WorldWideScience

Sample records for modulated cell growth

  1. Estrogens and Insulin-Like Growth Factor 1 Modulate Neoplastic Cell Growth in Human Cholangiocarcinoma

    Science.gov (United States)

    Alvaro, Domenico; Barbaro, Barbara; Franchitto, Antonio; Onori, Paolo; Glaser, Shannon S.; Alpini, Gianfranco; Francis, Heather; Marucci, Luca; Sterpetti, Paola; Ginanni-Corradini, Stefano; Onetti Muda, Andrea; Dostal, David E.; De Santis, Adriano; Attili, Adolfo F.; Benedetti, Antonio; Gaudio, Eugenio

    2006-01-01

    We investigated the expression of estrogen receptors (ERs), insulin-like growth factor 1 (IGF-1), and IGF-1R (receptor) in human cholangiocarcinoma and cholangiocarcinoma cell lines (HuH-28, TFK-1, Mz-ChA-1), evaluating the role of estrogens and IGF-1 in the modulation of neoplastic cell growth. ER-α, ER-β, IGF-1, and IGF-1R were expressed (immunohistochemistry) in all biopsies (18 of 18) of intrahepatic cholangiocarcinoma. ER-α was expressed (Western blot) only by the HuH-28 cell line (intrahepatic cholangiocarcinoma), whereas ER-β, IGF-1, and IGF-1R were expressed in the three cell lines examined. In serum-deprived HuH-28 cells, serum readmission induced stimulation of cell proliferation that was inhibited by ER and IGF-1R antagonists. 17β-Estradiol and IGF-1 stimulated proliferation of HuH-28 cells to a similar extent to that of MCF7 (breast cancer) but greater than that of TFK-1 and Mz-ChA-1, inhibiting apoptosis and exerting additive effects. These effects of 17β-estradiol and IGF-1 were associated with enhanced protein expression of ER-α, phosphorylated (p)-ERK1/2 and pAKT but with decreased expression of ER-β. Finally, transfection of IGF-1R anti-sense oligonucleotides in HuH-28 cells markedly decreased cell proliferation. In conclusion, human intrahepatic cholangiocarcinomas express receptors for estrogens and IGF-1, which cooperate in the modulation of cell growth and apoptosis. Modulation of ER and IGF-1R could represent a strategy for the management of cholangiocarcinoma. PMID:16936263

  2. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  3. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth.

    Science.gov (United States)

    El Ghazal, Roland; Yin, Xin; Johns, Scott C; Swanson, Lee; Macal, Monica; Ghosh, Pradipta; Zuniga, Elina I; Fuster, Mark M

    2016-05-01

    In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs) in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1) in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21)-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt) were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4-deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  4. Regulation of IGFBP secretion and modulation of cell growth in MDBK cells.

    Science.gov (United States)

    Cohick, W S; Clemmons, D R

    1993-03-01

    The ability of IGF binding proteins (IGFBP) to modulate cell growth and IGF-I responsiveness of epithelial cells was examined using the Madin-Darby bovine kidney (MDBK) cell line. The predominant IGFBP present in conditioned media (CM) of untreated cells was found to be IGFBP-2. Following exposure to forskolin, the abundance of IGFBP-2 in CM was decreased, while IGFBP-3 and -4 were induced. These changes corresponded with alterations in mRNA abundance. Growth of MDBK cells in serum-free media was stimulated by addition of 2.5 to 50 ng/ml of IGF-I in a dose responsive manner. Coincubation with equimolar amounts of IGF-I and exogenous bovine IGFBP-3 potentiated the growth response observed with IGF-I alone. In order to alter endogenous IGFBP-3 secretion, cells were exposed to transfection with an expression vector containing sense IGFBP-3 cDNA. Following selection and amplification with methotrexate, cells underwent a permanent alteration in cell morphology, exhibiting characteristics of transporting epithelia. This was associated with secretion of IGFBP-3 under basal conditions. Secretion of IGFBP-3 was due to expression of endogenous IGFBP-3 and not to expression of the transgene. Cells expressing IGFBP-3 under basal conditions grew slower in serum, but were more responsive to 100 ng/ml of IGF-1 in serum-free media compared to wild-type MDBK cells. The role of IGFBP-3 in mediating these responses requires further study.

  5. Nerve growth factor modulate proliferation of cultured rabbit corneal endothelial cells and epithelial cells.

    Science.gov (United States)

    Li, Xinyu; Li, Zhongguo; Qiu, Liangxiu; Zhao, Changsong; Hu, Zhulin

    2005-01-01

    In order to investigate the effect of nerve growth factor (NGF) on the proliferation of rabbit corneal endothelial cells and epithelial cells, the in vitro cultured rabbit corneal endothelial cells and epithelial cells were treated with different concentrations of NGF. MTT assay was used to examine the clonal growth and proliferation of the cells by determining the absorbency values at 570 nm. The results showed that NGF with three concentrations ranging from 5 U/mL to 500 U/mL enhanced the proliferation of rabbit corneal endothelial cells in a concentration-dependent manner. 50 U/mL and 500 U/mL NGF got more increase of proliferation than that of 5 U/mL NGF did. Meanwhile, 50 U/mL and 500 U/mL NGF could promote the proliferation of the rabbit corneal epithelial cells significantly in a concentration-dependent manner. However, 5 U/mL NGF did not enhance the proliferation of epithelial cells. It was suggested that exogenous NGF can stimulate the proliferation of both rabbit corneal endothelial and epithelial cells, but the extent of modulation is different.

  6. A preliminary investigation of cell growth after irradiation using a modulated x-ray intensity pattern

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Regina [Northern Sydney Cancer Centre, Radiation Oncology, Royal North Shore Hospital, Sydney, NSW 2065 (Australia); Davey, Ross [Institute of Medical Physics, School of Physics, Sydney University, NSW 2006 (Australia); Oliver, Lyn [Northern Sydney Cancer Centre, Radiation Oncology, Royal North Shore Hospital, Sydney, NSW 2065 (Australia); Harvie, Rozelle [Institute of Medical Physics, School of Physics, Sydney University, NSW 2006 (Australia); Baldock, Clive [Bill Walsh Cancer Research Laboratories, Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065 (Australia)

    2006-08-07

    In this study we have investigated a spatial distribution of cell growth after their irradiation using a modulated x-ray intensity pattern. An A549 human non-small cell lung cancer cell line was grown in a 6-well culture. Two of the wells were the unirradiated control wells, whilst another two wells were irradiated with a modulated x-ray intensity pattern and the third two wells were uniformly irradiated. A number of plates were incubated for various times after irradiation and stained with crystal violet. The spatial distribution of the stained cells within each well was determined by measurement of the crystal violet optical density at multiple positions in the plate using a microplate photospectrometer. The crystal violet optical density for a range of cell densities was measured for the unirradiated well and this correlated with cell viability as determined by the MTT cell viability assay. An exponential dose response curve was measured for A549 cells from the average crystal violet optical density in the uniformly irradiated well up to a dose of 30 Gy. By measuring the crystal violet optical density distribution within a well the spatial distribution of cell growth after irradiation with a modulated x-ray intensity pattern can be plotted. This method can be used for in vitro investigation into the changes in radiation response associated with treatment using intensity modulated radiation therapy (IMRT)

  7. Procyanidins as antioxidants and tumor cell growth modulators.

    Science.gov (United States)

    Faria, Ana; Calhau, Conceição; de Freitas, Victor; Mateus, Nuno

    2006-03-22

    Five procyanidin fractions with different structural complexities were obtained after fractionation of a grape seed extract. The procyanidin fraction's abilities to inhibit lipid peroxidation induced by 2,2'-azobis-2-methyl-propanimidamide dihydrochloride in a liposomal membrane system were examined. The antioxidant capacities of all fractions were evaluated through monitoring oxygen consumption and by measuring the formation of conjugated dienes. All tested fractions provided protection of membranes against peroxyl radicals by increasing the induction time of oxidation. This effect increased up to fraction II but decreased with the increase of the structural complexity of further procyanidin fractions, possibly due to steric hindrance effects exhibited by the more complex fractions. In addition, the antiradical properties and the reducing power of these fractions were determined by using 2,2-diphenyl-1-picrylhydrazyl and ferric reducing/antioxidant power methods, respectively. Moreover, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide reduction and DNA synthesis were measured in Michigan Cancer Foundation 7 (MCF-7), a human breast cancer cell line, treated with catechin or procyanidin fractions in order to evaluate the effect of these compounds on cell viability and proliferation. The results obtained showed that at 30 microg/mL, fractions I and II decreased cell viability and proliferation, which was not observed with 60 microg/mL of the same fractions. Catechin was also able to decrease cell viability and proliferation at 30 and 60 microg/mL. It is interesting to notice that the procyanidin fractions that exhibited higher antioxidant activity were the same to affect cell viability and proliferation.

  8. Narciclasine, a plant growth modulator, activates Rho and stress fibers in glioblastoma cells.

    Science.gov (United States)

    Lefranc, Florence; Sauvage, Sébastien; Van Goietsenoven, Gwendoline; Mégalizzi, Véronique; Lamoral-Theys, Delphine; Debeir, Olivier; Spiegl-Kreinecker, Sabine; Berger, Walter; Mathieu, Véronique; Decaestecker, Christine; Kiss, Robert

    2009-07-01

    Cell motility and resistance to apoptosis characterize glioblastoma multiforme growth and malignancy. Narciclasine, a plant growth modulator, could represent a powerful new weapon targeting the Achilles' heel of glioblastoma multiforme and may offer the potential to better combat these devastating malignancies. The in vitro effects of narciclasine on cell proliferation, morphology, actin cytoskeleton organization, and the Rho/Rho kinase/LIM kinase/cofilin pathway and its antitumor activity in vivo have been determined in models of human glioblastoma multiforme. Narciclasine impairs glioblastoma multiforme growth by markedly decreasing mitotic rates without inducing apoptosis. The compound also modulates the Rho/Rho kinase/LIM kinase/cofilin signaling pathway, greatly increasing GTPase RhoA activity as well as inducing actin stress fiber formation in a RhoA-dependent manner. Lastly, the treatment of human glioblastoma multiforme orthotopic xenograft- bearing mice with nontoxic doses of narciclasine significantly increased their survival. Narciclasine antitumor effects were of the same magnitude as those of temozolomide, the drug associated with the highest therapeutic benefits in treating glioblastoma multiforme patients. Our results show for the first time that narciclasine, a plant growth modulator, activates Rho and stress fibers in glioblastoma multiforme cells and significantly increases the survival of human glioblastoma multiforme preclinical models. This statement is made despite the recognition that to date, irrespective of treatment, no single glioblastoma multiforme patient has been cured.

  9. A selective aryl hydrocarbon receptor modulator 3,3'-Diindolylmethane inhibits gastric cancer cell growth

    Directory of Open Access Journals (Sweden)

    Yin Xiao-Fei

    2012-05-01

    Full Text Available Abstract Background Aryl hydrocarbon receptor (AhR is a ligand-activated transcription factor associated with gastric carcinogenesis. 3,3'-Diindolylmethane (DIM is a relatively non-toxic selective AhR modulator. This study was to detect the effects of DIM on gastric cancer cell growth. Methods Gastric cancer cell SGC7901 was treated with DIM at different concentrations (0,10,20,30,40,50 μmol/L with or without an AhR antagonist, resveratrol. The expression of AhR and Cytochrome P4501A1 (CYP1A1, a classic target gene of AhR pathway, were detected by RT-PCR and Western blot; cell viability was measured by MTT assay, and the changes in cell cycle and apoptosis were analyzed by flow cytometry. Results RT-PCR and western-blot showed that with the increase of the concentration of DIM, AhR protein gradually decreased and CYP1A1 expression increased, suggesting that DIM activated the AhR pathway and caused the translocation of AhR from cytoplasm to nucleus. MTT assay indicated that the viability of SGC7901 cells was significantly decreased in a concentration- and time-dependent manner after DIM treatment and this could be partially reversed by resveratrol. Flow cytometry analysis showed that DIM arrested cell cycle in G1 phase and induced cell apoptosis. Conclusion Selective aryl hydrocarbon receptor modulator 3,3'-Diindolylmethane inhibits SGC7901 cell proliferation by inducing apoptosis and delaying cell cycle progression. AhR may be a potential therapeutic target for gastric cancer treatment.

  10. Heme oxygenase activity modulates vascular endothelial growth factor synthesis in vascular smooth muscle cells.

    Science.gov (United States)

    Dulak, Jozef; Józkowicz, Alicja; Foresti, Roberta; Kasza, Aneta; Frick, Matthias; Huk, Ihor; Green, Colin J; Pachinger, Otmar; Weidinger, Franz; Motterlini, Roberto

    2002-04-01

    Hypoxia, cytokines, and nitric oxide (NO) stimulate the generation of vascular endothelial growth factor (VEGF) and induce heme oxygenase-1 (HO-1) expression in vascular tissue. HO-1 degrades heme to carbon monoxide (CO), iron, and biliverdin, the latter being reduced to bilirubin by biliverdin reductase. In the present study, we investigated the role of HO-1 in the modulation of VEGF synthesis in rat vascular smooth muscle cells (VSMC). In VSMC stimulated with cytokines, inhibition of NO production significantly, but not completely, reduced VEGF release. In contrast, inhibition of HO activity by tin protoporphyrin IX (SnPPIX) totally prevented cytokine-induced increase in VEGF, despite an augmented synthesis of intracellular NO. Stimulation of HO-1 activity by hemin enhanced VEGF production; this effect was abrogated by blockade of the HO pathway. Similarly, VEGF synthesis induced by hypoxia was down-regulated by SnPPIX, but not by inhibitors of NO synthase. To elucidate further a direct involvement of HO-1 in the observed effects, we generated transfected cells that overexpressed the HO-1 gene. Notably, these cells synthesized significantly more VEGF protein than cells transfected with a control gene. Among the products of HO-1, biliverdin and bilirubin showed no effect, whereas iron ions inhibited VEGF synthesis. Exposure of cells to 1% CO resulted in a marked accumulation of VEGF (20-fold increase) over the basal level. Our data indicate that HO-1 activity influences the generation of VEGF in VSMC in both normoxic and hypoxic conditions. As CO and iron, respectively the inducer and the inhibitor of VEGF synthesis, are concomitantly produced during the degradation of heme, these data indicate that HO by-products may differentially modulate VEGF production.

  11. Keratinocyte growth factor modulates alveolar epithelial cell phenotype in vitro: expression of aquaporin 5.

    Science.gov (United States)

    Borok, Z; Lubman, R L; Danto, S I; Zhang, X L; Zabski, S M; King, L S; Lee, D M; Agre, P; Crandall, E D

    1998-04-01

    We investigated the role of keratinocyte growth factor (KGF) in regulation of alveolar epithelial cell (AEC) phenotype in vitro. Effects of KGF on cell morphology, expression of surfactant apoproteins A, B, and C (SP-A, -B, and -C), and expression of aquaporin 5 (AQP5), a water channel present in situ on the apical surface of alveolar type I (AT1) cells but not expressed in alveolar type II (AT2) cells, were evaluated in AECs grown in primary culture. Observations were made on AEC monolayers grown in serum-free medium without KGF (control) or grown continuously in the presence of KGF (10 ng/ml) from either Day 0 (i.e., the time of plating) or Day 4 or 6 through Day 8 in culture. AECs monolayers express AQP5 only on their apical surfaces as determined by cell surface biotinylation studies. Control AECs grown in the absence of KGF through Day 8 express increasing levels of AQP5, consistent with transition toward the AT1 cell phenotype. Exposure of AECs to KGF from Day 0 results in decreased AQP5 expression, retention of a cuboidal morphology, and greater numbers of lamellar bodies relative to control on Day 8 in culture. AECs treated with KGF from Day 4 or 6 exhibit a decrease in AQP5 expression through subsequent days in culture, as well as an increase in expression of surfactant apoproteins. These data, showing that KGF both prevents and reverses the increase in AQP5 (and decrease in surfactant apoprotein) expression that accompanies progression of the AT2 toward the AT1 cell phenotype, support the concepts that transdifferentiation between AT2 and AT1 cell phenotypes is at least partially reversible and that KGF may play a major role in modulating AEC phenotype.

  12. Critical amino acids in syndecan-4 cytoplasmic domain modulation of turkey satellite cell growth and development.

    Science.gov (United States)

    Song, Yan; McFarland, Douglas C; Velleman, Sandra G

    2012-02-01

    Syndecan-4 is composed of a core protein and covalently attached glycosaminoglycan (GAG) and N-linked glycosylated (N-glycosylated) chains. The core protein is divided into extracellular, transmembrane, and cytoplasmic domains. The cytoplasmic domain has two conserved regions and a variable region in the middle. The Ser residue in the conserved region 1 and the Tyr residue in the variable region are important in regulating protein kinase C alpha (PKCα) membrane localization and focal adhesion formation. The objective of the current study was to investigate the role of syndecan-4 Ser and Tyr residues in combination with the GAG and N-glycosylated chains in turkey satellite cell proliferation, differentiation, fibroblast growth factor 2 (FGF2) responsiveness, and PKCα membrane localization. Site-directed mutagenesis was used to generate Ser and Tyr mutants with or without GAG and N-glycosylated chains. The wild type and mutant syndecan-4 constructs were transfected into turkey satellite cells. The over-expression of Ser and Tyr mutants increased cell proliferation and differentiation and decreased membrane localization of PKCα. Furthermore, Ser mutants enhanced cellular responsiveness to FGF2. The results from this study are the first demonstration of a role of syndecan-4 cytoplasmic domain Ser and Tyr residues in regulating satellite cell proliferation, differentiation, and the modulation of cellular responsiveness to FGF2.

  13. Multifunctional carbon nanotube/bioceramics modulate the directional growth and activity of osteoblastic cells.

    Science.gov (United States)

    Mata, D; Oliveira, F J; Ferro, M; Gomes, P S; Fernandes, M H; Lopes, M A; Silval, R F

    2014-05-01

    Biomaterials can still be reinvented to become simple and universal bone regeneration solutions. Following this roadmap, a bone graft of carbon nanotube (CNT)/glass/hydroxyapatite (HA) with controlled CNT agglomeration state was designed with multifunctionalities able to stimulate the bone cell phenotype. The preparation route, the mechanical and electrical behavior and the in vitro profiles of degradation and osteocompatibility were described. A non-destructive dynamic route was found to have a higher influence than the Diels-Alder functionalization one on controlling the CNT agglomerate state in the ceramic-matrix composite. Biologically safe CNT agglomerates, with diameter sizes below 3 microm homogenously distributed, were obtained in non-functionalized and functionalized composites. Yet, the lowest CNT damage and the highest mechanical and electrical properties were found for the non-functionalized materials. Even though that these composites present higher degradation rate at pH:3 than the ceramic matrix, the CNT agglomerates are released with safe diameter sizes. Also, non-functionalized composites allowed cellular adhesion and modulated the orientation of the cell growth, with a proliferation/differentiation relationship favoring osteoblastic functional activity. Findings offer further contributions for bone tissue engineering by showing that multifunctional bone grafts with high electroconductivity, and integrating CNT agglomerates with maximized interfacing area, allow the in situ control of bone cell functions.

  14. Growth factor priming differentially modulates components of the extracellular matrix proteome in chondrocytes and synovium-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Elena Alegre-Aguarón

    Full Text Available To make progress in cartilage repair it is essential to optimize protocols for two-dimensional cell expansion. Chondrocytes and SDSCs are promising cell sources for cartilage repair. We previously observed that priming with a specific growth factor cocktail (1 ng/mL transforming growth factor-β1, 5 ng/mL basic fibroblast growth factor, and 10 ng/mL platelet-derived growth factor-BB in two-dimensional culture, led to significant improvement in mechanical and biochemical properties of synovium-derived stem cell (SDSC-seeded constructs. The current study assessed the effect of growth factor priming on the proteome of canine chondrocytes and SDSCs. In particular, growth factor priming modulated the proteins associated with the extracellular matrix in two-dimensional cultures of chondrocytes and SDSCs, inducing a partial dedifferentiation of chondrocytes (most proteins associated with cartilage were down-regulated in primed chondrocytes and a partial differentiation of SDSCs (some collagen-related proteins were up-regulated in primed SDSCs. However, when chondrocytes and SDSCs were grown in pellet culture, growth factor-primed cells maintained their chondrogenic potential with respect to glycosaminoglycan and collagen production. In conclusion, the strength of the label-free proteomics technique is that it allows for the determination of changes in components of the extracellular matrix proteome in chondrocytes and SDSCs in response to growth factor priming, which could help in future tissue engineering strategies.

  15. Tumour cell–derived extracellular vesicles interact with mesenchymal stem cells to modulate the microenvironment and enhance cholangiocarcinoma growth

    Directory of Open Access Journals (Sweden)

    Hiroaki Haga

    2015-01-01

    Full Text Available The contributions of mesenchymal stem cells (MSCs to tumour growth and stroma formation are poorly understood. Tumour cells can transfer genetic information and modulate cell signalling in other cells through the release of extracellular vesicles (EVs. We examined the contribution of EV-mediated inter-cellular signalling between bone marrow MSCs and tumour cells in human cholangiocarcinoma, highly desmoplastic cancers that are characterized by tumour cells closely intertwined within a dense fibrous stroma. Exposure of MSCs to tumour cell–derived EVs enhanced MSC migratory capability and expression of alpha-smooth muscle actin mRNA, in addition to mRNA expression and release of CXCL-1, CCL2 and IL-6. Conditioned media from MSCs exposed to tumour cell–derived EVs increased STAT-3 phosphorylation and proliferation in tumour cells. These effects were completely blocked by anti-IL-6R antibody. In conclusion, tumour cell–derived EVs can contribute to the generation of tumour stroma through fibroblastic differentiation of MSCs, and can also selectively modulate the cellular release of soluble factors such as IL-6 by MSCs that can, in turn, alter tumour cell proliferation. Thus, malignant cells can “educate” MSCs to induce local microenvironmental changes that enhance tumour cell growth.

  16. Selective pattern of cancer cell accumulation and growth using UV modulating printing of hydrogels.

    Science.gov (United States)

    Yang, Wenguang; Yu, Haibo; Wei, Fanan; Li, Gongxin; Wang, Yuechao; Liu, Lianqing

    2015-12-01

    Fabrication of extracellular microenvironment for cancer cell growth in vitro is an indispensable technique to precisely control the cell spatial arrangement and proliferation for cell-behavior research. Current micropatterning methods usually require relatively complicated operations, which makes it difficult to investigate the effects of different cell growth patterns. This manuscript proposes a DMD-based projection technique to quickly pattern a poly(ethylene) glycol diacrylate (PEGDA)-based hydrogel on a common glass substrate. Using this method, we can effectively control the growth patterns of cells. Compared with these traditional methods which employ digital dynamic mask, polymerization of PEGDA solution can be used to create arbitrary shaped microstructures with high efficiency, flexibility and repeatability. The duration of UV exposure is less than 10 s through controlling the projected illumination pattern. The ability of patterned PEGDA-coated film to hinder cell adhesion makes it possible to control area over which cells attach. In our experiments, we take advantage of the blank area to pattern cells, which allows cells to grow in various pre-designed shapes and sizes. And the patterning cells have a high viability after culturing for several days. Interestingly, we found that the restricted space could stiffen and strengthen the cells. These results indicate that cells and extracellular microenvironment can influence each other.

  17. p53 oligomerization status modulates cell fate decisions between growth, arrest and apoptosis.

    Science.gov (United States)

    Fischer, Nicholas W; Prodeus, Aaron; Malkin, David; Gariépy, Jean

    2016-12-01

    Mutations in the oligomerization domain of p53 are genetically linked to cancer susceptibility in Li-Fraumeni Syndrome. These mutations typically alter the oligomeric state of p53 and impair its transcriptional activity. Activation of p53 through tetramerization is required for its tumor suppressive function by inducing transcriptional programs that lead to cell fate decisions such as cell cycle arrest or apoptosis. How p53 chooses between these cell fate outcomes remains unclear. Here, we use 5 oligomeric variants of p53, including 2 novel p53 constructs, that yield either monomeric, dimeric or tetrameric forms of p53 and demonstrate that they induce distinct cellular activities and gene expression profiles that lead to different cell fate outcomes. We report that dimeric p53 variants are cytostatic and can arrest cell growth, but lack the ability to trigger apoptosis in p53-null cells. In contrast, p53 tetramers induce rapid apoptosis and cell growth arrest, while a monomeric variant is functionally inactive, supporting cell growth. In particular, the expression of pro-arrest CDKN1A and pro-apoptotic P53AIP1 genes are important cell fate determinants that are differentially regulated by the oligomeric state of p53. This study suggests that the most abundant oligomeric species of p53 present in resting cells, namely p53 dimers, neither promote cell growth or cell death and that shifting the oligomeric state equilibrium of p53 in cells toward monomers or tetramers is a key parameter in p53-based cell fate decisions.

  18. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Hong, Darong [Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Jung, Bom; Park, Min-Ju [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Kim, Jong-Ho, E-mail: jonghokim@khu.ac.kr [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2015-08-07

    Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated the effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer.

  19. Carob fibre compounds modulate parameters of cell growth differently in human HT29 colon adenocarcinoma cells than in LT97 colon adenoma cells.

    Science.gov (United States)

    Klenow, S; Glei, M; Haber, B; Owen, R; Pool-Zobel, B L

    2008-04-01

    An extract of the Mediterranean carob (Ceratonia siliqua L.) pod (carob fibre extract), products formed after its fermentation by the gut flora and the major phenolic ingredient gallic acid (GA), were comparatively investigated for their influence on survival and growth parameters of colon adenocarcinoma HT29 cells and adenoma LT97 cells. Hydrogen peroxide (H2O2) formation in the cell culture media was quantified. After 1h 97+/-4 microM or 70+/-15 microM were found in HT29 medium and 6+/-1 microM or 3+/-3 microM in LT97 medium for carob fibre extract or GA, respectively. After 72 h carob fibre extract reduced survival of rapidly proliferating HT29 cells (by 76.4+/-12.9%) whereas metabolic activity and DNA-synthesis were only transiently impaired. Survival of slower growing LT97 cells was less decreased (by 21.5+/-12.9%), but there were marked effects on DNA-synthesis (reduction by 95.6+/-7%, 72 h). GA and fermented carob fibre did not have comparable effects. Thus, carob fibre extract resulted in H2O2 formation, which, however, could not explain impairment of cell growth. The differently modulated growth of human colon cell lines was more related to proliferation rates and impairment of DNA-synthesis than to H2O2 formation.

  20. Modulations of prolactin and growth hormone gene expression and chromatin structure in cultured rat pituitary cells.

    OpenAIRE

    Levy-Wilson, B

    1983-01-01

    I have measured the effect of hormones and other regulatory factors present in the serum component of the culture medium on the levels of growth hormone and prolactin mRNAs in rat pituitary (GH4) cells. Hybridization of cytoplasmic RNA with growth hormone or prolactin cDNA clones indicate that serum depletion reduces significantly the amount of these two mRNAs. The localization of these two genes in chromatin was also analysed using micrococcal nuclease as a probe. At intermediate levels of d...

  1. Molecular Tissue Engineering:Applications for Modulation of Mesenchymal Stem Cells Proliferation by Transforming Growth Factor

    Institute of Scientific and Technical Information of China (English)

    GUO; Xiaodong(

    2001-01-01

    [1]郭晓东 杜靖远 郑启新等.组织工程学技术修复关节软骨缺损研究进展.国外医学生物医学工程分册 2000 23(6):330[2]郭晓东 杜靖远 郑启新等.骨关节炎基因治疗进展.国外医学老年医学分册 2001 22(1):29[3]Grande D Breitbart A Mason J et al.Cartilage tissue engineering:current limitations and solutions.Clin Orthop 1999 367S:S176[4]Brittberg M Lindahl A Nilsson A et al.Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation.N Engl J Med 1994 331:889[5]Reddi A.Morphogenesis and tissue engineering of bone and cartilage:inductive signals stem cells and biomimetic biomaterials.Tissue Eng 2000 6(4) :351[6]Freed L Martin I Vunjak-Novakovic G.Frontiers in tissue engineering:in vitro modulation of chondrogene sis.Clin Orthop 1999 367S:S46[7]Evans C Ghivizzani S Smith P et al.Using gene therapy to protect and restore cartilage.Clin Orthop 2000 379 (Suppl) :S214[8]Fernandes J Martel-Pelletier J Pelletier J.Gene therapy for osteoarthritis:new perspectives for the twentyfirst century.Clin Orthop 2000 379(Suppl):S262[9]Mason J M Breitbart A S Barcia M et al.Cartilage and bone regeneration using gene-enhanced tissue engineering.Clin Orthop 2000 379 (Suppl):S171[10]郭晓东 杜靖远 郑启新等.分子生物学在组织工程学研究中的应用前景.中华实验外科杂志 2001 18(3):283[11]郭晓东 全大萍.组织工程与生物材料.见:生物医用材料导论.李世普主编.武汉:武汉工业大学出版社 2000.302[12]Liu Y Zheng Q X Du J Y et al.Cloning and expression of rat transforming growth factorβ1 cDNA in osteoblasts.J Tongji Med Univ 2000 20:63[13]Johnstone B Yoo J.Autologous mesenchymal progenitol cells in articular cartilage repair.Clin Orthop 1999 367S:S156[14]Yoo J Mandell I Angele P et al.Chondrogenitor cells and gene therapy.Clin Orthop 2000 379 (Suppl):S164[15]Caplan A I.Mesenchymal stem cells and gene

  2. Understanding the role of growth factors in modulating stem cell tenogenesis.

    Directory of Open Access Journals (Sweden)

    Ana I Gonçalves

    Full Text Available Current treatments for tendon injuries often fail to fully restore joint biomechanics leading to the recurrence of symptoms, and thus resulting in a significant health problem with a relevant social impact worldwide. Cell-based approaches involving the use of stem cells might enable tailoring a successful tendon regeneration outcome. As growth factors (GFs powerfully regulate the cell biological response, their exogenous addition can further stimulate stem cells into the tenogenic lineage, which might eventually depend on stem cells source. In the present study we investigate the tenogenic differentiation potential of human- amniotic fluid stem cells (hAFSCs and adipose-derived stem cells (hASCs with several GFs associated to tendon development and healing; namely, EGF, bFGF, PDGF-BB and TGF-β1. Stem cells response to biochemical stimuli was studied by screening of tendon-related genes (collagen type I, III, decorin, tenascin C and scleraxis and proteins found in tendon extracellular matrix (ECM (Collagen I, III, and Tenascin C. Despite the fact that GFs did not seem to influence the synthesis of tendon ECM proteins, EGF and bFGF influenced the expression of tendon-related genes in hAFSCs, while EGF and PDGF-BB stimulated the genetic expression in hASCs. Overall results on cellular alignment morphology, immunolocalization and PCR analysis indicated that both stem cell source can be biochemically induced towards tenogenic commitment, validating the potential of hASCs and hAFSCs for tendon regeneration strategies.

  3. Effect of basic fibroblast growth factor on the proliferation, migration and phenotypic modulation of airway smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    ZOU Hui; NIE Xiu-hong; ZHANG Yi; HU Mu; ZHANG Yu Alex

    2008-01-01

    Background Proliferation,cell migration and phenotypic modulation of airway smooth muscle cells(ASMCs)are important features of airway remodelling in asthma.The precise cellular and molecular mechanisms that regulate ASMCs proliferation,migration and phenotypic modulation in the lung remain unknown.Basic fibroblast growth factor(bFGF),a highly specific chemotactic and mitogenic factor for many cell types,appears to be involved in the development of airway remodelling.Our study assessed whether bFGF directly stimulates the proliferation,migration and phenotypic modulation of ASMCs.Methods Confluent and growth arrested human ASMCs were treated with human recombinant FGF.Proliferation was measured by BrdU incorporation and cell counting.Migration was examined using Boyden chamber apparatus.Expressions of smooth muscle(sm)-α-actin and sm-myosin heavy chain(MHC)isoform 1 were determined by RT-PCR and Western blot analysis.Results It was found that hrbFGF(10 ng/ml),when added to ASMCs,induced a significant increase in BrdU uptake and cell number by ASMCS as compared to controls and a significant increase in ASMCs migration with respect to controls.The mRNA and protein expressions of sm-α-actin and sm-MHC in ASMCs that were stimulated with hrbFGF decreased with respect to controls.Conclusion It appears that bFGF can directly stimulate proliferation and migration of ASMCs.however,the expressions of cells'contractive phenotype decreased.

  4. Modulation of the leptin receptor mediates tumor growth and migration of pancreatic cancer cells.

    Science.gov (United States)

    Mendonsa, Alisha M; Chalfant, Madeleine C; Gorden, Lee D; VanSaun, Michael N

    2015-01-01

    Obesity has been implicated as a significant risk factor for development of pancreatic cancer. In the setting of obesity, a systemic chronic inflammatory response is characterized by alterations in the production and secretion of a wide variety of growth factors. Leptin is a hormone whose level increases drastically in the serum of obese patients. High fat diet induced obesity in mice leads to an overall increased body weight, pancreatic weight, serum leptin, and pancreatic tissue leptin levels. Here we report the contribution of obesity and leptin to pancreatic cancer growth utilizing an in vivo orthotopic murine pancreatic cancer model, which resulted in increased tumor proliferation with concomitant increased tumor burden in the diet induced obese mice compared to lean mice. Human and murine pancreatic cancer cell lines were found to express the short as well as the long form of the leptin receptor and functionally responded to leptin induced activation through an increased phosphorylation of AKT473. In vitro, leptin stimulation increased cellular migration which was blocked by addition of a PI3K inhibitor. In vivo, depletion of the leptin receptor through shRNA knockdown partially abrogated increased orthotopic tumor growth in obese mice. These findings suggest that leptin contributes to pancreatic tumor growth through activation of the PI3K/AKT pathway, which promotes pancreatic tumor cell migration.

  5. Modulation of the leptin receptor mediates tumor growth and migration of pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Alisha M Mendonsa

    Full Text Available Obesity has been implicated as a significant risk factor for development of pancreatic cancer. In the setting of obesity, a systemic chronic inflammatory response is characterized by alterations in the production and secretion of a wide variety of growth factors. Leptin is a hormone whose level increases drastically in the serum of obese patients. High fat diet induced obesity in mice leads to an overall increased body weight, pancreatic weight, serum leptin, and pancreatic tissue leptin levels. Here we report the contribution of obesity and leptin to pancreatic cancer growth utilizing an in vivo orthotopic murine pancreatic cancer model, which resulted in increased tumor proliferation with concomitant increased tumor burden in the diet induced obese mice compared to lean mice. Human and murine pancreatic cancer cell lines were found to express the short as well as the long form of the leptin receptor and functionally responded to leptin induced activation through an increased phosphorylation of AKT473. In vitro, leptin stimulation increased cellular migration which was blocked by addition of a PI3K inhibitor. In vivo, depletion of the leptin receptor through shRNA knockdown partially abrogated increased orthotopic tumor growth in obese mice. These findings suggest that leptin contributes to pancreatic tumor growth through activation of the PI3K/AKT pathway, which promotes pancreatic tumor cell migration.

  6. Antifreeze protein modulates cell survival during cryopreservation: mediation through influence on ice crystal growth.

    OpenAIRE

    Carpenter, J F; Hansen, T N

    1992-01-01

    Antifreeze proteins (AFPs) are extremely efficient at inhibiting ice recrystallization in frozen solutions. Knight and Duman [Knight, C. A. & Duman, J. G. (1986) Cryobiology 23, 256-263] have proposed that this may be an important function of the proteins in freeze-tolerant organisms. We have tested this proposal in vitro by characterizing the influence of AFP on the recovery of cryopreserved cells, which often can survive cooling and yet subsequently be damaged by ice crystal growth during w...

  7. Modulation of glucose transporter 1 (GLUT1 expression levels alters mouse mammary tumor cell growth in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Christian D Young

    Full Text Available Tumor cells exhibit an altered metabolism characterized by elevated aerobic glycolysis and lactate secretion which is supported by an increase in glucose transport and consumption. We hypothesized that reducing or eliminating the expression of the most prominently expressed glucose transporter(s would decrease the amount of glucose available to breast cancer cells thereby decreasing their metabolic capacity and proliferative potential.Of the 12 GLUT family glucose transporters expressed in mice, GLUT1 was the most abundantly expressed at the RNA level in the mouse mammary tumors from MMTV-c-ErbB2 mice and cell lines examined. Reducing GLUT1 expression in mouse mammary tumor cell lines using shRNA or Cre/Lox technology reduced glucose transport, glucose consumption, lactate secretion and lipid synthesis in vitro without altering the concentration of ATP, as well as reduced growth on plastic and in soft agar. The growth of tumor cells with reduced GLUT1 expression was impaired when transplanted into the mammary fat pad of athymic nude mice in vivo. Overexpression of GLUT1 in a cell line with low levels of endogenous GLUT1 increased glucose transport in vitro and enhanced growth in nude mice in vivo as compared to the control cells with very low levels of GLUT1.These studies demonstrate that GLUT1 is the major glucose transporter in mouse mammary carcinoma models overexpressing ErbB2 or PyVMT and that modulation of the level of GLUT1 has an effect upon the growth of mouse mammary tumor cell lines in vivo.

  8. The role of alternative oxidase in modulating carbon use efficiency and growth during macronutrient stress in tobacco cells.

    Science.gov (United States)

    Sieger, Stephen M; Kristensen, Brian K; Robson, Christine A; Amirsadeghi, Sasan; Eng, Edward W Y; Abdel-Mesih, Amal; Møller, Ian M; Vanlerberghe, Greg C

    2005-06-01

    When wild-type (wt) tobacco (Nicotiana tabacum cv. Petit Havana SR1) cells are grown under macronutrient (P or N) limitation, they induce large amounts of alternative oxidase (AOX), which constitutes a non-energy-conserving branch of the respiratory electron transport chain. To investigate the significance of AOX induction, wt cells were compared with transgenic (AS8) cells lacking AOX. Under nutrient limitation, growth of wt cell cultures was dramatically reduced and carbon use efficiency (g cell dry weight gain g(-1) sugar consumed) decreased by 42-63%. However, the growth of AS8 was only moderately reduced by the nutrient deficiencies and carbon use efficiency values remained the same as under nutrient-sufficient conditions. As a result, the nutrient limitations more severely compromised the tissue nutrient status (P or N) of AS8 than wt cells. Northern analyses and a comparison of the mitochondrial protein profiles of wt and AS8 cells indicated that the lack of AOX in AS8 under P limitation was associated with increased levels of proteins commonly associated with oxidative stress and/or stress injury. Also, the level of electron transport chain components was consistently reduced in AS8 while tricarboxylic acid cycle enzymes did not show a universal trend in abundance in comparison to the wt. Alternatively, the lack of AOX in AS8 cells under N limitation resulted in enhanced carbohydrate accumulation. It is concluded that AOX respiration provides an important general mechanism by which plant cells can modulate their growth in response to nutrient availability and that AOX also has nutrient-specific roles in maintaining cellular redox and carbon balance.

  9. Fibronectin type III (FN3) modules of the neuronal cell adhesion molecule L1 interact directly with the fibroblast growth factor (FGF) receptor

    DEFF Research Database (Denmark)

    Kulahin, Nikolaj; Li, Shizhong; Hinsby, Anders Mørkeberg

    2008-01-01

    The neuronal cell adhesion molecule (CAM) L1 promotes axonal outgrowth, presumably through an interaction with the fibroblast growth factor receptor (FGFR). The present study demonstrates a direct interaction between L1 fibronectin type III (FN3) modules I-V and FGFR1 immunoglobulin (Ig) modules ...

  10. Hepatocyte growth factor/scatter factor modulates cell motility, proliferation, and proteoglycan synthesis of chondrocytes.

    Science.gov (United States)

    Takebayashi, T; Iwamoto, M; Jikko, A; Matsumura, T; Enomoto-Iwamoto, M; Myoukai, F; Koyama, E; Yamaai, T; Matsumoto, K; Nakamura, T

    1995-06-01

    Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional growth factor that promotes proliferation, motility, and morphogenesis in epithelial cells. Recently the HGF receptor, c-met protooncogene product, has been shown to be expressed in developing limb buds (Sonnenberg, E., D. Meyer, M. Weidner, and C. Birchmeiyer, 1993. J. Cell Biol. 123: 223-235), suggesting that some populations of mesenchymal cells in limb buds respond to HGF/SF. To test the possibility that HGF/SF is involved in regulation of cartilage development, we isolated chondrocytes from knee joints and costal cartilages of 23-d embryonic and 4-wk-old rabbits, and analyzed the effects of HGF/SF on migration and proliferation of these cells. We found that HGF/SF stimulated migration of cultured articular chondrocytes but did not scatter limb mesenchymal fibroblasts or synovial fibroblasts in culture. HGF/SF also stimulated proliferation of chondrocytes; a maximum three-fold stimulation in DNA synthesis was observed at the concentration of 3 ng/ml of HGF/SF. Moreover, HGF/SF had the ability to enhance proteoglycan synthesis in chondrocytes. The responsiveness of chondrocytes to HGF/SF was also supported by the observation that they expressed the HGF/SF receptor. Addition of the neutralizing antibody to rat HGF/SF affected neither DNA synthesis nor proteoglycan synthesis in rat chondrocytes, suggesting a paracine mechanism of action of HGF/SF on these cells. In situ hybridization analysis showed that HGF/SF mRNA was restrictively expressed in the areas of future joint regions in developing limb buds and in the intercostal spaces of developing costal cartilages. These findings suggest that HGF/SF plays important roles in cartilage development through its multiple activities.

  11. Hepatocyte growth factor/scatter factor modulates cell motility, proliferation, and proteoglycan synthesis of chondrocytes

    Science.gov (United States)

    1995-01-01

    Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional growth factor that promotes proliferation, motility, and morphogenesis in epithelial cells. Recently the HGF receptor, c-met protooncogene product, has been shown to be expressed in developing limb buds (Sonnenberg, E., D. Meyer, M. Weidner, and C. Birchmeiyer, 1993. J. Cell Biol. 123: 223-235), suggesting that some populations of mesenchymal cells in limb buds respond to HGF/SF. To test the possibility that HGF/SF is involved in regulation of cartilage development, we isolated chondrocytes from knee joints and costal cartilages of 23-d embryonic and 4-wk-old rabbits, and analyzed the effects of HGF/SF on migration and proliferation of these cells. We found that HGF/SF stimulated migration of cultured articular chondrocytes but did not scatter limb mesenchymal fibroblasts or synovial fibroblasts in culture. HGF/SF also stimulated proliferation of chondrocytes; a maximum three-fold stimulation in DNA synthesis was observed at the concentration of 3 ng/ml of HGF/SF. Moreover, HGF/SF had the ability to enhance proteoglycan synthesis in chondrocytes. The responsiveness of chondrocytes to HGF/SF was also supported by the observation that they expressed the HGF/SF receptor. Addition of the neutralizing antibody to rat HGF/SF affected neither DNA synthesis nor proteoglycan synthesis in rat chondrocytes, suggesting a paracine mechanism of action of HGF/SF on these cells. In situ hybridization analysis showed that HGF/SF mRNA was restrictively expressed in the areas of future joint regions in developing limb buds and in the intercostal spaces of developing costal cartilages. These findings suggest that HGF/SF plays important roles in cartilage development through its multiple activities. PMID:7775584

  12. Elevated D-glucose concentrations modulate TGF-beta 1 synthesis by human cultured renal proximal tubular cells. The permissive role of platelet-derived growth factor.

    OpenAIRE

    Phillips, A.O.; Steadman, R.; Topley, N; Williams, J. D.

    1995-01-01

    Interstitial fibrosis is a marker of progression of renal impairment in diabetic nephropathy. Transforming growth factor (TGF)-beta 1 is one of a group of pro-fibrotic cytokines and growth factors that have been associated with the development of interstitial fibrosis. We have examined the modulating influence of glucose on the production of TGF-beta 1 by cultured human proximal tubular cells. Incubation of growth-arrested human proximal tubular cells (HPTC) (72 hours in serum free medium) in...

  13. Modulation of growth and angiogenic potential of oral squamous carcinoma cells in vitro using salvianolic acid B

    Science.gov (United States)

    2011-01-01

    Background Our previous studies showed that Salvianolic acid B (Sal B) inhibited 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamsters and such anti-cancer effects might be related to the inhibition of angiogenesis. This study was aimed to further investigate the anti-proliferative effect of Sal B on the most common type of oral cancer, oral squamous cell carcinoma (OSCC) and the possible mechanisms of action with respect to angiogenesis inhibition. Methods Two well-characterized oral squamous cell carcinoma cell lines, CAL27 and SCC4, and premalignant leukoplakia cells were treated with different concentrations of Sal B. Cytotoxicity was assessed by MTT assay. cDNA microarray was utilized to evaluate the expression of 96 genes known to be involved in modulating the biological processes of angiogenesis. Real-time reverse transcription-polymerase chain reaction analysis was conducted to confirm the cDNA microarray data. Results Sal B induced growth inhibition in OSCC cell lines but had limited effects on premalignant cells. A total of 17 genes showed a greater than 3-fold change when comparing Sal B treated OSCC cells to the control. Among these genes, HIF-1α, TNFα and MMP9 are specifically inhibited, expression of THBS2 was up-regulated. Conclusions Sal B has inhibitory effect on OSCC cell growth. The antitumor effect can be attributed to anti-angiogenic potential induced by a decreased expression of some key regulator genes of angiogenesis. Sal B may be a promising modality for treating oral squamous cell carcinoma. PMID:21726465

  14. Modulation of growth and angiogenic potential of oral squamous carcinoma cells in vitro using salvianolic acid B

    Directory of Open Access Journals (Sweden)

    Zhu Qin Y

    2011-07-01

    Full Text Available Abstract Background Our previous studies showed that Salvianolic acid B (Sal B inhibited 7,12-dimethylbenz[a]anthracene (DMBA-induced oral carcinogenesis in hamsters and such anti-cancer effects might be related to the inhibition of angiogenesis. This study was aimed to further investigate the anti-proliferative effect of Sal B on the most common type of oral cancer, oral squamous cell carcinoma (OSCC and the possible mechanisms of action with respect to angiogenesis inhibition. Methods Two well-characterized oral squamous cell carcinoma cell lines, CAL27 and SCC4, and premalignant leukoplakia cells were treated with different concentrations of Sal B. Cytotoxicity was assessed by MTT assay. cDNA microarray was utilized to evaluate the expression of 96 genes known to be involved in modulating the biological processes of angiogenesis. Real-time reverse transcription-polymerase chain reaction analysis was conducted to confirm the cDNA microarray data. Results Sal B induced growth inhibition in OSCC cell lines but had limited effects on premalignant cells. A total of 17 genes showed a greater than 3-fold change when comparing Sal B treated OSCC cells to the control. Among these genes, HIF-1α, TNFα and MMP9 are specifically inhibited, expression of THBS2 was up-regulated. Conclusions Sal B has inhibitory effect on OSCC cell growth. The antitumor effect can be attributed to anti-angiogenic potential induced by a decreased expression of some key regulator genes of angiogenesis. Sal B may be a promising modality for treating oral squamous cell carcinoma.

  15. Identification of Novel Human Breast Carcinoma (MDA-MB-231 Cell Growth Modulators from a Carbohydrate-Based Diversity Oriented Synthesis Library

    Directory of Open Access Journals (Sweden)

    Elena Lenci

    2016-10-01

    Full Text Available The application of a cell-based growth inhibition on a library of skeletally different glycomimetics allowed for the selection of a hexahydro-2H-furo[3,2-b][1,4]oxazine compound as candidate inhibitors of MDA-MB-231 cell growth. Subsequent synthesis of analogue compounds and preliminary biological studies validated the selection of a valuable hit compound with a novel polyhydroxylated structure for the modulation of the breast carcinoma cell cycle mechanism.

  16. Identification of Novel Human Breast Carcinoma (MDA-MB-231) Cell Growth Modulators from a Carbohydrate-Based Diversity Oriented Synthesis Library.

    Science.gov (United States)

    Lenci, Elena; Innocenti, Riccardo; Biagioni, Alessio; Menchi, Gloria; Bianchini, Francesca; Trabocchi, Andrea

    2016-10-20

    The application of a cell-based growth inhibition on a library of skeletally different glycomimetics allowed for the selection of a hexahydro-2H-furo[3,2-b][1,4]oxazine compound as candidate inhibitors of MDA-MB-231 cell growth. Subsequent synthesis of analogue compounds and preliminary biological studies validated the selection of a valuable hit compound with a novel polyhydroxylated structure for the modulation of the breast carcinoma cell cycle mechanism.

  17. Growth and development: hereditary and mechanical modulations.

    Science.gov (United States)

    Mao, Jeremy J; Nah, Hyun-Duck

    2004-06-01

    Growth and development is the net result of environmental modulation of genetic inheritance. Mesenchymal cells differentiate into chondrogenic, osteogenic, and fibrogenic cells: the first 2 are chiefly responsible for endochondral ossification, and the last 2 for sutural growth. Cells are influenced by genes and environmental cues to migrate, proliferate, differentiate, and synthesize extracellular matrix in specific directions and magnitudes, ultimately resulting in macroscopic shapes such as the nose and the chin. Mechanical forces, the most studied environmental cues, readily modulate bone and cartilage growth. Recent experimental evidence demonstrates that cyclic forces evoke greater anabolic responses of not only craniofacial sutures, but also cranial base cartilage. Mechanical forces are transmitted as tissue-borne and cell-borne mechanical strain that in turn regulates gene expression, cell proliferation, differentiation, maturation, and matrix synthesis, the totality of which is growth and development. Thus, hereditary and mechanical modulations of growth and development share a common pathway via genes. Combined approaches using genetics, bioengineering, and quantitative biology are expected to bring new insight into growth and development, and might lead to innovative therapies for craniofacial skeletal dysplasia including malocclusion, dentofacial deformities, and craniofacial anomalies such as cleft palate and craniosynostosis, as well as disorders associated with the temporomandibular joint.

  18. Infiltration anesthetic lidocaine inhibits cancer cell invasion by modulating ectodomain shedding of heparin-binding epidermal growth factor-like growth factor (HB-EGF).

    Science.gov (United States)

    Mammoto, Tadanori; Higashiyama, Shigeki; Mukai, Mutsuko; Mammoto, Akiko; Ayaki, Masako; Mashimo, Takashi; Hayashi, Yukio; Kishi, Yoshihiko; Nakamura, Hiroyuki; Akedo, Hitoshi

    2002-09-01

    Although the mechanism is unknown, infiltration anesthetics are believed to have membrane-stabilizing action. We report here that such a most commonly used anesthetic, lidocaine, effectively inhibited the invasive ability of human cancer (HT1080, HOS, and RPMI-7951) cells at concentrations used in surgical operations (5-20 mM). Ectodomain shedding of heparin-binding epidermal growth factor-like growth factor (HB-EGF) from the cell surface plays an important role in invasion by HT1080 cells. Lidocaine reduced the invasion ability of these cells by partly inhibiting the shedding of HB-EGF from the cell surface and modulation of intracellular Ca2+ concentration contributed to this action. The anesthetic action of lidocaine (sodium channel blocking ability) did not contribute to this anti-invasive action. In addition, lidocaine (5-30 mM), infiltrated around the inoculation site, inhibited pulmonary metastases of murine osteosarcoma (LM 8) cells in vivo. These data point to previously unrecognized beneficial actions of lidocaine and suggest that lidocaine might be an ideal infiltration anesthetic for surgical cancer operations.

  19. Biochanin A Modulates Cell Viability, Invasion, and Growth Promoting Signaling Pathways in HER-2-Positive Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Vikas Sehdev

    2009-01-01

    Full Text Available Overexpression of HER-2 receptor is associated with poor prognosis and aggressive forms of breast cancer. Scientific literature indicates a preventive role of isoflavones in cancer. Since activation of HER-2 receptor initiates growth-promoting events in cancer cells, we studied the effect of biochanin A (an isoflavone on associated signaling events like receptor activation, downstream signaling, and invasive pathways. HER-2-positive SK-BR-3 breast cancer cells, MCF-10A normal breast epithelial cells, and NIH-3T3 normal fibroblast cells were treated with biochanin A (2–100 μM for 72 hours. Subsequently cell viability assay, western blotting and zymography were carried out. The data indicate that biochanin A inhibits cell viability, signaling pathways, and invasive enzyme expression and activity in SK-BR-3 cancer cells. Biochanin A did not inhibit MCF-10A and NIH-3T3 cell viability. Therefore, biochanin A could be a unique natural anticancer agent which can selectively target cancer cells and inhibit multiple signaling pathways in HER-2-positive breast cancer cells.

  20. Arecoline-stimulated placenta growth factor production in gingival epithelial cells: modulation by curcumin.

    Science.gov (United States)

    Cheng, S-J; Ko, H-H; Cheng, S-L; Lee, J-J; Chen, H-M; Chang, H-H; Kok, S-H; Kuo, M Y-P; Chiang, C-P

    2013-07-01

    Placenta growth factor (PlGF) is associated with the progression and prognosis of oral cancer. This study used ELISA, quantitative polymerase chain reaction, and Western blotting to study the arecoline-stimulated (PlGF) protein or mRNA expression in human gingival epithelial S-G cells. Arecoline, a major areca nut alkaloid and an oral carcinogen, could stimulate PlGF protein synthesis in S-G cells in a dose- and time-dependent manner. The levels of PlGF protein secretion increased about 3.1- and 3.8-fold after 24-h exposure to 0.4 and 0.8 mM arecoline, respectively. Pretreatment with antioxidant N-acetyl-l-cysteine (NAC) and ERK inhibitor PD98059, but not NF-κB inhibitor Bay 11-7082, JNK inhibitor SP600125, p38 MAPK inhibitor SB203580, and PI3-K inhibitor LY294002, significantly reduced arecoline-induced PlGF protein synthesis. ELISA analyses demonstrated that NAC and PD98059 reduced about 43% and 38% of the arecoline-induced PlGF protein secretion, respectively. However, combined treatment with NAC and PD98059 did not show additive effect. Moreover, 10 μM curcumin and 4 mM NAC significantly inhibited arecoline-induced ERK activation. Furthermore, 10 μM curcumin completely blocked arecoline-induced PlGF mRNA expression. Arecoline-induced PlGF synthesis is probably mediated by reactive oxygen species/ERK pathways, and curcumin may be an useful agent in controlling oral carcinogenesis. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. PTEN insufficiency modulates ER+ breast cancer cell cycle progression and increases cell growth in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Chiang KC

    2015-08-01

    Full Text Available Kun-Chun Chiang,1,4 Huang-Yang Chen,1 Shu-Yuan Hsu,2 Jong-Hwei S Pang,3 Shang-Yu Wang,4 Jun-Te Hsu,4 Ta-Sen Yeh,4 Li-Wei Chen,5 Sheng-Fong Kuo,6 Chi-Chin Sun,7 Jim-Ming Lee,1 Chun-Nan Yeh,4 Horng-Heng Juang21Department of General Surgery, Chang Gung Memorial Hospital, Chang Gung University, Keelung, 2Department of Anatomy, 3Graduate Institute of Clinical Medical Sciences, 4Department of General Surgery, 5Department of Gastroenterology, 6Department of Endocrinology and Metabolism, 7Department of Ophthalmology, Chang Gung Memorial Hospital, Chang Gung University, Keelung, Taiwan, Republic of China Abstract: Phosphatase and tensin homolog (PTEN, a well-known tumor suppressor gene and frequently mutated or lost in breast cancer, possesses the negative regulation function over the PI3K/Akt/mTOR pathway. PTEN insufficiency has been associated with advanced breast cancer and poor prognosis of breast cancer patients. Recently, target therapies aimed at PI3K/Akt/mTOR pathway to treat breast cancer have got popularity. However, the exact effect of PTEN on breast cancer cells is still not well understood. This study demonstrated that PTEN knockdown in MCF-7 cells strengthened the downstream gene expressions, including p-Akt, p-ERK1/2, p-mTOR, p-p70s6k, and p-GSK3ß. PTEN knockdown MCF-7 cells had increased cell growth and Ki-67 expression. Further Western blot demonstrated that p27 was repressed obviously with p21 slightly inhibited and CDK1, 2, 4, 6, cyclin A, and Cdc25C were upregulated in MCF-7 PTEN knockdown cells, leading to the higher growth rate. More importantly, PTEN knockdown MCF-7 cells had higher tumorigenesis and tumor growth in vivo. From our current work, we provided more detailed PTEN-mediated mechanisms to stimulate ER+ breast cancer cell growth. Our result may pave the way for further target therapy development used alone or in combination with other drugs for ER+ breast cancer with PTEN insufficiency.Keywords: PTEN, breast cancer, MCF-7

  2. The use of growth factors to modulate the activities of antigen–specific CD8+ T cells in vitro

    Science.gov (United States)

    Alenzi, FQ; Alenazi, FA; Al-Kaabi, Y; Salem, ML

    2011-01-01

    Rationale: Adoptive T cell therapy depends on the harvesting of the cells from the host, their activation in vitro, and their infusion back to the same host. The way of activating the T cells in vitro is a critical factor for their homing, survival and function in vivo. Sustaining T cell homing molecules, particularly CD62L, is benefic for the trafficking of the adoptive transferred cells. Objective: The aim of the present study is to test whether insulin–like growth factor–1 (IGF–1), thymosin– α1 (T–α1) as well as all–trans retinoid acid (ATRA) alone or in combination with IL–2, IL–12, IL–15 can enhance the activation and survival phenotypes of antigen-activated T cells in vitro. Methods & Results: To this end, OT–1 transgenic T cells were used as a model. These CD8+ T cells recognize OVA peptide presented by MHC class–I. The results showed that antigen stimulation of OT1 cells resulted in their activation as evidenced by the decrease in surface expression of CD62L, analyzed for 3 days after antigen stimulation and was more pronounced on day 5. The addition of IL–12 or IGF–1 alone but not of IL–2, IL–15 augmented OT–1 cell activation measured on day 5. Interestingly, the combination of IL–12 with IGF–1 sustained the expression of CD62L on OT1 cells. Although the addition of ATRA alone or in combination with IL–12 resulted in decreases in CD62L expression on day 3, they showed a dose–dependent effect on the restoration of CD62L expression on day 5. The analysis of the activation–induced cell death (apoptosis) of OT1 cells showed an increased rate of death on day 5 than on day 3–post antigen stimulation. The addition of only IL–12 or IGF–1 alone, but not of IL–2, IL–15 or T– α1, decreased OT1 cell apoptosis on day 3. These anti–apoptotic effects of IL–12 and IGF– 1, however, were recovered on day 5–post stimulation. Discussion: In conclusion, these results indicate that the activation phenotype and the

  3. Monocarboxylate transporter 8 modulates the viability and invasive capacity of human placental cells and fetoplacental growth in mice.

    Science.gov (United States)

    Vasilopoulou, Elisavet; Loubière, Laurence S; Heuer, Heike; Trajkovic-Arsic, Marija; Darras, Veerle M; Visser, Theo J; Lash, Gendie E; Whitley, Guy S; McCabe, Christopher J; Franklyn, Jayne A; Kilby, Mark D; Chan, Shiao Y

    2013-01-01

    Monocarboxylate transporter 8 (MCT8) is a well-established thyroid hormone (TH) transporter. In humans, MCT8 mutations result in changes in circulating TH concentrations and X-linked severe global neurodevelopmental delay. MCT8 is expressed in the human placenta throughout gestation, with increased expression in trophoblast cells from growth-restricted pregnancies. We postulate that MCT8 plays an important role in placental development and transplacental TH transport. We investigated the effect of altering MCT8 expression in human trophoblast in vitro and in a Mct8 knockout mouse model. Silencing of endogenous MCT8 reduced T3 uptake into human extravillous trophoblast-like cells (SGHPL-4; 40%, PMCT8 over-expression transiently increased T3 uptake (SGHPL-4∶30%, PMCT8 did not significantly affect SGHPL-4 invasion, but with MCT8 over-expression T3 treatment promoted invasion compared with no T3 (3.3-fold; PMCT8 silencing increased cytotrophoblast viability (∼20%, PMCT8 over-expression reduced cytotrophoblast viability independently of T3 (∼20%, PMct8 knockout reduced fetal:placental weight ratios compared with wild-type controls at gestational day 18 (25%, Pfetal and placental weights were not significantly different. The volume fraction of the labyrinthine zone of the placenta, which facilitates maternal-fetal exchange, was reduced in Mct8 knockout placentae (10%, PMCT8 makes a significant contribution to T3 uptake into human trophoblast cells and has a role in modulating human trophoblast cell invasion and viability. In mice, Mct8 knockout has subtle effects upon fetoplacental growth and does not significantly affect placental cell viability probably due to compensatory mechanisms in vivo.

  4. Shizukaol D, a Dimeric Sesquiterpene Isolated from Chloranthus serratus, Represses the Growth of Human Liver Cancer Cells by Modulating Wnt Signalling Pathway.

    Science.gov (United States)

    Tang, Lisha; Zhu, Hengrui; Yang, Xianmei; Xie, Fang; Peng, Jingtao; Jiang, Deke; Xie, Jun; Qi, Meiyan; Yu, Long

    2016-01-01

    Natural products have become sources of developing new drugs for the treatment of cancer. To seek candidate compounds that inhibit the growth of liver cancer, components of Chloranthus serratus were tested. Here, we report that shizukaol D, a dimeric sesquiterpene from Chloranthus serratus, exerted a growth inhibition effect on liver cancer cells in a dose- and time-dependent manner. We demonstrated that shizukaol D induced cells to undergo apoptosis. More importantly, shizukaol D attenuated Wnt signalling and reduced the expression of endogenous Wnt target genes, which resulted in decreased expression of β-catenin. Collectively, this study demonstrated that shizukaol D inhibited the growth of liver cancer cells by modulating Wnt pathway.

  5. Laser intensity modulated real time monitoring cell growth sensor for bioprocess applications

    Science.gov (United States)

    Kishore, P.; Babu, P. Ravindra; Devi, V. Rama; Maunika, T.; Soujanya, P.; Kishore, P. V. N.; Dinakar, D.

    2016-04-01

    This article proposes an optical method for monitoring the growth of Escherichia coli in Luria Bertani medium and Saccharomyces cereviciae in YPD. Suitable light is selected which on interaction with the analyte under consideration, gets adsorption / scattered. Required electronic circuitry is designed to drive the laser source and to detect the intensity of light using Photo-detector. All these components are embedded and arranged in a proper way and monitored the growth of the microbs in real time. The sensors results are compared with standard techniques such as colorimeter, Nephelometer and hemocytometer. The experimental results are in good agreement with the existed techniques and well suitable for real time monitoring applications of the growth of the microbs.

  6. Monocarboxylate transporter 8 modulates the viability and invasive capacity of human placental cells and fetoplacental growth in mice.

    Directory of Open Access Journals (Sweden)

    Elisavet Vasilopoulou

    Full Text Available Monocarboxylate transporter 8 (MCT8 is a well-established thyroid hormone (TH transporter. In humans, MCT8 mutations result in changes in circulating TH concentrations and X-linked severe global neurodevelopmental delay. MCT8 is expressed in the human placenta throughout gestation, with increased expression in trophoblast cells from growth-restricted pregnancies. We postulate that MCT8 plays an important role in placental development and transplacental TH transport. We investigated the effect of altering MCT8 expression in human trophoblast in vitro and in a Mct8 knockout mouse model. Silencing of endogenous MCT8 reduced T3 uptake into human extravillous trophoblast-like cells (SGHPL-4; 40%, P<0.05 and primary cytotrophoblast (15%, P<0.05. MCT8 over-expression transiently increased T3 uptake (SGHPL-4∶30%, P<0.05; cytotrophoblast: 15%, P<0.05. Silencing MCT8 did not significantly affect SGHPL-4 invasion, but with MCT8 over-expression T3 treatment promoted invasion compared with no T3 (3.3-fold; P<0.05. Furthermore, MCT8 silencing increased cytotrophoblast viability (∼20%, P<0.05 and MCT8 over-expression reduced cytotrophoblast viability independently of T3 (∼20%, P<0.05. In vivo, Mct8 knockout reduced fetal:placental weight ratios compared with wild-type controls at gestational day 18 (25%, P<0.05 but absolute fetal and placental weights were not significantly different. The volume fraction of the labyrinthine zone of the placenta, which facilitates maternal-fetal exchange, was reduced in Mct8 knockout placentae (10%, P<0.05. However, there was no effect on mouse placental cell proliferation in vivo. We conclude that MCT8 makes a significant contribution to T3 uptake into human trophoblast cells and has a role in modulating human trophoblast cell invasion and viability. In mice, Mct8 knockout has subtle effects upon fetoplacental growth and does not significantly affect placental cell viability probably due to compensatory mechanisms in

  7. Sulindac-derived RXRα modulators inhibit cancer cell growth by binding to a novel site.

    Science.gov (United States)

    Chen, Liqun; Wang, Zhi-Gang; Aleshin, Alexander E; Chen, Fan; Chen, Jiebo; Jiang, Fuquan; Alitongbieke, Gulimiran; Zeng, Zhiping; Ma, Yue; Huang, Mingfeng; Zhou, Hu; Cadwell, Gregory; Zheng, Jian-Feng; Huang, Pei-Qiang; Liddington, Robert C; Zhang, Xiao-kun; Su, Ying

    2014-05-22

    Retinoid X receptor-alpha (RXRα), an intriguing and unique drug target, can serve as an intracellular target mediating the anticancer effects of certain nonsteroidal anti-inflammatory drugs (NSAIDs), including sulindac. We report the synthesis and characterization of two sulindac analogs, K-8008 and K-8012, which exert improved anticancer activities over sulindac in a RXRα-dependent manner. The analogs inhibit the interaction of the N-terminally truncated RXRα (tRXRα) with the p85α subunit of PI3K, leading to suppression of AKT activation and induction of apoptosis. Crystal structures of the RXRα ligand-binding domain (LBD) with K-8008 or K-8012 reveal that both compounds bind to tetrameric RXRα LBD at a site different from the classical ligand-binding pocket. Thus, these results identify K-8008 and K-8012 as tRXRα modulators and define a binding mechanism for regulating the nongenomic action of tRXRα.

  8. Selective androgen receptor modulators (SARMs negatively regulate triple-negative breast cancer growth and epithelial:mesenchymal stem cell signaling.

    Directory of Open Access Journals (Sweden)

    Ramesh Narayanan

    Full Text Available The androgen receptor (AR is the most highly expressed steroid receptor in breast cancer with 75-95% of estrogen receptor (ER-positive and 40-70% of ER-negative breast cancers expressing AR. Though historically breast cancers were treated with steroidal androgens, their use fell from favor because of their virilizing side effects and the emergence of tamoxifen. Nonsteroidal, tissue selective androgen receptor modulators (SARMs may provide a novel targeted approach to exploit the therapeutic benefits of androgen therapy in breast cancer.Since MDA-MB-453 triple-negative breast cancer cells express mutated AR, PTEN, and p53, MDA-MB-231 triple-negative breast cancer cells stably expressing wildtype AR (MDA-MB-231-AR were used to evaluate the in vitro and in vivo anti-proliferative effects of SARMs. Microarray analysis and epithelial:mesenchymal stem cell (MSC co-culture signaling studies were performed to understand the mechanisms of action.Dihydrotestosterone and SARMs, but not bicalutamide, inhibited the proliferation of MDA-MB-231-AR. The SARMs reduced the MDA-MB-231-AR tumor growth and tumor weight by greater than 90%, compared to vehicle-treated tumors. SARM treatment inhibited the intratumoral expression of genes and pathways that promote breast cancer development through its actions on the AR. SARM treatment also inhibited the metastasis-promoting paracrine factors, IL6 and MMP13, and subsequent migration and invasion of epithelial:MSC co-cultures.1. AR stimulation inhibits paracrine factors that are important for MSC interactions and breast cancer invasion and metastasis. 2. SARMs may provide promise as novel targeted therapies to treat AR-positive triple-negative breast cancer.

  9. Selective androgen receptor modulators (SARMs) negatively regulate triple-negative breast cancer growth and epithelial:mesenchymal stem cell signaling.

    Science.gov (United States)

    Narayanan, Ramesh; Ahn, Sunjoo; Cheney, Misty D; Yepuru, Muralimohan; Miller, Duane D; Steiner, Mitchell S; Dalton, James T

    2014-01-01

    The androgen receptor (AR) is the most highly expressed steroid receptor in breast cancer with 75-95% of estrogen receptor (ER)-positive and 40-70% of ER-negative breast cancers expressing AR. Though historically breast cancers were treated with steroidal androgens, their use fell from favor because of their virilizing side effects and the emergence of tamoxifen. Nonsteroidal, tissue selective androgen receptor modulators (SARMs) may provide a novel targeted approach to exploit the therapeutic benefits of androgen therapy in breast cancer. Since MDA-MB-453 triple-negative breast cancer cells express mutated AR, PTEN, and p53, MDA-MB-231 triple-negative breast cancer cells stably expressing wildtype AR (MDA-MB-231-AR) were used to evaluate the in vitro and in vivo anti-proliferative effects of SARMs. Microarray analysis and epithelial:mesenchymal stem cell (MSC) co-culture signaling studies were performed to understand the mechanisms of action. Dihydrotestosterone and SARMs, but not bicalutamide, inhibited the proliferation of MDA-MB-231-AR. The SARMs reduced the MDA-MB-231-AR tumor growth and tumor weight by greater than 90%, compared to vehicle-treated tumors. SARM treatment inhibited the intratumoral expression of genes and pathways that promote breast cancer development through its actions on the AR. SARM treatment also inhibited the metastasis-promoting paracrine factors, IL6 and MMP13, and subsequent migration and invasion of epithelial:MSC co-cultures. 1. AR stimulation inhibits paracrine factors that are important for MSC interactions and breast cancer invasion and metastasis. 2. SARMs may provide promise as novel targeted therapies to treat AR-positive triple-negative breast cancer.

  10. Cell-generated traction forces and the resulting matrix deformation modulate microvascular alignment and growth during angiogenesis

    Science.gov (United States)

    Underwood, Clayton J.; Edgar, Lowell T.; Hoying, James B.

    2014-01-01

    The details of the mechanical factors that modulate angiogenesis remain poorly understood. Previous in vitro studies of angiogenesis using microvessel fragments cultured within collagen constructs demonstrated that neovessel alignment can be induced via mechanical constraint of the boundaries (i.e., boundary conditions). The objective of this study was to investigate the role of mechanical boundary conditions in the regulation of angiogenic alignment and growth in an in vitro model of angiogenesis. Angiogenic microvessels within three-dimensional constructs were subjected to different boundary conditions, thus producing different stress and strain fields during growth. Neovessel outgrowth and orientation were quantified from confocal image data after 6 days. Vascularity and branching decreased as the amount of constraint imposed on the culture increased. In long-axis constrained hexahedral constructs, microvessels aligned parallel to the constrained axis. In contrast, constructs that were constrained along the short axis had random microvessel orientation. Finite element models were used to simulate the contraction of gels under the various boundary conditions and to predict the local strain field experienced by microvessels. Results from the experiments and simulations demonstrated that microvessels aligned perpendicular to directions of compressive strain. Alignment was due to anisotropic deformation of the matrix from cell-generated traction forces interacting with the mechanical boundary conditions. These findings demonstrate that boundary conditions and thus the effective stiffness of the matrix regulate angiogenesis. This study offers a potential explanation for the oriented vascular beds that occur in native tissues and provides the basis for improved control of tissue vascularization in both native tissues and tissue-engineered constructs. PMID:24816262

  11. Transparent solar cell module

    Science.gov (United States)

    Antonides, G. J.; Dillard, P. A.; Fritz, W. M.; Lott, D. P.

    1979-01-01

    Modified solar cell module uses high transmission glass and adhesives, and heat dissipation to boost power per unit area by 25% (9.84% efficiency based on cell area at 60 C and 100 mW/sq cm flux). Design is suited for automatic production and is potentially more cost effective.

  12. Transforming growth factor-beta inhibits human antigen-specific CD4(+) T cell proliferation without modulating the cytokine response

    NARCIS (Netherlands)

    Tiemessen, MM; Kunzmann, S; Schmidt-Weber, CB; Garssen, J; Bruijnzeel-Koomen, CAFM; Knol, EF; Van Hoffen, E

    2003-01-01

    Transforming growth factor (TGF)-beta has been demonstrated to play a key role in the regulation of the immune response, mainly by its suppressive function towards cells of the immune system. In humans, the effect of TGF-beta on antigen-specific established memory T cells has not been investigated y

  13. Shizukaol D, a Dimeric Sesquiterpene Isolated from Chloranthus serratus, Represses the Growth of Human Liver Cancer Cells by Modulating Wnt Signalling Pathway.

    Directory of Open Access Journals (Sweden)

    Lisha Tang

    Full Text Available Natural products have become sources of developing new drugs for the treatment of cancer. To seek candidate compounds that inhibit the growth of liver cancer, components of Chloranthus serratus were tested. Here, we report that shizukaol D, a dimeric sesquiterpene from Chloranthus serratus, exerted a growth inhibition effect on liver cancer cells in a dose- and time-dependent manner. We demonstrated that shizukaol D induced cells to undergo apoptosis. More importantly, shizukaol D attenuated Wnt signalling and reduced the expression of endogenous Wnt target genes, which resulted in decreased expression of β-catenin. Collectively, this study demonstrated that shizukaol D inhibited the growth of liver cancer cells by modulating Wnt pathway.

  14. Modulation of nuclear T3 binding by T3 in a human hepatocyte cell-line (Chang-liver) - T3 stimulation of cell growth but not of malic enzyme, glucose-6-phosphatdehydrogenase or 6-phosphogluconate-dehydrogenase

    DEFF Research Database (Denmark)

    Matzen, L E; Kristensen, S R; Kvetny, J

    1991-01-01

    The T3 modulation of nuclear T3 binding (NBT3), the T3 effect on cell growth, and the T3 and insulin effects on malic enzyme (ME), glucose-6-phosphat-dehydrogenase (G6PD) and 6-phosphogluconat-dehydrogenase (G6PD) were studied in a human hepatocyte cell-line (Chang-liver). T3 was bound to a high...

  15. Modulation of transforming growth factor‑β signaling transducers in colon adenocarcinoma cells induced by staphylococcal enterotoxin B.

    Science.gov (United States)

    Akbari, Abolfazl; Mobini, Gholam Reza; Maghsoudi, Reza; Akhtari, Javad; Faghihloo, Ebrahim; Farahnejad, Zohreh

    2016-01-01

    Colorectal cancer (CRC) is a notable cause of cancer‑associated mortality worldwide, making it a pertinent topic for the study of cancer and its treatment. Staphylococcal enterotoxin B (SEB), an enterotoxin produced by Staphylococcus aureus, has been demonstrated to exert anticancer and antimetastatic effects due to its ability to modify cell immunity and cellular signaling pathways. In the current study, SEB was investigated, including whether it exerts its growth inhibitory effects on colon adenocarcinoma cells. This may occur through the manipulation of a key tumor growth factor, termed transforming growth factor‑β (TGF‑β), and its signaling pathway transducer, Smad2/3. The human colon adenocarcinoma HCT116 cell line was treated with different concentrations of SEB, and cell number was measured using MTT assay at different treatment times. Smad2/3 RNA expression level was analyzed in untreated or SEB‑treated cells using quantitative polymerase chain reaction, which indicated significant differences between cell viability and Smad2/3 expression levels. SEB effectively downregulated Smad2/3 expression in the HCT116 cells at concentrations of 1 and 2 µg/ml (P=0.0021 and P=0.0017, respectively). SEB concentrations that were effective at inhibiting Smad2/3 expression were correlated with those able to inhibit the proliferation of the cancer cells. SEB inhibited Smad2/3 expression at the mRNA level in a concentration‑ and time‑dependent manner. The present study thus proposed SEB as an agent able to significantly reduce Smad2/3 expression in colon cancer cells, provoking moderate TGF‑β growth signaling and the reduction of tumor cell proliferation.

  16. Modulation of growth and differentiation of eosinophils from human peripheral blood CD34+ cells by IL5 and other growth factors.

    Science.gov (United States)

    Shalit, M; Sekhsaria, S; Malech, H L

    1995-01-01

    Small numbers of CD34+ primitive hematopoietic progenitors are found in normal human peripheral blood. These cells differentiate to myeloid or lymphoid lineage under the influence of different growth factors. We investigated the effects of IL5 and other growth factors on the production of eosinophils from peripheral blood CD34+ cells. CD34+ cells were enriched from normal donors by apheresis and positive selection using an affinity column and plated in agarose with different combinations of cytokines. At 14 days of growth a triple stain technique was used to identify eosinophil, monocyte, and neutrophil colonies. IL5 alone did not support colony growth from CD34+ cells. In contrast, GM-CSF and IL3 alone or together without added IL5 supported the generation of more than 50% pure eosinophil colonies. Addition of IL5 did not change the total number of colonies, but increased the fraction of pure eosinophil colonies to over 70%. Addition of G-CSF reduced the percentage of eosinophil colonies and increased the percentage of neutrophil colonies. Under the best conditions for eosinophil colony growth (IL3+GM-CSF+IL5), the addition of interferon-alpha or bacterial lipopolysaccharide inhibited colony growth by 51 and 58%, respectively. Addition of interferon-gamma, tumor necrosis factor-alpha, or dexamethasone had no effect on eosinophil colonies. Since IL5 alone did not support colony growth from CD34+ cells, we determined when IL5-responsive cells appeared in culture. Cells were grown initially with IL3 + GM-CSF in suspension, washed, and plated in agarose with IL5 alone. Only when progenitors were grown at least 3 days could IL5 serve as the single growth factor supporting pure eosinophil colony growth (47 colonies/10(4) cells plated at Day 3 and 134 colonies/10(4) cells at Day 7). We used neutralizing anti-IL5 antibodies to demonstrate that this late acting IL5 growth effect was specific, and that differentiation of eosinophils in the presence of IL3 + GM-CSF was IL5

  17. Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction.

    Science.gov (United States)

    Kawada, Manabu; Inoue, Hiroyuki; Ohba, Shun-ichi; Yoshida, Junjiro; Masuda, Tohru; Yamasaki, Manabu; Usami, Ihomi; Sakamoto, Shuichi; Abe, Hikaru; Watanabe, Takumi; Yamori, Takao; Shibasaki, Masakatsu; Nomoto, Akio

    2015-01-01

    Fibroblast-like stromal cells modulate cancer cells through secreted factors and adhesion, but those factors are not fully understood. Here, we have identified critical stromal factors that modulate cancer growth positively and negatively. Using a cell co-culture system, we found that gastric stromal cells secreted IL-6 as a growth and survival factor for gastric cancer cells. Moreover, gastric cancer cells secreted PGE2 and TNFα that stimulated IL-6 secretion by the stromal cells. Furthermore, we found that stromal cells secreted glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Extracellular GAPDH, or its N-terminal domain, inhibited gastric cancer cell growth, a finding confirmed in other cell systems. GAPDH bound to E-cadherin and downregulated the mTOR-p70S6 kinase pathway. These results demonstrate that stromal cells could regulate cancer cell growth through the balance of these secreted factors. We propose that negative regulation of cancer growth using GAPDH could be a new anti-cancer strategy.

  18. Stromal Cells Positively and Negatively Modulate the Growth of Cancer Cells: Stimulation via the PGE2-TNFα-IL-6 Pathway and Inhibition via Secreted GAPDH-E-Cadherin Interaction

    Science.gov (United States)

    Kawada, Manabu; Inoue, Hiroyuki; Ohba, Shun-ichi; Yoshida, Junjiro; Masuda, Tohru; Yamasaki, Manabu; Usami, Ihomi; Sakamoto, Shuichi; Abe, Hikaru; Watanabe, Takumi; Yamori, Takao; Shibasaki, Masakatsu; Nomoto, Akio

    2015-01-01

    Fibroblast-like stromal cells modulate cancer cells through secreted factors and adhesion, but those factors are not fully understood. Here, we have identified critical stromal factors that modulate cancer growth positively and negatively. Using a cell co-culture system, we found that gastric stromal cells secreted IL-6 as a growth and survival factor for gastric cancer cells. Moreover, gastric cancer cells secreted PGE2 and TNFα that stimulated IL-6 secretion by the stromal cells. Furthermore, we found that stromal cells secreted glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Extracellular GAPDH, or its N-terminal domain, inhibited gastric cancer cell growth, a finding confirmed in other cell systems. GAPDH bound to E-cadherin and downregulated the mTOR-p70S6 kinase pathway. These results demonstrate that stromal cells could regulate cancer cell growth through the balance of these secreted factors. We propose that negative regulation of cancer growth using GAPDH could be a new anti-cancer strategy. PMID:25785838

  19. Interferon alpha2 recombinant and epidermal growth factor modulate proliferation and hypusine synthesis in human epidermoid cancer KB cells.

    Science.gov (United States)

    Caraglia, M; Passeggio, A; Beninati, S; Leardi, A; Nicolini, L; Improta, S; Pinto, A; Bianco, A R; Tagliaferri, P; Abbruzzese, A

    1997-06-15

    We previously found that interferon alpha2 recombinant (IFNalpha) increases the expression of epidermal growth factor receptor (EGF-R) in the human epidermoid cancer KB cell line. Here we report the effects of IFNalpha and epidermal growth factor (EGF) on KB cell cycle kinetics. IFNalpha (1000 i.u./ml) for 48 h decreased the S-phase fraction and diminished the expression of Ki67 and proliferating cell nuclear antigen on KB cells. Incubation of IFNalpha-treated KB cells with 10 nM EGF for 12 h reversed these effects. We then studied several biochemical markers of cell proliferation. Ornithine decarboxylase activity was decreased to about one-tenth by IFNalpha and partly restored by EGF. Hypusine is contained only in eukaryotic initiation factor 5A and its levels are correlated with cell proliferation. IFNalpha decreased hypusine synthesis by 75%; exposure of cells to EGF for 12 h restored hypusine synthesis almost completely. We also studied the effects of IFNalpha on the cytotoxicity of the recombinant toxin TP40, which inhibits elongation factor 2 through EGF-R binding and internalization. IFNalpha greatly enhanced the TP40-induced inhibition of protein synthesis in KB cells. In conclusion, IFNalpha, which affects protein synthesis machinery and increases EGF-R expression, enhances the tumoricidal activity of TP40 and hence could be useful in the setting of anti-cancer therapy.

  20. Emittance growth from electron beam modulation

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.

    2009-12-01

    In linac ring colliders like MeRHIC and eRHIC a modulation of the electron bunch can lead to a modulation of the beam beam tune shift and steering errors. These modulations can lead to emittance growth. This note presents simple formulas to estimate these effects which generalize some previous results.

  1. Glucocorticoids promote development of the osteoblast phenotype by selectively modulating expression of cell growth and differentiation associated genes

    Science.gov (United States)

    Shalhoub, V.; Conlon, D.; Tassinari, M.; Quinn, C.; Partridge, N.; Stein, G. S.; Lian, J. B.

    1992-01-01

    To understand the mechanisms by which glucocorticoids promote differentiation of fetal rat calvaria derived osteoblasts to produce bone-like mineralized nodules in vitro, a panel of osteoblast growth and differentiation related genes that characterize development of the osteoblast phenotype has been quantitated in glucocorticoid-treated cultures. We compared the mRNA levels of osteoblast expressed genes in control cultures of subcultivated cells where nodule formation is diminished, to cells continuously (35 days) exposed to 10(-7) M dexamethasone, a synthetic glucocorticoid, which promotes nodule formation to levels usually the extent observed in primary cultures. Tritiated thymidine labelling revealed a selective inhibition of internodule cell proliferation and promotion of proliferation and differentiation of cells forming bone nodules. Fibronectin, osteopontin, and c-fos expression were increased in the nodule forming period. Alkaline phosphatase and type I collagen expression were initially inhibited in proliferating cells, then increased after nodule formation to support further growth and mineralization of the nodule. Expression of osteocalcin was 1,000-fold elevated in glucocorticoid-differentiated cultures in relation to nodule formation. Collagenase gene expression was also greater than controls (fivefold) with the highest levels observed in mature cultures (day 35). At this time, a rise in collagen and TGF beta was also observed suggesting turnover of the matrix. Short term (48 h) effects of glucocorticoid on histone H4 (reflecting cell proliferation), alkaline phosphatase, osteopontin, and osteocalcin mRNA levels reveal both up or down regulation as a function of the developmental stage of the osteoblast phenotype. A comparison of transcriptional levels of these genes by nuclear run-on assays to mRNA levels indicates that glucocorticoids exert both transcriptional and post-transcriptional effects. Further, the presence of glucocorticoids enhances the

  2. Growth Conditions and Cell Cycle Phase Modulate Phase Transition Temperatures in RBL-2H3 Derived Plasma Membrane Vesicles.

    Directory of Open Access Journals (Sweden)

    Erin M Gray

    Full Text Available Giant plasma membrane vesicle (GPMV isolated from a flask of RBL-2H3 cells appear uniform at physiological temperatures and contain coexisting liquid-ordered and liquid-disordered phases at low temperatures. While a single GPMV transitions between these two states at a well-defined temperature, there is significant vesicle-to-vesicle heterogeneity in a single preparation of cells, and average transition temperatures can vary significantly between preparations. In this study, we explore how GPMV transition temperatures depend on growth conditions, and find that average transition temperatures are negatively correlated with average cell density over 15°C in transition temperature and nearly three orders of magnitude in average surface density. In addition, average transition temperatures are reduced by close to 10°C when GPMVs are isolated from cells starved of serum overnight, and elevated transition temperatures are restored when serum-starved cells are incubated in serum-containing media for 12 h. We also investigated variation in transition temperature of GPMVs isolated from cells synchronized at the G1/S border through a double Thymidine block and find that average transition temperatures are systematically higher in GPMVs produced from G1 or M phase cells than in GPMVs prepared from S or G1 phase cells. Reduced miscibility transition temperatures are also observed in GPMVs prepared from cells treated with TRAIL to induce apoptosis or sphingomyelinase, and in some cases a gel phase is observed at temperatures above the miscibility transition in these vesicles. We conclude that at least some variability in GPMV transition temperature arises from variation in the local density of cells and asynchrony of the cell cycle. It is hypothesized that GPMV transition temperatures are a proxy for the magnitude of lipid-mediated membrane heterogeneity in intact cell plasma membranes at growth temperatures. If so, these results suggest that cells tune

  3. Transient mTOR inhibition facilitates continuous growth of liver tumors by modulating the maintenance of CD133+ cell populations.

    Directory of Open Access Journals (Sweden)

    Zhaojuan Yang

    Full Text Available The mammalian target of the rapamycin (mTOR pathway, which drives cell proliferation, is frequently hyperactivated in a variety of malignancies. Therefore, the inhibition of the mTOR pathway has been considered as an appropriate approach for cancer therapy. In this study, we examined the roles of mTOR in the maintenance and differentiation of cancer stem-like cells (CSCs, the conversion of conventional cancer cells to CSCs and continuous tumor growth in vivo. In H-Ras-transformed mouse liver tumor cells, we found that pharmacological inhibition of mTOR with rapamycin greatly increased not only the CD133+ populations both in vitro and in vivo but also the expression of stem cell-like genes. Enhancing mTOR activity by over-expressing Rheb significantly decreased CD133 expression, whereas knockdown of the mTOR yielded an opposite effect. In addition, mTOR inhibition severely blocked the differentiation of CD133+ to CD133- liver tumor cells. Strikingly, single-cell culture experiments revealed that CD133- liver tumor cells were capable of converting to CD133+ cells and the inhibition of mTOR signaling substantially promoted this conversion. In serial implantation of tumor xenografts in nude BALB/c mice, the residual tumor cells that were exposed to rapamycin in vivo displayed higher CD133 expression and had increased secondary tumorigenicity compared with the control group. Moreover, rapamycin treatment also enhanced the level of stem cell-associated genes and CD133 expression in certain human liver tumor cell lines, such as Huh7, PLC/PRC/7 and Hep3B. The mTOR pathway is significantly involved in the generation and the differentiation of tumorigenic liver CSCs. These results may be valuable for the design of more rational strategies to control clinical malignant HCC using mTOR inhibitors.

  4. Enforced Expression of miR-101 Inhibits Prostate Cancer Cell Growth by Modulating the COX-2 Pathway In Vivo

    OpenAIRE

    Hao, Yubin; Gu, Xinbin; Zhao, Yuan; Greene, Stephen; Sha, Wei; Smoot, Duane T.; Califano, Joseph; Wu, T.-C.; Pang, Xiaowu

    2011-01-01

    It is commonly agreed that there is an association of chronic inflammation with tumorigenesis. COX-2, a key regulator of inflammation-producing prostaglandins, promotes cell proliferation and growth; thus, overexpression of COX-2 is often found in tumor tissues. Therefore, a better understanding of the regulatory mechanism(s) of COX-2 could lead to novel targeted cancer therapies. In this study, we investigated the mechanism of microRNA-101 (miR-101)-regulated COX-2 expression and the therape...

  5. Monocarboxylate transporter 8 modulates the viability and invasive capacity of human placental cells and fetoplacental growth in mice.

    OpenAIRE

    Vasilopoulou, E.; Loubière, LS; Heuer, H.; Trajkovic-Arsic, M; Darras, VM; Visser, TJ; Lash, GE; Whitley, GS; McCabe, CJ; Franklyn, JA; Kilby, MD; Chan, SY

    2013-01-01

    textabstractMonocarboxylate transporter 8 (MCT8) is a well-established thyroid hormone (TH) transporter. In humans, MCT8 mutations result in changes in circulating TH concentrations and X-linked severe global neurodevelopmental delay. MCT8 is expressed in the human placenta throughout gestation, with increased expression in trophoblast cells from growth-restricted pregnancies. We postulate that MCT8 plays an important role in placental development and transplacental TH transport. We investiga...

  6. Extracellular S100A4(mts1) stimulates invasive growth of mouse endothelial cells and modulates MMP-13 matrix metalloproteinase activity

    DEFF Research Database (Denmark)

    Schmidt-Hansen, Birgitte; Ornås, Dorte; Grigorian, Mariam

    2004-01-01

    S100A4(mts1) protein expression has been strongly associated with metastatic tumor progression. It has been suggested as a prognostic marker for a number of human cancers. It is proposed that extracellular S100A4 accelerates cancer progression by stimulating the motility of endothelial cells......, thereby promoting angiogenesis. Here we show that in 3D culture mouse endothelial cells (SVEC 4-10) respond to recombinant S100A4 by stimulating invasive growth of capillary-like structures. The outgrowth is not dependent on the stimulation of cell proliferation, but rather correlates...... with the transcriptional modulation of genes involved in the proteolytic degradation of extracellular matrix (ECM). Treatment of SVEC 4-10 with the S100A4 protein leads to the transcriptional activation of collagenase 3 (MMP-13) mRNA followed by subsequent release of the protein from the cells. Beta-casein zymography...

  7. Solar cell module. Taiyo denchi module

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Akihiko.

    1990-01-24

    This invention concerns a module frame of solar cell and a solar cell module using this frame. In particular, it concerns a frame and a module useful for the CdS/CdTe or CdS/CuInSe {sub 2} based cell. In the existing solar cell module, sealant is packed in between the edges of a glass substrate, a resin layer and a back protective thin film, etc. and a grooved frame of U-shaped section. For the sealant, silicon based resin and butyl rubber based resin are used many times, but either resin has defects such as their overflow from the module structure. In order to solve these defects, this invention proposes to provide stair-shaped protrusions along the four sides of the bottom of the box frame (herein after called the lower frame) of the module and at the same time, provide a groove for pooling the sealant at the portion where such protrusion meets the side wall, furthermore to provide depressions for pooling the sealant at the upper edge inside the side wall of the lower frame or to punch holes at the corners of the bottom of the lower frame. 9 figs.

  8. Cyclooxygenase-2 modulates the insulin-like growth factor axis in non-small-cell lung cancer.

    Science.gov (United States)

    Põld, Mehis; Krysan, Kostyantyn; Põld, Anu; Dohadwala, Mariam; Heuze-Vourc'h, Nathalie; Mao, Jenny T; Riedl, Karen L; Sharma, Sherven; Dubinett, Steven M

    2004-09-15

    Constitutive overexpression of cyclooxygenase-2 (COX-2) occurs frequently in several different malignancies, including lung, colon, breast, and prostate cancer. Clinical studies have established elevated serum insulin-like growth factor (IGF-I) content and IGF-I:IGF-binding protein 3 (IGFBP-3) ratio as risk factors for these same malignancies. Therefore, we sought to determine the link between COX-2 expression and the IGF axis in COX-2 gene-modified human non-small-cell lung cancer (NSCLC) cells. Overexpression of COX-2 in NSCLC cells enhanced the antiapoptotic and mitogenic effects of IGF-I and IGF-II, facilitated the autophosphorylation of the type 1 IGF receptor, increased class IA phosphatidylinositol 3'-kinase activity, and decreased expression of IGFBP-3. Thus, these findings show that COX-2 augments the stimulatory arm of the IGF axis.

  9. Compositional changes in cell wall polysaccharides from apple fruit callus cultures modulated by different plant growth regulators.

    Science.gov (United States)

    Alayón-Luaces, Paula; Ponce, Nora M A; Mroginski, Luis A; Stortz, Carlos A; Sozzi, Gabriel O

    2012-04-01

    The cell wall composition of apples callus cultures showed changes in the presence of 5 mg l(-1) of three different plant growth regulators (PGRs), namely picloram, abscisic acid and gibberellic acid. Although the structural functions of cell walls do not generally allow for pronounced variations of the total pectin and matrix glycan content, this work provides evidence that the addition of these plant growth regulators can rule, at least partly, cell wall metabolism in apple callus cultures. The chelator- and carbonate-extracts always had the analytical characteristics of pectins, with high proportions of uronic acids, arabinose and galactose as the main monosaccharides, and a significant proportion of rhamnose, but the cross-linking glycan fractions were still rich in RG-I-like material. The application of PGRs produced shifts of uronic acid and neutral sugars between fractions. Arabinose was the neutral sugar exhibiting more variations in apple callus cell wall. Picloram and abscisic acid produced an increase of the uronic acid contents of the cell walls. The AIRs obtained from calluses treated with different PGRs did not show large amounts of high molecular weight products, as determined by size-exclusion chromatography. For the carbonate-extract only the callus treated with picloram displayed two separated peaks for products of different molecular weights. The chromatographic profiles for the 4% KOH-extract displayed two peaks for all the treatments, one very sharp with high molecular weight, and another one wider of smaller molecular weight, whereas the difference between treatments can only be appraised through the areas of the peaks. This is the first report on cell wall composition from fruit calluses supplemented with different PGRs.

  10. Collagen and Stretch Modulate Autocrine Secretion of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Proteins from Differentiated Skeletal Muscle Cells

    Science.gov (United States)

    Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.

    1995-01-01

    Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.

  11. Modulation of fibroblast growth factor receptor expression and signalling during retinoic acid-induced differentiation of Tera-2 teratocarcinoma cells.

    Science.gov (United States)

    Pertovaara, L; Tienari, J; Vainikka, S; Partanen, J; Saksela, O; Lehtonen, E; Alitalo, K

    1993-02-26

    We have analyzed the regulation of fibroblast growth factor receptors (FGFRs) during retinoic acid (RA) induced differentiation of Tera-2 human embryonal carcinoma cells. Undifferentiated Tera-2 cells expressed mRNAs for all four known FGFRs. Their differentiation led to loss of FGFR-4 mRNA expression and mRNA levels for FGFR-2 and FGFR-3 were considerably downregulated, whereas the mRNA levels for FGFR-1 remained unaltered. A substantial decrease in binding of K-FGF was found to occur upon RA-induced differentiation of the cells. In undifferentiated Tera-2 cells FGF stimulation caused an increase of c-fos mRNA, and c-jun mRNAs, but no increase of junB mRNA, whereas in the differentiated cells, FGFs strongly stimulated the expression of all three genes. Thus differentiation of the Tera-2 cells leads to marked changes in FGFR gene expression as well as to complex alterations in their responses to exogenous FGFs.

  12. The Drosophila insulin-degrading enzyme restricts growth by modulating the PI3K pathway in a cell-autonomous manner.

    Science.gov (United States)

    Galagovsky, Diego; Katz, Maximiliano J; Acevedo, Julieta M; Sorianello, Eleonora; Glavic, Alvaro; Wappner, Pablo

    2014-03-01

    Mammalian insulin-degrading enzyme (IDE) cleaves insulin, among other peptidic substrates, but its function in insulin signaling is elusive. We use the Drosophila system to define the function of IDE in the regulation of growth and metabolism. We find that either loss or gain of function of Drosophila IDE (dIDE) can restrict growth in a cell-autonomous manner by affecting both cell size and cell number. dIDE can modulate Drosophila insulin-like peptide 2 levels, thereby restricting activation of the phosphatidylinositol-3-phosphate kinase pathway and promoting activation of Drosophila forkhead box, subgroup O transcription factor. Larvae reared in high sucrose exhibit delayed developmental timing due to insulin resistance. We find that dIDE loss of function exacerbates this phenotype and that mutants display increased levels of circulating sugar, along with augmented expression of a lipid biosynthesis marker. We propose that dIDE is a modulator of insulin signaling and that its loss of function favors insulin resistance, a hallmark of diabetes mellitus type II.

  13. MMP-13 regulates growth of wound granulation tissue and modulates gene expression signatures involved in inflammation, proteolysis, and cell viability.

    Directory of Open Access Journals (Sweden)

    Mervi Toriseva

    Full Text Available Proteinases play a pivotal role in wound healing by regulating cell-matrix interactions and availability of bioactive molecules. The role of matrix metalloproteinase-13 (MMP-13 in granulation tissue growth was studied in subcutaneously implanted viscose cellulose sponge in MMP-13 knockout (Mmp13(-/- and wild type (WT mice. The tissue samples were harvested at time points day 7, 14 and 21 and subjected to histological analysis and gene expression profiling. Granulation tissue growth was significantly reduced (42% at day 21 in Mmp13(-/- mice. Granulation tissue in Mmp13(-/- mice showed delayed organization of myofibroblasts, increased microvascular density at day 14, and virtual absence of large vessels at day 21. Gene expression profiling identified differentially expressed genes in Mmp13(-/- mouse granulation tissue involved in biological functions including inflammatory response, angiogenesis, cellular movement, cellular growth and proliferation and proteolysis. Among genes linked to angiogenesis, Adamts4 and Npy were significantly upregulated in early granulation tissue in Mmp13(-/- mice, and a set of genes involved in leukocyte motility including Il6 were systematically downregulated at day 14. The expression of Pdgfd was downregulated in Mmp13(-/- granulation tissue in all time points. The expression of matrix metalloproteinases Mmp2, Mmp3, Mmp9 was also significantly downregulated in granulation tissue of Mmp13(-/- mice compared to WT mice. Mmp13(-/- mouse skin fibroblasts displayed altered cell morphology and impaired ability to contract collagen gel and decreased production of MMP-2. These results provide evidence for an important role for MMP-13 in wound healing by coordinating cellular activities important in the growth and maturation of granulation tissue, including myofibroblast function, inflammation, angiogenesis, and proteolysis.

  14. E2FBP1/hDril1 modulates cell growth through downregulation of promyelocytic leukemia bodies.

    Science.gov (United States)

    Fukuyo, Y; Mogi, K; Tsunematsu, Y; Nakajima, T

    2004-07-01

    Promyelocytic leukemia nuclear bodies (PML-NBs) comprise multiple regulatory factors and play crucial roles in the maintenance of cellular integrity, while unregulated activation of PML-NBs induces death and premature senescence. Hence, the function of PML-NBs must be directed properly; however, the mechanism that regulates PML-NBs remains unclear. In this paper, we show that PML-NBs are disintegrated by an AT-rich interaction domain family protein E2FBP1/hDril1 through specific desumoylation of promyelocytic leukemia protein (PML) in vivo and in vitro. RNA interference-mediated downregulation of E2FBP1/hDril1 results in hyperplasis of PML-NBs and consequent commitment to PML-dependent premature senescence. Thus, the function of E2FBP1/hDril1 is required for maintenance of survival potential of the cells. Our data suggest a novel mechanism to govern cellular integrity through the modulation of nuclear depots.

  15. MiR-145 is downregulated in human ovarian cancer and modulates cell growth and invasion by targeting p70S6K1 and MUC1

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huijuan [Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060 (China); Xiao, ZhengHua [Department of gynecology, Yongchuan Affiliated Hospital of Chongqing Medical University, Chongqing City 404100 (China); Wang, Ke; Liu, Wenxin [Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060 (China); Hao, Quan, E-mail: quanhao2002@163.com [Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060 (China)

    2013-11-29

    Highlights: •MiR-145 is downregulated in human ovarian cancer. •MiR-145 targets p70S6K1 and MUC1. •p70S6K1 and MUC1 are involved in miR-145 mediated tumor cell growth and cell invasion, respectively. -- Abstract: MicroRNAs (miRNAs) are a family of small non-coding RNA molecules that regulate gene expression at post-transcriptional levels. Previous studies have shown that miR-145 is downregulated in human ovarian cancer; however, the roles of miR-145 in ovarian cancer growth and invasion have not been fully demonstrated. In the present study, Northern blot and qRT-PCR analysis indicate that miR-145 is downregulated in ovarian cancer tissues and cell lines, as well as in serum samples of ovarian cancer, compared to healthy ovarian tissues, cell lines and serum samples. Functional studies suggest that miR-145 overexpression leads to the inhibition of colony formation, cell proliferation, cell growth viability and invasion, and the induction of cell apoptosis. In accordance with the effect of miR-145 on cell growth, miR-145 suppresses tumor growth in vivo. MiR-145 is found to negatively regulate P70S6K1 and MUC1 protein levels by directly targeting their 3′UTRs. Importantly, the overexpression of p70S6K1 and MUC1 can restore the cell colony formation and invasion abilities that are reduced by miR-145, respectively. MiR-145 expression is increased after 5-aza-CdR treatment, and 5-aza-CdR treatment results in the same phenotype as the effect of miR-145 overexpression. Our study suggests that miR-145 modulates ovarian cancer growth and invasion by suppressing p70S6K1 and MUC1, functioning as a tumor suppressor. Moreover, our data imply that miR-145 has potential as a miRNA-based therapeutic target for ovarian cancer.

  16. Apple flavonoids inhibit growth of HT29 human colon cancer cells and modulate expression of genes involved in the biotransformation of xenobiotics.

    Science.gov (United States)

    Veeriah, Selvaraju; Kautenburger, Tanja; Habermann, Nina; Sauer, Julia; Dietrich, Helmut; Will, Frank; Pool-Zobel, Beatrice Louise

    2006-03-01

    Flavonoids from fruits and vegetables probably reduce risks of diseases associated with oxidative stress, including cancer. Apples contain significant amounts of flavonoids with antioxidative potential. The objectives of this study were to investigate such compounds for properties associated with reduction of cancer risks. We report herein that apple flavonoids from an apple extract (AE) inhibit colon cancer cell growth and significantly modulate expression of genes related to xenobiotic metabolism. HT29 cells were treated with AE at concentrations delivering 5-50 microM of one of the major ingredients, phloridzin ("phloridzin-equivalents," Ph.E), to the cell culture medium, with a synthetic flavonoid mixture mimicking the composition of the AE or with 5-100 microM individual flavonoids. HT29 cell growth was inhibited by the complex extract and by the mixture. HT29 cells were treated with nontoxic doses of the AE (30 microM, Ph.E) and after 24 h total RNA was isolated to elucidate patterns of gene expression using a human cDNA-microarray (SuperArray) spotted with 96 genes of drug metabolism. Treatment with AE resulted in an upregulation of several genes (GSTP1, GSSTT2, MGST2, CYCP4F3, CHST5, CHST6, and CHST7) and downregulation of EPHX1, in comparison to the medium controls. The enhanced transcriptional activity of GSTP1 and GSTT2 genes was confirmed with real-time qRT-PCR. On the basis of the pattern of differential gene expression found here, we conclude that apple flavonoids modulate toxicological defense against colon cancer risk factors. In addition to the inhibition of tumor cell proliferation, this could be a mechanism of cancer risk reduction.

  17. MicroRNA-1280 modulates cell growth and invasion of thyroid carcinoma through targeting estrogen receptor α.

    Science.gov (United States)

    Meng, D; Li, Z; Ma, X; Fu, L; Qin, G

    2016-03-20

    Thyroid cancer (TC) is one of the most common endocrine malignancies, with a steadily increasing incidence and lethality over the last several decades. ERα is a nuclear hormone receptor that has a key role in different cellular process and participates in the development and progression of thyroid cancer. ERα is the predicted target gene of microRNA-1280 (miR-1280). The present study was designed to delineate the role and underlying mechanism of miR-1280 in regulating thyroid cancer through targeting ERα. In our study, we analyzed the expression level of miR-1280 in thyroid cancer and detected significantly lower miR-1280 levels in TC tissue and cell lines compared with adjacent normal tissue or healthy cell line. We then overexpressed miR-1280 by miRNA mimic transfection and inhibited miR-1280 by miRNA inhibitor transfection. The inhibition of miR-1280 significantly elevated proliferation and invasion ability, whereas overexpression of miR-1280 inhibited cell growth and invasion in TC cells. Additionally, the luciferase reporter assay confirmed a targeting reaction between miR-1280 and ERα. Furthermore, overexpression of miR-1280 inhibited ERα and ERK pathway expression in TC cells, indicating that miR-1280 acts as a tumor suppressor by inhibiting the expression of ERα. Taken together, we demonstrated that overexpressed miR-1280 levels in TC cells may promote cell proliferation and invasion by inhibiting ERα, which might provide a new therapeutic target for thyroid cancer.

  18. Ganoderma tsugae Extract Inhibits Growth of HER2-Overexpressing Cancer Cells via Modulation of HER2/PI3K/Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Han-Peng Kuo

    2013-01-01

    Full Text Available Ganoderma, also known as Lingzhi or Reishi, has been used for medicinal purposes in Asian countries for centuries. It is a medicinal fungus with a variety of biological properties including immunomodulatory and antitumor activities. In this study, we investigated the molecular mechanisms by which Ganoderma tsugae (GT, one of the most common species of Ganoderma, inhibits the proliferation of HER2-overexpressing cancer cells. Here, we show that a quality assured extract of GT (GTE inhibited the growth of HER2-overexpressing cancer cells in vitro and in vivo and enhanced the growth-inhibitory effect of antitumor drugs (e.g., taxol and cisplatin in these cells. We also demonstrate that GTE induced cell cycle arrest by interfering with the HER2/PI3K/Akt signaling pathway. Furthermore, GTE curtailed the expression of the HER2 protein by modulating the transcriptional activity of the HER2 gene and the stability/degradation of the HER2 protein. In conclusion, this study suggests that GTE may be a useful adjuvant therapeutic agent in the treatment of cancer cells that highly express HER2.

  19. miR-26a and its target CKS2 modulate cell growth and tumorigenesis of papillary thyroid carcinoma.

    Directory of Open Access Journals (Sweden)

    Mingli Lv

    Full Text Available BACKGROUND: While many studies have shown that levels of miR-26a are lower in papillary thyroid carcinoma (PTC, the role and mechanism of miR-26a in PTC are unclear. METHOD: We used database searches to select potential mRNA targets of miR-26a. Anti-miR-26a, miR-26a mimic, siRNA for CKS2 and their effects on cell growth, cell-cycle distribution and colony formation were evaluated. We also evaluate the over-expressed miR-26a in TPC-1 cells in severe combined immune-deficient mice. We used luciferase reporter assays, real-time PCR and western blot analysis to measure the expression and activity of miR-26a, CKS2, and related factors such as cyclin B1, cyclin A, cdk1, bcl-xl and Akt. Finally, we measured the relationship between the levels of miR-26a and CKS2 in PTC and normal thyroid tissues. RESULTS: Relative to normal thyroid tissues, miR-26a is consistently down-regulated in TPC specimens, and CKS2 was identified as a potential target. Up-regulated miR-26a expression or down-regulated CKS2 expression in TPC-1 and CGTH W3 cells lines caused G2 phase-arrest. Decreased miR-26a expression or increased CKS2 expression could have inverse function on PTC cell lines. CyclinB1, cyclinA, bcl-xl and AKt are indirectly regulated by miR-26a in a CKS2-dependent manner. Finally, CKS2 is overexpressed in PTC specimens relative to normal thyroid tissue, and a significant inverse correlation exists between miR-26a and CKS2 expression in clinical PTC specimens. CONCLUSION: Our data indicate that miR-26a functions as a growth-suppressive miRNA in PTC, and that its suppressive effects are mediated mainly by repressing CKS2 expression.

  20. Cell Wall Growth and Modulation Dynamics in a Model Unicellular Green Alga—Penium margaritaceum: Live Cell Labeling with Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    David S. Domozych

    2011-01-01

    Full Text Available Penium margaritaceum is a unicellular charophycean green alga that possesses cell wall polymers similar to those of land plants. Several wall macromolecules of this alga are recognized by monoclonal antibodies specific for wall polymer epitopes of land plants. Immunofluorescence protocols using these antibodies may be employed to label specific cell wall constituents of live cells. Fluorescent labeling persists for several days, and this attribute allows for tracing of wall epitopes in both long- and short-term studies of cell development. Quantitative analysis of surface area covered by cell wall polymers is also easily performed. We show that significant cell expansion caused by incubation of cells in low levels of osmotically active agents like mannitol, glucose, or sucrose results from the inability of cells to undergo cytokinesis but does not result in significant changes to the amount of new cell wall. We also demonstrate that cells can be maintained for long periods of time in culture medium supplemented with specific cell wall-degrading enzymes where notable changes to wall infrastructure occur. These results demonstrate the great potential value of Penium in elucidating fundamental events during cell wall synthesis and modulation in plant cells.

  1. MAP4K3 is a component of the TORC1 signalling complex that modulates cell growth and viability in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Martín Resnik-Docampo

    Full Text Available BACKGROUND: MAP4K3 is a conserved Ser/Thr kinase that has being found in connection with several signalling pathways, including the Imd, EGFR, TORC1 and JNK modules, in different organisms and experimental assays. We have analyzed the consequences of changing the levels of MAP4K3 expression in the development of the Drosophila wing, a convenient model system to characterize gene function during epithelial development. METHODOLOGY AND PRINCIPAL FINDINGS: Using loss-of-function mutants and over-expression conditions we find that MAP4K3 activity affects cell growth and viability in the Drosophila wing. These requirements are related to the modulation of the TORC1 and JNK signalling pathways, and are best detected when the larvae grow in a medium with low protein concentration (TORC1 or are exposed to irradiation (JNK. We also show that MAP4K3 display strong genetic interactions with different components of the InR/Tor signalling pathway, and can interact directly with the GTPases RagA and RagC and with the multi-domain kinase Tor. CONCLUSIONS AND SIGNIFICANCE: We suggest that MAP4K3 has two independent functions during wing development, one related to the activation of the JNK pathway in response to stress and other in the assembling or activation of the TORC1 complex, being critical to modulate cellular responses to changes in nutrient availability.

  2. Solar cell module. Taiyo denchi module

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Akihiko; Matsumoto, Hitoshi; Komatsu, Yasumitsu; Shirai, Sadaharu.

    1989-09-29

    In the solar cell module of this invention, such junctions as CdS/CdTe or CdS/CuInSe {sub 2} are contained as a photoelectromotive force part coexists with air in a closed space which consists of glass, metal parts and a bonding resin layer; the photoelectromotive force part is coated either with a fluorine resin or a silicone resin. The fluorine resin contains a fundamental skeleton of an alternative copolymer of fluoroolefin and a hydrocarbon-based vinyl monomer; the silicone resin has three types, i.e., addition-reacted, condensated or UV-curing type, and the released oxygen is sealed in the closed space. The resin layer which adheres the glass and the metal plate is a thermoplastic resin which is polyethylene modified by copolymerization of acid anhydride. By this, the reliability of the solar cell module was enhanced. 3 figs.

  3. Growth-dependent modulation of casein kinase II and its substrate nucleolin in primary human cell cultures and HeLa cells

    DEFF Research Database (Denmark)

    Schneider, H R; Issinger, O G

    1989-01-01

    We have previously provided evidence that casein kinase II (CKII) and its substrate nucleolin increase concomitantly during certain development stages during embryogenesis (Schneider et al., Eur. J. Biochem. 161, 733-738). We now show that during normal growth of primary cell cultures and HeLa...

  4. Di-Ethylhexylphthalate (DEHP Modulates Cell Invasion, Migration and Anchorage Independent Growth through Targeting S100P in LN-229 Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Jennifer Nicole Sims

    2014-05-01

    Full Text Available Glioblastoma multiforme (GBM is the most aggressive brain cancer with a median survival of 1–2 years. The treatment of GBM includes surgical resection, radiation and chemotherapy, which minimally extends survival. This poor prognosis necessitates the identification of novel molecular targets associated with glioblastoma. S100P is associated with drug resistance, metastasis, and poor clinical outcomes in many malignancies. The functional role of S100P in glioblastoma has not been fully investigated. In this study, we examined the role of S100P mediating the effects of the environmental contaminant, DEHP, in glioblastoma cells (LN-229 by assessing cell proliferation, apoptosis, anchorage independent growth, cell migration and invasion following DEHP exposure. Silencing S100P and DEHP treatment inhibited LN-229 glioblastoma cell proliferation and induced apoptosis. Anchorage independent growth study revealed significantly decreased colony formation in shS100P cells. We also observed reduced cell migration in cells treated with DEHP following S100P knockdown. Similar results were observed in spheroid formation and expansion. This study is the first to demonstrate the effects of DEHP on glioblastoma cells, and implicates S100P as a potential therapeutic target that may be useful as a drug response biomarker.

  5. All-trans-retinoic Acid Modulates the Plasticity and Inhibits the Motility of Breast Cancer Cells: ROLE OF NOTCH1 AND TRANSFORMING GROWTH FACTOR (TGFβ).

    Science.gov (United States)

    Zanetti, Adriana; Affatato, Roberta; Centritto, Floriana; Fratelli, Maddalena; Kurosaki, Mami; Barzago, Maria Monica; Bolis, Marco; Terao, Mineko; Garattini, Enrico; Paroni, Gabriela

    2015-07-17

    All-trans-retinoic acid (ATRA) is a natural compound proposed for the treatment/chemoprevention of breast cancer. Increasing evidence indicates that aberrant regulation of epithelial-to-mesenchymal transition (EMT) is a determinant of the cancer cell invasive and metastatic behavior. The effects of ATRA on EMT are largely unknown. In HER2-positive SKBR3 and UACC812 cells, showing co-amplification of the ERBB2 and RARA genes, ATRA activates a RARα-dependent epithelial differentiation program. In SKBR3 cells, this causes the formation/reorganization of adherens and tight junctions. Epithelial differentiation and augmented cell-cell contacts underlie the anti-migratory action exerted by the retinoid in cells exposed to the EMT-inducing factors EGF and heregulin-β1. Down-regulation of NOTCH1, an emerging EMT modulator, is involved in the inhibition of motility by ATRA. Indeed, the retinoid blocks NOTCH1 up-regulation by EGF and/or heregulin-β1. Pharmacological inhibition of γ-secretase and NOTCH1 processing also abrogates SKBR3 cell migration. Stimulation of TGFβ contributes to the anti-migratory effect of ATRA. The retinoid switches TGFβ from an EMT-inducing and pro-migratory determinant to an anti-migratory mediator. Inhibition of the NOTCH1 pathway not only plays a role in the anti-migratory action of ATRA; it is relevant also for the anti-proliferative activity of the retinoid in HCC1599 breast cancer cells, which are addicted to NOTCH1 for growth/viability. This effect is enhanced by the combination of ATRA and the γ-secretase inhibitor N-(N-(3,5-difluorophenacetyl)-l-alanyl)-S-phenylglycine t-butyl ester, supporting the concept that the two compounds act at the transcriptional and post-translational levels along the NOTCH1 pathway.

  6. The effect of MAPK inhibitors and ROS modulators on cell growth and death of H₂O₂-treated HeLa cells.

    Science.gov (United States)

    Park, Woo Hyun

    2013-08-01

    Reactive oxygen species (ROS) influence the signaling of mitogen‑activated protein kinases (MAPKs) involved in cell survival and death. In the present study, the toxicological effect of hydrogen peroxide (H2O2) on HeLa cervical cancer cells was evaluated following treatment with MAPK inhibitors [MAP kinase or ERK kinase (MEK), c‑Jun N‑terminal kinase (JNK) or p38], N‑acetyl cysteine (NAC) and propyl gallate (PG) (well‑known antioxidants), or L‑buthionine sulfoximine [BSO; an inhibitor of glutathione (GSH) synthesis]. Treatment with 100 µM H2O2 inhibited the growth of HeLa cells and induced cell death, which was accompanied by loss of the mitochondrial membrane potential (MMP; ΔΨm). H2O2 did not induce any specific phase arrests of the cell cycle. ROS levels increased, while GSH levels decreased in H2O2‑treated HeLa cells after 1 and 24 h of treatment. The MAPK inhibitors enhanced H2O2‑induced HeLa cell death, while only p38 inhibitor increased ROS levels. Both NAC and PG attenuated H2O2‑induced HeLa cell growth inhibition and death together with the suppression of ROS levels. BSO increased ROS levels in H2O2‑treated HeLa cells without increasing cell death. The levels of MMP (ΔΨm) loss and GSH depletion were not closely associated with the levels of apoptosis in HeLa cells treated with the MAPK inhibitors, NAC, PG or BSO, in the presence of H2O2. In conclusion, H2O2 induced HeLa cell growth inhibition and death. MAPK inhibitors generally enhanced H2O2‑induced HeLa cell death. In particular, p38 inhibitor increased ROS levels in H2O2‑treated HeLa cells, while NAC and PG attenuated H2O2‑induced HeLa cell death by suppressing ROS levels.

  7. Modulation of gap junctional intercellular communication between human smooth muscle cells by leukocyte-derived growth factors and cytokines in relation to atherogenesis

    NARCIS (Netherlands)

    Mensink, A.

    1997-01-01


    In this thesis, the effect of leukocyte-derived growth factors and cytokines on GJIC between SMC was investigated. GJIC is regarded as an important mechanism in the control of cell growth, cell differentiation and tissue homeostasis. Disturbance of SMC growth control is regarded to be a k

  8. Rethinking cell growth models.

    Science.gov (United States)

    Kafri, Moshe; Metzl-Raz, Eyal; Jonas, Felix; Barkai, Naama

    2016-11-01

    The minimal description of a growing cell consists of self-replicating ribosomes translating the cellular proteome. While neglecting all other cellular components, this model provides key insights into the control and limitations of growth rate. It shows, for example, that growth rate is maximized when ribosomes work at full capacity, explains the linear relation between growth rate and the ribosome fraction of the proteome and defines the maximal possible growth rate. This ribosome-centered model also highlights the challenge of coordinating cell growth with related processes such as cell division or nutrient production. Coordination is promoted when ribosomes don't translate at maximal capacity, as it allows escaping strict exponential growth. Recent data support the notion that multiple cellular processes limit growth. In particular, increasing transcriptional demand may be as deleterious as increasing translational demand, depending on growth conditions. Consistent with the idea of trade-off, cells may forgo maximal growth to enable more efficient interprocess coordination and faster adaptation to changing conditions. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. American cranberry (Vaccinium macrocarpon) extract affects human prostate cancer cell growth via cell cycle arrest by modulating expression of cell cycle regulators.

    Science.gov (United States)

    Déziel, Bob; MacPhee, James; Patel, Kunal; Catalli, Adriana; Kulka, Marianna; Neto, Catherine; Gottschall-Pass, Katherine; Hurta, Robert

    2012-05-01

    Prostate cancer is one of the most common cancers in the world, and its prevalence is expected to increase appreciably in the coming decades. As such, more research is necessary to understand the etiology, progression and possible preventative measures to delay or to stop the development of this disease. Recently, there has been interest in examining the effects of whole extracts from commonly harvested crops on the behaviour and progression of cancer. Here, we describe the effects of whole cranberry extract (WCE) on the behaviour of DU145 human prostate cancer cells in vitro. Following treatment of DU145 human prostate cancer cells with 10, 25 and 50 μg ml⁻¹ of WCE, respectively for 6 h, WCE significantly decreased the cellular viability of DU145 cells. WCE also decreased the proportion of cells in the G2-M phase of the cell cycle and increased the proportion of cells in the G1 phase of the cell cycle following treatment of cells with 25 and 50 μg ml⁻¹ treatment of WCE for 6 h. These alterations in cell cycle were associated with changes in cell cycle regulatory proteins and other cell cycle associated proteins. WCE decreased the expression of CDK4, cyclin A, cyclin B1, cyclin D1 and cyclin E, and increased the expression of p27. Changes in p16(INK4a) and pRBp107 protein expression levels also were evident, however, the changes noted in p16(INK4a) and pRBp107 protein expression levels were not statistically significant. These findings demonstrate that phytochemical extracts from the American cranberry (Vaccinium macrocarpon) can affect the behaviour of human prostate cancer cells in vitro and further support the potential health benefits associated with cranberries.

  10. Lycopene inhibits IGF-I signal transduction and growth in normal prostate epithelial cells by decreasing DHT-modulated IGF-I production in co-cultured reactive stromal cells.

    Science.gov (United States)

    Liu, Xunxian; Allen, Jeffrey D; Arnold, Julia T; Blackman, Marc R

    2008-04-01

    Prostate stromal and epithelial cell communication is important in prostate functioning and cancer development. Primary human stromal cells from normal prostate stromal cells (PRSC) maintain a smooth muscle phenotype, whereas those from prostate cancer (6S) display reactive and fibroblastic characteristics. Dihydrotestosterone (DHT) stimulates insulin-like growth factor-I (IGF-I) production by 6S but not PSRC cells. Effects of reactive versus normal stroma on normal human prostate epithelial (NPE or PREC) cells are poorly understood. We co-cultured NPE plus 6S or PRSC cells to compare influences of different stromal cells on normal epithelium. Because NPE and PREC cells lose androgen receptor (AR) expression in culture, DHT effects must be modulated by associated stromal cells. When treated with camptothecin (CM), NPE cells, alone and in stromal co-cultures, displayed a dose-dependent increase in DNA fragmentation. NPE/6S co-cultures exhibited reduced CM-induced cell death with exposure to DHT, whereas NPE/PRSC co-cultures exhibited CM-induced cell death regardless of DHT treatment. DHT blocked CM-induced, IGF-I-mediated, NPE death in co-cultured NPE/6S cells without, but not with, added anti-IGF-I and anti-IGF-R antibodies. Lycopene consumption is inversely related to human prostate cancer risk and inhibits IGF-I and androgen signaling in rat prostate cancer. In this study, lycopene, in dietary concentrations, reversed DHT effects of 6S cells on NPE cell death, decreased 6S cell IGF-I production by reducing AR and beta-catenin nuclear localization and inhibited IGF-I-stimulated NPE and PREC growth, perhaps by attenuating IGF-I's effects on serine phosphorylation of Akt and GSK3beta and tyrosine phosphorylation of GSK3. This study expands the understanding of the preventive mechanisms of lycopene in prostate cancer.

  11. SENP1 inhibition induces apoptosis and growth arrest of multiple myeloma cells through modulation of NF-κB signaling

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jun [Graduate School of Anhui Medical University, Hefei (China); Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Sun, Hui-Yan; Xiao, Feng-Jun; Wang, Hua [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Yang, Yang [Department of Hematology, General Hospital of Air Force, Beijing (China); Wang, Lu; Gao, Chun-Ji [Department of Hematology, PLA General Hospital, Beijing (China); Guo, Zi-Kuan [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Wu, Chu-Tse [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Wang, Li-Sheng, E-mail: Wangls@bmi.ac.cn [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu (China)

    2015-05-01

    SUMO/sentrin specific protease 1 (Senp1) is an important regulation protease in the protein sumoylation, which affects the cell cycle, proliferation and differentiation. The role of Senp1 mediated protein desumoylation in pathophysiological progression of multiple myeloma is unknown. In this study, we demonstrated that Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. Lentivirus-mediated Senp1 knockdown triggers apoptosis and reduces viability, proliferation and colony forming ability of MM cells. The NF-κB family members including P65 and inhibitor protein IkBα play important roles in regulation of MM cell survival and proliferation. We further demonstrated that Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation, leading to inactivation of NF-kB signaling in MM cells. These results delineate a key role for Senp1in IL-6 induced proliferation and survival of MM cells, suggesting it may be a potential new therapeutic target in MM. - Highlights: • Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. • Senp1 knockdown triggers apoptosis and reduces proliferation of MM cells. • Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation.

  12. Battery cell module

    Energy Technology Data Exchange (ETDEWEB)

    Shambaugh, J.S.

    1981-11-23

    A modular lithium battery having a plurality of cells, having electrical connecting means connecting the cells to output terminals, and venting means for releasing discharge byproducts to a chemical scrubber is disclosed. Stainless steel cell casings are potted in an aluminum modular case with syntactic foam and epoxy. The wall thickness resulting is about 0.5 inches.

  13. Modulation by decitabine of gene expression and growth of osteosarcoma U2OS cells in vitro and in xenografts: Identification of apoptotic genes as targets for demethylation

    Directory of Open Access Journals (Sweden)

    Xue Hui

    2007-09-01

    Full Text Available Abstract Background Methylation-mediated silencing of genes is one epigenetic mechanism implicated in cancer. Studies regarding the role of modulation of gene expression utilizing inhibitors of DNA methylation, such as decitabine, in osteosarcoma (OS have been limited. A biological understanding of the overall effects of decitabine in OS is important because this particular agent is currently undergoing clinical trials. The objective of this study was to measure the response of the OS cell line, U2OS, to decitabine treatment both in vitro and in vivo. Results Microarray expression profiling was used to distinguish decitabine-dependent changes in gene expression in U2OS cells, and to identify responsive loci with demethylated CpG promoter regions. U2OS xenografts were established under the sub-renal capsule of immune-deficient mice to study the effect of decitabine in vivo on tumor growth and differentiation. Reduced nuclear methylation levels could be detected in xenografts derived from treated mice by immunohistochemistry utilizing a 5-methylcytidine antibody. Decitabine treatment reduced tumor xenograft size significantly (p in vitro (p GADD45A, HSPA9B, PAWR, PDCD5, NFKBIA, and TNFAIP3 were also induced to ≥2-fold in vivo. Quantitative methylation pyrosequencing confirmed that the tested pro-apoptotic genes had CpG-island DNA demethylationas a result of U2OS decitabine treatment both in vitro and in xenografts Conclusion These data provide new insights regarding the use of epigenetic modifiers in OS, and have important implications for therapeutic trials involving demethylation drugs. Collectively, these data have provided biological evidence that one mode of action of decitabine may be the induction of apoptosis utilizing promoter-CpG demethylation of specific effectors in cell death pathways in OS.

  14. High-Dose Estrogen and Clinical Selective Estrogen Receptor Modulators Induce Growth Arrest, p21, and p53 in Primate Ovarian Surface Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Jay W.; Stouffer, Richard L.; Rodland, Karin D.

    2005-06-09

    Ovarian cancer is the most lethal gynecological cancer affecting women. Hormone-based therapies are variably successful in treating ovarian cancer, but the reasoning behind these therapies is paradoxical. Clinical reagents such as tamoxifen are considered to inhibit or reverse tumor growth by competitive inhibition of the estrogen receptor (ER); however high dose estrogen is as clinically effective as tamoxifen, and it is unlikely that estrogen is acting by blocking ER activity; however, it may be activating a unique function of the ER that is nonmitogenic. For poorly defined reasons, 90% of varian cancers derive from the ovarian surface epithelium (OSE). In vivo the ER-positive OSE is exposed to high estrogen levels, reaching micromolar concentrations in dominant ovarian follicles. Using cultured OSE cells in vitro, we show that these levels of estradiol (1 ug/ml; {approx}3um) block the actions of serum growth factors, activate the G1 phase retinoblastoma AQ:A checkpoint, and induce p21, an inhibitor of kinases that normally inactivate the retinoblastoma checkpoint. We also show that estradiol increases p53 levels, which may contribute to p21 induction. Supporting the hypothesis that clinical selective ER modulators activate this novel ER function, we find that micromolar doses of tamoxifen and the ''pure antiestrogen'' ICI 182,780 elicit the same effects as estradiol. We propose that, in the context of proliferation, these data clarify some paradoxical aspects of hormone-based therapy and suggest that fuller understanding of normal ER function is necessary to improve therapeutic strategies that target the ER. (J Clin Endocrinol Metab 90: 0000-0000, 2005)

  15. The Effect of Protein Kinase C Modulation with Bryostatin 1 on Paclitaxel-Induced Growth Inhibition and Apoptosis in Human Breast Cancer Cell Lines

    Science.gov (United States)

    1999-01-01

    need for new therapies is critical. These studies evaluated the therapeutic potential of a novel agent, the protein kinase C modulator, Bryostatin 1 in...agents to determine synergistic combinations. The combination of bryostatin 1 and paclitaxel was studied in four breast cancer cell lines utilizing...fluorouracil, & vinorelbine) were also tested in combination with bryostatin 1 using two breast cancer cell lines and three treatment schedules. Again, no

  16. Cell Growth Enhancement

    Science.gov (United States)

    1992-01-01

    Exogene Corporation uses advanced technologies to enhance production of bio-processed substances like proteins, antibiotics and amino acids. Among them are genetic modification and a genetic switch. They originated in research for Jet Propulsion Laboratory. Extensive experiments in cell growth through production of hemoglobin to improve oxygen supply to cells were performed. By improving efficiency of oxygen use by cells, major operational expenses can be reduced. Greater product yields result in decreased raw material costs and more efficient use of equipment. A broad range of applications is cited.

  17. Evaluation of positive interaction for cell growth between Bifidobacterium adolescentis and Propionibacterium freudenreichii using a co-cultivation system with two microfiltration modules.

    Science.gov (United States)

    Kouya, Tomoaki; Ishiyama, Yohei; Tanaka, Takaaki; Taniguchi, Masayuki

    2013-02-01

    Using a co-cultivation system developed previously, positive interaction for cell growth between Bifidobacterium adolescentis and Propionibacterium freudenreichii was evaluated. The total dry cell weight (DCW) of these two strains obtained in the co-cultivation system was 1.5-1.7-fold of the sum of the DCWs obtained in two single cultivations of each bacterium.

  18. Generation, modulation and maintenance of the plasma membrane asymmetric phospholipid composition in yeast cells during growth: their relation to surface potential and membrane protein activity.

    Science.gov (United States)

    Cerbón, J; Calderón, V

    1995-04-12

    During growth a cyclic exposure of anionic phospholipids to the external surface of the plasma membrane was found. The surface charge density (sigma) increased gradually reaching a maximum in the first 5 h of growth and returned gradually to their initial value at the end of the logarithmic phase of growth (10-12 h). Phosphatidylinositol, that determines to a large extent the magnitude of the sigma, increased 83% in the yeast cells during the first 4 h of growth and returned gradually to their initial level at 10-12 h. During the stationary phase (12-24 h), both sigma and the anionic/zwitterionic phospholipid ratio, remained without any significant variation. The high-affinity H-linked glutamate transport system that behaves as a sensor of the changes in the membrane surface potential (phi) increased its activity in the first 5 h and then decreased it, following with great accuracy the sigma variations and remained without changes during the stationary phase of growth. The phosphatidylserine (PS) relative concentration in the cells (9.0%) did not significantly change during the whole growth curve, but their asymmetric distribution varied, contributing to the changes in sigma. PS facing the outer membrane surface increased 2.45-times during the first 5 h of growth and then returned to their original value at the end of the log phase (12 h). Phosphatidylcholine (PC) remained constant during the whole growth curve (50%), while phosphatidylethanolamine (PE) decreased 3-fold in the first 4 h and then increased to its original value at 10 h. Interestingly, PE at the outer membrane surface remained constant (3% of the total phospholipids) during the whole growth curve. During growth yeast cells change their phospholipid composition originating altered patterns of the plasma membrane phospholipid composition and IN-OUT distribution. This dynamic asymmetry is involved in the regulation of the surface potential and membrane protein activity.

  19. Rapid burst of H2O2 by plant growth regulators increases intracellular Ca2+ amounts and modulates CD4+ T cell activation.

    Science.gov (United States)

    Ahmed, Asma; Mukherjee, Sambuddho; Deobagkar, Mukta; Naik, Tanushree; Nandi, Dipankar

    2010-11-01

    The identification of small molecules that affect T cell activation is an important area of research. Three molecules that regulate plant growth and differentiation, but not their structurally similar analogs, were identified to enhance primary mouse CD4(+) T cell activation in conjunction with soluble anti-CD3 stimulation: Indoleacetic acid (natural plant auxin), 1-Napthaleneacetic acid (synthetic plant auxin) and 2,4-Dichlorophenoxyacetic acid (synthetic plant auxin and herbicide). These effects are distinct in comparison to Curcumin, the well known phenolic immunomodulator, which lowers T cell activation. An investigation into the mechanisms of action of the three plant growth regulators revealed a rapid induction of reactive oxygen species (ROS), mainly comprising H(2)O(2). In addition, these three molecules synergize with soluble anti-CD3 signaling to enhance intracellular Ca(2+) concentrations [Ca(2+)](i), leading to greater T cell activation, e.g. induction of CD25 and IL-2. Enhanced production of TNFα and IFNγ by CD4(+) T cells is also observed upon plant growth regulator treatment with soluble anti-CD3. Interestingly, maximal IL-2 production and CD4(+) T cell cycle progression are observed upon activation with soluble anti-CD3 and phorbol 12-myristate 13-acetate (PMA), a phorbol ester. Additionally, stimulation with PMA and Ionomcyin (a Ca(2+) ionophore), which activates T cells by circumventing the TCR, and plant growth regulators also demonstrated the role of the strength of signal (SOS): T cell cycle progression is enhanced with gentle activation conditions but decreased with strong activation conditions. This study demonstrates the direct effects of three plant growth regulators on CD4(+) T cell activation and cycling.

  20. Automated concentrator cell module assembly

    Science.gov (United States)

    Olah, S.; Sampson, W.

    The performance and features of linear concentrator photovoltaic arrays fabricated partially by an automated soldering machine are detailed. Float zone Si cells were mounted in five linear modules each 1.2 m long containing 48 cells. The cell strings were made up of 4 12-cell segments encapsulated in polyvinyl butyral, with two bypass diodes for every segment. An efficiency of 16.4% was achieved at 55 C, and humidity tests showed no performance degradation or cracks in an Al3O3 coating. The automatic soldering machine comprised a ribbon feeding system, an interconnect punch die, a solar cell feeder and soldering mechanism, a ribbon separation mechanism with cut-off die and outfeed, and a program control. The machine operated with low-line voltage, compressed air, and vacuum, and the processing of the cells is outlined, including cell soldering by a point contact method with a controlled immersion heater. Standardization of cell sizes is recommended to ensure flexibility of cells which can be handled.

  1. Vapor Crystal Growth (VCG) experiment Cell

    Science.gov (United States)

    1992-01-01

    The image shows a test cell of Crystal Growth experiment inside the Vapor Crystal Growth System (VCGS) furnace aboard the STS-42, International Microgravity Laboratory-1 (IML-1), mission. The goal of IML-1, a pressurized marned Spacelab module, was to explore in depth the complex effects of weightlessness of living organisms and materials processing. More than 200 scientists from 16 countires participated in the investigations.

  2. Long-term exposure of human gingival fibroblasts to cigarette smoke condensate reduces cell growth by modulating Bax, caspase-3 and p53 expression.

    Science.gov (United States)

    Alamri, A; Semlali, A; Jacques, É; Alanazi, M; Zakrzewski, A; Chmielewski, W; Rouabhia, M

    2015-08-01

    Smoking cigarettes increases the risk of oral tissue damage leading to periodontal disease. Gingival fibroblasts, the predominant cell type inhabiting gingival connective tissue, play a critical role in remodeling and maintaining gingival structure. The objective of this study was to investigate the effect of long-term exposure to cigarette smoke on human gingival fibroblast survival/apoptosis and the molecular pathways involved in these cell responses. Human gingival fibroblasts were extracted from healthy non-smokers and cultured in the presence of cigarette smoke condensate (CSC). At the end of each time point, cell growth was evaluated by means of MTT assay. Apoptotic and necrotic gene's expression was investigated by polymerase chain reaction array and by annexin V/propidium iodide staining and cell cycle assays. Western blot was used to investigate Bax and p53 proteins. These tests were supported by caspase 3 activity analyses. High levels of CSC decreased cell growth and deregulated cell cycle progression by increasing the G(0)/G(1) and reducing the S and G(2)/M phases of the gingival fibroblasts. Polymerase chain reaction arrays revealed the activation of several apoptotic genes by CSC, including TNF receptors, caspases, Bax and p53. This was supported by increases in the Bax and p53 protein levels as well as by an elevated activity of caspase-3 in the CSC-exposed cells. Immunofluorescence staining demonstrated that both Bax and caspase-3 displayed a cytosolic and mitochondrial distribution in the CSC-exposed gingival fibroblasts, compared to controls. The damaging effect of CSC on gingival fibroblast growth was also supported by the decrease in interleukin 6 and 8 secretion by the gingival fibroblasts. These results suggest that CSC may contribute to deregulating fibroblast functions. This can compromise fibroblast-epithelial cell interactions, which ultimately increases the risk of gingival tissue damage and the onset of periodontitis. © 2014 John Wiley

  3. Nutritional state modulates growth hormone-stimulated lipolysis.

    Science.gov (United States)

    Bergan, Heather E; Kittilson, Jeffrey D; Sheridan, Mark A

    2015-01-01

    Growth hormone (GH) regulates several processes in vertebrates, including two metabolically disparate processes: promotion of growth, an anabolic action, and mobilization of stored lipid, a catabolic action. In this study, we used hepatocytes isolated from continuously fed and long-term (4weeks) fasted rainbow trout (Oncorhynchus mykiss) as a model to investigate the mechanistic basis of the anabolic and catabolic actions of GH. Our hypothesis was that nutritional state modulates the lipolytic responsiveness of cells by adjusting the signal transduction pathways to which GH links. GH stimulated lipolysis as measured by increased glycerol release in both a time- and concentration-related manner from cells of fasted fish but not from cells of fed fish. Expression of mRNAs that encode the lipolytic enzyme hormone-sensitive lipase (HSL), HSL1 and HSL2, also was stimulated by GH in cells from fasted fish and not in cells from fed fish. Activation of the signaling pathways that mediate GH action also was studied. In cells from fed fish, GH activated the JAK-STAT, PI3K-Akt, and ERK pathways, whereas in cells from fasted fish, GH activated the PLC/PKC and ERK pathways. In hepatocytes from fasted fish, blockade of PLC/PKC and of the ERK pathway inhibited GH-stimulated lipolysis and GH-stimulated HSL mRNA expression, whereas blockade of JAK-STAT or of the PI3K-Akt pathway had no effect on lipolysis or HSL expression stimulated by GH. These results indicate that during fasting GH activates the PLC/PKC and ERK pathways resulting in lipolysis but during periods of feeding GH activates a different complement of signal elements that do not promote lipolysis. These findings suggest that the responsiveness of cells to GH depends on the signal pathways to which GH links and helps resolve the growth-promoting and lipid catabolic actions of GH.

  4. Modulation of the apoptotic pathway in skeletal muscle models: the role of growth hormone.

    Science.gov (United States)

    Dimauro, Ivan; Magi, Fiorenza; La Sala, Gina; Pittaluga, Monica; Parisi, Paolo; Caporossi, Daniela

    2011-02-01

    Despite numerous studies on the role of growth hormone (GH), its function in skeletal muscle apoptosis secondary to various stimuli is poorly understood. In this study, we used rodent muscle cell lines to analyse cell growth and survival as well as the morphological and molecular markers of cell death in C2C12 and L6C5 myoblasts. These cells were treated either in the presence or absence of GH under serum starvation conditions or in the pro-apoptotic concentrations of hydrogen peroxide (H2O2). Although the cells were responsive to the presence of GH, we did not observe GH modulation of cell growth and survival. The presence of GH did not affect the cell death programme or the expression of apoptotic markers in basal conditions or under oxidative stress. In conclusion, this study indicated that GH "by itself" is not effective in modulating the intracellular pathways leading to cell survival or cell death induced by apoptotic stimuli.

  5. Snail modulates cell metabolism in MDCK cells

    Energy Technology Data Exchange (ETDEWEB)

    Haraguchi, Misako, E-mail: haraguci@m3.kufm.kagoshima-u.ac.jp [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Indo, Hiroko P. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Iwasaki, Yasumasa [Health Care Center, Kochi University, Kochi 780-8520 (Japan); Iwashita, Yoichiro [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Fukushige, Tomoko [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Majima, Hideyuki J. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Izumo, Kimiko; Horiuchi, Masahisa [Department of Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Kanekura, Takuro [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Furukawa, Tatsuhiko [Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Ozawa, Masayuki [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)

    2013-03-22

    Highlights: ► MDCK/snail cells were more sensitive to glucose deprivation than MDCK/neo cells. ► MDCK/snail cells had decreased oxidative phosphorylation, O{sub 2} consumption and ATP content. ► TCA cycle enzyme activity, but not expression, was lower in MDCK/snail cells. ► MDCK/snail cells showed reduced PDH activity and increased PDK1 expression. ► MDCK/snail cells showed reduced expression of GLS2 and ACLY. -- Abstract: Snail, a repressor of E-cadherin gene transcription, induces epithelial-to-mesenchymal transition and is involved in tumor progression. Snail also mediates resistance to cell death induced by serum depletion. By contrast, we observed that snail-expressing MDCK (MDCK/snail) cells undergo cell death at a higher rate than control (MDCK/neo) cells in low-glucose medium. Therefore, we investigated whether snail expression influences cell metabolism in MDCK cells. Although gylcolysis was not affected in MDCK/snail cells, they did exhibit reduced pyruvate dehydrogenase (PDH) activity, which controls pyruvate entry into the tricarboxylic acid (TCA) cycle. Indeed, the activity of multiple enzymes involved in the TCA cycle was decreased in MDCK/snail cells, including that of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDH2), succinate dehydrogenase (SDH), and electron transport Complex II and Complex IV. Consequently, lower ATP content, lower oxygen consumption and increased survival under hypoxic conditions was also observed in MDCK/snail cells compared to MDCK/neo cells. In addition, the expression and promoter activity of pyruvate dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits the activity of PDH, was increased in MDCK/snail cells, while expression levels of glutaminase 2 (GLS2) and ATP-citrate lyase (ACLY), which are involved in glutaminolysis and fatty acid synthesis, were decreased in MDCK/snail cells. These results suggest that snail modulates cell metabolism by altering the expression and activity of

  6. Sustained release of hepatocyte growth factor by cationic self-assembling peptide/heparin hybrid hydrogel improves β-cell survival and function through modulating inflammatory response

    Science.gov (United States)

    Liu, Shuyun; Zhang, Lanlan; Cheng, Jingqiu; Lu, Yanrong; Liu, Jingping

    2016-01-01

    Inflammatory response is a major cause of grafts dysfunction in islet transplantation. Hepatocyte growth factor (HGF) had shown anti-inflammatory activity in multiple diseases. In this study, we aim to deliver HGF by self-assembling peptide/heparin (SAP/Hep) hybrid gel to protect β-cell from inflammatory injury. The morphological and slow release properties of SAPs were analyzed. Rat INS-1 β-cell line was treated with tumor necrosis factor α in vitro and transplanted into rat kidney capsule in vivo, and the viability, apoptosis, function, and inflammation of β-cells were evaluated. Cationic KLD1R and KLD2R self-assembled to nanofiber hydrogel, which showed higher binding affinity for Hep and HGF because of electrostatic interaction. Slow release of HGF from cationic SAP/Hep gel is a two-step mechanism involving binding affinity with Hep and molecular diffusion. In vitro and in vivo results showed that HGF-loaded KLD2R/Hep gel promoted β-cell survival and insulin secretion, and inhibited cell apoptosis, cytokine release, T-cell infiltration, and activation of NFκB/p38 MAPK pathways in β-cells. This study suggested that SAP/Hep gel is a promising carrier for local delivery of bioactive proteins in islet transplantation. PMID:27729786

  7. Transparent superstrate terrestrial solar cell module

    Science.gov (United States)

    1977-01-01

    The design, development, fabrication, and testing of the transparent solar cell module were examined. Cell performance and material process characteristics were determined by extensive tests and design modifications were made prior to preproduction fabrication. These tests included three cell submodules and two full size engineering modules. Along with hardware and test activity, engineering documentation was prepared and submitted.

  8. New insight into the influence of carob extract and gallic acid on hemin induced modulation of HT29 cell growth parameters.

    Science.gov (United States)

    Klenow, Stefanie; Glei, Michael

    2009-09-01

    Red meat intake is associated with an increased risk of developing cancer. This is possibly related to the heme content of red meat. Plant derived polyphenols might protect from cancer development via their antioxidant activities. In this study, the impact of an aqueous extract of carob (CE) on hemin-modulated proliferation was investigated. CE, gallic acid (GA) and a known iron chelator (deferoxamine: DFO) significantly reduced the number of human colon cancer HT29 cells. CE and GA were more effective under serum-free conditions than in normal cell culture medium. These effects were abolished by addition of 1 microM hemin at low concentrations of CE and GA. At higher concentrations of CE and GA, both substances reduced cell number despite hemin supplementation. Effects of CE, GA and DFO on cell number could not be linked to iron chelation even though CE and DFO were capable of chelating iron. Furthermore, the effects of high CE concentration point to antioxidative effects other than iron chelation. However, a connection to a reduction of colorectal cancer risk due to consumption of meat with high heme content by CE could not be drawn, since the effective concentrations are beyond the physiologically relevant concentrations.

  9. Atrial natriuretic peptide (ANP) inhibits DMBA/croton oil induced skin tumor growth by modulating NF-κB, MMPs, and infiltrating mast cells in swiss albino mice.

    Science.gov (United States)

    Subramanian, Vimala; Vellaichamy, Elangovan

    2014-10-01

    Cardiac hormone atrial natriuretic peptide (ANP) and its receptor, natriuretic peptide receptor-A (NPR-A) are implicated as a vital regulator of cancer cell growth and tumor progression. However, the underlying mechanism by which ANP opposes the cancer growth in in-vivo remains unknown. Herein, we investigated the anti-cancer activity of ANP on 7, 12-dimethyl benzanthracence (DMBA)/Croton oil- induced two-step skin carcinogenic mouse model. Skin tumor incidence and tumor volume were recorded during the experimental period of 16 weeks. ANP (1 μg/kg body weight/alternate days for 4 weeks) was injected subcutaneously from the 13th week of DMBA/Croton oil induction. ANP treatment markedly inhibited the skin tumor growth (P<0.001). A significant reduction in the level of NF-κB activation (P<0.001), infiltrating mast cell count (P<0.01) and MMP-2/-9 (P<0.001, respectively) were noticed in the ANP treated mice skin tissue. Further, ANP treatment revert back the altered levels of serum LDH-4, C-reactive protein (CRP), and enzymatic antioxidants (SOD and CAT activities) to near normal level. Taken together, the results of this study suggest that ANP opposes the skin carcinogenesis by suppressing the inflammatory response and MMPs.

  10. Lactate-modulated induction of THBS-1 activates transforming growth factor (TGF-beta2 and migration of glioma cells in vitro.

    Directory of Open Access Journals (Sweden)

    Corinna Seliger

    Full Text Available BACKGROUND: An important phenomenon observed in glioma metabolism is increased aerobic glycolysis in tumor cells, which is generally referred to as the Warburg effect. Transforming growth factor (TGF-beta2, which we previously showed to be induced by lactic acid, is a key pathophysiological factor in glioblastoma, leading to increased invasion and severe local immunosuppression after proteolytic cleavage from its latency associated peptide. In this study we tested the hypothesis, that lactate regulates TGF-beta2 expression and glioma cell migration via induction of Thrombospondin-1 (THBS-1, a TGF-beta activating protein. METHODS: Lactate levels were reduced by knockdown of LDH-A using specific small interfering RNA (siRNA and competitive inhibition of LDH-A by sodium oxamate. Knockdown of THBS-1 was performed using specific siRNA. Western Blot, qRT-PCR, and ELISA were used to investigate expression levels of LDH-A, LDH-B, TGF-beta2 and THBS-1. Migration of cells was examined by Spheroid, Scratch and Boyden Chamber assays. RESULTS: Knockdown of LDH-A with subsequent decrease of lactate concentration leads to reduced levels of THBS-1 and TGF-beta2 in glioma cells. Lactate addition increases THBS-1 protein, leading to increased activation of TGF-beta2. Inhibition of THBS-1 reduces TGF-beta2 protein and migration of glioma cells. Addition of synthetic THBS-1 can rescue reduced TGF-beta2 protein levels and glioma cell migration in siLDH-A treated cells. CONCLUSION: We define a regulatory cascade between lactate, THBS-1 and TGF-beta2, leading to enhanced migration of glioma cells. Our results demonstrate a specific interaction between tumor metabolism and migration and provide a better understanding of the mechanisms underlying glioma cell invasion.

  11. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice.

    Science.gov (United States)

    Li, Jun; Sung, Cecilia Ying Ju; Lee, Nikki; Ni, Yueqiong; Pihlajamäki, Jussi; Panagiotou, Gianni; El-Nezami, Hani

    2016-03-01

    The beneficial roles of probiotics in lowering the gastrointestinal inflammation and preventing colorectal cancer have been frequently demonstrated, but their immunomodulatory effects and mechanism in suppressing the growth of extraintestinal tumors remain unexplored. Here, we adopted a mouse model and metagenome sequencing to investigate the efficacy of probiotic feeding in controlling s.c. hepatocellular carcinoma (HCC) and the underlying mechanism suppressing the tumor progression. Our result demonstrated that Prohep, a novel probiotic mixture, slows down the tumor growth significantly and reduces the tumor size and weight by 40% compared with the control. From a mechanistic point of view the down-regulated IL-17 cytokine and its major producer Th17 cells, whose levels decreased drastically, played critical roles in tumor reduction upon probiotics feeding. Cell staining illustrated that the reduced Th17 cells in the tumor of the probiotic-treated group is mainly caused by the reduced frequency of migratory Th17 cells from the intestine and peripheral blood. In addition, shotgun-metagenome sequencing revealed the crosstalk between gut microbial metabolites and the HCC development. Probiotics shifted the gut microbial community toward certain beneficial bacteria, including Prevotella and Oscillibacter, that are known producers of antiinflammatory metabolites, which subsequently reduced the Th17 polarization and promoted the differentiation of antiinflammatory Treg/Tr1 cells in the gut. Overall, our study offers novel insights into the mechanism by which probiotic treatment modulates the microbiota and influences the regulation of the T-cell differentiation in the gut, which in turn alters the level of the proinflammatory cytokines in the extraintestinal tumor microenvironment.

  12. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice

    Science.gov (United States)

    Li, Jun; Sung, Cecilia Ying Ju; Lee, Nikki; Ni, Yueqiong; Pihlajamäki, Jussi; Panagiotou, Gianni; El-Nezami, Hani

    2016-01-01

    The beneficial roles of probiotics in lowering the gastrointestinal inflammation and preventing colorectal cancer have been frequently demonstrated, but their immunomodulatory effects and mechanism in suppressing the growth of extraintestinal tumors remain unexplored. Here, we adopted a mouse model and metagenome sequencing to investigate the efficacy of probiotic feeding in controlling s.c. hepatocellular carcinoma (HCC) and the underlying mechanism suppressing the tumor progression. Our result demonstrated that Prohep, a novel probiotic mixture, slows down the tumor growth significantly and reduces the tumor size and weight by 40% compared with the control. From a mechanistic point of view the down-regulated IL-17 cytokine and its major producer Th17 cells, whose levels decreased drastically, played critical roles in tumor reduction upon probiotics feeding. Cell staining illustrated that the reduced Th17 cells in the tumor of the probiotic-treated group is mainly caused by the reduced frequency of migratory Th17 cells from the intestine and peripheral blood. In addition, shotgun-metagenome sequencing revealed the crosstalk between gut microbial metabolites and the HCC development. Probiotics shifted the gut microbial community toward certain beneficial bacteria, including Prevotella and Oscillibacter, that are known producers of antiinflammatory metabolites, which subsequently reduced the Th17 polarization and promoted the differentiation of antiinflammatory Treg/Tr1 cells in the gut. Overall, our study offers novel insights into the mechanism by which probiotic treatment modulates the microbiota and influences the regulation of the T-cell differentiation in the gut, which in turn alters the level of the proinflammatory cytokines in the extraintestinal tumor microenvironment. PMID:26884164

  13. Black Tea Extract and Its Theaflavin Derivatives Inhibit the Growth of Periodontopathogens and Modulate Interleukin-8 and β-Defensin Secretion in Oral Epithelial Cells.

    Science.gov (United States)

    Lombardo Bedran, Telma Blanca; Morin, Marie-Pierre; Palomari Spolidorio, Denise; Grenier, Daniel

    2015-01-01

    Over the years, several studies have brought evidence suggesting that tea polyphenols, mostly from green tea, may have oral health benefits. Since few data are available concerning the beneficial properties of black tea and its theaflavin derivatives against periodontal disease, the objective of this study was to investigate their antibacterial activity as well as their ability to modulate interleukin-8 and human β-defensin (hBD) secretion in oral epithelial cells. Among the periodontopathogenic bacteria tested, Porphyromonas gingivalis was found to be highly susceptible to the black tea extract and theaflavins. Moreover, our data indicated that the black tea extract, theaflavin and theaflavin-3,3'-digallate can potentiate the antibacterial effect of metronidazole and tetracycline against P. gingivalis. Using lipopolysaccharide-stimulated oral epithelial cells, the black tea extract (100 μg/ml), as well as theaflavin and theaflavin-3,3'-digallate (50 μg/ml) reduced interleukin-8 (IL-8) secretion by 85%, 79%, and 86%, respectively, thus suggesting an anti-inflammatory property. The ability of the black tea extract and its theaflavin derivatives to induce the secretion of the antimicrobial peptides hBD-1, hBD-2 and hBD-4 by oral epithelial cells was then evaluated. Our results showed that the black tea extract as well as theaflavin-3,3'-digallate were able to increase the secretion of the three hBDs. In conclusion, the ability of a black tea extract and theaflavins to exert antibacterial activity against major periodontopathogens, to attenuate the secretion of IL-8, and to induce hBD secretion in oral epithelial cells suggest that these components may have a beneficial effect against periodontal disease.

  14. Modulation of fructose-2,6-bisphosphate metabolism by components of the extracellular matrix in cultured cells. Interaction with epidermal growth factor.

    Science.gov (United States)

    Baulida, J; Onetti, R; Bassols, A

    1997-11-24

    The use of NIH3T3 fibroblasts overexpressing different mutations of the EGF receptor shows that regulation of fructose-2,6-bisphosphate (Fru-2,6-P2) metabolism by EGF is mediated by the kinase activity of the EGF receptor and suggests a PLCgamma1-mediated mechanism. The effect of several extracellular matrix components on glucose metabolism was assessed by incubating A431 cells and NIH3T3 fibroblasts with heparin, laminin, fibronectin, collagen and PG-I and PG-II proteoglycans and measuring the levels of Fru-2,6-P2. Laminin increased the levels of Fru-2,6-P2 and heparin decreased the levels of the metabolite, whereas the other molecules did not have any effect. No effect of laminin or heparin in glucose uptake by the cell was observed. Laminin was able to modulate the effects of EGF on Fru-2,6-P2 concentration, suggesting cross-talk between these agents.

  15. HIGD1A Regulates Oxygen Consumption, ROS Production, and AMPK Activity during Glucose Deprivation to Modulate Cell Survival and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Kurosh Ameri

    2015-02-01

    Full Text Available Hypoxia-inducible gene domain family member 1A (HIGD1A is a survival factor induced by hypoxia-inducible factor 1 (HIF-1. HIF-1 regulates many responses to oxygen deprivation, but viable cells within hypoxic perinecrotic solid tumor regions frequently lack HIF-1α. HIGD1A is induced in these HIF-deficient extreme environments and interacts with the mitochondrial electron transport chain to repress oxygen consumption, enhance AMPK activity, and lower cellular ROS levels. Importantly, HIGD1A decreases tumor growth but promotes tumor cell survival in vivo. The human Higd1a gene is located on chromosome 3p22.1, where many tumor suppressor genes reside. Consistent with this, the Higd1a gene promoter is differentially methylated in human cancers, preventing its hypoxic induction. However, when hypoxic tumor cells are confronted with glucose deprivation, DNA methyltransferase activity is inhibited, enabling HIGD1A expression, metabolic adaptation, and possible dormancy induction. Our findings therefore reveal important new roles for this family of mitochondrial proteins in cancer biology.

  16. Bioavailable copper modulates oxidative phosphorylation and growth of tumors.

    Science.gov (United States)

    Ishida, Seiko; Andreux, Pénélope; Poitry-Yamate, Carole; Auwerx, Johan; Hanahan, Douglas

    2013-11-26

    Copper is an essential trace element, the imbalances of which are associated with various pathological conditions, including cancer, albeit via largely undefined molecular and cellular mechanisms. Here we provide evidence that levels of bioavailable copper modulate tumor growth. Chronic exposure to elevated levels of copper in drinking water, corresponding to the maximum allowed in public water supplies, stimulated proliferation of cancer cells and de novo pancreatic tumor growth in mice. Conversely, reducing systemic copper levels with a chelating drug, clinically used to treat copper disorders, impaired both. Under such copper limitation, tumors displayed decreased activity of the copper-binding mitochondrial enzyme cytochrome c oxidase and reduced ATP levels, despite enhanced glycolysis, which was not accompanied by increased invasiveness of tumors. The antiproliferative effect of copper chelation was enhanced when combined with inhibitors of glycolysis. Interestingly, larger tumors contained less copper than smaller tumors and exhibited comparatively lower activity of cytochrome c oxidase and increased glucose uptake. These results establish copper as a tumor promoter and reveal that varying levels of copper serves to regulate oxidative phosphorylation in rapidly proliferating cancer cells inside solid tumors. Thus, activation of glycolysis in tumors may in part reflect insufficient copper bioavailability in the tumor microenvironment.

  17. Beyond growth: novel functions for bacterial cell wall hydrolases.

    Science.gov (United States)

    Wyckoff, Timna J; Taylor, Jennifer A; Salama, Nina R

    2012-11-01

    The peptidoglycan cell wall maintains turgor pressure and cell shape of most bacteria. Cell wall hydrolases are essential, together with synthases, for growth and daughter cell separation. Recent work in diverse organisms has uncovered new cell wall hydrolases that act autonomously or on neighboring cells to modulate invasion of prey cells, cell shape, innate immune detection, intercellular communication, and competitor lysis. The hydrolases involved in these processes catalyze the cleavage of bonds throughout the sugar and peptide moities of peptidoglycan. Phenotypes associated with these diverse hydrolases reveal new functions of the bacterial cell wall beyond growth and division.

  18. Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells

    Directory of Open Access Journals (Sweden)

    Husain Syed A

    2011-04-01

    Full Text Available Abstract Background- Specific types of high risk Human papillomaviruses (HR-HPVs particularly, HPV types 16 and 18 cause cervical cancer and while the two recently developed vaccines against these HPV types are prophylactic in nature, therapeutic options for treatment and management of already existing HPV infection are not available as yet. Because transcription factor, Activator Protein-1 (AP-1 plays a central role in HPV-mediated cervical carcinogenesis, we explored the possibility of its therapeutic targeting by berberine, a natural alkaloid derived from a medicinal plant species, Berberis which has been shown to possess anti-inflammatory and anti-cancer properties with no known toxicity; however, the effect of berberine against HPV has not been elucidated. Results- We studied the effect of berberine on HPV16-positive cervical cancer cell line, SiHa and HPV18-positive cervical cancer cell line, HeLa using electrophoretic mobility gel shift assays, western and northern blotting which showed that berberine could selectively inhibit constitutively activated AP-1 in a dose- and time-dependent manner and downregulates HPV oncogenes expression. Inhibition of AP-1 was also accompanied by changes in the composition of their DNA-binding complex. Berberine specifically downregulated expression of oncogenic c-Fos which was also absent in the AP-1 binding complex. Treatment with berberine resulted in repression of E6 and E7 levels and concomitant increase in p53 and Rb expression in both cell types. Berberine also suppressed expression of telomerase protein, hTERT, which translated into growth inhibition of cervical cancer cells. Interestingly, a higher concentration of berberine was found to reduce the cell viability through mitochondria-mediated pathway and induce apoptosis by activating caspase-3. Conclusion- These results indicate that berberine can effectively target both the host and viral factors responsible for development of cervical cancer

  19. Growth Culture Conditions and Nutrient Signaling Modulating Yeast Chronological Longevity

    Directory of Open Access Journals (Sweden)

    Júlia Santos

    2012-01-01

    Full Text Available The manipulation of nutrient-signaling pathways in yeast has uncovered the impact of environmental growth conditions in longevity. Studies using calorie restriction show that reducing glucose concentration of the culture media is sufficient to increase replicative and chronological lifespan (CLS. Other components of the culture media and factors such as the products of fermentation have also been implicated in the regulation of CLS. Acidification of the culture media mainly due to acetic acid and other organic acids production negatively impacts CLS. Ethanol is another fermentative metabolite capable of inducing CLS reduction in aged cells by yet unknown mechanisms. Recently, ammonium was reported to induce cell death associated with shortening of CLS. This effect is correlated to the concentration of NH4+ added to the culture medium and is particularly evident in cells starved for auxotrophy-complementing amino acids. Studies on the nutrient-signaling pathways regulating yeast aging had a significant impact on aging-related research, providing key insights into mechanisms that modulate aging and establishing the yeast as a powerful system to extend knowledge on longevity regulation in multicellular organisms.

  20. Sexual hormones modulate compensatory renal growth and function

    Directory of Open Access Journals (Sweden)

    Pablo J. Azurmendi

    2013-12-01

    Full Text Available The role played by sexual hormones and vasoactive substances in the compensatory renal growth (CRG that follows uninephrectomy (uNx is still controversial. Intact and gonadectomized adult Wistar rats of both sexes, with and without uNx, performed at 90 days age, were studied at age 150 days. Daily urine volume, electrolyte excretion and kallikrein activity (UKa were determined. Afterwards, glomerular filtration rate and blood pressure were measured, the kidneys weighed and DNA, protein and RNA studied to determine nuclei content and cell size. When the remnant kidney weight at age 150 days was compared with the weight of the kidney removed at the time of uNx, male uNx rats showed the greatest CRG (50% while growth in the other uNx groups was 25%, 15% and 19% in orchidectomized, female and ovariectomized rats, respectively. The small CRG observed in the uNx female rats was accompanied by the lowest glomerular filtration value, 0.56 ± 0.02 ml/min/g kwt compared, with the other uNx groups, p < 0.05. Cell size (protein or RNA/DNA was similar for all the groups except for uNx orchidectomized rats. In this group the cytoplasmatic protein or RNA content was lower than in the other groups while DNA (nuclei content was similar. Some degree of hyperplasia was determined by DNA content in the uNx groups. Male sexual hormones positively influenced CRG and its absence modulated cell size. Female sexual hormones, instead, did not appear to stimulate CRG. The kallikrein kinin system may not be involved in CRG.

  1. Cell shunt resistance and photovoltaic module performance

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, T.J.; Basso, T.S.; Rummel, S.R. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    Shunt resistance of cells in photovoltaic modules can affect module power output and could indicate flawed manufacturing processes and reliability problems. The authors describe a two-terminal diagnostic method to directly measure the shunt resistance of individual cells in a series-connected module non-intrusively, without deencapsulation. Peak power efficiency vs. light intensity was measured on a 12-cell, series-connected, single crystalline module having relatively high cell shunt resistances. The module was remeasured with 0.5-, 1-, and 2-ohm resistors attached across each cell to simulate shunt resistances of several emerging technologies. Peak power efficiencies decreased dramatically at lower light levels. Using the PSpice circuit simulator, the authors verified that cell shunt and series resistances can indeed be responsible for the observed peak power efficiency vs. intensity behavior. The authors discuss the effect of basic cell diode parameters, i.e., shunt resistance, series resistance, and recombination losses, on PV module performance as a function of light intensity.

  2. Modulating radiation cataractogenesis by hormonally manipulating lenticular growth kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Holsclaw, D.S. (California Univ., San Francisco, CA (United States)); Rothstein, H. (Fordham Univ., New York, NY (United States)); Medvedovsky, C.; Worgul, B.V. (Columbia Univ., New York (United States). Eye Radiation and Environmental Research Lab.)

    1994-09-01

    The cell cycle of the lens epithelium of northern leopard frogs was manipulated by hypophysectomy (to halt mitotic activity) and pituitary hormone administration (to stimulate baseline mitosis and reverse hypophysectomy-induced mitotic suppression). Animals were hypophysectomized, irradiated and injected with pituitary hormone replacement. Irradiated animals, irradiated animals + hormone replacement and irradiated hypophysectomized animals served as controls. It was found that irradiated-hypophysectomized (mitosis halted) frogs failed to develop opacities, while those with hormonal replacement (mitosis reinstated) developed cataracts. Furthermore, in all instances, the times of cataract onset and rates of progression directly correlated with the mitotic activity in the lens epithelia. Finally, we were able to titrate lens epithelial mitotic activity, and later cataractogenesis, by administering varying concentrations of replacement pituitary hormone, resulting in concentration-dependent correlation between mitotic index and the onset and rate of lens opacification. The ability to modulate cataractogenesis by way of altering cell proliferation is strong evidence that the post-radiation growth fraction plays a central role in the cytopathomechanism of radiocataracts. (Author).

  3. Differential Ratios of Omega Fatty Acids (AA/EPA+DHA Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231.

    Directory of Open Access Journals (Sweden)

    Prakash P Mansara

    Full Text Available Omega 3 (n3 and Omega 6 (n6 polyunsaturated fatty acids (PUFAs have been reported to exhibit opposing roles in cancer progression. Our objective was to determine whether different ratios of n6/n3 (AA/EPA+DHA FAs could modulate the cell viability, lipid peroxidation, total cellular fatty acid composition and expression of tumor regulatory Matrix Attachment Region binding proteins (MARBPs in breast cancer cell lines and in non-cancerous, MCF10A cells. Low ratios of n6/n3 (1:2.5, 1:4, 1:5, 1:10 FA decreased the viability and growth of MDA-MB-231 and MCF7 significantly compared to the non-cancerous cells (MCF10A. Contrarily, higher n6/n3 FA (2.5:1, 4:1, 5:1, 10:1 decreased the survival of both the cancerous and non-cancerous cell types. Lower ratios of n6/n3 selectively induced LPO in the breast cancer cells whereas the higher ratios induced in both cancerous and non-cancerous cell types. Interestingly, compared to higher n6/n3 FA ratios, lower ratios increased the expression of tumor suppressor MARBP, SMAR1 and decreased the expression of tumor activator Cux/CDP in both breast cancer and non-cancerous, MCF10A cells. Low n6/n3 FAs significantly increased SMAR1 expression which resulted into activation of p21WAF1/CIP1 in MDA-MB-231 and MCF7, the increase being ratio dependent in MDA-MB-231. These results suggest that increased intake of n3 fatty acids in our diet could help both in the prevention as well as management of breast cancer.

  4. Therapeutic modulation of growth factors and cytokines in regenerative medicine.

    Science.gov (United States)

    Ioannidou, Effie

    2006-01-01

    Regeneration that takes place in the human body is limited throughout life. Therefore, when organs are irreparably damaged, they are usually replaced with an artificial device or donor organ. The term "regenerative medicine" covers the restoration or replacement of cells, tissues, and organs. Stem cells play a major role in regenerative medicine by providing the way to repopulate organs damaged by disease. Stem cells have the ability to self renew and to regenerate cells of diverse lineages within the tissue in which they reside. Stem cells could originate from embryos or adult tissues. Growth factors are proteins that may act locally or systemically to affect the growth of cells in several ways. Various cell activities, including division, are influenced by growth factors. Cytokines are a family of low-molecular-weight proteins that are produced by numerous cell types and are responsible for regulating the immune response, inflammation, tissue remodeling and cellular differentiation. Target cells of growth factors and cytokines are mesenchymal, epithelial and endothelial cells. These molecules frequently have overlapping activities and can act in an autocrine or paracrine fashion. A complex network of growth factors and cytokines guides cellular differentiation and regeneration in all organs and tissues. The aim of this paper is to review the role of growth factors and cytokines in different organs or systems and explore their therapeutic application in regenerative medicine. The role of stem cells combined with growth factors and cytokines in the regeneration of vascular and hematopoietic, neural, skeletal, pancreatic, periodontal, and mucosal tissue is reviewed. There is evidence that supports the use of growth factors and cytokines in the treatment of neurological diseases, diabetes, cardiovascular disease, periodontal disease, cancer and its complication, oral mucositis. After solving the ethical issues and establishing clear and reasonable regulations

  5. Production and action of transforming growth factor-beta in human osteoblast cultures: dependence on cell differentiation and modulation by calcitriol

    DEFF Research Database (Denmark)

    Kassem, M; Kveiborg, Marie; Eriksen, E F

    2000-01-01

    Transforming growth factor beta (TGF-beta) plays an important role in skeletal remodelling. However, few studies have examined its effects on cultured human osteoblasts. Our aim is to characterise the biological effects of TGF-beta1 on human osteoblasts and to examine the interaction between TGF-...

  6. Production and action of transforming growth factor-beta in human osteoblast cultures: dependence on cell differentiation and modulation by calcitriol

    DEFF Research Database (Denmark)

    Kassem, M; Kveiborg, Marie; Eriksen, E F

    2000-01-01

    Transforming growth factor beta (TGF-beta) plays an important role in skeletal remodelling. However, few studies have examined its effects on cultured human osteoblasts. Our aim is to characterise the biological effects of TGF-beta1 on human osteoblasts and to examine the interaction between TGF-...

  7. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    Science.gov (United States)

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  8. Tumor suppressor ARF regulates tissue microenvironment and tumor growth through modulation of macrophage polarization.

    Science.gov (United States)

    Jiménez-García, Lidia; Herranz, Sandra; Higueras, María Angeles; Luque, Alfonso; Hortelano, Sonsoles

    2016-10-11

    Tumor microenvironment has been described to play a key role in tumor growth, progression, and metastasis. Macrophages are a major cellular constituent of the tumor stroma, and particularly tumor associated macrophages (TAMs or M2-like macrophages) exert important immunosuppressive activity and a pro-tumoral role within the tumor microenvironment. Alternative-reading frame (ARF) gene is widely inactivated in human cancer. We have previously demonstrated that ARF deficiency severely impairs inflammatory response establishing a new role for ARF in the regulation of innate immunity. On the basis of these observations, we hypothesized that ARF may also regulates tumor growth through recruitment and modulation of the macrophage phenotype in the tumor microenvironment. Xenograft assays of B16F10 melanoma cells into ARF-deficient mice resulted in increased tumor growth compared to those implanted in WT control mice. Tumors from ARF-deficient mice exhibited significantly increased number of TAMs as well as microvascular density. Transwell assays showed crosstalk between tumor cells and macrophages. On the one hand, ARF-deficient macrophages modulate migratory ability of the tumor cells. And on the other, tumor cells promote the skewing of ARF-/- macrophages toward a M2-type polarization. In conclusion, these results demonstrate that ARF deficiency facilitates the infiltration of macrophages into the tumor mass and favors their polarization towards a M2 phenotype, thus promoting tumor angiogenesis and tumor growth. This work provides novel information about the critical role of ARF in the modulation of tumor microenvironment.

  9. PV industry growth and module reliability in Thailand

    Science.gov (United States)

    Chenvidhya, Dhirayut; Seapan, Manit; Sangpongsanont, Yaowanee; Chenvidhya, Tanokkorn; Limsakul, Chamnan; Songprakorp, Roongrojana

    2015-09-01

    The PV applications in Thailand are now installed more than 1.2 GWp cumulatively. It is due to the National Renewable Energy Program and its targets. In the latest Alternative Energy Development Plan (AEDP), the PV electricity production target has increased from 2 GWp to 3 GWp. With this rapid growth, customers and manufacturers seek for module standard testing. So far over one thousands of PV modules per annum have been tested since 2012. The normal tests include type approval test according to TIS standard, acceptance test and testing for local standard development. For type test, the most module failure was found during damp heat test. For annual evaluation test, the power degradation and delamination of power was found between 0 to 6 percent from its nameplate after deployment of 0 to 5 years in the field. For thin-film module, the degradation and delamination was found in range of 0 to 13 percent (about 5 percent on average) from its nameplate for the modules in operation with less than 5 years. However, for the PV modules at the reference site on campus operated for 12 years, the power degradation was ranging from 10 to 15 percent. Therefore, a long term performance assessment needs to be considered to ensure the system reliability.

  10. Genotoxic stress inhibits Ewing sarcoma cell growth by modulating alternative pre-mRNA processing of the RNA helicase DHX9.

    Science.gov (United States)

    Fidaleo, Marco; Svetoni, Francesca; Volpe, Elisabetta; Miñana, Belén; Caporossi, Daniela; Paronetto, Maria Paola

    2015-10-13

    Alternative splicing plays a key role in the DNA damage response and in cancer. Ewing Sarcomas (ES) are aggressive tumors caused by different chromosomal translocations that yield in-frame fusion proteins driving transformation. RNA profiling reveals genes differentially regulated by UV light irradiation in two ES cell lines exhibiting different sensitivity to genotoxic stress. In particular, irradiation induces a new isoform of the RNA helicase DHX9 in the more sensitive SK-N-MC cells, which is targeted to nonsense-mediated decay (NMD), causing its downregulation. DHX9 protein forms a complex with RNA polymerase II (RNAPII) and EWS-FLI1 to enhance transcription. Silencing of DHX9 in ES cells sensitizes them to UV treatment and impairs recruitment of EWS-FLI1 to target genes, whereas DHX9 overexpression protects ES cells from genotoxic stress. Mechanistically, we found that UV light irradiation leads to enhanced phosphorylation and decreased processivity of RNAPII in SK-N-MC cells, which in turn causes inclusion of DHX9 exon 6A. A similar effect on DHX9 splicing was also elicited by treatment with the chemotherapeutic drug etoposide, indicating a more general mechanism of regulation in response to DNA damage. Our data identify a new NMD-linked splicing event in DHX9 with impact on EWS-FLI1 oncogenic activity and ES cell viability.

  11. Niche-modulated and niche-modulating genes in bone marrow cells

    Science.gov (United States)

    Cohen, Y; Garach-Jehoshua, O; Bar-Chaim, A; Kornberg, A

    2012-01-01

    Bone marrow (BM) cells depend on their niche for growth and survival. However, the genes modulated by niche stimuli have not been discriminated yet. For this purpose, we investigated BM aspirations from patients with various hematological malignancies. Each aspirate was fractionated, and the various samples were fixed at different time points and analyzed by microarray. Identification of niche-modulated genes relied on sustained change in expression following loss of niche regulation. Compared with the reference (‘authentic') samples, which were fixed immediately following aspiration, the BM samples fixed after longer stay out-of-niche acquired numerous changes in gene-expression profile (GEP). The overall genes modulated included a common subset of functionally diverse genes displaying prompt and sustained ‘switch' in expression irrespective of the tumor type. Interestingly, the ‘switch' in GEP was reversible and turned ‘off-and-on' again in culture conditions, resuming cell–cell–matrix contact versus respread into suspension, respectively. Moreover, the resuming of contact prolonged the survival of tumor cells out-of-niche, and the regression of the ‘contactless switch' was followed by induction of a new set of genes, this time mainly encoding extracellular proteins including angiogenic factors and extracellular matrix proteins. Our data set, being unique in authentic expression design, uncovered niche-modulated and niche-modulating genes capable of controlling homing, expansion and angiogenesis. PMID:23241658

  12. Another brick in the cell wall: biosynthesis dependent growth model.

    Science.gov (United States)

    Barbacci, Adelin; Lahaye, Marc; Magnenet, Vincent

    2013-01-01

    Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i) a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii) new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  13. Another brick in the cell wall: biosynthesis dependent growth model.

    Directory of Open Access Journals (Sweden)

    Adelin Barbacci

    Full Text Available Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  14. Peroxisomal catalase deficiency modulates yeast lifespan depending on growth conditions

    NARCIS (Netherlands)

    Kawalek, Adam; Lefevre, Sophie D.; Veenhuis, Marten; van der Klei, Ida J.

    2013-01-01

    We studied the role of peroxisomal catalase in chronological aging of the yeast Hansenula polymorpha in relation to various growth substrates. Catalase-deficient (cat) cells showed a similar chronological life span (CLS) relative to the wild-type control upon growth on carbon and nitrogen sources th

  15. Very High Efficiency Solar Cell Modules

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, A.; Kirkpatrick, D.; Honsberg, C.; Moore, D.; Wanlass, M.; Emery, K.; Schwartz, R.; Carlson, D.; Bowden, S.; Aiken, D.; Gray, A.; Kurtz, S.; Kazmerski, L., et al

    2009-01-01

    The Very High Efficiency Solar Cell (VHESC) program is developing integrated optical system - PV modules for portable applications that operate at greater than 50% efficiency. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space. Our approach is driven by proven quantitative models for the solar cell design, the optical design, and the integration of these designs. Optical systems efficiency with an optical efficiency of 93% and solar cell device results under ideal dichroic splitting optics summing to 42.7 {+-} 2.5% are described.

  16. Modulation of gap junction channels and hemichannels by growth factors.

    Science.gov (United States)

    Schalper, Kurt A; Riquelme, Manuel A; Brañes, María C; Martínez, Agustín D; Vega, José Luis; Berthoud, Viviana M; Bennett, Michael V L; Sáez, Juan C

    2012-03-01

    Gap junction hemichannels and cell-cell channels have roles in coordinating numerous cellular processes, due to their permeability to extra and intracellular signaling molecules. Another mechanism of cellular coordination is provided by a vast array of growth factors that interact with relatively selective cell membrane receptors. These receptors can affect cellular transduction pathways, including alteration of intracellular concentration of free Ca(2+) and free radicals and activation of protein kinases or phosphatases. Connexin and pannexin based channels constitute recently described targets of growth factor signal transduction pathways, but little is known regarding the effects of growth factor signaling on pannexin based channels. The effects of growth factors on these two channel types seem to depend on the cell type, cell stage and connexin and pannexin isoform expressed. The functional state of hemichannels and gap junction channels are affected in opposite directions by FGF-1 via protein kinase-dependent mechanisms. These changes are largely explained by channels insertion in or withdrawal from the cell membrane, but changes in open probability might also occur due to changes in phosphorylation and redox state of channel subunits. The functional consequence of variation in cell-cell communication via these membrane channels is implicated in disease as well as normal cellular responses.

  17. MHC class II molecules regulate growth in human T cells

    DEFF Research Database (Denmark)

    Nielsen, M; Odum, Niels; Bendtzen, K;

    1994-01-01

    lines tested. Only one of three CD4+, CD45RAhigh, ROhigh T cells responded to class II costimulation. There was no correlation between T cell responsiveness to class II and the cytokine production profile of the T cell in question. Thus, T cell lines producing interferon (IFN)-gamma but not IL-4 (TH1......MHC-class-II-positive T cells are found in tissues involved in autoimmune disorders. Stimulation of class II molecules by monoclonal antibodies (mAbs) or bacterial superantigens induces protein tyrosine phosphorylation through activation of protein tyrosine kinases in T cells, and class II signals...... modulate several T cell responses. Here, we studied further the role of class II molecules in the regulation of T cell growth. Costimulation of class II molecules by immobilized HLA-DR mAb significantly enhanced interleukin (IL)-2-supported T cell growth of the majority of CD4+, CD45RAlow, ROhigh T cell...

  18. Natural Killer Cells Differentiate Human Adipose-Derived Stem Cells and Modulate Their Adipogenic Potential.

    Science.gov (United States)

    Rezzadeh, Kameron S; Hokugo, Akishige; Jewett, Anahid; Kozlowska, Anna; Segovia, Luis Andres; Zuk, Patricia; Jarrahy, Reza

    2015-09-01

    Natural killer cells are thought to represent more than 30 percent of all lymphocytes within the stromal vascular fraction of lipoaspirates. However, their physiologic interaction with adipocytes and their precursors has never been specifically examined. The authors hypothesized that natural killer cells, by means of cytokine secretion, are capable of promoting the differentiation of adipose-derived stem cells. Human natural killer cells purified from healthy donors' peripheral blood mononuclear cells were activated with a combination of interleukin-2 and anti-CD16 monoclonal antibody; natural killer cell supernatant was collected. Adipose-derived stem cells isolated from raw human lipoaspirates from healthy patients were treated with growth media, growth media with natural killer cell supernatant, adipogenic media, and adipogenic media with natural killer cells supernatant. Flow cytometric analysis was performed on cells using antibodies against B7H1, CD36, CD44, CD34, CD29, and MHC-1. Adipogenic-related gene expression (PPAR-γ, LPL, GPD-1, and aP2) was assessed. Oil Red O staining was performed as a functional assay of adipocyte differentiation and adipogenesis. Adipose-derived stem cells maintained in growth media with natural killer cell supernatant lost markers of "stemness," including CD44, CD34, and CD29; and expressed markers of differentiation, including B7H1 and MHC-1. Adipose-derived stem cells treated with natural killer cell supernatant accumulated small amounts of lipid after 10 days of natural killer cell supernatant treatment. Adipose-derived stem cells treated with natural killer cell supernatant showed altered expression of adipogenesis-associated genes compared with cells maintained in growth media. Adipose-derived stem cells maintained in adipogenic media with natural killer cell supernatant accumulated less lipid than those cells in adipogenic media alone. The authors demonstrate that, through secreted factors, natural killer cells are capable

  19. VAMP-associated protein B (VAPB) promotes breast tumor growth by modulation of Akt activity.

    Science.gov (United States)

    Rao, Meghana; Song, Wenqiang; Jiang, Aixiang; Shyr, Yu; Lev, Sima; Greenstein, David; Brantley-Sieders, Dana; Chen, Jin

    2012-01-01

    VAPB (VAMP- associated protein B) is an ER protein that regulates multiple biological functions. Although aberrant expression of VAPB is associated with breast cancer, its function in tumor cells is poorly understood. In this report, we provide evidence that VAPB regulates breast tumor cell proliferation and AKT activation. VAPB protein expression is elevated in primary and metastatic tumor specimens, and VAPB mRNA expression levels correlated negatively with patient survival in two large breast tumor datasets. Overexpression of VAPB in mammary epithelial cells increased cell growth, whereas VAPB knockdown in tumor cells inhibited cell proliferation in vitro and suppressed tumor growth in orthotopic mammary gland allografts. The growth regulation of mammary tumor cells controlled by VAPB appears to be mediated, at least in part, by modulation of AKT activity. Overexpression of VAPB in MCF10A-HER2 cells enhances phosphorylation of AKT. In contrast, knockdown of VAPB in MMTV-Neu tumor cells inhibited pAKT levels. Pharmacological inhibition of AKT significantly reduced three-dimensional spheroid growth induced by VAPB. Collectively, the genetic, functional and mechanistic analyses suggest a role of VAPB in tumor promotion in human breast cancer.

  20. VAMP-associated protein B (VAPB promotes breast tumor growth by modulation of Akt activity.

    Directory of Open Access Journals (Sweden)

    Meghana Rao

    Full Text Available VAPB (VAMP- associated protein B is an ER protein that regulates multiple biological functions. Although aberrant expression of VAPB is associated with breast cancer, its function in tumor cells is poorly understood. In this report, we provide evidence that VAPB regulates breast tumor cell proliferation and AKT activation. VAPB protein expression is elevated in primary and metastatic tumor specimens, and VAPB mRNA expression levels correlated negatively with patient survival in two large breast tumor datasets. Overexpression of VAPB in mammary epithelial cells increased cell growth, whereas VAPB knockdown in tumor cells inhibited cell proliferation in vitro and suppressed tumor growth in orthotopic mammary gland allografts. The growth regulation of mammary tumor cells controlled by VAPB appears to be mediated, at least in part, by modulation of AKT activity. Overexpression of VAPB in MCF10A-HER2 cells enhances phosphorylation of AKT. In contrast, knockdown of VAPB in MMTV-Neu tumor cells inhibited pAKT levels. Pharmacological inhibition of AKT significantly reduced three-dimensional spheroid growth induced by VAPB. Collectively, the genetic, functional and mechanistic analyses suggest a role of VAPB in tumor promotion in human breast cancer.

  1. Cell culture device using spatial light modulator

    Science.gov (United States)

    Ou, Chung-Jen; Shen, Ching-I.; Ou, Chung-Ming

    2009-07-01

    Spatial light modulator is introduced for cell culturing and related illumination experiment. Two kinds of designs were used. The first type put the cell along with the bio-medium directly on top of the analyzer of the microdisplay and set a cover glass on it to retain the medium environment, which turned the microdisplay into a bio-container. The second type introduced an optical lens system placed below the spatial light modulator to focus the light spots on specific position. Details of the advantages and drawbacks for the two different approaches are discussed, and the human melanocyte cell (HMC) is introduced to prove the feasibility of the concept. Results indicate that the second type is much more suitable than the first for precision required application.

  2. Curcumin, the main active constituent of turmeric (Curcuma longa L.), induces apoptosis in hepatic stellate cells by modulating the abundance of apoptosis-related growth factors.

    Science.gov (United States)

    He, Ya-Jun; Kuchta, Kenny; Lv, Xia; Lin, Yu; Ye, Guo-Rong; Liu, Xu-You; Song, Hui-Dong; Wang, Le-Xin; Kobayashi, Yuta; Shu, Jian-Chang

    2015-11-01

    In order to elucidate the mechanism of action of curcumin against hepatic fibrosis, cultured rat hepatic stellate cells (HSC) (HSC-T6) were incubated with curcumin for 24 h, after which apoptosis was measured by flow-cytometry. The protein levels of the pro-apoptotic factors Fas and p53b as well as of the anti-apoptotic factor Bcl-2 were monitored by immunocytochemical ABC staining after incubation with curcumin for 24 h. In the case of 20 μM curcumin, not only was the respective apoptosis index increased, but also the abundance of the pro-apoptotic factors Fas and p53 were amplified, whereas that of the anti-apoptotic factor Bcl-2 decreased. All these effects were highly reproducible (P<0.05). Consequently, curcumin has an up-regulating effect on pro-apoptotic factors like Fas and p53 as well as a down-regulating effect of the anti-apoptotic factor Bcl-2, thus inducing apoptosis in HSC.

  3. Microenvironmental modulation of asymmetric cell division in human lung cancer cells.

    Science.gov (United States)

    Pine, Sharon R; Ryan, Bríd M; Varticovski, Lyuba; Robles, Ana I; Harris, Curtis C

    2010-02-02

    Normal tissue homeostasis is maintained through asymmetric cell divisions that produce daughter cells with differing self-renewal and differentiation potentials. Certain tumor cell subfractions can self-renew and repopulate the heterogeneous tumor bulk, suggestive of asymmetric cell division, but an equally plausible explanation is that daughter cells of a symmetric division subsequently adopt differing cell fates. Cosegregation of template DNA during mitosis is one mechanism by which cellular components are segregated asymmetrically during cell division in fibroblast, muscle, mammary, intestinal, and neural cells. Asymmetric cell division of template DNA in tumor cells has remained elusive, however. Through pulse-chase experiments with halogenated thymidine analogs, we determined that a small population of cells within human lung cancer cell lines and primary tumor cell cultures asymmetrically divided their template DNA, which could be visualized in single cells and in real time. Template DNA cosegregation was enhanced by cell-cell contact. Its frequency was density-dependent and modulated by environmental changes, including serum deprivation and hypoxia. In addition, we found that isolated CD133(+) lung cancer cells were capable of tumor cell repopulation. Strikingly, during cell division, CD133 cosegregated with the template DNA, whereas the differentiation markers prosurfactant protein-C and pan-cytokeratins were passed to the opposing daughter cell, demonstrating that segregation of template DNA correlates with lung cancer cell fate. Our results demonstrate that human lung tumor cell fate decisions may be regulated during the cell division process. The characterization and modulation of asymmetric cell division in lung cancer can provide insight into tumor initiation, growth, and maintenance.

  4. The C-Terminal Module IV of Connective Tissue Growth Factor, Through EGFR/Nox1 Signaling, Activates the NF-κB Pathway and Proinflammatory Factors in Vascular Smooth Muscle Cells

    Science.gov (United States)

    Rodrigues-Diez, Raúl R.; Orejudo, Macarena; Rodrigues-Diez, Raquel; Briones, Ana Maria; Bosch-Panadero, Enrique; Kery, Gyorgy; Pato, Janos; Ortiz, Alberto; Salaices, Mercedes; Egido, Jesus; Ruiz-Ortega, Marta

    2015-01-01

    Abstract Aims: Connective tissue growth factor (CTGF/CCN2) is a developmental gene upregulated in pathological conditions, including cardiovascular diseases, whose product is a matricellular protein that can be degraded to biologically active fragments. Among them, the C-terminal module IV [CCN2(IV)] regulates many cellular functions, but there are no data about redox process. Therefore, we investigated whether CCN2(IV) through redox signaling regulates vascular responses. Results: CCN2(IV) increased superoxide anion (O2•−) production in murine aorta (ex vivo and in vivo) and in cultured vascular smooth muscle cells (VSMCs). In isolated murine aorta, CCN2(IV), via O2•−, increased phenylephrine-induced vascular contraction. CCN2(IV) in vivo regulated several redox-related processes in mice aorta, including increased nonphagocytic NAD(P)H oxidases (Nox)1 activity, protein nitrosylation, endothelial dysfunction, and activation of the nuclear factor-κB (NF-κB) pathway and its related proinflammatory factors. The role of Nox1 in CCN2(IV)-mediated vascular responses in vivo was investigated by gene silencing. The administration of a Nox1 morpholino diminished aortic O2•− production, endothelial dysfunction, NF-κB activation, and overexpression of proinflammatory genes in CCN2(IV)-injected mice. The link CCN2(IV)/Nox1/NF-κB/inflammation was confirmed in cultured VSMCs. Epidermal growth factor receptor (EGFR) is a known CCN2 receptor. In VSMCs, CCN2(IV) activates EGFR signaling. Moreover, EGFR kinase inhibition blocked vascular responses in CCN2(IV)-injected mice. Innovation and Conclusion: CCN2(IV) is a novel prooxidant factor that in VSMCs induces O2•− production via EGFR/Nox1 activation. Our in vivo data demonstrate that CCN2(IV) through EGFR/Nox1 signaling pathway induces endothelial dysfunction and activation of the NF-κB inflammatory pathway. Therefore, CCN2(IV) could be considered a potential therapeutic target for redox-related cardiovascular

  5. Large area perovskite solar cell module

    Science.gov (United States)

    Cai, Longhua; Liang, Lusheng; Wu, Jifeng; Ding, Bin; Gao, Lili; Fan, Bin

    2017-01-01

    The recent dramatic rise in power conversion efficiencies (PCE) of perovskite solar cells has triggered intense research worldwide. However, their practical development is hampered by poor stability and low PCE values with large areas devices. Here, we developed a gas-pumping method to avoid pinholes and eliminate local structural defects over large areas of perovskite film, even for 5 × 5 cm2 modules, the PCE reached 10.6% and no significant degradation was found after 140 days of outdoor testing. Our approach enables the realization of high performance large-area PSCs for practical application.

  6. [Modulation of inflammatory cells in helminth infections].

    Science.gov (United States)

    Bruschi, F

    1997-01-01

    In this review, different mechanisms by which helminthic parasites modulate the activities of inflammatory cells are considered. Examples are presented of parasitic products interfering with lymphocytes and their products such as antibodies, then modifying both regulation and effector response of the immune system. Furthermore, examples of interference on the complement system are illustrated. Parasites such as Ancylostoma caninum produce factors such as the neutrophil inhibitory factor (NIF) capable of inhibiting the neutrophil-endothelium adhesion, whereas Trichinella spiralis produces a glycoprotein, the 45gp, which inhibits different neutrophil functions. Parasites are also able to modulate the function of the monocytes-macrophages which in some infections play a crucial role; the modulation of NO synthesis is also relevant to the host-parasite relationship. Finally, the different anti-oxidant systems of helminthic parasites are described. The comprehension of such evasion mechanisms of the immune response is necessary to develop vaccines and new drugs, but it is also useful to clarify the contribution of parasites to immune system evolution.

  7. On size and growth of cells

    CERN Document Server

    Boudaoud, A

    2002-01-01

    Understanding how growth induces form is a longstanding biological question. Many studies concentrated on the shapes of plant cells, fungi or bacteria. Some others have shown the importance of the mechanical properties of bacterial walls and plant tissues in pattern formation. Here I sketch a simple physical picture of cell growth. The study is focussed on isolated cells that have walls. They are modeled as thin elastic shells containing a liquid, which pressure drives the growth as generally admitted for bacteria or plant cells. Requiring mechanical equilibrium leads to estimations of typical cell sizes, in quantitative agreement with compiled data including bacteria, cochlear outer hair, fungi, yeast, root hair and giant alga cells.

  8. A dynamic model of tomato fruit growth integrating cell division, cell growth and endoreduplication

    NARCIS (Netherlands)

    Fanwoua, J.; Visser, de P.H.B.; Heuvelink, E.; Yin, X.; Struik, P.C.; Marcelis, L.F.M.

    2013-01-01

    In this study, we developed a model of tomato (Solanum lycopersicum L.) fruit growth integrating cell division, cell growth and endoreduplication. The fruit was considered as a population of cells grouped in cell classes differing in their initial cell age and cell mass. The model describes fruit gr

  9. Growth hormone STAT5-mediated signaling and its modulation in mice liver during the growth period.

    Science.gov (United States)

    Martinez, Carolina S; Piazza, Verónica G; Ratner, Laura D; Matos, Marina N; González, Lorena; Rulli, Susana B; Miquet, Johanna G; Sotelo, Ana I

    2013-01-01

    Postnatal growth exhibits two instances of rapid growth in mice: the first is perinatal and independent of growth hormone (GH), the second is peripuberal and GH-dependent. Signal transducer and activator of transcription 5b (STAT5b) is the main GH-signaling mediator and it is related to IGF1 synthesis and somatic growth. The aim of this work was to assess differential STAT5 sensitivity to GH during the growth period in mouse liver of both sexes. Three representative ages were selected: 1-week-old animals, in the GH-independent phase of growth; 2.5-week-old mice, at the onset of the GH-dependent phase of growth; and 9-week-old young adults. GH-signaling mediators were assessed by immunoblotting, quantitative RT-PCR and immunohistochemistry. GH-induced STAT5 phosphorylation is low at one-week and maximal at 2.5-weeks of age when compared to young adults, accompanied by higher protein content at the onset of growth. Suppressor CIS and phosphatase PTP1B exhibit high levels in one-week animals, which gradually decline, while SOCS2 and SOCS3 display higher levels at adulthood. Nuclear phosphorylated STAT5 is low in one-week animals while in 2.5-week animals it is similar to 9-week control; expression of SOCS3, an early response GH-target gene, mimics this pattern. STAT5 coactivators glucocorticoid receptor (GR) and hepatic nuclear factor 1 (HNF1) abundance is higher in adulthood. Therefore, GH-induced STAT5 signaling presents age-dependent activity in liver, with its maximum coinciding with the onset of GH-dependent phase of growth, accompanied by an age-dependent variation of modulating factors. This work contributes to elucidate the molecular mechanisms implicated in GH responsiveness during growth.

  10. Modulation of tolerogenic dendritic cells and autoimmunity.

    Science.gov (United States)

    Kim, Sun Jung; Diamond, Betty

    2015-05-01

    A key function of dendritic cells (DCs) is to induce either immune tolerance or immune activation. Many new DC subsets are being recognized, and it is now clear that each DC subset has a specialized function. For example, different DC subsets may express different cell surface molecules and respond differently to activation by secretion of a unique cytokine profile. Apart from intrinsic differences among DC subsets, various immune modulators in the microenvironment may influence DC function; inappropriate DC function is closely related to the development of immune disorders. The most exciting recent advance in DC biology is appreciation of human DC subsets. In this review, we discuss functionally different mouse and human DC subsets both in lymphoid organs and non-lymphoid organs, the molecules that regulate DC function, and the emerging understanding of the contribution of DCs to autoimmune diseases.

  11. Nucleoside transporters and liver cell growth

    National Research Council Canada - National Science Library

    Valdés, Raquel; Mata, João F; Del Santo, Belén; Pastor-Anglada, Marçal; Felipe, Antonio; Casado, F Javier

    1998-01-01

    .... This review summarizes work performed in our laboratory on these transport systems, particularly nucleoside transporters, which are up-regulated in physiological situations associated with liver cell growth...

  12. Cell growth and migration under octenidine-antiseptic treatment.

    Science.gov (United States)

    Jenull, S; Hojdar, K; Laggner, H; Velimirov, B; Zemann, N; Huettinger, M

    2015-06-01

    The toxicity of octenidine antiseptics in cultured cells contrasts their good tolerability in tissue. This phenomenon prompted us to examine which cell culture conditions allow survival and proliferation and to investigate a possible modulation of toxicity by the extracellular matrix proteoglycan chondroitin sulfate. We tested fibroblasts and MCF7 cells for growth using the MTT test, and assessed wound healing potency with a laceration assay. Expression levels of the genes involved in controlling wound healing were assessed with RT-PCR. A 24 hour exposure to the octenidine-based solution was found incompatible with cell growth. When octenidine solution (0.5-0.5mg/l) was coated on dishes, growth was profoundly reduced after 24 hours, however there was no cytotoxic effect at 0.012 mg/l. Interestingly, when dishes were first coated with chondroitin sulfate the cytotoxicity of octenidine-based solution was modulated. Cell migration was not inhibited by octenidine-based solution treatment (2 minutes; 15 mg/l). No significant changes in gene expression levels in response to the octenidine-based solution treatment were detected. In cell culture conditions application of the octenidine-based solution without toxicity can be observed, comparable to the minimal application required to give full bactericidal effect. Alteration of toxicity by interaction with chondroitin sulfate in cell culture suggests a similar function for extraceullar matrix in intact tissue.

  13. Modulators of inhibitor of growth (ING) family expression in development and disease.

    Science.gov (United States)

    Maher, Stacey K; Helbing, Caren C

    2009-05-01

    The inhibitor of growth (ING) gene family proteins regulate many critical cellular processes such as cell proliferation and growth, apoptosis, DNA repair, senescence, angiogenesis, and drug resistance. Their transcripts and proteins are differentially expressed in health and disease and there is evidence for developmental regulation. The vast majority of studies have characterized ING levels in the context of cancer. However, relatively little attention has been paid to the expression of ING family members in other contexts. This review summarizes the findings from human and animal model systems that provide insight into the factors influencing the expression of these important proteins. We examine the influence of cell cycle and aging as well as genotoxic stress on ING expression levels and evaluate several emerging areas of inquiry demonstrating that ING gene activity may be modulated by factors such as the p53 tumor suppressor, DNA methylation, and ING proteins themselves with external factors such as hormones, reactive oxygen species, TGFbeta signalling, and other proteins of pathological significance also influencing ING levels. We then briefly discuss the influence of post-translational modification and changes in subcellular localization as it pertains to modulation of ING expression. Understanding how ING expression is modulated represents a vital aspect of effective drug targeting strategies.

  14. ADAM12-S stimulates bone growth in transgenic mice by modulating chondrocyte proliferation and maturation

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Albrechtsen, Reidar; Rudkjaer, Lise

    2006-01-01

    ADAM12-S transgenic mice exhibit a pronounced increase in the length of bones, such as femur, tibia, and vertebrae. The effect of ADAM12-S on longitudinal bone growth involves the modulation of chondrocyte proliferation and maturation, likely through proteolytic activities and altered cell......-extracellular matrix interactions in the growth plate. INTRODUCTION: The disintegrin and metalloprotease ADAM12 is expressed in both osteoblasts and osteoclasts, suggesting a regulatory role of ADAM12 in bone. However, thus far, no in vivo function of ADAM12 in the skeleton has been reported. MATERIALS AND METHODS......-extracellular matrix interactions. RESULTS: ADAM12-S transgenic mice exhibit increased longitudinal bone growth. The increased bone length is progressive and age dependent, with a maximum increase of 17% seen in the femur from 6-month-old transgenic mice. The effect is gene dose dependent, being more pronounced...

  15. Modulation of Mammary Gland Development and Milk Production by Growth Hormone Expression in GH Transgenic Goats.

    Science.gov (United States)

    Bao, Zekun; Lin, Jian; Ye, Lulu; Zhang, Qiang; Chen, Jianquan; Yang, Qian; Yu, Qinghua

    2016-01-01

    Mammary gland development during puberty and reconstruction during pregnancy and lactation is under the control of circulating endocrine hormones, such as growth hormone, which are released from the pituitary. In this study, we explored the influence of overexpression of growth hormone in the mammary gland on breast development and milk production in goats. Using transcriptome sequencing, we found that the number of highly expressed genes was greater in GH transgenic goats than non-transgenic goats. Furthermore, KEGG pathway analysis showed that the majority of the genes belonged to the MAPK signaling pathway and the ECM-receptor interaction pathway. The expression of genes related to breast development was further confirmed using qRT-PCR. Interestingly, both milk production and milk quality were increased. The results of these experiments imply that overexpression of growth hormone in the breast may stimulate breast development and enhances milk production by modulating alveolar cell proliferation or branching through the MAPK signaling pathway.

  16. A Quantitative Analysis of Photovoltaic Modules Using Halved Cells

    Directory of Open Access Journals (Sweden)

    S. Guo

    2013-01-01

    Full Text Available In a silicon wafer-based photovoltaic (PV module, significant power is lost due to current transport through the ribbons interconnecting neighbour cells. Using halved cells in PV modules is an effective method to reduce the resistive power loss which has already been applied by some major PV manufacturers (Mitsubishi, BP Solar in their commercial available PV modules. As a consequence, quantitative analysis of PV modules using halved cells is needed. In this paper we investigate theoretically and experimentally the difference between modules made with halved and full-size solar cells. Theoretically, we find an improvement in fill factor of 1.8% absolute and output power of 90 mW for the halved cell minimodule. Experimentally, we find an improvement in fill factor of 1.3% absolute and output power of 60 mW for the halved cell module. Also, we investigate theoretically how this effect confers to the case of large-size modules. It is found that the performance increment of halved cell PV modules is even higher for high-efficiency solar cells. After that, the resistive loss of large-size modules with different interconnection schemes is analysed. Finally, factors influencing the performance and cost of industrial halved cell PV modules are discussed.

  17. TAK1 plays a major role in growth factor-induced phenotypic modulation of airway smooth muscle

    NARCIS (Netherlands)

    Pera, Tonio; Sami, Riham; Zaagsma, Johan; Meurs, Herman

    2011-01-01

    Pera T, Sami R, Zaagsma J, Meurs H. TAK1 plays a major role in growth factor-induced phenotypic modulation of airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 301: L822-L828, 2011. First published August 26, 2011; doi:10.1152/ajplung.00017.2011.-Increased airway smooth muscle (ASM) mass is a

  18. Tris buffer modulates polydopamine growth, aggregation, and paramagnetic properties.

    Science.gov (United States)

    Della Vecchia, Nicola Fyodor; Luchini, Alessandra; Napolitano, Alessandra; D'Errico, Gerardino; Vitiello, Giuseppe; Szekely, Noemi; d'Ischia, Marco; Paduano, Luigi

    2014-08-19

    Despite the growing technological interest of polydopamine (dopamine melanin)-based coatings for a broad variety of applications, the factors governing particle size, shape, and electronic properties of this bioinspired multifunctional material have remained little understood. Herein, we report a detailed characterization of polydopamine growth, particle morphology, and paramagnetic properties as a function of dopamine concentration and nature of the buffer (pH 8.5). Dynamic Light Scattering data revealed an increase in the hydrodynamic radii (Rh) of melanin particles with increasing dopamine concentration in all buffers examined, especially in phosphate buffer. Conversely, a marked inhibition of particle growth was apparent in Tris buffer, with Rh remaining as low as polydopamine samples prepared in Tris buffer, denoting more homogeneous paramagnetic centers with respect to similar samples obtained in phosphate and bicarbonate buffers. Overall, these results disclose Tris buffer as an efficient modulator of polydopamine buildup and properties for the rational control and fine-tuning of melanin aggregate size, morphology, and free radical behavior.

  19. Stochastic Gompertz model of tumour cell growth.

    Science.gov (United States)

    Lo, C F

    2007-09-21

    In this communication, based upon the deterministic Gompertz law of cell growth, a stochastic model in tumour growth is proposed. This model takes account of both cell fission and mortality too. The corresponding density function of the size of the tumour cells obeys a functional Fokker--Planck equation which can be solved analytically. It is found that the density function exhibits an interesting "multi-peak" structure generated by cell fission as time evolves. Within this framework the action of therapy is also examined by simply incorporating a therapy term into the deterministic cell growth term.

  20. Amygdalin inhibits the growth of renal cell carcinoma cells in vitro.

    Science.gov (United States)

    Juengel, Eva; Thomas, Anita; Rutz, Jochen; Makarevic, Jasmina; Tsaur, Igor; Nelson, Karen; Haferkamp, Axel; Blaheta, Roman A

    2016-02-01

    Although amygdalin is used by many cancer patients as an antitumor agent, there is a lack of information on the efficacy and toxicity of this natural compound. In the present study, the inhibitory effect of amygdalin on the growth of renal cell carcinoma (RCC) cells was examined. Amygdalin (10 mg/ml) was applied to the RCC cell lines, Caki-1, KTC-26 and A498, for 24 h or 2 weeks. Untreated cells served as controls. Tumor cell growth and proliferation were determined using MTT and BrdU tests, and cell cycle phases were evaluated. Expression of the cell cycle activating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1 and D3 as well as of the cell cycle inhibiting proteins p19 and p27 was examined by western blot analysis. Surface expression of the differentiation markers E- and N-cadherin was also investigated. Functional blockade by siRNA was used to determine the impact of several proteins on tumor cell growth. Amygdalin treatment caused a significant reduction in RCC cell growth and proliferation. This effect was correlated with a reduced percentage of G2/M-phase RCC cells and an increased percentage of cells in the G0/1-phase (Caki-1 and A498) or cell cycle arrest in the S-phase (KTC-26). Furthermore, amygdalin induced a marked decrease in cell cycle activating proteins, in particular cdk1 and cyclin B. Functional blocking of cdk1 and cyclin B resulted in significantly diminished tumor cell growth in all three RCC cell lines. Aside from its inhibitory effects on growth, amygdalin also modulated the differentiation markers, E- and N-cadherin. Hence, exposing RCC cells to amygdalin inhibited cell cycle progression and tumor cell growth by impairing cdk1 and cyclin B expression. Moreover, we noted that amygdalin affected differentiation markers. Thus, we suggest that amygdalin exerted RCC antitumor effects in vitro.

  1. The irre cell recognition module (IRM) proteins.

    Science.gov (United States)

    Fischbach, Karl-Friedrich; Linneweber, Gerit Arne; Andlauer, Till Felix Malte; Hertenstein, Alexander; Bonengel, Bernhard; Chaudhary, Kokil

    2009-01-01

    One of the most challenging problems in developmental neurosciences is to understand the establishment and maintenance of specific membrane contacts between axonal, dendritic, and glial processes in the neuropils, which eventually secure neuronal connectivity. However, underlying cell recognition events are pivotal in other tissues as well. This brief review focuses on the pleiotropic functions of a small, evolutionarily conserved group of proteins of the immunoglobulin superfamily involved in cell recognition. In Drosophila, this protein family comprises Irregular chiasm C/Roughest (IrreC/Rst), Kin of irre (Kirre), and their interacting protein partners, Sticks and stones (SNS) and Hibris (Hbs). For simplicity, we propose to name this ensemble of proteins the irre cell recognition module (IRM) after the first identified member of this family. Here, we summarize evidence that the IRM proteins function together in various cellular interactions, including myoblast fusion, cell sorting, axonal pathfinding, and target recognition in the optic neuropils of Drosophila. Understanding IRM protein function will help to unravel the epigenetic rules by which the intricate neurite networks in sensory neuropils are formed.

  2. Caffeine Positively Modulates Ferritin Heavy Chain Expression in H460 Cells: Effects on Cell Proliferation

    Science.gov (United States)

    Battaglia, Anna Martina; Faniello, Maria Concetta; Cuda, Giovanni; Costanzo, Francesco

    2016-01-01

    Both the methylxanthine caffeine and the heavy subunit of ferritin molecule (FHC) are able to control the proliferation rate of several cancer cell lines. While caffeine acts exclusively as a negative modulator of cell proliferation, FHC might reduce or enhance cell viability depending upon the different cell type. In this work we have demonstrated that physiological concentrations of caffeine reduce the proliferation rate of H460 cells: along with the modulation of p53, pAKT and Cyclin D1, caffeine also determines a significant FHC up-regulation through the activation of its transcriptional efficiency. FHC plays a central role in the molecular pathways modulated by caffeine, ending in a reduced cell growth, since its specific silencing by siRNA almost completely abolishes caffeine effects on H460 cell proliferation. These results allow the inclusion of ferritin heavy subunits among the multiple molecular targets of caffeine and open the way for studying the relationship between caffeine and intracellular iron metabolism. PMID:27657916

  3. Modulation by epidermal growth factor of the basal 1,25(OH)2D3 receptor level and the heterologous up-regulation of the 1,25(OH)2D3 receptor in clonal osteoblast-like cells

    NARCIS (Netherlands)

    J.P.T.M. van Leeuwen (Hans); H.A.P. Pols (Huib); J.P. Schilte (J.); T.J. Visser (Theo); J.C. Birkenhäger (Jan)

    1991-01-01

    textabstractThe effects of epidermal growth factor (EGF) on basal 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) receptor level and on parathyroid hormone (PTH)-induced 1,25-(OH)2D3 (OH)2D3 receptor up-regulation were studied in the phenotypically osteoblastic cell line UMR 106. EGF in concentrations

  4. Growth modulation of fibroblasts by chitosan-polyvinyl pyrrolidone hydrogel: Implications for wound management?

    Indian Academy of Sciences (India)

    Makarand Risbud; Anandwardhan Hardikar; Ramesh Bhonde

    2000-03-01

    Wounds in adults and fetuses differ in their healing ability with respect to scar formation. In adults, wounds lacking the epidermis exhibit excess collagen production and scar formation. Fibroblasts synthesize and deposit a collagen rich extracellular matrix. The early migration and proliferation of fibroblasts in the wound area is implicated in wound scarring. We have synthesized a hydrogel from chitosan-polyvinyl pyrrolidone (PVP) and examined its effect on fibroblast growth modulation in vitro. The hydrogel was found to be hydrophilic as seen from its octane contact angle (141·2 ± 0·37°). The hydrogel was non-toxic and biocompatible with fibroblasts and epithelial cells as confirmed by the 3(4,5-dimethylthiazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) assay. It showed dual properties by supporting growth of epithelial cells (SiHa) and selectively inhibiting fibroblast (NIH3T3) growth. Growth inhibition of fibroblasts resulted from their inability to attach on to the hydrogel. These findings are supported by image analysis, which revealed a significant difference ( < 0·05) between the number of fibroblasts attached to the hydrogel in tissue culture as compared to tissue culture treated polystyrene (TCPS) controls. However, no significant difference was observed ( > 0·05) in the number of epithelial (SiHa) cells attached on to the hydrogel as compared to the TCPS control. Although in vivo experiments are awaited, these findings point to the possible use of chitosan-PVP hydrogels in wound-management.

  5. Sollar cell module; Taiyo denchi mojuru

    Energy Technology Data Exchange (ETDEWEB)

    Komori, A.; Mori, T.; Shiotsuka, H.; Kataoka, I.; Yamada, S.

    1997-02-25

    This invention relates to a solar cell module composed of a photovoltaic device with at least one layer of a semiconductor photoactive layer as a photoelectric conversion material and a covering material, in which thermoplastic transparent organic polymer resin of a gel fraction more than 80% is used as the covering material. This polymer resin has a diminution rate of ultraviolet absorption between 5 and 50% when exposed to an atmosphere of a temperature of 150{degree}C for 72 hours. The thermoplastic transparent polymer resin of a gel fraction more than 80% is cross-linked sufficiently and is hard to deteriorate. Therefore, the adhesion between the thermoplastic transparent polymer resin and the uppermost resin film is secured owing to no emergence of the glass fiber and moreover, reinforcement of the thermoplastic transparent polymer resin with glass fiber enable to reduce the thickness of the thermoplastic transparent polymer resin while securing the scratch resistance. 6 figs., 1 tab.

  6. Mast cells as modulators of hair follicle cycling.

    Science.gov (United States)

    Maurer, M; Paus, R; Czarnetzki, B M

    1995-08-01

    While the central role of mast cells (MC) in allergy and inflammation is well-appreciated, much less is known about their physiological functions. The impressive battery of potent growth modulatory MC products, and increasing evidence of MC involvement in hyperproliferative and fibrotic disorders suggest that tissue remodelling may be one of those, namely in the skin. Here, we delineate why this may best be studied by analysing the potential role of MC in hair growth regulation. On the background of numerous, yet widely under-appreciated hints from the older literature, we summarize and discuss our recent observations from the C57BL/6 mouse model for hair research which support the concept that MC are functionally important modulators of hair follicle cycling, specifically during anagen development. This invites to exploit the murine hair cycle as a model for dissecting the physiological growth modulatory functions of MC and encourages the exploration of MC-targeting pharmaceutical strategies for the treatment of hair growth disorders.

  7. Cross-talk between the epidermal growth factor-like repeats/fibronectin 6-8 repeats domains of Tenascin-R and microglia modulates neural stem/progenitor cell proliferation and differentiation.

    Science.gov (United States)

    Liao, Hong; Huang, Wenhui; Niu, Rui; Sun, Lixin; Zhang, Luyong

    2008-01-01

    Mounting evidence has demonstrated that the microenvironment of stem/progenitor cells plays an important role in their proliferation and commitment to their fate. However, it remains unclear how all elements, such as astrocytes, microglia, extracellular matrix molecules, soluble factors, and their cross-talk interactions in the microenvironments, affect neural stem/progenitor cell fate. This work explored the influences of cross-talk between Tenascin-R (TN-R) and microglia on neural stem/progenitor cell proliferation and differentiation. Our results show that microglia triggered by TN-R distinct domains EGF-like repeats (EGFL) and fibronectin 6-8 repeats (FN6-8) significantly enhanced the proliferation of neural stem/progenitor cells and also obviously induced the differentiation into neurons but not oligodendrocytes. Neurite processes of neurons generated from neural progenitor cells were promoted by both EGFL and FN6-8 domains-activated microglia. Microglia triggered by EGFL and FN6-8 secreted brain-derived neurotrophic factor (BDNF) and transforming growth factor-beta (TGF-beta); interestingly, FN6-8 could activate microglia to secrete nerve growth factor in addition to BDNF and TGF-beta, but EGFL domain could not. All these data implied that the cross-talk between TN-R distinct domains EGFL/FN6-8 and microglia promoted neural stem/progenitor cell proliferation and induced their differentiation into neurons.

  8. The growth cones of Aplysia sensory neurons: Modulation by serotonin of action potential duration and single potassium channel currents.

    Science.gov (United States)

    Belardetti, F; Schacher, S; Kandel, E R; Siegelbaum, S A

    1986-09-01

    Serotonin (5-HT) closes a specific K channel ("S") in the cell body of Aplysia sensory neurons, resulting in a slow excitatory postsynaptic potential and spike broadening. To determine whether the S channel is present and can be modulated in processes of the neuron other than the cell body, we studied the effects of 5-HT on growth cones of sensory neurons in culture by using the patch-clamp technique. Simultaneous application of 5-HT to the cell body and to the growth cones of sensory neurons produced, in both, a slow depolarization of approximately 5 mV. Also, 5-HT produced a lengthening of the duration of action potential in the growth cone and cell body by 20-30%. Similar effects were observed in isolated growth cones that had been severed from the rest of the neuron, implying that the growth cones contain all the molecular components (i.e., receptors, channels, cAMP cascade) necessary for 5-HT action. Cell-attached patch-clamp recordings demonstrated the presence of S channels in sensory neuron growth cones. Application of serotonin to the bath produced long-lasting all-or-none closures of these channels in a manner identical to the previously characterized action of 5-HT in the cell body. Thus, channel modulation is not restricted to the cell body and probably occurs throughout the sensory neuron. This strengthens the view that S-channel modulation may also occur at the sensory neuron presynaptic terminal, where it could play a role in the presynaptic facilitation produced by 5-HT.

  9. Fatty acid modulation of autoinducer (AI-2) influenced growth and macrophage invasion by Salmonella Typhimurium.

    Science.gov (United States)

    Widmer, Kenneth W; Jesudhasan, Palmy; Pillai, Suresh D

    2012-03-01

    Autoinducer-2 (AI-2) is a small molecule that is involved in bacterial cell-to-cell signaling whose precursor formation is mediated by luxS. A luxS mutant of Salmonella Typhimurium PJ002 (ΔluxS) was grown in glucose-containing M-9 minimal medium supplemented with varying concentrations (1×, 10×, and 100×) of long-chain fatty acids (linoleic acid, oleic acid, palmitic acid, and stearic acid) to study the influence of fatty acids on growth rate and macrophage invasion. Additionally, in vitro synthesized AI-2 was added to this medium to identify the influence of AI-2 on S. Typhimurium PJ002 (ΔluxS) growth rate and macrophage invasion. The growth rate constant (k) for each experimental treatment was determined based on OD₆₀₀ values recorded during 12 h of incubation. There was a significant (p=0.01) increase in the growth rate of S. Typhimurium PJ002 (ΔluxS) in the presence of AI-2 when compared to the phosphate-buffered saline (PBS) control. However, fatty acids either singly or in a mixture were unable to influence AI-2's effect on growth rate. The presence of AI-2 significantly (p=0.02) decreased the invasiveness of S. Typhimurium PJ002 (ΔluxS) towards the murine macrophage cell line, RAW 264.7. However, the fatty acid mixture was able to reverse this reduction and restore invasiveness to background levels. These results suggest that, while AI-2 may enhance the growth rate and reduce macrophage invasion by the luxS mutant S. Typhimurium PJ002 (ΔluxS), fatty acids may influence the virulence in S. Typhimurium (PJ002) by modulating AI-2 activity.

  10. Quantifying Solar Cell Cracks in Photovoltaic Modules by Electroluminescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso; Glick, Stephen; Kerekes, Tamas; Teodorescu, Remus

    2015-06-14

    This article proposes a method for quantifying the percentage of partially and totally disconnected solar cell cracks by analyzing electroluminescence images of the photovoltaic module taken under high- and low-current forward bias. The method is based on the analysis of the module's electroluminescence intensity distribution, applied at module and cell level. These concepts are demonstrated on a crystalline silicon photovoltaic module that was subjected to several rounds of mechanical loading and humidity-freeze cycling, causing increasing levels of solar cell cracks. The proposed method can be used as a diagnostic tool to rate cell damage or quality of modules after transportation. Moreover, the method can be automated and used in quality control for module manufacturers, installers, or as a diagnostic tool by plant operators and diagnostic service providers.

  11. Serum- and substratum-dependent modulation of neuritic growth.

    Science.gov (United States)

    Skaper, S D; Selak, I; Varon, S

    1983-01-01

    Explants of embryonic day 8 (E8) chicken dorsal root ganglia (DRG) have been cultured with medium containing serum or the serum-free supplement N1 on one of three substrata: collagen, polyornithine (PORN), or PORN exposed to a polyornithine-binding neurite-promoting factor (PNPF-PORN). Replicate cultures were maintained with or without nerve growth factor (NGF). NGF elicited its classical neuritic outgrowth on all three substrata in serum-containing or serum-free medium. In the absence of NGF, however, a gradation of increasing neurite growth was seen with: PNPF-PORN greater than PORN greater than collagen. This response occurred in both media. In addition, the neuritic halo in each instance was markedly more developed in the absence of serum, especially on PNPF-PORN. Nonneuronal behaviors reflected both serum and substratum influences: thus, nonneuronal outgrowth consisted mainly of flat cells with serum and collagen, was nonexistent with serum and PORN or PNPF-PORN, and involved mostly Schwann-like scattered cells in the absence of serum on any one substratum. The serum-dependent behaviors of ganglionic neurites were examined further with explants from chicken E11 sympathetic ganglia. A single substratum was used (PORN), without exogenous trophic factor. Neurite outgrowth was depressed by the presence of fetal calf serum, thus supporting the generality of this phenomenon. Lastly, PC12 cells, a clonal line of rat pheochromocytoma, will grow neurites in the presence of NGF after 48 hr in serum-free, but not serum-containing media. Addition of serum to serum-free cultures at this time results in the rapid and complete retraction of neurites.

  12. Accommodating the difference in students’ prior knowledge of cell growth kinetics

    NARCIS (Netherlands)

    Seters, van J.R.; Ossevoort, M.A.; Goedhart, M.J.; Tramper, J.

    2011-01-01

    This paper describes the development and benefits of an adaptive digital module on cell growth to tackle the problem of educating a heterogeneous group of students at the beginning of an undergraduate course on process engineering. Aim of the digital module is to provide students with the minimal le

  13. Accommodating the difference in students' prior knowledge of cell growth kinetics

    NARCIS (Netherlands)

    van Seters, Janneke; Ossevoort, Miriam; Goedhart, Martin; Tramper, Johannes

    2011-01-01

    This paper describes the development and benefits of an adaptive digital module on cell growth to tackle the problem of educating a heterogeneous group of students at the beginning of an undergraduate course on process engineering. Aim of the digital module is to provide students with the minimal

  14. Mycobacterium tuberculosis CwsA overproduction modulates cell division and cell wall synthesis.

    Science.gov (United States)

    Plocinski, P; Martinez, L; Sarva, K; Plocinska, R; Madiraju, M; Rajagopalan, M

    2013-12-01

    We recently showed that two small membrane proteins of Mycobacterium tuberculosis, CwsA and CrgA, interact with each other, and that loss of CwsA in M. smegmatis is associated with defects in the cell division and cell wall synthesis processes. Here we show that CwsA overproduction also affected growth, cell division and cell shape of M. smegmatis and M. tuberculosis. CwsA overproduction in M. tuberculosis led to increased sensitivity to cefsulodin, a penicillin-binding protein (PBP) 1A/1B targeting beta (β) -lactam, but was unaffected by other β-lactams and vancomycin. A M. smegmatis cwsA overexpressing strain showed bulgy cells, increased fluorescent vancomycin staining and altered localization of Wag31-mCherry fusion protein. However, the levels of phosphorylated Wag31, important for optimal peptidoglycan synthesis and growth in mycobacteria, were not affected. Interestingly, CwsA overproduction in E. coli led to the formation of large rounded cells that eventually lysed whereas the overproduction of FtsZ along with CwsA reversed this phenotype. Together, our results emphasize that optimal levels of CwsA are required for regulated cell wall synthesis, hence maintenance of cell shape, and that CwsA likely interacts with and modulates the activities of other cell wall synthetic components including PBPs.

  15. Immune modulation associated with vascular endothelial growth factor (VEGF) blockade in patients with glioblastoma.

    Science.gov (United States)

    Thomas, Alissa A; Fisher, Jan L; Hampton, Thomas H; Christensen, Brock C; Tsongalis, Gregory J; Rahme, Gilbert J; Whipple, Chery A; Steel, Sandra E; Davis, Melissa C; Gaur, Arti B; Lewis, Lionel D; Ernstoff, Marc S; Fadul, Camilo E

    2017-03-01

    Vascular endothelial growth factor (VEGF), in addition to being pro-angiogenic, is an immunomodulatory cytokine systemically and in the tumor microenvironment. We previously reported the immunomodulatory effects of radiation and temozolomide (TMZ) in newly diagnosed glioblastoma. This study aimed to assess changes in peripheral blood mononuclear cell (PBMC) populations, plasma cytokines, and growth factor concentrations following treatment with radiation, TMZ, and bevacizumab (BEV). Eleven patients with newly diagnosed glioblastoma were treated with radiation, TMZ, and BEV, following surgery. We measured immune-related PBMC subsets using multi-parameter flow cytometry and plasma cytokine and growth factor concentrations using electrochemiluminescence-based multiplex analysis at baseline and after 6 weeks of treatment. The absolute number of peripheral blood regulatory T cells (Tregs) decreased significantly following treatment. The lower number of peripheral Tregs was associated with a CD4+ lymphopenia, and thus, the ratio of Tregs to PBMCs was unchanged. The addition of bevacizumab to standard radiation and temozolomide led to the decrease in the number of circulating Tregs when compared with our prior study. There was a significant decrease in CD8+ cytotoxic and CD4+ recent thymic emigrant T cells, but no change in the number of myeloid-derived suppressor cells. Significant increases in plasma VEGF and placental growth factor (PlGF) concentrations were observed. Treatment with radiation, TMZ, and BEV decreased the number but not the proportion of peripheral Tregs and increased the concentration of circulating VEGF. This shift in the peripheral immune cell profile may modulate the tumor environment and have implications for combining immunotherapy with anti-angiogenic therapy.

  16. Multivalent proteoglycan modulation of FGF mitogenic responses in perivascular cells.

    Science.gov (United States)

    Cattaruzza, Sabrina; Ozerdem, Ugur; Denzel, Martin; Ranscht, Barbara; Bulian, Pietro; Cavallaro, Ugo; Zanocco, Daniela; Colombatti, Alfonso; Stallcup, William B; Perris, Roberto

    2013-04-01

    Sprouting of angiogenic perivascular cells is thought to be highly dependent upon autocrine and paracrine growth factor stimulation. Accordingly, we report that corneal angiogenesis induced by ectopic FGF implantation is strongly impaired in NG2/CSPG4 proteoglycan (PG) null mice known to harbour a putative deficit in pericyte proliferation/mobilization. Conversely, no significant differences were seen between wild type and knockout corneas when VEGF was used as an angiocrine factor. Perturbed responsiveness of NG2-deficient pericytes to paracrine and autocrine stimulation by several FGFs could be confirmed in cells isolated from NG2 null mice, while proliferation induced by other growth factors was equivalent in wild type and knockout cells. Identical results were obtained after siRNA-mediated knock-down of NG2 in human smooth muscle-like cell lines, as also demonstrated by the decreased levels of FGF receptor phosphorylation detected in these NG2 deprived cells. Binding assays with recombinant proteins and molecular interactions examined on live cells asserted that FGF-2 bound to NG2 in a glycosaminoglycan-independent, core protein-mediated manner and that the PG was alone capable of retaining FGF-2 on the cell membrane for subsequent receptor presentation. The use of dominant-negative mutant cells, engineered by combined transduction of NG2 deletion constructs and siRNA knock-down of the endogenous PG, allowed us to establish that the FGF co-receptor activity of NG2 is entirely mediated by its extracellular portion. In fact, forced overexpression of the NG2 ectodomain in human smooth muscle-like cells increased their FGF-2-induced mitosis and compensated for low levels of FGF receptor surface expression, in a manner equivalent to that produced by overexpression of the full-length NG2. Upon FGF binding, the cytoplasmic domain of NG2 is phosphorylated, but there is no evidence that this event elicits signal transductions that could bypass the FGFR-mediated ones

  17. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes.

    Science.gov (United States)

    Roques, Magali; Wall, Richard J; Douglass, Alexander P; Ramaprasad, Abhinay; Ferguson, David J P; Kaindama, Mbinda L; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, Zineb; Brady, Declan; Guttery, David S; Wheatley, Sally P; Yamano, Hiroyuki; Holder, Anthony A; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-11-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  18. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    KAUST Repository

    Roques, Magali

    2015-11-13

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  19. Co-regulation of root hair tip growth by ROP GTPases and nitrogen source modulated pH fluctuations.

    Science.gov (United States)

    Bloch, Daria; Monshausen, Gabriele; Gilroy, Simon; Yalovsky, Shaul

    2011-03-01

    Growth of plant cells involves tight regulation of the cytoskeleton and vesicle trafficking by processes including the action of the ROP small G proteins together with pH-modulated cell wall modifications. Yet, little is known on how these systems are coordinated. In a paper recently published in Plant Cell and Environment we show that ROPs/RACs function synergistically with NH4NO3-modulated pH fluctuations to regulate root hair growth. Root hairs expand exclusively at their apical end in a strictly polarized manner by a process known as tip growth. The highly polarized secretion at the apex is maintained by a complex network of factors including the spatial organization of the actin cytoskeleton, tip-focused ion gradients and by small G proteins. Expression of constitutively active ROP mutants disrupts polar growth, inducing the formation of swollen root hairs. Root hairs are also known to elongate in an oscillating manner, which is correlated with oscillatory H(+) fluxes at the tip. Our analysis shows that root hair elongation in wild type plants and swelling in transgenic plants expressing a constitutively active ROP11 (rop11(CA)) is sensitive to the presence of NH4(+) at concentrations higher than 1 mM and on NO3(-). The NH4(+) and NO3(-) ions did not affect the localization of ROP in the membrane but modulated pH fluctuations at the root hair tip. Actin organization and reactive oxygen species distribution were abnormal in rop11CA root hairs but were similar to wild type root hairs when seedlings were grown on medium lacking NH4(+) and / or NO3(-). These observations suggest that the nitrogen source-modulated pH fluctuations may function synergistically with ROP regulated signaling during root hair tip growth. Interestingly, under certain growth conditions, expression of rop11 (CA) suppressed ammonium toxicity, similar to auxin resistant mutants. In this Addendum article we discuss these findings and their implications.

  20. TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF)

    Science.gov (United States)

    TITLE:TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF). AUTHORS (ALL): Abbott, Barbara D.1; Best, Deborah S.1; Narotsky, Michael G.1. SPONSOR NAME: None INSTITUTIONS (ALL): 1. Repro Tox ...

  1. TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF)

    Science.gov (United States)

    TITLE:TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF). AUTHORS (ALL): Abbott, Barbara D.1; Best, Deborah S.1; Narotsky, Michael G.1. SPONSOR NAME: None INSTITUTIONS (ALL): 1. Repro Tox ...

  2. Tomato fruit growth : integrating cell division, cell growth and endoreduplication by experimentation and modelling

    NARCIS (Netherlands)

    Fanwoua, J.

    2012-01-01

    Keywords: cell division, cell growth, cell endoreduplication, fruit growth, genotype, G×E interaction, model, tomato. Fruit size is a major component of fruit yield and quality of many crops. Variations in fruit size can be tremendous due to genotypic and environmental factors. The mechanisms

  3. Intensity modulated short circuit current spectroscopy for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kavasoglu, Nese; Sertap Kavasoglu, A.; Birgi, Ozcan; Oktik, Sener [Mugla University, Faculty of Arts and Sciences, Physics Department, TR-48000 Mugla (Turkey); Mugla University Clean Energy Research and Development Centre, TR-48000 Mugla (Turkey)

    2011-02-15

    Understanding charge separation and transport is momentously important for the rectification of solar cell performance. To probe photo-generated carrier dynamics, we implemented intensity modulated short circuit current spectroscopy (IMSCCS) on porous Si and Cu(In{sub x},Ga{sub 1-x})Se{sub 2} solar cells. In this experiment, the solar cells were lightened with sinusoidally modulated monochromatic light. The photocurrent response of the solar cell as a function of modulation frequency is measured as the optoelectronic transfer function of the system. The optoelectronic transfer function introduces the connection between the modulated light intensity and measured AC current of the solar cell. In this study, interaction of free carriers with the density of states of the porous Si and Cu(In{sub x}, Ga{sub 1-x})Se{sub 2} solar cells was studied on the basis of charge transport time by IMSCCS data. (author)

  4. Selective modulation of protein kinase isozymes by the site-selective analog 8-chloroadenosine 3',5'-cyclic monophosphate provides a biological means for control of human colon cancer cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Ally, S.; Tortora, G.; Clair, T.; Grieco, D.; Merlo, G.; Katsaros, D.; Ogreid, D.; Doeskeland, S.O.; Jahnsen, T.; Cho-Chung, Yoonsang

    1988-09-01

    Differential expression of type I and type II cAMP-dependent protein kinase isozymes has been linked to growth regulation and differentiation. The authors examined the expression of protein kinase isozymes in the LS 174T human colon cancer cell line during 8-chloroadenosine 3',5'-cyclic monophosphate (8-Cl-cAMP)-induced growth inhibition. Two species of R/sup II/ (the regulatory subunit of protein kinase type II) with apparent M/sub r/ 52,000 (R/sup II//sub 52/) and M/sub r/ 56,000 (R/sup II//sub 56/) and a single species of R/sup I/ (the regulatory subunit of protein kinase type I) with M/sub r/ 48,000 were identified in the cancer cells. R/sup I/ and both forms of R/sup II/ were covalently labeled with 8-azidoadenosine 3',5'-cyclic (/sup 32/P)monophosphate, and two anti-R/sup II/ antibodies that exclusively recognize either R/sup II//sub 52/ or R/sup II//sub 56/ resolved two forms of the R/sup II/ receptors. 8-Cl-cAMP caused transcriptional activation of the R/sup II//sub 52/ receptor gene and inactivation of the R/sup I/ receptor gene. Thus, differential regulation of various forms of cAMP receptor proteins is involved in 8-Cl-cAMP-induced regulation of cancer cell growth, and nuclear translocation of R/sup II//sub 52/ receptor protein appears to be an early event in such differential regulation.

  5. p-Type MWT. Integrated cell and module technology

    Energy Technology Data Exchange (ETDEWEB)

    Tool, C.J.J.; Kossen, E.J.; Bennett, I.J.

    2013-10-15

    A major issue of concern in MWT solar cells is the increased leakage current at reversed bias voltage through the vias compared. At ECN we have been working on reducing this leakage current to levels comparable to H-pattern cells. In this study we present the results of this work. We further show the benefit of a combined cell and module design for MWT solar cells. At the cell level, MWT production costs per wafer are comparable with H-pattern while the cell output increases. At the module level this design results in a further increase of the power output.

  6. p-type MWT. Integrated Cell and Module Technology

    Energy Technology Data Exchange (ETDEWEB)

    Tool, C.J.J.; Kossen, E.J.; Bennett, I.J. [ECN Solar Energy, Petten (Netherlands)

    2013-03-15

    A major issue of concern in MWT (metal wrap-through) solar cells is the increased leakage current at reversed bias voltage through the vias compared. At ECN we have been working on reducing this leakage current to levels comparable to H-pattern cells. In this study we present the results of this work. We further show the benefit of a combined cell and module design for MWT solar cells. At the cell level, MWT production costs per wafer are comparable with H-pattern while the cell output increases. At the module level this design results in a further increase of the power output.

  7. Shape of growth cells in directional solidification.

    Science.gov (United States)

    Pocheau, A; Georgelin, M

    2006-01-01

    The purpose of this study is to characterize experimentally the whole shape of the growth cells displayed in directional solidification and its evolution with respect to control parameters. A library of cells is first built up from observation of directional solidification of a succinonitrile alloy in a large range of pulling velocity, cell spacing, and thermal gradient. Cell boundaries are then extracted from these images and fitted by trial functions on their whole profile, from cell tip to cell grooves. A coherent evolution of the fit parameters with the control parameters is evidenced. It enables us to characterize the whole cell shape by a single function involving only two parameters which vary smoothly in the control parameter space. This, in particular, evidences a continuous evolution of the cell geometry at the cell to dendrite transition which denies the existence of a change of branch of solutions at the occurrence of sidebranching. More generally, this global determination of cell shape complemented with a previous determination of the position of cells in the thermal field (the cell tip undercooling) provides a complete characterization of growth solutions and of their evolutions in this system. It thus brings about a relevant framework for testing and improving theoretical and numerical understanding of cell shapes and cell stability in directional solidification.

  8. Cycle modulation of insulin-like growth factor-binding protein 1 in human endometrium

    Directory of Open Access Journals (Sweden)

    Corleta H.

    2000-01-01

    Full Text Available Endometrium is one of the fastest growing human tissues. Sex hormones, estrogen and progesterone, in interaction with several growth factors, control its growth and differentiation. Insulin-like growth factor 1 (IGF-1 interacts with cell surface receptors and also with specific soluble binding proteins. IGF-binding proteins (IGF-BP have been shown to modulate IGF-1 action. Of six known isoforms, IGF-BP-1 has been characterized as a marker produced by endometrial stromal cells in the late secretory phase and in the decidua. In the current study, IGF-1-BP concentration and affinity in the proliferative and secretory phase of the menstrual cycle were measured. Endometrial samples were from patients of reproductive age with regular menstrual cycles and taking no steroid hormones. Cytosolic fractions were prepared and binding of 125I-labeled IGF-1 performed. Cross-linking reaction products were analyzed by SDS-polyacrylamide gel electrophoresis (7.5% followed by autoradiography. 125I-IGF-1 affinity to cytosolic proteins was not statistically different between the proliferative and secretory endometrium. An approximately 35-kDa binding protein was identified when 125I-IGF-1 was cross-linked to cytosol proteins. Secretory endometrium had significantly more IGF-1-BP when compared to proliferative endometrium. The specificity of the cross-linking process was evaluated by the addition of 100 nM unlabeled IGF-1 or insulin. Unlabeled IGF-1 totally abolished the radioactivity from the band, indicating specific binding. Insulin had no apparent effect on the intensity of the labeled band. These results suggest that IGF-BP could modulate the action of IGF-1 throughout the menstrual cycle. It would be interesting to study this binding protein in other pathologic conditions of the endometrium such as adenocarcinomas and hyperplasia.

  9. Matching the characteristics of batteries with solar cell modules

    Science.gov (United States)

    Gay, C. F.; Kapur, V. K.; Pyle, B.; Rumburg, J.; Manfredi, A.

    The typical photovoltaic (PV) power system consists currently of one or a few PV modules. Each module contains from 32 to 40 cells. The modules are connected to one or more six-cell (12 V) lead-acid batteries through a voltage regulator or charge controller. Input conditions for design optimization are discussed, taking into account the basic system, the standard solar day and typical variations, and the dependence of PV module performance on insolation and temperature. Problems regarding the matching of the module voltage to battery characteristics are considered, and a description is provided of the results obtained with a module which was designed to satisfy certain requirements. The investigation shows that it is possible to design a photovoltaic generator to match appropriate characteristics of the battery, taking into account the possibility to maintain self-regulation in practical field operations.

  10. Growth plate cartilage shows different strain patterns in response to static versus dynamic mechanical modulation.

    Science.gov (United States)

    Kaviani, Rosa; Londono, Irene; Parent, Stefan; Moldovan, Florina; Villemure, Isabelle

    2016-08-01

    Longitudinal growth of long bones and vertebrae occurs in growth plate cartilage. This process is partly regulated by mechanical forces, which are one of the underlying reasons for progression of growth deformities such as idiopathic adolescent scoliosis and early-onset scoliosis. This concept of mechanical modulation of bone growth is also exploited in the development of fusionless treatments of these deformities. However, the optimal loading condition for the mechanical modulation of growth plate remains to be identified. The objective of this study was to evaluate the effects of in vitro static versus dynamic modulation and of dynamic loading parameters, such as frequency and amplitude, on the mechanical responses and histomorphology of growth plate explants. Growth plate explants from distal ulnae of 4-week-old swines were extracted and randomly distributed among six experimental groups: baseline ([Formula: see text]), control ([Formula: see text]), static ([Formula: see text]) and dynamic ([Formula: see text]). For static and dynamic groups, mechanical modulation was performed in vitro using an Indexed CartiGen bioreactor. A stress relaxation test combined with confocal microscopy and digital image correlation was used to characterize the mechanical responses of each explant in terms of peak stress, equilibrium stress, equilibrium modulus of elasticity and strain pattern. Histomorphometrical measurements were performed on toluidine blue tissue sections using a semi-automatic custom-developed MATLAB toolbox. Results suggest that compared to dynamic modulation, static modulation changes the strain pattern of the tissue and thus is more detrimental for tissue biomechanics, while the histomorphological parameters are not affected by mechanical modulation. Also, under dynamic modulation, changing the frequency or amplitude does not affect the biomechanical response of the tissue. Results of this study will be useful in finding optimal and non-damaging parameters

  11. Temperature dependence of photovoltaic cells, modules, and systems

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Burdick, J.; Caiyem, Y. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    Photovoltaic (PV) cells and modules are often rated in terms of a set of standard reporting conditions defined by a temperature, spectral irradiance, and total irradiance. Because PV devices operates over a wide range of temperatures and irradiances, the temperature and irradiance related behavior must be known. This paper surveys the temperature dependence of crystalline and thin-film, state-of-the-art, research-size cells, modules, and systems measured by a variety of methods. The various error sources and measurement methods that contribute to cause differences in the temperature coefficient for a given cell or module measured with various methods are discussed.

  12. 77 FR 14732 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Science.gov (United States)

    2012-03-13

    ... International Trade Administration Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules... of crystalline silicon photovoltaic cells, whether or not assembled into modules, from the People's.... \\1\\ See Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From...

  13. Role of bentonite clays on cell growth.

    Science.gov (United States)

    Cervini-Silva, Javiera; Ramírez-Apan, María Teresa; Kaufhold, Stephan; Ufer, Kristian; Palacios, Eduardo; Montoya, Ascención

    2016-04-01

    Bentonites, naturally occurring clays, are produced industrially because of their adsorbent capacity but little is known about their effects on human health. This manuscript reports on the effect of bentonites on cell growth behaviour. Bentonites collected from India (Bent-India), Hungary (Bent-Hungary), Argentina (Bent-Argentina), and Indonesia (Bent-Indonesia) were studied. All four bentonites were screened in-vitro against two human cancer cell lines [U251 (central nervous system, glioblastoma) and SKLU-1 (lung adenocarcinoma)] supplied by the National Cancer Institute (USA). Bentonites induced growth inhibition in the presence of U251 cells, and growth increment in the presence of SKLU-1 cells, showing that interactions between bentonite and cell surfaces were highly specific. The proliferation response for U251 cells was explained because clay surfaces controlled the levels of metabolic growth components, thereby inhibiting the development of high-grade gliomas, particularly primary glioblastomas. On the other hand, the proliferation response for SKLU-1 was explained by an exacerbated growth favoured by swelling, and concomitant accumulation of solutes, and their hydration and transformation via clay-surface mediated reactions.

  14. Quantifying Solar Cell Cracks in Photovoltaic Modules by Electroluminescence Imaging

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2015-01-01

    be used as a diagnostic tool to rate cell damage or quality of modules after transportation. Moreover, the method can be automated and used in quality control for module manufacturers, installers, or as a diagnostic tool by plant operators and diagnostic service providers....

  15. Modulating F-actin organization induces organ growth by affecting the Hippo pathway

    OpenAIRE

    Sansores-Garcia, Leticia; Bossuyt, Wouter; Wada, Ken-Ichi; Yonemura, Shigenobu; Tao, Chunyao; Sasaki, Hiroshi; Halder, Georg

    2011-01-01

    This study identifies actin organization as an upstream regulator of the Hippo pathway: F-actin accumulation promotes Yorkie-dependent transcriptional activation. This modulation of Hippo signalling by actin regulators controls organ growth in Drosophila.

  16. Cleavage of INDOLE-3-ACETIC ACID INDUCIBLE28 mRNA by microRNA847 upregulates auxin signaling to modulate cell proliferation and lateral organ growth in Arabidopsis.

    Science.gov (United States)

    Wang, Jing-Jing; Guo, Hui-Shan

    2015-03-01

    MicroRNAs function in a range of developmental processes. Here, we demonstrate that miR847 targets the mRNA of the auxin/indole acetic acid (Aux/IAA) repressor-encoding gene IAA28 for cleavage. The rapidly increased accumulation of miR847 in Arabidopsis thaliana coincided with reduced IAA28 mRNA levels upon auxin treatment. This induction of miR847 by auxin was abolished in auxin receptor tir1-1 and auxin-resistant axr1-3 mutants. Further analysis demonstrates that miR847 functions as a positive regulator of auxin-mediated lateral organ development by cleaving IAA28 mRNA. Importantly, the ectopic expression of miR847 increases the expression of cell cycle genes as well as the neoplastic activity of leaf cells, prolonging later-stage rosette leaf growth and producing leaves with serrated margins. Moreover, both miR847 and IAA28 mRNAs are specifically expressed in marginal meristems of rosette leaves and lateral root initiation sites. Our data indicate that auxin-dependent induction of miR847 positively regulates meristematic competence by clearing IAA28 mRNA to upregulate auxin signaling, thereby determining the duration of cell proliferation and lateral organ growth in Arabidopsis. IAA28 mRNA encodes an Aux/IAA repressor protein, which is degraded through the proteasome in response to auxin. Altered signal sensitization to IAA28 mRNA levels, together with targeted IAA28 degradation, ensures a robust signal derepression.

  17. Cancer Cells Hijack Gluconeogenic Enzymes to Fuel Cell Growth.

    Science.gov (United States)

    Balsa-Martinez, Eduardo; Puigserver, Pere

    2015-11-19

    In this issue and the October 15th issue of Molecular Cell, studies by Montal et al. (2015) and Vincent et al. (2015) report that certain types of cancer cells utilize the gluconeogenic enzymes phosphoenolpyruvate carboxykinase (PEPCK) and phosphoenolpyruvate carboxykinase 2 (PCK2) to reprogram anabolic metabolism and support cell growth.

  18. Insulin and insulin-like growth factor I exert different effects on plasminogen activator production or cell growth in the ovine thyroid cell line OVNIS.

    Science.gov (United States)

    Degryse, B; Maisonobe, F; Hovsépian, S; Fayet, G

    1991-11-01

    Insulin and Insulin-like Growth Factor I (IGF-I) are evaluated for their capacity to affect cell proliferation and plasminogen activator (PA) activity production in an ovine thyroid cell line OVNIS. Insulin at physiological and supraphysiological doses induces cell proliferation and increases PA activity. IGF-I, which is also clearly mitogenic for these cells, surprisingly does not modulate PA activity. The results indicate that the growth promoting effect is mediated through the insulin and IGF-I receptors whereas PA activity is solely regulated via the insulin receptors.

  19. Terrestrial solar cell module automated array assembly, task 4

    Science.gov (United States)

    1978-01-01

    A cost effective design and manufacturing process which would produce solar cell modules capable of meeting qualification test criteria was developed. Emphasis was placed on the development of an aluminum paste back contact process.

  20. Cell-ECM traction force modulates endogenous tension at cell-cell contacts.

    Science.gov (United States)

    Maruthamuthu, Venkat; Sabass, Benedikt; Schwarz, Ulrich S; Gardel, Margaret L

    2011-03-22

    Cells in tissues are mechanically coupled both to the ECM and neighboring cells, but the coordination and interdependency of forces sustained at cell-ECM and cell-cell adhesions are unknown. In this paper, we demonstrate that the endogenous force sustained at the cell-cell contact between a pair of epithelial cells is approximately 100 nN, directed perpendicular to the cell-cell interface and concentrated at the contact edges. This force is stably maintained over time despite significant fluctuations in cell-cell contact length and cell morphology. A direct relationship between the total cellular traction force on the ECM and the endogenous cell-cell force exists, indicating that the cell-cell tension is a constant fraction of the cell-ECM traction. Thus, modulation of ECM properties that impact cell-ECM traction alters cell-cell tension. Finally, we show in a minimal model of a tissue that all cells experience similar forces from the surrounding microenvironment, despite differences in the extent of cell-ECM and cell-cell adhesion. This interdependence of cell-cell and cell-ECM forces has significant implications for the maintenance of the mechanical integrity of tissues, mechanotransduction, and tumor mechanobiology.

  1. Modulation of respiratory dendritic cells during Klebsiella pneumonia infection

    OpenAIRE

    Hackstein, Holger; Kranz, Sabine; Lippitsch, Anne; Wachtendorf, Andreas; Kershaw, Olivia; Achim D Gruber; Michel, Gabriela; Lohmeyer, Jürgen; Bein, Gregor; Baal, Nelli; Herold, Susanne

    2013-01-01

    Background: Klebsiella pneumoniae is a leading cause of severe hospital-acquired respiratory tract infections and death but little is known regarding the modulation of respiratory dendritic cell (DC) subsets. Plasmacytoid DC (pDC) are specialized type 1 interferon producing cells and considered to be classical mediators of antiviral immunity. Method: By using multiparameter flow cytometry analysis we have analysed the modulation of respiratory DC subsets after intratracheal Klebsi...

  2. The pituitary growth hormone cell in space

    Science.gov (United States)

    Hymer, Wesley C.; Grindeland, R.

    1989-01-01

    Growth hormone (GH), produced and secreted from specialized cells in the pituitary gland, controls the metabolism of protein, fat, and carbohydrate. It is also probably involved in the regulation of proper function of bone, muscle and immune systems. The behavior of the GH cell system was studied by flying either isolated pituitary cells or live rats. In the latter case, pituitary GH cells are prepared on return to earth and then either transplanted into hypophysectomized rats or placed into cell culture so that function of GH cells in-vivo vs. in-vitro can be compared. The results from three flights to date (STS-8, 1983; SL-3, 1985; Cosmos 1887, 1987) established that the ability of GH cells to release hormone, on return to earth, is compromised. The mechanism(s) responsible for this attenuation response is unknown. However, the data are sufficiently positive to indicate that the nature of the secretory defect resides directly within the GH cells.

  3. Role of the placental Vitamin D receptor in modulating feto-placental growth in Fetal growth restriction and Preeclampsia-affected pregnancies.

    Directory of Open Access Journals (Sweden)

    Padma eMurthi

    2016-02-01

    Full Text Available Fetal growth restriction (FGR is a common pregnancy complication that affects up to 5% of pregnancies worldwide. Recent studies demonstrate that Vitamin D deficiency is implicated in reduced fetal growth, which may be rescued by supplementation of Vitamin D. Despite this, the pathway(s by which Vitamin D modulate fetal growth remains to be investigated. Our own studies demonstrate that the Vitamin D receptor (VDR is significantly decreased in placentae from human pregnancies complicated by FGR and contributes to abnormal placental trophoblast apoptosis and differentiation and regulation of cell-cycle genes in vitro. Thus, Vitamin D signalling is important for normal placental function and fetal growth. This review discusses the association of Vitamin D with fetal growth, the function of Vitamin D and its receptor in pregnancy, as well as the functional significance of a placental source of Vitamin D in FGR. Additionally, we propose that for Vitamin D to be clinically effective to prevent and manage FGR, the molecular mechanisms of Vitamin D and its receptor in modulating fetal growth requires further investigation.

  4. Role of the Placental Vitamin D Receptor in Modulating Feto-Placental Growth in Fetal Growth Restriction and Preeclampsia-Affected Pregnancies.

    Science.gov (United States)

    Murthi, Padma; Yong, Hannah E J; Ngyuen, Thy P H; Ellery, Stacey; Singh, Harmeet; Rahman, Rahana; Dickinson, Hayley; Walker, David W; Davies-Tuck, Miranda; Wallace, Euan M; Ebeling, Peter R

    2016-01-01

    Fetal growth restriction (FGR) is a common pregnancy complication that affects up to 5% of pregnancies worldwide. Recent studies demonstrate that Vitamin D deficiency is implicated in reduced fetal growth, which may be rescued by supplementation of Vitamin D. Despite this, the pathway(s) by which Vitamin D modulate fetal growth remains to be investigated. Our own studies demonstrate that the Vitamin D receptor (VDR) is significantly decreased in placentae from human pregnancies complicated by FGR and contributes to abnormal placental trophoblast apoptosis and differentiation and regulation of cell-cycle genes in vitro. Thus, Vitamin D signaling is important for normal placental function and fetal growth. This review discusses the association of Vitamin D with fetal growth, the function of Vitamin D and its receptor in pregnancy, as well as the functional significance of a placental source of Vitamin D in FGR. Additionally, we propose that for Vitamin D to be clinically effective to prevent and manage FGR, the molecular mechanisms of Vitamin D and its receptor in modulating fetal growth requires further investigation.

  5. Control of cell cycle and cell growth by molecular chaperones.

    Science.gov (United States)

    Aldea, Martí; Garí, Eloi; Colomina, Neus

    2007-11-01

    Cells adapt their size to both intrinsic and extrinsic demands and, among them, those that stem from growth and proliferation rates are crucial for cell size homeostasis. Here we revisit mechanisms that regulate cell cycle and cell growth in budding yeast. Cyclin Cln3, the most upstream activator of Start, is retained at the endoplasmic reticulum in early G(1) and released by specific chaperones in late G(1) to initiate the cell cycle. On one hand, these chaperones are rate-limiting for release of Cln3 and cell cycle entry and, on the other hand, they are required for key biosynthetic processes. We propose a model whereby the competition for specialized chaperones between growth and cycle machineries could gauge biosynthetic rates and set a critical size threshold at Start.

  6. The Arabidopsis SWI/SNF protein BAF60 mediates seedling growth control by modulating DNA accessibility

    KAUST Repository

    Jégu, Teddy

    2017-06-15

    Plant adaptive responses to changing environments involve complex molecular interplays between intrinsic and external signals. Whilst much is known on the signaling components mediating diurnal, light, and temperature controls on plant development, their influence on chromatin-based transcriptional controls remains poorly explored.In this study we show that a SWI/SNF chromatin remodeler subunit, BAF60, represses seedling growth by modulating DNA accessibility of hypocotyl cell size regulatory genes. BAF60 binds nucleosome-free regions of multiple G box-containing genes, opposing in cis the promoting effect of the photomorphogenic and thermomorphogenic regulator Phytochrome Interacting Factor 4 (PIF4) on hypocotyl elongation. Furthermore, BAF60 expression level is regulated in response to light and daily rhythms.These results unveil a short path between a chromatin remodeler and a signaling component to fine-tune plant morphogenesis in response to environmental conditions.

  7. Glucose-ABL1-TOR Signaling Modulates Cell Cycle Tuning to Control Terminal Appressorial Cell Differentiation

    Science.gov (United States)

    2017-01-01

    The conserved target of rapamycin (TOR) pathway integrates growth and development with available nutrients, but how cellular glucose controls TOR function and signaling is poorly understood. Here, we provide functional evidence from the devastating rice blast fungus Magnaporthe oryzae that glucose can mediate TOR activity via the product of a novel carbon-responsive gene, ABL1, in order to tune cell cycle progression during infection-related development. Under nutrient-free conditions, wild type (WT) M. oryzae strains form terminal plant-infecting cells (appressoria) at the tips of germ tubes emerging from three-celled spores (conidia). WT appressorial development is accompanied by one round of mitosis followed by autophagic cell death of the conidium. In contrast, Δabl1 mutant strains undergo multiple rounds of accelerated mitosis in elongated germ tubes, produce few appressoria, and are abolished for autophagy. Treating WT spores with glucose or 2-deoxyglucose phenocopied Δabl1. Inactivating TOR in Δabl1 mutants or glucose-treated WT strains restored appressorium formation by promoting mitotic arrest at G1/G0 via an appressorium- and autophagy-inducing cell cycle delay at G2/M. Collectively, this work uncovers a novel glucose-ABL1-TOR signaling axis and shows it engages two metabolic checkpoints in order to modulate cell cycle tuning and mediate terminal appressorial cell differentiation. We thus provide new molecular insights into TOR regulation and cell development in response to glucose. PMID:28072818

  8. Chemistry and biology of the compounds that modulate cell migration.

    Science.gov (United States)

    Tashiro, Etsu; Imoto, Masaya

    2016-03-01

    Cell migration is a fundamental step for embryonic development, wound repair, immune responses, and tumor cell invasion and metastasis. Extensive studies have attempted to reveal the molecular mechanisms behind cell migration; however, they remain largely unclear. Bioactive compounds that modulate cell migration show promise as not only extremely powerful tools for studying the mechanisms behind cell migration but also as drug seeds for chemotherapy against tumor metastasis. Therefore, we have screened cell migration inhibitors and analyzed their mechanisms for the inhibition of cell migration. In this mini-review, we introduce our chemical and biological studies of three cell migration inhibitors: moverastin, UTKO1, and BU-4664L.

  9. Modulation of medium pH by Caulobacter crescentus facilitates recovery from uranium-induced growth arrest.

    Science.gov (United States)

    Park, Dan M; Jiao, Yongqin

    2014-09-01

    The oxidized form of uranium [U(VI)] predominates in oxic environments and poses a major threat to ecosystems. Due to its ability to mineralize U(VI), the oligotroph Caulobacter crescentus is an attractive candidate for U(VI) bioremediation. However, the physiological basis for U(VI) tolerance is unclear. Here we demonstrated that U(VI) caused a temporary growth arrest in C. crescentus and three other bacterial species, although the duration of growth arrest was significantly shorter for C. crescentus. During the majority of the growth arrest period, cell morphology was unaltered and DNA replication initiation was inhibited. However, during the transition from growth arrest to exponential phase, cells with shorter stalks were observed, suggesting a decoupling between stalk development and the cell cycle. Upon recovery from growth arrest, C. crescentus proliferated with a growth rate comparable to that of a control without U(VI), although a fraction of these cells appeared filamentous with multiple replication start sites. Normal cell morphology was restored by the end of exponential phase. Cells did not accumulate U(VI) resistance mutations during the prolonged growth arrest, but rather, a reduction in U(VI) toxicity occurred concomitantly with an increase in medium pH. Together, these data suggest that C. crescentus recovers from U(VI)-induced growth arrest by reducing U(VI) toxicity through pH modulation. Our finding represents a unique U(VI) detoxification strategy and provides insight into how microbes cope with U(VI) under nongrowing conditions, a metabolic state that is prevalent in natural environments.

  10. Development and Testing of Shingle-type Solar Cell Modules

    Science.gov (United States)

    Shepard, N. F., Jr.

    1979-01-01

    The design, development, fabrication and testing of a shingle-type terrestrial solar cell module which produces 98 watts/sq m of exposed module area at 1 kW/sq m insolation and 61 C are reported. These modules make it possible to easily incorporate photovoltaic power generation into the sloping roofs of residential or commercial buildings by simply nailing the modules to the plywood roof sheathing. This design consists of nineteen series-connected 53 mm diameter solar cells arranged in a closely packed hexagon configuration. These cells are individually bonded to the embossed surface of a 3 mm thick thermally tempered hexagon-shaped piece of glass. Polyvinyl butyral is used as the laminating adhesive.

  11. Circuit analysis method for thin-film solar cell modules

    Science.gov (United States)

    Burger, D. R.

    1985-01-01

    The design of a thin-film solar cell module is dependent on the probability of occurrence of pinhole shunt defects. Using known or assumed defect density data, dichotomous population statistics can be used to calculate the number of defects expected in a module. Probability theory is then used to assign the defective cells to individual strings in a selected series-parallel circuit design. Iterative numerical calculation is used to calcuate I-V curves using cell test values or assumed defective cell values as inputs. Good and shunted cell I-V curves are added to determine the module output power and I-V curve. Different levels of shunt resistance can be selected to model different defect levels.

  12. Hydrodynamic growth experiments with the 3-D, “native-roughness” modulations on NIF

    Science.gov (United States)

    Smalyuk, V. A.; Weber, S. V.; Casey, D.; Clark, D. S.; Coppari, F.; Field, J. E.; Haan, S. W.; Hammel, B. A.; Hamza, A.; Hsing, W.; Landen, O.; Nikroo, A.; Robey, H. F.; Weber, C. R.

    2016-05-01

    Hydrodynamic instability growth experiments with threedimensional (3-D) surface-roughness modulations were performed on plastic (CH) shell spherical implosions at the National Ignition Facility (NIF). The initial capsule outer-surface roughness was similar to the standard specifications (“native roughness”) used in a majority of implosions on NIF. At a convergence ratio of ∼3, the measured tent modulations were close to those predicted by 3-D simulations (within ∼15-20%), while measured 3-D, broadband modulations were ∼3-4 times larger than those simulated based on the growth of the known imposed initial surface modulations. One of the hypotheses to explain the results is based on the increased instability amplitudes due to modulations of the oxygen content in the bulk of the capsule. These new experiments results have prompted looking for ways to reduce UV light exposure during target fabrication.

  13. Matrix rigidity regulates cancer cell growth and cellular phenotype.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    Full Text Available BACKGROUND: The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness of the microenvironment and how this response varies among cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS: In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: "rigidity dependent" (those which show an increase in cell growth as extracellular rigidity is increased, and "rigidity independent" (those which grow equally on both soft and stiff substrates. Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug. CONCLUSIONS/SIGNIFICANCE: These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models.

  14. Solar cell module and its manufacturing process. Taiyo denchi module oyobi sono seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Akihiko.

    1990-01-12

    The reason behind the high power costs of solar cells is expensiveness of solar cell element devices and its modules, and efforts to lower the costs of the former have so far been made, but the same efforts are necessary for the latter too. Concerning CdS/CdTe or CdS/CuInSe {sub 2} solar cells, when the oxygen concentration in the atmosphere available around the element device becomes less, deterioration of its performance occurs. Heretofore, concerning the above two kinds of solar cell modules, a stress was placed on prevention of infiltration of water into the element device and no concern has been paid to the effect of oxygen. Consequently, several issues have remained unsolved like alteration of crude material around the element of module with material which does not react with oxygen or absorb it. In view of the above, this invention proposes to make a solar cell module of the structure that thermosetting resin is set at the peripheral blank part of the substrate with no formation of solar cell element and a box with a flange is applied to that part in the heated and pressurized condition at the time of making protection of the back of the CdS/CdTe or CdS/CuInSe {sub 2} solar cell element device. 7 figs.

  15. Functional cyclic AMP response element in the breast cancer resistance protein (BCRP/ABCG2) promoter modulates epidermal growth factor receptor pathway- or androgen withdrawal-mediated BCRP/ABCG2 transcription in human cancer cells.

    Science.gov (United States)

    Xie, Yi; Nakanishi, Takeo; Natarajan, Karthika; Safren, Lowell; Hamburger, Anne W; Hussain, Arif; Ross, Douglas D

    2015-03-01

    Phosphorylated cyclic-AMP (cAMP) response element binding protein (p-CREB) is a downstream effector of a variety of important signaling pathways. We investigated whether the human BCRP promoter contains a functional cAMP response element (CRE). 8Br-cAMP, a cAMP analogue, increased the activity of a BCRP promoter reporter construct and BCRP mRNA in human carcinoma cells. Epidermal growth factor receptor (EGFR) pathway activation also led to an increase in p-CREB and in BCRP promoter reporter activity via two major downstream EGFR signaling pathways: the phosphotidylinositol-3-kinase (PI3K)/AKT pathway and the mitogen-activated protein kinase (MAPK) pathway. EGF treatment increased the phosphorylation of EGFR, AKT, ERK and CREB, while simultaneously enhancing BCRP mRNA and functional protein expression. EGF-stimulated CREB phosphorylation and BCRP induction were diminished by inhibition of EGFR, PI3K/AKT or RAS/MAPK signaling. CREB silencing using RNA interference reduced basal levels of BCRP mRNA and diminished the induction of BCRP by EGF. Chromatin immunoprecipitation assays confirmed that a putative CRE site on the BCRP promoter bound p-CREB by a point mutation of the CRE site abolished EGF-induced stimulation of BCRP promoter reporter activity. Furthermore, the CREB co-activator, cAMP-regulated transcriptional co-activator (CRTC2), is involved in CREB-mediated BCRP transcription: androgen depletion of LNCaP human prostate cancer cells increased both CREB phosphorylation and CRTC2 nuclear translocation, and enhanced BCRP expression. Silencing CREB or CRTC2 reduced basal BCRP expression and BCRP induction under androgen-depletion conditions. This novel CRE site plays a central role in mediating BCRP gene expression in several human cancer cell lines following activation of multiple cancer-relevant signaling pathways.

  16. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes.

    Directory of Open Access Journals (Sweden)

    Magali Roques

    2015-11-01

    Full Text Available Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs. Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites in host liver and red blood cells, and sporogony (producing sporozoites in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  17. Atrial natriuretic factor inhibits mitogen-induced growth in aortic smooth muscle cells.

    Science.gov (United States)

    Baldini, P M; De Vito, P; Fraziano, M; Mattioli, P; Luly, P; Di Nardo, P

    2002-10-01

    Atrial natriuretic factor (ANF) is a polypeptide able to affect cardiovascular homeostasis exhibiting diuretic, natriuretic, and vasorelaxant activities. ANF shows antimitogenic effects in different cell types acting through R(2) receptor. Excessive proliferation of smooth muscle cells is a common phenomenon in diseases such as atherosclerosis, but the role of growth factors in the mechanism which modulate this process has yet to be clarified. The potential antimitogenic role of ANF on the cell growth induced by growth factors appears very intriguing. Aim of the present study was to investigate the possible involvement of ANF on rat aortic smooth muscle (RASM) cells proliferation induced by known mitogens and the mechanism involved. Our data show that ANF, at physiological concentration range, inhibits RASM cell proliferation induced by known mitogens such as PDGF and insulin, and the effect seems to be elicited through the modulation of phosphatidic acid (PA) production and MAP kinases involvement.

  18. Effect of arginase II on L-arginine depletion and cell growth in murine cell lines of renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Patterson John R

    2008-09-01

    Full Text Available Abstract Background L-arginine is the common substrate for the two isoforms of arginase. Arginase I, highly expressed in the liver and arginase II mainly expressed in the kidney. Arginase I-producing myeloid derived suppressor cells have been shown to inhibit T-cell function by the depletion of L-arginine. On the other hand, arginase II has been detected in patients with cancer and is thought to metabolize L-arginine to L-ornithine needed to sustain rapid tumor growth; however its role in L-arginine depletion is unclear. Thus, in tumor biology, L-arginine metabolism may play a dual role in tumor growth and in the induction of T cell dysfunction. Therefore, we studied in murine renal cell carcinoma (RCC cell lines, the effect of arginase II on tumor cell proliferation and L-arginine depletion. The effect of arginase inhibitors on cell proliferation was also tested. Methods Three murine renal cell carcinoma (mRCC cell lines were tested for the presence of arginase. nor-NOHA, an arginase inhibitor was used to substantiate the effect of arginase on cell growth and L-arginine depletion. Amino acid levels were tested by HPLC. Results Our results show that mRCC cell lines express only arginase II and were able to deplete L-arginine from the medium. Cell growth was independent of the amount of arginase activity expressed by the cells. nor-NOHA significantly (P = 0.01 reduced arginase II activity and suppressed cell growth in cells exhibiting high arginase activity. The depletion of L-arginine by mRCC induced the decrease expression of CD3ζ a key element for T-cell function. Conclusion The results of this study show for the first time that arginase II produced by RCC cell lines depletes L-arginine resulting in decreased expression of CD3ζ. These results indicate that RCC cell lines expressing arginase II can modulate the L-arginine metabolic pathway to regulate both cell growth and T-cell function. Blocking arginase may lead to a decrease in RCC cell

  19. Bacterial Cell Wall Growth, Shape and Division

    NARCIS (Netherlands)

    Derouaux, A.; Terrak, M.; den Blaauwen, T.; Vollmer, W.; Remaut, H.; Fronzes, R.

    2014-01-01

    The shape of a bacterial cell is maintained by its peptidoglycan sacculus that completely surrounds the cytoplasmic membrane. During growth the sacculus is enlarged by peptidoglycan synthesis complexes that are controlled by components linked to the cytoskeleton and, in Gram-negative bacteria, by ou

  20. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette

    1999-01-01

    Formation of new beta cells can take place by two pathways: replication of already differentiated beta cells or neogenesis from putative islet stem cells. Under physiological conditions both processes are most pronounced during the fetal and neonatal development of the pancreas. In adulthood little...... increase in the beta cell number seems to occur. In pregnancy, however, a marked hyperplasia of the beta cells is observed both in rodents and man. Increased mitotic activity has been seen both in vivo and in vitro in islets exposed to placental lactogen (PL), prolactin (PRL) and growth hormone (GH......). Receptors for both GH and PRL are expressed in islet cells and are upregulated during pregnancy. By mutational analysis we have identified different functional domains of the cytoplasmic part of the GH receptor. Thus the mitotic signaling only requires the membrane proximal part of the receptor...

  1. Applications of ``PV Optics`` for solar cell and module design

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.L.; Madjdpour, J.; Chen, W. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    This paper describes some applications of a new optics software package, PV Optics, developed for the optical design of solar cells and modules. PV Optics is suitable for the analysis and design of both thick and thin solar cells. It also includes a feature for calculation of metallic losses related to contacts and back reflectors.

  2. Photovoltaics: a review of cell and module technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kazmerski, L.L. [National Renewable Energy Lab., Golden, CO (United States)

    1997-03-01

    This review centers on the status, and future directions of the cell and module technologies, with emphasis on the research and development aspects. The framework is established with a consideration of the historical parameters of photovoltaics and each particular technology approach. The problems and strengths of the single-crystal, polycrystalline, and amorphous technologies are discussed, compared, and assessed. Single- and multiple-junction or tandem cell configurations are evaluated for performance, processing, and engineering criteria. Thin-film technologies are highlighted as emerging, low-cost options for terrestrial applications and markets. Discussions focus on the fundamental building block for the photovoltaic system, the solar cell, but important module developments and issues are cited. Future research and technology directions are examined, including issues that are considered important for the development of the specific materials, cell, and module approaches. Novel technologies and new research areas are surveyed as potential photovoltaic options of the future. (Author)

  3. Transparent electrode requirements for thin film solar cell modules

    KAUST Repository

    Rowell, Michael W.

    2011-01-01

    The transparent conductor (TC) layer in thin film solar cell modules has a significant impact on the power conversion efficiency. Reflection, absorption, resistive losses and lost active area either from the scribed interconnect region in monolithically integrated modules or from the shadow losses of a metal grid in standard modules typically reduce the efficiency by 10-25%. Here, we perform calculations to show that a competitive TC must have a transparency of at least 90% at a sheet resistance of less than 10 Ω/sq (conductivity/absorptivity ≥ 1 Ω -1) for monolithically integrated modules. For standard modules, losses are much lower and the performance of alternative lower cost TC materials may already be sufficient to replace conducting oxides in this geometry. © 2011 The Royal Society of Chemistry.

  4. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  5. RNA Directed Modulation of Phenotypic Plasticity in Human Cells.

    Science.gov (United States)

    Trakman, Laura; Hewson, Chris; Burdach, Jon; Morris, Kevin V

    2016-01-01

    Natural selective processes have been known to drive phenotypic plasticity, which is the emergence of different phenotypes from one genome following environmental stimulation. Long non-coding RNAs (lncRNAs) have been observed to modulate transcriptional and epigenetic states of genes in human cells. We surmised that lncRNAs are governors of phenotypic plasticity and drive natural selective processes through epigenetic modulation of gene expression. Using heat shocked human cells as a model we find several differentially expressed transcripts with the top candidates being lncRNAs derived from retro-elements. One particular retro-element derived transcripts, Retro-EIF2S2, was found to be abundantly over-expressed in heat shocked cells. Over-expression of Retro-EIF2S2 significantly enhanced cell viability and modulated a predisposition for an adherent cellular phenotype upon heat shock. Mechanistically, we find that this retro-element derived transcript interacts directly with a network of proteins including 40S ribosomal protein S30 (FAU), Eukaryotic translation initiation factor 5A (EIF5A), and Ubiquitin-60S ribosomal protein L40 (UBA52) to affect protein modulated cell adhesion pathways. We find one motif in Retro-EIF2S2 that exhibits binding to FAU and modulates phenotypic cell transitions from adherent to suspension states. The observations presented here suggest that retroviral derived transcripts actively modulate phenotypic plasticity in human cells in response to environmental selective pressures and suggest that natural selection may play out through the action of retro-elements in human cells.

  6. H-1 and N-15 resonance assignment of the second fibronectin type III module of the neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Kiselyov, Vladislav V; Berezin, Vladimir; Bock, Elisabeth;

    2008-01-01

    We report here the NMR assignment of the second fibronectin type III module of the neural cell adhesion molecule (NCAM). This module has previously been shown to interact with the fibroblast growth factor receptor (FGFR), and the FGFR-binding site was mapped by NMR to the FG-loop region...... of the module. The FG-loop region also contains a putative nucleotide-binding motif, which was shown by NMR to interact with ATP. Furthermore, ATP was demonstrated to inhibit binding of the second F3 module of NCAM to FGFR....

  7. TRPV6 modulates proliferation of human pancreatic neuroendocrine BON-1 tumour cells.

    Science.gov (United States)

    Skrzypski, Marek; Kołodziejski, Paweł A; Mergler, Stefan; Khajavi, Noushafarin; Nowak, Krzysztof W; Strowski, Mathias Z

    2016-08-01

    Highly Ca(2+) permeable receptor potential channel vanilloid type 6 (TRPV6) modulates a variety of biological functions including calcium-dependent cell growth and apoptosis. So far, the role of TRPV6 in controlling growth of pancreatic neuroendocrine tumour (NET) cells is unknown. In the present study, we characterize the expression of TRPV6 in pancreatic BON-1 and QGP-1 NET cells. Furthermore, we evaluate the impact of TRPV6 on intracellular calcium, the activity of nuclear factor of activated T-cells (NFAT) and proliferation of BON-1 cells. TRPV6 expression was assessed by real-time PCR and Western blot. TRPV6 mRNA expression and protein production were down-regulated by siRNA. Changes in intracellular calcium levels were detected by fluorescence calcium imaging (fura-2/AM). NFAT activity was studied by NFAT reporter assay; cell proliferation by bromodeoxyuridine (BrdU), MTT and propidium iodine staining. TRPV6 mRNA and protein are present in BON-1 and QGP-1 NET-cells. Down-regulation of TRPV6 attenuates BON-1 cell proliferation. TRPV6 down-regulation is associated with decreased Ca(2+) response pattern and reduced NFAT activity. In conclusion, TRPV6 is expressed in pancreatic NETs and modulates cell proliferation via Ca(2+)-dependent mechanism, which is accompanied by NFAT activation.

  8. Extracellular protonation modulates cell-cell interaction mechanics and tissue invasion in human melanoma cells

    Science.gov (United States)

    Hofschröer, Verena; Koch, Kevin Alexander; Ludwig, Florian Timo; Friedl, Peter; Oberleithner, Hans; Stock, Christian; Schwab, Albrecht

    2017-01-01

    Detachment of cells from the primary tumour precedes metastatic progression by facilitating cell release into the tissue. Solid tumours exhibit altered pH homeostasis with extracellular acidification. In human melanoma, the Na+/H+ exchanger NHE1 is an important modifier of the tumour nanoenvironment. Here we tested the modulation of cell-cell-adhesion by extracellular pH and NHE1. MV3 tumour spheroids embedded in a collagen matrix unravelled the efficacy of cell-cell contact loosening and 3D emigration into an environment mimicking physiological confinement. Adhesive interaction strength between individual MV3 cells was quantified using atomic force microscopy and validated by multicellular aggregation assays. Extracellular acidification from pHe7.4 to 6.4 decreases cell migration and invasion but increases single cell detachment from the spheroids. Acidification and NHE1 overexpression both reduce cell-cell adhesion strength, indicated by reduced maximum pulling forces and adhesion energies. Multicellular aggregation and spheroid formation are strongly impaired under acidification or NHE1 overexpression. We show a clear dependence of melanoma cell-cell adhesion on pHe and NHE1 as a modulator. These effects are opposite to cell-matrix interactions that are strengthened by protons extruded via NHE1. We conclude that these opposite effects of NHE1 act synergistically during the metastatic cascade. PMID:28205573

  9. IL-6 promotes growth and epithelial-mesenchymal transition of CD133+ cells of non-small cell lung cancer.

    Science.gov (United States)

    Lee, Soo Ok; Yang, Xiaodong; Duan, Shanzhou; Tsai, Ying; Strojny, Laura R; Keng, Peter; Chen, Yuhchyau

    2016-02-09

    We examined IL-6 effects on growth, epithelial-mesenchymal transition (EMT) process, and metastatic ability of CD133+ and CD133- cell subpopulations isolated from three non-small cell lung cancer (NSCLC) cell lines: A549, H157, and H1299. We developed IL-6 knocked-down and scramble (sc) control cells of A549 and H157 cell lines by lentiviral infection system, isolated CD133+ and CD133- sub-populations, and investigated the IL-6 role in self-renewal/growth of these cells. IL-6 showed either an inhibitory or lack of effect in modulating growth of CD133- cells depending on intracellular IL-6 levels, but there was higher self-renewal ability of IL-6 expressing CD133+ cells than IL-6 knocked down cells, confirming the promoter role of IL-6 in CD133+ cells growth. We then examined tumor growth of xenografts developed from CD133+ cells of A549IL-6si vs. A549sc cell lines. Consistently, there was retarded growth of tumors developed from A549IL-6si, CD133+ cells compared to tumors originating from A549sc, CD133+ cells. The effect of IL-6 in promoting CD133+ self-renewal was due to hedgehog (Hhg) and Erk signaling pathway activation and higher Bcl-2/Bcl-xL expression. We also investigated whether IL-6 regulates the EMT process of CD133- and CD133+ cells differently. Expression of the EMT/metastasis-associated molecules in IL-6 expressing cells was higher than in IL-6 knocked down cells. Together, we demonstrated dual roles of IL-6 in regulating growth of CD133- and CD133+ subpopulations of lung cancer cells and significant regulation of IL-6 on EMT/metastasis increase in CD133+ cells, not in CD133- cells.

  10. Modulating chemotaxis of lung cancer cells by using electric fields in a microfluidic device.

    Science.gov (United States)

    Kao, Yu-Chiu; Hsieh, Meng-Hua; Liu, Chung-Chun; Pan, Huei-Jyuan; Liao, Wei-Yu; Cheng, Ji-Yen; Kuo, Po-Ling; Lee, Chau-Hwang

    2014-03-01

    We employed direct-current electric fields (dcEFs) to modulate the chemotaxis of lung cancer cells in a microfluidic cell culture device that incorporates both stable concentration gradients and dcEFs. We found that the chemotaxis induced by a 0.5 μM/mm concentration gradient of epidermal growth factor can be nearly compensated by a 360 mV/mm dcEF. When the effect of chemical stimulation was balanced by the electrical drive, the cells migrated randomly, and the path lengths were largely reduced. We also demonstrated electrically modulated chemotaxis of two types of lung cancer cells with opposite directions of electrotaxis in this device.

  11. Insulin signaling is a modulator of muscle growth

    Science.gov (United States)

    The growth rate of skeletal muscle during the neonatal period is higher than at any other stage of postnatal development and is driven by an elevated rate of protein synthesis. The high rate of muscle protein synthesis in neonatal mammals is in part due to a marked stimulation of protein synthesis a...

  12. The modulation of biodistribution of stem cells by anchoring lipid-conjugated heparin on the cell surface.

    Science.gov (United States)

    Kim, Jong Chul; Tae, Giyoong

    2015-11-10

    Heparin is a bioactive glycosaminoglycan that can interact with various extracellular matrix (ECM) proteins and growth factors. Lipid-conjugated heparin was synthesized, and was used to coat adipose-derived stem cells (ADSCs) by physical insertion on the cell membrane. Coating of lipid-conjugated heparin with two lipid moieties on ADSCs was stable for 24h in vitro. Biodistribution of heparin-coated ADSCs upon intravenous injection in mice was analyzed by In-Vivo Imaging System (IVIS), and showed enhanced accumulation in the liver and spleen while reduced entrapment in the lung. Thus, the coating of ADSCs with lipid-conjugated heparin could significantly modulate the biodistribution of cells.

  13. Musashi1 modulates cell proliferation genes in the medulloblastoma cell line Daoy

    Directory of Open Access Journals (Sweden)

    Hung Jaclyn Y

    2008-09-01

    Full Text Available Abstract Background Musashi1 (Msi1 is an RNA binding protein with a central role during nervous system development and stem cell maintenance. High levels of Msi1 have been reported in several malignancies including brain tumors thereby associating Msi1 and cancer. Methods We used the human medulloblastoma cell line Daoy as model system in this study to knock down the expression of Msi1 and determine the effects upon soft agar growth and neurophere formation. Quantitative RT-PCR was conducted to evaluate the expression of cell proliferation, differentiation and survival genes in Msi1 depleted Daoy cells. Results We observed that MSI1 expression was elevated in Daoy cells cultured as neurospheres compared to those grown as monolayer. These data indicated that Msi1 might be involved in regulating proliferation in cancer cells. Here we show that shRNA mediated Msi1 depletion in Daoy cells notably impaired their ability to form colonies in soft agar and to grow as neurospheres in culture. Moreover, differential expression of a group of Notch, Hedgehog and Wnt pathway related genes including MYCN, FOS, NOTCH2, SMO, CDKN1A, CCND2, CCND1, and DKK1, was also found in the Msi1 knockdown, demonstrating that Msi1 modulated the expression of a subset of cell proliferation, differentiation and survival genes in Daoy. Conclusion Our data suggested that Msi1 may promote cancer cell proliferation and survival as its loss seems to have a detrimental effect in the maintenance of medulloblastoma cancer cells. In this regard, Msi1 might be a positive regulator of tumor progression and a potential target for therapy.

  14. American ginseng modulates pancreatic beta cell activities

    Directory of Open Access Journals (Sweden)

    Luo Luguang

    2007-10-01

    Full Text Available Abstract The mechanism of the beneficial effects of Panax quinquefolius (Xiyangshen, American ginseng on diabetes is yet to be elucidated. Recent studies show that Panax quinquefolius increases insulin production and reduces the death of pancreatic beta cells. Mechanism studies indicate that Panax quinquefolius improves cell's immuno-reactivity and mitochondrial function through various factors. Clinical studies show that Panax quinquefolius improves postprandial glycemia in type 2 diabetic patients. Further studies to identify the component(s of Panax quinquefolius linked with pancreatic islets/beta cells in vitro and in vivo are warranted for better understanding of the full effects of Panax quinquefolius.

  15. Mechanical forces and their second messengers in stimulating cell growth in vitro

    Science.gov (United States)

    Vandenburgh, Herman H.

    1992-01-01

    Mechanical forces play an important role in modulating the growth of a number of different tissues including skeletal muscle, smooth muscle, cardiac muscle, bone, endothelium, epithelium, and lung. As interest increases in the molecular mechanisms by which mechanical forces are transduced into growth alterations, model systems are being developed to study these processes in tissue culture. This paper reviews the current methods available for mechanically stimulating tissue cultured cells. It then outlines some of the putative 'mechanogenic' second messengers involved in altering cell growth. Not surprisingly, many mechanogenic second messengers are the same as those involved in growth factor-induced cell growth. It is hypothesized that from an evolutionary standpoint, some second messenger systems may have initially evolved for unicellular organisms to respond to physical forces such as gravity and mechanical perturbation in their environment. As multicellular organisms came into existence, they appropriated these mechanogenic second messenger cascades for cellular regulation by growth factors.

  16. Bounds on bacterial cell growth rates

    CERN Document Server

    Landy, Jonathan

    2013-01-01

    Recent experiments have shown that rod-like bacteria in nutrient-rich media grow in length at an exponential rate. Here, I point out that it is the elongated shape of these bacteria that allows for this behavior. Further, I show that when a bacterium's growth is limited by some nutrient -- taken in by the cell through a diffusion-to-capture process -- its growth is suppressed: In three-dimensional geometries, the length $L$ is bounded by $\\log L \\lesssim t^{1/2}$, while in two dimensions the length is bounded by a power-law form. Fits of experimental growth curves to these predicted, sub-exponential forms could allow for direct measures of quantities relating to cellular metabolic rates.

  17. Integrated DFB-DBR laser modulator grown by selective area metalorganic vapor phase epitaxy growth technique

    Science.gov (United States)

    Tanbun-Ek, T.; Chen, Y. K.; Grenko, J. A.; Byrne, E. K.; Johnson, J. E.; Logan, R. A.; Tate, A.; Sergent, A. M.; Wecht, K. W.; Sciortine, P. F.; Chu, S. N. G.

    1994-12-01

    A device quality of selective epitaxy growth of InGaAsP/InP multiple quantum well (MQW) structure using low-pressure metalorganic vapor phase epitaxy (MOVPE) technique is described. The technique is applied to a monolithically integrated electroabsorption modulator with distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers. Superior device characteristics such as efficient modulation, low threshold current and high efficiency operation of the integrated devices are obtained.

  18. Circadian rhythm and cell population growth

    CERN Document Server

    Clairambault, Jean; Lepoutre, Thomas

    2010-01-01

    Molecular circadian clocks, that are found in all nucleated cells of mammals, are known to dictate rhythms of approximately 24 hours (circa diem) to many physiological processes. This includes metabolism (e.g., temperature, hormonal blood levels) and cell proliferation. It has been observed in tumor-bearing laboratory rodents that a severe disruption of these physiological rhythms results in accelerated tumor growth. The question of accurately representing the control exerted by circadian clocks on healthy and tumour tissue proliferation to explain this phenomenon has given rise to mathematical developments, which we review. The main goal of these previous works was to examine the influence of a periodic control on the cell division cycle in physiologically structured cell populations, comparing the effects of periodic control with no control, and of different periodic controls between them. We state here a general convexity result that may give a theoretical justification to the concept of cancer chronothera...

  19. Suppression of DHT-induced paracrine stimulation of endothelial cell growth by estrogens via prostate cancer cells.

    Science.gov (United States)

    Wen, Juan; Zhao, Yuan; Li, Jinghe; Weng, Chunyan; Cai, Jingjing; Yang, Kan; Yuan, Hong; Imperato-McGinley, Julianne; Zhu, Yuan-Shan

    2013-07-01

    Androgen modulation of angiogenesis in prostate cancer may be not directly mediated by androgen receptor (AR) as AR is not detected in the prostatic endothelial cells. We examined the paracrine stimulation of cell proliferation by prostate tumor cells and its modulation by androgen and estrogens in a murine endothelial cell line (MEC) that does not express AR. Tumor cell conditioned media (TCM) collected from LAPC-4 or LNCaP prostatic tumor cells produced a time- and concentration-dependent induction of cell growth in MECs, which was parallel to the VEGF concentration in the TCM. This TCM-induced cell growth in MECs was enhanced by the treatment of prostatic tumor cells with dihydrotestosterone (DHT). Both the TCM-stimulation and DHT-enhancement effects in MECs were completely blocked by SU5416, a specific VEGF receptor antagonist. Co-administration of 17α-estradiol or 17β-estradiol with DHT in prostatic tumor cells completely inhibited the DHT-enhancement effect while treatment with DHT, 17α-estradiol or 17β-estradiol did not produce any significant direct effect in MECs. Moreover, administration of 17α-estradiol or 17β-estradiol in xenograft animals with LAPC-4 or LNCaP prostate tumor significantly decreased the microvessel number in the tumor tissues. Our study indicated that prostate tumor cells regulate endothelial cell growth through a paracrine mechanism, which is mainly mediated by VEGF; and DHT is able to modulate endothelial cell growth via tumor cells, which is inhibited by 17α-estradiol and 17β-estradiol. Thus, both17α-estradiol and 17β-estradiol are potential agents for anti-angiogenesis therapy in androgen-responsive prostate cancer. Copyright © 2013 Wiley Periodicals, Inc.

  20. 77 FR 63788 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Science.gov (United States)

    2012-10-17

    ... modules, laminates, and panels, consisting of crystalline silicon photovoltaic cells, whether or not... modules, laminates, and panels, consisting of crystalline silicon photovoltaic cells, whether or not... International Trade Administration Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into...

  1. 77 FR 73017 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Science.gov (United States)

    2012-12-07

    ... modules, laminates, and panels, consisting of crystalline silicon photovoltaic cells, whether or not... International Trade Administration Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules... issuing a countervailing duty order on crystalline silicon photovoltaic cells, whether or not...

  2. Glucose Signaling-Mediated Coordination of Cell Growth and Cell Cycle in Saccharomyces Cerevisiae

    Directory of Open Access Journals (Sweden)

    Stefano Busti

    2010-06-01

    Full Text Available Besides being the favorite carbon and energy source for the budding yeast Sacchromyces cerevisiae, glucose can act as a signaling molecule to regulate multiple aspects of yeast physiology. Yeast cells have evolved several mechanisms for monitoring the level of glucose in their habitat and respond quickly to frequent changes in the sugar availability in the environment: the cAMP/PKA pathways (with its two branches comprising Ras and the Gpr1/Gpa2 module, the Rgt2/Snf3-Rgt1 pathway and the main repression pathway involving the kinase Snf1. The cAMP/PKA pathway plays the prominent role in responding to changes in glucose availability and initiating the signaling processes that promote cell growth and division. Snf1 (the yeast homologous to mammalian AMP-activated protein kinase is primarily required for the adaptation of yeast cell to glucose limitation and for growth on alternative carbon source, but it is also involved in the cellular response to various environmental stresses. The Rgt2/Snf3-Rgt1 pathway regulates the expression of genes required for glucose uptake. Many interconnections exist between the diverse glucose sensing systems, which enables yeast cells to fine tune cell growth, cell cycle and their coordination in response to nutritional changes.

  3. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.

    2011-02-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well as the cell junction in thermal equilibrium with the chamber. The open-circuit voltage of PV module Voc is then measured using a short pulse of solar irradiation provided by a solar simulator. Repeating the measurements at different environment temperature (40-80°C) and solar irradiation S (200-1000W/m2), the correlation between the open-circuit voltage Voc, the junction temperature Tj, and solar irradiation S is derived.The fundamental correlation of the PV module is utilized for on-site monitoring of solar cell junction temperature using the measured Voc and S at a short time instant with open circuit. The junction temperature Tj is then determined using the measured S and Voc through the fundamental correlation. The outdoor test results show that the junction temperature measured using the present method, Tjo, is more accurate. The maximum error using the average surface temperature Tave as the junction temperature is 4.8 °C underestimation; while the maximum error using the present method is 1.3 °C underestimation. © 2010 Elsevier Ltd.

  4. Reconstruction of gene regulatory modules in cancer cell cycle by multi-source data integration.

    Directory of Open Access Journals (Sweden)

    Yuji Zhang

    Full Text Available BACKGROUND: Precise regulation of the cell cycle is crucial to the growth and development of all organisms. Understanding the regulatory mechanism of the cell cycle is crucial to unraveling many complicated diseases, most notably cancer. Multiple sources of biological data are available to study the dynamic interactions among many genes that are related to the cancer cell cycle. Integrating these informative and complementary data sources can help to infer a mutually consistent gene transcriptional regulatory network with strong similarity to the underlying gene regulatory relationships in cancer cells. RESULTS AND PRINCIPAL FINDINGS: We propose an integrative framework that infers gene regulatory modules from the cell cycle of cancer cells by incorporating multiple sources of biological data, including gene expression profiles, gene ontology, and molecular interaction. Among 846 human genes with putative roles in cell cycle regulation, we identified 46 transcription factors and 39 gene ontology groups. We reconstructed regulatory modules to infer the underlying regulatory relationships. Four regulatory network motifs were identified from the interaction network. The relationship between each transcription factor and predicted target gene groups was examined by training a recurrent neural network whose topology mimics the network motif(s to which the transcription factor was assigned. Inferred network motifs related to eight well-known cell cycle genes were confirmed by gene set enrichment analysis, binding site enrichment analysis, and comparison with previously published experimental results. CONCLUSIONS: We established a robust method that can accurately infer underlying relationships between a given transcription factor and its downstream target genes by integrating different layers of biological data. Our method could also be beneficial to biologists for predicting the components of regulatory modules in which any candidate gene is involved

  5. Prospects of Nanostructure-Based Solar Cells for Manufacturing Future Generations of Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    N. Gupta

    2009-01-01

    Full Text Available We present a comprehensive review on prospects for one-, two-, or three-dimensional nanostructure-based solar cells for manufacturing the future generation of photovoltaic (PV modules. Reducing heat dissipation and utilizing the unabsorbed part of the solar spectrum are the key driving forces for the development of nanostructure-based solar cells. Unrealistic assumptions involved in theoretical work and the tendency of stretching observed experimental results are the primary reasons why quantum phenomena-based nanostructures solar cells are unlikely to play a significant role in the manufacturing of future generations of PV modules. Similar to the invention of phase shift masks (to beat the conventional diffraction limit of optical lithography clever design concepts need to be invented to take advantage of quantum-based nanostructures. Silicon-based PV manufacturing will continue to provide sustained growth of the PV industry.

  6. Nerve growth factor interactions with mast cells.

    Science.gov (United States)

    Kritas, S K; Caraffa, A; Antinolfi, P; Saggini, A; Pantalone, A; Rosati, M; Tei, M; Speziali, A; Saggini, R; Pandolfi, F; Cerulli, G; Conti, P

    2014-01-01

    Neuropeptides are involved in neurogenic inflammation where there is vasodilation and plasma protein extravasion in response to this stimulus. Nerve growth factor (NGF), identified by Rita Levi Montalcini, is a neurotrophin family compound which is important for survival of nociceptive neurons during their development. Therefore, NGF is an important neuropeptide which mediates the development and functions of the central and peripheral nervous system. It also exerts its proinflammatory action, not only on mast cells but also in B and T cells, neutrophils and eosinophils. Human mast cells can be activated by neuropeptides to release potent mediators of inflammation, and they are found throughout the body, especially near blood vessels, epithelial tissue and nerves. Mast cells generate and release NGF after degranulation and they are involved in iperalgesia, neuroimmune interactions and tissue inflammation. NGF is also a potent degranulation factor for mast cells in vitro and in vivo, promoting differentiation and maturation of these cells and their precursor, acting as a co-factor with interleukin-3. In conclusion, these studies are focused on cross-talk between neuropeptide NGF and inflammatory mast cells.

  7. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Payton-Stewart, Florastina [Department of Chemistry, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA (United States); Tilghman, Syreeta L. [Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA (United States); Williams, LaKeisha G. [Division of Clinical and Administrative Sciences, College of Pharmacy Xavier University of Louisiana, New Orleans, LA (United States); Winfield, Leyte L., E-mail: lwinfield@spelman.edu [Department of Chemistry, Spelman College, Atlanta, GA (United States)

    2014-08-08

    Highlights: • The methyl-substituted benzimidazole was more effective at inhibiting growth in MDA-MB 231 cells. • The naphthyl-substituted benzimidazole was more effective at inhibiting growth in MCF-7 cells than ICI. • The benzimidazole molecules demonstrated a dose-dependent reduction in ERE transcriptional activity. • The benzimidazole molecules had binding mode in ERα and ERβ comparable to that of the co-crystallized ligand. - Abstract: Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules

  8. Bilirubin modulated cytokines, growth factors and angiogenesis to improve cutaneous wound healing process in diabetic rats.

    Science.gov (United States)

    Ram, Mahendra; Singh, Vishakha; Kumawat, Sanjay; Kant, Vinay; Tandan, Surendra Kumar; Kumar, Dinesh

    2016-01-01

    Bilirubin has shown cutaneous wound healing potential in some preliminary studies. Here we hypothesize that bilirubin facilitates wound healing in diabetic rats by modulating important healing factors/candidates and antioxidant parameters in a time-dependent manner. Diabetes was induced in male Wistar rats by streptozotocin. In all diabetic rats wounds were created under pentobarbitone anesthesia. All the rats were divided into two groups, of which one (control) was treated with ointment base and other with bilirubin ointment (0.3%). Wound closer measurement and tissue collection were done on days 3, 7, 14 and 19 post-wounding. The relative expressions of hypoxia inducible factor-1 alpha (HIF-1α), vascular endothelial growth factor (VEGF), stromal cell-derived factor-1 alpha (SDF-1α), transforming growth factor- beta1 (TGF-β1()), tumor necrosis factor-α (TNF-α) and interlukin-10 (IL-10) mRNA and proteins and the mRNA of interlukin-1 beta (IL-1β) and matrix metalloprteinase-9 (MMP-9) were determined in the wound tissues. CD-31 staining and collagen content were evaluated by immunohistochemistry and picrosirius red staining, respectively. Histopathological changes were assessed by H&E staining. The per cent wound closer was significantly higher from day 7 onwards in bilirubin-treated rats. HIF-1α, VEGF, SDF-1α, TGF-β1, IL-10 mRNA and protein levels were significantly higher on days 3, 7 and 14 in bilirubin-treated rats. The mRNA expression and protein level of TNF-α and the mRNA of IL-1β and MMP-9 were progressively and markedly reduced in bilirubin-treated rats. The collagen deposition and formation of blood vessels were greater in bilirubin-treated rats. Bilirubin markedly facilitated cutaneous wound healing in diabetic rats by modulating growth factors, cytokines, neovasculogenesis and collagen contents to the wound site. Topical application of bilirubin ointment might be of great use in cutaneous wound healing in diabetic patients.

  9. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  10. Increasing plant growth by modulating omega-amidase expression in plants

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2015-06-30

    The present disclosure relates to compositions and methods for increasing the leaf-to-root ratio of the signal metabolite 2-oxoglutaramate and related proline molecules in plants by modulating levels of .omega.-amidase to increase nitrogen use efficiency, resulting in enhanced growth, faster growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, increased tolerance to high salt conditions, and increased biomass yields.

  11. Increasing plant growth by modulating omega-amidase expression in plants

    Science.gov (United States)

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2015-06-30

    The present disclosure relates to compositions and methods for increasing the leaf-to-root ratio of the signal metabolite 2-oxoglutaramate and related proline molecules in plants by modulating levels of .omega.-amidase to increase nitrogen use efficiency, resulting in enhanced growth, faster growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, increased tolerance to high salt conditions, and increased biomass yields.

  12. Mechanisms of pancreatic beta-cell growth and regeneration

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1989-01-01

    Information about the mechanism of beta-cell growth and regeneration may be obtained by studies of insulinoma cells. In the present study the growth and function of the rat insulinoma cell lines RINm5F and 5AH were evaluated by addition of serum, hormones, and growth factors. It was found...... of insulin mRNA content showed that the insulinoma cells only contained about 2% of that of normal rat beta-cells. These results are discussed in relation to the role of growth factors, oncogenes, and differentiation in the growth and regeneration of beta-cells....

  13. Epidermal growth factor receptor-targeted antibody therapy - Mechanisms of action and modulators of therapeutic efficacy

    NARCIS (Netherlands)

    Lammerts van Bueren, Jeroen Jilles

    2008-01-01

    Cancer is an increasing disease in the world population, and in recent years there has been substantial interest in the development of novel therapeutic agents specifically targeting growth factor receptors on tumor cells. The epidermal growth factor receptor (EGFR) represents a tyrosine kinase cell

  14. High expression of G-protein signaling modulator 2 in hepatocellular carcinoma facilitates tumor growth and metastasis by activating the PI3K/AKT signaling pathway.

    Science.gov (United States)

    He, Xiao-Qin; Zhang, Yue-Feng; Yu, Jia-Jun; Gan, Yuan-Yuan; Han, Na-Na; Zhang, Mei-Xia; Ge, Wei; Deng, Jun-Jian; Zheng, Yong-Fa; Xu, Xi-Ming

    2017-03-01

    The aim of this study was to investigate the role of G-protein signaling modulator 2 in the carcinogenesis and progression of hepatocellular carcinoma. We previously showed that G-protein signaling modulator 2 was upregulated in hepatitis B virus-related hepatocellular carcinoma tissues through a hierarchical clustering analysis. With this study, we first assessed the expression pattern of G-protein signaling modulator 2 in hepatocellular carcinoma specimens and adjacent noncancerous tissues; clinical data were analyzed, along survival times, utilizing the Kaplan-Meier method. Moreover, the functions of G-protein signaling modulator 2 were examined using small-interfering RNAs in vitro. The results showed that G-protein signaling modulator 2 was clearly overexpressed in hepatocellular carcinoma tissues and cell lines and that the G-protein signaling modulator 2 expression level was related to tumor size and hepatitis B virus infection. Furthermore, G-protein signaling modulator 2 knockdown studies suggested that G-protein signaling modulator 2 accelerates cell growth, cell cycle, migration, and invasion and inhibits apoptosis, acting as an oncogene in hepatocellular carcinoma. Western blotting indicated that silencing of G-protein signaling modulator 2 in HepG2 and SMMC-7721 cells increased the expression levels of Bax, caspase-3, and E-cadherin, while notably suppressing the cyclin-dependent kinase 4, cyclin-dependent kinase 6, CyclinD1, Snail1, Vimentin, and matrix metallopeptidase 9 expression levels, compared with that in the control groups. In addition, we found that G-protein signaling modulator 2 can affect the expression of key proteins involved in protein kinase B activation. In conclusion, high expression of G-protein signaling modulator 2 was involved in the pathological processes of hepatocellular carcinoma through activation of the phosphatidylinositol 3-kinase/protein kinase B signaling pathway, which may provide an attractive potential diagnostic

  15. Passivated silicon ribbon solar cells and modules. Final report; Passivierte Siliciumfolien-Solarzellen und -module (PFS). Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, W.; Heit, W.; Lauinger, T.; Roth, P.; Schum, B.

    2000-06-01

    This project was organised into three main work packages. (a) The outcome of the characterisation of silicon materials and specially silicon ribbons was the elaboration of a specification for EFG (edge-defined film-fed growth) silicon wafers. Moreover, for final inspection of EFG solar cells, methods suitable for continuous operation were developed. RGS silicon ribbons were characterised together with institutes. (b) The solar cell development activities lead to the definition of a new simple process sequence and related continuous production techniques for the automated production of passivated silicon ribbon solar cells. Combined with the EFG wafer specification, the achieved results formed the base for the design of a new fully automated continuous pilot production line. The developed solar cell processing technologies were successfully approved in this line: Mean efficiencies of 14% for EFG silicon ribbon and 14.5 to 15% for cast multicrystalline silicon wafers were achieved. A main result of the module development was the elaboration of interconnection and encapsulation technologies suitable for EfG silicon ribbon solar cells. In addition, extensive studies of module failure mechanisms were successfully completed, thereby contributing to knowledge about module design for enhanced lifetime. (orig.) [German] In diesem Vorhaben wurden drei Schwerpunktthemen bearbeitet. (a) Die Materialcharakterisierung, insbesondere von Siliciumfolien, muendete in die Erstellung einer Spezifikation fuer EFG (edge-defined film-fed growth)-Siliciumfolien. Darueber hinaus wurden fuer die Endkontrolle von EFG-Siliciumfoliensolarzellen geeignete Durchlaufkonzepte und Pruefverfahren entwickelt. RGS-Folien wurden in Zusammenarbeit mit Instituten charakterisiert. (b) Die Solarzellenentwicklung fuehrte zu einer einfachen Prozessfolge und den zugehoerigen neuartigen Durchlaufverfahren fuer eine vollautomatische Herstellung von hocheffizienten passivierten Siliciumfoliensolarzellen

  16. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells.

    Science.gov (United States)

    Payton-Stewart, Florastina; Tilghman, Syreeta L; Williams, LaKeisha G; Winfield, Leyte L

    2014-08-08

    Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules upregulate ERβ activity while down regulating that of ERα.

  17. Performance of Photovoltaic Modules of Different Solar Cells

    Directory of Open Access Journals (Sweden)

    Ankita Gaur

    2013-01-01

    Full Text Available In this paper, an attempt of performance evaluation of semitransparent and opaque photovoltaic (PV modules of different generation solar cells, having the maximum efficiencies reported in the literature at standard test conditions (STC, has been carried out particularly for the months of January and June. The outdoor performance is also evaluated for the commercially available semitransparent and opaque PV modules. Annual electrical energy, capitalized cost, annualized uniform cost (unacost, and cost per unit electrical energy for both types of solar modules, namely, semitransparent and opaque have also been computed along with their characteristics curves. Semitransparent PV modules have shown higher efficiencies compared to the opaque ones. Calculations show that for the PV modules made in laboratory, CdTe exhibits the maximum annual electrical energy generation resulting into minimum cost per unit electrical energy, whereas a-Si/nc-Si possesses the maximum annual electrical energy generation giving minimum cost per unit electrical energy when commercially available solar modules are concerned. CIGS has shown the lowest capitalized cost over all other PV technologies.

  18. Modulation of Vascular Cell Function by Bim Expression

    Directory of Open Access Journals (Sweden)

    Margaret E. Morrison

    2013-01-01

    Full Text Available Apoptosis of vascular cells, including pericytes and endothelial cells, contributes to disease pathogenesis in which vascular rarefaction plays a central role. Bim is a proapoptotic protein that modulates not only apoptosis but also cellular functions such as migration and extracellular matrix (ECM protein expression. Endothelial cells and pericytes each make a unique contribution to vascular formation and function although the details require further delineation. Here we set out to determine the cell autonomous impact of Bim expression on retinal endothelial cell and pericyte function using cells prepared from Bim deficient (Bim−/− mice. Bim−/− endothelial cells displayed an increased production of ECM proteins, proliferation, migration, adhesion, and VEGF expression but, a decreased eNOS expression and nitric oxide production. In contrast, pericyte proliferation decreased in the absence of Bim while migration, adhesion, and VEGF expression were increased. In addition, we demonstrated that the coculturing of either wild-type or Bim−/− endothelial cells with Bim−/− pericytes diminished their capillary morphogenesis. Thus, our data further emphasizes the importance of vascular cell autonomous regulatory mechanisms in modulation of vascular function.

  19. Modulation of vascular cell function by bim expression.

    Science.gov (United States)

    Morrison, Margaret E; Palenski, Tammy L; Jamali, Nasim; Sheibani, Nader; Sorenson, Christine M

    2013-01-01

    Apoptosis of vascular cells, including pericytes and endothelial cells, contributes to disease pathogenesis in which vascular rarefaction plays a central role. Bim is a proapoptotic protein that modulates not only apoptosis but also cellular functions such as migration and extracellular matrix (ECM) protein expression. Endothelial cells and pericytes each make a unique contribution to vascular formation and function although the details require further delineation. Here we set out to determine the cell autonomous impact of Bim expression on retinal endothelial cell and pericyte function using cells prepared from Bim deficient (Bim(-/-)) mice. Bim(-/-) endothelial cells displayed an increased production of ECM proteins, proliferation, migration, adhesion, and VEGF expression but, a decreased eNOS expression and nitric oxide production. In contrast, pericyte proliferation decreased in the absence of Bim while migration, adhesion, and VEGF expression were increased. In addition, we demonstrated that the coculturing of either wild-type or Bim(-/-) endothelial cells with Bim(-/-) pericytes diminished their capillary morphogenesis. Thus, our data further emphasizes the importance of vascular cell autonomous regulatory mechanisms in modulation of vascular function.

  20. Exogenous γ-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase.

    Science.gov (United States)

    Yu, Guang-Hui; Zou, Jie; Feng, Jing; Peng, Xiong-Bo; Wu, Ju-You; Wu, Ying-Liang; Palanivelu, Ravishankar; Sun, Meng-Xiang

    2014-07-01

    γ-Aminobutyric acid (GABA) is implicated in pollen tube growth, but the molecular and cellular mechanisms that it mediates are largely unknown. Here, it is shown that exogenous GABA modulates putative Ca(2+)-permeable channels on the plasma membranes of tobacco pollen grains and pollen tubes. Whole-cell voltage-clamp experiments and non-invasive micromeasurement technology (NMT) revealed that the influx of Ca(2+) increases in pollen tubes in response to exogenous GABA. It is also demonstrated that glutamate decarboxylase (GAD), the rate-limiting enzyme of GABA biosynthesis, is involved in feedback controls of Ca(2+)-permeable channels to fluctuate intracellular GABA levels and thus modulate pollen tube growth. The findings suggest that GAD activity linked with Ca(2+)-permeable channels relays an extracellular GABA signal and integrates multiple signal pathways to modulate tobacco pollen tube growth. Thus, the data explain how GABA mediates the communication between the style and the growing pollen tubes.

  1. Glycogen Synthase Kinase-3 regulates multiple myeloma cell growth and bortezomib-induced cell death

    Directory of Open Access Journals (Sweden)

    Colpo Anna

    2010-10-01

    Full Text Available Abstract Background Glycogen Synthase Kinase-3 (GSK-3 α and β are two serine-threonine kinases controlling insulin, Wnt/β-catenin, NF-κB signaling and other cancer-associated transduction pathways. Recent evidence suggests that GSK-3 could function as growth-promoting kinases, especially in malignant cells. In this study, we have investigated GSK-3α and GSK-3β function in multiple myeloma (MM. Methods GSK-3 α and β expression and cellular localization were investigated by Western blot (WB and immunofluorescence analysis in a panel of MM cell lines and in freshly isolated plasma cells from patients. MM cell growth, viability and sensitivity to bortezomib was assessed upon treatment with GSK-3 specific inhibitors or transfection with siRNAs against GSK-3 α and β isoforms. Survival signaling pathways were studied with WB analysis. Results GSK-3α and GSK-3β were differently expressed and phosphorylated in MM cells. Inhibition of GSK-3 with the ATP-competitive, small chemical compounds SB216763 and SB415286 caused MM cell growth arrest and apoptosis through the activation of the intrinsic pathway. Importantly, the two inhibitors augmented the bortezomib-induced MM cell cytotoxicity. RNA interference experiments showed that the two GSK-3 isoforms have distinct roles: GSK-3β knock down decreased MM cell viability, while GSK-3α knock down was associated with a higher rate of bortezomib-induced cytotoxicity. GSK-3 inhibition caused accumulation of β-catenin and nuclear phospho-ERK1, 2. Moreover, GSK-3 inhibition and GSK-3α knockdown enhanced bortezomib-induced AKT and MCL-1 protein degradation. Interestingly, bortezomib caused a reduction of GSK-3 serine phosphorylation and its nuclear accumulation with a mechanism that resulted partly dependent on GSK-3 itself. Conclusions These data suggest that in MM cells GSK-3α and β i play distinct roles in cell survival and ii modulate the sensitivity to proteasome inhibitors.

  2. Phase-field modeling of submonolayer growth with the modulated nucleation regime

    Energy Technology Data Exchange (ETDEWEB)

    Dong, X.L.; Xing, H.; Chen, C.L., E-mail: chenchl@nwpu.edu.cn; Wang, J.Y.; Jin, K.X.

    2015-10-16

    In this letter, we perform the phase-field simulations to investigate nucleation regime of submonolayer growth via a quantified nucleation term. Results show that the nucleation related kinetic coefficients have changed the density of islands and critical sizes to modulate the nucleation regime. The scaling behavior of the island density can be agreed with the classical theory only when effects of modulations have been quantified. We expect to produce the quantitative descriptions of nucleation for submonolayer growth in phase-field models. - Highlights: • The phase-field simulations are systematically compared with the classical nucleation rate theory. • The modulations of nucleation regime by the different kinetic coefficients have been studied. • Appropriate kinetic coefficients contribute to the agreed nucleation regime with the scaling law.

  3. Progestin treatment induces apoptosis and modulates transforming growth factor-beta in the uterine endometrium.

    Science.gov (United States)

    Rodriguez, Gustavo C; Rimel, B J; Watkin, William; Turbov, Jane M; Barry, Cathy; Du, Hongyan; Maxwell, George L; Cline, J M

    2008-03-01

    Epidemiologic, animal, and human data suggest that progestins are potent endometrial cancer preventive agents. In the ovarian surface epithelium, progestins have been hypothesized to confer a cancer preventive effect via apoptosis and modulation of transforming growth factor-beta (TGF-beta). Given that the ovarian epithelium and endometrium share a common embryologic origin and similar reproductive and hormonal risk factors for malignancy, we tested the hypothesis that progestins confer biological effects in the endometrium similar to those in the ovary. Postmenopausal female macaques (n = 78) were randomized into four groups to receive a diet for 36 months containing no hormone versus conjugated equine estrogen (CEE), medroxyprogesterone acetate (MPA), or CEE + MPA. The endometrium was then examined immunohistochemically for treatment-specific changes using antibodies to activated caspase-3 (for apoptosis), Ki-67 (proliferation), and the TGF-beta1, TGF-beta2, and TGF-beta3 isoforms. Percentages of caspase-positive endometrial glandular cells were 3- to 5-fold higher in CEE + MPA-treated animals compared with all others (P < 0.05). Caspase-expressing cells were six times more numerous in the endometrial stroma of animals treated with MPA alone relative to other groups (P < 0.0001). Induction of endometrial glandular cell apoptosis in the CEE + MPA-treated group was associated with a dramatic increase in expression of TGF-beta2 and TGF-beta3 in the stromal compartment of the endometrium (P < 0.0001). Progestin treatment activates chemopreventive biological effects in the endometrium that are similar to those in the ovarian surface epithelium. These data may facilitate identification of a chemopreventive approach that dramatically lessens the risk of both uterine and ovarian cancer.

  4. Infrared modulation spectroscopy of interfaces in amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Kai; Schiff, E.A. [Department of Physics, Syracuse University, 13244-1130 Syracuse, NY (United States); Ganguly, G. [BP Solar, 23168 Toano, VA (United States)

    2002-04-01

    We report infrared depletion modulation spectra for near-interface states in a-Si pin solar cells. The effect of additional visible illumination (optical bias) was explored as a means to separate the spectra for n/i and p/i interface states. We found a sharp, optical bias-induced spectral line near 0.8 eV. We attribute this line due to internal optical transitions of dopant-defect complexes in the a-SiC:H:B p-layer of the cells. We discuss the spatial location of the depletion modulation regions, and suggest that this location shifts across the n/i and p/i interfaces for cells with differing deposition and illumination conditions.

  5. Omeprazole inhibits proliferation and modulates autophagy in pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Andrej Udelnow

    Full Text Available BACKGROUND: Omeprazole has recently been described as a modulator of tumour chemoresistance, although its underlying molecular mechanisms remain controversial. Since pancreatic tumours are highly chemoresistant, a logical step would be to investigate the pharmacodynamic, morphological and biochemical effects of omeprazole on pancreatic cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS: Dose-effect curves of omeprazole, pantoprazole, gemcitabine, 5-fluorouracil and the combinations of omeprazole and 5-fluorouracil or gemcitabine were generated for the pancreatic cancer cell lines MiaPaCa-2, ASPC-1, Colo357, PancTu-1, Panc1 and Panc89. They revealed that omeprazole inhibited proliferation at probably non-toxic concentrations and reversed the hormesis phenomena of 5-fluorouracil. Electron microscopy showed that omeprazole led to accumulation of phagophores and early autophagosomes in ASPC-1 and MiaPaCa-2 cells. Signal changes indicating inhibited proliferation and programmed cell death were found by proton NMR spectroscopy of both cell lines when treated with omeprazole which was identified intracellularly. Omeprazole modulates the lysosomal transport pathway as shown by Western blot analysis of the expression of LAMP-1, Cathepsin-D and β-COP in lysosome- and Golgi complex containing cell fractions. Acridine orange staining revealed that the pump function of the vATPase was not specifically inhibited by omeprazole. Gene expression of the autophagy-related LC3 gene as well as of Bad, Mdr-1, Atg12 and the vATPase was analysed after treatment of cells with 5-fluorouracil and omeprazole and confirmed the above mentioned results. CONCLUSIONS: We hypothesise that omeprazole interacts with the regulatory functions of the vATPase without inhibiting its pump function. A modulation of the lysosomal transport pathway and autophagy is caused in pancreatic cancer cells leading to programmed cell death. This may circumvent common resistance mechanisms of

  6. [Stem cells and growth factors in wound healing].

    Science.gov (United States)

    Pikuła, Michał; Langa, Paulina; Kosikowska, Paulina; Trzonkowski, Piotr

    2015-01-02

    Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound healing. Among the most important cells which take part in wound healing the following cells need to be distinguished: epidermal stem cells, dermal precursor of fibroblasts, adipose-derived stem cells as well as bone marrow cells. The activity of these cells is strictly regulated by various growth factors, inter alia epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), vascular endothelial growth factor (VEGF). Any disorders in functioning of stem cells and biological activity of growth factors may lead to the defects in wound healing, for instance delayed wound healing or creation of hypertrophic scars. Therefore, knowledge concerning the mechanisms of wound healing is extremely essential from clinical point of view. In this review the current state of the knowledge of the role of stem cells and growth factors in the process of wound healing has been presented. Moreover, some clinical aspects of wound healing as well as the possibility of the therapy based on stem cells and growth factors have included.

  7. Stem cells and growth factors in wound healing

    Directory of Open Access Journals (Sweden)

    Michał Pikuła

    2015-01-01

    Full Text Available Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound healing. Among the most important cells which take part in wound healing the following cells need to be distinguished: epidermal stem cells, dermal precursor of fibroblasts, adipose-derived stem cells as well as bone marrow cells. The activity of these cells is strictly regulated by various growth factors, inter alia epidermal growth factor (EGF, fibroblast growth factor (FGF, platelet-derived growth factor (PDGF, transforming growth factor (TGF, vascular endothelial growth factor (VEGF. Any disorders in functioning of stem cells and biological activity of growth factors may lead to the defects in wound healing, for instance delayed wound healing or creation of hypertrophic scars. Therefore, knowledge concerning the mechanisms of wound healing is extremely essential from clinical point of view. In this review the current state of the knowledge of the role of stem cells and growth factors in the process of wound healing has been presented. Moreover, some clinical aspects of wound healing as well as the possibility of the therapy based on stem cells and growth factors have included.

  8. Conditioned medium from neural stem cells inhibits glioma cell growth.

    Science.gov (United States)

    Li, Z; Zhong, Q; Liu, H; Liu, P; Wu, J; Ma, D; Chen, X; Yang, X

    2016-10-31

    Malignant glioma is one of the most common brain tumors in the central nervous system. Although the significant progress has been made in recent years, the mortality is still high and 5-year survival rate is still very low. One of the leading causes to the high mortality for glioma patients is metastasis and invasion. An efficient method to control the tumor metastasis is a promising way to treat the glioma. Previous reports indicated that neural stem cells (NSCs) were served as a delivery vector to the anti-glioma therapy. Here, we used the conditioned medium from rat NSCs (NSC-CM) to culture the human glioblastoma cell lines. We found that NSC-CM could inhibit the glioma cell growth, invasion and migration in vitro and attenuate the tumor growth in vivo. Furthermore, this anti-glioma effect was mediated by the inactivation of mitogen activated protein kinase (MAPK) pathway. Above all, this study provided the direct evidence to put forward a simple and efficient method in the inhibition of glioma cells/tumor growth, potentially advancing the anti-glioma therapy.

  9. Salmonella Modulates Metabolism During Growth under Conditions that Induce Expression of Virulence Genes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Mo; Schmidt, Brian; Kidwai, Afshan S.; Jones, Marcus B.; Deatherage, Brooke L.; Brewer, Heather M.; Mitchell, Hugh D.; Palsson, Bernhard O.; McDermott, Jason E.; Heffron, Fred; Smith, Richard D.; Peterson, Scott N.; Ansong, Charles; Hyduke, Daniel R.; Metz, Thomas O.; Adkins, Joshua N.

    2013-04-05

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Excitingly, we observed possible sequestration of metabolites recently suggested to have immune modulating roles. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Model-guided analysis suggested that alterations in metabolism prioritized other activities necessary for pathogenesis instead, such as lipopolysaccharide biosynthesis.

  10. An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems

    Science.gov (United States)

    Alemayehu, Tadesse; van Griensven, Ann; Taddesse Woldegiorgis, Befekadu; Bauwens, Willy

    2017-09-01

    The Soil and Water Assessment Tool (SWAT) is a globally applied river basin ecohydrological model used in a wide spectrum of studies, ranging from land use change and climate change impacts studies to research for the development of the best water management practices. However, SWAT has limitations in simulating the seasonal growth cycles for trees and perennial vegetation in the tropics, where rainfall rather than temperature is the dominant plant growth controlling factor. Our goal is to improve the vegetation growth module of SWAT for simulating the vegetation variables - such as the leaf area index (LAI) - for tropical ecosystems. Therefore, we present a modified SWAT version for the tropics (SWAT-T) that uses a straightforward but robust soil moisture index (SMI) - a quotient of rainfall (P) and reference evapotranspiration (ETr) - to dynamically initiate a new growth cycle within a predefined period. Our results for the Mara Basin (Kenya/Tanzania) show that the SWAT-T-simulated LAI corresponds well with the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI for evergreen forest, savanna grassland and shrubland. This indicates that the SMI is reliable for triggering a new annual growth cycle. The water balance components (evapotranspiration and streamflow) simulated by the SWAT-T exhibit a good agreement with remote-sensing-based evapotranspiration (ET-RS) and observed streamflow. The SWAT-T model, with the proposed vegetation growth module for tropical ecosystems, can be a robust tool for simulating the vegetation growth dynamics in hydrologic models in tropical regions.

  11. Vertebrate Cell Cycle Modulates Infection by Protozoan Parasites

    Science.gov (United States)

    Dvorak, James A.; Crane, Mark St. J.

    1981-11-01

    Synchronized HeLa cell populations were exposed to Trypanosoma cruzi or Toxoplasma gondii, obligate intracellular protozoan parasites that cause Chagas' disease and toxoplasmosis, respectively, in humans. The ability of the two parasites to infect HeLa cells increased as the HeLa cells proceeded from the G1 phase to the S phase of their growth cycle and decreased as the cells entered G2-M. Characterization of the S-phase cell surface components responsible for this phenomenon could be beneficial in the development of vaccines against these parasitic diseases.

  12. Development of High-Throughput Phenotyping of Metagenomic Clones from the Human Gut Microbiome for Modulation of Eukaryotic Cell Growth▿

    OpenAIRE

    2007-01-01

    Metagenomic libraries derived from human intestinal microbiota (20,725 clones) were screened for epithelial cell growth modulation. Modulatory clones belonging to the four phyla represented among the metagenomic libraries were identified (hit rate, 0.04 to 8.7% depending on the screening cutoff). Several candidate loci were identified by transposon mutagenesis and subcloning.

  13. Amygdalin delays cell cycle progression and blocks growth of prostate cancer cells in vitro.

    Science.gov (United States)

    Makarević, Jasmina; Tsaur, Igor; Juengel, Eva; Borgmann, Hendrik; Nelson, Karen; Thomas, Christian; Bartsch, Georg; Haferkamp, Axel; Blaheta, Roman A

    2016-02-15

    Despite impressive survival benefits from new agents to treat metastasized prostate cancer (PCa), progressive drug resistance hinders long-term response and restricts the efficacy of subsequent therapy. Due to reported antitumor activity of amygdalin and growing popularity for complementary and alternative medicine the potential of this natural, widely used substance to exert antineoplastic effects on prostate cancer cells has been assessed. LNCaP (castration-sensitive), DU-145 and PC3 cells (castration-resistant) were exposed to different concentrations of amygdalin for 24h or 2weeks. Cell growth was measured by the MTT test, clonal formation by the clonogenic assay. Flow cytometry served to investigate apoptosis and cell cycle phases. Cell cycle regulating proteins and the mTOR-akt signaling axis were analyzed by western blotting. Amygdalin dose-dependently diminished tumor cell growth with maximum effects at 10mg/ml. Apoptosis of PC3 and LNCaP but not of DU-145 cells was reduced, whereas colony formation was suppressed in all cell lines. A decrease in the number of G2/M- and S-phase cells along with an elevated number of G0/G1-phase cells was recorded. The cell cycle proteins cdk 1, cdk 2 and cdk 4 as well as cyclin A, cyclin B and cyclin D3 were modulated by amygdalin after both 24h and 2weeks. Distinct effects on p19 and p27 expression and on Akt, Rictor and Raptor activation became evident only after 2weeks. Amygdalin exhibits significant antitumor activity in both castration-sensitive and castration-resistant PCa cell lines and merits further evaluation for therapeutic purposes. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Cell adhesion in zebrafish embryos is modulated by March 8.

    Science.gov (United States)

    Kim, Mi Ha; Rebbert, Martha L; Ro, Hyunju; Won, Minho; Dawid, Igor B

    2014-01-01

    March 8 is a member of a family of transmembrane E3 ubiquitin ligases that have been studied mostly for their role in the immune system. We find that March 8 is expressed in the zebrafish egg and early embryo, suggesting a role in development. Both knock-down and overexpression of March 8 leads to abnormal development. The phenotype of zebrafish embryos and Xenopus animal explants overexpressing March 8 implicates impairment of cell adhesion as a cause of the effect. In zebrafish embryos and in cultured cells, overexpression of March 8 leads to a reduction in the surface levels of E-cadherin, a major cell-cell adhesion molecule. Experiments in cell culture further show that E-cadherin can be ubiquitinated by March 8. On the basis of these observations we suggest that March 8 functions in the embryo to modulate the strength of cell adhesion by regulating the localization of E-cadherin.

  15. Leukemia Mediated Endothelial Cell Activation Modulates Leukemia Cell Susceptibility to Chemotherapy through a Positive Feedback Loop Mechanism.

    Directory of Open Access Journals (Sweden)

    Bahareh Pezeshkian

    Full Text Available In acute myeloid leukemia (AML, the chances of achieving disease-free survival are low. Studies have demonstrated a supportive role of endothelial cells (ECs in normal hematopoiesis. Here we show that similar intercellular relationships exist in leukemia. We demonstrate that leukemia cells themselves initiate these interactions by directly modulating the behavior of resting ECs through the induction of EC activation. In this inflammatory state, activated ECs induce the adhesion of a sub-set of leukemia cells through the cell adhesion molecule E-selectin. These adherent leukemia cells are sequestered in a quiescent state and are unaffected by chemotherapy. The ability of adherent cells to later detach and again become proliferative following exposure to chemotherapy suggests a role of this process in relapse. Interestingly, differing leukemia subtypes modulate this process to varying degrees, which may explain the varied response of AML patients to chemotherapy and relapse rates. Finally, because leukemia cells themselves induce EC activation, we postulate a positive-feedback loop in leukemia that exists to support the growth and relapse of the disease. Together, the data defines a new mechanism describing how ECs and leukemia cells interact during leukemogenesis, which could be used to develop novel treatments for those with AML.

  16. New test and characterization methods for PV modules and cells

    Energy Technology Data Exchange (ETDEWEB)

    Van Aken, B.; Sommeling, P. [ECN Solar Energy, Petten (Netherlands); Scholten, H. [Solland, Heerlen (Netherlands); Muller, J. [Moser-Baer, Eindhoven (Netherlands); Grossiord, N. [Holst Centre, Eindhoven (Netherlands); Smits, C.; Blanco Mantecon, M. [Holland Innovative, Eindhoven (Netherlands); Verheijen, M.; Van Berkum, J. [Philips Innovation Services, Eindhoven (Netherlands)

    2012-08-15

    The results of the project geZONd (shared facility for solar module analysis and reliability testing) are described. The project was set up by Philips, ECN, Holst, Solland, OM and T and Holland Innovative. The partners have shared most of their testing and analysis equipment for PV modules and cells, and together developed new or improved methods (including the necessary application know-how). This enables faster and more efficient innovation projects for each partner, and via commercial exploitation for other interested parties. The project has concentrated on five failure modes: corrosion, delamination, moisture ingress, UV irradiation, and mechanical bending. Test samples represented all main PV technologies: wafer based PV and rigid and flexible thin-film PV. Breakthroughs are in very early detection of corrosion, in quantitative characterization of adhesion, in-situ detection of humidity and oxygen inside modules, and ultra-fast screening of materials on UV stability.

  17. Growth cone neurotransmitter receptor activation modulates electric field-guided nerve growth.

    Science.gov (United States)

    Erskine, L; McCaig, C D

    1995-10-01

    We have studied the interactions between two nerve guidance cues, which alone induce substantial growth cone turning: endogenous neurotransmitters and small dc electric fields. d-tubocurarine, a nicotinic AChR (acetylcholine receptor) antagonist, inhibited field-induced cathodal orientation of cultured neurites, whereas atropine, a muscarinic AChR blocker, and suramin, a P2-purinoceptor antagonist, markedly enhanced the guidance properties of the applied field. These experiments implicate the activation of growth cone nicotinic AChRs by self-released acetylcholine in the mechanism underpinning electric field-induced neurite orientation and raise the possibility that growth cones release neurotransmitter prior to target interaction in order to assist their own pathfinding. Additionally, they provide the first evidence that coactivation of several neurotransmitter receptors may interact to regulate directed nerve growth. Such interaction in vivo, where guidance signals coexist, would add further levels of control to neurite guidance.

  18. Comparison of photovoltaic cell temperatures in modules operating with exposed and enclosed back surfaces

    Science.gov (United States)

    Namkoong, D.; Simon, F. F.

    1981-01-01

    Four different photovoltaic module designs were tested to determine the cell temperature of each design. The cell temperatures were compared to those obtained on identical design, using the same nominal operating cell temperature (NOCT) concept. The results showed that the NOCT procedure does not apply to the enclosed configurations due to continuous transient conditions. The enclosed modules had higher cell temperatures than the open modules, and insulated modules higher than the uninsulated. The severest performance loss - when translated from cell temperatures - 17.5 % for one enclosed, insulated module as a compared to that module mounted openly.

  19. Hubble Space Telescope solar cell module thermal cycle test

    Science.gov (United States)

    Douglas, Alexander; Edge, Ted; Willowby, Douglas; Gerlach, Lothar

    1992-01-01

    The Hubble Space Telescope (HST) solar array consists of two identical double roll-out wings designed after the Hughes flexible roll-up solar array (FRUSA) and was developed by the European Space Agency (ESA) to meet specified HST power output requirements at the end of 2 years, with a functional lifetime of 5 years. The requirement that the HST solar array remain functional both mechanically and electrically during its 5-year lifetime meant that the array must withstand 30,000 low Earth orbit (LEO) thermal cycles between approximately +100 and -100 C. In order to evaluate the ability of the array to meet this requirement, an accelerated thermal cycle test in vacuum was conducted at NASA's Marshall Space Flight Center (MSFC), using two 128-cell solar array modules which duplicated the flight HST solar array. Several other tests were performed on the modules. The thermal cycle test was interrupted after 2,577 cycles, and a 'cold-roll' test was performed on one of the modules in order to evaluate the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit. A posttest static shadow test was performed on one of the modules in order to analyze temperature gradients across the module. Finally, current in-flight electrical performance data from the actual HST flight solar array will be tested.

  20. The histone deacetylase inhibitor Trichostatin A modulates CD4+ T cell responses

    Directory of Open Access Journals (Sweden)

    Moreira José

    2003-11-01

    Full Text Available Abstract Background Histone deacetylase inhibitors (HDACIs induce hyperacetylation of core histones modulating chromatin structure and affecting gene expression. These compounds are also able to induce growth arrest, cell differentiation, and apoptotic cell death of tumor cells in vitro as well as in vivo. Even though several genes modulated by HDAC inhibition have been identified, those genes clearly responsible for the biological effects of these drugs have remained elusive. We investigated the pharmacological effect of the HDACI and potential anti-cancer agent Trichostatin A (TSA on primary T cells. Methods To ascertain the effect of TSA on resting and activated T cells we used a model system where an enriched cell population consisting of primary T-cells was stimulated in vitro with immobilized anti-CD3/anti-CD28 antibodies whilst exposed to pharmacological concentrations of Trichostatin A. Results We found that this drug causes a rapid decline in cytokine expression, accumulation of cells in the G1 phase of the cell cycle, and induces apoptotic cell death. The mitochondrial respiratory chain (MRC plays a critical role in the apoptotic response to TSA, as dissipation of mitochondrial membrane potential and reactive oxygen species (ROS scavengers block TSA-induced T-cell death. Treatment of T cells with TSA results in the altered expression of a subset of genes involved in T cell responses, as assessed by microarray gene expression profiling. We also observed up- as well as down-regulation of various costimulatory/adhesion molecules, such as CD28 and CD154, important for T-cell function. Conclusions Taken together, our findings indicate that HDAC inhibitors have an immunomodulatory potential that may contribute to the potency and specificity of these antineoplastic compounds and might be useful in the treatment of autoimmune disorders.

  1. 6-Gingerol inhibits hair shaft growth in cultured human hair follicles and modulates hair growth in mice.

    Directory of Open Access Journals (Sweden)

    Yong Miao

    Full Text Available Ginger (Zingiber officinale has been traditionally used to check hair loss and stimulate hair growth in East Asia. Several companies produce shampoo containing an extract of ginger claimed to have anti-hair loss and hair growth promotion properties. However, there is no scientific evidence to back up these claims. This study was undertaken to measure 6-gingerol, the main active component of ginger, on hair shaft elongation in vitro and hair growth in vivo, and to investigate its effect on human dermal papilla cells (DPCs in vivo and in vitro. 6-Gingerol suppressed hair growth in hair follicles in culture and the proliferation of cultured DPCs. The growth inhibition of DPCs by 6-gingerol in vitro may reflect a decrease in the Bcl-2/Bax ratio. Similar results were obtained in vivo. The results of this study showed that 6-gingerol does not have the ability to promote hair growth, on the contrary, can suppress human hair growth via its inhibitory and pro-apoptotic effects on DPCs in vitro, and can cause prolongation of telogen phase in vivo. Thus, 6-gingerol rather than being a hair growth stimulating drug, it is a potential hair growth suppressive drug; i.e. for hair removal.

  2. CdTe Thin Film Solar Cells and Modules Tutorial; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Albin, David S.

    2015-06-13

    This is a tutorial presented at the 42nd IEEE Photovoltaics Specialists Conference to cover the introduction, background, and updates on CdTe cell and module technology, including CdTe cell and module structure and fabrication.

  3. Identification of Two New Mechanisms That Regulate Fruit Growth by Cell Expansion in Tomato

    Directory of Open Access Journals (Sweden)

    Constance Musseau

    2017-06-01

    Full Text Available Key mechanisms controlling fruit weight and shape at the levels of meristem, ovary or very young fruit have already been identified using natural tomato diversity. We reasoned that new developmental modules prominent at later stages of fruit growth could be discovered by using new genetic and phenotypic diversity generated by saturated mutagenesis. Twelve fruit weight and tissue morphology mutants likely affected in late fruit growth were selected among thousands of fruit size and shape EMS mutants available in our tomato EMS mutant collection. Their thorough characterization at organ, tissue and cellular levels revealed two major clusters controlling fruit growth and tissue morphogenesis either through (i the growth of all fruit tissues through isotropic cell expansion or (ii only the growth of the pericarp through anisotropic cell expansion. These likely correspond to new cell expansion modules controlling fruit growth and tissue morphogenesis in tomato. Our study therefore opens the way for the identification of new gene regulatory networks controlling tomato fruit growth and morphology.

  4. B cells as a target of immune modulation

    Directory of Open Access Journals (Sweden)

    Hawker Kathleen

    2009-01-01

    Full Text Available B cells have recently been identified as an integral component of the immune system; they play a part in autoimmunity through antigen presentation, antibody secretion, and complement activation. Animal models of multiple sclerosis (MS suggest that myelin destruction is partly mediated through B cell activation (and plasmablasts. MS patients with evidence of B cell involvement, as compared to those without, tend to have a worse prognosis. Finally, the significant decrease in new gadolinium-enhancing lesions, new T2 lesions, and relapses in MS patients treated with rituximab (a monoclonal antibody against CD20 on B cells leads us to the conclusion that B cells play an important role in MS and that immune modulation of these cells may ameliorate the disease. This article will explore the role of B cells in MS and the rationale for the development of B cell-targeted therapeutics. MS is an immune-mediated disease that affects over 2 million people worldwide and is the number one cause of disability in young patients. Most therapeutic targets have focused on T cells; however, recently, the focus has shifted to the role of B cells in the pathogenesis of MS and the potential of B cells as a therapeutic target.

  5. Effect of NCAM-transfection on growth and invasion of a human cancer cell line

    DEFF Research Database (Denmark)

    Edvardsen, K; Bock, E; Jirus, S

    1997-01-01

    A cDNA encoding the human transmembrane 140 kDa isoform of the neural cell adhesion molecule (NCAM) was transfected into the highly invasive MDA-MB-231 human breast cancer cell line. Transfectants with a homogeneous expression of NCAM showed a restricted capacity for penetration of an artificial...... basement membrane. However, when injected into nude mice, both control and NCAM-expressing cell lines produced equally invasive tumors. Tumors generated from NCAM-transfected cells were heterogeneous, containing NCAM-positive as well as NCAM-negative areas, indicating the existence of host factors capable...... of modulating NCAM expression in vivo. In nude mice, NCAM-transfected cells developed tumors with longer latency periods and slower growth rates than tumors induced by NCAM-negative control cells, implying that NCAM may be involved not only in adhesive and motile behavior of tumor cells but also in their growth...

  6. Radio-frequency-modulated Rydberg states in a vapor cell

    CERN Document Server

    Miller, Stephanie A; Raithel, Georg

    2016-01-01

    We measure strong radio-frequency (RF) electric fields using rubidium Rydberg atoms prepared in a room-temperature vapor cell as field sensors. Electromagnetically induced transparency is employed as an optical readout. We RF-modulate the 60$S_{1/2}$ and 58$D_{5/2}$ Rydberg states with 50~MHz and 100~MHz fields, respectively. For weak to moderate RF fields, the Rydberg levels become Stark-shifted, and sidebands appear at even multiples of the driving frequency. In high fields, the adjacent hydrogenic manifold begins to intersect the shifted levels, providing rich spectroscopic structure suitable for precision field measurements. A quantitative description of strong-field level modulation and mixing of $S$ and $D$ states with hydrogenic states is provided by Floquet theory. Additionally, we estimate the shielding of DC electric fields in the interior of the glass vapor cell.

  7. Morpholino-Mediated Isoform Modulation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) Reduces Colon Cancer Xenograft Growth

    Energy Technology Data Exchange (ETDEWEB)

    Stagg, Brian C., E-mail: briancstagg@gmail.com; Uehara, Hironori; Lambert, Nathan; Rai, Ruju; Gupta, Isha; Radmall, Bryce; Bates, Taylor; Ambati, Balamurali K. [John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132 (United States)

    2014-11-26

    Angiogenesis plays a key role in tumor growth. Vascular endothelial growth factor (VEGF) is a pro-angiogenic that is involved in tumor angiogenesis. When VEGF binds to membrane-bound vascular endothelial growth factor receptor 2 (mVEGFR2), it promotes angiogenesis. Through alternative polyadenylation, VEGFR2 is also expressed in a soluble form (sVEGFR2). sVEGFR2 sequesters VEGF and is therefore anti-angiogenic. The aim of this study was to show that treatment with a previously developed and reported antisense morpholino oligomer that shifts expression from mVEGFR2 to sVEGFR2 would lead to reduced tumor vascularization and growth in a murine colon cancer xenograft model. Xenografts were generated by implanting human HCT-116 colon cancer cells into the flanks of NMRI nu/nu mice. Treatment with the therapeutic morpholino reduced both tumor growth and tumor vascularization. Because the HCT-116 cells used for the experiments did not express VEGFR2 and because the treatment morpholino targeted mouse rather than human VEGFR2, it is likely that treatment morpholino was acting on the mouse endothelial cells rather than directly on the tumor cells.

  8. 4-Chlorbenzoyl Berbamine, a Novel Derivative of the Natural Product Berbamine, Potently Inhibits the Growth of Human Myeloma Cells by Modulating the NF-κB and JNK Signalling Pathways.

    Science.gov (United States)

    Liang, Yun; He, Xin; Li, Xian; Zhang, Xuzhao; Zhang, Xiaohong; Zhang, Lei; Qiu, Xi; Zhao, Xiaoying; Xu, Rongzhen

    2016-11-25

    Multiple myeloma (MM) remains incurable despite the development and the use of new agents. In our studies, we found that 4-chlorbenzoyl berbamine (BBMD9), a novel synthetic derivative of berbamine, inhibited the proliferation of MM cells in dose- and time-dependent manners. Flow cytometric (FCM) analysis revealed that MM cells were arrested in the G1 phase and that apoptotic cells increased in a time-dependent manner. Moreover, the BBMD9 treatment downregulated IKKα and IKKβ, inhibited p-IκBα, and blocked p65 nuclear localization. Consistently, NF-κB downstream targets, such as cyclinD1 and survivin, were also reduced. In addition, BBMD9 phosphorylated the activity of JNK and c-Jun.

  9. Reversal of an immunity associated plant cell death program by the growth regulator auxin

    Directory of Open Access Journals (Sweden)

    Gopalan Suresh

    2008-12-01

    Full Text Available Abstract Background One form of plant immunity against pathogens involves a rapid host programmed cell death at the site of infection accompanied by the activation of local and systemic resistance to pathogens, termed the hypersensitive response (HR. In this work it was tested (i if the plant growth regulator auxin can inhibit the cell death elicited by a purified proteinaceous HR elicitor, (ii how far down the process this inhibition can be achieved, and (iii if the inhibition affects reporters of immune response. The effect of constitutive modulation of endogenous auxin levels in transgenic plants on this cell death program was also evaluated. Results The HR programmed cell death initiated by a bacterial type III secretion system dependent proteinaceous elicitor harpin (from Erwinia amylovora can be reversed till very late in the process by the plant growth regulator auxin. Early inhibition or late reversal of this cell death program does not affect marker genes correlated with local and systemic resistance. Transgenic plants constitutively modulated in endogenous levels of auxin are not affected in ability or timing of cell death initiated by harpin. Conclusion These data indicate that the cell death program initiated by harpin can be reversed till late in the process without effect on markers strongly correlated with local and systemic immunity. The constitutive modulation of endogenous auxin does not affect equivalent signaling processes affecting cell death or buffers these signals. The concept and its further study has utility in choosing better strategies for treating mammalian and agricultural diseases.

  10. BMP signaling regulates satellite cell-dependent postnatal muscle growth.

    Science.gov (United States)

    Stantzou, Amalia; Schirwis, Elija; Swist, Sandra; Alonso-Martin, Sonia; Polydorou, Ioanna; Zarrouki, Faouzi; Mouisel, Etienne; Beley, Cyriaque; Julien, Anaïs; Le Grand, Fabien; Garcia, Luis; Colnot, Céline; Birchmeier, Carmen; Braun, Thomas; Schuelke, Markus; Relaix, Frédéric; Amthor, Helge

    2017-08-01

    Postnatal growth of skeletal muscle largely depends on the expansion and differentiation of resident stem cells, the so-called satellite cells. Here, we demonstrate that postnatal satellite cells express components of the bone morphogenetic protein (BMP) signaling machinery. Overexpression of noggin in postnatal mice (to antagonize BMP ligands), satellite cell-specific knockout of Alk3 (the gene encoding the BMP transmembrane receptor) or overexpression of inhibitory SMAD6 decreased satellite cell proliferation and accretion during myofiber growth, and ultimately retarded muscle growth. Moreover, reduced BMP signaling diminished the adult satellite cell pool. Abrogation of BMP signaling in satellite cell-derived primary myoblasts strongly diminished cell proliferation and upregulated the expression of cell cycle inhibitors p21 and p57 In conclusion, these results show that BMP signaling defines postnatal muscle development by regulating satellite cell-dependent myofiber growth and the generation of the adult muscle stem cell pool. © 2017. Published by The Company of Biologists Ltd.

  11. 77 FR 72884 - Crystalline Silicon Photovoltaic Cells and Modules From China

    Science.gov (United States)

    2012-12-06

    ... COMMISSION Crystalline Silicon Photovoltaic Cells and Modules From China Determinations On the basis of the... reason of imports of crystalline silicon photovoltaic cells and modules from China, provided for in... silicon photovoltaic cells and modules from China. Chairman Irving A. Williamson and Commissioner Dean...

  12. Modulation of GLO1 Expression Affects Malignant Properties of Cells

    Science.gov (United States)

    Hutschenreuther, Antje; Bigl, Marina; Hemdan, Nasr Y. A.; Debebe, Tewodros; Gaunitz, Frank; Birkenmeier, Gerd

    2016-01-01

    The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect) characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO). Consequently, the rate of detoxification of this reactive glycolytic byproduct needs to be increased in order to prevent deleterious effects to the cells. This is brought about by an increased expression of glyoxalase 1 (GLO1) that is the rate-limiting enzyme of the MGO-detoxifying glyoxalase system. Here, we overexpressed GLO1 in HEK 293 cells and silenced it in MCF-7 cells using shRNA. Tumor-related properties of wild type and transformed cells were compared and key glycolytic enzyme activities assessed. Furthermore, the cells were subjected to hypoxic conditions to analyze the impact on cell proliferation and enzyme activities. Our results demonstrate that knockdown of GLO1 in the cancer cells significantly reduced tumor-associated properties such as migration and proliferation, whereas no functional alterations where found by overexpression of GLO1 in HEK 293 cells. In contrast, hypoxia caused inhibition of cell growth of all cells except of those overexpressing GLO1. Altogether, we conclude that GLO1 on one hand is crucial to maintaining tumor characteristics of malignant cells, and, on the other hand, supports malignant transformation of cells in a hypoxic environment when overexpressed. PMID:27999356

  13. Modulation of GLO1 Expression Affects Malignant Properties of Cells

    Directory of Open Access Journals (Sweden)

    Antje Hutschenreuther

    2016-12-01

    Full Text Available The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO. Consequently, the rate of detoxification of this reactive glycolytic byproduct needs to be increased in order to prevent deleterious effects to the cells. This is brought about by an increased expression of glyoxalase 1 (GLO1 that is the rate-limiting enzyme of the MGO-detoxifying glyoxalase system. Here, we overexpressed GLO1 in HEK 293 cells and silenced it in MCF-7 cells using shRNA. Tumor-related properties of wild type and transformed cells were compared and key glycolytic enzyme activities assessed. Furthermore, the cells were subjected to hypoxic conditions to analyze the impact on cell proliferation and enzyme activities. Our results demonstrate that knockdown of GLO1 in the cancer cells significantly reduced tumor-associated properties such as migration and proliferation, whereas no functional alterations where found by overexpression of GLO1 in HEK 293 cells. In contrast, hypoxia caused inhibition of cell growth of all cells except of those overexpressing GLO1. Altogether, we conclude that GLO1 on one hand is crucial to maintaining tumor characteristics of malignant cells, and, on the other hand, supports malignant transformation of cells in a hypoxic environment when overexpressed.

  14. Distinguishing between linear and exponential cell growth during the division cycle: Single-cell studies, cell-culture studies, and the object of cell-cycle research

    OpenAIRE

    Cooper Stephen

    2006-01-01

    Abstract Background Two approaches to understanding growth during the cell cycle are single-cell studies, where growth during the cell cycle of a single cell is measured, and cell-culture studies, where growth during the cell cycle of a large number of cells as an aggregate is analyzed. Mitchison has proposed that single-cell studies, because they show variations in cell growth patterns, are more suitable for understanding cell growth during the cell cycle, and should be preferred over cultur...

  15. Acute exercise modulates BDNF and pro-BDNF protein content in immune cells.

    Science.gov (United States)

    Brunelli, Andrea; Dimauro, Ivan; Sgrò, Paolo; Emerenziani, Gian Pietro; Magi, Fiorenza; Baldari, Carlo; Guidetti, Laura; Di Luigi, Luigi; Parisi, Paolo; Caporossi, Daniela

    2012-10-01

    Although several studies have shown that immune cells stimulated by in vitro stress are capable to produce neurotrophins, there is still no evidence whether physiological stress, such as exercise, can modulate the in vivo levels of brain-derived neurotrophic factor (BDNF) in peripheral blood mononuclear cells (PBMCs). This work investigated whether acute exercise modulates the expression of BDNF, pro-BDNF, and p75(NTR) in the PBMCs of 10 healthy young men who performed a cycling incremental test to exhaustion (MAX) or exercised at individual anaerobic threshold (IAT). The PBMC expression of stress response proteins and the level of circulating BDNF, vascular endothelial growth growth factor, platelet-derived growth factor subunit B, basic fibroblast growth factor pro-inflammatory, and anti-inflammatory cytokines were analyzed as well. A major finding is that both sessions of acute exercise regulated the content of BDNF isoforms within PBMCs in a manner related to the physiological stress exerted. Although the pro-BDNF increased after both MAX and IAT protocols, BDNF showed a kinetics dependent on exercise type: MAX induced a 54% protein increase immediately after exercise, followed by a significant drop 60 min after its conclusion (38% lower than the baseline). Differently, in the IAT, BDNF increased significantly up to 75% from the baseline throughout the recovery phase. All physiological parameters, as well as the p75(NTR) receptor and the stress-inducible proteins, were also differently regulated by the two exercise conditions. These data supported the hypothesis that PBMCs might produce and secrete BDNF isoforms, as well as modulate the proteins p75(NTR) , Bcl-xL, hsp90, hsp27, and αB-crystallin, as part of the physiological stress response induced by acute exercise, offering a novel example of bidirectional interaction between nervous and immune systems.

  16. MrgX Is Not Essential for Cell Growth and Development in the Mouse

    OpenAIRE

    2005-01-01

    MRGX is one of the members of MORF4/MRG family of transcriptional regulators, which are involved in cell growth regulation and cellular senescence. We have shown that MRGX and MRG15 associate with Rb in nucleoprotein complexes and regulate B-myb promoter activity. To elucidate the functions of MRGX and to explore its potential role in modulating cell growth in vivo, we have generated MrgX-deficient mice. Characterization of the expression pattern of mouse MrgX demonstrated it was ubiquitously...

  17. Effect of transition metals on recovery from plasma of the growth-modulating tripeptide glycylhistidyllysine.

    Science.gov (United States)

    Pickart, L; Thaler, M M; Millard, M

    1979-07-11

    Isolation and purification of growth-modulating peptides from biological sources is often accompanied by excessive losses of bioactive material. During the isolation of a growth-modulating tripeptide glycylhistidyllysine (GHL) from human plasma, copper and iron were found to co-isolate with the peptide. Studies with [3H]GHL demonstrated that these metals interfere at several steps of the procedure for the isolation of GHL from plasma (gel filtration chromatography, high-pressure silica-gel). Removal of these metals with an insoluble chelating resin (Cellex 100) enhanced recovery of [3H]GHL from plasma 8-fold. These results suggest that removal of transition metals may aid in the recovery of peptides which are difficult to isolate from biological sources.

  18. Identification of Intrinsic Axon Growth Modulators for Intact CNS Neurons after Injury

    Directory of Open Access Journals (Sweden)

    Kathren L. Fink

    2017-03-01

    Full Text Available Functional deficits persist after spinal cord injury (SCI because axons in the adult mammalian central nervous system (CNS fail to regenerate. However, modest levels of spontaneous functional recovery are typically observed after trauma and are thought to be mediated by the plasticity of intact circuitry. The mechanisms underlying intact circuit plasticity are not delineated. Here, we characterize the in vivo transcriptome of sprouting intact neurons from Ngr1 null mice after partial SCI. We identify the lysophosphatidic acid signaling modulators LPPR1 and LPAR1 as intrinsic axon growth modulators for intact corticospinal motor neurons after adjacent injury. Furthermore, in vivo LPAR1 inhibition or LPPR1 overexpression enhances sprouting of intact corticospinal tract axons and yields greater functional recovery after unilateral brainstem lesion in wild-type mice. Thus, the transcriptional profile of injury-induced sprouting of intact neurons reveals targets for therapeutic enhancement of axon growth initiation and new synapse formation.

  19. Growth, characterization, and properties of metastable and modulated semiconductor structures - Prospects for future studies

    Science.gov (United States)

    Grunthaner, F. J.; Madhukar, A.

    1983-01-01

    The general field of preparation and study of metastable and modulated semiconductor structures has progressed rapidly in recent years. This short overview offers an assessment of the progress and current understanding in the areas of fabrication, characterization, and utilization of these new material systems. The discussion includes the more prominent growth techniques, theoretical and experimental analysis of growth kinetics, and an overview of structural, chemical, electronic, and optical characterization. The probable application of these structures for the technological development of new device structures and concepts is considered. The discussion particularly emphasizes the prospects for future studies in view of the specific current understanding.

  20. Crystal structure of the RluD pseudouridine synthase catalytic module, an enzyme that modifies 23S rRNA and is essential for normal cell growth of Escherichia coli.

    Science.gov (United States)

    Sivaraman, J; Iannuzzi, Pietro; Cygler, Miroslaw; Matte, Allan

    2004-01-01

    Pseudouridine (5-beta-D-ribofuranosyluracil, Psi) is the most commonly found modified base in RNA. Conversion of uridine to Psi is performed enzymatically in both prokaryotes and eukaryotes by pseudouridine synthases (EC 4.2.1.70). The Escherichia coli Psi-synthase RluD modifies uridine to Psi at positions 1911, 1915 and 1917 within 23S rRNA. RluD also possesses a second function related to proper assembly of the 50S ribosomal subunit that is independent of Psi-synthesis. Here, we report the crystal structure of the catalytic module of RluD (residues 68-326; DeltaRluD) refined at 1.8A to a final R-factor of 21.8% (R(free)=24.3%). DeltaRluD is a monomeric enzyme having an overall mixed alpha/beta fold. The DeltaRluD molecule consists of two subdomains, a catalytic subdomain and C-terminal subdomain with the RNA-binding cleft formed by loops extending from the catalytic sub-domain. The catalytic sub-domain of DeltaRluD has a similar fold as in TruA, TruB and RsuA, with the location of the RNA-binding cleft, active-site and conserved, catalytic Asp residue superposing in all four structures. Superposition of the crystal structure of TruB bound to a T-stem loop with RluD reveals that similar RNA-protein interactions for the flipped-out uridine base would exist in both structures, implying that base-flipping is necessary for catalysis. This observation also implies that the specificity determinants for site-specific RNA-binding and recognition likely reside in parts of RluD beyond the active site.

  1. The cytoskeleton in plant and fungal cell tip growth

    NARCIS (Netherlands)

    Geitmann, A.; Emons, A.M.C.

    2000-01-01

    Tip-growing cells have a particular lifestyle that is characterized by the following features: (1) the cells grow in one direction, forming a cylindrical tube; (2) tip-growing cells are able to penetrate their growth environment, thus having to withstand considerable external forces; (3) the growth

  2. Fermented wheat aleurone enriched with probiotic strains LGG and Bb12 modulates markers of tumor progression in human colon cells.

    Science.gov (United States)

    Borowicki, Anke; Michelmann, Anke; Stein, Katrin; Scharlau, Daniel; Scheu, Kerstin; Obst, Ursula; Glei, Michael

    2011-01-01

    Fermentation of dietary fiber by the microflora enhances the levels of effective metabolites, which are potentially protective against colon cancer. The specific addition of probiotics may enhance the efficiency of fermentation of wheat aleurone, a source of dietary fiber. We investigated the effects of aleurone, fermented with fecal slurries with the addition of the probiotics LGG and Bb12 (aleurone(+)), on cell growth, apoptosis, and differentiation, as well as expression of genes related to growth and apoptosis using two different human colon cell lines (HT29: adenocarcinoma cells; LT97: adenoma cells). The efficiency of fermentation of aleurone was only slightly enhanced by the addition of LGG/Bb12, resulting in an increased concentration of butyrate. In LT97 cells, the growth inhibition of aleurone(+) was stronger than in HT29 cells. In HT29 cells, a cell cycle arrest in G(0)/G(1) and the alkaline phosphatase activity, a marker of differentiation, were enhanced by the fs aleurone(+). Treatment with all fermentation supernatants resulted in a significant increase in apoptosis and an upregulation of genes involved in cell growth and apoptosis (p21 and WNT2B). In conclusion, fs aleurone(+) modulated markers of cancer prevention, namely inhibition of cell growth and promotion of apoptosis as well as differentiation.

  3. Spermatogenesis associated 4 promotes Sertoli cell proliferation modulated negatively by regulatory factor X1.

    Directory of Open Access Journals (Sweden)

    Junjun Jiang

    Full Text Available Spermatogenesis associated 4 (Spata4, a testis-specific and CpG island associated gene, is involved in regulating cell proliferation, differentiation and apoptosis. To obtain insight into the role of Spata4 in cell cycling control, we characterized the promoter region of Spata4 and investigated its transcriptional regulation mechanism. The Spata4 promoter is unidirectional transcribed and possesses multiple transcription start sites. Moreover, we present evidence that regulatory factor X1 (RFX1 could bind the typical 14-bp cis-elements of Spata4 promoter, modulate transcriptional activity and endogenous expression of Spata4, and further regulate the proliferation of Sertoli cells. Overexpression of RFX1 was shown to down-regulate both the promoter activity and mRNA expression of Spata4, whereas knockdown of RFX1 demonstrated the opposite effects. Our studies provide insight into Spata4 gene regulation and imply the potential role of RFX1 in growth of Sertoli cells. RFX1 may have negative effect on cell proliferation of Sertoli cells via modulating Spata4 expression levels by binding the conserved 14-bp cis-elements of Spata4 promoter.

  4. Environmental estrogens inhibit growth of rainbow trout (Oncorhynchus mykiss) by modulating the growth hormone-insulin-like growth factor system.

    Science.gov (United States)

    Hanson, Andrea M; Kittilson, Jeffrey D; Martin, Lincoln E; Sheridan, Mark A

    2014-01-15

    Although environmental estrogens (EE) have been found to disrupt a wide variety of developmental and reproductive processes in vertebrates, there is a paucity of information concerning their effects on organismal growth, particularly postembryonic growth. In this study, we exposed juvenile rainbow trout (Oncorhynchus mykiss) to 17β-estradiol (E2) β-sitosterol (βS), or 4-n-nonylphenol (NP) to assess the effects of EE on overall organismal growth and on the growth hormone-insulin-like-growth factor (GH-IGF) system. EE treatment significantly reduced food conversion, body condition, and body growth. EE-inhibited growth resulted from alterations in peripheral elements of the GH-IGF system, which includes multiple GH receptors (GHRs), IGFs, and IGF receptors (IGFRs). In general, E2, βS, and NP reduced the expression of GHRs, IGFs, and IGFRs; however, the effects varied in an EE-, tissue-, element type-specific manner. For example, in liver, E2 was more efficacious than either βS, and NP in reducing GHR expression, and the effect of E2 was greater on GHR 1 than GHR2 mRNA. By contrast, in gill, all EEs affected GHR expression in a similar manner and there was no difference in the effect on GHR1 and GHR 2 mRNA. With regard to IGF expression, all EEs reduced hepatic IGF1 and IGF2 mRNA levels, whereas as in gill, only E2 and NP significantly reduced IGF1 and IGF2 expression. Lastly, E2 and NP reduced the expression of IGFR1A and IGFR1B mRNA expression similarly in gill and red and white muscle, whereas βS had no effect on expression of IGFR mRNAs. These findings indicate that EEs disrupt post-embryonic growth by reducing GH sensitivity, IGF production, and IGF sensitivity.

  5. The Design of a Five-Cell Superconducting RF Module with a PBG Coupler Cell

    Energy Technology Data Exchange (ETDEWEB)

    Arsenyev, Sergey A [Los Alamos National Laboratory; Simakov, Evgenya I [Los Alamos National Laboratory

    2012-08-29

    We discuss the problem of incorporating a Photonic Band Gap (PBG) cell into a superconducting accelerating module of 5 cells designed for the operational frequency of 2.1 GHz. The reason for using a PBG cell is to provide a good accelerating mode confinement and good Higher Order Mode (HOM) suppression. PBG cell can potentially be used for placing HOM and fundamental mode couplers. However, because of the naturally higher ratio of the peak magnetic field to the accelerating field in the PBG cell, it should be designed to operate at a lower accelerating gradient than the other cells of the module. This ensures that the probability of quench in the PBG cell would be no higher than in other elliptical cells of the structure.

  6. Thiazolidinediones enhance vascular endothelial growth factor expression and induce cell growth inhibition in non-small-cell lung cancer cells

    Directory of Open Access Journals (Sweden)

    Yoshizaki Yumiko

    2010-03-01

    Full Text Available Abstract Background It is known that thiazolidinediones are involved in regulating the expression of various genes, including the vascular endothelial growth factor (VEGF gene via peroxisome proliferator-activated receptor γ (PPARγ; VEGF is a prognostic biomarker for non-small-cell lung cancer (NSCLC. Methods In this study, we investigated the effects of troglitazone and ciglitazone on the mRNA expression of VEGF and its receptors in human NSCLC cell lines, RERF-LC-AI, SK-MES-1, PC-14, and A549. These mRNA expressions were evaluated by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR analysis. We also studied the effect of Je-11, a VEGF inhibitor, on the growth of these cells. Results In NSCLC cells, thiazolidinediones increased the mRNA expression of VEGF and neuropilin-1, but not that of other receptors such as fms-like tyrosine kinase and kinase insert domain receptor-1. Furthermore, the PPARγ antagonist GW9662 completely reversed this thiazolidinedione-induced increase in VEGF expression. Furthermore, the addition of VEGF inhibitors into the culture medium resulted in the reversal of thiazolidinedione-induced growth inhibition. Conclusions Our results indicated that thiazolidinediones enhance VEGF and neuropilin-1 expression and induce the inhibition of cell growth. We propose the existence of a pathway for arresting cell growth that involves the interaction of thiazolidinedione-induced VEGF and neuropilin-1 in NSCLC.

  7. The Populus homeobox gene ARBORKNOX2 regulates cell differentiation during secondary growth.

    Science.gov (United States)

    Du, Juan; Mansfield, Shawn D; Groover, Andrew T

    2009-12-01

    The stem cells of the vascular cambium divide to produce daughter cells, which in turn divide before undergoing differentiation during the radial growth of woody stems. The genetic regulation of these developmental events is poorly understood, however. We report here the cloning and functional characterization of a Populus class-I KNOX homeobox gene, ARBORKNOX2 (ARK2), which we show influences terminal cell differentiation and cell wall properties during secondary growth. In the early stages of secondary growth, ARK2 is expressed broadly in the cambial zone and in terminally differentiating cell types, before becoming progressively restricted to the cambium. ARK2 overexpression and synthetic miRNA-suppression transgenics reveal positive correlations between ARK2 expression level and the timing of cambium formation, the width of the cambial zone and inhibition of cambial daughter cell differentiation. These phenotypes in turn correlate with changes in the expression of genes affecting transcription, cell division, auxin and cell wall synthesis. Notably, wood properties associated with secondary cell wall synthesis are negatively associated with ARK2 expression, including lignin and cellulose content. Together, our results suggest that ARK2 functions primarily to regulate a complex suite of genes that together influence cell differentiation during secondary growth. We propose that ARK2 may represent a co-evolved transcriptional module that influences complex, adaptive wood properties.

  8. Interleukin-7 Modulates Anti-Tumor CD8+ T Cell Responses via Its Action on Host Cells

    Science.gov (United States)

    Deiser, Katrin; Stoycheva, Diana; Bank, Ute; Blankenstein, Thomas; Schüler, Thomas

    2016-01-01

    The adoptive transfer of antigen-specific CD8+ T cells is a promising approach for the treatment of chronic viral and malignant diseases. In order to improve adoptive T cell therapy (ATT) of cancer, recent strategies aim at the antibody-based blockade of immunosuppressive signaling pathways in CD8+ T cells. Alternatively, adjuvant effects of immunostimulatory cytokines might be exploited to improve therapeutic CD8+ T cell responses. For example, Interleukin-7 (IL-7) is a potent growth, activation and survival factor for CD8+ T cells that can be used to improve virus- and tumor-specific CD8+ T cell responses. Although direct IL-7 effects on CD8+ T cells were studied extensively in numerous models, the contribution of IL-7 receptor-competent (IL-7R+) host cells remained unclear. In the current study we provide evidence that CD8+ T cell-mediated tumor rejection in response to recombinant IL-7 (rIL-7) therapy is strictly dependent on IL-7R+ host cells. On the contrary, CD8+ T cell expansion is independent of host IL-7R expression. If, however, rIL-7 therapy and peptide vaccination are combined, host IL-7R signaling is crucial for CD8+ T cell expansion. Unexpectedly, maximum CD8+ T cell expansion relies mainly on IL-7R signaling in non-hematopoietic host cells, similar to the massive accumulation of dendritic cells and granulocytes. In summary, we provide evidence that IL-7R+ host cells are major targets of rIL-7 that modulate therapeutic CD8+ T cell responses and the outcome of rIL-7-assisted ATT. This knowledge may have important implications for the design and optimization of clinical ATT protocols. PMID:27447484

  9. Interleukin-7 Modulates Anti-Tumor CD8+ T Cell Responses via Its Action on Host Cells.

    Directory of Open Access Journals (Sweden)

    Katrin Deiser

    Full Text Available The adoptive transfer of antigen-specific CD8+ T cells is a promising approach for the treatment of chronic viral and malignant diseases. In order to improve adoptive T cell therapy (ATT of cancer, recent strategies aim at the antibody-based blockade of immunosuppressive signaling pathways in CD8+ T cells. Alternatively, adjuvant effects of immunostimulatory cytokines might be exploited to improve therapeutic CD8+ T cell responses. For example, Interleukin-7 (IL-7 is a potent growth, activation and survival factor for CD8+ T cells that can be used to improve virus- and tumor-specific CD8+ T cell responses. Although direct IL-7 effects on CD8+ T cells were studied extensively in numerous models, the contribution of IL-7 receptor-competent (IL-7R+ host cells remained unclear. In the current study we provide evidence that CD8+ T cell-mediated tumor rejection in response to recombinant IL-7 (rIL-7 therapy is strictly dependent on IL-7R+ host cells. On the contrary, CD8+ T cell expansion is independent of host IL-7R expression. If, however, rIL-7 therapy and peptide vaccination are combined, host IL-7R signaling is crucial for CD8+ T cell expansion. Unexpectedly, maximum CD8+ T cell expansion relies mainly on IL-7R signaling in non-hematopoietic host cells, similar to the massive accumulation of dendritic cells and granulocytes. In summary, we provide evidence that IL-7R+ host cells are major targets of rIL-7 that modulate therapeutic CD8+ T cell responses and the outcome of rIL-7-assisted ATT. This knowledge may have important implications for the design and optimization of clinical ATT protocols.

  10. Interleukin-7 Modulates Anti-Tumor CD8+ T Cell Responses via Its Action on Host Cells.

    Science.gov (United States)

    Deiser, Katrin; Stoycheva, Diana; Bank, Ute; Blankenstein, Thomas; Schüler, Thomas

    2016-01-01

    The adoptive transfer of antigen-specific CD8+ T cells is a promising approach for the treatment of chronic viral and malignant diseases. In order to improve adoptive T cell therapy (ATT) of cancer, recent strategies aim at the antibody-based blockade of immunosuppressive signaling pathways in CD8+ T cells. Alternatively, adjuvant effects of immunostimulatory cytokines might be exploited to improve therapeutic CD8+ T cell responses. For example, Interleukin-7 (IL-7) is a potent growth, activation and survival factor for CD8+ T cells that can be used to improve virus- and tumor-specific CD8+ T cell responses. Although direct IL-7 effects on CD8+ T cells were studied extensively in numerous models, the contribution of IL-7 receptor-competent (IL-7R+) host cells remained unclear. In the current study we provide evidence that CD8+ T cell-mediated tumor rejection in response to recombinant IL-7 (rIL-7) therapy is strictly dependent on IL-7R+ host cells. On the contrary, CD8+ T cell expansion is independent of host IL-7R expression. If, however, rIL-7 therapy and peptide vaccination are combined, host IL-7R signaling is crucial for CD8+ T cell expansion. Unexpectedly, maximum CD8+ T cell expansion relies mainly on IL-7R signaling in non-hematopoietic host cells, similar to the massive accumulation of dendritic cells and granulocytes. In summary, we provide evidence that IL-7R+ host cells are major targets of rIL-7 that modulate therapeutic CD8+ T cell responses and the outcome of rIL-7-assisted ATT. This knowledge may have important implications for the design and optimization of clinical ATT protocols.

  11. Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence.

    Science.gov (United States)

    Simmons, Graham; Wool-Lewis, Rouven J; Baribaud, Frédéric; Netter, Robert C; Bates, Paul

    2002-03-01

    The Ebola virus envelope glycoprotein (GP) derived from the pathogenic Zaire subtype mediates cell rounding and detachment from the extracellular matrix in 293T cells. In this study we provide evidence that GPs from the other pathogenic subtypes, Sudan and Côte d'Ivoire, as well as from Reston, a strain thought to be nonpathogenic in humans, also induced cell rounding, albeit at lower levels than Zaire GP. Sequential removal of regions of potential O-linked glycosylation at the C terminus of GP1 led to a step-wise reduction in cell detachment without obviously affecting GP function, suggesting that such modifications are involved in inducing the detachment phenotype. While causing cell rounding and detachment in 293T cells, Ebola virus GP did not cause an increase in cell death. Indeed, following transient expression of GP, cells were able to readhere and continue to divide. Also, the rounding effect was not limited to 293T cells. Replication-deficient adenovirus vectors expressing Ebola virus GP induced the loss of cell adhesion in a range of cell lines and primary cell types, including those with proposed relevance to Ebola virus infection in vivo, such as endothelial cells and macrophages. In both transfected 293T and adenovirus-infected Vero cells, a reduction in cell surface expression of adhesion molecules such as integrin beta1 concurrent with the loss of cell adhesion was observed. A number of other cell surface molecules, however, including major histocompatibility complex class I and the epidermal growth factor receptor, were also down-modulated, suggesting a global mechanism for surface molecule down-regulation.

  12. Gpr125 modulates Dishevelled distribution and planar cell polarity signaling.

    Science.gov (United States)

    Li, Xin; Roszko, Isabelle; Sepich, Diane S; Ni, Mingwei; Hamm, Heidi E; Marlow, Florence L; Solnica-Krezel, Lilianna

    2013-07-01

    During vertebrate gastrulation, Wnt/planar cell polarity (PCP) signaling orchestrates polarized cell behaviors underlying convergence and extension (C&E) movements to narrow embryonic tissues mediolaterally and lengthen them anteroposteriorly. Here, we have identified Gpr125, an adhesion G protein-coupled receptor, as a novel modulator of the Wnt/PCP signaling system. Excess Gpr125 impaired C&E movements and the underlying cell and molecular polarities. Reduced Gpr125 function exacerbated the C&E and facial branchiomotor neuron (FBMN) migration defects of embryos with reduced Wnt/PCP signaling. At the molecular level, Gpr125 recruited Dishevelled to the cell membrane, a prerequisite for Wnt/PCP activation. Moreover, Gpr125 and Dvl mutually clustered one another to form discrete membrane subdomains, and the Gpr125 intracellular domain directly interacted with Dvl in pull-down assays. Intriguingly, Dvl and Gpr125 were able to recruit a subset of PCP components into membrane subdomains, suggesting that Gpr125 may modulate the composition of Wnt/PCP membrane complexes. Our study reveals a role for Gpr125 in PCP-mediated processes and provides mechanistic insight into Wnt/PCP signaling.

  13. Cytokines from the tumor microenvironment modulate sirtinol cytotoxicity in A549 lung carcinoma cells.

    Science.gov (United States)

    Pal, Shyama; Shankar, Bhavani S; Sainis, Krishna B

    2013-10-01

    Cytokines in tumor microenvironment play an important role in the success or failure of molecular targeted therapies. We have chosen tumor necrosis factor α (TNF-α), TNF related apoptosis inducing ligand (TRAIL), insulin-like growth factor 1 (IGF-1) and transforming growth factor β (TGF-β) as representative pro-inflammatory, pro-apoptotic, anti-apoptotic and anti-inflammatory tumor derived cytokines. Analysis of Oncomine database revealed the differential expression of these cytokines in a subset of cancer patients. The effects of these cytokines on cytotoxicity of FDA approved drugs - cisplatin and taxol and inhibitors of epidermal growth factor receptor - AG658, Janus kinase - AG490 and SIRT1 - sirtinol were assessed in A549 lung cancer cells. TRAIL augmented cytotoxicity of sirtinol and IGF-1 had a sparing effect. Since TRAIL and IGF-1 differentially modulated sirtinol cytotoxicity, further studies were carried out to identify the mechanisms. Sirtinol or knockdown of SIRT1 increased the expression of death receptors DR4 and DR5 and sensitized A549 cells to TRAIL. Increased cell death in presence of TRAIL and sirtinol was caspase independent and demonstrated classical features of necroptosis. Inhibition of iNOS increased caspase activity and switched the mode of cell death to caspase mediated apoptosis. Interestingly, sirtinol or SIRT1 knockdown did not increase IGF-1R expression. Instead, it abrogated ligand induced downregulation of IGF-1R and increased cell survival through PI3K-AKT pathway. In conclusion, these findings reveal that the tumor microenvironment contributes to modulation of cytotoxicity of drugs and that combination therapy, with agents that increase TRAIL signaling and suppress IGF-1 pathway may potentiate anticancer effect.

  14. Control of the actin cytoskeleton in plant cell growth

    NARCIS (Netherlands)

    Hussey, P.J.; Ketelaar, M.J.; Deeks, M.J.

    2006-01-01

    Plant cells grow through increases in volume and cell wall surface area. The mature morphology of a plant cell is a product of the differential rates of expansion between neighboring zones of the cell wall during this process. Filamentous actin arrays are associated with plant cell growth, and the a

  15. Progress in N-type Si Solar Cell and Module Technology for High Efficiency and Low Cost

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dengyuan; Xiong, Jingfeng; Hu, Zhiyan; Li, Gaofei; Wang, Hongfang; An, Haijiao; Yu, Bo; Grenko, Brian; Borden, Kevin; Sauer, Kenneth; Cui, Jianhua; Wang, Haitao [Yingli Green Energy Holding Co., LTD, 071051 Boading (China); Roessler, T. [Yingli Green Energy Europe GmbH, Heimeranstr. 37, 80339 Munich (Germany); Bultman, J. [ECN Solar Energy, P.O. Box 1, NL-1755 ZG Petten (Netherlands); Vlooswijk, A.H.G.; Venema, P.R. [Tempress Systems BV, Radeweg 31, 8171 Vaassen (Netherlands)

    2012-06-15

    A novel high efficiency solar cell and module technology, named PANDA, using crystalline n-type CZ Si wafers has moved into large-scale production at Yingli. The first commercial sales of the PANDA modules commenced in mid 2010. Up to 600MW of mass production capacity from crystal-Si growth, wafer slicing, cell processing and module assembly have been implemented by the end of 2011. The PANDA technology was developed specifically for high efficiency and low cost. In contrast to the existing n-type Si solar cell manufacturing methods in mass production, this new technology is largely compatible with a traditional p-type Si solar cell production line by conventional diffusion, SiNx coating and screen-printing technology. With optimizing all technologies, Yingli's PANDA solar cells on semi-square 6-inch n-type CZ wafers (cell size 239cm{sup 2}) have been improved to currently have an average efficiency on commercial production lines exceeding 19.0% and up to 20.0% in pilot production. The PANDA modules have been produced and were certified according to UL1703, IEC 61215 and IEC 61730 standards. Nearly two years of full production on scale-up lines show that the PANDA modules have a high efficiency and power density, superior high temperature performance, near zero initial light induced degradation, and excellent efficiency at low irradiance.

  16. Inhibitors of angiotensin-converting enzyme modulate mitosis and gene expression in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, M.K.; Baskaran, K.; Molteni, A. [Northwestern Univ. Medical School, Chicago, IL (United States)

    1995-12-01

    The angiotensin-converting enzyme (ACE) inhibitor captopril inhibits mitosis in several cell types that contain ACE and renin activity. In the present study, we evaluated the effect of the ACE inhibitors captopril and CGS 13945 (10{sup {minus}8} to 10{sup {minus}2}M) on proliferation and gene expression in hamster pancreatic duct carcinoma cells in culture. These cells lack renin and ACE activity. Both ACE inhibitors produced a dose-dependent reduction in tumor cell proliferation within 24 hr. Captopril at a concentration of 0.36 mM and CGS 13945 at 150 {mu}M decreased cellular growth rate to approximately half that of the control. Neither drug influenced the viability or the cell cycle distribution of the tumor cells. Slot blot analysis of mRNA for four genes, proliferation associated cell nuclear antigen (PCNA), K-ras, protein kinase C-{Beta} (PKC-{Beta}) and carbonic anhydrase II (CA II) was performed. Both ACE inhibitors increased K-ras expression by a factor of 2, and had no effect on CA II mRNA levels. Captopril also lowered PCNA by 40% and CGS 13945 lowered PKC-{Beta} gene expression to 30% of the control level. The data demonstrate that ACE inhibitors exhibit antimitotic activity and differential gene modulation in hamster pancreatic duct carcinoma cells. The absence of renin and ACE activity in these cells suggests that the antimitotic action of captopril and CGS 13945 is independent of renin-angiotensin regulation. The growth inhibition may occur through downregulation of growth-related gene expression. 27 refs., 5 figs.

  17. Transferrin receptor regulates pancreatic cancer growth by modulating mitochondrial respiration and ROS generation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Seung Min, E-mail: smjeong@catholic.ac.kr [Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Hwang, Sunsook; Seong, Rho Hyun [School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2016-03-11

    The transferrin receptor (TfR1) is upregulated in malignant cells and its expression is associated with cancer progression. Because of its pre-eminent role in cell proliferation, TfR1 has been an important target for the development of cancer therapy. Although TfR1 is highly expressed in pancreatic cancers, what it carries out in these refractory cancers remains poorly understood. Here we report that TfR1 supports mitochondrial respiration and ROS production in human pancreatic ductal adenocarcinoma (PDAC) cells, which is required for their tumorigenic growth. Elevated TfR1 expression in PDAC cells contributes to oxidative phosphorylation, which allows for the generation of ROS. Importantly, mitochondrial-derived ROS are essential for PDAC growth. However, exogenous iron supplement cannot rescue the defects caused by TfR1 knockdown. Moreover, we found that TfR1 expression determines PDAC cells sensitivity to oxidative stress. Together, our findings reveal that TfR1 can contribute to the mitochondrial respiration and ROS production, which have essential roles in growth and survival of pancreatic cancer. - Highlights: • Pancreatic ductal adenocarcinoma (PDAC) exhibits an elevated transferrin receptor (TfR1) expression in comparison with non-transformed pancreatic cells. • TfR1 is required for PDAC growth by regulating mitochondrial respiration and ROS production. • TfR1 functions as a determinant of cell viability to oxidative stress in PDAC cells.

  18. Stackable and submergible microbial fuel cell modules for wastewater treatment.

    Science.gov (United States)

    Kim, Minsoo; Cha, Jaehwan; Yu, Jaecheul; Kim, Changwon

    2016-08-01

    The stackable and submergible microbial fuel cell (SS-MFC) system was fabricated consisting of three MFC modules (#1, #2 and #3) that were immersed in an anaerobic tank as a 30 L anode compartment. Each module consisted of the anion exchange membrane-membrane electrode assembly (A-MEA) and cation exchange membrane-MEA (C-MEA). Two MEAs shared a cathode compartment in the module and the three modules shared a anode compartment The SS-MFC system was operated with two phase. After batch feeding (phase I), the system was operated under continuous mode (phase II) with different organic concentrations (from 50 to 1000 mg/L) and different hydraulic retention times (HRT; from 3.4 to 7.2 h). The SS-MFC system successfully produced a stable voltage. A-MEA generated a lower power density than the C-MEA because of the former's high activation and resistance loss. C-MEA showed a higher average maximum power density (3.16 W/m(3)) than A-MEA (2.82 W/m(3)) at 70 mL/min (HRT of 7.2 h). The current density increased as the organic concentration was increased from 70 to 1000 mg/L in a manner consistent with Monod kinetics. When the HRT was increased from 3.4 to 7.2 h, the power densities of the C-MEAs increased from 34.3-40.9 to 40.7-45.7 mW/m(2), but those of the A-MEAs decreased from 25.3-48.0 to 27.7-40.9 mW/m(2). Although power generation was affected by HRT, organic concentrations, and separator types, the proposed SS-MFC modules can be applied to existing wastewater treatment plants.

  19. Improving the Operational Stability of PBDTTTz-4 Polymer Solar Cells Modules by Electrode Modification

    DEFF Research Database (Denmark)

    Roth, Bérenger; Benatto, Gisele Alves dos Reis; Corazza, Michael

    2016-01-01

    PBDTTTz-4 is employed in the ambient manufacturing of fully Roll-to-Roll organic solar cell modules. Modules are manufactured using a novel silver nanowire electrode or a previously reported carbon electrode. The average PCE of carbon modules (3.07%) and AgNW modules (1.46%) shows that PBDTTTz-4 ...

  20. The oncogenic epidermal growth factor receptor variant Xiphophorus melanoma receptor kinase induces motility in melanocytes by modulation of focal adhesions.

    Science.gov (United States)

    Meierjohann, Svenja; Wende, Elisabeth; Kraiss, Anita; Wellbrock, Claudia; Schartl, Manfred

    2006-03-15

    One of the most prominent features of malignant melanoma is the fast generation of metastasizing cells, resulting in the poor prognosis of patients with this tumor type. For this process, cells must gain the ability to migrate. The oncogenic receptor Xmrk (Xiphophorus melanoma receptor kinase) from the Xiphophorus melanoma system is a mutationally activated version of the epidermal growth factor receptor that induces the malignant transformation of pigment cells. Here, we show that the activation of Xmrk leads to a clear increase of pigment cell motility in a fyn-dependent manner. Stimulation of Xmrk induces its interaction with the focal adhesion kinase (FAK) and the interaction of active, receptor-bound fyn with FAK. This results in changes in FAK activity and induces the modulation of stress fibers and focal adhesions. Overexpression of dominant-negative FAK shows that the activity of innate FAK and a receptor-induced focal adhesion turnover are a prerequisite for pigment cell migration. Our findings show that in our system, Xmrk is sufficient for the induction of pigment cell motility and underlines a role of the src family protein tyrosine kinase fyn in melanoma development and progression.

  1. Antiandrogens Act as Selective Androgen Receptor Modulators at the Proteome Level in Prostate Cancer Cells*

    Science.gov (United States)

    Brooke, Greg N.; Gamble, Simon C.; Hough, Michael A.; Begum, Shajna; Dart, D. Alwyn; Odontiadis, Michael; Powell, Sue M.; Fioretti, Flavia M.; Bryan, Rosie A.; Waxman, Jonathan; Wait, Robin; Bevan, Charlotte L.

    2015-01-01

    Current therapies for prostate cancer include antiandrogens, inhibitory ligands of the androgen receptor, which repress androgen-stimulated growth. These include the selective androgen receptor modulators cyproterone acetate and hydroxyflutamide and the complete antagonist bicalutamide. Their activity is partly dictated by the presence of androgen receptor mutations, which are commonly detected in patients who relapse while receiving antiandrogens, i.e. in castrate-resistant prostate cancer. To characterize the early proteomic response to these antiandrogens we used the LNCaP prostate cancer cell line, which harbors the androgen receptor mutation most commonly detected in castrate-resistant tumors (T877A), analyzing alterations in the proteome, and comparing these to the effect of these therapeutics upon androgen receptor activity and cell proliferation. The majority are regulated post-transcriptionally, possibly via nongenomic androgen receptor signaling. Differences detected between the exposure groups demonstrate subtle changes in the biological response to each specific ligand, suggesting a spectrum of agonistic and antagonistic effects dependent on the ligand used. Analysis of the crystal structures of the AR in the presence of cyproterone acetate, hydroxyflutamide, and DHT identified important differences in the orientation of key residues located in the AF-2 and BF-3 protein interaction surfaces. This further implies that although there is commonality in the growth responses between androgens and those antiandrogens that stimulate growth in the presence of a mutation, there may also be influential differences in the growth pathways stimulated by the different ligands. This therefore has implications for prostate cancer treatment because tumors may respond differently dependent upon which mutation is present and which ligand is activating growth, also for the design of selective androgen receptor modulators, which aim to elicit differential proteomic

  2. Antiandrogens act as selective androgen receptor modulators at the proteome level in prostate cancer cells.

    Science.gov (United States)

    Brooke, Greg N; Gamble, Simon C; Hough, Michael A; Begum, Shajna; Dart, D Alwyn; Odontiadis, Michael; Powell, Sue M; Fioretti, Flavia M; Bryan, Rosie A; Waxman, Jonathan; Wait, Robin; Bevan, Charlotte L

    2015-05-01

    Current therapies for prostate cancer include antiandrogens, inhibitory ligands of the androgen receptor, which repress androgen-stimulated growth. These include the selective androgen receptor modulators cyproterone acetate and hydroxyflutamide and the complete antagonist bicalutamide. Their activity is partly dictated by the presence of androgen receptor mutations, which are commonly detected in patients who relapse while receiving antiandrogens, i.e. in castrate-resistant prostate cancer. To characterize the early proteomic response to these antiandrogens we used the LNCaP prostate cancer cell line, which harbors the androgen receptor mutation most commonly detected in castrate-resistant tumors (T877A), analyzing alterations in the proteome, and comparing these to the effect of these therapeutics upon androgen receptor activity and cell proliferation. The majority are regulated post-transcriptionally, possibly via nongenomic androgen receptor signaling. Differences detected between the exposure groups demonstrate subtle changes in the biological response to each specific ligand, suggesting a spectrum of agonistic and antagonistic effects dependent on the ligand used. Analysis of the crystal structures of the AR in the presence of cyproterone acetate, hydroxyflutamide, and DHT identified important differences in the orientation of key residues located in the AF-2 and BF-3 protein interaction surfaces. This further implies that although there is commonality in the growth responses between androgens and those antiandrogens that stimulate growth in the presence of a mutation, there may also be influential differences in the growth pathways stimulated by the different ligands. This therefore has implications for prostate cancer treatment because tumors may respond differently dependent upon which mutation is present and which ligand is activating growth, also for the design of selective androgen receptor modulators, which aim to elicit differential proteomic

  3. Flexible CIGS solar cells and mini-modules (Flexcim)

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, A. N.

    2007-08-15

    This final report for the Swiss Federal Office of Energy (SFOE) reports on a project that has contributed significantly to further developments in the field of Cu(In,Ga)Se{sub 2} thin film solar cells on flexible substrates such as plastic and metal foils. Process optimisation at low temperature deposition conditions is reported on that have resulted in a new world record of the highest achieved solar conversion efficiency for any solar cell on plastic substrate: cells with an efficiency of 14.1% were obtained. Efficiencies beyond 15% are to be sought for by the reduction of reflection losses. The results obtained are presented in both illustrations and in graphical form. The authors state that more work, especially on up-scaling of CIGS deposition and further increasing the efficiency of flexible solar modules, is needed.

  4. Carcino-embryonic antigen in monitoring the growth of human colon adenocarcinoma tumour cells SK-CO-1 and HT-29 in vitro and in nude mice

    DEFF Research Database (Denmark)

    Sölétormos, G; Fogh, J M; Sehested-Hansen, B;

    1997-01-01

    A set of experimental model systems were designed to investigate (a) the inter-relationship between growth of two human cancer cell lines (SK-CO-1, HT-29) and carcino-embryonic antigen (CEA) kinetics; and (b) whether neoplastic growth or CEA concentration is modulated by human growth hormone (h...

  5. Probiotic modulation of dendritic cells and T cell responses in the intestine

    NARCIS (Netherlands)

    Meijerink, M.; Wells, J.

    2010-01-01

    Over the past decade it has become clear that probiotic and commensal interactions with mucosal dendritic cells in the lamina propria or epithelial cells lining the mucosa can modulate specific functions of the mucosal immune system. Innate pattern-recognition receptors such as TLRs, NLRs and CLRs p

  6. THP-1 cell line: an in vitro cell model for immune-modulation approach : Review

    NARCIS (Netherlands)

    Chanput, W.; Mes, J.J.; Wichers, H.J.

    2014-01-01

    THP-1 is a human leukemia monocytic cell line, which has been extensively used to study monocyte/macrophage functions, mechanisms, signaling pathways, and nutrient and drug transport. This cell line has become a common model to estimate modulation of monocyte and macrophage activities. This review a

  7. Akt1 intramitochondrial cycling is a crucial step in the redox modulation of cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Valeria Gabriela Antico Arciuch

    Full Text Available Akt is a serine/threonine kinase involved in cell proliferation, apoptosis, and glucose metabolism. Akt is differentially activated by growth factors and oxidative stress by sequential phosphorylation of Ser(473 by mTORC2 and Thr(308 by PDK1. On these bases, we investigated the mechanistic connection of H(2O(2 yield, mitochondrial activation of Akt1 and cell cycle progression in NIH/3T3 cell line with confocal microscopy, in vivo imaging, and directed mutagenesis. We demonstrate that modulation by H(2O(2 entails the entrance of cytosolic P-Akt1 Ser(473 to mitochondria, where it is further phosphorylated at Thr(308 by constitutive PDK1. Phosphorylation of Thr(308 in mitochondria determines Akt1 passage to nuclei and triggers genomic post-translational mechanisms for cell proliferation. At high H(2O(2, Akt1-PDK1 association is disrupted and P-Akt1 Ser(473 accumulates in mitochondria in detriment to nuclear translocation; accordingly, Akt1 T308A is retained in mitochondria. Low Akt1 activity increases cytochrome c release to cytosol leading to apoptosis. As assessed by mass spectra, differential H(2O(2 effects on Akt1-PDK interaction depend on the selective oxidation of Cys(310 to sulfenic or cysteic acids. These results indicate that Akt1 intramitochondrial-cycling is central for redox modulation of cell fate.

  8. Scaling in film growth by pulsed laser deposition and modulated beam deposition.

    Science.gov (United States)

    Lee, Sang Bub

    2011-04-01

    The scalings in film growth by pulsed laser deposition (PLD) and modulated beam deposition (MBD) were investigated by Monte Carlo simulations. In PLD, an atomic pulse beam with a period t(0) were deposited instantaneously on a substrate, whereas in MBD, adatoms were deposited during a short time interval t(1) (0≤t(1)≤t(0)) within each period. If t(1)=0, MBD will be identical to PLD and, if t(1)=t(0), MBD will become usual molecular beam epitaxy (MBE). Specifically, logarithmic scaling was investigated for the nucleation density reported for PLD, and the scaling of island density was studied regarding the growth for 0MBE growth was observed as t(1) increased. The phase diagram was also presented.

  9. Fisetin and hesperetin induced apoptosis and cell cycle arrest in chronic myeloid leukemia cells accompanied by modulation of cellular signaling.

    Science.gov (United States)

    Adan, Aysun; Baran, Yusuf

    2016-05-01

    Fisetin and hesperetin, naturally occurring flavonoids, have been reported as novel antioxidants with chemopreventive/chemotherapeutic potential against various types of cancer. However, their mechanism of action in CML is still unknown. This particular study aims to evaluate the therapeutic potentials of fisetin and hesperetin and their effects on cell proliferation, apoptosis, and cell cycle progression in human K562 CML cells. The results indicated that fisetin and hesperetin inhibited cell proliferation and triggered programmed cell death in these cells. The latter was confırmed by mitochondrial membrane depolarization and an increase in caspase-3 activation. In addition to that, we have detected S and G2/M cell cycle arrests and G0/G1 arrest upon fisetin and hesperetin treatment, respectively. To identify the altered genes and genetic networks in response to fisetin and hesperetin, whole-genome microarray analysis was performed. The microarray gene profiling analysis revealed some important signaling pathways including JAK/STAT pathway, KIT receptor signaling, and growth hormone receptor signaling that were altered upon fisetin and hesperetin treatment. Moreover, microarray data suggested potential candidate genes for targeted CML therapy. Fisetin and hesperetin significantly modulated the expression of genes involved in cell proliferation and division, apoptosis, cell cycle regulation, and other significant cellular processes such as replication, transcription, and translation. In conclusion, our results suggest that fisetin and hesperetin as potential natural agents for CML therapy.

  10. Surviving Stress: Modulation of ATF4-Mediated Stress Responses in Normal and Malignant Cells.

    Science.gov (United States)

    Wortel, Inge M N; van der Meer, Laurens T; Kilberg, Michael S; van Leeuwen, Frank N

    2017-08-07

    Activating transcription factor 4 (ATF4) is a stress-induced transcription factor that is frequently upregulated in cancer cells. ATF4 controls the expression of a wide range of adaptive genes that allow cells to endure periods of stress, such as hypoxia or amino acid limitation. However, under persistent stress conditions, ATF4 promotes the induction of apoptosis. Recent advances point to a role for post-translational modifications (PTMs) and epigenetic mechanisms in balancing these pro- and anti-survival effects of ATF4. We review here how PTMs and epigenetic modifiers associated with ATF4 may be exploited by cancer cells to cope with cellular stress conditions that are intrinsically associated with tumor growth. Identification of mechanisms that modulate ATF4-mediated transcription and its effects on cellular metabolism may uncover new targets for cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Modulation of JB6 Mouse Epidermal Cell Transformation Response by the Prostaglandin F2 Alpha Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Thomas J.; Markillie, Lye MENG.; Chrisler, William B.; Vielhauer, George A.; Regan, John W.

    2002-12-01

    Prostaglandin F2a (PGF2a) has been associated with the modulation of clonal selection processes in the mouse skin model of carcinogenesis. We have investigated whether JB6 mouse epidermal cells express a functional PGF2a receptor (FP) coupled to the regulation of anchorage-dependent and -independent growth. Treatment of JB6 cells with a FP receptor ligand (fluprostenol) potently (pM-nM) increased anchorage-dependent and -independent growth, as determined by a battery of in vitro assays. Treatment of JB6 cells with PGF2a and fluprostenol increased inositol phospholipid accumulation and extracellular signal regulated kinase (ERK) activity, consistent with FP receptor-related signaling. FP receptor mRNA was detected by reverse transcription-polymerase chain reaction and a radiolabel binding assay determined the average specific [3H]PGF2a binding to be 8.25 + 0.95 fmol/mg protein. Treatment of cells with fluprostenol as a single exposure resulted in a significant increase in anchorage-dependent and -independent growth in media containing low (0.1-0.5%), but not high (5%) concentrations of fetal bovine serum (FBS). In contrast, treatment of cells with fluprostenol at two day intervals resulted in a more robust growth response under anchorage-dependent conditions only in media containing low FBS concentrations; and under anchorage-independent conditions only in media containing high FBS concentrations. ERK activation and colony size were increased by cotreatment of JB6 cells with EGF and fluprostenol to a greater extent than either treatment alone, while the cotreatment effect on colony number appeared to be simply additive. In summary, FBS concentration and signal oscillation exert pronounced effects on the biological response to a FP receptor agonist. The data raise the possibility that the FP receptor may independently contribute to clonal selection processes, but may play a more important role as a response modifier.

  12. Kaempferol inhibits cancer cell growth by antagonizing estrogen-related receptor α and γ activities.

    Science.gov (United States)

    Wang, Haibin; Gao, Minghui; Wang, Junjian

    2013-11-01

    Kaempferol is a dietary flavonoid that can function as a selective estrogen receptor modulator (SERM). Estrogen-related receptors alpha and gamma (ERRα and ERRγ) are orphan nuclear receptors that play important roles in mitochondrial biogenesis and cancer development. We have shown that kaempferol can functionally antagonize the activities of ERRs based on both response element reporter systems and target gene analysis. Kaempferol modulation of mitochondrial function and suppression cancer cell growth has been confirmed. These findings suggest that kaempferol may exert their anti-cancer activities through antagonizing ERRs activities.

  13. Pleiotropic Genes Affecting Carcass Traits in Bos indicus (Nellore) Cattle Are Modulators of Growth

    Science.gov (United States)

    Milanesi, Marco; Torrecilha, Rafaela B. P.; Carmo, Adriana S.; Neves, Haroldo H. R.; Carvalheiro, Roberto; Ajmone-Marsan, Paolo; Sonstegard, Tad S.; Sölkner, Johann; Contreras-Castillo, Carmen J.; Garcia, José F.

    2016-01-01

    Two complementary methods, namely Multi-Trait Meta-Analysis and Versatile Gene-Based Test for Genome-wide Association Studies (VEGAS), were used to identify putative pleiotropic genes affecting carcass traits in Bos indicus (Nellore) cattle. The genotypic data comprised over 777,000 single-nucleotide polymorphism markers scored in 995 bulls, and the phenotypic data included deregressed breeding values (dEBV) for weight measurements at birth, weaning and yearling, as well visual scores taken at weaning and yearling for carcass finishing precocity, conformation and muscling. Both analyses pointed to the pleomorphic adenoma gene 1 (PLAG1) as a major pleiotropic gene. VEGAS analysis revealed 224 additional candidates. From these, 57 participated, together with PLAG1, in a network involved in the modulation of the function and expression of IGF1 (insulin like growth factor 1), IGF2 (insulin like growth factor 2), GH1 (growth hormone 1), IGF1R (insulin like growth factor 1 receptor) and GHR (growth hormone receptor), suggesting that those pleiotropic genes operate as satellite regulators of the growth pathway. PMID:27410030

  14. Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth

    KAUST Repository

    Shen, Youde

    2016-06-02

    Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor-liquid-solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. Here, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs-Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs-Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. These results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices. © 2016 American Chemical Society.

  15. Pleiotropic Genes Affecting Carcass Traits in Bos indicus (Nellore Cattle Are Modulators of Growth.

    Directory of Open Access Journals (Sweden)

    Anirene G T Pereira

    Full Text Available Two complementary methods, namely Multi-Trait Meta-Analysis and Versatile Gene-Based Test for Genome-wide Association Studies (VEGAS, were used to identify putative pleiotropic genes affecting carcass traits in Bos indicus (Nellore cattle. The genotypic data comprised over 777,000 single-nucleotide polymorphism markers scored in 995 bulls, and the phenotypic data included deregressed breeding values (dEBV for weight measurements at birth, weaning and yearling, as well visual scores taken at weaning and yearling for carcass finishing precocity, conformation and muscling. Both analyses pointed to the pleomorphic adenoma gene 1 (PLAG1 as a major pleiotropic gene. VEGAS analysis revealed 224 additional candidates. From these, 57 participated, together with PLAG1, in a network involved in the modulation of the function and expression of IGF1 (insulin like growth factor 1, IGF2 (insulin like growth factor 2, GH1 (growth hormone 1, IGF1R (insulin like growth factor 1 receptor and GHR (growth hormone receptor, suggesting that those pleiotropic genes operate as satellite regulators of the growth pathway.

  16. Modulation of macrophage antitumor potential by apoptotic lymphoma cells.

    Science.gov (United States)

    Voss, Jorine J L P; Ford, Catriona A; Petrova, Sofia; Melville, Lynsey; Paterson, Margaret; Pound, John D; Holland, Pam; Giotti, Bruno; Freeman, Tom C; Gregory, Christopher D

    2017-06-01

    In aggressive non-Hodgkin's lymphoma (NHL), constitutive apoptosis of a proportion of the tumor cell population can promote net tumor growth. This is associated with the accumulation of tumor-associated macrophages (TAMs) that clear apoptotic cells and exhibit pro-oncogenic transcriptional activation profiles characteristic of reparatory, anti-inflammatory and angiogenic programs. Here we consider further the activation status of these TAMs. We compare their transcriptomic profile with that of a range of other macrophage types from various tissues noting especially their expression of classically activated (IFN-γ and LPS) gene clusters - typically antitumor - in addition to their previously described protumor phenotype. To understand the impact of apoptotic cells on the macrophage activation state, we cocultured apoptotic lymphoma cells with classically activated macrophages (M(IFN-γ/LPS), also known as M1, macrophages). Although untreated and M(IFN-γ/LPS) macrophages were able to bind apoptotic lymphoma cells equally well, M(IFN-γ/LPS) macrophages displayed enhanced ability to phagocytose them. We found that direct exposure of M(IFN-γ/LPS) macrophages to apoptotic lymphoma cells caused switching towards a protumor activation state (often referred to as M2-like) with concomitant inhibition of antitumor activity that was a characteristic feature of M(IFN-γ/LPS) macrophages. Indeed, M(IFN-γ/LPS) macrophages exposed to apoptotic lymphoma cells displayed increased lymphoma growth-promoting activities. Antilymphoma activity by M(IFN-γ/LPS) macrophages was mediated, in part, by galectin-3, a pleiotropic glycoprotein involved in apoptotic cell clearance that is strongly expressed by lymphoma TAMs but not lymphoma cells. Intriguingly, aggressive lymphoma growth was markedly impaired in mice deficient in galectin-3, suggesting either that host galectin-3-mediated antilymphoma activity is required to sustain net tumor growth or that additional functions of galectin-3

  17. Probiotic modulation of dendritic cells co-cultured with intestinal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Ji Yeun Kim; Myeong Soo Park; Geun Eog Ji

    2012-01-01

    AIM:TO investigate cytokine production and cell surface phenotypes of dendritic cells (DC) in the presence of epithelial cells stimulated by probiotics.METHODS:Mouse DC were cultured alone or together with mouse epithelial cell monolayers in normal or inverted systems and were stimulated with heat-killed probiotic bacteria,Bifidobacteriumlactis AD011 (BL),Bifidobacterium bifidum BGN4 (BB),Lactobacillus casei IBS041 (LC),and Lactobacillus acidophilus AD031 (LA),for 12 h.Cytokine levels in the culture supernatants were determined by enzyme-linked immunosorbent assay and phenotypic analysis of DC was investigated by flow cytometry.RESULTS:BB and LC in single-cultured DC increased the expression of I-Ad,CD86 and CD40 (I-Ad,18.51 vs 30.88,46.11; CD86,62.74 vs 92.7,104.12; CD40,0.67vs 6.39,3.37,P < 0.05).All of the experimental probiotics increased the production of inflammatory cytokines,interleukin (IL)-6 and tumor necrosis factor (TNF)-α.However,in the normal co-culture systems,LC and LA decreased the expression of I-Ad (39.46 vs 30.32,33.26,P < 0.05),and none of the experimental probiotics increased the levels of IL-6 or TNF-α.In the inverted coculture systems,LC decreased the expression of CD40 (1.36 vs-2.27,P < 0.05),and all of the experimental probiotics decreased the levels of IL-6.In addition,BL increased the production of IL-10 (103.8 vs 166.0,P< 0.05) and LC and LA increased transforming growth factor-3 secretion (235.9 vs 618.9,607.6,P < 0.05).CONCLUSION:These results suggest that specific probiotic strains exert differential immune modulation mediated by the interaction of dendritic cells and epithelial cells in the homeostasis of gastrointestinal tract.

  18. Amygdalin blocks bladder cancer cell growth in vitro by diminishing cyclin A and cdk2.

    Science.gov (United States)

    Makarević, Jasmina; Rutz, Jochen; Juengel, Eva; Kaulfuss, Silke; Reiter, Michael; Tsaur, Igor; Bartsch, Georg; Haferkamp, Axel; Blaheta, Roman A

    2014-01-01

    Amygdalin, a natural compound, has been used by many cancer patients as an alternative approach to treat their illness. However, whether or not this substance truly exerts an anti-tumor effect has never been settled. An in vitro study was initiated to investigate the influence of amygdalin (1.25-10 mg/ml) on the growth of a panel of bladder cancer cell lines (UMUC-3, RT112 and TCCSUP). Tumor growth, proliferation, clonal growth and cell cycle progression were investigated. The cell cycle regulating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1, p19, p27 as well as the mammalian target of rapamycin (mTOR) related signals phosphoAkt, phosphoRaptor and phosphoRictor were examined. Amygdalin dose-dependently reduced growth and proliferation in all three bladder cancer cell lines, reflected in a significant delay in cell cycle progression and G0/G1 arrest. Molecular evaluation revealed diminished phosphoAkt, phosphoRictor and loss of Cdk and cyclin components. Since the most outstanding effects of amygdalin were observed on the cdk2-cyclin A axis, siRNA knock down studies were carried out, revealing a positive correlation between cdk2/cyclin A expression level and tumor growth. Amygdalin, therefore, may block tumor growth by down-modulating cdk2 and cyclin A. In vivo investigation must follow to assess amygdalin's practical value as an anti-tumor drug.

  19. Amygdalin blocks bladder cancer cell growth in vitro by diminishing cyclin A and cdk2.

    Directory of Open Access Journals (Sweden)

    Jasmina Makarević

    Full Text Available Amygdalin, a natural compound, has been used by many cancer patients as an alternative approach to treat their illness. However, whether or not this substance truly exerts an anti-tumor effect has never been settled. An in vitro study was initiated to investigate the influence of amygdalin (1.25-10 mg/ml on the growth of a panel of bladder cancer cell lines (UMUC-3, RT112 and TCCSUP. Tumor growth, proliferation, clonal growth and cell cycle progression were investigated. The cell cycle regulating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1, p19, p27 as well as the mammalian target of rapamycin (mTOR related signals phosphoAkt, phosphoRaptor and phosphoRictor were examined. Amygdalin dose-dependently reduced growth and proliferation in all three bladder cancer cell lines, reflected in a significant delay in cell cycle progression and G0/G1 arrest. Molecular evaluation revealed diminished phosphoAkt, phosphoRictor and loss of Cdk and cyclin components. Since the most outstanding effects of amygdalin were observed on the cdk2-cyclin A axis, siRNA knock down studies were carried out, revealing a positive correlation between cdk2/cyclin A expression level and tumor growth. Amygdalin, therefore, may block tumor growth by down-modulating cdk2 and cyclin A. In vivo investigation must follow to assess amygdalin's practical value as an anti-tumor drug.

  20. The insulin-like growth factor system is modulated by exercise in breast cancer survivors: a systematic review and meta-analysis

    OpenAIRE

    Meneses-Echávez, José Francisco; Jiménez, Emilio González; Río-Valle, Jacqueline Schmidt; Correa-Bautista, Jorge Enrique; Izquierdo, Mikel; Ramírez-Vélez, Robinson

    2016-01-01

    Background Insulin-like growth factors (IGF´s) play a crucial role in controlling cancer cell proliferation, differentiation and apoptosis. Exercise has been postulated as an effective intervention in improving cancer-related outcomes and survival, although its effects on IGF´s are not well understood. This meta-analysis aimed to determine the effects of exercise in modulating IGF´s system in breast cancer survivors. Methods Databases of PuMed, EMBASE, Cochrane Central Register of Controlled ...

  1. Dynamics of HBV cccDNA expression and transcription in different cell growth phase

    Directory of Open Access Journals (Sweden)

    Chong Chin-Liew

    2011-12-01

    Full Text Available Abstract Background The covalently closed-circular DNA (cccDNA of hepatitis B virus (HBV is associated with viral persistence in HBV-infected hepatocytes. However, the regulation of cccDNA and its transcription in the host cells at different growth stages is not well understood. Methods We took advantages of a stably HBV-producing cell line, 1.3ES2, and examine the dynamic changes of HBV cccDNA, viral transcripts, and viral replication intermediates in different cellular growth stages. Results In this study, we showed that cccDNA increased suddenly in the initial proliferation phase of cell growth, probably attributable to its nuclear replenishment by intracellular nucleocapsids. The amount of cccDNA then decreased dramatically in the cells during their exponential proliferation similar to the loss of extrachromosomal plasmid DNA during cell division, after which it accumulated gradually while the host cells grew to confluency. We found that cccDNA was reduced in dividing cells and could be removed when proliferating cells were subjected to long term of lamivudine (3TC treatment. The amounts of viral replicative intermediates were rapidly reduced in these proliferating cells and were significantly increased after cells reaching confluency. The expression levels of viral transcripts were increased in parallel with the elevated expression of hepatic transcription factors (HNF4α, CEBPα, PPARα, etc. during cell growth confluency. The HBV transcripts were transcribed from both integrated viral genome and cccDNA, however the transcriptional abilities of cccDNA was less efficient then that from integrated viral genome in all cell growth stages. We also noted increases in the accumulation of intracellular viral particles and the secretion of mature virions as the cells reached confluency and ceased to grow. Conclusions Based on the dynamics of HBV replication, we propose that HBV replication is modulated differently in the different stages of cell

  2. Cannabinoids modulate spontaneous synaptic activity in retinal ganglion cells.

    Science.gov (United States)

    Middleton, T P; Protti, D A

    2011-09-01

    The endocannabinoid (ECB) system has been found throughout the central nervous system and modulates cell excitability in various forms of short-term plasticity. ECBs and their receptors have also been localized to all retinal cells, and cannabinoid receptor activation has been shown to alter voltage-dependent conductances in several different retinal cell types, suggesting a possible role for cannabinoids in retinal processing. Their effects on synaptic transmission in the mammalian retina, however, have not been previously investigated. Here, we show that exogenous cannabinoids alter spontaneous synaptic transmission onto retinal ganglion cells (RGCs). Using whole-cell voltage-clamp recordings in whole-mount retinas, we measured spontaneous postsynaptic currents (SPSCs) in RGCs in adult and young (P14-P21) mice. We found that the addition of an exogenous cannabinoid agonist, WIN55212-2 (5 μM), caused a significant reversible reduction in the frequency of SPSCs. This change, however, did not alter the kinetics of the SPSCs, indicating a presynaptic locus of action. Using blockers to isolate inhibitory or excitatory currents, we found that cannabinoids significantly reduced the release probability of both GABA and glutamate, respectively. While the addition of cannabinoids reduced the frequency of both GABAergic and glutamatergic SPSCs in both young and adult mice, we found that the largest effect was on GABA-mediated currents in young mice. These results suggest that the ECB system may potentially be involved in the modulation of signal transmission in the retina. Furthermore, they suggest that it might play a role in the developmental maturation of synaptic circuits, and that exogenous cannabinoids are likely able to disrupt retinal processing and consequently alter vision.

  3. Epidermal Growth Factor Receptor Expression Modulates Antitumor Efficacy of Vandetanib or Cediranib Combined With Radiotherapy in Human Glioblastoma Xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Wachsberger, Phyllis R., E-mail: Phyllis.wachsberger@jeffersonhospital.org [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Lawrence, Yaacov R.; Liu Yi; Daroczi, Borbala [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Xu Xia [Merck Research Laboratories, North Wales, Pennsylvania (United States); Dicker, Adam P. [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States)

    2012-01-01

    Purpose: The purpose of this study was to determine the ability of radiation therapy (RT) combined with the tyrosine kinase inhibitors (TKI) vandetanib (antiepidermal growth factor receptor [EGFR] plus antivascular endothelial growth factor receptor [anti-VEGFR]) and cediranib (anti-VEGFR) to inhibit glioblastoma multiforme (GBM) growth. A secondary aim was to investigate how this regimen is modulated by tumor EGFR expression. Methods and Materials: Radiosensitivity was assessed by clonogenic cell survival assay. VEGF secretion was quantified by enzyme-linked immunosorbent assay. GBM (U87MG wild-type EGFR [wtEGFR] and U87MG EGFR-null) xenografts were treated with vandetanib, cediranib, and RT, alone or in combinations. Excised tumor sections were stained for proliferative and survival biomarkers. Results: In vitro, U87MG wtEGFR and U87 EGFR-null cells had similar growth kinetics. Neither TKI affected clonogenic cell survival following RT. However, in vivo, exogenous overexpression of wtEGFR decreased tumor doubling time (T2x) in U87MG xenografts (2.70 vs. 4.41 days for U87MG wtEGFR vs. U87MG vector, respectively). In U87MG EGFR-null cells, TKI combined with radiation was no better than radiation therapy alone. In U87MG wtEGFR, RT in combination with vandetanib (but not with cediranib) significantly increased tumor T2x compared with RT alone (T2x, 10.4 days vs. 4.8 days; p < 0.001). In vivo, growth delay correlated with suppression of pAkt, survivin, and Ki67 expression in tumor samples. The presence of EGFR augmented RT-stimulated VEGF release; this effect was inhibited by vandetanib. Conclusions: EGFR expression promoted tumor growth in vivo but not in vitro, suggesting a microenvironmental effect. GBM xenografts expressing EGFR exhibited greater sensitivity to both cediranib and vandetanib than EGFR-null tumors. Hence EGFR status plays a major role in determining a tumor's in vivo response to radiation combined with TKI, supporting a &apos

  4. Gene Transfer and Expression of Platelet-derived Growth Factors Modulate Periodontal Cellular Activity

    OpenAIRE

    Zhu, Z.; Lee, C. S.; Tejeda, K.M.; Giannobile, W.V.

    2001-01-01

    Platelet-derived growth factor (PDGF) is a potent stimulator of wound healing. PDGF gene therapy may promote greater periodontal regeneration than local protein application, due to sustained growth factor delivery to the target tissue. This investigation tested the ability of recombinant adenoviruses (rAds) encoding PDGF-A or PDGF-1308 (a PDGF-A dominant-negative mutant that disrupts endogenous PDGF bioactivity) to affect cells derived from the periodontium. Osteoblasts, periodontal ligament ...

  5. Polyphosphate-mediated modulation of Campylobacter jejuni biofilm growth and stability.

    Science.gov (United States)

    Drozd, Mary; Chandrashekhar, Kshipra; Rajashekara, Gireesh

    2014-08-15

    Biofilms increase C. jejuni's resilience to detergents, antibiotics, and environmental stressors. In these investigations, we studied the modulation of biofilm in response to phosphate related stressors. We found that the deletion of ppk1, phoX, and ppk2 (polyphosphate associated [poly P] genes) in C. jejuni modulated different stages of biofilm formation such as attached microcolonies, air-liquid biofilms, and biofilm shedding. Additionally, inorganic phosphate also modulated attached microcolonies, air-liquid biofilms, and biofilm shedding both independently of and additively in the poly P associated mutants. Furthermore, we observed that these different biofilm stages were affected by biofilm age: for example, the adherent microcolonies were maximum on day 2, while biofilm growth at the air-liquid interface and shedding was highest on day 3. Also, we observed altered calcofluor white reactive polysaccharides in poly P-associated mutants, as well as increased secretion of autoinducer-2 (AI-2) quorum sensing molecules in the ∆ppk2 mutant. Further, the polysaccharide and flagellar biosynthesis genes, that are associated with biofilm formation, were altered in these poly P-associated mutants. We conclude that the phosphate limiting condition modulates C. jejuni biofilm formation.

  6. Impact of helium ion energy modulation on tungsten surface morphology and nano-tendril growth

    Science.gov (United States)

    Woller, K. B.; Whyte, D. G.; Wright, G. M.

    2017-06-01

    Time-modulated helium (He) ion energy (e.g. V Bias  =  -50  +  25·sin(2πf RF · t), f RF  =  13.56 MHz) is demonstrated to strongly affect the development of tungsten (W) surface morphology that results from He plasma irradiation in the DIONISOS linear plasma experiment. Nano-tendril bundles (NTBs), which appear as isolated ‘islands’ of nano-tendrils, can rapidly grow on an otherwise smooth W surface. This is in contrast to previously seen full-surface coverage of nano-tendril growth known as ‘fuzz’. When tall NTBs form, less than 15% of the surface contains nano-tendrils. The NTB surface coverage changes with growth conditions and the total volume of nano-tendrils in the NTBs is observed to be up to a factor of 16 larger than when fuzz is grown. This indicates that long-range W surface transport underlies nano-tendril formation. Surface temperature 870-1220 K, the DC bias potential  -30 to  -70 V, and the ion flux density 4.4  ×  1021-1.1  ×  1022 He · m-2 · s-1 are varied in the experiments. NTBs form at similar conditions as fuzz with the critical difference being the RF modulation of the ion energy bombarding the W, another indication of the importance of W surface transport. Mass loss measurements indicate net erosion with a yield of 1-8  ×  10-4 W/He when NTBs form; erosion that is not attributable to chemical or physical sputtering by He or impurities in the plasma. The erosion is correlated to the NTB growth, based on post-exposure inspection by electron microscopy indicating that NTBs are prone to loss from the surface. NTB growth is compared to the empirical growth-erosion model of fuzz, showing NTBs grow up to a factor of 100 times taller than the expected fuzz layer depth under DC bias conditions. Insights into nano-tendril growth provided by this new growth regime are discussed. Strategies to mitigate W fuzz growth may inadvertently result in rapid localized nano-tendril bundle

  7. Apollon modulates chemosensitivity in human esophageal squamous cell carcinoma.

    Science.gov (United States)

    Zhang, Si; Tang, Wenqing; Weng, Shuqiang; Liu, Xijun; Rao, Benqiang; Gu, Jianxin; Chen, She; Wang, Qun; Shen, Xizhong; Xue, Ruyi; Dong, Ling

    2014-08-30

    Patients with esophageal squamous cell carcinoma (ESCC) are often diagnosed with advanced diseases that respond poorly to chemotherapy. Here we reported that Apollon, a membrane-associated inhibitor of apoptosis protein, was overexpressed in ESCC cell lines and clinical ESCC tissues, and Apollon overexpression clinically correlated with poor response to chemotherapy (P = 0.001), and short overall survival (P = 0.021). Apollon knockdown increased cisplatin/docetaxel-induced apoptosis, mitochondrial dysfunction and cytochrome c release in two ESCC cell lines. Apollon knockdown potentiated cisplatin/docetaxel-induced long-term cell growth inhibition, and enhanced chemosensitivity of ESCC cells to cisplatin/docetaxel in xenograft tumor models. Apollon knockdown also enhanced cisplatin/docetaxel-induced activation of caspase-8 (extrinsic pathway) and caspase-9 (intrinsic pathway) in ESCC cells and xenograft tumor models. Mechanism studies revealed that the effect of Apollon on chemosensitivity is mainly mediated by Smac. Apollon expression strongly and negatively correlated with Smac expression in clinical ESCC tissues (P = 0.001). Apollon targeted Smac for degradation in ESCC cells. The effect of Apollon on chemosensitivity was reversed by Smac knockdown in ESCC cells. Taken together, our data show association of Apollon expression with chemotherapeutic response in ESCC, and provide a strong rationale for combining Apollon antagonism with chemotherapy to treat ESCC.

  8. Methylselenol, a selenium metabolite, modulates p53 pathway and inhibits the growth of colon cancer xenografts in Balb/c mice.

    Science.gov (United States)

    Zeng, Huawei; Cheng, Wen-Hsing; Johnson, Luann K

    2013-05-01

    It is has been hypothesized that methylselenol is a critical selenium metabolite for anticancer activity in vivo. In this study, we used a protein array which contained 112 different antibodies known to be involved in the p53 pathway to investigate the molecular targets of methylselenol in human HCT116 colon cancer cells. The array analysis indicated that methylselenol exposure changed the expression of 11 protein targets related to the regulation of cell cycle and apoptosis. Subsequently, we confirmed these proteins with the Western blotting approach, and found that methylselenol increased the expression of GADD 153 and p21 but reduced the level of c-Myc, E2F1 and Phos p38 MAP kinase. Similar to our previous report on human HCT116 colon cancer cells, methylselenol also inhibited cell growth and led to an increase in G1 and G2 fractions with a concomitant drop in S-phase in mouse colon cancer MC26 cells. When the MC26 cells were transplanted to their immune-competent Balb/c mice, methylselenol-treated MC26 cells had significantly less tumor growth potential than that of untreated MC26 cells. Taken together, our data suggest that methylselenol modulates the expression of key genes related to cell cycle and apoptosis and inhibits colon cancer cell proliferation and tumor growth.

  9. Quantification of cell edge velocities and traction forces reveals distinct motility modules during cell spreading.

    Directory of Open Access Journals (Sweden)

    Benjamin J Dubin-Thaler

    Full Text Available Actin-based cell motility and force generation are central to immune response, tissue development, and cancer metastasis, and understanding actin cytoskeleton regulation is a major goal of cell biologists. Cell spreading is a commonly used model system for motility experiments -- spreading fibroblasts exhibit stereotypic, spatially-isotropic edge dynamics during a reproducible sequence of functional phases: 1 During early spreading, cells form initial contacts with the surface. 2 The middle spreading phase exhibits rapidly increasing attachment area. 3 Late spreading is characterized by periodic contractions and stable adhesions formation. While differences in cytoskeletal regulation between phases are known, a global analysis of the spatial and temporal coordination of motility and force generation is missing. Implementing improved algorithms for analyzing edge dynamics over the entire cell periphery, we observed that a single domain of homogeneous cytoskeletal dynamics dominated each of the three phases of spreading. These domains exhibited a unique combination of biophysical and biochemical parameters -- a motility module. Biophysical characterization of the motility modules revealed that the early phase was dominated by periodic, rapid membrane blebbing; the middle phase exhibited continuous protrusion with very low traction force generation; and the late phase was characterized by global periodic contractions and high force generation. Biochemically, each motility module exhibited a different distribution of the actin-related protein VASP, while inhibition of actin polymerization revealed different dependencies on barbed-end polymerization. In addition, our whole-cell analysis revealed that many cells exhibited heterogeneous combinations of motility modules in neighboring regions of the cell edge. Together, these observations support a model of motility in which regions of the cell edge exhibit one of a limited number of motility modules

  10. Ubiquitin specific protease 2 acts as a key modulator for the regulation of cell cycle by adiponectin and leptin in cancer cells.

    Science.gov (United States)

    Nepal, Saroj; Shrestha, Anup; Park, Pil-Hoon

    2015-09-05

    Adiponectin and leptin, both produced from adipose tissue, cause cell cycle arrest and progression, respectively in cancer cells. Ubiquitin specific protease-2 (USP-2), a deubiquitinating enzyme, is known to impair proteasome-induced degradation of cyclin D1, a critical cell cycle regulator. Herein, we investigated the effects of these adipokines on USP-2 expression and its potential role in the modulation of cell cycle. Treatment with globular adiponectin (gAcrp) decreased, whereas leptin increased USP-2 expression both in human hepatoma and breast cancer cells. In addition, overexpression or gene silencing of USP-2 affected cyclin D1 expression and cell cycle progression/arrest by adipokines. Adiponectin and leptin also modulated in vitro proteasomal activity, which was partially dependent on USP-2 expression. Taken together, our results reveal that modulation of USP-2 expression plays a crucial role in cell cycle regulation by adipokines. Thus, USP-2 would be a promising therapeutic target for the modulation of cancer cell growth by adipokines.

  11. RhoC GTPase Overexpression Modulates Induction of Angiogenic Factors in Breast Cells

    Directory of Open Access Journals (Sweden)

    Kenneth L. van Golen

    2000-09-01

    Full Text Available Inflammatory breast cancer (IBC is a distinct and aggressive form of locally advanced breast cancer. IBC is highly angiogenic, invasive, and metastatic at its inception. Previously, we identified specific genetic alterations of IBC that contribute to this highly invasive phenotype. RhoC GTPase was overexpressed in 90% of archival IBC tumor samples, but not in stage-matched, non-IBC tumors. To study the role of RhoC GTPase in contributing to an IBC-like phenotype, we generated stable transfectants of human mammary epithelial cells overexpressing the RhoC gene, and studied the effect of RhoC GTPase overexpression on the modulation of angiogenesis in IBC. Levels of vascular endothelial growth factor (VEGF, basic fibroblast growth factor (bFGF, interleukin-6 (IL-6, and interleukin-8 (IL-8 were significantly higher in the conditioned media of the HME-RhoC transfectants than in the untransfected HME and HME-β-galactosidase control media, similar to the SUM149 IBC cell line. Inhibition of RhoC function by introduction of C3 exotransferase decreased production of angiogenic factors by the HME-RhoC transfectants and the SUM149 IBC cell line, but did not affect the control cells. These data support the conclusion that overexpression of RhoC GTPase is specifically and directly implicated in the control of the production of angiogenic factors by IBC cells.

  12. Remodeling of the Fission Yeast Cdc42 Cell-Polarity Module via the Sty1 p38 Stress-Activated Protein Kinase Pathway.

    Science.gov (United States)

    Mutavchiev, Delyan R; Leda, Marcin; Sawin, Kenneth E

    2016-11-07

    The Rho family GTPase Cdc42 is a key regulator of eukaryotic cellular organization and cell polarity [1]. In the fission yeast Schizosaccharomyces pombe, active Cdc42 and associated effectors and regulators (the "Cdc42 polarity module") coordinate polarized growth at cell tips by controlling the actin cytoskeleton and exocytosis [2-4]. Localization of the Cdc42 polarity module to cell tips is thus critical for its function. Here we show that the fission yeast stress-activated protein kinase Sty1, a homolog of mammalian p38 MAP kinase, regulates localization of the Cdc42 polarity module. In wild-type cells, treatment with latrunculin A, a drug that leads to actin depolymerization, induces dispersal of the Cdc42 module from cell tips and cessation of polarized growth [5, 6]. We show that latrunculin A treatment also activates the Sty1 MAP kinase pathway and, strikingly, we find that loss of Sty1 MAP kinase signaling prevents latrunculin A-induced dispersal of the Cdc42 module, allowing polarized growth even in complete absence of the actin cytoskeleton. Regulation of the Cdc42 module by Sty1 is independent of Sty1's role in stress-induced gene expression. We also describe a system for activation of Sty1 kinase "on demand" in the absence of any external stress, and use this to show that Sty1 activation alone is sufficient to disperse the Cdc42 module from cell tips in otherwise unperturbed cells. During nitrogen-starvation-induced quiescence, inhibition of Sty1 converts non-growing, depolarized cells into growing, polarized cells. Our results place MAP kinase Sty1 as an important physiological regulator of the Cdc42 polarity module.

  13. Neuropilin-1 modulates vascular endothelial growth factor-induced poly(ADP-ribose)-polymerase leading to reduced cerebrovascular apoptosis.

    Science.gov (United States)

    Mey, Lilli; Hörmann, Mareike; Schleicher, Nadine; Reuter, Peter; Dönges, Simone; Kinscherf, Ralf; Gassmann, Max; Gerriets, Tibo; Al-Fakhri, Nadia

    2013-11-01

    Cerebral ischemia is encompassed by cerebrovascular apoptosis, yet the mechanisms behind apoptosis regulation are not fully understood. We previously demonstrated inhibition of endothelial apoptosis by vascular endothelial growth factor (VEGF) through upregulation of poly(ADP-ribose)-polymerase (PARP) expression. However, PARP overactivation through oxidative stress can lead to necrosis. This study tested the hypothesis that neuropilin-1 (NP-1), an alternative VEGF receptor, regulates the response to cerebral ischemia by modulating PARP expression and, in turn, apoptosis inhibition by VEGF. In endothelial cell culture, NP-1 colocalized with VEGF receptor-2 (VEGFR-2) and acted as its coreceptor. This significantly enhanced VEGF-induced PARP mRNA and protein expression demonstrated by receptor-specific inhibitors and VEGF-A isoforms. NP-1 augmented the inhibitory effect of VEGF/VEGFR-2 interaction on apoptosis induced by adhesion inhibition through the αV-integrin inhibitor cRGDfV. NP-1/VEGFR-2 signal transduction involved JNK and Akt. In rat models of permanent and temporary middle cerebral artery occlusion, the ischemic cerebral hemispheres displayed endothelial and neuronal apoptosis next to increased endothelial NP-1 and VEGFR-2 expression compared to non-ischemic cerebral hemispheres, sham-operated or untreated controls. Increased vascular superoxide dismutase-1 and catalase expression as well as decreased glycogen reserves indicated oxidative stress in the ischemic brain. Of note, protein levels of intact PARP remained stable despite pro-apoptotic conditions through increased PARP mRNA production during cerebral ischemia. In conclusion, NP-1 is upregulated in conditions of imminent cerebrovascular apoptosis to reinforce apoptosis inhibition and modulate VEGF-dependent PARP expression and activation. We propose that NP-1 is a key modulator of VEGF maintaining cerebrovascular integrity during ischemia. Modulating the function of NP-1 to target PARP could help to

  14. Fermented wheat aleurone inhibits growth and induces apoptosis in human HT29 colon adenocarcinoma cells.

    Science.gov (United States)

    Borowicki, Anke; Stein, Katrin; Scharlau, Daniel; Scheu, Kerstin; Brenner-Weiss, Gerald; Obst, Ursula; Hollmann, Jürgen; Lindhauer, Meinolf; Wachter, Norbert; Glei, Michael

    2010-02-01

    Fermentation of dietary fibre by the gut microflora may enhance levels of SCFA, which are potentially chemoprotective against colon cancer. Functional food containing wheat aleurone may prevent cancer by influencing cell cycle and cell death. We investigated effects of fermented wheat aleurone on growth and apoptosis of HT29 cells. Wheat aleurone, flour and bran were digested and fermented in vitro. The resulting fermentation supernatants (fs) were analysed for their major metabolites (SCFA, bile acids and ammonia). HT29 cells were treated for 24-72 h with the fs or synthetic mixtures mimicking the fs in SCFA, butyrate or deoxycholic acid (DCA) contents, and the influence on cell growth was determined. Fs aleurone was used to investigate the modulation of apoptosis and cell cycle. The fermented wheat samples contained two- to threefold higher amounts of SCFA than the faeces control (blank), but reduced levels of bile acids and increased concentrations of ammonia. Fs aleurone and flour equally reduced cell growth of HT29 more effectively than the corresponding blank and the SCFA mixtures. The EC(50) (48 h) ranged from 10 % (flour) to 19 % (blank). Markedly after 48 h, fs aleurone (10 %) significantly induced apoptosis and inhibited cell proliferation by arresting the cell cycle in the G0/G1 phase. In conclusion, fermentation of wheat aleurone results in a reduced level of tumour-promoting DCA, but higher levels of potentially chemopreventive SCFA. Fermented wheat aleurone is able to induce apoptosis and to block cell cycle - two essential markers of secondary chemoprevention.

  15. Polyunsaturated Fatty Acids Differentially Modulate Cell Proliferation and Endocannabinoid System in Two Human Cancer Lines.

    Science.gov (United States)

    Gastón, Repossi; María Eugenia, Pasqualini; Das, Undurti N; Eynard, Aldo R

    2017-01-01

    Evidence suggests that quantity and quality of dietary polyunsaturated fatty acids (PUFAs) play a role in the development of cancer. However, the mechanisms involved in this interaction(s) are not clear. Endocannabinoids are lipid metabolites known to have growth modulatory actions. We studied the effect of supplementation with PUFAs ω-6 and ω-3 (essential fatty acids, EFAs), saturated and monounsaturated fatty acids (non-EFAs) on the growth of tumor cells and modifications in their endocannabinoid content. Cell cultures of human glioblastoma (T98G) and breast cancer (MCF7) were supplemented with 50 or 100 mmol EFAs and non-EFAs for 72 h. Cell proliferation was then determined by MTT, anandamide (AEA) levels by HPLC, total fatty acids profiles by GLC, CB1 receptor expression by WB and FAAH activity by spectrophotometric method. Fatty acids profile reflected the incorporation of the lipids supplemented in each assay. Arachidonic acid (EFA ω-6) supplementation increased AEA levels and inhibited the growth of T98G, whereas palmitic acid (non-EFA) enhanced their proliferation. In breast cancer (MCF7) cells, eicosapentaenoic acid (EFA ω-3) reduced and oleic acid (non-EFA) enhanced their proliferation. CB1 expression was higher in T98G and no differences were observed in FAAH activity. The growth of tumor cells can be differentially modulated by fatty acids and, at least in part, can be attributed to their ability to act on the components of the endocannabinoid system. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  16. Host cell modulation by human, animal and plant pathogens.

    Science.gov (United States)

    Andersson, Siv G E; Kempf, Volkhard A J

    2004-04-01

    Members of the alpha-proteobacteria display a broad range of interactions with higher eukaryotes. Some are pathogens of humans, such as Rickettsia and Bartonella that are associated with diseases like epidemic typhus, trench fever, cat scratch disease and bacillary angiomatosis. Others like the Brucella cause abortions in pregnant animals. Yet other species have evolved elaborate interactions with plants; in this group we find both plant symbionts and parasites. Despite radically different host preferences, extreme genome size variations and the absence of toxin genes, similarities in survival strategies and host cell interactions can be recognized among members of the alpha-proteobacteria. Here, we review some of these similarities, with a focus on strategies for modulation of the host target cell.

  17. From Cell to Module: Fabrication and Long-term Stability of Dye-sensitized Solar Cells

    Science.gov (United States)

    Nursam, N. M.; Hidayat, J.; Muliani, L.; Anggraeni, P. N.; Retnaningsih, L.; Idayanti, N.

    2017-07-01

    Dye-sensitized solar cell (DSSC), which has been firstly developed by Graetzel et al back in 1991, has attracted a considerable interest since its discovery. However, two of the main challenges that the DSSC technology will have to overcome towards commercialization involve device scale-up and long-term stability. In our group, the fabrication technology of DSSC has been developed from laboratory to module scale over the past few years, nevertheless, the long-term stability has still became a major concern. In this contribution, the long-term DSSC performance in relation to their scale-up from cell to module is investigated. The photoelectrode of the DSSCs were fabricated using nanocrystalline titanium dioxide materials that were subsequently sensitized using ruthenium-based dye. Additionally, TiCl4 pre- and post-treatment were carried out to enhance the overall device efficiency. When fabricated as cells, the DSSC prototypes showed relatively stable performance during repeated tests over three months. In order to increase the output power of the solar cells, the DSSCs were then connected in a Z-type series connection to obtain sub-module panels. The DSSC sub-modules exhibit poor stability, particularly as indicated by the significant decrease in the short circuit current (ISC ). Herein, the effect of photoelectrode and sealant materials as well as module design are investigated, highlighting their profound influence upon the DSSC efficiency and long-term stability.

  18. Insulin-like growth factor binding protein-5 modulates muscle differentiation through an insulin-like growth factor-dependent mechanism.

    Science.gov (United States)

    James, P L; Stewart, C E; Rotwein, P

    1996-05-01

    The insulin-like growth factor binding proteins (IGFBPs) are a family of six secreted proteins which bind to and modulate the actions of insulin-like growth factors-I and -II (IGF-I and -II). IGFBP-5 is more conserved than other IGFBPs characterized to date, and is expressed in adult rodent muscle and in the developing myotome. We have shown previously that C2 myoblasts secrete IGFBP-5 as their sole IGFBP. Here we use these cells to study the function of IGFBP-5 during myogenesis, a process stimulated by IGFs. We stably transfected C2 cells with IGFBP-5 cDNAs under control of a constitutively active promoter. Compared with vector-transfected control cells, C2 myoblasts expressing the IGFBP-5 transgene in the sense orientation exhibit increased IGFBP-5 levels in the extracellular matrix during proliferation, and subsequently fail to differentiate normally, as assessed by both morphological and biochemical criteria. Compared to controls, IGFBP-5 sense myoblasts show enhanced survival in low serum medium, remaining viable for at least four weeks in culture. By contrast, myoblasts expressing the IGFBP-5 antisense transcript differentiate prematurely and more extensively than control cells. The inhibition of myogenic differentiation by high level expression of IGFBP-5 could be overcome by exogenous IGFs, with des (1-3) IGF-I, an analogue with decreased affinity for IGFBP-5 but normal affinity for the IGF-I receptor, showing the highest potency. These results are consistent with a model in which IGFBP-5 blocks IGF-stimulated myogenesis, and indicate that sequestration of IGFs in the extracellular matrix could be a possible mechanism of action. Our observations also suggest that IGFBP-5 normally inhibits muscle differentiation, and imply a role for IGFBP-5 in regulating IGF action during myogenic development in vivo.

  19. Modulation of host-cell MAPkinase signaling during fungal infection

    Directory of Open Access Journals (Sweden)

    Nir Osherov

    2015-10-01

    Full Text Available Fungal infections contribute substantially to human suffering and mortality. The interaction between fungal pathogens and their host involves the invasion and penetration of the surface epithelium, activation of cells of the innate immune system and the generation of an effective response to block infection. Numerous host-cell signaling pathways are activated during fungal infection. This review will focus on the main fungal pathogens Aspergillus fumigatus, Candida albicans and Cryptococcus neoformans and their ability to activate the host MAP-kinase signaling pathways leading to cytokine secretion, increased cell motility and killing of the pathogen. Both epithelial and innate immune cells specifically recognize fungal antigens and in particular cell surface polysaccharides such as β-glucans and react to them by activating multiple signaling pathways, including those containing MAP-kinase modules. Recent findings suggest that the host response to fungal infection utilizes the MAP-kinase pathway to differentiate between commensal and pathogenic fungi to selectively react only to the pathogenic forms. However, the paucity of relevant publications strongly emphasize that our understanding of host MAP-kinase signaling in response to fungal infection is still at a very early stage. It is clear, based on studies of host MAP-kinase signaling during viral and bacterial infections, that in fungi as well, a wealth of exciting findings await us.

  20. TRIM72 modulates caveolar endocytosis in repair of lung cells.

    Science.gov (United States)

    Nagre, Nagaraja; Wang, Shaohua; Kellett, Thomas; Kanagasabai, Ragu; Deng, Jing; Nishi, Miyuki; Shilo, Konstantin; Oeckler, Richard A; Yalowich, Jack C; Takeshima, Hiroshi; Christman, John; Hubmayr, Rolf D; Zhao, Xiaoli

    2016-03-01

    Alveolar epithelial and endothelial cell injury is a major feature of the acute respiratory distress syndrome, in particular when in conjunction with ventilation therapies. Previously we showed [Kim SC, Kellett T, Wang S, Nishi M, Nagre N, Zhou B, Flodby P, Shilo K, Ghadiali SN, Takeshima H, Hubmayr RD, Zhao X. Am J Physiol Lung Cell Mol Physiol 307: L449-L459, 2014.] that tripartite motif protein 72 (TRIM72) is essential for amending alveolar epithelial cell injury. Here, we posit that TRIM72 improves cellular integrity through its interaction with caveolin 1 (Cav1). Our data show that, in primary type I alveolar epithelial cells, lack of TRIM72 led to significant reduction of Cav1 at the plasma membrane, accompanied by marked attenuation of caveolar endocytosis. Meanwhile, lentivirus-mediated overexpression of TRIM72 selectively increases caveolar endocytosis in rat lung epithelial cells, suggesting a functional association between these two. Further coimmunoprecipitation assays show that deletion of either functional domain of TRIM72, i.e., RING, B-box, coiled-coil, or PRY-SPRY, abolishes the physical interaction between TRIM72 and Cav1, suggesting that all theoretical domains of TRIM72 are required to forge a strong interaction between these two molecules. Moreover, in vivo studies showed that injurious ventilation-induced lung cell death was significantly increased in knockout (KO) TRIM72(KO) and Cav1(KO) lungs compared with wild-type controls and was particularly pronounced in double KO mutants. Apoptosis was accompanied by accentuation of gross lung injury manifestations in the TRIM72(KO) and Cav1(KO) mice. Our data show that TRIM72 directly and indirectly modulates caveolar endocytosis, an essential process involved in repair of lung epithelial cells through removal of plasma membrane wounds. Given TRIM72's role in endomembrane trafficking and cell repair, we consider this molecule an attractive therapeutic target for patients with injured lungs.

  1. Activated protein C modulates the proinflammatory activity of dendritic cells

    Directory of Open Access Journals (Sweden)

    Matsumoto T

    2015-05-01

    Full Text Available Takahiro Matsumoto,1,2* Yuki Matsushima,1* Masaaki Toda,1 Ziaurahman Roeen,1 Corina N D'Alessandro-Gabazza,1,5 Josephine A Hinneh,1 Etsuko Harada,1,3 Taro Yasuma,4 Yutaka Yano,4 Masahito Urawa,1,5 Tetsu Kobayashi,5 Osamu Taguchi,5 Esteban C Gabazza1 1Department of Immunology, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, 2BONAC Corporation, BIO Factory 4F, Fukuoka, 3Iwade Research Institute of Mycology, 4Department of Endocrinology, Diabetes and Metabolism, 5Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, Japan *These authors contributed equally to this work Background: Previous studies have demonstrated the beneficial activity of activated protein C in allergic diseases including bronchial asthma and rhinitis. However, the exact mechanism of action of activated protein C in allergies is unclear. In this study, we hypothesized that pharmacological doses of activated protein C can modulate allergic inflammation by inhibiting dendritic cells. Materials and methods: Dendritic cells were prepared using murine bone marrow progenitor cells and human peripheral monocytes. Bronchial asthma was induced in mice that received intratracheal instillation of ovalbumin-pulsed dendritic cells. Results: Activated protein C significantly increased the differentiation of tolerogenic plasmacytoid dendritic cells and the secretion of type I interferons, but it significantly reduced lipopolysaccharide-mediated maturation and the secretion of inflammatory cytokines in myeloid dendritic cells. Activated protein C also inhibited maturation and the secretion of inflammatory cytokines in monocyte-derived dendritic cells. Activated protein C-treated dendritic cells were less effective when differentiating naïve CD4 T-cells from Th1 or Th2 cells, and the cellular effect of activated protein C was mediated by its receptors. Mice that received adoptive transfer of activated protein C

  2. Haemoglobin F modulation in childhood sickle cell disease.

    Science.gov (United States)

    Trompeter, Sara; Roberts, Irene

    2009-02-01

    While supportive care remains the best option for most well children with sickle cell disease (SCD), increasing awareness of early signs of chronic organ damage in childhood has focused attention on therapy which modulates the natural history of the disease. Since cure by stem cell transplantation is only feasible for a minority and gene therapy remains developmental, pharmacological modification by Haemoglobin F (HbF)-inducers, is the most widely used approach in SCD. Currently, the only HbF modulator with a clear place in the management of childhood SCD is hydroxycarbamide for which the main indications are frequent painful crises and recurrent acute chest syndrome. In the majority of SCD children treated with hydroxycarbamide there is clear evidence of clinical benefit and the drug is well tolerated. The main disadvantages are the need for frequent monitoring and uncertainity about long-term risks of carcinogenicity and impaired fertility, although these risks appear to be very low. The role of hydroxycarbamide in sickle-associated central nervous system disease remains to be established. Decitabine and butyrate derivatives show some promise although robust data in children with SCD are lacking. A number of other drugs are currently under investigation for their effects on HbF production including thalidomide and lenolidamide.

  3. Heme oxygenase-1 (HO-1 expression in prostate cancer cells modulates the oxidative response in bone cells.

    Directory of Open Access Journals (Sweden)

    Mercedes Ferrando

    Full Text Available Prostate cancer (PCa is a leading cause of death among males. It is currently estimated that inflammatory responses are linked to 15-20% of all deaths from cancer worldwide. PCa is dominated by complications arising from metastasis to the bone where the tumor cells interact with the bone microenvironment impairing the balance between bone formation and degradation. However, the molecular nature of this interaction is not completely understood. Heme oxygenase-1 (HO-1 counteracts oxidative damage and inflammation. Previous studies from our laboratory showed that HO-1 is implicated in PCa, demonstrating that endogenous HO-1 inhibits bone derived-prostate cancer cells proliferation, invasion and migration and decreases tumor growth and angiogenesis in vivo. The aim of this work was to analyze the impact of HO-1 modulated PCa cells on osteoblasts proliferation in vitro and on bone remodeling in vivo. Using a co-culture system of PC3 cells with primary mice osteoblasts (PMOs, we demonstrated that HO-1 pharmacological induction (hemin treatment abrogated the diminution of PMOs proliferation induced by PCa cells and decreased the expression of osteoclast-modulating factors in osteoblasts. No changes were detected in the expression of genes involved in osteoblasts differentiation. However, co-culture of hemin pre-treated PC3 cells (PC3 Hem with PMOs provoked an oxidative status and activated FoxO signaling in osteoblasts. The percentage of active osteoblasts positive for HO-1 increased in calvarias explants co-cultured with PC3 Hem cells. Nuclear HO-1 expression was detected in tumors generated by in vivo bone injection of HO-1 stable transfected PC3 (PC3HO-1 cells in the femur of SCID mice. These results suggest that HO-1 has the potential to modify the bone microenvironment impacting on PCa bone metastasis.

  4. Cell-ECM traction force modulates endogenous tension at cell–cell contacts

    Science.gov (United States)

    Maruthamuthu, Venkat; Sabass, Benedikt; Schwarz, Ulrich S.; Gardel, Margaret L.

    2011-01-01

    Cells in tissues are mechanically coupled both to the ECM and neighboring cells, but the coordination and interdependency of forces sustained at cell-ECM and cell–cell adhesions are unknown. In this paper, we demonstrate that the endogenous force sustained at the cell–cell contact between a pair of epithelial cells is approximately 100 nN, directed perpendicular to the cell–cell interface and concentrated at the contact edges. This force is stably maintained over time despite significant fluctuations in cell–cell contact length and cell morphology. A direct relationship between the total cellular traction force on the ECM and the endogenous cell–cell force exists, indicating that the cell–cell tension is a constant fraction of the cell-ECM traction. Thus, modulation of ECM properties that impact cell-ECM traction alters cell–cell tension. Finally, we show in a minimal model of a tissue that all cells experience similar forces from the surrounding microenvironment, despite differences in the extent of cell-ECM and cell–cell adhesion. This interdependence of cell–cell and cell-ECM forces has significant implications for the maintenance of the mechanical integrity of tissues, mechanotransduction, and tumor mechanobiology. PMID:21383129

  5. The src-family kinase inhibitor PP2 suppresses the in vitro invasive phenotype of bladder carcinoma cells via modulation of Akt.

    Science.gov (United States)

    Chiang, George J; Billmeyer, Brian R; Canes, David; Stoffel, John; Moinzadeh, Alireza; Austin, Christina A; Kosakowski, Monika; Rieger-Christ, Kimberly M; Libertino, John A; Summerhayes, Ian C

    2005-08-01

    To evaluate PP2 as a modulator of the cadherin/catenin complex in late-stage bladder carcinoma cells, and to assess its potential invasion-suppressor activity in this model. A panel of five human bladder carcinoma cells, characterizing late-stage disease, was used to determine the concentration for 50% inhibition of PP2 in cell-proliferation assays. Modulation of cadherin/catenin expression by PP2 was determined in Western blot analysis, with an assessment of the activation status of mitogen-activated protein kinase and Akt signalling pathways. Altered invasive capacity linked to these variables was determined in standard in vitro invasion assays. PP2 elicited concentration-dependent growth inhibition in all bladder cell lines within the panel, with growth suppression recorded at 10-35 micromol/L PP2. Distinct morphological changes were recorded in cell lines exposed to PP2, accompanied by up-regulation of plakoglobin expression in a subset of lines. Exposure of cells to PP2 resulted in inactivation of Akt in all cells and a concomitant reduction in in vitro invasive capacity. These results show that PP2 inhibits bladder carcinoma cell growth and can modulate plakoglobin expression in a subset of cell lines. In addition, PP2 can suppress the in vitro invasive capacity of bladder carcinoma cells by modulating the activation status of Akt.

  6. Pericyte actomyosin-mediated contraction at the cell-material interface can modulate the microvascular niche

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sunyoung; Zeiger, Adam; Maloney, John M; Van Vliet, Krystyn J [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Kotecki, Maciej; Herman, Ira M, E-mail: krystyn@mit.ed, E-mail: ira.herman@tufts.ed [Department of Physiology, Tufts University School of Medicine, 145 Harrison Avenue, Boston, MA 02111 (United States)

    2010-05-19

    Pericytes physically surround the capillary endothelium, contacting and communicating with associated vascular endothelial cells via cell-cell and cell-matrix contacts. Pericyte-endothelial cell interactions thus have the potential to modulate growth and function of the microvasculature. Here we employ the experimental finding that pericytes can buckle a freestanding, underlying membrane via actin-mediated contraction. Pericytes were cultured on deformable silicone substrata, and pericyte-generated wrinkles were imaged via both optical and atomic force microscopy (AFM). The local stiffness of subcellular domains both near and far from these wrinkles was investigated by using AFM-enabled nanoindentation to quantify effective elastic moduli. Substratum buckling contraction was quantified by the normalized change in length of initially flat regions of the substrata (corresponding to wrinkle contour lengths), and a model was used to relate local strain energies to pericyte contractile forces. The nature of pericyte-generated wrinkling and contractile protein-generated force transduction was further explored by the addition of pharmacological cytoskeletal inhibitors that affected contractile forces and the effective elastic moduli of pericyte domains. Actin-mediated forces are sufficient for pericytes to exert an average buckling contraction of 38% on the elastomeric substrata employed in these in vitro studies. Actomyosin-mediated contractile forces also act in vivo on the compliant environment of the microvasculature, including the basement membrane and other cells. Pericyte-generated substratum deformation can thus serve as a direct mechanical stimulus to adjacent vascular endothelial cells, and potentially alter the effective mechanical stiffness of nonlinear elastic extracellular matrices, to modulate pericyte-endothelial cell interactions that directly influence both physiologic and pathologic angiogenesis.

  7. Growth kinetics of Thiobacillus ferrooxidans in bioelectrochemical cell

    Institute of Scientific and Technical Information of China (English)

    李宏煦; 王淀佐; 邱冠周; 胡岳华

    2004-01-01

    Thiobacillus ferrooxidans might be the most important bacteria used in biometallurgy. The foundation way of its growth process is oxidizing ferrous in order to obtain energy needed for metabolism, but the variation of ferrous concentration and mixed potential of the culture media would have crucial effect on the bacteria growth.Based on the characteristics of Thiobacillus ferrooxidans growth and redox potential of ferric and ferrous, an electrochemical cell was designed conventionally to study growth rule and the relationship between redox potential and bacteria growth was built up, and some growth kinetics of Thiobacillus ferrooxidans were elucidated. It demonstrates that the variation of open potential of electrochemical cell △E shows the growth tendency of Thiobacillus ferrooxidans, at the initial growth stage, the value of △E increases slowly, when at logistic growth stage, it increases drastically, and the growth rate of bacteria is linear with the oxidation rate of ferrous. The bacteria growth kinetics model is proposed using Monod and Michealis-Menten equation, and the kinetics parameters are got. The consistence of the measured and the calculated results proves that it is proper to use the proposed kinetics model and the electrochemical cell method to describe the growth rule of Thiobacillus ferrooxidans.

  8. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo

    Science.gov (United States)

    Som, Avik; Raliya, Ramesh; Tian, Limei; Akers, Walter; Ippolito, Joseph E.; Singamaneni, Srikanth; Biswas, Pratim; Achilefu, Samuel

    2016-06-01

    The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3 in tumors increases tumor pH over time. The associated induction of tumor growth stasis is putatively interpreted as a pHe increase. This study establishes an approach to prepare nano-CaCO3 over a wide particle size range, a formulation that stabilizes the nanomaterials in aqueous solutions, and a pH-sensitive nano-platform capable of modulating the acidic environment of cancer for potential therapeutic benefits.The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3

  9. Primary culture of marrow core in collagen gels: modulation and transformation of endosteal cells. I. Morphologic observations.

    Science.gov (United States)

    Islam, A; Steiner, R

    1989-01-01

    It has been shown that collagen gels can be used as a culture matrix for the growth and proliferation of a variety of stromal and hemopoietic cellular elements. Since collagen is a physiologic matrix and allows the simultaneous growth and proliferation of a variety of cellular elements in three dimensional fashion, we used this method to culture 2 to 3 mm segments of trephined bone marrow. The gels were constantly bathed by RPMI 1640 medium containing fetal calf serum and antibiotic. Modulation, migration and transformation of endosteal cells were apparent under phase contrast microscopy and were confirmed in histologic sections. This study demonstrates for the first time that human marrow endosteal cells - the cells which line the bony trabeculae - are inducible and capable of modulation and transformation into stromal (fibroblast-like, macrophage-like, and fat-containing cells) and hemopoietic (round or spheroidal blast-like) cells. This report provides further evidence that endosteal cells can be considered the fixed (reserve) totipotential stem cells in the human bone marrow and are the equivalent of embryonal level undifferentiated mesenchymal cells which are capable of giving rise to the many different cell types that constitute the hemopoietic organ, i.e., bone marrow.

  10. GROWTH MODULATING PROPERTIES OF POLYPHENOLIC APPLE POMACE EXTRACT ON FOOD ASSOCIATED MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Christopher Beermann

    2013-10-01

    Full Text Available Bacteriostatic effects of plant derived polyphenols are generally proposed for food protection against microbial spoiling. This study aimed at characterizing distinct growth modification and cell-lytic properties of an apple pomace extract (APE containing short-chain and long-chain PP on food spoiling and fermenting starter bacteria. APE contained 6.76 wt % PP, 0.46 wt % glucose, 1.69 wt % fructose, 1.26 wt % starch, 3.8 wt % sorbitol, and 0.64 wt % nitrogen with a pH-value of 4.1. APE caused growth modification of prominent bacterial food spoilers, yeasts, moulds and food fermenting starter bacteria was analyzed turbidometry (180° light absorption measurement at 600 nm wavelength. Cell-lytic activity of APE was measured by a SYTOX® Green fluorescence cell viability assay. APE 1.5 w/w % reduced the growth of gram-positive and gram-negative food spoiling bacteria in dose-dependent manner up to 35.00%. Bacillus subtilis growth was reduced up to 10.53% comparable to 1.01 µg/ mL ampicillin or 0.144 mg/ mL sulfamethoxazol. In contrast, the growth of several fermenting starter bacteria increased at 1.5 w/w % APE up to 167.65% whereas expansion of yeasts and moulds were unaffected. Neither specific cell-lytic activities of APE could be examined on gram-positive and gram-negative food spoiler nor food fermenting starter bacteria. This study indicates that APE is a bacteriostatic but not a cell-lytic agent against food spoiling bacteria. Instead, the growth of specific lactic acid bacteria was supported by APE. Therefore, APE might stabilize explicit food fermentation processes.

  11. VAMP7 modulates ciliary biogenesis in kidney cells.

    Directory of Open Access Journals (Sweden)

    Christina M Szalinski

    Full Text Available Epithelial cells elaborate specialized domains that have distinct protein and lipid compositions, including the apical and basolateral surfaces and primary cilia. Maintaining the identity of these domains is required for proper cell function, and requires the efficient and selective SNARE-mediated fusion of vesicles containing newly synthesized and recycling proteins with the proper target membrane. Multiple pathways exist to deliver newly synthesized proteins to the apical surface of kidney cells, and the post-Golgi SNAREs, or VAMPs, involved in these distinct pathways have not been identified. VAMP7 has been implicated in apical protein delivery in other cell types, and we hypothesized that this SNARE would have differential effects on the trafficking of apical proteins known to take distinct routes to the apical surface in kidney cells. VAMP7 expressed in polarized Madin Darby canine kidney cells colocalized primarily with LAMP2-positive compartments, and siRNA-mediated knockdown modulated lysosome size, consistent with the known function of VAMP7 in lysosomal delivery. Surprisingly, VAMP7 knockdown had no effect on apical delivery of numerous cargoes tested, but did decrease the length and frequency of primary cilia. Additionally, VAMP7 knockdown disrupted cystogenesis in cells grown in a three-dimensional basement membrane matrix. The effects of VAMP7 depletion on ciliogenesis and cystogenesis are not directly linked to the disruption of lysosomal function, as cilia lengths and cyst morphology were unaffected in an MDCK lysosomal storage disorder model. Together, our data suggest that VAMP7 plays an essential role in ciliogenesis and lumen formation. To our knowledge, this is the first study implicating an R-SNARE in ciliogenesis and cystogenesis.

  12. Kefir fermented milk and kefiran promote growth of Bifidobacterium bifidum PRL2010 and modulate its gene expression.

    Science.gov (United States)

    Serafini, Fausta; Turroni, Francesca; Ruas-Madiedo, Patricia; Lugli, Gabriele Andrea; Milani, Christian; Duranti, Sabrina; Zamboni, Nicole; Bottacini, Francesca; van Sinderen, Douwe; Margolles, Abelardo; Ventura, Marco

    2014-05-16

    Bifidobacteria constitute one of the dominant groups of microorganisms colonizing the human gut of infants. Their ability to utilize various host-derived glycans as well as dietary carbohydrates has received considerable scientific attention. However, very little is known about the role of fermented foods, such as kefir, or their constituent glycans, such as kefiran, as substrates for bifidobacterial growth and for the modulation of the expression of bifidobacterial host-effector molecules. Here, we show that Bifidobacterium bifidum PRL2010 exhibits high growth performance among the bifidobacterial strains tested when cultivated on kefir and/or kefiran polymer. Furthermore, a 16S rRNA metagenomic approach revealed that the microbiota of kefir is modified upon the addition of PRL2010 cells to the kefir matrix. Finally, our results show that kefir and kefiran are able to influence the transcriptome of B. bifidum PRL2010 causing increased transcription of genes involved in the metabolism of dietary glycans as well as genes that act as host-microbe effector molecules such as pili. Altogether, these data support the use of kefir as a valuable means for the delivery of effective microbial cells in probiotic therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Estradiol modulates TGF-β1 expression and its signaling pathway in thyroid stromal cells.

    Science.gov (United States)

    Gantus, M A V; Alves, L M; Stipursky, J; Souza, E C L; Teodoro, A J; Alves, T R; Carvalho, D P; Martinez, A M B; Gomes, F C A; Nasciutti, L E

    2011-04-30

    The higher prevalence of thyroid disease in women suggests that estrogen (E2) might be involved in the pathophysiology of thyroid dysfunction. To approach the question of the effect of stromal cells in the modulation of thyroid epithelial cells activity, we established and characterized a homogeneous stromal cell population (TS7 cells) of rat thyroid gland. These fibroblastic cells synthesize the cytoskeleton proteins α-smooth muscle actin and vimentin, produce basement membrane components and express the cytokine transforming growth factor beta 1 (TGF-β1). Here, we hypothesized that the effects of E2 on follicular thyroid cells are mediated by TGF-β1 synthesis and secretion by stromal cells (paracrine action). Thus we investigated the effect of E2 on TGF-β1 synthesis and its signaling pathway in TS7 cells. In addition, we analyzed the role of TGF-β1 signaling pathway as mediator of TS7-PC CL3 thyroid epithelial cells interactions. We report that TS7 stromal cells expressed α and β estrogen receptors (ERα and ERβ). Further, both isoforms of TGF-β1 receptors, TGFRI and TGFRII, were also identified in TS7 cells, suggesting that these cells might be a target for this cytokine in vitro. Treatment of TS7 cells with E2 induced both synthesis and secretion of TGF-β1. This event was followed by phosphorylation of the transcription factor Smad2, a hallmark of TGF-β1 pathway activation. Co-culture of PC CL3 cells onto TS7 cells monolayers yielded round aggregates of PC CL3 cells surrounded by TS7 cells. TS7 cells induced a decrease in iodide uptake by PC CL3 cells, probably by a mechanism involving TGF-β1. Moreover, E2 affected synthesis and organization of the extracellular matrix (ECM) components, tenascin C and chondroitin sulfate, in these co-culture cells. Our results point to the TGF-β1/Smad-2 signaling pathway as a putative target of estrogen actions on thyroid stromal cells and contribute to understanding the interplay between stromal and follicular

  14. Extra-virgin olive oil phenols block cell cycle progression and modulate chemotherapeutic toxicity in bladder cancer cells.

    Science.gov (United States)

    Coccia, Andrea; Mosca, Luciana; Puca, Rosa; Mangino, Giorgio; Rossi, Alessandro; Lendaro, Eugenio

    2016-12-01

    Epidemiological data indicate that the daily consumption of extra‑virgin olive oil (EVOO), a common dietary habit of the Mediterranean area, lowers the incidence of certain types of cancer, in particular bladder neoplasm. The aim of the present study was to evaluate the antiproliferative activity of polyphenols extracted from EVOO on bladder cancer (BCa), and to clarify the biological mechanisms that trigger cell death. Furthermore, we also evaluated the ability of low doses of extra‑virgin olive oil extract (EVOOE) to modulate the in vitro activity of paclitaxel or mitomycin, two antineoplastic drugs used in the management of different types of cancer. Our results showed that EVOOE significantly inhibited the proliferation and clonogenic ability of T24 and 5637 BCa cells in a dose‑dependent manner. Furthermore, cell cycle analysis after EVOOE treatment showed a marked growth arrest prior to mitosis in the G2/M phase for both cell lines, with the subsequent induction of apoptosis only in the T24 cells. Notably, simultaneous treatment of mitomycin C and EVOOE reduced the drug cytotoxicity due to inhibition of ROS production. Conversely, the co‑treatment of T24 cells with paclitaxel and the polyphenol extract strongly increased the apoptotic cell death at each tested concentration compared to paclitaxel alone. Our results support the epidemiological evidence indicating that olive oil consumption exerts health benefits and may represent a starting point for the development of new anticancer strategies.

  15. Growth of children with Langerhans cell histiocytosis

    NARCIS (Netherlands)

    A.C.J. van den Hoek (A. C J); A. Karstens (A.); R.M. Egeler (Maarten); K. Hählen (Karel)

    1995-01-01

    textabstractConclusion: GH deficiency is not a common manifestation of LCH in childhood and GH provocation tests are only indicated when there is a poor or decelerating growth rate. In our patients the number of organs involved and/or the treatment modality did not influence the growth in all but on

  16. Epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia modulates proliferation, cell survival and chemosensitivity

    Science.gov (United States)

    Thathia, Shabnam H.; Ferguson, Stuart; Gautrey, Hannah E.; van Otterdijk, Sanne D.; Hili, Michela; Rand, Vikki; Moorman, Anthony V.; Meyer, Stefan; Brown, Robert; Strathdee, Gordon

    2012-01-01

    Background Altered regulation of many transcription factors has been shown to be important in the development of leukemia. TWIST2 modulates the activity of a number of important transcription factors and is known to be a regulator of hematopoietic differentiation. Here, we investigated the significance of epigenetic regulation of TWIST2 in the control of cell growth and survival and in response to cytotoxic agents in acute lymphoblastic leukemia. Design and Methods TWIST2 promoter methylation status was assessed quantitatively, by combined bisulfite and restriction analysis (COBRA) and pyrosequencing assays, in multiple types of leukemia and TWIST2 expression was determined by quantitative reverse transcriptase polymerase chain reaction analysis. The functional role of TWIST2 in cell proliferation, survival and response to chemotherapy was assessed in transient and stable expression systems. Results We found that TWIST2 was inactivated in more than 50% of cases of childhood and adult acute lymphoblastic leukemia through promoter hypermethylation and that this epigenetic regulation was especially prevalent in RUNX1-ETV6-driven cases. Re-expression of TWIST2 in cell lines resulted in a dramatic reduction in cell growth and induction of apoptosis in the Reh cell line. Furthermore, re-expression of TWIST2 resulted in increased sensitivity to the chemotherapeutic agents etoposide, daunorubicin and dexamethasone and TWIST2 hypermethylation was almost invariably found in relapsed adult acute lymphoblastic leukemia (91% of samples hypermethylated). Conclusions This study suggests a dual role for epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia, initially through altering cell growth and survival properties and subsequently by increasing resistance to chemotherapy. PMID:22058208

  17. Modification of circuit module of dye-sensitized solar cells (DSSC) for solar windows applications

    Science.gov (United States)

    Hastuti, S. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2016-11-01

    This research has been conducted to obtain a modification of circuit producing the best efficiency of solar window modules as an alternative energy for daily usage. Solar window module was constructed by DSSC cells. In the previous research, solar window was created by a single cell of DSSC. Because it had small size, it could not be applied in the manufacture of solar window. Fabrication of solar window required a larger size of DSSC cell. Therefore, in the next research, a module of solar window was fabricated by connecting few cells of DSSC. It was done by using external electrical circuit method which was modified in the formation of series circuit and parallel circuit. Its fabrication used six cells of DSSC with the size of each cell was 1 cm × 9 cm. DSSC cells were sandwich structures constructed by an active layer of TiO2 as the working electrode, electrolyte solution, dye, and carbon layer. Characterization of module was started one by one, from one cell, two cells, three cells, until six cells of a module. It was conducted to recognize the increasing efficiency value as the larger surface area given. The efficiency of solar window module with series circuit was 0.06%, while using parallel circuit was 0.006%. Module with series circuit generated the higher voltage as the larger surface area. Meanwhile, module through parallel circuit tended to produce the constant voltage as the larger surface area. It was caused by the influence of resistance within the cable in each module. Module with circuit parallel used a longer cable than module with series circuit, so that its resistance increased. Therefore, module with parallel circuit generated voltage that tended to be constant and resulted small efficiency compared to the module with series circuit. It could be concluded that series external circuit was the best modification which could produce the higher efficiency.

  18. Cell-specific modulation of surfactant proteins by ambroxol treatment.

    Science.gov (United States)

    Seifart, Carola; Clostermann, Ursula; Seifart, Ulf; Müller, Bernd; Vogelmeier, Claus; von Wichert, Peter; Fehrenbach, Heinz

    2005-02-15

    Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNA content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression.

  19. Dihydroartemisinin is an inhibitor of ovarian cancer cell growth

    Institute of Scientific and Technical Information of China (English)

    Yang JIAO; Chun-min GE; Qing-hui MENG; Jian-ping CAO; Jian TONG; Sai-jun FAN

    2007-01-01

    Aim: To investigate the anticancer activity of dihydroartemisinin (DHA), a deriva-tive of antimalaria drug artemisinin in a panel of human ovarian cancer cell lines. Methods: Cell growth was determined by the MTT viability assay. Apoptosis and cell cycle progression were evaluated by a DNA fragmentation gel electro-phoresis, flow cytometry assay, and TUNEL assay; protein and mRNA expression were analyzed by Western blotting and RT-PCR assay. Results: Artemisinin and its derivatives, including artesunate, arteether, artemether, arteannuin, and DHA, exhibit anticancer growth activities in human ovarian cancer cells. Among them, DHA is the most effective in inhibiting cell growth. Ovarian cancer cell lines are more sensitive (5-10-fold) to DHA treatment compared to normal ovarian cell lines. DHA at micromolar dose levels exhibits a dose- and time-dependent cyto-toxicity in ovarian cancer cell lines. Furthermore, DHA induced apoptosis and G2 cell cycle arrest, accompanied by a decrease of Bcl-xL and Bcl-2 and an increase of Bax and Bad. Conclusion: The promising results show for the first time that DHA inhibits the growth of human ovarian cancer cells. The selective inhibition of ovarian cancer cell growth, apoptosis induction, and G2 arrest provide in vitro evidence for further studies of DHA as a possible anticancer drug in the clinical treatment of ovarian cancer.

  20. Modulations of the chicken cecal microbiome and metagenome in response to anticoccidial and growth promoter treatment.

    Directory of Open Access Journals (Sweden)

    Jessica L Danzeisen

    Full Text Available With increasing pressures to reduce or eliminate the use of antimicrobials for growth promotion purposes in production animals, there is a growing need to better understand the effects elicited by these agents in order to identify alternative approaches that might be used to maintain animal health. Antibiotic usage at subtherapeutic levels is postulated to confer a number of modulations in the microbes within the gut that ultimately result in growth promotion and reduced occurrence of disease. This study examined the effects of the coccidiostat monensin and the growth promoters virginiamycin and tylosin on the broiler chicken cecal microbiome and metagenome. Using a longitudinal design, cecal contents of commercial chickens were extracted and examined using 16S rRNA and total DNA shotgun metagenomic pyrosequencing. A number of genus-level enrichments and depletions were observed in response to monensin alone, or monensin in combination with virginiamycin or tylosin. Of note, monensin effects included depletions of Roseburia, Lactobacillus and Enterococcus, and enrichments in Coprococcus and Anaerofilum. The most notable effect observed in the monensin/virginiamycin and monensin/tylosin treatments, but not in the monensin-alone treatments, was enrichments in Escherichia coli. Analysis of the metagenomic dataset identified enrichments in transport system genes, type I fimbrial genes, and type IV conjugative secretion system genes. No significant differences were observed with regard to antimicrobial resistance gene counts. Overall, this study provides a more comprehensive glimpse of the chicken cecum microbial community, the modulations of this community in response to growth promoters, and targets for future efforts to mimic these effects using alternative approaches.

  1. Modulations of the chicken cecal microbiome and metagenome in response to anticoccidial and growth promoter treatment.

    Science.gov (United States)

    Danzeisen, Jessica L; Kim, Hyeun Bum; Isaacson, Richard E; Tu, Zheng Jin; Johnson, Timothy J

    2011-01-01

    With increasing pressures to reduce or eliminate the use of antimicrobials for growth promotion purposes in production animals, there is a growing need to better understand the effects elicited by these agents in order to identify alternative approaches that might be used to maintain animal health. Antibiotic usage at subtherapeutic levels is postulated to confer a number of modulations in the microbes within the gut that ultimately result in growth promotion and reduced occurrence of disease. This study examined the effects of the coccidiostat monensin and the growth promoters virginiamycin and tylosin on the broiler chicken cecal microbiome and metagenome. Using a longitudinal design, cecal contents of commercial chickens were extracted and examined using 16S rRNA and total DNA shotgun metagenomic pyrosequencing. A number of genus-level enrichments and depletions were observed in response to monensin alone, or monensin in combination with virginiamycin or tylosin. Of note, monensin effects included depletions of Roseburia, Lactobacillus and Enterococcus, and enrichments in Coprococcus and Anaerofilum. The most notable effect observed in the monensin/virginiamycin and monensin/tylosin treatments, but not in the monensin-alone treatments, was enrichments in Escherichia coli. Analysis of the metagenomic dataset identified enrichments in transport system genes, type I fimbrial genes, and type IV conjugative secretion system genes. No significant differences were observed with regard to antimicrobial resistance gene counts. Overall, this study provides a more comprehensive glimpse of the chicken cecum microbial community, the modulations of this community in response to growth promoters, and targets for future efforts to mimic these effects using alternative approaches.

  2. Equal modulation of endothelial cell function by four distinct tissue-specific mesenchymal stem cells.

    Science.gov (United States)

    Lin, Ruei-Zeng; Moreno-Luna, Rafael; Zhou, Bin; Pu, William T; Melero-Martin, Juan M

    2012-09-01

    Mesenchymal stem cells (MSCs) can generate multiple end-stage mesenchymal cell types and constitute a promising population of cells for regenerative therapies. Additionally, there is increasing evidence supporting other trophic activities of MSCs, including the ability to enable formation of vasculature in vivo. Although MSCs were originally isolated from the bone marrow, the presence of these cells in the stromal vascular fraction of multiple adult tissues has been recently recognized. However, it is unknown whether the capacity to modulate vasculogenesis is ubiquitous to all MSCs regardless of their tissue of origin. Here, we demonstrated that tissue-resident MSCs isolated from four distinct tissues have equal capacity to modulate endothelial cell function, including formation of vascular networks in vivo. MSCs were isolated from four murine tissues, including bone marrow, white adipose tissue, skeletal muscle, and myocardium. In culture, all four MSC populations secreted a plethora of pro-angiogenic factors that unequivocally induced proliferation, migration, and tube formation of endothelial colony-forming cells (ECFCs). In vivo, co-implantation of MSCs with ECFCs into mice generated an extensive network of blood vessels with ECFCs specifically lining the lumens and MSCs occupying perivascular positions. Importantly, there were no differences among all four MSCs evaluated. Our studies suggest that the capacity to modulate the formation of vasculature is a ubiquitous property of all MSCs, irrespective of their original anatomical location. These results validate multiple tissues as potential sources of MSCs for future cell-based vascular therapies.

  3. 76 FR 78313 - Crystalline Silicon Photovoltaic Cells and Modules From China

    Science.gov (United States)

    2011-12-16

    ... COMMISSION Crystalline Silicon Photovoltaic Cells and Modules From China Determinations On the basis of the... is materially injured by reason of imports from China of crystalline silicon photovoltaic cells and... crystalline silicon photovoltaic cells and modules from China. Accordingly, effective October 19, 2011,...

  4. 77 FR 10478 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Science.gov (United States)

    2012-02-22

    ... International Trade Administration Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules... crystalline silicon photovoltaic cells, whether or not assembled into modules, from the People's Republic of..., 2012, which the Department granted.\\2\\ \\1\\ See Crystalline Silicon Photovoltaic Cells, Whether or...

  5. Methylene blue modulates transendothelial migration of peripheral blood cells.

    Directory of Open Access Journals (Sweden)

    Isabella Werner

    Full Text Available Vasoplegia is a severe complication after cardiac surgery. Within the last years the administration of nitric oxide synthase inhibitor methylene blue (MB became a new therapeutic strategy. Our aim was to investigate the role of MB on transendothelial migration of circulating blood cells, the potential role of cyclic cGMP, eNOS and iNOS in this process, and the influence of MB on endothelial cell apoptosis. Human vascular endothelial cells (HuMEC-1 were treated for 30 minutes or 2 hours with different concentrations of MB. Inflammation was mimicked by LPS stimulation prior and after MB. Transmigration of PBMCs and T-Lymphocytes through the treated endothelial cells was investigated. The influence of MB upon the different subsets of PBMCs (Granulocytes, T- and B-Lymphocytes, and Monocytes was assessed after transmigration by means of flow-cytometry. The effect of MB on cell apoptosis was evaluated using Annexin-V and Propidium Iodide stainings. Analyses of the expression of cyclic cGMP, eNOS and iNOS were performed by means of RT-PCR and Western Blot. Results were analyzed using unpaired Students T-test. Analysis of endothelial cell apoptosis by MB indicated a dose-dependent increase of apoptotic cells. We observed time- and dose-dependent effects of MB on transendothelial migration of PBMCs. The prophylactic administration of MB led to an increase of transendothelial migration of PBMCs but not Jurkat cells. Furthermore, HuMEC-1 secretion of cGMP correlated with iNOS expression after MB administration but not with eNOS expression. Expression of these molecules was reduced after MB administration at protein level. This study clearly reveals that endothelial response to MB is dose- and especially time-dependent. MB shows different effects on circulating blood cell-subtypes, and modifies the release patterns of eNOS, iNOS, and cGMP. The transendothelial migration is modulated after treatment with MB. Furthermore, MB provokes apoptosis of endothelial

  6. Methylene blue modulates transendothelial migration of peripheral blood cells.

    Science.gov (United States)

    Werner, Isabella; Guo, Fengwei; Bogert, Nicolai V; Stock, Ulrich A; Meybohm, Patrick; Moritz, Anton; Beiras-Fernandez, Andres

    2013-01-01

    Vasoplegia is a severe complication after cardiac surgery. Within the last years the administration of nitric oxide synthase inhibitor methylene blue (MB) became a new therapeutic strategy. Our aim was to investigate the role of MB on transendothelial migration of circulating blood cells, the potential role of cyclic cGMP, eNOS and iNOS in this process, and the influence of MB on endothelial cell apoptosis. Human vascular endothelial cells (HuMEC-1) were treated for 30 minutes or 2 hours with different concentrations of MB. Inflammation was mimicked by LPS stimulation prior and after MB. Transmigration of PBMCs and T-Lymphocytes through the treated endothelial cells was investigated. The influence of MB upon the different subsets of PBMCs (Granulocytes, T- and B-Lymphocytes, and Monocytes) was assessed after transmigration by means of flow-cytometry. The effect of MB on cell apoptosis was evaluated using Annexin-V and Propidium Iodide stainings. Analyses of the expression of cyclic cGMP, eNOS and iNOS were performed by means of RT-PCR and Western Blot. Results were analyzed using unpaired Students T-test. Analysis of endothelial cell apoptosis by MB indicated a dose-dependent increase of apoptotic cells. We observed time- and dose-dependent effects of MB on transendothelial migration of PBMCs. The prophylactic administration of MB led to an increase of transendothelial migration of PBMCs but not Jurkat cells. Furthermore, HuMEC-1 secretion of cGMP correlated with iNOS expression after MB administration but not with eNOS expression. Expression of these molecules was reduced after MB administration at protein level. This study clearly reveals that endothelial response to MB is dose- and especially time-dependent. MB shows different effects on circulating blood cell-subtypes, and modifies the release patterns of eNOS, iNOS, and cGMP. The transendothelial migration is modulated after treatment with MB. Furthermore, MB provokes apoptosis of endothelial cells in a dose

  7. Rosemary (Rosmarinus officinalis extract modulates CHOP/GADD153 to promote androgen receptor degradation and decreases xenograft tumor growth.

    Directory of Open Access Journals (Sweden)

    Sakina M Petiwala

    Full Text Available The Mediterranean diet has long been attributed to preventing or delaying the onset of cardiovascular disease, diabetes and various solid organ cancers. In this particular study, a rosemary extract standardized to carnosic acid was evaluated for its potential in disrupting the endoplasmic reticulum machinery to decrease the viability of prostate cancer cells and promote degradation of the androgen receptor. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells procured from two different patients undergoing radical prostatectomy were treated with standardized rosemary extract and evaluated by flow cytometry, MTT, BrdU, Western blot and fluorescent microscopy. A significant modulation of endoplasmic reticulum stress proteins was observed in cancer cells while normal prostate epithelial cells did not undergo endoplasmic reticulum stress. This biphasic response suggests that standardized rosemary extract may preferentially target cancer cells as opposed to "normal" cells. Furthermore, we observed standardized rosemary extract to decrease androgen receptor expression that appears to be regulated by the expression of CHOP/GADD153. Using a xenograft tumor model we observed standardized rosemary extract when given orally to significantly suppress tumor growth by 46% compared to mice not receiving standardized rosemary extract. In the last several years regulatory governing bodies (e.g. European Union have approved standardized rosemary extracts as food preservatives. These results are especially significant as it is becoming more likely that individuals will be receiving standardized rosemary extracts that are a part of a natural preservative system in various food preparations. Taken a step further, it is possible that the potential benefits that are often associated with a "Mediterranean Diet" in the future may begin to extend beyond the Mediterranean diet as more of the population is consuming standardized rosemary

  8. Rosemary (Rosmarinus officinalis) extract modulates CHOP/GADD153 to promote androgen receptor degradation and decreases xenograft tumor growth.

    Science.gov (United States)

    Petiwala, Sakina M; Berhe, Saba; Li, Gongbo; Puthenveetil, Angela G; Rahman, Ozair; Nonn, Larisa; Johnson, Jeremy J

    2014-01-01

    The Mediterranean diet has long been attributed to preventing or delaying the onset of cardiovascular disease, diabetes and various solid organ cancers. In this particular study, a rosemary extract standardized to carnosic acid was evaluated for its potential in disrupting the endoplasmic reticulum machinery to decrease the viability of prostate cancer cells and promote degradation of the androgen receptor. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells procured from two different patients undergoing radical prostatectomy were treated with standardized rosemary extract and evaluated by flow cytometry, MTT, BrdU, Western blot and fluorescent microscopy. A significant modulation of endoplasmic reticulum stress proteins was observed in cancer cells while normal prostate epithelial cells did not undergo endoplasmic reticulum stress. This biphasic response suggests that standardized rosemary extract may preferentially target cancer cells as opposed to "normal" cells. Furthermore, we observed standardized rosemary extract to decrease androgen receptor expression that appears to be regulated by the expression of CHOP/GADD153. Using a xenograft tumor model we observed standardized rosemary extract when given orally to significantly suppress tumor growth by 46% compared to mice not receiving standardized rosemary extract. In the last several years regulatory governing bodies (e.g. European Union) have approved standardized rosemary extracts as food preservatives. These results are especially significant as it is becoming more likely that individuals will be receiving standardized rosemary extracts that are a part of a natural preservative system in various food preparations. Taken a step further, it is possible that the potential benefits that are often associated with a "Mediterranean Diet" in the future may begin to extend beyond the Mediterranean diet as more of the population is consuming standardized rosemary extracts.

  9. 15th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Extended Abstracts and Papers

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B. L.

    2005-11-01

    The National Center for Photovoltaics sponsored the 15th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 7-10, 2005. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The workshop addressed the fundamental properties of PV silicon, new solar cell designs, and advanced solar cell processing techniques. A combination of oral presentations by invited speakers, poster sessions, and discussion sessions reviewed recent advances in crystal growth, new cell designs, new processes and process characterization techniques, and cell fabrication approaches suitable for future manufacturing demands. The theme of this year's meeting was 'Providing the Scientific Basis for Industrial Success.' Specific sessions during the workshop included: Advances in crystal growth and material issues; Impurities and defects in Si; Advanced processing; High-efficiency Si solar cells; Thin Si solar cells; and Cell design for efficiency and reliability module operation. The topic for the Rump Session was ''Si Feedstock: The Show Stopper'' and featured a panel discussion by representatives from various PV companies.

  10. Alterations in integrin expression modulates invasion of pancreatic cancer cells.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood. METHODS: In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression. RESULTS: Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin beta1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion. CONCLUSION: Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma.

  11. Modulation of junction tension by tumor suppressors and proto-oncogenes regulates cell-cell contacts.

    Science.gov (United States)

    Bosveld, Floris; Guirao, Boris; Wang, Zhimin; Rivière, Mathieu; Bonnet, Isabelle; Graner, François; Bellaïche, Yohanns

    2016-02-15

    Tumor suppressors and proto-oncogenes play crucial roles in tissue proliferation. Furthermore, de-regulation of their functions is deleterious to tissue architecture and can result in the sorting of somatic rounded clones minimizing their contact with surrounding wild-type (wt) cells. Defects in the shape of somatic clones correlate with defects in proliferation, cell affinity, cell-cell adhesion, oriented cell division and cortical contractility. Combining genetics, live-imaging, laser ablation and computer simulations, we aim to analyze whether distinct or similar mechanisms can account for the common role of tumor suppressors and proto-oncogenes in cell-cell contact regulation. In Drosophila epithelia, the tumor suppressors Fat (Ft) and Dachsous (Ds) regulate cell proliferation, tissue morphogenesis, planar cell polarity and junction tension. By analyzing the evolution over time of ft mutant cells and clones, we show that ft clones reduce their cell-cell contacts with the surrounding wt tissue in the absence of concomitant cell divisions and over-proliferation. This contact reduction depends on opposed changes of junction tensions in the clone bulk and its boundary with neighboring wt tissue. More generally, either clone bulk or boundary junction tension is modulated by the activation of Yorkie, Myc and Ras, yielding similar contact reductions with wt cells. Together, our data highlight mechanical roles for proto-oncogene and tumor suppressor pathways in cell-cell interactions.

  12. Soy Metabolites, Isoflavones in Cell Growth and Apoptosis

    Science.gov (United States)

    2000-07-01

    previously PROTEINS BY APIGENIN IS P21/WAF1 INDEPENDENT. M McVean, W C shown that genistein, at 5MM, can block invasion of glioblastoma multiforme into...may Kansas City, KS be involved in the invasion of glioblastoma multiforme into FBRA. These studies Apigenin , a nonmutagenic flavonoid, has been shown...p21/wafl in modulating cell cycle regulatory lion mechanisms. In C6 rat glioma cells and U87 human glioma cells treated with proteins during apigenin

  13. Perfusion Bioreactor Module

    Science.gov (United States)

    Morrison, Dennis R.

    1990-01-01

    Perfusion bioreactor module, self-contained, closed-loop cell-culture system that operates in microgravity or on Earth. Equipment supports growth or long-term maintenance of cultures of human or other fragile cells for experiments in basic cell biology or process technology. Designed to support proliferation (initially at exponential rates of growth) of cells in complex growth medium and to maintain confluent cells in defined medium under conditions optimized to permit or encourage selected functions of cells, including secretion of products of cells into medium.

  14. Growth-stimulatory effect of resveratrol in human cancer cells.

    Science.gov (United States)

    Fukui, Masayuki; Yamabe, Noriko; Kang, Ki Sung; Zhu, Bao Ting

    2010-08-01

    Earlier studies have shown that resveratrol could induce death in several human cancer cell lines in culture. Here we report our observation that resveratrol can also promote the growth of certain human cancer cells when they are grown either in culture or in athymic nude mice as xenografts. At relatively low concentrations (cells, but this effect was not observed in several other human cell lines tested. Analysis of cell signaling molecules showed that resveratrol induced the activation of JNK, p38, Akt, and NF-kappaB signaling pathways in these cells. Further analysis using pharmacological inhibitors showed that only the NF-kappaB inhibitor (BAY11-7082) abrogated the growth-stimulatory effect of resveratrol in cultured cells. In athymic nude mice, resveratrol at 16.5 mg/kg body weight enhanced the growth of MDA-MB-435s xenografts compared to the control group, while resveratrol at the 33 mg/kg body weight dose did not have a similar effect. Additional analyses confirmed that resveratrol stimulated cancer cell growth in vivo through activation of the NF-kappaB signaling pathway. Taken together, these observations suggest that resveratrol at low concentrations could stimulate the growth of certain types of human cancer cells in vivo. This cell type-specific mitogenic effect of resveratrol may also partly contribute to the procarcinogenic effect of alcohol consumption (rich in resveratrol) in the development of certain human cancers.

  15. How does cell size regulation affect population growth?

    CERN Document Server

    Lin, Jie

    2016-01-01

    The proliferation of a growing microbial colony is well characterized by the population growth rate. However, at the single-cell level, isogenic cells often exhibit different cell-cycle durations. For evolutionary dynamics, it is thus important to establish the connection between the population growth rate and the heterogeneous single-cell generation time. Existing theories often make the assumption that the generation times of mother and daughter cells are independent. However, it has been shown that to maintain a bounded cell size distribution, cells that grow exponentially at the single-cell level need to adopt cell size regulation, leading to a negative correlation of mother-daughter generation time. In this work, we construct a general framework to describe the population growth in the presence of size regulation. We derive a formula for the population growth rate, which only depends on the variability of single-cell growth rate, independent of other sources of noises. Our work shows that a population ca...

  16. Identification of Intrinsic Axon Growth Modulators for Intact CNS Neurons after Injury.

    Science.gov (United States)

    Fink, Kathren L; López-Giráldez, Francesc; Kim, In-Jung; Strittmatter, Stephen M; Cafferty, William B J

    2017-03-14

    Functional deficits persist after spinal cord injury (SCI) because axons in the adult mammalian central nervous system (CNS) fail to regenerate. However, modest levels of spontaneous functional recovery are typically observed after trauma and are thought to be mediated by the plasticity of intact circuitry. The mechanisms underlying intact circuit plasticity are not delineated. Here, we characterize the in vivo transcriptome of sprouting intact neurons from Ngr1 null mice after partial SCI. We identify the lysophosphatidic acid signaling modulators LPPR1 and LPAR1 as intrinsic axon growth modulators for intact corticospinal motor neurons after adjacent injury. Furthermore, in vivo LPAR1 inhibition or LPPR1 overexpression enhances sprouting of intact corticospinal tract axons and yields greater functional recovery after unilateral brainstem lesion in wild-type mice. Thus, the transcriptional profile of injury-induced sprouting of intact neurons reveals targets for therapeutic enhancement of axon growth initiation and new synapse formation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Steviol Glycosides Modulate Glucose Transport in Different Cell Types

    Science.gov (United States)

    Rizzo, Benedetta; Zambonin, Laura; Leoncini, Emanuela; Vieceli Dalla Sega, Francesco; Prata, Cecilia; Fiorentini, Diana; Hrelia, Silvana

    2013-01-01

    Extracts from Stevia rebaudiana Bertoni, a plant native to Central and South America, have been used as a sweetener since ancient times. Currently, Stevia extracts are largely used as a noncaloric high-potency biosweetener alternative to sugar, due to the growing incidence of type 2 diabetes mellitus, obesity, and metabolic disorders worldwide. Despite the large number of studies on Stevia and steviol glycosides in vivo, little is reported concerning the cellular and molecular mechanisms underpinning the beneficial effects on human health. The effect of four commercial Stevia extracts on glucose transport activity was evaluated in HL-60 human leukaemia and in SH-SY5Y human neuroblastoma cells. The extracts were able to enhance glucose uptake in both cellular lines, as efficiently as insulin. Our data suggest that steviol glycosides could act by modulating GLUT translocation through the PI3K/Akt pathway since treatments with both insulin and Stevia extracts increased the phosphorylation of PI3K and Akt. Furthermore, Stevia extracts were able to revert the effect of the reduction of glucose uptake caused by methylglyoxal, an inhibitor of the insulin receptor/PI3K/Akt pathway. These results corroborate the hypothesis that Stevia extracts could mimic insulin effects modulating PI3K/Akt pathway. PMID:24327825

  18. Steviol Glycosides Modulate Glucose Transport in Different Cell Types

    Directory of Open Access Journals (Sweden)

    Benedetta Rizzo

    2013-01-01

    Full Text Available Extracts from Stevia rebaudiana Bertoni, a plant native to Central and South America, have been used as a sweetener since ancient times. Currently, Stevia extracts are largely used as a noncaloric high-potency biosweetener alternative to sugar, due to the growing incidence of type 2 diabetes mellitus, obesity, and metabolic disorders worldwide. Despite the large number of studies on Stevia and steviol glycosides in vivo, little is reported concerning the cellular and molecular mechanisms underpinning the beneficial effects on human health. The effect of four commercial Stevia extracts on glucose transport activity was evaluated in HL-60 human leukaemia and in SH-SY5Y human neuroblastoma cells. The extracts were able to enhance glucose uptake in both cellular lines, as efficiently as insulin. Our data suggest that steviol glycosides could act by modulating GLUT translocation through the PI3K/Akt pathway since treatments with both insulin and Stevia extracts increased the phosphorylation of PI3K and Akt. Furthermore, Stevia extracts were able to revert the effect of the reduction of glucose uptake caused by methylglyoxal, an inhibitor of the insulin receptor/PI3K/Akt pathway. These results corroborate the hypothesis that Stevia extracts could mimic insulin effects modulating PI3K/Akt pathway.

  19. Steviol glycosides modulate glucose transport in different cell types.

    Science.gov (United States)

    Rizzo, Benedetta; Zambonin, Laura; Angeloni, Cristina; Leoncini, Emanuela; Dalla Sega, Francesco Vieceli; Prata, Cecilia; Fiorentini, Diana; Hrelia, Silvana

    2013-01-01

    Extracts from Stevia rebaudiana Bertoni, a plant native to Central and South America, have been used as a sweetener since ancient times. Currently, Stevia extracts are largely used as a noncaloric high-potency biosweetener alternative to sugar, due to the growing incidence of type 2 diabetes mellitus, obesity, and metabolic disorders worldwide. Despite the large number of studies on Stevia and steviol glycosides in vivo, little is reported concerning the cellular and molecular mechanisms underpinning the beneficial effects on human health. The effect of four commercial Stevia extracts on glucose transport activity was evaluated in HL-60 human leukaemia and in SH-SY5Y human neuroblastoma cells. The extracts were able to enhance glucose uptake in both cellular lines, as efficiently as insulin. Our data suggest that steviol glycosides could act by modulating GLUT translocation through the PI3K/Akt pathway since treatments with both insulin and Stevia extracts increased the phosphorylation of PI3K and Akt. Furthermore, Stevia extracts were able to revert the effect of the reduction of glucose uptake caused by methylglyoxal, an inhibitor of the insulin receptor/PI3K/Akt pathway. These results corroborate the hypothesis that Stevia extracts could mimic insulin effects modulating PI3K/Akt pathway.

  20. Antibody induced CD4 down-modulation of T cells is site-specifically mediated by CD64(+) cells.

    Science.gov (United States)

    Vogel, Stephanie; Grabski, Elena; Buschjäger, Daniela; Klawonn, Frank; Döring, Marius; Wang, Junxi; Fletcher, Erika; Bechmann, Ingo; Witte, Torsten; Durisin, Martin; Schraven, Burkhart; Mangsbo, Sara M; Schönfeld, Kurt; Czeloth, Niklas; Kalinke, Ulrich

    2015-12-16

    Treatment of PBMC with the CD4-specific mAb BT-061 induces CD4 down-modulation of T cells. Here we report that addition of BT-061 to purified T cells did not confer this effect, whereas incubation of T cells in BT-061 coated wells restored CD4 down-modulation. These results implied that Fcγ receptor mediated cell-cell interactions played a role. In consistence with this hypothesis PBMC depleted of CD64(+) monocytes did not confer CD4 down-modulation of BT-061 decorated T cells. Strikingly, CD4 down-modulation was observed in BT-061 treated synovial fluid punctuated from patients' inflamed joints that comprised enhanced numbers of CD64(+) cells. In contrast, in a circulating whole blood system injection of BT-061 did not induce CD4 down-modulation, due to CD64 saturation by serum IgG. Similarly, tonsil derived mononuclear cells devoid of CD64(+) cells did not show CD4 down-modulation, whereas addition of blood derived monocytes restored the effect. Thus, the interaction of BT-061 decorated T cells with CD64(+) cells is needed for CD4 down-modulation, implying that in patients BT-061 would primarily induce CD4 down-modulation at inflammatory sites. These results highlight the need not only to examine the interaction of a given mAb with single FcγR, but also the immunological environment that is appropriate to support such interactions.

  1. Monocyte cell surface glycosaminoglycans positively modulate IL-4-induced differentiation toward dendritic cells.

    NARCIS (Netherlands)

    Dekker, E. den; Grefte, S.; Huijs, T.; Dam, G.B. ten; Versteeg, E.M.M.; Berk, L.C.J. van den; Bladergroen, B.A.; Kuppevelt, A.H.M.S.M. van; Figdor, C.G.; Torensma, R.

    2008-01-01

    IL-4 induces the differentiation of monocytes toward dendritic cells (DCs). The activity of many cytokines is modulated by glycosaminoglycans (GAGs). In this study, we explored the effect of GAGs on the IL-4-induced differentiation of monocytes toward DCs. IL-4 dose-dependently up-regulated the expr

  2. Cell-to-module optical loss/gain analysis for various photovoltaic module materials through systematic characterization

    Science.gov (United States)

    Hsian Saw, Min; Khoo, Yong Sheng; Singh, Jai Prakash; Wang, Yan

    2017-08-01

    Reducing levelized cost of electricity (LCOE) is important for solar photovoltaics to compete against other energy sources. Thus, the focus should not only be on improving the solar cell efficiency, but also on continuously reducing the losses (or achieving gain) in the cell-to-module process. This can be achieved by choosing the appropriate module material and design. This paper presents a detailed and systematic characterization of various photovoltaic (PV) module materials (encapsulants, tabbing ribbons, and backsheets) and an evaluation of their impact on the output power of silicon wafer-based PV modules. Various characterization tools/techniques, such as UV-vis (reflectance) measurement, external quantum efficiency (EQE) measurement and EQE line-scan are used. Based on the characterization results, we use module materials with the best-evaluated optical performance to build “optimized modules”. Compared to the standard mini-module, an optical gain of more than 5% is achievable for the “optimized module” with selected module materials.

  3. miR-21 modulates tumor outgrowth induced by human adipose tissue-derived mesenchymal stem cells in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Keun Koo; Lee, Ae Lim; Kim, Jee Young [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Lee, Sun Young [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Bae, Yong Chan [Department of Plastic Surgery, School of Medicine, Pusan National University, Pusan 602-739 (Korea, Republic of); Jung, Jin Sup, E-mail: jsjung@pusan.ac.kr [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Institute, Pusan National University, Pusan 602-739 (Korea, Republic of)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer miR-21 modulates hADSC-induced increase of tumor growth. Black-Right-Pointing-Pointer The action is mostly mediated by the modulation of TGF-{beta} signaling. Black-Right-Pointing-Pointer Inhibition of miR-21 enhances the blood flow recovery in hindlimb ischemia. -- Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in clinical situations, due principally to their potential use in regenerative medicine and tissue engineering applications. However, the therapeutic application of MSCs remains limited, unless the favorable effects of MSCs on tumor growth in vivo, and the long-term safety of the clinical applications of MSCs, can be more thoroughly understood. In this study, we determined whether microRNAs can modulate MSC-induced tumor outgrowth in BALB/c nude mice. Overexpression of miR-21 in human adipose-derived stem cells (hADSCs) inhibited hADSC-induced tumor growth, and inhibition of miR-21 increased it. Downregulation of transforming growth factor beta receptor II (TGFBR2), but not of signal transducer and activator of transcription 3, in hADSCs showed effects similar to those of miR-21 overexpression. Downregulation of TGFBR2 and overexpression of miR21 decreased tumor vascularity. Inhibition of miR-21 and the addition of TGF-{beta} increased the levels of vascular endothelial growth factor and interleukin-6 in hADSCs. Transplantation of miR-21 inhibitor-transfected hADSCs increased blood flow recovery in a hind limb ischemia model of nude mice, compared with transplantation of control oligo-transfected cells. These findings indicate that MSCs might favor tumor growth in vivo. Thus, it is necessary to study the long-term safety of this technique before MSCs can be used as therapeutic tools in regenerative medicine and tissue engineering.

  4. Fucoidan induces cancer cell apoptosis by modulating the endoplasmic reticulum stress cascades.

    Directory of Open Access Journals (Sweden)

    Shaohua Chen

    Full Text Available Cancer metastasis is the main cause leading to disease recurrence and high mortality in cancer patients. Therefore, inhibiting metastasis process or killing metastatic cancer cells by inducing apoptosis is of clinical importance in improving cancer patient survival. Previous studies revealed that fucoidan, a fucose-rich polysaccharide isolated from marine brown alga, is a promising natural product with significant anti-cancer activity. However, little is known about the role of endoplasmic reticulum (ER stress in fucoidan-induced cell apoptosis.We reported that fucoidan treatment inhibits cell growth and induces apoptosis in cancer cells. Fucoidan treatments resulted in down-regulation of the glucose regulated protein 78 (GRP78 in the metastatic MDA-MB-231 breast cancer cells, and of the ER protein 29 (ERp29 in the metastatic HCT116 colon cancer cells. However, fucoidan treatment promoted ER Ca2+-dependent calmodulin-dependent kinase II (CaMKII phosphorylation, Bcl-associated X protein (Bax and caspase 12 expression in MDA-MB-231 cells, but not in HCT116 cells. In both types of cancer cells, fucoidan activated the phosphorylation of eukaryotic initiation factor 2 alpha (p-eIF2α\\CCAAT/enhancer binding protein homologous protein (CHOP pro-apoptotic cascade and inhibited the phosphorylation of inositol-requiring kinase 1 (p-IRE-1\\X-box binding proteins 1 splicing (XBP-1s pro-survival cascade. Furthermore, CHOP knockdown prevented DNA damage and cell death induced by fucoidan.Fucoidan exerts its anti-tumor function by modulating ER stress cascades. Contribution of ER stress to the fucoidan-induced cell apoptosis augments our understanding of the molecular mechanisms underlying its anti-tumour activity and provides evidence for the therapeutic application of fucoidan in cancer.

  5. Contribution of membrane mucins to tumor progression through modulation of cellular growth signaling pathways.

    Science.gov (United States)

    Carraway, Kermit L; Funes, Melanie; Workman, Heather C; Sweeney, Colleen

    2007-01-01

    Mucins are large, heavily O-glycosylated proteins expressed by epithelial tissues. The canonical function of membrane mucins is to provide protection to vulnerable epithelia by forming a steric barrier against assault, and by contributing to the formation of protective extracellular mucin gels. The aberrant overexpression of mucins is thought to contribute to tumor progression by allowing tumor cells to evade immune recognition, and by aiding in the breakdown of cell-cell and cell-matrix contacts to facilitate migration and metastasis. Recent evidence suggests that we should now modify our thinking about mucin function by considering their roles in signaling pathways leading to cellular growth control. Here we review the markedly divergent mechanisms by which membrane mucins, specifically MUC1 and MUC4, influence pathways contributing to cellular proliferation and survival. The cytoplasmic domain of MUC1 serves as a scaffold for the assembly of a variety of signaling proteins, while MUC4 influences the trafficking and localization of growth factor receptors, and hence their responses to external stimuli. We also discuss how tumor cells exploit these mechanisms to promote their own growth and metastasis.

  6. Activation of phospholipase D activity in transforming growth factor—beta—induced cell growth inhibition

    Institute of Scientific and Technical Information of China (English)

    ZHOUBINGHONG; JUNSONGCHEN; 等

    2000-01-01

    Cells regulate phospholipase D(PLD) activity in response to numerous extracellular signals.Here,we investigated the involvement of PLD activity in transforming growth factor-β(TGF-β1)-mediated growth inhibition of epithelial cells.TGF-β1)-mediated growth inhibition of epithelial cells.TGF-β1 inhibits the growth of MDCK,Mv1Lu,and A-549 cells.In the presence of 0.4% butanol,TGF-β1 induces an increase in the formation of phosphatidylbutanol,a unique product catalyzed by PLD.TGF-β1 also induces an increase in phosphatidic acid (PA) level in A-549 and MDCK cells.TGF-β1 induces an increase in the levels of DAG labeled with [3H]-myristic acid in A-549 and MDCK cells but not in Mv1Lu cells.No increase of DAG was observed in cells prelabeled with [3H]-arachidonic acid.The data presented suggest that PLD activation is involved in the TGF-β1-induced cell growth inhibition.

  7. Corneal Fibroblasts as Sentinel Cells and Local Immune Modulators in Infectious Keratitis

    Directory of Open Access Journals (Sweden)

    Ken Fukuda

    2017-08-01

    Full Text Available The cornea serves as a barrier to protect the eye against external insults including microbial pathogens and antigens. Bacterial infection of the cornea often results in corneal melting and scarring that can lead to severe visual impairment. Not only live bacteria but also their components such as lipopolysaccharide (LPS of Gram-negative bacteria contribute to the development of inflammation and subsequent corneal damage in infectious keratitis. We describe the important role played by corneal stromal fibroblasts (activated keratocytes as sentinel cells, immune modulators, and effector cells in infectious keratitis. Corneal fibroblasts sense bacterial infection through Toll-like receptor (TLR–mediated detection of a complex of LPS with soluble cluster of differentiation 14 (CD14 and LPS binding protein present in tear fluid. The cells then initiate innate immune responses including the expression of chemokines and adhesion molecules that promote the recruitment of inflammatory cells necessary for elimination of the infecting bacteria. Infiltrated neutrophils are activated by corneal stromal collagen and release mediators that stimulate the production of pro–matrix metalloproteinases by corneal fibroblasts. Elastase produced by Pseudomonas aeruginosa (P. aeruginosa activates these released metalloproteinases, resulting in the degradation of stromal collagen. The modulation of corneal fibroblast activation and of the interaction of these cells with inflammatory cells and bacteria is thus important to minimize corneal scarring during treatment of infectious keratitis. Pharmacological agents that are able to restrain such activities of corneal fibroblasts without allowing bacterial growth represent a potential novel treatment option for prevention of excessive scarring and tissue destruction in the cornea.

  8. Extracellular Iron is a Modulator of the Differentiation of Osteoclast Lineage Cells.

    Science.gov (United States)

    Xie, Wenjie; Lorenz, Sebastian; Dolder, Silvia; Hofstetter, Willy

    2016-03-01

    Osteoclasts originate from the hematopoietic stem cell and share a differentiation pathway with the cells of the monocyte/macrophage lineages. Development and activation of osteoclasts, and as a consequence regulation of bone resorption, depend on two growth factors: macrophage colony-stimulating factor and receptor activator of NF-κB ligand. Furthermore, cell development and activity are modulated by a microenvironment composed of cytokines and growth factors and of the extracellular matrix. Membrane transporters are a means for cells to interact with their environment. Within this study, the expression of proteins regulating cellular iron homeostasis in osteoclast-like cells grown from bone marrow-derived progenitors was compared to the expression of this set of proteins by monocyte/macrophage lineage cells. In differentiating osteoclasts, levels of transcripts encoding transferrin receptor 1 and divalent metal transporter 1 (Slc11A2) were increased, while levels of transcripts encoding ferroportin (Slc40A1) and natural resistance-associated macrophage protein 1 (Slc11A1) were decreased. Supplementation of the culture media with exogenous iron led to an increase in the proliferation of osteoclast progenitor cells and to the expression of a macrophage-like phenotype, while the development of osteoclasts was reduced. Upon transfer of mature OC onto a CaP substrate, iron depletion of the medium with the Fe(3+)-chelator Deferoxamine Mesylate decreased CaP dissolution by ~30 %, which could be restored by addition of exogenous iron. During the 24 h of the assay, no effects were observed on total TRAP activity. The data demonstrate transcriptional regulation of the components of cellular iron transporters during OC development and suggests that iron homeostasis may contribute to fine-tuning of the RANKL-induced OC development.

  9. Effect of proline rich domain of an RNA-binding protein Sam68 in cell growth process, death and B cell signal transduction

    Institute of Scientific and Technical Information of China (English)

    LI Qing-hua; FAN Tian-xue; PANG Tian-xiang; YUAN Wen-su; HAN Zhong-chao

    2006-01-01

    Background Sam68 plays an important role as a multiple functional RNA binding nuclear protein in cell cycle progress, RNA usage, signal transduction, and tyrosine phosphorylation by Src during mitosis. However, its precise impact on these essential cellular functions remains unclear. The purpose of this study is to further elucidate Sam68 functions in RNA metabolism, signal transduction regulation of cell growth and cell proliferation in DT40 cell line.Methods By using gene targeting method, we isolated a mutation form of Sam68 in DT40 cells and described its effect on cell growth process and signal transduction. Southern, Northern, and Western blot, phosphorylation and flow-cytometfic analyses were performed to investigate the Sam68 functions.Results A slower growth rate (2.1 hours growth elongation) and longer S phase (1.7 hours elongation) was observed in the Sam68 mutant cells. Serum depletion resulted in increased amounts of dead cells, and expansion of S phase in mutant cells. Upon B cell cross-linking, the maximal level of tyrosine phosphorylation on BLNK was observed to be significantly lower in mutant cells.Conclusions The proline rich domain of Sam68 is involved in cell growth control by modulating the function of mRNAs in S phase or earlier and the functions as an adaptor molecule in B cell signal transduction pathways.

  10. IDO2 Modulates T Cell-Dependent Autoimmune Responses through a B Cell-Intrinsic Mechanism.

    Science.gov (United States)

    Merlo, Lauren M F; DuHadaway, James B; Grabler, Samantha; Prendergast, George C; Muller, Alexander J; Mandik-Nayak, Laura

    2016-06-01

    Mechanistic insight into how adaptive immune responses are modified along the self-nonself continuum may offer more effective opportunities to treat autoimmune disease, cancer, and other sterile inflammatory disorders. Recent genetic studies in the KRN mouse model of rheumatoid arthritis demonstrate that the immunomodulatory molecule IDO2 modifies responses to self-antigens; however, the mechanisms involved are obscure. In this study, we show that IDO2 exerts a critical function in B cells to support the generation of autoimmunity. In experiments with IDO2-deficient mice, adoptive transplant experiments demonstrated that IDO2 expression in B cells was both necessary and sufficient to support robust arthritis development. IDO2 function in B cells was contingent on a cognate, Ag-specific interaction to exert its immunomodulatory effects on arthritis development. We confirmed a similar requirement in an established model of contact hypersensitivity, in which IDO2-expressing B cells are required for a robust inflammatory response. Mechanistic investigations showed that IDO2-deficient B cells lacked the ability to upregulate the costimulatory marker CD40, suggesting IDO2 acts at the T-B cell interface to modulate the potency of T cell help needed to promote autoantibody production. Overall, our findings revealed that IDO2 expression by B cells modulates autoimmune responses by supporting the cross talk between autoreactive T and B cells.

  11. TLR4 has a TP53-dependent dual role in regulating breast cancer cell growth.

    Science.gov (United States)

    Haricharan, Svasti; Brown, Powel

    2015-06-23

    Breast cancer is a leading cause of cancer-related death, and it is important to understand pathways that drive the disease to devise effective therapeutic strategies. Our results show that Toll-like receptor 4 (TLR4) drives breast cancer cell growth differentially based on the presence of TP53, a tumor suppressor. TP53 is mutationally inactivated in most types of cancer and is mutated in 30-50% of diagnosed breast tumors. We demonstrate that TLR4 activation inhibits growth of TP53 wild-type cells, but promotes growth of TP53 mutant breast cancer cells by regulating proliferation. This differential effect is mediated by changes in tumor cell cytokine secretion. Whereas TLR4 activation in TP53 mutant breast cancer cells increases secretion of progrowth cytokines, TLR4 activation in TP53 wild-type breast cancer cells increases type I IFN (IFN-γ) secretion, which is both necessary and sufficient for mediating TLR4-induced growth inhibition. This study identifies a novel dichotomous role for TLR4 as a growth regulator and a modulator of tumor microenvironment in breast tumors. These results have translational relevance, demonstrating that TP53 mutant breast tumor growth can be suppressed by pharmacologic TLR4 inhibition, whereas TLR4 inhibitors may in fact promote growth of TP53 wild-type tumors. Furthermore, using data generated by The Cancer Genome Atlas consortium, we demonstrate that the effect of TP53 mutational status on TLR4 activity may extend to ovarian, colon, and lung cancers, among others, suggesting that the viability of TLR4 as a therapeutic target depends on TP53 status in many different tumor types.

  12. Targeting cancer stem cells with p53 modulators

    Science.gov (United States)

    Hayashi, Ryo; Appella, Ettore; Kopelovich, Levy; DeLeo, Albert B.

    2016-01-01

    Cancer stem cells (CSC) typically over-express aldehyde dehydrogenase (ALDH). Thus, ALDHbright tumor cells represent targets for developing novel cancer prevention/treatment interventions. Loss of p53 function is a common genetic event during cancer development wherein small molecular weight compounds (SMWC) that restore p53 function and reverse tumor growth have been identified. Here, we focused on two widely studied p53 SMWC, CP-31398 and PRIMA-1, to target ALDHbright CSC in human breast, endometrial and pancreas carcinoma cell lines expressing mutant or wild type (WT) p53. CP-31398 and PRIMA-1 significantly reduced CSC content and sphere formation by these cell lines in vitro. In addition, these agents were more effective in vitro against CSC compared to cisplatin and gemcitabine, two often-used chemotherapeutic agents. We also tested a combinatorial treatment in methylcholantrene (MCA)-treated mice consisting of p53 SMWC and p53-based vaccines. Yet using survival end-point analysis, no increased efficacy in the presence of either p53 SMWC alone or with vaccine compared to vaccine alone was observed. These results may be due, in part, to the presence of immune cells, such as activated lymphocytes expressing WT p53 at levels comparable to some tumor cells, wherein further increase of p53 expression by p53 SMWC may alter survival of these immune cells and negatively impact an effective immune response. Continuous exposure of mice to MCA may have also interfered with the action of these p53 SMWC, including potential direct interaction with MCA. Nonetheless, the effect of p53 SMWC on CSC and cancer treatment remains of great interest. PMID:27074569

  13. LCMV glycosylation modulates viral fitness and cell tropism.

    Directory of Open Access Journals (Sweden)

    Cyrille J Bonhomme

    Full Text Available The glycoprotein (GP of arenaviruses is glycosylated at 11 conserved N-glycosylation sites. We constructed recombinant lymphocytic choriomeningitis virus (rLCMV featuring either additions or deletions of these N-glycans to investigate their role in the viral life cycle. N-glycosylation at two sites, T87 and S97, were found to be necessary to rescue rLCMV. Three of nine successfully rescued mutants, S116A, T234A, and S373A, under selective pressures in either epithelial, neuronal, or macrophage cells reverted to WT sequence. Of the seven stable N-glycan deletion mutants, five of these led to altered viral fitness and cell tropism, assessed as growth in either mouse primary cortical neurons or bone marrow derived macrophages. These results demonstrate that the deletion of N-glycans in LCMV GP may confer an advantage to the virus for infection of neurons but a disadvantage in macrophages.

  14. Telmisartan inhibits human urological cancer cell growth through early apoptosis

    Science.gov (United States)

    MATSUYAMA, MASAHIDE; FUNAO, KIYOAKI; KURATSUKURI, KATSUYUKI; TANAKA, TOMOAKI; KAWAHITO, YUTAKA; SANO, HAJIME; CHARGUI, JAMEL; TOURAINE, JEAN-LOUIS; YOSHIMURA, NORIO; YOSHIMURA, RIKIO

    2010-01-01

    Angiotensin II receptor blockers (ARBs) are widely used as hypertensive therapeutic agents. In addition, studies have provided evidence that ARBs have the potential to inhibit the growth of several types of cancer cells. It was reported that telmisartan (a type of ARB) has peroxisome proliferator-activated receptor (PPAR)-γ activation activity. We previously reported that the PPAR-γ ligand induces growth arrest in human urological cancer cells through apoptosis. In this study, we evaluated the effects of telmisartan and other ARBs on cell proliferation in renal cell carcinoma (RCC), bladder cancer (BC), prostate cancer (PC) and testicular cancer (TC) cell lines. The inhibitory effects of telmisartan and other ARBs (candesartan, valsartan, irbesartan and losartan) on the growth of the RCC, BC, PC and TC cell lines was investigated using an MTT assay. Flow cytometry and Hoechst staining were used to determine whether the ARBs induced apoptosis. Telmisartan caused marked growth inhibition in the urological cancer cells in a dose- and time-dependent manner. Urological cancer cells treated with 100 μM telmisartan underwent early apoptosis and DNA fragmentation. However, the other ARBs had no effect on cell proliferation in any of the urological cancer cell lines. Telmisartan may mediate potent anti-proliferative effects in urological cancer cells through PPAR-γ. Thus, telmisartan is a potent target for the prevention and treatment of human urological cancer. PMID:22993542

  15. Human genome-wide RNAi screen for host factors that modulate intracellular Salmonella growth.

    Science.gov (United States)

    Thornbrough, Joshua M; Hundley, Tom; Valdivia, Raphael; Worley, Micah J

    2012-01-01

    Salmonella enterica is a bacterial pathogen of humans that can proliferate within epithelial cells as well as professional phagocytes of the immune system. While much has been learned about the microbial genes that influence the infectious process through decades of intensive research, relatively little is known about the host factors that affect infection. We performed a genome-wide siRNA screen to identify host genes that Salmonella enterica serovar Typhimurium (S. typhimurium) utilizes to facilitate growth within human epithelial cells. In this screen, with siRNAs targeting every predicted gene in the human genome, we identified 252 new human-host-susceptibility factors (HSFs) for S. typhimurium. We also identified 39 genes whose silencing results in increased intracellular growth of S. typhimurium. The HSFs identified are regulated most centrally by NFκB and associate with each other through an extremely dense network of interactions that center around a group of kinases. Most genes identified were not previously appreciated as playing roles in the intracellular lifecycle of S. enterica. Numerous HSFs identified with interesting characteristics that could play plausible roles in mediating intracellular microbial growth are discussed. Importantly, this study reveals significant overlap between the host network that supports S. typhimurium growth within human epithelial cells and the one that promotes the growth of Mycobacterium tuberculosis within human macrophages. In addition to providing much new information about the molecular mechanisms underlying S. enterica-host cell interplay, all 252 HSFs identified are candidates for new anti-microbial targets for controlling S. enterica infections, and some may provide broad-spectrum anti-microbial activity.

  16. Vascular endothelial growth factor A (VEGFA) modulates bovine placenta steroidogenesis in vitro.

    Science.gov (United States)

    Sousa, L M M C; Campos, D B; Fonseca, V U; Viau, P; Kfoury, J R; Oliveira, C A; Binelli, M; Buratini, J; Papa, P C

    2012-10-01

    Our objectives were to investigate the possible role of VEGFA in bovine placenta steroid synthesis and to determine whether cloned derived placental cells present similar responses as non-cloned ones. Placental cells from cloned (term) and non-cloned (days 90, 150, 210 and term) pregnancies were isolated and treated with VEGFA (50 ng/ml) for 24, 48 or 96 h. Progesterone (P(4)) and estrone sulfate (E(1)S) were assessed by RIA, while aromatase P450-positive cells were quantified using the point counting test. The percentages of steroidogenic and non-steroidogenic populations were determined by flow cytometry. VEGFA augmented or decreased P(4) and E(1)S concentrations as well as aromatase P450-positive cell density, depending on gestational age and time in culture. The percentage of steroidogenic cells was lower than that of non-steroidogenic ones for each culture time (P 0.05). VEGFA treatment altered P(4) and E(1)S levels in placental cells depending on type of gestation. These results suggest that VEGFA acts locally in the bovine placenta to modulate steroidogenesis during gestation, but in a different pattern between cloned and non-cloned derived placental cells at term. Therefore, this factor can be considered an important regulator of placental development and function.

  17. Ets-1 controls breast cancer cell balance between invasion and growth.

    Science.gov (United States)

    Furlan, Alessandro; Vercamer, Chantal; Bouali, Fatima; Damour, Isabelle; Chotteau-Lelievre, Anne; Wernert, Nicolas; Desbiens, Xavier; Pourtier, Albin

    2014-11-15

    Ets-1 overexpression in human breast cancers is associated with invasiveness and poor prognosis. By overexpressing Ets-1 or a dominant negative mutant in MMT breast cancer cells, we previously highlighted the key role of Ets-1 in coordinating multiple invasive features of these cells. Interestingly, we also noticed that Ets-1 decreased the density of breast cancer cells cultured in three-dimensional extracellular matrix gels. The 3D context was instrumental to this phenomenon, as such downregulation was not observed in cells grown on two-dimensional plastic or matrix-coated dishes. Ets-1 overexpression was deleterious to anchorage-independent growth of MMT cells in soft agar, a standard model for in vitro tumorigenicity. The relevance of this mechanism was confirmed in vivo, during primary tumor growth and in a metastatic assay of lung colonization. In these models, Ets-1 was associated with epithelial-to-mesenchymal transition features and modulated the ratio of Ki67-positive cells, while hardly affecting in vivo apoptotic cell death. Finally, siRNA-mediated knockdown of Ets-1 in human breast cancer cell lines also decreased colony growth, both in anchorage-independent assays and 3D extracellular matrix cultures. These in vitro and in vivo observations shed light on an unsuspected facet of Ets-1 in breast tumorigenesis. They show that while promoting malignancy through the acquisition of invasive features, Ets-1 also attenuates breast tumor cell growth and could therefore repress the growth of primary tumors and metastases. This work also demonstrates that 3D models may reveal mechanisms of tumor biology that are cryptic in standard 2D models. © 2014 UICC.

  18. Simvastatin requires activation in accessory cells to modulate T-cell responses in asthma and COPD.

    Science.gov (United States)

    Knobloch, Jürgen; Yakin, Yakup; Körber, Sandra; Grensemann, Barbara; Bendella, Zeynep; Boyaci, Niyazi; Gallert, Willem-Jakob; Yanik, Sarah Derya; Jungck, David; Koch, Andrea

    2016-10-05

    T-cell-dependent airway and systemic inflammation triggers the progression of chronic obstructive pulmonary disease (COPD) and asthma. Retrospective studies suggest that simvastatin has anti-inflammatory effects in both diseases but it is unclear, which cell types are targeted. We hypothesized that simvastatin modulates T-cell activity. Circulating CD4+ and CD8+ T-cells, either pure, co-cultured with monocytes or alveolar macrophages (AM) or in peripheral blood mononuclear cells (PBMCs), were ex vivo activated towards Th1/Tc1 or Th2/Tc2 and incubated with simvastatin. Markers for Th1/Tc1 (IFNγ) and Th2/Tc2 (IL-5, IL-13) were measured by ELISA; with PBMCs this was done comparative between 11 healthy never-smokers, 11 current smokers without airflow limitation, 14 smokers with COPD and 11 never-smokers with atopic asthma. T-cell activation induced IFNγ, IL-5 and IL-13 in the presence and absence of accessory cells. Simvastatin did not modulate cytokine expression in pure T-cell fractions. β-hydroxy-simvastatin acid (activated simvastatin) suppressed IL-5 and IL-13 in pure Th2- and Tc2-cells. Simvastatin suppressed IL-5 and IL-13 in Th2-cells co-cultivated with monocytes or AM, which was partially reversed by the carboxylesterase inhibitor benzil. Simvastatin suppressed IL-5 production of Th2/Tc2-cells in PBMCs without differences between cohorts and IL-13 stronger in never-smokers and asthma compared to COPD. Simvastatin induced IFNγ in Th1/Tc1-cells in PBMCs of all cohorts except asthmatics. Simvastatin requires activation in accessory cells likely by carboxylesterase to suppress IL-5 and IL-13 in Th2/Tc2-cells. The effects on Il-13 are partially reduced in COPD. Asthma pathogenesis prevents simvastatin-induced IFNγ up-regulation. Simvastatin has anti-inflammatory effects that could be of interest for asthma therapy.

  19. Neural cell adhesion molecule differentially interacts with isoforms of the fibroblast growth factor receptor.

    Science.gov (United States)

    Christensen, Claus; Berezin, Vladimir; Bock, Elisabeth

    2011-10-26

    The fibroblast growth factor receptor (FGFR) can be activated through direct interactions with various fibroblast growth factors or through a number of cell adhesion molecules, including the neural cell adhesion molecule (NCAM). We produced recombinant proteins comprising the ligand-binding immunoglobulin-like modules 2 and 3 of FGFR1b, FGFR1c, FGFR2b, FGFR2c, FGFR3b, FGFR3c, and FGFR4, and found that all FGFR isoforms, except for FGFR4, interacted with NCAM. The binding affinity of NCAM-FGFR interactions was considerably higher for splice variant 'b' than for splice variant 'c'. We suggest that the expression pattern of various FGFR isoforms determines the cell context-specific effects of NCAM signaling through FGFR.

  20. IGF2 DNA methylation is a modulator of newborn's fetal growth and development.

    Science.gov (United States)

    St-Pierre, Julie; Hivert, Marie-France; Perron, Patrice; Poirier, Paul; Guay, Simon-Pierre; Brisson, Diane; Bouchard, Luigi

    2012-10-01

    The insulin-like growth factor 2 (IGF2) gene, located within a cluster of imprinted genes on chromosome 11p15, encodes a fetal and placental growth factor affecting birth weight. DNA methylation variability at the IGF2 gene locus has been previously reported but its consequences on fetal growth and development are still mostly unknown in normal pediatric population. We collected one hundred placenta biopsies from 50 women with corresponding maternal and cord blood samples and measured anthropometric indices, blood pressure and metabolic phenotypes using standardized procedures. IGF2/H19 DNA methylation and IGF2 circulating levels were assessed using sodium bisulfite pyrosequencing and ELISA, respectively. Placental IGF2 (DMR0 and DMR2) DNA methylation levels were correlated with newborn's fetal growth indices, such as weight, and with maternal IGF2 circulating concentration at the third trimester of pregnancy, whereas H19 (DMR) DNA methylation levels were correlated with IGF2 levels in cord blood. The maternal genotype of a known IGF2/H19 polymorphism (rs2107425) was associated with birth weight. Taken together, we showed that IGF2/H19 epigenotype and genotypes independently account for 31% of the newborn's weight variance. No association was observed with maternal diabetic status, glucose concentrations or prenatal maternal body mass index. This is the first study showing that DNA methylation at the IGF2/H19 genes locus may act as a modulator of IGF2 newborn's fetal growth and development within normal range. IGF2/H19 DNA methylation could represent a cornerstone in linking birth weight and fetal metabolic programming of late onset obesity.

  1. Elucidation of the mechanism of the regulatory function of the Ig1 module of the fibroblast growth factor receptor 1

    DEFF Research Database (Denmark)

    Kiselyov, Vladislav; Kochoyan, Artur; Poulsen, Flemming;

    2006-01-01

    The extracellular part of the fibroblast growth factor (FGF) receptor (FGFR) consists of up to three Ig modules (Ig1-Ig3), in which the Ig2 and Ig3 modules determine affinity and specificity for FGF and heparin. The FGFR isoforms lacking the Ig1 module have higher affinity for FGF and heparin than...... the triple Ig-module isoforms, suggesting that the Ig1 module is involved in the regulation of the FGFR-ligand interaction. We show here by surface plasmon resonance and NMR analyses that the Ig1 module binds to the Ig2 module, and identify by NMR the binding sites involved in the Ig1-Ig2 interaction....... The identified binding site in the Ig2 module was found to be in the area of the FGF-Ig2 and Ig2-heparin contact sites, thus providing direct structural evidence that the Ig1 module functions as a competitive autoinhibitor of the FGFR-ligand interaction. Furthermore, the Ig1 binding site of the Ig2 module...

  2. Growth of fibroblasts and endothelial cells on wettability gradient surfaces

    NARCIS (Netherlands)

    Ruardy, TG; Moorlag, HE; Schakenraad, JM; VanderMei, HC; Busscher, HJ

    1997-01-01

    The growth, spreading, and shape of human skin fibroblasts (PK 84) and human umbilical cord endothelial cells on dichlorodimethylsilane (DDS) and dimethyloctadecylchlorosilane (DOGS) gradient surfaces were investigated in the presence of serum proteins. Gradient surfaces were prepared on glass using

  3. CITED2 modulates estrogen receptor transcriptional activity in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Wen Min; Doucet, Michele; Huang, David; Weber, Kristy L.; Kominsky, Scott L., E-mail: kominsc@jhmi.edu

    2013-07-26

    Highlights: •The effects of elevated CITED2 on ER function in breast cancer cells are examined. •CITED2 enhances cell growth in the absence of estrogen and presence of tamoxifen. •CITED2 functions as a transcriptional co-activator of ER in breast cancer cells. -- Abstract: Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a member of the CITED family of non-DNA binding transcriptional co-activators of the p300/CBP-mediated transcription complex. Previously, we identified CITED2 as being overexpressed in human breast tumors relative to normal mammary epithelium. Upon further investigation within the estrogen receptor (ER)-positive subset of these breast tumor samples, we found that CITED2 mRNA expression was elevated in those associated with poor survival. In light of this observation, we investigated the effect of elevated CITED2 levels on ER function. While ectopic overexpression of CITED2 in three ER-positive breast cancer cell lines (MCF-7, T47D, and CAMA-1) did not alter cell proliferation in complete media, growth was markedly enhanced in the absence of exogenous estrogen. Correspondingly, cells overexpressing CITED2 demonstrated reduced sensitivity to the growth inhibitory effects of the selective estrogen receptor modulator, 4-hydroxytamoxifen. Subsequent studies revealed that basal ER transcriptional activity was elevated in CITED2-overexpressing cells and was further increased upon the addition of estrogen. Similarly, basal and estrogen-induced expression of the ER-regulated genes trefoil factor 1 (TFF1) and progesterone receptor (PGR) was higher in cells overexpressing CITED2. Concordant with this observation, ChIP analysis revealed higher basal levels of CITED2 localized to the TFF-1 and PGR promoters in cells with ectopic overexpression of CITED2, and these levels were elevated further in response to estrogen stimulation. Taken together, these data indicate that CITED2 functions as a transcriptional co

  4. Insulin-like growth factors and pancreas beta cells.

    NARCIS (Netherlands)

    Haeften, T.W. van; Twickler, M.

    2004-01-01

    Abstract Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their signallin

  5. Insulin-like growth factors and pancreas beta cells

    NARCIS (Netherlands)

    van Haeften, TW; Twickler, TB

    2004-01-01

    Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their signalling pathway

  6. Nanoscale crystallinity modulates cell proliferation on plasma sprayed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Alan M. [School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH (United Kingdom); Paxton, Jennifer Z.; Hung, Yi-Pei; Hadley, Martin J.; Bowen, James; Williams, Richard L. [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom); Grover, Liam M., E-mail: l.m.grover@bham.ac.uk [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom)

    2015-03-01

    Calcium phosphate coatings have been applied to the surface of metallic prostheses to mediate hard and soft tissue attachment for more than 40 years. Most coatings are formed of high purity hydroxyapatite, and coating methods are often designed to produce highly crystalline surfaces. It is likely however, that coatings of lower crystallinity can facilitate more rapid tissue attachment since the surface will exhibit a higher specific surface area and will be considerably more reactive than a comparable highly crystalline surface. Here we test this hypothesis by growing a population of MC3T3 osteoblast-like cells on the surface of two types of hip prosthesis with similar composition, but with differing crystallinity. The surfaces with lower crystallinity facilitated more rapid cell attachment and increased proliferation rate, despite having a less heterogeneous surface topography. This work highlights that the influence of the crystallinity of HA at the nano-scale is dominant over macro-scale topography for cell adhesion and growth. Furthermore, crystallinity could be easily adjusted by without compromising coating purity. These findings could facilitate designing novel coated calcium phosphate surfaces that more rapidly bond tissue following implantation. - Highlights: • Crystallinity of HA at the nano-scale was dominant over macro-scale topography. • Lower crystallinity caused rapid cell attachment and proliferation rate. • Crystallinity could be easily adjusted by without compromising coating purity.

  7. The fatty acid profile of rainbow trout liver cells modulates their tolerance to methylmercury and cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Ferain, Aline, E-mail: aline.ferain@uclouvain.be [Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve (Belgium); Bonnineau, Chloé [Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve (Belgium); Irstea, UR MALY, Centre de Lyon-Villeurbanne, rue de la Doua 5/32108, F-69616 Villeurbanne (France); Neefs, Ineke; Rees, Jean François; Larondelle, Yvan [Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve (Belgium); Schamphelaere, Karel A.C.De [Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium); Debier, Cathy [Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve (Belgium)

    2016-08-15

    Highlights: • The phospholipid composition of rainbow trout liver cells was successfully changed. • Cell phospholipids influenced methylmercury (MeHg) and cadmium (Cd) toxicity. • Cells enriched in 18:3n-3, 20:5n-3 or 22:5n-6 were more resistant to MeHg and Cd. • Cell enrichment in 22:6n-3 increased resistance to Cd but not MeHg. - Abstract: The polyunsaturated fatty acid (PUFA) composition of fish tissues, which generally reflects that of the diet, affects various cellular properties such as membrane structure and fluidity, energy metabolism and susceptibility to oxidative stress. Since these cellular parameters can play an important role in the cellular response to organic and inorganic pollutants, a variation of the PUFA supply might modify the toxicity induced by such xenobiotics. In this work, we investigated whether the cellular fatty acid profile has an impact on the in vitro cell sensitivity to two environmental pollutants: methylmercury and cadmium. Firstly, the fatty acid composition of the rainbow trout liver cell line RTL-W1 was modified by enriching the growth medium with either alpha-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), linoleic acid (LA, 18:2n-6), arachidonic acid (AA, 20:4n-6) or docosapentaenoic acid (DPA, 22:5n-6). These modified cells and their control (no PUFA enrichment) were then challenged for 24 h with increasing concentrations of methylmercury or cadmium. We observed that (i) the phospholipid composition of the RTL-W1 cells was profoundly modulated by changing the PUFA content of the growth medium: major modifications were a high incorporation of the supplemented PUFA in the cellular phospholipids, the appearance of direct elongation and desaturation metabolites in the cellular phospholipids as well as a change in the gross phospholipid composition (PUFA and monounsaturated fatty acid (MUFA) levels and n-3/n-6 ratio); (ii) ALA, EPA and DPA enrichment significantly

  8. Modulation of Kupffer cells on hepatic drug metabolism

    Institute of Scientific and Technical Information of China (English)

    Hong Ding; Jing Tong; Shi-Cheng Wu; Deng-Ke Yin; Xian-Fen Yuan; Jian-Yuan Wu; Jun Chen; Gang-Gang Shi

    2004-01-01

    AIM: To observe the effects of Kupffer cells on hepatic drug metabolic enzymes.METHODS: Kunming mice were ip injected with GdCl310,20, 40 mg/kg to decrease the number and block the function of kupffer cells selectively. The contents of drug metabolic enzymes, cytochrome P450, NADPH-cytochrom C redutase (NADPH-C), aniline hydroxylase (ANH), aminopyrine Ndemethylase (AMD), erythromycin N-demethylase (EMD),and glutathione s-transferase (mGST) in hepatic microsome and S9-GSTpi, S9-GST in supernatant of 9 000 g were accessed 1 d after the injection. The time course of alteration of drug metabolic enzymes was observed on d 1, 3, and 6 treated with a single dose GdCl3. Mice were treated with Angelica sinensis polysaccharides (ASP) of 30, 60, 120 mg/kg, ig, qd ×6 d, respectively and the same assays were performed.RESULTS: P450 content and NADPH-C, ANH, AMD, and END activities were obviously reduced 1 d after Kupffer cell blockade. However, mGST and S9-GST activities were significantly increased. But no relationship was observed between GdCl3 dosage and enzyme activities. With single dose GdCl3 treatment, P450 content, NADPH-C, and ANH activities were further decreased following Kupffer cell blockade lasted for 6 d, by 35.7%, 50.3%, 36.5% after 3 d, and 57.9%, 57.9%, 63.2% after 6 d, respectively. On the contrary, AMD, EMD, mGST, and Sg-GST activities were raised by 36.5%, 71.9%, 23.1%, 35.7% after 3 d,and 155%, 182%, 21.5%, 33.7% after 6 d, respectively.Furthermore, the activities of drug metabolic enzymes were markedly increased after 30 mg/kg ASP treatment,and decreased significantly after 120 mg/kg ASP treatment.No change in activity of Sg-GSTpi was observed in the present study.CONCLUSION: Kupffer cells play an important role in the modulation of drug metabolic enzymes. The changes of drug metabolic enzyme activities depend on the time of kupffer cell blockade and on the degree of Kupffer cells activated. A low concentration of ASP increases the activities of drug

  9. Purification and cultivation of human pituitary growth hormone secreting cells

    Science.gov (United States)

    Hymer, W. C.

    1978-01-01

    The maintainance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro was studied. The primary approach was the testing of agents which may be expected to increase the release of the human growth hormone (hGH). A procedure for tissue procurement is described along with the methodologies used to dissociate human pituitary tissue (obtained either at autopsy or surgery) into single cell suspensions. The validity of the Biogel cell column perfusion system for studying the dynamics of GH release was developed and documented using a rat pituitary cell system.

  10. Adaptation to optimal cell growth through self-organized criticality.

    Science.gov (United States)

    Furusawa, Chikara; Kaneko, Kunihiko

    2012-05-18

    A simple cell model consisting of a catalytic reaction network is studied to show that cellular states are self-organized in a critical state for achieving optimal growth; we consider the catalytic network dynamics over a wide range of environmental conditions, through the spontaneous regulation of nutrient transport into the cell. Furthermore, we find that the adaptability of cellular growth to reach a critical state depends only on the extent of environmental changes, while all chemical species in the cell exhibit correlated partial adaptation. These results are in remarkable agreement with the recent experimental observations of the present cells.

  11. TOR and paradigm change: cell growth is controlled.

    Science.gov (United States)

    Hall, Michael N

    2016-09-15

    This year marks the 25th anniversary of the discovery of target of rapamycin (TOR), a highly conserved kinase and central controller of cell growth. In this Retrospective, I briefly describe the discovery of TOR and the subsequent elucidation of its cellular role. I place particular emphasis on an article by Barbet et al. from 1996, the first suggesting that TOR controls cell growth in response to nutrients.

  12. Insulin-like growth factor binding protein-5 influences pancreatic cancer cell growth

    Institute of Scientific and Technical Information of China (English)

    Sarah K Johnson; Randy S Haun

    2009-01-01

    AIM: To investigate the functional significance of insulin-like growth factor binding protein-5 (IGFBP-5) overexpression in pancreatic cancer (PaC).METHODS: The effects of IGFBP-5 on cell growth were assessed by stable transfection of BxPC-3 and PANC-1 cell lines and measuring cell number and DNA synthesis. Alterations in the cell cycle were assessed by flow cytometry and immunoblot analyses.Changes in cell survival and signal transduction were evaluated after mitogen activated protein kinase and phosphatidylinositol 3-kinase (PI3K) inhibitor treatment.RESULTS: After serum depr ivat ion, IGFBP-5 expression increased both cell number and DNA synthesis in BxPC-3 cells, but reduced cell number in PANC-1 cells. Consistent with this observation, cell cycle analysis of IGFBP-5-expressing cells revealed accelerated cell cycle progression in BxPC-3 and G2/M arrest of PANC-1 cells. Signal transduction analysis revealed that Akt activation was increased in BxPC-3, but reduced in PANC-1 cells that express IGFBP-5. Inhibition of PI3K with LY294002 suppressed extracellular signal-regulated kinase-1 and -2 (ERK1/2) activation in BxPC-3, but enhanced ERK1/2 activation in PANC-1 cells that express IGFBP-5. When MEK1/2 was blocked, Akt activation remained elevated in IGFBP-5 expressing PaC cells; however, inhibition of PI3K or MEK1/2 abrogated IGFBP-5-mediated cell survival.CONCLUSION: These results indicate that IGFBP-5 expression affects the cell cycle and survival signal pathways and thus it may be an important mediator of PaC cell growth.

  13. Connective Tissue Growth Factor Expression in Human Bronchial Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Amrita DOSANJH

    2006-01-01

    Connective tissue growth factor (CTGF) is a cysteine-rich protein that promotes extracellular matrix deposition. CTGF is selectively induced by transforming growth factor β and des-Arg kallidin in lung fibroblasts and increases steady-state mRNA levels of α type I collagen, 5α-integrin and fibronectin in fibroblasts. Bronchial epithelial cells have been proposed to functionally interact with lung fibroblasts. We therefore investigated if bronchial epithelial cells are able to synthesize CTGF. Human bronchial epithelial cells were grown to subconfluence in standard growth media. Proliferating cells grown in small airway growth media were harvested following starvation for up to 24 h. Expression of CTGF transcripts was measured by PCR. Immunocytochemistry was also completed using a commercially available antibody.The cells expressed readily detectable CTGF transcripts. Starvation of these cells resulted in a quantitative decline of CTGF transcripts. Direct sequencing of the PCR product identified human CTGF. Immunocytochemistry confirmed intracellular CTGF in the cells and none in negative control cells. We conclude that bronchial epithelial cells could be a novel source of CTGF. Bronchial epithelial cell-derived CTGF could thus directly influence the deposition of collagen in certain fibrotic lung diseases.

  14. The oncoprotein HBXIP modulates the feedback loop of MDM2/p53 to enhance the growth of breast cancer.

    Science.gov (United States)

    Li, Hang; Liu, Qian; Wang, Zhen; Fang, Runping; Shen, Yu; Cai, Xiaoli; Gao, Yuen; Li, Yinghui; Zhang, Xiaodong; Ye, Lihong

    2015-09-11

    MDM2 and p53 form a negative feedback loop, in which p53 as a transcription factor positively regulates MDM2 and MDM2 negatively regulates tumor suppressor p53 through promoting its degradation. However, the mechanism of the feedback loop is poorly understood in cancers. We had reported previously that the oncoprotein hepatitis B X-interacting protein (HBXIP) is a key oncoprotein in the development of cancer. Thus, we supposed that HBXIP might be involved in the event. Here, we observed that the expression levels of HBXIP were positively correlated to those of MDM2 in clinical breast cancer tissues. Interestingly, HBXIP was able to up-regulate MDM2 at the levels of mRNA and protein in MCF-7 breast cancer cells. Mechanically, HBXIP increased the promoter activities of MDM2 through directly binding to p53 in the P2 promoter of MDM2. Strikingly, we identified that the acetyltransferase p300 was recruited by HBXIP to p53 in the promoter of MDM2. Moreover, we validated that HBXIP enhanced the p53 degradation mediated by MDM2. Functionally, the knockdown of HBXIP or/and p300 inhibited the proliferation of breast cancer cells in vitro, and the depletion of MDM2 or overexpression of p53 significantly blocked the HBXIP-promoted growth of breast cancer in vitro and in vivo. Thus, we concluded that highly expressed HBXIP accelerates the MDM2-mediated degradation of p53 in breast cancer through modulating the feedback loop of MDM2/p53, resulting in the fast growth of breast cancer cells. Our findings provide new insights into the mechanism of the acceleration of the MDM2/p53 feedback loop in the development of cancer.

  15. MODULATION OF GROWTH AND PROTON PUMPING ATPase ACTIVITY OF PROBIOTIC Lactobacilli BY DIETARY CUCURBITS

    Directory of Open Access Journals (Sweden)

    Irfan Ahmad

    2013-12-01

    Full Text Available Gastrointestinal tract predominantly harbor probiotic Lactobacilli which exert beneficial effects on human health. Aqueous extracts from fruits of Lagenaria siceraria (Ls, Luffa cylindrica (Lc and Cucurbita maxima (Cm were prepared and lyophilized. Fruit extracts were investigated for their effects on Lactobacillus rhamnosus (L. rhamnosus, Lactobacillus plantarum (L. plantarum and Lactobacillus acidophilus (L. acidophilus. Extracts were found to enhance growth of Lactobacilli without any toxic effect (up to 1000µg/mL concentration. Minimum concentration of extracts at which growth of probiotic strains were found to be enhanced significantly were determined (103.67 µg/mL-118µg/mL and considered as effective concentration (EC or growth stimulatory concentration (GSC. Proton pumping ATPase activity of Lactobacilli were examined and found to be enhanced significantly (29.89- 61.96% in extracts treated probiotics (Lactobacilli as compared to the normal control. Inulin used as positive control and found to enhance the proton efflux activity (28.06-37.72% with respect to the control. These dietary cucurbits enhance metabolic activity of probiotic Lactobacilli by modulating their proton pumping ATPase mechanism. This study suggested that the consumption of cucurbit fruits might be a natural source of enhancing the activities of probiotic Lactobacilli in the gut.

  16. Growth response modulation by putrescine in Indian mustard Brassica juncea L. under multiple stress.

    Science.gov (United States)

    Lakra, Nita; Tomar, Pushpa C; Mishra, S N

    2016-04-01

    Plants, in general, are put to various kinds of stress, biotic and abiotic, both natural and manmade. Infestation by insect pests and diseases, and extreme conditions such as salinity, temperature, etc., as well as heavy metal contamination affect their growth performance. Here, we studied the impact of salinity and heavy metal pollution on the growth performance of Indian Mustard Brassica juncea L. and its amelioration by the diamine, putrescine, a known media supplement. We evaluated the putrescine (Put) modulation potential on multiple stress effect in 7-day old Indian mustard. The germination, seedlings length and photosynthetic pigments decline under salinity and metal (Cd/Pb) stress condition, alone or in combination, were checked by putrescine. The stress induced increase in root-shoot ratio, RNA and total amino acids content, as well as Na⁺/K⁺ ratio in leaf tissues were also comparatively less. The increased endogenous Cd/Pb accumulation in plants exposed to either metal further elevated under salinity was also found decelerated. However, the multiple stressed seedlings showed increase in glutathione content, which was further elevated with putrescine application. The increase in protein contents in leaf under single or combined stresses in the presence of putrescine could be a qualitative change. The differential changes in parameters examined here resulted in improved growth (> 10%) suggests stress mitigation by the putrescine up to an extent.

  17. Thiazolidinediones enhance vascular endothelial growth factor expression and induce cell growth inhibition in non-small-cell lung cancer cells

    OpenAIRE

    Yoshizaki Yumiko; Kumei Shima; Tanno Sachie; Motomura Wataru; Yoshizaki Takayuki; Tanno Satoshi; Okumura Toshikatsu

    2010-01-01

    Abstract Background It is known that thiazolidinediones are involved in regulating the expression of various genes, including the vascular endothelial growth factor (VEGF) gene via peroxisome proliferator-activated receptor γ (PPARγ); VEGF is a prognostic biomarker for non-small-cell lung cancer (NSCLC). Methods In this study, we investigated the effects of troglitazone and ciglitazone on the mRNA expression of VEGF and its receptors in human NSCLC cell lines, RERF-LC-AI, SK-MES-1, PC-14, and...

  18. Stem cells and growth factors in wound healing

    OpenAIRE

    Michał Pikuła; Paulina Langa; Paulina Kosikowska; Piotr Trzonkowski

    2015-01-01

    Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound...

  19. PRL1 modulates root stem cell niche activity and meristem size through WOX5 and PLTs in Arabidopsis.

    Science.gov (United States)

    Ji, Hongtao; Wang, Shuangfeng; Li, Kexue; Szakonyi, Dóra; Koncz, Csaba; Li, Xia

    2015-02-01

    The stem cell niche in the root meristem maintains pluripotent stem cells to ensure a constant supply of cells for root growth. Despite extensive progress, the molecular mechanisms through which root stem cell fates and stem cell niche activity are determined remain largely unknown. In Arabidopsis thaliana, the Pleiotropic Regulatory Locus 1 (PRL1) encodes a WD40-repeat protein subunit of the spliceosome-activating Nineteen Complex (NTC) that plays a role in multiple stress, hormone and developmental signaling pathways. Here, we show that PRL1 is involved in the control of root meristem size and root stem cell niche activity. PRL1 is strongly expressed in the root meristem and its loss of function mutation results in disorganization of the quiescent center (QC), premature stem cell differentiation, aberrant cell division, and reduced root meristem size. Our genetic studies indicate that PRL1 is required for confined expression of the homeodomain transcription factor WOX5 in the QC and acts upstream of the transcription factor PLETHORA (PLT) in modulating stem cell niche activity and root meristem size. These findings define a role for PRL1 as an important determinant of PLT signaling that modulates maintenance of the stem cell niche and root meristem size. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  20. Sirolimus inhibits growth of human hepatoma cells alone or combined with tacrolimus, while tacrolimus promotes cell growth

    Institute of Scientific and Technical Information of China (English)

    Guido Schumacher; Marijke Oidtmann; Anne Rueggeberg; Dietmar Jacob; Sven Jonas; Jan M. Langrehr; Ruth Neuhaus; Marcus Bahra; Peter Neuhaus

    2005-01-01

    AIM: Standard immunosuppression after organ transplantation stimulates tumor growth. Sirolimus has a strong antiproliferative and a tumor inhibiting effect. The purpose is to assess the effect on tumor growth of the immunosuppressive compounds sirolimus and tacrolimus alone and in combination on cells of human hepatocellular carcinoma.METHODS: We used the human cell lines SK-Hep 1 and Hep 3B derived from hepatocellular carcinoma. Proliferation analyses after treatment with sirolimus, tacrolimus, or the combination of both were performed. FACS analyses were done to reveal cell cycle changes and apoptotic cell death. The expression of apoptosis-related proteins was estimated by Western blots.RESULTS: Sirolimus alone or combined with tacrolimus inhibited the growth of both cell lines after 5 d by up to 35% in SK-Hep 1 cells, and by up to 68% in Hep 3B cells at 25 ng/mL. Tacrolimus alone stimulated the growth by 12% after 5 ng/mL and by 25% after 25 ng/mL in Hep 3B cells. We found an increase of apoptotic Hep 3B cells from 6 to 16%, and a G1-arrest in SK-Hep 1 cells with an increase of cells from 61 to 82%, when sirolimus and tacrolimus were combined. Bcl-2 was down-regulated in Hep 3B, but not in SK-Hep 1 cells after combined treatment.CONCLUSION: Sirolimus appears to inhibit the growth of hepatocellular carcinoma cells alone and in combination with tacrolimus. Sirolimus seems to inhibit the growth stimulation of tacrolimus.

  1. Display of cell surface sites for fibronectin assembly is modulated by cell adherence to (1F3 and C-terminal modules of fibronectin.

    Directory of Open Access Journals (Sweden)

    Jielin Xu

    Full Text Available BACKGROUND: Fibronectin-null cells assemble soluble fibronectin shortly after adherence to a substrate coated with intact fibronectin but not when adherent to the cell-binding domain of fibronectin (modules (7F3-(10F3. Interactions of adherent cells with regions of adsorbed fibronectin other than modules (7F3-(10F3, therefore, are required for early display of the cell surface sites that initiate and direct fibronectin assembly. METHODOLOGY/PRINCIPAL FINDINGS: To identify these regions, coatings of proteolytically derived or recombinant pieces of fibronectin containing modules in addition to (7F3-(10F3 were tested for effects on fibronectin assembly by adherent fibronectin-null fibroblasts. Pieces as large as one comprising modules (2F3-(14F3, which include the heparin-binding and cell adhesion domains, were not effective in supporting fibronectin assembly. Addition of module (1F3 or the C-terminal modules to modules (2F3-(14F3 resulted in some activity, and addition of both (1F3 and the C-terminal modules resulted in a construct, (1F3-C, that best mimicked the activity of a coating of intact fibronectin. Constructs (1F3-C V0, (1F3-C V64, and (1F3-C Delta(V(15F3(10F1 were all able to support fibronectin assembly, suggesting that (1F3 through (11F1 and/or (12F1 were important for activity. Coatings in which the active parts of (1F3-C were present in different proteins were much less active than intact (1F3-C. CONCLUSIONS: These results suggest that (1F3 acts together with C-terminal modules to induce display of fibronectin assembly sites on adherent cells.

  2. Modulation of estrogen receptor-beta isoforms by phytoestrogens in breast cancer cells.

    Science.gov (United States)

    Cappelletti, Vera; Miodini, Patrizia; Di Fronzo, Giovanni; Daidone, Maria Grazia

    2006-05-01

    High consumption of phytoestrogen-rich food correlates with reduced incidence of breast cancer. However, the effect of phytoestrogens on growth of pre-existing breast tumors presents concerns when planning the use of phytoestrogens as chemoprevention st rategy. Genistein, the active phytoestrogen in soy, displays weak estrogenic activity mediated by estrogen receptor (ER) with a preferential binding for the ER-beta species. However, no information is at present available on the interaction between phytoestrogens and the various isoforms generated by alternative splicing. In two human breast cancer cell lines, T47D and BT20, which express variable levels of ER-beta, the effect of genistein and quercetin was evaluated singly and in comparison with 17beta-estradiol, on mRNA expression of estrogen receptor-beta (ER-beta) isoforms evaluated by a triple primer RT-PCR assay. In T47D cells estradiol caused a 6-fold up-regulation of total ER-beta, and modified the relative expression pattern of the various isoforms, up-regulating the beta2 and down-regulating the beta5 isoform. Genistein up-regulated ER-beta2 and ER-beta1 in T47D cells, and after treatment the ER-beta2 isoform became prevalent, while in BT20 cells it almost doubled the percent contribution of ER-beta1 and ER-beta2 to total ER-beta. Quercetin did not alter the total levels nor the percent distribution of ER-beta isoforms in either cell line. Genistein, through the modulation of ER-beta isoform RNA expression inhibited estrogen-promoted cell growth, without interfering on estrogen-regulated transcription. ER-beta and its ER-beta mRNA isoforms may be involved in a self-limiting mechanism of estrogenic stimulation promoted either by the natural hormone or by weaker estrogen agonists like genistein.

  3. Simulated Microgravity Modulates Differentiation Processes of Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Vaibhav Shinde

    2016-04-01

    Full Text Available Background/Aims: Embryonic developmental studies under microgravity conditions in space are very limited. To study the effects of altered gravity on the embryonic development processes we established an in vitro methodology allowing differentiation of mouse embryonic stem cells (mESCs under simulated microgravity within a fast-rotating clinostat (clinorotation and capture of microarray-based gene signatures. Methods: The differentiating mESCs were cultured in a 2D pipette clinostat. The microarray and bioinformatics tools were used to capture genes that are deregulated by simulated microgravity and their impact on developmental biological processes. Results: The data analysis demonstrated that differentiation of mESCs in pipettes for 3 days resultet to early germ layer differentiation and then to the different somatic cell types after further 7 days of differentiation in the Petri dishes. Clinorotation influences differentiation as well as non-differentiation related biological processes like cytoskeleton related 19 genes were modulated. Notably, simulated microgravity deregulated genes Cyr61, Thbs1, Parva, Dhrs3, Jun, Tpm1, Fzd2 and Dll1 are involved in heart morphogenesis as an acute response on day 3. If the stem cells were further cultivated under normal gravity conditions (1 g after clinorotation, the expression of cardiomyocytes specific genes such as Tnnt2, Rbp4, Tnni1, Csrp3, Nppb and Mybpc3 on day 10 was inhibited. This correlated well with a decreasing beating activity of the 10-days old embryoid bodies (EBs. Finally, we captured Gadd45g, Jun, Thbs1, Cyr61and Dll1 genes whose expressions were modulated by simulated microgravity and by real microgravity in various reported studies. Simulated microgravity also deregulated genes belonging to the MAP kinase and focal dhesion signal transduction pathways. Conclusion: One of the most prominent biological processes affected by simulated microgravity was the process of cardiomyogenesis. The

  4. Modulation of t1alpha expression with alveolar epithelial cell phenotype in vitro.

    Science.gov (United States)

    Borok, Z; Danto, S I; Lubman, R L; Cao, Y; Williams, M C; Crandall, E D

    1998-07-01

    T1alpha is a recently identified gene expressed in the adult rat lung by alveolar type I (AT1) epithelial cells but not by alveolar type II (AT2) epithelial cells. We evaluated the effects of modulating alveolar epithelial cell (AEC) phenotype in vitro on T1alpha expression using either soluble factors or changes in cell shape to influence phenotype. For studies on the effects of soluble factors on T1alpha expression, rat AT2 cells were grown on polycarbonate filters in serum-free medium (MDSF) or in MDSF supplemented with either bovine serum (BS, 10%), rat serum (RS, 5%), or keratinocyte growth factor (KGF, 10 ng/ml) from either day 0 or day 4 through day 8 in culture. For studies on the effects of cell shape on T1alpha expression, AT2 cells were plated on thick collagen gels in MDSF supplemented with BS. Gels were detached on either day 1 (DG1) or day 4 (DG4) or were left attached until day 8. RNA and protein were harvested at intervals between days 1 and 8 in culture, and T1alpha expression was quantified by Northern and Western blotting, respectively. Expression of T1alpha progressively increases in AEC grown in MDSF +/- BS between day 1 and day 8 in culture, consistent with transition toward an AT1 cell phenotype. Exposure to RS or KGF from day 0 prevents the increase in T1alpha expression on day 8, whereas addition of either factor from day 4 through day 8 reverses the increase. AEC cultured on attached gels express high levels of T1alpha on days 4 and 8. T1alpha expression is markedly inhibited in both DG1 and DG4 cultures, consistent with both inhibition and reversal of the transition toward the AT1 cell phenotype. These results demonstrate that both soluble factors and alterations in cell shape modulate T1alpha expression in parallel with AEC phenotype and provide further support for the concept that transdifferentiation between AT2 and AT1 cell phenotypes is at least partially reversible.

  5. Growth hormone is a growth factor for the differentiated pancreatic beta-cell

    DEFF Research Database (Denmark)

    Linde, S; Welinder, B S; Billestrup, N;

    1989-01-01

    The regulation of the growth of the pancreatic beta-cell is poorly understood. There are previous indications of a role of GH in the growth and insulin production of the pancreatic islets. In the present study we present evidence for a direct long-term effect of GH on proliferation and insulin...... biosynthesis of pancreatic beta-cells in monolayer culture. In culture medium RPMI 1640 supplemented with 2% normal human serum islets or dissociated islet cells from newborn rats maintained their insulin-producing capacity. When supplemented with 1-1000 ng/ml pituitary or recombinant human GH the islet cells....... It is concluded that GH is a potent growth factor for the differentiated pancreatic beta-cell....

  6. NDRG1 overexpression promotes the progression of esophageal squamous cell carcinoma through modulating Wnt signaling pathway

    Science.gov (United States)

    Ai, Runna; Sun, Yulin; Guo, Zhimin; Wei, Wei; Zhou, Lanping; Liu, Fang; Hendricks, Denver T.; Xu, Yang; Zhao, Xiaohang

    2016-01-01

    ABSTRACT N-myc down-regulated gene 1 (NDRG1) has been shown to regulate tumor growth and metastasis in various malignant tumors and also to be dysregulated in esophageal squamous cell carcinoma (ESCC). Here, we show that NDRG1 overexpression (91.9%, 79/86) in ESCC tumor tissues is associated with poor overall survival of esophageal cancer patients. When placed in stable transfectants of the KYSE 30 ESCC cell line generated by lentiviral transduction with the ectopic overexpression of NDRG1, the expression of transducin-like enhancer of Split 2 (TLE2) was decreased sharply, however β−catenin was increased. Mechanistically, NDRG1 physically associates with TLE2 and β−catenin to affect the Wnt pathway. RNA interference and TLE2 overexpression studies demonstrate that NDRG1 fails to active Wnt pathway compared with isogenic wild-type controls. Strikingly, NDRG1 overexpression induces the epithelial mesenchymal transition (EMT) through activating the Wnt signaling pathway in ESCC cells, decreased the expression of E-cadherin and enhanced the expression of Snail. Our study elucidates a mechanism of NDRG1-regulated Wnt pathway activation and EMT via affecting TLE2 and  β-catenin expression in esophageal cancer cells. This indicates a pro-oncogenic role for NDRG1 in esophageal cancer cells whereby it modulates tumor progression. PMID:27414086

  7. TMEFF2 AND SARDH COOPERATE TO MODULATE ONE CARBON METABOLISM AND INVASION OF PROSTATE CANCER CELLS

    Science.gov (United States)

    Green, Thomas; Chen, Xiaofei; Ryan, Stephen; Asch, Adam S.; Ruiz-Echevarría, Maria J.

    2013-01-01

    BACKGROUND The transmembrane protein with epidermal growth factor and two follistatin motifs, TMEFF2, has been implicated in prostate cancer but its role in this disease is unclear. We recently demonstrated that the tumor suppressor role of TMEFF2 correlates, in part, with its ability to interact with sarcosine dehydrogenase (SARDH) and modulate sarcosine level. TMEFF2 overexpression inhibits sarcosine-induced invasion. Here, we further characterize the functional interaction between TMEFF2 and SARDH and their link with one-carbon (1-C) metabolism and invasion. METHODS RNA interference was used to study the effect of SARDH and/or TMEFF2 knockdown (KD) in invasion, evaluated using Boyden chambers. The dependence of invasion on 1-C metabolism was determined by examining sensitivity to methotrexate. Real-time PCR and western blot of subcellular fractions were used to study the effect of SARDH KD or TMEFF2 KD on expression of enzymes involved in one carbon (1-C) metabolism and on TMEFF2 expression and localization. Protein interactions were analyzed by mass-spectrometry. Cell viability and proliferation were measured by cell counting and MTT analysis. RESULTS While knocking down SARDH affects TMEFF2 subcellular localization, this effect is not responsible for the increased invasion observed in SARDH KD cells. Importantly, SARDH and/or TMEFF2 KD promote increased cellular invasion, sensitize the