compared with inverse-planned IMRT dose distributions using dose-volume histograms. The aim was to reduce the radiation dose to organs at risk and improve the PTV dose distribution. A beam-direction optimisation algorithm was used to improve the dose distribution of the IMRT plans, and a class solution for parotid gland IMRT was investigated. Results: 3DCRT plans produced an equivalent PTV irradiation and reduced the dose to the cochlea, oral cavity, brain, and other normal tissues compared with conventional RT. IMRT further reduced the radiation dose to the cochlea and oral cavity compared with 3DCRT. For nine- and seven-field IMRT techniques, there was an increase in low-dose radiation to non-target tissue and the contra-lateral parotid gland. IMRT plans produced using three to five optimised intensity-modulated beam directions maintained the advantages of the more complex IMRT plans, and reduced the contra-lateral parotid gland dose to acceptable levels. Three- and four-field non-coplanar beam arrangements increased the volume of brain irradiated, and increased PTV dose inhomogeneity. A four-field class solution consisting of paired ipsilateral coplanar anterior and posterior oblique beams (15, 45, 145 and 170 degree sign from the anterior plane) was developed which maintained the benefits without the complexity of individual patient optimisation. Conclusions: For patients with parotid gland tumours

  15. Prostate cancer treated with image-guided helical TomoTherapy {sup registered} and image-guided LINAC-IMRT. Correlation between high-dose bladder volume, margin reduction, and genitourinary toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Drozdz, Sonia; Wendt, Thomas G. [University Hospital Jena, Friedrich-Schiller-University Jena, Department of Radiation Oncology, Jena (Germany); Schwedas, Michael; Salz, Henning [University Hospital Jena, Friedrich-Schiller-University Jena, Department of Radiation Oncology, Section of Medical Physics, Jena (Germany); Foller, Susan [University Hospital Jena, Friedrich-Schiller-University Jena, Department of Urology, Jena (Germany)

    2016-04-15

    We compared different image-guidance (IG) strategies for prostate cancer with high-precision IG intensity-modulated radiation therapy (IMRT) using TomoTherapy {sup registered} (Accuray Inc., Madison, WI, USA) and linear accelerator (LINAC)-IMRT and their impact on planning target volume (PTV) margin reduction. Follow-up data showed reduced bladder toxicity in TomoTherapy patients compared to LINAC-IMRT. The purpose of this study was to quantify whether the treatment delivery technique and decreased margins affect reductions in bladder toxicity. Setup corrections from 30 patients treated with helical TomoTherapy and 30 treated with a LINAC were analyzed. These data were used to simulate three IG protocols based on setup error correction and a limited number of imaging sessions. For all patients, gastrointestinal (GI) and genitourinary (GU) toxicity was documented and correlated with the treatment delivery technique. For fiducial marker (FM)-based RT, a margin reduction of up to 3.1, 3.0, and 4.8 mm in the left-right (LR), superior-inferior (SI), and anterior-posterior (AP) directions, respectively, could be achieved with calculation of a setup correction from the first three fractions and IG every second day. Although the bladder volume was treated with mean doses of 35 Gy in the TomoTherapy group vs. 22 Gy in the LINAC group, we observed less GU toxicity after TomoTherapy. Intraprostate FMs allow for small safety margins, help decrease imaging frequency after setup correction, and minimize the dose to bladder and rectum, resulting in lower GU toxicity. In addition, IMRT delivered with TomoTherapy helps to avoid hotspots in the bladder neck, a critical anatomic structure associated with post-RT urinary toxicity. (orig.) [German] Wir haben im Rahmen der Prostatakarzinombehandlung verschiedene bildgefuehrte (IG) Strategien der hochpraezisen intensitaetsmodulierten Radiotherapie (IMRT) unter Einsatz der Tomotherapie (TomoTherapy {sup registered}, Accuray Inc., Madison

  16. Limited Advantages of Intensity-Modulated Radiotherapy Over 3D Conformal Radiation Therapy in the Adjuvant Management of Gastric Cancer

    International Nuclear Information System (INIS)

    Alani, Shlomo; Soyfer, Viacheslav; Strauss, Natan; Schifter, Dan; Corn, Benjamin W.

    2009-01-01

    Purpose: Although chemoradiotherapy was considered the standard adjuvant treatment for gastric cancer, a recent Phase III trial (Medical Research Council Adjuvant Gastric Infusional Chemotherapy [MAGIC]) did not include radiotherapy in the randomization scheme because it was considered expendable. Given radiotherapy's potential, efforts needed to be made to optimize its use for treating gastric cancer. We assessed whether intensity-modulated radiotherapy (IMRT) could improve upon our published results in patients treated with three-dimensional (3D) conformal therapy. Methods and Materials: Fourteen patients with adenocarcinoma of the stomach were treated with adjuvant chemoradiotherapy using a noncoplanar four-field arrangement. Subsequently, a nine-field IMRT plan was designed using a CMS Xio IMRT version 4.3.3 module. Two IMRT beam arrangements were evaluated: beam arrangement 1 consisted of gantry angles of 0 deg., 53 deg., 107 deg., 158 deg., 204 deg., 255 deg., and 306 deg.. Beam arrangement 2 consisted of gantry angles of 30 deg., 90 deg., 315 deg., and 345 deg.; a gantry angle of 320 deg./couch, 30 deg.; and a gantry angle of 35 o /couch, 312 o . Both the target volume coverage and the dose deposition in adjacent critical organs were assessed in the plans. Dose-volume histograms were generated for the clinical target volume, kidneys, spine, and liver. Results: Comparison of the clinical target volumes revealed satisfactory coverage by the 95% isodose envelope using either IMRT or 3D conformal therapy. However, IMRT was only marginally better than 3D conformal therapy at protecting the spine and kidneys from radiation. Conclusions: IMRT confers only a marginal benefit in the adjuvant treatment of gastric cancer and should be used only in the small subset of patients with risk factors for kidney disease or those with a preexisting nephropathy.

  17. Limited advantages of intensity-modulated radiotherapy over 3D conformal radiation therapy in the adjuvant management of gastric cancer.

    Science.gov (United States)

    Alani, Shlomo; Soyfer, Viacheslav; Strauss, Natan; Schifter, Dan; Corn, Benjamin W

    2009-06-01

    Although chemoradiotherapy was considered the standard adjuvant treatment for gastric cancer, a recent Phase III trial (Medical Research Council Adjuvant Gastric Infusional Chemotherapy [MAGIC]) did not include radiotherapy in the randomization scheme because it was considered expendable. Given radiotherapy's potential, efforts needed to be made to optimize its use for treating gastric cancer. We assessed whether intensity-modulated radiotherapy (IMRT) could improve upon our published results in patients treated with three-dimensional (3D) conformal therapy. Fourteen patients with adenocarcinoma of the stomach were treated with adjuvant chemoradiotherapy using a noncoplanar four-field arrangement. Subsequently, a nine-field IMRT plan was designed using a CMS Xio IMRT version 4.3.3 module. Two IMRT beam arrangements were evaluated: beam arrangement 1 consisted of gantry angles of 0 degrees , 53 degrees , 107 degrees , 158 degrees , 204 degrees , 255 degrees , and 306 degrees . Beam arrangement 2 consisted of gantry angles of 30 degrees , 90 degrees , 315 degrees , and 345 degrees ; a gantry angle of 320 degrees /couch, 30 degrees ; and a gantry angle of 35 degrees /couch, 312 degrees . Both the target volume coverage and the dose deposition in adjacent critical organs were assessed in the plans. Dose-volume histograms were generated for the clinical target volume, kidneys, spine, and liver. Comparison of the clinical target volumes revealed satisfactory coverage by the 95% isodose envelope using either IMRT or 3D conformal therapy. However, IMRT was only marginally better than 3D conformal therapy at protecting the spine and kidneys from radiation. IMRT confers only a marginal benefit in the adjuvant treatment of gastric cancer and should be used only in the small subset of patients with risk factors for kidney disease or those with a preexisting nephropathy.

  18. Nasopharynx carcinoma treatment: from the conventional radiotherapy to the conformal radiotherapy with intensity modulation; Traitement du carcinome du nasopharynx: de la radiotherapie conventionnelle a la radiotherapie conformationnelle avec modulation d'intensite

    Energy Technology Data Exchange (ETDEWEB)

    Mokaouim, K.; Grehange, G.; Truc, G.; Peingnaux, K.; Martin, E.; Zanetta, S.; Bruchon, Y.; Bonnetain, F.; Maingon, P. [Centre Georges-Francois Leclerc, 21 - Dijon (France)

    2009-10-15

    The objective of this study was to evaluate retrospectively the impact of factors linked to the radiotherapy realisation on the local and locoregional control, the global survival, the survival without disease of patients suffering of naso-pharynx carcinoma. Conclusion: the patients suffering of a nasopharynx carcinoma treated by irradiation associated to chemotherapy have an improved global survival and an improved survival without disease. The conformal radiotherapy with or without modulated intensity reduce the risk of serous otitis, trismus and xerostomia at long term. It seems necessary to realize multi centric studies with a longer period of follow up before asserting the advantages of the I.M.R.T. in comparison to the classical and conformal technique in the treatment of naso-pharynx carcinomas. (N.C.)

  19. A dosimetric comparison of fan-beam intensity modulated radiotherapy with gamma knife stereotactic radiosurgery for treating intermediate intracranial lesions

    International Nuclear Information System (INIS)

    Ma Lijun; Xia Ping; Verhey, Lynn J.; Boyer, Arthur L.

    1999-01-01

    Purpose: To compare and evaluate treatment plans for the fan-beam intensity modulated radiotherapy and the Gamma Knife radiosurgery for treating medium-size intracranial lesions (range 4-25 cm 3 ). Methods and Materials: Treatment plans were developed for the Leksell Gamma Knife and a fan-beam inverse treatment planning system for intensity modulated radiotherapy. Treatment plan comparisons were carried out using dose-volume histogram (DVH), tissue-volume ratio (TVR), and maximum dose to the prescription dose (MDPD) ratio. The study was carried out for both simulated targets and clinical targets with irregular shapes and at different locations. Results: The MDPD ratio was significantly greater for the Gamma Knife plans than for the fan-beam IMRT plans. The Gamma Knife plans produced equivalent TVR values to the fan-beam IMRT plans. Based on the DVH comparison, the fan-beam IMRT delivered significantly more dose to the normal brain tissue than the Gamma Knife. The results of the comparison were found to be insensitive to the target locations. Conclusion: The Gamma Knife is better than the fan-beam IMRT in sparing normal brain tissue while producing equivalent tumor dose conformity for treating medium-size intracranial lesions. However, the target dose homogeneity is significantly better for the fan-beam IMRT than for the Gamma Knife

  20. Treatment outcome of localized prostate cancer by 70 Gy hypofractionated intensity-modulated radiotherapy with a customized rectal balloon

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jung; Kim, Jun Won; Hong, Sung Joon; Rha, Koon Ho; Lee, Chang Geol; Yang, Seung Choul; Choi, Young Deuk; Suh, Chang Ok; Cho, Jae Ho [Yonsei Cancer Center, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-09-15

    We aimed to analyze the treatment outcome and long-term toxicity of 70 Gy hypofractionated intensity-modulated radiotherapy (IMRT) for localized prostate cancer using a customized rectal balloon. We reviewed medical records of 86 prostate cancer patients who received curative radiotherapy between January 2004 and December 2011 at our institution. Patients were designated as low (12.8%), intermediate (20.9%), or high risk (66.3%). Thirty patients received a total dose of 70 Gy in 28 fractions over 5 weeks via IMRT (the Hypo-IMRT group); 56 received 70.2 Gy in 39 fractions over 7 weeks via 3-dimensional conformal radiotherapy (the CF-3DRT group, which served as a reference for comparison). A customized rectal balloon was placed in Hypo-IMRT group throughout the entire radiotherapy course. Androgen deprivation therapy was administered to 47 patients (Hypo-IMRT group, 17; CF-3DRT group, 30). Late genitourinary (GU) and gastrointestinal (GI) toxicity were evaluated according to the Radiation Therapy Oncology Group criteria. The median follow-up period was 74.4 months (range, 18.8 to 125.9 months). The 5-year actuarial biochemical relapse-free survival rates for low-, intermediate-, and high-risk patients were 100%, 100%, and 88.5%, respectively, for the Hypo-IMRT group and 80%, 77.8%, and 63.6%, respectively, for the CF-3DRT group (p < 0.046). No patient presented with acute or late GU toxicity > or =grade 3. Late grade 3 GI toxicity occurred in 2 patients (3.6%) in the CF-3DRT group and 1 patient (3.3%) in the Hypo-IMRT group. Hypo-IMRT with a customized rectal balloon resulted in excellent biochemical control rates with minimal toxicity in localized prostate cancer patients.

  1. Pulmonary toxicity following IMRT after extrapleural pneumonectomy for malignant pleural mesothelioma

    DEFF Research Database (Denmark)

    Kristensen, C.A.; Nottrup, T.J.; Berthelsen, A.K.

    2009-01-01

    BACKGROUND AND PURPOSE: The combination of chemotherapy, surgery, and radiotherapy has improved the prognosis for patients with malignant pleural mesothelioma (MPM). Intensity-modulated radiotherapy (IMRT) has allowed for an increase in dose to the pleural cavity and a reduction in radiation doses...

  2. Theoretical and practical model for implementing intensity modulated radiotherapy (IMRT) based on openness in head and neck tumors

    International Nuclear Information System (INIS)

    Napoles Morales, Misleidy; Yanes Lopez, Yaima; Ascension, Yudith; Alfonso La Guardia, Rodolfo; Calderon, Carlos

    2009-01-01

    Certain requirements have been internationally recommended for the transition from radiation therapy (3D-CRT) to intensity modulated radiation therapy (IMRT). They have been filling in clinical practice in the physical, dosimetry and quality of treatment. Prior to the implementation of IMRT have been developed preclinical will proceed according to the treatment planning techniques in the real images of patients, validating the rationale for the transition from the point of view and radiobiological dosimetry. The comparison was based on a group of patients eligible for IMRT, which were actually treated with 3D-CRT. IMRT plans were designed and applied to virtually the same patients, simulating the IMRT treatment. The prescribed dose and fractionation were similar in both techniques, to be able to compare radiobiology. The results show the rationality of IMRT in terms of reducing complications and the possibility of scaling doses in the PTV. Were used Dose Volume Histograms (HDV) obtained from the dosimetric calculations for radiobiological evaluation of treatment plans, letting through a software: 'Albireo Target' version 4.0.1.2008 calculate the equivalent uniform dose (EUD) for tumor and organs of risks (OAR) and tumor control probability (TCP) and the likelihood of damage to healthy tissue (NTCP). The results obtained with IMRT plans were more significant than with 3D-CRT especially in terms of EUD for organs at risk and NTCP. These results allow us to create the definitive basis for the implementation of IMRT in our environment. (Author)

  3. Health-Related Quality of Life in Patients With Locally Advanced Prostate Cancer After 76 Gy Intensity-Modulated Radiotherapy vs. 70 Gy Conformal Radiotherapy in a Prospective and Longitudinal Study

    International Nuclear Information System (INIS)

    Lips, Irene; Dehnad, Human; Kruger, Arto Boeken; Moorselaar, Jeroen van; Heide, Uulke van; Battermann, Jan; Vulpen, Marco van

    2007-01-01

    Purpose: To compare quality of life (QoL) after 70 Gy conformal radiotherapy with QoL after 76 Gy intensity-modulated radiotherapy (IMRT) in patients with locally advanced prostate carcinoma. Methods and Materials: Seventy-eight patients with locally advanced prostate cancer were treated with 70 Gy three-field conformal radiotherapy, and 92 patients received 76 Gy IMRT with fiducial markers for position verification. Quality of life was measured by RAND-36, the European Organization for Research and Treatment of Cancer core questionnaire (EORTC QLQ-C30(+3)), and the prostate-specific EORTC QLQ-PR25, before radiotherapy (baseline) and 1 month and 6 months after treatment. Quality of life changes in time (baseline vs. 1 month and baseline vs. 6 months) of ≥10 points were considered clinically relevant. Results: Differences between the treatment groups for QoL changes over time occurred in several QoL domains. The 76-Gy group revealed no significant deterioration in QoL compared with the 70-Gy group. The IMRT 76-Gy group even demonstrated a significantly better change in QoL from baseline to 1 month in several domains. The conformal 70-Gy group revealed temporary deterioration in pain, role functioning, and urinary symptoms; for the IMRT 76-Gy group a better QoL in terms of change in health existed after 1 month, which persisted after 6 months. For both treatment groups temporary deterioration in physical role restriction occurred after 1 month, and an improvement in emotional role restriction occurred after 6 months. Sexual activity was reduced after treatment for both groups and remained decreased after 6 months. Conclusions: Intensity-modulated radiotherapy and accurate position verification seem to provide a possibility to increase the radiation dose for prostate cancer without deterioration in QoL

  4. Volumetric Modulated Arc Therapy for Spine Radiosurgery: Superior Treatment Planning and Delivery Compared to Static Beam Intensity Modulated Radiotherapy

    Directory of Open Access Journals (Sweden)

    Leor Zach

    2016-01-01

    Full Text Available Purpose. Spine stereotactic radiosurgery (SRS delivers an accurate and efficient high radiation dose to vertebral metastases in 1–5 fractions. We aimed to compare volumetric modulated arc therapy (VMAT to static beam intensity modulated radiotherapy (IMRT for spine SRS. Methods and Materials. Ten spine lesions of previously treated SRS patients were planned retrospectively using both IMRT and VMAT with a prescribed dose of 16 Gy to 100% of the planning target volume (PTV. The plans were compared for conformity, homogeneity, treatment delivery time, and safety (spinal cord dose. Results. All evaluated parameters favored the VMAT plan over the IMRT plans. Dmin in the IMRT was significantly lower than in the VMAT plan (7.65 Gy/10.88 Gy, p<0.001, the Dice Similarity Coefficient (DSC was found to be significantly better for the VMAT plans compared to the IMRT plans (0.77/0.58, resp., p  value<0.01, and an almost 50% reduction in the net treatment time was calculated for the VMAT compared to the IMRT plans (6.73 min/12.96 min, p<0.001. Conclusions. In our report, VMAT provides better conformity, homogeneity, and safety profile. The shorter treatment time is a major advantage and not only provides convenience to the painful patient but also contributes to the precision of this high dose radiation therapy.

  5. Radiotherapy of prostate cancer with or without intensity modulated beams: a planning comparison

    International Nuclear Information System (INIS)

    Meerleer, Gert O. de; Vakaet, Luc A.M.L.; Gersem, Werner R.T. de; Wagter, Carlos de; Naeyer, Bart de; Neve, Wilfried de

    2000-01-01

    Purpose: To evaluate whether intensity modulated radiotherapy (IMRT) by static segmented beams allows the dose to the main portion of the prostate target to escalate while keeping the maximal dose at the anterior rectal wall at 72 Gy. The value of such IMRT plans was analyzed by comparison with non-IMRT plans using the same beam incidences. Methods and Materials: We performed a planning study on the CT data of 32 consecutive patients with localized adenocarcinoma of the prostate. Three fields in the transverse plane with gantry angles of 0 deg. , 116 deg. , and 244 deg. were isocentered at the center of gravity of the target volume (prostate and seminal vesicles). The geometry of the beams was determined by beam's eye view autocontouring of the target volume with a margin of 1.5 cm. In study 1, the beam weights were determined by a human planner (3D-man) or by computer optimization using a biological objective function with (3D-optim-lim) or without (3D-optim-unlim) a physical term to limit target dose inhomogeneity. In study 2, the 3 beam incidences mentioned above were used and in-field uniform segments were added to allow IMRT. Plans with (IMRT-lim) or without (IMRT-unlim) constraints on target dose inhomogeneity were compared. In the IMRT-lim plan, target dose inhomogeneity was constrained between 15% and 20%. After optimization, plans in both studies were normalized to a maximal rectal dose of 72 Gy. Biological (tumor control probability [TCP], normal tissue complication probability [NTCP]) and physical indices for tumor control and normal tissue complication probabilities were computed, as well as the probability of the uncomplicated local control (P+). Results: The IMRT-lim plan was superior to all other plans concerning TCP (p =no. 89%). For bladder, maximal bladder dose was significantly higher in the IMRT-unlim plan compared to all other plans (p no. <=no. 0.0001). P+ was significantly higher in both IMRT-plans than in all other plans. The 3D

  6. Dosimetric Advantage of Intensity-Modulated Radiotherapy for Whole Ventricles in the Treatment of Localized Intracranial Germinoma

    International Nuclear Information System (INIS)

    Sakanaka, Katsuyuki; Mizowaki, Takashi; Hiraoka, Masahiro

    2012-01-01

    Purpose: To investigate the dosimetric advantage of intensity-modulated radiotherapy (IMRT) for whole ventricles (WV) in patients with a localized intracranial germinoma receiving induction chemotherapy. Methods and Materials: Data from 12 consecutive patients with localized intracranial germinomas who received induction chemotherapy and radiotherapy were used. Four-field coplanar three-dimensional conformal radiotherapy (3D-CRT) and seven-field coplanar IMRT plans were created. In both plans, 24 Gy was prescribed in 12 fractions for the planning target volume (PTV) involving WV and tumor bed. In IMRT planning, optimization was conducted to reduce the doses to the organs at risk (OARs) as much as possible, keeping the minimum dose equivalent to that of 3D-CRT. The 3D-CRT and IMRT plans were compared in terms of the dose–volume statistics for target coverage and the OARs. Results: IMRT significantly increased the percentage volume of the PTV receiving 24 Gy compared with 3D-CRT (93.5% vs. 84.8%; p = 0.007), while keeping target homogeneity equivalent to 3D-CRT (p = 0.869). The absolute percentage reduction in the irradiated volume of the normal brain receiving 100%, 75%, 50%, and 25% of 24 Gy ranged from 0.7% to 16.0% in IMRT compared with 3D-CRT (p < 0.001). No significant difference was observed in the volume of the normal brain receiving 10% and 5% of 24 Gy between IMRT and 3D-CRT. Conformation number was significantly improved in IMRT (p < 0.001). For other OARs, the mean dose to the cochlea was reduced significantly in IMRT by 22.3% of 24 Gy compared with 3D-CRT (p < 0.001). Conclusions: Compared with 3D-CRT, IMRT for WV improved the target coverage and reduced the irradiated volume of the normal brain in patients with intracranial germinomas receiving induction chemotherapy. IMRT for WV with induction chemotherapy could reduce the late side effects from cranial irradiation without compromising control of the tumor.

  7. Effective avoidance of a functional spect-perfused lung using intensity modulated radiotherapy (IMRT) for non-small cell lung cancer (NSCLC): An update of a planning study

    International Nuclear Information System (INIS)

    Lavrenkov, Konstantin; Singh, Shalini; Christian, Judith A.; Partridge, Mike; Nioutsikou, Elena; Cook, Gary; Bedford, James L.; Brada, Michael

    2009-01-01

    IMRT and 3-dimensional conformal radiotherapy (3-DCRT) plans of 25 patients with non-small cell lung (NSCLC) were compared in terms of planning target volume (PTV) coverage and sparing of functional lung (FL) defined by a SPECT perfusion scan. IMRT resulted in significant reduction of functional V 20 and mean lung dose in stage III patients with inhomogeneous hypoperfusion. If the dose to FL is shown to be the determinant of lung toxicity, IMRT would allow for effective dose escalation by specific avoidance of functional lung.

  8. Anal wall sparing effect of an endorectal balloon in 3D conformal and intensity-modulated prostate radiotherapy

    International Nuclear Information System (INIS)

    Smeenk, Robert Jan; Lin, Emile N.J.Th. van; Kollenburg, Peter van; Kunze-Busch, Martina; Kaanders, Johannes H.A.M.

    2009-01-01

    Background and purpose: To investigate the anal wall (Awall) sparing effect of an endorectal balloon (ERB) in 3D conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) for prostate cancer. Materials and methods: In 24 patients with localized prostate carcinoma, two planning CT-scans were performed: with and without ERB. A prostate planning target volume (PTV) was defined, and the Awall was delineated, using two different methods. Three-field and 4-field 3D-CRT plans, and IMRT plans were generated with a prescription dose of 78 Gy. In 144 treatment plans, the minimum dose (D min ), maximum dose (D max ), and mean dose (D mean ) to the Awall were calculated, as well as the Awall volumes exposed to doses ranging from ≥20 Gy to ≥70 Gy (V 20 - V 70 , respectively). Results: In the 3D-CRT plans, an ERB significantly reduced D mean , D max , and V 30 - V 70 . For IMRT all investigated dose parameters were significantly reduced by the ERB. The absolute reduction of D mean was 12 Gy in 3D-CRT and was 7.5 Gy in IMRT for both methods of Awall delineation. Conclusions: Application of an ERB showed a significant Awall sparing effect in both 3D-CRT and IMRT. This may lead to reduced late anal toxicity in prostate radiotherapy.

  9. Influence of jaw tracking in intensity-modulated and volumetric-modulated arc radiotherapy for head and neck cancers: a dosimetric study

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Karthick Raj [Research and Development Centre, Bharathiar University, Tamilnadu (India); Upadhayay, Sagar [Radiation Oncology, Kathmandu Cancer Center, Bhaktapur (Nepal); Das, K. J. Maria [Dept. of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh (India)

    2017-03-15

    To Study the dosimetric advantage of the Jaw tracking technique in intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) for Head and Neck Cancers. We retrospectively selected 10 previously treated head and neck cancer patients stage (T1/T2, N1, M0) in this study. All the patients were planned for IMRT and VMAT with simultaneous integrated boost technique. IMRT and VMAT plans were performed with jaw tracking (JT) and with static jaw (SJ) technique by keeping the same constraints and priorities for a particular patient. Target conformity, dose to the critical structures and low dose volumes were recorded and analyzed for IMRT and VMAT plans with and without JT for all the patients. The conformity index average of all patients followed by standard deviation (x¯x¯ ± σx¯σx¯) of the JT-IMRT, SJ-IMRT, JT-VMAT, and SJ-VMAT were 1.72 ± 0.56, 1.67 ± 0.57, 1.83 ± 0.65, and 1.85 ± 0.64, and homogeneity index were 0.059 ± 0.05, 0.064 ± 0.05, 0.064 ± 0.04, and 0.064 ± 0.05. JT-IMRT shows significant mean reduction in right parotid and left parotid shows of 7.64% (p < 0.001) and 7.45% (p < 0.001) compare to SJ-IMRT. JT-IMRT plans also shows considerable dose reduction to thyroid, inferior constrictors, spinal cord and brainstem compared to the SJ-IMRT plans. Significant dose reductions were observed for critical structure in the JT-IMRT compared to SJ-IMRT technique. In JT-VMAT plans dose reduction to the critical structure were not significant compared to the SJ-IMRT due to relatively lesser monitor units.

  10. Intensity-Modulated Radiotherapy for Locally Advanced Non-Small-Cell Lung Cancer: A Dose-Escalation Planning Study

    International Nuclear Information System (INIS)

    Lievens, Yolande; Nulens, An; Gaber, Mousa Amr; Defraene, Gilles; De Wever, Walter; Stroobants, Sigrid; Van den Heuvel, Frank

    2011-01-01

    Purpose: To evaluate the potential for dose escalation with intensity-modulated radiotherapy (IMRT) in positron emission tomography-based radiotherapy planning for locally advanced non-small-cell lung cancer (LA-NSCLC). Methods and Materials: For 35 LA-NSCLC patients, three-dimensional conformal radiotherapy and IMRT plans were made to a prescription dose (PD) of 66 Gy in 2-Gy fractions. Dose escalation was performed toward the maximal PD using secondary endpoint constraints for the lung, spinal cord, and heart, with de-escalation according to defined esophageal tolerance. Dose calculation was performed using the Eclipse pencil beam algorithm, and all plans were recalculated using a collapsed cone algorithm. The normal tissue complication probabilities were calculated for the lung (Grade 2 pneumonitis) and esophagus (acute toxicity, grade 2 or greater, and late toxicity). Results: IMRT resulted in statistically significant decreases in the mean lung (p <.0001) and maximal spinal cord (p = .002 and 0005) doses, allowing an average increase in the PD of 8.6-14.2 Gy (p ≤.0001). This advantage was lost after de-escalation within the defined esophageal dose limits. The lung normal tissue complication probabilities were significantly lower for IMRT (p <.0001), even after dose escalation. For esophageal toxicity, IMRT significantly decreased the acute NTCP values at the low dose levels (p = .0009 and p <.0001). After maximal dose escalation, late esophageal tolerance became critical (p <.0001), especially when using IMRT, owing to the parallel increases in the esophageal dose and PD. Conclusion: In LA-NSCLC, IMRT offers the potential to significantly escalate the PD, dependent on the lung and spinal cord tolerance. However, parallel increases in the esophageal dose abolished the advantage, even when using collapsed cone algorithms. This is important to consider in the context of concomitant chemoradiotherapy schedules using IMRT.

  11. Evaluation of xerostomia following intensity modulated radiotherapy (IMRT) for head and neck cancer patients

    International Nuclear Information System (INIS)

    Lee, Seok Ho; Kim, Tae Hyun; Chie, Eui Kyu

    2004-01-01

    This study was done to evaluate xerostomia following intensity modulated radiotherapy for patients with head and neck cancer, and to analyze the correlation between the dosimetric parameters and xerostomia parameters. From February till October 2003, 13 patients with 3 months of follow-up were evaluated for xerostomia after being treated for head and neck cancer with IMRT. Their median age was 57 years (range:43 ∼ 77). Xerostomia were assessed with a 4-question xerostomia questionnaire score (XQS) and a test for salivary flow rates (unstimulated and stimulated). The patients were also given a validated LENT SOMA scale (LSC) questionnaire. The evaluations were completed before radiation therapy (pre-RT) and at 1 and. 3 months after radiation therapy (RT). We evaluated xerostomia at pre-RT, 1 and, 3 months after RT. The association between the xerostomia parameters (XQS and LSC) and salivary flow rates (unstimulated and stimulated: USFR and SSFR) was assessed at 1 and 3 months after RT. All 13 patients showed no significant changes in XQS, LSC and Salivary Flow rates. As a result, we couldn't find out about xerostomia development. Based on the total mean parotid dose, 3,500 cGy, we divided these patients into two groups. The 8 patients (< 3,500 cGy) showed no significant changes in XQS, LSC and Salivary Flow rates. However, in 5 patients (≥ 3,500 cGy), there was a significant increase in USFR and, SSFR at 3 months after RT, and for the XQS and, LSC at 1 and 3 months after RT. The correlation between XQS and, LSC, and USFR and, SSFR in all patients (13) was significant at 3 months after RT. The correlation had a tendency to the decrease for USFR and, SSFR in proportion to the increase of XQS and, LSC. Base on the results of this study, IMRT seem to be an effective treatment to significantly decrease the xerostomia. XQS and, LSC seem to be a effective tool for predicting the xerostomia. A total parotid gland mean dose of < 3,500 cGy should be a planning goal if

  12. Dynamic intensity-modulated non-coplanar arc radiotherapy (INCA) for head and neck cancer

    International Nuclear Information System (INIS)

    Krayenbuehl, Jerome; Davis, J. Bernard; Ciernik, I. Frank

    2006-01-01

    Background and purpose: To define the potential advantages of intensity-modulated radiotherapy (IMRT) applied using a non-coplanar dynamic arc technique for the treatment of head and neck cancer. Materials and methods: External beam radiotherapy (EBRT) was planned in ten patients with head and neck cancer using coplanar IMRT and non-coplanar arc techniques, termed intensity modulated non-coplanar arc EBRT (INCA). Planning target volumes (PTV1) of first order covered the gross tumor volume and surrounding clinical target volume treated with 68-70 Gy, whereas PTV2 covered the elective lymph nodes with 54-55 Gy using a simultaneous internal boost. Treatment plan comparison between IMRT and INCA was carried out using dose-volume histogram and 'equivalent uniform dose' (EUD). Results: INCA resulted in better dose coverage and homogeneity of the PTV1, PTV2, and reduced dose delivered to most of the organs at risk (OAR). For the parotid glands, a reduction of the mean dose of 2.9 (±2.0) Gy was observed (p 0.002), the mean dose to the larynx was reduced by 6.9 (±2.9) Gy (p 0.003), the oral mucosa by 2.4 (±1.1) Gy (p < 0.001), and the maximal dose to the spinal cord by 3.2 (±1.7) Gy (p = 0.004). The mean dose to the brain was increased by 3.0 (±1.4) Gy (p = 0.002) and the mean lung dose increased by 0.2 (±0.4) Gy (p = 0.87). The EUD suggested better avoidance of the OAR, except for the lung, and better coverage and dose uniformity were achieved with INCA compared to IMRT. Conclusion: Dose delivery accuracy with IMRT using a non-coplanar dynamic arc beam geometry potentially improves treatment of head and neck cancer

  13. PET/CT scanning guided intensity-modulated radiotherapy in treatment of recurrent ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xue-lian, E-mail: duxuelian23800@yahoo.com.cn [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Jiang, Tao, E-mail: melody23800@yahoo.com.cn [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Sheng, Xiu-gui, E-mail: jnsd2000@yahoo.cn [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Li, Qing-shui, E-mail: lqs1966@126.com [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Wang, Cong, E-mail: jnwc1981@hotmail.com [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Yu, Hao, E-mail: jnyh2200@sina.com [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China)

    2012-11-15

    Objective: This study was undertaken to evaluate the clinical contribution of positron emission tomography using {sup 18}F-fluorodeoxyglucose and integrated computer tomography (FDG-PET/CT) guided intensity-modulated radiotherapy (IMRT) for treatment of recurrent ovarian cancer. Materials and methods: Fifty-eight patients with recurrent ovarian cancer from 2003 to 2008 were retrospectively studied. In these patients, 28 received PET/CT guided IMRT (PET/CT-IMRT group), and 30 received CT guided IMRT (CT-IMRT group). Treatment plans, tumor response, toxicities and survival were evaluated. Results: Changes in GTV delineation were found in 10 (35.7%) patients based on PET-CT information compared with CT data, due to the incorporation of additional lymph node metastases and extension of the metastasis tumor. PET/CT guided IMRT improved tumor response compared to CT-IMRT group (CR: 64.3% vs. 46.7%, P = 0.021; PR: 25.0% vs. 13.3%, P = 0.036). The 3-year overall survival was significantly higher in the PET-CT/IMRT group than control (34.1% vs. 13.2%, P = 0.014). Conclusions: PET/CT guided IMRT in recurrent ovarian cancer patients improved the delineation of GTV and reduce the likelihood of geographic misses and therefore improve the clinical outcome.

  14. Automated selection of beam orientations and segmented intensity-modulated radiotherapy (IMRT) for treatment of oesophagus tumors

    International Nuclear Information System (INIS)

    Woudstra, Evert; Heijmen, Ben J.M.; Storchi, Pascal R.M.

    2005-01-01

    Background and purpose: For some treatment sites, there is evidence in the literature that five to nine equiangular input beam directions are enough for generating IMRT plans. For oesophagus cancer, there is a report showing that going from four to nine beams may even result in lower quality plans. In this paper, our previously published algorithm for automated beam angle selection (Cycle) has been extended to include segmented IMRT. For oesophagus cancer patients, we have investigated whether automated orientation selection from a large number of equiangular input beam directions (up to thirty-six) for IMRT optimisation can result in improved lung sparing. Materials and methods: CT-data from five oesophagus patients treated recently in our institute were used for this study. For a prescribed mean PTV dose of 55 Gy, Cycle was used in an iterative procedure to minimise the mean lung dose under the following hard constraints: standard deviation for PTV dose inhomogeneity 2% (1,1 Gy), maximum spinal cord dose 45 Gy. Conformal radiotherapy (CFRT) and IMRT plans for a standard four field oesophagus beam configuration were compared with IMRT plans generated by automated selection from nine or thirty-six equiangular input beam orientations. Comparisons were also made with dose distributions generated with our commercial treatment planning system (TPS), and with observations in the literature. Results: Using Cycle, automated orientation selection from nine or thirty-six input beam directions resulted in improved lung sparing compared to the four field set-ups. Compared to selection from nine input orientations, selection from thirty-six directions did always result in lower mean lung doses, sometimes with even fewer non-zero weight beams. On average only seven beams with a non-zero weight were enough for obtaining the lowest mean lung dose, yielding clinically feasible plans even in case of thirty-six input directions for the optimisation process. With our commercial TPS

  15. Dysphagia in head and neck cancer patients following intensity modulated radiotherapy (IMRT)

    International Nuclear Information System (INIS)

    Peponi, Evangelia; Glanzmann, Christoph; Willi, Bettina; Huber, Gerhard; Studer, Gabriela

    2011-01-01

    To evaluate the objective and subjective long term swallowing function, and to relate dysphagia to the radiation dose delivered to the critical anatomical structures in head and neck cancer patients treated with intensity modulated radiation therapy (IMRT, +/- chemotherapy), using a midline protection contour (below hyoid, ~level of vertebra 2/3). 82 patients with stage III/IV squamous cell carcinoma of the larynx, oropharynx, or hypopharynx, who underwent successful definitive (n = 63, mean dose 68.9Gy) or postoperative (n = 19, mean dose 64.2Gy) simultaneous integrated boost (SIB) -IMRT either alone or in combination with chemotherapy (85%) with curative intent between January 2002 and November 2005, were evaluated retrospectively. 13/63 definitively irradiated patients (21%) presented with a total gross tumor volume (tGTV) >70cc (82-173cc; mean 106cc). In all patients, a laryngo-pharyngeal midline sparing contour outside of the PTV was drawn. Dysphagia was graded according subjective patient-reported and objective observer-assessed instruments. All patients were re-assessed 12 months later. Dose distribution to the swallowing structures was calculated. At the re-assessment, 32-month mean post treatment follow-up (range 16-60), grade 3/4 objective toxicity was assessed in 10%. At the 32-month evaluation as well as at the last follow up assessment mean 50 months (16-85) post-treatment, persisting swallowing dysfunction grade 3 was subjectively and objectively observed in 1 patient (1%). The 5-year local control rate of the cohort was 75%; no medial marginal failures were observed. Our results show that sparing the swallowing structures by IMRT seems effective and relatively safe in terms of avoidance of persistent grade 3/4 late dysphagia and local disease control

  16. SU-E-T-449: Hippocampal Sparing Radiotherapy Using Intensity Modulated Radiotherapy and Volumetric Modulated Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S [Korea University, Seoul (Korea, Republic of); Kyung Hee University Hospital at Gangdong, Gangdong-gu (Korea, Republic of); Kim, D; Chung, W [Kyung Hee University Hospital at Gangdong, Gangdong-gu (Korea, Republic of); Yoon, M [Korea University, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: The hippocampus sparing during the cranial irradiation has become interesting because it may mitigate radiation-induced neurocognitive toxicity. Herein we report our preliminary study for sparing the hippocampus with and without tilling condition for patient with brain metastases. Methods: Ten patients previously treated with whole brain were reviewed. Five patients tilted the head to around 30 degrees and others were treated without tilting. Treatment plans of linear accelerator (Linac)-based volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) were generated for prescription dose of 30 Gy in 15 fractions. Hippocampal avoidance regions were created with 5-mm volumetric expansion around the hippocampus. Whole brain, hippocampus and hippocampal avoidance volume were 1372cm3, 6cm3 and 30cm3 and hippocampal avoidance volume was 2.2% of the whole brain planned target volume in average. Organs at risk (OARs) are hippocampus, eyes, lens, and cochleae. Coverage index (CVI), conformity index (CI), homogeneity index (HI) and mean dose to OARs were used to compare dose characteristic of tilted and non-tilted cases. Results: In IMRT, when CI, CVI and HI of whole brain were 0.88, 0.09 and 0.98 in both tilted and non-tilted cases, absorbed dose of hippocampal avoidance volume in tilted cases were 10% lower than non-tilted cases. Doses in other OARs such as eyes, lens, and cochleae were also decreased about 20% when tilting the head. When CI, HI and CVI in VMAT were 0.9, 0.08 and 0.99, the dose-decreased ratio of OARs in both with and without tilting cases were almost the same with IMRT. But absolute dose of hippocampal avoidance volume in VMAT was 30% lower than IMRT. Conclusion: This study confirms that dose to hippocampus decreases if patients tilt the head. When treating the whole brain with head tilted, patients can acquire the same successful treatment Result and also preserve their valuable memory.

  17. IMRT and 3D conformal radiotherapy with or without elective nodal irradiation in locally advanced NSCLC. A direct comparison of PET-based treatment planning

    International Nuclear Information System (INIS)

    Fleckenstein, Jochen; Kremp, Katharina; Kremp, Stephanie; Palm, Jan; Ruebe, Christian

    2016-01-01

    The potential of intensity-modulated radiation therapy (IMRT) as opposed to three-dimensional conformal radiotherapy (3D-CRT) is analyzed for two different concepts of fluorodeoxyglucose positron emission tomography (FDG PET)-based target volume delineation in locally advanced non-small cell lung cancer (LA-NSCLC): involved-field radiotherapy (IF-RT) vs. elective nodal irradiation (ENI). Treatment planning was performed for 41 patients with LA-NSCLC, using four different planning approaches (3D-CRT-IF, 3D-CRT-ENI, IMRT-IF, IMRT-ENI). ENI included a boost irradiation after 50 Gy. For each plan, maximum dose escalation was calculated based on prespecified normal tissue constraints. The maximum prescription dose (PD), tumor control probability (TCP), conformal indices (CI), and normal tissue complication probabilities (NTCP) were analyzed. IMRT resulted in statistically significant higher prescription doses for both target volume concepts as compared with 3D-CRT (ENI: 68.4 vs. 60.9 Gy, p < 0.001; IF: 74.3 vs. 70.1 Gy, p < 0.03). With IMRT-IF, a PD of at least 66 Gy was achieved for 95 % of all plans. For IF as compared with ENI, there was a considerable theoretical increase in TCP (IMRT: 27.3 vs. 17.7 %, p < 0.00001; 3D-CRT: 20.2 vs. 9.9 %, p < 0.00001). The esophageal NTCP showed a particularly good sparing with IMRT vs. 3D-CRT (ENI: 12.3 vs. 30.9 % p < 0.0001; IF: 15.9 vs. 24.1 %; p < 0.001). The IMRT technique and IF target volume delineation allow a significant dose escalation and an increase in TCP. IMRT results in an improved sparing of OARs as compared with 3D-CRT at equivalent dose levels. (orig.) [de

  18. The Dosimetric Consequences of Intensity Modulated Radiotherapy for Cervix Cancer: The Impact of Organ Motion, Deformation and Tumour Regression

    Science.gov (United States)

    Lim, Karen Siah Huey

    Hypothesis: In intensity modulated radiotherapy (IMRT) for cervix cancer, the dose received by the tumour target and surrounding normal tissues is significantly different to that indicated by a single static plan. Rationale: The optimal use of IMRT in cervix cancer requires a greater attention to clinical target volume (CTV) definition and tumour & normal organ motion to assure maximum tumour control with the fewest side effects. Research Aims: 1) Generate consensus CTV contouring guidelines for cervix cancer; 2) Evaluate intra-pelvic tumour and organ dynamics during radiotherapy; 3) Analyze the dose consequences of intra-pelvic organ dynamics on different radiotherapy strategies. Results: Consensus CTV definitions were generated using experts-in-the-field. Substantial changes in tumour volume and organ motion, resulted in significant reductions in accumulated dose to tumour targets and variability in accumulated dose to surrounding normal tissues. Significance: Formalized CTV definitions for cervix cancer is important in ensuring consistent standards of practice. Complex and unpredictable tumour and organ dynamics mandates daily soft-tissue image guidance if IMRT is used. To maximize the benefits of IMRT for cervix cancer, a strategy of adaptation is necessary.

  19. The use of IMRT in Germany

    International Nuclear Information System (INIS)

    Frenzel, Thorsten; Kruell, Andreas

    2015-01-01

    Intensity modulated radiotherapy (IMRT) is frequently used, but there are no data about current frequency regarding specific tumor sites and equipment used for quality assurance (QA). An online survey about IMRT was executed from April to October 2014 by the collaborative IMRT working group (AK IMRT) of the German Association of Medical Physicists (DGMP). A total of 23 German institutions took part in the survey. Most reports came from users working with Elekta, Varian, and Siemens treatment machines, but also from TomoTherapy and BrainLab. Most frequent IMRT technology was volumetric modulated arc therapy (58.37 %: VMAT/''rapid arc''), followed by step-and-shoot IMRT (14.66 %), dynamic MLC (dMLC: 14.53 %), TomoTherapy (9.25 %), and 3.2 % other techniques. Different commercial hard- and software solutions are available for QA, whereas many institutes still develop their own phantoms. Data of 26,779 patients were included in the survey; 44 % were treated using IMRT techniques. IMRT was most frequently used for anal cancer, (whole) craniospinal irradiation, head and neck cancer, prostate cancer, other tumors in the pelvic region, gynecological tumors (except for breast cancer), and brain tumors. An estimated 10 % of all patients treated in 2014 with radiation in Germany were included in the survey. It is representative for the members of the AK IMRT. IMRT may be on the way to replace other treatment techniques. However, many scientific questions are still open. In particular, it is unclear when the IMRT technique should not be used. (orig.) [de

  20. Hypofractionated Intensity-Modulated Radiotherapy for Carcinoma of the Prostate: Analysis of Toxicity

    International Nuclear Information System (INIS)

    Coote, Joanna H.; Wylie, James P.; Cowan, Richard A.; Logue, John P.; Swindell, Ric; Livsey, Jacqueline E.

    2009-01-01

    Purpose: Dose escalation for prostate cancer improves biological control but with a significant increase in late toxicity. Recent estimates of low α/β ratio for prostate cancer suggest that hypofractionation may result in biological advantage. Intensity-modulated radiotherapy (IMRT) should enable dose escalation to the prostate while reducing toxicity to local organs. We report late toxicity data of a hypofractionated IMRT regime. Methods and Materials: Eligible men had T2-3N0M0 adenocarcinoma prostate, and either Gleason score ≥ 7 or prostate-specific antigen 20-50 ng/L. Patients received 57-60 Gy to prostate in 19-20 fractions using five-field IMRT. All received hormonal therapy for 3 months before radiotherapy to a maximum of 6 months. Toxicity was assessed 2 years postradiotherapy using the RTOG criteria, LENT/SOMA, and UCLA prostate index assessment tools. Results: Acute toxicity was favorable with no RTOG Grade 3 or 4 toxicity. At 2 years, there was 4% Grade 2 bowel and 4.25% Grade 2 bladder toxicity. There was no Grade 3 or 4 bowel toxicity; one patient developed Grade 3 bladder toxicity. UCLA data showed a slight improvement in urinary function at 2 years compared with pretreatment. LENT/SOMA assessments demonstrated general worsening of bowel function at 2 years. Patients receiving 60 Gy were more likely to develop problems with bowel function than those receiving 57 Gy. Conclusions: These data demonstrate that hypofractionated radiotherapy using IMRT for prostate cancer is well tolerated with minimal late toxicity at 2 years posttreatment. Ongoing studies are looking at the efficacy of hypofractionated regimes with respect to biological control.

  1. Treatment planning comparison of electron arc therapy and photon intensity modulated radiotherapy for Askin's tumor of chest wall

    International Nuclear Information System (INIS)

    Jamema, Swamidas V.; Sharma, Pramod K.; Laskar, Siddhartha; Deshpande, Deepak D.; Shrivastava, Shyam K.

    2007-01-01

    Background and Purpose: A dosimetric study to quantitatively compare radiotherapy treatment plans for Askin's tumor using Electron Arc (EA) vs. photon Intensity Modulated Radiotherapy (IMRT). Materials and methods: Five patients treated with EA were included in this study. Treatment plans were generated for each patient using EA and IMRT. Plans were compared using dose volume histograms (DVH) of the Planning Target Volume (PTV) and Organs at Risk (OAR). Results: IMRT resulted in superior PTV coverage, and homogeneous dose distribution compared to EA. For EA, 92% of the PTV was covered to 85% of the dose compared to IMRT in which 96% was covered to 95% of the dose. V 107 that represents the hot spot within the PTV was more in IMRT compared to EA: 7.4(±2)% vs. 3(±0.5)%, respectively. With PTVs located close to the spinal cord (SC), the dose to SC was more with EA, whereas for PTVs located away from the SC, the dose to SC was more with IMRT. The cardiac dose profile was similar to that of SC. Ipsilateral lung received lower doses with IMRT while contralateral lung received higher dose with IMRT compared to EA. For non-OAR normal tissues, IMRT resulted in large volumes of low dose regions. Conclusions: IMRT resulted in superior PTV coverage and sparing of OAR compared to EA plans. Although IMRT seems to be superior to EA, one needs to keep in mind the volume of low dose regions associated with IMRT, especially while treating young children

  2. Phase II study of induction chemotherapy with TPF followed by radioimmunotherapy with Cetuximab and intensity-modulated radiotherapy (IMRT in combination with a carbon ion boost for locally advanced tumours of the oro-, hypopharynx and larynx - TPF-C-HIT

    Directory of Open Access Journals (Sweden)

    Mavtratzas Athanasios

    2011-05-01

    Full Text Available Abstract Background Long-term locoregional control in locally advanced squamous cell carcinoma of the head and neck (SCCHN remains challenging. While recent years have seen various approaches to improve outcome by intensification of treatment schedules through introduction of novel induction and combination chemotherapy regimen and altered fractionation regimen, patient tolerance to higher treatment intensities is limited by accompanying side-effects. Combined radioimmunotherapy with cetuximab as well as modern radiotherapy techniques such as intensity-modulated radiotherapy (IMRT and carbon ion therapy (C12 are able to limit toxicity while maintaining treatment effects. In order to achieve maximum efficacy with yet acceptable toxicity, this sequential phase II trial combines induction chemotherapy with docetaxel, cisplatin, and 5-FU (TPF followed by radioimmunotherapy with cetuximab as IMRT plus carbon ion boost. We expect this approach to result in increased cure rates with yet manageable accompanying toxicity. Methods/design The TPF-C-HIT trial is a prospective, mono-centric, open-label, non-randomized phase II trial evaluating efficacy and toxicity of the combined treatment with IMRT/carbon ion boost and weekly cetuximab in 50 patients with histologically proven locally advanced SCCHN following TPF induction chemotherapy. Patients receive 24 GyE carbon ions (8 fractions and 50 Gy IMRT (2.0 Gy/fraction in combination with weekly cetuximab throughout radiotherapy. Primary endpoint is locoregional control at 12 months, secondary endpoints are disease-free survival, progression-free survival, overall survival, acute and late radiation effects as well as any adverse events of the treatment as well as quality of life (QoL analyses. Discussion The primary objective of TPF-C-HIT is to evaluate efficacy and toxicity of cetuximab in combination with combined IMRT/carbon ion therapy following TPF induction in locally advanced SCCHN. Trial Registration

  3. Study on the photoneutrons produced in 15 MV medical linear accelerators : Comparison of three dimensional conformal radiotherapy and intensity modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Oh Nam [Gangneung Asan Hospital, Gangneung (Korea, Republic of); Yang, Oh Nam; Lim, Cheong Hwan [Hanseo Univ., Seosan (Korea, Republic of)

    2012-12-15

    Intensity-modulated radiotherapy(IMRT) have the ability to provide better dose conformity and sparing of critical normal tissues than three-dimensional radiotherapy(3DCRT). Especially, with the benefit of health insurance in 2011, its use now increasingly in many modern radiotherapy departments. Also the use of linear accelerator with high-energy photon beams over 10 MV is increasing. As is well known, these linacs have the capacity to produce photoneutrons due to photonuclear reactions in materials with a large atomic number such as the target, flattening filters, collimators, and multi-leaf collimators(MLC). MLC-based IMRT treatments increase the monitor units and the probability of production of photoneutrons from photon-induced nuclear reactions. The purpose of this study is to quantitatively evaluate the dose of photoneutrons produced from 3DCRT and IMRT technique for Rando phantom in cervical cancer. We performed the treatment plans with 3DCRT and IMRT technique using Rando phantom for treatment of cervical cancer. An Rando phantom placed on the couch in the supine position was irradiated using 15 MV photon beams. Optically stimulated luminescence dosimeters(OSLD) were attached to 4 different locations (abdomen, chest, head and neck, eyes) and from center of field size and measured 5 times each of locations. Measured neutron dose from IMRT technique increased by 9.0, 8.6, 8.8, and 14 times than 3DCRT technique for abdomen, chest, head and neck, and eyes, respectively. When using IMRT with 15 MV photon beams, the photoneutrons contributed a significant portion on out-of-field. It is difficult to prevent high energy photon beams to produce the photoneutrons due to physical properties, if necessary, It is difficult to prevent high energy photon beams to produce the photoneutrons due to physical properties, if necessary, it is need to provide the additional safe shielding on a linear accelerator and should therefore reduce the out-of-field dose.

  4. Study on the photoneutrons produced in 15 MV medical linear accelerators : Comparison of three dimensional conformal radiotherapy and intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Yang, Oh Nam; Yang, Oh Nam; Lim, Cheong Hwan

    2012-01-01

    Intensity-modulated radiotherapy(IMRT) have the ability to provide better dose conformity and sparing of critical normal tissues than three-dimensional radiotherapy(3DCRT). Especially, with the benefit of health insurance in 2011, its use now increasingly in many modern radiotherapy departments. Also the use of linear accelerator with high-energy photon beams over 10 MV is increasing. As is well known, these linacs have the capacity to produce photoneutrons due to photonuclear reactions in materials with a large atomic number such as the target, flattening filters, collimators, and multi-leaf collimators(MLC). MLC-based IMRT treatments increase the monitor units and the probability of production of photoneutrons from photon-induced nuclear reactions. The purpose of this study is to quantitatively evaluate the dose of photoneutrons produced from 3DCRT and IMRT technique for Rando phantom in cervical cancer. We performed the treatment plans with 3DCRT and IMRT technique using Rando phantom for treatment of cervical cancer. An Rando phantom placed on the couch in the supine position was irradiated using 15 MV photon beams. Optically stimulated luminescence dosimeters(OSLD) were attached to 4 different locations (abdomen, chest, head and neck, eyes) and from center of field size and measured 5 times each of locations. Measured neutron dose from IMRT technique increased by 9.0, 8.6, 8.8, and 14 times than 3DCRT technique for abdomen, chest, head and neck, and eyes, respectively. When using IMRT with 15 MV photon beams, the photoneutrons contributed a significant portion on out-of-field. It is difficult to prevent high energy photon beams to produce the photoneutrons due to physical properties, if necessary, It is difficult to prevent high energy photon beams to produce the photoneutrons due to physical properties, if necessary, it is need to provide the additional safe shielding on a linear accelerator and should therefore reduce the out-of-field dose

  5. Carotid-Sparing Intensity-Modulated Radiotherapy for Early-Stage Squamous Cell Carcinoma of the True Vocal Cord

    International Nuclear Information System (INIS)

    Chera, Bhishamjit S.; Amdur, Robert J.; Morris, Christopher G.; Mendenhall, William M.

    2010-01-01

    Purpose: To compare radiation doses to carotid arteries among various radiotherapy techniques for treatment of early-stage squamous cell carcinoma (SCC) of the true vocal cords. Methods and Materials: Five patients were simulated using computed tomography (CT). Clinical and planning target volumes (PTV) were created for bilateral and unilateral stage T1 vocal cord cancers. Planning risk volumes for the carotid arteries and spinal cord were delineated. For each patient, three treatment plans were designed for bilateral and unilateral target volumes: opposed laterals (LATS), three-dimensional conformal radiotherapy (3DCRT), and intensity-modulated radiotherapy (IMRT), for a total of 30 plans. More than 95% of the PTV received the prescription dose (63Gy at 2.25 Gy per treatment). Results: Carotid dose was lowest with IMRT. With a bilateral vocal cord target, the median carotid dose was 10Gy with IMRT vs. 25 Gy with 3DCRT and 38 Gy with LATS (p < 0.05); with a unilateral target, the median carotid dose was 4 Gy with IMRT vs. 19 Gy with 3DCRT and 39 Gy with LATS (p < 0.05). The dosimetric tradeoff with IMRT is a small area of high dose in the PTV. The worst heterogeneity results were at a maximum point dose of 80 Gy (127%) in a unilateral target that was close to the carotid. Conclusions: There is no question that IMRT can reduce the dose to the carotid arteries in patients with early-stage vocal cord cancer. The question is whether the potential advantage of reducing the carotid dose outweighs the risk of tumor recurrence due to contouring errors and organ motion and the risk of complications from dose heterogeneity.

  6. Feasibility of using intensity-modulated radiotherapy to improve lung sparing in treatment planning for distal esophageal cancer

    International Nuclear Information System (INIS)

    Chandra, Anurag; Guerrero, Thomas M.; Liu, H. Helen; Tucker, Susan L.; Liao Zhongxing; Wang Xiaochun; Murshed, Hasan; Bonnen, Mark D.; Garg, Amit K.; Stevens, Craig W.; Chang, Joe Y.; Jeter, Melinda D.; Mohan, Radhe; Cox, James D.; Komaki, Ritsuko

    2005-01-01

    Background and purpose: To evaluate the feasibility whether intensity-modulated radiotherapy (IMRT) can be used to reduce doses to normal lung than three-dimensional conformal radiotherapy (3DCRT) in treating distal esophageal malignancies. Patients and methods: Ten patient cases with cancer of the distal esophagus were selected for a retrospective treatment-planning study. IMRT plans using four, seven, and nine beams (4B, 7B, and 9B) were developed for each patient and compared with the 3DCRT plan used clinically. IMRT and 3DCRT plans were evaluated with respect to PTV coverage and dose-volumes to irradiated normal structures, with statistical comparison made between the two types of plans using the Wilcoxon matched-pair signed-rank test. Results: IMRT plans (4B, 7B, 9B) reduced total lung volume treated above 10 Gy (V 1 ), 20 Gy (V 2 ), mean lung dose (MLD), biological effective volume (V eff ), and lung integral dose (P 1 , 5% for V 2 , and 2.5 Gy for MLD. IMRT improved the PTV heterogeneity (P<0.05), yet conformity was better with 7B-9B IMRT plans. No clinically meaningful differences were observed with respect to the irradiated volumes of spinal cord, heart, liver, or total body integral doses. Conclusions: Dose-volume of exposed normal lung can be reduced with IMRT, though clinical investigations are warranted to assess IMRT treatment outcome of esophagus cancers

  7. Late xerostomia after intensity-modulated conformational radiotherapy of upper aero-digestive tract cancers: study 2004-03 by the head and neck oncology and radiotherapy Group (Gortec)

    International Nuclear Information System (INIS)

    Toledano, I.; Lapeyre, M.; Graff, P.; Serre, C.; Bensadoun, R.J.; Bensadoun, R.J.; Ortholan, C.; Calais, G.; Alfonsi, M.; Giraud, P.; Racadot, S.

    2010-01-01

    The authors report a retrospective assessment of late xerostomia according to the RTOG (Radiation Therapy Oncology Group) classification of the European Organization for Research and Treatment of Cancer (EORTC) among patients treated by intensity-modulated conformational radiotherapy (IMRT) and suffering from upper aero-digestive tract carcinomas of different stages. Some of these patients have bee operated, and some have been treated by chemotherapy. It appears that the IMRT results in a reduction of late xerostomia, and even in an absence of salivary toxicity. Short communication

  8. Helical tomo-therapy in the anal canal cancer: dosimetric comparison with conformal radiotherapy with intensity modulation and classical conformal radiotherapy

    International Nuclear Information System (INIS)

    Ozsahin, M.; Ugurluer, G.; Ballerini, G.; Letenneur, G.; Zouhair, A.; Mirimanoff, R.O.

    2009-01-01

    A dosimetry comparison was made between helical tomo-therapy, I.M.R.T. and classical conformal three dimensional radiotherapy for twelve first patients that received a image guided radiotherapy, the toxicity was tackled with a minimum follow-up of fourteen months. In conclusion, the CT-guided radiotherapy allows to save organs at risks superior to I.M.R.T. and conformal radiotherapy and a best homogeneity in the target volume. the toxicity is moderated and the break time is limited. (N.C.)

  9. Volumetric-modulated arc therapy in postprostatectomy radiotherapy patients: A planning comparison study

    International Nuclear Information System (INIS)

    Forde, Elizabeth; Kneebone, Andrew; Bromley, Regina; Guo, Linxin; Hunt, Peter; Eade, Thomas

    2013-01-01

    The purpose of this study was to compare postprostatectomy planning for volumetric-modulated arc therapy (VMAT) with both single arc (SA) and double arcs (DA) against dynamic sliding window intensity-modulated radiotherapy (IMRT). Ten cases were planned with IMRT, SA VMAT, and DA VMAT. All cases were planned to achieve a minimum dose of 68 Gy to 95% of the planning target volume (PTV) and goals to limit rectal volume >40 Gy to 35% and >65 Gy to 17%, and bladder volumes >40 Gy to 50% and >65 Gy to 25%. Plans were averaged across the 10 patients and compared for mean dose, conformity, homogeneity, rectal and bladder doses, and monitor units. The mean dose to the clinical target volume and PTV was significantly higher (p<0.05) for SA compared with DA or IMRT. The homogeneity index was not significantly different: SA = 0.09; DA = 0.08; and IMRT = 0.07. The rectal V40 was lowest for the DA plan. The rectal V20 was significantly lower (p<0.05) for both the VMAT plans compared with IMRT. There were no significant differences for bladder V40 or rectal and bladder V65. The IMRT plans required 1400 MU compared with 745 for DA and 708 for SA. This study shows that for equivalent dose coverage, SA and DA VMAT plans result in higher mean doses to the clinical target volume and PTV. This greater dose heterogeneity is balanced by improved low-range rectal doses and halving of the monitor units

  10. Volumetric-modulated arc therapy in postprostatectomy radiotherapy patients: A planning comparison study

    Energy Technology Data Exchange (ETDEWEB)

    Forde, Elizabeth, E-mail: eforde@tcd.ie [Radiation Oncology Department, Northern Sydney Cancer Centre, St Leonards, New South Wales (Australia); Kneebone, Andrew [Radiation Oncology Department, Northern Sydney Cancer Centre, St Leonards, New South Wales (Australia); Northern Clinical School, University of Sydney, New South Wales (Australia); Bromley, Regina [Institute of Medical Physics, School of Physics, University of Sydney, New South Wales (Australia); Guo, Linxin; Hunt, Peter [Radiation Oncology Department, Northern Sydney Cancer Centre, St Leonards, New South Wales (Australia); Eade, Thomas [Radiation Oncology Department, Northern Sydney Cancer Centre, St Leonards, New South Wales (Australia); Northern Clinical School, University of Sydney, New South Wales (Australia)

    2013-10-01

    The purpose of this study was to compare postprostatectomy planning for volumetric-modulated arc therapy (VMAT) with both single arc (SA) and double arcs (DA) against dynamic sliding window intensity-modulated radiotherapy (IMRT). Ten cases were planned with IMRT, SA VMAT, and DA VMAT. All cases were planned to achieve a minimum dose of 68 Gy to 95% of the planning target volume (PTV) and goals to limit rectal volume >40 Gy to 35% and >65 Gy to 17%, and bladder volumes >40 Gy to 50% and >65 Gy to 25%. Plans were averaged across the 10 patients and compared for mean dose, conformity, homogeneity, rectal and bladder doses, and monitor units. The mean dose to the clinical target volume and PTV was significantly higher (p<0.05) for SA compared with DA or IMRT. The homogeneity index was not significantly different: SA = 0.09; DA = 0.08; and IMRT = 0.07. The rectal V40 was lowest for the DA plan. The rectal V20 was significantly lower (p<0.05) for both the VMAT plans compared with IMRT. There were no significant differences for bladder V40 or rectal and bladder V65. The IMRT plans required 1400 MU compared with 745 for DA and 708 for SA. This study shows that for equivalent dose coverage, SA and DA VMAT plans result in higher mean doses to the clinical target volume and PTV. This greater dose heterogeneity is balanced by improved low-range rectal doses and halving of the monitor units.

  11. Individualized planning target volumes for intrafraction motion during hypofractionated intensity-modulated radiotherapy boost for prostate cancer

    International Nuclear Information System (INIS)

    Cheung, Patrick; Sixel, Katharina; Morton, Gerard; Loblaw, D. Andrew; Tirona, Romeo; Pang, Geordi; Choo, Richard; Szumacher, Ewa; DeBoer, Gerrit; Pignol, Jean-Philippe

    2005-01-01

    Purpose: The objective of the study was to access toxicities of delivering a hypofractionated intensity-modulated radiotherapy (IMRT) boost with individualized intrafraction planning target volume (PTV) margins and daily online correction for prostate position. Methods and materials: Phase I involved delivering 42 Gy in 21 fractions using three-dimensional conformal radiotherapy, followed by a Phase II IMRT boost of 30 Gy in 10 fractions. Digital fluoroscopy was used to measure respiratory-induced motion of implanted fiducial markers within the prostate. Electronic portal images were taken of fiducial marker positions before and after each fraction of radiotherapy during the first 9 days of treatment to calculate intrafraction motion. A uniform 10-mm PTV margin was used for the first phase of treatment. PTV margins for Phase II were patient-specific and were calculated from the respiratory and intrafraction motion data obtained from Phase I. The IMRT boost was delivered with daily online correction of fiducial marker position. Acute toxicity was measured using National Cancer Institute Common Toxicity Criteria, version 2.0. Results: In 33 patients who had completed treatment, the average PTV margin used during the hypofractionated IMRT boost was 3 mm in the lateral direction, 3 mm in the superior-inferior direction, and 4 mm in the anteroposterior direction. No patients developed acute Grade 3 rectal toxicity. Three patients developed acute Grade 3 urinary frequency and urgency. Conclusions: PTV margins can be reduced significantly with daily online correction of prostate position. Delivering a hypofractionated boost with this high-precision IMRT technique resulted in acceptable acute toxicity

  12. Factors influencing bowel sparing in intensity modulated whole pelvic radiotherapy for gynaecological malignancies

    International Nuclear Information System (INIS)

    Georg, Petra; Georg, Dietmar; Hillbrand, Martin; Kirisits, Christian; Poetter, Richard

    2006-01-01

    Background and purpose: To evaluate the influence of uterus and bladder size on large and small bowel sparing with intensity modulated whole pelvic radiotherapy (IM-WPRT) in gynecologic patients. Patients and methods: Twenty patients were selected; 10 women with cervical cancer treated with definitive radiotherapy (group 'DEF') and 10 endometrial cancer patients treated postoperatively (group 'POST'). Bladder, rectal wall, small (SB) and large bowel (LB) were delineated as organs at risk. A conformal four field technique and a seven field IMRT plan (prescription dose 50.4 Gy) were compared in terms of DVH and various target parameters. Results: At doses between 40 and 50.4 Gy statistically significant improvements (P<0.05) were observed for IM-WPRT for irradiated volume of rectal wall and bladder. In both patient groups, with IMRT the average irradiated volume of SB was reduced by a factor of 6 at 50.4 Gy. This ratio was 2 for LB. In the DEF group the effect of SB-sparing with IMRT correlated with bladder size (correlation coefficient 0.70) while it did not correlate in the postoperative group. The effect of LB-sparing decreased with increasing bladder size in both groups but the impact of IMRT was larger for postoperative patients. Conclusions: IMRT significantly reduced the absolute volume of rectal wall, bladder and bowel irradiated at the prescribed dose level in gynaecologic patients. Main differences between POST and DEF patients receiving IM-WPRT were absolute volumes of LB irradiated to doses between 35 and 50 Gy, suggesting an impact of intact uterus on LB volume in the pelvis. POST patients seem to benefit most from elective nodal IMRT. Bladder filling is an important co-factor influencing the benefit of IMRT with respect to OAR sparing

  13. Propensity Score-based Comparison of Long-term Outcomes With 3-Dimensional Conformal Radiotherapy vs Intensity-Modulated Radiotherapy for Esophageal Cancer

    International Nuclear Information System (INIS)

    Lin, Steven H.; Wang Lu; Myles, Bevan; Thall, Peter F.; Hofstetter, Wayne L.; Swisher, Stephen G.; Ajani, Jaffer A.; Cox, James D.; Komaki, Ritsuko; Liao Zhongxing

    2012-01-01

    Purpose: Although 3-dimensional conformal radiotherapy (3D-CRT) is the worldwide standard for the treatment of esophageal cancer, intensity modulated radiotherapy (IMRT) improves dose conformality and reduces the radiation exposure to normal tissues. We hypothesized that the dosimetric advantages of IMRT should translate to substantive benefits in clinical outcomes compared with 3D-CRT. Methods and Materials: An analysis was performed of 676 nonrandomized patients (3D-CRT, n=413; IMRT, n=263) with stage Ib-IVa (American Joint Committee on Cancer 2002) esophageal cancers treated with chemoradiotherapy at a single institution from 1998-2008. An inverse probability of treatment weighting and inclusion of propensity score (treatment probability) as a covariate were used to compare overall survival time, interval to local failure, and interval to distant metastasis, while accounting for the effects of other clinically relevant covariates. The propensity scores were estimated using logistic regression analysis. Results: A fitted multivariate inverse probability weighted-adjusted Cox model showed that the overall survival time was significantly associated with several well-known prognostic factors, along with the treatment modality (IMRT vs 3D-CRT, hazard ratio 0.72, P<.001). Compared with IMRT, 3D-CRT patients had a significantly greater risk of dying (72.6% vs 52.9%, inverse probability of treatment weighting, log-rank test, P<.0001) and of locoregional recurrence (P=.0038). No difference was seen in cancer-specific mortality (Gray's test, P=.86) or distant metastasis (P=.99) between the 2 groups. An increased cumulative incidence of cardiac death was seen in the 3D-CRT group (P=.049), but most deaths were undocumented (5-year estimate, 11.7% in 3D-CRT vs 5.4% in IMRT group, Gray's test, P=.0029). Conclusions: Overall survival, locoregional control, and noncancer-related death were significantly better after IMRT than after 3D-CRT. Although these results need

  14. Intensity modulated radiotherapy for elderly bladder cancer patients

    International Nuclear Information System (INIS)

    Hsieh, Chen-Hsi; Wang, Li-Ying; Hsieh, Yen-Ping; Shueng, Pei-Wei; Chung, Shiu-Dong; Chan, Pei-Hui; Lai, Siu-Kai; Chang, Hsiao-Chun; Hsiao, Chi-Huang; Wu, Le-Jung; Chong, Ngot-Swan; Chen, Yu-Jen

    2011-01-01

    To review our experience and evaluate treatment planning using intensity-modulated radiotherapy (IMRT) and helical tomotherapy (HT) for the treatment of elderly patients with bladder cancer. From November 2006 through November 2009, we enrolled 19 elderly patients with histologically confirmed bladder cancer, 9 in the IMRT and 10 in the HT group. The patients received 64.8 Gy to the bladder with or without concurrent chemotherapy. Conventional 4-field 'box' pelvic radiation therapy (2DRT) plans were generated for comparison. The median patient age was 80 years old (range, 65-90 years old). The median survival was 21 months (5 to 26 months). The actuarial 2-year overall survival (OS) for the IMRT vs. the HT group was 26.3% vs .37.5%, respectively; the corresponding values for disease-free survival were 58.3% vs. 83.3%, respectively; for locoregional progression-free survival (LRPFS), the values were 87.5% vs. 83.3%, respectively; and for metastases-free survival, the values were 66.7% vs. 60.0%, respectively. The 2-year OS rates for T1, 2 vs. T3, 4 were 66.7% vs. 35.4%, respectively (p = 0.046). The 2-year OS rate was poor for those whose RT completion time greater than 8 weeks when compared with the RT completed within 8 wks (37.9% vs. 0%, p = 0.004). IMRT and HT provide good LRPFS with tolerable toxicity for elderly patients with invasive bladder cancer. IMRT and HT dosimetry and organ sparing capability were superior to that of 2DRT, and HT provides better sparing ability than IMRT. The T category and the RT completion time influence OS rate

  15. Carotid sparing intensity modulated radiotherapy on early glottic cancer: Preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hoon Sik; Jeong, Bae Kwon; Jeong, Ho Jin; Song, Jin Ho; Kim, Jin Pyeong; Park, Jung Je; Woo, Seung Hoon; Kang, Ki Mun [Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju (Korea, Republic of)

    2016-03-15

    To compare the dose distribution between carotid sparing intensity modulated radiotherapy (IMRT) and opposed lateral field technique (LAFT), and to determine the effects of carotid sparing IMRT in early glottic cancer patients who have risk factors for atherosclerosis. Ten early glottic cancer patients were treated with carotid sparing IMRT. For each patient, the conventional LAFT plan was developed for comparison. IMRT and LAFT plans were compared in terms of planning target volume (PTV) coverage, conformity index, homogeneity index, and the doses to planning organ at risk volume (PRV) for carotid arteries, spinal cord and pharyngeal constrictor muscle. Recurrence was not observed in any patients during the follow-up period. V95% for PTV showed no significant difference between IMRT and LAFT plans, while V100% was significantly higher in the IMRT plan (95.5% vs. 94.6%, p = 0.005). The homogeneity index (11.6%) and conformity index (1.4) in the IMRT plan were significantly better than those in the LAFT plans (8.5% and 5.1, respectively) (p = 0.005). The median V5Gy (90.0%), V25Gy (13.5%), and V50Gy (0%) for carotid artery PRV in the IMRT plan were significantly lower than those in the LAFT plan (99.1%, 89.0%, and 77.3%, respectively) (p = 0.005). Our study suggests that carotid sparing IMRT can significantly decrease the dose to carotid arteries compared to LAFT, and it would be considered for early glottic cancer patient with high risk of atherosclerosis.

  16. Breast-conserving radiation therapy using combined electron and intensity-modulated radiotherapy technique

    International Nuclear Information System (INIS)

    Li, J.G.; Williams, S.S.; Goffinet, D.R.; Boer, A.L.; Xing, L.

    2000-01-01

    An electron beam with appropriate energy was combined with four intensity modulated photon beams. The direction of the electron beam was chosen to be tilted 10-20 laterally from the anteroposterior direction. Two of the intensity-modulated photon beams had the same gantry angles as the conventional tangential fields, whereas the other two beams were rotated 15-25' toward the anteroposterior directions from the first two photon beams. An iterative algorithm was developed which optimizes the weight of the electron beam as well as the fluence profiles of the photon beams for a given patient. Two breast cancer patients with early-stage breast tumors were planned with the new technique and the results were compared with those from 3D planning using tangential fields as well as 9-field intensity-modulated radiotherapy (IMRT) techniques. The combined electron and IMRT plans showed better dose conformity to the target with significantly reduced dose to the ipsilateral lung and, in the case of the left-breast patient, reduced dose to the heart, than the tangential field plans. In both the right-sided and left-sided breast plans, the dose to other normal structures was similar to that from conventional plans and was much smaller than that from the 9-field IMRT plans. The optimized electron beam provided between 70 to 80% of the prescribed dose at the depth of maximum dose of the electron beam. The combined electron and IMRT technique showed improvement over the conventional treatment technique using tangential fields with reduced dose to the ipsilateral lung and the heart. The customized beam directions of the four IMRT fields also kept the dose to other critical structures to a minimum. (author)

  17. Quality of life in patients with nasopharyngeal carcinoma after intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Ma Liqin; Zhang Yu; Pan Jianji; Yang Ling; Kong Xiangquan; Ni Xiaolei

    2009-01-01

    Objective: To analyze the status of quality of life (QOL) and the related factors in patients with nasopharyngeal carcinoma (NPC) after radiotherapy, and to explore the significance of intensity modulated radiotherapy (IMRT) in decreasing side effects and improving QOL. Methods: A questionnaire including 35 items was designed according to EORTC QLQ-30 and the related symptoms and side effects of NPC. 142 NPC patients surviving with disease-free after radiotherapy were surveyed for the evaluation of QOL. The median follow-up was 25 months. The information of social demography and clinical details were collected. The patients were divided into IMRT group (75 patients) and conventional radiotherapy (CRT) group (67 patients). A statistical software package SAS 8.1 was used to compare the marks of QOL between the groups and analyze the influencing factors. Results: In IMRT group and CRT group, the marks of affective cognitive domain were 82.8 ± 14.7 and 77.5 ± 16.0 (t=2.07, P=0.040); and the marks of disease and treatment-related symptoms, and reactive domain were 78.9 ± 10.3 and 69.8 ± 13.3 (t=4.59, P= 0.000). The marks were significantly different in xerostomia, trismus, deglutitoy choke, hoarseness, restriction of neck movement and dysphagia (P<0.05). Of the influencing factors of QOL, the domain of body function was sex (regression coefficient was -4.692), the self-evaluation of total QOL were follow-up time and educational background (regression coefficients were -0.618 and 12.316, respectively), the financial status was family monthly income per capita (regression coefficient was -11.133), and the disease and treatment-related symptoms and reactive domain were group (techniques of radiation) and age (regression coefficients were -9.384 and -5.853, respectively). Conclusions: IMRT could improve the QOL through decreasing the side effects of patients with NPC including xerostomia, trismus, restriction of neck movement and dysphagia. Sex, age, family monthly

  18. Preliminary results of a phase I/II study of simultaneous modulated accelerated radiotherapy for nondisseminated nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Lee, Sang-wook; Back, Geum Mun; Yi, Byong Yong; Choi, Eun Kyung; Ahn, Seung Do; Shin, Seong Soo; Kim, Jung-hun; Kim, Sang Yoon; Lee, Bong-Jae; Nam, Soon Yuhl; Choi, Seung-Ho; Kim, Seung-Bae; Park, Jin-hong; Lee, Kang Kyoo; Park, Sung Ho; Kim, Jong Hoon

    2006-01-01

    Purpose: To present preliminary results of intensity-modulated radiotherapy (IMRT) with the simultaneous modulated accelerated radiotherapy (SMART) boost technique in patients with nasopharyngeal carcinoma (NPC). Methods and Materials: Twenty patients who underwent IMRT for nondisseminated NPC at the Asan Medical Center between September 2001 and December 2003 were prospectively evaluated. Intensity-modulated radiotherapy was delivered with the 'step and shoot' SMART technique at prescribed doses of 72 Gy (2.4 Gy/day) to the gross tumor volume, 60 Gy (2 Gy/day) to the clinical target volume and metastatic nodal station, and 46 Gy (2 Gy/day) to the clinically negative neck region. Eighteen patients also received cisplatin once per week. Results: The median follow-up period was 27 months. Nineteen patients completed the treatment without interruption; the remaining patient interrupted treatment for 2 weeks owing to severe pharyngitis and malnutrition. Five patients (25%) had Radiation Therapy Oncology Group Grade 3 mucositis, whereas 9 (45%) had Grade 3 pharyngitis. Seven patients (35%) lost more than 10% of their pretreatment weight, whereas 11 (55%) required intravenous fluids and/or tube feeding. There was no Grade 3 or 4 xerostomia. All patients showed complete response. Two patients had distant metastases and locoregional recurrence, respectively. Conclusion: Intensity-modulated radiotherapy with the SMART boost technique allows parotid sparing, as shown clinically and by dosimetry, and might also be more effective biologically. A larger population of patients and a longer follow-up period are needed to evaluate ultimate tumor control and late toxicity

  19. Implementation of dosimetric quality control on IMRT and VMAT treatments in radiotherapy using diodes; Implementacion de control de calidad dosimetrico en tratamientos de IMRT y VMAT en radioterapia usando diodos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, A.; Garcia, B.; Ramirez, J.; Marquina, J., E-mail: andres.gonzales@aliada.com.pe [ALIADA, Oncologia Integral, Av. Jose Galvez Barrenechea 1044, San Isidro, Lima 27 (Peru)

    2014-08-15

    To implement quality control of IMRT and VMAT treatments Rapid Arc radiotherapy using diode array. Were tested 90 patients with IMRT and VMAT Rapid Arc, comparing the planned dose to the dose administered, used the Map-Check-2 and Arc-Check of Sun Nuclear, they using the gamma factor for calculating and using comparison parameters 3% / 3m m. The statistic shows that the quality controls of the 90 patients analyzed, presented a percentage of diodes that pass the test between 96,7% and 100,0% of the irradiated diodes. Implemented in Clinical ALIADA Oncologia Integral, the method for quality control of IMRT and VMAT treatments Rapid Arc radiotherapy using diode array. (Author)

  20. Patterns of local-regional failure after primary intensity modulated radiotherapy for nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Kong, Fangfang; Ying, Hongmei; Du, Chengrun; Huang, Shuang; Zhou, Junjun; Chen, Junchao; Sun, Lining; Chen, Xiaohui; Hu, Chaosu

    2014-01-01

    To analyze patterns of local-regional failure after primary intensity modulated radiotherapy (IMRT) for nasopharyngeal carcinoma (NPC). A total of 370 non-metastatic NPC patients consecutively treated with IMRT (with or without chemotherapy) were analyzed. Radiotherapy was administered using a simultaneous integrated boost (SIB) technique at the total prescribed dose of 66-70.4Gy (2.0-2.2Gy per fraction). The location and extent of local-regional failures were transferred to the pretreatment planning computed tomography (CT) for dosimetric analysis. The dose of radiation received by V recur (volume of recurrence) was calculated and analyzed with dose-volume histogram (DVH). Failures were classified as: 'in field' if 95% of V recur was within the 95% isodose, 'marginal' if 20% to 95% of V recur was within the 95% isodose, or 'outside' if less than 20% of V recur was inside the 95% isodose. With a median follow up of 26 months, 25 local-regional failures were found in 18 patients. The 1- and 2-year actuarial local-regional control rates for all patients were 99.7% and 95.5% respectively. Among the 22 local–regional failures with available diagnostic images, 16 (64%) occurred within the 95% isodose lines and were considered in-field failures; 3 (12%) were marginal and 3 (12%) were outside-field failures. Intensity-modulated radiotherapy provides excellent local-regional control for NPC. In-field failures are the main patterns for local-regional recurrence. Reducing the coverage of critical adjacent tissues in CTV purposefully for potential subclinical diseases was worth of study. Great attention in all IMRT steps is necessary to reduce potential causes of marginal failures. More studies about radioresistance are needed to reduce in-field failures

  1. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    OpenAIRE

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-01-01

    Introduction Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation ...

  2. Optimization of dose distributions for adjuvant locoregional radiotherapy of gastric cancer by IMRT

    International Nuclear Information System (INIS)

    Lohr, F.; Dobler, B.; Mai, S.; Hermann, B.; Tiefenbacher, U.; Wieland, P.; Steil, V.; Wenz, F.

    2003-01-01

    Background and Purpose: Locoregional relapse is a problem frequently encountered with advanced gastric cancer. Data from the randomized Intergroup trial 116 suggest effectiveness of adjuvant radiochemotherapy, albeit with significant toxicity. The potential of intensity-modulated radiotherapy (IMRT) to reduce toxicity by significantly reducing maximum and median doses to organs at risk while still applying sufficient dose to the target volume in the upper abdomen was studied. Patient and Methods: For a typical configuration of target volumes and organs, a step-and-shoot IMRT plan (eight beam orientations), developed as a class solution for treatment of tumors in the upper abdomen (Figures 1 to 3), a conventional plan, a combination of the conventional plan with a kidney-sparing boost plan, and a conventional plan with noncoplanar ap and pa fields for improved kidney sparing were compared with respect to coverage of target volume and dose to organs at risk with a dose of 45 Gy delivered as the median dose to the target volume. Results: When using the conventional three-dimensionally planned box techniques, the right kidney could be kept below tolerance, but median dose to the left kidney amounted to between 14.8 and 26.9 Gy, depending on the plan. IMRT reduced the median dose to the left kidney to 10.5 Gy, while still keeping the dose to the right kidney 90% of prescription dose were delivered to > 90% of target volume with IMRT (Table 1). Conclusion: IMRT has the potential to deliver efficient doses to target volumes in the upper abdomen, while delivering dose to organs at risk in a more advantageous fashion than a conventional technique. For clinical implementation, the possibility of extensive organ motion in the upper abdomen has to be taken into account for treatment planning and patient positioning. The multitude of potential risks related to its application has to be the subject of thorough follow-up and further studies. (orig.)

  3. Comparison of intensity-modulated radiotherapy and volumetric-modulated arc therapy dose measurement for head and neck cancer using optical stimulated luminescence dosimeter

    International Nuclear Information System (INIS)

    Lai, Lu-Han; Chuang, Keh-Shih; Lin, Hsin-Hon; Liu, Yi-Chi; Kuo, Chiung-Wen; Lin, Jao-Perng

    2017-01-01

    The in-vivo dose distributions of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT), a newly developed technique, for head and neck cancer have been investigated for several years. The present study used a head-and-neck RANDO phantom to simulate the clinical conditions of nasopharyngeal carcinoma and compare the radiation doses between VMAT and IMRT. Three types of planning target volume (PTV) profiles were targeted by reducing the PTV surface margin by 0, 3, and 5 mm. An optically stimulated luminescence dosimeter was used to measure the surface doses. The results revealed that VMAT provided on average 16.8–13.8% lower surface doses within the PTV target areas than IMRT. When the PTV margin was reduced by 0 mm, the surface doses for IMRT reached their maximum value, accounting for 75.1% of its prescribed dose (Dp); however, the Dp value of VMAT was only 61.1%. When the PTV margin was reduced by 3 or 5 mm, the surface doses decreased considerably. The observed surface doses were insufficient when the tumours invaded the body surface; however, VMAT exerted larger skin-sparing effects than IMRT when the tumours away from the skin. These results suggest that the skin doses for these two techniques are insufficient for surface tumours. Notably, VMAT can provide lower skin doses for deep tumours. - Highlights: • The surface doses of NPC patients are compared between VMAT and IMRT. • VMAT exerts lower skin dose than IMRT for deep tumours. • The surface tumour coverage is insufficient for VMAT and IMRT.

  4. Normal liver tissue sparing by intensity-modulated proton stereotactic body radiotherapy for solitary liver tumours

    International Nuclear Information System (INIS)

    Petersen, Joergen B. B.; Hansen, Anders T.; Lassen, Yasmin; Grau, Cai; Hoeyer, Morten; Muren, Ludvig P.

    2011-01-01

    Background. Stereotactic body radiotherapy (SBRT) is often the preferred treatment for the advanced liver tumours which owing to tumour distribution, size and multi-focality are out of range of surgical resection or radiofrequency ablation. However, only a minority of patients with liver tumours may be candidates for conventional SBRT because of the limited radiation tolerance of normal liver, intestine and other normal tissues. Due to the favourable depth-dose characteristics of protons, intensity-modulated proton therapy (IMPT) may be a superior alternative to photon-based SBRT. The purpose of this treatment planning study was therefore to investigate the potential sparing of normal liver by IMPT compared to photon-based intensity-modulated radiotherapy (IMRT) for solitary liver tumours. Material and methods. Ten patients with solitary liver metastasis treated at our institution with multi-field SBRT were retrospectively re-planned with IMRT and proton pencil beam scanning techniques. For the proton plans, two to three coplanar fields were used in contrast to five to six coplanar and non-coplanar photon fields. The same planning objectives were used for both techniques. A risk adapted dose prescription to the PTV surface of 12.5-16.75 Gy x 3 was used. Results. The spared liver volume for IMPT was higher compared to IMRT in all 10 patients. At the highest prescription dose level, the median liver volume receiving less than 15 Gy was 1411 cm 3 for IMPT and 955 cm 3 for IMRT (p D 15 Gy > 700 cm 3 constraint. For the D mean = 15 Gy constraint, nine of 10 cases could be treated at the highest dose level using IMPT whereas with IMRT, only two cases met this constraint at the highest dose level and six at the lowest dose level. Conclusion. A considerable sparing of normal liver tissue can be obtained using proton-based SBRT for solitary liver tumours

  5. Breath-hold technique in conventional APPA or intensity-modulated radiotherapy for Hodgkin's lymphoma. Comparison of ILROG IS-RT and the GHSG IF-RT

    Energy Technology Data Exchange (ETDEWEB)

    Kriz, Jan; Spickermann, Max; Lehrich, Philipp; Reinartz, Gabriele; Eich, Hans; Haverkamp, Uwe [University of Muenster, Department of Radiation Oncology, Muenster (Germany); Schmidberger, Heinz [University Mainz, Department of Radiation Oncology, Mainz (Germany)

    2015-09-15

    The present study addresses the role of intensity-modulated radiotherapy (IMRT) in contrast to standard RT (APPA) for patients with Hodgkin's lymphoma (HL) with a focus on deep inspiration breath-hold (DIBH) technique and a comparison between the International Lymphoma Radiation Oncology Group (ILROG) Involved Site Radiotherapy (IS-RT) versus the German Hodgkin Study Group (GHSG) Involved Field Radiotherapy (IF-RT). APPA treatment and 2 IMRT plans were compared for 11 patients with HL. Furthermore, treatment with DIBH versus free breathing (FB) and two different treatment volumes, i.e. IF-RT versus IS-RT, were compared. IMRT was planned as a sliding-window technique with 5 and 7 beam angles. For each patient 12 different treatment plans were calculated (132 plans). Following organs at risk (OAR) were analysed: lung, heart, spinal cord, oesophagus, female breast and skin. Comparisons of the different values with regard to dose-volume histograms (DVH), conformity and homogeneity indices were made. IS-RT reduces treatment volumes. With respect to the planning target volume (PTV), IMRT achieves better conformity but the same homogeneity. Regarding the D{sub mean} for the lung, IMRT shows increased doses, while RT in DIBH reduces doses. The IMRT shows improved values for D{sub max} concerning the spinal cord, whereas the APPA shows an improved D{sub mean} of the lung and the female breast. IS-RT reduces treatment volumes. Intensity-modulated radiotherapy shows advantages in the conformity. Treatment in DIBH also reduces the dose applied to the lungs and the heart. (orig.) [German] Ziel dieser Auswertung ist es, die konventionelle APPA-Feldanordnung mit der Intensitaetsmodulierten Radiotherapie (IMRT) bei Patienten mit Hodgkin-Lymphom (HL) zu vergleichen. Ein besonderer Fokus liegt hierbei auf der Bestrahlung in tiefer Inspiration und Atemanhaltetechnik (DIBH). Des Weiteren wurde die ''Involved-site''-Radiotherapie (IS-RT) der International

  6. Intensity modulated radiotherapy with simultaneous integrated boost vs. conventional radiotherapy with sequential boost for breast cancer - A preliminary result.

    Science.gov (United States)

    Lee, Hsin-Hua; Hou, Ming-Feng; Chuang, Hung-Yi; Huang, Ming-Yii; Tsuei, Le-Ping; Chen, Fang-Ming; Ou-Yang, Fu; Huang, Chih-Jen

    2015-10-01

    This study was aimed to assess the acute dermatological adverse effect from two distinct RT techniques for breast cancer patients. We compared intensity-modulated radiotherapy with simultaneous integrated boost (IMRT-SIB) and conventional radiotherapy followed by sequential boost (CRT-SB). The study population was composed of 126 consecutive female breast cancer patients treated with breast conserving surgery. Sixty-six patients received IMRT-SIB to 2 dose levels simultaneously. They received 50.4 Gy at 1.8 Gy per fraction to the whole breast and 60.2 Gy at 2.15 Gy per fraction to the tumor bed by integral boost. Sixty patients in the CRT-SB group received 50 Gy in 25 fractions to the whole breast followed by a boost irradiation to tumor bed in 5-7 fractions to a total dose of 60-64 Gy. Acute skin toxicities were documented in agreement with the Common Terminology Criteria for Adverse Events version 3 (CTCAE v.3.0). Ninety-eight patients had grade 1 radiation dermatitis while 14 patients had grade 2. Among those with grade 2, there were 3 patients in IMRT-SIB group (4.5%) while 11 in CRT-SB group (18.3%). (P = 0.048) There was no patient with higher than grade 2 toxicity. Three year local control was 99.2%, 3-year disease free survival was 97.5% and 3-year overall survival was 99.2%. A significant reduction in the severity of acute radiation dermatitis from IMRT-SIB comparing with CRT-SB is demonstrated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Intensity-modulated radiotherapy prolongs the survival of patients with nasopharyngeal carcinoma compared with conventional two-dimensional radiotherapy: A 10-year experience with a large cohort and long follow-up.

    Science.gov (United States)

    Zhang, Meng-Xia; Li, Jing; Shen, Guo-Ping; Zou, Xiong; Xu, Jun-Jie; Jiang, Rou; You, Rui; Hua, Yi-Jun; Sun, Ying; Ma, Jun; Hong, Ming-Huang; Chen, Ming-Yuan

    2015-11-01

    To evaluate the survival benefit of intensity-modulated radiotherapy (IMRT) compared with conventional two-dimensional radiotherapy (2D-CRT) in nasopharyngeal carcinoma (NPC) using a large cohort with long follow-up. We retrospectively analysed 7081 non-metastatic NPC patients who received curative IMRT or 2D-CRT from February 2002 to December 2011. Of the 7081 patients, 2245 (31.7%) were administered IMRT, while 4836 (68.3%) were administered 2D-CRT. At 5 years, the patients administered IMRT had significantly higher local relapse-free survival (LRFS), loco-regional relapse-free survival (LRRFS), progression-free survival (PFS) and overall survival (OS) (95.6%, 92.5%, 82.1% and 87.4%, respectively) than those administered 2D-CRT (90.8%, 88.5%, 76.7% and 84.5%, respectively; p<0.001). The distant metastasis-free survival (DMFS) was higher for IMRT than 2D-CRT, with borderline significance (87.6% and 85.7%, respectively; p=0.056). However, no difference was observed between IMRT and 2D-CRT in nodal relapse-free survival (NRFS; 96.3% and 97.4%, respectively; p=0.217). Multivariate analyses showed that IMRT was an independent protective prognostic factor for LRFS, LRRFS and PFS, but not NRFS, DMFS or OS. IMRT provided an improved LRFS, LRRFS and PFS in both the early and advanced T classifications and overall stage for non-disseminated NPC compared with 2D-CRT. However, no significant advantage was observed in NRFS, DMFS or OS when IMRT was used. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Cardiac avoidance in breast radiotherapy: a comparison of simple shielding techniques with intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Landau, David; Adams, Elizabeth J.; Webb, Steve; Ross, Gillian

    2001-01-01

    Background and purpose: Adjuvant breast radiotherapy (RT) is now part of the routine care of patients with early breast cancer. However, analysis of the Early Breast Cancer Trialists' Collaborative suggests that patients with the lowest risk of dying of breast cancer are at significant risk of cardiac mortality due to longer relapse-free survival. Patients with a significant amount of heart in the high-dose volume have been shown to be at risk of fatal cardiac events. This study was designed to assess whether conformal planning or intensity-modulated radiotherapy (IMRT) techniques allow reduced cardiac irradiation whilst maintaining full target coverage. Material and methods: Ten patients with early breast cancer were available for computed tomography (CT) planning. Each had at least 1 cm maximum heart depth within the posterior border of conventional tangents. For each patient, plans were generated and compared using dose volume histograms for planning target volume (PTV) and organs at risk. The plans included conventional tangents with and without shielding. The shielding was designed to either completely spare the heart or to shield as much heart as possible without compromising PTV coverage. IMRT plans were also prepared using two- and four-field tangential and six-field arc-like beam arrangements. Results: PTV homogeneity was better for the tangential IMRT techniques. For all patients, cardiac irradiation was reduced by the addition of partial cardiac shielding to conventional tangents, without compromise of PTV coverage. The two- and four-field IMRT techniques also reduced heart doses. The average percentage volume of heart receiving >60% of the prescription dose was 4.4% (range 1.0-7.1%) for conventional tangents, 1.5% (0.2-3.9%) for partial shielding, 2.3% (0.5-4.6%) for the two-field IMRT technique and 2.2% (0.4-5.6%) for the four-field IMRT technique. For patients with larger maximum heart depths the four-field IMRT plan achieved greater heart sparing

  9. A comparative dosimetric study of conventional, conformal and intensity-modulated radiotherapy in postoperative pelvic irradiation of cervical cancer

    International Nuclear Information System (INIS)

    Li Bin; An Jusheng; Wu Lingying; Huang Manni; Gao Juzhen; Xu Yingjie; Dai Jianrong

    2008-01-01

    Objective: To evaluate target-volume coverage and organ at risk (OAR) protection achieved with conventional radiotherapy (CRT), three dimensional conformal radiotherapy (3DCRT), and intensity-modulated radiotherapy(IMRT) through dosimetric comparison in patients with cervical cancer after hysterectomy. Methods: The planning CT scans of 10 patients treated with pelvic radiation after hysterectomy for cervical cancer were used to generate CRT, 3DCRT and IMRT plans for this study. Clinical target volume(CTV) was contoured on the individual axial CT slices of every patient. The CTV was then uniformly expanded by 1.0 cm to create the planning target volume (PTV). The small bowel, rectum, bladder, bone marrow, ovaries, and femoral heads were outlined for the organ at risk (OAR) evaluation. The CRT, 3DCRT and IMRT plans were generated using commercial planning software. CRT plan was prescribed to deliver 45 Gy to the reference point, while IMRT and 3DCRT plans were 45 Gy to 95% of the PTV. Isodose line and dose volume histograms(DVH) were used to evaluate the dose distribution in CTV and OAR. Results: For 10 patients, the average volume of CTV receiving the prescribed dose of CRT was significantly lower than 3DCRT(Q=8.27, P<0.01) and IMRT(Q=8.37, P<0.01), respectively. Comparing with the CRT plan, the 3DCRT and IMRT plans notably reduced the volume of bowel at 30 and 45 Gy levels. The IMRT plan significantly spared rectum and bladder at 30 and 45 Gy levels comparing with the CRT (P<0.01) and 3DCRT(P<0.05) plans, while the 3DCRT plan significantly spared rectum and bladder at 45 Gy level comparing with the CRT(P<0.01) plans. For 4 patients with ovarian transposition, the average doses of ovary over 3 Gy were 2 patients with the 3 DCRT and IMRT plans, and 2 with all three plans. Conclusions: IMRT and 3DCRT are superior to CRT in improving dose coverage of target volume and sparing of OAR, while IMRT being the best. The superiority of IMRT and 3DCRT is obvious in sparing

  10. Intensity modulated radiotherapy for elderly bladder cancer patients

    Directory of Open Access Journals (Sweden)

    Chong Ngot-Swan

    2011-06-01

    Full Text Available Abstract Background To review our experience and evaluate treatment planning using intensity-modulated radiotherapy (IMRT and helical tomotherapy (HT for the treatment of elderly patients with bladder cancer. Methods From November 2006 through November 2009, we enrolled 19 elderly patients with histologically confirmed bladder cancer, 9 in the IMRT and 10 in the HT group. The patients received 64.8 Gy to the bladder with or without concurrent chemotherapy. Conventional 4-field "box" pelvic radiation therapy (2DRT plans were generated for comparison. Results The median patient age was 80 years old (range, 65-90 years old. The median survival was 21 months (5 to 26 months. The actuarial 2-year overall survival (OS for the IMRT vs. the HT group was 26.3% vs .37.5%, respectively; the corresponding values for disease-free survival were 58.3% vs. 83.3%, respectively; for locoregional progression-free survival (LRPFS, the values were 87.5% vs. 83.3%, respectively; and for metastases-free survival, the values were 66.7% vs. 60.0%, respectively. The 2-year OS rates for T1, 2 vs. T3, 4 were 66.7% vs. 35.4%, respectively (p = 0.046. The 2-year OS rate was poor for those whose RT completion time greater than 8 weeks when compared with the RT completed within 8 wks (37.9% vs. 0%, p = 0.004. Conclusion IMRT and HT provide good LRPFS with tolerable toxicity for elderly patients with invasive bladder cancer. IMRT and HT dosimetry and organ sparing capability were superior to that of 2DRT, and HT provides better sparing ability than IMRT. The T category and the RT completion time influence OS rate.

  11. Genital marginal failures after intensity-modulated radiation therapy (IMRT) in squamous cell anal cancer: no higher risk with IMRT when compared to 3DCRT.

    Science.gov (United States)

    Dell'Acqua, V; Kobiela, J; Kraja, F; Leonardi, M C; Surgo, A; Zerella, M A; Arculeo, S; Fodor, C; Ricotti, R; Zampino, M G; Ravenda, S; Spinoglio, G; Biffi, R; Bazani, A; Luraschi, R; Vigorito, S; Spychalski, P; Orecchia, R; Glynne-Jones, R; Jereczek-Fossa, B A

    2018-03-28

    Intensity-modulated radiotherapy (IMRT) is considered the preferred option in squamous cell canal cancer (SCAC), delivering high doses to tumor volumes while minimizing dose to surrounding normal tissues. IMRT has steep dose gradients, but the technique is more demanding as deep understanding of target structures is required. To evaluate genital marginal failure in a cohort of patients with non-metastatic SCAC treated either with IMRT or 3DCRT and concurrent chemotherapy, 117 patients with SCAC were evaluated: 64 and 53 patients were treated with IMRT and 3DCRT techniques, respectively. All patients underwent clinical and radiological examination during their follow-up. Tumor response was evaluated with response evaluation criteria in solid tumors v1.1 guideline on regular basis. All patients' data were analyzed, and patients with marginal failure were identified. Concomitant chemotherapy was administered in 97 and 77.4% of patients in the IMRT and 3DCRT groups, respectively. In the IMRT group, the median follow-up was 25 months (range 6-78). Progressive disease was registered in 15.6% of patients; infield recurrence, distant recurrence and both infield recurrence and distant recurrence were identified in 5, 4 and 1 patient, respectively. Two out of 64 patients (3.1%) had marginal failures, localized at vagina/recto-vaginal septum and left perineal region. In the 3DCRT group, the median follow-up was 71.3 months (range 6-194 months). Two out of 53 patients (3.8%) had marginal failures, localized at recto-vaginal septum and perigenital structures. The rate of marginal failures was comparable in IMRT and 3DCRT groups (χ 2 test p = 0.85). In this series, the use of IMRT for the treatment of SCAC did not increase the rate of marginal failures offering improved dose conformity to the target. Dose constraints should be applied with caution-particularly in females with involvement of the vagina or the vaginal septum.

  12. Dosimetric Comparison of Three-Dimensional Conformal Proton Radiotherapy, Intensity-Modulated Proton Therapy, and Intensity-Modulated Radiotherapy for Treatment of Pediatric Craniopharyngiomas

    Energy Technology Data Exchange (ETDEWEB)

    Boehling, Nicholas S. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Grosshans, David R., E-mail: dgrossha@mdanderson.org [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Bluett, Jaques B. [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Palmer, Matthew T. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Song, Xiaofei; Amos, Richard A.; Sahoo, Narayan [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Meyer, Jeffrey J.; Mahajan, Anita; Woo, Shiao Y. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2012-02-01

    Purpose: Cranial irradiation in pediatric patients is associated with serious long-term adverse effects. We sought to determine whether both three-dimensional conformal proton radiotherapy (3D-PRT) and intensity-modulated proton therapy (IMPT) compared with intensity-modulated radiotherapy (IMRT) decrease integral dose to brain areas known to harbor neuronal stem cells, major blood vessels, and other normal brain structures for pediatric patients with craniopharyngiomas. Methods and Materials: IMRT, forward planned, passive scattering proton, and IMPT plans were generated and optimized for 10 pediatric patients. The dose was 50.4 Gy (or cobalt Gy equivalent) delivered in 28 fractions with the requirement for planning target volume (PTV) coverage of 95% or better. Integral dose data were calculated from differential dose-volume histograms. Results: The PTV target coverage was adequate for all modalities. IMRT and IMPT yielded the most conformal plans in comparison to 3D-PRT. Compared with IMRT, 3D-PRT and IMPT plans had a relative reduction of integral dose to the hippocampus (3D-PRT, 20.4; IMPT, 51.3%{sup Asterisk-Operator }), dentate gyrus (27.3, 75.0%{sup Asterisk-Operator }), and subventricular zone (4.5, 57.8%{sup Asterisk-Operator }). Vascular organs at risk also had reduced integral dose with the use of proton therapy (anterior cerebral arteries, 33.3{sup Asterisk-Operator }, 100.0%{sup Asterisk-Operator }; middle cerebral arteries, 25.9%{sup Asterisk-Operator }, 100%{sup Asterisk-Operator }; anterior communicating arteries, 30.8{sup Asterisk-Operator }, 41.7%{sup Asterisk-Operator }; and carotid arteries, 51.5{sup Asterisk-Operator }, 77.6{sup Asterisk-Operator }). Relative reduction of integral dose to the infratentorial brain (190.7{sup Asterisk-Operator }, 109.7%{sup Asterisk-Operator }), supratentorial brain without PTV (9.6, 26.8%{sup Asterisk-Operator }), brainstem (45.6, 22.4%{sup Asterisk-Operator }), and whole brain without PTV (19.4{sup Asterisk

  13. Effect of stereotactic body radiotherapy versus intensity-modulated radiotherapy in primary liver cancer patients with secondary malignant tumor of vertebra

    Directory of Open Access Journals (Sweden)

    SUN Jing

    2016-06-01

    Full Text Available ObjectiveTo investigate the effect of stereotactic body radiotherapy (SBRT versus intensity-modulated radiotherapy (IMRT in primary liver cancer (PLC patients with secondary malignant tumor of vertebra. MethodsA total of 49 PLC patients with secondary metastatic tumor of vertebra, who were treated in our hospital from December 2011 to January 2014, were enrolled and divided into group A (20 patients treated with SBRT and group B (29 patients treated with IMRT. The prescribed dose was 35 Gy in 5 fractions in group A and 35 Gy in 10 fractions in group B. The time to pain relief, imaging findings, and survival analysis were used to evaluate pain-relieving effect, the condition of lesions, and survival time. The t-test was used to compare continuous data between groups, and the chi-square test was used to compare categorical data between groups. The K-M method was used to plot survival curves for both groups, and the log-rank test was used for survival difference analysis. ResultsThe proportion of patients who achieved complete or partial remission and stable disease shown by radiological examination after radiotherapy showed no significant difference between group A and group B (P=0.873. The pain relief rate also showed no significant difference between group A and group B (P=0.908. The time of pain relief showed a significant difference between group A and group B (t=-3.353, P<0.01. The overall survival showed no significant difference between the two groups (P=0.346. ConclusionRadiotherapy has a definite therapeutic effect in PLC patients with secondary malignant tumor of vertebra. SBRT and IMRT have similar pain-relieving effects. However, with the same prescribed dose, SBRT has a short time to pain relief and does not lead to serious intolerable acute or late toxic and side effects in surrounding fast-response tissues.

  14. Comparison of radiotherapy dosimetry for 3D-CRT, IMRT, and SBRT based on electron density calibration

    International Nuclear Information System (INIS)

    Kartutik, K; Pawiro, S A; Wibowo, W E

    2016-01-01

    Accurate calculation of dose distribution affected by inhomogeneity tissue is required in radiotherapy planning. This study was performed to determine the ratio between radiotherapy planning using 3D-CRT, IMRT, and SBRT based on a calibrated curve of CT-number in the lung for different target's shape in 3D-CRT, IMRT, and spinal cord for SBRT. Calibration curves of CT-number were generated under measurement basis and introduced into TPS, then planning was performed for 3D-CRT, IMRT, and SBRT with 7, and 15 radiation fields. Afterwards, planning evaluation was performed by comparing the DVH curve, HI, and CI. 3D-CRT and IMRT produced the lowest HI at calibration curve of CIRS 002LFC with the value 0.24 and 10. Whereas SBRT produced the lowest HI on a linear calibration curve with a value of 0.361. The highest CI in IMRT and SBRT technique achieved using a linear calibration curve was 0.97 and 1.77 respectively. For 3D-CRT, the highest CI was obtained by using calibration curve of CIRS 062M with the value of 0.45. From the results of CI and HI, it is concluded that the calibration curve of CT-number does not significantly differ with Schneider's calibrated curve, and inverse planning gives a better result than forward planning. (paper)

  15. Use of a Conventional Low Neck Field (LNF) and Intensity-Modulated Radiotherapy (IMRT): No Clinical Detriment of IMRT to an Anterior LNF During the Treatment of Head-and Neck-Cancer

    International Nuclear Information System (INIS)

    Turaka, Aruna; Li Tianyu; Nicolaou, Nicos; Lango, Miriam N.; Burtness, Barbara; Horwitz, Eric M.; Ridge, John A.; Feigenberg, Steven J.

    2011-01-01

    Purpose: To determine differences in clinical outcomes using intensity-modulated radiotherapy (IMRT) or a standard low neck field (LNF) to treat low neck. Methods and Materials: This is a retrospective, single-institution study. Ninety-one patients with squamous cell carcinoma of the head and neck were treated with curative intent. According to physician preference, some patients were treated with LNF (Planning Target Volume 3) field using a single anterior photon field matched to the IMRT field. Field junctions were not feathered. The endpoints were time to failure and use of a percutaneous endoscopic gastrostomy (PEG) tube (as a surrogate of laryngeal edema causing aspiration), and analysis was done with χ 2 and log-rank tests. Results: Median follow-up was 21 months (range, 2-89 months). Median age was 60 years. Thirty-seven patients (41%) were treated with LNF, 84% were Stage III or IV. A PEG tube was required in 30%, as opposed to 33% without the use of LNF. Node 2 or 3 neck disease was treated more commonly without LNF (38% vs. 24%, p = 0.009). Failures occurred in 12 patients (13%). Only 1 patient treated with LNF failed regionally, 4.5 cm above the match line. The 3-year disease-free survival rate was 87% and 79% with LNF and without LNF, respectively (p = 0.2), and the 3-year LR failure rate was 4% and 21%, respectively (p = 0.04). Conclusions: Using LNF to treat the low neck did not increase the risk of regional failure 'in early T and early N diseases' or decrease PEG tube requirements.

  16. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    Science.gov (United States)

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-01-01

    Introduction Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. Methods A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. Results The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. Conclusion The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques. PMID:26229623

  17. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    International Nuclear Information System (INIS)

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-01-01

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques

  18. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT).

    Science.gov (United States)

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-12-01

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147-53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose-volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.

  19. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    Energy Technology Data Exchange (ETDEWEB)

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham [Andrew Love Cancer Centre, Geelong Hospital, Geelong, Victoria (Australia)

    2013-12-15

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.

  20. Technological advances in radiotherapy of rectal cancer

    DEFF Research Database (Denmark)

    Appelt, Ane L; Sebag-Montefiore, David

    2016-01-01

    PURPOSE OF REVIEW: This review summarizes the available evidence for the use of modern radiotherapy techniques for chemoradiotherapy for rectal cancer, with specific focus on intensity-modulated radiotherapy (IMRT) and volumetric arc therapy (VMAT) techniques. RECENT FINDINGS: The dosimetric...

  1. Dose reduction to normal tissues as compared to the gross tumor by using intensity modulated radiotherapy in thoracic malignancies

    Directory of Open Access Journals (Sweden)

    Bhalla NK

    2006-08-01

    Full Text Available Abstract Background and purpose Intensity modulated radiotherapy (IMRT is a powerful tool, which might go a long way in reducing radiation doses to critical structures and thereby reduce long term morbidities. The purpose of this paper is to evaluate the impact of IMRT in reducing the dose to the critical normal tissues while maintaining the desired dose to the volume of interest for thoracic malignancies. Materials and methods During the period January 2002 to March 2004, 12 patients of various sites of malignancies in the thoracic region were treated using physical intensity modulator based IMRT. Plans of these patients treated with IMRT were analyzed using dose volume histograms. Results An average dose reduction of the mean values by 73% to the heart, 69% to the right lung and 74% to the left lung, with respect to the GTV could be achieved with IMRT. The 2 year disease free survival was 59% and 2 year overall survival was 59%. The average number of IMRT fields used was 6. Conclusion IMRT with inverse planning enabled us to achieve desired dose distribution, due to its ability to provide sharp dose gradients at the junction of tumor and the adjacent critical organs.

  2. [Accelerated partial breast irradiation with image-guided intensity-modulated radiotherapy following breast-conserving surgery - preliminary results of a phase II clinical study].

    Science.gov (United States)

    Mészáros, Norbert; Major, Tibor; Stelczer, Gábor; Zaka, Zoltán; Mózsa, Emõke; Fodor, János; Polgár, Csaba

    2015-06-01

    The purpose of the study was to implement accelerated partial breast irradiation (APBI) by means of image-guided intensity-modulated radiotherapy (IG-IMRT) following breast-conserving surgery (BCS) for low-risk early invasive breast cancer. Between July 2011 and March 2014, 60 patients with low-risk early invasive (St I-II) breast cancer who underwent BCS were enrolled in our phase II prospective study. Postoperative APBI was given by means of step and shoot IG-IMRT using 4 to 5 fields to a total dose of 36.9 Gy (9×4.1 Gy) using a twice-a-day fractionation. Before each fraction, series of CT images were taken from the region of the target volume using a kV CT on-rail mounted in the treatment room. An image fusion software was used for automatic image registration of the planning and verification CT images. Patient set-up errors were detected in three directions (LAT, LONG, VERT), and inaccuracies were adjusted by automatic movements of the treatment table. Breast cancer related events, acute and late toxicities, and cosmetic results were registered and analysed. At a median follow-up of 24 months (range 12-44) neither locoregional nor distant failure was observed. Grade 1 (G1), G2 erythema, G1 oedema, and G1 and G2 pain occurred in 21 (35%), 2 (3.3%), 23 (38.3%), 6 (10%) and 2 (3.3%) patients, respectively. No G3-4 acute side effects were detected. Among late radiation side effects G1 pigmentation, G1 fibrosis, and G1 fat necrosis occurred in 5 (8.3%), 7 (11.7%), and 2 (3.3%) patients, respectively. No ≥G2 late toxicity was detected. Excellent and good cosmetic outcome was detected in 45 (75%) and 15 (25%) patients. IG-IMRT is a reproducible and feasible technique for the delivery of APBI following conservative surgery for the treatment of low-risk, early-stage invasive breast carcinoma. Preliminary results are promising, early radiation side effects are minimal, and cosmetic results are excellent.

  3. Intensity-modulated radiation therapy for anal carcinoma; Radiotherapie conformationnelle avec modulation d'intensite des cancers de l'anus

    Energy Technology Data Exchange (ETDEWEB)

    Peiffert, D.; Moreau-Claeys, M.V.; Tournier-Rangeard, L.; Huger, S.; Marchesi, V. [Departement de radiotherapie, centre Alexis-Vautrin, 6, avenue de Bourgogne, 54511 Vandoeuvre-les-Nancy cedex (France)

    2011-10-15

    Anal canal carcinoma are highly curable by irradiation, combined with chemotherapy in locally advanced disease, with preservation of sphincter function. The clinical target volume for the nodes is extended, often including the inguinal nodes, which is not usual for other pelvic tumours. Acute and late effects are correlated with the volume and dose delivered to organs at risk, i. e. small bowel, bladder and increased by concomitant chemotherapy. Intensity modulated irradiation (IMRT) makes it possible to optimize the dose distribution in this 'complex U shaped' volume, while maintaining the dose distribution for the target volumes. The conversion from conformal irradiation to IMRT necessitates good knowledge of the definition and skills to delineate target volumes and organs at risk, including new volumes needed to optimize the dose distribution. Dosimetric and clinical benefits of IMRT are described, based on early descriptions and evidence-based publication. The growing development of IMRT in anal canal radiotherapy must be encouraged, and long-term benefits should be soon published. Radiation oncologists should precisely learn IMRT recommendations before starting the technique, and evaluate its early and late results for adverse effects, but also for long-term tumour control. (authors)

  4. Implant R100 Predicts Rectal Bleeding in Prostate Cancer Patients Treated with IG-IMRT to 45 Gy and Pd-103 Implant

    OpenAIRE

    Matthew Packard; Vladimir Valakh; Russell Fuhrer

    2014-01-01

    Purpose. To define factors associated with rectal bleeding in patients treated with IG-IMRT followed by Pd-103 seed implant. Methods and Materials. We retrospectively reviewed 61 prostate adenocarcinoma patients from 2002 to 2008. The majority (85.2%) were of NCCN intermediate risk category. All received IG-IMRT to the prostate and seminal vesicles followed by Pd-103 implant delivering a mean D90 of 100.7 Gy. Six patients received 45 Gy to the pelvic nodes and 10 received androgen deprivation...

  5. Intensity-Modulated Radiotherapy Results in Significant Decrease in Clinical Toxicities Compared With Conventional Wedge-Based Breast Radiotherapy

    International Nuclear Information System (INIS)

    Harsolia, Asif; Kestin, Larry; Grills, Inga; Wallace, Michelle; Jolly, Shruti; Jones, Cortney; Lala, Moinaktar; Martinez, Alvaro; Schell, Scott; Vicini, Frank A.

    2007-01-01

    Purpose: We have previously demonstrated that intensity-modulated radiotherapy (IMRT) with a static multileaf collimator process results in a more homogenous dose distribution compared with conventional wedge-based whole breast irradiation (WBI). In the present analysis, we reviewed the acute and chronic toxicity of this IMRT approach compared with conventional wedge-based treatment. Methods and Materials: A total of 172 patients with Stage 0-IIB breast cancer were treated with lumpectomy followed by WBI. All patients underwent treatment planning computed tomography and received WBI (median dose, 45 Gy) followed by a boost to 61 Gy. Of the 172 patients, 93 (54%) were treated with IMRT, and the 79 patients (46%) treated with wedge-based RT in a consecutive fashion immediately before this cohort served as the control group. The median follow-up was 4.7 years. Results: A significant reduction in acute Grade 2 or worse dermatitis, edema, and hyperpigmentation was seen with IMRT compared with wedges. A trend was found toward reduced acute Grade 3 or greater dermatitis (6% vs. 1%, p = 0.09) in favor of IMRT. Chronic Grade 2 or worse breast edema was significantly reduced with IMRT compared with conventional wedges. No difference was found in cosmesis scores between the two groups. In patients with larger breasts (≥1,600 cm 3 , n = 64), IMRT resulted in reduced acute (Grade 2 or greater) breast edema (0% vs. 36%, p <0.001) and hyperpigmentation (3% vs. 41%, p 0.001) and chronic (Grade 2 or greater) long-term edema (3% vs. 30%, p 0.007). Conclusion: The use of IMRT in the treatment of the whole breast results in a significant decrease in acute dermatitis, edema, and hyperpigmentation and a reduction in the development of chronic breast edema compared with conventional wedge-based RT

  6. Automated IMRT planning in Pinnacle. A study in head-and-neck cancer

    International Nuclear Information System (INIS)

    Kusters, J.M.A.M.; Kollenburg, P.G.M. van; Kunze-Busch, M.C.; Wendling, M.; Dijkema, T.; Kaanders, J.H.A.M.; Bzdusek, K.; Kumar, P.

    2017-01-01

    This study evaluates the performance and planning efficacy of the Auto-Planning (AP) module in the clinical version of Pinnacle 9.10 (Philips Radiation Oncology Systems, Fitchburg, WI, USA). Twenty automated intensity-modulated radiotherapy (IMRT) plans were compared with the original manually planned clinical IMRT plans from patients with oropharyngeal cancer. Auto-Planning with IMRT offers similar coverage of the planning target volume as the original manually planned clinical plans, as well as better sparing of the contralateral parotid gland, contralateral submandibular gland, larynx, mandible, and brainstem. The mean dose of the contralateral parotid gland and contralateral submandibular gland could be reduced by 2.5 Gy and 1.7 Gy on average. The number of monitor units was reduced with an average of 143.9 (18%). Hands-on planning time was reduced from 1.5-3 h to less than 1 h. The Auto-Planning module was able to produce clinically acceptable head and neck IMRT plans with consistent quality. (orig.) [de

  7. Automated IMRT planning in Pinnacle : A study in head-and-neck cancer.

    Science.gov (United States)

    Kusters, J M A M; Bzdusek, K; Kumar, P; van Kollenburg, P G M; Kunze-Busch, M C; Wendling, M; Dijkema, T; Kaanders, J H A M

    2017-12-01

    This study evaluates the performance and planning efficacy of the Auto-Planning (AP) module in the clinical version of Pinnacle 9.10 (Philips Radiation Oncology Systems, Fitchburg, WI, USA). Twenty automated intensity-modulated radiotherapy (IMRT) plans were compared with the original manually planned clinical IMRT plans from patients with oropharyngeal cancer. Auto-Planning with IMRT offers similar coverage of the planning target volume as the original manually planned clinical plans, as well as better sparing of the contralateral parotid gland, contralateral submandibular gland, larynx, mandible, and brainstem. The mean dose of the contralateral parotid gland and contralateral submandibular gland could be reduced by 2.5 Gy and 1.7 Gy on average. The number of monitor units was reduced with an average of 143.9 (18%). Hands-on planning time was reduced from 1.5-3 h to less than 1 h. The Auto-Planning module was able to produce clinically acceptable head and neck IMRT plans with consistent quality.

  8. SU-E-T-394: The Use of Jaw Tracking in Intensity Modulated and Volumetric Modulated Arc Radiotherapy for Spine Stereotactic Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Chin, K; Wen, N; Huang, Y; Kim, J; Zhao, B; Siddiqui, S; Chetty, I; Ryu, S [Henry Ford Health System, Detroit, MI (United States)

    2014-06-01

    Purpose: To evaluate the potential advantages of jaw tracking for intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) in spine radiosurgery. Methods: VMAT and IMRT plans were retrospectively generated for ten patients. Six plans for each patient were created in the Eclipse treatment planning system for a Varian Truebeam equipped with a Millennium 120 MLC. Plans were created to study IMRT and VMAT plans with and without jaw tracking, as well as IMRT plans of different flattening filter free (FFF) energies. Plans were prescribed to the 90% isodose line to 16 or 18 Gy in one fraction to cover 95% of the target. Planning target volume (PTV) coverage, conformity index (CI), dose to spinal cord, distance to fall off from the 90% to 50% isodose line (DTF), as well as delivery time were evaluated. Ion chamber and film measurements were performed to verify calculated and measured dose distributions. Results: Jaw tracking decreased the spinal cord dose for both IMRT and VMAT plans, but a larger decrease was seen with the IMRT plans (p=0.004 vs p=0.04). The average D10% for the spinal cord was least for the 6MV FFF IMRT plan with jaw tracking and was greatest for the 10MV FFF plan without jaw tracking. Treatment times between IMRT and VMAT plans with or without jaw tracking were not significantly different. Measured plans showed greater than 98.5% agreement for planar dose gamma analysis (3%/2 mm) and less than 2.5% for point dose analysis compared to calculated plans. Conclusion: Jaw tracking can be used to help decrease spinal cord dose without any change in treatment delivery or calculation accuracy. Lower dose to the spinal cord was achieved using 6 MV beams compared to 10 MV beams, though 10 MV may be justified in some cases to decrease skin dose.

  9. SU-E-T-394: The Use of Jaw Tracking in Intensity Modulated and Volumetric Modulated Arc Radiotherapy for Spine Stereotactic Radiosurgery

    International Nuclear Information System (INIS)

    Chin, K; Wen, N; Huang, Y; Kim, J; Zhao, B; Siddiqui, S; Chetty, I; Ryu, S

    2014-01-01

    Purpose: To evaluate the potential advantages of jaw tracking for intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) in spine radiosurgery. Methods: VMAT and IMRT plans were retrospectively generated for ten patients. Six plans for each patient were created in the Eclipse treatment planning system for a Varian Truebeam equipped with a Millennium 120 MLC. Plans were created to study IMRT and VMAT plans with and without jaw tracking, as well as IMRT plans of different flattening filter free (FFF) energies. Plans were prescribed to the 90% isodose line to 16 or 18 Gy in one fraction to cover 95% of the target. Planning target volume (PTV) coverage, conformity index (CI), dose to spinal cord, distance to fall off from the 90% to 50% isodose line (DTF), as well as delivery time were evaluated. Ion chamber and film measurements were performed to verify calculated and measured dose distributions. Results: Jaw tracking decreased the spinal cord dose for both IMRT and VMAT plans, but a larger decrease was seen with the IMRT plans (p=0.004 vs p=0.04). The average D10% for the spinal cord was least for the 6MV FFF IMRT plan with jaw tracking and was greatest for the 10MV FFF plan without jaw tracking. Treatment times between IMRT and VMAT plans with or without jaw tracking were not significantly different. Measured plans showed greater than 98.5% agreement for planar dose gamma analysis (3%/2 mm) and less than 2.5% for point dose analysis compared to calculated plans. Conclusion: Jaw tracking can be used to help decrease spinal cord dose without any change in treatment delivery or calculation accuracy. Lower dose to the spinal cord was achieved using 6 MV beams compared to 10 MV beams, though 10 MV may be justified in some cases to decrease skin dose

  10. Intensity-Modulated Radiotherapy Causes Fewer Side Effects than Three-Dimensional Conformal Radiotherapy When Used in Combination With Brachytherapy for the Treatment of Prostate Cancer

    International Nuclear Information System (INIS)

    Forsythe, Kevin; Blacksburg, Seth; Stone, Nelson; Stock, Richard G.

    2012-01-01

    Purpose: To measure the benefits of intensity-modulated radiotherapy (IMRT) compared with three-dimensional conformal radiotherapy (3D-CRT) when used in combination with brachytherapy for the treatment of prostate cancer. Methods and Materials: We conducted a retrospective review of all patients with localized prostate cancer who received external-beam radiotherapy (EBRT) in combination with brachytherapy with at least 1 year follow-up (n = 812). Combination therapy consisted of 103 Pd or 125 I implant, followed by a course of EBRT. From 1993 to March 2003 521 patients were treated with 3D-CRT, and from April 2003 to March 2009 291 patients were treated with IMRT. Urinary symptoms were prospectively measured with the International Prostate Symptom Score questionnaire with a single quality of life (QOL) question; rectal bleeding was assessed per the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer Late Radiation Morbidity Scoring Schema. The Pearson χ 2 test was used to compare toxicities experienced by patients who were treated with either IMRT or 3D-CRT. Logistic regression analyses were also performed to rule out possible confounding factors. Results: Within the first 3 months after treatment, patients treated with 3D-CRT scored their urinary symptoms as follows: 19% mild, 44% moderate, and 37% severe; patients treated with IMRT scored their urinary symptoms as follows: 36% mild, 47% moderate, and 17% severe (p < 0.001). The 3D-CRT patients rated their QOL as follows: 35% positive, 20% neutral, and 45% negative; IMRT patients rated their QOL as follows: 51% positive, 18% neutral, and 31% negative (p < 0.001). After 1 year of follow-up there was no longer any difference in urinary morbidity between the two groups. Logistic regression confirmed the differences in International Prostate Symptom Score and QOL in the acute setting (p < 0.001 for both). Grade ≥2 rectal bleeding was reported by 11% of 3D-CRT patients and 7

  11. SIFT: A method to verify the IMRT fluence delivered during patient treatment using an electronic portal imaging device

    International Nuclear Information System (INIS)

    Vieira, Sandra C.; Dirkx, Maarten L.P.; Heijmen, Ben J.M.; Boer, Hans C.J. de

    2004-01-01

    Purpose: Radiotherapy patients are increasingly treated with intensity-modulated radiotherapy (IMRT) and high tumor doses. As part of our quality control program to ensure accurate dose delivery, a new method was investigated that enables the verification of the IMRT fluence delivered during patient treatment using an electronic portal imaging device (EPID), irrespective of changes in patient geometry. Methods and materials: Each IMRT treatment field is split into a static field and a modulated field, which are delivered in sequence. Images are acquired for both fields using an EPID. The portal dose image obtained for the static field is used to determine changes in patient geometry between the planning CT scan and the time of treatment delivery. With knowledge of these changes, the delivered IMRT fluence can be verified using the portal dose image of the modulated field. This method, called split IMRT field technique (SIFT), was validated first for several phantom geometries, followed by clinical implementation for a number of patients treated with IMRT. Results: The split IMRT field technique allows for an accurate verification of the delivered IMRT fluence (generally within 1% [standard deviation]), even if large interfraction changes in patient geometry occur. For interfraction radiological path length changes of 10 cm, deliberately introduced errors in the delivered fluence could still be detected to within 1% accuracy. Application of SIFT requires only a minor increase in treatment time relative to the standard IMRT delivery. Conclusions: A new technique to verify the delivered IMRT fluence from EPID images, which is independent of changes in the patient geometry, has been developed. SIFT has been clinically implemented for daily verification of IMRT treatment delivery

  12. The financial impact of the incorporation of IMRT and RapidArc™ techniques on shielding calculation of a linear accelerator; O impacto financeiro da incorporacao das tecnicas de IMRT e RapidArc™ no calculo de blindagem de um acelerador linear

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maira R.; Silveira, Thiago B.; Garcia, Paulo L.; Trindade, Cassia; Martins, Lais P.; Batista, Delano V.S., E-mail: mairafisica@gmail.com [Instituto Nacional do Cancer (INCA), Rio de Janeiro, RJ (Brazil)

    2013-08-15

    Given the new methodology introduced in the shielding calculation due to recent modulated techniques in radiotherapy treatment, it became necessary to evaluate the impact of changes in the accelerator routine using such techniques. Based on a group of 30 patients from the National Cancer Institute (INCA) the workload multiplier factors for intensity modulated radiotherapy (IMRT factor) and for RapidArc™ (RA factor) were established. Four different routines in a 6 MV generic accelerator were proposed to estimate the impact of these modified workloads in the building cost of the secondary barriers. The results indicate that if 50% of patients are treating with IMRT, the secondary barrier becomes 14,1% more expensive than the barrier calculated for conformal treatments exclusive. While RA, in the same proportion, leads to a barrier only 3,7% more expensive. Showing that RA can, while reducing treatment time, increase the proportion of patients treated with modulation technique, without increasing the cost of the barrier, when compared with IMRT. (author)

  13. Imaging and concomitant dose in radiotherapy

    International Nuclear Information System (INIS)

    Negi, P.S.

    2008-01-01

    Image guidance in radiotherapy now involves multiple imaging procedures for planning, simulation, set-up inter and intrafraction monitoring. Presently ALARA (i.e. as low as reasonable achievable) is the principle of management of dose to radiation workers and patients in any diagnostic imaging procedures including image guided surgery. The situation is different in repeated radiographic/fluoroscopic imaging performed for simulation, dose planning, patient positioning and set-up corrections during preparation/execution of Image guided radiotherapy (IGRT) as well as for Intensity Modulated Radiotherapy (IMRT). Reported imaging and concomitant doses will be highlighted and discussed for the management and optimization of imaging techniques in IMRT and IGRT

  14. Persistently better treatment planning results of intensity-modulated (IMRT) over conformal radiotherapy (3D-CRT) in prostate cancer patients with significant variation of clinical target volume and/or organs-at-risk

    International Nuclear Information System (INIS)

    Fenoglietto, Pascal; Laliberte, Benoit; Allaw, Ali; Ailleres, Norbert; Idri, Katia; Hay, Meng Huor; Moscardo, Carmen Llacer; Gourgou, Sophie; Dubois, Jean-Bernard; Azria, David

    2008-01-01

    Purpose: To compare the dose coverage of planning and clinical target volume (PTV, CTV), and organs-at-risk (OAR) between intensity-modulated (3D-IMRT) and conventional conformal radiotherapy (3D-CRT) before and after internal organ variation in prostate cancer. Methods and materials: We selected 10 patients with clinically significant interfraction volume changes. Patients were treated with 3D-IMRT to 80 Gy (minimum PTV dose of 76 Gy, excluding rectum). Fictitious, equivalent 3D-CRT plans (80 Gy at isocenter, with 95% isodose (76 Gy) coverage of PTV, with rectal blocking above 76 Gy) were generated using the same planning CT data set ('CT planning'). The plans were then also applied to a verification CT scan ('CT verify') obtained at a different moment. PTV, CTV, and OAR dose coverage were compared using non-parametric tests statistics for V95, V90 (% of the volume receiving ≥95 or 90% of the dose) and D50 (dose to 50% of the volume). Results: Mean V95 of the PTV for 'CT planning' was 94.3% (range, 88-99) vs 89.1% (range, 84-94.5) for 3D-IMRT and 3D-CRT (p = 0.005), respectively. Mean V95 of the CTV for 'CT verify' was 97% for both 3D-IMRT and 3D-CRT. Mean D50 of the rectum for 'CT planning' was 26.8 Gy (range, 22-35) vs 43.5 Gy (range, 33.5-50.5) for 3D-IMRT and 3D-CRT (p = 0.0002), respectively. For 'CT verify', this D50 was 31.1 Gy (range, 16.5-44) vs 44.2 Gy (range, 34-55) for 3D-IMRT and 3D-CRT (p = 0.006), respectively. V95 of the rectum was 0% for both plans for 'CT planning', and 2.3% (3D-IMRT) vs 2.1% (3D-CRT) for 'CT verify' (p = non-sig.). Conclusion: Dose coverage of the PTV and OAR was better with 3D-IMRT for each patient and remained so after internal volume changes

  15. Radiation efficacy and biological risk from whole-breast irradiation via intensity modulated radiation therapy (IMRT)

    Science.gov (United States)

    Desantis, David M.

    Radiotherapy is an established modality for women with breast cancer. During the delivery of external beam radiation to the breast, leakage, scattered x-rays from the patient and the linear accelerator also expose healthy tissues and organs outside of the breast, thereby increasing the patient's whole-body dose, which then increases the chance of developing a secondary, radiation-induced cancer. Generally, there are three IntensityModulated Radiotherapy (IMRT) delivery techniques from a conventional linear accelerator; forward planned (FMLC), inverse planned 'sliding window' (DMLC), and inverse planned 'step-and-shoot' (SMLC). The goal of this study was to determine which of these three techniques delivers an optimal dose to the breast with the least chance of causing a fatal, secondary, radiation-induced cancer. A conventional, non-IMRT, 'Wedge' plan also was compared. Computerized Tomography (CT) data sets for both a large and small sized patient were used in this study. With Varian's Eclipse AAA algorithm, the organ doses specified in the revised ICRP 60 publication were used to calculate the whole-body dose. Also, an anthropomorphic phantom was irradiated with thermoluminescent dosimeters (TLD) at each organ site for measured doses. The risk coefficient from the Biological Effects of Ionizing Radiation (BEIR) VII report of 4.69 x 10-2 deaths per Gy was used to convert whole-body dose to risk of a fatal, secondary, radiation-induced cancer. The FMLC IMRT delivered superior tumor coverage over the 3D conventional plan and the inverse DMLC or SMLC treatment plans delivered clinically equivalent tumor coverage. However, the FMLC plan had the least likelihood of inadvertently causing a fatal, secondary, radiation-induced cancer compared to the inverse DMLC, SMLC, and Wedge plans.

  16. Time-resolved dosimetry using a pinpoint ionization chamber as quality assurance for IMRT and VMAT

    NARCIS (Netherlands)

    Louwe, R.J.; Wendling, M.; Monshouwer, R.; Satherley, T.; Day, R.A.; Greig, L.

    2015-01-01

    PURPOSE: To develop a method to verify the dose delivery in relation to the individual control points of intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) using an ionization chamber. In addition to more effective problem solving during patient-specific quality

  17. The normal tissue sparing obtained with simultaneous treatment of pelvic lymph nodes and bladder using intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Soendergaard, Jimmi; Hoeyer, Morten; Wright, Pauliina; Grau, Cai; Muren, Ludvig Paul; Petersen, Joergen B.

    2009-01-01

    We have implemented an intensity-modulated radiotherapy (IMRT) protocol for simultaneous irradiation of bladder and lymph nodes. In this report, doses to normal tissue from IMRT and our previous conformal sequential boost technique are compared. Material and methods. Sixteen patients with urinary bladder cancer were treated using a six-field dynamic IMRT beam arrangement delivering 60 Gy to the bladder and 48 Gy to the pelvic lymph nodes. Dose-volume histogram (DVH) parameters for relevant normal tissues (bowel, bowel cavity, rectum and femoral heads) for the IMRT plans were compared with corresponding DVHs from our previous conformal sequential boost technique. Calculations of the generalized Equivalent Uniform Dose (gEUD) were performed for the bowel, with a reference volume of 200 cm 3 and a volume effect parameter k = 4, as well as for the rectum, using k = 12. Acute gastrointestinal (GI) and genitourinary (GU) RTOG toxicity was recorded. Results. Statistical significant normal tissue sparing was obtained by IMRT. For the bowel, a significant reduction was obtained at all dose levels between 20 and 50 Gy (p 3 at 50 Gy, while the gEUD was reduced from 58 to 53 Gy (p 3 at 50 Gy. The rectum gEUD was reduced from 55 to 53 Gy (p < 0.05). For the femoral heads, IMRT reduced the maximum dose as well as the volumes above all dose levels. The rate of acute peak Grade 2 GI RTOG complications was 38% after IMRT. Conclusion. IMRT to the urinary bladder and elective lymph nodes result in considerable normal tissue sparing compared to conformal sequential boost technique. This has paved the way for further studies combining IMRT with image-guided radiotherapy (IGRT) in bladder cancer

  18. Improving bladder cancer treatment with radiotherapy using separate intensity modulated radiotherapy plans for boost and elective fields

    Energy Technology Data Exchange (ETDEWEB)

    Van Rooijen, D.; Van de Kamer, J.; Hulshof, M.; Koning, C.; Bel, A. [Department of Radiation Oncology, Academic Medical Center, Amsterdam (Netherlands)

    2010-06-01

    The aim of this study is to investigate to what extent IMRT can decrease the dose to the organs at risk in bladder cancer treatment compared with conformal treatment while making separate treatment plans for the elective field and the boost. Special attention is paid to sparing small intestines. Twenty patients who were treated with the field-in-field technique (FiF) were re-planned with intensity modulated radiotherapy (IMRT) using five and seven beams, respectively. Separate treatment plans were made for the elective field (including the pelvic lymph nodes) and the boost, which enables position correction for bone and tumour separately. The prescribed dose was 40 Gy to the elective field and 55 or 60 Gy to the planning target volume (PTV). For bladder and rectum, V{sub 45}Gy and V{sub 55}Gy were compared, and for small intestines, V{sub 25}Gy and V{sub 40}Gy. The dose distribution with IMRT conformed better to the shape of the target. There was no significant difference between the techniques in dose to the healthy bladder. The median V{sub 40}Gy of the small intestines decreased from 114 to 66 cc (P = 0.001) with five beam IMRT, and to 55 cc (P = 0.001) with seven beam IMRT compared with FiF. V{sub 45}Gy for rectum decreased from 34.2% to 17.5% (P = 0.004) for both five and seven beam plans, while V{sub 55}Gy for rectum remained the same. With IMRT, a statistically significant dose decrease to the small intestines can be achieved while covering both tumour and elective PTV adequately.

  19. Improving bladder cancer treatment with radiotherapy using separate intensity modulated radiotherapy plans for boost and elective fields

    International Nuclear Information System (INIS)

    Van Rooijen, D.; Van de Kamer, J.; Hulshof, M.; Koning, C.; Bel, A.

    2010-01-01

    The aim of this study is to investigate to what extent IMRT can decrease the dose to the organs at risk in bladder cancer treatment compared with conformal treatment while making separate treatment plans for the elective field and the boost. Special attention is paid to sparing small intestines. Twenty patients who were treated with the field-in-field technique (FiF) were re-planned with intensity modulated radiotherapy (IMRT) using five and seven beams, respectively. Separate treatment plans were made for the elective field (including the pelvic lymph nodes) and the boost, which enables position correction for bone and tumour separately. The prescribed dose was 40 Gy to the elective field and 55 or 60 Gy to the planning target volume (PTV). For bladder and rectum, V 45 Gy and V 55 Gy were compared, and for small intestines, V 25 Gy and V 40 Gy. The dose distribution with IMRT conformed better to the shape of the target. There was no significant difference between the techniques in dose to the healthy bladder. The median V 40 Gy of the small intestines decreased from 114 to 66 cc (P = 0.001) with five beam IMRT, and to 55 cc (P = 0.001) with seven beam IMRT compared with FiF. V 45 Gy for rectum decreased from 34.2% to 17.5% (P = 0.004) for both five and seven beam plans, while V 55 Gy for rectum remained the same. With IMRT, a statistically significant dose decrease to the small intestines can be achieved while covering both tumour and elective PTV adequately.

  20. Improved genetic algorithm in optimization of beam orientation in intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Ni Xinye; Yang Jianhua; Sun Suping; Yao Yi

    2009-01-01

    Objective: At present beam orientation selection in intensity-modulated radiotherapy (IMRT) is mainly based on empiric knowledge. This study is to evaluate the feasibility of automated beam angle selection. Methods: Genetic algorithm technique which based on beam eye view dose measurement (BEVD-GA) was tested on two clinical cases, including a spine column cancer and a lung cancer. Three plans were obtained under the following different beam configurations: five equiangular-spaced beams, five beams with GA-selected, and five beams with BEVD-GA-selected beams. Then the dose distribution was compared among the three plans. Results: The method, restricting the range of genetic algorithm followed by carrying through genetic operations, not only shortened the optimization time, but also improved the optimization effect. For spine column cancer and lung cancer, the best IMRT plans were obtained with BEVD-GA-selected beams, which used automated beam orientation selection. Conclusions: Comparing with the conventional manual beam orientation selection, beam orientation optimization which is feasible in IMRT planning may significantly improve the efficiency and result. (authors)

  1. Intensity-Modulated Radiotherapy Reduces Gastrointestinal Toxicity in Patients Treated With Androgen Deprivation Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Sharma, Navesh K.; Li Tianyu; Chen, David Y.; Pollack, Alan; Horwitz, Eric M.; Buyyounouski, Mark K.

    2011-01-01

    Purpose: Androgen deprivation therapy (AD) has been shown to increase late Grade 2 or greater rectal toxicity when used concurrently with three-dimensional conformal radiotherapy (3D-CRT). Intensity-modulated radiotherapy (IMRT) has the potential to reduce toxicity by limiting the radiation dose received by the bowel and bladder. The present study compared the genitourinary and gastrointestinal (GI) toxicity in men treated with 3D-CRT+AD vs. IMRT+AD. Methods and Materials: Between July 1992 and July 2004, 293 men underwent 3D-CRT (n = 170) or IMRT (n = 123) with concurrent AD (<6 months, n = 123; ≥6 months, n = 170). The median radiation dose was 76 Gy for 3D-CRT (International Commission on Radiation Units and Measurements) and 76 Gy for IMRT (95% to the planning target volume). Toxicity was assessed by a patient symptom questionnaire that was completed at each visit and recorded using a Fox Chase Modified Late Effects Normal Tissue Task radiation morbidity scale. Results: The mean follow-up was 86 months (standard deviation, 29.3) for the 3D-CRT group and 40 months (standard deviation, 9.7) for the IMRT group. Acute GI toxicity (odds ratio, 4; 95% confidence interval, 1.6-11.7; p = .005) was significantly greater with 3D-CRT than with IMRT and was independent of the AD duration (i.e., <6 vs. ≥6 months). The interval to the development of late GI toxicity was significantly longer in the IMRT group. The 5-year Kaplan-Meier estimate for Grade 2 or greater GI toxicity was 20% for 3D-CRT and 8% for IMRT (p = .01). On multivariate analysis, Grade 2 or greater late GI toxicity (hazard ratio, 2.1; 95% confidence interval, 1.1-4.3; p = .04) was more prevalent in the 3D-CRT patients. Conclusion: Compared with 3D-CRT, IMRT significantly decreased the acute and late GI toxicity in patients treated with AD.

  2. The financial impact of the incorporation of IMRT and RapidArc™ techniques on shielding calculation of a linear accelerator

    International Nuclear Information System (INIS)

    Santos, Maira R.; Silveira, Thiago B.; Garcia, Paulo L.; Trindade, Cassia; Martins, Lais P.; Batista, Delano V.S.

    2013-01-01

    Given the new methodology introduced in the shielding calculation due to recent modulated techniques in radiotherapy treatment, it became necessary to evaluate the impact of changes in the accelerator routine using such techniques. Based on a group of 30 patients from the National Cancer Institute (INCA) the workload multiplier factors for intensity modulated radiotherapy (IMRT factor) and for RapidArc™ (RA factor) were established. Four different routines in a 6 MV generic accelerator were proposed to estimate the impact of these modified workloads in the building cost of the secondary barriers. The results indicate that if 50% of patients are treating with IMRT, the secondary barrier becomes 14,1% more expensive than the barrier calculated for conformal treatments exclusive. While RA, in the same proportion, leads to a barrier only 3,7% more expensive. Showing that RA can, while reducing treatment time, increase the proportion of patients treated with modulation technique, without increasing the cost of the barrier, when compared with IMRT. (author)

  3. Efficacy of intensity-modulated radiotherapy combined with chemotherapy or surgery in locally advanced squamous cell carcinoma of the head-and-neck

    Directory of Open Access Journals (Sweden)

    Yang H

    2013-10-01

    Full Text Available Hua Yang,* Li-Qiong Diao,* Mei Shi, Rui Ma, Jian-Hua Wang, Jian-Ping Li, Feng Xiao, Ying Xue, Man Xu, Bin ZhouDepartment of Radiotherapy Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China*These authors contributed equally to this workObjectives: Long-term locoregional control following intensity-modulated radiotherapy (IMRT for locally advanced squamous cell carcinoma of the head-and-neck (SCCHN remains challenging. This study aimed to assess the efficacy and toxicity of IMRT with and without chemotherapy or surgery in locally advanced SCCHN.Materials and methods: Between January 2007 and January 2011, 61 patients with locally advanced SCCHN were treated with curative IMRT in the Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University; 28% underwent definitive IMRT and 72% postoperative IMRT, combined with simultaneous cisplatin-based chemotherapy in 58%. The mean doses of definitive and postoperative IMRT were 70.8 Gy (range, 66–74 Gy. Outcomes were analyzed using Kaplan–Meier curves. Acute and late toxicities were graded according to Radiation Therapy Oncology Group/European Organisation for Research and Treatment of Cancer radiation morbidity scoring criteria.Results: At a median follow-up of 35 months, 3-year local recurrence-free survival (LRFS, regional recurrence-free survival (RRFS, distant metastasis-free survival (DMFS, disease-free survival (DFS, and overall survival (OS were 83.8%, 86.1%, 82.4%, 53.2%, and 62%, respectively. Postoperative IMRT (n = 44, 72% had significantly higher LRFS/OS/DMFS than definitive IMRT (n = 17, 28%; P < 0.05. IMRT combined with chemotherapy (n = 35, 58% had significantly higher LRFS/OS/DMFS than IMRT alone (n = 26, 42%; P < 0.05. One year after radiotherapy, the incidence of xerostomia of grade 1, 2, or 3 was 13.1%, 19.7%, and 1.6%, respectively. No grade 4 acute or late toxicity was observed.Conclusion: IMRT combined with

  4. Dose escalation by image-guided intensity-modulated radiotherapy leads to an increase in pain relief for spinal metastases: a comparison study with a regimen of 30 Gy in 10 fractions.

    Science.gov (United States)

    He, Jinlan; Xiao, Jianghong; Peng, Xingchen; Duan, Baofeng; Li, Yan; Ai, Ping; Yao, Min; Chen, Nianyong

    2017-12-22

    Under the existing condition that the optimum radiotherapy regimen for spinal metastases is controversial, this study investigates the benefits of dose escalation by image-guided intensity-modulated radiotherapy (IG-IMRT) with 60-66 Gy in 20-30 fractions for spinal metastases. In the dose-escalation group, each D50 of planning gross tumor volume (PGTV) was above 60 Gy and each Dmax of spinal cord planning organ at risk volume (PRV) was below 48 Gy. The median biological effective dose (BED) of Dmax of spinal cord was lower in the dose-escalation group compared with that in the 30-Gy group (69.70 Gy vs. 83.16 Gy, p pain responses were better in the dose-escalation group than those in the 30-Gy group ( p = 0.005 and p = 0.024), and the complete pain relief rates were respectively 73.69% and 34.29% ( p = 0.006), 73.69% and 41.38% ( p = 0.028) in two compared groups. In the dose-escalation group, there is a trend of a longer duration of pain relief, a longer overall survival and a lower incidence of acute radiation toxicities. No late radiation toxicities were observed in both groups. Dosimetric parameters and clinical outcomes, including pain response, duration of pain relief, radiation toxicities and overall survival, were compared among twenty-five metastatic spinal lesions irradiated with the dose-escalation regimen and among forty-four lesions treated with the 30-Gy regimen. Conventionally-fractionated IG-IMRT for spinal metastases could escalate dose to the vertebral lesions while sparing the spinal cord, achieving a better pain relief without increasing radiation complications.

  5. Hybrid adaptive radiotherapy with on-line MRI in cervix cancer IMRT

    International Nuclear Information System (INIS)

    Oh, Seungjong; Stewart, James; Moseley, Joanne; Kelly, Valerie; Lim, Karen; Xie, Jason; Fyles, Anthony; Brock, Kristy K.; Lundin, Anna; Rehbinder, Henrik; Milosevic, Michael; Jaffray, David

    2014-01-01

    Purpose: Substantial organ motion and tumor shrinkage occur during radiotherapy for cervix cancer. IMRT planning studies have shown that the quality of radiation delivery is influenced by these anatomical changes, therefore the adaptation of treatment plans may be warranted. Image guidance with off-line replanning, i.e. hybrid-adaptation, is recognized as one of the most practical adaptation strategies. In this study, we investigated the effects of soft tissue image guidance using on-line MR while varying the frequency of off-line replanning on the adaptation of cervix IMRT. Materials and method: 33 cervical cancer patients underwent planning and weekly pelvic MRI scans during radiotherapy. 5 patients of 33 were identified in a previous retrospective adaptive planning study, in which the coverage of gross tumor volume/clinical target volume (GTV/CTV) was not acceptable given single off-line IMRT replan using a 3 mm PTV margin with bone matching. These 5 patients and a randomly selected 10 patients from the remaining 28 patients, a total of 15 patients of 33, were considered in this study. Two matching methods for image guidance (bone to bone and soft tissue to dose matrix) and three frequencies of off-line replanning (none, single, and weekly) were simulated and compared with respect to target coverage (cervix, GTV, lower uterus, parametrium, upper vagina, tumor related CTV and elective lymph node CTV) and OAR sparing (bladder, bowel, rectum, and sigmoid). Cost (total process time) and benefit (target coverage) were analyzed for comparison. Results: Hybrid adaptation (image guidance with off-line replanning) significantly enhanced target coverage for both 5 difficult and 10 standard cases. Concerning image guidance, bone matching was short of delivering enough doses for 5 difficult cases even with a weekly off-line replan. Soft tissue image guidance proved successful for all cases except one when single or more frequent replans were utilized in the difficult cases

  6. Dosimetric comparison of intensity-modulated, conformal, and four-field pelvic radiotherapy boost plans for gynecologic cancer: a retrospective planning study

    International Nuclear Information System (INIS)

    Chan, Philip; Yeo, Inhwan; Perkins, Gregory; Fyles, Anthony; Milosevic, Michael

    2006-01-01

    To evaluate intensity-modulated radiation therapy (IMRT) as an alternative to conformal radiotherapy (CRT) or 4-field box boost (4FB) in women with gynecologic malignancies who are unsuitable for brachytherapy for technical or medical reasons. Dosimetric and toxicity information was analyzed for 12 patients with cervical (8), endometrial (2) or vaginal (2) cancer previously treated with external beam pelvic radiotherapy and a CRT boost. Optimized IMRT boost treatment plans were then developed for each of the 12 patients and compared to CRT and 4FB plans. The plans were compared in terms of dose conformality and critical normal tissue avoidance. The median planning target volume (PTV) was 151 cm 3 (range 58–512 cm 3 ). The median overlap of the contoured rectum with the PTV was 15 (1–56) %, and 11 (4–35) % for the bladder. Two of the 12 patients, both with large PTVs and large overlap of the contoured rectum and PTV, developed grade 3 rectal bleeding. The dose conformity was significantly improved with IMRT over CRT and 4FB (p ≤ 0.001 for both). IMRT also yielded an overall improvement in the rectal and bladder dose-volume distributions relative to CRT and 4FB. The volume of rectum that received the highest doses (>66% of the prescription) was reduced by 22% (p < 0.001) with IMRT relative to 4FB, and the bladder volume was reduced by 19% (p < 0.001). This was at the expense of an increase in the volume of these organs receiving doses in the lowest range (<33%). These results indicate that IMRT can improve target coverage and reduce dose to critical structures in gynecologic patients receiving an external beam radiotherapy boost. This dosimetric advantage will be integrated with other patient and treatment-specific factors, particularly internal tumor movement during fractionated radiotherapy, in the context of a future image-guided radiation therapy study

  7. The reoxygenation of hypoxia and the reduction of glucose metabolism in head and neck cancer by fractionated radiotherapy with intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Shozo; Shiga, Tohru; Watanabe, Shiro; Hirata, Kenji; Magota, Keiichi; Kasai, Katsuhiko; Tamaki, Nagara [Hokkaido University Graduate School of Medicine, Department of Nuclear Medicine, Hokkaido (Japan); Yasuda, Koichi; Onimaru, Rikiya; Tuchiya, Kazuhiko; Shirato, Hiroki [Hokkaido University Graduate School of Medicine, Department of Radiology, Hokkaido (Japan); Nishijima, Ken-ichi; Kuge, Yuji [Hokkaido University, Central Institute of Isotope Science, Hokkaido (Japan)

    2016-11-15

    The purpose of this study was to prospectively investigate reoxygenation in the early phase of fractionated radiotherapy and serial changes of tumoricidal effects associated with intensity-modulated radiation therapy (IMRT) in patients with head and neck cancer (HNC) using F-18 fluoromisonidazole (FMISO) PET and F-18 fluorodeoxyglucose (FDG) PET. Patients with untreated HNC underwent FMISO-PET and FDG-PET studies prospectively. A PET evaluation was conducted before each IMRT (Pre-IMRT), during IMRT (at 30 Gy/15 fr) (Inter-IMRT), and after completion of IMRT (70 Gy/35 fr) (Post-IMRT). FMISO-PET images were scanned by a PET/CT scanner at 4 h after the FMISO injection. We quantitatively analyzed the FMISO-PET images of the primary lesion using the maximum standardized uptake (SUVmax) and tumor-to-muscle ratio (TMR). The hypoxic volume (HV) was calculated as an index of tumor hypoxia, and was defined as the volume when the TMR was ≥ 1.25. Each FDG-PET scan was started 1 h after injection. The SUVmax and metabolic tumor volume (MTV) values obtained by FDG-PET were analyzed. Twenty patients finished the complete PET study protocol. At Pre-IMRT, 19 patients had tumor hypoxia in the primary tumor. In ten patients, the tumor hypoxia disappeared at Inter-IMRT. Another seven patients showed the disappearance of tumor hypoxia at Post-IMRT. Two patients showed tumor hypoxia at Post-IMRT. The FMISO-PET results showed that the reduction rates of both SUVmax and TMR from Pre-IMRT to Inter-IMRT were significantly higher than the corresponding reductions from Inter-IMRT to Post-IMRT (SUVmax: 27 % vs. 10 %, p = 0.025; TMR: 26 % vs. 12 %, p = 0.048). The reduction rate of SUVmax in FDG-PET from Pre-IMRT to Inter-IMRT was similar to that from Inter-IMRT to Post-IMRT (47 % vs. 48 %, p = 0.778). The reduction rate of the HV in FMISO-PET from Pre-IMRT to Inter-IMRT tended to be larger than that from Inter-IMRT to Post-IMRT (63 % vs. 40 %, p = 0.490). Conversely, the reduction rate of

  8. The reoxygenation of hypoxia and the reduction of glucose metabolism in head and neck cancer by fractionated radiotherapy with intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Okamoto, Shozo; Shiga, Tohru; Watanabe, Shiro; Hirata, Kenji; Magota, Keiichi; Kasai, Katsuhiko; Tamaki, Nagara; Yasuda, Koichi; Onimaru, Rikiya; Tuchiya, Kazuhiko; Shirato, Hiroki; Nishijima, Ken-ichi; Kuge, Yuji

    2016-01-01

    The purpose of this study was to prospectively investigate reoxygenation in the early phase of fractionated radiotherapy and serial changes of tumoricidal effects associated with intensity-modulated radiation therapy (IMRT) in patients with head and neck cancer (HNC) using F-18 fluoromisonidazole (FMISO) PET and F-18 fluorodeoxyglucose (FDG) PET. Patients with untreated HNC underwent FMISO-PET and FDG-PET studies prospectively. A PET evaluation was conducted before each IMRT (Pre-IMRT), during IMRT (at 30 Gy/15 fr) (Inter-IMRT), and after completion of IMRT (70 Gy/35 fr) (Post-IMRT). FMISO-PET images were scanned by a PET/CT scanner at 4 h after the FMISO injection. We quantitatively analyzed the FMISO-PET images of the primary lesion using the maximum standardized uptake (SUVmax) and tumor-to-muscle ratio (TMR). The hypoxic volume (HV) was calculated as an index of tumor hypoxia, and was defined as the volume when the TMR was ≥ 1.25. Each FDG-PET scan was started 1 h after injection. The SUVmax and metabolic tumor volume (MTV) values obtained by FDG-PET were analyzed. Twenty patients finished the complete PET study protocol. At Pre-IMRT, 19 patients had tumor hypoxia in the primary tumor. In ten patients, the tumor hypoxia disappeared at Inter-IMRT. Another seven patients showed the disappearance of tumor hypoxia at Post-IMRT. Two patients showed tumor hypoxia at Post-IMRT. The FMISO-PET results showed that the reduction rates of both SUVmax and TMR from Pre-IMRT to Inter-IMRT were significantly higher than the corresponding reductions from Inter-IMRT to Post-IMRT (SUVmax: 27 % vs. 10 %, p = 0.025; TMR: 26 % vs. 12 %, p = 0.048). The reduction rate of SUVmax in FDG-PET from Pre-IMRT to Inter-IMRT was similar to that from Inter-IMRT to Post-IMRT (47 % vs. 48 %, p = 0.778). The reduction rate of the HV in FMISO-PET from Pre-IMRT to Inter-IMRT tended to be larger than that from Inter-IMRT to Post-IMRT (63 % vs. 40 %, p = 0.490). Conversely, the reduction rate of

  9. Improved Dosimetric and Clinical Outcomes With Intensity-Modulated Radiotherapy for Head-and-Neck Cancer of Unknown Primary Origin

    International Nuclear Information System (INIS)

    Chen, Allen M.; Li Baoqing; Farwell, D. Gregory; Marsano, Joseph; Vijayakumar, Srinivasan; Purdy, James A.

    2011-01-01

    Purpose: To compare differences in dosimetric, clinical, and quality-of-life endpoints among a cohort of patients treated by intensity-modulated radiotherapy (IMRT) and conventional radiotherapy (CRT) for head-and-neck cancer of unknown primary origin. Methods and Materials: The medical records of 51 patients treated by radiation therapy for squamous cell carcinoma of the head and neck presenting as cervical lymph node metastasis of occult primary origin were reviewed. Twenty-four patients (47%) were treated using CRT, and 27 (53%) were treated using IMRT. The proportions of patients receiving concurrent chemotherapy were 54% and 63%, respectively. Results: The 2-year estimates of overall survival, local-regional control, and disease-specific survival for the entire patient population were 86%, 89%, and84%, respectively. There were no significant differences in any of these endpoints with respect to radiation therapy technique (p > 0.05 for all). Dosimetric analysis revealed that the use of IMRT resulted in significant improvements with respect to mean dose and V30 to the contralateral (spared) parotid gland. In addition, mean doses to the ipsilateral inner and middle ear structures were significantly reduced with IMRT (p < 0.05 for all). The incidence of severe xerostomia in the late setting was 58% and 11% among patients treated by CRT and IMRT, respectively (p < 0.001). The percentages of patients who were G-tube dependent at 6 months after treatment were 42% and 11%, respectively (p < 0.001). Conclusions: IMRT results in significant improvements in the therapeutic ratio among patients treated by radiation therapy for head-and-neck cancer of unknown primary origin.

  10. MRI-based treatment planning for radiotherapy: Dosimetric verification for prostate IMRT

    International Nuclear Information System (INIS)

    Chen, Lili; Price, Robert A.; Wang Lu; Li Jinsheng; Qin Lihong; McNeeley, Shawn; Ma, C.-M. Charlie; Freedman, Gary M.; Pollack, Alan

    2004-01-01

    Purpose: Magnetic resonance (MR) and computed tomography (CT) image fusion with CT-based dose calculation is the gold standard for prostate treatment planning. MR and CT fusion with CT-based dose calculation has become a routine procedure for intensity-modulated radiation therapy (IMRT) treatment planning at Fox Chase Cancer Center. The use of MRI alone for treatment planning (or MRI simulation) will remove any errors associated with image fusion. Furthermore, it will reduce treatment cost by avoiding redundant CT scans and save patient, staff, and machine time. The purpose of this study is to investigate the dosimetric accuracy of MRI-based treatment planning for prostate IMRT. Methods and materials: A total of 30 IMRT plans for 15 patients were generated using both MRI and CT data. The MRI distortion was corrected using gradient distortion correction (GDC) software provided by the vendor (Philips Medical System, Cleveland, OH). The same internal contours were used for the paired plans. The external contours were drawn separately between CT-based and MR imaging-based plans to evaluate the effect of any residual distortions on dosimetric accuracy. The same energy, beam angles, dose constrains, and optimization parameters were used for dose calculations for each paired plans using a treatment optimization system. The resulting plans were compared in terms of isodose distributions and dose-volume histograms (DVHs). Hybrid phantom plans were generated for both the CT-based plans and the MR-based plans using the same leaf sequences and associated monitor units (MU). The physical phantom was then irradiated using the same leaf sequences to verify the dosimetry accuracy of the treatment plans. Results: Our results show that dose distributions between CT-based and MRI-based plans were equally acceptable based on our clinical criteria. The absolute dose agreement for the planning target volume was within 2% between CT-based and MR-based plans and 3% between measured dose

  11. A comparison of morbidity following conformal versus intensity-modulated radiotherapy for urinary bladder cancer.

    Science.gov (United States)

    Søndergaard, Jimmi; Holmberg, Mats; Jakobsen, Annette Ross; Agerbæk, Mads; Muren, Ludvig Paul; Høyer, Morten

    2014-10-01

    In radiotherapy (RT) of urinary bladder cancer, the use of intensity-modulated RT (IMRT) opens for sparing of considerable intestinal volumes. The purpose of the present study was to investigate the acute and late toxicities following either conformal RT (CRT) or IMRT for bladder cancer, and to correlate the toxicities to dose-volume parameters. The study included 116 consecutively treated patients with muscle-invasive bladder cancer who received either CRT (n = 66) or IMRT (n = 50) during 2007-2010. Acute side effects were retrospectively collected whereas late effects were assessed by a cross-sectional evaluation by telephone interview of 44 recurrence-free patients. Acute and late toxicities were scored according to the Common Terminology Criteria for Adverse Event (CTCAE) version 3.0. Acute diarrhoea grade ≥ 2 was more frequent in patients treated by CRT (56%) compared to IMRT (30%) (p = 0.008). Logistic regression analysis showed a correlation between acute diarrhoea and bowel cavity dose-volume parameters in the 10-50 Gy range. Severe late toxicity (grade ≥ 3) was recorded in 10% of the total cohort, with no statistical difference between the IMRT and CRT groups. Patients treated with IMRT for bladder cancer had significantly less acute diarrhoea compared to those treated with CRT, but there was no significant difference in late morbidity between the groups. The risk of acute diarrhoea was related to the volume of bowel irradiated.

  12. Planning magnetic resonance imaging for prostate cancer intensity-modulated radiation therapy: Impact on target volumes, radiotherapy dose and androgen deprivation administration.

    Science.gov (United States)

    Horsley, Patrick J; Aherne, Noel J; Edwards, Grace V; Benjamin, Linus C; Wilcox, Shea W; McLachlan, Craig S; Assareh, Hassan; Welshman, Richard; McKay, Michael J; Shakespeare, Thomas P

    2015-03-01

    Magnetic resonance imaging (MRI) scans are increasingly utilized for radiotherapy planning to contour the primary tumors of patients undergoing intensity-modulated radiation therapy (IMRT). These scans may also demonstrate cancer extent and may affect the treatment plan. We assessed the impact of planning MRI detection of extracapsular extension, seminal vesicle invasion, or adjacent organ invasion on the staging, target volume delineation, doses, and hormonal therapy of patients with prostate cancer undergoing IMRT. The records of 509 consecutive patients with planning MRI scans being treated with IMRT for prostate cancer between January 2010 and July 2012 were retrospectively reviewed. Tumor staging and treatment plans before and after MRI were compared. Of the 509 patients, 103 (20%) were upstaged and 44 (9%) were migrated to a higher risk category as a result of findings at MRI. In 94 of 509 patients (18%), the MRI findings altered management. Ninety-four of 509 patients (18%) had a change to their clinical target volume (CTV) or treatment technique, and in 41 of 509 patients (8%) the duration of hormone therapy was changed because of MRI findings. The use of radiotherapy planning MRI altered CTV design, dose and/or duration of androgen deprivation in 18% of patients in this large, single institution series of men planned for dose-escalated prostate IMRT. This has substantial implications for radiotherapy target volumes and doses, as well as duration of androgen deprivation. Further research is required to investigate whether newer MRI techniques can simultaneously fulfill staging and radiotherapy contouring roles. © 2014 Wiley Publishing Asia Pty Ltd.

  13. Radiotherapy through intensity modulation (IMRT). A new modality in the treatment of head and neck cancer

    International Nuclear Information System (INIS)

    Besa de C, Pelayo; Venencia M, Daniel

    2006-01-01

    Objective: To describe the treatment and evaluate the advantages of IMRT in the treatment of head and neck cancer. Material and methods: Four years ago, at the Cancer Center of the Pontificia Universidad Catolica, the IMRT technique for the treatment of head and neck tumors was implemented. The IMRT technique is based on modifying the intensity of the radiation beam through a multisheet collimator in order to produce a more exact distribution in the radiation doses. The results are evaluated with dose/ volume histograms. The distributions of doses and toxicity for tridimensional con formed therapy (CRT-3D) and IMRT are compared. Results: The distribution of the dose in the dose/volume histograms showed a better coverage of the white volume (PTV), with IMRT. The doses received by the organs under risk: salivary glands, eyes, ears and brain diminish with IMRT. The spinal marrow is protected with IMRT without dividing the treatment area, preventing points with lower dosage that could reduce control of the tumor. Conclusions: IMRT achieves a better conformation of the dose obtaining a better coverage of the tumor and higher protection of the organs under risk

  14. Intensity-Modulated Radiotherapy in Postoperative Treatment of Oral Cavity Cancers

    International Nuclear Information System (INIS)

    Gomez, Daniel R.; Zhung, Joanne E.; Gomez, Jennifer; Chan, Kelvin; Wu, Abraham J.; Wolden, Suzanne L.; Pfister, David G.; Shaha, Ashok; Shah, Jatin P.; Kraus, Dennis H.; Wong, Richard J.; Lee, Nancy Y.

    2009-01-01

    Purpose: To present our single-institution experience of intensity-modulated radiotherapy (IMRT) for oral cavity cancer. Methods and Materials: Between September 2000 and December 2006, 35 patients with histologically confirmed squamous cell carcinoma of the oral cavity underwent surgery followed by postoperative IMRT. The sites included were buccal mucosa in 8, oral tongue in 11, floor of the mouth in 9, gingiva in 4, hard palate in 2, and retromolar trigone in 1. Most patients had Stage III-IV disease (80%). Ten patients (29%) also received concurrent postoperative chemotherapy with IMRT. The median prescribed radiation dose was 60 Gy. Results: The median follow-up for surviving patients was 28.1 months (range, 11.9-85.1). Treatment failure occurred in 11 cases as follows: local in 4, regional in 2, and distant metastases in 5. Of the 5 patients with distant metastases, 2 presented with dermal metastases. The 2- and 3-year estimates of locoregional progression-free survival, distant metastasis-free survival, disease-free survival, and overall survival were 84% and 77%, 85% and 85%, 70% and 64%, and 74% and 74%, respectively. Acute Grade 2 or greater dermatitis, mucositis, and esophageal reactions were experienced by 54%, 66%, and 40% of the patients, respectively. Documented late complications included trismus (17%) and osteoradionecrosis (5%). Conclusion: IMRT as an adjuvant treatment after surgical resection for oral cavity tumors is feasible and effective, with promising results and acceptable toxicity

  15. Quality of Life and Survival Outcome for Patients With Nasopharyngeal Carcinoma Receiving Three-Dimensional Conformal Radiotherapy vs. Intensity-Modulated Radiotherapy-A Longitudinal Study

    International Nuclear Information System (INIS)

    Fang, F.-M.; Chien, C.-Y.; Tsai, W.-L.; Chen, H.-C.; Hsu, H.-C.; Lui, C.-C.; Huang, T.-L.

    2008-01-01

    Purpose: To investigate the changes of quality of life (QoL) and survival outcomes for patients with nasopharyngeal carcinoma (NPC) treated by three-dimensional conformal radiotherapy (3D-CRT) vs. intensity-modulated radiotherapy (IMRT). Methods and Materials: Two hundred and three newly diagnosed NPC patients, who were curatively treated by 3D-CRT (n = 93) or IMRT (n = 110) between March 2002 and July 2004, were analyzed. The distributions of clinical stage according to American Joint Committee on Cancer 1997 were I: 15 (7.4%), II: 78 (38.4%), III: 74 (36.5%), and IV: 36 (17.7%). QoL was longitudinally assessed by the European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30 and the EORTC QLQ-H and N35 questionnaires at the five time points: before RT, during RT (36 Gy), and 3 months, 12 months, and 24 months after RT. Results: The 3-year locoregional control, metastasis-free survival, and overall survival rates were 84.8%, 76.7%, and 81.7% for the 3D-CRT group, respectively, compared with 84.2%, 82.6%, and 85.4% for the IMRT group (p value > 0.05). A general trend of maximal deterioration in most QoL scales was observed during RT, followed by a gradual recovery thereafter. There was no significant difference in most scales between the two groups at each time point. The exception was that patients treated by IMRT had a both statistically and clinically significant improvement in global QoL, fatigue, taste/smell, dry mouth, and feeling ill at the time point of 3 months after RT. Conclusions: The potential advantage of IMRT over 3D-CRT in treating NPC patients might occur in QoL outcome during the recovery phase of acute toxicity

  16. Dosimetric comparison of treatment techniques IMRT and VMAT for breast cancer; Comparacion dosimetrica de las tecnicas de tratamiento IMRT y VMAT para cancer en mama

    Energy Technology Data Exchange (ETDEWEB)

    Urbina, G. L. [Universidad Nacional de Ingenieria, Maestria en Fisica Medica, Av. Tupac Amaru s/n, Rimac, Lima 25 (Peru); Garcia, B. G., E-mail: gerlup@hotmail.com [Red AUNA, Clinica Delgado, Av. Angamos Cdra. 4 esquina Gral. Borgono, Miraflores, Lima (Peru)

    2015-10-15

    In this study the dosimetric distribution was compared in the different treatment techniques such as Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiation Therapy (IMRT) in female patients with breast cancer with stage II-B and III-A, 6 cases (both calculated on VMAT and IMRT) were studied, comparison parameter that are taken into account are: compliance rate, homogeneity index, monitor units, volume dose 50 Gy (D-50%) and 5 Gy (D-5%) volume dose. Comparisons are made in primary tumor volume to optimize treatment in patients with breast cancer, with IMRT using Step, Shoot and VMAT Monte Carlo algorithm, in addition to the organs at risk; the concern to make this work is due to technological advances in radiotherapy and the application of new treatment techniques, that increase the accuracy allowing treatment dose climbing delivering a higher dose to the patient. (Author)

  17. A comparison of swallowing dysfunction after three-dimensional conformal and intensity-modulated radiotherapy. A systematic review by the Italian Head and Neck Radiotherapy Study Group

    Energy Technology Data Exchange (ETDEWEB)

    Ursino, Stefano; Morganti, Riccardo; Cristaudo, Agostino; Paiar, Fabiola [University Hospital S. Chiara, Radiation Oncology, Pisa (Italy); D' Angelo, Elisa; Lohr, Frank [University Hospital, Radiation Oncology, Modena (Italy); Mazzola, Rosario [Sacro Cuore-Don Calabria Cancer Care Center, Radiation Oncology, Negrar-Verona (Italy); Merlotti, Anna; Russi, Elvio Grazioso [S. Croce e Carle Hospital, Radiation Oncology, Cuneo (Italy); Musio, Daniela [University Hospital La Sapienza, Radiation Oncology, Roma (Italy); Alterio, Daniela [European Institute of Oncology, Radiation Oncology, Advanced Radiotherapy Center, Milan (Italy); Bacigalupo, Almalina [AOU IRCCS San Martino - IST National Cancer Research Institute and University, Radiation Oncology, Genoa (Italy)

    2017-11-15

    Dysphagia is one of the most important treatment-related side effects in head and neck cancer (HNC), as it can lead to severe life-threating complications such as aspiration pneumonia and malnutrition. Intensity-modulated radiotherapy (IMRT) could reduce swallowing dysfunction by producing a concave dose distribution and reducing doses to the swallowing-related organs at risk (SWOARs). The aim of this study was to review the current literature in order to compare swallowing outcomes between IMRT and three-dimensional conformal radiotherapy (3DCRT). A search was conducted in the PubMed and Embase databases to identify studies on swallowing outcomes, both clinically and/or instrumentally assessed, after 3DCRT and IMRT. Dysphagia-specific quality of life and objective instrumental data are summarized and discussed. A total of 262 papers were retrieved from the searched databases. An additional 23 papers were retrieved by hand-searching the reference lists. Ultimately, 22 papers were identified which discussed swallowing outcomes after 3DCRT and IMRT for HNC. No outcomes from randomized trials were identified. Despite several methodological limitations, reports from the current literature seem to suggest better swallowing outcomes with IMRT compared to 3DCRT. Further improvements are likely to result from the increased use of IMRT plans optimized for SWOAR sparing. (orig.) [German] Dysphagie ist eine der wichtigsten Nebenwirkungen bei der Behandlung von Kopf-Hals-Tumoren (HNC), da sie zu lebensbedrohlichen Komplikationen wie Aspirationspneumonien und Mangelernaehrung fuehren kann. Durch Erzeugung konkaver Dosisverteilungen und durch die Reduzierung der Dosis an schluckrelevanten Strukturen (SWOAR) kann die IMRT Schluckstoerungen moeglicherweise vermindern. Ziel dieser Studie war es, die gegenwaertige Literaturlage hinsichtlich der Schluckfunktion nach IMRT und konformaler dreidimensionaler Strahlentherapie (3DCRT) systematisch zu ueberpruefen. Studien, die die

  18. Conformal radiotherapy with intensity modulation and integrated boost in the head and neck cancers: experience of the Curie Institute

    International Nuclear Information System (INIS)

    Toledano, I.; Serre, A.; Bensadoun, R.J.; Ortholan, C.; Racadot, S.; Calais, G.; Alfonsi, M.; Giraud, P.; Graff, P.; Serre, A.; Bensadoun, R.J.; Ortholan, C.; Racadot, S.; Calais, G.; Alfonsi, M.; Giraud, P.

    2009-01-01

    The modulated intensity radiotherapy (I.M.R.T.) is used in the treatment of cancers in superior aero digestive tracts to reduce the irradiation of parotids and to reduce the delayed xerostomia. This retrospective study presents the results got on the fourteen first patients according an original technique of I.M.R.T. with integrated boost. It appears that this technique is feasible and allows to reduce the xerostomia rate without modifying the local control rate. To limit the average dose to the parotids under 30 Gy seems reduce the incidence of severe xerostomia. (N.C.)

  19. Dose profile analysis of small fields in intensity modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Medel B, E. [IMSS, Centro Medico Nacional Manuel Avila Camacho, Calle 2 Nte. 2004, Barrio de San Francisco, 72090 Puebla, Pue. (Mexico); Tejeda M, G.; Romero S, K., E-mail: romsakaren@gmail.com [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico Matematicas, Av. San Claudio y 18 Sur, Ciudad Universitaria, 72570 Puebla, Pue.(Mexico)

    2015-10-15

    Full text: Small field dosimetry is getting a very important worldwide task nowadays. The use of fields of few centimeters is more common with the introduction of sophisticated techniques of radiation therapy, as Intensity Modulated Radiotherapy (IMRT). In our country the implementation of such techniques is just getting started and whit it the need of baseline data acquisition. The dosimetry under small field conditions represents a challenge for the physicists community. In this work, a dose profile analysis was done, using various types of dosimeters for further comparisons. This analysis includes the study of quality parameters as flatness, symmetry, penumbra, and other in-axis measurements. (Author)

  20. Comprehensive clinical study of concurrent chemotherapy breathing IMRT middle part of locally advanced esophageal cancer

    International Nuclear Information System (INIS)

    Jung, Jae Hong; Moon, Seong Kwon; Kim, Seung Chul

    2015-01-01

    The standard treatment of locally advanced type of mid-esophageal cancer is concurrent chemoradiation therapy (CRT). We evaluated the feasibility of chemotherapy with adding docetaxel to the classical basic regimens of cisplatin plus 5-fluorouracil (5-FU) and radiotherapy up to 70.2 Gy using dose escalations for esophageal cancer. It was possible to escalate radiation treatment dose up to 70.2 Gy by the respiratory-gated intensity- modulated radiotherapy (gated-IMRT) based on the 4DCT-simulation, with improving target coverage and normal tissue (ex., lung, heart, and spinal cord) sparing. This study suggested that the definitive chemo-radiotherapy with docetaxel, cisplatin, and 5-fluorouracil (i.e., DCF-R) and gating IMRT is tolerable and active in patients with locally advanced mid-esophageal cancer (AEC)

  1. IMRT for adjuvant radiation in gastric cancer: A preferred plan?

    International Nuclear Information System (INIS)

    Ringash, Jolie; Perkins, Greg; Brierley, James; Lockwood, Gina; Islam, Mohammad; Catton, Pamela; Cummings, Bernard; Kim, John; Wong, Rebecca; Dawson, Laura

    2005-01-01

    Purpose: To assess the potential advantage of intensity-modulated radiotherapy (IMRT) over conformal planning for postoperative adjuvant radiotherapy in patients with gastric carcinoma. Methods and Materials: Twenty patients who had undergone treatment planning with conformal beam arrangements for 4500 cGy adjuvant radiotherapy between 2000 and 2001 underwent repeat planning using IMRT techniques. Conformal five-field plans were compared with seven- to nine-field coplanar sliding-window IMRT plans. For each patient, the cumulative dose-volume histograms and organ-dose summaries (without distributions or digitally reconstructed radiographs) were provided to two independent, 'blinded' GI radiation oncologists. The oncologists indicated which plan provided better planning target volume coverage and critical organ sparing, any safety concerns with either plan, and which plan they would choose to treat the patient. Results: In 18 (90%) of 20 cases, both oncologists chose the same plan. Cases with disagreement were given to a third 'blinded' reviewer. A 'preferred plan' could be determined in 19 (95%) of 20 cases. IMRT was preferred in 17 (89%) of 19 cases. In 4 (20%) of 20 IMRT plans at least one radiation oncologist had safety concerns because of the spinal cord dose (3 cases) or small bowel dose (2 cases). Of 42 ratings, IMRT was thought to provide better planning target volume coverage in 36 (86%) and better sparing of the spinal cord in 31 (74%) of 42, kidneys in 29 (69%), liver in 30 (71%), and heart in 29 (69%) of 42 ratings. The median underdose volume (1.7 vs. 4.1 cm 3 ), maximal dose to the spinal cord (36.85 vs. 45.65 Gy), and dose to 50% of the liver (17.29 vs. 27.97), heart (12.89 vs. 15.50 Gy), and left kidney (15.50 vs. 16.06 Gy) were lower with IMRT than with the conformal plans. Conclusion: Compared with the conformal plans, oncologists frequently preferred IMRT plans when using dose-volume histogram data. The advantages of IMRT plans include both

  2. A potential to reduce pulmonary toxicity: The use of perfusion SPECT with IMRT for functional lung avoidance in radiotherapy of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Lavrenkov, Konstantin; Christian, Judith A.; Partridge, Mike; Niotsikou, Elena; Cook, Gary; Parker, Michelle; Bedford, James L.; Brada, Michael

    2007-01-01

    Background and purpose: The study aimed to examine specific avoidance of functional lung (FL) defined by a single photon emission computerized tomography (SPECT) lung perfusion scan, using intensity modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3-DCRT) in patients with non-small cell lung cancer (NSCLC). Materials and methods: Patients with NSCLC underwent planning computerized tomography (CT) and lung perfusion SPECT scan in the treatment position using fiducial markers to allow co-registration in the treatment planning system. Radiotherapy (RT) volumes were delineated on the CT scan. FL was defined using co-registered SPECT images. Two inverse coplanar RT plans were generated for each patient: 4-field 3-DCRT and 5-field step-and-shoot IMRT. 3-DCRT plans were created using automated AutoPlan optimisation software, and IMRT plans were generated employing Pinnacle 3 treatment planning system (Philips Radiation Oncology Systems). All plans were prescribed to 64 Gy in 32 fractions using data for the 6 MV beam from an Elekta linear accelerator. The objectives for both plans were to minimize the volume of FL irradiated to 20 Gy (fV 20 ) and dose variation within the planning target volume (PTV). A spinal cord dose was constrained to 46 Gy. Volume of PTV receiving 90% of the prescribed dose (PTV 90 ), fV 20 , and functional mean lung dose (fMLD) were recorded. The PTV 90 /fV 20 ratio was used to account for variations in both measures, where a higher value represented a better plan. Results: Thirty-four RT plans of 17 patients with stage I-IIIB NSCLC suitable for radical RT were analysed. In 6 patients with stage I-II disease there was no improvement in PTV 90 , fV 20 , PTV/fV 20 ratio and fMLD using IMRT compared to 3-DCRT. In 11 patients with stage IIIA-B disease, the PTV was equally well covered with IMRT and 3-DCRT plans, with IMRT producing better PTV 90 /fV 20 ratio (mean ratio - 7.2 vs. 5.3, respectively, p = 0.001) and reduced f

  3. Intensity modulated radiotherapy with concurrent chemotherapy for larynx preservation of advanced resectable hypopharyngeal cancer

    Directory of Open Access Journals (Sweden)

    Chao Hsing-Lung

    2010-05-01

    Full Text Available Abstract Background To analyze the rate of larynx preservation in patients of locally advanced hypopharyngeal cancer treated with intensity modulated radiotherapy (IMRT plus concurrent chemotherapy, and compare the results with patients treated with primary surgery. Methods Between January 2003 and November 2007, 14 patients were treated with primary surgery and 33 patients were treated with concurrent chemoradiotherapy (CCRT using IMRT technique. Survival rate, larynx preservation rate were calculated with the Kaplan-Meier method. Multivariate analysis was conducted for significant prognostic factors with Cox-regression method. Results The median follow-up was 19.4 months for all patients, and 25.8 months for those alive. The 5-year overall survival rate was 33% and 44% for primary surgery and definitive CCRT, respectively (p = 0.788. The 5-year functional larynx-preservation survival after IMRT was 40%. Acute toxicities were common, but usually tolerable. The rates of treatment-related mucositis (≥ grade 2 and pharyngitis (≥ grade 3 were higher in the CCRT group. For multivariate analysis, treatment response and cricoid cartilage invasion strongly correlated with survival. Conclusions IMRT plus concurrent chemotherapy may preserve the larynx without compromising survival. Further studies on new effective therapeutic agents are essential.

  4. Cost-effectiveness of modern radiotherapy techniques in locally advanced pancreatic cancer.

    Science.gov (United States)

    Murphy, James D; Chang, Daniel T; Abelson, Jon; Daly, Megan E; Yeung, Heidi N; Nelson, Lorene M; Koong, Albert C

    2012-02-15

    Radiotherapy may improve the outcome of patients with pancreatic cancer but at an increased cost. In this study, the authors evaluated the cost-effectiveness of modern radiotherapy techniques in the treatment of locally advanced pancreatic cancer. A Markov decision-analytic model was constructed to compare the cost-effectiveness of 4 treatment regimens: gemcitabine alone, gemcitabine plus conventional radiotherapy, gemcitabine plus intensity-modulated radiotherapy (IMRT); and gemcitabine with stereotactic body radiotherapy (SBRT). Patients transitioned between the following 5 health states: stable disease, local progression, distant failure, local and distant failure, and death. Health utility tolls were assessed for radiotherapy and chemotherapy treatments and for radiation toxicity. SBRT increased life expectancy by 0.20 quality-adjusted life years (QALY) at an increased cost of $13,700 compared with gemcitabine alone (incremental cost-effectiveness ratio [ICER] = $69,500 per QALY). SBRT was more effective and less costly than conventional radiotherapy and IMRT. An analysis that excluded SBRT demonstrated that conventional radiotherapy had an ICER of $126,800 per QALY compared with gemcitabine alone, and IMRT had an ICER of $1,584,100 per QALY compared with conventional radiotherapy. A probabilistic sensitivity analysis demonstrated that the probability of cost-effectiveness at a willingness to pay of $50,000 per QALY was 78% for gemcitabine alone, 21% for SBRT, 1.4% for conventional radiotherapy, and 0.01% for IMRT. At a willingness to pay of $200,000 per QALY, the probability of cost-effectiveness was 73% for SBRT, 20% for conventional radiotherapy, 7% for gemcitabine alone, and 0.7% for IMRT. The current results indicated that IMRT in locally advanced pancreatic cancer exceeds what society considers cost-effective. In contrast, combining gemcitabine with SBRT increased clinical effectiveness beyond that of gemcitabine alone at a cost potentially acceptable by

  5. Segmental and dynamic intensity-modulated radiotherapy delivery techniques for micro-multileaf collimator

    International Nuclear Information System (INIS)

    Agazaryan, Nzhde; Solberg, Timothy D.

    2003-01-01

    A leaf sequencing algorithm has been implemented to deliver segmental and dynamic multileaf collimated intensity-modulated radiotherapy (SMLC-IMRT and DMLC-IMRT, respectively) using a linear accelerator equipped with a micro-multileaf collimator (mMLC). The implementation extends a previously published algorithm for the SMLC-IMRT to include the dynamic MLC-IMRT method and several dosimetric considerations. The algorithm has been extended to account for the transmitted radiation and minimize the leakage between opposing and neighboring leaves. The underdosage problem associated with the tongue-and-groove design of the MLC is significantly reduced by synchronizing the MLC leaf movements. The workings of the leaf sequencing parameters have been investigated and the results of the planar dosimetric investigations show that the sequencing parameters affect the measured dose distributions as intended. Investigations of clinical cases suggest that SMLC and DMLC delivery methods produce comparable results with leaf sequences obtained by root-mean-square (RMS) errors specification of 1.5% and lower, approximately corresponding to 20 or more segments. For SMLC-IMRT, there is little to be gained by using an RMS error specification smaller than 2%, approximately corresponding to 15 segments; however, more segments directly translate to longer treatment time and more strain on the MLC. The implemented leaf synchronization method does not increase the required monitor units while it reduces the measured TG underdoses from a maximum of 12% to a maximum of 3% observed with single field measurements of representative clinical cases studied

  6. Improved normal tissue sparing in head and neck radiotherapy using biological cost function based-IMRT.

    Science.gov (United States)

    Anderson, N; Lawford, C; Khoo, V; Rolfo, M; Joon, D L; Wada, M

    2011-12-01

    Intensity-modulated radiotherapy (IMRT) has reduced the impact of acute and late toxicities associated with head and neck radiotherapy. Treatment planning system (TPS) advances in biological cost function based optimization (BBO) and improved segmentation techniques have increased organ at risk (OAR) sparing compared to conventional dose-based optimization (DBO). A planning study was undertaken to compare OAR avoidance in DBO and BBO treatment planning. Simultaneous integrated boost treatment plans were produced for 10 head and neck patients using both planning systems. Plans were compared for tar get coverage and OAR avoidance. Comparisons were made using the BBO TPS Monte Carlo dose engine to eliminate differences due to inherent algorithms. Target coverage (V95%) was maintained for both solutions. BBO produced lower OAR doses, with statistically significant improvement to left (12.3%, p = 0.005) and right parotid mean dose (16.9%, p = 0.004), larynx V50_Gy (71.0%, p = 0.005), spinal cord (21.9%, p < 0.001) and brain stem dose maximums (31.5%, p = 0.002). This study observed improved OAR avoidance with BBO planning. Further investigations will be undertaken to review any clinical benefit of this improved planned dosimetry.

  7. Inverse planning of energy-modulated electron beams in radiotherapy

    International Nuclear Information System (INIS)

    Gentry, John R.; Steeves, Richard; Paliwal, Bhudatt A.

    2006-01-01

    The use of megavoltage electron beams often poses a clinical challenge in that the planning target volume (PTV) is anterior to other radiosensitive structures and has variable depth. To ensure that skin as well as the deepest extent of the PTV receives the prescribed dose entails prescribing to a point beyond the depth of peak dose for a single electron energy. This causes dose inhomogeneities and heightened potential for tissue fibrosis, scarring, and possible soft tissue necrosis. Use of bolus on the skin improves the entrant dose at the cost of decreasing the therapeutic depth that can be treated. Selection of a higher energy to improve dose homogeneity results in increased dose to structures beyond the PTV, as well as enlargement of the volume receiving heightened dose. Measured electron data from a linear accelerator was used as input to create an inverse planning tool employing energy and intensity modulation using bolus (e-IMRT TM ). Using tools readily available in a radiotherapy department, the applications of energy and intensity modulation on the central axis makes it possible to remove hot spots of 115% or more over the depths clinically encountered. The e-IMRT TM algorithm enables the development of patient-specific dose distributions with user-defined positions of peak dose, range, and reduced dose to points beyond the prescription point

  8. A comparison of HDR brachytherapy and IMRT techniques for dose escalation in prostate cancer: A radiobiological modeling study

    Energy Technology Data Exchange (ETDEWEB)

    Fatyga, M.; Williamson, J. F.; Dogan, N.; Todor, D.; Siebers, J. V.; George, R.; Barani, I.; Hagan, M. [Department of Radiation Oncology, Virginia Commonwealth University Medical Center, 401 College Street, Richmond, Virginia 23298 (United States)

    2009-09-15

    A course of one to three large fractions of high dose rate (HDR) interstitial brachytherapy is an attractive alternative to intensity modulated radiation therapy (IMRT) for delivering boost doses to the prostate in combination with additional external beam irradiation for intermediate risk disease. The purpose of this work is to quantitatively compare single-fraction HDR boosts to biologically equivalent fractionated IMRT boosts, assuming idealized image guided delivery (igIMRT) and conventional delivery (cIMRT). For nine prostate patients, both seven-field IMRT and HDR boosts were planned. The linear-quadratic model was used to compute biologically equivalent dose prescriptions. The cIMRT plan was evaluated as a static plan and with simulated random and setup errors. The authors conclude that HDR delivery produces a therapeutic ratio which is significantly better than the conventional IMRT and comparable to or better than the igIMRT delivery. For the HDR, the rectal gBEUD analysis is strongly influenced by high dose DVH tails. A saturation BED, beyond which no further injury can occur, must be assumed. Modeling of organ motion uncertainties yields mean outcomes similar to static plan outcomes.

  9. Implementation of intensity-modulated conformational radiotherapy (IMRT) for the treatment of cervical cancers at the Alexis-Vautrin Centre; Implementation de la radiotherapie conformationnelle avec modulation d'intensite (RCMI) pour le traitement des cancers du col uterin au centre Alexis-Vautrin

    Energy Technology Data Exchange (ETDEWEB)

    Renard-Oldrini, S.; Brunaud, C.; Marchesi, V.; Tournier-Rangeard, L.; Peiffert, D. [Centre Alexis-Vautrin, 54 - Nancy (France)

    2010-10-15

    The authors discuss the comparison of the treatment plans of eleven patients treated either by conformational irradiation for seven of them, or by intensity-modulated conformational irradiation (IMRT) for four of them. The IMRT results in a good target volume coverage, can better protect the intestine than the conventional irradiation, and therefore is very promising, notably in terms of digestive toxicity. Short communication

  10. Target volume delineation for head and neck cancer intensity-modulated radiotherapy; Delineation des volumes cibles des cancers des voies aerodigestives superieures en radiotherapie conformationnelle avec modulation d'intensite

    Energy Technology Data Exchange (ETDEWEB)

    Lapeyre, M.; Toledano, I.; Bourry, N. [Departement de radiotherapie, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1 (France); Bailly, C. [Unite de radiodiagnostic, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1 (France); Cachin, F. [Unite de medecine nucleaire, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1 (France)

    2011-10-15

    This article describes the determination and the delineation of the target volumes for head-and-neck cancers treated with intensity-modulated radiotherapy (IMRT). The delineation of the clinical target volumes (CTV) on the computerized tomography scanner (CT scan) requires a rigorous methodology due to the complexity of head-and-neck anatomy. The clinical examination with a sketch of pretreatment tumour extension, the surgical and pathological reports and the adequate images (CT scan, magnetic resonance imaging and fluorodeoxyglucose positron emission tomography) are necessary for the delineation. The target volumes depend on the overall strategy: sequential IMRT or simultaneous integrated boost-IMRT (SIB-IMRT). The concept of selectivity of the potential subclinical disease near the primary tumor and the selection of neck nodal targets are described according to the recommendations and the literature. The planing target volume (PTV), mainly reflecting setup errors (random and systematic), results from a uniform 4-5 mm expansion around the CTV. We propose the successive delineation of: (1) the gross volume tumour (GTV); (2) the 'high risk' CTV1 around the GTV or including the postoperative tumour bed in case of positive margins or nodal extra-capsular spread (65-70 Gy in 30-35 fractions); (3) the CTV2 'intermediate risk' around the CTV1 for SIB-IMRT (59-63 Gy in 30-35 fractions); (4) the 'low-risk' CTV3 (54-56 Gy in 30-35 fractions); (5) the PTVs. (authors)

  11. Patient reported outcome measures (PROMs) following forward planned field-in field IMRT: Results from the Cambridge Breast IMRT trial

    International Nuclear Information System (INIS)

    Mukesh, Mukesh B.; Qian, Wendi; Wilkinson, Jennifer S.; Dorling, Leila; Barnett, Gillian C.; Moody, Anne M.; Wilson, Charles; Twyman, Nicola; Burnet, Neil G.; Wishart, Gordon C.; Coles, Charlotte E.

    2014-01-01

    Background: The use of intensity-modulated radiotherapy (IMRT) in breast cancer reduces clinician-assessed breast tissue toxicity including fibrosis, telangectasia and sub-optimal cosmesis. Patient reported outcome measures (PROMs) are also important as they provide the patient’s perspective. This longitudinal study reports on (a) the effect of forward planned field-in-field IMRT (∼simple IMRT) on PROMs compared to standard RT at 5 years after RT, (b) factors affecting PROMs at 5 years after RT and (c) the trend of PROMs over 5 years of follow up. Methods: PROMs were assessed at baseline (pre-RT), 6, 24 and 60 months after completion of RT using global health (EORTC QLQ C30) and 4 breast symptom questions (BR23). Also, 4 breast RT-specific questions were included at 6, 24 and 60 months: change in skin appearance, firmness to touch, reduction in breast size and overall change in breast appearance since RT. The benefits of simple IMRT over standard RT at 5 years after RT were assessed using standard t-test for global health and logistic regression analysis for breast symptom questions and breast RT-specific questions. Clinical factors affecting PROMs at 5 years were investigated using a multivariate analysis. A repeated mixed model was applied to explore the trend over time for each of PROMs. Results: (89%) 727/815, 84%, 81% and 61% patients completed questionnaires at baseline, 6, 24 and 60 months respectively. Patients reported worse toxicity for all four BR23 breast symptoms at 6 months, which then improved over time (p < 0.0001). They also reported improvement in skin appearance and breast hardness over time (p < 0.0001), with no significant change for breast shrinkage (p = 0.47) and overall breast appearance (p = 0.13). At 5 years, PROMs assessments did not demonstrate a benefit for simple IMRT over standard radiotherapy. Large breast volume, young age, baseline surgical cosmesis and post-operative infection were the most important variables to affect PROMs

  12. Indications for quality assurance in conformal radiotherapy in Italy

    International Nuclear Information System (INIS)

    Banci Buonamici, F.; DE Angelis, C.; Rosi, A.; Tabocchini, M.A.; Iotti, C.; Olmi, P.

    2008-01-01

    Intensity-Modulated Radiation Therapy (IMRT) is an advanced and promising technique of external beam irradiation. IMRT is able to conform the dose distribution to the 3D tumour shape also for complex geometries, preserving surrounding normal tissues and reducing the probability of side effects. IMRT is a time consuming and complex technique and its use demands high level quality assurance. It is, therefore, very important to define conditions for its utilization. Professionals of Radiotherapy Centres, with experience in the IMRT use, have constituted a multidisciplinary working group with the aim of developing indications in this field. Purpose of the present document is to highlight relevant aspects of the technique, but also to underline the high complexity of the technique, whose implementation requires extreme attention of the staff of Radiotherapy Centres involved [it

  13. Toxicity after intensity-modulated, image-guided radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Flentje, Michael; Guckenberger, Matthias; Ok, Sami; Polat, Buelent; Sweeney, Reinhart A.

    2010-01-01

    Purpose: To evaluate toxicity after dose-escalated radiotherapy for prostate cancer using intensity-modulated treatment planning (IMRT) and image-guided treatment (IGRT) delivery. Patients and Methods: 100 patients were treated with simultaneous integrated boost (SIB) IMRT for prostate cancer: doses of 76.23 Gy and 60 Gy in 33 fractions were prescribed to the prostate and the seminal vesicles, respectively, for intermediate- and high-risk patients (n = 74). The total dose was 73.91 Gy in 32 fractions for low-risk patients and after transurethral resection of the prostate (n = 26). The pelvic lymphatics were treated with 46 Gy in 25 fractions in patients with high risk of lymph node metastases using an SIB to the prostate (n = 25). IGRT was practiced with cone-beam computed tomography. Acute and late gastrointestinal (GI) and genitourinary (GU) toxicity was evaluated prospectively (CTCAE v3.0). Results: Treatment was completed as planned by all patients. Acute GI and GU toxicity grade ≥ 2 was observed in 12% and 42% of the patients, respectively, with 4% suffering from GU toxicity grade 3. 6 weeks after treatment, the incidence of acute toxicity grade ≥ 2 had decreased to 12%. With a median follow-up of 26 months, late GI and GU toxicity grade ≥ 2 was seen in 1.5% and 7.7% of the patients at 24 months. Four patients developed late toxicity grade 3 (GI n = 1; GU n = 3). Presence of acute GI and GU toxicity was significantly associated with late GI (p = 0.0007) and GU toxicity (p = 0.006). Conclusion: High-dose radiotherapy for prostate cancer using IMRT and IGRT resulted in low rates of acute toxicity and preliminary results of late toxicity are promising. (orig.)

  14. Toxicity after intensity-modulated, image-guided radiotherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Flentje, Michael [Dept. of Radiotherapy, Univ. Hospital Wuerzburg (Germany); Guckenberger, Matthias; Ok, Sami; Polat, Buelent; Sweeney, Reinhart A.

    2010-10-15

    Purpose: To evaluate toxicity after dose-escalated radiotherapy for prostate cancer using intensity-modulated treatment planning (IMRT) and image-guided treatment (IGRT) delivery. Patients and Methods: 100 patients were treated with simultaneous integrated boost (SIB) IMRT for prostate cancer: doses of 76.23 Gy and 60 Gy in 33 fractions were prescribed to the prostate and the seminal vesicles, respectively, for intermediate- and high-risk patients (n = 74). The total dose was 73.91 Gy in 32 fractions for low-risk patients and after transurethral resection of the prostate (n = 26). The pelvic lymphatics were treated with 46 Gy in 25 fractions in patients with high risk of lymph node metastases using an SIB to the prostate (n = 25). IGRT was practiced with cone-beam computed tomography. Acute and late gastrointestinal (GI) and genitourinary (GU) toxicity was evaluated prospectively (CTCAE v3.0). Results: Treatment was completed as planned by all patients. Acute GI and GU toxicity grade {>=} 2 was observed in 12% and 42% of the patients, respectively, with 4% suffering from GU toxicity grade 3. 6 weeks after treatment, the incidence of acute toxicity grade {>=} 2 had decreased to 12%. With a median follow-up of 26 months, late GI and GU toxicity grade {>=} 2 was seen in 1.5% and 7.7% of the patients at 24 months. Four patients developed late toxicity grade 3 (GI n = 1; GU n = 3). Presence of acute GI and GU toxicity was significantly associated with late GI (p = 0.0007) and GU toxicity (p = 0.006). Conclusion: High-dose radiotherapy for prostate cancer using IMRT and IGRT resulted in low rates of acute toxicity and preliminary results of late toxicity are promising. (orig.)

  15. Intensity modulated radiotherapy in early stage Hodgkin lymphoma patients: Is it better than three dimensional conformal radiotherapy?

    International Nuclear Information System (INIS)

    De Sanctis, Vitaliana; Chiacchiararelli, Laura; Enrici, Riccardo Maurizi; Bolzan, Chiara; D’Arienzo, Marco; Bracci, Stefano; Fanelli, Alessandro; Cox, Maria Christina; Valeriani, Maurizio; Osti, Mattia F; Minniti, Giuseppe

    2012-01-01

    Cure rate of early Hodgkin Lymphoma are high and avoidance of late toxicities is of paramount importance. This comparative study aims to assess the normal tissue sparing capability of intensity-modulated radiation therapy (IMRT) versus standard three-dimensional conformal radiotherapy (3D-CRT) in terms of dose-volume parameters and normal tissue complication probability (NTCP) for different organs at risk in supradiaphragmatic Hodgkin Lymphoma (HL) patients. Ten HL patients were actually treated with 3D-CRT and all treatments were then re-planned with IMRT. Dose-volume parameters for thyroid, oesophagus, heart, coronary arteries, lung, spinal cord and breast were evaluated. Dose-volume histograms generated by TPS were analyzed to predict the NTCP for the considered organs at risk, according to different endpoints. Regarding dose-volume parameters no statistically significant differences were recorded for heart and origin of coronary arteries. We recorded statistically significant lower V30 with IMRT for oesophagus (6.42 vs 0.33, p = 0.02) and lungs (4.7 vs 0.1 p = 0.014 for the left lung and 2.59 vs 0.1 p = 0.017 for the right lung) and lower V20 for spinal cord (17.8 vs 7.2 p = 0.02). Moreover the maximum dose to the spinal cord was lower with IMRT (30.2 vs 19.9, p <0.001). Higher V10 with IMRT for thyroid (64.8 vs 95, p = 0.0019) and V5 for lungs (30.3 vs 44.8, p = 0.03, for right lung and 28.9 vs 48.1, p = 0.001 for left lung) were found, respectively. Higher V5 and V10 for breasts were found with IMRT (V5: 4.14 vs 20.6, p = 0.018 for left breast and 3.3 vs 17, p = 0.059 for right breast; V10: 2.5 vs 13.6 p = 0.035 for left breast and 1.7 vs 11, p = 0.07 for the right breast.) As for the NTCP, our data point out that IMRT is not always likely to significantly increase the NTCP to OARs. In HL male patients IMRT seems feasible and accurate while for women HL patients IMRT should be used with caution

  16. Clinical outcome of extended-field irradiation vs. pelvic irradiation using intensity-modulated radiotherapy for cervical cancer.

    Science.gov (United States)

    Ouyang, Yi; Wang, Yanhong; Chen, Kai; Cao, Xinping; Zeng, Yiming

    2017-12-01

    The aim of the present study was to evaluate the distinctions in survival and toxicity between patients with cervical cancer with common iliac node or para-aortic node involvement, who were treated with extended-field intensity-modulated radiotherapy (EF-IMRT) and patients with or without lower involved pelvic nodes, who were treated with pelvic IMRT. A total of 55 patients treated with EF-IMRT and 52 patients treated with pelvic IMRT at the Sun Yat-Sen University Cancer Center (Guangzhou, China) were retrospectively analyzed. Patients treated with EF-IMRT had the highest level of lymph node involvement to the para-aortic or common iliac nodes, while patients treated with pelvic IMRT had no para-aortic or common iliac nodes involved (Pirradiation was a protective prognostic factor for OS and DFS. A total of 16 patients in the EF-IMRT group and 13 patients in the pelvic IMRT group experienced treatment failure (P=0.67), with the patterns of failure being the same for the two groups (P=0.88). The cumulative incidence of grade 3 and 4 acute toxicities in the EF-IMRT group was 34.5%, in comparison with 19.2% in the pelvic group (P=0.048). The results of the present study suggest that patients with cervical cancer with grossly involved common iliac or para-aortic nodes should be electively subjected to EF irradiation to improve the survival and alter patterns of recurrence. Notably, EF irradiation delivered via IMRT exhibits an increased toxicity incidence, however, this remains within an acceptable range.

  17. Comparative dosimetric study of three-dimensional conformal, dynamic conformal arc, and intensity-modulated radiotherapy for brain tumor treatment using Novalis system

    International Nuclear Information System (INIS)

    Ding Meisong; Newman, Francis M.S.; Kavanagh, Brian D.; Stuhr, Kelly M.S.; Johnson, Tim K.; Gaspar, Laurie E.

    2006-01-01

    Purpose: To investigate the dosimetric differences among three-dimensional conformal radiotherapy (3D-CRT), dynamic conformal arc therapy (DCAT), and intensity-modulated radiotherapy (IMRT) for brain tumor treatment. Methods and Materials: Fifteen patients treated with Novalis were selected. We performed 3D-CRT, DCAT, and IMRT plans for all patients. The margin for the planning target volume (PTV) was 1 mm, and the specific prescription dose was 90% for all plans. The target coverage at the prescription dose, conformity index (CI), and heterogeneity index were analyzed for all plans. Results: For small tumors (PTV ≤2 cm 3 ), the three dosimetric parameters had approximate values for both 3D-CRT and DCAT plans. The CI for the IMRT plans was high. For medium tumors (PTV >2 to ≤100 cm 3 ), the three plans were competitive with each other. The IMRT plans had a greater CI, better target coverage at the prescription dose, and a better heterogeneity index. For large tumors (PTV >100 cm 3 ), the IMRT plan had good target coverage at the prescription dose and heterogeneity index and approximate CI values as those in the 3D-CRT and DCAT plans. Conclusion: The results of our study have shown that DCAT is suitable for most cases in the treatment of brain tumors. For a small target, 3D-CRT is useful, and IMRT is not recommended. For larger tumors, IMRT is superior to 3D-CRT and very competitive in sparing critical structures, especially for big tumors

  18. Is "pelvic radiation disease" always the cause of bowel symptoms following prostate cancer intensity-modulated radiotherapy?

    Science.gov (United States)

    Min, Myo; Chua, Benjamin; Guttner, Yvonne; Abraham, Ned; Aherne, Noel J; Hoffmann, Matthew; McKay, Michael J; Shakespeare, Thomas P

    2014-02-01

    Pelvic radiation disease (PRD) also widely known as "radiation proctopathy" is a well recognised late side-effect following conventional prostate radiotherapy. However, endoscopic evaluation and/or specialist referral for new or persistent post-prostate radiotherapy bowel symptoms is not routine and serious diagnoses may potentially be missed. Here we report a policy of endoscopic evaluation of bowel symptoms persisting >90 days post radiotherapy for prostate cancer. A consecutive series of 102 patients who had radical prostate intensity-modulated radiotherapy (IMRT)/image-guided radiotherapy (IGRT) and who had new or ongoing bowel symptoms or positive faecal occult blood tests (FOBT) on follow up visits more than three months after treatment, were referred for endoscopic examination. All but one (99%) had full colonoscopic investigation. Endoscopic findings included gastric/colonic/rectal polyps (56%), diverticular disease (49%), haemorrhoids (38%), radiation proctopathy (29%), gastritis/oesophagitis (8%) and rarer diagnoses, including bowel cancer which was found in 3%. Only four patients (4%) had radiation proctopathy without associated pathology and 65 patients (63%) had more than one diagnosis. If flexible sigmoidoscopy alone were used, 36.6% of patients and 46.6% patients with polyp(s) would have had their diagnoses missed. Our study has shown that bowel symptoms following prostate IMRT/IGRT are due to numerous diagnoses other than PRD, including malignancy. Routine referral pathways should be developed for endoscopic evaluation/specialist review for patients with new or persistent bowel symptoms (or positive FOBT) following prostate radiotherapy. This recommendation should be considered for incorporation into national guidelines. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Dosimetric comparison of treatment techniques IMRT and VMAT for breast cancer

    International Nuclear Information System (INIS)

    Urbina, G. L.; Garcia, B. G.

    2015-10-01

    In this study the dosimetric distribution was compared in the different treatment techniques such as Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiation Therapy (IMRT) in female patients with breast cancer with stage II-B and III-A, 6 cases (both calculated on VMAT and IMRT) were studied, comparison parameter that are taken into account are: compliance rate, homogeneity index, monitor units, volume dose 50 Gy (D-50%) and 5 Gy (D-5%) volume dose. Comparisons are made in primary tumor volume to optimize treatment in patients with breast cancer, with IMRT using Step, Shoot and VMAT Monte Carlo algorithm, in addition to the organs at risk; the concern to make this work is due to technological advances in radiotherapy and the application of new treatment techniques, that increase the accuracy allowing treatment dose climbing delivering a higher dose to the patient. (Author)

  20. Pleural Intensity-Modulated Radiotherapy for Malignant Pleural Mesothelioma

    International Nuclear Information System (INIS)

    Rosenzweig, Kenneth E.; Zauderer, Marjorie G.; Laser, Benjamin; Krug, Lee M.; Yorke, Ellen; Sima, Camelia S.; Rimner, Andreas; Flores, Raja; Rusch, Valerie

    2012-01-01

    Purpose: In patients with malignant pleural mesothelioma who are unable to undergo pneumonectomy, it is difficult to deliver tumoricidal radiation doses to the pleura without significant toxicity. We have implemented a technique of using intensity-modulated radiotherapy (IMRT) to treat these patients, and we report the feasibility and toxicity of this approach. Methods and Materials: Between 2005 and 2010, 36 patients with malignant pleural mesothelioma and two intact lungs (i.e., no previous pneumonectomy) were treated with pleural IMRT to the hemithorax (median dose, 46.8 Gy; range, 41.4–50.4) at Memorial Sloan-Kettering Cancer Center. Results: Of the 36 patients, 56% had right-sided tumors. The histologic type was epithelial in 78%, sarcomatoid in 6%, and mixed in 17%, and 6% had Stage I, 28% had Stage II, 33% had Stage III, and 33% had Stage IV. Thirty-two patients (89%) received induction chemotherapy (mostly cisplatin and pemetrexed); 56% underwent pleurectomy/decortication before IMRT and 44% did not undergo resection. Of the 36 patients evaluable for acute toxicity, 7 (20%) had Grade 3 or worse pneumonitis (including 1 death) and 2 had Grade 3 fatigue. In 30 patients assessable for late toxicity, 5 had continuing Grade 3 pneumonitis. For patients treated with surgery, the 1- and 2-year survival rate was 75% and 53%, and the median survival was 26 months. For patients who did not undergo surgical resection, the 1- and 2-year survival rate was 69% and 28%, and the median survival was 17 months. Conclusions: Treating the intact lung with pleural IMRT in patients with malignant pleural mesothelioma is a safe and feasible treatment option with an acceptable rate of pneumonitis. Additionally, the survival rates were encouraging in our retrospective series, particularly for the patients who underwent pleurectomy/decortication. We have initiated a Phase II trial of induction chemotherapy with pemetrexed and cisplatin with or without pleurectomy

  1. Pleural Intensity-Modulated Radiotherapy for Malignant Pleural Mesothelioma

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, Kenneth E., E-mail: ken.rosenzweig@mountsinai.org [Department of Radiation Oncology, Mount Sinai Medical Center, New York, NY (United States); Zauderer, Marjorie G. [Department of Medicine, Thoracic Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Laser, Benjamin [Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI (United States); Krug, Lee M. [Department of Medicine, Thoracic Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Yorke, Ellen [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Sima, Camelia S. [Department of Epidemiology/Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Rimner, Andreas [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Flores, Raja [Department of Surgery, Mount Sinai Medical Center, New York, NY (United States); Rusch, Valerie [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2012-07-15

    Purpose: In patients with malignant pleural mesothelioma who are unable to undergo pneumonectomy, it is difficult to deliver tumoricidal radiation doses to the pleura without significant toxicity. We have implemented a technique of using intensity-modulated radiotherapy (IMRT) to treat these patients, and we report the feasibility and toxicity of this approach. Methods and Materials: Between 2005 and 2010, 36 patients with malignant pleural mesothelioma and two intact lungs (i.e., no previous pneumonectomy) were treated with pleural IMRT to the hemithorax (median dose, 46.8 Gy; range, 41.4-50.4) at Memorial Sloan-Kettering Cancer Center. Results: Of the 36 patients, 56% had right-sided tumors. The histologic type was epithelial in 78%, sarcomatoid in 6%, and mixed in 17%, and 6% had Stage I, 28% had Stage II, 33% had Stage III, and 33% had Stage IV. Thirty-two patients (89%) received induction chemotherapy (mostly cisplatin and pemetrexed); 56% underwent pleurectomy/decortication before IMRT and 44% did not undergo resection. Of the 36 patients evaluable for acute toxicity, 7 (20%) had Grade 3 or worse pneumonitis (including 1 death) and 2 had Grade 3 fatigue. In 30 patients assessable for late toxicity, 5 had continuing Grade 3 pneumonitis. For patients treated with surgery, the 1- and 2-year survival rate was 75% and 53%, and the median survival was 26 months. For patients who did not undergo surgical resection, the 1- and 2-year survival rate was 69% and 28%, and the median survival was 17 months. Conclusions: Treating the intact lung with pleural IMRT in patients with malignant pleural mesothelioma is a safe and feasible treatment option with an acceptable rate of pneumonitis. Additionally, the survival rates were encouraging in our retrospective series, particularly for the patients who underwent pleurectomy/decortication. We have initiated a Phase II trial of induction chemotherapy with pemetrexed and cisplatin with or without pleurectomy

  2. Dosimetric and Radiobiologic Comparison of 3D Conformal Versus Intensity Modulated Planning Techniques for Prostate Bed Radiotherapy

    International Nuclear Information System (INIS)

    Koontz, Bridget F.; Das, Shiva; Temple, Kathy; Bynum, Sigrun; Catalano, Suzanne; Koontz, Jason I.; Montana, Gustavo S.; Oleson, James R.

    2009-01-01

    Adjuvant radiotherapy for locally advanced prostate cancer improves biochemical and clinical disease-free survival. While comparisons in intact prostate cancer show a benefit for intensity modulated radiation therapy (IMRT) over 3D conformal planning, this has not been studied for post-prostatectomy radiotherapy (RT). This study compares normal tissue and target dosimetry and radiobiological modeling of IMRT vs. 3D conformal planning in the postoperative setting. 3D conformal plans were designed for 15 patients who had been treated with IMRT planning for salvage post-prostatectomy RT. The same computed tomography (CT) and target/normal structure contours, as well as prescription dose, was used for both IMRT and 3D plans. Normal tissue complication probabilities (NTCPs) were calculated based on the dose given to the bladder and rectum by both plans. Dose-volume histogram and NTCP data were compared by paired t-test. Bladder and rectal sparing were improved with IMRT planning compared to 3D conformal planning. The volume of the bladder receiving at least 75% (V75) and 50% (V50) of the dose was significantly reduced by 28% and 17%, respectively (p = 0.002 and 0.037). Rectal dose was similarly reduced, V75 by 33% and V50 by 17% (p = 0.001 and 0.004). While there was no difference in the volume of rectum receiving at least 65 Gy (V65), IMRT planning significant reduced the volume receiving 40 Gy or more (V40, p = 0.009). Bladder V40 and V65 were not significantly different between planning modalities. Despite these dosimetric differences, there was no significant difference in the NTCP for either bladder or rectal injury. IMRT planning reduces the volume of bladder and rectum receiving high doses during post-prostatectomy RT. Because of relatively low doses given to the bladder and rectum, there was no statistically significant improvement in NTCP between the 3D conformal and IMRT plans.

  3. Dosimetric and radiobiologic comparison of 3D conformal versus intensity modulated planning techniques for prostate bed radiotherapy.

    Science.gov (United States)

    Koontz, Bridget F; Das, Shiva; Temple, Kathy; Bynum, Sigrun; Catalano, Suzanne; Koontz, Jason I; Montana, Gustavo S; Oleson, James R

    2009-01-01

    Adjuvant radiotherapy for locally advanced prostate cancer improves biochemical and clinical disease-free survival. While comparisons in intact prostate cancer show a benefit for intensity modulated radiation therapy (IMRT) over 3D conformal planning, this has not been studied for post-prostatectomy radiotherapy (RT). This study compares normal tissue and target dosimetry and radiobiological modeling of IMRT vs. 3D conformal planning in the postoperative setting. 3D conformal plans were designed for 15 patients who had been treated with IMRT planning for salvage post-prostatectomy RT. The same computed tomography (CT) and target/normal structure contours, as well as prescription dose, was used for both IMRT and 3D plans. Normal tissue complication probabilities (NTCPs) were calculated based on the dose given to the bladder and rectum by both plans. Dose-volume histogram and NTCP data were compared by paired t-test. Bladder and rectal sparing were improved with IMRT planning compared to 3D conformal planning. The volume of the bladder receiving at least 75% (V75) and 50% (V50) of the dose was significantly reduced by 28% and 17%, respectively (p = 0.002 and 0.037). Rectal dose was similarly reduced, V75 by 33% and V50 by 17% (p = 0.001 and 0.004). While there was no difference in the volume of rectum receiving at least 65 Gy (V65), IMRT planning significant reduced the volume receiving 40 Gy or more (V40, p = 0.009). Bladder V40 and V65 were not significantly different between planning modalities. Despite these dosimetric differences, there was no significant difference in the NTCP for either bladder or rectal injury. IMRT planning reduces the volume of bladder and rectum receiving high doses during post-prostatectomy RT. Because of relatively low doses given to the bladder and rectum, there was no statistically significant improvement in NTCP between the 3D conformal and IMRT plans.

  4. Treatment Planning Study to Determine Potential Benefit of Intensity-Modulated Radiotherapy Versus Conformal Radiotherapy for Unresectable Hepatic Malignancies

    International Nuclear Information System (INIS)

    Eccles, Cynthia L.; Bissonnette, Jean-Pierre; Craig, Tim; Taremi, Mojgan; Wu Xia; Dawson, Laura A.

    2008-01-01

    Purpose: To compare intensity-modulated radiotherapy (IMRT) with conformal RT (CRT) for hypofractionated isotoxicity liver RT and explore dose escalation using IMRT for the same/improved nominal risk of liver toxicity in a treatment planning study. Methods and Materials: A total of 26 CRT plans were evaluated. Prescription doses (24-54 Gy within six fractions) were individualized on the basis of the effective liver volume irradiated maintaining ≤5% risk of radiation-induced liver disease. The dose constraints included bowel (0.5 cm 3 ) and stomach (0.5 cm 3 ) to ≤30 Gy, spinal cord to ≤25 Gy, and planning target volume (PTV) to ≤140% of the prescribed dose. Two groups were evaluated: (1) PTV overlapping or directly adjacent to serial functioning normal tissues (n = 14), and (2) the liver as the dose-limiting normal tissue (n = 12). IMRT plans using direct machine parameter optimization maintained the CRT plan beam arrangements, an estimated radiation-induced liver disease risk of 5%, and underwent dose escalation, if all normal tissue constraints were maintained. Results: IMRT improved PTV coverage in 19 of 26 plans (73%). Dose escalation was feasible in 9 cases by an average of 3.8 Gy (range, 0.6-13.2) in six fractions. Three of seven plans without improved PTV coverage had small gross tumor volumes (≤105 cm 3 ) already receiving 54 Gy, the maximal prescription dose allowed. In the remaining cases, the PTV range was 9.6-689 cm 3 ; two had overlapped organs at risk; and one had four targets. IMRT did not improve these plans owing to poor target coverage (n = 2) and nonliver (n = 2) dose limits. Conclusion: Direct machine parameter optimization IMRT improved PTV coverage while maintaining normal tissue tolerances in most CRT liver plans. Dose escalation was possible in a minority of patients

  5. Health-related quality of life using intensity-modulated radiation therapy for post-prostatectomy radiotherapy

    International Nuclear Information System (INIS)

    Van Gysen, Kirsten L.; Guo, Linxin; Kneebone, Andrew B.; Eade, Thomas N.; Vaux, Kenneth J.; Lazzaro, Enzo M.

    2013-01-01

    Post-prostatectomy radiotherapy (PPRT) with intensity-modulated radiation therapy (IMRT) has the potential to decrease toxicity by reducing dose to surrounding structures. We assessed its impact on health-related quality of life (HRQoL). PPRT patients were enrolled in a prospective HRQoL database. To be eligible, patients were required to be treated with IMRT and have a minimum of 15-month follow up. HRQoL was assessed at baseline, 3, 9 and 15–24 months using the Expanded Prostate Cancer Index Composite questionnaire. Higher scores reflected better HRQoL. Results were analysed as both population means and as individual scores where a moderate change was 10–20 points and a substantial change was >20 points. There were 64 patients eligible and 83% of the cohort received salvage radiotherapy. Prescribed dose was 64Gy in 32 fractions for adjuvant and 66Gy in 33 fractions for salvage IMRT. Mean function scores for urinary, bowel and sexual domains were similar at baseline and 15 months (83.5, 94.2 and 16.9 vs. 82.2, 93.1 and 14.3, respectively). Mean global physical functioning (51.0 vs. 48.1) and mental functioning (51.6 vs. 54.2) showed no difference over time. Individual patient scores by 2 years showed a >20-point deterioration in urinary (12.5%), bowel (1.6%), sexual function (9.4%), physical functioning (3.1%) and mental functioning (1.6%). This report on HRQoL following post-prostatectomy IMRT demonstrates no variation in mean scores in any domain and only 1.6% of patients reporting a greater than 20-point deterioration between baseline and 15–24 months in bowel function.

  6. Superior sulcus non-small cell lung carcinoma: A comparison of IMRT and 3D-RT dosimetry.

    Science.gov (United States)

    Truntzer, Pierre; Antoni, Delphine; Santelmo, Nicola; Schumacher, Catherine; Falcoz, Pierre-Emmanuel; Quoix, Elisabeth; Massard, Gilbert; Noël, Georges

    2016-01-01

    A dosimetric study comparing intensity modulated radiotherapy (IMRT) by TomoTherapy to conformational 3D radiotherapy (3D-RT) in patients with superior sulcus non-small cell lung cancer (NSCLC). IMRT became the main technique in modern radiotherapy. However it was not currently used for lung cancers. Because of the need to increase the dose to control lung cancers but because of the critical organs surrounding the tumors, the gains obtainable with IMRT is not still demonstrated. A dosimetric comparison of the planned target and organs at risk parameters between IMRT and 3D-RT in eight patients who received preoperative or curative intent irradiation. In the patients who received at least 66 Gy, the mean V95% was significantly better with IMRT than 3D-RT (p = 0.043). IMRT delivered a lower D2% compared to 3D-RT (p = 0.043). The IH was significantly better with IMRT (p = 0.043). The lung V 5 Gy and V 13 Gy were significantly higher in IMRT than 3D-RT (p = 0.043), while the maximal dose (D max) to the spinal cord was significantly lower in IMRT (p = 0.043). The brachial plexus D max was significantly lower in IMRT than 3D-RT (p = 0.048). For patients treated with 46 Gy, no significant differences were found. Our study showed that IMRT is relevant for SS-NSCLC. In patients treated with a curative dose, it led to a reduction of the exposure of critical organs, allowing a better dose distribution in the tumor. For the patients treated with a preoperative schedule, our results provide a basis for future controlled trials to improve the histological complete response by increasing the radiation dose.

  7. [Intensity modulated radiation therapy for patients with gynecological malignancies after hysterectomy and chemotherapy/radiotherapy].

    Science.gov (United States)

    Chen, Zhen-yun; Ma, Yue-bing; Sheng, Xiu-gui; Zhang, Xiao-ling; Xue, Li; Song, Qu-qing; Liu, Nai-fu; Miao, Hua-qin

    2007-04-01

    To investigate the value of intensity modulated radiation therapy (IMRT) for patient with gynecological malignancies after treatment of hysterectomy and chemotherapy/radiotherapy. All 32 patients with cervical or endometrial cancer after hysterectomy received full course IMRT after 1 to 3 cycles of chemotherapy (Karnofsky performance status(KPS) > or =70). Seventeen of these patients underwent postoperative preventive irradiation and the other 15 patients were pelvic wall recurrence and/or retroperitoneal lymph node metastasis, though postoperative radiotherapy and/or chemotherapy had been given after operation. The median dose delivered to the PTV was 56.8 Gy for preventive irradiation, and 60.6 Gy for pelvic wall recurrence or retroperioneal lymph node metastasis irradiation. It was required that 90% of iso-dose curve could covere more than 99% of GTV. However, The mean dose irradiated to small intestine, bladder, rectum, kidney and spinal cord was 21.3 Gy, 37.8 Gy, 35.3 Gy, 8.5 Gy, 22.1 Gy, respectively. Fourteen patients presented grade I (11 patients) or II (3 patients) digestive tract side-effects, Five patients developed grade I or II bone marrow depression. Twelve patients had grade I skin reaction. The overall 1-year survival rate was 100%. The 2- and 3- year survival rate for preventive irradiation were both 100%, but which was 5/7 and 3/6 for the patients with pelvic wall recurrence or retroperioneal lymph node metastasis. Intensity modulated radiation therapy can provide a better dose distribution than traditional radiotherapy for both prevention and pelvic wall recurrence or retroperioneal lymph node metastasis. The toxicity is tolerable. The adjacent organs at risk can well be protected.

  8. Tomotherapy: IMRT and tomographic verification

    International Nuclear Information System (INIS)

    Mackie, T.R.

    2000-01-01

    include MLC's and many clinics use them to replace 90% or more of the field-shaping requirements of conventional radiotherapy. Now, several academic centers are treating patients with IMRT using conventional MLC's to modulate the field. IMRT using conventional MLC's have the advantage that the patient is stationary during the treatment and the MLC's can be used in conventional practice. Nevertheless, tomotherapy using the Peacock system delivers the most conformal dose distributions of any commercial system to date. The biggest limitation with the both the NOMOS Peacock tomotherapy system and conventional MLC's for IMRT delivery is the lack of treatment verification. In conventional few-field radiotherapy one relied on portal images to determine if the patient was setup correctly and the beams were correctly positioned. With IMRT the image contrast is superimposed on the beam intensity variation. Conventional practice allowed for monitor unit calculation checks and point dosimeters placed on the patient's surface to verify that the treatment was properly delivered. With IMRT it is impossible to perform hand calculations of monitor units and dosimeters placed on the patient's surface are prone to error due to high gradients in the beam intensity. NOMOS has developed a verification phantom that allows multiple sheets of film to be placed in a light-tight box that is irradiated with the same beam pattern that is used to treat the patient. The optical density of the films are adjusted, normalized, and calibrated and then quantitatively compared with the dose calculated for the phantom delivery. However, this process is too laborious to be used for patient-specific QA. If IMRT becomes ubiquitous and it can be shown that IMRT is useful on most treatment sites then there is a need to design treatment units dedicated to IMRT delivery and verification. Helical tomotherapy is such a redesign. Helical tomotherapy is the delivery of a rotational fan beam while the patient is

  9. Statistical process control analysis for patient-specific IMRT and VMAT QA.

    Science.gov (United States)

    Sanghangthum, Taweap; Suriyapee, Sivalee; Srisatit, Somyot; Pawlicki, Todd

    2013-05-01

    This work applied statistical process control to establish the control limits of the % gamma pass of patient-specific intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) quality assurance (QA), and to evaluate the efficiency of the QA process by using the process capability index (Cpml). A total of 278 IMRT QA plans in nasopharyngeal carcinoma were measured with MapCHECK, while 159 VMAT QA plans were undertaken with ArcCHECK. Six megavolts with nine fields were used for the IMRT plan and 2.5 arcs were used to generate the VMAT plans. The gamma (3%/3 mm) criteria were used to evaluate the QA plans. The % gamma passes were plotted on a control chart. The first 50 data points were employed to calculate the control limits. The Cpml was calculated to evaluate the capability of the IMRT/VMAT QA process. The results showed higher systematic errors in IMRT QA than VMAT QA due to the more complicated setup used in IMRT QA. The variation of random errors was also larger in IMRT QA than VMAT QA because the VMAT plan has more continuity of dose distribution. The average % gamma pass was 93.7% ± 3.7% for IMRT and 96.7% ± 2.2% for VMAT. The Cpml value of IMRT QA was 1.60 and VMAT QA was 1.99, which implied that the VMAT QA process was more accurate than the IMRT QA process. Our lower control limit for % gamma pass of IMRT is 85.0%, while the limit for VMAT is 90%. Both the IMRT and VMAT QA processes are good quality because Cpml values are higher than 1.0.

  10. Recurrence in Region of Spared Parotid Gland After Definitive Intensity-Modulated Radiotherapy for Head and Neck Cancer

    International Nuclear Information System (INIS)

    Cannon, Donald M.; Lee, Nancy Y.

    2008-01-01

    Purpose: To discuss the implications of three examples of periparotid recurrence after definitive intensity-modulated radiotherapy (IMRT) for head and neck cancer (HNC). Methods and Materials: We present 3 patients with HNC who underwent definitive IMRT with concurrent chemotherapy and later had treatment failure in or near a spared parotid gland. Two patients had bilateral multilevel nodal disease, and all had Level II nodal disease ipsilateral to the site of recurrence. The patients were treated using dose-painting IMRT with a dose of 70 Gy to the gross tumor volume and 59.4 Gy or 54 Gy to the high-risk or low-risk clinical tumor volume, respectively. The parotid glands were spared bilaterally. The patients had not undergone any surgical treatment for HNC before radiotherapy. Results: All patients had treatment failure in the region of a spared parotid gland. Failure in the 2 patients with bilateral multilevel nodal involvement occurred in the periparotid lymph nodes. The third patient developed a dermal metastasis near the tail of a spared parotid gland. On pretreatment imaging, the 2 patients with nodal failure had small nonspecific periparotid nodules that showed no hypermetabolic activity on positron emission tomography. Conclusion: For HNC patients receiving definitive IMRT, nonspecific positron emission tomography-negative periparotid nodules on pretreatment imaging should raise the index of suspicion for subclinical disease in the presence of multilevel or Level II nodal metastases. Additional evaluation of such nodules might be indicated before sparing the ipsilateral parotid gland

  11. Automated Planning of Tangential Breast Intensity-Modulated Radiotherapy Using Heuristic Optimization

    International Nuclear Information System (INIS)

    Purdie, Thomas G.; Dinniwell, Robert E.; Letourneau, Daniel; Hill, Christine; Sharpe, Michael B.

    2011-01-01

    Purpose: To present an automated technique for two-field tangential breast intensity-modulated radiotherapy (IMRT) treatment planning. Method and Materials: A total of 158 planned patients with Stage 0, I, and II breast cancer treated using whole-breast IMRT were retrospectively replanned using automated treatment planning tools. The tools developed are integrated into the existing clinical treatment planning system (Pinnacle 3 ) and are designed to perform the manual volume delineation, beam placement, and IMRT treatment planning steps carried out by the treatment planning radiation therapist. The automated algorithm, using only the radio-opaque markers placed at CT simulation as inputs, optimizes the tangential beam parameters to geometrically minimize the amount of lung and heart treated while covering the whole-breast volume. The IMRT parameters are optimized according to the automatically delineated whole-breast volume. Results: The mean time to generate a complete treatment plan was 6 min, 50 s ± 1 min 12 s. For the automated plans, 157 of 158 plans (99%) were deemed clinically acceptable, and 138 of 158 plans (87%) were deemed clinically improved or equal to the corresponding clinical plan when reviewed in a randomized, double-blinded study by one experienced breast radiation oncologist. In addition, overall the automated plans were dosimetrically equivalent to the clinical plans when scored for target coverage and lung and heart doses. Conclusion: We have developed robust and efficient automated tools for fully inversed planned tangential breast IMRT planning that can be readily integrated into clinical practice. The tools produce clinically acceptable plans using only the common anatomic landmarks from the CT simulation process as an input. We anticipate the tools will improve patient access to high-quality IMRT treatment by simplifying the planning process and will reduce the effort and cost of incorporating more advanced planning into clinical practice.

  12. Dosimetric study comparing volumetric arc modulation with RapidArc and fixed dynamic intensity-modulated radiation therapy for breast cancer radiotherapy after breast-conserving surgery

    International Nuclear Information System (INIS)

    Tie Jian; Sun Yan; Gong Jian; Han Shukui; Jiang Fan; Wu Hao

    2011-01-01

    Objective: To compare the dosimetric difference between volumetric are modulation with RapidArc and fixed field dynamic IMRT for breast cancer radiotherapy after breast-conserving surgery. Methods: Twenty patients with early left-sided breast cancer received radiotherapy after breast-conserving surgery. After target definition, treatment planning was performed by RapidArc and two fixed fields dynamic IMRT respectively on the same CT scan. The target dose distribution, homogeneity of the breast, and the irradiation dose and volume for the lungs, heart, and contralateral breast were read in the dose-volume histogram (DVH) and compared between RapidArc and IMRT. The treatment delivery time and monitor units were also compared. Results: In comparison with the IMRT planning,the homogeneity of clinical target volume (CTV), the volume proportion of 95% prescribed dose (V 95% ) was significantly higher by 0.65% in RapidArc (t=5.16, P=0.001), and the V 105% and V 110% were lower by 10.96% and 1.48 % respectively, however, without statistical significance (t=-2.05, P=0.055 and t=-1.33, P=0.197). The conformal index of planning target volume (PTV) by the RapidArc planning was (0.88±0.02), significantly higher than that by the IMRT planning [(0.74±0.03), t=18.54, P<0.001]. The homogeneity index (HI) of PTV by the RapidArc planning was 1.11±0.01, significantly lower than that by the IMRT planning (1.12±0.02, t=-2.44, P=0.02). There were no significant differences in the maximum dose (D max ) and V 20 for the ipsilateral lung between the RapidArc and IMRT planning, but the values of V 10 , V 5 , D min and D mean by RapidArc planning were all significantly higher than those by the IMRT planning (all P<0.01). The values of max dose and V 30 for the heart were similar by both techniques, but the values of V 10 and V 5 by the RapidArc planning were significantly higher (by 18% and 50%, respectively). The V 5 of the contralateral breast and lung by the RapidArc planning were

  13. Analysis of Biochemical Control and Prognostic Factors in Patients Treated With Either Low-Dose Three-Dimensional Conformal Radiation Therapy or High-Dose Intensity-Modulated Radiotherapy for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Vora, Sujay A.; Wong, William W.; Schild, Steven E.; Ezzell, Gary A.; Halyard, Michele Y.

    2007-01-01

    Purpose: To identify prognostic factors and evaluate biochemical control rates for patients with localized prostate cancer treated with either high-dose intensity-modulated radiotherapy (IMRT) or conventional-dose three-dimensional conformal radiotherapy 3D-CRT. Methods: Four hundred sixteen patients with a minimum follow-up of 3 years (median, 5 years) were included. Two hundred seventy-one patients received 3D-CRT with a median dose of 68.4 Gy (range, 66-71 Gy). The next 145 patients received IMRT with a median dose of 75.6 Gy (range, 70.2-77.4 Gy). Biochemical control rates were calculated according to both American Society for Therapeutic Radiology and Oncology (ASTRO) consensus definitions. Prognostic factors were identified using both univariate and multivariate analyses. Results: The 5-year biochemical control rate was 60.4% for 3D-CRT and 74.1% for IMRT (p < 0.0001, first ASTRO Consensus definition). Using the ASTRO Phoenix definition, the 5-year biochemical control rate was 74.4% and 84.6% with 3D-RT and IMRT, respectively (p = 0.0326). Univariate analyses determined that PSA level, T stage, Gleason score, perineural invasion, and radiation dose were predictive of biochemical control. On multivariate analysis, dose, Gleason score, and perineural invasion remained significant. Conclusion: On the basis of both ASTRO definitions, dose, Gleason score, and perineural invasion were predictive of biochemical control. Intensity-modulated radiotherapy allowed delivery of higher doses of radiation with very low toxicity, resulting in improved biochemical control

  14. A comparison of volumetric modulated arc therapy and sliding-window intensity-modulated radiotherapy in the treatment of Stage I-II nasal natural killer/T-cell lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianfeng [Department of Radiation Oncology, Chongqing Cancer Institute, Chongqing (China); Yang, Yong [Department of Radiation Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Jin, Fu; He, Yanan; Zhong, Mingsong; Luo, Huanli; Qiu, Da; Li, Chao; Yang, Han; He, Guanglei [Department of Radiation Oncology, Chongqing Cancer Institute, Chongqing (China); Wang, Ying, E-mail: zjajf@126.com [Department of Radiation Oncology, Chongqing Cancer Institute, Chongqing (China)

    2016-04-01

    This article is aimed to compare the dosimetric differences between volumetric modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) for Stage I-II nasal natural killer/T-cell lymphoma (NNKTL). Ten patients with Stage I-II NNKTL treated with IMRT were replanned with VMAT (2 arcs). The prescribed dose of the planning target volume (PTV) was 50 Gy in 25 fractions. The VMAT plans with the Anisotropic Analytical Algorithm (Version 8.6.15) were based on an Eclipse treatment planning system; the monitor units (MUs) and treatment time (T) were scored to measure the expected treatment efficiency. All the 10 patients under the study were subject to comparisons regarding the quality of target coverage, the efficiency of delivery, and the exposure of normal adjacent organs at risk (OARs). The study shows that VMAT was associated with a better conformal index (CI) and homogeneity index (HI) (both p < 0.05) but slightly higher dose to OARs than IMRT. The MUs with VMAT (650.80 ± 24.59) were fewer than with IMRT (1300.10 ± 57.12) (relative reduction of 49.94%, p = 0.00) when using 2-Gy dose fractions. The treatment time with VMAT (3.20 ± 0.02 minutes) was shorter than with IMRT (7.38 ± 0.18 minutes) (relative reduction of 56.64%, p = 0.00). We found that VMAT and IMRT both provide satisfactory target dosimetric coverage and OARs sparing clinically. Likely to deliver a bit higher dose to OARs, VMAT in comparison with IMRT, is still a better choice for treatment of patients with Stage I-II NNKTL, thanks to better dose distribution, fewer MUs, and shorter delivery time.

  15. Dosimetry audit for a multi-centre IMRT head and neck trial

    International Nuclear Information System (INIS)

    Clark, Catharine H.; Hansen, Vibeke Nordmark; Chantler, Hannah; Edwards, Craig; James, Hayley V.; Webster, Gareth; Miles, Elizabeth A.; Guerrero Urbano, M. Teresa; Bhide, Shree A.; Bidmead, A. Margaret; Nutting, Christoper M.

    2009-01-01

    Background and purpose: PARSPORT was a multi-centre randomised trial in the UK which compared Intensity-Modulated Radiotherapy (IMRT) and conventional radiotherapy (CRT) for patients with head and neck cancer. The dosimetry audit goals were to verify the plan delivery in participating centres, ascertain what tolerances were suitable for head and neck IMRT trials and develop an IMRT credentialing program. Materials and methods: Centres enrolling patients underwent rigorous quality assurance before joining the trial. Following this each centre was visited for a dosimetry audit, which consisted of treatment planning system tests, fluence verification films, combined field films and dose point measurements. Results: Mean dose point measurements were made at six centres. For the primary planning target volume (PTV) the differences with the planned values for the IMRT and CRT arms were -0.6% (1.8% to -2.4%) and 0.7% (2.0% to -0.9%), respectively. Ninety-four percent of the IMRT fluence films for individual fields passed gamma criterion of 3%/3 mm and 75% of the films for combined fields passed gamma criterion 4%/3 mm (no significant difference between dynamic delivery and step and shoot delivery). Conclusions: This audit suggests that a 3% tolerance could be applied for PTV point doses. For dose distributions tolerances of 3%/3 mm on individual fields and 4%/3 mm for combined fields are proposed for multi-centre head and neck IMRT trials.

  16. Postoperative Radiotherapy for Prostate Cancer: A Comparison of Four Consensus Guidelines and Dosimetric Evaluation of 3D-CRT Versus Tomotherapy IMRT

    International Nuclear Information System (INIS)

    Malone, Shawn; Croke, Jennifer; Roustan-Delatour, Nicolas; Belanger, Eric; Avruch, Leonard; Malone, Colin; Morash, Christopher; Kayser, Cathleen; Underhill, Kathryn; Li Yan; Malone, Kyle; Nyiri, Balazs; Spaans, Johanna

    2012-01-01

    Purpose: Despite the benefits of adjuvant radiotherapy after radical prostatectomy, approximately one-half of patients relapse. Four consensus guidelines have been published (European Organization for Research and Treatment of Cancer, Faculty of Radiation Oncology Genito-Urinary Group, Princess Margaret Hospital, Radiation Therapy Oncology Group) with the aim of standardizing the clinical target volume (CTV) delineation and improve outcomes. To date, no attempt has been made to compare these guidelines in terms of treatment volumes or organ at risk (OAR) irradiation. The extent to which the guideline-derived plans meet the dosimetric constraints of present trials or of the Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) trial is also unknown. Our study also explored the dosimetric benefits of intensity-modulated radiotherapy (IMRT). Methods and Materials: A total of 20 patients treated with postoperative RT were included. The three-dimensional conformal radiotherapy (3D-CRT) plans were applied to cover the guideline-generated planning target volumes (66 Gy in 33 fractions). Dose–volume histograms (DVHs) were analyzed for CTV/planning target volume coverage and to evaluate OAR irradiation. The OAR DVHs were compared with the constraints proposed in the QUANTEC and Radiotherapy and Androgen Deprivation In Combination After Local Surgery (RADICALS) trials. 3D-CRT plans were compared with the tomotherapy plans for the Radiation Therapy Oncology Group planning target volume to evaluate the advantages of IMRT. Results: The CTV differed significantly between guidelines (p < 0.001). The European Organization for Research and Treatment of Cancer-CTVs were significantly smaller than the other CTVs (p < 0.001). Differences in prostate bed coverage superiorly accounted for the major volumetric differences between the guidelines. Using 3D-CRT, the DVHs rarely met the QUANTEC or RADICALS rectal constraints, independent of the guideline used. The RADICALS

  17. Is Planned Neck Dissection Necessary for Head and Neck Cancer After Intensity-Modulated Radiotherapy?

    International Nuclear Information System (INIS)

    Yao Min; Hoffman, Henry T.; Chang, Kristi; Funk, Gerry F.; Smith, Russell B.; Tan Huaming; Clamon, Gerald H.; Dornfeld, Ken; Buatti, John M.

    2007-01-01

    Purpose: The objective of this study was to determine regional control of local regional advanced head and neck squamous cell carcinoma (HNSCC) treated with intensity-modulated radiotherapy (IMRT), along with the role and selection criteria for neck dissection after IMRT. Methods and Materials: A total of 90 patients with stage N2A or greater HNSCC were treated with definitive IMRT from December 1999 to July 2005. Three clinical target volumes were defined and were treated to 70 to 74 Gy, 60 Gy, and 54 Gy, respectively. Neck dissection was performed for selected patients after IMRT. Selection criteria evolved during this period with emphasis on post-IMRT [ 18 F] fluorodeoxyglucose positron emission tomography in recent years. Results: Median follow-up for all patients was 29 months (range, 0.2-74 months). All living patients were followed at least 9 months after completing treatment. Thirteen patients underwent neck dissection after IMRT because of residual lymphadenopathy. Of these, 6 contained residual viable tumor. Three patients with persistent adenopathy did not undergo neck dissection: 2 refused and 1 had lung metastasis. Among the remaining 74 patients who were observed without neck dissection, there was only 1 case of regional failure. Among all 90 patients in this study, the 3-year local and regional control was 96.3% and 95.4%, respectively. Conclusions: Appropriately delivered IMRT has excellent dose coverage for cervical lymph nodes. A high radiation dose can be safely delivered to the abnormal lymph nodes. There is a high complete response rate. Routine planned neck dissection for patients with N2A and higher stage after IMRT is not necessary. Post-IMRT [ 18 F] fluorodeoxyglucose positron emission tomography is a useful tool in selecting patients appropriate for neck dissection

  18. Dosimetric complication probability and acoustic analysis of vocal cord region in oropharyngeal carcinoma treated with voice-sparing intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Jain, S.; Gupta, T.; Agarwal, J.P.; Baccher, G.; Shrivastava, S.K.; Reenadevi; Master, J.

    2008-01-01

    Radiation to larynx has long been associated with speech and voice dysfunction. The objective is to study dosimetric parameters and complication probability of vocal cord region (VCR) and the effect of voice-sparing (VS) in the patients treated with intensity modulated radiotherapy (IMRT). The secondary objective is to describe the post-radiation acoustic voice characteristics and correlate them with the dosimetric parameters. (author)

  19. Modelling carcinogenesis after radiotherapy using Poisson statistics: implications for IMRT, protons and ions

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Bleddyn [Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus, Headington, Oxford OX3 7DQ (United Kingdom)], E-mail: Bleddyn.Jones@rob.ox.ac.uk

    2009-06-01

    Current technical radiotherapy advances aim to (a) better conform the dose contours to cancers and (b) reduce the integral dose exposure and thereby minimise unnecessary dose exposure to normal tissues unaffected by the cancer. Various types of conformal and intensity modulated radiotherapy (IMRT) using x-rays can achieve (a) while charged particle therapy (CPT)-using proton and ion beams-can achieve both (a) and (b), but at greater financial cost. Not only is the long term risk of radiation related normal tissue complications important, but so is the risk of carcinogenesis. Physical dose distribution plans can be generated to show the differences between the above techniques. IMRT is associated with a dose bath of low to medium dose due to fluence transfer: dose is effectively transferred from designated organs at risk to other areas; thus dose and risk are transferred. Many clinicians are concerned that there may be additional carcinogenesis many years after IMRT. CPT reduces the total energy deposition in the body and offers many potential advantages in terms of the prospects for better quality of life along with cancer cure. With C ions there is a tail of dose beyond the Bragg peaks, due to nuclear fragmentation; this is not found with protons. CPT generally uses higher linear energy transfer (which varies with particle and energy), which carries a higher relative risk of malignant induction, but also of cell death quantified by the relative biological effect concept, so at higher dose levels the frank development of malignancy should be reduced. Standard linear radioprotection models have been used to show a reduction in carcinogenesis risk of between two- and 15-fold depending on the CPT location. But the standard risk models make no allowance for fractionation and some have a dose limit at 4 Gy. Alternatively, tentative application of the linear quadratic model and Poissonian statistics to chromosome breakage and cell kill simultaneously allows estimation of

  20. Prognosis comparison of three-dimensional conformal radiotherapy/intensity modulated radiation therapy for esophageal carcinoma with local regional lymph node metastasis

    International Nuclear Information System (INIS)

    Wang Yuxiang; Wang Jun; Wang Yi; Tian Dandan; Yang Jie; Zhu Shuchai

    2011-01-01

    Objective: To explore the prognosis and related factor of esophageal carcinoma with locoregional lymph node metastasis (N 1 ) treated with three-dimensional conformal radiotherapy (3DCRT) or intensity modulated radiation therapy (IMRT). Methods: From January 2001 to December 2008, 60 patients of esophageal carcinoma with local regional lymph node metastasis were treated with 3DCRT and 52 with IMRT. For all patients,dose of tumor was 56 - 70 Gy/28 - 35 fraction/5.6 - 7.0 weeks. Among them, 58 cases was treated with chemotherapy including cisplatin and 5-fluorouracil; 40 with concurrent chemoradiotherapy and 18 with sequential radiotherapy and chemotherapy. Results: After radiotherapy,the total efficiency rate was 98.2%, 96.7% in 3DCRT and 100% in IMRT (χ 2 =1.77, P =0.184). The follow-up rate was 99.1%. The number of patients completed follow-up were 68 and 53, respectively at 2-year and 3-year. The 1 and 3-year overall survival rates were 62.5%, 23.7%, respectively; the median survival time was 17 months. The 1 and 3-year survival rates and median were 52%, 19% and 12.4 months in 3DCRT and 75%, 40% and 17 months in IMRT, respectively (χ 2 =4.74, P =0.030). The 1 and 3-year free-recurrence survival rates were 64%, 45% in 3DCRT and 72%, 59% in IMRT (χ 2 =2.27, P =0.132), respectively. With univariate analysis, for female, ages ≤ 65, tumor located in cervical and upper-thoracic, >5 cm lesion length in barium esophagogram, ≤4 cm the largest diameter of lesion in CT scanning image, T 4 stage, or semiliquid or liquid diet before radiotherapy, survival rate were higher in IMRT than in 3DCRT group (χ 2 =4.63, 5.56, 7.19, 5.08, 4.43, 4.48, 8.25; P=0.031, 0.018, 0.007, 0.025, 0.035, 0.034, 0.004, respectively); but for male, ages > 65, tumor located in middle and lower-thoracic, ≤5 cm lesion length in barium esophagogram, >4 cm the largest diameter of lesion in CT scanning image, T 1-3 stage, or normal diet before radiotherapy, chemotherapy and dose of radiotherapy

  1. Isocentric integration of intensity-modulated radiotherapy with electron fields improves field junction dose uniformity in postmastectomy radiotherapy.

    Science.gov (United States)

    Wright, Pauliina; Suilamo, Sami; Lindholm, Paula; Kulmala, Jarmo

    2014-08-01

    In postmastectomy radiotherapy (PMRT), the dose coverage of the planning target volume (PTV) with additional margins, including the chest wall, supraclavicular, interpectoral, internal mammary and axillar level I-III lymph nodes, is often compromised. Electron fields may improve the medial dose coverage while maintaining organ at risk (OAR) doses at an acceptable level, but at the cost of hot and cold spots at the electron and photon field junction. To improve PMRT dose coverage and uniformity, an isocentric technique combining tangential intensity-modulated (IM)RT fields with one medial electron field was implemented. For 10 postmastectomy patients isocentric IMRT with electron plans were created and compared with a standard electron/photon mix and a standard tangent technique. PTV dose uniformity was evaluated based on the tolerance range (TR), i.e. the ratio of the standard deviation to the mean dose, a dice similarity coefficient (DSC) and the 90% isodose coverage and the hot spot volumes. OAR and contralateral breast doses were also recorded. IMRT with electrons significantly improved the PTV dose homogeneity and conformity based on the TR and DSC values when compared with the standard electron/photon and tangent technique (p < 0.02). The 90% isodose coverage improved to 86% compared with 82% and 80% for the standard techniques (p < 0.02). Compared with the standard electron/photon mix, IMRT smoothed the dose gradient in the electron and photon field junction and the volumes receiving a dose of 110% or more were reduced by a third. For all three strategies, the OAR and contralateral breast doses were within clinically tolerable limits. Based on these results two-field IMRT combined with an electron field is a suitable strategy for PMRT.

  2. Is “pelvic radiation disease” always the cause of bowel symptoms following prostate cancer intensity-modulated radiotherapy?

    International Nuclear Information System (INIS)

    Min, Myo; Chua, Benjamin; Guttner, Yvonne; Abraham, Ned; Aherne, Noel J.; Hoffmann, Matthew; McKay, Michael J.; Shakespeare, Thomas P.

    2014-01-01

    Background: Pelvic radiation disease (PRD) also widely known as “radiation proctopathy” is a well recognised late side-effect following conventional prostate radiotherapy. However, endoscopic evaluation and/or specialist referral for new or persistent post-prostate radiotherapy bowel symptoms is not routine and serious diagnoses may potentially be missed. Here we report a policy of endoscopic evaluation of bowel symptoms persisting >90 days post radiotherapy for prostate cancer. Methods and materials: A consecutive series of 102 patients who had radical prostate intensity-modulated radiotherapy (IMRT)/image-guided radiotherapy (IGRT) and who had new or ongoing bowel symptoms or positive faecal occult blood tests (FOBT) on follow up visits more than three months after treatment, were referred for endoscopic examination. All but one (99%) had full colonoscopic investigation. Results: Endoscopic findings included gastric/colonic/rectal polyps (56%), diverticular disease (49%), haemorrhoids (38%), radiation proctopathy (29%), gastritis/oesophagitis (8%) and rarer diagnoses, including bowel cancer which was found in 3%. Only four patients (4%) had radiation proctopathy without associated pathology and 65 patients (63%) had more than one diagnosis. If flexible sigmoidoscopy alone were used, 36.6% of patients and 46.6% patients with polyp(s) would have had their diagnoses missed. Conclusions: Our study has shown that bowel symptoms following prostate IMRT/IGRT are due to numerous diagnoses other than PRD, including malignancy. Routine referral pathways should be developed for endoscopic evaluation/specialist review for patients with new or persistent bowel symptoms (or positive FOBT) following prostate radiotherapy. This recommendation should be considered for incorporation into national guidelines

  3. Fractal analysis for assessing the level of modulation of IMRT fields

    International Nuclear Information System (INIS)

    Nauta, Marcel; Villarreal-Barajas, J. Eduardo; Tambasco, Mauro

    2011-01-01

    Purpose: To investigate the potential of three fractal dimension (FD) analysis methods (i.e., the variation, power spectrum, and variogram methods) as metrics for quantifying the degree of modulation in planned intensity modulated radiation therapy (IMRT) treatment fields, and compare the most suitable FD method to the number of monitor units (MUs), the average leaf gap, and the 2D modulation index (2D MI) for assessing modulation. Methods: The authors implemented, validated, and compared the variation, power spectrum, and variogram methods for computing the FD. Validation of the methods was done using mathematical fractional Brownian surfaces of known FD that ranged in size from 128 x 128 to 512 x 512. The authors used a test set consisting of seven head and neck carcinoma plans (50 prescribed treatment fields) to choose an FD cut-point that ensures no false positives (100% specificity) in distinguishing between moderate and high degrees of field modulation. The degree of field modulation was controlled by adjusting the fluence smoothing parameters in the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA). The moderate modulation fields were representative of the degree of modulation used clinically at the authors' institution. The authors performed IMRT quality assurance (QA) on the 50 test fields using the MapCHECK device. The FD cut-point was applied to a validation set consisting of four head and neck plans (28 fields). The area under the curve (AUC) from receiver operating characteristic (ROC) analysis was used to compare the ability of FD, number of MUs, average leaf gap, and the 2D MI for distinguishing between the moderate and high modulation fields. Results: The authors found the variogram FD method to be the most suitable for assessing the modulation complexity of IMRT fields for head and neck carcinomas. Pass rates as measured by the gamma criterion for the MapCHECK IMRT field measurements were higher for the moderately modulated

  4. Cervix carcinomas: place of intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Barillot, I.

    2009-01-01

    While indications of modulated intensity radiation therapy (I.M.R.T.) are perfectly defined in head and neck and prostate cancer patients, this technique remains under evaluation for gynecologic tumours. The implementation of conformal three dimensional radiotherapy in the late 1990 has been the first important step for optimisation of treatment of cervix carcinomas, as it permitted a better target coverage with a significant reduction of the bladder dose. However, this technique often leads to an irradiation of a larger volume of rectum in locally advanced stages and could only spare a limited amount of intestine. I.R.M.T. is one of the optimisation methods potentially efficient for a better sparing of digestive tract during irradiation of cervix carcinomas. The aim of this literature review is to provide the arguments supporting this hypothesis, and to define the place of this technique for dose escalation. (authors)

  5. Nasopharyngeal Carcinoma in Children: Comparison of Conventional and Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Laskar, Siddhartha; Bahl, Gaurav; Muckaden, MaryAnn; Pai, Suresh K.; Gupta, Tejpal; Banavali, Shripad; Arora, Brijesh; Sharma, Dayanand; Kurkure, Purna A.; Ramadwar, Mukta; Viswanathan, Seethalaxhmi; Rangarajan, Venkatesh; Qureshi, Sajid; Deshpande, Deepak D.; Shrivastava, Shyam K.; Dinshaw, Ketayun A.

    2008-01-01

    Purpose: To evaluate the efficacy of intensity-modulated radiotherapy (IMRT) in reducing the acute toxicities associated with conventional RT (CRT) in children with nasopharyngeal carcinoma. Patients and Methods: A total of 36 children with nonmetastatic nasopharyngeal carcinoma, treated at the Tata Memorial Hospital between June 2003 and December 2006, were included in this study. Of the 36 patients, 28 were boys and 8 were girls, with a median age of 14 years; 4 (11%) had Stage II and 10 (28%) Stage III disease at presentation. All patients had undifferentiated carcinoma and were treated with a combination of chemotherapy and RT. Of the 36 patients, 19 underwent IMRT and 17 underwent CRT. Results: After a median follow-up of 27 months, the 2-year locoregional control, disease-free, and overall survival rate was 76.5%, 60.6%, and 71.3%, respectively. A significant reduction in acute Grade 3 toxicities of the skin (p = 0.006), mucous membrane (p = 0.033), and pharynx (p = 0.035) was noted with the use of IMRT. The median time to the development of Grade 2 toxicity was delayed with IMRT (skin, 35 vs. 25 days, p = 0.016; mucous-membrane, 39 vs. 27 days, p = 0.002; and larynx, 50 vs. 28 days, p = 0.009). The duration of RT significantly influenced disease-free survival on multivariate analysis (RT duration >52 days, hazard ratio = 5.49, 95% confidence interval, 1.14-26.45, p = 0.034). The average mean dose to the first and second planning target volume was 71.8 Gy and 62.5 Gy with IMRT compared with 66.3 Gy (p = 0.001) and 64.4 Gy (p = 0.046) with CRT, respectively. Conclusion: The results of our study have shown that IMRT significantly reduces and delays the onset of acute toxicity, resulting in improved tolerance and treatment compliance for children with nasopharyngeal carcinoma. Also, IMRT provided superior target coverage and normal tissue sparing compared with CRT

  6. Independent monitor unit calculation for intensity modulated radiotherapy using the MIMiC multileaf collimator

    International Nuclear Information System (INIS)

    Chen Zhe; Xing Lei; Nath, Ravinder

    2002-01-01

    A self-consistent monitor unit (MU) and isocenter point-dose calculation method has been developed that provides an independent verification of the MU for intensity modulated radiotherapy (IMRT) using the MIMiC (Nomos Corporation) multileaf collimator. The method takes into account two unique features of IMRT using the MIMiC: namely the gantry-dynamic arc delivery of intensity modulated photon beams and the slice-by-slice dose delivery for large tumor volumes. The method converts the nonuniform beam intensity planned at discrete gantry angles of 5 deg. or 10 deg. into conventional nonmodulated beam intensity apertures of elemental arc segments of 1 deg. This approach more closely simulates the actual gantry-dynamic arc delivery by MIMiC. Because each elemental arc segment is of uniform intensity, the MU calculation for an IMRT arc is made equivalent to a conventional arc with gantry-angle dependent beam apertures. The dose to the isocenter from each 1 deg. elemental arc segment is calculated by using the Clarkson scatter summation technique based on measured tissue-maximum-ratio and output factors, independent of the dose calculation model used in the IMRT planning system. For treatments requiring multiple treatment slices, the MU for the arc at each treatment slice takes into account the MU, leakage and scatter doses from other slices. This is achieved by solving a set of coupled linear equations for the MUs of all involved treatment slices. All input dosimetry data for the independent MU/isocenter point-dose calculation are measured directly. Comparison of the MU and isocenter point dose calculated by the independent program to those calculated by the Corvus planning system and to direct measurements has shown good agreement with relative difference less than ±3%. The program can be used as an independent initial MU verification for IMRT plans using the MIMiC multileaf collimators

  7. Automated IMRT planning in Pinnacle. A study in head-and-neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kusters, J.M.A.M.; Kollenburg, P.G.M. van; Kunze-Busch, M.C.; Wendling, M.; Dijkema, T.; Kaanders, J.H.A.M. [Radboud University Medical Center, Department of Radiation Oncology, Nijmegen (Netherlands); Bzdusek, K. [Philips Healthcare, Philips Radiation Oncology Systems, Fitchburg, WI (United States); Kumar, P. [Philips Electronics India Ltd., Philips Innovation Campus, Bangalore (India)

    2017-12-15

    This study evaluates the performance and planning efficacy of the Auto-Planning (AP) module in the clinical version of Pinnacle 9.10 (Philips Radiation Oncology Systems, Fitchburg, WI, USA). Twenty automated intensity-modulated radiotherapy (IMRT) plans were compared with the original manually planned clinical IMRT plans from patients with oropharyngeal cancer. Auto-Planning with IMRT offers similar coverage of the planning target volume as the original manually planned clinical plans, as well as better sparing of the contralateral parotid gland, contralateral submandibular gland, larynx, mandible, and brainstem. The mean dose of the contralateral parotid gland and contralateral submandibular gland could be reduced by 2.5 Gy and 1.7 Gy on average. The number of monitor units was reduced with an average of 143.9 (18%). Hands-on planning time was reduced from 1.5-3 h to less than 1 h. The Auto-Planning module was able to produce clinically acceptable head and neck IMRT plans with consistent quality. (orig.) [German] Diese Studie untersucht die Leistungsfaehigkeit und Planungseffektivitaet des Auto-Planning-Moduls in der klinischen Version von Pinnacle 9.10 (Philips Radiation Oncology Systems, Fitchburg, WI, USA). Zwanzig automatisch erstellte Plaene fuer die intensitaetsmodulierte Strahlentherapie (IMRT) wurden mit den urspruenglichen manuell erstellten klinischen IMRT-Plaenen von Patienten mit Oropharynxkarzinom verglichen. Die automatisch erstellten IMRT-Plaene bieten eine vergleichbare Deckung des Planungszielvolumens (PTV) wie die urspruenglichen, manuell erstellten klinischen Plaene sowie eine verbesserte Schonung der kontralateralen Ohrspeicheldruese, der kontralateralen Unterkieferspeicheldruese, des Kehlkopfs, des Unterkiefers und des Hirnstamms. Die mittlere Dosis der kontralateralen Ohr- und kontralateralen Unterkieferspeicheldruese konnte um durchschnittlich 2,5 bzw. 1,7 Gy reduziert werden. Die Anzahl der Monitoreinheiten wurde im Durchschnitt um 143

  8. Intensity-modulated radiotherapy for pituitary adenomas: The preliminary report of Cleveland Clinic experience

    International Nuclear Information System (INIS)

    Mackley, Heath B.; Reddy, Chandana A. M.S.; Lee, S.-Y.; Harnisch, Gayle A.; Mayberg, Marc R.; Hamrahian, Amir H.; Suh, John H.

    2007-01-01

    Purpose: Intensity-modulated radiotherapy (IMRT) is being increasingly used for the treatment of pituitary adenomas. However, there have been few published data on the short- and long-term outcomes of this treatment. This is the initial report of Cleveland Clinic's experience. Methods and Materials: Between February 1998 and December 2003, 34 patients with pituitary adenomas were treated with IMRT. A retrospective chart review was conducted for data analysis. Results: With a median follow-up of 42.5 months, the treatment has proven to be well tolerated, with performance status remaining stable in 90% of patients. Radiographic local control was 89%, and among patients with secretory tumors, 100% had a biochemical response. Only 1 patient required salvage surgery for progressive disease, giving a clinical progression free survival of 97%. The only patient who received more than 46 Gy experienced optic neuropathy 8 months after radiation. Smaller tumor volume significantly correlated with subjective improvements in nonvisual neurologic complaints (p = 0.03), and larger tumor volume significantly correlated with subjective worsening of visual symptoms (p = 0.05). New hormonal supplementation was required for 40% of patients. Younger patients were significantly more likely to require hormonal supplementation (p 0.03). Conclusions: Intensity-modulated radiation therapy is a safe and effective treatment for pituitary adenomas over the short term. Longer follow-up is necessary to determine if IMRT confers any advantage with respect to either tumor control or toxicity over conventional radiation modalities

  9. Intensity-Modulated Radiotherapy is Associated With Improved Global Quality of Life Among Long-term Survivors of Head-and-Neck Cancer

    International Nuclear Information System (INIS)

    Chen, Allen M.; Farwell, D. Gregory; Luu, Quang; Vazquez, Esther G.; Lau, Derick H.; Purdy, James A.

    2012-01-01

    Purpose: To compare the long-term quality of life among patients treated with and without intensity-modulated radiotherapy (IMRT) for head-and-neck cancer. Methods and Materials: University of Washington Quality of Life instrument scores were reviewed for 155 patients previously treated with radiation therapy for locally advanced head-and-neck cancer. All patients were disease free and had at least 2 years of follow-up. Eighty-four patients (54%) were treated with IMRT. The remaining 71 patients (46%) were treated with three-dimensional conformal radiotherapy (3D CRT) by use of initial opposed lateral fields matched to a low anterior neck field. Results: The mean global quality of life scores were 67.5 and 80.1 for the IMRT patients at 1 and 2 years, respectively, compared with 55.4 and 57.0 for the 3D CRT patients, respectively (p < 0.001). At 1 year after the completion of radiation therapy, the proportion of patients who rated their global quality of life as “very good” or “outstanding” was 51% and 41% among patients treated by IMRT and 3DCRT, respectively (p = 0.11). At 2 years, the corresponding percentages increased to 73% and 49%, respectively (p < 0.001). On multivariate analysis accounting for sex, age, radiation intent (definitive vs. postoperative), radiation dose, T stage, primary site, use of concurrent chemotherapy, and neck dissection, the use of IMRT was the only variable independently associated with improved quality of life (p = 0.01). Conclusion: The early quality of life improvements associated with IMRT not only are maintained but apparently become more magnified over time. These data provide powerful evidence attesting to the long-term benefits of IMRT for head-and-neck cancer.

  10. Intensity-Modulated Radiotherapy for Resected Mesothelioma: The Duke Experience

    International Nuclear Information System (INIS)

    Miles, Edward F.; Larrier, Nicole A.; Kelsey, Christopher R.; Hubbs, Jessica L.; Ma Jinli; Yoo, Sua; Marks, Lawrence B.

    2008-01-01

    Purpose: To assess the safety and efficacy of intensity-modulated radiotherapy (IMRT) after extrapleural pneumonectomy for malignant pleural mesothelioma. Methods and Materials: Thirteen patients underwent IMRT after extrapleural pneumonectomy between July 2005 and February 2007 at Duke University Medical Center. The clinical target volume was defined as the entire ipsilateral hemithorax, chest wall incisions, including drain sites, and involved nodal stations. The dose prescribed to the planning target volume was 40-55 Gy (median, 45). Toxicity was graded using the modified Common Toxicity Criteria, and the lung dosimetric parameters from the subgroups with and without pneumonitis were compared. Local control and survival were assessed. Results: The median follow-up after IMRT was 9.5 months. Of the 13 patients, 3 (23%) developed Grade 2 or greater acute pulmonary toxicity (during or within 30 days of IMRT). The median dosimetric parameters for those with and without symptomatic pneumonitis were a mean lung dose (MLD) of 7.9 vs. 7.5 Gy (p = 0.40), percentage of lung volume receiving 20 Gy (V 20 ) of 0.2% vs. 2.3% (p = 0.51), and percentage of lung volume receiving 5 Gy (V 20 ) of 92% vs. 66% (p = 0.36). One patient died of fatal pulmonary toxicity. This patient received a greater MLD (11.4 vs. 7.6 Gy) and had a greater V 20 (6.9% vs. 1.9%), and V 5 (92% vs. 66%) compared with the median of those without fatal pulmonary toxicity. Local and/or distant failure occurred in 6 patients (46%), and 6 patients (46%) were alive without evidence of recurrence at last follow-up. Conclusions: With limited follow-up, 45-Gy IMRT provides reasonable local control for mesothelioma after extrapleural pneumonectomy. However, treatment-related pulmonary toxicity remains a significant concern. Care should be taken to minimize the dose to the remaining lung to achieve an acceptable therapeutic ratio

  11. Evaluation of a mixed beam therapy for post-mastectomy breast cancer patients: bolus electron conformal therapy combined with intensity modulated photon radiotherapy and volumetric modulated photon arc therapy.

    Science.gov (United States)

    Zhang, Rui; Heins, David; Sanders, Mary; Guo, Beibei; Hogstrom, Kenneth

    2018-05-10

    The purpose of this study was to assess the potential benefits and limitations of a mixed beam therapy, which combined bolus electron conformal therapy (BECT) with intensity modulated photon radiotherapy (IMRT) and volumetric modulated photon arc therapy (VMAT), for left-sided post-mastectomy breast cancer patients. Mixed beam treatment plans were produced for nine post-mastectomy radiotherapy (PMRT) patients previously treated at our clinic with VMAT alone. The mixed beam plans consisted of 40 Gy to the chest wall area using BECT, 40 Gy to the supraclavicular area using parallel opposed IMRT, and 10 Gy to the total planning target volume (PTV) by optimizing VMAT on top of the BECT+IMRT dose distribution. The treatment plans were created in a commercial treatment planning system (TPS), and all plans were evaluated based on PTV coverage, dose homogeneity index (DHI), conformity index (CI), dose to organs at risk (OARs), normal tissue complication probability (NTCP), and secondary cancer complication probability (SCCP). The standard VMAT alone planning technique was used as the reference for comparison. Both techniques produced clinically acceptable PMRT plans but with a few significant differences: VMAT showed significantly better CI (0.70 vs. 0.53, p 0.5 cm and volume of tissue between the distal PTV surface and heart or lung approximately > 250 cm 3 ) between distal PTV surface and lung may benefit the most from mixed beam therapy. This work has demonstrated that mixed beam therapy (BECT+IMRT : VMAT = 4 : 1) produces clinically acceptable plans having reduced OAR doses and risks of side effects compared with VMAT. Even though VMAT alone produces more homogenous and conformal dose distributions, mixed beam therapy remains as a viable option for treating post-mastectomy patients, possibly leading to reduced normal tissue complications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. IMRT and 3D conformal radiotherapy with or without elective nodal irradiation in locally advanced NSCLC. A direct comparison of PET-based treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Fleckenstein, Jochen; Kremp, Katharina; Kremp, Stephanie; Palm, Jan; Ruebe, Christian [Saarland University Medical School, Department of Radiotherapy and Radiation Oncology, Homburg/Saar (Germany)

    2016-02-15

    The potential of intensity-modulated radiation therapy (IMRT) as opposed to three-dimensional conformal radiotherapy (3D-CRT) is analyzed for two different concepts of fluorodeoxyglucose positron emission tomography (FDG PET)-based target volume delineation in locally advanced non-small cell lung cancer (LA-NSCLC): involved-field radiotherapy (IF-RT) vs. elective nodal irradiation (ENI). Treatment planning was performed for 41 patients with LA-NSCLC, using four different planning approaches (3D-CRT-IF, 3D-CRT-ENI, IMRT-IF, IMRT-ENI). ENI included a boost irradiation after 50 Gy. For each plan, maximum dose escalation was calculated based on prespecified normal tissue constraints. The maximum prescription dose (PD), tumor control probability (TCP), conformal indices (CI), and normal tissue complication probabilities (NTCP) were analyzed. IMRT resulted in statistically significant higher prescription doses for both target volume concepts as compared with 3D-CRT (ENI: 68.4 vs. 60.9 Gy, p < 0.001; IF: 74.3 vs. 70.1 Gy, p < 0.03). With IMRT-IF, a PD of at least 66 Gy was achieved for 95 % of all plans. For IF as compared with ENI, there was a considerable theoretical increase in TCP (IMRT: 27.3 vs. 17.7 %, p < 0.00001; 3D-CRT: 20.2 vs. 9.9 %, p < 0.00001). The esophageal NTCP showed a particularly good sparing with IMRT vs. 3D-CRT (ENI: 12.3 vs. 30.9 % p < 0.0001; IF: 15.9 vs. 24.1 %; p < 0.001). The IMRT technique and IF target volume delineation allow a significant dose escalation and an increase in TCP. IMRT results in an improved sparing of OARs as compared with 3D-CRT at equivalent dose levels. (orig.) [German] Das Potenzial der intensitaetsmodulierten Strahlentherapie (IMRT) soll im Rahmen der FDG-PET basierten Bestrahlungsplanung des lokal fortgeschrittenen nichtkleinzelligen Bronchialkarzinoms (LA-NSCLC) fuer 2 Zielvolumenansaetze (Involved-Field-Bestrahlung, IF) sowie elektive Nodalbestrahlung (ENI) geprueft und mit der 3-D-konformalen Strahlentherapie (3-D

  13. Dosimetric Comparison Between Intensity-Modulated with Coplanar Field and 3D Conformal Radiotherapy with Noncoplanar Field for Postocular Invasion Tumor

    International Nuclear Information System (INIS)

    Tu Wenyong; Liu Lu; Zeng Jun; Yin Weidong; Li Yun

    2010-01-01

    This study presents a dosimetric optimization effort aiming to compare noncoplanar field (NCF) on 3 dimensions conformal radiotherapy (3D-CRT) and coplanar field (CF) on intensity-modulated radiotherapy (IMRT) planning for postocular invasion tumor. We performed a planning study on the computed tomography data of 8 consecutive patients with localized postocular invasion tumor. Four fields NCF 3D-CRT in the transverse plane with gantry angles of 0-10 deg., 30-45 deg., 240-270 deg., and 310-335 deg. degrees were isocentered at the center of gravity of the target volume. The geometry of the beams was determined by beam's eye view. The same constraints were prepared with between CF IMRT optimization and NCF 3D-CRT treatment. The maximum point doses (D max) for the different optic pathway structures (OPS) with NCF 3D-CRT treatment should differ in no more than 3% from those with the NCF IMRT plan. Dose-volume histograms (DVHs) were obtained for all targets and organ at risk (OAR) with both treatment techniques. Plans with NCF 3D-CRT and CF IMRT constraints on target dose in homogeneity were computed, as well as the conformity index (CI) and homogeneity index (HI) in the target volume. The PTV coverage was optimal with both NCF 3D-CRT and CF IMRT plans in the 8 tumor sites. No difference was noted between the two techniques for the average D max and D min dose. NCF 3D-CRT and CF IMRT will yield similar results on CI. However, HI was a significant difference between NCF 3D-CRT and CF IMRT plan (p < 0.001). Physical endpoints for target showed the mean target dose to be low in the CF IMRT plan, caused by a large target dose in homogeneity (p < 0.001). The impact of NCF 3D-CRT versus CF IMRT set-up is very slight. NCF3D-CRT is one of the treatment options for postocular invasion tumor. However, constraints for OARs are needed.

  14. Head-and-neck IMRT treatments assessed with a Monte Carlo dose calculation engine

    International Nuclear Information System (INIS)

    Seco, J; Adams, E; Bidmead, M; Partridge, M; Verhaegen, F

    2005-01-01

    IMRT is frequently used in the head-and-neck region, which contains materials of widely differing densities (soft tissue, bone, air-cavities). Conventional methods of dose computation for these complex, inhomogeneous IMRT cases involve significant approximations. In the present work, a methodology for the development, commissioning and implementation of a Monte Carlo (MC) dose calculation engine for intensity modulated radiotherapy (MC-IMRT) is proposed which can be used by radiotherapy centres interested in developing MC-IMRT capabilities for research or clinical evaluations. The method proposes three levels for developing, commissioning and maintaining a MC-IMRT dose calculation engine: (a) development of a MC model of the linear accelerator, (b) validation of MC model for IMRT and (c) periodic quality assurance (QA) of the MC-IMRT system. The first step, level (a), in developing an MC-IMRT system is to build a model of the linac that correctly predicts standard open field measurements for percentage depth-dose and off-axis ratios. Validation of MC-IMRT, level (b), can be performed in a rando phantom and in a homogeneous water equivalent phantom. Ultimately, periodic quality assurance of the MC-IMRT system is needed to verify the MC-IMRT dose calculation system, level (c). Once the MC-IMRT dose calculation system is commissioned it can be applied to more complex clinical IMRT treatments. The MC-IMRT system implemented at the Royal Marsden Hospital was used for IMRT calculations for a patient undergoing treatment for primary disease with nodal involvement in the head-and-neck region (primary treated to 65 Gy and nodes to 54 Gy), while sparing the spinal cord, brain stem and parotid glands. Preliminary MC results predict a decrease of approximately 1-2 Gy in the median dose of both the primary tumour and nodal volumes (compared with both pencil beam and collapsed cone). This is possibly due to the large air-cavity (the larynx of the patient) situated in the centre

  15. Acute Toxicity After Image-Guided Intensity Modulated Radiation Therapy Compared to 3D Conformal Radiation Therapy in Prostate Cancer Patients

    NARCIS (Netherlands)

    Wortel, Ruud C.; Incrocci, Luca; Pos, Floris J.; Lebesque, Joos V.; Witte, Marnix G.; van der Heide, Uulke A.; van Herk, Marcel; Heemsbergen, Wilma D.

    2015-01-01

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows significant dose reductions to organs at risk in prostate cancer patients. However, clinical data identifying the benefits of IG-IMRT in daily practice are scarce. The purpose of this study was to compare dose distributions

  16. Image-guided radiotherapy in near real time with intensity-modulated radiotherapy megavoltage treatment beam imaging.

    Science.gov (United States)

    Mao, Weihua; Hsu, Annie; Riaz, Nadeem; Lee, Louis; Wiersma, Rodney; Luxton, Gary; King, Christopher; Xing, Lei; Solberg, Timothy

    2009-10-01

    To utilize image-guided radiotherapy (IGRT) in near real time by obtaining and evaluating the online positions of implanted fiducials from continuous electronic portal imaging device (EPID) imaging of prostate intensity-modulated radiotherapy (IMRT) delivery. Upon initial setup using two orthogonal images, the three-dimensional (3D) positions of all implanted fiducial markers are obtained, and their expected two-dimensional (2D) locations in the beam's-eye-view (BEV) projection are calculated for each treatment field. During IMRT beam delivery, EPID images of the megavoltage treatment beam are acquired in cine mode and subsequently analyzed to locate 2D locations of fiducials in the BEV. Simultaneously, 3D positions are estimated according to the current EPID image, information from the setup portal images, and images acquired at other gantry angles (the completed treatment fields). The measured 2D and 3D positions of each fiducial are compared with their expected 2D and 3D setup positions, respectively. Any displacements larger than a predefined tolerance may cause the treatment system to suspend the beam delivery and direct the therapists to reposition the patient. Phantom studies indicate that the accuracy of 2D BEV and 3D tracking are better than 1 mm and 1.4 mm, respectively. A total of 7330 images from prostate treatments were acquired and analyzed, showing a maximum 2D displacement of 6.7 mm and a maximum 3D displacement of 6.9 mm over 34 fractions. This EPID-based, real-time IGRT method can be implemented on any external beam machine with portal imaging capabilities without purchasing any additional equipment, and there is no extra dose delivered to the patient.

  17. Restricted Field IMRT Dramatically Enhances IMRT Planning for Mesothelioma

    International Nuclear Information System (INIS)

    Allen, Aaron M.; Schofield, Deborah; Hacker, Fred; Court, Laurence E.; Czerminska, Maria M.S.

    2007-01-01

    Purpose: To improve the target coverage and normal tissue sparing of intensity-modulated radiotherapy (IMRT) for mesothelioma after extrapleural pneumonectomy. Methods and Materials: Thirteen plans from patients previously treated with IMRT for mesothelioma were replanned using a restricted field technique. This technique was novel in two ways. It limited the entrance beams to 200 o around the target and three to four beams per case had their field apertures restricted down to the level of the heart or liver to further limit the contralateral lung dose. New constraints were added that included a mean lung dose of <9.5 Gy and volume receiving ≥5 Gy of <55%. Results: In all cases, the planning target volume coverage was excellent, with an average of 97% coverage of the planning target volume by the target dose. No change was seen in the target coverage with the new technique. The heart, kidneys, and esophagus were all kept under tolerance in all cases. The average mean lung dose, volume receiving ≥20 Gy, and volume receiving ≥5 Gy with the new technique was 6.6 Gy, 3.0%, and 50.8%, respectively, compared with 13.8 Gy, 15%, and 90% with the previous technique (p < 0.0001 for all three comparisons). The maximal value for any case in the cohort was 8.0 Gy, 7.3%, and 57.5% for the mean lung dose, volume receiving ≥20 Gy, and volume receiving ≥5 Gy, respectively. Conclusion: Restricted field IMRT provides an improved method to deliver IMRT to a complex target after extrapleural pneumonectomy. An upcoming Phase I trial will provide validation of these results

  18. The role and strategy of IMRT in radiotherapy of pelvic tumors: Dose escalation and critical organ sparing in prostate cancer

    International Nuclear Information System (INIS)

    Liu, Y.-M.; Shiau, C.-Y.; Lee, M.-L.; Huang, P.-I.; Hsieh, C.-M.; Chen, P.-H.; Lin, Y.-H.; Wang, L.-W.; Yen, S.-H.

    2007-01-01

    Purpose: To investigate the intensity-modulated radiotherapy (IMRT) strategy in dose escalation of prostate and pelvic lymph nodes. Methods and Materials: Plan dosimetric data of 10 prostate cancer patients were compared with two-dimensional (2D) or IMRT techniques for pelvis (two-dimensional whole pelvic radiation therapy [2D-WPRT] or IM-WPRT) to receive 50 Gy or 54 Gy and additional prostate boost by three-dimensional conformal radiation therapy or IMRT (3D-PBRT or IM-PBRT) techniques up to 72 Gy or 78 Gy. Dose-volume histograms (DVHs), normal tissue complication probabilities (NTCP) of critical organ, and conformity of target volume in various combinations were calculated. Results: In DVH analysis, the plans with IM-WPRT (54 Gy) and additional boost up to 78 Gy had lower rectal and bladder volume percentage at 50 Gy and 60 Gy, compared with those with 2D-WPRT (50 Gy) and additional boost up to 72 Gy or 78 Gy. Those with IM-WPRT (54 Gy) also had better small bowel sparing at 30 Gy and 50 Gy, compared with those with 2D-WPRT (50 Gy). In NTCP, those with IM-WPRT and total dose of 78 Gy achieved lower complication rates in rectum and small bowel, compared with those of 2D-WPRT with total dose of 72 Gy. In conformity, those with IM-WPRT had better conformity compared with those with 2D-WPRT with significance (p < 0.005). No significant difference in DVHs, NTCP, or conformity was found between IM-PBRT and 3D-PBRT after IM-WPRT. Conclusions: Initial pelvic IMRT is the most important strategy in dose escalation and critical organ sparing. IM-WPRT is recommended for patients requiring WPRT. There is not much benefit for critical organ sparing by IMRT after 2D-WPRT

  19. Intensity-Modulated Radiation Therapy for Primary Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhong-min Wang

    2004-01-01

    Radiation therapy has been used to treat primary brain tumors as standard primary and/or adjunctive therapies for decades. It is difficult for conventional radiotherapy to deliver a lethal dose of radiation to the tumors while sparing surrounding normal brain due to complicated structures and multifunction in human brain. With the understanding of radiation physics and computer technology, a number of novel and more precise radiotherapies have been developed in recent years. Intensity modulated radiotherapy (IMRT) is one of these strategies. The use of IMRT in the treatment of primary brain tumors is being increasing nowadays. It shows great promise for some of primary brain tumors and also presents some problems, This review highlights current IMRT in the treatment of mainly primary brain tumors.

  20. Lowering Whole-Body Radiation Doses in Pediatric Intensity-Modulated Radiotherapy Through the Use of Unflattened Photon Beams

    International Nuclear Information System (INIS)

    Cashmore, Jason; Ramtohul, Mark; Ford, Dan

    2011-01-01

    Purpose: Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. Methods and Materials: An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery of pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Results: Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. Conclusions: IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments.

  1. Normalization of prostate specific antigen in patients treated with intensity modulated radiotherapy for clinically localized prostate cancer

    Directory of Open Access Journals (Sweden)

    Schmitz Matthew D

    2010-09-01

    Full Text Available Abstract Background The purpose of this study was to determine the expected time to prostate specific antigen (PSA normalization with or without neoadjuvant androgen deprivation (NAAD therapy after treatment with intensity modulated radiotherapy (IMRT for patients with clinically localized prostate cancer. Methods A retrospective cohort research design was used. A total of 133 patients with clinical stage T1c to T3b prostate cancer (2002 AJCC staging treated in a community setting between January 2002 and July 2005 were reviewed for time to PSA normalization using 1 ng/mL and 2 ng/mL as criteria. All patients received IMRT as part of their management. Times to PSA normalization were calculated using the Kaplan-Meier method. Significance was assessed at p Results Fifty-six of the 133 patients received NAAD (42.1%. Thirty-one patients (23.8% received radiation to a limited pelvic field followed by an IMRT boost, while 99 patients received IMRT alone (76.2%. The times to serum PSA normalization 0.05, and 303 ± 24 and 405 ± 46 days, respectively, for PSA Conclusions Use of NAAD in conjunction with IMRT leads to a significantly shortened time to normalization of serum PSA

  2. Comparison of dose distribution between 3DCRT and IMRT in middle thoracic and under thoracic esophageal carcinoma

    International Nuclear Information System (INIS)

    Li Dingjie; Liu Hailong; Mao Ronghu; Liu Ru; Guo Xiaoqi; Lei Hongchang; Wang Jianhua

    2011-01-01

    Objective: To compare the dose distribution between three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT) in treating esophageal carcinoma (middle thoracic section and under thoracic section) and to select reasonable treatment methods for esophagus cancer. Methods: Ten cases with cancer of the middle thoracic section and under thoracic section esophagus were chosen for a retrospective treatment-planning study. 3DCRT and IMRT plans were created for each patient: Some critical indicators were evolved in evaluating the treatment plans of IMRT (5B and 7B) and 3DCRT (3B), such as, PTV coverage and dose-volumes to irradiated normal structures. Evaluation indicators: prescription of 50 Gy. total lung volume (V5, V10, V20), mean lung dose (MLD), spinal cord (Dmax), heart (V40) and conformality index (CI). Each plan was evaluated with respect to dose distribution,dose-volume histograms (DVHs), and additional dosimetric endpoints described below. Results: There is no significance of CRT and IMRT technique in protection of total lung volume,mean lung dose, spinal cord (Dmax), target, CI and heart. Conclusion: As To radiotherapy of esophagus cancer of the middle thoracic section and under thoracic section, IMRT has no advantage compared with 3DCRT, the selection of plan should be adapted to the situations of every patient. (authors)

  3. Effect of beam arrangement on oral cavity dose in external beam radiotherapy of nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Wu, Vincent W.C.; Yang Zhining; Zhang Wuzhe; Wu Lili; Lin Zhixiong

    2012-01-01

    This study compared the oral cavity dose between the routine 7-beam intensity-modulated radiotherapy (IMRT) beam arrangement and 2 other 7-beam IMRT with the conventional radiotherapy beam arrangements in the treatment of nasopharyngeal carcinoma (NPC). Ten NPC patients treated by the 7-beam routine IMRT technique (IMRT-7R) between April 2009 and June 2009 were recruited. Using the same computed tomography data, target information, and dose constraints for all the contoured structures, 2 IMRT plans with alternative beam arrangements (IMRT-7M and IMRT-7P) by avoiding the anterior facial beam and 1 conventional radiotherapy plan (CONRT) were computed using the Pinnacle treatment planning system. Dose-volume histograms were generated for the planning target volumes (PTVs) and oral cavity from which the dose parameters and the conformity index of the PTV were recorded for dosimetric comparisons among the plans with different beam arrangements. The dose distributions to the PTVs were similar among the 3 IMRT beam arrangements, whereas the differences were significant between IMRT-7R and CONRT plans. For the oral cavity dose, the 3 IMRT beam arrangements did not show significant difference. Compared with IMRT-7R, CONRT plan showed a significantly lower mean dose, V30 and V-40, whereas the V-60 was significantly higher. The 2 suggested alternative beam arrangements did not significantly reduce the oral cavity dose. The impact of varying the beam angles in IMRT of NPC did not give noticeable effect on the target and oral cavity. Compared with IMRT, the 2-D conventional radiotherapy irradiated a greater high-dose volume in the oral cavity.

  4. Inverse planning IMRT

    International Nuclear Information System (INIS)

    Rosenwald, J.-C.

    2008-01-01

    The lecture addressed the following topics: Optimizing radiotherapy dose distribution; IMRT contributes to optimization of energy deposition; Inverse vs direct planning; Main steps of IMRT; Background of inverse planning; General principle of inverse planning; The 3 main components of IMRT inverse planning; The simplest cost function (deviation from prescribed dose); The driving variable : the beamlet intensity; Minimizing a 'cost function' (or 'objective function') - the walker (or skier) analogy; Application to IMRT optimization (the gradient method); The gradient method - discussion; The simulated annealing method; The optimization criteria - discussion; Hard and soft constraints; Dose volume constraints; Typical user interface for definition of optimization criteria; Biological constraints (Equivalent Uniform Dose); The result of the optimization process; Semi-automatic solutions for IMRT; Generalisation of the optimization problem; Driving and driven variables used in RT optimization; Towards multi-criteria optimization; and Conclusions for the optimization phase. (P.A.)

  5. Dosimetric comparison of IMRT and modulated arc-therapy techniques in the treatment of cervical cancers; Comparaison dosimetrique des techniques de RCMI et d'arctherapie modulee dans le traitement des cancers du col uterin

    Energy Technology Data Exchange (ETDEWEB)

    Renard-Oldrini, S.; Charra-Brunaud, C.; Tournier-Rangeard, L.; Huger, S.; Marchesi, V.; Bouziz, D.; Peiffert, D. [Centre Alexis-Vautrin, Nancy (France)

    2011-10-15

    The authors report the dosimetric comparison of two techniques used for the treatment of cervical cancers: the intensity-modulated conformational radiotherapy (IMRT) with static beams and modulated arc-therapy with RapidArc. The treatment plans of 15 patients have been compared. The clinical target volume (CTV) comprises the gross target volume, the cervix, the upper third of the vagina, and ganglionary areas. The previsional target volume comprises the clinical target volume and a one centimetre margin. Organs at risk are rectum, bladder, intestine and bone marrow. Arc-therapy seems to provide a better sparing of intestine that IMRT, while maintaining a good coverage of the previsional target volume and decreasing treatment duration. Short communication

  6. Clinical results of conformal versus intensity-modulated radiotherapy using a focal simultaneous boost for muscle-invasive bladder cancer in elderly or medically unfit patients.

    Science.gov (United States)

    Lutkenhaus, Lotte J; van Os, Rob M; Bel, Arjan; Hulshof, Maarten C C M

    2016-03-18

    For elderly or medically unfit patients with muscle-invasive bladder cancer, cystectomy or chemotherapy are contraindicated. This leaves radical radiotherapy as the only treatment option. It was the aim of this study to retrospectively analyze the treatment outcome and associated toxicity of conformal versus intensity-modulated radiotherapy (IMRT) using a focal simultaneous tumor boost for muscle-invasive bladder cancer in patients not suitable for cystectomy. One hundred eighteen patients with T2-4 N0-1 M0 bladder cancer were analyzed retrospectively. Median age was 80 years. Treatment consisted of either a conformal box technique or IMRT and included a simultaneous boost to the tumor. To enable an accurate boost delivery, fiducial markers were placed around the tumor. Patients were treated with 40 Gy in 20 fractions to the elective treatment volumes, and a daily tumor boost up to 55-60 Gy. Clinical complete response was seen in 87 % of patients. Three-year overall survival was 44 %, with a locoregional control rate of 73 % at 3 years. Toxicity was low, with late urinary and intestinal toxicity rates grade ≥ 2 of 14 and 5 %, respectively. The use of IMRT reduced late intestinal toxicity, whereas fiducial markers reduced acute urinary toxicity. Radical radiotherapy using a focal boost is feasible and effective for elderly or unfit patients, with a 3-year locoregional control of 73 %. Toxicity rates were low, and were reduced by the use of IMRT and fiducial markers.

  7. Temporal lobe injury after re-irradiation of locally recurrent nasopharyngeal carcinoma using intensity modulated radiotherapy: clinical characteristics and prognostic factors.

    Science.gov (United States)

    Liu, Shuai; Lu, Taixiang; Zhao, Chong; Shen, Jingxian; Tian, Yunming; Guan, Ying; Zeng, Lei; Xiao, Weiwei; Huang, Shaomin; Han, Fei

    2014-09-01

    Temporal lobe injury (TLI) is a debilitating complication after radiotherapy for nasopharyngeal carcinoma (NPC), especially in patients who suffer treatment relapses and receive re-irradiation. We explored the clinical characteristics and prognostic factors of TLI in locally recurrent NPC (rNPC) patients after re-irradiation using intensity modulated radiotherapy (IMRT). A total of 454 temporal lobes (TLs) from 227 locally rNPC patients were reviewed. The clinical characteristics of TLI were analyzed. In the two radiotherapy courses, the equivalent dose in 2 Gy per fraction (EQD2) for the TLs was recalculated to facilitate comparison of the individual data. The median follow-up time was 31 (range, 3-127) months. After re-irradiation using IMRT, 31.3 % (71/227) of patients developed TLI. The median latency of TLI was 15 (range, 4-100) months. Univariate and multivariate analysis showed that the interval time (IT) between the two courses of radiotherapy and the summation of the maximum doses of the two radiotherapy courses (EQD2 - ∑max) were independent factors influencing TLI. The 5-year incidence of TLI for an IT ≤26 or >26 months was 35.9 and 53.7 % respectively (p = 0.024). The median maximum doses delivered to the injured TLs were significantly higher than was the case for the uninjured TLs after two courses of radiotherapy (135.3 and 129.8 Gy, respectively: p 2-year interval was found to be relatively safe.

  8. Efficacy and Toxicity of Chemoradiotherapy Using Intensity-Modulated Radiotherapy for Unknown Primary of Head and Neck

    International Nuclear Information System (INIS)

    Sher, David J.; Balboni, Tracy A.; Haddad, Robert I.; Norris, Charles M.; Posner, Marshall R.; Wirth, Lori J.; Goguen, Laura A.; Annino, Donald; Tishler, Roy B.

    2011-01-01

    Purpose: No single standard treatment paradigm is available for head-and-neck squamous cell carcinoma of an unknown primary (HNCUP). Bilateral neck radiotherapy with mucosal axis irradiation is widely used, with or without chemotherapy and/or surgical resection. Intensity-modulated radiotherapy (IMRT) is a highly conformal method for delivering radiation that is becoming the standard of care and might reduce the long-term treatment-related sequelae. We report the Dana-Farber Cancer Institute experience with IMRT-based treatment for HNCUP. Patients and Materials: A retrospective study of all patients treated at the Dana-Farber Cancer Institute for HNCUP with IMRT between August 2004 and January 2009. The primary endpoint was overall survival; the secondary endpoints were locoregional and distant control, and acute and chronic toxicity. Results: A total of 24 patients with HNCUP were included. Of these patients, 22 had Stage N2 disease or greater. All patients underwent neck computed tomography, positron emission tomography-computed tomography, and examination under anesthesia with directed biopsies. Of the 24 patients, 22 received concurrent chemotherapy, and 7 (29%) also underwent induction chemotherapy. The median involved nodal dose was 70 Gy, and the median mucosal dose was 60 Gy. With a median follow-up of 2.1 years, the 2-year actuarial overall survival and locoregional control rate was 92% and 100%, respectively. Only 25% of the patients had Grade 2 xerostomia, although 11 patients (46%) required esophageal dilation for stricture. Conclusion: In a single-institution series, IMRT-based chemoradiotherapy for HNCUP was associated with superb overall survival and locoregional control. The xerostomia rates were promising, but the aggressive therapy was associated with significant rates of esophageal stenosis.

  9. Volumetric modulated arc radiotherapy for esophageal cancer

    International Nuclear Information System (INIS)

    Vivekanandan, Nagarajan; Sriram, Padmanaban; Syam Kumar, S.A.; Bhuvaneswari, Narayanan; Saranya, Kamalakannan

    2012-01-01

    A treatment planning study was performed to evaluate the performance of volumetric arc modulation with RapidArc (RA) against 3D conformal radiation therapy (3D-CRT) and conventional intensity-modulated radiation therapy (IMRT) techniques for esophageal cancer. Computed tomgraphy scans of 10 patients were included in the study. 3D-CRT, 4-field IMRT, and single-arc and double-arc RA plans were generated with the aim to spare organs at risk (OAR) and healthy tissue while enforcing highly conformal target coverage. The planning objective was to deliver 54 Gy to the planning target volume (PTV) in 30 fractions. Plans were evaluated based on target conformity and dose-volume histograms of organs at risk (lung, spinal cord, and heart). The monitor unit (MU) and treatment delivery time were also evaluated to measure the treatment efficiency. The IMRT plan improves target conformity and spares OAR when compared with 3D-CRT. Target conformity improved with RA plans compared with IMRT. The mean lung dose was similar in all techniques. However, RA plans showed a reduction in the volume of the lung irradiated at V 20Gy and V 30Gy dose levels (range, 4.62–17.98%) compared with IMRT plans. The mean dose and D 35% of heart for the RA plans were better than the IMRT by 0.5–5.8%. Mean V 10Gy and integral dose to healthy tissue were almost similar in all techniques. But RA plans resulted in a reduced low-level dose bath (15–20 Gy) in the range of 14–16% compared with IMRT plans. The average MU needed to deliver the prescribed dose by RA technique was reduced by 20–25% compared with IMRT technique. The preliminary study on RA for esophageal cancers showed improvements in sparing OAR and healthy tissue with reduced beam-on time, whereas only double-arc RA offered improved target coverage compared with IMRT and 3D-CRT plans.

  10. Gamma-H2Ax quantification of low dose irradiation-induced DNA damage in patients receiving intensity modulated radiotherapy (IRMT)

    International Nuclear Information System (INIS)

    Sivabalasingham, S.; Short, S.; Worku, M.; Marks, G.; Guerrero-Urbano, T.

    2013-01-01

    The full text of the publication follows. Purpose/Objective: IMRT (Intensity Modulated Radiotherapy) offers greater target dose compliance yet may produce a comparative higher whole body dose. The aim of this study is to quantify γH2Ax foci in lymphocytes (an established marker of DNA double strand breaks) in patients undergoing IMRT. Material/Methods: Radical inverse planned IMRT was delivered to patients with brain tumours. Peripheral blood samples were collected from each patient at the following time points: baseline; weekly- prior to and 30 minutes after one treatment fraction; 2 and 6 weeks following completion of treatment. Whole blood was centrifuged to separate lymphocytes, which were fixed and stained for fluorescent immunocytochemistry. 150 cells per sample were visualized. γH2Ax foci were identified and counted using confocal microscopy. Results A low basal level of foci was present in all samples prior to any radiation exposure (0.233, SD 0.028). There was a significant increase in mean foci per cell in post radiotherapy treatment samples(0.367 foci per cell pre-treatment and 0.612 foci per cell post treatment, p=0.000) and no significant difference between post-treatment foci numbers at different times during treatment(for example, 0.518 foci per cell at week 1 and 0.760 at week 6, p=0.279). Mean foci numbers returned to background levels at 6 weeks following completion of radiotherapy (0.239 foci per cell at baseline and 0.219 foci per cell at 6 weeks, p=0.529). Comparison between patients treated with different delivery methods is ongoing. Conclusion: γH2Ax is a feasible marker of DNA damage in lymphocytes during IMRT. These data demonstrate a reproducible level of foci induction in patients undergoing IMRT for tumour targets in brain. There is no significant accumulation of foci during treatment and foci numbers return to baseline post treatment. This assay may be useful to assess differences in whole body dose when different delivery methods

  11. Time and dose-related changes in lung perfusion after definitive radiotherapy for NSCLC

    DEFF Research Database (Denmark)

    Farr, Katherina P; Khalil, Azza A; Møller, Ditte S

    2018-01-01

    BACKGROUND AND PURPOSE: To examine radiation-induced changes in regional lung perfusion per dose level in 58 non-small-cell lung cancer (NSCLC) patients treated with intensity-modulated radiotherapy (IMRT). MATERIAL AND METHODS: NSCLC patients receiving chemo-radiotherapy (RT) of minimum 60 Gy we...

  12. Dosimetric comparison of helical tomotherapy, intensity-modulated radiation therapy, volumetric-modulated arc therapy, and 3-dimensional conformal therapy for the treatment of T1N0 glottic cancer

    International Nuclear Information System (INIS)

    Ekici, Kemal; Pepele, Eda K.; Yaprak, Bahaddin; Temelli, Oztun; Eraslan, Aysun F.; Kucuk, Nadir; Altınok, Ayse Y.; Sut, Pelin A.; Alpak, Ozlem D.; Colak, Cemil; Mayadagli, Alpaslan

    2016-01-01

    Various radiotherapy planning methods for T1N0 laryngeal cancer have been proposed to decrease normal tissue toxicity. We compare helical tomotherapy (HT), linac-based intensity-modulated radiation therapy (IMRT), volumetric-modulated arc therapy (VMAT), and 3-D conformal radiotherapy (3D-CRT) techniques for T1N0 laryngeal cancer. Overall, 10 patients with T1N0 laryngeal cancer were selected and evaluated. Furthermore, 10 radiotherapy treatment plans have been created for all 10 patients, including HT, IMRT, VMAT, and 3D-CRT. IMRT, VMAT, and HT plans vs 3D-CRT plans consistently provided superior planning target volume (PTV) coverage. Similar target coverage was observed between the 3 IMRT modalities. Compared with 3D-CRT, IMRT, HT, and VMAT significantly reduced the mean dose to the carotid arteries. VMAT resulted in the lowest mean dose to the submandibular and thyroid glands. Compared with 3D-CRT, IMRT, HT, and VMAT significantly increased the maximum dose to the spinal cord It was observed that the 3 IMRT modalities studied showed superior target coverage with less variation between each plan in comparison with 3D-CRT. The 3D-CRT plans performed better at the D max of the spinal cord. Clinical investigation is warranted to determine if these treatment approaches would translate into a reduction in radiation therapy–induced toxicities.

  13. MRI-detected skull-base invasion. Prognostic value and therapeutic implication in intensity-modulated radiotherapy treatment for nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Cheng, Yi-Kan; Jiang, Ning; Yue, Dan; Tang, Ling-Long; Zhang, Fan; Lin, Li; Liu, Xu; Chen, Lei; Ma, Jun; Liu, Li-Zhi

    2014-01-01

    With advances in imaging and radiotherapy, the prognostic value of skull-base invasion in nasopharyngeal carcinoma (NPC) needs to be reassessed. We aimed to define a classification system and evaluate the prognostic value of the classification of magnetic resonance imaging (MRI)-detected skull-base invasion in NPC treated with intensity-modulated radiotherapy (IMRT). We retrospectively reviewed 749 patients who underwent MRI and were subsequently histologically diagnosed with nondisseminated NPC and treated with IMRT. MRI-detected skull-base invasion was not found to be an independent prognostic factor for overall survival (OS), distant metastasis-free survival (DMFS), local relapse-free survival (LRFS), or disease-free survival (DFS; p > 0.05 for all). Skull-base invasion was classified according to the incidence of each site (type I sites inside pharyngobasilar fascia and clivus vs. type II sites outside pharyngobasilar fascia). The 5-year OS, DMFS, LRFS, and DFS rates in the classification of skull-base invasion in NPC were 83 vs. 67 %, 85 vs.75 %, 95 vs. 88 %, and 76 vs. 62 %, respectively (p [de

  14. Intensity-modulated radiation therapy.

    Science.gov (United States)

    Goffman, Thomas E; Glatstein, Eli

    2002-07-01

    Intensity-modulated radiation therapy (IMRT) is an increasingly popular technical means of tightly focusing the radiation dose around a cancer. As with stereotactic radiotherapy, IMRT uses multiple fields and angles to converge on the target. The potential for total dose escalation and for escalation of daily fraction size to the gross cancer is exciting. The excitement, however, has greatly overshadowed a range of radiobiological and clinical concerns.

  15. External validation of three dimensional conformal radiotherapy based NTCP models for patient-rated xerostomia and sticky saliva among patients treated with intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Beetz, Ivo; Schilstra, Cornelis; Luijk, Peter van; Christianen, Miranda E.M.C.; Doornaert, Patricia; Bijl, Henk P.; Chouvalova, Olga; Heuvel, Edwin R. van den; Steenbakkers, Roel J.H.M.; Langendijk, Johannes A.

    2012-01-01

    Purpose: The purpose of this study was to investigate the ability of predictive models for patient-rated xerostomia (XER 6M ) and sticky saliva (STIC 6M ) at 6 months after completion of primary (chemo)radiation developed in head and neck cancer patients treated with 3D-conformal radiotherapy (3D-CRT) to predict outcome in patients treated with intensity modulated radiotherapy (IMRT). Methods and materials: Recently, we published the results of a prospective study on predictive models for patient-rated xerostomia and sticky saliva in head and neck cancer patients treated with 3D-CRT (3D-CRT based NTCP models). The 3D-CRT based model for XER 6M consisted of three factors, including the mean parotid dose, age, and baseline xerostomia (none versus a bit). The 3D-CRT based model for STIC 6M consisted of the mean submandibular dose, age, the mean sublingual dose, and baseline sticky saliva (none versus a bit). In the current study, a population consisting of 162 patients treated with IMRT was used to test the external validity of these 3D-CRT based models. External validity was described by the explained variation (R 2 Nagelkerke) and the Brier score. The discriminative abilities of the models were calculated using the area under the receiver operating curve (AUC) and calibration (i.e. the agreement between predicted and observed outcome) was assessed with the Hosmer–Lemeshow “goodness-of-fit” test. Results: Overall model performance of the 3D-CRT based predictive models for XER 6M and STIC 6M was significantly worse in terms of the Brier score and R 2 Nagelkerke among patients treated with IMRT. Moreover the AUC for both 3D-CRT based models in the IMRT treated patients were markedly lower. The Hosmer–Lemeshow test showed a significant disagreement for both models between predicted risk and observed outcome. Conclusion: 3D-CRT based models for patient-rated xerostomia and sticky saliva among head and neck cancer patients treated with primary radiotherapy or

  16. Implant R100 Predicts Rectal Bleeding in Prostate Cancer Patients Treated with IG-IMRT to 45 Gy and Pd-103 Implant

    International Nuclear Information System (INIS)

    Packard, M.; Fuhrer, R.; Valakh, V.

    2014-01-01

    Purpose. To define factors associated with rectal bleeding in patients treated with IG-IMRT followed by Pd-103 seed implant. Methods and Materials. We retrospectively reviewed 61 prostate adenocarcinoma patients from 2002 to 2008. The majority (85.2%) were of NCCN intermediate risk category. All received IG-IMRT to the prostate and seminal vesicles followed by Pd-103 implant delivering a mean D90 of 100.7 Gy. Six patients received 45 Gy to the pelvic nodes and 10 received androgen deprivation. Results. Ten patients (16.4%) developed rectal bleeding: 4 were CTCAE v.3 grade 1, 5 were grade 2, and 1 was grade 3. By univariate analysis, age, stage, Gleason sum, PSA, hormonal therapy, pelvic radiation, postoperative prostate volume, D9, V100, individual source activity, total implanted activity per cm 3 , and duration of interval before implant did not impact rectal bleeding. Implant R100 was higher in patients with rectal bleeding: on average, 0.885 versus 0.396 cm 3 ,(Ρ =0.02) , odds ratio of 2.26 per .5 cm 3 (95% CI, 1.16–4.82). A trend for significance was seen for prostate V200 and total implanted activity. Conclusion. Higher implant R100 was associated with development of rectal bleeding in patients receiving IG-IMRT to 45 Gy followed by Pd-103 implant. Minimizing implant R100 may reduce the rate of rectal bleeding in similar patients.

  17. Radiotherapy and HER2: point on the association of ionizing radiation and trastuzumab; Radiotherapie et HER2: point sur l'association de radiations ionisantes et de trastuzumab

    Energy Technology Data Exchange (ETDEWEB)

    Liem, X.; Lartigau, E. [Centre Oscar-Lambret, 59 - Lille (France)

    2009-10-15

    The addition of the two treatments (trastuzumab and radiotherapy) poses the problem of their toxicity addition, particularly at the cardiac level. The data speak in favour of trastuzumab continuation during radiotherapy, taken into account the benefits. Because of the technical advances in radiotherapy ( respiratory automatic control, intensity modulated radiotherapy, I.M.R.T.) it will be possible to avoid the mediastinum structures improving then the tolerance. (N.C.)

  18. Outcomes After Intensity-Modulated Versus Conformal Radiotherapy in Older Men With Nonmetastatic Prostate Cancer

    International Nuclear Information System (INIS)

    Bekelman, Justin E.; Mitra, Nandita; Efstathiou, Jason; Liao Kaijun; Sunderland, Robert; Yeboa, Deborah N.; Armstrong, Katrina

    2011-01-01

    Purpose: There is little evidence comparing complications after intensity-modulated (IMRT) vs. three-dimensional conformal radiotherapy (CRT) for prostate cancer. The study objective was to test the hypothesis that IMRT, compared with CRT, is associated with a reduction in bowel, urinary, and erectile complications in elderly men with nonmetastatic prostate cancer. Methods and Materials: We undertook an observational cohort study using registry and administrative claims data from the SEER-Medicare database. We identified men aged 65 years or older diagnosed with nonmetastatic prostate cancer in the United States between 2002 and 2004 who received IMRT (n = 5,845) or CRT (n = 6,753). The primary outcome was a composite measure of bowel complications. Secondary outcomes were composite measures of urinary and erectile complications. We also examined specific subsets of bowel (proctitis/hemorrhage) and urinary (cystitis/hematuria) events within the composite complication measures. Results: IMRT was associated with reductions in composite bowel complications (24-month cumulative incidence 18.8% vs. 22.5%; hazard ratio [HR] 0.86; 95% confidence interval [CI], 0.79–0.93) and proctitis/hemorrhage (HR 0.78; 95% CI, 0.64–0.95). IMRT was not associated with rates of composite urinary complications (HR 0.93; 95% CI, 0.83–1.04) or cystitis/hematuria (HR 0.94; 95% CI, 0.83–1.07). The incidence of erectile complications involving invasive procedures was low and did not differ significantly between groups, although IMRT was associated with an increase in new diagnoses of impotence (HR 1.27, 95% CI, 1.14–1.42). Conclusion: IMRT is associated with a small reduction in composite bowel complications and proctitis/hemorrhage compared with CRT in elderly men with nonmetastatic prostate cancer.

  19. Dosimetric comparison between intensity-modulated with coplanar field and 3D conformal radiotherapy with noncoplanar field for postocular invasion tumor.

    Science.gov (United States)

    Wenyong, Tu; Lu, Liu; Jun, Zeng; Weidong, Yin; Yun, Li

    2010-01-01

    This study presents a dosimetric optimization effort aiming to compare noncoplanar field (NCF) on 3 dimensions conformal radiotherapy (3D-CRT) and coplanar field (CF) on intensity-modulated radiotherapy (IMRT) planning for postocular invasion tumor. We performed a planning study on the computed tomography data of 8 consecutive patients with localized postocular invasion tumor. Four fields NCF 3D-CRT in the transverse plane with gantry angles of 0-10 degrees , 30-45 degrees , 240-270 degrees , and 310-335 degrees degrees were isocentered at the center of gravity of the target volume. The geometry of the beams was determined by beam's eye view. The same constraints were prepared with between CF IMRT optimization and NCF 3D-CRT treatment. The maximum point doses (D max) for the different optic pathway structures (OPS) with NCF 3D-CRT treatment should differ in no more than 3% from those with the NCF IMRT plan. Dose-volume histograms (DVHs) were obtained for all targets and organ at risk (OAR) with both treatment techniques. Plans with NCF 3D-CRT and CF IMRT constraints on target dose in homogeneity were computed, as well as the conformity index (CI) and homogeneity index (HI) in the target volume. The PTV coverage was optimal with both NCF 3D-CRT and CF IMRT plans in the 8 tumor sites. No difference was noted between the two techniques for the average D(max) and D(min) dose. NCF 3D-CRT and CF IMRT will yield similar results on CI. However, HI was a significant difference between NCF 3D-CRT and CF IMRT plan (p 3D-CRT versus CF IMRT set-up is very slight. NCF3D-CRT is one of the treatment options for postocular invasion tumor. However, constraints for OARs are needed. 2010 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  20. Spinal cordd biological safety comparison of intensity modulated radiotherapy and conventional radiation therapy

    International Nuclear Information System (INIS)

    Xilinbaoleri; Xu Wanlong; Chen Gang; Liu Hao; Wang Ruozheng; Bai Jingping

    2010-01-01

    Objective: To compare the spine intensity modulated radiation therapy (IMRT) and the conventional radiation therapy on the beagle spinal cord neurons, in order to prove the biological safety of IMRT of the spinal cord. Methods: Twelve selected purebred beagles were randomly divided into 2 groups. A beagle clinical model of tumor was mimiced in the ninth and tenth thoracic vertebrae. Then the beagles were irradiated by 2 different models of intensity modulated radiotherapy and conventional radiation therapy, with the total irradiation doses of 50 and 70 Gy. The samples of spinal cord were taken out from the same position of the nine and tenth thoracic vertebrae at the third month after radiation.All the samples were observed by the electron microscope, and the Fas and HSP70 expression in spinal cord neurons were evaluated by immunohistochemistry method. Terminal deoxynucleatidyl transferase mediated dUTP nick and labeling (TUNEL) technique was used to examine the apoptotic cells in the spinal cord. Results: The neurons in the spinal cord of IMRT group were mainly reversible injury, and those in the conventional radiation therapy were mainly apoptosis. Compared with the conventional radiation therapy group [50 Gy group, (7.3 ± 1.1)%; 70 Gy group, (11.3 ± 1.4)%], the apoptosis rate of the spinal cord neurons of the intensity modulated radiotherapy group [50 Gy group, (1.2 ± 0.7)%; 70 Gy group (2.5 ± 0.8)%] was much lower[(50 Gy group, t=0.022, P<0.05; 70 Gy group, t=0.017, P<0.05)]. The expression levels of Fas in the IMPT group (50 Gy group, 4.6 ± 0.8; 70 Gy group, 7.4 ± 1.1) were also much lowerthan those in the other group (50 Gy group, 15.1 ± 6.4; 70 Gy group, 19.3 ± 7.6. 50 Gy group, t=0.231, P<0.05; 70 Gy group, t=0.457, P<0.05), while the expression levels of HSP70 in the IMPT group (50 Gy group, 9.1 ± 0.8; 70 Gy group, 7.3 ± 1.4)were much higher than those in the conventional radiation therapy group (50 Gy group, 2.1 ± 0.9; 70 Gy group, 1.7 ± 0

  1. Fluorecence modulated radiotherapy with integrated segmentation to optimization

    International Nuclear Information System (INIS)

    Baer, W.; Alber, M.; Nuesslin, F.

    2003-01-01

    On the basis of two clinical cases, we present fluence-modulated radiotherapy with a sequencer integrated into the optimization of our treatment-planning software HYPERION. In each case, we achieved simple relations for the dependence of the total number of segments on the complexity of the sequencing, as well as for the dependence of the dose-distribution quality on the number of segments. For both clinical cases, it was possible to obtain treatment plans that complied with the clinical demands on dose distribution and number of segments. Also, compared to the widespread concept of equidistant steps, our method of sequencing with fluence steps of variable size led to a significant reduction of the number of segments, while maintaining the quality of the dose distribution. Our findings substantiate the value of the integration of the sequencer into the optimization for the clinical efficiency of IMRT [de

  2. Patterns of Failure and Toxicity after Intensity-Modulated Radiotherapy for Head and Neck Cancer

    International Nuclear Information System (INIS)

    Schoenfeld, Gordon O.; Amdur, Robert J.; Morris, Christopher G.; Li, Jonathan G.; Hinerman, Russell W.; Mendenhall, William M.

    2008-01-01

    Purpose: To determine the outcome of patients treated with intensity-modulated radiotherapy (IMRT) for head and neck cancer. Methods and Materials: We reviewed the charts of 100 consecutive patients treated with IMRT for squamous cell carcinoma of the oropharynx (64%), nasopharynx (16%), hypopharynx (14%), and larynx (6%). Most patients were treated with a concomitant boost schedule to 72 Gy. Of the 100 patients, 54 (54%) received adjuvant chemotherapy, mostly concurrent cisplatin. The dosimetry plans for patients with either locoregional failure or Grade 4-5 complications were reviewed and fused over the computed tomography images corresponding with the location of the event. Marginal failures were defined as those that occurred at a region of high-dose falloff, where conventional fields would have provided better coverage. Results: The median follow-up of living patients was 3.1 years (range, 1-5.2 years). The 3-year rate of local control, locoregional control, freedom from relapse, cause-specific survival, and overall survival for all patients was 89%, 87%, 72%, 78%, and 71%, respectively. The 3-year rate of freedom from relapse, cause-specific survival, and overall survival for the 64 oropharynx patients was 86%, 92%, and 84%, respectively. Of the 10 local failures, 2 occurred at the margin of the high-dose planning target volume. Both regional failures occurred within the planning target volume. No locoregional failures occurred outside the planning target volume. Of the 100 patients, 8 and 5 had Grade 4 and 5 complications from treatment, respectively. All patients with Grade 5 complications had received adjuvant chemotherapy. No attempt was made to discriminate between the complications from IMRT and other aspects of the patients' treatment. Conclusion: Intensity-modulated radiotherapy did not compromise the outcome compared with what we have achieved with conventional techniques. The 2 cases of recurrence in the high-dose gradient region highlight the

  3. Intensity-modulated radiotherapy for laryngeal and hypopharyngeal cancer. Minimization of late dysphagia without jeopardizing tumor control

    Energy Technology Data Exchange (ETDEWEB)

    Modesto, Anouchka; Laprie, Anne; Graff, Pierre; Rives, Michel [Institut Universitaire du Cancer, Department of Radiation Oncology, Institut Claudius Regaud, Toulouse (France); Vieillevigne, Laure [Institut Universitaire du Cancer, Department of Medical Physics, Toulouse (France); Sarini, Jerome; Vergez, Sebastien; Farenc, Jean-Claude [Institut Universitaire du Cancer, Department of Head and Neck Surgery, Toulouse (France); Delord, Jean-Pierre [Institut Universitaire du Cancer, Department of Medical Oncology, Toulouse (France); Vigarios, Emmanuelle [Centre Hospitalo Universitaire de Rangueil, Dental Surgery Department, Toulouse (France); Filleron, Thomas [Institut Universitaire du Cancer, Department of Biostatistics, Toulouse (France)

    2014-11-01

    The purpose of this work was to retrospectively determine the value of intensity-modulated radiotherapy (IMRT) in patients with laryngeal and hypopharyngeal squamous cell carcinoma (LHSCC), on outcome and treatment-related toxicity compared to 3-dimensional conformal radiotherapy (3D-CRT). A total of 175 consecutive patients were treated between 2007 and 2012 at our institution with curative intent RT and were included in this study: 90 were treated with 3D-CRT and 85 with IMRT. Oncologic outcomes were estimated using Kaplan-Meier statistics; acute and late toxicities were scored according to the Common Toxicity Criteria for Adverse Events scale v 3.0. Median follow-up was 35 months (range 32-42 months; 95% confidence interval 95 %). Two-year disease-free survival did not vary, regardless of the technique used (69 % for 3D-CRT vs. 72 %; for IMRT, p = 0.16). Variables evaluated as severe late toxicities were all statistically lower with IMRT compared with 3D-CRT: xerostomia (0 vs. 12 %; p < 0.0001), dysphagia (4 vs. 26 %; p < 0.0001), and feeding-tube dependency (1 vs 13 %; p = 0.0044). The rates of overall grade ≥ 3 late toxicities for the IMRT and 3D-CRT groups were 4.1 vs. 41.4 %, respectively (p < 0.0001). IMRT for laryngeal and hypopharyngeal cancer minimizes late dysphagia without jeopardizing tumor control and outcome. (orig.) [German] Das Ziel dieser Studie war es, retrospektiv den Nutzen der intensitaetsmodulierten Strahlentherapie (IMRT) in der Behandlung von Patienten mit Plattenepithelkarzinom von Kehlkopf und Hypopharynx (LHSCC) zu bewerten und mit dem Outcome und den Spaetfolgen der 3-D-konformalen Strahlentherapie (3D-CRT) zu vergleichen. Insgesamt wurden zwischen Januar 2007 und Dezember 2012175 LHSCC-Patienten mit einer RT behandelt und in die Studie aufgenommen: 85 Patienten wurden mit 3D-CRT und 90 Patienten mit IMRT behandelt.Das onkologische Outcome wurde mittels Kaplan-Meier-Statistik ermittelt und Akut- und Spaettoxizitaeten anhand der CTCAE

  4. Phase I Trial of Preoperative Hypofractionated Intensity-Modulated Radiotherapy with Incorporated Boost and Oral Capecitabine in Locally Advanced Rectal Cancer

    International Nuclear Information System (INIS)

    Freedman, Gary M.; Meropol, Neal J.; Sigurdson, Elin R.; Hoffman, John; Callahan, Elaine; Price, Robert; Cheng, Jonathan; Cohen, Steve; Lewis, Nancy; Watkins-Bruner, Deborah; Rogatko, Andre; Konski, Andre

    2007-01-01

    Purpose: To determine the safety and efficacy of preoperative hypofractionated radiotherapy using intensity-modulated radiotherapy (IMRT) and an incorporated boost with concurrent capecitabine in patients with locally advanced rectal cancer. Methods and Materials: The eligibility criteria included adenocarcinoma of the rectum, T3-T4 and/or N1-N2 disease, performance status 0 or 1, and age ≥18 years. Photon IMRT and an incorporated boost were used to treat the whole pelvis to 45 Gy and the gross tumor volume plus 2 cm to 55 Gy in 25 treatments within 5 weeks. The study was designed to escalate the dose to the gross tumor volume in 5-Gy increments in 3-patient cohorts. Capecitabine was given orally 825 mg/m 2 twice daily for 7 days each week during RT. The primary endpoint was the maximal tolerated radiation dose, and the secondary endpoints were the pathologic response and quality of life. Results: Eight patients completed RT at the initial dose level of 55 Gy. The study was discontinued because of toxicity-six Grade 3 toxicities occurred in 3 (38%) of 8 patients. All patients went on to definitive surgical resection, and no patient had a pathologically complete response. Conclusion: This regimen, using hypofractionated RT with an incorporated boost, had unacceptable toxicity despite using standard doses of capecitabine and IMRT. Additional research is needed to determine whether IMRT is able to reduce the side effects during and after pelvic RT with conventional dose fractionation

  5. Cervix carcinomas: place of intensity-modulated radiotherapy; Les cancers du col uterin: place de la radiotherapie avec modulation d'intensite

    Energy Technology Data Exchange (ETDEWEB)

    Barillot, I. [Centre Regional Universitaire de Cancerologie H.S.-Kaplan, Hopital Bretonneau, CHU de Tours, 37 - Tours (France); Universite Francois-Rabelais, 37 - Tours (France)

    2009-10-15

    While indications of modulated intensity radiation therapy (I.M.R.T.) are perfectly defined in head and neck and prostate cancer patients, this technique remains under evaluation for gynecologic tumours. The implementation of conformal three dimensional radiotherapy in the late 1990 has been the first important step for optimisation of treatment of cervix carcinomas, as it permitted a better target coverage with a significant reduction of the bladder dose. However, this technique often leads to an irradiation of a larger volume of rectum in locally advanced stages and could only spare a limited amount of intestine. I.R.M.T. is one of the optimisation methods potentially efficient for a better sparing of digestive tract during irradiation of cervix carcinomas. The aim of this literature review is to provide the arguments supporting this hypothesis, and to define the place of this technique for dose escalation. (authors)

  6. Step-and-Shoot versus Compensator-based IMRT: Calculation and Comparison of Integral Dose in Non-tumoral and Target Organs in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Kaveh Shirani Tak Abi

    2015-05-01

    Full Text Available Introduction Intensity-Modulated Radiotherapy (IMRT is becoming an increasingly routine treatment method. IMRT can be delivered by use of conventional Multileaf Collimators (MLCs and/or physical compensators. One of the most important factors in selecting an appropriate IMRT technique is integral dose. Integral dose is equal to the mean energy deposited in the total irradiated volume of the patient. The aim of the present study was to calculate and compare the integral dose in normal and target organs in two different procedures of IMRT: Step-and-Shoot (SAS and compensator-based IMRT. Materials and Methods In this comparative study, five patients with prostate cancer were selected. Module Integrated Radiotherapy System was applied, using three energy ranges. In both treatment planning methods, the integral dose dramatically decreased by increasing energy. Results Comparison of two treatment methods showed that on average, the integral dose of body in SAS radiation therapy was about 1.62% lower than that reported in compensator-based IMRT. In planning target volume, rectum, bladder, and left and right femoral heads, the integral doses for SAS method were 1.01%, 1.02%, 1.11%, 1.47%, and 1.40% lower than compensator-based IMRT, respectively. Conclusion Considering the treatment conditions, the definition of dose volume constraints for healthy tissues, and the equal volume of organs in both treatment methods, SAS radiation therapy by providing a lower integral dose seems to be more advantageous and efficient for prostate cancer treatment, compared to compensator-based IMRT.

  7. Temporal characterization and in vitro comparison of cell survival following the delivery of 3D-conformal, intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT)

    Energy Technology Data Exchange (ETDEWEB)

    McGarry, Conor K; Hounsell, Alan R [Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast (United Kingdom); Butterworth, Karl T; Trainor, Colman; O' Sullivan, Joe M; Prise, Kevin M, E-mail: conor.mcgarry@belfasttrust.hscni.net [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast (United Kingdom)

    2011-04-21

    A phantom was designed and implemented for the delivery of treatment plans to cells in vitro. Single beam, 3D-conformal radiotherapy (3D-CRT) plans, inverse planned five-field intensity-modulated radiation therapy (IMRT), nine-field IMRT, single-arc volumetric modulated arc therapy (VMAT) and dual-arc VMAT plans were created on a CT scan of the phantom to deliver 3 Gy to the cell layer and verified using a Farmer chamber, 2D ionization chamber array and gafchromic film. Each plan was delivered to a 2D ionization chamber array to assess the temporal characteristics of the plan including delivery time and 'cell's eye view' for the central ionization chamber. The effective fraction time, defined as the percentage of the fraction time where any dose is delivered to each point examined, was also assessed across 120 ionization chambers. Each plan was delivered to human prostate cancer DU-145 cells and normal primary AGO-1522b fibroblast cells. Uniform beams were delivered to each cell line with the delivery time varying from 0.5 to 20.54 min. Effective fraction time was found to increase with a decreasing number of beams or arcs. For a uniform beam delivery, AGO-1552b cells exhibited a statistically significant trend towards increased survival with increased delivery time. This trend was not repeated when the different modulated clinical delivery methods were used. Less sensitive DU-145 cells did not exhibit a significant trend towards increased survival with increased delivery time for either the uniform or clinical deliveries. These results confirm that dose rate effects are most prevalent in more radiosensitive cells. Cell survival data generated from uniform beam deliveries over a range of dose rates and delivery times may not always be accurate in predicting response to more complex delivery techniques, such as IMRT and VMAT.

  8. Temporal characterization and in vitro comparison of cell survival following the delivery of 3D-conformal, intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT)

    International Nuclear Information System (INIS)

    McGarry, Conor K; Hounsell, Alan R; Butterworth, Karl T; Trainor, Colman; O'Sullivan, Joe M; Prise, Kevin M

    2011-01-01

    A phantom was designed and implemented for the delivery of treatment plans to cells in vitro. Single beam, 3D-conformal radiotherapy (3D-CRT) plans, inverse planned five-field intensity-modulated radiation therapy (IMRT), nine-field IMRT, single-arc volumetric modulated arc therapy (VMAT) and dual-arc VMAT plans were created on a CT scan of the phantom to deliver 3 Gy to the cell layer and verified using a Farmer chamber, 2D ionization chamber array and gafchromic film. Each plan was delivered to a 2D ionization chamber array to assess the temporal characteristics of the plan including delivery time and 'cell's eye view' for the central ionization chamber. The effective fraction time, defined as the percentage of the fraction time where any dose is delivered to each point examined, was also assessed across 120 ionization chambers. Each plan was delivered to human prostate cancer DU-145 cells and normal primary AGO-1522b fibroblast cells. Uniform beams were delivered to each cell line with the delivery time varying from 0.5 to 20.54 min. Effective fraction time was found to increase with a decreasing number of beams or arcs. For a uniform beam delivery, AGO-1552b cells exhibited a statistically significant trend towards increased survival with increased delivery time. This trend was not repeated when the different modulated clinical delivery methods were used. Less sensitive DU-145 cells did not exhibit a significant trend towards increased survival with increased delivery time for either the uniform or clinical deliveries. These results confirm that dose rate effects are most prevalent in more radiosensitive cells. Cell survival data generated from uniform beam deliveries over a range of dose rates and delivery times may not always be accurate in predicting response to more complex delivery techniques, such as IMRT and VMAT.

  9. IMRT treatment of anal cancer with a scrotal shield

    International Nuclear Information System (INIS)

    Hood, Rodney C.; Wu, Q. Jackie; McMahon, Ryan; Czito, Brian; Willett, Christopher

    2012-01-01

    The risk of sterility in males undergoing radiotherapy in the pelvic region indicates the use of a shielding device, which offers protection to the testes for patients wishing to maintain fertility. The use of such devices in the realm of intensity-modulated radiotherapy (IMRT) in the pelvic region can pose many obstacles during simulation, treatment planning, and delivery of radiotherapy. This work focuses on the development and execution of an IMRT plan for the treatment of anal cancer using a scrotal shielding device on a clinical patient. An IMRT plan was developed using Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA), using a wide array of gantry angles as well as fixed jaw and fluence editing techniques. When possible, the entire target volume was encompassed by the treatment field. When the beam was incident on the scrotal shield, the jaw was fixed to avoid the device and the collimator rotation optimized to irradiate as much of the target as possible. This technique maximizes genital sparing and allows minimal irradiation of the gonads. When this fixed-jaw technique was found to compromise adequate coverage of the target, manual fluence editing techniques were used to avoid the shielding device. Special procedures for simulation, imaging, and treatment verification were also developed. In vivo dosimetry was used to verify and ensure acceptable dose to the gonads. The combination of these techniques resulted in a highly conformal plan that spares organs and risk and avoids the genitals as well as entrance of primary radiation onto the shielding device.

  10. A Monte Carlo dosimetric quality assurance system for dynamic intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Takegawa, Hideki; Yamamoto, Tokihiro; Miyabe, Yuki; Teshima, Teruki; Kunugi, Tomoaki; Yano, Shinsuke; Mizowaki, Takashi; Nagata, Yasushi; Hiraoka, Masahiro

    2005-01-01

    We are developing a Monte Carlo (MC) dose calculation system, which can resolve dosimetric issues derived from multileaf collimator (MLC) design for routine dosimetric quality assurance (QA) of intensity-modulated radiotherapy (IMRT). The treatment head of the medical linear accelerator equipped with MLC was modeled using the EGS4 MC code. A graphical user interface (GUI) application was developed to implement MC dose computation in the CT-based patient model and compare the MC calculated results with those of a commercial radiotherapy treatment planning (RTP) system, Varian Eclipse. To reduce computation time, the EGS4 MC code has been parallelized on massive parallel processing (MPP) system using the message passing interface (MPI). The MC treatment head model and MLC model were validated by the measurement data sets of percentage depth dose (PDD) and off-center ratio (OCR) in the water phantom and the film measurements for the static and dynamic test patterns, respectively. In the treatment head model, the MC calculated results agreed with those of measurements for both of PDD and OCR. The MC could reproduce all of the MLC dosimetric effects. A quantitative comparison between the results of MC and Eclipse was successfully performed with the GUI application. Parallel speed-up became almost linear. An MC dosimetric QA system for dynamic IMRT has been developed, however there were large dose discrepancies between the MC and the measurement in the MLC model simulation, which are now being investigated. (author)

  11. A dose homogeneity and conformity evaluation between ViewRay and pinnacle-based linear accelerator IMRT treatment plans

    OpenAIRE

    Daniel L Saenz; Bhudatt R Paliwal; John E Bayouth

    2014-01-01

    ViewRay, a novel technology providing soft-tissue imaging during radiotherapy is investigated for treatment planning capabilities assessing treatment plan dose homogeneity and conformity compared with linear accelerator plans. ViewRay offers both adaptive radiotherapy and image guidance. The combination of cobalt-60 (Co-60) with 0.35 Tesla magnetic resonance imaging (MRI) allows for magnetic resonance (MR)-guided intensity-modulated radiation therapy (IMRT) delivery with multiple beams. This ...

  12. Image-Guided Radiotherapy in Near Real Time With Intensity-Modulated Radiotherapy Megavoltage Treatment Beam Imaging

    International Nuclear Information System (INIS)

    Mao Weihua; Hsu, Annie; Riaz, Nadeem; Lee, Louis; Wiersma, Rodney; Luxton, Gary; King, Christopher; Xing Lei; Solberg, Timothy

    2009-01-01

    Purpose: To utilize image-guided radiotherapy (IGRT) in near real time by obtaining and evaluating the online positions of implanted fiducials from continuous electronic portal imaging device (EPID) imaging of prostate intensity-modulated radiotherapy (IMRT) delivery. Methods and Materials: Upon initial setup using two orthogonal images, the three-dimensional (3D) positions of all implanted fiducial markers are obtained, and their expected two-dimensional (2D) locations in the beam's-eye-view (BEV) projection are calculated for each treatment field. During IMRT beam delivery, EPID images of the megavoltage treatment beam are acquired in cine mode and subsequently analyzed to locate 2D locations of fiducials in the BEV. Simultaneously, 3D positions are estimated according to the current EPID image, information from the setup portal images, and images acquired at other gantry angles (the completed treatment fields). The measured 2D and 3D positions of each fiducial are compared with their expected 2D and 3D setup positions, respectively. Any displacements larger than a predefined tolerance may cause the treatment system to suspend the beam delivery and direct the therapists to reposition the patient. Results: Phantom studies indicate that the accuracy of 2D BEV and 3D tracking are better than 1 mm and 1.4 mm, respectively. A total of 7330 images from prostate treatments were acquired and analyzed, showing a maximum 2D displacement of 6.7 mm and a maximum 3D displacement of 6.9 mm over 34 fractions. Conclusions: This EPID-based, real-time IGRT method can be implemented on any external beam machine with portal imaging capabilities without purchasing any additional equipment, and there is no extra dose delivered to the patient.

  13. A randomized, controlled, multicenter study comparing intensity-modulated radiotherapy plus concurrent chemotherapy with chemotherapy alone in gastric cancer patients with D2 resection

    International Nuclear Information System (INIS)

    Zhu Weiguo; Xua Dafu; Pu, Jun; Zong, Cheng-dong; Li, Tao; Tao, Guang-zhou; Ji, Fu-zhi; Zhou, Xi-lei; Han, Ji-hua; Wang, Cheng-shi; Yu, Chang-hua; Yi, Jiang-guo; Su, Xi-long; Ding, Jin-xia

    2012-01-01

    Background and purpose: The role of postoperative chemoradiotherapy in the treatment of patients with gastric cancer with D2 lymph node curative dissection is not well established. In this study, we compared postoperative intensity-modulated radiotherapy plus chemotherapy (IMRT-C) with chemotherapy-only in this patient population. Materials and methods: We randomly assigned patients with D2 lymph node dissection in gastric cancer to IMRT-C or chemotherapy-only groups. The adjuvant IMRT-C consisted of 400 mg of fluorouracil per square meter of body-surface area per day plus 20 mg of leucovorin per square meter of body-surface area per day for 5 days, followed by 45 Gy of IMRT for 5 weeks, with fluorouracil and leucovorin on the first 4 and the last 3 days of radiotherapy. Two 5-day cycles of fluorouracil and leucovorin were given 4 weeks after the completion of IMRT. Chemotherapy-only group was given the same chemotherapy regimens as IMRT-C group. Results: The median overall survival (OS) in the chemotherapy-only group was 48 months, as compared with 58 months in the IMRT-C group; the hazard ratio for death was 1.24 (95% confidence interval, 0.94–1.65; P = 0.122). IMRT-C was associated with increases in the median duration of recurrence-free survival (RFS) (36 months vs. 50 months), the hazard ratio for recurrence was 1.35 (95% confidence interval, 1.03–1.78; P = 0.029). COX multivariate regression analysis showed that lymph node metastasis and TNM stage were both the independent prognostic factors. Rates of all grade adverse events were similar in the two treatment groups. Conclusions: IMRT-C improved RFS, but did not significantly improve OS among patients with D2 lymph node dissection in gastric cancer. Using IMRT plus chemotherapy was feasible and well tolerated in patients with gastric cancer after D2 resection.

  14. Pre-clinical evaluation of an inverse planning module for segmental MLC based IMRT delivery

    International Nuclear Information System (INIS)

    Georg, Dietmar; Kroupa, Bernhard

    2002-01-01

    Phantom tests are performed for pre-clinical evaluation of a commercial inverse planning system (HELAX TMS, V 6.0) for segmented multileaf collimator (MLC) intensity modulated radiotherapy (IMRT) delivery. The optimization module has available two optimization algorithms: the target primary feasibility and the weighted feasibility algorithm, only the latter allows the user to specify weights for structures. In the first series, single beam tests are performed to evaluate the outcome of inverse planning in terms of plausibility for the following situations: oblique incidence, presence of inhomogeneities, multiple targets at different depths and multiple targets with different desired doses. Additionally, for these tests a manual plan is made for comparison. In the absence of organs at risk, both the optimization algorithms are found to assign the highest priority to low dose constraints for targets. In the second series, tests resembling clinical relevant configurations (simultaneous boost and concave target with critical organ) are performed with multiple beam arrangements in order to determine the impact of the system's configuration on inverse planning. It is found that the definition of certain segment number and segment size limitations does not largely compromise treatment plans when using multiple beams. On the other hand, these limitations are important for delivery efficiency and dosimetry. For the number of iterations and voxels per volume of interest, standard values in the system's configuration are considered to be sufficient. Additionally, it is demonstrated that precautions must be taken to precisely define treatment goals when using computerized treatment optimization. Similar phantom tests could be used for a direct dosimetric verification of all steps from inverse treatment planning to IMRT delivery. (note)

  15. Candidate Dosimetric Predictors of Long-Term Swallowing Dysfunction After Oropharyngeal Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Schwartz, David L.; Hutcheson, Katherine; Barringer, Denise; Tucker, Susan L.; Kies, Merrill; Holsinger, F. Christopher; Ang, K. Kian; Morrison, William H.; Rosenthal, David I.; Garden, Adam S.; Dong Lei; Lewin, Jan S.

    2010-01-01

    Purpose: To investigate long-term swallowing function in oropharyngeal cancer patients treated with intensity-modulated radiotherapy (IMRT), and to identify novel dose-limiting criteria predictive for dysphagia. Methods and Materials: Thirty-one patients with Stage IV oropharyngeal squamous carcinoma enrolled on a Phase II trial were prospectively evaluated by modified barium swallow studies at baseline, and 6, 12, and 24 months post-IMRT treatment. Candidate dysphagia-associated organs at risk were retrospectively contoured into original treatment plans. Twenty-one (68%) cases were base of tongue and 10 (32%) were tonsil. Stage distribution was T1 (12 patients), T2 (10), T3 (4), T4 (2), and TX (3), and N2 (24), N3 (5), and NX (2). Median age was 52.8 years (range, 42-78 years). Thirteen patients (42%) received concurrent chemotherapy during IMRT. Thirteen (42%) were former smokers. Mean dose to glottic larynx for the cohort was limited to 18 Gy (range, 6-39 Gy) by matching IMRT to conventional low-neck fields. Results: Dose-volume constraints (V30 < 65% and V35 < 35% for anterior oral cavity and V55 < 80% and V65 < 30% for high superior pharyngeal constrictors) predictive for objective swallowing dysfunction were identified by univariate and multivariate analyses. Aspiration and feeding tube dependence were observed in only 1 patient at 24 months. Conclusions: In the context of glottic laryngeal shielding, we describe candidate oral cavity and superior pharyngeal constrictor organs at risk and dose-volume constraints associated with preserved long-term swallowing function; these constraints are currently undergoing prospective validation. Strict protection of the glottic larynx via beam-split IMRT techniques promises to make chronic aspiration an uncommon outcome.

  16. Technological advances in radiotherapy of rectal cancer: opportunities and challenges.

    Science.gov (United States)

    Appelt, Ane L; Sebag-Montefiore, David

    2016-07-01

    This review summarizes the available evidence for the use of modern radiotherapy techniques for chemoradiotherapy for rectal cancer, with specific focus on intensity-modulated radiotherapy (IMRT) and volumetric arc therapy (VMAT) techniques. The dosimetric benefits of IMRT and VMAT are well established, but prospective clinical studies are limited, with phase I-II studies only. Recent years have seen the publication of a few larger prospective patient series as well as some retrospective cohorts, several of which include much needed late toxicity data. Overall results are encouraging, as toxicity levels - although varying across reports - appear lower than for 3D conformal radiotherapy. Innovative treatment techniques and strategies which may be facilitated by the use of IMRT/VMAT include simultaneously integrated tumour boost, adaptive treatment, selective sparing of specific organs to enable chemotherapy escalation, and nonsurgical management. Few prospective studies of IMRT and VMAT exist, which causes uncertainty not just in regards to the clinical benefit of these technologies but also in the optimal use. The priority for future research should be subgroups of patients who might receive relatively greater benefit from innovative treatment techniques, such as patients receiving chemoradiotherapy with definitive intent and patients treated with dose escalation.

  17. IMRT delivers lower radiation doses to dental structures than 3DRT in head and neck cancer patients.

    Science.gov (United States)

    Fregnani, Eduardo Rodrigues; Parahyba, Cláudia Joffily; Morais-Faria, Karina; Fonseca, Felipe Paiva; Ramos, Pedro Augusto Mendes; de Moraes, Fábio Yone; da Conceição Vasconcelos, Karina Gondim Moutinho; Menegussi, Gisela; Santos-Silva, Alan Roger; Brandão, Thais B

    2016-09-07

    Radiotherapy (RT) is frequently used in the treatment of head and neck cancer, but different side-effects are frequently reported, including a higher frequency of radiation-related caries, what may be consequence of direct radiation to dental tissue. The intensity-modulated radiotherapy (IMRT) was developed to improve tumor control and decrease patient's morbidity by delivering radiation beams only to tumor shapes and sparing normal tissue. However, teeth are usually not included in IMRT plannings and the real efficacy of IMRT in the dental context has not been addressed. Therefore, the aim of this study is to assess whether IMRT delivers lower radiation doses to dental structures than conformal 3D radiotherapy (3DRT). Radiation dose delivery to dental structures of 80 patients treated for head and neck cancers (oral cavity, tongue, nasopharynx and oropharynx) with IMRT (40 patients) and 3DRT (40 patients) were assessed by individually contouring tooth crowns on patients' treatment plans. Clinicopathological data were retrieved from patients' medical files. The average dose of radiation to teeth delivered by IMRT was significantly lower than with 3DRT (p = 0.007); however, only patients affected by nasopharynx and oral cavity cancers demonstrated significantly lower doses with IMRT (p = 0.012 and p = 0.011, respectively). Molars received more radiation with both 3DRT and IMRT, but the latter delivered significantly lower radiation in this group of teeth (p dental groups. Maxillary teeth received lower doses than mandibular teeth, but only IMRT delivered significantly lower doses (p = 0.011 and p = 0.003). Ipsilateral teeth received higher doses than contralateral teeth with both techniques and IMRT delivered significantly lower radiation than 3DRT for contralateral dental structures (p radiation doses to teeth than 3DRT, but only for some groups of patients and teeth, suggesting that this decrease was more likely due to the protection of

  18. Impact of Intensity-Modulated Radiotherapy on Health-Related Quality of Life for Head and Neck Cancer Patients: Matched-Pair Comparison with Conventional Radiotherapy

    International Nuclear Information System (INIS)

    Graff, Pierre; Lapeyre, Michel; Desandes, Emmanuel; Ortholan, Cecile; Bensadoun, Rene-Jean; Alfonsi, Marc; Maingon, Philippe; Giraud, Philippe; Bourhis, Jean; Marchesi, Vincent; Mege, Alice; Peiffert, Didier

    2007-01-01

    Purpose: To assess the benefit of intensity-modulated radiotherapy (IMRT) compared with conventional RT for the quality of life (QOL) of head and neck cancer survivors. Methods and Materials: Cross-sectional QOL measures (European Organization for Research and Treatment of Cancer QOL questionnaire C30 and head and neck cancer module) were used with a French multicenter cohort of patients cured of head and neck cancer (follow-up ≥ 1 year) who had received bilateral neck RT (≥ 45 Gy) as a part of their initial treatment. We compared the QOL mean scores regarding RT modality (conventional RT vs. IMRT). The patients of the two groups were matched (one to one) according to the delay between the end of RT and the timing of the QOL evaluation and the T stage. Each QOL item was divided into two relevant levels of severity: 'not severe' (responses, 'not at all' and 'a little') vs. 'severe' (responses 'quite a bit' and 'very much'). The association between the type of RT and the prevalence of severe symptoms was approximated, through multivariate analysis using the prevalence odds ratio. Results: Two comparable groups (67 pairs) were available. Better scores were observed on the head and neck cancer module QOL questionnaire for the IMRT group, especially for dry mouth and sticky saliva (p < 0.0001). Severe symptoms were more frequent with conventional RT concerning saliva modifications and oral discomfort. The adjusted prevalence odds ratios were 3.17 (p = 0.04) for dry mouth, 3.16 (p = 0.02) for sticky saliva, 3.58 (p = 0.02) for pain in the mouth, 3.35 (p = 0.04) for pain in the jaw, 2.60 (p = 0.02) for difficulties opening the mouth, 2.76 (p = 0.02) for difficulties with swallowing, and 2.68 (p = 0.03) for trouble with eating. Conclusion: The QOL assessment of head and neck cancer survivors demonstrated the benefit of IMRT, particularly in the areas of salivary dysfunction and oral discomfort

  19. IMRT for Image-Guided Single Vocal Cord Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Sarah O.S., E-mail: s.osman@erasmusmc.nl [Department of Radiation Oncology, Erasmus Medical Center-Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Astreinidou, Eleftheria; Boer, Hans C.J. de; Keskin-Cambay, Fatma; Breedveld, Sebastiaan; Voet, Peter; Al-Mamgani, Abrahim; Heijmen, Ben J.M.; Levendag, Peter C. [Department of Radiation Oncology, Erasmus Medical Center-Daniel den Hoed Cancer Center, Rotterdam (Netherlands)

    2012-02-01

    Purpose: We have been developing an image-guided single vocal cord irradiation technique to treat patients with stage T1a glottic carcinoma. In the present study, we compared the dose coverage to the affected vocal cord and the dose delivered to the organs at risk using conventional, intensity-modulated radiotherapy (IMRT) coplanar, and IMRT non-coplanar techniques. Methods and Materials: For 10 patients, conventional treatment plans using two laterally opposed wedged 6-MV photon beams were calculated in XiO (Elekta-CMS treatment planning system). An in-house IMRT/beam angle optimization algorithm was used to obtain the coplanar and non-coplanar optimized beam angles. Using these angles, the IMRT plans were generated in Monaco (IMRT treatment planning system, Elekta-CMS) with the implemented Monte Carlo dose calculation algorithm. The organs at risk included the contralateral vocal cord, arytenoids, swallowing muscles, carotid arteries, and spinal cord. The prescription dose was 66 Gy in 33 fractions. Results: For the conventional plans and coplanar and non-coplanar IMRT plans, the population-averaged mean dose {+-} standard deviation to the planning target volume was 67 {+-} 1 Gy. The contralateral vocal cord dose was reduced from 66 {+-} 1 Gy in the conventional plans to 39 {+-} 8 Gy and 36 {+-} 6 Gy in the coplanar and non-coplanar IMRT plans, respectively. IMRT consistently reduced the doses to the other organs at risk. Conclusions: Single vocal cord irradiation with IMRT resulted in good target coverage and provided significant sparing of the critical structures. This has the potential to improve the quality-of-life outcomes after RT and maintain the same local control rates.

  20. IMRT for Image-Guided Single Vocal Cord Irradiation

    International Nuclear Information System (INIS)

    Osman, Sarah O.S.; Astreinidou, Eleftheria; Boer, Hans C.J. de; Keskin-Cambay, Fatma; Breedveld, Sebastiaan; Voet, Peter; Al-Mamgani, Abrahim; Heijmen, Ben J.M.; Levendag, Peter C.

    2012-01-01

    Purpose: We have been developing an image-guided single vocal cord irradiation technique to treat patients with stage T1a glottic carcinoma. In the present study, we compared the dose coverage to the affected vocal cord and the dose delivered to the organs at risk using conventional, intensity-modulated radiotherapy (IMRT) coplanar, and IMRT non-coplanar techniques. Methods and Materials: For 10 patients, conventional treatment plans using two laterally opposed wedged 6-MV photon beams were calculated in XiO (Elekta-CMS treatment planning system). An in-house IMRT/beam angle optimization algorithm was used to obtain the coplanar and non-coplanar optimized beam angles. Using these angles, the IMRT plans were generated in Monaco (IMRT treatment planning system, Elekta-CMS) with the implemented Monte Carlo dose calculation algorithm. The organs at risk included the contralateral vocal cord, arytenoids, swallowing muscles, carotid arteries, and spinal cord. The prescription dose was 66 Gy in 33 fractions. Results: For the conventional plans and coplanar and non-coplanar IMRT plans, the population-averaged mean dose ± standard deviation to the planning target volume was 67 ± 1 Gy. The contralateral vocal cord dose was reduced from 66 ± 1 Gy in the conventional plans to 39 ± 8 Gy and 36 ± 6 Gy in the coplanar and non-coplanar IMRT plans, respectively. IMRT consistently reduced the doses to the other organs at risk. Conclusions: Single vocal cord irradiation with IMRT resulted in good target coverage and provided significant sparing of the critical structures. This has the potential to improve the quality-of-life outcomes after RT and maintain the same local control rates.

  1. Radical chemo-irradiation using intensity-modulated radiotherapy for locally advanced head and neck cancer in elderly patients: Experience from a tertiary care center in South India.

    Science.gov (United States)

    Chalissery, J R; Sudheeran, P C; Varghese, K M; Venkatesan, K

    2016-01-01

    To assess the feasibility, tolerance and response of radical chemo irradiation using Intensity modulated Radiotherapy [IMRT] in elderly patients [age >65] with locally advanced head and neck cancer. Patients aged 65 and above [range 65 to 84years] registered in oncology outpatient unit in our institution between December 2011 to 2014, with stage III and IV head and neck cancer were treated with radical dose of radiotherapy using IMRT and concurrent chemotherapy with cisplatin 40mg/sq.m weekly. Response evaluation and toxicity profile assessment was done 6 to 8 weeks after completion of treatment and 3 monthly thereafter with median follow up of 3 years. Total number of patients analysed were 47. 43(91.5%) patients tolerated 66-.70Gy of radiotherapy and 4 or more cycles of weekly chemotherapy with cisplatin. First follow up evaluation at 6 to 8 weeks showed 81% patients having complete loco regional response. Grade III skin reaction and mucositis was noticed in 24% and 47% respectively. No grade III neutropenia observed. Median follow up of 3 years showed a complete local control in 53% and overall survival of 60%. Radical chemo irradiation with IMRT in elderly patients is a feasible option. Long term local control and overall survival benefits needs to be followed up.

  2. Clinical results of conformal versus intensity-modulated radiotherapy using a focal simultaneous boost for muscle-invasive bladder cancer in elderly or medically unfit patients

    International Nuclear Information System (INIS)

    Lutkenhaus, Lotte J.; Os, Rob M. van; Bel, Arjan; Hulshof, Maarten C. C. M.

    2016-01-01

    For elderly or medically unfit patients with muscle-invasive bladder cancer, cystectomy or chemotherapy are contraindicated. This leaves radical radiotherapy as the only treatment option. It was the aim of this study to retrospectively analyze the treatment outcome and associated toxicity of conformal versus intensity-modulated radiotherapy (IMRT) using a focal simultaneous tumor boost for muscle-invasive bladder cancer in patients not suitable for cystectomy. One hundred eighteen patients with T2-4 N0-1 M0 bladder cancer were analyzed retrospectively. Median age was 80 years. Treatment consisted of either a conformal box technique or IMRT and included a simultaneous boost to the tumor. To enable an accurate boost delivery, fiducial markers were placed around the tumor. Patients were treated with 40 Gy in 20 fractions to the elective treatment volumes, and a daily tumor boost up to 55–60 Gy. Clinical complete response was seen in 87 % of patients. Three-year overall survival was 44 %, with a locoregional control rate of 73 % at 3 years. Toxicity was low, with late urinary and intestinal toxicity rates grade ≥ 2 of 14 and 5 %, respectively. The use of IMRT reduced late intestinal toxicity, whereas fiducial markers reduced acute urinary toxicity. Radical radiotherapy using a focal boost is feasible and effective for elderly or unfit patients, with a 3-year locoregional control of 73 %. Toxicity rates were low, and were reduced by the use of IMRT and fiducial markers. The online version of this article (doi:10.1186/s13014-016-0618-6) contains supplementary material, which is available to authorized users

  3. Evolution of treatment for nasopharyngeal cancer – Success and setback in the intensity-modulated radiotherapy era

    International Nuclear Information System (INIS)

    Lee, Anne W.M.; Ng, Wai Tong; Chan, Lucy L.K.; Hung, Wai Man; Chan, Connie C.C.; Sze, Henry C.K.; Chan, Oscar S.H.; Chang, Amy T.Y.; Yeung, Rebecca M.W.

    2014-01-01

    Background and purpose: To assess the therapeutic gains and setbacks as we evolved from the 2-dimensional radiotherapy (2DRT) to conformal 3-dimensional (3DRT) and to intensity-modulated (IMRT) era. Materials and methods: 1593 consecutive patients from 1994 to 2010 were retrospectively analyzed. Evolving changes in the different era included advances in staging investigation, radiotherapy technique, dose escalation, and use of chemotherapy. Results: The 3DRT era achieved significant improvement in local failure-free rate (L-FFR), disease-specific survival (DSS) and overall survival (OS). Neurological damage and bone/soft tissue necrosis were significantly reduced. However, the improvement in distant failure-free rate (D-FFR) was insignificant, and more hearing impairment occurred due to chemotherapy. Significantly higher D-FFR was achieved in the IMRT era, but L-FFR did not show further improvement. 5-Year DSS increased from 78% in the 2DRT, to 81% in the 3DRT, and 85% in the IMRT era, while the corresponding neurological toxicity rate decreased from 7.4% to 3.5% and 1.8%. Conclusions: Significant improvement in survival and reduction of serious toxicity was achieved as we evolved from 2DRT to 3DRT and IMRT era; the therapeutic ratio for all T-categories improved with more conformal techniques. Improvements in tumor control were attributed not only to advances in RT technique, but also to better imaging and increasing use of potent chemotherapy. However, it should also be noted that hearing impairment significantly increased due to chemotherapy, L-FFR reached a plateau in the 3DRT era, and it is worrisome that the result for T4 remained unsatisfactory. Besides exploring for more potent chemotherapy and innovative methods, the guideline on dose constraint should be re-visited to optimize the therapeutic ratio

  4. SU-E-T-409: Intensity Modulated Robotic Radiotherapy

    International Nuclear Information System (INIS)

    Wang, B; Jin, L; Li, J; Chen, L; Ma, C; Fan, J; Zhang, C

    2014-01-01

    Purpose: As compared with the IRIS-based models, the MLC-based CyberKnife system allows more efficient treatment delivery due to its improved coverage of large lesions and intensity modulation. The treatment delivery efficiency is mainly determined by the number of selected nodes. This study aimed to demonstrate that relatively small sets of optimally selected nodes could produce high-quality plans. Methods: The full body path of the CyberKnife system consists of 110 nodes, from which we selected various sets for 4 prostate cancer cases using our in-house beamselection software. With the selected nodes we generated IMRT plans using our in-house beamlet-based inverse-planning optimization program. We also produced IMRT plans using the MultiPlan treatment planning system (version 5.0) for the same cases. Furthermore, the nodes selected by MultiPlan were used to produce plans with our own optimization software so that we could compare the quality of the selected sets of nodes. Results: Our beam-selection program selected one node-set for each case, with the number of nodes ranging from 23 to 34. The IMRT plans based on the selected nodes and our in-house optimization program showed adequate target coverage, with favorable critical structure sparing for the cases investigated. Compared with the plans using the nodes selected by MultiPlan, the plans generated with our selected beams provided superior rectum/bladder sparing for 75% of the cases. The plans produced by MultiPlan with various numbers of nodes also suggested that the plan quality was not compromised significantly when the number of nodes was reduced. Conclusion: Our preliminary results showed that with beamletbased planning optimization, one could produce high-quality plans with an optimal set of nodes for MLC-based robotic radiotherapy. Furthermore, our beam-selection strategy could help further improve critical structure sparing

  5. Radiotherapy and HER2: point on the association of ionizing radiation and trastuzumab

    International Nuclear Information System (INIS)

    Liem, X.; Lartigau, E.

    2009-01-01

    The addition of the two treatments (trastuzumab and radiotherapy) poses the problem of their toxicity addition, particularly at the cardiac level. The data speak in favour of trastuzumab continuation during radiotherapy, taken into account the benefits. Because of the technical advances in radiotherapy ( respiratory automatic control, intensity modulated radiotherapy, I.M.R.T.) it will be possible to avoid the mediastinum structures improving then the tolerance. (N.C.)

  6. Performance evaluation of an algorithm for fast optimization of beam weights in anatomy-based intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Ranganathan, Vaitheeswaran; Sathiya Narayanan, V.K.; Bhangle, Janhavi R.; Gupta, Kamlesh K.; Basu, Sumit; Maiya, Vikram; Joseph, Jolly; Nirhali, Amit

    2010-01-01

    This study aims to evaluate the performance of a new algorithm for optimization of beam weights in anatomy-based intensity modulated radiotherapy (IMRT). The algorithm uses a numerical technique called Gaussian-Elimination that derives the optimum beam weights in an exact or non-iterative way. The distinct feature of the algorithm is that it takes only fraction of a second to optimize the beam weights, irrespective of the complexity of the given case. The algorithm has been implemented using MATLAB with a Graphical User Interface (GUI) option for convenient specification of dose constraints and penalties to different structures. We have tested the numerical and clinical capabilities of the proposed algorithm in several patient cases in comparison with KonRad inverse planning system. The comparative analysis shows that the algorithm can generate anatomy-based IMRT plans with about 50% reduction in number of MUs and 60% reduction in number of apertures, while producing dose distribution comparable to that of beamlet-based IMRT plans. Hence, it is clearly evident from the study that the proposed algorithm can be effectively used for clinical applications. (author)

  7. IMRT and radiation protection in the prostate cancer therapy; IMRT e a protecao radiologica no tratamento do cancer de prostata

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Helena C.; Silva, Andre R.M.; Oliveira, Claudia F.M., E-mail: andrerichard88@bol.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil)

    2015-07-01

    This study aims to specify the technological advances that IMRT presents relative to other traditional radiotherapy, particularly to conformal radiotherapy three dimensional (3D-TCR) and benefits compared to the side effects caused by from treatment of radiotherapy.

  8. Comparative dosimetric analysis of IMRT and VMAT (RapidArc in brain, head and neck, breast and prostate malignancies

    Directory of Open Access Journals (Sweden)

    Mirza Athar Ali

    2015-03-01

    Full Text Available Purpose: Intensity modulated radiotherapy (IMRT in the recent past has established itself as a gold standard for organs at risk (OAR sparing, target coverage and dose conformity. With the advent of a rotational treatment technology such as volumetric modulated arc therapy (VMAT, an inter-comparison is warranted to address the advantages and disadvantages of each technique. Methods: Twenty patients were selected retrospectively from our patient database. Sites included were brain, head and neck, chest wall, and prostate, with five patients for each site. For all the selected patients, both the IMRT and VMAT treatment plans were generated. Plan comparison was done in terms of OAR dose, dose homogeneity index (HI, dose conformity index (CI, target coverage, low isodose volumes, monitor units (MUs, and treatment time.Results: The VMAT showed better sparing of “parotids minus planning target volume (PTV”, spinal cord and head of femur as compared to the IMRT. The lung V40 for VMAT was lower, whereas the lung V10, contralateral lung mean dose, contralateral breast mean dose and mean body dose were lower with IMRT for chest wall cases. Both the VMAT and IMRT achieved comparable HI except for the brain site, where IMRT scored over VMAT. The CI achieved by the IMRT and VMAT were similar except for chest wall cases, whereas the VMAT achieved better dose conformity. The target coverage was comparable with both the plans. The VMAT clearly scored over IMRT in terms of average MUs (486 versus 812 respectively and average treatment time (2.54 minutes versus 5.54 minutes per treatment session. Conclusion: The VMAT (RapidArc has a potential to generate treatment plans for various anatomical sites which are comparable with the corresponding IMRT plans in terms of OAR sparing and plan quality parameters. The VMAT significantly reduces treatment time as compared to the IMRT, thus VMAT can increase the throughput of a busy radiotherapy department.

  9. Qualitative risk analysis in the process of treatment in radiation oncology for the steps performed by the technician/technologist in intensity modulated radiotherapy (lMRT)

    International Nuclear Information System (INIS)

    Teixeira, Flavia C.S.; Faria, Alessandra L.; Pereira, Danielle P.S.; Silva, Fabiana M.I.

    2013-01-01

    The efficacy of radiation therapy is to eradicate the tumor while preserving the integrity of normal tissues. Technological advances have allowed to develop techniques capable of modulating doses delivered to the target volume, providing more effective treatments. However, the operational complexity of these techniques makes the benefits offered are directly proportional to the chances of occurrences of serious errors. The objective of this work is to analyze the steps performed by the technician/technologist in Intensity Modulated Radiotherapy (IMRT), to detect possible errors in order to determine ways to mitigate them. After literature regarding errors in the radiation therapy, a prospective analysis was performed in the first half of 2012 in a radiation clinic located in the city of Rio de Janeiro, in which 11 technicians/technologists contributed to the survey data analysis. The method of risk analysis Failure Mode and Effects Analysis was used for prospective analysis of accidents/incidents, with respect to a qualitative assessment . The method allowed mapping 16 steps performed by technicians/technologists in the treatments with IMRT, identifying possible failures and their causes allowing to find ways to avoid possible errors. This analysis helped to confirm that the qualification and continuing education of technicians/technologists, allied to implement quality assurance programs and a computerized management can make a tool capable of IMRT to achieve the greatest challenge of radiotherapy. (author)

  10. Evaluation of the impact of dental artefacts on intensity-modulated radiotherapy planning for the head and neck

    International Nuclear Information System (INIS)

    Webster, Gareth J.; Rowbottom, Carl G.; Mackay, Ranald I.

    2009-01-01

    Background and purpose: High density materials create severe artefacts in the computed tomography (CT) scans used for radiotherapy dose calculations. Increased use of intensity-modulated radiotherapy (IMRT) to treat oropharyngeal cancers raises concerns over the accuracy of the resulting dose calculation. This work quantifies their impact and evaluates a simple corrective technique. Materials and methods: Fifteen oropharyngeal patients with severe artefacts were retrospectively planned with IMRT using two different CT/density look-up tables. Each plan was recalculated using a corrected CT dataset to evaluate the dose distribution delivered to the patient. Plan quality in the absence of dental artefacts was similarly assessed. A range of dosimetric and radiobiological parameters were compared pre- and post-correction. Results: Plans using a standard CT/density look-up table (density ≤1.8 g/cm 3 ) revealed inconsistent inter-patient errors, mostly within clinical acceptance, although potentially significantly reducing target coverage for individual patients. Using an extended CT/density look-up table (density ≤10.0 g/cm 3 ) greatly reduced the errors for 13/15 patients. In 2/15 patients with residual errors the CTV extended into the severely affected region and could be corrected by applying a simple manual correction. Conclusions: Use of an extended CT/density look-up table together with a simple manual bulk density correction reduces the impact of dental artefacts on head and neck IMRT planning to acceptable levels.

  11. Local Control After Intensity-Modulated Radiotherapy for Head-and-Neck Rhabdomyosarcoma

    International Nuclear Information System (INIS)

    Curtis, Amarinthia E.; Okcu, M. Fatih; Chintagumpala, Murali; Teh, Bin S.; Paulino, Arnold C.

    2009-01-01

    Purpose: To examine the patterns of failure in patients treated with intensity-modulated radiotherapy (IMRT) for head-and-neck rhabdomyosarcoma (RMS). Methods and Materials: Between 1998 and 2005, 19 patients with a diagnosis of head-and-neck RMS received IMRT at The Methodist Hospital. There were 11 male and 8 female patients, with a median age of 6 years at time of irradiation. Tumor location was parameningeal in 7, orbital in 6, and other head-and-neck RMS in 6. Chemotherapy was given to all patients, with vincristine, actinomycin D, and cyclophosphamide being the most common regimen (n = 18). The median prescribed dose was 5040 cGy. The clinical target volume included the gross tumor volume with a 1.5-cm margin. The median duration of follow-up for surviving patients was 56 months. Results: The 4-year overall survival and local control rates were 76% and 92.9%, respectively. One patient developed a local failure in the high-dose region of the radiation field; there were no marginal failures. Distant metastasis was seen in 4 patients. Overall survival was 42.9% for parameningeal sites and 100% for other sites (p < 0.01). Late toxicities were seen in 7 patients. Two secondary malignancies occurred in 1 child with embryonal RMS of the face and a p53 mutation. Conclusions: Local control was excellent in patients receiving IMRT for head-and-neck RMS. Patterns of local failure reveal no marginal failures in this group of patients

  12. Intensity modulated radiotherapy (IMRT) in France: the boost of the national funding for the new expensive innovative technologies (STIC 2001 and 2002)

    International Nuclear Information System (INIS)

    Marchal, C.; Lapeyre, M.; Bensadoun, R.J.; Gerard, J.P.; Hasle, E.; Carrere, M.O.

    2003-01-01

    The STIC 2001 and STIC 2002 projects intend to allow the implementation and the assessment of Intensity Modulated Radiation Therapy in France. IMRT is an innovative technique in which the high-dose radiation volume conforms to an accurately defined target volume with less morbidity to the surrounding normal tissues. The main medical objectives of the projects are (1) to improve the therapeutic index while decreasing acute toxicity and late sequelae (mainly xerostomia and acute mucite for head and neck tumors), which allows an increase in the radiation dose to the tumor and then a better tumor control; (2) to propose a salvage treatment to patients who locally recurred in previously irradiated sites; (3) to determine the optimal treatment guidelines for a safe use of the technique in clinical routine. Our projects also aim at comparing IMRT and 3D conformal treatments on the one hand (STIC 2001), and IMRT and conventional treatments on the other hand (STIC 2002), with regard to costs. As a matter of fact, the use of IMRT is presently limited in France because its implementation requires high investment and personnel costs. The seventeen French Regional Cancer Centres involved in the two projects intend to study the additional cost of the use IMRT in comparison with the use of standard techniques, which appears to be a step for a wide use of this technique in France. Each of the studies is two-year prospective, and includes patients with head and neck tumors treated with a curative intend (post operative or exclusive treatments for STIC 2002 and STIC 2002), and patients with a prostate cancer (STIC 2001). (author)

  13. Definitive intensity-modulated radiotherapy concurrent with systemic therapy for oropharyngeal squamous cell carcinoma: Outcomes from an integrated regional Australian cancer centre.

    Science.gov (United States)

    Masoud Rahbari, Reza; Winkley, Lauren; Hill, Jacques; Tahir, Abdul Rahim Mohammed; McKay, Michael; Last, Andrew; Shakespeare, Thomas P; Dwyer, Patrick

    2016-06-01

    Oropharyngeal squamous cell carcinoma (OPSCC) incidence has increased over the past two decades largely because of an increase in human papilloma virus (HPV)-related OPSCC. We report here outcomes of definitive radiation therapy for OPSCC with simultaneous integrated boost intensity-modulated radiotherapy (IMRT) in a regional Australian cancer centre. We retrospectively reviewed electronic medical records (EMR) of all patients treated with IMRT for head and neck cancer. We included patients who received a curative intent IMRT for OPSCC (2010-2014). Of 61 patients, 80% were men, and the median age was 57 years. Ninety percent of our patients received concurrent systemic therapy, and 68% were p16 positive. The median radiotherapy dose received was 70 Gy in 35 fractions. The median follow up for surviving patients was 22 months. Twenty-four month actuarial data show that the loco-regional recurrence free, metastasis-free MFS, cancer-specific (CaSS) and overall survival percentages were 98.3%, 92.6%, 91% and 90.3%, respectively. We did not observe grades 4 or 5 acute or late toxicities, and 10 patients (16.2%) exhibited persistent grade 3 toxicity 6 months after completing the treatment. The results from curative IMRTs for OPSCC delivered in a regional cancer centre are comparable with results published by tertiary referral centres. A long-term follow up of this patient cohort will continue for further analyses and comparisons with tertiary centres. © 2016 The Royal Australian and New Zealand College of Radiologists.

  14. Definitive intensity-modulated radiotherapy concurrent with systemic therapy for oropharyngeal squamous cell carcinoma: Outcomes from an integrated regional Australian cancer centre

    International Nuclear Information System (INIS)

    Rahbari, Reza M.; McKay, Michael; Dwyer, Patrick; Winkley, Lauren; Hill, Jacques; Last, Andrew; Tahir, Abdul R.M.; Shakespeare, Thomas P.

    2016-01-01

    Oropharyngeal squamous cell carcinoma (OPSCC) incidence has increased over the past two decades largely because of an increase in human papilloma virus (HPV)-related OPSCC. We report here outcomes of definitive radiation therapy for OPSCC with simultaneous integrated boost intensity-modulated radiotherapy (IMRT) in a regional Australian cancer centre. We retrospectively reviewed electronic medical records (EMR) of all patients treated with IMRT for head and neck cancer. We included patients who received a curative intent IMRT for OPSCC (2010–2014). Of 61 patients, 80% were men, and the median age was 57 years. Ninety percent of our patients received concurrent systemic therapy, and 68% were p16 positive. The median radiotherapy dose received was 70 Gy in 35 fractions. The median follow up for surviving patients was 22 months. Twenty-four month actuarial data show that the loco-regional recurrence free, metastasis-free MFS, cancer-specific (CaSS) and overall survival percentages were 98.3%, 92.6%, 91% and 90.3%, respectively. We did not observe grades 4 or 5 acute or late toxicities, and 10 patients (16.2%) exhibited persistent grade 3 toxicity 6 months after completing the treatment. The results from curative IMRTs for OPSCC delivered in a regional cancer centre are comparable with results published by tertiary referral centres. A long-term follow up of this patient cohort will continue for further analyses and comparisons with tertiary centres.

  15. Intensity-modulated radiotherapy with simultaneous modulated accelerated boost technique and chemotherapy in patients with nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Fareed, Muhammad M; AlAmro, Abdullah S; Bayoumi, Yasser; Tunio, Mutahir A; Ismail, Abdul S; Akasha, Rashad; Mubasher, Mohamed; Al Asiri, Mushabbab

    2013-01-01

    To present our experience of intensity-modulated radiotherapy (IMRT) with simultaneous modulated accelerated radiotherapy (SMART) boost technique in patients with nasopharyngeal carcinoma (NPC). Sixty eight patients of NPC were treated between April 2006 and December 2011 including 45 males and 23 females with mean age of 46 (range 15–78). Stage distribution was; stage I 3, stage II 7, stage III 26 and stage IV 32. Among 45 (66.2%) evaluated patients for presence of Epstein-Barr virus (EBV), 40 (88.8%) were positive for EBV. Median radiation doses delivered to gross tumor volume (GTV) and positive neck nodes were 66–70 Gy, 63 Gy to clinical target volume (CTV) and 50.4 Gy to clinically negative neck. In addition 56 (82.4%) patients with bulky tumors (T4/N2+) received neoadjuvant chemotherapy 2–3 cycles (Cisplatin/Docetaxel or Cisplatin/Epirubicin or Cisplatin/5 Flourouracil). Concurrent chemotherapy with radiation was weekly Cisplatin 40 mg/m 2 (40 patients) or Cisplatin 100 mg/m 2 (28 patients). With a median follow up of 20 months (range 3–43), one patient developed local recurrence, two experienced regional recurrences and distant failure was seen in 3 patients. Estimated 3 year disease free survival (DFS) was 94%. Three year DFS for patients with EBV was 100% as compared to 60% without EBV (p = 0.0009). Three year DFS for patients with undifferentiated histology was 98% as compared to 82% with other histologies (p = 0.02). Acute grade 3 toxicity was seen as 21 (30.9%) having G-III mucositis and 6 (8.8%) with G-III skin reactions. Late toxicity was minimal and loss of taste was seen in 3 patients (7.5%) at time of analysis. IMRT with SMART in combination with chemotherapy is feasible and effective in terms of both the clinical response and safety profile. EBV, histopathology and nodal involvement were found important prognostic factors for locoregional recurrence

  16. Fast online Monte Carlo-based IMRT planning for the MRI linear accelerator

    Science.gov (United States)

    Bol, G. H.; Hissoiny, S.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2012-03-01

    The MRI accelerator, a combination of a 6 MV linear accelerator with a 1.5 T MRI, facilitates continuous patient anatomy updates regarding translations, rotations and deformations of targets and organs at risk. Accounting for these demands high speed, online intensity-modulated radiotherapy (IMRT) re-optimization. In this paper, a fast IMRT optimization system is described which combines a GPU-based Monte Carlo dose calculation engine for online beamlet generation and a fast inverse dose optimization algorithm. Tightly conformal IMRT plans are generated for four phantom cases and two clinical cases (cervix and kidney) in the presence of the magnetic fields of 0 and 1.5 T. We show that for the presented cases the beamlet generation and optimization routines are fast enough for online IMRT planning. Furthermore, there is no influence of the magnetic field on plan quality and complexity, and equal optimization constraints at 0 and 1.5 T lead to almost identical dose distributions.

  17. Time management in radiation oncology: evaluation of time, attendance of medical staff, and resources during radiotherapy for prostate cancer: the DEGRO-QUIRO trial.

    Science.gov (United States)

    Keilholz, L; Willner, J; Thiel, H-J; Zamboglou, N; Sack, H; Popp, W

    2014-01-01

    In order to evaluate resource requirements, the German Society of Radiation Oncology (DEGRO) recorded the times needed for core procedures in the radio-oncological treatment of various cancer types within the scope of its QUIRO trial. The present study investigated the personnel and infrastructural resources required in radiotherapy of prostate cancer. The investigation was carried out in the setting of definitive radiotherapy of prostate cancer patients between July and October 2008 at two radiotherapy centers, both with well-trained staff and modern technical facilities at their disposal. Personnel attendance times and room occupancy times required for core procedures (modules) were each measured prospectively by two independently trained observers using time measurements differentiated on the basis of professional group (physician, physicist, and technician), 3D conformal (3D-cRT), and intensity-modulated radiotherapy (IMRT). Total time requirements of 983 min for 3D-cRT and 1485 min for step-and-shoot IMRT were measured for the technician (in terms of professional group) in all modules recorded and over the entire course of radiotherapy for prostate cancer (72-76 Gy). Times needed for the medical specialist/physician were 255 min (3D-cRT) and 271 min (IMRT), times of the physicist were 181 min (3D-cRT) and 213 min (IMRT). The difference in time was significant, although variations in time spans occurred primarily as a result of various problems during patient treatment. This investigation has permitted, for the first time, a realistic estimation of average personnel and infrastructural requirements for core procedures in quality-assured definitive radiotherapy of prostate cancer. The increased time needed for IMRT applies to the step-and-shoot procedure with verification measurements for each irradiation planning.

  18. Intensity modulated radiotherapy as neoadjuvant chemoradiation for the treatment of patients with locally advanced pancreatic cancer. Outcome analysis and comparison with a 3D-treated patient cohort

    Energy Technology Data Exchange (ETDEWEB)

    Combs, S.E.; Habermehl, D.; Kessel, K.; Brecht, I. [Univ. Hospital of Heidelberg (Germany). Dept. of Radiation Oncology; Bergmann, F.; Schirmacher, P. [Univ. Hospital of Heidelberg (Germany). Dept. of Pathology; Werner, J.; Buechler, M.W. [Univ. Hospital of Heidelberg (Germany). Dept. of Surgery; Jaeger, D. [National Center for Tumor Diseases (NCT), Heidelberg (Germany); Debus, J. [Univ. Hospital of Heidelberg (Germany). Dept. of Radiation Oncology; Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Clinical Cooperation Unit Radiation Oncology

    2013-09-15

    Background: To evaluate outcome after intensity modulated radiotherapy (IMRT) compared to 3D conformal radiotherapy (3D-RT) as neoadjuvant treatment in patients with locally advanced pancreatic cancer (LAPC). Materials and methods: In total, 57 patients with LAPC were treated with IMRT and chemotherapy. A median total dose of 45 Gy to the PTV {sub baseplan} and 54 Gy to the PTV {sub boost} in single doses of 1.8 Gy for the PTV {sub baseplan} and median single doses of 2.2 Gy in the PTV {sub boost} were applied. Outcomes were evaluated and compared to a large cohort of patients treated with 3D-RT. Results: Overall treatment was well tolerated in all patients and IMRT could be completed without interruptions. Median overall survival was 11 months (range 5-37.5 months). Actuarial overall survival at 12 and 24 months was 36 % and 8 %, respectively. A significant impact on overall survival could only be observed for a decrease in CA 19-9 during treatment, patients with less pre-treatment CA 19-9 than the median, as well as weight loss during treatment. Local progression-free survival was 79 % after 6 months, 39 % after 12 months, and 13 % after 24 months. No factors significantly influencing local progression-free survival could be identified. There was no difference in overall and progression-free survival between 3D-RT and IMRT. Secondary resectability was similar in both groups (26 % vs. 28 %). Toxicity was comparable and consisted mainly of hematological toxicity due to chemotherapy. Conclusion: IMRT leads to a comparable outcome compared to 3D-RT in patients with LAPC. In the future, the improved dose distribution, as well as advances in image-guided radiotherapy (IGRT) techniques, may improve the use of IMRT in local dose escalation strategies to potentially improve outcome. (orig.)

  19. A comparative study of standard intensity-modulated radiotherapy and RapidArc planning techniques for ipsilateral and bilateral head and neck irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pursley, Jennifer, E-mail: jpursley@mgh.harvard.edu [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, MA (United States); Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Damato, Antonio L.; Czerminska, Maria A.; Margalit, Danielle N. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, MA (United States); Sher, David J. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, MA (United States); Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX (United States); Tishler, Roy B. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, MA (United States)

    2017-04-01

    The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8 Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is

  20. Planning issues for IMRT

    International Nuclear Information System (INIS)

    Hoban, P.; Schneider, M.; Smee, R.

    2001-01-01

    Full text: Despite the 'inverse planning' stage of an intensity modulated radiotherapy (IMRT) treatment there remains a large number of variables that can, and must, be set manually. These variables can significantly affect the quality of the dose distribution arrived at by the optimisation. Clinical IMRT planning with the Radionics XPlan system for micro-multileaf collimator (MMLC) delivery has allowed for important lessons to be learned regarding the best beam and organ configurations prior to optimisation of beamlet weights. Important user-definable variables are beam directions, organ parameters (dose goals/penalties), and the margin (if any) around the planning target volume (PTV) used to aid coverage. Conventional stereotactic radiotherapy (SRT) treatments typically involve non-coplanar beams since there is often an advantage in terms of cranial organ at risk (OAR) sparing. IMRT can also benefit from such a configuration. The balance between target coverage and OAR sparing is largely controlled by user-defined goal doses and penalties. Once optimisation has been performed, intensity maps can be discretised into a selected number of levels. Less levels means less field segments and thus a shorter treatment time. Although IMRT beams attempt to spare structures which are in the 'beam's eye view' (BEV) of the target volume, sparing is greater if beams which minimise the involvement of OARs in their view are used. It has been found that the use of a margin is an effective way to ensure adequate PTV coverage. Alternatively the PTV penalties can be made larger. The best result is often obtained by the use of a 3-4 mm margin, whose penalty for underdosage is somewhat less than that for the PTV. Discretising the intensity maps to 4 or 5 levels is typically a good balance between shortening treatment time and not overly degrading the dose distribution. Beam configuration is still an important step in IMRT planning, even though optimisation of intensity maps is

  1. Comparison of anisotropic aperture based intensity modulated radiotherapy with 3D-conformal radiotherapy for the treatment of large lung tumors.

    Science.gov (United States)

    Simeonova, Anna; Abo-Madyan, Yasser; El-Haddad, Mostafa; Welzel, Grit; Polednik, Martin; Boggula, Ramesh; Wenz, Frederik; Lohr, Frank

    2012-02-01

    IMRT allows dose escalation for large lung tumors, but respiratory motion may compromise delivery. A treatment plan that modulates fluence predominantly in the transversal direction and leaves the fluence identical in the direction of the breathing motion may reduce this problem. Planning-CT-datasets of 20 patients with Stage I-IV non small cell lung cancer (NSCLC) formed the basis of this study. A total of two IMRT plans and one 3D plan were created for each patient. Prescription dose was 60 Gy to the CTV and 70 Gy to the GTV. For the 3D plans an energy of 18 MV photons was used. IMRT plans were calculated for 6 MV photons with 13 coplanar and with 17 noncoplanar beams. Robustness of the used method of anisotropic modulation toward breathing motion was tested in a 13-field IMRT plan. As a consequence of identical prescription doses, mean target doses were similar for 3D and IMRT. Differences between 3D and 13- and 17-field IMRT were significant for CTV Dmin (43 Gy vs. 49.1 Gy vs. 48.6 Gy; p3D: 12.5 Gy vs. 14.8 Gy vs. 15.8 Gy: p3D-plans. Heart D(max) was only marginally reduced with IMRT (3D vs. 13- vs. 17-field IMRT: 38.2 Gy vs. 36.8 Gy vs. 37.8 Gy). Simulated breathing motion caused only minor changes in the IMRT dose distribution (~0.5-1 Gy). Anisotropic modulation of IMRT improves dose delivery over 3D-RT and renders IMRT plans robust toward breathing induced organ motion, effectively preventing interplay effects. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Dosimetric comparison for volumetric modulated arc therapy and intensity-modulated radiotherapy on the left-sided chest wall and internal mammary nodes irradiation in treating post-mastectomy breast cancer

    International Nuclear Information System (INIS)

    Zhang, Qian; Yu, Xiao Li; Hu, Wei Gang; Chen, Jia Yi; Wang, Jia Zhou; Ye, Jin Song; Guo, Xiao Mao

    2015-01-01

    The aim of the study was to evaluate the dosimetric benefit of applying volumetric modulated arc therapy (VMAT) on the post-mastectomy left-sided breast cancer patients, with the involvement of internal mammary nodes (IMN). The prescription dose was 50 Gy delivered in 25 fractions, and the clinical target volume included the left chest wall (CW) and IMN. VMAT plans were created and compared with intensity-modulated radiotherapy (IMRT) plans on Pinnacle treatment planning system. Comparative endpoints were dose homogeneity within planning target volume (PTV), target dose coverage, doses to the critical structures including heart, lungs and the contralateral breast, number of monitor units and treatment delivery time. VMAT and IMRT plans showed similar PTV dose homogeneity, but, VMAT provided a better dose coverage for IMN than IMRT (p = 0.017). The mean dose (Gy), V 30 (%) and V 10 (%) for the heart were 13.5 ± 5.0 Gy, 9.9% ± 5.9% and 50.2% ± 29.0% by VMAT, and 14.0 ± 5.4 Gy, 10.6% ± 5.8% and 55.7% ± 29.6% by IMRT, respectively. The left lung mean dose (Gy), V 20 (%), V 10 (%) and the right lung V 5 (%) were significantly reduced from 14.1 ± 2.3 Gy, 24.2% ± 5.9%, 42.4% ± 11.9% and 41.2% ± 12.3% with IMRT to 12.8 ± 1.9 Gy, 21.0% ± 3.8%, 37.1% ± 8.4% and 32.1% ± 18.2% with VMAT, respectively. The mean dose to the contralateral breast was 1.7 ± 1.2 Gy with VMAT and 2.3 ± 1.6 Gy with IMRT. Finally, VMAT reduced the number of monitor units by 24% and the treatment time by 53%, as compared to IMRT. Compared to 5-be am step-and-shot IMRT, VMAT achieves similar or superior target coverage and a better normal tissue sparing, with fewer monitor units and shorter delivery time

  3. Radiotherapy of intensity modulated VS conformational in the treatment of carcinoma of the prostate. A dosimetric comparison; Radioterapia de intensidad modulada VS conformacional en el tratamiento de carcinoma de prostata. Una camparacion dosimetrica

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Martin, G.; Garcia Vicente, F.; Zapatero Laborda, A.; Bermudez Luna, R.; Roch Gonzalez, M.; Perez Gonzalez, L.; Torres Escobar, J. J.

    2013-07-01

    The intensity modulated (IMRT) radiation therapy is a technique of high conformation which, by its nature, has as one of its main directions prostate cancer radiotherapy treatment. The purpose of this work is presents results of the dosimetric indicators collected in our hospital a number of patients of carcinoma of the prostate with standard three-dimensional Conformal technique (3D-CRT) and IMRT. Aims to demonstrate and quantify with a statistical methodology that, establishing an adequate Protocol of IMRT, significant reductions in risk organ doses can be obtained by keeping the same prescription to the white volume. (Author)

  4. SU-E-T-338: Dosimetric Study of Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiation Therapy (IMRT) for Stereotactic Body Radiation Therapy (SBRT) in Early Stage Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I; Quinn, K; Seebach, A; Wang, H [OSF Saint Anthony Medical Center, Rockford, IL (United States); Yah, R [University of Illinois College of Medicine at Rockford, Rockford, IL (United States)

    2015-06-15

    Purpose: This study evaluates the dosimetric differences using volumetric modulated arc therapy (VMAT) in patients previously treated with intensity modulated radiation therapy IMRT for stereotactic body radiotherapy (SBRT) in early stage lung cancer. Methods: We evaluated 9 consecutive medically inoperable lung cancer patients at the start of the SBRT program who were treated with IMRT from November 2010 to October 2011. These patients were treated using 6 MV energy. The 9 cases were then re-planned with VMAT performed with arc therapy using 6 MV flattening filter free (FFF) energy with the same organs at risk (OARS) constraints. Data collected for the treatment plans included target coverage, beam on time, dose to OARS and gamma pass rate. Results: Five patients were T1N0 and four patients were T2N0 with all tumors less than 5 cm. The average GTV was 13.02 cm3 (0.83–40.87) and average PTV was 44.65 cm3 (14.06–118.08). The IMRT plans had a mean of 7.2 angles (6–9) and 5.4 minutes (3.6–11.1) per plan. The VMAT plans had a mean of 2.8 arcs (2–3) and 4.0 minutes (2.2–6.0) per plan. VMAT had slightly more target coverage than IMRT with average increase in D95 of 2.68% (1.24–5.73) and D99 of 3.65% (0.88–8.77). VMAT produced lower doses to all OARs. The largest reductions were in maximum doses to the spinal cord with an average reduction of 24.1%, esophagus with an average reduction of 22.1%, and lung with an average reduction in the V20 of 16.3% The mean gamma pass rate was 99.8% (99.2–100) at 3 mm and 3% for VMAT with comparable values for IMRT. Conclusion: These findings suggest that using VMAT for SBRT in early stage lung cancer is superior to IMRT in terms of dose coverage, OAR dose and a lower treatment delivery time with a similar gamma pass rate.

  5. Dose deviations caused by positional inaccuracy of multileaf collimator in intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Wang, H.C.; Chui, C.S.; Tsai, H.Y.; Chen, C.H.; Tsai, L.F.

    2008-01-01

    Introduction: Multileaf collimator (MLC) is currently a widely used system in the delivery of intensity modulated radiotherapy (IMRT). The accuracy of the multileaf position plays an important role in the final outcome of the radiation treatment. According to ICRU recommendation, a dose inaccuracy over than 5% of prescribed dose affects treatment results. In order to quantify the influence of leaf positional errors on dose distribution, we set different MLC positional inaccuracy from 0 to 6 mm for step-and-shoot IMRT in clinical cases. Two-dimensional dose distributions of radiotherapy plans with different leaf displacements generated with a commercial treatment planning system. And verification films were used to measure two-dimensional dose distributions. Then a computerized dose comparison system will be introduced to analyze the dose deviations. Materials/methods: We assumed MLC positional inaccuracy from 0 to 6 mm for step-and-shoot IMRT in clinical cases by simulating the different leaf displacements with a commercial treatment planning system. Then we transferred the treatment plans with different leaf offset that may be happened in clinical situation to linear accelerator. Verification films (Kodat EDR2) were well positioned within solid water phantoms to be irradiated by the simulated plans. The films were scanned to display two-dimensional dose distributions. Finally, we compared with the dose distributions with MLC positional inaccuracy by a two-dimensional dose comparison software to analyze the deviations in Gamma indexes and normalized agreement test (NAT) values. Results: In general, the data show that larger leaf positional error induces larger dose error. More fields used for treatment generate lesser errors. Besides, leaf position relative to a field influences the degree of dose error. A leaf lying close to the border of a field leads to a more significant dose deviation than a leaf in the center. Algorithms for intensity modulation also affect

  6. Therapeutic effect and prognostic analysis of intensity-modulated radiotherapy for primary hepatocellular carcinoma with portal vein and/or inferior vena cava tumor thrombus

    Directory of Open Access Journals (Sweden)

    HUANG Long

    2015-06-01

    Full Text Available ObjectiveTo determine the efficacy and prognostic factors of intensity-modulated radiotherapy (IMRT for primary hepatocellular carcinoma (HCC with portal vein and/or inferior vena cava tumor thrombus. MethodsTwenty-three HCC patients with portal vein and/or inferior vena cava tumor thrombus received IMRT with an 8 MV linear accelerator at the Cancer Center of General Hospital of Armed Police Forces, Anhui Medical University, from April 2008 to August 2011. A single dose of 3 to 6 Gy was delivered at five fractions per week, with a total dose of 56 to 96 Gy and a median dose of 60 Gy. Survival time was recorded, and adverse reactions were evaluated. Survival rate calculation and survival analysis were performed using the Kaplan-Meier method. Comparison of categorical between two groups was made by chi-square test. ResultsOne patient did not complete radiotherapy due to upper gastrointestinal bleeding. Of 22 patients who completed IMRT, 4 achieved complete remission and 10 achieved partial remission, with an overall response rate of 63.7%. Our analysis showed that the type of tumor thrombus and tumor size were associated with tumor response rate and were significant prognostic factors (P<0.05. The median survival time was 13.4 months. The 1-, 2-, and 3-year survival rates were 59%, 27%, and 18%, respectively. The 22 patients who completed radiotherapy did not experience acute radiation injury or late adverse outcomes such as radiation-induced liver disease. ConclusionThis study suggests IMRT is a safe and effective treatment option for HCC patients with portal vein and/or inferior vena cava tumor thrombus.

  7. Dosimetric and qualitative analysis of kinetic properties of millennium 80 multileaf collimator system for dynamic intensity modulated radiotherapy treatments

    Directory of Open Access Journals (Sweden)

    Bhardwaj Anup

    2007-01-01

    Full Text Available The aim of this paper is to analyze the positional accuracy, kinetic properties of the dynamic multileaf collimator (MLC and dosimetric evaluation of fractional dose delivery for the intensity modulated radiotherapy (IMRT for step and shoot and sliding window (dynamic techniques of Varian multileaf collimator millennium 80. Various quality assurance tests such as accuracy in leaf positioning and speed, stability of dynamic MLC output, inter and intra leaf transmission, dosimetric leaf separation and multiple carriage field verification were performed. Evaluation of standard field patterns as pyramid, peaks, wedge, chair, garden fence test, picket fence test and sweeping gap output was done. Patient dose quality assurance procedure consists of an absolute dose measurement for all fields at 5 cm depth on solid water phantom using 0.6cc water proof ion chamber and relative dose verification using Kodak EDR-2 films for all treatment fields along transverse and coronal direction using IMRT phantom. The relative dose verification was performed using Omni Pro IMRT film verification software. The tests performed showed acceptable results for commissioning the millennium 80 MLC and Clinac DHX for dynamic and step and shoot IMRT treatments.

  8. Dosimetric Comparison Between 3DCRT and IMRT Using Different Multileaf Collimators in the Treatment of Brain Tumors

    International Nuclear Information System (INIS)

    Ding Meisong; Newman, Francis M.S.; Chen Changhu; Stuhr, Kelly; Gaspar, Laurie E.

    2009-01-01

    We investigated the differences between 3-dimensional conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT), and the impact of collimator leaf-width on IMRT plans for the treatment of nonspherical brain tumors. Eight patients treated by 3DCRT with Novalis were selected. We developed 3 IMRT plans with different multileaf collimators (Novalis m3, Varian MLC-120, and Varian MLC-80) with the same treatment margins, number of beams, and gantry positions as in the 3DCRT treatment plans. Treatment planning utilized the BrainLAB treatment planning system. For each patient, the dose constraints and optimization parameters remained identical for all plans. The heterogeneity index, the percentage target coverage, critical structures, and normal tissue volumes receiving 50% of the prescription dose were calculated to compare the dosimetric difference. Equivalent uniform dose (EUD) and tumor control probability (TCP) were also introduced to evaluate the radiobiological effect for different plans. We found that IMRT significantly improved the target dose homogeneity compared to the 3DCRT. However, IMRT showed the same radiobiological effect as 3DCRT. For the brain tumors adjacent to (or partially overlapping with) critical structures, IMRT dramatically spared the volume of the critical structures to be irradiated. In IMRT plans, the smaller collimator leaf width could reduce the volume of critical structures irradiated to the 50% level for those partially overlapping with the brain tumors. For relatively large and spherical brain tumors, the smaller collimator leaf widths give no significant benefit

  9. Intensity-modulated radiotherapy using simultaneous-integrated boost for definitive treatment of locally advanced mucosal head and neck cancer: outcomes from a single-institution series

    International Nuclear Information System (INIS)

    Johnston, Meredith; Guo, Linxin; Hanna, Catherine; Back, Michael; Guminski, Alex; Lee, Adrian; Eade, Thomas; Veivers, David; Wignall, Andrew

    2013-01-01

    The study aims to report outcomes for patients treated using intensity-modulated radiotherapy (IMRT) with simultaneous-integrated boost and weekly cisplatin for American Joint Committee on Cancer stage III/IV mucosal head and neck squamous cell carcinomas (HNSCCs). Records for 67 patients treated definitively with IMRT for HNSCC were reviewed. By including only those treated with weekly cisplatin, 45 patients were eligible for analysis. Treatment outcomes, effect of patient, tumour and treatment characteristics on disease recurrence were analysed. All patients completed IMRT to 7000cGy in 35 fractions, with concurrent weekly cisplatin 40mg/m 2 (median 6 cycles). Median follow-up was 28 months for living patients. Two-year loco-regional recurrence-free, metastasis-free and overall survival were 85.4, 81.0 and 87.4%, respectively. Local recurrence occurred in three patients, and distant recurrence in eight patients. Our results show efficacy of IMRT and weekly cisplatin in the treatment of stage III/IV HNSCC at our institution with respect to loco-regional control.

  10. Physics aspects of recent and future concepts in radiotherapy

    International Nuclear Information System (INIS)

    Georg, D.

    2001-01-01

    Full text: The development of 3-D conformal radiotherapy (3D-CRT), in which the high dose volume matches as closely as possible the target volume and avoids therefore normal tissue irradiation as far as possible, has been a major theme in radiotherapy for improving the therapeutic window. Conformal radiotherapy is not a new concept but only the technological improvements of the last decade allow its clinical implementation. More recent and advanced forms of 3D-CRT are intensity modulated radiotherapy (IMRT) and stereotactic radiotherapy (SRT). IMRT uses an additional degree of freedom to achieve a new class of conformation: the variation of the primary beam intensity. SRT is based on a three dimensional stereotactic coordinate system which is correlated with the patient and the treatment facility through modern imaging technology. IMRT and SRT are related by common features, e.g. high dose gradients and small fields which require a high geometric precision. A high dosimetric and geometric precision can only be based on a detailed knowledge of the patient specific anatomy. Therefore, IMRT and SRT need to underlie multi-modality imaging studies. Both IMRT and SRT utilize photon beams and multiple field arrangements which increase the volumes of healthy tissue receiving low doses. Photons have a low selectivity along the beam direction implying that the sharp dose gradients are to be compromised. The increased low dose volume as well as the low selectivity of photon beams can be over-come by using proton or ions. Brachytherapy, a form of radiotherapy where encapsuled radioactive sources are placed directly in or in the vicinity of the tumor, is by definition conformal. Endovascular brachytherapy has become a promising new field in radiotherapy for the prevention of (re)stenosis after angioplasty. Although many clinical trials have been performed during the last years specific aspects related to endovascular brachytherapy have not been addressed clearly, such as the

  11. Irradiation of head-and-neck tumors with intensity modulated radiotherapy (IMRT). Comparison between two IMRT techniques with 3D conformal irradiation

    International Nuclear Information System (INIS)

    Heeger, Jonas

    2013-01-01

    For 12 patients with inoperable head-neck carcinoma that were treated with 3D conformal irradiation techniques additional irradiation plans using IMRT were developed. It was shown that the IMRT techniques are superior to the 3D conformal technique. The new rapid arc technique is unclear with respect to the critical organs (parotid glands, spinal canal and mandibles) but is significantly advantageous for the other normal tissue with respect to conformity (steeper dose gradients) and thus radiation dose reduction. The resulting lower irradiation time and the reduced radiation exposure being important for the treatment economy and patients' comfort should favor the more planning intensive rapid arc technique.

  12. Compensating for the impact of non-stationary spherical air cavities on IMRT dose delivery in transverse magnetic fields

    NARCIS (Netherlands)

    Bol, G H; Lagendijk, J J W; Raaymakers, B W

    2015-01-01

    With the development of the 1.5 T MRI linear accelerator and the clinical introduction of the 0.35 T ViewRay™ system, delivering intensity-modulated radiotherapy (IMRT) in a transverse magnetic field becomes increasingly important. When delivering dose in the presence of a transverse magnetic field,

  13. Spatial aspects of combined modality radiotherapy

    International Nuclear Information System (INIS)

    Bodey, Rachel K.; Evans, Phil M.; Flux, Glenn D.

    2005-01-01

    Background and purpose: A combined modality radiotherapy (CMRT) incorporates both external beam radiotherapy (EBT) and targeted radionuclide therapy (TRT) components. The spatial aspects of this combination were explored by utilising intensity modulated radiotherapy (IMRT) to provide a non-uniform EBT dose distribution. Patients and methods: Three methods of prescribing the required non-uniform distribution of EBT dose are described, based on both physical and biological criteria according to the distribution of TRT uptake. The results and consequences of these prescriptions are explored by application to three examples of patient data. Results: The planning procedure adopted allowed IMRT plans to be produced that met the prescription requirements. However, when the treatment was planned as a CMRT, compared with the use of EBT alone, more satisfactory target doses could be achieved with lower doses to normal tissues. The effects of errors in EBT delivery and in the functional data were found to cause a non-uniform prescription to tend towards the uniform case. Conclusions: The methods and results are relevant for more general biological treatment planning, in which IMRT may be used to produce dose distributions prescribed according to tumour function. The effects of delivery and dose calculation errors can have a significant impact on how such treatments should be planned

  14. Development of three-dimensional radiotherapy techniques in breast cancer

    Science.gov (United States)

    Coles, Charlotte E.

    Radiotherapy following conservation surgery decreases local relapse and death from breast cancer. Currently, the challenge is to minimise the morbidity caused by this treatment without losing efficacy. Despite many advances in radiation techniques in other sites of the body, the majority of breast cancer patients are still planned and treated using 2-dimensional simple radiotherapy techniques. In addition, breast irradiation currently consumes 30% of the UK's radiotherapy workload. Therefore, any change to more complex treatment should be of proven benefit. The primary objective of this research is to develop and evaluate novel radiotherapy techniques to decrease irradiation of normal structures and improve localisation of the tumour bed. I have developed a forward-planned intensity modulated (IMRT) breast radiotherapy technique, which has shown improved dosimetry results compared to standard breast radiotherapy. Subsequently, I have developed and implemented a phase III randomised controlled breast IMRT trial. This National Cancer Research Network adopted trial will answer an important question regarding the clinical benefit of breast IMRT. It will provide DNA samples linked with high quality clinical outcome data, for a national translational radiogenomics study investigating variation in normal tissue toxicity. Thus, patients with significant late normal tissue side effects despite good dose homogeneity will provide the best model for finding differences due to underlying genetics. I evaluated a novel technique using high definition free-hand 3-dimensional (3D) ultrasound in a phantom study, and the results suggested that this is an accurate and reproducible method for tumour bed localisation. I then compared recognised methods of tumour bed localisation with the 3D ultrasound method in a clinical study. The 3D ultrasound technique appeared to accurately represent the shape and spatial position of the tumour cavity. This tumour bed localisation research

  15. IMRT treatment of anal cancer with a scrotal shield.

    Science.gov (United States)

    Hood, Rodney C; Wu, Q Jackie; McMahon, Ryan; Czito, Brian; Willett, Christopher

    2012-01-01

    The risk of sterility in males undergoing radiotherapy in the pelvic region indicates the use of a shielding device, which offers protection to the testes for patients wishing to maintain fertility. The use of such devices in the realm of intensity-modulated radiotherapy (IMRT) in the pelvic region can pose many obstacles during simulation, treatment planning, and delivery of radiotherapy. This work focuses on the development and execution of an IMRT plan for the treatment of anal cancer using a scrotal shielding device on a clinical patient. An IMRT plan was developed using Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA), using a wide array of gantry angles as well as fixed jaw and fluence editing techniques. When possible, the entire target volume was encompassed by the treatment field. When the beam was incident on the scrotal shield, the jaw was fixed to avoid the device and the collimator rotation optimized to irradiate as much of the target as possible. This technique maximizes genital sparing and allows minimal irradiation of the gonads. When this fixed-jaw technique was found to compromise adequate coverage of the target, manual fluence editing techniques were used to avoid the shielding device. Special procedures for simulation, imaging, and treatment verification were also developed. In vivo dosimetry was used to verify and ensure acceptable dose to the gonads. The combination of these techniques resulted in a highly conformal plan that spares organs and risk and avoids the genitals as well as entrance of primary radiation onto the shielding device. Copyright © 2012 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  16. Improved Planning Time and Plan Quality Through Multicriteria Optimization for Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Craft, David L.; Hong, Theodore S.; Shih, Helen A.; Bortfeld, Thomas R.

    2012-01-01

    Purpose: To test whether multicriteria optimization (MCO) can reduce treatment planning time and improve plan quality in intensity-modulated radiotherapy (IMRT). Methods and Materials: Ten IMRT patients (5 with glioblastoma and 5 with locally advanced pancreatic cancers) were logged during the standard treatment planning procedure currently in use at Massachusetts General Hospital (MGH). Planning durations and other relevant planning information were recorded. In parallel, the patients were planned using an MCO planning system, and similar planning time data were collected. The patients were treated with the standard plan, but each MCO plan was also approved by the physicians. Plans were then blindly reviewed 3 weeks after planning by the treating physician. Results: In all cases, the treatment planning time was vastly shorter for the MCO planning (average MCO treatment planning time was 12 min; average standard planning time was 135 min). The physician involvement time in the planning process increased from an average of 4.8 min for the standard process to 8.6 min for the MCO process. In all cases, the MCO plan was blindly identified as the superior plan. Conclusions: This provides the first concrete evidence that MCO-based planning is superior in terms of both planning efficiency and dose distribution quality compared with the current trial and error–based IMRT planning approach.

  17. IMRT delivers lower radiation doses to dental structures than 3DRT in head and neck cancer patients

    International Nuclear Information System (INIS)

    Fregnani, Eduardo Rodrigues; Parahyba, Cláudia Joffily; Morais-Faria, Karina; Fonseca, Felipe Paiva; Ramos, Pedro Augusto Mendes; Moraes, Fábio Yone de; Conceição Vasconcelos, Karina Gondim Moutinho da; Menegussi, Gisela; Santos-Silva, Alan Roger; Brandão, Thais B.

    2016-01-01

    Radiotherapy (RT) is frequently used in the treatment of head and neck cancer, but different side-effects are frequently reported, including a higher frequency of radiation-related caries, what may be consequence of direct radiation to dental tissue. The intensity-modulated radiotherapy (IMRT) was developed to improve tumor control and decrease patient’s morbidity by delivering radiation beams only to tumor shapes and sparing normal tissue. However, teeth are usually not included in IMRT plannings and the real efficacy of IMRT in the dental context has not been addressed. Therefore, the aim of this study is to assess whether IMRT delivers lower radiation doses to dental structures than conformal 3D radiotherapy (3DRT). Radiation dose delivery to dental structures of 80 patients treated for head and neck cancers (oral cavity, tongue, nasopharynx and oropharynx) with IMRT (40 patients) and 3DRT (40 patients) were assessed by individually contouring tooth crowns on patients’ treatment plans. Clinicopathological data were retrieved from patients’ medical files. The average dose of radiation to teeth delivered by IMRT was significantly lower than with 3DRT (p = 0.007); however, only patients affected by nasopharynx and oral cavity cancers demonstrated significantly lower doses with IMRT (p = 0.012 and p = 0.011, respectively). Molars received more radiation with both 3DRT and IMRT, but the latter delivered significantly lower radiation in this group of teeth (p < 0.001), whereas no significant difference was found for the other dental groups. Maxillary teeth received lower doses than mandibular teeth, but only IMRT delivered significantly lower doses (p = 0.011 and p = 0.003). Ipsilateral teeth received higher doses than contralateral teeth with both techniques and IMRT delivered significantly lower radiation than 3DRT for contralateral dental structures (p < 0.001). IMRT delivered lower radiation doses to teeth than 3DRT, but only for some groups of patients and

  18. Internal Audit of a Comprehensive IMRT Program for Prostate Cancer: A Model for Centers in Developing Countries?

    International Nuclear Information System (INIS)

    Koh, Wee Yao; Ren Wei; Mukherjee, Rahul K.; Chung, Hans T.

    2009-01-01

    Purpose: With improving regional prosperity, significant capital investments have been made to rapidly expand radiotherapy capacity across Southeast Asia. Yet little has been reported on the implementation of adequate quality assurance (QA) in patient management. The objective of this study is to perform an in-depth QA assessment of our definitive intensity-modulated radiotherapy (IMRT) program for prostate cancer since its inception. Methods and Materials: The department's prostate IMRT program was modeled after that of University of California San Francisco. A departmental protocol consisting of radiotherapy volume/dose and hormone sequencing/duration and a set of 18 dose objectives to the target and critical organs were developed, and all plans were presented at the weekly departmental QA rounds. All patients treated with definitive IMRT for nonmetastatic prostate cancer were retrospectively reviewed. Protocol adherence, dosimetry data, toxicities, and outcomes were evaluated. Results: Since 2005, 76 patients received IMRT: 54 with whole-pelvis and 22 with prostate-only treatment. Of the 1,140 recorded dosimetric end points, 39 (3.3%) did not meet the protocol criteria. At QA rounds, no plans required a revision. Only one major protocol violation was observed. Two and two cases of Grade 3-4 acute and late toxicities, respectively, were observed. Five (8.8%) patients developed proctitis, but only one required argon laser therapy. Conclusions: Our comprehensive, practice-adapted QA measures appeared to ensure that we were able to consistently generate conforming IMRT plans with acceptable toxicities. These measures can be easily integrated into other clinics contemplating on developing such a program.

  19. Radiotherapy-induced secondary cancer risk for breast cancer: 3D conformal therapy versus IMRT versus VMAT

    International Nuclear Information System (INIS)

    Lee, Boram; Sung, Jiwon; Yoon, Myonggeun; Lee, Sunyoung

    2014-01-01

    This study evaluated the secondary cancer risk to various organs due to radiation treatment for breast cancer. Organ doses to an anthropomorphic phantom were measured using a photoluminescent dosimeter (PLD) for breast cancer treatment with 3D conformal radiation therapy (3D-CRT), intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT). Cancer risk based on the measured dose was calculated using the BEIR (Biological Effects of Ionizing Radiation) VII models. The secondary dose per treatment dose (50.4 Gy) to various organs ranged from 0.02 to 0.36 Gy for 3D-CRT, but from 0.07 to 8.48 Gy for IMRT and VMAT, indicating that the latter methods are associated with higher secondary radiation doses than 3D-CRT. The result of the homogeneity index in the breast target shows that the dose homogeneity of 3D-CRT was worse than those of IMRT and VMAT. The organ specific lifetime attributable risks (LARs) to the thyroid, contralateral breast and ipsilateral lung per 100 000 population were 0.02, 19.71, and 0.76 respectively for 3D-CRT, much lower than the 0.11, 463.56, and 10.59 respectively for IMRT and the 0.12, 290.32, and 12.28 respectively for VMAT. The overall estimation of LAR indicated that the radiation-induced cancer risk due to breast radiation therapy was lower with 3D-CRT than with IMRT or VMAT. (paper)

  20. SU-E-P-58: Dosimetric Study of Conventional Intensity-Modulated Radiotherapy and Knowledge-Based Radiation Therapy for Postoperation of Cervix Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C; Yin, Y [Shandong Tumor Hospital, Jinan, Shandong Provice (China)

    2015-06-15

    Purpose: To compare the dosimetric difference of the target volume and organs at risk(OARs) between conventional intensity-modulated radiotherapy(C-IMRT) and knowledge-based radiation therapy (KBRT) plans for cervix cancer. Methods: 39 patients with cervical cancer after surgery were randomly selected, 20 patient plans were used to create the model, the other 19 cases used for comparative evaluation. All plans were designed in Eclipse system. The prescription dose was 30.6Gy, 17 fractions, OARs dose satisfied to the clinical requirement. A paired t test was used to evaluate the differences of dose-volume histograms (DVH). Results: Comparaed to C-IMRT plan, the KBRT plan target can achieve the similar target dose coverage, D98,D95,D2,HI and CI had no difference (P≥0.05). The dose of rectum, bladder and femoral heads had no significant differences(P≥0.05). The time was used to design treatment plan was significant reduced. Conclusion: This study shows that postoperative radiotherapy of cervical KBRT plans can achieve the similar target and OARs dose, but the shorter designing time.

  1. Optimization of Stereotactic Radiotherapy Treatment Delivery Technique for Base-Of-Skull Meningiomas

    International Nuclear Information System (INIS)

    Clark, Brenda G.; Candish, Charles; Vollans, Emily; Gete, Ermias; Lee, Richard; Martin, Monty; Ma, Roy; McKenzie, Michael

    2008-01-01

    This study compares static conformal field (CF), intensity modulated radiotherapy (IMRT), and dynamic arcs (DA) for the stereotactic radiotherapy of base-of-skull meningiomas. Twenty-one cases of base-of-skull meningioma (median planning target volume [PTV] = 21.3 cm 3 ) previously treated with stereotactic radiotherapy were replanned with each technique. The plans were compared for Radiation Therapy Oncology Group conformity index (CI) and homogeneity index (HI), and doses to normal structures at 6 dose values from 50.4 Gy to 5.6 Gy. The mean CI was 1.75 (CF), 1.75 (DA), and 1.66 (IMRT) (p 3 , the CI (IMRT) was always superior to CI (DA) and CI (CF). At PTV sizes below 25 cm 3 , there was no significant difference in CI between each technique. There was no significant difference in HI between plans. The total volume of normal tissue receiving 50.4, 44.8, and 5.6 Gy was significantly lower when comparing IMRT to CF and DA plans (p 3 , due to improved conformity and normal tissue sparing, in particular for the brain stem and ipsilateral temporal lobe

  2. Dosimetric validation of new semiconductor diode dosimetry system for intensity modulated radiotherapy

    Directory of Open Access Journals (Sweden)

    Rajesh Kinhikar

    2012-01-01

    Full Text Available Introduction: The new diode Isorad was validated for intensity modulated radiotherapy (IMRT and the observations during the validation are reported. Materials and Methods: The validation includes intrinsic precision, post-irradiation stability, dose linearity, dose-rate effect, angular response, source to surface (SSD dependence, field size dependence, and dose calibration. Results: The intrinsic precision of the diode was more than 1% (1 σ. The linearity found in the whole range of dose analyzed was 1.93% (R 2 = 1. The minimum and maximum variation in the measured and calculated dose were found to be 0.78% (with 25 MU at ioscentre and 4.8% (with 1000 MU at isocentre, respectively. The maximal variation in angular response with respect to arbitrary angle 0° found was 1.31%. The diode exhibited a 51.7% and 35% decrease in the response in the 35 cm and 20 cm SSD range, respectively. The minimum and the maximum variation in the measured dose from the diode and calculated dose were 0.82% (5 cm × 5 cm and 3.75% (30 cm × 30 cm, respectively. At couch 270°, the response of the diode was found to vary maximum by 1.4% with ΁ 60 gantry angle. Mean variation between measured dose with diode and planned dose by TPS was found to be 1.3% (SD 0.75 for IMRT patient-specific quality assurance. Conclusion: For the evaluation of IMRT, use of cylindrical diode is strongly recommended.

  3. Establishment of action levels for quality control of IMRT flat panel: experience with the algorithm iGRiMLO

    International Nuclear Information System (INIS)

    Gonzalez, V.; Dolores, VV. de los; Pastor, V.; Martinez, J.; Gimeno, J.; Guardino, C.; Crispin, V.

    2011-01-01

    Algorithm has been used at our institution iGRiMLO scheduled for individual verification of treatment plans for intensity modulated radiotherapy (IMRT) step and shoot through portal dosimetry pretreatment of non-transmission, triggering the plan directly to a portal imaging device (EPID) of an amorphous silicon flat panel.

  4. A randomized phase II/III study of adverse events between sequential (SEQ) versus simultaneous integrated boost (SIB) intensity modulated radiation therapy (IMRT) in nasopharyngeal carcinoma; preliminary result on acute adverse events.

    Science.gov (United States)

    Songthong, Anussara P; Kannarunimit, Danita; Chakkabat, Chakkapong; Lertbutsayanukul, Chawalit

    2015-08-08

    To investigate acute and late toxicities comparing sequential (SEQ-IMRT) versus simultaneous integrated boost intensity modulated radiotherapy (SIB-IMRT) in nasopharyngeal carcinoma (NPC) patients. Newly diagnosed stage I-IVB NPC patients were randomized to receive SEQ-IMRT or SIB-IMRT, with or without chemotherapy. SEQ-IMRT consisted of two sequential radiation treatment plans: 2 Gy x 25 fractions to low-risk planning target volume (PTV-LR) followed by 2 Gy x 10 fractions to high-risk planning target volume (PTV-HR). In contrast, SIB-IMRT consisted of only one treatment plan: 2.12 Gy and 1.7 Gy x 33 fractions to PTV-HR and PTV-LR, respectively. Toxicities were evaluated according to CTCAE version 4.0. Between October 2010 and November 2013, 122 eligible patients were randomized between SEQ-IMRT (54 patients) and SIB-IMRT (68 patients). With median follow-up time of 16.8 months, there was no significant difference in toxicities between the two IMRT techniques. During chemoradiation, the most common grade 3-5 acute toxicities were mucositis (15.4% vs 13.6%, SEQ vs SIB, p = 0.788) followed by dysphagia (9.6% vs 9.1%, p = 1.000) and xerostomia (9.6% vs 7.6%, p = 0.748). During the adjuvant chemotherapy period, 25.6% and 32.7% experienced grade 3 weight loss in SEQ-IMRT and SIB-IMRT (p = 0.459). One-year overall survival (OS) and progression-free survival (PFS) were 95.8% and 95.5% in SEQ-IMRT and 98% and 90.2% in SIB-IMRT, respectively (p = 0.472 for OS and 0.069 for PFS). This randomized, phase II/III trial comparing SIB-IMRT versus SEQ-IMRT in NPC showed no statistically significant difference between both IMRT techniques in terms of acute adverse events. Short-term tumor control and survival outcome were promising.

  5. A randomized phase II/III study of adverse events between sequential (SEQ) versus simultaneous integrated boost (SIB) intensity modulated radiation therapy (IMRT) in nasopharyngeal carcinoma; preliminary result on acute adverse events

    International Nuclear Information System (INIS)

    Songthong, Anussara P.; Kannarunimit, Danita; Chakkabat, Chakkapong; Lertbutsayanukul, Chawalit

    2015-01-01

    To investigate acute and late toxicities comparing sequential (SEQ-IMRT) versus simultaneous integrated boost intensity modulated radiotherapy (SIB-IMRT) in nasopharyngeal carcinoma (NPC) patients. Newly diagnosed stage I-IVB NPC patients were randomized to receive SEQ-IMRT or SIB-IMRT, with or without chemotherapy. SEQ-IMRT consisted of two sequential radiation treatment plans: 2Gy x 25 fractions to low-risk planning target volume (PTV-LR) followed by 2Gy x 10 fractions to high-risk planning target volume (PTV-HR). In contrast, SIB-IMRT consisted of only one treatment plan: 2.12Gy and 1.7Gy x 33 fractions to PTV-HR and PTV-LR, respectively. Toxicities were evaluated according to CTCAE version 4.0. Between October 2010 and November 2013, 122 eligible patients were randomized between SEQ-IMRT (54 patients) and SIB-IMRT (68 patients). With median follow-up time of 16.8 months, there was no significant difference in toxicities between the two IMRT techniques. During chemoradiation, the most common grade 3–5 acute toxicities were mucositis (15.4 % vs 13.6 %, SEQ vs SIB, p = 0.788) followed by dysphagia (9.6 % vs 9.1 %, p = 1.000) and xerostomia (9.6 % vs 7.6 %, p = 0.748). During the adjuvant chemotherapy period, 25.6 % and 32.7 % experienced grade 3 weight loss in SEQ-IMRT and SIB-IMRT (p = 0.459). One-year overall survival (OS) and progression-free survival (PFS) were 95.8 % and 95.5 % in SEQ-IMRT and 98 % and 90.2 % in SIB-IMRT, respectively (p = 0.472 for OS and 0.069 for PFS). This randomized, phase II/III trial comparing SIB-IMRT versus SEQ-IMRT in NPC showed no statistically significant difference between both IMRT techniques in terms of acute adverse events. Short-term tumor control and survival outcome were promising

  6. IMRT and radiation protection in the prostate cancer therapy

    International Nuclear Information System (INIS)

    Santos, Helena C.; Silva, Andre R.M.; Oliveira, Claudia F.M.

    2015-01-01

    This study aims to specify the technological advances that IMRT presents relative to other traditional radiotherapy, particularly to conformal radiotherapy three dimensional (3D-TCR) and benefits compared to the side effects caused by from treatment of radiotherapy

  7. The effect of concomitant chemotherapy on parotid gland function following head and neck IMRT

    International Nuclear Information System (INIS)

    Miah, Aisha B.; Gulliford, Sarah L.; Bhide, Shreerang A.; Zaidi, Shane H.; Newbold, Kate L.; Harrington, Kevin J.; Nutting, Christopher M.

    2013-01-01

    Purpose: To determine whether concomitant chemotherapy increases the incidence of high grade xerostomia following parotid-sparing intensity-modulated radiotherapy (IMRT) in patients with locally advanced head and neck squamous cell cancer. Materials and methods: The incidence of high grade (⩾G2) acute (CTCAEv3.0) and late (LENTSOMA and RTOG) xerostomia was compared between patients treated with either IMRT or concomitant chemo-IMRT (c-IMRT) in 2 prospective studies. Parotid gland mean tolerance doses (D 50 ) were reported using non-linear logistic regression analysis. Results: Thirty-six patients received IMRT alone and 60 patients received c-IMRT. Patients received 65 Gy in 30 daily fractions to the primary site and involved nodal groups and 54 Gy in 30 fractions to elective nodal groups, mean doses to the parotid glands were comparable. Concomitant cisplatin 100 mg/m 2 was administered on days 1 and 29 of IMRT. The incidence of ⩾G2 subjective xerostomia was similar in both groups; acute-64.7% (IMRT) versus 60.3% (c-IMRT), p = 0.83; late-43% (IMRT) versus 34% (c-IMRT), p = 0.51. Recovery of parotid salivary flow at 1 year was higher with IMRT (64% vs 50%), but not statistically significant (p = 0.15). D 50 for absence of parotid saliva flow at 1 year was 23.2 Gy (95% CI: 17.7–28.7) for IMRT and 21.1 Gy (11.8–30.3) for c-IMRT. Conclusion: Concomitant c-IMRT does not increase the incidence of acute or late xerostomia relative to IMRT alone

  8. The effect of concomitant chemotherapy on parotid gland function following head and neck IMRT.

    Science.gov (United States)

    Miah, Aisha B; Gulliford, Sarah L; Bhide, Shreerang A; Zaidi, Shane H; Newbold, Kate L; Harrington, Kevin J; Nutting, Christopher M

    2013-03-01

    To determine whether concomitant chemotherapy increases the incidence of high grade xerostomia following parotid-sparing intensity-modulated radiotherapy (IMRT) in patients with locally advanced head and neck squamous cell cancer. The incidence of high grade (≥G2) acute (CTCAEv3.0) and late (LENTSOMA and RTOG) xerostomia was compared between patients treated with either IMRT or concomitant chemo-IMRT (c-IMRT) in 2 prospective studies. Parotid gland mean tolerance doses (D₅₀) were reported using non-linear logistic regression analysis. Thirty-six patients received IMRT alone and 60 patients received c-IMRT. Patients received 65 Gy in 30 daily fractions to the primary site and involved nodal groups and 54 Gy in 30 fractions to elective nodal groups, mean doses to the parotid glands were comparable. Concomitant cisplatin 100mg/m(2) was administered on days 1 and 29 of IMRT. The incidence of ≥G2 subjective xerostomia was similar in both groups; acute-64.7% (IMRT) versus 60.3% (c-IMRT), p=0.83; late-43% (IMRT) versus 34% (c-IMRT), p=0.51. Recovery of parotid salivary flow at 1 year was higher with IMRT (64% vs 50%), but not statistically significant (p=0.15). D₅₀ for absence of parotid saliva flow at 1 year was 23.2 Gy (95% CI: 17.7-28.7) for IMRT and 21.1 Gy (11.8-30.3) for c-IMRT. Concomitant c-IMRT does not increase the incidence of acute or late xerostomia relative to IMRT alone. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Thyroid V50 Highly Predictive of Hypothyroidism in Head-and-Neck Cancer Patients Treated With Intensity-modulated Radiotherapy (IMRT).

    Science.gov (United States)

    Sachdev, Sean; Refaat, Tamer; Bacchus, Ian D; Sathiaseelan, Vythialinga; Mittal, Bharat B

    2017-08-01

    Radiation-induced hypothyroidism affects a significant number of patients with head-and-neck squamous cell cancer (HNSCC). We examined detailed dosimetric and clinical parameters to better determine the risk of hypothyroidism in euthyroid HNSCC patients treated with intensity-modulated radiation therapy (IMRT). From 2006 to 2010, 75 clinically euthyroid patients with HNSCC were treated with sequential IMRT. The cohort included 59 men and 16 females with a median age of 55 years (range, 30 to 89 y) who were treated to a median dose of 70 Gy (range, 60 to 75 Gy) with concurrent chemotherapy in nearly all (95%) cases. Detailed thyroid dosimetric parameters including maximum dose, mean dose, and other parameters (eg, V50-percent volume receiving at least 50 Gy) were obtained. Freedom from hypothyroidism was evaluated using the Kaplan-Meier method. Univariate and multivariate analyses were conducted using Cox regression. After a median follow-up period of 50 months, 25 patients (33%) became hypothyroid. On univariate analysis, thyroid V50 was highly correlated with developing hypothyroidism (P=0.035). Other dosimetric paramaters including mean thyroid dose (P=0.11) and maximum thyroid dose (P=0.39) did not reach statistical significance. On multivariate analysis incorporating patient, tumor, and treatment variables, V50 remained highly statistically significant (P=0.037). Regardless of other factors, for V50>60%, the odds ratio of developing hypothyroidism was 6.76 (P=0.002). In HNSCC patients treated with IMRT, thyroid V50 highly predicts the risk of developing hypothyroidism. V50>60% puts patients at a significantly higher risk of becoming hypothyroid. This can be a useful dose constraint to consider during treatment planning.

  10. 3D radiation therapy or intensity-modulated radiotherapy for recurrent and metastatic cervical cancer: the Shanghai Cancer Hospital experience.

    Directory of Open Access Journals (Sweden)

    Su-Ping Liu

    Full Text Available We evaluate the outcomes of irradiation by using three-dimensional radiation therapy (3D-RT or intensity-modulated radiotherapy (IMRT for recurrent and metastatic cervical cancer. Between 2007 and 2010, 50 patients with recurrent and metastatic cervical cancer were treated using 3D-RT or IMRT. The median time interval between the initial treatment and the start of irradiation was 12 (6-51 months. Salvage surgery was performed before irradiation in 5 patients, and 38 patients received concurrent chemotherapy. Sixteen patients underwent 3D-RT, and 34 patients received IMRT. Median follow-up for all the patients was 18.3 months. Three-year overall survival and locoregional control were 56.1% and 59.7%, respectively. Three-year progression-free survival and disease-free survival were 65.3% and 64.3%, respectively. Nine patients developed grade 3 leukopenia. Grade 5 acute toxicity was not observed in any of the patients; however, 2 patients developed Grade 3 late toxicity. 3D-RT or IMRT is effective for the treatment of recurrent and metastatic cervical cancer, with the 3-year overall survival of 56.1%, and its complications are acceptable. Long-term follow-up and further studies are needed to confirm the role of 3D-RT or IMRT in the multimodality management of the disease.

  11. The Failure Patterns of Oral Cavity Squamous Cell Carcinoma After Intensity-Modulated Radiotherapy-University of Iowa Experience

    International Nuclear Information System (INIS)

    Yao Min; Chang, Kristi; Funk, Gerry F.; Lu Heming; Tan Huaming; Wacha, Judith C; Dornfeld, Kenneth J.; Buatti, John M.

    2007-01-01

    Purpose: Determine the failure patterns of oral cavity squamous cell carcinoma (SCC) treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Between May 2001 and July 2005, 55 patients with oral cavity SCC were treated with IMRT for curative intent. Forty-nine received postoperative IMRT, 5 definitive IMRT, and 1 neoadjuvant. Three target volumes were defined (clinical target CTV1, CTV2, and CTV3). The failure patterns were determined by coregistration or comparison of the treatment planning computed tomography to the images obtained at the time of recurrence. Results: The median follow-up for all patients was 17.1 months (range, 0.27-59.3 months). The median follow-up for living patients was 23.9 months (range, 9.3-59.3 months). Nine patients had locoregional failures: 4 local failures only, 2 regional failures only, and 3 had both local and regional failures. Five patients failed distantly; of these, 3 also had locoregional failures. The 2-year overall survival, disease-specific survival, local recurrence-free survival, locoregional recurrence-free survival, and distant disease-free survival was 68%, 74%, 85%, 82%, and 89%, respectively. The median time from treatment completion to locoregional recurrence was 4.1 months (range, 3.0-12.1 months). Except for 1 patient who failed in contralateral lower neck outside the radiation field, all failed in areas that had received a high dose of radiation. The locoregional control is strongly correlated with extracapsular extension. Conclusions: Intensity-modulated RT is effective for oral cavity SCC. Most failures are in-field failures. Further clinical studies are necessary to improve the outcomes of patients with high-risk features, particularly for those with extracapsular extension

  12. Dosimetric comparison of vaginal vault ovoid brachytherapy versus intensity-modulated radiation therapy plans in postoperative patients of cervical carcinoma following whole pelvic radiotherapy

    Directory of Open Access Journals (Sweden)

    Divya Khosla

    2014-01-01

    Full Text Available Introduction: Dosimetric study to compare high dose rate (HDR vaginal vault ovoid brachytherapy plan versus intensity-modulated radiation therapy (IMRT boost plan for doses delivered to target volume and organs at risk (OAR in postoperative patients of cervical carcinoma following whole pelvic radiotherapy (WPRT. Materials and Methods: Fifteen postoperative patients of cervical carcinoma suitable for vaginal ovoid brachytherapy following WPRT of 46 Gy/23 fractions/4.5 weeks were included. All were treated with brachytherapy (two sessions of 8.5 Gy each. The equivalent dose for IMRT was calculated by computing biologically effective dose of brachytherapy by linear quadratic model. Dose of brachytherapy (two sessions of 8.5 Gy was equivalent to IMRT dose of 26 Gy/13 fractions. Doses to target volume and OAR were compared between HDR and IMRT plans. Results: Target volume was well covered with both HDR and IMRT plans, but dose with brachytherapy was much higher (P < 0.05. Mean doses, doses to 0.1, 1, 2, and 5cc, 1/3 rd , 1/2, and 2/3 rd volume of bladder and rectum were significantly lower with HDR plans. Conclusion: In postoperative patients of cervical carcinoma, HDR brachytherapy following WPRT appears to be better than IMRT for tumor coverage and reducing dose to critical organs.

  13. A fast dose calculation method based on table lookup for IMRT optimization

    International Nuclear Information System (INIS)

    Wu Qiuwen; Djajaputra, David; Lauterbach, Marc; Wu Yan; Mohan, Radhe

    2003-01-01

    This note describes a fast dose calculation method that can be used to speed up the optimization process in intensity-modulated radiotherapy (IMRT). Most iterative optimization algorithms in IMRT require a large number of dose calculations to achieve convergence and therefore the total amount of time needed for the IMRT planning can be substantially reduced by using a faster dose calculation method. The method that is described in this note relies on an accurate dose calculation engine that is used to calculate an approximate dose kernel for each beam used in the treatment plan. Once the kernel is computed and saved, subsequent dose calculations can be done rapidly by looking up this kernel. Inaccuracies due to the approximate nature of the kernel in this method can be reduced by performing scheduled kernel updates. This fast dose calculation method can be performed more than two orders of magnitude faster than the typical superposition/convolution methods and therefore is suitable for applications in which speed is critical, e.g., in an IMRT optimization that requires a simulated annealing optimization algorithm or in a practical IMRT beam-angle optimization system. (note)

  14. Image-guided radiotherapy for effective radiotherapy delivery

    CERN Document Server

    Karlsson, Ulf Lennart

    2016-01-01

    Image-guided radiotherapy (IGRT) is a new radiotherapy technology that combines the rapid dose fall off associated with intensity-modulated radiotherapy (IMRT) and daily tumor imaging allowing for high precision tumor dose delivery and effective sparing of surrounding normal organs. The new radiation technology requires close collaboration between radiologists, nuclear medicine specialists, and radiation oncologists to avoid marginal miss. Modern diagnostic imaging such as positron emission tomography (PET) scans, positron emission tomography with Computed Tomograpgy (PET-CT), and magnetic resonance imaging (MRI) allows the radiation oncologist to target the positive tumor with high accuracy. As the tumor is well visualized during radiation treatment, the margins required to avoid geographic miss can be safely reduced , thus sparing the normal organs from excessive radiation. When the tumor is located close to critical radiosensitive structures such as the spinal cord, IGRT can deliver a high dose of radiatio...

  15. Radiotherapy in Prostate Cancer Patients With Pelvic Lymphocele After Surgery: Clinical and Dosimetric Data of 30 Patients.

    Science.gov (United States)

    Jereczek-Fossa, Barbara Alicja; Colangione, Sarah Pia; Fodor, Cristiana; Russo, Stefania; Cambria, Raffaella; Zerini, Dario; Bonora, Maria; Cecconi, Agnese; Vischioni, Barbara; Vavassori, Andrea; Matei, Deliu Victor; Bottero, Danilo; Brescia, Antonio; Musi, Gennaro; Mazzoleni, Federica; Orsi, Franco; Bonomo, Guido; De Cobelli, Ottavio; Orecchia, Roberto

    2015-08-01

    The purpose of the study was to evaluate the feasibility of irradiation after prostatectomy in the presence of asymptomatic pelvic lymphocele. The inclusion criteria for this study were: (1) patients referred for postoperative (adjuvant or salvage) intensity modulated radiotherapy (IMRT; 66-69 Gy in 30 fractions); (2) detection of postoperative pelvic lymphocele at the simulation computed tomography [CT] scan; (3) no clinical symptoms; and (4) written informed consent. Radiotherapy toxicity and occurrence of symptoms or complications of lymphocele were analyzed. Dosimetric data (IMRT plans) and the modification of lymphocele volume during radiotherapy (cone beam CT [CBCT] scan) were evaluated. Between January 2011 and July 2013, in 30 of 308 patients (10%) treated with radiotherapy after prostatectomy, pelvic lymphocele was detected on the simulation CT. The median lymphocele volume was 47 cm(3) (range, 6-467.3 cm(3)). Lymphocele was not included in planning target volume (PTV) in 8 cases (27%). Maximum dose to lymphocele was 57 Gy (range, 5.7-73.3 Gy). Radiotherapy was well tolerated. In all but 2 patients, lymphoceles remained asymptomatic. Lymphocele drainage-because of symptom occurrence-had to be performed in 2 patients during IMRT and in one patient, 7 weeks after IMRT. CBCT at the end of IMRT showed reduction in lymphocele volume and position compared with the initial data (median reduction of 37%), more pronounced in lymphoceles included in PTV. Radiotherapy after prostatectomy in the presence of pelvic asymptomatic lymphocele is feasible with acceptable acute and late toxicity. The volume of lymphoceles decreased during radiotherapy and this phenomenon might require intermediate radiotherapy plan evaluation. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Prognostic Value of Cavernous Sinus Invasion in Patients with Nasopharyngeal Carcinoma Treated with Intensity-Modulated Radiotherapy.

    Directory of Open Access Journals (Sweden)

    Jun-Fang Liao

    Full Text Available To investigate the prognostic value of cavernoussinus invasion (CSI in patients with nasopharyngeal carcinoma (NPC treated with intensity-modulated radiotherapy (IMRT.Retrospective review of data from 1,087 patients with biopsy-proven, non-metastatic NPC. All patients were diagnosed using magnetic resonance imaging (MRI scans and received IMRT as the primary treatment.The incidence of cavernoussinus invasion in this cohort was 12.1%. In univariate analysis, 5-year overall survival (OS (70.6% vs. 88.5%, P < 0.001 and distant metastasis-free survival (DMFS (71.4% vs. 87.7%, P < 0.001, but not locoregional relapse-free survival (LRFS (93.9% vs. 93.7%, P = 0.341, were significantly different between patients with and without cavernoussinus invasion. In the T4 subgroup, the 5-year OS, DMFS, and LRFS of patients with and without cavernoussinus extension were 70.6% vs. 81.9% (P = 0.011, 71.4% vs. 84.1% (P = 0.011, and 91.2% vs. 89.7% (P = 0.501, respectively. In multivariate analysis, cavernoussinus invasion was an independent prognostic factor for poorer OS (HR = 1.782; P = 0.013 and DMFS (HR = 1.771; P = 0.016, but not LRFS (HR = 0.632; P = 0.294. In patients with lymph node metastasis, the DMFS rates of patients with and without cavernoussinus invasion were significantly different (P < 0.001. Preliminaryanalysis indicated that neoadjuvant chemotherapy led to better DMFS and OS in patients with cavernoussinus invasion than concurrent chemotherapy or radiotherapy alone; however, the differences were not significant.In the IMRT era, cavernoussinus invasion remains a prognostic factor for poor DMFS and OS in NPC, even in patients with T4 disease.

  17. Intensity-modulated radiotherapy in patients with locally advanced rectal cancer reduces volume of bowel treated to high dose levels

    International Nuclear Information System (INIS)

    Urbano, M. Teresa Guerrero; Henrys, Anthony J.; Adams, Elisabeth J.; Norman, Andrew R.; Bedford, James L.; Harrington, Kevin J.; Nutting, Christopher M.; Dearnaley, David P.; Tait, Diana M.

    2006-01-01

    Purpose: To investigate the potential for intensity-modulated radiotherapy (IMRT) to spare the bowel in rectal tumors. Methods and Materials: The targets (pelvic nodal and rectal volumes), bowel, and bladder were outlined in 5 patients. All had conventional, three-dimensional conformal RT and forward-planned multisegment three-field IMRT plans compared with inverse-planned simultaneous integrated boost nine-field equally spaced IMRT plans. Equally spaced seven-field and five-field and five-field, customized, segmented IMRT plans were also evaluated. Results: Ninety-five percent of the prescribed dose covered at least 95% of both planning target volumes using all but the conventional plan (mean primary and pelvic planning target volume receiving 95% of the prescribed dose was 32.8 ± 13.7 Gy and 23.7 ± 4.87 Gy, respectively), reflecting a significant lack of coverage. The three-field forward planned IMRT plans reduced the volume of bowel irradiated to 45 Gy and 50 Gy by 26% ± 16% and 42% ± 27% compared with three-dimensional conformal RT. Additional reductions to 69 ± 51 cm 3 to 45 Gy and 20 ± 21 cm 3 to 50 Gy were obtained with the nine-field equally spaced IMRT plans-64% ± 11% and 64% ± 20% reductions compared with three-dimensional conformal RT. Reducing the number of beams and customizing the angles for the five-field equally spaced IMRT plan did not significantly reduce bowel sparing. Conclusion: The bowel volume irradiated to 45 Gy and 50 Gy was significantly reduced with IMRT, which could potentially lead to less bowel toxicity. Reducing the number of beams did not reduce bowel sparing and the five-field customized segmented IMRT plan is a reasonable technique to be tested in clinical trials

  18. Dose distribution of IMRT and 3D-CRT on treating central non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Zhu Xiaoyang; Yu Guangwei

    2010-01-01

    3D-CRT and IMRT were used in the radiation therapy of Central Non-small-cell lung cancer (NSCLC), and the dose difference of the methods was estimated. Thirty-two patients suffering with II class NSCLC were selected. Based on CT images, each patient was given 1 3D-CRT (3 dimensional conformal radiotherapy) and 2 IMRT(intensity modulated radiation therapy) treatment plans (5 fields and 7 fields), respectively, and the dose distribution was evaluated too. The results showed that PTVD mean and the PTV max , PTVD max (%) and CI of IMRT were both higher than those of 3D-CRT, but the uniformity was not as good as 3D-CRT. All indexes of lung and spinal cord treated with IMRT were lower than that treated with 3D-CRT. Moreover, there was no significance of the difference between 5 fields and 7 fields. In a conclusion, IMRT could not only decrease the target dose of NSCLC, but it can protect normal tissue from radiation damage effectively. And when IMRT was used, 5 fields might be enough. (authors)

  19. Comparative analysis of volumetric-modulated arc therapy and intensity-modulated radiotherapy for base of tongue cancer

    International Nuclear Information System (INIS)

    Nithya, L.; Arulraj, Kumar; Rathinamuthu, Sasikumar; Pandey, Manish Bhushan; Nambi Raj, N. Arunai

    2014-01-01

    The aim of this study was to compare the various dosimetric parameters of dynamic multileaf collimator (MLC) intensity modulated radiation therapy (IMRT) plans with volumetric modulated arc therapy (VMAT) plans for base of tongue cases. All plans were done in Monaco planning system for Elekta synergy linear accelerator with 80 MLC. IMRT plans were planned with nine stationary beams, and VMAT plans were done for 360° arc with single arc or dual arc. The dose to the planning target volumes (PTV) for 70, 63, and 56 Gy was compared. The dose to 95, 98, and 50% volume of PTV were analyzed. The homogeneity index (HI) and the conformity index (CI) of the PTV 70 were also analyzed. IMRT and VMAT plan showed similar dose coverage, HI, and CI. Maximum dose and dose to 1-cc volume of spinal cord, planning risk volume (PRV) cord, and brain stem were compared. IMRT plan and VMAT plan showed similar results except for the 1 cc of PRV cord that received slightly higher dose in VMAT plan. Mean dose and dose to 50% volume of right and left parotid glands were analyzed. VMAT plan gave better sparing of parotid glands than IMRT. In normal tissue dose analyses VMAT was better than IMRT. The number of monitor units (MU) required for delivering the good quality of the plan and the time required to deliver the plan for IMRT and VMAT were compared. The number of MUs for VMAT was higher than that of IMRT plans. However, the delivery time was reduced by a factor of two for VMAT compared with IMRT. VMAT plans yielded good quality of the plan compared with IMRT, resulting in reduced treatment time and improved efficiency for base of tongue cases. (author)

  20. Comparative analysis of volumetric-modulated arc therapy and intensity-modulated radiotherapy for base of tongue cancer

    Directory of Open Access Journals (Sweden)

    L Nithya

    2014-01-01

    Full Text Available The aim of this study was to compare the various dosimetric parameters of dynamic multileaf collimator (MLC intensity modulated radiation therapy (IMRT plans with volumetric modulated arc therapy (VMAT plans for base of tongue cases. All plans were done in Monaco planning system for Elekta synergy linear accelerator with 80 MLC. IMRT plans were planned with nine stationary beams, and VMAT plans were done for 360° arc with single arc or dual arc. The dose to the planning target volumes (PTV for 70, 63, and 56 Gy was compared. The dose to 95, 98, and 50% volume of PTV were analyzed. The homogeneity index (HI and the conformity index (CI of the PTV 70 were also analyzed. IMRT and VMAT plan showed similar dose coverage, HI, and CI. Maximum dose and dose to 1-cc volume of spinal cord, planning risk volume (PRV cord, and brain stem were compared. IMRT plan and VMAT plan showed similar results except for the 1 cc of PRV cord that received slightly higher dose in VMAT plan. Mean dose and dose to 50% volume of right and left parotid glands were analyzed. VMAT plan gave better sparing of parotid glands than IMRT. In normal tissue dose analyses VMAT was better than IMRT. The number of monitor units (MU required for delivering the good quality of the plan and the time required to deliver the plan for IMRT and VMAT were compared. The number of MUs for VMAT was higher than that of IMRT plans. However, the delivery time was reduced by a factor of two for VMAT compared with IMRT. VMAT plans yielded good quality of the plan compared with IMRT, resulting in reduced treatment time and improved efficiency for base of tongue cases.

  1. Sparing of the submandibular glands by intensity modulated radiotherapy in the treatment of head and neck cancer

    International Nuclear Information System (INIS)

    Saarilahti, Kauko; Kouri, Mauri; Collan, Juhani; Kangasmaeki, Aki; Atula, Timo; Joensuu, Heikki; Tenhunen, Mikko

    2006-01-01

    Background and purpose: The submandibular glands produce most of the unstimulated saliva output and are the key in prevention of radiation-related xerostomia. We investigated whether sparing of the submandibular function is feasible with intensity modulated radiotherapy (IMRT). Patients and methods: Thirty-six patients diagnosed with head and neck cancer were treated with IMRT and had at least one parotid gland excluded from the planning target volume. In a subset, of these patients (n=18) where the risk of cancer recurrence in the contralateral submandibular region was judged low, the contralateral submandibular gland was spared from full-dose irradiation. The total unstimulated and stimulated salivary flow rates and adverse effects were monitored. Results: Twelve months following IMRT mean unstimulated saliva flow was 60% of the baseline value among patients who had one submandibular gland spared and 25% among those who did not (P=0.006). Patients whose contralateral submandibular was spared reported less grade two or three xerostomia (4 vs. 11; P=0.018), and used less saliva substitutes. No cancer recurrences were detected at the vicinity of the spared glands during a median follow-up time of 31 months. Conclusions: Submandibular gland sparing with IMRT is safe in selected patients treated for head and neck cancer. It is effective in prevention of radiation-associated xerostomia

  2. Intensity-modulated radiation therapy: a review with a physics perspective.

    Science.gov (United States)

    Cho, Byungchul

    2018-03-01

    Intensity-modulated radiation therapy (IMRT) has been considered the most successful development in radiation oncology since the introduction of computed tomography into treatment planning that enabled three-dimensional conformal radiotherapy in 1980s. More than three decades have passed since the concept of inverse planning was first introduced in 1982, and IMRT has become the most important and common modality in radiation therapy. This review will present developments in inverse IMRT treatment planning and IMRT delivery using multileaf collimators, along with the associated key concepts. Other relevant issues and future perspectives are also presented.

  3. A treatment planning study comparing helical tomotherapy with intensity-modulated radiotherapy for the treatment of anal cancer

    International Nuclear Information System (INIS)

    Joseph, Kurian Jones; Syme, Alasdair; Small, Cormac; Warkentin, Heather; Quon, Harvey; Ghosh, Sunita; Field, Colin; Pervez, Nadeem; Tankel, Keith; Patel, Samir; Usmani, Nawaid; Severin, Diane; Nijjar, Tirath; Fallone, Gino; Pedersen, John

    2010-01-01

    Purpose: A planning study to compare helical tomotherapy (HT) and intensity-modulated radiotherapy (IMRT) for the treatment of anal canal cancer. Materials and methods: Sixteen (8 males and 8 females) patients with anal cancer previously treated radically were identified. HT and IMRT plans were generated and dosimetric comparisons of the plans were performed. The planning goals were to deliver 54 Gy to the tumor (PTV 54Gy ) and 48 Gy to the nodes at risk (PTV Node ) in 30 fractions. Results: PTVs: HT plans were more homogeneous for both men and women. Male patients: HT vs. IMRT: D max : 55.87 ± 0.58 vs. 59.17 ± 3.24 (p = 0.036); D min : 52.91 ± 0.36 vs. 44.09 ± 6.84 (p = 0.012); female patients: HT vs. IMRT: D max : 56.14 ± 0.71 vs. 59.47 ± 0.81 (p = 0.012); D min : 52.36 ± 0.87 vs. 50.97 ± 1.42 (p = 0.028). OARs: In general, HT plans delivered a lower dose to the peritoneal cavity, external genitalia and the bladder and IMRT plans resulted in greater sparing of the pelvic bones (iliac crest/femur) for both men and women. Iliac crest/femur: the difference was significant only for the mean V10 Gy of iliac crest in women (p ≤ 0.012). External genitalia: HT plans achieved better sparing in women compared to men (p ≤ 0.046). For men, the mean doses were 18.96 ± 3.17 and 15.72 ± 3.21 for the HT and IMRT plan, respectively (p ≤ 0.017). Skin: both techniques achieved comparable sparing of the non-target skin (p = NS). Conclusions: HT and IMRT techniques achieved comparable target dose coverage and organ sparing, whereas HT plans were more homogeneous for both men and women.

  4. Residual deficits in quality of life one year after intensity-modulated radiotherapy for patients with locally advanced head and neck cancer. Results of a prospective study

    International Nuclear Information System (INIS)

    Tribius, Silke; Raguse, Marieclaire; Voigt, Christian; Petersen, Cordula; Kruell, Andreas; Muenscher, Adrian; Groebe, Alexander; Bergelt, Corinna; Singer, Susanne

    2015-01-01

    Patients with locally advanced head and neck cancer (LAHNC) undergo life-changing treatments that can seriously affect quality of life (QoL). This prospective study examined the key QoL domains during the first year after intensity-modulated radiotherapy (IMRT) and identified predictors of these changes in order to improve patient outcomes. A consecutive series of patients with LAHNC completed the European Organisation for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire Core module (QLQ-C30) and the HNC-specific QLQ-HN35 before (t0) and at the end (t1) of definitive or adjuvant IMRT, then at 6-8 weeks (t2), 6 months (t3), and 1 year (t4) after IMRT. Patients (n = 111) completing questionnaires at all five time points were included (baseline response rate: 99 %; dropout rate between t0 and t4: 5 %). QoL deteriorated in all domains during IMRT and improved slowly during the first year thereafter. Many domains recovered to baseline values after 1 year but problems with smelling and tasting, dry mouth, and sticky saliva remained issues at this time. Increases in problems with sticky saliva were greater after 1 year in patients with definitive versus adjuvant IMRT (F = 3.5, P = 0.05). QoL in patients with LAHNC receiving IMRT takes approximately 1 year to return to baseline; some domains remain compromised after 1 year. Although IMRT aims to maintain function and QoL, patients experience long-term dry mouth and sticky saliva, particularly following definitive IMRT. Patients should be counseled at the start of therapy to reduce disappointment with the pace of recovery. (orig.) [de

  5. Patterns of relapse following surgery and postoperative intensity modulated radiotherapy for oral and oropharyngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Collan, Juhani; Vaalavirta, Leila; Kajanti, Mikael; Tenhunen, Mikko; Saarilahti, Kauko (Dept. of Oncology, Helsinki Univ. Central Hospital, and Univ. of Helsinki, Helsinki (Finland)), E-mail: kauko.saarilahti@hus.fi; Lundberg, Marie; Baeck, Leif; Maekitie, Antti (Dept. of Otorhinolaryngology - Head and Neck Surgery, Helsinki Univ. Central Hospital, and Univ. of Helsinki, Helsinki (Finland))

    2011-10-15

    Background. To investigate the patterns of relapse following intensity modulated radiotherapy (IMRT) given after radical surgery for oral and oropharyngeal squamous cell cancer. Patients and methods. One hundred and two patients with oral or oropharyngeal cancer were treated with radical surgery followed by IMRT up to a mean total dose of 60 Gy between years 2001 and 2007. Thirty-nine of the patients (%) also received concomitant weekly cisplatin. Forty of the patients had oral and 62 had oropharyngeal cancer. Data on the tumour, patient and treatment factors were collected. Following therapy the patients were followed by clinical examination, endoscopy and MRI/CT at 2- to 3-months interval up to 2 years and thereafter at 6-month intervals. Results. The mean follow-up time of the patients was 55 months (range, 26-106 months). The rate for local tumour control for the whole cohort was 92.2%: 87.5% for oral cancer patients and 96.7% for oropharyngeal cancer patients. The 5-year disease specific survival was 90.2% and 5-year overall survival 84.3%. During the follow-up eight locoregional recurrences were observed, three at the primary tumour site and one at regional nodal site and four at both sites. The mean time to primary tumour recurrence was seven months (range, 2-10 months) and to nodal recurrence seven months (range, 2-12 months). Distant metastasis occurred in six (6%) patients. The factors associated with poor prognosis were the primary tumour size and tumour site with oral cancers having worse outcome. The treatment was well tolerated with no unexpected toxicities. The most frequent late toxicity was dysphagia necessitating permanent PEG in five patients. This was correlated with the advanced primary tumour size and resulting in wide tumour excision and reconstruction. Conclusions. Surgery combined with postoperative radiotherapy given as IMRT results in low level of tumour recurrence

  6. Patterns of relapse following surgery and postoperative intensity modulated radiotherapy for oral and oropharyngeal cancer

    International Nuclear Information System (INIS)

    Collan, Juhani; Vaalavirta, Leila; Kajanti, Mikael; Tenhunen, Mikko; Saarilahti, Kauko; Lundberg, Marie; Baeck, Leif; Maekitie, Antti

    2011-01-01

    Background. To investigate the patterns of relapse following intensity modulated radiotherapy (IMRT) given after radical surgery for oral and oropharyngeal squamous cell cancer. Patients and methods. One hundred and two patients with oral or oropharyngeal cancer were treated with radical surgery followed by IMRT up to a mean total dose of 60 Gy between years 2001 and 2007. Thirty-nine of the patients (%) also received concomitant weekly cisplatin. Forty of the patients had oral and 62 had oropharyngeal cancer. Data on the tumour, patient and treatment factors were collected. Following therapy the patients were followed by clinical examination, endoscopy and MRI/CT at 2- to 3-months interval up to 2 years and thereafter at 6-month intervals. Results. The mean follow-up time of the patients was 55 months (range, 26-106 months). The rate for local tumour control for the whole cohort was 92.2%: 87.5% for oral cancer patients and 96.7% for oropharyngeal cancer patients. The 5-year disease specific survival was 90.2% and 5-year overall survival 84.3%. During the follow-up eight locoregional recurrences were observed, three at the primary tumour site and one at regional nodal site and four at both sites. The mean time to primary tumour recurrence was seven months (range, 2-10 months) and to nodal recurrence seven months (range, 2-12 months). Distant metastasis occurred in six (6%) patients. The factors associated with poor prognosis were the primary tumour size and tumour site with oral cancers having worse outcome. The treatment was well tolerated with no unexpected toxicities. The most frequent late toxicity was dysphagia necessitating permanent PEG in five patients. This was correlated with the advanced primary tumour size and resulting in wide tumour excision and reconstruction. Conclusions. Surgery combined with postoperative radiotherapy given as IMRT results in low level of tumour recurrence

  7. Anterior Myocardial Territory May Replace the Heart as Organ at Risk in Intensity-Modulated Radiotherapy for Left-Sided Breast Cancer

    International Nuclear Information System (INIS)

    Tan Wenyong; Liu Dong; Xue Chenbin; Xu Jiaozhen; Li Beihui; Chen Zhengwang; Hu Desheng; Wang Xionghong

    2012-01-01

    Purpose: We investigated whether the heart could be replaced by the anterior myocardial territory (AMT) as the organ at risk (OAR) in intensity-modulated radiotherapy (IMRT) of the breast for patients with left-sided breast cancer. Methods and Materials: Twenty-three patients with left-sided breast cancer who received postoperative radiation after breast-conserving surgery were studied. For each patient, we generated five IMRT plans including heart (H), left ventricle (LV), AMT, LV+AMT, and H+LV as the primary OARs, respectively, except both lungs and right breast, which corresponded to IMRT(H), IMRT(LV), IMRT(AMT), IMRT(LV+AMT), and IMRT(H+LV). For the planning target volumes and OARs, the parameters of dose–volume histograms were compared. Results: The homogeneity index, conformity index, and coverage index were not compromised significantly in IMRT(AMT), IMRT(LV) and IMRT(LV+ AMT), respectively, when compared with IMRT(H). The mean dose to the heart, LV, and AMT decreased 5.3–21.5% (p < 0.05), 19.9–29.5% (p < 0.05), and 13.3–24.5% (p < 0.05), respectively. Similarly, the low (e.g., V5%), middle (e.g., V20%), and high (e.g., V30%) dose-volume of the heart, LV, and AMT decreased with different levels. The mean dose and V10% of the right lung increased by 9.2% (p < 0.05) and 27.6% (p < 0.05), respectively, in IMRT(LV), and the mean dose and V5% of the right breast decreased significantly in IMRT(AMT) and IMRT(LV+AMT). IMRT(AMT) was the preferred plan and was then compared with IMRT(H+LV); the majority of dose–volume histogram parameters of OARs including the heart, LV, AMT, both lungs, and the right breast were not statistically different. However, the low dose-volume of LV increased and the middle dose-volume decreased significantly (p < 0.05) in IMRT(AMT). Also, those of the right lung (V10%, V15%) and right breast (V5%, V10%) decreased significantly (p < 0.05). Conclusions: The AMT may replace the heart as the OAR in left-sided breast IMRT after breast

  8. Single-Arc IMRT?

    International Nuclear Information System (INIS)

    Bortfeld, Thomas; Webb, Steve

    2009-01-01

    The idea of delivering intensity-modulated radiation therapy (IMRT) with a multileaf collimator in a continuous dynamic mode during a single rotation of the gantry has recently gained momentum both in research and industry. In this note we investigate the potential of this Single-Arc IMRT technique at a conceptual level. We consider the original theoretical example case from Brahme et al that got the field of IMRT started. Using analytical methods, we derive deliverable intensity 'landscapes' for Single-Arc as well as standard IMRT and Tomotherapy. We find that Tomotherapy provides the greatest flexibility in shaping intensity landscapes and that it allows one to deliver IMRT in a way that comes close to the ideal case in the transverse plane. Single-Arc and standard IMRT make compromises in different areas. Only in relatively simple cases that do not require substantial intensity modulation will Single-Arc be dosimetrically comparable to Tomotherapy. Compared with standard IMRT, Single-Arc could be dosimetrically superior in certain cases if one is willing to accept the spreading of low dose values over large volumes of normal tissue. In terms of treatment planning, Single-Arc poses a more challenging optimization problem than Tomotherapy or standard IMRT. We conclude that Single-Arc holds potential as an efficient IMRT technique especially for relatively simple cases. In very complex cases, Single-Arc may unduly compromise the quality of the dose distribution, if one tries to keep the treatment time below 2 min or so. As with all IMRT techniques, it is important to explore the tradeoff between plan quality and the efficiency of its delivery carefully for each individual case. (note)

  9. The effect on IMRT conformality of elastic tissue movement and a practical suggestion for movement compensation via the modified dynamic multileaf collimator (dMLC) technique

    International Nuclear Information System (INIS)

    Webb, S

    2005-01-01

    A major remaining problem in delivering radiotherapy, specifically intensity-modulated radiation therapy (IMRT), is the need to accommodate and correct for intrafraction movement. The developing availability of 4D computed tomographic images can potentially form the basis of the new field of image-guided IMRT. It is important to understand the effects on delivered dose of the patient breathing during IMRT and this paper models the effect which applies whether there is or is not a time component to the IMRT delivery method. It then goes on to suggest a practical correction strategy. The 'stretch-and-shift-the-planned-modulations' strategy is proposed and a practical method to deliver this is explained. This practical strategy is based on a modification of the dynamic multileaf collimator IMRT method whereby the leaves are arranged to 'breath' in tandem with the breathing of the patient. Some examples are also given from a study of mismatching the patient and leaf-correction motions

  10. Cervical Lymph Node Metastases From Unknown Primary Cancer: A Single-Institution Experience With Intensity-Modulated Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Villeneuve, Hugo, E-mail: hugo.villeneuve@umontreal.ca [Department of Radiation Oncology, Centre hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Despres, Philippe; Fortin, Bernard; Filion, Edith; Donath, David [Department of Radiation Oncology, Centre hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Soulieres, Denis [Department of Medical Oncology, Centre hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Guertin, Louis; Ayad, Tarek; Christopoulos, Apostolos [Department of Head and Neck Surgery, Centre hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Nguyen-Tan, Phuc Felix [Department of Radiation Oncology, Centre hospitalier de l' Universite de Montreal, Montreal, QC (Canada)

    2012-04-01

    Purpose: To determine the effectiveness and rate of complications of intensity-modulated radiotherapy (IMRT) in the treatment of cervical lymph node metastases from unknown primary cancer. Methods and Materials: Between February 2005 and November 2008, 25 patients with an unknown primary cancer underwent IMRT, with a median radiation dose of 70 Gy. The bilateral neck and ipsilateral putative pharyngeal mucosa were included in the target volume. All patients had squamous cell carcinoma, except for 1 patient who had adenosquamous differentiation. They were all treated with curative intent. Of the 25 included patients, 20 were men and 5 were women, with a median age of 54 years. Of these patients, 3 had Stage III, 18 had Stage IVa, and 4 had Stage IVb. Of the 25 patients, 18 (72%) received platinum-based chemotherapy in a combined-modality setting. Neck dissection was reserved for residual disease after definitive IMRT. Overall survival, disease-free survival, and locoregional control were calculated using the Kaplan-Meier method. Results: With a median follow-up of 38 months, the overall survival, disease-free survival, and locoregional control rates were all 100% at 3 years. No occurrence of primary cancer was observed during the follow-up period. The reported rates of xerostomia reduced with the interval from the completion of treatment. Nine patients (36%) reported Grade 2 or greater xerostomia at 6 months, and only 2 (8%) of them reported the same grade of salivary function toxicity after 24 months of follow-up. Conclusion: In our institution, IMRT for unknown primary cancer has provided good overall and disease-free survival in all the patients with an acceptable rate of complications. IMRT allowed us to address the bilateral neck and ipsilateral putative pharyngeal mucosa with minimal late salivary function toxicity. The use of concurrent chemotherapy and IMRT for more advanced disease led to good clinical results with reasonable toxicities.

  11. Locoregionally advanced nasopharyngeal carcinoma treated with intensity-modulated radiotherapy plus concurrent weekly cisplatin with or without neoadjuvant chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wee, Chan Woo; Keam, Bhum Suk; Heo, Dae Seog; Sung, Myung Whun; Won, Tae Bin; Wu, Hong Gyun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2015-06-15

    The outcomes of locoregionally advanced nasopharyngeal carcinoma patients treated with concurrent chemoradiation (CCRT) using intensity-modulated radiotherapy (IMRT) with/without neoadjuvant chemotherapy (NCT) were evaluated. Eighty-three patients who underwent NCT followed by CCRT (49%) or CCRT with/without adjuvant chemotherapy (51%) were reviewed. To the gross tumor, 67.5 Gy was prescribed. Weekly cisplatin was used as concurrent chemotherapy. With a median follow-up of 49.4 months, the 5-year local control, regional control, distant metastasis-free survival (DMFS), disease-free survival (DFS), and overall survival rates were 94.7%, 89.3%, 77.8%, 68.0%, and 81.8%, respectively. In multivariate analysis, the American Joint Committee on Cancer stage (p = 0.016) and N stage (p = 0.001) were negative factors for DMFS and DFS, respectively. Overall, NCT demonstrated no benefit and an increased risk of severe hematologic toxicity. However, compared to patients treated with CCRT alone, NCT showed potential of improving DMFS in stage IV patients. CCRT using IMRT resulted in excellent local control and survival outcome. Without evidence of survival benefit from phase III randomized trials, NCT should be carefully administered in locoregionally advanced nasopharyngeal carcinoma patients who are at high-risk of developing distant metastasis and radiotherapy-related mucositis. The results of ongoing trials are awaited.

  12. Locoregionally advanced nasopharyngeal carcinoma treated with intensity-modulated radiotherapy plus concurrent weekly cisplatin with or without neoadjuvant chemotherapy

    International Nuclear Information System (INIS)

    Wee, Chan Woo; Keam, Bhum Suk; Heo, Dae Seog; Sung, Myung Whun; Won, Tae Bin; Wu, Hong Gyun

    2015-01-01

    The outcomes of locoregionally advanced nasopharyngeal carcinoma patients treated with concurrent chemoradiation (CCRT) using intensity-modulated radiotherapy (IMRT) with/without neoadjuvant chemotherapy (NCT) were evaluated. Eighty-three patients who underwent NCT followed by CCRT (49%) or CCRT with/without adjuvant chemotherapy (51%) were reviewed. To the gross tumor, 67.5 Gy was prescribed. Weekly cisplatin was used as concurrent chemotherapy. With a median follow-up of 49.4 months, the 5-year local control, regional control, distant metastasis-free survival (DMFS), disease-free survival (DFS), and overall survival rates were 94.7%, 89.3%, 77.8%, 68.0%, and 81.8%, respectively. In multivariate analysis, the American Joint Committee on Cancer stage (p = 0.016) and N stage (p = 0.001) were negative factors for DMFS and DFS, respectively. Overall, NCT demonstrated no benefit and an increased risk of severe hematologic toxicity. However, compared to patients treated with CCRT alone, NCT showed potential of improving DMFS in stage IV patients. CCRT using IMRT resulted in excellent local control and survival outcome. Without evidence of survival benefit from phase III randomized trials, NCT should be carefully administered in locoregionally advanced nasopharyngeal carcinoma patients who are at high-risk of developing distant metastasis and radiotherapy-related mucositis. The results of ongoing trials are awaited

  13. Involved-Site Image-Guided Intensity Modulated Versus 3D Conformal Radiation Therapy in Early Stage Supradiaphragmatic Hodgkin Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Filippi, Andrea Riccardo, E-mail: andreariccardo.filippi@unito.it [Department of Oncology, University of Torino, Torino (Italy); Ciammella, Patrizia [Radiation Therapy Unit, Department of Oncology and Advanced Technology, ASMN Hospital IRCCS, Reggio Emilia (Italy); Piva, Cristina; Ragona, Riccardo [Department of Oncology, University of Torino, Torino (Italy); Botto, Barbara [Hematology, Città della Salute e della Scienza, Torino (Italy); Gavarotti, Paolo [Hematology, University of Torino and Città della Salute e della Scienza, Torino (Italy); Merli, Francesco [Hematology Unit, ASMN Hospital IRCCS, Reggio Emilia (Italy); Vitolo, Umberto [Hematology, Città della Salute e della Scienza, Torino (Italy); Iotti, Cinzia [Radiation Therapy Unit, Department of Oncology and Advanced Technology, ASMN Hospital IRCCS, Reggio Emilia (Italy); Ricardi, Umberto [Department of Oncology, University of Torino, Torino (Italy)

    2014-06-01

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows for margin reduction and highly conformal dose distribution, with consistent advantages in sparing of normal tissues. The purpose of this retrospective study was to compare involved-site IG-IMRT with involved-site 3D conformal RT (3D-CRT) in the treatment of early stage Hodgkin lymphoma (HL) involving the mediastinum, with efficacy and toxicity as primary clinical endpoints. Methods and Materials: We analyzed 90 stage IIA HL patients treated with either involved-site 3D-CRT or IG-IMRT between 2005 and 2012 in 2 different institutions. Inclusion criteria were favorable or unfavorable disease (according to European Organization for Research and Treatment of Cancer criteria), complete response after 3 to 4 cycles of an adriamycin- bleomycin-vinblastine-dacarbazine (ABVD) regimen plus 30 Gy as total radiation dose. Exclusion criteria were chemotherapy other than ABVD, partial response after ABVD, total radiation dose other than 30 Gy. Clinical endpoints were relapse-free survival (RFS) and acute toxicity. Results: Forty-nine patients were treated with 3D-CRT (54.4%) and 41 with IG-IMRT (45.6%). Median follow-up time was 54.2 months for 3D-CRT and 24.1 months for IG-IMRT. No differences in RFS were observed between the 2 groups, with 1 relapse each. Three-year RFS was 98.7% for 3D-CRT and 100% for IG-IMRT. Grade 2 toxicity events, mainly mucositis, were recorded in 32.7% of 3D-CRT patients (16 of 49) and in 9.8% of IG-IMRT patients (4 of 41). IG-IMRT was significantly associated with a lower incidence of grade 2 acute toxicity (P=.043). Conclusions: RFS rates at 3 years were extremely high in both groups, albeit the median follow-up time is different. Acute tolerance profiles were better for IG-IMRT than for 3D-CRT. Our preliminary results support the clinical safety and efficacy of advanced RT planning and delivery techniques in patients affected with early stage HL, achieving complete

  14. A dosimetric comparison of 3D conformal vs intensity modulated vs volumetric arc radiation therapy for muscle invasive bladder cancer

    Directory of Open Access Journals (Sweden)

    Foroudi Farshad

    2012-07-01

    Full Text Available Abstract Background To compare 3 Dimensional Conformal radiotherapy (3D-CRT with Intensity Modulated Radiotherapy (IMRT with Volumetric-Modulated Arc Therapy (VMAT for bladder cancer. Methods Radiotherapy plans for 15 patients with T2-T4N0M0 bladder cancer were prospectively developed for 3-DCRT, IMRT and VMAT using Varian Eclipse planning system. The same radiation therapist carried out all planning and the same clinical dosimetric constraints were used. 10 of the patients with well localised tumours had a simultaneous infield boost (SIB of the primary tumour planned for both IMRT and VMAT. Tumour control probabilities and normal tissue complication probabilities were calculated. Results Mean planning time for 3D-CRT, IMRT and VMAT was 30.0, 49.3, and 141.0 minutes respectively. The mean PTV conformity (CI index for 3D-CRT was 1.32, for IMRT 1.05, and for VMAT 1.05. The PTV Homogeneity (HI index was 0.080 for 3D-CRT, 0.073 for IMRT and 0.086 for VMAT. Tumour control and normal tissue complication probabilities were similar for 3D-CRT, IMRT and VMAT. The mean monitor units were 267 (range 250–293 for 3D-CRT; 824 (range 641–1083 for IMRT; and 403 (range 333–489 for VMAT (P  Conclusions VMAT is associated with similar dosimetric advantages as IMRT over 3D-CRT for muscle invasive bladder cancer. VMAT is associated with faster delivery times and less number of mean monitor units than IMRT. SIB is feasible in selected patients with localized tumours.

  15. Radiotherapy and Brachytherapy : Proceedings of the NATO Advanced Study Institute on Physics of Modern Radiotherapy & Brachytherapy

    CERN Document Server

    Lemoigne, Yves

    2009-01-01

    This volume collects a series of lectures presented at the tenth ESI School held at Archamps (FR) in November 2007 and dedicated to radiotherapy and brachytherapy. The lectures focus on the multiple facets of radiotherapy in general, including external radiotherapy (often called teletherapy) as well as internal radiotherapy (called brachytherapy). Radiotherapy strategy and dose management as well as the decisive role of digital imaging in the associated clinical practice are developed in several articles. Grouped under the discipline of Conformal Radiotherapy (CRT), numerous modern techniques, from Multi-Leaf Collimators (MLC) to Intensity Modulated RadioTherapy (IMRT), are explained in detail. The importance of treatment planning based upon patient data from digital imaging (Computed Tomography) is also underlined. Finally, despite the quasi- totality of patients being presently treated with gamma and X-rays, novel powerful tools are emerging using proton and light ions (like carbon ions) beams, bound to bec...

  16. A decision model to estimate the cost-effectiveness of intensity modulated radiation therapy (IMRT) compared to three dimensional conformal radiation therapy (3DCRT) in patients receiving radiotherapy to the prostate bed

    International Nuclear Information System (INIS)

    Carter, Hannah E.; Martin, Andrew; Schofield, Deborah; Duchesne, Gillian; Haworth, Annette; Hornby, Colin; Sidhom, Mark; Jackson, Michael

    2014-01-01

    Background: Intensity modulated radiation therapy (IMRT) is a radiation therapy technology that facilitates the delivery of an improved dose distribution with less dose to surrounding critical structures. This study estimates the longer term effectiveness and cost-effectiveness of IMRT in patients post radical prostatectomy. Methods: A Markov decision model was developed to calculate the incremental quality adjusted life years (QALYs) and costs of IMRT compared with three dimensional conformal radiation therapy (3DCRT). Costs were estimated from the perspective of the Australian health care system. Results: IMRT was both more effective and less costly than 3DCRT over 20 years, with an additional 20 QALYs gained and over $1.1 million saved per 1000 patients treated. This result was robust to plausible levels of uncertainty. Conclusions: IMRT was estimated to have a modest long term advantage over 3DCRT in terms of both improved effectiveness and reduced cost. This result was reliant on clinical judgement and interpretation of the existing literature, but provides quantitative guidance on the cost effectiveness of IMRT whilst long term trial evidence is awaited

  17. Dysphagia and aspiration after chemoradiotherapy for head-and-neck cancer: which anatomic structures are affected and can they be spared by IMRT?

    NARCIS (Netherlands)

    Eisbruch, Avraham; Schwartz, Marco; Rasch, Coen; Vineberg, Karen; Damen, Eugene; van As, Corina J.; Marsh, Robin; Pameijer, Frank A.; Balm, Alfons J. M.

    2004-01-01

    PURPOSE: To identify the anatomic structures whose damage or malfunction cause late dysphagia and aspiration after intensive chemotherapy and radiotherapy (RT) for head-and-neck cancer, and to explore whether they can be spared by intensity-modulated RT (IMRT) without compromising target RT. METHODS

  18. Long-term disease control and toxicity outcomes following surgery and intensity modulated radiation therapy (IMRT) in pediatric craniopharyngioma.

    Science.gov (United States)

    Greenfield, Brad J; Okcu, Mehmet F; Baxter, Patricia A; Chintagumpala, Murali; Teh, Bin S; Dauser, Robert C; Su, Jack; Desai, Snehal S; Paulino, Arnold C

    2015-02-01

    To report long-term progression-free survival (PFS) and late-toxicity outcomes in pediatric craniopharyngioma patients treated with IMRT. Twenty-four children were treated with IMRT to a median dose of 50.4Gy (range, 49.8-54Gy). The clinical target volume (CTV) was the gross tumor volume (GTV) with a 1cm margin. The planning target volume (PTV) was the CTV with a 3-5mm margin. Median follow-up was 107.3months. The 5- and 10-year PFS rates were 65.8% and 60.7%. The 5- and 10-year cystic PFS rates were 70.2% and 65.2% while the 5- and 10-year solid PFS were the same at 90.7%. Endocrinopathy was seen in 42% at initial diagnosis and in 74% after surgical intervention, prior to IMRT. Hypothalamic dysfunction and visual deficits were associated with increasing PTV and number of surgical interventions. IMRT is a viable treatment option for pediatric craniopharyngioma. Despite the use of IMRT, majority of the craniopharyngioma patients experienced long-term toxicity, many of which present prior to radiotherapy. Limitations of retrospective analyses on small patient cohort elicit the need for a prospective multi-institutional study to determine the absolute benefit of IMRT in pediatric craniopharyngioma. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Long-term disease control and toxicity outcomes following surgery and intensity modulated radiation therapy (IMRT) in pediatric craniopharyngioma

    International Nuclear Information System (INIS)

    Greenfield, Brad J.; Okcu, Mehmet F.; Baxter, Patricia A.; Chintagumpala, Murali; Teh, Bin S.; Dauser, Robert C.; Su, Jack; Desai, Snehal S.; Paulino, Arnold C.

    2015-01-01

    Purpose: To report long-term progression-free survival (PFS) and late-toxicity outcomes in pediatric craniopharyngioma patients treated with IMRT. Patients and methods: Twenty-four children were treated with IMRT to a median dose of 50.4 Gy (range, 49.8–54 Gy). The clinical target volume (CTV) was the gross tumor volume (GTV) with a 1 cm margin. The planning target volume (PTV) was the CTV with a 3–5 mm margin. Median follow-up was 107.3 months. Results: The 5- and 10-year PFS rates were 65.8% and 60.7%. The 5- and 10-year cystic PFS rates were 70.2% and 65.2% while the 5- and 10-year solid PFS were the same at 90.7%. Endocrinopathy was seen in 42% at initial diagnosis and in 74% after surgical intervention, prior to IMRT. Hypothalamic dysfunction and visual deficits were associated with increasing PTV and number of surgical interventions. Conclusions: IMRT is a viable treatment option for pediatric craniopharyngioma. Despite the use of IMRT, majority of the craniopharyngioma patients experienced long-term toxicity, many of which present prior to radiotherapy. Limitations of retrospective analyses on small patient cohort elicit the need for a prospective multi-institutional study to determine the absolute benefit of IMRT in pediatric craniopharyngioma

  20. Whole-pelvic radiotherapy with spot-scanning proton beams for uterine cervical cancer: a planning study

    International Nuclear Information System (INIS)

    Hashimoto, Shingo; Shibamoto, Yuta; Iwata, Hiromitsu; Ogino, Hiroyuki; Shibata, Hiroki; Toshito, Toshiyuki; Sugie, Chikao; Mizoe, Jun-etsu

    2016-01-01

    The aim of this study was to compare the dosimetric parameters of whole-pelvic radiotherapy (WPRT) for cervical cancer among plans involving 3D conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), or spot-scanning proton therapy (SSPT). The dose distributions of 3D-CRT-, IMRT-, and SSPT-based WPRT plans were compared in 10 patients with cervical cancer. All of the patients were treated with a prescribed dose of 50.4 Gy in 1.8-Gy daily fractions, and all of the plans involved the same planning target volume (PTV) constrictions. A 3D-CRT plan involving a four-field box, an IMRT plan involving seven coplanar fields, and an SSPT plan involving four fields were created. The median PTV D95% did not differ between the 3D-CRT, IMRT and SSPT plans. The median conformity index 95% and homogeneity index of the IMRT and SSPT were better than those of the 3D-CRT. The homogeneity index of the SSPT was better than that of the IMRT. SSPT resulted in lower median V20 values for the bladder wall, small intestine, colon, bilateral femoral heads, skin, and pelvic bone than IMRT. Comparing the Dmean values, SSPT spared the small intestine, colon, bilateral femoral heads, skin and pelvic bone to a greater extent than the other modalities. SSPT can reduce the irradiated volume of the organs at risk compared with 3D-CRT and IMRT, while maintaining excellent PTV coverage. Further investigations of SSPT are warranted to assess its role in the treatment of cervical cancer.

  1. Dose-Effect Relationships for the Submandibular Salivary Glands and Implications for Their Sparing by Intensity Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Murdoch-Kinch, Carol-Anne; Kim, Hyugnjin M.; Vineberg, Karen A.; Ship, Jonathan; Eisbruch, Avraham

    2008-01-01

    Purpose: Submandibular salivary glands (SMGs) dysfunction contributes to xerostomia after radiotherapy (RT) of head-and-neck (HN) cancer. We assessed SMG dose-response relationships and their implications for sparing these glands by intensity-modulated radiotherapy (IMRT). Methods and Materials: A total of 148 HN cancer patients underwent unstimulated and stimulated SMG salivary flow rate measurements selectively from Wharton's duct orifices, before RT and periodically through 24 months after RT. Correlations of flow rates and mean SMG doses were modeled throughout all time points. IMRT replanning in 8 patients whose contralateral level I was not a target incorporated the results in a new cost function aiming to spare contralateral SMGs. Results: Stimulated SMG flow rates decreased exponentially by (1.2%) Gy as mean doses increased up to 39 Gy threshold, and then plateaued near zero. At mean doses ≤39 Gy, but not higher, flow rates recovered over time at 2.2%/month. Similarly, the unstimulated salivary flow rates decreased exponentially by (3%) Gy as mean dose increased and recovered over time if mean dose was <39 Gy. IMRT replanning reduced mean contralateral SMG dose by average 12 Gy, achieving ≤39 Gy in 5 of 8 patients, without target underdosing, increasing the mean doses to the parotid glands and swallowing structures by average 2-3 Gy. Conclusions: SMG salivary flow rates depended on mean dose with recovery over time up to a threshold of 39 Gy. Substantial SMG dose reduction to below this threshold and without target underdosing is feasible in some patients, at the expense of modestly higher doses to some other organs

  2. Ototoxicity evaluation in medulloblastoma patients treated with involved field boost using intensity-modulated radiation therapy (IMRT): a retrospective review

    International Nuclear Information System (INIS)

    Vieira, Wilson Albieri; Nadalin, Wladimir; Odone Filho, Vicente; Petrilli, Antonio Sergio; Weltman, Eduardo; Chen, Michael Jenwei; Silva, Nasjla Saba da; Cappellano, Andrea Maria; Pereira, Liliane Desgualdo; Gonçalves, Maria Ines Rabelo; Ferrigno, Robson; Hanriot, Rodrigo Morais

    2014-01-01

    Ototoxicity is a known side effect of combined radiation therapy and cisplatin chemotherapy for the treatment of medulloblastoma. The delivery of an involved field boost by intensity modulated radiation therapy (IMRT) may reduce the dose to the inner ear when compared with conventional radiotherapy. The dose of cisplatin may also affect the risk of ototoxicity. A retrospective study was performed to evaluate the impact of involved field boost using IMRT and cisplatin dose on the rate of ototoxicity. Data from 41 medulloblastoma patients treated with IMRT were collected. Overall and disease-free survival rates were calculated by Kaplan-Meier method Hearing function was graded according to toxicity criteria of Pediatric Oncology Group (POG). Doses to inner ear and total cisplatin dose were correlated with hearing function by univariate and multivariate data analysis. After a mean follow-up of 44 months (range: 14 to 72 months), 37 patients remained alive, with two recurrences, both in spine with CSF involvement, resulting in a disease free-survival and overall survival of 85.2% and 90.2%, respectively. Seven patients (17%) experienced POG Grade 3 or 4 toxicity. Cisplatin dose was a significant factor for hearing loss in univariate analysis (p < 0.03). In multivariate analysis, median dose to inner ear was significantly associated with hearing loss (p < 0.01). POG grade 3 and 4 toxicity were uncommon with median doses to the inner ear bellow 42 Gy (p < 0.05) and total cisplatin dose of less than 375 mg/m 2 (p < 0.01). IMRT leads to a low rate of severe ototoxicity. Median radiation dose to auditory apparatus should be kept below 42 Gy. Cisplatin doses should not exceed 375 mg/m 2

  3. Soft-Rt: software for IMRT simulations based on MCNPX

    International Nuclear Information System (INIS)

    Ferreira F, T. C.; Campos, T.

    2015-10-01

    Intensity Modulated Radiation Therapy (IMRT) is an advanced treatment technique, widely used in external radiotherapy. This paper presents the Soft-Rt which allows the simulation of an entire IMRT treatment protocol. The Soft-Rt performs a full three-dimensional rendering of a set of patient images, including the definitions of region of interest with organs in risk, and the target tumor volume and margins (PTV). Thus, a more accurate analysis and planning can be performed, taking into account the features and orientation of the radiation beams. The exposed tissues as well as the amount of absorbed dose is depicted in healthy and/or cancerous tissues. As conclusion, Soft-Rt can predict dose on the PTV accurately, preserving the surrounding healthy tissues. Soft-Rt is coupled with SISCODES code. The SISCODES code is firstly applied to segment the set of CT or MRI patient images in distinct tissues pointing out its respective density and chemical compositions. Later, the voxel model is export to the Soft-Rt IMRT planning module in which a full treatment planning is created. All geometrical parameters are sent to the general purpose Monte Carlo transport code - MCNP - to simulate the interaction of each incident beam towards to the PTV avoiding organs in risk. The normalized dose results are exported to the Soft-Rt out-module, in which the three-dimensional model visualization is shown in a transparent glass procedure adopting gray scale for the dependence on the mass density of the correlated tissue; while, a color scale to depict dose values in a superimpose protocol. (Author)

  4. Soft-Rt: software for IMRT simulations based on MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira F, T. C. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Campos, T., E-mail: tcff01@gmail.com [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Programa de Pos Graduacao em Ciencias e Tecnicas Nucleares, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Intensity Modulated Radiation Therapy (IMRT) is an advanced treatment technique, widely used in external radiotherapy. This paper presents the Soft-Rt which allows the simulation of an entire IMRT treatment protocol. The Soft-Rt performs a full three-dimensional rendering of a set of patient images, including the definitions of region of interest with organs in risk, and the target tumor volume and margins (PTV). Thus, a more accurate analysis and planning can be performed, taking into account the features and orientation of the radiation beams. The exposed tissues as well as the amount of absorbed dose is depicted in healthy and/or cancerous tissues. As conclusion, Soft-Rt can predict dose on the PTV accurately, preserving the surrounding healthy tissues. Soft-Rt is coupled with SISCODES code. The SISCODES code is firstly applied to segment the set of CT or MRI patient images in distinct tissues pointing out its respective density and chemical compositions. Later, the voxel model is export to the Soft-Rt IMRT planning module in which a full treatment planning is created. All geometrical parameters are sent to the general purpose Monte Carlo transport code - MCNP - to simulate the interaction of each incident beam towards to the PTV avoiding organs in risk. The normalized dose results are exported to the Soft-Rt out-module, in which the three-dimensional model visualization is shown in a transparent glass procedure adopting gray scale for the dependence on the mass density of the correlated tissue; while, a color scale to depict dose values in a superimpose protocol. (Author)

  5. Dosimetric comparison using different multileaf collimeters in intensity-modulated radiotherapy for upper thoracic esophageal cancer

    Directory of Open Access Journals (Sweden)

    Fu Yuchuan

    2010-07-01

    Full Text Available Abstract Purpose To study the impacts of multileaf collimators (MLC width [standard MLC width of 10 mm (sMLC and micro-MLC width of 4 mm (mMLC] in the intensity-modulated radiotherapy (IMRT planning for the upper thoracic esophageal cancer (UTEC. Methods and materials 10 patients with UTEC were retrospectively planned with the sMLC and the mMLC. The monitor unites (MUs and dose volume histogram-based parameters [conformity index (CI and homogeneous index (HI] were compared between the IMRT plans with sMLC and with mMLC. Results The IMRT plans with the mMLC were more efficient (average MUs: 703.1 ± 68.3 than plans with the sMLC (average MUs: 833.4 ± 73.8 (p p 5 (3260.3 ± 374.0 vs 3404.5 ± 374.4/gEUD (1815.1 ± 281.7 vs 1849.2 ± 297.6 of the spinal cord, the V10 (33.2 ± 6.5 vs 34.0 ± 6.7, V20 (16.0 ± 4.6 vs 16.6 ± 4.7, MLD (866.2 ± 174.1 vs 887.9 ± 172.1 and gEUD (938.6 ± 175.2 vs 956.8 ± 171.0 of the lungs were observed in the plans with the mMLC, respectively (p Conclusions Comparing to the sMLC, the mMLC not only demonstrated higher efficiencies and more optimal target coverage, but also considerably improved the dose sparing of OARs in the IMRT planning for UTEC.

  6. Benchmarking Dosimetric Quality Assessment of Prostate Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Senthi, Sashendra; Gill, Suki S.; Haworth, Annette; Kron, Tomas; Cramb, Jim; Rolfo, Aldo; Thomas, Jessica; Duchesne, Gillian M.; Hamilton, Christopher H.; Joon, Daryl Lim; Bowden, Patrick; Foroudi, Farshad

    2012-01-01

    Purpose: To benchmark the dosimetric quality assessment of prostate intensity-modulated radiotherapy and determine whether the quality is influenced by disease or treatment factors. Patients and Methods: We retrospectively analyzed the data from 155 consecutive men treated radically for prostate cancer using intensity-modulated radiotherapy to 78 Gy between January 2007 and March 2009 across six radiotherapy treatment centers. The plan quality was determined by the measures of coverage, homogeneity, and conformity. Tumor coverage was measured using the planning target volume (PTV) receiving 95% and 100% of the prescribed dose (V 95% and V 100% , respectively) and the clinical target volume (CTV) receiving 95% and 100% of the prescribed dose. Homogeneity was measured using the sigma index of the PTV and CTV. Conformity was measured using the lesion coverage factor, healthy tissue conformity index, and the conformity number. Multivariate regression models were created to determine the relationship between these and T stage, risk status, androgen deprivation therapy use, treatment center, planning system, and treatment date. Results: The largest discriminatory measurements of coverage, homogeneity, and conformity were the PTV V 95% , PTV sigma index, and conformity number. The mean PTV V 95% was 92.5% (95% confidence interval, 91.3–93.7%). The mean PTV sigma index was 2.10 Gy (95% confidence interval, 1.90–2.20). The mean conformity number was 0.78 (95% confidence interval, 0.76–0.79). The treatment center independently influenced the coverage, homogeneity, and conformity (all p 95% only, with it being better at the start (p = .013). Risk status, T stage, and the use of androgen deprivation therapy did not influence any aspect of plan quality. Conclusion: Our study has benchmarked measures of coverage, homogeneity, and conformity for the treatment of prostate cancer using IMRT. The differences seen between centers and planning systems and the coverage

  7. Verification of patient position and delivery of IMRT by electronic portal imaging

    International Nuclear Information System (INIS)

    Fielding, Andrew L.; Evans, Philip M.; Clark, Catharine H.

    2004-01-01

    Background and purpose: The purpose of the work presented in this paper was to determine whether patient positioning and delivery errors could be detected using electronic portal images of intensity modulated radiotherapy (IMRT). Patients and methods: We carried out a series of controlled experiments delivering an IMRT beam to a humanoid phantom using both the dynamic and multiple static field method of delivery. The beams were imaged, the images calibrated to remove the IMRT fluence variation and then compared with calibrated images of the reference beams without any delivery or position errors. The first set of experiments involved translating the position of the phantom both laterally and in a superior/inferior direction a distance of 1, 2, 5 and 10 mm. The phantom was also rotated 1 and 2 deg. For the second set of measurements the phantom position was kept fixed and delivery errors were introduced to the beam. The delivery errors took the form of leaf position and segment intensity errors. Results: The method was able to detect shifts in the phantom position of 1 mm, leaf position errors of 2 mm, and dosimetry errors of 10% on a single segment of a 15 segment IMRT step and shoot delivery (significantly less than 1% of the total dose). Conclusions: The results of this work have shown that the method of imaging the IMRT beam and calibrating the images to remove the intensity modulations could be a useful tool in verifying both the patient position and the delivery of the beam

  8. Rapid Arc, helical tomotherapy, sliding window intensity modulated radiotherapy and three dimensional conformal radiation for localized prostate cancer: A dosimetric comparison

    Directory of Open Access Journals (Sweden)

    Rajesh A Kinhikar

    2014-01-01

    Full Text Available Objective: The objective of this study was to investigate the potential role of RapidArc (RA compared with helical tomotherapy (HT, sliding window intensity modulated radiotherapy (SW IMRT and three-dimensional conformal radiation therapy (3D CRT for localized prostate cancer. Materials and Methods: Prescription doses ranged from 60 Gy to planning target volume (PTV and 66.25 Gy for clinical target volume prostate (CTV-P over 25-30 fractions. PTV and CTV-P coverage were evaluated by conformity index (CI and homogeneity index (HI. Organ sparing comparison was done with mean doses to rectum and bladder. Results: CI 95 were 1.0 ± 0.01 (RA, 0.99 ± 0.01 (HT, 0.97 ± 0.02 (IMRT, 0.98 ± 0.02 (3D CRT for PTV and 1.0 ± 0.00 (RA, HT, SW IMRT and 3D CRT for CTV-P. HI was 0.11 ± 0.03 (RA, 0.16 ± 0.08 (HT, 0.12 ± 0.03 (IMRT, 0.06 ± 0.01 (3D CRT for PTV and 0.03 ± 0.00 (RA, 0.05 ± 0.01 (HT, 0.03 ± 0.01 (SW IMRT and 3D CRT for CTV-P. Mean dose to bladder were 23.68 ± 13.23 Gy (RA, 24.55 ± 12.51 Gy (HT, 19.82 ± 11.61 Gy (IMRT and 23.56 ± 12.81 Gy (3D CRT, whereas mean dose to rectum was 36.85 ± 12.92 Gy (RA, 33.18 ± 11.12 Gy (HT, IMRT and 38.67 ± 12.84 Gy (3D CRT. Conclusion: All studied intensity-modulated techniques yield treatment plans of significantly improved quality when compared with 3D CRT, with HT providing best organs at risk sparing and RA being the most efficient treatment option, reducing treatment time to 1.45-3.7 min and monitor unit to <400 for a 2 Gy fraction.

  9. Cost of New Technologies in Prostate Cancer Treatment: Systematic Review of Costs and Cost Effectiveness of Robotic-assisted Laparoscopic Prostatectomy, Intensity-modulated Radiotherapy, and Proton Beam Therapy.

    Science.gov (United States)

    Schroeck, Florian Rudolf; Jacobs, Bruce L; Bhayani, Sam B; Nguyen, Paul L; Penson, David; Hu, Jim

    2017-11-01

    Some of the high costs of robot-assisted radical prostatectomy (RARP), intensity-modulated radiotherapy (IMRT), and proton beam therapy may be offset by better outcomes or less resource use during the treatment episode. To systematically review the literature to identify the key economic trade-offs implicit in a particular treatment choice for prostate cancer. We systematically reviewed the literature according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement and protocol. We searched Medline, Embase, and Web of Science for articles published between January 2001 and July 2016, which compared the treatment costs of RARP, IMRT, or proton beam therapy to the standard treatment. We identified 37, nine, and three studies, respectively. RARP is costlier than radical retropubic prostatectomy for hospitals and payers. However, RARP has the potential for a moderate cost advantage for payers and society over a longer time horizon when optimal cancer and quality-of-life outcomes are achieved. IMRT is more expensive from a payer's perspective compared with three-dimensional conformal radiotherapy, but also more cost effective when defined by an incremental cost effectiveness ratio new versus traditional technologies is costlier. However, given the low quality of evidence and the inconsistencies across studies, the precise difference in costs remains unclear. Attempts to estimate whether this increased cost is worth the expense are hampered by the uncertainty surrounding improvements in outcomes, such as cancer control and side effects of treatment. If the new technologies can consistently achieve better outcomes, then they may be cost effective. We review the cost and cost effectiveness of robot-assisted radical prostatectomy, intensity-modulated radiotherapy, and proton beam therapy in prostate cancer treatment. These technologies are costlier than their traditional counterparts. It remains unclear whether their use is associated

  10. The pitfalls of dosimetric commissioning for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Tohyama, Naoki; Kodama, Takashi; Hatano, K.

    2013-01-01

    Intensity modulated radiation therapy (IMRT) allows higher radiation dose to be focused to the target volumes while minimizing the dose to OAR. To start of clinical treatment in IMRTvwe must perform commissioning strictly than 3D-conformal radiotherapy (CRT). In this report, pitfalls of dosimetric commissioning for intensity modulated radiation therapy were reviewed. Multileaf collimator (MLC) offsets and MLC transmissions are important parameters in commissioning of RTPS for IMRT. Correction of depth scaling and fluence scaling is necessary for dose measurement using solid phantom. (author)

  11. Impact of pelvic nodal irradiation with intensity-modulated radiotherapy on treatment of prostate cancer

    International Nuclear Information System (INIS)

    Price, Robert A.; Hannoun-Levi, Jean-Michel; Horwitz, Eric; Buyyounouski, Mark; Ruth, Karen J.; Ma, C.-M.; Pollack, Alan

    2006-01-01

    Purpose: The aim of this study was to evaluate the feasibility of treating the pelvic lymphatic regions during prostate intensity-modulated radiotherapy (IMRT) with respect to our routine acceptance criteria. Methods and Materials: A series of 10 previously treated prostate patients were randomly selected and the pelvic lymphatic regions delineated on the fused magnetic resonance/computed tomography data sets. A targeting progression was formed from the prostate and proximal seminal vesicles only to the inclusion of all pelvic lymphatic regions and presacral region resulting in 5 planning scenarios of increasing geometric difficulty. IMRT plans were generated for each stage for two accelerator manufacturers. Dose volume histogram data were analyzed with respect to dose to the planning target volumes, rectum, bladder, bowel, and normal tissue. Analysis was performed for the number of segments required, monitor units, 'hot spots,' and treatment time. Results: Both rectal endpoints were met for all targets. Bladder endpoints were not met and the bowel endpoint was met in 40% of cases with the inclusion of the extended and presacral lymphatics. A significant difference was found in the number of segments and monitor units with targeting progression and between accelerators, with the smaller beamlets yielding poorer results. Treatment times between the 2 linacs did not exhibit a clinically significant difference when compared. Conclusions: Many issues should be considered with pelvic lymphatic irradiation during IMRT delivery for prostate cancer including dose per fraction, normal structure dose/volume limits, planning target volumes generation, localization, treatment time, and increased radiation leakage. We would suggest that, at a minimum, the endpoints used in this work be evaluated before beginning IMRT pelvic nodal irradiation

  12. SU-E-T-608: Performance Comparison of Four Commercial Treatment Planning Systems Applied to Intensity-Modulated Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y; Li, R; Chi, Z [The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, CN, Shijiazhuang, Hebei (China)

    2014-06-01

    Purpose: To compare the performances of four commercial treatment planning systems (TPS) used for the intensity-modulated radiotherapy (IMRT). Methods: Ten patients of nasopharyngeal (4 cases), esophageal (3 cases) and cervical (3 cases) cancer were randomly selected from a 3-month IMRT plan pool at one radiotherapy center. For each patient, four IMRT plans were newly generated by using four commercial TPS (Corvus, Monaco, Pinnacle and Xio), and then verified with Matrixx (two-dimensional array/IBA Company) on Varian23EX accelerator. A pass rate (PR) calculated from the Gamma index by OminiPro IMRT 1.5 software was evaluated at four plan verification standards (1%/1mm, 2%/2mm, 3%/3mm, 4%/4mm and 5%/5mm) for each treatment plan. Overall and multiple pairwise comparisons of PRs were statistically conducted by analysis of covariance (ANOVA) F and LSD tests among four TPSs. Results: Overall significant (p>0.05) differences of PRs were found among four TPSs with F test values of 3.8 (p=0.02), 21.1(>0.01), 14.0 (>0.01), 8.3(>0.01) at standards of 1%/1mm to 4%/4mm respectively, except at 5%/5mm standard with 2.6 (p=0.06). All means (standard deviation) of PRs at 3%/3mm of 94.3 ± 3.3 (Corvus), 98.8 ± 0.8 (Monaco), 97.5± 1.7 (Pinnacle), 98.4 ± 1.0 (Xio) were above 90% and met clinical requirement. Multiple pairwise comparisons had not demonstrated a consistent low or high pattern on either TPS. Conclusion: Matrixx dose verification results show that the validation pass rates of Monaco and Xio plans are relatively higher than those of the other two; Pinnacle plan shows slight higher pass rate than Corvus plan; lowest pass rate was achieved by the Corvus plan among these four kinds of TPS.

  13. Normal tissue complication probability: Does simultaneous integrated boost intensity-modulated radiotherapy score over other techniques in treatment of prostate adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Jothy Basu K

    2009-01-01

    Full Text Available Aim: The main objective of this study was to analyze the radiobiological effect of different treatment strategies on high-risk prostate adenocarcinoma. Materials and Methods: Ten cases of high-risk prostate adenocarcinoma were selected for this dosimetric study. Four different treatment strategies used for treating prostate cancer were compared. Conventional four-field box technique covering prostate and nodal volumes followed by three-field conformal boost (3D + 3DCRT, four-field box technique followed by intensity-modulated radiotherapy (IMRT boost (3D + IMRT, IMRT followed by IMRT boost (IMRT + IMRT, and simultaneous integrated boost IMRT (SIBIMRT were compared in terms of tumor control probability (TCP and normal tissue complication probability (NTCP. The dose prescription except for SIBIMRT was 45 Gy in 25 fractions for the prostate and nodal volumes in the initial phase and 27 Gy in 15 fractions for the prostate in the boost phase. For SIBIMRT, equivalent doses were calculated using biologically equivalent dose assuming the α/β ratio of 1.5 Gy with a dose prescription of 60.75 Gy for the gross tumor volume (GTV and 45 Gy for the clinical target volume in 25 fractions. IMRT plans were made with 15-MV equispaced seven coplanar fields. NTCP was calculated using the Lyman-Kutcher-Burman (LKB model. Results: An NTCP of 10.7 ± 0.99%, 8.36 ± 0.66%, 6.72 ± 0.85%, and 1.45 ± 0.11% for the bladder and 14.9 ± 0.99%, 14.04 ± 0.66%, 11.38 ± 0.85%, 5.12 ± 0.11% for the rectum was seen with 3D + 3DCRT, 3D + IMRT, IMRT + IMRT, and SIBIMRT respectively. Conclusions: SIBIMRT had the least NTCP over all other strategies with a reduced treatment time (3 weeks less. It should be the technique of choice for dose escalation in prostate carcinoma.

  14. Concurrent Chemotherapy and Intensity-Modulated Radiotherapy for Locoregionally Advanced Laryngeal and Hypopharyngeal Cancers

    International Nuclear Information System (INIS)

    Lee, Nancy Y.; O'Meara, William; Chan, Kelvin; Della-Bianca, Cesar; Mechalakos, James G.; Zhung, Joanne; Wolden, Suzanne L.; Narayana, Ashwatha; Kraus, Dennis; Shah, Jatin P.; Pfister, David G.

    2007-01-01

    Purpose: To perform a retrospective review of laryngeal/hypopharyngeal carcinomas treated with concurrent chemotherapy and intensity-modulated radiotherapy (IMRT). Methods and Materials: Between January 2002 and June 2005, 20 laryngeal and 11 hypopharyngeal carcinoma patients underwent IMRT with concurrent platinum-based chemotherapy; most patients had Stage IV disease. The prescription of the planning target volume for gross, high-risk, and low-risk subclinical disease was 70, 59.4, and 54 Gy, respectively. Acute/late toxicities were retrospectively scored using the Common Toxicity Criteria scale. The 2-year local progression-free, regional progression-free, laryngectomy-free, distant metastasis-free, and overall survival rates were calculated using the Kaplan-Meier method. Results: The median follow-up of the living patients was 26 months (range, 17-58 months). The 2-year local progression-free, regional progression-free, laryngectomy-free, distant metastasis-free, and overall survival rate was 86%, 94%, 89%, 92%, and 63%, respectively. Grade 2 mucositis or higher occurred in 48% of patients, and all experienced Grade 2 or higher pharyngitis during treatment. Xerostomia continued to decrease over time from the end of RT, with none complaining of Grade 2 toxicity at this analysis. The 2-year post-treatment percutaneous endoscopic gastrostomy-dependency rate for those with hypopharyngeal and laryngeal tumors was 31% and 15%, respectively. The most severe late complications were laryngeal necrosis, necrotizing fascitis, and a carotid rupture resulting in death 3 weeks after salvage laryngectomy. Conclusion: These preliminary results have shown that IMRT achieved encouraging locoregional control of locoregionally advanced laryngeal and hypopharyngeal carcinomas. Xerostomia improved over time. Pharyngoesophageal stricture with percutaneous endoscopic gastrostomy dependency remains a problem, particularly for patients with hypopharyngeal carcinoma and, to a lesser

  15. SU-E-T-417: The Impact of Normal Tissue Constraints On PTV Dose Homogeneity for Intensity Modulated Radiotherapy (IMRT), Volume Modulated Arc Therapy (VMAT) and Tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Peng, J; McDonald, D; Ashenafi, M; Ellis, A; Vanek, K [Medical University of South Carolina, Charleston, SC (United States)

    2014-06-01

    Purpose: Complex intensity modulated arc therapy tends to spread low dose to normal tissue(NT)regions to obtain improved target conformity and homogeneity and OAR sparing.This work evaluates the trade-offs between PTV homogeneity and reduction of the maximum dose(Dmax)spread to NT while planning of IMRT,VMAT and Tomotherapy. Methods: Ten prostate patients,previously planned with step-and-shoot IMRT,were selected.To fairly evaluate how PTV homogeneity was affected by NT Dmax constraints,original IMRT DVH objectives for PTV and OARs(femoral heads,and rectal and bladder wall)applied to 2 VMAT plans in Pinnacle(V9.0), and Tomotherapy(V4.2).The only constraint difference was the NT which was defined as body contours excluding targets,OARs and dose rings.NT Dmax constraint for 1st VMAT was set to the prescription dose(Dp).For 2nd VMAT(VMAT-NT)and Tomotherapy,it was set to the Dmax achieved in IMRT(~70-80% of Dp).All NT constraints were set to the lowest priority.Three common homogeneity indices(HI),RTOG-HI=Dmax/Dp,moderated-HI=D95%/D5% and complex-HI=(D2%-D98%)/Dp*100 were calculated. Results: All modalities with similar dosimetric endpoints for PTV and OARs.The complex-HI shows the most variability of indices,with average values of 5.9,4.9,9.3 and 6.1 for IMRT,VMAT,VMAT-NT and Tomotherapy,respectively.VMAT provided the best PTV homogeneity without compromising any OAR/NT sparing.Both VMAT-NT and Tomotherapy,planned with more restrictive NT constraints,showed reduced homogeneity,with VMAT-NT showing the worst homogeneity(P<0.0001)for all HI.Tomotherapy gave the lowest NT Dmax,with slightly decreased homogeneity compared to VMAT. Finally, there was no significant difference in NT Dmax or Dmean between VMAT and VMAT-NT. Conclusion: PTV HI is highly dependent on permitted NT constraints. Results demonstrated that VMAT-NT with more restrictive NT constraints does not reduce Dmax NT,but significantly receives higher Dmax and worse target homogeneity.Therefore, it is critical

  16. Node-positive left-sided breast cancer. Does VMAT improve treatment plan quality with respect to IMRT?

    Energy Technology Data Exchange (ETDEWEB)

    Pasler, M.; Bartelt, S.; Lutterbach, J. [Lake Constance Radiation Oncology Center Singen, Friedrichshafen (Germany); Georg, D. [Medical University Vienna/AKH Wien, Vienna (Austria). Dept. of Radiooncology; Medical University Vienna (Austria). Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology

    2013-05-15

    Purpose: The aim of the present work was to explore plan quality and dosimetric accuracy of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) for lymph node-positive left-sided breast cancer. Methods: VMAT and IMRT plans were generated with the Pinnacle{sup 3} V9.0 treatment planning system for 10 lymph node-positive left-sided breast cancer patients. VMAT plans were created using a single arc and IMRT was performed with 4 beams using 6, 10, and 15 MV photon energy, respectively. Plans were evaluated both manually and automatically using ArtiView trademark. Dosimetric plan verification was performed with a 2D ionization chamber array placed in a full scatter phantom. Results: Photon energy had no significant influence on plan quality for both VMAT and IMRT. Large variability in low doses to the heart was found due to patient anatomy (range V{sub 5} {sub Gy} 26.5-95 %). Slightly more normal tissue dose was found for VMAT (e.g., V{sub Tissue30%} = 22 %) than in IMRT (V{sub Tissue30%} = 18 %). The manual and ArtiView trademark plan evaluation coincided very accurately for most dose metrics (difference < 1 %). In VMAT, 96.7 % of detector points passed the 3 %/3 mm gamma criterion; marginally better accuracy was found in IMRT (98.3 %). Conclusion: VMAT for node-positive left-sided breast cancer retains target homogeneity and coverage when compared to IMRT and allows maximum doses to organs at risk to be reduced. ArtiView trademark enables fast and accurate plan evaluation. (orig.)

  17. Implementation of random set-up errors in Monte Carlo calculated dynamic IMRT treatment plans

    International Nuclear Information System (INIS)

    Stapleton, S; Zavgorodni, S; Popescu, I A; Beckham, W A

    2005-01-01

    The fluence-convolution method for incorporating random set-up errors (RSE) into the Monte Carlo treatment planning dose calculations was previously proposed by Beckham et al, and it was validated for open field radiotherapy treatments. This study confirms the applicability of the fluence-convolution method for dynamic intensity modulated radiotherapy (IMRT) dose calculations and evaluates the impact of set-up uncertainties on a clinical IMRT dose distribution. BEAMnrc and DOSXYZnrc codes were used for Monte Carlo calculations. A sliding window IMRT delivery was simulated using a dynamic multi-leaf collimator (DMLC) transport model developed by Keall et al. The dose distributions were benchmarked for dynamic IMRT fields using extended dose range (EDR) film, accumulating the dose from 16 subsequent fractions shifted randomly. Agreement of calculated and measured relative dose values was well within statistical uncertainty. A clinical seven field sliding window IMRT head and neck treatment was then simulated and the effects of random set-up errors (standard deviation of 2 mm) were evaluated. The dose-volume histograms calculated in the PTV with and without corrections for RSE showed only small differences indicating a reduction of the volume of high dose region due to set-up errors. As well, it showed that adequate coverage of the PTV was maintained when RSE was incorporated. Slice-by-slice comparison of the dose distributions revealed differences of up to 5.6%. The incorporation of set-up errors altered the position of the hot spot in the plan. This work demonstrated validity of implementation of the fluence-convolution method to dynamic IMRT Monte Carlo dose calculations. It also showed that accounting for the set-up errors could be essential for correct identification of the value and position of the hot spot

  18. Implementation of random set-up errors in Monte Carlo calculated dynamic IMRT treatment plans

    Science.gov (United States)

    Stapleton, S.; Zavgorodni, S.; Popescu, I. A.; Beckham, W. A.

    2005-02-01

    The fluence-convolution method for incorporating random set-up errors (RSE) into the Monte Carlo treatment planning dose calculations was previously proposed by Beckham et al, and it was validated for open field radiotherapy treatments. This study confirms the applicability of the fluence-convolution method for dynamic intensity modulated radiotherapy (IMRT) dose calculations and evaluates the impact of set-up uncertainties on a clinical IMRT dose distribution. BEAMnrc and DOSXYZnrc codes were used for Monte Carlo calculations. A sliding window IMRT delivery was simulated using a dynamic multi-leaf collimator (DMLC) transport model developed by Keall et al. The dose distributions were benchmarked for dynamic IMRT fields using extended dose range (EDR) film, accumulating the dose from 16 subsequent fractions shifted randomly. Agreement of calculated and measured relative dose values was well within statistical uncertainty. A clinical seven field sliding window IMRT head and neck treatment was then simulated and the effects of random set-up errors (standard deviation of 2 mm) were evaluated. The dose-volume histograms calculated in the PTV with and without corrections for RSE showed only small differences indicating a reduction of the volume of high dose region due to set-up errors. As well, it showed that adequate coverage of the PTV was maintained when RSE was incorporated. Slice-by-slice comparison of the dose distributions revealed differences of up to 5.6%. The incorporation of set-up errors altered the position of the hot spot in the plan. This work demonstrated validity of implementation of the fluence-convolution method to dynamic IMRT Monte Carlo dose calculations. It also showed that accounting for the set-up errors could be essential for correct identification of the value and position of the hot spot.

  19. Experience in the treatment of IMRT in prostate cancer. Planning, dosimetry and quality control; Experiencia en el tratamiento de IMRT en cancer de prostata. Planificacion, dosimetria y control de calidad

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Barrado, A.; Garcia Vicente, F.; Fernandez Bedoya, V.; Bermudez Luna, R.; Perez Gonzalez, L.; Torres Escobar, J. J.

    2011-07-01

    The aim of this study is to review the treatment of prostate cancer at our center. A description of the entire procedure, involving clinical dosimetry, and procedures for verification of treatment, including physical dosimetry and parallel computing system MSure (Standard Imaging, Inc., Middleton) as part of these procedures. This system is based on the model published by trifuente Yang et al. (Yang et al. 2002) for testing treatments regarding the number of monitor unit (MU) given. In addition, this software has a module for the testing of treatments for intensity modulated radiotherapy (IMRT), which will be analyzed in this study.

  20. Comparison of testicular dose delivered by intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) in patients with prostate cancer

    International Nuclear Information System (INIS)

    Martin, Jeffrey M.; Handorf, Elizabeth A.; Price, Robert A.; Cherian, George; Buyyounouski, Mark K.; Chen, David Y.; Kutikov, Alexander; Johnson, Matthew E.; Ma, Chung-Ming Charlie; Horwitz, Eric M.

    2015-01-01

    A small decrease in testosterone level has been documented after prostate irradiation, possibly owing to the incidental dose to the testes. Testicular doses from prostate external beam radiation plans with either intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT) were calculated to investigate any difference. Testicles were contoured for 16 patients being treated for localized prostate cancer. For each patient, 2 plans were created: 1 with IMRT and 1 with VMAT. No specific attempt was made to reduce testicular dose. Minimum, maximum, and mean doses to the testicles were recorded for each plan. Of the 16 patients, 4 received a total dose of 7800 cGy to the prostate alone, 7 received 8000 cGy to the prostate alone, and 5 received 8000 cGy to the prostate and pelvic lymph nodes. The mean (range) of testicular dose with an IMRT plan was 54.7 cGy (21.1 to 91.9) and 59.0 cGy (25.1 to 93.4) with a VMAT plan. In 12 cases, the mean VMAT dose was higher than the mean IMRT dose, with a mean difference of 4.3 cGy (p = 0.019). There was a small but statistically significant increase in mean testicular dose delivered by VMAT compared with IMRT. Despite this, it unlikely that there is a clinically meaningful difference in testicular doses from either modality

  1. Comparison of testicular dose delivered by intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) in patients with prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey M. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Handorf, Elizabeth A. [Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, PA (United States); Price, Robert A.; Cherian, George [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Buyyounouski, Mark K. [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Chen, David Y.; Kutikov, Alexander [Department of Urologic Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Johnson, Matthew E.; Ma, Chung-Ming Charlie [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Horwitz, Eric M., E-mail: eric.horwitz@fccc.edu [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States)

    2015-10-01

    A small decrease in testosterone level has been documented after prostate irradiation, possibly owing to the incidental dose to the testes. Testicular doses from prostate external beam radiation plans with either intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT) were calculated to investigate any difference. Testicles were contoured for 16 patients being treated for localized prostate cancer. For each patient, 2 plans were created: 1 with IMRT and 1 with VMAT. No specific attempt was made to reduce testicular dose. Minimum, maximum, and mean doses to the testicles were recorded for each plan. Of the 16 patients, 4 received a total dose of 7800 cGy to the prostate alone, 7 received 8000 cGy to the prostate alone, and 5 received 8000 cGy to the prostate and pelvic lymph nodes. The mean (range) of testicular dose with an IMRT plan was 54.7 cGy (21.1 to 91.9) and 59.0 cGy (25.1 to 93.4) with a VMAT plan. In 12 cases, the mean VMAT dose was higher than the mean IMRT dose, with a mean difference of 4.3 cGy (p = 0.019). There was a small but statistically significant increase in mean testicular dose delivered by VMAT compared with IMRT. Despite this, it unlikely that there is a clinically meaningful difference in testicular doses from either modality.

  2. Prognostic Value of Plasma Epstein-Barr Virus DNA for Local and Regionally Advanced Nasopharyngeal Carcinoma Treated With Cisplatin-Based Concurrent Chemoradiotherapy in Intensity-Modulated Radiotherapy Era.

    Science.gov (United States)

    Chen, Wen-Hui; Tang, Lin-Quan; Guo, Shan-Shan; Chen, Qiu-Yan; Zhang, Lu; Liu, Li-Ting; Qian, Chao-Nan; Guo, Xiang; Xie, Dan; Zeng, Mu-Sheng; Mai, Hai-Qiang

    2016-02-01

    This study aimed to evaluate the prognostic value of plasma Epstein-Barr Virus DNA (EBV DNA) for local and regionally advanced nasopharyngeal carcinoma (NPC) patients treated with concurrent chemoradiotherapy in intensity-modulated radiotherapy (IMRT) era.In this observational study, 404 nonmetastatic local and regionally advanced NPC patients treated with IMRT and cisplatin-based concurrent chemotherapy were recruited. Blood samples were collected before treatment for examination of plasma EBV DNA levels. We evaluated the association of pretreatment plasma EBV DNA levels with progression-free survival rate (PFS), distant metastasis-free survival rate (DMFS), and overall survival rate (OS).Compared to patients with an EBV DNA level advanced NPC patients treated with IMRT and cisplatin-based concurrent chemotherapy. Future ramdomized clinical trials are needed to further evaluate whether plasma EBV DNA levels could be applied to guide concurrent chemotherapy regimen for local and regionally advanced NPC patients.

  3. Intensity Modulated Radiotherapy (IMRT) in locally advanced thyroid cancer: Acute toxicity results of a phase I study

    International Nuclear Information System (INIS)

    Urbano, Teresa Guerrero; Clark, Catharine H.; Hansen, Vibeke N.; Adams, Elizabeth J.; Miles, Elizabeth A.; Mc Nair, Helen; Bidmead, A. Margaret; Warrington, Jim; Dearnaley, David P.; Harmer, Clive; Harrington, Kevin J.; Nutting, Christopher M.

    2007-01-01

    Background and purpose: This phase 1 study was designed to determine the toxicity of accelerated fractionation IMRT in locally advanced thyroid cancer. Methods: Patients with high risk locally advanced thyroid cancer who required post-operative EBRT were recruited. A single-phase inverse-planned-simultaneous-boost was delivered by IMRT: 58.8 Gy/28F (daily) to the primary tumour and involved nodes and 50 Gy/28F to the elective nodes. Acute (NCICTCv.2.0) and late toxicity (RTOG and modified LENTSOM) was collected. Results: Thirteen patients were treated (7 medullary thyroid, 2 Hurthle cell and 4 well differentiated thyroid cancer). G3 and G2 radiation dermatitis rates were 38.5% and 31%; G3 and G2 mucositis rates 8% and 53% and G3 and G2 pain 23% and 54%. Thirty-one percentage required enteral feeding. G3 and G2 xerostomia rates were 0% and 31%. Recovery was seen, with 62% patients having dysphagia G ≤ 1 2 months after IMRT. Thirty percent of patients developed L'Hermitte's syndrome. No grade 4 toxicity was observed. No dose limiting toxicity was found. Conclusions: Accelerated fractionation IMRT in this group of patients is feasible and safe. The acute toxicity appeared acceptable and early indicators of late toxicity moderate and similar to what would be expected with conventional RT. Longer follow up is required to quantify late side effects

  4. Feasibility of a unified approach to intensity-modulated radiation therapy and volume-modulated arc therapy optimization and delivery

    International Nuclear Information System (INIS)

    Hoover, Douglas A.; Chen, Jeff Z.; MacFarlane, Michael; Wong, Eugene; Battista, Jerry J.

    2015-01-01

    Purpose: To study the feasibility of unified intensity-modulated arc therapy (UIMAT) which combines intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) optimization and delivery to produce superior radiation treatment plans, both in terms of dose distribution and efficiency of beam delivery when compared with either VMAT or IMRT alone. Methods: An inverse planning algorithm for UIMAT was prototyped within the PINNACLE treatment planning system (Philips Healthcare). The IMRT and VMAT deliveries are unified within the same arc, with IMRT being delivered at specific gantry angles within the arc. Optimized gantry angles for the IMRT and VMAT phases are assigned automatically by the inverse optimization algorithm. Optimization of the IMRT and VMAT phases is done simultaneously using a direct aperture optimization algorithm. Five treatment plans each for prostate, head and neck, and lung were generated using a unified optimization technique and compared with clinical IMRT or VMAT plans. Delivery verification was performed with an ArcCheck phantom (Sun Nuclear) on a Varian TrueBeam linear accelerator (Varian Medical Systems). Results: In this prototype implementation, the UIMAT plans offered the same target dose coverage while reducing mean doses to organs at risk by 8.4% for head-and-neck cases, 5.7% for lung cases, and 3.5% for prostate cases, compared with the VMAT or IMRT plans. In addition, UIMAT can be delivered with similar efficiency as VMAT. Conclusions: In this proof-of-concept work, a novel radiation therapy optimization and delivery technique that interlaces VMAT or IMRT delivery within the same arc has been demonstrated. Initial results show that unified VMAT/IMRT has the potential to be superior to either standard IMRT or VMAT

  5. SU-E-T-198: Hippocampal-Sparing Radiotherapy (HSRT) for Patients with Head and Neck Cancer (HNC) Using Intensity-Modulated Radiation Therapy (IMRT)

    Energy Technology Data Exchange (ETDEWEB)

    Dunlop, A; Welsh, L; Nutting, C; Harrington, K; Bhide, S; Newbold, K

    2014-06-01

    Purpose: There is increasing evidence that decline in cognitive function following brain radiotherapy (RT) is related to the radiation dose delivered to the hippocampi. In this work we evaluate the feasibility of using IMRT to generate HSRT plans in HNC. Methods: A planning study was undertaken for ten representative patients with HNC previously treated with radical (chemo)-RT using standard IMRT techniques. The hippocampi were delineated according to the RTOG hippocampal contouring atlas, on a T1w- MRI scan that was registered with the RT planning CT. LINAC-based, clinically acceptable, HSRT plans were generated and assessed using the Pinnacle3 treatment planning system. Results: Using a VMAT technique, a reduction in hippocampal dose was achievable in six cases. For these cases, the EQD2-D40% of the bilateral hippocampi was significantly reduced by HSRT (p = 0.006) from a median of 18.8Gy (range 14.4–34.6) to 6.5 Gy (4.2–9.5) for the delivered and HSRT plans respectively. Plans were also generated using a fixed-field IMRT technique with non-coplanar beams that were designed to avoid the bilateral hippocampi, resulting in a median EQD2-D40% of 11.2Gy (8.0–14.5). Both HSRT techniques also resulted in lower doses to the whole brain, brain stem, and cerebellum. The HSRT plans resulted in higher doses to some regions of non-contoured normaltissue, but the magnitude of these dose differences is unlikely to be of clinical significance in terms of acute and late toxicity. Conclusion: This study has demonstrated that it is possible, in many cases, to adapt treatment plans for HNC to significantly reduce dose to the hippocampi. This reduction in dose would be predicted to Resultin a significant reduction in the probability of subsequent decline in cognitive function following RT. Our results point towards the need for the collection of prospective data on cognitive outcomes for the HNC patient population treated with radical (chemo)-RT.

  6. SU-E-T-198: Hippocampal-Sparing Radiotherapy (HSRT) for Patients with Head and Neck Cancer (HNC) Using Intensity-Modulated Radiation Therapy (IMRT)

    International Nuclear Information System (INIS)

    Dunlop, A; Welsh, L; Nutting, C; Harrington, K; Bhide, S; Newbold, K

    2014-01-01

    Purpose: There is increasing evidence that decline in cognitive function following brain radiotherapy (RT) is related to the radiation dose delivered to the hippocampi. In this work we evaluate the feasibility of using IMRT to generate HSRT plans in HNC. Methods: A planning study was undertaken for ten representative patients with HNC previously treated with radical (chemo)-RT using standard IMRT techniques. The hippocampi were delineated according to the RTOG hippocampal contouring atlas, on a T1w- MRI scan that was registered with the RT planning CT. LINAC-based, clinically acceptable, HSRT plans were generated and assessed using the Pinnacle3 treatment planning system. Results: Using a VMAT technique, a reduction in hippocampal dose was achievable in six cases. For these cases, the EQD2-D40% of the bilateral hippocampi was significantly reduced by HSRT (p = 0.006) from a median of 18.8Gy (range 14.4–34.6) to 6.5 Gy (4.2–9.5) for the delivered and HSRT plans respectively. Plans were also generated using a fixed-field IMRT technique with non-coplanar beams that were designed to avoid the bilateral hippocampi, resulting in a median EQD2-D40% of 11.2Gy (8.0–14.5). Both HSRT techniques also resulted in lower doses to the whole brain, brain stem, and cerebellum. The HSRT plans resulted in higher doses to some regions of non-contoured normaltissue, but the magnitude of these dose differences is unlikely to be of clinical significance in terms of acute and late toxicity. Conclusion: This study has demonstrated that it is possible, in many cases, to adapt treatment plans for HNC to significantly reduce dose to the hippocampi. This reduction in dose would be predicted to Resultin a significant reduction in the probability of subsequent decline in cognitive function following RT. Our results point towards the need for the collection of prospective data on cognitive outcomes for the HNC patient population treated with radical (chemo)-RT

  7. Application of a Novel Dose-Uncertainty Model for Dose-Uncertainty Analysis in Prostate Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Jin Hosang; Palta, Jatinder R.; Kim, You-Hyun; Kim, Siyong

    2010-01-01

    Purpose: To analyze dose uncertainty using a previously published dose-uncertainty model, and to assess potential dosimetric risks existing in prostate intensity-modulated radiotherapy (IMRT). Methods and Materials: The dose-uncertainty model provides a three-dimensional (3D) dose-uncertainty distribution in a given confidence level. For 8 retrospectively selected patients, dose-uncertainty maps were constructed using the dose-uncertainty model at the 95% CL. In addition to uncertainties inherent to the radiation treatment planning system, four scenarios of spatial errors were considered: machine only (S1), S1 + intrafraction, S1 + interfraction, and S1 + both intrafraction and interfraction errors. To evaluate the potential risks of the IMRT plans, three dose-uncertainty-based plan evaluation tools were introduced: confidence-weighted dose-volume histogram, confidence-weighted dose distribution, and dose-uncertainty-volume histogram. Results: Dose uncertainty caused by interfraction setup error was more significant than that of intrafraction motion error. The maximum dose uncertainty (95% confidence) of the clinical target volume (CTV) was smaller than 5% of the prescribed dose in all but two cases (13.9% and 10.2%). The dose uncertainty for 95% of the CTV volume ranged from 1.3% to 2.9% of the prescribed dose. Conclusions: The dose uncertainty in prostate IMRT could be evaluated using the dose-uncertainty model. Prostate IMRT plans satisfying the same plan objectives could generate a significantly different dose uncertainty because a complex interplay of many uncertainty sources. The uncertainty-based plan evaluation contributes to generating reliable and error-resistant treatment plans.

  8. Implementation of IMRT in a real case of breast cancer radiotherapy in the 'Hospital Hermanos Ameijeiras' Service

    International Nuclear Information System (INIS)

    Rodriguez Zayas, Michael; Correa Pablos, Tamara; Perez Guevara, Adrian; Gonzalez Perez, Yelina; Sola Rodriguez, Yeline; Reyes Gonzalez, Tommy; Caballero, Roberto; Del Castillo Carrillo, Concepcion; Mena Huerta, Yailen

    2009-01-01

    Patients with left breast cancer suggest a clinical challenge because it radiates significantly heart, lung and contralateral breast with tangential beam techniques. We performed a study to: (1) design a plan using intensity modulated radiation therapy (IMRT), (2) compare IMRT plan with a plan of 3DCRT beam shear, (3) quantify the benefits of a treatment modality over another. A case diagnosed with breast cancer and treated with IMRT planned. The planning is done with the TPS Precise Plan version 2.16, with the inverse method based on openings, the treatment is carried out by way of step and shoot in the Elekta Precise Linac model with nominal energy of photons 6mV (TPR20, 10 = 0.681). (Author)

  9. Preoperative Intensity-Modulated Radiotherapy Combined with Temozolomide for Locally Advanced Soft-Tissue Sarcoma

    International Nuclear Information System (INIS)

    Jakob, Jens; Wenz, Frederik; Dinter, Dietmar J.; Stroebel, Philipp; Hohenberger, Peter

    2009-01-01

    Purpose: To evaluate the toxicity and efficacy of preoperative intensity-modulated radiotherapy (IMRT) combined with temozolomide to improve local tumor control in soft-tissue sarcoma (STS). Patients and Methods: A cohort of 15 consecutive patients with nonmetastasized, primary high-grade or locally recurrent Stage III (n = 14) or IIb (n = 1) STS not amenable to surgical resection without significant organ or extremity function loss was prospectively investigated. Median tumor size was 9.8 cm, and most tumors were non-extremity sarcomas. Patients preoperatively received 50 mg/m 2 of temozolomide during IMRT (50.4 Gy). Resection was intended 6 weeks thereafter. Toxicity was assessed by the National Cancer Institute Common Terminology Criteria for Adverse Events version 3.0, and response was assessed by Response Evaluation Criteria in Solid Tumors. Results: Of 15 patients, 14 completed preoperative treatment. No Grade 4 toxicities occurred. Nausea and vomiting were the most frequent Grade 3 toxicities. The most frequent toxicities of any grade were dermatologic, gastrointestinal, and hematologic. Response was partial response in 5, stable disease in 7, and progressive disease in 2 patients. Ten patients underwent surgery: 7 were resected with clear margins (R0), and 2 patients had an R1 resection; in 1 patient the tumor was not resectable. Postoperative complications occurred in 4 patients. Five patients did not undergo surgery because of intercurrent metastatic disease, unresectable disease, or refusal. Conclusions: Preoperative chemoradiation with temozolomide and IMRT can be administered safely and with promising efficacy in patients with locally advanced STS.

  10. Whole brain radiotherapy with adjuvant or concomitant boost in brain metastasis: dosimetric comparison between helical and volumetric IMRT technique.

    Science.gov (United States)

    Borghetti, Paolo; Pedretti, Sara; Spiazzi, Luigi; Avitabile, Rossella; Urpis, Mauro; Foscarini, Federica; Tesini, Giulia; Trevisan, Francesca; Ghirardelli, Paolo; Pandini, Sara Angela; Triggiani, Luca; Magrini, Stefano Maria; Buglione, Michela

    2016-04-19

    To compare and evaluate the possible advantages related to the use of VMAT and helical IMRT and two different modalities of boost delivering, adjuvant stereotactic boost (SRS) or simultaneous integrated boost (SIB), in the treatment of brain metastasis (BM) in RPA classes I-II patients. Ten patients were treated with helical IMRT, 5 of them with SRS after whole brain radiotherapy (WBRT) and 5 with SIB. MRI co-registration with planning CT was mandatory and prescribed doses were 30 Gy in 10 fractions (fr) for WBRT and 15Gy/1fr or 45Gy/10fr in SRS or SIB, respectively. For each patient, 4 "treatment plans" (VMAT SRS and SIB, helical IMRT SRS and SIB) were calculated and accepted if PTV boost was included in 95 % isodose and dose constraints of the main organs at risk were respected without major deviations. Homogeneity Index (HI), Conformal Index (CI) and Conformal Number (CN) were considered to compare the different plans. Moreover, time of treatment delivery was calculated and considered in the analysis. Volume of brain metastasis ranged between 1.43 and 51.01 cc (mean 12.89 ± 6.37 ml) and 3 patients had double lesions. V95% resulted over 95 % in the average for each kind of technique, but the "target coverage" was inadequate for VMAT planning with two sites. The HI resulted close to the ideal value of zero in all cases; VMAT-SIB, VMAT-SRS, Helical IMRT-SIB and Helical IMRT-SRS showed mean CI of 2.15, 2.10, 2.44 and 1.66, respectively (optimal range: 1.5-2.0). Helical IMRT-SRS was related to the best and reliable finding of CN (0.66). The mean of treatment time was 210 s, 467 s, 440 s, 1598 s, respectively, for VMAT-SIB, VMAT-SRS, Helical IMRT-SIB and Helical IMRT-SRS. This dosimetric comparison show that helical IMRT obtain better target coverage and respect of CI and CN; VMAT could be acceptable in solitary metastasis. SIB modality can be considered as a good choice for clinical and logistic compliance; literature's preliminary data are confirming also a

  11. Impact of intensity-modulated and image-guided radiotherapy on elderly patients undergoing chemoradiation for locally advanced head and neck cancer

    International Nuclear Information System (INIS)

    Nguyen, N.P.; Chi, A.; Vock, J.

    2012-01-01

    Purpose: In this work, the treatment tolerance of elderly patients (≥ 70 years) undergoing intensity-modulated radiotherapy (IMRT) and image-guided radiotherapy (IGRT) and chemotherapy for locally advanced head and neck cancer was assessed. Patients and methods: A retrospective review of 112 patients undergoing concurrent chemoradiation for locally advanced head and neck cancer was performed. Treatment toxicity, protocol violations, long-term complications, and survival were compared between 85 younger patients (< 70 years) and 27 older patients (≥ 70 years). Results: Grade 3-4 treatment toxicity was observed in 88.2% and 88.8% for younger and older patients, respectively. Mean weight loss and treatment break were 5.9 and 3.9 kg (p = 0.03) and 7.3 and 7.8 days (p = 0.8) for younger and older patients, respectively. Seven patients (8.2%) did not complete treatment in the younger group compared to 1 patient (3.7%) in the older group (p = 0.6). No significant differences in protocol violations and survival were found between the two groups. Conclusion: Compared to younger patients, elderly patients with locally advanced head and neck cancer tolerated chemoradiation with IMRT and IGRT well, and should not be denied curative treatment based solely on age. (orig.)

  12. Australian survey on current practices for breast radiotherapy.

    Science.gov (United States)

    Dundas, Kylie L; Pogson, Elise M; Batumalai, Vikneswary; Boxer, Miriam M; Yap, Mei Ling; Delaney, Geoff P; Metcalfe, Peter; Holloway, Lois

    2015-12-01

    Detailed, published surveys specific to Australian breast radiotherapy practice were last conducted in 2002. More recent international surveys specific to breast radiotherapy practice include a European survey conducted in 2008/2009 and a Spanish survey conducted in 2009. Radiotherapy techniques continue to evolve, and the utilisation of new techniques, such as intensity-modulated radiation therapy (IMRT), is increasing. This survey aimed to determine current breast radiotherapy practices across Australia. An online survey was completed by 50 of the 69 Australian radiation therapy treatment centres. Supine tangential beam whole breast irradiation remains the standard of care for breast radiotherapy in Australia. A growing number of institutions are exploring prone positioning and IMRT utilisation. This survey demonstrated a wide variation in the benchmarks used to limit and report organ at risk doses, prescribed dose regimen, and post-mastectomy bolus practices. This survey also indicated, when compared with international literature, that there may be less interest in or uptake of external beam partial breast irradiation, prone positioning, simultaneous integrated boost and breath hold techniques. These are areas where further review and research may be warranted to ensure Australian patients are receiving the best care possible based on the best evidence available. This survey provides insight into the current radiotherapy practice for breast cancer in Australia. © 2015 The Royal Australian and New Zealand College of Radiologists.

  13. Dosimetric comparison of different multileaf collimator leaves in treatment planning of intensity-modulated radiotherapy for cervical cancer

    International Nuclear Information System (INIS)

    Wang, Shichao; Ai, Ping; Xie, Li; Xu, Qingfeng; Bai, Sen; Lu, You; Li, Ping; Chen, Nianyong

    2013-01-01

    To study the effect of multileaf collimator (MLC) leaf widths (standard MLC [sMLC] width of 10 mm and micro-MLC [mMLC] width of 4 mm) on intensity-modulated radiotherapy (IMRT) for cervical cancer. Between January 2010 and August 2010, a retrospective analysis was conducted on 12 patients with cervical cancer. The treatment plans for all patients were generated with the same machine setup parameters and optimization methods in a treatment planning system (TPS) based on 2 commercial Elekta MLC devices. The dose distribution for the planning tumor volume (PTV), the dose sparing for organs at risk (OARs), the monitor units (MUs), and the number of IMRT segments were evaluated. For the delivery efficiency, the MUs were significantly higher in the sMLC-IMRT plan than in the mMLC-IMRT plan (802 ± 56.9 vs 702 ± 56.7; p 0.05). For the planning quality, the conformity index (CI) between the 2 paired IMRT plans with the mMLC and the sMLC did not differ significantly (average: 0.817 ± 0.024 vs 0.810 ± 0.028; p > 0.05). The differences of the homogeneity index (HI) between the 2 paired plans were statistically significant (average: 1.122 ± 0.010 vs 1.132 ± 0.014; p 10 , V 20 , V 30 , and V 40 , percentage of contoured OAR volumes receiving 10, 20, 30, and 40 Gy, respectively, and the mean dose (D mean ) received. The IMRT plans with the mMLC protected the OARs better than the plans with the sMLC. There were significant differences (p 30 and V 40 of the rectum and V 10 , V 20 , V 40 , and D mean of the bladder. IMRT plans with the mMLC showed advantages over the plans with the sMLC in dose homogeneity for targets, dose sparing of OARs, and fewer MUs in cervical cancer

  14. Image-guided intensity-modulated radiotherapy for prostate cancer: Dose constraints for the anterior rectal wall to minimize rectal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Jennifer L., E-mail: peterson.jennifer2@mayo.edu [Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL (United States); Buskirk, Steven J. [Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL (United States); Heckman, Michael G.; Diehl, Nancy N. [Section of Biostatistics, Mayo Clinic Florida, Jacksonville, FL (United States); Bernard, Johnny R. [Section of Biostatistics, Mayo Clinic Florida, Jacksonville, FL (United States); Department of Radiation Oncology, Southern Ohio Medical Center, Portsmouth, OH (United States); Tzou, Katherine S.; Casale, Henry E.; Bellefontaine, Louis P.; Serago, Christopher; Kim, Siyong; Vallow, Laura A.; Daugherty, Larry C.; Ko, Stephen J. [Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL (United States)

    2014-04-01

    Rectal adverse events (AEs) are a major concern with definitive radiotherapy (RT) treatment for prostate cancer. The anterior rectal wall is at the greatest risk of injury as it lies closest to the target volume and receives the highest dose of RT. This study evaluated the absolute volume of anterior rectal wall receiving a high dose to identify potential ideal dose constraints that can minimize rectal AEs. A total of 111 consecutive patients with Stage T1c to T3a N0 M0 prostate cancer who underwent image-guided intensity-modulated RT at our institution were included. AEs were graded according to the Common Terminology Criteria for Adverse Events, version 4.0. The volume of anterior rectal wall receiving 5 to 80 Gy in 2.5-Gy increments was determined. Multivariable Cox regression models were used to identify cut points in these volumes that led to an increased risk of early and late rectal AEs. Early AEs occurred in most patients (88%); however, relatively few of them (13%) were grade ≥2. At 5 years, the cumulative incidence of late rectal AEs was 37%, with only 5% being grade ≥2. For almost all RT doses, we identified a threshold of irradiated absolute volume of anterior rectal wall above which there was at least a trend toward a significantly higher rate of AEs. Most strikingly, patients with more than 1.29, 0.73, or 0.45 cm{sup 3} of anterior rectal wall exposed to radiation doses of 67.5, 70, or 72.5 Gy, respectively, had a significantly increased risk of late AEs (relative risks [RR]: 2.18 to 2.72; p ≤ 0.041) and of grade ≥ 2 early AEs (RR: 6.36 to 6.48; p = 0.004). Our study provides evidence that definitive image-guided intensity-modulated radiotherapy (IG-IMRT) for prostate cancer is well tolerated and also identifies dose thresholds for the absolute volume of anterior rectal wall above which patients are at greater risk of early and late complications.

  15. Image-guided intensity-modulated radiotherapy for prostate cancer: Dose constraints for the anterior rectal wall to minimize rectal toxicity

    International Nuclear Information System (INIS)

    Peterson, Jennifer L.; Buskirk, Steven J.; Heckman, Michael G.; Diehl, Nancy N.; Bernard, Johnny R.; Tzou, Katherine S.; Casale, Henry E.; Bellefontaine, Louis P.; Serago, Christopher; Kim, Siyong; Vallow, Laura A.; Daugherty, Larry C.; Ko, Stephen J.

    2014-01-01

    Rectal adverse events (AEs) are a major concern with definitive radiotherapy (RT) treatment for prostate cancer. The anterior rectal wall is at the greatest risk of injury as it lies closest to the target volume and receives the highest dose of RT. This study evaluated the absolute volume of anterior rectal wall receiving a high dose to identify potential ideal dose constraints that can minimize rectal AEs. A total of 111 consecutive patients with Stage T1c to T3a N0 M0 prostate cancer who underwent image-guided intensity-modulated RT at our institution were included. AEs were graded according to the Common Terminology Criteria for Adverse Events, version 4.0. The volume of anterior rectal wall receiving 5 to 80 Gy in 2.5-Gy increments was determined. Multivariable Cox regression models were used to identify cut points in these volumes that led to an increased risk of early and late rectal AEs. Early AEs occurred in most patients (88%); however, relatively few of them (13%) were grade ≥2. At 5 years, the cumulative incidence of late rectal AEs was 37%, with only 5% being grade ≥2. For almost all RT doses, we identified a threshold of irradiated absolute volume of anterior rectal wall above which there was at least a trend toward a significantly higher rate of AEs. Most strikingly, patients with more than 1.29, 0.73, or 0.45 cm 3 of anterior rectal wall exposed to radiation doses of 67.5, 70, or 72.5 Gy, respectively, had a significantly increased risk of late AEs (relative risks [RR]: 2.18 to 2.72; p ≤ 0.041) and of grade ≥ 2 early AEs (RR: 6.36 to 6.48; p = 0.004). Our study provides evidence that definitive image-guided intensity-modulated radiotherapy (IG-IMRT) for prostate cancer is well tolerated and also identifies dose thresholds for the absolute volume of anterior rectal wall above which patients are at greater risk of early and late complications

  16. Superiority of conventional intensity-modulated radiotherapy over helical tomotherapy in locally advanced non-small cell lung cancer. A comparative plan analysis

    Energy Technology Data Exchange (ETDEWEB)

    Song, C. [National Cancer Center, Research Institute and Hospital, Goyang (Korea, Republic of). Proton Therapy Center; Seoul National Univ. College of Medicine (Korea, Republic of). Dept. of Radiation Oncology; Pyo, H.; Kim, J. [Sungkyunkwan Univ. School of Medicine, Samsung Medical Center, Seoul (Korea, Republic of). Dept. of Radiation Oncology; Lim, Y.K.; Kim, D.W.; Cho, K.H. [National Cancer Center, Research Institute and Hospital, Goyang (Korea, Republic of). Proton Therapy Center; Kim, W.C. [Inha Univ. School of Medicine, Incheon (Korea, Republic of). Dept. of Radiation Oncology; Kim, H.J. [Seoul National Univ. College of Medicine (Korea, Republic of). Dept. of Radiation Oncology

    2012-10-15

    Purpose: To compare helical tomotherapy (HT) and conventional intensity-modulated radiotherapy (IMRT) using a variety of dosimetric and radiobiologic indexes in patients with locally advanced non-small cell lung cancer (LA-NSCLC). Patients and methods: A total of 20 patients with LA-NSCLC were enrolled. IMRT plans with 4-6 coplanar beams and HT plans were generated for each patient. Dose distributions and dosimetric indexes for the tumors and critical structures were computed for both plans and compared. Results: Both modalities created highly conformal plans. They did not differ in the volumes of lung exposed to > 20 Gy of radiation. The average mean lung dose, volume receiving {>=} 30 Gy, and volume receiving {>=} 10 Gy in HT planning were 18.3 Gy, 18.5%, and 57.1%, respectively, compared to 19.4 Gy, 25.4%, and 48.9%, respectively, with IMRT (p = 0.004, p < 0.001, and p < 0.001). The differences between HT and IMRT in lung volume receiving {>=} 10-20 Gy increased significantly as the planning target volume (PTV) increased. For 6 patients who had PTV greater than 700 cm{sup 3}, IMRT was superior to HT for 5 patients in terms of lung volume receiving {>=} 5-20 Gy. The integral dose to the entire thorax in HT plans was significantly higher than in IMRT plans. Conclusion: HT gave significantly better control of mean lung dose and volume receiving {>=} 30-40 Gy, whereas IMRT provided better control of the lung volume receiving {>=} 5-15 Gy and the integral dose to entire thorax. In most patients with PTV greater than 700 cm{sup 3}, IMRT was superior to HT in terms of lung volume receiving {>=} 5-20 Gy. It is therefore advised that caution should be exercised when planning LA-NSCLC using HT. (orig.)

  17. A Phase I Dose Escalation Study of Hypofractionated IMRT Field-in-Field Boost for Newly Diagnosed Glioblastoma Multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Monjazeb, Arta M., E-mail: arta.monjazeb@ucdmc.ucdavis.edu [U.C. Davis School of Medicine, Department of Radiation Oncology, Sacramento, CA (United States); Ayala, Deandra; Jensen, Courtney [Radiation Oncology, Wake Forest University Health Sciences, Winston-Salem, NC (United States); Case, L. Douglas [Biostatistical Sciences, Wake Forest University Health Sciences, Winston-Salem, NC (United States); Bourland, J. Daniel; Ellis, Thomas L. [Neurosurgery, Wake Forest University Health Sciences, Winston-Salem, NC (United States); McMullen, Kevin P.; Chan, Michael D. [Radiation Oncology, Wake Forest University Health Sciences, Winston-Salem, NC (United States); Tatter, Stephen B. [Neurosurgery, Wake Forest University Health Sciences, Winston-Salem, NC (United States); Lesser, Glen J. [Hematology Oncology, Wake Forest University Health Sciences, Winston-Salem, NC (United States); Shaw, Edward G. [Radiation Oncology, Wake Forest University Health Sciences, Winston-Salem, NC (United States)

    2012-02-01

    Objectives: To describe the results of a Phase I dose escalation trial for newly diagnosed glioblastoma multiforme (GBM) using a hypofractionated concurrent intensity-modulated radiotherapy (IMRT) boost. Methods: Twenty-one patients were enrolled between April 1999 and August 2003. Radiotherapy consisted of daily fractions of 1.8 Gy with a concurrent boost of 0.7 Gy (total 2.5 Gy daily) to a total dose of 70, 75, or 80 Gy. Concurrent chemotherapy was not permitted. Seven patients were enrolled at each dose and dose limiting toxicities were defined as irreversible Grade 3 or any Grade 4-5 acute neurotoxicity attributable to radiotherapy. Results: All patients experienced Grade 1 or 2 acute toxicities. Acutely, 8 patients experienced Grade 3 and 1 patient experienced Grade 3 and 4 toxicities. Of these, only two reversible cases of otitis media were attributable to radiotherapy. No dose-limiting toxicities were encountered. Only 2 patients experienced Grade 3 delayed toxicity and there was no delayed Grade 4 toxicity. Eleven patients requiring repeat resection or biopsy were found to have viable tumor and radiation changes with no cases of radionecrosis alone. Median overall and progression-free survival for this cohort were 13.6 and 6.5 months, respectively. One- and 2-year survival rates were 57% and 19%. At recurrence, 15 patients received chemotherapy, 9 underwent resection, and 5 received radiotherapy. Conclusions: Using a hypofractionated concurrent IMRT boost, we were able to safely treat patients to 80 Gy without any dose-limiting toxicity. Given that local failure still remains the predominant pattern for GBM patients, a trial of dose escalation with IMRT and temozolomide is warranted.

  18. A Phase I Dose Escalation Study of Hypofractionated IMRT Field-in-Field Boost for Newly Diagnosed Glioblastoma Multiforme

    International Nuclear Information System (INIS)

    Monjazeb, Arta M.; Ayala, Deandra; Jensen, Courtney; Case, L. Douglas; Bourland, J. Daniel; Ellis, Thomas L.; McMullen, Kevin P.; Chan, Michael D.; Tatter, Stephen B.; Lesser, Glen J.; Shaw, Edward G.

    2012-01-01

    Objectives: To describe the results of a Phase I dose escalation trial for newly diagnosed glioblastoma multiforme (GBM) using a hypofractionated concurrent intensity-modulated radiotherapy (IMRT) boost. Methods: Twenty-one patients were enrolled between April 1999 and August 2003. Radiotherapy consisted of daily fractions of 1.8 Gy with a concurrent boost of 0.7 Gy (total 2.5 Gy daily) to a total dose of 70, 75, or 80 Gy. Concurrent chemotherapy was not permitted. Seven patients were enrolled at each dose and dose limiting toxicities were defined as irreversible Grade 3 or any Grade 4–5 acute neurotoxicity attributable to radiotherapy. Results: All patients experienced Grade 1 or 2 acute toxicities. Acutely, 8 patients experienced Grade 3 and 1 patient experienced Grade 3 and 4 toxicities. Of these, only two reversible cases of otitis media were attributable to radiotherapy. No dose-limiting toxicities were encountered. Only 2 patients experienced Grade 3 delayed toxicity and there was no delayed Grade 4 toxicity. Eleven patients requiring repeat resection or biopsy were found to have viable tumor and radiation changes with no cases of radionecrosis alone. Median overall and progression-free survival for this cohort were 13.6 and 6.5 months, respectively. One- and 2-year survival rates were 57% and 19%. At recurrence, 15 patients received chemotherapy, 9 underwent resection, and 5 received radiotherapy. Conclusions: Using a hypofractionated concurrent IMRT boost, we were able to safely treat patients to 80 Gy without any dose-limiting toxicity. Given that local failure still remains the predominant pattern for GBM patients, a trial of dose escalation with IMRT and temozolomide is warranted.

  19. A feasibility study of using conventional jaws to deliver complex IMRT plans for head and neck cancer

    International Nuclear Information System (INIS)

    Mu, G; Xia, P

    2009-01-01

    Previous studies have demonstrated that simple intensity-modulated radiotherapy (IMRT) plans can be produced with a series of rectangular segments formed by conventional jaws. This study investigates whether complex IMRT plans for head and neck cancer can be delivered with the conventional jaws efficiently. Six nasopharyngeal cancer patients, previously treated with multi-leaf collimator (MLC)-IMRT plans, were re-planned using conventional jaw delivery options. All IMRT plans were subject to the plan acceptance criteria of the RTOG-0225 protocol. For a selected patient, the maximum number of segments varied from five to nine per beam, and was tested for both jaws-only IMRT (JO-IMRT) plans and MLC-IMRT plans. Subsequently, JO-IMRT plans and MLC-IMRT on the same treatment planning system were attempted for all patients with identical beams. The dose distribution, dose volume histograms (DVH), the conformal index (COIN), the uniformity index and delivery efficiency were compared between the MLC-IMRT and JO-IMRT plans. All JO-IMRT plans met the RTOG-0225 criteria for tumor coverage and sensitive structures sparing. The corresponding MLC-IMRT and JO-IMRT plans show comparable conformality and uniformity, with average COINs of the planning gross tumor volume(pGTV) 37.7% ± 18.7% versus 37.9% ± 18.1%, and the average uniformity index 82.8% ± 2.5% versus 83.6% ± 3.1%, respectively. The average monitor unit for JO-IMRT plans was about twice that of MLC-IMRT plans. In conclusion, conventional jaws can be used solely to deliver complex IMRT plans for patients with nasopharyngeal cancer yet still within a practical delivery time.

  20. Left-sided breast cancer irradiation using rotational and fixed-field radiotherapy

    International Nuclear Information System (INIS)

    Qi, X. Sharon; Liu, Tian X.; Liu, Arthur K.; Newman, Francis; Rabinovitch, Rachel; Kavanagh, Brian; Hu, Y. Angie

    2014-01-01

    The 3-dimensional conformal radiotherapy (3DCRT) technique is the standard for breast cancer radiotherapy. During treatment planning, not only the coverage of the planning target volume (PTV) but also the minimization of the dose to critical structures, such as the lung, heart, and contralateral breast tissue, need to be considered. Because of the complexity and variations of patient anatomy, more advanced radiotherapy techniques are sometimes desired to better meet the planning goals. In this study, we evaluated external-beam radiation treatment techniques for left breast cancer using various delivery platforms: fixed-field including TomoDirect (TD), static intensity-modulated radiotherapy (sIMRT), and rotational radiotherapy including Elekta volumetric-modulated arc therapy (VMAT) and tomotherapy helical (TH). A total of 10 patients with left-sided breast cancer who did or did not have positive lymph nodes and were previously treated with 3DCRT/sIMRT to the entire breast were selected, their treatment was planned with Monaco VMAT, TD, and TH. Dosimetric parameters including PTV coverage, organ-at-risk (OAR) sparing, dose-volume histograms, and target minimum/maximum/mean doses were evaluated. It is found that for plans providing comparable PTV coverage, the Elekta VMAT plans were generally more inhomogeneous than the TH and TD plans. For the cases with regional node involvement, the average mean doses administered to the heart were 9.2 (± 5.2) and 8.8 (± 3.0) Gy in the VMAT and TH plans compared with 11.9 (± 6.4) and 11.8 (± 9.2) Gy for the 3DCRT and TD plans, respectively, with slightly higher doses given to the contralateral lung or breast or both. On average, the total monitor units for VMAT plans are 11.6% of those TH plans. Our studies have shown that VMAT and TH plans offer certain dosimetric advantages over fixed-field IMRT plans for advanced breast cancer requiring regional nodal treatment. However, for early-stage breast cancer fixed