WorldWideScience

Sample records for modular cogeneration plants

  1. Modular cogeneration for commercial light industrial sector

    Energy Technology Data Exchange (ETDEWEB)

    Sakhuja, R.

    1984-01-01

    An analysis of gas utilities' efforts to market small cogeneration systems could be helpful to entrepreneurs now venturing into this area. Orders have been placed with Thermo Electron, USA for 15 Tecogen modular cogeneration units. Applications range from an airline catering kitchen to a university swimming pool. 5 figures, 1 table.

  2. Gas turbine modular helium reactor in cogeneration

    International Nuclear Information System (INIS)

    Leon de los Santos, G.

    2009-10-01

    This work carries out the thermal evaluation from the conversion of nuclear energy to electric power and process heat, through to implement an outline gas turbine modular helium reactor in cogeneration. Modeling and simulating with software Thermo flex of Thermo flow the performance parameters, based on a nuclear power plant constituted by an helium cooled reactor and helium gas turbine with three compression stages, two of inter cooling and one regeneration stage; more four heat recovery process, generating two pressure levels of overheat vapor, a pressure level of saturated vapor and one of hot water, with energetic characteristics to be able to give supply to a very wide gamma of industrial processes. Obtaining a relationship heat electricity of 0.52 and efficiency of net cogeneration of 54.28%, 70.2 MW net electric, 36.6 MW net thermal with 35% of condensed return to 30 C; for a supplied power by reactor of 196.7 MW; and with conditions in advanced gas turbine of 850 C and 7.06 Mpa, assembly in a shaft, inter cooling and heat recovery in cogeneration. (Author)

  3. Optimal design of modular cogeneration plants for hospital facilities and robustness evaluation of the results

    International Nuclear Information System (INIS)

    Gimelli, A.; Muccillo, M.; Sannino, R.

    2017-01-01

    Highlights: • A specific methodology has been set up based on genetic optimization algorithm. • Results highlight a tradeoff between primary energy savings (TPES) and simple payback (SPB). • Optimized plant configurations show TPES exceeding 18% and SPB of approximately three years. • The study aims to identify the most stable plant solutions through the robust design optimization. • The research shows how a deterministic definition of the decision variables could lead to an overestimation of the results. - Abstract: The widespread adoption of combined heat and power generation is widely recognized as a strategic goal to achieve significant primary energy savings and lower carbon dioxide emissions. In this context, the purpose of this research is to evaluate the potential of cogeneration based on reciprocating gas engines for some Italian hospital buildings. Comparative analyses have been conducted based on the load profiles of two specific hospital facilities and through the study of the cogeneration system-user interaction. To this end, a specific methodology has been set up by coupling a specifically developed calculation algorithm to a genetic optimization algorithm, and a multi-objective approach has been adopted. The results from the optimization problem highlight a clear trade-off between total primary energy savings (TPES) and simple payback period (SPB). Optimized plant configurations and management strategies show TPES exceeding 18% for the reference hospital facilities and multi–gas engine solutions along with a minimum SPB of approximately three years, thereby justifying the European regulation promoting cogeneration. However, designing a CHP plant for a specific energetic, legislative or market scenario does not guarantee good performance when these scenarios change. For this reason, the proposed methodology has been enhanced in order to focus on some innovative aspects. In particular, this study proposes an uncommon and effective approach

  4. Design of a modular cogeneration plant to supply residential buildings; Dimensionierung eines Blockheizkraftwerkes zur Versorgung einer Wohnsiedlung

    Energy Technology Data Exchange (ETDEWEB)

    Marquardt, R.

    2000-03-01

    Excel tables are presented for fast integral calculation of all energetic and monetary parameters required for calculating the economic efficiency of a cogeneration plant. The Excel programming is more detailed than the method of calculation specified in VDI 2067 in that it also provides potential energy savings,carbon dioxide reduction and exergetic calculations. Influencing parameters like technical data, energy consumption data, fuel properties, and the cost structure of electricity and heat supply can be freely chosen so as to enable maximum parameter variation and an analysis of their influence on the result. [German] Mit der vorliegenden Arbeit wurde ein Instrument in Form von Excel-Tabellen erstellt, das eine schnelle integrale Berechnung aller energetischen und monetaeren Ergebnisgroessen ermoeglicht, die beim Einsatz eines BHKW zur Versorgung einer Bedarfsstruktur im Vergleich zu einer konventionellen getrennten Energiebereitstellung von Interesse sind. Die Excel-Programmierung geht dabei ueber die Abbildung des in der VDI 2067 beschriebenen Berechnungsverfahrens hinaus und liefert neben der Berechnung der Waermebereitstellungskosten auch die Ermittlung von Energieeinspar-, CO{sub 2}-Minderungspotentialen sowie eine exergetische Betrachtung der Ergebnisse. Alle auf das Ergebnis einwirkende Parameter wie technische Anlagendaten, Energiebedarfswerte, Brennstoffeigenschaften, Kostenstruktur der Elektrizitaets- und Waermeversorgung u.a. sind prinzipiell frei waehlbar. So wurde sichergestellt, dass eine Variation verschiedener Parameter moeglich ist und deren Einfluss auf das Ergebnis analysiert werden kann. (orig.)

  5. Gas turbine modular helium reactor in cogeneration; Turbina de gas reactor modular con helio en cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Leon de los Santos, G. [UNAM, Facultad de Ingenieria, Division de Ingenieria Electrica, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Mexico, D. F. (Mexico)], e-mail: tesgleon@gmail.com

    2009-10-15

    This work carries out the thermal evaluation from the conversion of nuclear energy to electric power and process heat, through to implement an outline gas turbine modular helium reactor in cogeneration. Modeling and simulating with software Thermo flex of Thermo flow the performance parameters, based on a nuclear power plant constituted by an helium cooled reactor and helium gas turbine with three compression stages, two of inter cooling and one regeneration stage; more four heat recovery process, generating two pressure levels of overheat vapor, a pressure level of saturated vapor and one of hot water, with energetic characteristics to be able to give supply to a very wide gamma of industrial processes. Obtaining a relationship heat electricity of 0.52 and efficiency of net cogeneration of 54.28%, 70.2 MW net electric, 36.6 MW net thermal with 35% of condensed return to 30 C; for a supplied power by reactor of 196.7 MW; and with conditions in advanced gas turbine of 850 C and 7.06 Mpa, assembly in a shaft, inter cooling and heat recovery in cogeneration. (Author)

  6. ASPEN simulation of cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Ligang Zheng [CANMET Energy Technology Center, Natural Resources Canada, Nepean, ONT (Canada); Furimsky, E. [IMAG Group, Ottawa, ONT (Canada)

    2003-07-01

    A detailed flow sheet of the combined cycle cogeneration plant fuelled by natural gas was prepared. The model for simulation of this plant was developed using the ASPEN PLUS software. The results generated using this model were compared with the operating data of the commercial plant generating about 43.6 MW of electricity by gas turbine and 28.6 MW of electricity by steam turbine. The electricity is supplied to the grid, whereas the low pressure steam is utilised locally for heating purposes. The key data generated using the ASPEN model are in good agreement with the operating data. (author)

  7. ASPEN simulation of cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Ligang E-mail: lzheng@nrcan.gc.ca; Furimsky, Edward

    2003-07-01

    A detailed flow sheet of the combined cycle cogeneration plant fuelled by natural gas was prepared. The model for simulation of this plant was developed using the ASPEN PLUS software. The results generated using this model were compared with the operating data of the commercial plant generating about 43.6 MW of electricity by gas turbine and 28.6 MW of electricity by steam turbine. The electricity is supplied to the grid, whereas the low pressure steam is utilised locally for heating purposes. The key data generated using the ASPEN model are in good agreement with the operating data.

  8. ASPEN simulation of cogeneration plants

    International Nuclear Information System (INIS)

    Zheng Ligang; Furimsky, Edward

    2003-01-01

    A detailed flow sheet of the combined cycle cogeneration plant fuelled by natural gas was prepared. The model for simulation of this plant was developed using the ASPEN PLUS software. The results generated using this model were compared with the operating data of the commercial plant generating about 43.6 MW of electricity by gas turbine and 28.6 MW of electricity by steam turbine. The electricity is supplied to the grid, whereas the low pressure steam is utilised locally for heating purposes. The key data generated using the ASPEN model are in good agreement with the operating data

  9. Performance evaluation of cogeneration power plants

    International Nuclear Information System (INIS)

    Bacone, M.

    2001-01-01

    The free market has changed the criteria for measuring the cogeneration plant performances. Further at the technical-economic parameters, are considered other connected at the profits of the power plant [it

  10. Cogeneration

    International Nuclear Information System (INIS)

    Derbentli, Taner

    2006-01-01

    Cogeneration is the combined production of power and heat. Cogeneration aims to utilize the waste heat of power plants. The waste heat may be utilized for process heating, district heating, drying and cooling. In this way the primary energy is utilized more efficiently. Furthermore due to use of lesser amounts of fuel, emissions and carbon dioxide production is reduced. This is important from the viewpoint of controlling global warming. Cogeneration is used worldwide in industry and in conjunction with district heating.The prime movers used for this purpose are gas turbines, Diesel or natural gas engines and steam power plants. There are several parameters used for characterizing cogeneration. First of all capacity shows the power produced by the cogeneration plant. Most of the cogeneration plants used in industry have capacities between 3 and 20 MW. However there are plants having capacities as large as 200 MW and capacities smaller than 1 MW. The latter are known as micro cogeneration plants. Power to heat ratio is another parameter characterizing cogeneration. It gives the ratio of power produced to heat produced in a cogeneration plant. For gas turbine plants this is around 0.6, for gas engines it is about 1. For steam power plants, power to heat ratio is smaller than 0.4. The total efficiency or fuel utilization efficiency is defined as the total useful output of the plant as power and heat to energy input as fuel. The higher this value, the better is the cogeneration application. In a well designed plant this value may be as high as eighty to ninety percent. Cogeneration started as self power production in Turkey to provide continuous and top quality electric power to industrial plants in the 1990s. Now approximately 20 % of the power production capacity of Turkey is provided by the cogeneration plants. Turkey imports most of its primary energy demand, therefore it is important to increase the use of cogeneration to reduce the demand. There are studies which

  11. Cogeneration plant noise: Environmental impacts and abatement

    International Nuclear Information System (INIS)

    De Renzio, M.; Ciocca, B.

    1991-01-01

    In Italy, ever increasing attention to environmental problems has led to legislation requiring cogeneration plant owners to perform environmental impact assessments in order to determine plant conformity with pollution laws. This paper, based on an in-depth analysis of physics fundamentals relevant to the nature and effects of noise, examines the principal sources of noise in industrial cogeneration plants and the intensity and range of the effects of this noise on the local environment. A review is then made of the different methods of noise pollution abatement (e.g., heat and corrosion resistant silencers for gas turbines, varying types and thicknesses of acoustic insulation placed in specific locations) that can be effectively applied to cogeneration plant equipment and housing

  12. Cogeneration plants in Italy: Licensing aspects

    International Nuclear Information System (INIS)

    Buscaglione, A.

    1991-01-01

    This paper focusses on administrative/bureaucratic problems relative to the licensing of cogeneration plants in Italy. The current stumbling block appears to lie in organizational difficulties relative to the coordination of various Government authorized safety committees responsible for the drafting up of suitable legislation governing cogeneration plant fire safety aspects. The author cites the possible environmental benefits in terms of air pollution abatement that could have been had with the timely start-up of a new 7 MW plant (in Lombardia) still awaiting its go-ahead authorization

  13. GE will finance 614-MW cogeneration plant

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The General Electric Power Funding Corporation, a unit of GE Capital, will provide up to $870 million in construction and permanent financing, and letters of credit to Cogen Technologies of Houston, Texas. The agreement will fund the construction of a 614-megawatt (MW), combined-cycle cogeneration plant to be built in Linden, New Jersey, and for the purchase of gas properties. The plant will be owned by Cogen Technologies. The financing is one of the largest packages ever for a cogeneration plant, GE said

  14. Procedure for cogeneration plant evaluation in Italy

    International Nuclear Information System (INIS)

    Bollettini, U.; Savelli, D.

    1992-01-01

    This paper develops a step-by-step approach to the evaluation of cogeneration plants for on-site power generation. The aim is to allow prospective cogeneration plant owners to build energy/cost efficient plants and to be able to make a proper assessment of eligible financial assistance which may be obtained through the provisions of energy conservation normatives and laws set up by the Italian National Energy Plan. The approach has three principal phases - the verification of the availability of the required human resources able to perform the plant evaluation (engineering, legal and business consultants), an energy/viability audit of any existing energy plant considered for retrofitting and, finally, the identification of the best technical/economic cogeneration alternative. The programmed set of evaluation tasks includes the determination of optimal contracts with ENEL (the Italian National Electricity Board), especially for the case of excess power to be ceded to the national grid, and the making of comparisons with reference cogeneration systems whose relative design/cost data are stored in existing computerized data bases

  15. Cogeneration plants: SNAM (Italy) initiatives and incentives

    International Nuclear Information System (INIS)

    Pipparelli, M.

    1991-01-01

    First, an overall picture is presented of the extension of the use of cogeneration by the Italian brick industry. The particular suitability and usefulness of this form of energy to the brick industry are pointed out. Then a look is given at the legal and financial incentives which have been built into the National Energy Plan to encourage on-site production by Italian industries. Finally, a review is made of initiatives made by SNAM (the Italian National Methane Distribution Society) to develop a favourable tariff structure for on-site power producers using methane as their energy source, as well as, of the Society's efforts to set up a cogeneration equipment consulting service which would provide advice on cogeneration plant design, operation and maintenance

  16. EXERGETIC ANALYSIS OF A COGENERATION POWER PLANT

    Directory of Open Access Journals (Sweden)

    Osvaldo Manuel Nuñez Bosch

    2016-07-01

    Full Text Available Cogeneration power plants connected to industrial processes have a direct impact on the overall efficiency of the plant and therefore on the economic results. Any modification to the thermal outline of these plants must first include an exergetic analysis to compare the benefits it can bring the new proposal. This research is performed to a cogeneration plant in operation with an installed electrical capacity of 24 MW and process heat demand of 190 MW, it shows a study made from the Second Law of Thermodynamics. Exergetic evaluation of each component of the plant was applied and similarly modified cogeneration scheme was evaluated. The results illustrate that the exergy losses and irreversibilities are completely different from one subsystem to another. In general, the total exergy destruction represented 70,7% from the primary fuel exergy. Steam generator was the subsystem with the highest irreversibility of the plant with 54%. It was demonstrated that the increase of the steam parameters lead to reduce exergy destruction and exergy efficiency elevation. The suppression of the reduction system and the adding of an extraction-condensing steam turbine produce the same effect and contribute to drop off the electrical consumption from the grid.

  17. HTGR-steam cycle/cogeneration plant economic potential

    International Nuclear Information System (INIS)

    1981-05-01

    The cogeneration of heat and electricity provides the potential for improved fuel utilization and corresponding reductions in energy costs. In the evaluation of the cogeneration plant product costs, it is advantageous to develop joint-product cost curves for alternative cogeneration plant models. The advantages and incentives for cogeneration are then presented in a form most useful to evaluate the various energy options. The HTGR-Steam Cycle/Cogeneration (SC/C) system is envisioned to have strong cogeneration potential due to its high-quality steam capability, its perceived nuclear siting advantages, and its projected cost advantages relative to coal. The economic information presented is based upon capital costs developed during 1980 and the economic assumptions identified herein

  18. Gas turbine cogeneration plant for textile dyeing plant in Italy

    International Nuclear Information System (INIS)

    Tonetti, P.E.

    1991-01-01

    This paper reports the information (i.e., notes on specific plant component weaknesses and defects, e.g., exchanger tube fouling, improper positioning of temperature probes, incorrect choice of flow valves, etc., and relative remedial actions) gained during a one year cogeneration plant debugging campaign at the Colorama textile dyeing plant in Italy. The cogeneration plant consists of a Solar Saturn MK III gas turbine (1,080 kw at terminals, 500 degrees C exhaust gas temperature); a double (steam and hot water) circuit waste heat boiler contemporaneously producing, with 100 degrees C supply water, 4 tonnes/h steam at 5 bars and 9 cubic meters/h of 20 to 80 degrees C hot water; and a 1,470 kVA generator operating at 3 kV connected by a 3kV/15kV transformer to the national grid. The plant is protected against fire by independent halon fire protection systems, one for the gas turbine plant, the other, for the control room. A modem connects the plant control and monitoring system with the firm which supplied the equipment. The plant operator cites an urgent national requirement for trained cogeneration equipment technical consultants and designers in order to better promote the use of innovative cogeneration technology by Italian industry

  19. Natural gas cogeneration plants: considerations on energy efficiency

    International Nuclear Information System (INIS)

    Arcuri, P.; Florio, G.; Fragiacomo, P.

    1996-01-01

    Cogeneration is one of the most interesting solution to be adopted in order to achieve the goals of the Domestic Energy Plan. Besides the high primary energy savings, remarkable environmental benefits can be obtained. In the article, an energy analysis is carried out on the major cogeneration technologies depending on the parameters which define a generic user tipology. The energy indexes of a cogeneration plant are the shown in charts from which useful information on the achievable performances can be obtained

  20. Optimization of a gas turbine cogeneration plant

    International Nuclear Information System (INIS)

    Wallin, J.; Wessman, M.

    1991-11-01

    This work describes an analytical method of optimizing a cogeneration with a gas turbine as prime mover. The method is based on an analytical function. The function describes the total costs of the heat production, described by the heat load duration curve. The total costs consist of the prime costs and fixed costs of the gas turbine and the other heating plants. The parameters of interest at optimization are the heat efficiency produced by the gas turbine and the utilization time of the gas turbine. With todays prices for electricity, fuel and heating as well as maintenance- personnel and investment costs, extremely good conditions are needed to make the gas turbine profitable. Either a raise of the price for the electricity with about 33% is needed or that the ratio of electricity and fuel increases to approx 2.5. High investment subsidies for the gas turbines could make a gas turbine profitable, even with todays electricity- and fuel prices. Besides being a good help when projecting cogeneration plants with a gas turbine as prime mover, the method gives a possibility to optimize the annual operating time for a certain gas turbine when changing the operating conditions. 6 refs

  1. Cogeneration steam turbine plant for district heating of Berovo (Macedonia)

    International Nuclear Information System (INIS)

    Armenski, Slave; Dimitrov, Konstantin

    2000-01-01

    A plant for combined heat and electric power production, for central heating of the town Berovo (Macedonia) is proposed. The common reason to use a co-generation unit is the energy efficiency and a significant reduction of environmental pollution. A coal dust fraction from B rik' - Berovo coal mine is the main energy resource for cogeneration steam turbine plant. The heat consumption of town Berovo is analyzed and determined. Based on the energy consumption of a whole power plant, e. i. the plant for combined and simultaneous production of power is proposed. All necessary facilities of cogeneration plant is examined and determined. For proposed cogeneration steam turbine power plant for combined heat and electric production it is determined: heat and electric capacity of the plant, annually heat and electrical quantity production and annually coal consumption, the total investment of the plant, the price of both heat and electric energy as well as the pay back period. (Authors)

  2. Exergy analysis of a cogeneration power plant

    International Nuclear Information System (INIS)

    Núñez Bosch, Osvaldo Manuel

    2015-01-01

    In the following study exergetic evaluation of a cogeneration power plant in operation with installed electrical capacity of 24 MW and process heat demand of 190 MW it is performed. The main objective of the research was to determine the influence of the increase in power generation capacity, raising the superheated steam parameters and the number of regenerative heaters on the second law efficiency and irreversibilities in the different components of the plant. To study the power plant was divided into subsystems: steam generator blowdown expander, main steam pipe, steam turbine regenerative heaters, reduction system, deaerator and pumps. The study results show that exergy losses and irreversibilities differ widely from one subsystem to another. In general, the total irreversibility accounted for 70.7% of primary fuel availability. The steam generator subsystem had the highest contribution to the irreversibility of the plant by 54%. It was determined that the increased steam parameters helps reduce the irreversibility and increase the exergetic efficiency of installation. The suppression of the reduction and incorporation of extraction-condensing turbine produce the same effect and helps to reduce power consumption from the national grid. Based on the results recommendations for improving plant efficiency are made. (full text)

  3. Biogas cooperation for cogeneration plants; Biogaskooperation fuer Blockheizkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Deeg, Thomas [Stadtwerke Schwaebisch Hall GmbH, Schwaebisch Hall (Germany)

    2011-03-15

    Since autumn 2010, via a 7 kilometre long biogas conduit an agricultural biogas plant supplies a cogeneration plant in the residential area Teurershof in Schwaebisch Hall. This enables a conversion of biogas with the highest possible efficiency in thermal energy and electricity. This is due to the attachment of the cogeneration plant in Teurershof to the district heating grid of the city Schwaebisch Hall so that the developing thermal energy completely can be used.

  4. Analysis of carbon dioxide emission of gas fuelled cogeneration plant

    International Nuclear Information System (INIS)

    Nordin, Adzuieen; Amin, M; Majid, A

    2013-01-01

    Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO 2 to the environment. This study analyzes the amount of CO 2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO 2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants

  5. Analysis of carbon dioxide emission of gas fuelled cogeneration plant

    Science.gov (United States)

    Nordin, Adzuieen; Amin, M.; Majid, A.

    2013-12-01

    Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO2 to the environment. This study analyzes the amount of CO2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants.

  6. Current experience with central-station nuclear cogeneration plants

    International Nuclear Information System (INIS)

    1981-10-01

    In considering the potential of the HTGR for nuclear cogeneration, a logical element for investigation is the recent history of nuclear cogeneration experience. Little is found in recent literature; however, the twin nuclear cogeneration plant at Midland is nearing completion and this milestone will no doubt be the basis for a number of reports on the unique cogeneration facility and operating experiences with it. Less well known in the US is the Bruce Nuclear Power Development in Ontario, Canada. Originally designed to cogenerate steam for heavy water production, the Bruce facility is the focus of a major initiative to create an energy park on the shores of Lake Huron. To obtain an improved understanding of the status and implications of current nuclear cogeneration experience, GCRA representatives visited the Ontario Hydro offices in Toronto and subsequently toured the Midland site near Midland, Michigan. The primary purpose of this report is to summarize the results of those visits and to develop a series of conclusions regarding the implications for HTGR cogeneration concepts

  7. Modular Engineering of Production Plants

    DEFF Research Database (Denmark)

    Miller, Thomas Dedenroth

    1998-01-01

    Based on a case-study on design of pharmaceutical production plants, this paper suggests that modularity may support business efficiency for companies with one-of-a-kind production and without in-house manufacturing. Modularity may support efficient management of design knowledge and may facilitate...

  8. Cogeneration

    International Nuclear Information System (INIS)

    Lock, R.H.J.H.

    1990-01-01

    Cogeneration has dominated generation capacity expansion in the 1980s in many regions in a way that was never envisaged in the 1970s. The author of this paper suspects it will continue to play a major role in the 1990s in providing new power supply, though perhaps as a smaller part of a larger and more diverse market to meet new capacity needs than we have seen in the 1980s. When Congress enacted Section 210 of PURPA in 1978, its central goal was to create, through a series of regulatory protections primarily designed to neutralize the monopsony power of the purchasing utility, a quasi-market for cogeneration and certain other small power technologies. This would provide a truer test of their value in the power supply mix than had traditional regulation. However, Congress envisaged these sources as only a small, though potentially efficient, adjunct to traditional utility capacity additions

  9. Performance investigation of a cogeneration plant with the efficient and compact heat recovery system

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Kim, Young-Deuk; Choon, Ng Kim

    2011-01-01

    This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity, (ii) steam, (iii) cooling

  10. Environmental licensing issues for cogeneration plants

    International Nuclear Information System (INIS)

    Lipka, G.S.; Bibbo, R.V.

    1990-01-01

    The siting and licensing of cogeneration and independent power production (IPP) facilities is a complex process involving a number of interrelated engineering, economic, and environmental impact considerations. Important considerations for the siting and licensing of such facilities include air quality control and air quality impacts, water supply and wastewater disposal, and applicable noise criteria and noise impact considerations. Air quality control and air quality impact considerations for power generation facilities are commonly reviewed in the public forum, and most project developers are generally aware of the key air quality licensing issues. These issues include Best Available Control Technology (BACT) demonstration requirements, and air quality modeling requirements. BACT is a case-by-case determination, which causes uncertainty, in that developers have difficulty in projecting the cost of required control systems. Continuing developments in control technology may cause this problem to continue in the 1990's. Air quality modeling can be a problem in hilly terrain or within or near an urban environment, which could delay or preclude permitting of a new cogeneration or IPP facility in such locations. This paper discusses several environmental issues which are less frequently addressed than air quality issues, namely water/wastewater and noise. The design features of typical cogeneration and IPP facilities that affect water supply requirements, wastewater volumes, and noise emissions are discussed. Then, the site selection and impact review process are examined to identify typical constraints and trade-offs that can develop relative to water, wastewater, and noise issues. Trends in permit review requirements for water, wastewater, and noise are examined. Finally, innovative approaches that can be used to resolve potential development constraints for water, wastewater, and noise issues are discussed

  11. Bio based cogeneration plants in Sweden; Biobaserte kraftvarmeverk i Sverige

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Cogeneration plants using bio fuel need a certificate in the Swedish electricity certificate system. Since the initiation of the system in 2003 the plants have taken advantage of the possibility of switching from fossil, to bio fuel. However, there is a potential for additional bio power production, provided that there is a market for the produced heating. The certificate system may contribute to an acceleration of investments in new capacities, and the facilitation of increased bio power production.

  12. Firing with wood chips in heating and cogeneration plants

    International Nuclear Information System (INIS)

    Kofman, P.D.

    1992-01-01

    The document was produced for use as detailed teaching material aimed at spreading information on the use of wood chips as fuel for heating and cogeneration plants. It includes information and articles on wood fuels generally, combustion values, chopping machines, suppliers, occupational health hazards connected with the handling of wood chips, measuring amounts, the selection of types, prices, ash, environmental aspects and information on the establishment of a wood-chip fired district heating plant. (AB)

  13. Thermoeconomic analysis of a power/water cogeneration plant

    International Nuclear Information System (INIS)

    Hamed, Osman A.; Al-Washmi, Hamed A.; Al-Otaibi, Holayil A.

    2006-01-01

    Cogeneration plants for simultaneous production of water and electricity are widely used in the Arabian Gulf region. They have proven to be more thermodynamically efficient and economically feasible than single purpose power generation and water production plants. Yet, there is no standard or universally applied methodology for determining unit cost of electric power generation and desalinated water production by dual purpose plants. A comprehensive literature survey to critically assess and evaluate different methods for cost application in power/water cogeneration plants is reported in this paper. Based on this analysis, an in-depth thermoeconomic study is carried out on a selected power/water cogeneration plant that employs a regenerative Rankine cycle. The system incorporates a boiler, back pressure turbine (supplying steam to two MSF distillers), a deaerator and two feed water heaters. The turbine generation is rated at 118 MW, while MSF distiller is rated at 7.7 MIGD at a top brine temperature of 105 deg. C. An appropriate costing procedure based on the available energy accounting method which divides benefits of the cogeneration configuration equitably between electricity generation and water production is used to determine the unit costs of electricity and water. Capital charges of common equipment such as the boiler, deaerator and feed water heaters as well as boiler fuel costs are distributed between power generated and desalinated water according to available energy consumption of the major subsystems. A detailed sensitivity analysis was performed to examine the impact of the variation of fuel cost, load and availability factors in addition to capital recovery factor on electricity and water production costs

  14. Small Nuclear Co-generation Plants Based on Shipbuilding Technology

    International Nuclear Information System (INIS)

    Vasyukov, V. I.; Veshnyakov, K. B.; Goryunov, E. V.; Zalugin, V. I.; Panov, Yu. K.; Polunichev, V. I.

    2002-01-01

    The development of nuclear cogeneration plants and power desalination complexes of relatively small power, using proven shipbuilding technology, becomes more and more attractive for solving the power supply problems of remote districts of the Extreme North and the Far East with small and medium power grids and for removing the shortage of fresh water in different world regions. The idea of transportation of the power unit with high degree of readiness to the place of its location with minimum construction and mounting activities at the site is very attractive. Compactness typical of RP based on shipbuilding technology allows to develop floating or ground-based plants at minimum use of water area and territory. Small construction scope at the site under conditions of minimum anthropogenic loads and high ecological indices are important arguments in favor of floating nuclear cogeneration plant based on ship power units against the alternative fossil sources. At present, the activities on floating nuclear cogeneration plant design, which is developed on the basis of floating power unit with two KLT-40S reactor plant, which is a modified option of standard KLT-40-type ship plant for icebreaker fleet in Russia are the most advanced. To date, a detailed design of reactor plant has been developed and approved, design activities on floating power unit are in the stage of completion, the site for its location has been selected and licensing by GAN, Russia, is in progress. Besides OKBM has developed some designs of nuclear cogeneration plants of different power on the basis of integral reactor plants, using the experience of transport and stationary power plants designing. Nuclear cogeneration plant investment analysis showed acceptable social and economical efficiency of the design that creates conditions for commercial construction of floating power units with KLT-40S reactor plan. At the same time the reduction of the design recovering terms, increase of budget income and

  15. Electric power plants in cogeneration: a promising potential even in France

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Implantation of cogeneration power plants has increased in France since two years but stays below other countries such as northern Europe. Technical, economical, legal and financial aspects of cogeneration have been debated during the ''Euroforum'' seminar (June 14-16, 1995). The european association Cogen Europe, created in 1993 with the financial support of the SAVE european program, has analysed the barriers that restrain cogeneration development and their solutions. Advantages of cogeneration are undeniable at any scale (from small engines to huge industrial systems) if efficiency of energy used reaches 85%. Opinions of representatives from different industries implied in cogeneration technology are reported. (J.S.). 1 photo

  16. Cogeneration Power Plants: a Proposed Methodology for Unitary Production Cost

    International Nuclear Information System (INIS)

    Metalli, E.

    2009-01-01

    A new methodology to evaluate unitary energetic production costs in the cogeneration power plants is proposed. This methodology exploits the energy conversion factors fixed by Italian Regulatory Authority for Electricity and Gas. So it allows to settle such unitary costs univocally for a given plant, without assigning them a priori subjective values when there are two or more energy productions at the same time. Moreover the proposed methodology always ensures positive values for these costs, complying with the total generation cost balance equation. [it

  17. Modular plants for small deposits

    International Nuclear Information System (INIS)

    Josa, J.M.; Moral, A.; Otero, J.L.; Suarez, E.

    1985-01-01

    The large investment required to recover uranium from small deposits is the greatest obstacle to their economic development. Various concepts (caravan mill, pure mill or semimobile mill) have been elaborated in different countries. Studies have also been made in Spain to develop a simple and economic flowsheet suitable for the beneficiation of small uranium deposits. An acid heap-leaching and solvent extraction process was chosen because there is already a great deal of experience of it in Spain. Modifications were necessary to make the equipment easy to transport and also to have a low and reusable investment when this flowsheet is used for small deposits. The aim was to develop a modular plant with all the elements fitted in compact units that needs little site preparation and little time and effort to connect the units. A standard small portable crushing plant can be borrowed and the mining operation and heap construction can be put to contract. There is a solvent extraction unit (150 m 3 /d) in continuous operation (24 h/d) and concentrate precipitation and handling facilities. The whole of the equipment is standard and as light as possible. Little civil engineering is required and the erection of the plant only needs a few months. The uranium capacity of these modular plants is between 35 and 50 t U 3 O 8 /a. Special consideration has been paid to regulations and the environmental aspects. (author)

  18. Cogeneration plant environmental impacts, Menaggio, Italy. February 21-22, 1991

    International Nuclear Information System (INIS)

    Piancastelli, E.

    1991-01-01

    Separate abstracts were prepared for 28 papers given at the FIRE (Italian Federation for the Rational use of Energy), February, 1991, convention on cogeneration plant environmental impacts. The topics included: Italian and international normatives giving guidelines on methods to evaluate dual-purpose power plant environmental impacts; gas turbine CO, NOx and suspended particulates emission limits; noise pollution limits and abatement measures; ENEL (Italian National Electricity Board) rate structure for auto-producing industries ceding power to the national grid; international research programs on cogeneration; the use of renewable energy sources for cogeneration systems; the function and role of energy managers; and commercialization of compact cogeneration plants for industry

  19. A preliminary examination of the economics of cogeneration with fusion plants

    International Nuclear Information System (INIS)

    Hazelrigg, G.A.; Coleman, D.E.

    1983-01-01

    Cogeneration, the process of using reject heat from electric energy generation plants, offers substantial savings in energy consumption and thus is likely to see increased implementation, especially in the form of district heating, over the next few decades. The use of fusion plants for cogeneration offers added advantages of potentially low marginal costs and reduced siting restrictions compared to nuclear and coal plants, and freedom from use of limited fossil fuels. Fusion can thus provide increased economic incentive to the implementation of cogeneration systems. Conversely, cogeneration improves the economics of fusion and thus provides both added incentive for its development and reduced economic requirements on commercial fusion technologies

  20. Geothermal Cogeneration: Iceland's Nesjavellir Power Plant

    Science.gov (United States)

    Rosen, Edward M.

    2008-01-01

    Energy use in Iceland (population 283,000) is higher per capita than in any other country in the world. Some 53.2% of the energy is geothermal, which supplies electricity as well as heated water to swimming pools, fish farms, snow melting, greenhouses, and space heating. The Nesjavellir Power Plant is a major geothermal facility, supplying both…

  1. Modern fluidized bed combustion in Ostrava-Karvina cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Mazac, V. [Energoprojekt Praha, Ostrava (Czechoslovakia); Novacek, A. [Moravskoslezske teplamy, Ostrava (Czechoslovakia); Volny, J. [Templamy Karvina (Czechoslovakia)

    1995-12-01

    The contemporary situation of our environment claims the sensitive approach to solving effective conversion of energy. Limited supplies of noble fuels and their prices evoke the need to use new combustion technologies of accessible fuels in given region without negative ecological influences. Energoproject participates in the preparation of the two projects in Ostrava-Karvin{acute a} black coal field in Czech Republic. The most effective usage of fuel energy is the combined of electricity and heat. If this physical principle is supported by a pressurized fluidized bed combustion (PFBC) one obtains a high electricity/heat ratio integrated steam-gas cycle on the basis of solid fuel. Cogeneration plant Toebovice is the dominant source (600 MW{sub th}) of Ostrava district heating system (1100 MW{sub th}). The high utilization of the installed output and utilization of the clean, compact and efficient of the PFBC technology is the principal but not the single reason for the selection of the Toebovice power plant as the first cogeneration plant for installation of the PFBC in Czech Republic. The boiler will burn black coal from the neighboring coal basin.

  2. Design features of Beijing Shijingshan 3 x 200 MW cogeneration plant

    International Nuclear Information System (INIS)

    Li, T.X.; Ou, Y.Z.

    1991-01-01

    This paper describes the design feature of Beijing Shijingshan 3 x 200 MW Cogeneration Plant. The design optimized the scheme and system of 200 MW units for heating. The cogeneration plant has achieved comprehensive economic benefit in energy saving and environmental pollution reduction

  3. Natural gas cogeneration plants: considerations on energy efficiency; Valutazioni energetiche di impianti cogenerativi alimentati a metano

    Energy Technology Data Exchange (ETDEWEB)

    Arcuri, P.; Florio, G.; Fragiacomo, P. [Calabria Univ., Arcavacata di Rende (Italy). Dip. di Meccanica

    1996-05-01

    Cogeneration is one of the most interesting solution to be adopted in order to achieve the goals of the Domestic Energy Plan. Besides the high primary energy savings, remarkable environmental benefits can be obtained. In the article, an energy analysis is carried out on the major cogeneration technologies depending on the parameters which define a generic user typology. The energy indexes of a cogeneration plant are the shown in charts from which useful information on the achievable performances can be obtained.

  4. Studies on Steam Absorption Chillers Performance at a Cogeneration Plant

    Directory of Open Access Journals (Sweden)

    Abd Majid Mohd Amin

    2014-07-01

    Full Text Available Absorption chillers at cogeneration plants generate chilled water using steam supplied by heat recovery steam generators. The chillers can be of either single-effect or double effect configuration and the coefficient of performance (COP depends on the selection made. The COP varies from 0.7 to 1.2 depending on the types of chillers. Single effect chillers normally have COP in the range of 0.68 to 0.79. Double effect chillers COP are higher and can reach 1.2. However due to factors such as inappropriate operations and maintenance practices, COP could drop over a period of time. In this work the performances of double effect steam absorption chillers at a cogeneration plant were studied. The study revealed that during the period of eleven years of operation the COP of the chillers deteriorated from 1.25 to 0.6. Regression models on the operation data indicated that the state of deterioration was projected to persist. Hence, it would be recommended that the chillers be considered for replacement since they had already undergone a series of costly repairs.

  5. Control, Co-generation, and Sensor Placement Strategy for Integral Small Modular Reactors

    International Nuclear Information System (INIS)

    Upadhyaya, Belle-R.; Fan, Li; Hines, J.-Wesley; Perillo, Sergio-R. P.

    2011-01-01

    The development of Small Modular Reactors (SMR) has multiple applications for electricity generation, process heat, hydrogen production, and others. The results of research, development, and demonstration (RD and D) of load-following control design for multiple modules, nuclear desalination, and sensor placement strategy for enhanced fault detection and isolation, are presented in this paper. The technologies are demonstrated with application to an integral pressurized water reactor (IPWR) such as the IRIS reactor. The outcomes of this RD and D include the development of a complete dynamic model of the IRIS system, load following control under dual-module steam mixing, nuclear desalination with a multi-stage flash (MSF) desalination plant, and automated technique for sensor allocation in a combined reactor and balance-of-plant system. The dynamic performance of a nuclear power station comprised of two IRIS reactor modules, operating simultaneously with a common steam header with steam mixing, was evaluated. The control problem addressed 'load-following' scenarios, such as varying load during the day or reduced consumption during the weekend. To solve this problem, a single-module IRIS MATLAB-Simulink model was developed and used to quantify the responses from both modules. The resulting model was subjected to eight different perturbation cases to analyze its capability of detecting small perturbations, therefore testing its robustness and sensitivity. The prospects of using nuclear energy for seawater desalination on a large scale can be very attractive since desalination is an energy intensive process that can utilize the heat from a nuclear reactor and/or the electricity produced by such plants. Small modular reactors, ranging from 50 MWe to 300 MWe, offer the largest potential as coupling options to nuclear desalination systems. However, coupling a nuclear plant and a desalination plant involves a number of issues that have to be addressed. Among these issues

  6. Control, Co-generation, and Sensor Placement Strategy for Integral Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, Belle-R.; Fan, Li; Hines, J.-Wesley [University of Tennessee, Knoxville (United States); Perillo, Sergio-R. P. [Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo (Brazil)

    2011-08-15

    The development of Small Modular Reactors (SMR) has multiple applications for electricity generation, process heat, hydrogen production, and others. The results of research, development, and demonstration (RD and D) of load-following control design for multiple modules, nuclear desalination, and sensor placement strategy for enhanced fault detection and isolation, are presented in this paper. The technologies are demonstrated with application to an integral pressurized water reactor (IPWR) such as the IRIS reactor. The outcomes of this RD and D include the development of a complete dynamic model of the IRIS system, load following control under dual-module steam mixing, nuclear desalination with a multi-stage flash (MSF) desalination plant, and automated technique for sensor allocation in a combined reactor and balance-of-plant system. The dynamic performance of a nuclear power station comprised of two IRIS reactor modules, operating simultaneously with a common steam header with steam mixing, was evaluated. The control problem addressed 'load-following' scenarios, such as varying load during the day or reduced consumption during the weekend. To solve this problem, a single-module IRIS MATLAB-Simulink model was developed and used to quantify the responses from both modules. The resulting model was subjected to eight different perturbation cases to analyze its capability of detecting small perturbations, therefore testing its robustness and sensitivity. The prospects of using nuclear energy for seawater desalination on a large scale can be very attractive since desalination is an energy intensive process that can utilize the heat from a nuclear reactor and/or the electricity produced by such plants. Small modular reactors, ranging from 50 MWe to 300 MWe, offer the largest potential as coupling options to nuclear desalination systems. However, coupling a nuclear plant and a desalination plant involves a number of issues that have to be addressed. Among these

  7. A study on utilization improvement of cogeneration potential in a complex industrial steam and power plant

    International Nuclear Information System (INIS)

    Mierka, O.; Variny, M.

    2012-01-01

    Efficient cogeneration is widely acknowledged as one of measures reducing primary energy use and emissions of greenhouse gases and other pollutants. This contribution bears on analyses of complex industrial power plants, incorporating the concept of exergetic and exergoecomic balances-a concept that has been rarely utilized in Slovakia up to day. Emphasis is laid on synergic use of marginal and exergoecomic analysis, thus assessing the economics of various complex cogeneration units' operational modes. The whole study, together with resulting recommendations for cogeneration efficiency improvement of the given unit is an excerpt of corresponding author's doctoral thesis. (Authors)

  8. A study on utilization improvement of cogeneration potential in a complex industrial steam and power plant

    International Nuclear Information System (INIS)

    Mierka, O.; Variny, M.

    2012-01-01

    Efficient cogeneration is widely acknowledged as one of measures reducing primary energy use and emissions of greenhouse gases and other pollutants. This contribution bears on analyses of complex industrial power plants, incorporating the concept of exergetic and exergoeconomic balances-a concept that has been rarely utilized in Slovakia up to day. Emphasis is laid on synergic use of marginal and exergoeconomic analysis, thus assessing the economics of various complex cogeneration units' operational modes. The whole study, together with resulting recommendations for cogeneration efficiency improvement of the given unit is an excerpt of corresponding author's doctoral thesis. (Authors)

  9. Exergy analysis of a circulating fluidized bed boiler cogeneration power plant

    International Nuclear Information System (INIS)

    Gürtürk, Mert; Oztop, Hakan F.

    2016-01-01

    Highlights: • Analysis of energy and exergy for a cogeneration power plant have been performed. • This plant has circulating fluidized bed boiler. • Energy and exergy efficiencies of the boiler are obtained as 84.65% and 29.43%, respectively. • Exergy efficiency of the plant was calculated as 20%. - Abstract: In this study, energy and exergy analysis of a cogeneration power plant have been performed. The steam which is produced by the cogeneration power plant is used for salt production and most important part of the cogeneration power plant is the circulation fluidized bed boiler. Energy and exergy efficiency of the circulation fluidized bed boiler were found as 84.65% and 29.43%, respectively. Exergy destruction of the circulation fluidized bed boiler was calculated as 21789.39 kW and 85.89% of exergy destruction in the plant. The automation system of the cogeneration power plant is insufficient. Exergy efficiency of the plant was calculated as 20%. Also, some design parameters increasing energy losses were determined.

  10. AP1000{sup TM} plant modularization

    Energy Technology Data Exchange (ETDEWEB)

    Cantarero L, C.; Demetri, K. J. [Westinghouse Electric Co., 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States); Quintero C, F. P., E-mail: cantarc@westinghouse.com [Westinghouse Electric Spain, Padilla 17, 28006 Madrid (Spain)

    2016-09-15

    The AP1000{sup TM} plant is an 1100 M We pressurized water reactor (PWR) with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. Modules are used extensively in the design of the AP1000 plant nuclear island. The AP1000 plant uses modern, modular-construction techniques for plant construction. The design incorporates vendor-designed skids and equipment packages, as well as large, multi-ton structural modules and special equipment modules. Modularization allows traditionally sequential construction tasks to be completed simultaneously. Factory-built modules can be installed at the site in a planned construction schedule. The modularized AP1000 plant allows many more construction activities to proceed in parallel. This reduces plant construction calendar time, thus lowering the costs of plant financing. Furthermore, performing less work onsite significantly reduces the amount of skilled field-craft labor, which costs more than shop labor. In addition to labor cost savings, doing more welding and fabrication in a factory environment raises the quality of work, allowing more scheduling flexibility and reducing the amount of specialized tools required onsite. The site layout for the AP1000 plant has been established to support modular construction and efficient operations during construction. The plant layout is compact, using less space than previous conventional plant layouts. This paper provides and overview of the AP1000 plant modules with an emphasis on structural modules. Currently the Westinghouse AP1000 plant has four units under construction in China and four units under construction in the United States. All have shown successful fabrication and installation of various AP1000 plant modules. (Author)

  11. AP1000"T"M plant modularization

    International Nuclear Information System (INIS)

    Cantarero L, C.; Demetri, K. J.; Quintero C, F. P.

    2016-09-01

    The AP1000"T"M plant is an 1100 M We pressurized water reactor (PWR) with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. Modules are used extensively in the design of the AP1000 plant nuclear island. The AP1000 plant uses modern, modular-construction techniques for plant construction. The design incorporates vendor-designed skids and equipment packages, as well as large, multi-ton structural modules and special equipment modules. Modularization allows traditionally sequential construction tasks to be completed simultaneously. Factory-built modules can be installed at the site in a planned construction schedule. The modularized AP1000 plant allows many more construction activities to proceed in parallel. This reduces plant construction calendar time, thus lowering the costs of plant financing. Furthermore, performing less work onsite significantly reduces the amount of skilled field-craft labor, which costs more than shop labor. In addition to labor cost savings, doing more welding and fabrication in a factory environment raises the quality of work, allowing more scheduling flexibility and reducing the amount of specialized tools required onsite. The site layout for the AP1000 plant has been established to support modular construction and efficient operations during construction. The plant layout is compact, using less space than previous conventional plant layouts. This paper provides and overview of the AP1000 plant modules with an emphasis on structural modules. Currently the Westinghouse AP1000 plant has four units under construction in China and four units under construction in the United States. All have shown successful fabrication and installation of various AP1000 plant modules. (Author)

  12. Modular construction approach for advanced nuclear plants

    International Nuclear Information System (INIS)

    Johnson, F.T.; Orr, R.S.; Boudreaux, C.P.

    1988-01-01

    Modular construction has been designated as one of the major features of the AP600 program, a small innovative 600-MW (electric) advanced light water reactor (ALWR) that is currently being developed by Westinghouse and its subcontractors. This program is sponsored by the US Department of Energy (DOE) in conjunction with several other DOE and Electric Power Research Institute ALWR programs. Two major objectives of the AP600 program are as follows: (1) to provide a cost of power competitive with other power generation alternatives; and (2) to provide a short construction schedule that can be met with a high degree of certainty. The AP600 plant addresses these objectives by providing a simplified plant design and an optimized plant arrangement that result in a significant reduction in the number and size of systems and components, minimizes the overall building volumes, and consequently reduces the required bulk quantities. However, only by adopting a modular construction approach for the AP600 can the full cost and schedule benefits be realized from the advances made in the plant systems design and plant arrangement. Modularization is instrumental in achieving both of the above objectives, but most of all, a total modularization approach is considered absolutely essential to ensure that an aggressive construction schedule can be met with a high degree of certainty

  13. Modularization Technology in Power Plant Construction

    International Nuclear Information System (INIS)

    Kenji Akagi; Kouichi Murayama; Miki Yoshida; Junichi Kawahata

    2002-01-01

    Since the early 1980's, Hitachi has been developing and applying modularization technology to domestic nuclear power plant construction, and has achieved great rationalization. Modularization is one of the plant construction techniques which enables us to reduce site labor by pre-assembling components like equipment, pipes, valves and platforms in congested areas and installing them using large capacity cranes for cost reduction, better quality, safety improvement and shortening of construction time. In this paper, Hitachi's modularization technologies are described especially from with respect to their sophisticated design capabilities. The application of 3D-CAD at the detailed layout design stage, concurrent design environment achieved by the computer network, module design quantity control and the management system are described. (authors)

  14. Feasibility study of a biomass-fired cogeneration plant Groningen, Netherlands

    International Nuclear Information System (INIS)

    Rijk, P.J.; Van Loo, S.; Webb, R.

    1996-06-01

    The feasibility of the title plant is determined for district heating and electricity supply of more than 1,000 houses in Groningen, Netherlands. Also attention is paid to the feasibility of such installations in a planned area of the city. Prices and supply of several biomass resources are dealt with: prunings of parks, public and private gardens, clean wood wastes, wood wastes from forests, wood from newly planted forests, specific energy crops (willows in high densities and short cycles). Prices are calculated, including transport to the gate of the premises where the cogeneration installations is situated. For the conversion attention is paid to both the feasibility of the use of a conventional cogeneration installation (by means of a steam turbine) and the use of a new conversion technique: combined cycle of a gasification installation and a cogeneration installation. 5 figs., 5 ills., 22 tabs., 1 appendix, 33 refs

  15. HTGR-GT closed-cycle gas turbine: a plant concept with inherent cogeneration (power plus heat production) capability

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1980-04-01

    The high-grade sensible heat rejection characteristic of the high-temperature gas-cooled reactor-gas turbine (HTGR-GT) plant is ideally suited to cogeneration. Cogeneration in this nuclear closed-cycle plant could include (1) bottoming Rankine cycle, (2) hot water or process steam production, (3) desalination, and (4) urban and industrial district heating. This paper discusses the HTGR-GT plant thermodynamic cycles, design features, and potential applications for the cogeneration operation modes. This paper concludes that the HTGR-GT plant, which can potentially approach a 50% overall efficiency in a combined cycle mode, can significantly aid national energy goals, particularly resource conservation

  16. Cogeneration for Brazil

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Almost all the electric power in Brazil comes from large-scale hydroelectric plants: only about 3% comes from cogeneration. But, now that the barriers which discouraged cogeneration are being removed, there will be more and more investment in cogeneration and distributed generation. The circumstances which have brought about these changes are described. It is expected that cogeneration will be responsible for producing 10-15% of Brazil's electricity by 2010 and the demand for cogeneration will reach 11-17 GW. It is concluded that Brazil represents one of the world's most attractive market for cogeneration and distributed generation

  17. Public health impact assessment of a proposed cogeneration plant in the Quebec city metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Lajoie, P; Bolduc, D; Gauvin, D; Guerrier, P; Gauthier, R [Quebec Public Health Center, Ste-Foy (Canada); Laflamme, P [Laval Univ. (Canada). Dept. of Preventive Medicine

    1996-12-31

    In 1994, public hearings were held in Quebec city concerning a 120 megawatt (MW) gas cogeneration project that was to be coupled with an already existing pulp and paper mill in the downtown area. Cogeneration plants are often described as highly beneficial from the point of view of local environment. It is well known that the burning of natural gas emits far less sulfur dioxide (SO{sub 2}) and particulate matters (PM) than the combustion of oil or coal. The proposed plant would use high pressure vapour from a nearby incinerator plant and natural gas to produce low pressure vapor for the paper mill industry as well as electricity. The cogeneration plant would allow the paper mill to stop burning heavy oil. By using natural gas instead of heavy oil, the new cogeneration-paper mill complex (CPC) is expected to reinforce the recent trend and willingness towards improving downtown air quality. On the other hand, the CPC would emit more CO{sub 2}, due to the production of additional electricity. According to the Rio de Janeiro Agreement ratified in 1988, Canada is committed to stabilize its greenhouse gas emissions by the year 2000. Nevertheless, the cogeneration file is a new option considered by the Quebec Provincial Governement in its last energy triennal plan. However, it must be specified that the Province of Quebec contributes to less than 15 % of the total Canadian CO{sub 2} production although it represents more than 25 % of its population. Furthermore the maximum production of electricity by this file has been set to 250 MW. It is a very small fraction of the total production of electricity in Quebec, which is 200 TW

  18. Public health impact assessment of a proposed cogeneration plant in the Quebec city metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Lajoie, P.; Bolduc, D.; Gauvin, D.; Guerrier, P.; Gauthier, R. [Quebec Public Health Center, Ste-Foy (Canada); Laflamme, P. [Laval Univ. (Canada). Dept. of Preventive Medicine

    1995-12-31

    In 1994, public hearings were held in Quebec city concerning a 120 megawatt (MW) gas cogeneration project that was to be coupled with an already existing pulp and paper mill in the downtown area. Cogeneration plants are often described as highly beneficial from the point of view of local environment. It is well known that the burning of natural gas emits far less sulfur dioxide (SO{sub 2}) and particulate matters (PM) than the combustion of oil or coal. The proposed plant would use high pressure vapour from a nearby incinerator plant and natural gas to produce low pressure vapor for the paper mill industry as well as electricity. The cogeneration plant would allow the paper mill to stop burning heavy oil. By using natural gas instead of heavy oil, the new cogeneration-paper mill complex (CPC) is expected to reinforce the recent trend and willingness towards improving downtown air quality. On the other hand, the CPC would emit more CO{sub 2}, due to the production of additional electricity. According to the Rio de Janeiro Agreement ratified in 1988, Canada is committed to stabilize its greenhouse gas emissions by the year 2000. Nevertheless, the cogeneration file is a new option considered by the Quebec Provincial Governement in its last energy triennal plan. However, it must be specified that the Province of Quebec contributes to less than 15 % of the total Canadian CO{sub 2} production although it represents more than 25 % of its population. Furthermore the maximum production of electricity by this file has been set to 250 MW. It is a very small fraction of the total production of electricity in Quebec, which is 200 TW

  19. Evaluation of a Cogeneration Plant with Integrated Fuel Factory; Integrerad braenslefabrik med kraftvaermeanlaeggning - en utvaerdering

    Energy Technology Data Exchange (ETDEWEB)

    Atterhem, Lars

    2002-12-01

    A feasibility study was carried out in 1993 by Skellefteaa Kraft AB, to analyse the technical and economical possibilities to build a new baseload district heating production plant. The conclusion from the study was that, as a first step, a new cogeneration plant, based on a circulating fluidised bed boiler, should be built. The commissioning of the cogeneration plant took place in autumn 1996. The plant was prepared for a future integration with a biofuel drying process for pellets production. During spring 1996 an investment decision was taken and the fuel factory was erected in may 1997. Vaermeforsk Service AB has financed this research project and the Swedish state energy program (Fabel) has contributed with 33,7 Million SEK to the financing of the recovery electric power generation part of the fuel factory. The aim with this research project has been to evaluate and compare the integrated cogeneration plant fuel factory concept with a conventional co-generation plant, specially when it comes to increased power generation. The fuel factory comprises of fuel feeding system, fuel dryer, steam converter from fuel moisture to low pressure process steam, low pressure condensing turbine, cooling water system, fuel pellets production and storage with ship loading plant in the harbour of Skellefteaa. The steam to the fuel factory is extracted from the cogeneration turbine at a pressure level between 12-26 bar and the extraction flow has then already generated power in the cogeneration turbine. Power is also generated in the low pressure condensing turbine of the fuel factory. The low pressure steam is generated with fuel moisture in the steam converter. During the first years of operation there has been both conventional commissioning problems but also technical problems related to the new process concept. The last are for example corrosion and erosion problems, fouling problems of heat exchangers, capacity and leakage problems. The performance goals of the fuel

  20. Quantification of complex modular architecture in plants.

    Science.gov (United States)

    Reeb, Catherine; Kaandorp, Jaap; Jansson, Fredrik; Puillandre, Nicolas; Dubuisson, Jean-Yves; Cornette, Raphaël; Jabbour, Florian; Coudert, Yoan; Patiño, Jairo; Flot, Jean-François; Vanderpoorten, Alain

    2018-04-01

    Morphometrics, the assignment of quantities to biological shapes, is a powerful tool to address taxonomic, evolutionary, functional and developmental questions. We propose a novel method for shape quantification of complex modular architecture in thalloid plants, whose extremely reduced morphologies, combined with the lack of a formal framework for thallus description, have long rendered taxonomic and evolutionary studies extremely challenging. Using graph theory, thalli are described as hierarchical series of nodes and edges, allowing for accurate, homologous and repeatable measurements of widths, lengths and angles. The computer program MorphoSnake was developed to extract the skeleton and contours of a thallus and automatically acquire, at each level of organization, width, length, angle and sinuosity measurements. Through the quantification of leaf architecture in Hymenophyllum ferns (Polypodiopsida) and a fully worked example of integrative taxonomy in the taxonomically challenging thalloid liverwort genus Riccardia, we show that MorphoSnake is applicable to all ramified plants. This new possibility of acquiring large numbers of quantitative traits in plants with complex modular architectures opens new perspectives of applications, from the development of rapid species identification tools to evolutionary analyses of adaptive plasticity. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  1. Analysis of combustion turbine inlet air cooling systems applied to an operating cogeneration power plant

    International Nuclear Information System (INIS)

    Chacartegui, R.; Jimenez-Espadafor, F.; Sanchez, D.; Sanchez, T.

    2008-01-01

    In this work, combustion turbine inlet air cooling (CTIAC) systems are analyzed from an economic outlook, their effects on the global performance parameters and the economic results of the power plant. The study has been carried out on a combined cogeneration system, composed of a General Electric PG 6541 gas turbine and a heat recovery steam generator. The work has been divided into three parts. First, a revision of the present CTIAC technologies is shown, their effects on power plant performance and evaluation of the associated investment and maintenance costs. In a second phase of the work, the cogeneration plant was modelled with the objective of evaluating the power increase and the effects on the generated steam and the thermal oil. The cogeneration power plant model was developed, departing from the recorded operational data of the plant in 2005 and the gas turbine model offered by General Electric, to take into consideration that, in 2000, the gas turbine had been remodelled and the original performance curves should be corrected. The final objective of this model was to express the power plant main variables as a function of the gas turbine intake temperature, pressure and relative humidity. Finally, this model was applied to analyze the economic interest of different intake cooling systems, in different operative ranges and with different cooling capacities

  2. Optimal integration of linear Fresnel reflector with gas turbine cogeneration power plant

    International Nuclear Information System (INIS)

    Dabwan, Yousef N.; Mokheimer, Esmail M.A.

    2017-01-01

    Highlights: • A LFR integrated solar gas turbine cogeneration plant (ISGCPP) has been simulated. • The optimally integrated LFR with gas turbine cogeneration plant can achieve an annual solar share of 23%. • Optimal integration of LFR with gas turbine cogeneration system can reduce CO 2 emission by 18%. • Compared to a fully-solar-powered LFR plant, the optimal ISGCPP reduces the LEC by 83%. • ISGCPP reduces the LEC by 50% compared to plants integrated with carbon capture technology. - Abstract: Solar energy is an abundant resource in many countries in the Sunbelt, especially in the middle east, countries, where recent expansion in the utilization of natural gas for electricity generation has created a significant base for introducing integrated solar‐natural gas power plants (ISGPP) as an optimal solution for electricity generation in these countries. ISGPP reduces the need for thermal energy storage in traditional concentrated solar thermal plants and results in dispatchable power on demand at lower cost than stand-alone concentrated thermal power and much cheaper than photovoltaic plants. Moreover, integrating concentrated solar power (CSP) with conventional fossil fuel based thermal power plants is quite suitable for large-scale central electric power generation plants and it can be implemented in the design of new installed plants or during retrofitting of existing plants. The main objective of the present work is to investigate the possible modifications of an existing gas turbine cogeneration plant, which has a gas turbine of 150 MWe electricity generation capacity and produces steam at a rate of 81.4 at 394 °C and 45.88 bars for an industrial process, via integrating it with concentrated solar power system. In this regard, many simulations have been carried out using Thermoflow software to explore the thermo-economic performance of the gas turbine cogeneration plant integrated with LFR concentrated solar power field. Different electricity

  3. Modelling the dynamics of the cogeneration power plant gas-air duct

    Directory of Open Access Journals (Sweden)

    Аnatoliy N. Bundyuk

    2014-12-01

    Full Text Available Introducing into wide practice the cogeneration power plants (or CHP is one of promising directions of the Ukrainian small-scale power engineering development. Thermal and electric energy generation using the same fuel kind can increase the overall plant efficiency. That makes it appropriate to use CHPs at compact residential areas, isolated industrial enterprises constituting one complex with staff housing area, at sports complexes, etc. The gas-air duct of the cogeneration power plant has been considered as an object of the diesel-generator shaft velocity control. The developed GAD mathematical model, served to analyze the CHP dynamic characteristics as acceleration curves obtained under different external disturbances in the MathWorks MATLAB environment. According to the electric power generation technology requirements a convenient transition process type has been selected, with subsequent identification of the diesel-generator shaft rotation speed control law.

  4. Thermoeconomic analysis of Biomass Integrated Gasification Gas Turbine Combined Cycle (BIG GT CC) cogeneration plant

    Energy Technology Data Exchange (ETDEWEB)

    Arrieta, Felipe Raul Ponce; Lora, Electo Silva [Escola Federal de Engenharia de Itajuba, MG (Brazil). Nucleo de Estudos de Sistemas Termicos]. E-mails: aponce@iem.efei.br; electo@iem.efei.br; Perez, Silvia Azucena Nebra de [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mail: sanebra@fem. unicamp.br

    2000-07-01

    Using thermoeconomics as a tool to identify the location and magnitude of the real thermodynamic losses (energy waste, or exergy destruction and exergy losses) it is possible to assess the production costs of each product (electric power and heat) and the exergetic and exergoeconomic cost of each flow in a cogeneration plant to assist in decision-marketing procedures concerning to plant design, investment, operation and allocations of research funds. Thermo economic analysis of Biomass Integrated Gasification Gas Turbine Combined Cycle (BIG GT CC) cogeneration plant for its applications in sugar cane mills brings the following results: the global exergetic efficiency is low; the highest irreversibilities occur in the following equipment, by order: scrubber (38%), gas turbine (16%), dryer (12%), gasifier and HRSG (6%); due to the adopted cost distribution methodology, the unit exergetic cost of the heat (4,11) is lower than electricity (4,71); the lower market price of biomass is one of the most sensible parameter in the possible implementation of BIG-GT technology in sugar cane industry; the production costs are 31 US$/MWh and 32 US$/MWh for electricity and heat, respectively. The electricity cost is, after all, competitive with the actual market price. The electricity and heat costs are lower or almost equal than other values reported for actual Rankine cycle cogeneration plants. (author)

  5. ASEAN grid-connected biomass residues fired cogeneration plants

    International Nuclear Information System (INIS)

    Adnan, M.F.; Alias, R.

    2006-01-01

    Energy supply is one of the major concerns in the world. With uncertainty in the main oil suppliers, the oil price is expected to remain high due to continuous demand from the world. Since oil is mostly used for electricity and transportation, its shortage would cause major disruptions in our daily activities. Thus to counter this scenario and faster depletion of fossil fuel resources, various measures have been taken to find alternative source of energy such as renewable energy. One of the renewable energy sources is from biomass residues which is aplenty particularly in ASEAN. Through one of the collaboration programme between ASEAN and EC which is The EC-ASEAN Cogeneration Programme, a number of Full-Scale Demonstration Projects (FSDP) using biomass residues have been commissioned and implemented successfully. Four of the FSDPs in Thailand and Malaysia are connected to the grid. These projects have been operating very well and since the fuel is commonly available in this ASEAN region, duplication should not be a problem. Thus, this paper would highlight the success stories in implementing biomass residues grid connected project while enhancing cooperation between ASEAN and EC. (Author)

  6. Cogeneration in air separation cryogenic plants; Cogeracao em plantas criogenicas de separacao de ar

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, Walter N.; Orlando, Alcir F. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica]. E-mails: wnovellob@openlink.com.br; afo@mec-puc-rio.br

    2000-07-01

    A thermal and economic study, carried on by using the first and second law of thermodynamics concepts demonstrated the economic feasibility of the cogeneration system, and proposed modifications to be done in the studied cryogenic plant, a typical T-240 NA MPL3 plant. The thermodynamic analysis showed that the second law efficiency of the processes could be improved, together with a 12% electric energy consumption reduction. Four cogeneration schemes were analyzed with both the first and second laws of thermodynamics and, then, the economic analysis was performed. Rankine, Brayton, Otto and Combined gas-steam basic cycles were used in this analysis.The combined gas-steam cycle was shown to be more economically feasible than others. Thermal and electric loads were well balanced, resulting in a higher second law efficiency. Although the initial investment for the modification was higher, the savings resulted to be higher, turning into a higher rate of return of the investment. (author)

  7. Efficient production of electricity and water in cogeneration systems. [Desalination plant

    Energy Technology Data Exchange (ETDEWEB)

    Tadros, S.K.

    1981-11-01

    This paper discusses two topping cycle steam turbine cogeneration systems. The water desalination plant selected is the multistage flash evaporator cycle which uses brine recirculation and high temperature additives for scale protection and 233F maximum brine temperature. The paper mentions briefly the impact of future fuel prices on design and factors which would further improve thermal efficiency. The fuel chargeable to power is determined. 6 refs.

  8. Duct burners in heat recovery system for cogeneration and captive power plants

    International Nuclear Information System (INIS)

    Majumdar, J.

    1992-01-01

    Our oil explorations both onshore and offshore have thrown open bright prospects of cogeneration by using natural gas in gas turbine power plants with heat recovery units. Both for co-gen and combined cycle systems, supplementary firing of GT exhaust gas is normally required. Hence, duct burners have significant role for effective contribution towards of efficacy of heat recovery system for gas turbine exhaust gas. This article details on various aspects of duct burners in heat recovery systems. (author)

  9. Devising an energy saving technology for a biogas plant as a part of the cogeneration system

    OpenAIRE

    Чайковська, Євгенія Євстафіївна

    2015-01-01

    The paper suggests an operation technology for a biogas plant that allows setting a heating medium temperature at the inlet to the heat exchanger built in a digester and measuring the heating medium temperature at the outlet. An integrated system for assessing the varied temperature of digestion (that is based on mathematical and logical modeling within the cogeneration system) secures a continuous gas outlet, a timely unloading of fermented mash and loading of a fresh matter. For this purpos...

  10. Plant systems/components modularization study. Final report. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-01

    The final results are summarized of a Plant Systems/Components Modularization Study based on Stone and Webster's Pressurized Water Reactor Reference Design. The program has been modified to include evaluation of the most promising areas for modular consideration based on the level of the Sundesert Project engineering design completion and the feasibility of their incorporation into the plant construction effort.

  11. Plant systems/components modularization study. Final report

    International Nuclear Information System (INIS)

    1977-07-01

    The final results are summarized of a Plant Systems/Components Modularization Study based on Stone and Webster's Pressurized Water Reactor Reference Design. The program has been modified to include evaluation of the most promising areas for modular consideration based on the level of the Sundesert Project engineering design completion and the feasibility of their incorporation into the plant construction effort

  12. Process heat cogeneration using a high temperature reactor

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Ramirez, Ramon; Valle, Edmundo del; Castillo, Rogelio

    2014-01-01

    Highlights: • HTR feasibility for process heat cogeneration is assessed. • A cogeneration coupling for HTR is proposed and process heat cost is evaluated. • A CCGT process heat cogeneration set up is also assessed. • Technical comparison between both sources of cogeneration is performed. • Economical competitiveness of the HTR for process heat cogeneration is analyzed. - Abstract: High temperature nuclear reactors offer the possibility to generate process heat that could be used in the oil industry, particularly in refineries for gasoline production. These technologies are still under development and none of them has shown how this can be possible and what will be the penalty in electricity generation to have this additional product and if the cost of this subproduct will be competitive with other alternatives. The current study assesses the likeliness of generating process heat from Pebble Bed Modular Reactor to be used for a refinery showing different plant balances and alternatives to produce and use that process heat. An actual practical example is presented to demonstrate the cogeneration viability using the fact that the PBMR is a modular small reactor where the cycle configuration to transport the heat of the reactor to the process plant plays an important role in the cycle efficiency and in the plant economics. The results of this study show that the PBMR would be most competitive when capital discount rates are low (5%), carbon prices are high (>30 US$/ton), and competing natural gas prices are at least 8 US$/mmBTU

  13. Process heat cogeneration using a high temperature reactor

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Gustavo, E-mail: gustavoalonso3@gmail.com [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico); Instituto Politécnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Ramirez, Ramon [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico); Valle, Edmundo del [Instituto Politécnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Castillo, Rogelio [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico)

    2014-12-15

    Highlights: • HTR feasibility for process heat cogeneration is assessed. • A cogeneration coupling for HTR is proposed and process heat cost is evaluated. • A CCGT process heat cogeneration set up is also assessed. • Technical comparison between both sources of cogeneration is performed. • Economical competitiveness of the HTR for process heat cogeneration is analyzed. - Abstract: High temperature nuclear reactors offer the possibility to generate process heat that could be used in the oil industry, particularly in refineries for gasoline production. These technologies are still under development and none of them has shown how this can be possible and what will be the penalty in electricity generation to have this additional product and if the cost of this subproduct will be competitive with other alternatives. The current study assesses the likeliness of generating process heat from Pebble Bed Modular Reactor to be used for a refinery showing different plant balances and alternatives to produce and use that process heat. An actual practical example is presented to demonstrate the cogeneration viability using the fact that the PBMR is a modular small reactor where the cycle configuration to transport the heat of the reactor to the process plant plays an important role in the cycle efficiency and in the plant economics. The results of this study show that the PBMR would be most competitive when capital discount rates are low (5%), carbon prices are high (>30 US$/ton), and competing natural gas prices are at least 8 US$/mmBTU.

  14. Comparative analysis of cogeneration power plants optimization based on stochastic method using superstructure and process simulator

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Leonardo Rodrigues de [Instituto Federal do Espirito Santo, Vitoria, ES (Brazil)], E-mail: leoaraujo@ifes.edu.br; Donatelli, Joao Luiz Marcon [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil)], E-mail: joaoluiz@npd.ufes.br; Silva, Edmar Alino da Cruz [Instituto Tecnologico de Aeronautica (ITA/CTA), Sao Jose dos Campos, SP (Brazil); Azevedo, Joao Luiz F. [Instituto de Aeronautica e Espaco (CTA/IAE/ALA), Sao Jose dos Campos, SP (Brazil)

    2010-07-01

    Thermal systems are essential in facilities such as thermoelectric plants, cogeneration plants, refrigeration systems and air conditioning, among others, in which much of the energy consumed by humanity is processed. In a world with finite natural sources of fuels and growing energy demand, issues related with thermal system design, such as cost estimative, design complexity, environmental protection and optimization are becoming increasingly important. Therefore the need to understand the mechanisms that degrade energy, improve energy sources use, reduce environmental impacts and also reduce project, operation and maintenance costs. In recent years, a consistent development of procedures and techniques for computational design of thermal systems has occurred. In this context, the fundamental objective of this study is a performance comparative analysis of structural and parametric optimization of a cogeneration system using stochastic methods: genetic algorithm and simulated annealing. This research work uses a superstructure, modelled in a process simulator, IPSEpro of SimTech, in which the appropriate design case studied options are included. Accordingly, the cogeneration system optimal configuration is determined as a consequence of the optimization process, restricted within the configuration options included in the superstructure. The optimization routines are written in MsExcel Visual Basic, in order to work perfectly coupled to the simulator process. At the end of the optimization process, the system optimal configuration, given the characteristics of each specific problem, should be defined. (author)

  15. Evaluation of different hedging strategies for commodity price risks of industrial cogeneration plants

    International Nuclear Information System (INIS)

    Palzer, Andreas; Westner, Günther; Madlener, Reinhard

    2013-01-01

    In this paper, we design and evaluate eight different strategies for hedging commodity price risks of industrial cogeneration plants. Price developments are parameterized based on EEX data from 2008 to 2011. The probability distributions derived are used to determine the value-at-risk (VaR) of the individual strategies, which are in a final step combined in a mean-variance portfolio analysis for determining the most efficient hedging strategy. We find that the strategy adopted can have a marked influence on the remaining price risk. Quarter futures are found to be particularly well suited for reducing market price risk. In contrast, spot trading of CO 2 certificates is found to be preferable compared to forward market trading. Finally, portfolio optimization shows that a mix of various hedging strategies can further improve the profitability of a heat-based cogeneration plant. - Highlights: • Evaluation of commodity price risk hedging strategies for industrial cogeneration. • Value-at-risk analysis of eight different hedging strategies. • Mean-variance portfolio analysis for determining the optimal hedging strategy mix. • A mix of hedging strategies further improves profitability of heat-based CHP

  16. KWU's modular approach to HTR commercialization

    International Nuclear Information System (INIS)

    Frewer, H.; Weisbrodt, I.

    1983-01-01

    As a way of avoiding the uncertainties, delays and unacceptable commercial risks which have plagued advanced reactor projects in Germany, KWU is advocating a modular approach to commercialization of the high-temperature reactor (HTR), using small size standard reactor units. KWU has received a contract for the study of a co-generation plant based on this modular system. Features of the KWU modular HTR, process heat, gasification, costs and future development are discussed. (UK)

  17. Brewery cogeneration plant gives 82 per cent efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, P

    1982-04-01

    A combined heat and power diesel plant for a brewery in Ireland is achieving a genuine 82% thermal efficiency and payback well within its initial three-year projection. The plant, developed as a joint program of work between engineers from Harp Ireland Ltd and the British diesel engine manufacturers, Mirrlees Blackstone, cost less than $1 million. 5 figures, 3 tables.

  18. Energy audit: thermal power, combined cycle, and cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Abbi, Yash Pal

    2012-07-01

    The availability of fossil fuels required for power plants is reducing and their costs increasing rapidly. This gives rise to increase in the cost of generation of electricity. But electricity regulators have to control the price of electricity so that consumers are not stressed with high costs. In addition, environmental considerations are forcing power plants to reduce CO2 emissions. Under these circumstances, power plants are constantly under pressure to improve the efficiency of operating plants, and to reduce fuel consumption. In order to progress in this direction, it is important that power plants regularly audit their energy use in terms of the operating plant heat rate and auxiliary power consumption. The author attempts to refresh the fundamentals of the science and engineering of thermal power plants, establish its link with the real power plant performance data through case studies, and further develop techno-economics of the energy efficiency improvement measures. This book will rekindle interest in energy audits and analysis of the data for designing and implementation of energy conservation measures on a continuous basis.

  19. The choice of equipment mix and parameters for HTGR-based nuclear cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Malevski, A L; Stoliarevski, A Ya; Vladimirov, V T; Larin, E A; Lesnykh, V V; Naumov, Yu V; Fedotov, I L

    1990-07-01

    Improvement of heat and electricity supply systems based on cogeneration is one of the high-priority problems in energy development of the USSR. Fossil fuel consumption for heat supply exceeds now its use for electricity production and amounts to about 30% of the total demands. District heating provides about 80 million t.c.e. of energy resources conserved annually and meets about 50% of heat consumption of the country, including about 30% due to cogeneration. The share of natural gas and liquid fuel in the fuel consumption for district heating is about 70%. The analysis of heat consumption dynamics in individual regions and industrial-urban agglomerations shows the necessity of constructing cogeneration plants with the total capacity of about 60 million kW till the year 2000. However, their construction causes some serious problems. The most important of them are provision of environmentally clean fuels for cogeneration plants and provision of clear air. The limited reserves of oil and natural gas and the growing expenditures on their production require more intensive introduction of nuclear energy in the national energy balance. Possible use of nuclear energy based on light-water reactors for substitution of deficient hydrocarbon fuels is limited by the physical, technical and economic factors and requirements of safety. Further development of nuclear energy in the USSR can be realized on a new technological base with construction of domestic reactors of increased and ultimate safety. The most promising reactors under design are high-temperature gas-cooled reactors (HTGR) of low and medium capacity with the intrinsic property of safety. HTGR of low (about 200-250 MW(th) in a steel vessel), medium (about 500 MW(th) in a steel-concrete vessel) and high (about 1000-2500 MW(th) in a prestressed concrete vessel) are now designed and studied in the country. At outlet helium temperature of 920-1020 K it is possible to create steam turbine installations producing both

  20. The choice of equipment mix and parameters for HTGR-based nuclear cogeneration plants

    International Nuclear Information System (INIS)

    Malevski, A.L.; Stoliarevski, A.Ya.; Vladimirov, V.T.; Larin, E.A.; Lesnykh, V.V.; Naumov, Yu.V.; Fedotov, I.L.

    1990-01-01

    Improvement of heat and electricity supply systems based on cogeneration is one of the high-priority problems in energy development of the USSR. Fossil fuel consumption for heat supply exceeds now its use for electricity production and amounts to about 30% of the total demands. District heating provides about 80 million t.c.e. of energy resources conserved annually and meets about 50% of heat consumption of the country, including about 30% due to cogeneration. The share of natural gas and liquid fuel in the fuel consumption for district heating is about 70%. The analysis of heat consumption dynamics in individual regions and industrial-urban agglomerations shows the necessity of constructing cogeneration plants with the total capacity of about 60 million kW till the year 2000. However, their construction causes some serious problems. The most important of them are provision of environmentally clean fuels for cogeneration plants and provision of clear air. The limited reserves of oil and natural gas and the growing expenditures on their production require more intensive introduction of nuclear energy in the national energy balance. Possible use of nuclear energy based on light-water reactors for substitution of deficient hydrocarbon fuels is limited by the physical, technical and economic factors and requirements of safety. Further development of nuclear energy in the USSR can be realized on a new technological base with construction of domestic reactors of increased and ultimate safety. The most promising reactors under design are high-temperature gas-cooled reactors (HTGR) of low and medium capacity with the intrinsic property of safety. HTGR of low (about 200-250 MW(th) in a steel vessel), medium (about 500 MW(th) in a steel-concrete vessel) and high (about 1000-2500 MW(th) in a prestressed concrete vessel) are now designed and studied in the country. At outlet helium temperature of 920-1020 K it is possible to create steam turbine installations producing both

  1. Implementation of a cogeneration plant for a food processing facility. A case study

    International Nuclear Information System (INIS)

    Bianco, Vincenzo; De Rosa, Mattia; Scarpa, Federico; Tagliafico, Luca A.

    2016-01-01

    Highlights: • CHP utilization is demonstrated to allow a reduction of primary energy consumption. • The consideration of various investment indexes leads to the determination of different optimal powers. • The choice of a specific investment index to evaluate a CHP is linked to the strategy of the company. - Abstract: The present work presents an investigation regarding the feasibility analysis of a cogeneration plant for a food processing facility with the aim to decrease the cost of energy supply. The monthly electricity and heat consumption profiles are analyzed, in order to understand the consumption profiles, as well as the costs of the current furniture of electricity and gas. Then, a detailed thermodynamic model of the cogeneration cycle is implemented and the investment costs are linked to the thermodynamic variables by means of cost functions. The optimal electricity power of the co-generator is determined with reference to various investment indexes. The analysis highlights that the optimal dimension varies according to the chosen indicator, therefore it is not possible to establish it univocally, but it depends on the financial/economic strategy of the company through the considered investment index.

  2. Load averaging system for co-generation plant; Jikayo hatsuden setsubi ni okeru fuka heijunka system

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Y. [Fuji Electric Co. Ltd., Tokyo (Japan)

    1995-07-30

    MAZDA Motor Corp. planed the construction of a 20.5MW co-generation plant in 1991 for responding to an increase in power demand due to expansion of the Hofu factory. On introduction of this co-generation plant, it was decided that the basic system would adopt the following. (1) A circulating fluidized bed boiler which can be operated by burning multiple kinds of fuels with minimum environmental pollution. (2) A heat accumulation system which can be operated through reception of a constant power from electric power company despite a sudden and wide range change in power demand. (3) A circulating-water exchange heat recovery system which recovers exhaust heat of the turbine plant as the hot water to be utilized for heating and air-conditioning of the factory mainly in winter. Power demand in MAZDA`s Hofu factory changes 15% per minute within a maximum range from 20MW to 8MW. This change is difficult to be followed even by an oil burning boiler excellent in load follow-up. The circulating Fluidized bed boiler employed this time is lower in the follow-up performance than the oil boiler. For the newly schemed plant, however, load averaging system named a heat accumulation system capable of responding fully to the above change has been developed. This co-generation plant satisfied the official inspection before commercial operation according the Ministerial Ordinance in 1993. Since then, with regard to the rapid load following, which was one of the initial targets, operation is now performed steadily. This paper introduces an outline of the system and operation conditions. 10 refs.

  3. Modularization in construction processes New Nuclear Power Plants

    International Nuclear Information System (INIS)

    Martinez, I.; Cobos, A.; Herrera Ropero, D.

    2012-01-01

    The aim of this work is that it has the capacity and expertise to analyze the suitability of modular technology design and construction compared to conventional nuclear plants. It will define the criteria for selecting the areas of modularity and the impact on design and its interfaces with engineering, supply, including logistics and construction.

  4. Homogeneous groups of plants, development scenarios, and basic configurations on the cogeneration systems optimization from the alcohol sector

    International Nuclear Information System (INIS)

    Silva Walter, A.C. da; Bajay, S.V.; Carrillo, J.L.L.

    1990-01-01

    The evaluation of introducing or diffusing new technologies at a macro economic level using micro economic information can be carried out through the careful selection of a small number of homogeneous groups of plants from the point of view of the main technical parameters being considered. In this paper this concept is applied to the study of cogeneration in sugar and alcohol producing plants. The statistical techniques of Cluster Analysis, regressions and mean value testing are used. Basic cogeneration plant designs are proposed for alternatives development scenarios for this industrial branch. These scenarios are based upon differing assumptions about the expansion of alcohol market, use of surplus sugar cane bagasse as saleable commodity, as a fuel or raw material, and price expectations for the sale of surplus power from the cogeneration plants to the local grid. (author)

  5. Analysis of energy cogeneration incentive politics to a sodium-chlorine Brazilian chemical plant energy cogeneration; Analise de politicas de incentivo a cogeracao de energia numa planta quimica brasileira de soda-cloro

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, J.B.V.; Borschiver, S. [Universidade Federal do Rio de Janeiro (CT/UFRJ), RJ (Brazil). Centro de Tecnologia], E-mail: suzana@eq.ufrj.br; Szklo, A.S. [Universidade Federal do Rio de Janeiro (PPE/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Planejamento Energetico], E-mail: szklo@ppe.ufrj.br; Andrade, M.H.S. [Braskem S.A., Rio de Janeiro, RJ (Brazil)], E-mail: marcio.andrade@braskem.com.br

    2010-07-01

    This paper evaluates, from a pont of view of investor and through the use of a simulator, the impact of incentive politics to the cogeneration, from the sugar cane bagasse, at a plant for production of sodium-chlorine.

  6. Techno-Economic Assessment of Redundancy Systems for a Cogeneration Plant

    Directory of Open Access Journals (Sweden)

    Majid Mohd Amin Abd

    2014-07-01

    Full Text Available The use of distributed power generation has advantage as well as disadvantage. One of the disadvantages is that the plant requires a dependable redundancy system to provide back up of power during failure of its power generation equipment. This paper presents a study on techno-economic assessment of redundancy systems for a cogeneration plant. Three redundancy systems were investigated; using public utility, generator set and gas turbine as back up during failures. Results from the analysis indicate that using public utility provides technical as well as economic advantages in comparison to using generator set or turbine as back up. However, the economic advantage of the public utility depends on the frequency of failures the plant will experience as well on the maximum demand charge. From the break even analysis of the understudied plant, if the number of failures exceeds 3 failures per year for the case of maximum demand charge of RM56.80, it is more economical to install a generator set as redundancy. The study will be useful for the co-generator operators to evaluate the feasibility of redundancy systems.

  7. Application and design of an economizer for waste heat recovery in a cogeneration plant

    Directory of Open Access Journals (Sweden)

    Martić Igor I.

    2016-01-01

    Full Text Available Energy increase cost has required its more effective use. However, many industrial heating processes generate waste energy. Use of waste-heat recovery systems decreases energy consumption. This paper presents case study of waste heat recovering of the exhaust flue gas in a 1415 kWe cogeneration plant. This waste heat can be recovered by installing an economizer to heat the condensed and fresh water in thermal degasification unit and reduce steam use for maintaining the temperature of 105˚C for oxygen removal. Design methodology of economizer is presented.

  8. Mathematical exergoeconomic optimization of a complex cogeneration plant aided by a professional process simulator

    International Nuclear Information System (INIS)

    Vieira, Leonardo S.; Donatelli, Joao L.; Cruz, Manuel E.

    2006-01-01

    In this work we present the development and implementation of an integrated approach for mathematical exergoeconomic optimization of complex thermal systems. By exploiting the computational power of a professional process simulator, the proposed integrated approach permits the optimization routine to ignore the variables associated with the thermodynamic balance equations and thus deal only with the decision variables. To demonstrate the capabilities of the integrated approach, it is here applied to a complex cogeneration system, which includes all the major components of a typical thermal plant, and requires more than 800 variables for its simulation

  9. Strategy for optimal operation of a biomass-fired cogeneration power plant

    International Nuclear Information System (INIS)

    Prasertsan, S.; Krukanont, P.; Nigamsritragul, P.; Kirirat, P.

    2001-01-01

    Biomass-fired cogeneration not only is an environmentally friendly energy production, but also possesses high energy conversion efficiency. Generally, the wood product industry requires both heat and electricity. Combined heat and power generation (cogeneration) using wood residue has a three-fold benefit: waste minimization, reduction of an energy-related production cost and additional income from selling the excess electricity to the utility. In reality, the process heat demand fluctuates according to the production activities in the factory. The fluctuation of process heat demand affects the cogeneration efficiency and the electricity output and, consequently, the financial return, since the prices of heat and electricity are different. A study by computer simulation to establish a guideline for optimum operation of a process heat fluctuating cogeneration power plant is presented. The power plant was designed for a sawmill and an adjacent plywood factory using wood wastes from these two processes. The maximum boiler thermal load is 81.9 MW while the electricity output is in the range 19-24 MW and the process heat 10-30 MW. Two modes of operation were studied, namely the full (boiler) load and the partial (boiler) load. In the full load operation, the power plant is operated at a maximum boiler thermal load, while the extracted steam is varied to meet the steam demand of the wood-drying kilns and the plywood production. The partial load operation was designed for the partially fuelled boiler to provide sufficient steam for the process and to generate electricity at a desired capacity ranging from the firmed contract of 19 MW to the turbine maximum capacity of 24 MW. It was found that the steam for process heat has an allowable extracting range, which is limited by the low pressure feed water heater. The optimum operation for both full and partial load occurs at the lower limit of the extracting steam. A guideline for optimum operation at various combinations of

  10. Modular Trough Power Plant Cycle and Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Price, H.; Hassani, V.

    2002-01-01

    This report summarizes an analysis to reduce the cost of power production from modular concentrating solar power plants through a relatively new and exciting concept that merges two mature technologies to produce distributed modular electric power in the range of 500 to 1,500 kWe. These are the organic Rankine cycle (ORC) power plant and the concentrating solar parabolic (CSP) trough technologies that have been developed independent of each other over many years.

  11. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    International Nuclear Information System (INIS)

    Demick, L.E.

    2011-01-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  12. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  13. Technical feasibility and economics of retrofitting an existing nuclear power plant to cogeneration for hot water district heating

    International Nuclear Information System (INIS)

    Kolb, J.O.; Bauman, H.F.; Jones, P.D.

    1984-04-01

    This report gives the results of a study of the hypothetical conversion of the Prairie Island Nuclear Plant of the Northern States Power Company to cogeneration operation to supply a future hot water district heating system load in the Twin Cities of Minneapolis-St. Paul. The conceptual design of the nuclear turbine retrofitted for cogeneration and of a hot water transmission system has been performed, and the capital investment and annual owning and operating costs have been estimated for thermal energy capacities of 600 and 1200 MW(t). Unit costs of thermal energy (in mid-1982 dollars/million Btu) have been estimated for cogenerated hot water at the plant gate and also for the most economic transmission system from Prairie Island to the Twin Cities. The economic results from the analysis of the Prairie Island plant and transmission route have been generalized for other transmission distances in other locations

  14. Modelling the adoption of industrial cogeneration in Japan using manufacturing plant survey data

    International Nuclear Information System (INIS)

    Bonilla, David; Akisawa, Atsushi; Kashiwagi, Takao

    2003-01-01

    Electric power deregulation in Japan opens opportunity for further penetration of on-site generation (cogeneration) otherwise known as distributed generation. In the paper the authors present a survey on Japanese industrial plants to fill existing gaps for the assessment of modern cogeneration (combined heat and power, CHP). The objective of the paper is to empirically examine CHP systems based on cross-sectional binary models; second to review diffusion trends of CHP by system vintage during the 1980-2000 period in the manufacturing sector. The econometric results point that the probabilities of embracing this technology increase, in declining importance, with on-site power consumption, and steam demand, operational hours as well as with payback period, purchased power. For example the survey shows that the CHP is used for the purpose of exporting power rather than meeting the plant's own consumption. Some of our results are in line with those of Dismukes and Kleit (Resource Energy Econ. 21 (1999) 153) as well with Rose and Macdonald (Energy J. 12(12) (1991) 47). We also find that a unit increase in satisfaction with CHP will lead to a 54% in CHP capacity. We find significant evidence on the cost effectiveness of CHP under conservative assumptions. Regarding the influence of satisfaction and performance indicators for the several plants, the survey threw some unexpected evidence on the nature of CHP

  15. Project financing consequences on cogeneration: industrial plant and municipal utility co-operation in Sweden

    International Nuclear Information System (INIS)

    Sundberg, Gunnel; Sjoedin, J.Joergen

    2003-01-01

    The liberalisation of the European electricity market influences investment decisions in combined heat and power plants. Energy companies modify their business strategies and their criteria for investments in power generation capacity. In this paper, the gains from a co-operation between a paper mill and municipal utility are studied. We find that a widened system boundary, including both the industrial plant and the district heating company, increases cost-effectiveness by 7-11%, compared to a situation with two separately optimised systems. Furthermore, optimal investments are strongly influenced by the actors' different required returns. With a relatively low required rate of return on energy investments, typical for a municipally owned utility, the most profitable investment is a wood chips-fuelled cogeneration plant. With a higher rate of return on capital, typical for a competitive industry, the optimal investment is mainly a heat-only steam boiler. Finally, some general influences on required rate of return caused by electricity market deregulation are observed. Whilst tending to increase companies' required returns, deregulation may, besides extending the outlet for locally generated electricity, also obstruct long-term high-cost investments such as cogeneration based on conventional technology

  16. Efficiency and environmental compatibility of premium cogeneration plants operated by fermentation gas; Effizienz und Umweltvertraeglichkeit biogasbetriebener Blockheizkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Aschmann, V.; Kissel, R.; Gronauer, A.

    2007-07-15

    Due to the climatic protection as well as shortage and raising the price of fossil fuels, a supply of a sustainable and future power supply is necessary. Therefore, the importance of the production of electricity and heat by means of premium cogeneration plants operated by fermentation gas increases. In the comparison to the conventional power production from fossil fuels, the utilization of fermentation gas reduces the release of climatic relevant gases. A compromise between high achievement and low emission with the burn of fermentation gas in premium cogeneration plants has to be established. It is the subject of the investigation of the contribution under consideration, to what extent this is feasible in practice.

  17. Integration of Biorefineries and Nuclear Cogeneration Power Plants - A Preliminary Analysis

    International Nuclear Information System (INIS)

    Greene, Sherrell R.; Flanagan, George F.; Borole, Abhijeet P.

    2009-01-01

    Biomass-based ethanol and nuclear power are two viable elements in the path to U.S. energy independence. Numerous studies suggest nuclear power could provide a practical carbon-free heat source alternative for the production of biomass-based ethanol. In order for this coupling to occur, it is necessary to examine the interfacial requirements of both nuclear power plants and bioethanol refineries. This report describes the proposed characteristics of a small cogeneration nuclear power plant, a biochemical process-based cellulosic bioethanol refinery, and a thermochemical process-based cellulosic biorefinery. Systemic and interfacial issues relating to the co-location of either type of bioethanol facility with a nuclear power plant are presented and discussed. Results indicate future co-location efforts will require a new optimized energy strategy focused on overcoming the interfacial challenges identified in the report.

  18. Integration of Biorefineries and Nuclear Cogeneration Power Plants - A Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Sherrell R [ORNL; Flanagan, George F [ORNL; Borole, Abhijeet P [ORNL

    2009-03-01

    Biomass-based ethanol and nuclear power are two viable elements in the path to U.S. energy independence. Numerous studies suggest nuclear power could provide a practical carbon-free heat source alternative for the production of biomass-based ethanol. In order for this coupling to occur, it is necessary to examine the interfacial requirements of both nuclear power plants and bioethanol refineries. This report describes the proposed characteristics of a small cogeneration nuclear power plant, a biochemical process-based cellulosic bioethanol refinery, and a thermochemical process-based cellulosic biorefinery. Systemic and interfacial issues relating to the co-location of either type of bioethanol facility with a nuclear power plant are presented and discussed. Results indicate future co-location efforts will require a new optimized energy strategy focused on overcoming the interfacial challenges identified in the report.

  19. Entropy generation minimization: A practical approach for performance evaluation of temperature cascaded co-generation plants

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Kim, Youngdeuk; Saha, Bidyut Baran; Ng, K. C.

    2012-01-01

    We present a practical tool that employs entropy generation minimization (EGM) approach for an in-depth performance evaluation of a co-generation plant with a temperature-cascaded concept. Co-generation plant produces useful effect production sequentially, i.e., (i) electricity from the micro-turbines, (ii) low pressure steam at 250 °C or about 8-10 bars, (iii) cooling capacity of 4 refrigeration tones (Rtons) and (iv) dehumidification of outdoor air for air conditioned space. The main objective is to configure the most efficient configuration of producing power and heat. We employed entropy generation minimization (EGM) which reflects to minimize the dissipative losses and maximize the cycle efficiency of the individual thermally activated systems. The minimization of dissipative losses or EGM is performed in two steps namely, (i) adjusting heat source temperatures for the heat-fired cycles and (ii) the use of Genetic Algorithm (GA), to seek out the sensitivity of heat transfer areas, flow rates of working fluids, inlet temperatures of heat sources and coolant, etc., over the anticipated range of operation to achieve maximum efficiency. With EGM equipped with GA, we verified that the local minimization of entropy generation individually at each of the heat-activated processes would lead to the maximum efficiency of the system. © 2012.

  20. Performance investigation of a cogeneration plant with the efficient and compact heat recovery system

    KAUST Repository

    Myat, Aung

    2011-10-03

    This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification. The proposed plant comprises a Capstone C30 micro-turbine which generates 24 kW of electricity, a compact and efficient waste heat recovery system and a host of waste heat activated devices namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The numerical analysis for the host of waste heat recovery system and thermally activated devices using FORTRAN power station linked to powerful IMSL library is performed to investigate the performance of the overall system. A set of experiments, both part load and full load, of micro-turbine is conducted to examine the electricity generation and the exhaust gas temperature. It is observed that energy utilization factor (EUF) could achieve as high as 70% while Fuel Energy Saving Ratio (FESR) is found to be 28%.

  1. Entropy generation minimization: A practical approach for performance evaluation of temperature cascaded co-generation plants

    KAUST Repository

    Myat, Aung

    2012-10-01

    We present a practical tool that employs entropy generation minimization (EGM) approach for an in-depth performance evaluation of a co-generation plant with a temperature-cascaded concept. Co-generation plant produces useful effect production sequentially, i.e., (i) electricity from the micro-turbines, (ii) low pressure steam at 250 °C or about 8-10 bars, (iii) cooling capacity of 4 refrigeration tones (Rtons) and (iv) dehumidification of outdoor air for air conditioned space. The main objective is to configure the most efficient configuration of producing power and heat. We employed entropy generation minimization (EGM) which reflects to minimize the dissipative losses and maximize the cycle efficiency of the individual thermally activated systems. The minimization of dissipative losses or EGM is performed in two steps namely, (i) adjusting heat source temperatures for the heat-fired cycles and (ii) the use of Genetic Algorithm (GA), to seek out the sensitivity of heat transfer areas, flow rates of working fluids, inlet temperatures of heat sources and coolant, etc., over the anticipated range of operation to achieve maximum efficiency. With EGM equipped with GA, we verified that the local minimization of entropy generation individually at each of the heat-activated processes would lead to the maximum efficiency of the system. © 2012.

  2. Cogeneration and local authorities; Cogeneration et collectivites territoriales

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This conference is composed of 15 communications concerning cogeneration systems and applications in local communities. The main themes are: the regulation context and administrative procedures for cogeneration projects in France; legal aspects, risk covering, financing and sellback conditions for cogeneration systems; examples of cogeneration and tri-generation (with refrigeration energy) in different cities, airport, hospitals, campus, combined with the upgrading of district heating systems or municipal waste incineration plants. Impacts on energy savings and air pollution are also discussed

  3. Comparative exergoeconomic analysis of prime movers of cogeneration plants; Avaliacao exergoeconomica comparativa de acionadores primarios de plantas de cogeracao

    Energy Technology Data Exchange (ETDEWEB)

    Donatelli, Joao L.M. [Espirito Santo Univ., Vitoria, ES (Brazil). Dept. de Engenharia Mecanica]. E-mail: donatelli@lttc.com.ufrj.br; Vieira, Leonardo S.R. [Centro de Pesquisas de Energia Eletrica, Rio de Janeiro, RJ (Brazil). Area de Conhecimento de Materiais e Mecanica]. E-mail: lsrv@cepel.br; Cruz, Manuel E.C. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica]. E-mail: manuel@serv.com.ufrj.br

    2000-07-01

    In this paper we apply exergoeconomic principles to perform a comparative analysis of the use of internal combustion engines or gas turbines as prime movers of cogeneration plants. A preliminary comparison of these movers can be obtained by analysing them individually, considering the complete utilization of the generated products rated on a common exergetic basis. However, when these movers are integrated in a cogeneration plant, it is necessary to perform a global system analysis, which will consider the coupling between generation capacity and demand, under the design conditions. The design of a cogeneration plant should, ideally, consider all the aspects that affect its performance. In this paper we take into account several aspects which are not normally collectively considered in similar analyses encountered in the literature. Specifically, the comparative procedure considers the electrical tariff on an hourly basis, the electrical and thermal load profiles, the influence of the environmental conditions on the performance of the prime movers, sizing and operation mode options to meet plant loads, part-load efficiency, different criteria for cost partitioning, and, finally, the effect of size on plant cost. Once the operating conditions of the cogeneration plant are defined, the procedure attributes costs to all the fluxes, allowing for the identification of the ranges of capacity where each mover is economically advantageous. We apply the procedure to the energetic supply analysis of a typical process of Brazilian shopping centers. (author)

  4. Process planning and accuracy distribution of marine power plant modularization

    Directory of Open Access Journals (Sweden)

    ZHANG Jinguo

    2018-02-01

    Full Text Available [Objectives] Modular shipbuilding can shorten the cycle of design and construction, lower production costs and improve the quality of products, but higher shipbuilding capabilities are required, especially for the installation of power plants. Because of such characteristics of modular shipbuilding as the high precision of docking links, long size equipment installation chain and quantitative docking interfaces, docking installation is very difficult due to high docking deviation and low accuracy of docking installation, leading to the abnormal vibration of equipment. In order to solve this problem, [Methods] on the basis of domestic shipbuilding capability, numerical calculation methods are used to analyze the accuracy distribution of modular installation. [Results] The results show that the accuracy distribution of different docking links is reasonable and feasible, and the setting of adjusting allowance matches the requirements of shipbuilding. [Conclusions] This method provides a reference for the modular construction of marine power plants.

  5. Modular robotic applications in nuclear power plant maintenance

    International Nuclear Information System (INIS)

    Glass, S.W.; Ranson, C.C.; Reinholtz, C.F.; Calkins, J.M.

    1996-01-01

    General-purpose factory automation robots have experienced limited use in nuclear maintenance and hazardous-environment work spaces due to demanding requirements on size, weight, mobility and adaptability. Robotic systems in nuclear power plants are frequently custom designed to meet specific space and performance requirements. Examples of these custom configurations include Framatome Technologies COBRA trademark Steam Generator Manipulator and URSULA trademark Reactor Vessel Inspection Manipulator. The use of custom robots in nuclear plants has been limited because of the lead time and expense associated with custom design. Developments in modular robotics and advanced robot control software coupled with more powerful low-cost computers, however, are helping to reduce the cost and schedule for deploying custom robots. A modular robotic system allows custom robot configurations to be implemented using standard (modular) joints and adaptable controllers. This paper discusses Framatome Technologies (FTI) current and planned developments in the area of modular robot system design

  6. North Plant co-generation project for South Davis County Sewer Improvement District

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, L.S. [Aqua Environmental Services, Inc., Bountiful, UT (United States)

    1993-12-31

    In the summer of 1988, the South Davis County Sewer Improvement District (SDCSID) learned of a grant/loan program being administered by the Utah State Department of Energy(DOE) for projects that demonstrate new and innovative ways of conserving energy or utilizing renewable energy sources. The SDCSID applied for and received from the DOE both a grant and a no-interest loan to finance half of the cost of a co-generation project at the North Wastewater Treatment Plant. This co-generation project utilizes methane gas, a by-product of the anaerobic digestion process, to generate both electricity and heat that is used at the plant. The SDCSID calculated that at the current anaerobic gas production rate, a 140 KW engine generator could be run almost 24 hours a day. Approximately 75% of the current electrical needs at the North Plant are supplied by the 140 KW engine generator. Also, all of the heat necessary to raise the temperature of the incoming sludge to 95{degrees}F, and to heat four large buildings is supplied from the heat recovery system of the engine. The system utilizes an induction type generator to supply electricity, which is somewhat simpler to design and less expensive to install than a synchronous type system. An induction system utilizes the Electrical Utility`s incoming power to excite the generator to correct the phase so that is can be used by the loads in the plant. In addition, the SDCSID installed a second identical engine generator as a back-up and to peak shave. Plant effluent is used to cool the engines instead of air-cooling through radiators.

  7. Life cycle inventories for bioenergy and fossil-fuel fired cogeneration plants

    International Nuclear Information System (INIS)

    Braennstroem-Norberg, B.M.; Dethlefsen, U.

    1998-06-01

    Life-cycle inventories for heat production from forest fuel, Salix, coal and oil are presented. Data from the Oerebro cogeneration plant are used for the bioenergy and coal cycles, whereas the oil-fired cycle is based on a fictive plant producing 53 MW electricity and 106 MW heat, also located in the town of Oerebro. This life cycle analysis only covers the inventory stage. A complete life cycle analysis also includes an environmental impact assessment. The methods for assessing environmental impact are still being developed and thus this phase has been omitted here. The intention is, instead, to provide an overall perspective of where in the chain the greatest environmental load for each fuel can be found. Production and energy conversion of fuel requires energy, which is often obtained from fossil fuel. This input energy corresponds to about 11% of the extracted amount of energy for oil, 9% for coal, 6% for Salix, whereas it is about 4% for forest fuel. Utilization of fossil fuel in the coal cycle amounts to production of electricity using coal condensation intended for train transports within Poland. In a life cycle perspective, biofuels show 20-30 times lower emissions of greenhouse gases in comparison with fossil fuels. The chains for biofuels also give considerably lower SO 2 emissions than the chains for coal and oil. The coal chain shows about 50% higher NO x emission than the other fuels. Finally, the study illustrates that emission of particles are similar for all sources of energy. The biofuel cycle is assessed to be generally applicable to plants of similar type and size and with similar transport distances. The oil cycle is probably applicable to small-scale cogeneration plants. However, at present there are no cogeneration plants in Sweden that are solely fired with oil. In the case of the coal cycle, deep mining and a relatively long transport distance within Poland have been assumed. If the coal mining had been from open-cast mines, and if the

  8. Production of Bioethanol from Agricultural Wastes Using Residual Thermal Energy of a Cogeneration Plant in the Distillation Phase

    Directory of Open Access Journals (Sweden)

    Raffaela Cutzu

    2017-05-01

    Full Text Available Alcoholic fermentations were performed, adapting the technology to exploit the residual thermal energy (hot water at 83–85 °C of a cogeneration plant and to valorize agricultural wastes. Substrates were apple, kiwifruit, and peaches wastes; and corn threshing residue (CTR. Saccharomyces bayanus was chosen as starter yeast. The fruits, fresh or blanched, were mashed; CTR was gelatinized and liquefied by adding Liquozyme® SC DS (Novozymes, Dittingen, Switzerland; saccharification simultaneous to fermentation was carried out using the enzyme Spirizyme® Ultra (Novozymes, Dittingen, Switzerland. Lab-scale static fermentations were carried out at 28 °C and 35 °C, using raw fruits, blanched fruits and CTR, monitoring the ethanol production. The highest ethanol production was reached with CTR (10.22% (v/v and among fruits with apple (8.71% (v/v. Distillations at low temperatures and under vacuum, to exploit warm water from a cogeneration plant, were tested. Vacuum simple batch distillation by rotary evaporation at lab scale at 80 °C (heating bath and 200 mbar or 400 mbar allowed to recover 93.35% (v/v and 89.59% (v/v of ethanol, respectively. These results support a fermentation process coupled to a cogeneration plant, fed with apple wastes and with CTR when apple wastes are not available, where hot water from cogeneration plant is used in blanching and distillation phases. The scale up in a pilot plant was also carried out.

  9. Equipment sizing in a coal-fired municipal heating plant modernisation project with support for renewable energy and cogeneration technologies

    International Nuclear Information System (INIS)

    Kalina, Jacek

    2014-01-01

    Highlights: • Sizing of biomass fired cogeneration block is performed for existing heating plant. • Mathematical model for cogeneration block optimisation is presented. • Impact of financial support mechanisms on optimal solution is discussed. • Influence of short term variations of prices and support intensity is presented. • Different design parameters are suggested by economic and technical quality indices. - Abstract: The paper presents results of design parameters optimisation of a wood chips fired steam boiler based heat and power block in a sample project of coal fired municipal heating plant modernisation. The project assumes the conversion of the heating plant into a dual fuel heat and power plant. The problem that is presented is selection of cogeneration block structure and thermodynamic parameters taking into account financial support mechanisms for cogeneration and renewable energy technologies. There are examined energy conversion and financial performances of the project. The results show that without the financial support the project is not profitable although it generates savings of primary energy of fossil fuels. If an administrative incentives are applied the optimal technical solution is different than suggested by energy conversion efficiency or fossil fuel savings. Financial calculations were performed for Polish marked conditions in the years 2011 and 2014 showing the impact of relatively short term variations of prices and support intensity on optimal plant design parameters

  10. Cogeneration in the sugarcane industry - medium plants; A cogeracao no setor sucroalcooleiro - usinas de medio porte

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, Maria Cristina [Companhia Energetica de Sao Paulo (CESP), SP (Brazil)]. E-mail: epg@cesp.com.br; Ramos, Dorel Soares [Sao Paulo Univ., SP (Brazil). Escola Politecnica]. E-mail: dorelram@pea.usp.br

    2000-07-01

    This work aims at to analyze the re powering of medium sized sugar and alcohol plants located in the Southeast area of Sao Paulo State. Through a study case considering a standard unit that processes ten thousand tons of sugarcane per day, simulations were made using a mathematical model denominated Modelo de Despacho Hidrotermico, which supports the decision process for the expansion of electric energy offers. As a result of these simulations, it was possible to get the standard dispatch profile for such cogeneration plants, expressed by a medium capacity factor of 89%, demonstrating, therefore, the significant participation that these units can have in the energy context. Furthermore, a brief discussion about the energy price and capital return time is introduced, emphasizing the attractiveness of this kind of enterprise. (author)

  11. Thermodynamic and economic evaluation of a solar aided sugarcane bagasse cogeneration power plant

    International Nuclear Information System (INIS)

    Burin, Eduardo Konrad; Vogel, Tobias; Multhaupt, Sven; Thelen, Andre; Oeljeklaus, Gerd; Görner, Klaus; Bazzo, Edson

    2016-01-01

    This work evaluated the integration of Concentrated Solar Power (CSP) with a sugarcane bagasse cogeneration plant located in Campo Grande (Brazil). The plant is equipped with two 170 t/h capacity steam generators that provide steam at 67 bar/525 °C. Superheated steam is expanded in a backpressure and in a condensing-extraction turbine. The evaluated hybridization layouts were: (layout 1) solar feedwater pre-heating; (layout 2) saturated steam generation with solar energy and post superheating in biomass steam generators and (layout 3) superheated steam generation in parallel with biomass boilers. Linear Fresnel and parabolic trough were implemented in layouts 1 and 2, while solar tower in layout 3. The exportation of electricity to the grid was increased between 1.3% (layout 1/linear Fresnel) and 19.8% (layout 3) in comparison with base case. The levelized cost of additional electricity was accounted between 220 US$/MWh (layout 3) and 628 US$/MWh (layout 1/linear Fresnel). The key factor related to layout 3 was the improvement of solar field capacity factor due to the solar-only operation of this approach. These aspects demonstrate that the combination of solar and bagasse resources might be the key to turn CSP economically feasible in Brazil. - Highlights: • The integration of CSP and a sugarcane bagasse cogeneration plant was here evaluated. • Additional hours of operation during off-season were achieved due to hybridization. • The part load performance of plant was predicted as solar thermal load was increased. • The electricity exportation to the grid could be increased between 1.3 and 19.8%. • The LCOE of additional electricity produced was ranged between 220 and 628 US$/MWh.

  12. Reactor type choice and characteristics for a small nuclear heat and electricity co-generation plant

    International Nuclear Information System (INIS)

    Liu Kukui; Li Manchang; Tang Chuanbao

    1997-01-01

    In China heat supply consumes more than 70 percent of the primary energy resource, which makes for heavy traffic and transportation and produces a lot of polluting materials such as NO x , SO x and CO 2 because of use of the fossil fuel. The utilization of nuclear power into the heat and electricity co-generation plant contributes to the global environmental protection. The basic concept of the nuclear system is an integral type reactor with three circuits. The primary circuit equipment is enclosed in and linked up directly with reactor vessel. The third circuit produces steam for heat and electricity supply. This paper presents basic requirements, reactor type choice, design characteristics, economy for a nuclear co-generation plant and its future application. The choice of the main parameters and the main technological process is the key problem of the nuclear plant design. To make this paper clearer, take for example a double-reactor plant of 450 x 2MW thermal power. There are two sorts of main technological processes. One is a water-water-steam process. Another is water-steam-steam process. Compared the two sorts, the design which adopted the water-water-steam technological process has much more advantage. The system is simplified, the operation reliability is increased, the primary pressure reduces a lot, the temperature difference between the secondary and the third circuits becomes larger, so the size and capacity of the main components will be smaller, the scale and the cost of the building will be cut down. In this design, the secondary circuit pressure is the highest among that of the three circuits. So the primary circuit radioactivity can not leak into the third circuit in case of accidents. (author)

  13. Techno-economic evaluation of commercial cogeneration plants for small and medium size companies in the Italian industrial and service sector

    International Nuclear Information System (INIS)

    Armanasco, Fabio; Colombo, Luigi Pietro Maria; Lucchini, Andrea; Rossetti, Andrea

    2012-01-01

    The liberalization of the electricity market and the concern for energy efficiency have resulted in a surge of interest in cogeneration and distributed power generation. In this regard, companies are encouraged to evaluate the opportunity to build their own cogeneration plant. In Italy, the majority of such companies belong to the industrial or service sector; it is small or medium in size and the electric power ranges between 1 ÷ 10 MW. Commercially available gas turbines are the less expensive option for cogeneration. Particular attention has been given to the possibility of combining an organic Rankine cycle (ORC) with gas turbine, to improve the conversion efficiency. Companies have to account for both technical and economical aspects to assess viability of cogeneration. A techno-economic analysis was performed to identify, in the Italian energy market, which users can take advantage of a cogeneration plant aimed to cover at least part of their energy demand. Since electricity and thermal needs change considerably in the same sector, single product categories have been considered in the analysis. Our work shows that in the industrial sector, independent of the product category, cogeneration is a viable option form a techno-economic perspective. - Highlights: ► The best technologies for 1 ÷ 10 MW distributed generation plant are gas turbine and ORC. ► A variety of commercial cogeneration plants is available to meet user needs. ► Cogeneration is a technical and economical advantage for industrial sector companies.

  14. Application and development analysis of nuclear power plant modular construction

    International Nuclear Information System (INIS)

    Fang Xiaopeng

    2015-01-01

    Modular Construction is currently one of the major development trends for the nuclear power plant construction technology worldwide. In the first-of-a-kind AP1000 Nuclear Power Project practiced in China, the large-scale structural modules and mechanical modules have been successfully fabricated, assembled and installed. However, in the construction practice of the project, some quality issues are identified with the assembly and installation process of large-scale structural modules in addition to the issue of incomplete supply of mechanical modules, which has failed to fully demonstrate the features and merits of modular construction. This paper collects and consolidates the issues of modular construction of AP1000 first of a kind reactor, providing root cause analysis in the aspects of process design, quality control, site construction logic, interface management in the process of module fabrication, assembly and installation; modular construction feasibility assessment index is proved based on the quantification and qualitative analysis of the impact element. Based on the modular construction feasibility, NPP modular construction improvement suggestions are provided in the aspect of modular assembly optimization definition, tolerance control during the fitting process and the construction logic adjustment. (author)

  15. Experiences from the Swedish programme - heavy water and natural uranium in the Aagesta cogeneration plant

    International Nuclear Information System (INIS)

    Oestman, Alvar

    2002-11-01

    A short review of the Swedish programme for nuclear power in the 50's and the 60's is given, and in particular a description of the operating experiences of the Aagesta nuclear cogeneration plant, producing district heating for the south Stockholm area (12 MW el and 68 MW heat ). The original Swedish nuclear programme was built on heavy water and natural uranium and had the objective to construct small nuclear plants in the vicinity of some 10 large cities in south and middle Sweden. Aagesta was the only full-scale plant to be built according to this programme, as Sweden adopted the light-water reactor policy and eventually constructed 12 large reactors at four sites. The report is based on the experiences of the author from his work at the Aagesta plant in the sixties. In an appendix, the experiences from Vattenfall (the Swedish electric utility which took over the operating responsibility for the Aagesta plant), of the plant operation is reviewed

  16. Exergetic analysis of cogeneration plants through integration of internal combustion engine and process simulators

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Leonardo de Oliveira [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)], E-mail: leonardo.carvalho@petrobras.com.br; Leiroz, Albino Kalab; Cruz, Manuel Ernani [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Mecanica], Emails: leiroz@mecanica.ufrj.br, manuel@mecanica.ufrj.br

    2010-07-01

    Internal combustion engines (ICEs) have been used in industry and power generation much before they were massively employed for transportation. Their high reliability, excellent power-to-weight ratio, and thermal efficiency have made them a competitive choice as main energy converters in small to medium sized power plants. Process simulators can model ICE powered energy plants with limited depth, due to the highly simplified ICE models used. Usually a better understanding of the global effects of different engine parameters is desirable, since the combustion process within the ICE is typically the main cause of exergy destruction in systems which utilize them. Dedicated commercial ICE simulators have reached such a degree of maturity, that they can adequately model a wide spectrum of phenomena that occur in ICEs. However, ICE simulators are unable to incorporate the remaining of power plant equipment and processes in their models. This paper presents and exploits the integration of an internal combustion engine simulator with a process simulator, so as to evaluate the construction of a fully coupled simulation platform to analyze the performance of ICE-based power plants. A simulation model of an actual cogeneration plant is used as a vehicle for application of the proposed computational methodology. The results show that by manipulating the engine mapping parameters, the overall efficiency of the plant can be improved. (author)

  17. An integral reactor design concept for a nuclear co-generation plant

    International Nuclear Information System (INIS)

    Lee, D.J.; Kim, J.I.; Kim, K.K.; Chang, M.H.; Moon, K.S.

    1997-01-01

    An integral reactor concept for nuclear cogeneration plant is being developed at KAERI as an attempt to expand the peaceful utilization of well established commercial nuclear technology, and related industrial infrastructure such as desalination technology in Korea. Advanced technologies such as intrinsic and passive safety features are implemented in establishing the design concepts to enhance the safety and performance. Research and development including laboratory-scale tests are concurrently underway to evaluate the characteristics of various passive safety concepts and provide the proper technical data for the conceptual design. This paper describes the preliminary safety and design concepts of the advanced integral reactor. Salient features of the design are hexagonal core geometry, once-through helical steam generator, self-pressurizer, and seismic resistant fine control CEDMS, passive residual heat removal system, steam injector driven passive containment cooling system. (author)

  18. Challenges encountered during an accelerated cogeneration plant construction and commissioning schedule

    International Nuclear Information System (INIS)

    Good, R.L.; Cox, T.P.; Vallejo, J.M.

    1988-01-01

    A decision was made in 1986 to proceed with a 110 magawatt grassroots cogeneration plant to supply the steam and electrical requirements of a large, integrated petrochemical manufacturing facility. Though some preliminary engineering had been done and long delivery equipment purchase orders had been let in the summer of 1986, detailed engineering did not commence until late October and construction until mid-December, 1986. Federal income tax consideration required that the project be in service prior to the end of 1987. This eleven month construction, commissioning, and start up schedule was achieved with 100 per cent operation occurring on December 22, 1987. Numerous challenges were met by the lean Project Team during this accelerated schedule. This paper discusses the development of: Project Team Staffing, Operator and Maintenance Staffing and Training, Commissioning Schedules and Staffing, solutions to Significant Technical Problems

  19. Combined heat and power (cogeneration) plant based on renewable energy sources and electrochemical hydrogen systems

    Science.gov (United States)

    Grigor'ev, S. A.; Grigor'ev, A. S.; Kuleshov, N. V.; Fateev, V. N.; Kuleshov, V. N.

    2015-02-01

    The layout of a combined heat and power (cogeneration) plant based on renewable energy sources (RESs) and hydrogen electrochemical systems for the accumulation of energy via the direct and inverse conversion of the electrical energy from RESs into the chemical energy of hydrogen with the storage of the latter is described. Some efficient technical solutions on the use of electrochemical hydrogen systems in power engineering for the storage of energy with a cyclic energy conversion efficiency of more than 40% are proposed. It is shown that the storage of energy in the form of hydrogen is environmentally safe and considerably surpasses traditional accumulator batteries by its capacitance characteristics, being especially topical in the prolonged absence of energy supply from RESs, e.g., under the conditions of polar night and breathless weather. To provide the required heat consumption of an object during the peak period, it is proposed to burn some hydrogen in a boiler house.

  20. AMBIENT CONDITIONS EFFECTS ON PERFORMANCE OF GAS TURBINE COGENERATION POWER PLANTS

    OpenAIRE

    Necmi Ozdemir*

    2016-01-01

    In this study, the performances of a simple and an air preheated cogeneration cycles in ambient conditions are compared with each other. A computer program written by the author in FORTRAN codes is used for the calculation of the enthalpy and entropy values of the streams, Exergy analysis is done and compared for the simple and the air preheated cogeneration cycles for different ambient conditions. The two cogeneration cycles are evaluated in terms of heat powers and electric, electrical to h...

  1. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    Waste Processors Management Inc. (WMPI), along with its subcontractors entered into a cooperative agreement with the USDOE to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US that produces ultra clean Fischer-Tropsch transportation fuels with either power or steam as the major co-product. The EECP will emphasize on reclaiming and gasifying low-cost coal waste and/or its mixture as the primary feedstocks. The project consists of three phases. Phase I objectives include conceptual development, technical assessment, feasibility design and economic evaluation of a Greenfield commercial co-production plant and a site specific demonstration EECP to be located adjacent to the existing WMPI Gilberton Power Station. There is very little foreseen design differences between the Greenfield commercial coproduction plant versus the EECP plant other than: The greenfield commercial plant will be a stand alone FT/power co-production plant, potentially larger in capacity to take full advantage of economy of scale, and to be located in either western Pennsylvania, West Virginia or Ohio, using bituminous coal waste (gob) and Pennsylvania No.8 coal or other comparable coal as the feedstock; The EECP plant, on the other hand, will be a nominal 5000 bpd plant, fully integrated into the Gilbertson Power Company's Cogeneration Plant to take advantage of the existing infrastructure to reduce cost and minimize project risk. The Gilberton EECP plant will be designed to use eastern Pennsylvania anthracite coal waste and/or its mixture as feedstock

  2. Methodology for modular nuclear plant design and construction

    International Nuclear Information System (INIS)

    Lapp, C.W.; Golay, M.

    1992-01-01

    During the past decade, the rising cost of nuclear power plant construction has caused the cancellation of many projects and has forced some utilities into bankruptcy. Many factors have contributed to capital cost increases, including regulatory changes, the absence of standard designs, and low worker productivity. Low worker productivity can be attributed to the conventional building process, which is not conductive to productive labor. This study presents innovative ways to reduce the capital cost of nuclear plants through more efficient construction processes designed to increase worker productivity. A major portion of the plant capital cost is the interest paid during construction on borrowed capital. Modular fabrication could potentially reduce interest payments by compressing the construction schedule of nuclear facilities. Additional cost savings expected from modular designs arise from improved quality, productivity, and schedule control in fabrication of plant elements within a factory environment

  3. Performance assessment of non-self-regulating controllers in a cogeneration power plant

    International Nuclear Information System (INIS)

    Howard, Rachelle; Cooper, Douglas J.

    2009-01-01

    This work details a novel method for assessing the performance of a PI (proportional-integral) feedback controller when the process displays non-self-regulating dynamic behavior. By applying an intuitive process control-based pattern recognition method to the autocorrelation function of the process measurement signal, the controller's disturbance rejection performance can automatically be categorized. Stochastic data collected over days or weeks is analyzed to compute an index descriptive of current controller performance. If the control response has drifted from a user-defined target value, the analysis further provides a guide for tuning adjustments to restore desired performance. Significant aspects of this approach are that no plant disruption or process knowledge is required for evaluation. Classic examples of non-self-regulating behavior include certain liquid level control loops and pressure control loops which are prevalent in cogeneration power plants. In this work, we detail how the performance assessment method was used to improve performance of such controllers in the University of Connecticut's power plant.

  4. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power and Gasification, SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the US Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP designs emphasize on recovery and gasification of low-cost coal waste (culm) from coal clean operations and will assess blends of the culm and coal or petroleum coke as feedstocks. The project is being carried out in three phases. Phase I involves definition of concept and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II consists of an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III involves updating the original EECP design, based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 BPD coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania

  5. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-12-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification, SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the US Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP designs emphasize on recovery and gasification of low-cost coal waste (culm) from coal clean operations and will assess blends of the culm and coal or petroleum coke as feedstocks. The project is being carried out in three phases. Phase I involves definition of concept and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II consists of an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III involves updating the original EECP design, based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 BPD coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania.

  6. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-01-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2002 through September 30, 2002.

  7. Dynamic Simulation and Exergo-Economic Optimization of a Hybrid Solar–Geothermal Cogeneration Plant

    Directory of Open Access Journals (Sweden)

    Francesco Calise

    2015-04-01

    Full Text Available This paper presents a dynamic simulation model and a parametric analysis of a solar-geothermal hybrid cogeneration plant based on an Organic Rankine Cycle (ORC powered by a medium-enthalpy geothermal resource and a Parabolic Trough Collector solar field. The fluid temperature supplying heat to the ORC varies continuously as a function of the solar irradiation, affecting both the electrical and thermal energies produced by the system. Thus, a dynamic simulation was performed. The ORC model, developed in Engineering Equation Solver, is based on zero-dimensional energy and mass balances and includes specific algorithms to evaluate the off-design system performance. The overall simulation model of the solar-geothermal cogenerative plant was implemented in the TRNSYS environment. Here, the ORC model is imported, whereas the models of the other components of the system are developed on the basis of literature data. Results are analyzed on different time bases presenting energetic, economic and exergetic performance data. Finally, a rigorous optimization has been performed to determine the set of system design/control parameters minimizing simple payback period and exergy destruction rate. The system is profitable when a significant amount of the heat produced is consumed. The highest irreversibilities are due to the solar field and to the heat exchangers.

  8. Optimal placement of combined heat and power scheme (cogeneration): application to an ethylbenzene plant

    International Nuclear Information System (INIS)

    Zainuddin Abd Manan; Lim Fang Yee

    2001-01-01

    Combined heat and power (CHP) scheme, also known as cogeneration is widely accepted as a highly efficient energy saving measure, particularly in medium to large scale chemical process plants. To date, CHP application is well established in the developed countries. The advantage of a CHP scheme for a chemical plant is two-fold: (i) drastically cut down on the electricity bill from on-site power generation (ii) to save the fuel bills through recovery of the quality waste heat from power generation for process heating. In order to be effective, a CHP scheme must be placed at the right temperature level in the context of the overall process. Failure to do so might render a CHP venture worthless. This paper discusses the procedure for an effective implementation of a CHP scheme. An ethylbenzene process is used as a case study. A key visualization tool known as the grand composite curves is used to provide an overall picture of the process heat source and heat sink profiles. The grand composite curve, which is generated based on the first principles of Pinch Analysis enables the CHP scheme to be optimally placed within the overall process scenario. (Author)

  9. Improving the Efficiency of a Nucler Power Plant Using a Thermoelectric Cogeneration System

    Directory of Open Access Journals (Sweden)

    Rauf Terzi

    2018-02-01

    Full Text Available The efficiencies of nuclear power plants are rather poor having the ratio %30 by using the conventional energy/exergy tools. According to that information, large amount of energy is wasted during condensation and thrown out to the environment. Thermoelectric generator (TEG system has a potential to be used as a heat exchanging technology to produce power with a relatively low efficiency (about 5% and it can transform the temperature difference into electricity and generate clean electrical energy. In the present study, we offer a novel system to recover the waste heat from a VVER-1000 nuclear power plant. The heat transfer of the TEG is analyzed numerically with respect to the various temperature ranges and constant mass flow rate of the exhaust steam entering the system. In the analyses, different hot temperature ranges (35ºC, 45ºC and 55ºC and a constant cold temperature (i.e. 18ºC are used for a HZ-20 thermoelectric module and it has been proven that the designed TEG can produce the maximum output power of 76,956 MW for a temperature difference ∆T=37 and the conversion efficiency of 3,854% sits. The TEG is designed for the condenser of a 1000 MW nuclear power plant. It's shown that about 2,0% increasing in the power plant efficiency is expected by using the selected thermoelectric generator in the condensation cycle. Article History: Received: July 15th 2017; Received:  October 17th 2017; Accepted: February 13rd 2018; Available online How to Cite This Article: Terzi, R. and Kurt, E. (2018, Improving the efficiency of a nuclear power plant using a thermoelectric cogeneration system, Int. Journal of Renewable Energy Development, 7(1, 77-84. https://doi.org/10.14710/ijred.7.1.77-84

  10. Cogeneration in Australia. Situation and prospects

    International Nuclear Information System (INIS)

    1997-01-01

    This Research Paper is mainly concerned with the status and prospects for cogeneration in Australia. An introductory chapter reviews the fundamentals of cogeneration, covering both technical and institutional aspects. A range of technologies are employed in cogeneration: these technologies and their efficiency and environmental impact effects are discussed in Chapter 2. The economics of cogeneration are a major factor in the profitability of current and potential plants. Potential factors affecting cogeneration economics are discussed .The status of cogeneration in Australia is reviewed for each State and Territory, and includes a number of case studies of existing plants. Government (federal, state, territory) policies that have a significant impact on the attractiveness of cogeneration are reviewed. Finally, the future prospects for cogeneration in Australia, drawing on the preceding chapters and a review of estimated potentials for cogeneration in Australia are presented

  11. Plant concept of heat utilization of high temperature gas-cooled reactors. Co-generation and coal-gasification

    International Nuclear Information System (INIS)

    Tonogouchi, M.; Maeda, S.; Ide, A.

    1996-01-01

    In Japan, JAERI is now constructing the High temperature Engineering Test Reactor (HTTR) and the new era is coming for the development and utilization of HTR. Recognizing that the heat utilization of HTR would mitigate problems of environment and resources and contribute the effective use and steady supply of the energy, FAPIG organized a working group named 'HTR-HUC' to study the heat utilization of HTR in the field other than electric power generation. We chose three kinds of plants to study, 1) a co-generation plant in which the existing power units supplying steam and electricity can be replaced by a nuclear plant, 2) Coal gasification plant which can accelerate the clean use of coal and contribute stable supply of the energy and preservation of the environment in the world and 3) Hydrogen production plant which can help to break off the use of the new energy carrier HYDROGEN and will release people from the dependence of fossil energy. In this paper the former two plants, Co-generation chemical plant and Coal-gasification plant are focussed on. The main features, process flow and safety assessment of these plants are discussed. (J.P.N.)

  12. Utilizing primary energy savings and exergy destruction to compare centralized thermal plants and cogeneration/trigeneration systems

    International Nuclear Information System (INIS)

    Espirito Santo, Denilson Boschiero do; Gallo, Waldyr Luiz Ribeiro

    2017-01-01

    Rising energy conversion processes efficiencies reduces CO_2 emissions and global warming implications. Decentralized electricity production through cogeneration/trigeneration systems can save primary energy if it operates with high efficiency. High efficiency is obtained when the system produces electricity and a substantial amount of the energy rejected by the prime mover is used to meet site thermal demands. Environmental concerns and international agreements are directing governments of different countries to incentive high efficiency solutions. Centralized thermal plants and cogeneration/trigeneration efficiency are compared through efficiency indicators using the first law of thermodynamics and the second law of thermodynamics. This paper proposes the use of the primary energy savings analysis and the exergy destruction analysis to compare decentralized power production through cogeneration/trigeneration systems and centralized thermal plants. The analysis concluded that both methods achieve the same results if the thermal efficiency indicator is used to compare the methods. The analysis also revealed that trigeneration systems with the same energy input are comparable with quite different thermal efficiency centralized thermal plants. Case 1 is comparable to a 53% thermal efficiency power plant and case 2 is comparable to a 77% thermal efficiency power plant. - Highlights: • Trigeneration and thermal plants are compared using PES and exergy destruction. • The thermal efficiency indicator is used to compare both methods. • The same equivalent thermal efficiency is achieved by both methods. • Same energy input trigeneration is similar to different thermal efficiency plants. • Evaluated trigeneration are comparable to a 53–77% thermal efficiency power plant.

  13. Steam generator design considerations for modular HTGR plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; DeFur, D.D.

    1986-01-01

    Studies are in progress to develop a standard High Temperature Gas-Cooled Reactor (HTGR) plant design that is amenable to serial production and is licensable. Based on the results of trade studies performed in the DOE-funded HTGR program, activities are being focused to emphasize a modular concept based on a 350 MW(t) annular reactor core with prismatic fuel elements. Utilization of a multiplicity of the standard module affords flexibility in power rating for utility electricity generation. The selected modular HTGR concept has the reactor core and heat transport systems housed in separate steel vessels. This paper highlights the steam generator design considerations for the reference plant, and includes a discussion of the major features of the heat exchanger concept and the technology base existing in the U.S

  14. Experimental results and thermodynamic analysis of a natural gas small scale cogeneration plant for power and refrigeration purposes

    International Nuclear Information System (INIS)

    Bazzo, Edson; Nacif de Carvalho, Alvaro; Matelli, José Alexandre

    2013-01-01

    In this work, experimental results are reported for a small scale cogeneration plant for power and refrigeration purposes. The plant includes a natural gas microturbine and an ammonia/water absorption chiller fired by steam. The system was tested under different turbine loads, steam pressures and chiller outlet temperatures. An evaluation based on the 1st and 2nd Laws of Thermodynamics was also performed. For the ambient temperature around 24 °C and microturbine at full load, the plant is able to provide 19 kW of saturated steam at 5.3 bar (161 °C), corresponding to 9.2 kW of refrigeration at −5 °C (COP = 0.44). From a 2nd law point-of-view, it was found that there is an optimal chiller outlet temperature that maximizes the chiller exergetic efficiency. As expected, the microturbine presented the highest irreversibilities, followed by the absorption chiller and the HRSG. In order to reduce the plant exergy destruction, it is recommended a new design for the HRSG and a new insulation for the exhaust pipe. -- Highlights: • A small scale cogeneration plant for power and refrigeration is proposed and analyzed. • The plant is based on a microturbine and a modified absorption chiller. • The plant is analysed based on 1st and 2nd laws of thermodynamics. • Experimental results are found for different power and refrigeration conditions. • The plant proved to be technically feasible

  15. Valuing modular nuclear power plants in finite time decision horizon

    International Nuclear Information System (INIS)

    Jain, Shashi; Roelofs, Ferry; Oosterlee, Cornelis W.

    2013-01-01

    Small and medium sized reactors, SMRs, (according to IAEA, ‘small’ refers to reactors with power less than 300 MWe, and ‘medium’ with power less than 700 MWe) are considered as an attractive option for investment in nuclear power plants. SMRs may benefit from flexibility of investment, reduced upfront expenditure, enhanced safety, and easy integration with small sized grids. Large reactors on the other hand have been an attractive option due to the economy of scale. In this paper we focus on the economic impact of flexibility due to modular construction of SMRs. We demonstrate, using real option analysis, the value of sequential modular SMRs. Numerical results under different considerations of decision time, uncertainty in electricity prices, and constraints on the construction of units, are reported for a single large unit and for modular SMRs. - Highlights: ► Real option value of modular construction in finite time decision horizon. ► Stochastic grid method is used to value the real option. ► Decisions in finite time can differ significantly from infinite decision time. ► Decisions depend on length of decision horizon and price volatilities

  16. A decision support assessment of cogeneration plant for a community energy system in Korea

    International Nuclear Information System (INIS)

    Chung, Mo; Park, Chuhwan; Lee, Sukgyu; Park, Hwa-Choon; Im, Yong-Hoon; Chang, Youngho

    2012-01-01

    We have undertaken a case study of a Combined Heat and Power (CHP) plant applied to a mixture of buildings comprising residential premises, offices, hospitals, stores, and schools in Korea. We proposed five Plans for grouping buildings in the complex and estimated the annual 8760-hourly demands for electricity, cooling, heating, and hot water. For each Plan, we built about ten Scenarios for system construction. Then, we simulated the operation of the system to find the fuel consumption, electricity purchase, and heat recovery. Applying the local rates to the amounts of fuel and electricity, we estimated the operating costs. Combining the operating cost with the initial cost associated with the purchase and construction of the system, we calculated the payback periods for the scenarios. We found that the payback period can be as short as two years for smartly grouped buildings with a generator capacity of around 50% of the peak electricity demand. A progressive electricity rate that applies only to residential premises currently plays a key role in the economic merits. We recommend extending a sound progressive system to other types of building in Korea to promote distributed power production and enhance energy saving practices in general. - Highlights: ►We case-studied cogeneration plants for a residential complex in Korea. ►We estimated the annual 8760-hourly demands for electricity, heating, and cooling. ► We simulated the operation of CHP and estimated the fuel and electricity costs. ► We found payback periods that were shorter than two years for well-planned systems. ► A progressive electricity tariff plays a key role in the economic merits.

  17. Steam process cogeneration using nuclear energy

    International Nuclear Information System (INIS)

    Alonso, G.; Ramirez, R.

    2010-10-01

    Use of energy in a sustainable manner is to make processes more efficient. Oil industry requires of electricity and steam for refinery and petrochemical processes, nuclear energy can be a clean energy alternative. Cogeneration is an option to be assessed by Mexico to provide additional value to electricity generation. Mexico is a country with oil resources that requires process heat for gasoline production among other things. With the concern about the climate change and sustain ability policies it is adequate to use cogeneration as a way to optimize energy resources. Currently there is a national program that considers cogeneration for several Mexican refineries, and the first choices are combined cycle plants and thermo power plants using residual oil. This is long term program. The pebble bed modular reactor (PBMR) is a next generation reactors that works with very high temperatures that can be used to produce steam process along with electricity, in this work two different couplings are assessed for the PBMR reactor to produce steam process, the two couplings are compared for using in the Mexican refineries and some conclusions are given. (Author)

  18. How efficient work biomass cogeneration plants? A survey of plant operators; Wie effizient arbeiten Biomasseheiz(kraft)werke? Befragung von Anlagenbetreibern

    Energy Technology Data Exchange (ETDEWEB)

    Meiller, Martin; Jakuttis, Michael [Fraunhofer-Institut fuer Umwelt-, Sicherheits- und Energietechnik UMSICHT, Sulzbach-Rosenberg (Germany); Binder, Samir [Fraunhofer-Institut fuer Umwelt-, Sicherheits- und Energietechnik UMSICHT, Sulzbach-Rosenberg (Germany); Bayerischer Forschungsverbund Foreta, Sulzbach-Rosenberg (Germany)

    2013-03-01

    The use of biomass has increased very much in recent years. Due to the intensive use, the price of biomass fuels such as wood chips has increased substantially. This development bothers mainly biomass cogeneration plants. Many operators suffered considerable financial losses or even had to file for bankruptcy. The topic of efficiency is one of the central and critical success factors for the long-term viability of biomass-fired plants. (orig.)

  19. Review of the cost estimate and schedule for the 2240-MWt high-temperature gas-cooled reactor steam-cycle/cogeneration lead plant

    International Nuclear Information System (INIS)

    1983-09-01

    This report documents Bechtel's review of the cost estimate and schedule for the 2240 MWt High Temperature Gas-Cooled Reactor Steam Cycle/Cogeneration (HTGR-SC/C) Lead Plant. The overall objective of the review is to verify that the 1982 update of the cost estimate and schedule for the Lead Plant are reasonable and consistent with current power plant experience

  20. Development of SC structure modularization in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Mun, Taeyoup

    2008-01-01

    New Focus on NPP are Rising Concerns on Global Warming, Potential energy crisis (geo-political), Improved reliability and safety of nuclear power plant, Advent of Generation 3+ NPP technology and Economical Energy Resource. New NPPs are 6 units in Korea and 23 in Asia being built, 32 units being planned in China by 2020 (150 by 2050), 10 units being planned in US by 2020 and IAEA expects $200 billions on NPP construction next 25 years (up to 30% of total world energy). □ SC(Steel Plate Concrete) structure · Steel Plate is used as a Structural Element instead of Reinforcing Bars in RC · SC structure consists of Steel Plate with Headed Studs. Connected by Tie-bars - The Primary Purpose of Tie-bars is to Stiffen and Hold Together the Plates during Construction Process - Headed Studs are Welded to the Inside of Steel Plate for composite action □ Benefits of SC Structure · Shorten Construction Duration for Re bar, Forming and Scaffolding Works · Minimize Site Labors · Improve the Construction Quality · Enable Construction Sites to be kept Clean □ SC Modularization · Fit for Modular Construction for Structural Features · Fit for Modular Construction for Structural Features · Inattentively Effective for Integrated Modules · Pre-fabrication, Pre-assembly and Modularization □ Project Overview · Project Name: Development of SC structure for Modularization in NPP · Project Type: Electric Power Industry R and D (Ministry of Knowledge Economy) · Duration: Sep. 2005 ∼ Aug. 2008 (36 Months) · Research Team and Scopes - Project Management: Korea Hydro and Nuclear Power Company (KHNP) - Development of Code and Standards for SC Structure: Korea Society of Steel Construction (KSSC) Korea Electric Power Research Institute (KEPRI) - Development of SC Structural Analysis and Design: Korea Power Engineering Company (KOPEC) - Development of Construction Techniques for SC Modularization: KHNP, Korea Institute of Nuclear Safety(KINS), KOPEC □ Performance

  1. Nuclear Co-Generating Plants for Powering and Heating to Cleaning the Warsaw's Environment

    International Nuclear Information System (INIS)

    Baurski, J.

    2010-01-01

    In 2009 the Polish Government made a decision to introduce nuclear power to Poland. Two nuclear power plants (NPPs) will be constructed nearly at the same time - the first unit should start operation in 2020, and by 2030 there should be about 6000 MWe added to the national electrical grid. The Commissioner of the Government was nominated to introduce the Polish Nuclear Power Program (PNPP). One of the four vertically integrated - the biggest energy company (PGE - the Polish Energy Group with headquarters in Warsaw) was appointed to prepare investments. These activities are planned in four stages: I. up to 31.12.2010 - The PNPP will be prepared and the program must then be accepted by the Government. II. 2011 - 2013 - Sites will be determined, and the contract for construction of the first NPP will be closed. III. 2014 - 2015 - Technical specifications will be prepared and accepted according the law. IV. 2016 - 2020 - The first NPP in Poland will be constructed. At present, the Government is receiving proposals from some regions of Poland asking that they be chosen for the NPP. One of the obvious locations for the NPP is a 40-kilometer vicinity of Warsaw (1.8 mln inhabitants). The need for both electric power and heat is increasing because of the rapidly growing town. It gives the extremely valuable chance for a very high thermodynamic efficiency of 80% in co-generation instead of 33% (max 36% for EPR-1600) for NPP generated electric power only. The Warsaw heating system has a capacity of 3950 MWt and is the biggest among EU countries. It is the third biggest in the world. Two NPPs, each of 2 x 1000 MWe could be built on the Vistula River up and down the town. In 2005, UE calculated losses caused by gas emissions at 24 mld eur, and the span of human lives was six months shorter in western countries and 8 months shorter in Poland. Warsaw's atmosphere is very polluted also because there are four heat and power generating plants: three coal and one oil -fired. In these

  2. The modularization construction of piping system installation in AP1000 plant

    International Nuclear Information System (INIS)

    Lu Song; Wang Yuan; Wei Junming

    2012-01-01

    Modularization construction is the main technique used in AP1000 plants, the piping Modularization installation will impact directly to the module construction as the important part of the Modularization construction. After the piping system has took the modularization design in AP1000 plants, some installation works of piping system has moved from the site to fabrication shop. With improving the construction quality and minimizing the time frame of project, the critical paths can be optimized. This paper has analyzed the risk and challenge that met during the modularization construction period of piping systems though introducing the characteristic of modularization construction for AP1000 piping systems, and get construction experiences from the First AP1000 plants in the world, then it will be the firmly basics for the wide application of modularization construction in the future. (authors)

  3. A technical analysis for cogeneration systems with potential applications in twelve California industrial plants. [energy saving heat-electricity utility systems

    Science.gov (United States)

    Moretti, V. C.; Davis, H. S.; Slonski, M. L.

    1978-01-01

    In a study sponsored by the State of California Energy Resources Conservation and Development Commission, 12 industrial plants in five utility districts were surveyed to assess the potential applications of the cogeneration of heat and electricity in California industry. Thermodynamic calculations were made for each plant in determining the energy required to meet the existing electrical and steam demands. The present systems were then compared to conceptual cogeneration systems specified for each plant. Overall energy savings were determined for the cogeneration applications. Steam and gas turbine topping cycle systems were considered as well as bottoming cycle systems. Types of industries studied were: pulp and paper, timber, cement, petroleum refining, enhanced oil recovery, foods processing, steel and glass

  4. Economics and market potential of the modular high temperature reactor in the Netherlands

    International Nuclear Information System (INIS)

    Lako, P.; Stoffer, A.; Beeldman, M.

    1995-04-01

    This report considers the economics and market potential of the modular HTR under circumstances representative for the Netherlands. First power generation costs for different types of nuclear power plants, such as the HTR, are estimated. Then a comparison is made with power generation costs of fossil fuel fired alternatives. The market potential of the modular HTR for industrial cogeneration is analysed, as well as the fossil fuel prices needed for economic competition with a gas fired plant for cogeneration. At last the economics of the HTR are analysed under different CO 2 reduction constraints. (orig.)

  5. Feasibility of the operation CFE`s conventional power plants for industrial cogeneration; Factibilidad de operar las centrales termoelectricas convencionales de la CFE para cogeneracion industrial

    Energy Technology Data Exchange (ETDEWEB)

    Buendia Dominguez, Eduardo H.; Acosta Torres, Rosa Aracely [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    An analysis is made on how cogeneration could help to maximize the power plant performance since thanks to cogeneration this type of power plants could utilize a part of the waste energy to be supplied to other processes. Also mention is made of the utilization of computer programs to help the design and the realization of functioning tests of this type of power plants. An economic evaluation is presented on the feasibility of operating this type of power plants as cogeneration units and it is concluded that the operation of fossil power plants in the cogeneration mode is not affected by the site where the power plant is located [Espanol] Se analiza como la cogeneracion podria ayudar a maximizar el rendimiento de las centrales termoelectricas ya que gracias a la cogeneracion este tipo de centrales podrian utilizar una parte de la energia desechada para suministrarla a otros procesos. Tambien se menciona la utilizacion de programas de computo para auxiliar en el diseno o realizacion de pruebas de funcionamiento sobre este tipo de plantas. Se presenta una evaluacion economica sobre la factibilidad de operar este tipo de plantas como unidades de cogeneracion y se concluye en que la operacion de centrales termoelectricas en modo de cogeneracion no se ve afectado por el sitio donde se encuentra la central

  6. Feasibility of the operation CFE`s conventional power plants for industrial cogeneration; Factibilidad de operar las centrales termoelectricas convencionales de la CFE para cogeneracion industrial

    Energy Technology Data Exchange (ETDEWEB)

    Buendia Dominguez, Eduardo H; Acosta Torres, Rosa Aracely [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    An analysis is made on how cogeneration could help to maximize the power plant performance since thanks to cogeneration this type of power plants could utilize a part of the waste energy to be supplied to other processes. Also mention is made of the utilization of computer programs to help the design and the realization of functioning tests of this type of power plants. An economic evaluation is presented on the feasibility of operating this type of power plants as cogeneration units and it is concluded that the operation of fossil power plants in the cogeneration mode is not affected by the site where the power plant is located [Espanol] Se analiza como la cogeneracion podria ayudar a maximizar el rendimiento de las centrales termoelectricas ya que gracias a la cogeneracion este tipo de centrales podrian utilizar una parte de la energia desechada para suministrarla a otros procesos. Tambien se menciona la utilizacion de programas de computo para auxiliar en el diseno o realizacion de pruebas de funcionamiento sobre este tipo de plantas. Se presenta una evaluacion economica sobre la factibilidad de operar este tipo de plantas como unidades de cogeneracion y se concluye en que la operacion de centrales termoelectricas en modo de cogeneracion no se ve afectado por el sitio donde se encuentra la central

  7. Using in-house expertise in negotiating power sales contracts for industrial cogeneration plants

    International Nuclear Information System (INIS)

    Yott, R.A.

    1992-01-01

    Energy has always been a strategic component of Air Products and Chemicals production costs. In fact, Air Products is among the top consumers of electricity and natural gas in the U.S. Consequently, Air Products has developed a multifaceted Corporate Energy Department. The advent of PURPA in 1978 and the success enjoyed by Air Products in selling industrial gases over the fence to industrial customers as a integral part of their manufacturing system led Air Products into the industrial cogeneration business. This paper briefly summarizes Air Products entry into the industrial cogeneration market and the role that Air Products Energy Department has played in making this new business focus a success. It highlights how Air Products has been able to transfer its in-house expertise in purchasing power to the marketing, bidding, contract negotiation and avoided cost forecasting functions so critical in the successful development of industrial cogeneration opportunities. At Air Products we believe our long association with the utility industry first as a cost-conscious customer and more recently as an electric energy supplier has enhanced our competitive position. The same success story could be repeated at your company if you know what to look for and are not afraid to expand the horizons and responsibilities of your energy department

  8. Electric utility system benefits of factory packaged GE LM Modular Generator sets

    Energy Technology Data Exchange (ETDEWEB)

    West, G.

    1994-12-31

    Electric utility system benefits of factory packaged GE LM modular generator sets are outlined. The following topics are discussed: GE LM gas turbine history, operating experience, maintenance, gas turbine spare engines, modular gas turbine generator sets, typical LM2500 cogeneration plant and STIG cycle plant, factory packaging concept, gas turbine/generator package, performance, comparison, competitive capital cost, phased construction, comparison of revenue requirements, capacity evaluation, heat rate evaluation, fuel evaluation, startup, and dispatch flexibility without maintenance penalty.

  9. Development of SC structure modularization in Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Taeyoup [Korea Hydro and Nuclear Power Co., Ltd., Seoul (Korea, Republic of)

    2008-04-15

    New Focus on NPP are Rising Concerns on Global Warming, Potential energy crisis (geo-political), Improved reliability and safety of nuclear power plant, Advent of Generation 3+ NPP technology and Economical Energy Resource. New NPPs are 6 units in Korea and 23 in Asia being built, 32 units being planned in China by 2020 (150 by 2050), 10 units being planned in US by 2020 and IAEA expects $200 billions on NPP construction next 25 years (up to 30% of total world energy). {open_square} SC(Steel Plate Concrete) structure {center_dot} Steel Plate is used as a Structural Element instead of Reinforcing Bars in RC {center_dot} SC structure consists of Steel Plate with Headed Studs. Connected by Tie-bars - The Primary Purpose of Tie-bars is to Stiffen and Hold Together the Plates during Construction Process - Headed Studs are Welded to the Inside of Steel Plate for composite action {open_square} Benefits of SC Structure {center_dot} Shorten Construction Duration for Re bar, Forming and Scaffolding Works {center_dot} Minimize Site Labors {center_dot} Improve the Construction Quality {center_dot} Enable Construction Sites to be kept Clean {open_square} SC Modularization {center_dot} Fit for Modular Construction for Structural Features {center_dot} Fit for Modular Construction for Structural Features {center_dot} Inattentively Effective for Integrated Modules {center_dot} Pre-fabrication, Pre-assembly and Modularization {open_square} Project Overview {center_dot} Project Name: Development of SC structure for Modularization in NPP {center_dot} Project Type: Electric Power Industry R and D (Ministry of Knowledge Economy) {center_dot} Duration: Sep. 2005 {approx} Aug. 2008 (36 Months) {center_dot} Research Team and Scopes - Project Management: Korea Hydro and Nuclear Power Company (KHNP) - Development of Code and Standards for SC Structure: Korea Society of Steel Construction (KSSC) Korea Electric Power Research Institute (KEPRI) - Development of SC Structural Analysis and Design

  10. Micro-size cogeneration plants and virtual power plants. New energy landscapes; Mikro-KWK und virtuelle Kraftwerke. Neue Energielandschaften

    Energy Technology Data Exchange (ETDEWEB)

    Roon, Serafin von [Forschungsstelle fuer Energiewirtschaft e.V., Muenchen (Germany)

    2009-07-01

    Combined heat and power generation is an established technology. With micro-size cogeneration units, the technology is now available to private single or multiple dwellings and for decentral power supply of residential blocks. With the right political boundary conditions and integrated into virtual power stations, this is an option for enhanced use of renewable energy sources and for decentral, flexible and climate-friendly heat and power generation in buildings. Economic efficiency analyses by experts, high utilisation rates, innovative developments of the manufacturers and a positive public image are all in favour of a great future for micro-size cogeneration units. (orig.)

  11. Economic viability study of micro-cogeneration plants at residential scale; Estudo de viabilidade economica de plantas de micro-cogeracao em escala residencial

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, Jose Carlos Charamba; Ramalho e Soares, Ravi [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Michalewicz, Jacek Stanislaw [Centro Federal de Educacao Tecnologica de Pernambuco (CEFET-PE), Recife, RN (Brazil)

    2008-07-01

    This paper presents the results of a technical and economical feasibility study for the use of micro cogeneration systems in residential scale, using natural gas as an energy source. It was considered two micro-cogeneration systems to meet demand of some types of fictitious establishment of commercial and residential plants, each with its advantages and disadvantages. The first system has as a main driving machine a micro turbine with a nominal capacity of 30 kw, the second one uses a gas motor-generator, with nominal capacity of 35 kw. (author)

  12. Fuel from waste solvents; Thermal disposal of spent, non-halogenated solvents in cogeneration plants. Kraftstoff aus Loesemittelabfaellen; Thermische Verwertung von verbrauchten, nicht halogenierten Loesemitteln in Blockheizkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, E

    1993-10-01

    Organic solvents are used in many sectors. When their specific properties are exhausted, they must be disposed of. One way to dispose of solvents would be to use them as a fuel. Such fuel can be used in cogeneration plants, which deliver power and heat with a high degree of efficiency. (orig./BBR)

  13. Exhaust of plant oil fuelled cogeneration unit drives a two-stage refrigerating absorber; Abgas aus Pflanzenoel-BHKW treibt zweistufige Absorptionskaeltemaschine an

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, W.

    2008-05-15

    Skating rinks are expensive to operate. In view of exploding energy prices, energetic optimisation is economically favourable even in more recent buildings. In the Hacker-Pschorr-Arena building at Bad Toelz, which was commissioned in 2004, the space HVAC system was modernized. A plant oil fuelled cogeneration unit and an exhaust-driven two-stage refrigerating absorber were installed. (orig.)

  14. Membrane Distillation and Applications for Water Purification in Thermal Cogeneration. Pilot Plant Trials

    Energy Technology Data Exchange (ETDEWEB)

    Kullab, Alaa; Martin, Andrew

    2007-12-15

    Water treatment is an important auxiliary process in all thermal cogeneration plants. In this context membrane distillation (MD) is a novel technology that is potentially advantageous to technologies like reverse osmosis in the following ways: ability to utilize low-grade heat; reduced sensitivity to fluctuations in pH or salt concentrations; and lower capital and operation and maintenance costs (assumed in the case of fully-developed technology only). This research is a continuation of a Varmeforsk prestudy (report no. 909) and encompasses field trials at Idbaecken Combined Heat and Power (CHP) Facility (Nykoeping). Target groups for this study include environmental engineers with particular interest in emerging water purification technologies. The test rig consisted of a five-module MD unit capable of producing 1-2 m3/day purified water. District heating supply was employed for heating; feed stocks include municipal water and flue gas condensate. Field trials can be divided into three phases: (1) parametric study of yield; (2) long term operation with municipal water as feed stock; and (3) evaluation of flue gas condensate as a feed stock. Testing commenced in the beginning of April 2006. The performance of MD concerning production rate is highly dependent on the feed stock temperature, flow rate and temperature difference across the membrane. Initial results for municipal water feed stocks showed that product water fluxes were in line with previous experiments, thus confirming the findings made in the prestudy. Connecting several MD modules in series has the advantage of reducing the electrical energy consumption needed for recirculation; the penalty comes in less efficient operation from flux point of view. This is more critical in the case of low flow rates, and hence much careful design studies are needed to optimize the system. Regarding the long term performance, the test period lasted for 13 days on a continuous operation basis before the first flux

  15. Optimisation of emissions and energy efficiency of cogeneration plants operated with biogas. 2. rev. ed.; Emissionsoptimierung und Energieeffizienz biogasbetriebener Blockheizkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Aschmann, Volker; Kissel, Rainer; Gronauer, Andreas

    2008-09-15

    Due to the utilization of biogas for energy production, the release of greenhouse gases can be reduced. It is important to ensure that emissions of harmful gases in the engine combustion of biogas can be minimized. Within the last two years, the demand for highly performant engines increased. This resulted in an enhanced competition among engine manufacturers. This was followed by technically modified and optimized aggregates. In practice, however, there exist not always optimal combustion conditions. There must be a compromise between a high performance and low emission in the combustion of biogas in cogeneration plants. The contribution under consideration reports on the feasibility of this compromise and on the influence of the maintenance of engines on the compromise.

  16. Concept of a HTR modular plant for generation of process heat in a chemical plant

    International Nuclear Information System (INIS)

    1991-07-01

    This final report summarizes the results of a preliminary study on behalf of Buna AG and Leunawerke AG. With regard to the individual situations the study investigated the conditions for modular HTR-2 reactors to cover on-site process heat and electric power demands. HTR-2 reactor erection and operation were analyzed for their economic efficiency compared with fossil-fuel power plants. Considering the prospective product lines, the technical and economic conditions were developed in close cooperation with Buna AG and Leunawerke AG. The study focused on the technical integration of modular HTR reactors into plants with regard to safety concepts, on planning, acceptance and erection concepts which largely exclude uncalculable scheduling and financial risks, and on comparative economic analyses with regard to fossil-fuel power plants. (orig.) [de

  17. Performance investigation of a novel water–power cogeneration plant (WPCP) based on humidification dehumidification (HDH) method

    International Nuclear Information System (INIS)

    He, W.F.; Han, D.; Xu, L.N.; Yue, C.; Pu, W.H.

    2016-01-01

    Highlights: • A novel water–power cogeneration plant (WPCP) is proposed. • Energy analysis of the proposed WPCP is achieved. • Comparison of the WPCP performance at different pressures is fulfilled. • Performance correlation between the HDH desalination and ORC power subsystems is revealed. - Abstract: Humidification dehumidification (HDH) technology was well applied to produce freshwater in the desalination system. However, besides the demand of freshwater, power is also required simultaneously in most situations. In the paper, a novel water–power cogeneration plant (WPCP) based on the HDH desalination system coupled with the organic Rankine cycle (ORC) is proposed. Energy analysis for the proposed combined system at different appointed operation parameters is achieved, and the corresponding performance correlation between the HDH desalination and ORC power system are revealed. It is verified that the production of freshwater and electricity can be gained synchronously in the suggested novel platform, and the performance of the whole system is really sensitive to the operation parameters of the HDH desalination system. It is found that after the regulation of the operation pressure, p, and the seawater temperature at the outlet of the seawater heater, T sw,2 , for the HDH desalination from p = 0.1 MPa, T sw,2 = 353.15 K to p = 0.3 MPa, T sw,2 = 383.15 K, a maximum elevation, 25.46 kg h −1 for the freshwater production, 4.17 kW for the electricity and 2% for the extended gained output ratio (EGOR) is obtained. Furthermore, owing to the asynchronism between the specific production and the final energy utilization efficiency, the balance should be optimized among the demand of the freshwater and power and the efficiency of the novel WPCP.

  18. A biofuel-based cogeneration plant in a natural gas expansion system: An energetic and economic assessment

    International Nuclear Information System (INIS)

    Badami, Marco; Modica, Stefano; Portoraro, Armando

    2017-01-01

    Highlights: • A Natural Gas Turbo Expander system with a rapeseed oil fueled CHP is studied. • The experimental data of the plant are considered in the analyses. • The energetic index of performance shows the attractiveness of the plant. • Incentives and fuel price volatility effects on economic profitability are analysed. - Abstract: The paper deals with an analysis of the energetic and economic performance of a City Gas Station (CGS) plant, made up of a rapeseed oil cogenerator coupled to a turbo-expansion system for the reduction of natural gas pressure, which is currently in operation in Italy. Although this kind of systems concept is well known, the plant can be considered unusual because the heat needed to pre-heat the gas before its expansion is obtained from a renewable source. The aim of the paper is to analyse the energetic efficiency of the plant and its economic viability, which is affected to a great extent by subsidizing energy policies and by the volatility of vegetable oil prices. All the evaluations have been based on a real set of experimental data.

  19. Modularized construction, structural design and analysis of CANDU 3 plant

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, J K; Wollin, S; Selvadurai, S; Saudy, A M [Atomic Energy of Canada Ltd., Saskatoon, SK (Canada)

    1996-12-31

    CANDU 3 is rated at 450 MW electric, and is a smaller and advanced version of CANDU reactors successfully operating in Canada and abroad. The design uses modularization to minimize the construction schedule and thereby reduce cost. The paper (which is published only as a long summary), deals with the concept of modularization, and with stress analysis of the various civil structures.

  20. Modularized construction, structural design and analysis of CANDU 3 plant

    International Nuclear Information System (INIS)

    Biswas, J.K.; Wollin, S.; Selvadurai, S.; Saudy, A.M.

    1995-01-01

    CANDU 3 is rated at 450 MW electric, and is a smaller and advanced version of CANDU reactors successfully operating in Canada and abroad. The design uses modularization to minimize the construction schedule and thereby reduce cost. The paper (which is published only as a long summary), deals with the concept of modularization, and with stress analysis of the various civil structures

  1. Modular He-cooled divertor for power plant application

    International Nuclear Information System (INIS)

    Diegele, Eberhard; Kruessmann, R.; Malang, S.; Norajitra, P.; Rizzi, G.

    2003-01-01

    Gas cooled divertor concepts are regarded as a suitable option for fusion power plants because of an increased thermal efficiency for power conversion systems and the use of a coolant compatible with all blanket systems. A modular helium cooled divertor concept is proposed with an improved heat transfer. The concept employs small tiles made of tungsten and brazed to a finger-like structure made of Mo-alloy (TZM). Design goal was a heat flux of at least 15 MW/m 2 and a minimum temperature of the structure of 600 deg.C. The divertor has to survive a number of cycles (100-1000) between operating temperature and room temperature even for the steady state operation assumed. Thermo-hydraulic design requirements for the concepts include to keep the pumping power below 10% of the thermal power to the divertor plates, and simultaneously achieving a heat transfer coefficient in excess of 60 kW/m 2 K. Inelastic stress analysis indicates that design allowable stress limits on primary and secondary (thermal) stresses as required by the ITER structural design criteria are met even under conservative assumptions. Finally, critical issues for future development are addressed

  2. Study on modular technology based on the reference nuclear power plant

    International Nuclear Information System (INIS)

    Lu Qinwu; Zhao Shuyu; Li Yi; Han Xiaoping; Chai Weidong; Zhang Shuxia

    2014-01-01

    As an important technology for shortening the construction period and reducing the cost of nuclear power project, modular technology has become one of the development orientations of the third generation nuclear power plant. Taking CPR1000 nuclear power reactor as reference plant and drawing on advanced foreign technology of modularization, the overall concept design has been completed with the help of the self-developed 3D modular design system. On this basis, a typical detailed design work has been carried out so as to verify the feasibility of technology. Besides, an analysis on implementation of modular technology has been made from two aspects (procurement and construction), and the feasibility of research results in actual project has been evaluated. It provides references for the promotion of self-reliant modular technology in nuclear power project in China. (authors)

  3. Sizes of secondary plant components for modularized IRIS balance of plant design

    International Nuclear Information System (INIS)

    Williamson, Martin; Townsend, Lawrence

    2003-01-01

    Herein we report on a conceptual design for a balance of plant (BOP) layout to coordinate with IRIS-like plants. The report consists of results of calculations that sizes of various BOP components. These calculations include the thermodynamic analyses and general sizing of the components in order to determine plant capability and plant layout for studies on modularity and transportability. Mathematical modeling of the BOP system involves a modified ORCENT2 code as well as standard heat transfer methods. Using typical values for PWR type plants, a general BOP design, and IRIS steam generator values, an ORCENT2 heat balance is carried out for the secondary side of the plant. Using the ORCENT2 output, standard heat transfer methods are then used to calculate system performance and component sizes. (author)

  4. System analysis of CO_2 sequestration from biomass cogeneration plants (Bio-CHP-CCS). Technology, economic efficiency, sustainability

    International Nuclear Information System (INIS)

    Hartmann, Claus

    2014-10-01

    In the present work a system analysis is carried out to determine the extent to which a combination of the three areas of energetic biomass use, combined heat and power (CHP) and CO_2 sequestration (CCS - Carbon Capture and Storage) is fundamentally possible and meaningful. The term ''CO_2 sequestration'' refers to the process chain from CO_2 capture, CO_2 transport and CO_2 storage. While the use of biomass in combined heat and power plants is a common practice, CO_2 sequestration (based on fossil fuels) is at the research and development stage. A combination of CCS with biomass has so far been little studied, a combination with combined heat and power plants has not been investigated at all. The two technologies for the energetic use of biomass and cogeneration represent fixed variables in the energy system of the future in the planning of the German federal government. According to the lead scenario of the Federal Ministry of the Environment, electricity generation from biomass is to be almost doubled from 2008 to 2020. At the same time, the heat generated in cogeneration is to be trebled [cf. Nitsch and Wenzel, 2009, p. 10]. At the same time, the CCS technology is to be used in half of all German coal-fired power plants until 2030 [cf. Krassuki et al., 2009, p. 17]. The combination of biomass and CCS also represents an option which is conceivable for the German federal policy [cf. Bundestag, 2008b, p. 4]. In addition, the CCS technology will provide very good export opportunities for the German economy in the future [cf. Federal Government, 2010, p. 20]. The combination of biomass combined heat and power plants with CCS offers the interesting opportunity to actively remove CO_2 from the atmosphere as a future climate protection instrument by means of CO_2 neutrality. Therefore, in the energy concept of the German federal government called for a storage project for industrial or biogenic CO_2 emissions to be established until 2020, as well as the use of CO_2 as

  5. A wood-waste fuelled indirectly-fired gas turbine cogeneration plant for sawmill application. Preliminay engineering and financial evaluation. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    The overall objective of this project is to develop a cost-effective wood waste-fired power generation and lumber drying system for Canadian sawmill applications. The system proposed and evaluated in this project is a wood waste-fuelled, indirectly-fired gas turbine cogeneration plant. Research, design and development of the system has been planned to take place in a number of phases. The first phase consists of a preliminary engineering design and financial evaluation of the system and is the subject of this report. This analysis focuses on British Columbia since it is the largest potential market for the sawmill cogeneration system. In order to provide design parameters for the cogeneration system, operational characteristics were compiled for a typical sawmill in the interior of British Columbia. A number of alternative design concepts were reviewed before arriving at the indirect-fired turbine concept selected for development in this project. The general concept involves the use of an open Brayton-cycle gas turbine as the prime mover to generate electrical power, while process heat for the dry-kiln is obtained by waste heat recovery from the turbine exhaust gas. The proposed system has many advantages over a conventional steam based cogeneration system and economic analysis indicates that the system generates very attractive financial returns over a variety of conditions. 7 refs., 8 figs., 8 tabs.

  6. EARLY ENTRANCE CO-PRODUCTION PLANT--DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    John W. Rich

    2001-03-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power and Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement with the USDOE, National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co--product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases: Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report is WMPI's third quarterly technical progress report. It covers the period performance from October 1, 2001 through December 31, 2001.

  7. Modeling and optimization of a novel solar chimney cogeneration power plant combined with solid oxide electrolysis/fuel cell

    International Nuclear Information System (INIS)

    Joneydi Shariatzadeh, O.; Refahi, A.H.; Abolhassani, S.S.; Rahmani, M.

    2015-01-01

    Highlights: • Proposed a solar chimney cogeneration power plant combined with solid oxide fuel cell. • Conducted single-objective economic optimization of cycle by genetic algorithm. • Stored surplus hydrogen in season solarium to supply electricity in winter by SOFC. - Abstract: Using solar chimney in desert areas like El Paso city in Texas, USA, with high intensity solar radiation is efficient and environmental friendly. However, one of the main challenges in terms of using solar chimneys is poor electricity generation at night. In this paper, a new power plant plan is proposed which simultaneously generates heat and electricity using a solar chimney with solid oxide fuel cells and solid oxide electrolysis cells. In one hand, the solar chimney generates electricity by sunlight and supplies a part of demand. Then, additional electricity is generated through the high temperature electrolysis which produces hydrogen that is stored in tanks and converted into electricity by solid oxide fuel cells. After designing and modeling the cycle components, the economic aspect of this power plant is considered numerically by means of genetic algorithm. The results indicate that, 0.28 kg/s hydrogen is produced at the peak of the radiation. With such a hydrogen production rate, this system supplies 79.26% and 37.04% of the demand in summer and winter respectively in a district of El Paso city.

  8. Analysis of gas turbine cogeneration plants in Italy; Indagine sulla funzionalita` degli impianti di cogenerazione conturbina a gas operanti in Italia

    Energy Technology Data Exchange (ETDEWEB)

    Romani, Rino; Vignati, Sigfrido [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Energia

    1997-10-01

    The purpose of this study is to improve, by random analysis, the current knowledge about functional and running data of gas turbine cogeneration plants in Italy. The analysis consider simple and combined cycle gas turbines plant with electric power less 30.000 k W per unit and involves a sample of 44 units according to a randomized model consisting of 112 gas turbines. The collected data show different plant selection criteria, energy performances, reliability and availability values as well as maintenance costs. These data support some general suggestions and recommendations for a better selection and utilization of these plants.

  9. Feasibility study on revamping work for a cogeneration power plant at Cherkassy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective of saving energy and reducing greenhouse gas emission, investigations and discussions were given on modification of Cherkassyoblenegro Combined Heat and Power Station in the Republic of Ukraine. The project calls for shutdown of the first block and the heat supplying auxiliary boilers being the oldest facilities in the existing station, and utilization of the second block for emergency use. The new facilities will consist of natural gas burning gas turbine combined cycle cogeneration facilities of 200-MW class including two gas turbines, one steam turbine, two each of waste heat recovery boilers, ducts and stacks. As a result of the discussions, if the project execution period is set for 20 years, the energy saving effect would be 144,215 tons of crude oil equivalent annually, and the greenhouse gas emission reducing effect would be 431,421 t-CO2 annually. The total fund amount required for the project is estimated to be 185,700,000 dollars. With regard to the profitability, the internal profit rate for the total fund after tax would be 8.3%, and the principal and interest repayment multiplying factor for single year would be greater than 1.9, whereas the profitability can be anticipated if the financing is available under generous conditions. (NEDO)

  10. Cogeneration at FIAT AVIO (Italy)

    International Nuclear Information System (INIS)

    Cantoni, A.

    1991-01-01

    Brief notes are provided on the FIAT (Italy) - Foster Wheeler joint venture to equip about 20 FIAT manufacturing plants with 50 MW(e) combined cycle cogeneration plants which will make use of a gas turbine whose design is based on that of the successful General Electric aeronautic LM 6000 engine. The paper also discusses solutions, e.g., wet and dry methods, being considered for nitrogen ox des control, and cites the need in Italy for the optimization of Government licensing procedures for small and medium sized manufacturing firms opting for on-site power generation through cogeneration plants

  11. Numerical simulation of a cogeneration plant with micro gas turbine using computational tool EES; Simulacao numerica de uma planta de cogeracao com microturbina a gas natural utilizando ferramenta computacional EES

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Guilherme L.B. de; Oliveira, Andrezza C.C.T.; Dutra, Jose C.C. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2008-07-01

    Today, the cogeneration of energy has been widely disseminated and presents itself as a very viable alternative for energy savings, reducing CO2 emissions by conducting reuse energy. This study aims to develop a software for simulation, analysis and optimization of a cogeneration system that uses a natural gas turbine as a primary source. The data contained in the software were similar to existing data in a micro-cogeneration plant installed at UFPE and the results showed up in the standard presented by actual plant. We conclude that the software serves as a tool to pre-analysis of the plant of choice for cogeneration equipment to be installed as: pumps, heat exchangers, chillers, cooling towers. (author)

  12. Cogeneration Systems; Sistemas de Cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez M, Manuel F; Huante P, Liborio; Romo M, Cesar A [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2006-07-01

    The present article deals on relevant aspects on the subject of cogeneration within the Mexican territorial limits. In the first place it is presented the role of Mexico in terms of its cogeneration potential, the type of service that has obtained from this predominant modality of cogeneration for self-supplying, the most propitious sectors to develop it, its legislations on the matter, the projects made for the implementation of cogeneration plants, as well as the existing cogeneration schemes for its respective optimization proposals. Without leaving out the analysis on the different types of evaluation on the efficiency of cogeneration systems and the aspects to consider for the election of a generation cycle. [Spanish] El presente articulo trata sobre aspectos relevantes en materia de cogeneracion dentro de los limites territoriales de la nacion mexicana. Se muestra en primer lugar el papel de Mexico en terminos de su potencial de cogeneracion, el tipo de servicio que ha obtenido de esta predominantemente (modalidad de cogeneracion para autoabastecimiento), los sectores mas propicios para desarrollarla, sus legislaciones al respecto, los proyectos realizados para la implementacion de plantas de cogeneracion, asi como los esquemas de cogeneracion existentes con sus respectivas propuestas de optimizacion. Sin dejar de lado el analisis sobre los distintos tipos de evaluacion de la eficiencia de sistemas de cogeneracion y los aspectos a considerar para la eleccion de un ciclo de generacion.

  13. Cogeneration using a nuclear reactor to generate process heat

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Ramirez, Ramon

    2009-01-01

    Some of the new nuclear reactor technologies (Generation III+) are claiming the production of process heat as an additional value to electricity generation. These technologies are still under development and none of them has shown how this can be possible and what will be the penalty in electricity generation to have this additional product. The current study assess the likeliness of generate process heat from a Pebble Bed Modular Reactor to be used for a refinery showing different plant balance and alternatives to produce and use that process heat. An actual practical example is presented to demonstrate the cogeneration viability using the fact that the PBMR is a modular small reactor and also the challenges that this option has. (author)

  14. Tax issues in structuring effective cogeneration vehicles

    International Nuclear Information System (INIS)

    Yukich, J.M.

    1999-01-01

    A general overview of the Canadian income tax laws under which cogeneration plants will operate was presented. Highlights of some of the more important tax issues associated with cogeneration operations were included. This includes some of the specific rules dealing with the availability of the Manufacturing and Processing tax, credit, capital cost allowance, the Specified Energy Property rules and the tax treatment of Canadian Renewable and Conservation Expenses including the ability of a company to transfer such expenses to shareholders. Since it is expected that future cogeneration plants will have more than one owner, this paper reviewed the various legal structures through which multiple owners can own and run their cogeneration operations. Tax considerations related to the scale of a cogeneration plant were also reviewed

  15. Methodology for the optimal design of an integrated first and second generation ethanol production plant combined with power cogeneration.

    Science.gov (United States)

    Bechara, Rami; Gomez, Adrien; Saint-Antonin, Valérie; Schweitzer, Jean-Marc; Maréchal, François

    2016-08-01

    The application of methodologies for the optimal design of integrated processes has seen increased interest in literature. This article builds on previous works and applies a systematic methodology to an integrated first and second generation ethanol production plant with power cogeneration. The methodology breaks into process simulation, heat integration, thermo-economic evaluation, exergy efficiency vs. capital costs, multi-variable, evolutionary optimization, and process selection via profitability maximization. Optimization generated Pareto solutions with exergy efficiency ranging between 39.2% and 44.4% and capital costs from 210M$ to 390M$. The Net Present Value was positive for only two scenarios and for low efficiency, low hydrolysis points. The minimum cellulosic ethanol selling price was sought to obtain a maximum NPV of zero for high efficiency, high hydrolysis alternatives. The obtained optimal configuration presented maximum exergy efficiency, hydrolyzed bagasse fraction, capital costs and ethanol production rate, and minimum cooling water consumption and power production rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Feasibility study on the St. Petersburg City heat and electric cogeneration plant No.2, etc. scrap and build project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing greenhouse effect gas emissions in line with the Joint Implementation, a survey was made of the scrap and build project for the superannuated Central Heat Power Station in St. Petersburg City. The survey team visited the relevant sites twice during 1999. The team drafted an improvement plan afterwards and presented it to the Russian counterpart, LENENEGRO. Based on the discussions with LENENEGRO, it was determined that the proposed combined cycle cogeneration plant would contain three 67MW-class gas turbines, three heat recovery steam generators and one back pressure turbine to achieve the generation capacity of approximately 200MW and heat supply capacity of 200G cal/hr. The total investment required for this project is about 140 million dollars. The term of the construction work is estimated at 36 months. It is estimated that the implementation of the project will reduce 1,481,979 tons of CO2 per year, or a total of 40,013,434 tons in 27 years after the commencement of operation. In addition, the terminal power generation efficiency will be improved from the current 18.68% to 41%, which leads to an annual fuel saving of 546,301 tons of crude oil or its equivalent. (NEDO)

  17. Market conditions for cogeneration plants. Ensuring efficiency; Marktbedingungen fuer KWK-Anlagen. Wirtschaftlichkeit sicherstellen

    Energy Technology Data Exchange (ETDEWEB)

    Ottersbach, Joerg; Otto, Falk; Schrader, Knut [BET Buero fuer Energiewirtschaft und Technische Planung GmbH, Aachen (Germany)

    2013-07-15

    Due to declining wholesale prices for electricity, the profitability of base load power and heat generation plants decreases significantly. Therefore, concepts such as the increased use of electricity or natural plant flexibility have to be developed. The improved framework conditions by means of the amended Combined Heat and Power Act are helpful. When modernising plants, it is even possible under favorable conditions and with a good concept to fully refinance the investment on the CHP surcharges.

  18. Simulaton of the Avedøreværket Unit 1 Cogeneration Plant with DNA

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Houbak, Niels

    2003-01-01

    The simulator contest proposed for the ECOS 2003 conference has been solved using the DNA energy system simulator. The contest concerns the steam process of the Avedøreværket Unit 1 (AVV1) power plant. The plant is a 250 MWCHP plant with a maximum district heat production of 330 MJ/s. The plant has...... a net electric efficiency of 42% and a maximum energy utilization of 92%. In this paper it is demonstrated, that the DNA model of AVV1 can calculate the whole flow sheet balance at any load point, i.e., any possible combination of power production and district heat production. The paper also contains...

  19. Energetic and exergetic analysis of cogeneration power combined cycle and ME-TVC-MED water desalination plant: Part-1 operation and performance

    International Nuclear Information System (INIS)

    Almutairi, Abdulrahman; Pilidis, Pericles; Al-Mutawa, Nawaf; Al-Weshahi, Mohammed

    2016-01-01

    Highlights: • Develop a comprehensive model for a very advanced cogeneration plant using real data. • Evaluate ME-TVC-MED unit using the latest thermodynamic properties of seawater. • Evaluate the desalination unit contribution to the overall efficiency. • Evaluate the stage exergetic efficiency in the ME-TVC-MED unit. • Numerous possibilities have been suggested to improve the proposed system. - Abstract: A comprehensive model of cogeneration plant for electrical power and water desalination has been developed based on energetic and exergetic analyses using real operational data. The power side is a combined cycle power plant (CCPP), while the desalination side is a multi-effect thermal vapour compression plant coupled with a conventional multi-effect plant (ME-TVC-MED). IPSEpro software was utilized to model the process, which shows good agreement with the manufacturer's data and published research. The thermodynamic properties of saline water were obtained from the latest published data in the literature. The performance of the cogeneration plant was examined for different ambient temperatures, pressure ratios, loads, feed water temperatures, number of effects and entrainment ratios. The results show that gas turbine engines produce the highest level of useful work in the system at around 34% of the total fuel input. At the same time, they constitute a major source of irreversibility, which accounts for 84% of the total exergy destruction in the plant, while the lowest source of irreversibility is in the steam turbine of 3.3% due to the type of working fluid and reheating system. In the ME-TVC-MED desalination unit, the highest source of irreversibilities occurs in the effects and in the thermo-compressor. The first two effects in the ME-TVC parallel section were responsible for about 40.6% of the total effect exergy destruction, which constitutes the highest value among all the effects. Operating the system at full load while reducing ambient

  20. District heating system of Belgrade supplied from the co-generation plant 'Obrenovac' (Yugoslavia)

    International Nuclear Information System (INIS)

    Tomic, P.; Dobric, Z.; Studovic, M.

    2000-01-01

    The paper presents most relevant technical and economic features of the Project called 'System for supplying Belgrade with heat' (SDGB) from the thermal power plant 'Obrenovac', based on domestic coal and reconstruction of condensing power plant for combined generation of electricity and heat for the needs of municipal energy consumption. The system is designed for transport thermal energy, with capacity of 730 MJ/s from the Thermal Power Plant 'Nikola Tesla' / A to the existing heat plant 'Novi Beograd' based on the natural gas. The paper also gives the comparison of most important technical and economic features of 'SDGB' Project with the similar Project of District Heating System for supplying Prague with the thermal energy from Thermal Power Plant Melnik. (Author)

  1. A Geothermal Energy Supported Gas-steam Cogeneration Unit as a Possible Replacement for the Old Part of a Municipal CHP Plant (TEKO

    Directory of Open Access Journals (Sweden)

    L. Böszörményi

    2001-01-01

    Full Text Available The need for more intensive utilization of local renewable energy sources is indisputable. Under the current economic circumstances their competitiveness in comparison with fossil fuels is rather low, if we do not take into account environmental considerations. Integrating geothermal sources into combined heat and power production in a municipal CHP plant would be an excellent solution to this problem. This concept could lead to an innovative type of power plant - a gas-steam cycle based, geothermal energy supported cogeneration unit.

  2. Assessment of modular construction for safety-related structures at advanced nuclear power plants

    International Nuclear Information System (INIS)

    Braverman, J.; Morante, R.; Hofmayer, C.

    1997-03-01

    Modular construction techniques have been successfully used in a number of industries, both domestically and internationally. Recently, the use of structural modules has been proposed for advanced nuclear power plants. The objective in utilizing modular construction is to reduce the construction schedule, reduce construction costs, and improve the quality of construction. This report documents the results of a program which evaluated the proposed use of modular construction for safety-related structures in advanced nuclear power plant designs. The program included review of current modular construction technology, development of licensing review criteria for modular construction, and initial validation of currently available analytical techniques applied to concrete-filled steel structural modules. The program was conducted in three phases. The objective of the first phase was to identify the technical issues and the need for further study in order to support NRC licensing review activities. The two key findings were the need for supplementary review criteria to augment the Standard Review Plan and the need for verified design/analysis methodology for unique types of modules, such as the concrete-filled steel module. In the second phase of this program, Modular Construction Review Criteria were developed to provide guidance for licensing reviews. In the third phase, an analysis effort was conducted to determine if currently available finite element analysis techniques can be used to predict the response of concrete-filled steel modules

  3. A wood-waste fuelled, indirectly-fired gas turbine cogeneration plant for sawmill application. Phase 1. Preliminary engineering design and financial evaluation

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    Most sawmills generate more than enough wood waste to be potentially self-sufficient in both dry-kiln heat and electricity requirements. It is not generally economically viable to use conventional steam/electricty cogeneration systems at the sawmill scale of operation. As a result, Canadian sawmills are still large consumers of purchased fuels and electricity. The overall objective of this project was to develop a cost-effective wood waste-fired power generation and lumber drying system for sawmill applications. The system proposed and evaluated in this project is a wood waste-fuelled, indirectly-fired gas turbine cogeneration plant. Research, design, and development of the system has been planned to take place in a number of phases. Phase 1 consists of a preliminary engineering design and financial evaluation of the system, the subjects of this report. The results indicate that the proposed indirectly-fired gas turbine cogeneration system is both technically and financially feasible under a variety of conditions. 8 figs., 8 tabs.

  4. Cogeneration techniques; Les techniques de cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    This dossier about cogeneration techniques comprises 12 parts dealing successively with: the advantages of cogeneration (examples of installations, electrical and thermal efficiency); the combustion turbine (principle, performances, types); the alternative internal combustion engines (principle, types, rotation speed, comparative performances); the different configurations of cogeneration installations based on alternative engines and based on steam turbines (coal, heavy fuel and natural gas-fueled turbines); the environmental constraints of combustion turbines (pollutants, techniques of reduction of pollutant emissions); the environmental constraints of alternative internal combustion engines (gas and diesel engines); cogeneration and energy saving; the techniques of reduction of pollutant emissions (pollutants, unburnt hydrocarbons, primary and secondary (catalytic) techniques, post-combustion); the most-advanced configurations of cogeneration installations for enhanced performances (counter-pressure turbines, massive steam injection cycles, turbo-chargers); comparison between the performances of the different cogeneration techniques; the tri-generation technique (compression and absorption cycles). (J.S.)

  5. Coal fired air turbine cogeneration

    Science.gov (United States)

    Foster-Pegg, R. W.

    Fuel options and generator configurations for installation of cogenerator equipment are reviewed, noting that the use of oil or gas may be precluded by cost or legislation within the lifetime of any cogeneration equipment yet to be installed. A coal fueled air turbine cogenerator plant is described, which uses external combustion in a limestone bed at atmospheric pressure and in which air tubes are sunk to gain heat for a gas turbine. The limestone in the 26 MW unit absorbs sulfur from the coal, and can be replaced by other sorbents depending on types of coal available and stringency of local environmental regulations. Low temperature combustion reduces NOx formation and release of alkali salts and corrosion. The air heat is exhausted through a heat recovery boiler to produce process steam, then can be refed into the combustion chamber to satisfy preheat requirements. All parts of the cogenerator are designed to withstand full combustion temperature (1500 F) in the event of air flow stoppage. Costs are compared with those of a coal fired boiler and purchased power, and it is shown that the increased capital requirements for cogenerator apparatus will yield a 2.8 year payback. Detailed flow charts, diagrams and costs schedules are included.

  6. Cogeneration system simulation/optimization

    International Nuclear Information System (INIS)

    Puppa, B.A.; Chandrashekar, M.

    1992-01-01

    Companies are increasingly turning to computer software programs to improve and streamline the analysis o cogeneration systems. This paper introduces a computer program which originated with research at the University of Waterloo. The program can simulate and optimize any type of layout of cogeneration plant. An application of the program to a cogeneration feasibility study for a university campus is described. The Steam and Power Plant Optimization System (SAPPOS) is a PC software package which allows users to model any type of steam/power plant on a component-by-component basis. Individual energy/steam balances can be done quickly to model any scenario. A typical days per month cogeneration simulation can also be carried out to provide a detailed monthly cash flow and energy forecast. This paper reports that SAPPOS can be used for scoping, feasibility, and preliminary design work, along with financial studies, gas contract studies, and optimizing the operation of completed plants. In the feasibility study presented, SAPPOS is used to evaluate both diesel engine and gas turbine combined cycle options

  7. The co-generation file

    International Nuclear Information System (INIS)

    Signoret, Stephane; Petitot, Pauline; Mary, Olivier; Sredojevic, Alexandre

    2017-01-01

    Whereas co-generation has many benefits (increase of energy efficiency, decrease of greenhouse gas emissions, job creation, integration of renewable energies, local and efficient production of heat and electricity, and so on), as explained in a first article, it has not enough public support in France any longer, notably for installations of more than 1 MW. However, as shown in some examples (a power and heat plant in Aulnay-sous-Bois, a factory in Graulhet), some co-generation installations have been able to take some benefit from the situation in 2015. Besides, some technological development are addressed: new burners to comply with regulations regarding NO_x and CO emissions, new engines able to operate with various gases such as hydrogen or gas produced by biomass gasification. A last article presents a co-generation boiler installed in a medical care home near Roye in the Somme district

  8. Cogeneration offers promise - politics permitting

    Energy Technology Data Exchange (ETDEWEB)

    Koprowski, Gene

    1996-12-01

    India`s Prime Minister H D Deve Gowda and the environmental activist Maneka Gandhi clashed recently over a US1.06 billion cogeneration power plant. Gandhi accused Gowda of moving too fast in giving the plant environmental clearance two days after assuming office. The argument, which delayed the start of a new thermal power plant by US-based Cogenetrix, illustrates the hazards of building such projects in Asia. (author)

  9. High-temperature gas-cooled reactor steam-cycle/cogeneration lead plant. Plant Protection and Instrumentation System design description

    International Nuclear Information System (INIS)

    1983-01-01

    The Plant Protection and Instrumentation System provides plant safety system sense and command features, actuation of plant safety system execute features, preventive features which maintain safety system integrity, and safety-related instrumentation which monitors the plant and its safety systems. The primary function of the Plant Protection and Instrumentation system is to sense plant process variables to detect abnormal plant conditions and to provide input to actuation devices directly controlling equipment required to mitigate the consequences of design basis events to protect the public health and safety. The secondary functions of the Plant Protection and Instrumentation System are to provide plant preventive features, sybsystems that monitor plant safety systems status, subsystems that monitor the plant under normal operating and accident conditions, safety-related controls which allow control of reactor shutdown and cooling from a remote shutdown area

  10. Imaging corn plants with PhytoPET, a modular PET system for plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.; Kross, B.; McKisson, J.; McKisson, J. E.; Weisenberger, A. G.; Xi, W.; Zorn, C.; Bonito, G.; Howell, C. R.; Reid, C. D.; Crowell, A.; Cumberbatch, L. C.; Topp, C.; Smith, M. F.

    2013-11-01

    PhytoPET is a modular positron emission tomography (PET) system designed specifically for plant imaging. The PhytoPET design allows flexible arrangements of PET detectors based on individual standalone detector modules built from single Hamamatsu H8500 position sensitive photomultiplier tubes and pixelated LYSO arrays. We have used the PhytoPET system to perform preliminary corn plant imaging studies at the Duke University Biology Department Phytotron. Initial evaluation of the PhytoPET system to image the biodistribution of the positron emitting tracer {sup 11}C in corn plants is presented. {sup 11}CO{sub 2} is loaded into corn seedlings by a leaf-labeling cuvette and translocation of {sup 11}C-sugars is imaged by a flexible arrangement of PhytoPET modules on each side. The PhytoPET system successfully images {sup 11}C within corn plants and allows for the dynamic measurement of {sup 11}C-sugar translocation from the leaf to the roots.

  11. Studies on the coordinated operation and autonomous control for multi-modular nuclear power plants

    International Nuclear Information System (INIS)

    Hui Chao; Huang Xiaojin; Wang Jie

    2011-01-01

    The tendency has always been to build ever larger single-modular reactor plants with the objective of benefiting from economies of scale. These plants have compiled admirable safety records. Nevertheless, there is concern that conventional large single reactors have become too complex by reason of placing too much reliance on engineered safeguards. The multi-modular approach offers a solution in that its use of many small reactors in conjunction with several shared turbines permits a simpler core design while, at the same time, at least partially retaining economies of scale by increasing the number of modules. Specific advantages to the multi-modular approach are as follows. First, the small-sized of the reactor core may allow the incorporation of passive safety features such as natural circulation cooling on loss of off-site electricity. Second, the individual modules are to be sized so that components related to nuclear safety can be factory-fabricated. Moreover, once the major components are made, they are to be transported to the site for rapid installation. This construction method is expected to reduce the licensing effort because the modules will be pre-licensed, and only site-specific issues will have to be considered in the final licensing process. At present, related studies show that the multi-modular approach for Generation IV can retain both the inherent safety and good economies of scale. However, the unbalanced load operation of the multi-modular power plant in which each module operates at a different power level and strong coupling between multi modules creates a complex control challenge to safe operation and control. Firstly, this paper summarizes the unbalanced load operation characteristics and challenges faced by operation and control of multi-modular power plant in the dynamic operational characteristics and requirements of coordinated control between multi modules. Secondly, detailed analysis and comparison are given in the integral

  12. Technical evaluation of the G.E. Transportable Modular AZTECH Plant topical report

    International Nuclear Information System (INIS)

    Henscheid, J.W.; Stalker, A.E.

    1985-12-01

    This report summarizes EG and G Idaho's review of the General Electric Company's topical report on their Transportable Modular AZTECH Plant. The review evaluated compliance with pertinent codes, standards and regulations. The initial review was discussed with G.E. and all outstanding issues resolved before this final evaluation was made

  13. Cogeneration plant in a pasta factory: Energy saving and environmental benefit

    International Nuclear Information System (INIS)

    Panno, Domenico; Messineo, Antonio; Dispenza, Antonella

    2007-01-01

    Italy produces approximately 4,520,000 tons of pasta annually, which is about 67% of its total productive potential. As factories need electric and thermal energy simultaneously, combined heat and power (CHP) systems are the most suitable. This paper describes a feasibility study of a CHP plant in a pasta factory in Italy while analyzing energy saving and environmental benefits. Commercially available CHP systems suitable for the power range of energy demand in pasta production use reciprocating engines or gas turbines. This study demonstrates how their use can reduce both energy costs and CO 2 equivalent greenhouse gas emission in the environment. An economic analysis was performed following the methodology set out by Italian National Agency for Technology, Energy and Environment (ENEA) based on a discounted cash flow (DCF) method called 'Valore Attuale Netto' (VAN), which uses a cash flow based on the saving of energy when using different energy processes

  14. Design of a small scale stand-alone solar thermal co-generation plant for an isolated region in Egypt

    International Nuclear Information System (INIS)

    Abdelhady, Suzan; Borello, Domenico; Tortora, Eileen

    2014-01-01

    Highlights: • In the selected area, connection to the grid is very difficult and expensive. • The integrated unsteady CSP/ORC system, was modeled TRNSYS. • Assuming a CSP of 200,000 m 2 , 6 MW e and 21.5 MW th can be obtained. • The energy is sufficient to feed more than 3,300 rural users and two big factories. • PER = 1.43, LCOE = 1.25 USD/kW h and the GHG emissions are reduced of 7300 toe/year. - Abstract: Most of Egypt’s population is concentrated in the Nile Valley (5% of Egypt’s area), while the western desert occupies an area of 50% of the total area of Egypt with a small number of inhabitants. The New Valley is the largest governorates in Egypt which occupies 45.8% of the total area of the Country and 65% of the Western Desert and it is the least densely populated governorate in Egypt. However, New Valley has started to receive the migrated people from the Nile valley and Delta region and the demand for the energy is continuously increasing. However, the rural area in New Valley still suffers from lack of access to energy services. The very high transmission losses and costs are the main challenges for electrification in this area. Then, it is worth to investigate the opportunities for distributed energy generation. This area of Egypt receives some of the highest solar radiation in the world (up to 3000 kW h per square meters per year), making it a prime location for use of this resource. In this study, performance and economic assessment of a small scale stand-alone solar thermal co-generation plant using diathermic oil is presented. This configuration is considered as a promising and sustainable solution to provide electricity and heat to an isolated area satisfying the local loads. Parabolic trough plant has been modeled in TRNSYS simulation environment integrated with the Solar Thermal Electric Components (STEC) model library. Both solar and power cycle performances have been modeled based on the solar energy data of the plant site. The

  15. Progress of independent feasibility study for modular HTGR demonstration plant to be built in China

    International Nuclear Information System (INIS)

    He Jiachen

    1989-01-01

    Many regions in China are suffering from shortage of energy as a result of the rapid growth of the national economy, for example, the growth rate of national production in 1988 reached 11.2%. A great number of coal fired plants have been built in many industrial areas. However, the difficulties relating to the transportation of coal and environmental pollution have become more and more serious. The construction of hydropower plants is limited due to uneven geographic conditions and seasons. For these reasons China needs to develop nuclear power plants. Nowadays, it has been decided, that PWR will be the main reactor type in our country, but in some districts or under some conditions modular HTGR may have distinct advantages and become an attractive option. The possible plant site description and preliminary result of economic analysis of modular HTGR type reactor are briefly discussed in this presentation

  16. Meeting changing conditoins at the Rhode Island Medical Center cogeneration plant

    International Nuclear Information System (INIS)

    Galamaga, D.P.; Bowen, P.T.

    1993-01-01

    The Rhode Island Department of Mental Health, Retardation and Hospitals is one state department in Rhode Island whose basic function is to provide services to seriously disabled individuals throughout the state. Savings in operating expenses from the Rhode Island Medical Center Central Power Plant have accruded to provide operating funds for the major programs. Operating under a Director who reports to the Governor of Rhode Island, the Department has three major divisions, approximately 2500 employees, and a budget of 200 million dollars. Its operations extend throughout the state and the major focus for hospital or institutional levels of care reside in three major locations, the Dr. U.E. Zambarano Memorial Hospital in northern Rhode Island, the Dr. Joseph Ladd Center in southern Rhode Island, and the Rhode Island Medical Center in the middle of the state. Besides these institution-based operations, the Department sponsors a wide range of rehabilitative programming in the community other through direct operations of facilities such as group homes or through contracts with private non-profit providers of service

  17. Environmental analysis of a potential district heating network powered by a large-scale cogeneration plant.

    Science.gov (United States)

    Ravina, Marco; Panepinto, Deborah; Zanetti, Maria Chiara; Genon, Giuseppe

    2017-05-01

    Among the solutions for the achievement of environmental sustainability in the energy sector, district heating (DH) with combined heat and power (CHP) systems is increasingly being used. The Italian city of Turin is in a leading position in this field, having one of the largest DH networks in Europe. The aim of this work is the analysis of a further development of the network, addressed to reduce the presence of pollutants in a city that has long been subject to high concentration levels. The environmental compatibility of this intervention, especially in terms of nitrogen oxides (NO x ) and particulate matter (PM) emissions, is evaluated. The pollutants dispersion is estimated using the CALPUFF model. The forecasting scenario is created firstly by simulating the energy production of the main generation plants in response to the estimated heat demand, and secondly by investigating the amount and the dispersion of pollutants removed due to the elimination of the centralized residential heaters. The results show a future reduction in ground level average NO x concentration ranging between 0.2 and 4 μg/m 3 . The concentration of PM remains almost unchanged. Measures are then taken to lower the uncertainty in the simulation scenarios. This study provides important information on the effects of a change of the energy configuration on air quality in an urban area. The proposed methodological approach is comprehensive and repeatable.

  18. High temperature reactor module power plant. Plant and safety concept June 1986 - 38.07126.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-06-15

    The modular HTR power plant is a universally applicable energy source for the co-generation of electricity, process steam or district heating. The modular HTR concept is characterized by the fact that standardized reactor units with power ratings of 200 MJ/s (so-called modules) can be combined to form power plants with a higher power rating. Consequently the special safety features of small high-temperature reactors (HTR) are also available at higher power plant ratings. The safety features, the technical design and the mode of operation are briefly described in the following, taking a power plant with two HTR-Modules for the co-generation of electricity and process steam as an example. Due to its universal applicability and excellent safety features, the modular HTR power plant is suitable for erection on any site, but particularly on sites near other industrial plants or in densely populated areas. The co-generation of electricity and process steam or district heating with a modular HTR power plant as described here is primarily tailored to the requirements of industrial and communal consumers. The site for such a plant is a typical industrial one. The anticipated features of such sites were taken into consideration in the design of the modular HTR power plant.

  19. High temperature reactor module power plant. Plant and safety concept June 1986 - 38.07126.2

    International Nuclear Information System (INIS)

    1986-06-01

    The modular HTR power plant is a universally applicable energy source for the co-generation of electricity, process steam or district heating. The modular HTR concept is characterized by the fact that standardized reactor units with power ratings of 200 MJ/s (so-called modules) can be combined to form power plants with a higher power rating. Consequently the special safety features of small high-temperature reactors (HTR) are also available at higher power plant ratings. The safety features, the technical design and the mode of operation are briefly described in the following, taking a power plant with two HTR-Modules for the co-generation of electricity and process steam as an example. Due to its universal applicability and excellent safety features, the modular HTR power plant is suitable for erection on any site, but particularly on sites near other industrial plants or in densely populated areas. The co-generation of electricity and process steam or district heating with a modular HTR power plant as described here is primarily tailored to the requirements of industrial and communal consumers. The site for such a plant is a typical industrial one. The anticipated features of such sites were taken into consideration in the design of the modular HTR power plant

  20. Biomass cogeneration: A business assessment

    Science.gov (United States)

    Skelton, J. C.

    1981-11-01

    The biomass cogeneration was reviewed. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  1. Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration

    Science.gov (United States)

    Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

    1981-01-01

    A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.

  2. Modular organization of flowering plants and its implications

    Directory of Open Access Journals (Sweden)

    Natalya Savinykh

    2013-04-01

    Full Text Available Three categories of modules (elementary, universal and essential development in the flowering plant give them the following advantages: 1 wide range of elements for the body construction; 2 a high degree of autonomy of parts – universal and essential modules; 3 possibility of the existence in the form of monocarpic annual plants and policarpic annual plants of vegetative origin; 4 integration of individuals and their parts in the environment; 5 successful existence in specific not always optimal habitat conditions.

  3. Evaluation of high temperature gas reactor for demanding cogeneration load follow

    International Nuclear Information System (INIS)

    Yan, Xing L.; Sato, Hiroyuki; Tachibana, Yukio; Kunitomi, Kazuhiko; Hino, Ryutaro

    2012-01-01

    Modular nuclear reactor systems are being developed around the world for new missions among which is cogeneration for industries and remote areas. Like existing fossil energy counterpart in these markets, a nuclear plant would need to demonstrate the feasibility of load follow including (1) the reliability to generate power and heat simultaneously and alone and (2) the flexibility to vary cogeneration rates concurrent to demand changes. This article reports the results of JAEA's evaluation on the high temperature gas reactor (HTGR) to perform these duties. The evaluation results in a plant design based on the materials and design codes developed with JAEA's operating test reactor and from additional equipment validation programs. The 600 MWt-HTGR plant generates electricity efficiently by gas turbine and 900degC heat by a topping heater. The heater couples via a heat transport loop to industrial facility that consumes the high temperature heat to yield heat product such as hydrogen fuel, steel, or chemical. Original control methods are proposed to automate transition between the load duties. Equipment challenges are addressed for severe operation conditions. Performance limits of cogeneration load following are quantified from the plant system simulation to a range of bounding events including a loss of either load and a rapid peaking of electricity. (author)

  4. Boehringer Ingelheim Promeco contemplates the benefits of cogeneration in its new plant; Boehringer Ingelheim Promeco contempla beneficios de la cogeneracion para su nueva planta

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Esparza, R. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Khouri Solis, A. [Boehringer Ingelheim Promeco, Mexico, D. F. (Mexico)

    1997-12-31

    This paper presents the results of the feasibility study performed in BOEHRINGER INGELHEIM PROMECO to determine the benefits that a cogeneration system could render in satisfying the energy demand of its plant currently being expanded. The results showed that in accordance with the operation mode of the already expanded plant, the highest benefits could be obtained of a cogeneration system with a capacity of 1,600 Kw that would partially satisfy the thermal and electrical demands of BOEHRINGER INGELHEIM PROMECO. [Espanol] El presente articulo presenta los resultados de factibilidad que se realizo en Boehringer Ingelheim Promeco para determinar los beneficios que podria rendir un sistema de cogeneracion al satisfacer las demandas energeticas de su planta actualmente en ampliacion. Los resultados mostraron que de acuerdo al modo de operacion de la planta ya ampliada, los beneficios mas altos se obtendrian de un sistema de cogeneracion con capacidad de 1,600 kW que satisfaria parcialmente las demandas termicas y electricas de Boehringer Ingelheim Promeco.

  5. Boehringer Ingelheim Promeco contemplates the benefits of cogeneration in its new plant; Boehringer Ingelheim Promeco contempla beneficios de la cogeneracion para su nueva planta

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Esparza, R [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Khouri Solis, A [Boehringer Ingelheim Promeco, Mexico, D. F. (Mexico)

    1998-12-31

    This paper presents the results of the feasibility study performed in BOEHRINGER INGELHEIM PROMECO to determine the benefits that a cogeneration system could render in satisfying the energy demand of its plant currently being expanded. The results showed that in accordance with the operation mode of the already expanded plant, the highest benefits could be obtained of a cogeneration system with a capacity of 1,600 Kw that would partially satisfy the thermal and electrical demands of BOEHRINGER INGELHEIM PROMECO. [Espanol] El presente articulo presenta los resultados de factibilidad que se realizo en Boehringer Ingelheim Promeco para determinar los beneficios que podria rendir un sistema de cogeneracion al satisfacer las demandas energeticas de su planta actualmente en ampliacion. Los resultados mostraron que de acuerdo al modo de operacion de la planta ya ampliada, los beneficios mas altos se obtendrian de un sistema de cogeneracion con capacidad de 1,600 kW que satisfaria parcialmente las demandas termicas y electricas de Boehringer Ingelheim Promeco.

  6. A new modular procedure for industrial plant simulations and its reliable implementation

    International Nuclear Information System (INIS)

    Carcasci, C.; Marini, L.; Morini, B.; Porcelli, M.

    2016-01-01

    Modeling of industrial plants, and especially energy systems, has become increasingly important in industrial engineering and the need for accurate information on their behavior has grown along with the complexity of the industrial processes. Consequently, accurate and flexible simulation tools became essential yielding the development of modular codes. The aim of this work is to propose a new modular mathematical modeling for industrial plant simulation and its reliable numerical implementation. Regardless of their layout, a large class of plant's configurations is modeled by a library of elementary parts; then the physical properties, compositions of the working fluid, and plant's performance are estimated. Each plant component is represented by equations modeling fundamental mechanical and thermodynamic laws and giving rise to a system of algebraic nonlinear equations; remarkably, suitable restrictions on the variables of such nonlinear equations are imposed to guarantee solutions of physical meaning. The proposed numerical procedure combines an outer iterative process which refines plants characteristic parameters and an inner one which solves the arising nonlinear systems and consists of a trust-region solver for bound-constrained nonlinear equalities. The new procedure has been validated performing simulations against an existing modular tool on two compression train arrangements with both series and parallel-mounted compressors. - Highlights: • A numerical modular tool for industrial plants simulation is presented. • Mathematical modeling is thoroughly described. • Solution of the nonlinear system is performed by a trust-region Gauss–Newton solver. • A detailed explanation of the optimization solver named TRESNEI is provided. • Code flexibility and robustness are investigated through numerical simulations.

  7. Smart intermittency-friendly cogeneration: Techno-economic performance of innovative double storage concept for integrating compression heat pumps in distributed cogeneration

    DEFF Research Database (Denmark)

    Blarke, Morten

    2011-01-01

    cogeneration plants rather than central power plants are giving way for wind power in the electricity mix. Could intermittent renewables be a threat to the system-wide energy, economic and environmental benefits that distributed cogeneration have to offer? This paper investigates how existing cogeneration...... plants may adapt their plant design and operational strategy to improve the co-existence between cogeneration and intermittent renewables. A novel intermittency-friendly and super-efficient concept in cogeneration is presented that involves integrating a high-pressure compression heat pump using heat...

  8. Electronic data base for the project of cogeneration power plants; Planilha eletronica para projeto de centrais de cogeracao

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Paulo Renato Galveias; Balestieri, Jose Antonio Perrella [UNESP, Guaratingueta, SP (Brazil)

    1997-12-31

    In the cogeneration system design some basic characteristics of the proposed scheme must be technical and economically evaluated in comparison with other possible schemes that equally fits the thermal and electrical energy demands. The presented model for helping the cogeneration systems design process is based on electronic data base and is characterized by its easy of using and including technical and economic new variables, the availability in personal computers and the possibility of being connected to graphical software s that allow visualizing the schemes proposed turning it very useful both to the beginners as well as the professional accustomed to this procedure. In this paper it is present the results obtained in the development of the model highlighting specially its technical characteristics. (author) 9 refs., 7 figs.; e-mail: perrella at feg.unesp.br

  9. Capital cost evaluation of liquid metal reactor by plant type - comparison of modular type with monolithic type -

    International Nuclear Information System (INIS)

    Mun, K. H.; Seok, S. D.; Song, K. D.; Kim, I. C.

    1999-01-01

    A preliminary economic comparison study was performed for KALIMER(Korea Advanced LIquid MEtal Reactor)between a modular plant type with 8 150MWe modules and a 1200MWe monolithic plant type. In both cases of FOAK (First-Of-A-Kind) Plant and NOAK (Nth-Of-A-Kind) Plant, the result says that the economics of monolithic plant is superior to its modular plant. In case of NOAK plant comparison, however, the cost difference is not significant. It means that modular plant can compete with monolithic plant in capital cost if it makes efforts of cost reduction and technical progress on the assumption that the same type of NOAK plant will be constructed continuously

  10. Optimal and Modular Configuration of Wind Integrated Hybrid Power Plants for Off-Grid Systems

    DEFF Research Database (Denmark)

    Petersen, Lennart; Iov, Florin; Tarnowski, German Claudio

    2018-01-01

    This paper focusses on the system configuration of offgrid hybrid power plants including wind power generation. First, a modular and scalable system topology is proposed. Secondly, an optimal sizing algorithm is developed in order to determine the installed capacities of wind turbines, PV system......, battery energy storage system and generator sets. The novelty of this work lies in a robust sizing algorithm with respect to the required resolution of resource data in order to account for intra-hour power variations. Moreover, the involvement of the electrical infrastructure enables a precise estimation...... of power losses within the hybrid power plant as well as the consideration of both active and reactive power load demand for optimally sizing the plant components. The main outcome of this study is a methodology to determine feasible system configurations of modular and scalable wind integrated hybrid...

  11. Using modular neural networks to monitor accident conditions in nuclear power plants

    International Nuclear Information System (INIS)

    Guo, Z.

    1992-01-01

    Nuclear power plants are very complex systems. The diagnoses of transients or accident conditions is very difficult because a large amount of information, which is often noisy, or intermittent, or even incomplete, need to be processed in real time. To demonstrate their potential application to nuclear power plants, neural networks axe used to monitor the accident scenarios simulated by the training simulator of TVA's Watts Bar Nuclear Power Plant. A self-organization network is used to compress original data to reduce the total number of training patterns. Different accident scenarios are closely related to different key parameters which distinguish one accident scenario from another. Therefore, the accident scenarios can be monitored by a set of small size neural networks, called modular networks, each one of which monitors only one assigned accident scenario, to obtain fast training and recall. Sensitivity analysis is applied to select proper input variables for modular networks

  12. A modular approach to modeling power plant systems

    International Nuclear Information System (INIS)

    Yee, N.S.

    1990-01-01

    This paper reports on power plants which are large, non-linear systems with numerous interactions between its component parts. In the analysis of such complex systems, dynamic simulation is recognized as a powerful method of keeping track of the myriad of interactions. A simulation can be used to answer the what if questions that are asked when replacing components, changing operational procedures, or training operators. While there are many applications for the simulation of power plant components and systems, its use is often discouraged because it can be difficult and expensive. Power plant engineering is itself a multi-disciplinary field involving fluid mechanics, heat transfer, thermodynamics, chemical engineering, nuclear engineering, and electrical engineering. Simulation requires, in addition, knowledge in model formulation, computer programming and numerical solution of differential equations

  13. The performance of a temperature cascaded cogeneration system producing steam, cooling and dehumidification

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Kim, Youngdeuk; Ng, K. C.

    2013-01-01

    This paper discusses the performance of a temperature-cascaded cogeneration plant (TCCP), equipped with an efficient waste heat recovery system. The TCCP, also called a cogeneration system, produces four types of useful energy-namely, (i

  14. Control room conceptual design of nuclear power plant with multiple modular high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Jia Qianqian; Qu Ronghong; Zhang Liangju

    2014-01-01

    A conceptual design of the control room layout for the nuclear power plant with multiple modular high temperature gas-cooled reactors has been developed. The modular high temperature gas-cooled reactors may need to be grouped to produce as much energy as a utility demands to realize the economic efficiency. There are many differences between the multi-modular plant and the current NPPs in the control room. These differences may include the staffing level, the human-machine interface design, the operation mode, etc. The potential challenges of the human factor engineering (HFE) in the control room of the multi-modular plant are analyzed, including the operation workload of the multi-modular tasks, how to help the crew to keep situation awareness of all modules, and how to support team work, the control of shared system between modules, etc. A concept design of control room for the multi-modular plant is presented based on the design aspect of HTR-PM (High temperature gas-cooled reactor pebble bed module). HFE issues are considered in the conceptual design of control room for the multi-modular plant and some design strategies are presented. As a novel conceptual design, verifications and validations are needed, and focus of further work is sketch out. (author)

  15. Introduction to cogeneration; Introducao a cogeracao

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Luiz Augusto Horta; Martins, Andre Luiz Silva [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1997-07-01

    This work presents a general view of cogeneration. The paper approaches the development of cogeneration, technological aspects, the cogeneration in Brazil, economical aspects, performance of cogeneration systems, viability, costs, cogeneration potentials and technological trends.

  16. Cogeneration using small sized series connected units: Feasibility study

    International Nuclear Information System (INIS)

    Tondelli, F.; Bergamini, G.

    1992-01-01

    This paper evidences the technical/economic feasibility of the use of methane fuelled modular cogeneration systems based on small series connected Otto or Diesel cycle engines delivering from 20 to 90 kW of power. Ample reference is made to the successful application of modular cogeneration systems to supply low temperature thermal energy to hospitals, hotels, food processing firms, etc., in Italy. The cost benefit analysis covers many aspects: design, manufacturing, operation, performance, maintenance and safety. Suggestions are also made as to optimum contractual arrangements for equipment service and maintenance, as well as, for the exchange of power with local utilities

  17. Cogeneration in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Cotard, E. [International Cogeneration Alliance (United States)

    2000-10-01

    The short article discusses pollution abatement and the potential role of cogeneration in Taiwan. A diagram shows the contributions of various energy sources (coal, oil etc.) from 1979-1999 and the growth of cogeneration between 1979 and 1999. The lack of natural gas or diesel does not help the cause of cogeneration in Taiwan, nor does the structure of the local electricity market. Nevertheless, if the proposed new LNG facilities are built in the North, then the opportunities for cogeneration will be very good.

  18. A new small modular high-temperature gas-cooled reactor plant concept based on proven technology

    International Nuclear Information System (INIS)

    McDonald, C.F.; Goodjohn, A.J.

    1982-01-01

    Based on the established and proven high-temperature gas-cooled reactor (HTGR) technologies from the Peach Bottom 1 and Fort St. Vrain utility-operated units, a new small modular HTGR reactor is currently being evaluated. The basic nuclear reactor heat source, with a prismatic core, is being designed so that the decay heat can be removed by passive means (i.e., natural circulation). Although this concept is still in the preconceptual design stage, emphasis is being placed on establishing an inherently safe or benign concept which, when engineered, will have acceptable capital cost and power generation economics. The proposed new HTGR concept has a variety of applications, including electrical power generation, cogeneration, and high-temperature process heat. This paper discusses the simplest application, i.e., a steam Rankine cycle electrical power generating version. The gas-cooled modular reactor concepts presented are based on a graphite moderated prismatic core of low-power density (i.e., 4.1 W/cm 3 ) with a thermal rating of 250 MW(t). With the potential for inherently safe characteristics, a new small reactor could be sited close to industrial and urban areas to provide electrical power and thermal heating needs (i.e., district and space heating). Incorporating a multiplicity of small modular units to provide a larger power output is also discussed. The potential for a small, inherently safe HTGR reactor concept is highlighted

  19. Modular construction of nuclear power plants in Korea and technical issues - 15051

    International Nuclear Information System (INIS)

    Kim, T.I.; Kim, K.K.; Yoon, J.J.; Han, G.E.

    2015-01-01

    The construction of nuclear power plants (NPPs) is the process of installing structures, systems and components (SCCs) of NPPs within a targeted time and a budget while ensuring quality and safety. Recently various efforts have been made in the nuclear industry to construct NPPs more effectively and modular construction has been highlighted as one of the most effective methods. Modular construction has been known to be effective in reducing construction time, allocating labor and equipment more efficiently while ensuring quality. The installation of structures and systems requires stable provision of labor force which is essential to keep the installation work of bulk materials such as re-bars, pipes and so forth in a construction site over a long period. Especially, in the case of the structure work, it is greatly affected by weather conditions such as rainfall, snow and wind, and discontinuity of installation work due to weather is directly related with success of a construction project. The most significant feature of modular construction is that SSCs could be pre-fabricated at an off-site factory or an assembly shop near a construction site, which provides stable labor force and favorable work condition impervious to weather. Reinforced concrete is largely used in NPPs and re-bar and form works are time consuming requiring lots of labor force at a construction site. Various efforts have been made to install re-bars and forms at the same time, which led to the development of SC structures. SC structures are composed of face steel plates which work as forms for concrete pouring as well as reinforcement for concrete. In this paper, we are going to introduce module types applicable to construction of NPPs and the status of modular construction in Korea. In addition, several issues will be addressed for the successful application of modular construction

  20. Modular steam generator for use in nuclear power plants

    International Nuclear Information System (INIS)

    Cella, A.

    1979-01-01

    An improved steam generator for a PWR is described. A turbine generator is driven by the steam output of the steam generator to provide electrical power. The improvement provides vertically assemblable modules which are removably mounted together in sealing relationship. The modules comprising a base module, a tube bundle module removably mountable on the base module in sealing relationship, and an uppermost dryer module removably mountable on the tube bundle module in sealing relationship. Ready access to and removal of the tube bundle module in situ from the nuclear power plant steam generator is facilitated. The dryer module contains moisture separator for drying the generated steam. The base module, upon which the associated weight of the vertically assembled dryer module and tube bundle module are supported, contains the inlet and outlet for the heat exchange fluid. The tube bundle module contains the tube bundle through which the heat exchange fluid flows as well as an inlet for feedwater. The tube sheet serves as a closure flange for the tube bundle module, with the associated weight of the vertically assembled dryer module and tube bundle module on the tube sheet closure flange effectuating the sealing relationship between the base module and the tube bundle module for facilitating closure

  1. The cogeneration in France

    International Nuclear Information System (INIS)

    2006-01-01

    Since the years 90 many measures have been decided by the government in favor of the cogeneration, to implement a juridical, fiscal, technical and economical framework. After a presentation of the three main channels and the advantages of the cogeneration, the author presents these measures. (A.L.B.)

  2. Cogeneration: Key feasibility analysis parameters

    International Nuclear Information System (INIS)

    Coslovi, S.; Zulian, A.

    1992-01-01

    This paper first reviews the essential requirements, in terms of scope, objectives and methods, of technical/economic feasibility analyses applied to cogeneration systems proposed for industrial plants in Italy. Attention is given to the influence on overall feasibility of the following factors: electric power and fuel costs, equipment coefficients of performance, operating schedules, maintenance costs, Italian Government taxes and financial and legal incentives. Through an examination of several feasibility studies that were done on cogeneration proposals relative to different industrial sectors, a sensitivity analysis is performed on the effects of varying the weights of different cost benefit analysis parameters. With the use of statistical analyses, standard deviations are then determined for key analysis parameters, and guidelines are suggested for analysis simplifications

  3. CDM potential of bagasse cogeneration in India

    International Nuclear Information System (INIS)

    Purohit, Pallav; Michaelowa, Axel

    2007-01-01

    So far, the cumulative capacity of renewable energy systems such as bagasse cogeneration in India is far below their theoretical potential despite government subsidy programmes. One of the major barriers is the high investment cost of these systems. The Clean Development Mechanism (CDM) provides industrialized countries with an incentive to invest in emission reduction projects in developing countries to achieve a reduction in CO 2 emissions at lowest cost that also promotes sustainable development in the host country. Bagasse cogeneration projects could be of interest under the CDM because they directly displace greenhouse gas emissions while contributing to sustainable rural development. This study assesses the maximum theoretical as well as the realistically achievable CDM potential of bagasse cogeneration in India. Our estimates indicate that there is a vast theoretical potential of CO 2 mitigation by the use of bagasse for power generation through cogeneration process in India. The preliminary results indicate that the annual gross potential availability of bagasse in India is more than 67 million tonnes (MT). The potential of electricity generation through bagasse cogeneration in India is estimated to be around 34 TWh i.e. about 5575 MW in terms of the plant capacity. The annual CER potential of bagasse cogeneration in India could theoretically reach 28 MT. Under more realistic assumptions about diffusion of bagasse cogeneration based on past experiences with the government-run programmes, annual CER volumes by 2012 could reach 20-26 million. The projections based on the past diffusion trend indicate that in India, even with highly favorable assumptions, the dissemination of bagasse cogeneration for power generation is not likely to reach its maximum estimated potential in another 20 years. CDM could help to achieve the maximum utilization potential more rapidly as compared to the current diffusion trend if supportive policies are introduced

  4. FY 2000 report on the basic survey to promote Joint Implementation, etc. Project for the modernization of the Tashkent cogeneration plant; 2000 nendo kyodo jisshi nado suishin kiso chosa hokokusho. Tashkent netsuheikyu hatsudensho kindaika keikaku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    An investigational study was carried out of the project for energy conservation and greenhouse effect gas emission reduction by introducing the newest and most powerful gas turbine cogeneration facilities to the Tashkent cogeneration plant in Uzbekistan. At the Tashkent cogeneration plant, each of the facilities is being superannuated, which leads to lowering of operational reliability and increase in cost of repairs. In the project, studied was the introduction of the newest and most powerful gas turbine cogeneration facilities with heat output of 100 Gcal/h equivalent to that of one can of the existing hot water boiler and with generated output of 80MW. As a result of the study, obtained were the energy conservation amount of 83.9 ktoe/y and the greenhouse effect gas reduction amount of 179.7 kt-CO2/y. The initial investment amount was 10.003 billion yen. Expenses vs. effects were 8.39 toe/y-million yen in energy conservation amount and 18.0 t-CO2/y-million yen in greenhouse effect gas reduction amount. In the study of profitability, the internal earning rate was 9.24% after tax, the return yield of capital was 41.26%, and the period of ROI was 16.9 years. (NEDO)

  5. Stability of modularity and structural keystone species in temporal cumulative plant- flower-visitor networks

    DEFF Research Database (Denmark)

    Dupont, Yoko; Olesen, Jens Mogens

    2012-01-01

    Modularity is a structural property of ecological networks, which has received much interest, but has been poorly explored. Modules are distinct subsets of species interacting strongly with each other, but sparsely with species outside the subset. Using a series of temporal cumulative networks, we...... all flowering plants and flower-visiting insect species throughout the flowering season at three dry heathland sites in Denmark. For each site, we constructed cumulative networks every 0.5 months, resulting in series of 10–12 networks per site. Numbers of interactions, and plant and insect species...... around one or two hubs. These hub species encompassed a small number of plant species, many of which acted as hubs at several study sites and throughout most of their flowering season. Thus, these plants become of key importance in maintaining the structure of their pollination network. We conclude...

  6. The optimal scheduling of decentralised co-generation plants in microgrids; Optimale Einsatzplanung von Kraft-Waerme-Kopplungsanlagen in Microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Gunkel, David [TU Dresden (Germany). Lehrstuhl fuer Energiewirtschaft; Hess, Tobias; Schegner, Peter [TU Dresden (Germany). Inst. fuer Elektrische Energieversorgung und Hochspannungstechnik

    2011-07-01

    The daily operational scheduling of decentralised unit is an important optimization task of power systems. This proceeding deals with planning of small scaled co-generation power units for district heating in a microgrid. This power system can be mathematically formulated and solved by an optimization algorithm. The solution process consists of a unit commitment and dispatch. The starting unit commitment is characterised by a mixed integer nonlinear problem defining the on-off-state of all units. Subsequently, the dispatch distributes the generation requirements to every committed unit considering thermal demand. The dispatching is based on a mixed integer linear problem. Additionally, it presents a way for flexible reducing the outage reserve related to the operational condition. The given microgrid operates in an islanding mode. The method can also be applied in a grid connected model considering the possible requirements of a grid operator. (orig.)

  7. Wood-waste fuelled indirectly-fired gas turbine cogeneration plant for sawmill applications. Phase 2. Site-specific preliminary engineering and financial analysis

    Energy Technology Data Exchange (ETDEWEB)

    1988-03-01

    The use of conventional steam/electricity cogeneration systems is not generally economical at the sawmill scale of operation. This paper describes an evaluation of a wood-waste fueled and, indirectly, gas fired turbine cogeneration plant aimed at developing a cost-effective wood-waste fired power generation and dry kiln heating system for sawmill applications. A preliminary engineering design and financial analysis of the system was prepared for a demonstration site in British Columbia. A number of alternative system configurations were identified and preliminary engineering designs prepared for each. In the first option , wood wastes combusted in a wet cell hot gas generator powered a 600 kW turbine, and produced 7,000 kW for the drying kilns. The second option provided the same electrical and heat output but used a down-fired suspension burner unit fuelled by clean, dried sawdust, together with an integral air heater heat exchanger. The third option represented a commercial-scale configuration with an electrical output of 1,800 kW, and sufficient heat output for the dry kilns. A financial analyis based on a computerized feasibility model was carried out on the last two options. Low electricity rates in British Columbia combined with the small scale of a demonstration project provide an inadequate rate of return at the site without substantial outside support. At a commercial scale of operation and with the higher electricity prices that exist outside of British Columbia the financial analysis indicates that the incremental investment in the electric generation portion of the system provides very attractive rates of return for the 3 options. 11 figs., 10 tabs.

  8. Modular Multi-level converter based HVDC System for Grid Connection of Offshore Wind Power Plant

    DEFF Research Database (Denmark)

    Gnanarathna, U.N.; Chaudhary, Sanjay Kumar; Gole, A.M.

    2010-01-01

    This paper explores the application of modular multi-level converters (MMC) as a means for harnessing the power from off-shore wind power plants. The MMC consists of a large number of simple voltage sourced converter (VSC) submodules that can be easily assembled into a converter for high......-voltage and high power. The paper shows that the MMC converter has a fast response and low harmonic content in comparison with a two-level VSC option. The paper discusses the modeling approach used, including a solution to the modeling challenge imposed by the very large number of switching devices in the MMC....

  9. Analysis reports on the ecotoxicological evaluation of discharges of spent water at the cogeneration/central heating plants Alloeverket, Borgaas, Haendeloeverket, Moelnlycke, Saevenaes and Aelmhult; Analysrapporter avseende ekotoxikologisk bedoemning av utslaepp av utgaaende vatten vid Alloeverket, Borgaas, Haendeloeverket, Moelnlycke, Saevenaes och Aelmhult

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jonas; Axby, Fredrik; Persson, Maarten; Rossander, Annelie; Schultz, Emma; Svaerd, Sara [Carl Bro AB, Kristianstad (Sweden)

    2007-04-15

    The discharges to water at six biofuelled Swedish cogeneration/district heating plants are evaluated in light of the EU Water Framework Directive concerning ecotoxicological impacts. Ecotoxicological data for the 33 prioritized substances are also reviewed.

  10. Window of opportunity : potential of increase in profitability using modular compact plants and micro-reactor based flow processing

    NARCIS (Netherlands)

    Vural - Gursel, I.; Hessel, V.; Wang, Q.; Noel, T.; Lang, J.

    2012-01-01

    Recently, much focus has been given to a new type of chemical production plant, with the aim of a much faster time-to-market ("50% idea") and better cash-flow revenue. The main enabling technology is to have the plants pre-manufactured and assembled by a modular construction and to use innovative,

  11. Cogeneration of electric power in the sugar and alcohol sectors: registration of the power plants in Sao Paulo, Brazil; Cogeracao de energia eletrica no setor sucroalcooleiro: cadastro das usinas em Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Gustavo Goncalves [Federacao das Industrias do Estado de Sao Paulo (FIESP), Sao Paulo, SP (Brazil); Moreira, Helemilton Rios; Silva, Edison da [Agencia Reguladora de Saneamento e Energia do Estado de Sao Paulo (ARSESP), SP (Brazil)

    2008-07-01

    One of the major difficult for the planning of co-generation industry of electricity from the sugar cane bagasse is the determination of their true potential. This question comes up, especially in the lack of information about the sugar and ethanol facilities, therefore for the study of potential, we can not just focus on the issue of the cane grinding, but also in technology, the configuration of the power plant and its capacity to export energy. This paper presents a proposal to minimize this difficulty, detailing a solution dedicated to the development of a database for the registration and monitoring of these plants, part of a series of actions regarding in the Understanding Protocol for the promotion of co-generation of bagasse, signed between FIESP and the Government of the State of Sao Paulo. (author)

  12. Cogeneration markets in Ontario

    International Nuclear Information System (INIS)

    Poredos, S.

    1993-01-01

    Cogeneration offers a key strategy which supports global competitiveness for Ontario businesses, encourages energy efficiency and environmental protection, and offers natural gas utilities and producers stable long-term incremental markets. By supporting cogeneration projects, electric utilities will benefit from increased flexibility. Natural gas is the fuel of choice for cogeneration, which can in most cases be easily integrated into existing operations. In Ontario, electric demand grew along with the gross domestic product until 1990, but has decreased with the recent economic recession. The provincial utility Ontario Hydro is resizing itself to stabilize total rate increases of 30% over the last three years and supporting reduction of its high debt load. Rate increases are supposed to be limited but this may be difficult to achieve without further cost-cutting measures. Cogeneration opportunities exist with many institutional and industrial customers who are trying to remain globally competitive by cutting operating costs. In general, cogeneration can save 20% or more of total annual energy costs. Due to excess capacity, Ontario Hydro is not willing to purchase electric power, thus only electric load displacement projects are valid at this time. This will reduce overall savings due to economies of scale. In southwestern Ontario, Union Gas Ltd. has been successful in developing 40 MW of electric displacement projects, providing a total load of 5 billion ft 3 of natural gas (50% of which is incremental). Over 3,000 MW of technical cogeneration potential is estimated to exist in the Union Gas franchise area

  13. Global environment and cogeneration

    International Nuclear Information System (INIS)

    Miyahara, Atsushi

    1992-01-01

    The environment problems on global scale have been highlighted in addition to the local problems due to the rapid increase of population, the increase of energy demand and so on. The global environment summit was held in Brazil. Now, global environment problems are the problems for mankind, and their importance seems to increase toward 21st century. In such circumstances, cogeneration can reduce carbon dioxide emission in addition to energy conservation, therefore, attention has been paid as the countermeasure for global environment. The background of global environment problems is explained. As to the effectiveness of cogeneration for global environment, the suitability of city gas to environment, energy conservation, the reduction of carbon dioxide and nitrogen oxides emission are discussed. As for the state of spread of cogeneration, as of March, 1992, those of 2250 MW in terms of power generation capacity have been installed in Japan. It is forecast that cogeneration will increase hereafter. As the future systems of cogeneration, city and industry energy center conception, industrial repowering, multiple house cogeneration and fuel cells are described. (K.I.)

  14. Modular nuclear reactor for a land-based power plant and method for the fabrication installation and operation thereof

    International Nuclear Information System (INIS)

    Craig, E. R.; Blumberg, B. Jr.

    1985-01-01

    A self-contained modular nuclear reactor which can be prefabricated at a factory location, nuclear-certified at the factory, transported to a field location for final assembly and connection to a large-scale electric-power generating facility. The modular reactor includes a prefabricated nuclear heat supply module and a plurality of shell segments which can be assembled about the heat supply module and which provide a form for the pouring and curing of a cementatious biological shield about the heat supply module. The modular reactor includes passive shutdown heat removal systems sufficient to render the reactor safe in an emergency. A large-scale power plant arrangement is disclosed which incorporates a plurality of the modular reactors

  15. INCOGEN: Nuclear cogeneration in the Netherlands

    International Nuclear Information System (INIS)

    Heek, A.I. van

    1997-01-01

    A small heat and power cogeneration plant with a pebble bed high temperature reactor (HTR) is discussed. Cogeneration could be a new market for nuclear power and the HTR could be very suitable. The 40 MWth INCOGEN system is presented. Philosophy, layout, characteristics and performance are described. The lower power level, advanced component technologies and inherent safety features are used to obtain a maximally simplified system. Static and dynamic cycle analyses of the energy conversion system are discussed, as well as the behaviour of the reactor cavity cooling system. Although the cost study has not been finished yet, cost reduction trends are indicated. (author)

  16. Thermal-economic analysis of cogeneration systems

    International Nuclear Information System (INIS)

    Walter, A.C.S.; Bajay, S.V.

    1992-01-01

    Approximately 80 countries produce sugar, and fortuitously alcohol, from sugar cane. In all these countries the cogeneration technology of steam turbines is utilized, although almost always inefficient. The greater potential of cogeneration in Brazil is in sugar and alcohol sector, because of the use of sugar cane bagasse as combustible. This work applies the techniques of simulation and economic analysis to different configuration of plants, to determine power generation and associated costs of each alternative. The application of the same procedure at operating condition of several configurations in transient system permits the determination of production profile of exceeding during one day. (C.M.)

  17. Economic competitiveness of small modular reactors versus coal and combined cycle plants

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Bilbao, Sama; Valle, Edmundo del

    2016-01-01

    Small modular reactors (SMRs) may be an option to cover the electricity needs of isolated regions, distributed generation grids and countries with small electrical grids. Previous analyses show that the overnight capital cost for SMRs is between 4500 US$/kW and 5350 US$/kW, which is between a 6% and a 26% higher than the average cost of a current large nuclear reactor. This study analyzes the economic competitiveness of small modular reactors against thermal plants using coal and natural gas combined cycle plants. To assess the economic competitiveness of SMRs, three overnight capital costs are considered 4500 US$/kW, 5000 US$/kW and 5350 US$/kW along with three discount rates for each overnight cost considered, these are 3, 7, and 10%. To compare with natural gas combined cycle (CC) units, four different gas prices are considered, these are 4.74 US$/GJ (5 US$/mmBTU), 9.48 US$/GJ (10 US$/mmBTU), 14.22 US$/GJ (15 US$/mmBTU), and 18.96 US$/GJ (20 US$/mmBTU). To compare against coal, two different coal prices are considered 80 and 120 US$/ton of coal. The carbon tax considered, for both CC and coal, is 30 US$/ton CO_2. The results show what scenarios make SMRs competitive against coal and/or combined cycle plants. In addition, because the price of electricity is a key component to guarantee the feasibility of a new project, this analysis calculates the price of electricity for the economically viable deployment of SMRs in all the above scenarios. In particular, this study shows that a minimum price of electricity of 175 US$/MWh is needed to guarantee the feasibility of a new SMR, if its overnight capital cost is 5350 US$/kWe and the discount rate is 10%. Another result is that when the price of electricity is around 100 US$/MWh then the discount rate must be around 7% or less to provide appropriate financial conditions to make SMRs economically feasible. - Highlights: • Small modular reactor (SMR) are economically assessed. • SMR are compared against gas and coal

  18. External financing of projects on cogeneration

    International Nuclear Information System (INIS)

    Contreras Olmedo, D.

    1993-01-01

    The Spanish Institute for Energy Saving and Diversification (IDAE), provides technical advisement and economical support to those industries requiring an improvement in the energy efficiency of their production chain. This paper focusses on administrative procedures to get external financing as one way to undertake the construction of cogeneration plants. Relationships among user, promoter and financier should be developed according to the outlined procedures. (Author)

  19. Rational modular design of metabolic network for efficient production of plant polyphenol pinosylvin.

    Science.gov (United States)

    Wu, Junjun; Zhang, Xia; Zhu, Yingjie; Tan, Qinyu; He, Jiacheng; Dong, Mingsheng

    2017-05-03

    Efficient biosynthesis of the plant polyphenol pinosylvin, which has numerous applications in nutraceuticals and pharmaceuticals, is necessary to make biological production economically viable. To this end, an efficient Escherichia coli platform for pinosylvin production was developed via a rational modular design approach. Initially, different candidate pathway enzymes were screened to construct de novo pinosylvin pathway directly from D-glucose. A comparative analysis of pathway intermediate pools identified that this initial construct led to the intermediate cinnamic acid accumulation. The pinosylvin synthetic pathway was then divided into two new modules separated at cinnamic acid. Combinatorial optimization of transcriptional and translational levels of these two modules resulted in a 16-fold increase in pinosylvin titer. To further improve the concentration of the limiting precursor malonyl-CoA, the malonyl-CoA synthesis module based on clustered regularly interspaced short palindromic repeats interference was assembled and optimized with other two modules. The final pinosylvin titer was improved to 281 mg/L, which was the highest pinosylvin titer even directly from D-glucose without any additional precursor supplementation. The rational modular design approach described here could bolster our capabilities in synthetic biology for value-added chemical production.

  20. Energetic, exergetic, thermoeconomic and environmental analysis of various systems for the cogeneration of biogas produced by an urban wastewater treatment plant UWTP

    Energy Technology Data Exchange (ETDEWEB)

    Coble, J.J. [Nebrija Univ., Madrid (Spain). Industrial Engineering Dept.; Contreras, A. [Industrial Engineering College, Madrid (Spain). Chemistry Dept.

    2010-07-01

    General awareness that the world's energy resources are limited has meant that it is increasingly important to examine energy-saving devices and fuels more closely, in order to use our limited available resources in a more sustainable manner. With this in mind, we studied biogas from a UWTP, because it is a renewable fuel with a neutral contribution to CO2 emissions. We compared two technologies for using biogas as an energy source: cogeneration using either motor-generators or phosphoric acid fuel cells. The comparison was made from the energetic, exergetic, thermo-economic and environmental points of view, internalizing all the costs involved in each case. We used data supplied by the UWTP at the City of Madrid Plant Nursery, which uses motor-generators, and the UWTPs in Portland, Oregon, and in Red Hook, New York, which use a phosphoric acid fuel cell. The joint work carried out has been divided into three parts for publication purposes, and we present here the first of these, which refers to the energy analysis. (orig.)

  1. Feasibility study for new ecolabels according to ISO 14024 (type I) within the product group: small cogeneration plants; Machbarkeitsstudie fuer neue Umweltzeichen in Anlehnung an ISO 14024 (Type I) fuer die Produktgruppe: Kleine Blockheizkraftwerk-Module

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, E.; Hirschl, B.; Kaliske, J. [Institut fuer Oekologische Wirtschaftsforschung (IOEW) gGmbH, Berlin (Germany); Reese, I.; Grimpe, T. [Hamburg Gas Consult (HGC) GmbH (Germany)

    2000-11-02

    This study is a feasibility study according to ISO 14024. It deals with the question whether an ecolabel is suitable for small cogeneration plants and how concrete criteria for an ecolabel on cogeneration plants could be specified. The study began with a comprehensive market analysis in order to identify possible plants for which an ecolabel would make sense. In the main part of the study, the environmental relevance of the chosen plants was analysed. For this analysis, plant manufacturers were interviewed and a comparison between cogeneration plants and heating plants was carried out. On the basis of this analysis, it was possible to derive a number of criteria which were presented and discussed in an expert talk by various company representatives and experts in this field. As a result of the expert talk and the investigation process as a whole, the introduction of an ecolabel for small cogeneration plants can be recommended. The proposed certification principles comprise requirements regarding the compliance with directives, efficient energy use (electrical and overall efficiency factor under partial load and nominal load, mentioning the plant's supplementary energy consumption), emission values for CO, NO{sub x}, dust and organic substances, sound emissions, the offer of maintenance contracts, plant take back obligations, as well as requirements with regard to the operating instructions. The transcription of the label is proposed as 'Ecolabel. because energy-efficient'. Besides cogeneration plants based on engines, the study also focused on small stationary fuel cells. They are currently in the development phase and are tested within the scope of several field studies. Compared to conventional heating plants and cogeneration plants powered by engines, this new technology promises clear ecological advantages and constitutes a future alternative to engine powered equivalents. Faced by the current state of development and the limited quality of the

  2. The cogeneration as an alternative of conservation of energy or increased productivity in industrial asphalt plants; A cogeracao como alternativa de conservacao de energia ou aumento da produtividade industrial em usinas de asfalto

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Liodoro de [Universidade Federal de Itajuba (UNIFEI), Santos, SP (Brazil)], Email: mellostopa@pop.com.br; Souza, Marcelo de Oliveira e [Centrais Eletricas Brasileira S.A - ELETROBRAS, Brasilia, DF (Brazil); Mello, Eliane Stopa de

    2006-07-01

    The paper presents a detailed study on the implantation of the combined and simultaneous generation of usable energy (cogeneration) in industrial units that provide support for the flow of wealth to the country, across roads and highways, as is the case of plant Asphalt EMPAV. The study, by the sensitivity analysis of economic and financial, completed in 2004, showed the feasibility of cogeneration system for the company. The fact is that this study would not have been exhaustively discussed, otherwise would be institutional actions towards improving the completion of work. In order to resume this discussion in this article was concerned to measure the monetary losses, especially energy, during the period 2004-2006 the production of asphalt for the conventional way.

  3. Co-generation and innovative heat storage systems in small-medium CSP plants for distributed energy production

    Science.gov (United States)

    Giaconia, Alberto; Montagnino, Fabio; Paredes, Filippo; Donato, Filippo; Caputo, Giampaolo; Mazzei, Domenico

    2017-06-01

    CSP technologies can be applied for distributed energy production, on small-medium plants (on the 1 MW scale), to satisfy the needs of local communities, buildings and districts. In this perspective, reliable, low-cost, and flexible small/medium multi-generative CSP plants should be developed. Four pilot plants have been built in four Mediterranean countries (Cyprus, Egypt, Jordan, and Italy) to demonstrate the approach. In this paper, the plant built in Italy is presented, with specific innovations applied in the linear Fresnel collector design and the Thermal Energy Storage (TES) system, based on a single the use of molten salts but specifically tailored for small scale plants.

  4. Cogeneration in the former Soviet Union

    International Nuclear Information System (INIS)

    Horak, W.C.

    1997-01-01

    The former Soviet Union made a major commitment to Cogeneration. The scale and nature of this commitment created a system conceptually different from Cogeneration in the west. The differences were both in scale, in political commitment, and in socio economic impact. This paper addresses some of the largest scale Cogeneration programs, the technology, and the residual impact of these programs. The integration of the Cogeneration and nuclear programs is a key focus of the paper. Soviet designed nuclear power plants were designed to produce both electricity and heat for residential and industrial uses. Energy systems used to implement this design approach are discussed. The significant dependence on these units for heat created an urgent need for continued operation during the winter. Electricity and heat are also produced in nuclear weapons production facilities, as well as power plants. The Soviets also had designed, and initiated construction of a number of nuclear power plants open-quotes ATETsclose quotes optimized for production of heat as well as electricity. These were canceled

  5. The California cogeneration success story

    International Nuclear Information System (INIS)

    Neiggemann, M.F.

    1992-01-01

    This chapter describes the involvement of Southern California Gas Company(SoCalGas) in the promotion and demonstration of the benefits of cogeneration in California. The topics covered in this chapter are market strategy, cogeneration program objectives, cogeneration program, incentive cofunding, special gas rate, special service priority, special gas pressure and main options, advertising, promotional brochures and handbooks, technical support, program accomplishments, cogeneration outlook, and reasons for success of the program

  6. Helium circulator design concepts for the modular high temperature gas-cooled reactor (MHTGR) plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; Nichols, M.K.; Kaufman, J.S.

    1988-01-01

    Two helium circulators are featured in the Modular High-Temperature Gas-Cooled Reactor (MHTGR) power plant - (1) the main circulator, which facilitates the transfer of reactor thermal energy to the steam generator, and (2) a small shutdown cooling circulator that enables rapid cooling of the reactor system to be realized. The 3170 kW(e) main circulator has an axial flow compressor, the impeller being very similar to the unit in the Fort St. Vrain (FSV) plant. The 164 kW(e) shutdown cooling circulator, the design of which is controlled by depressurized conditions, has a radial flow compressor. Both machines are vertically oriented, have submerged electric motor drives, and embody rotors that are supported on active magnetic bearings. As outlined in this paper, both machines have been conservatively designed based on established practice. The circulators have features and characteristics that have evolved from actual plant operating experience. With a major goal of high reliability, emphasis has been placed on design simplicity, and both machines are readily accessible for inspection, repair, and replacement, if necessary. In this paper, conceptual design aspects of both machines are discussed, together with the significant technology bases. As appropriate for a plant that will see service well into the 21st century, new and emerging technologies have been factored into the design. Examples of this are the inclusion of active magnetic bearings, and an automated circulator condition monitoring system. (author). 18 refs, 20 figs, 13 tabs

  7. Small, modular, low-cost coal-fired power plants for the international market

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B.; Frain, B.; Borck, B. [Coal Tech Corp., Merion Station, PA (United States); Baldwin, A.L. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center

    1997-12-31

    This paper presents recent operating results of Coal Tech`s second generation, air cooled, slagging coal combustor, and its application to power plants in the 1 to 20 MW range. This 20 MMBtu/hour combustor was installed in a new demonstration plant in Philadelphia, PA in 1995. It contains the combustion components of a 1 MWe coal fired power plant, a 17,500 lb/hour steam boiler, coal storage and feed components, and stack gas cleanup components. The plant`s design incorporates improvements resulting from 2,000 hours of testing between 1987 and 1993 on a first generation, commercial scale, air cooled combustor of equal thermal rating. Since operations began in early 1996, a total of 51 days of testing have been successfully completed. Major results include durability of the combustor`s refractory wall, excellent combustion with high ash concentration in the fuel, removal of 95% to 100% of the slag in the combustor, very little ash deposition in the boiler, major reduction of in-plant parasitic power, and simplified power system control through the use of modular designs of sub-systems and computer control. Rapid fuel switching between oil, gas, and coal and turndown of up to a factor of three was accomplished. All these features have been incorporated in advanced coal fired plant designs in the 1 to 20 MWe range. Incremental capital costs are only $100 to $200/kW higher than comparable rated gas or oil fired steam generating systems. Most of its components and subsystems can be factory assembled for very rapid field installation. The low capital, low operating costs, fuel flexibility, and compatibility with very high ash fuels, make this power system very attractive in regions of the world having domestic supplies of these fuels.

  8. Cogeneration. Energy efficiency - Micro-cogeneration; La Cogeneration. Efficacite Energetique - Micro-cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Boudellal, M.

    2010-07-01

    Depletion of natural resources and of non-renewable energy sources, pollution, greenhouse effect, increasing energy needs: energy efficiency is a major topic implying a better use of the available primary energies. In front of these challenges, cogeneration - i.e. the joint production of electricity and heat, and, at a local or individual scale, micro-cogeneration - can appear as interesting alternatives. This book presents in a detailed manner: the present day and future energy stakes; the different types of micro-cogeneration units (internal combustion engines, Stirling engine, fuel cell..), and the available models or the models at the design stage; the different usable fuels (natural gas, wood, biogas..); the optimization rules of a facility; the costs and amortizations; and some examples of facilities. (J.S.)

  9. Thermionic cogeneration burner design

    Science.gov (United States)

    Miskolczy, G.; Goodale, D.; Moffat, A. L.; Morgan, D. T.

    Since thermionic converters receive heat at very high temperatures (approximately 1800 K) and reject heat at moderately high temperatures (approximately 800 K), they are useful for cogeneration applications involving high temperature processes. The electric power from thermionic converters is produced as a high amperage, low-voltage direct current. An ideal cogeneration application would be to utilize the reject heat at the collector temperature and the electricity without power conditioning. A cogeneration application in the edible oil industry fulfills both of these requirements since both direct heat and hydrogen gas are required in the hydrogenation of the oils. In this application, the low-voltage direct current would be used in a hydrogen electrolyzer.

  10. Cogeneration feasibility study in the Gulf States Utilities service area

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Sites in the Gulf States Utilities service are considered for cogeneration feasibility studies. The sources of steam considered for the Orange, Texas and Geismar, Lake Charles, and North Baton Rouge, Louisiana sites include oil, coal, HTGR steamers, consolidated nuclear steam system, atmospheric fluidized-bed coal combustion, and coal gasification. Concepts concerning cogeneration fuel systems were categorized by technical applicability as: current technology (pulverized coal-fired boilers and fuel oil-fired boilers), advanced technology under development (HTGR steamers and the CNSS), and advanced technology for future development (atmospheric fluidized-bed boilers and coal gasification). In addition to providing data on cogeneration plant generally useful in the US, the study determined the technical and economic feasibility of steam and electric power cogeneration using coal and nuclear fuels for localized industrial complexes. Details on site selection, plant descriptions, cost estimates, economic analysis, and plant schedule and implementation. (MCW)

  11. Exotic plant infestation is associated with decreased modularity and increased numbers of connectors in mixed-grass prairie pollination networks

    Science.gov (United States)

    Larson, Diane L.; Rabie, Paul A.; Droege, Sam; Larson, Jennifer L.; Haar, Milton

    2016-01-01

    The majority of pollinating insects are generalists whose lifetimes overlap flowering periods of many potentially suitable plant species. Such generality is instrumental in allowing exotic plant species to invade pollination networks. The particulars of how existing networks change in response to an invasive plant over the course of its phenology are not well characterized, but may shed light on the probability of long-term effects on plant-pollinator interactions and the stability of network structure. Here we describe changes in network topology and modular structure of infested and non-infested networks during the flowering season of the generalist non-native flowering plant, Cirsium arvense in mixed-grass prairie at Badlands National Park, South Dakota, USA. Objectives were to compare network-level effects of infestation as they propagate over the season in infested and non-infested (with respect to C. arvense) networks. We characterized plant-pollinator networks on 5 non-infested and 7 infested 1-ha plots during 4 sample periods that collectively covered the length of C. arvense flowering period. Two other abundantly-flowering invasive plants were present during this time: Melilotus officinalis had highly variable floral abundance in both C. arvense-infested and non-infested plots andConvolvulus arvensis, which occurred almost exclusively in infested plots and peaked early in the season. Modularity, including roles of individual species, and network topology were assessed for each sample period as well as in pooled infested and non-infested networks. Differences in modularity and network metrics between infested and non-infested networks were limited to the third and fourth sample periods, during flower senescence of C. arvenseand the other invasive species; generality of pollinators rose concurrently, suggesting rewiring of the network and a lag effect of earlier floral abundance. Modularity was lower and number of connectors higher in infested

  12. Grid connected integrated community energy system. Phase II: final stage 2 report. Outline specifications of cogeneration plant; continued

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-22

    Specifications are presented for the electrical equipment, site preparation, building construction and mechanical systems for a dual-purpose power plant to be located on the University of Minnesota campus. This power plant will supply steam and electrical power to a grid-connected Integrated Community Energy System. (LCL)

  13. Grid connected integrated community energy system. Phase II: final stage 2 report. Preliminary design of cogeneration plant

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-22

    The preliminary design of a dual-purpose power plant to be located on the University of Minnesota is described. This coal-fired plant will produce steam and electric power for a grid-connected Integrated Community Energy System. (LCL)

  14. Modular-multiplex or single large power plants-advantages and disadvantages for utility systems

    International Nuclear Information System (INIS)

    Endicott, R.D.

    1986-01-01

    The question of growing interest in the fusion community is what size and type configuration fusion reactor(s) will lead to the most economical and attractive fusion power plant? There are two sides to this question. One involves how to build the most economical and attractive fusion reactor. This question which requires evaluation of reactor components within the reactor system is being examined at the Fusion Engineering Design Center (FEDC) and elsewhere. The other side involves examining the issues associated with the most economical size and configuration reactor to use. This question requires the evaluation of the changes in cost of service due to different size and configuration reactors on a utility system. The authors objective was to explore the advantages and disadvantages of using modular-multiplex power plants and to illustrate a means of quantifying the tradeoffs. The effort resulted in the identification of the key parameters involved in selecting the optimum size plant for a utility system and a better understanding of the tradeoffs that are possible. This paper discusses this effort in detail

  15. Cogeneration: One way to use biomass efficiently

    International Nuclear Information System (INIS)

    Gustavsson, L.; Johansson, B.

    1993-01-01

    Cogeneration in district heating systems is the most energy-efficient way to convert biomass into heat and electricity with current or nearly commercial technologies. Methanol produced from biomass and used in vehicles instead of petrol or diesel could reduce carbon dioxide emissions nearly as much per unit of biomass as if the biomass were used to replace natural gas for cogeneration, but at some higher cost per unit of carbon dioxide reduction. The most energy-efficient way to use biomass for cogeneration appears to be combined cycle technology, and the world's first demonstration plant is now being built. Potentially, this technology can be used for electricity production in Swedish district heating systems to provide nearly 20% of current Swedish electricity production, while simultaneously reducing carbon dioxide emissions from the district heating systems by some 55%. The heat costs from cogeneration with biomass are higher than the heat costs from fossil fuel plants at current fuel prices. Biomass can only compete with fossil fuel if other advantages, for example a lower environmental impact are considered. (au) (35 refs.)

  16. Study on modular construction management in AP1000 nuclear plant project

    International Nuclear Information System (INIS)

    Fang Xiaopeng; Shen Wenrong; Sun Kebin; Wei Zhong

    2010-01-01

    The construction of AP1000 Nuclear Power Plant (NPP) has commenced in China. The AP1000 NPP features a passive design concept and modular construction technology. Based on the management of the construction of current AP1000 NNP, this paper describes the effects on Nuclear Island (NI) construction project management resulting from modular construction technology, as well as new construction techniques and methods. This paper puts forward new requirements for construction schedule management of the nuclear island construction at different levels. The AP1000 NI construction logic features the parallel construction of civil and structural erection as the main approach, with the integrated schedule of module fabrication, assembly and installation as support. The structural modules of AP1000 project are prefabricated in shop, delivered to site as sub-modules and assembled to integrated structural module. The assembled module is transported to the construction site, hoisted and finally set in NI. This paper illustrates how to ensure the construction quality of structural modules by analyzing the interface process and key links in the quality control program, and introduces how to ensure the safety of heavy structural components during various construction phases by evaluating and analyzing the construction safety process. This paper also makes an analysis of the safe environment for the assembly and installation of Containment Vessel, the management of product protection and personnel safety inside the Containment Building during 'Open Top' construction, raises to implement effective protection for the numerous pre-set mechanical modules and equipments, as well as personnel safety protection programs and measures. The modular construction feature of AP1000 NPP design requires technique improvement and management innovation during the NI construction. This paper makes a study and research on the control management of schedule, quality and safety of AP1000 NPP NI

  17. A modular real time Operator Advisor expert system for installation on a full function nuclear power plant simulator

    International Nuclear Information System (INIS)

    Hajek, B.K.; Miller, D.W.; Bhatnagar, R.; Maresh, J.L.

    1989-01-01

    A knowledge-based expert system that uses the Generic Task approach is being developed to serve as an operator Advisor in the control room of a commercial nuclear power plant. Having identified the broad scope tasks performed by an operator in responding to abnormal plant conditions, our research team has modularized the Operator Advisor according to the tasks of (1) monitoring plant parameters, (2) classifying or diagnosing the abnormality, and (3) planning for execution of the procedures for recovery. The operator Advisor uses the Perry Nuclear Power Plant full-scope simulator as the reference system, and is currently being prepared for direct connection to the simulator

  18. Industrial cogeneration optimization program. Final report, September 1979

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Jerry; McWhinney, Jr., Robert T.

    1980-01-01

    This study program is part of the DOE Integrated Industry Cogeneration Program to optimize, evaluate, and demonstrate cogeneration systems, with direct participation of the industries most affected. One objective is to characterize five major energy-intensive industries with respect to their energy-use profiles. The industries are: petroleum refining and related industries, textile mill products, paper and allied products, chemicals and allied products, and food and kindred products. Another objective is to select optimum cogeneration systems for site-specific reference case plants in terms of maximum energy savings subject to given return on investment hurdle rates. Analyses were made that define the range of optimal cogeneration systems for each reference-case plant considering technology applicability, economic factors, and energy savings by type of fuel. This study also provides guidance to other parts of the program through information developed with regard to component development requirements, institutional and regulatory barriers, as well as fuel use and environmental considerations. (MCW)

  19. Novel, cost-effective configurations of combined power plants for small-scale cogeneration from biomass: Feasibility study and performance optimization

    International Nuclear Information System (INIS)

    Amirante, Riccardo; Tamburrano, Paolo

    2015-01-01

    Highlights: • A cheap small combined cycle for cogeneration from biomass is proposed. • An optimization procedure is utilized to explore its potential. • Two configurations employing two different heat exchangers are considered. • The maximum electrical efficiency is 25%, the maximum overall efficiency is 70%. • The operation in load following mode is effective for both configurations. - Abstract: The aim of this paper is to demonstrate that, thanks to recent advances in designing micro steam expanders and gas to gas heat exchangers, the use of small combined cycles for simultaneous generation of heat and power from the external combustion of solid biomass and low quality biofuels is feasible. In particular, a novel typology of combined cycle that has the potential both to be cost-effective and to achieve a high level of efficiency is presented. In the small combined cycle proposed, a commercially available micro-steam turbine is utilized as the steam expander of the bottoming cycle, while the conventional microturbine of the topping cycle is replaced by a cheaper automotive turbocharger. The feasibility, reliability and availability of the required mechanical and thermal components are thoroughly investigated. In order to explore the potential of such a novel typology of power plant, an optimization procedure, based on a genetic algorithm combined with a computing code, is utilized to analyze the trade-off between the maximization of the electrical efficiency and the maximization of the thermal efficiency. Two design optimizations are performed: the first one makes use of the innovative “Immersed Particle Heat Exchanger”, whilst a nickel alloy heat exchanger is used in the other one. After selecting the optimum combination of the design parameters, the operation in load following mode is also assessed for both configurations

  20. Thermodynamic performance analysis of a novel electricity-heating cogeneration system (EHCS) based on absorption heat pump applied in the coal-fired power plant

    International Nuclear Information System (INIS)

    Zhang, Hongsheng; Li, Zhenlin; Zhao, Hongbin

    2015-01-01

    Highlights: • Presented a novel waste heat recovery method for Combined Heat and Power system. • Established models of the integrated system based on energy and exergy analysis. • Adopted both design and actual data ensuring the reliability of analysis results. - Abstract: A novel electricity-heating cogeneration system (EHCS) which is equipped with an absorption heat pump (AHP) system to recover waste heat from exhaust steam of the steam turbines in coal-fired thermal power plants is proposed to reduce heating energy consumption and improve the utilization of the fossil fuels in existing CHP (Combined Heat and Power) systems. According to the first and second thermodynamic law, the changes of the performance evaluation indicators are analyzed, and exergy analyses for key components of the system are carried out as well as changes of exergy indexes focusing on 135 MW direct air cooling units before and after modification. Compared with the conventional heating system, the output power increases by about 3.58 MW, gross coal consumption rate and total exergy loss respectively reduces by 11.50 g/kW h and 4.649 MW, while the total thermal and exergy efficiency increases by 1.26% and 1.45% in the EHCS when the heating load is 99,918 kJ at 75% THA condition. Meanwhile, the decrement of total exergy loss and increment of total exergy efficiency increase with the increasing of the heating load. The scheme cannot only bring great economic benefits but also save fossil resources, which has a promising market application potential.

  1. The cogeneration potential of the sugar industry in Vietnam

    International Nuclear Information System (INIS)

    Bhattacharyya, S.C.; Thang, D.N.Q.

    2004-01-01

    Vietnam produces about 15 million tons of sugarcane per year and about five mt of bagasse. There is the potential for cogeneration using bagasse, which can also help overcome power shortages in the country. This paper analyses the potential for cogeneration from the sugar industry in Vietnam under three different scenarios and finds that between 100 and 300 megawatts of power-generating capacity could be supported by the bagasse generated from sugar mills, depending on the technology considered for sugar mills and cogeneration and the possibility of renovation of the existing mills. The paper also assesses the expense of cogeneration and finds it to be a cost-effective option for all types of sugar mill. It is found that the cost savings from cogeneration would more than offset the cost of introducing cogeneration in sugar mills with inefficient cane processing technologies. Sugar mills with modern technologies would have a significant amount of excess power and most of these plants would break-even if they sold excess power at around 4.5 cents per kilowatt hour. The break-even cost and the average production cost are sensitive to the investment cost assumptions. The paper thus suggests that cogeneration from the sugar industry is an attractive option for investors in existing mills or new sugar mills alike. (Author)

  2. Methodology study: Co-generation feasibility at sawmills

    International Nuclear Information System (INIS)

    Host, J.

    1991-01-01

    This report discussed the various factors that should be studied and evaluated before establishing a cogeneration plant. The results of three case studies and a survey of energy needs in smaller and medium size sawmills are also presented. In general, cogeneration is feasible for supplying electric energy required for processing logs using fuelbark and other residues from the manufacturing process. A rebuilt turbine-generator unit is an initial cost saving alternative that is advantageous throughout the life of the operation

  3. Co-generation project for the Combined Cycle Power Plant President Juarez Rosarito and a reverse osmosis desalting plant; Proyecto de cogeneracion para la planta de ciclo combinado Presidente Juarez Rosarito y una planta desaladora de osmosis inversa

    Energy Technology Data Exchange (ETDEWEB)

    Beltran Mora, Hector; Espindola Hernandez, Salvador [Universidad NAcional Autonoma de Mexico (UNAM), Mexico, D.F. (Mexico)

    2006-11-15

    In this work a technical and economical analysis of the installation of a reverse osmosis desalting plant connected to a power station that uses the combined cycle technology under a co-generation scheme is presented: production of electricity and water. The operation program of the desalting power station will be determined by the demand of energy of the combined cycle power station; the proposal is that the desalting plant operates in the hours of low load of the power station and shuts down at the peak hours of electrical energy demand. So that this study is representative, the demand curves of electric energy of the units of combined cycle of Central President Juarez Rosarito of the Comision Federal de Electricidad (CFE) have been taken and updated the data of the reverse osmosis desalting plants that are available at the moment in the market. As basis of the study the level costs will be determined so much as the electrical energy generated by the power station of combined cycle, operating inside and outside of a co-generation scheme and the costs made level for the water produced by the reverse osmosis plant under two assumptions: the first one is buying the electrical energy from CFE and the second one considering that the CFE is the owner of the desalting plant and therefore the cost of electrical energy to desalting the plant is zero. This work shows the economic impacts on the costs of the generation of electrical energy and on those of the desalted water in a co-generation scheme. The results shown in this study can be considered for the future planning in the construction of desalting plants to supply of water in the Northwestern zones of the country where serious problems of water shortage exist. [Spanish] En este trabajo se presenta un analisis tecnico y economico de la instalacion de una planta desaladora de osmosis inversa acoplada a una central de generacion de energia electrica que utiliza la tecnologia de ciclo combinado bajo un esquema de

  4. Treatment of fuel oil contaminated waste water from liquid fuel processing plants associated to thermal power plants or heat and power cogeneration plants

    International Nuclear Information System (INIS)

    Petrescu, S.

    1996-01-01

    According to the statistical data presented in the most important European and world meetings on environmental protection, the oil product amounts which pollute the surface water is estimated to be of about 6 mill. tones yearly out of which 35 %, 10 %, and 1 % come from oil tanks, natural sources, and offshore drilling, respectively, while 54 % reach seas and oceans trough rivers, rains a.o. Among the water consumers and users of Romania, the thermal power plants, belonging to RENEL (Romanian Electricity Authority), are the greatest. A part of the water with modified chemical-physical parameters, used for different technological processes, have to be discharged from the user precinct directly towards natural agents or indirectly through public sewage networks as domestic and industrial waste water. These waste waters need an adequate treatment before discharging as to meet the requirements imposed by the norms and regulations related to environment protection. For this purpose, before discharging, after using, the water must be circulated through the treatment plants designed and operated as to ensure the correction of the inadequate values of the residual water parameters. The paper presents the activities developed in the Institute for Power Studies and Design concerning the environmental protection against pollution produced by the entire power generation circuit, from the design phase up to product supplying. (author). 1 tab., 2 refs

  5. Technical overview of cogeneration: the hardware, the industries, the potential development

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    Because the by-product heat from a power-conversion process is captured for productive use in a cogeneration system, instead of exhausted to the environment as it is in a conventional power plant, cogeneration represents an important energy-conservation technique. By cogenerating, an industrial plant can save the fuel that would have been needed to produce the amount of heat captured. Recognizing the significant energy-savings potential offered by cogeneration, DOE has undertaken a major R, D, and D program to investigate and promote cogeneration in industry. Resource Planning Associates, Inc. (RPA), has been working to accomplish four of the program's objectives: (1) survey current, near state-of-the-art, and future cogeneration equipment, and identify any gaps or deficiencies; (2) characterize the energy requirements of the manufacturing sectors of five of the country's most energy-intensive industries - chemical, petroleum refining, paper and pulp, textiles, and food; (3) identify principal targets for, and barriers to, the increased market development of cogeneration systems; and (4) estimate the potential maximum and the probable energy savings that could be achieved in the five selected industries through cogeneration. In investigating cogeneration hardware, three specific technologies - steam turbines, gas turbines, and diesel engines - were emphasized. It is estimated that the widespread application of cogeneration technology in the five industries studied could result in a maximum potential savings of 2.4 million barrels of oil equivalent per day (or a maximum incremental capacity of 140,000 MWe) by 1985.

  6. Westinghouse Small Modular Reactor balance of plant and supporting systems design

    Energy Technology Data Exchange (ETDEWEB)

    Memmott, M. J.; Stansbury, C.; Taylor, C. [Westinghouse Electric Company LLC, 600 Cranberry Woods Drive, Cranberry Twp. PA 16066 (United States)

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the second in a series of four papers which describe the design and functionality of the Westinghouse SMR. It focuses, in particular, upon the supporting systems and the balance of plant (BOP) designs of the Westinghouse SMR. Several Westinghouse SMR systems are classified as safety, and are critical to the safe operation of the Westinghouse SMR. These include the protection and monitoring system (PMS), the passive core cooling system (PXS), and the spent fuel cooling system (SFS) including pools, valves, and piping. The Westinghouse SMR safety related systems include the instrumentation and controls (I and C) as well as redundant and physically separated safety trains with batteries, electrical systems, and switch gears. Several other incorporated systems are non-safety related, but provide functions for plant operations including defense-in-depth functions. These include the chemical volume control system (CVS), heating, ventilation and cooling (HVAC) systems, component cooling water system (CCS), normal residual heat removal system (RNS) and service water system (SWS). The integrated performance of the safety-related and non-safety related systems ensures the safe and efficient operation of the Westinghouse SMR through various conditions and transients. The turbine island consists of the turbine, electric generator, feedwater and steam systems, moisture separation systems, and the condensers. The BOP is designed to minimize assembly time, shipping challenges, and on-site testing requirements for all structures, systems, and components. (authors)

  7. Westinghouse Small Modular Reactor balance of plant and supporting systems design

    International Nuclear Information System (INIS)

    Memmott, M. J.; Stansbury, C.; Taylor, C.

    2012-01-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the second in a series of four papers which describe the design and functionality of the Westinghouse SMR. It focuses, in particular, upon the supporting systems and the balance of plant (BOP) designs of the Westinghouse SMR. Several Westinghouse SMR systems are classified as safety, and are critical to the safe operation of the Westinghouse SMR. These include the protection and monitoring system (PMS), the passive core cooling system (PXS), and the spent fuel cooling system (SFS) including pools, valves, and piping. The Westinghouse SMR safety related systems include the instrumentation and controls (I and C) as well as redundant and physically separated safety trains with batteries, electrical systems, and switch gears. Several other incorporated systems are non-safety related, but provide functions for plant operations including defense-in-depth functions. These include the chemical volume control system (CVS), heating, ventilation and cooling (HVAC) systems, component cooling water system (CCS), normal residual heat removal system (RNS) and service water system (SWS). The integrated performance of the safety-related and non-safety related systems ensures the safe and efficient operation of the Westinghouse SMR through various conditions and transients. The turbine island consists of the turbine, electric generator, feedwater and steam systems, moisture separation systems, and the condensers. The BOP is designed to minimize assembly time, shipping challenges, and on-site testing requirements for all structures, systems, and components. (authors)

  8. Modularized substrate culture:a new method for green leafy vegetable planting

    Directory of Open Access Journals (Sweden)

    WANG Quanxi

    2015-10-01

    Full Text Available On the basis of analyzing general situation of green leafy vegetable production and main difficulty,we introduce the characteristics of modularized substrate culture for green leafy vegetable,and point out the important issues of modularized substrate culture which urgently need be solved in the coming future.

  9. System Statement of Tasks of Calculating and Providing the Reliability of Heating Cogeneration Plants in Power Systems

    Science.gov (United States)

    Biryuk, V. V.; Tsapkova, A. B.; Larin, E. A.; Livshiz, M. Y.; Sheludko, L. P.

    2018-01-01

    A set of mathematical models for calculating the reliability indexes of structurally complex multifunctional combined installations in heat and power supply systems was developed. Reliability of energy supply is considered as required condition for the creation and operation of heat and power supply systems. The optimal value of the power supply system coefficient F is based on an economic assessment of the consumers’ loss caused by the under-supply of electric power and additional system expences for the creation and operation of an emergency capacity reserve. Rationing of RI of the industrial heat supply is based on the use of concept of technological margin of safety of technological processes. The definition of rationed RI values of heat supply of communal consumers is based on the air temperature level iside the heated premises. The complex allows solving a number of practical tasks for providing reliability of heat supply for consumers. A probabilistic model is developed for calculating the reliability indexes of combined multipurpose heat and power plants in heat-and-power supply systems. The complex of models and calculation programs can be used to solve a wide range of specific tasks of optimization of schemes and parameters of combined heat and power plants and systems, as well as determining the efficiency of various redundance methods to ensure specified reliability of power supply.

  10. Fossil fuel savings, carbon emission reduction and economic attractiveness of medium-scale integrated biomass gasification combined cycle cogeneration plants

    Directory of Open Access Journals (Sweden)

    Kalina Jacek

    2012-01-01

    Full Text Available The paper theoretically investigates the system made up of fluidized bed gasifier, SGT-100 gas turbine and bottoming steam cycle. Different configurations of the combined cycle plant are examined. A comparison is made between systems with producer gas (PG and natural gas (NG fired turbine. Supplementary firing of the PG in a heat recovery steam generator is also taken into account. The performance of the gas turbine is investigated using in-house built Engineering Equation Solver model. Steam cycle is modeled using GateCycleTM simulation software. The results are compared in terms of electric energy generation efficiency, CO2 emission and fossil fuel energy savings. Finally there is performed an economic analysis of a sample project. The results show relatively good performance in the both alternative configurations at different rates of supplementary firing. Furthermore, positive values of economic indices were obtained. [Acknowledgements. This work was carried out within the frame of research project no. N N513 004036, titled: Analysis and optimization of distributed energy conversion plants integrated with gasification of biomass. The project is financed by the Polish Ministry of Science.

  11. Cogeneration in Italian agricultural industry

    International Nuclear Information System (INIS)

    Bonfitto, E.; Jacoboni, S.

    1991-01-01

    This paper examines the technical, environmental and economical feasibility of an industrial cogeneration system which incorporates combined gas-steam cycles and a biomass/agricultural waste sludge fired fluidized bed combustion system. It cites the suitability of the use of fluidized bed combustion for the combustion of biomass and agricultural waste sludges - high combustion efficiency, uniform and relatively low combustion temperatures (850 C) within the combustion chamber to reduce scaling, reduced nitrogen oxide and micro-pollutant emissions, the possibility to control exhaust gas acidity through the injection of calcium carbonates, the possibility of the contemporaneous feeding of different fuels. Reference is made to test results obtained with an ENEL (Italian National Electricity Board) pilot plant fired by vineyard wastes. Attention is given to an analysis of the fuel's physical-chemical characteristics and the resulting flue gas chemical composition and ash characteristics. Comparisons are made with legal release limits

  12. Thermal-Economic Modularization of Small, Organic Rankine Cycle Power Plants for Mid-Enthalpy Geothermal Fields

    Directory of Open Access Journals (Sweden)

    Yodha Y. Nusiaputra

    2014-07-01

    Full Text Available The costs of the surface infrastructure in mid-enthalpy geothermal power systems, especially in remote areas, could be reduced by using small, modular Organic Rankine Cycle (ORC power plants. Thermal-economic criteria have been devised to standardize ORC plant dimensions for such applications. We designed a modular ORC to utilize various wellhead temperatures (120–170 °C, mass flow rates and ambient temperatures (−10–40 °C. A control strategy was developed using steady-state optimization, in order to maximize net power production at off-design conditions. Optimum component sizes were determined using specific investment cost (SIC minimization and mean cashflow (MCF maximization for three different climate scenarios. Minimizing SIC did not yield significant benefits, but MCF proved to be a much better optimization function.

  13. Reviving manufacturing with a federal cogeneration policy

    International Nuclear Information System (INIS)

    Brown, Marilyn A.; Cox, Matt; Baer, Paul

    2013-01-01

    Improving the energy economics of manufacturing is essential to revitalizing the industrial base of advanced economies. This paper evaluates ex-ante a federal policy option aimed at promoting industrial cogeneration—the production of heat and electricity in a single energy-efficient process. Detailed analysis using the National Energy Modeling System (NEMS) and spreadsheet calculations suggest that industrial cogeneration could meet 18% of U.S. electricity requirements by 2035, compared with its current 8.9% market share. Substituting less efficient utility-scale power plants with cogeneration systems would produce numerous economic and environmental benefits, but would also create an assortment of losers and winners. Multiple perspectives to benefit/cost analysis are therefore valuable. Our results indicate that the federal cogeneration policy would be highly favorable to manufacturers and the public sector, cutting energy bills, generating billions of dollars in electricity sales, making producers more competitive, and reducing pollution. Most traditional utilities, on the other hand, would lose revenues unless their rate recovery procedures are adjusted to prevent the loss of profits due to customer owned generation and the erosion of utility sales. From a public policy perspective, deadweight losses would be introduced by market-distorting federal incentives (ranging annually from $30 to $150 million), but these losses are much smaller than the estimated net social benefits of the federal cogeneration policy. - Highlights: ► Industrial cogeneration could meet 18% of US electricity demand by 2035, vs. 8.9% today. ► The policy would be highly favorable to manufacturers and the public. ► Traditional electric utilities would likely lose revenues. ► Deadweight loss would be introduced by tax incentives. ► The policy’s net social benefits would be much larger.

  14. Investigation of small and modular-sized fast reactor

    International Nuclear Information System (INIS)

    Kubota, Kenichi; Kawasaki, Nobuchika; Umetsu, Yoichiro; Akatsu, Minoru; Kasai, Shigeo; Konomura, Mamoru; Ichimiya, Masakazu

    2000-06-01

    In this paper, feasibility of the multipurpose small fast reactor, which could be used for requirements concerned with various utilization of electricity and energy and flexibility of power supply site, is discussed on the basis of examination of literatures of various small reactors. And also, a possibility of economic improvement by learning effect of fabrication cost is discussed for the modular-sized reactor which is expected to be a base load power supply system with lower initial investment. (1) Multipurpose small reactor (a) The small reactor with 10MWe-150MWe has a potential as a power source for large co-generation, a large island, a middle city, desalination and marine use. (b) Highly passive mechanism, long fuel exchange interval, and minimized maintenance activities are required for the multipurpose small reactor design. The reactor has a high potential for the long fuel exchange interval, since it is relatively easy for FR to obtain a long life core. (c) Current designs of small FRs in Japan and USA (NERI Project) are reviewed to obtain design requirements for the multipurpose small reactor. (2) Modular-sized reactor (a) In order that modular-sized reactor could be competitive to 3200MWe twin plant (two large monolithic reactor) with 200kyenWe, the target capital cost of FOAK is estimated to be 260kyen/yenWe for 800MWe modular, 280kyen/yenWe for 400MWe modular and 290kyen/yenWe for 200MWe by taking account of the leaning effect. (b) As the result of the review on the current designs of modular-sized FRs in Japan and USA (S-PRISM) from the viewpoint of economic improvement, since it only be necessary to make further effort for the target capital cost of FOAK, since the modular-sized FRs requires a large amount of material for shielding, vessels and heat exchangers essentially. (author)

  15. Intraday trade is the answer for cogeneration

    International Nuclear Information System (INIS)

    Lomme, J.J.

    2006-01-01

    It is possible for operators of small cogeneration plants to sell electricity on the day-ahead market of the Amsterdam Power Exchange (APX) or through the unbalance market of the Dutch power transmission operator TenneT. However, it is difficult for them to take part in the market. The solution could be a so-called intraday-market, in which electricity trade can be a continuous process, but the question is who will start such a market [nl

  16. Cogeneration: A marketing opportunity for pipelines

    International Nuclear Information System (INIS)

    Ulrich, J.S.

    1992-01-01

    This chapter describes the marketing of dual-purpose power plants by pipeline companies as a long term marketing strategy for natural gas. The author uses case studies to help evaluate a company's attitude toward development of a market for cogeneration facilities. The chapter focuses on strategies for developing markets in the industrial sector and identifying customer groups that are likely to respond in like manner to a marketing strategy

  17. Modular Modeling System (MMS) code: a versatile power plant analysis package

    International Nuclear Information System (INIS)

    Divakaruni, S.M.; Wong, F.K.L.

    1987-01-01

    The basic version of the Modular Modeling System (MMS-01), a power plant systems analysis computer code jointly developed by the Nuclear Power and the Coal Combustion Systems Divisions of the Electric Power Research Institute (EPRI), has been released to the utility power industry in April 1983 at a code release workshop held in Charlotte, North Carolina. Since then, additional modules have been developed to analyze the Pressurized Water Reactors (PWRs) and the Boiling Water Reactors (BWRs) when the safety systems are activated. Also, a selected number of modules in the MMS-01 library have been modified to allow the code users more flexibility in constructing plant specific systems for analysis. These new PWR and BWR modules constitute the new MMS library, and it includes the modifications to the MMS-01 library. A year and half long extensive code qualification program of this new version of the MMS code at EPRI and the contractor sites, back by further code testing in an user group environment is culminating in the MMS-02 code release announcement seminar. At this seminar, the results of user group efforts and the code qualification program will be presented in a series of technical sessions. A total of forty-nine papers will be presented to describe the new code features and the code qualification efforts. For the sake of completion, an overview of the code is presented to include the history of the code development, description of the MMS code and its structure, utility engineers involvement in MMS-01 and MMS-02 validations, the enhancements made in the last 18 months to the code, and finally the perspective on the code future in the fossil and nuclear industry

  18. Defining Modules, Modularity and Modularization

    DEFF Research Database (Denmark)

    Miller, Thomas Dedenroth; Pedersen, Per Erik Elgård

    The paper describes the evolution of the concept of modularity in a historical perspective. The main reasons for modularity are: create variety, utilize similarities, and reduce complexity. The paper defines the terms: Module, modularity, and modularization.......The paper describes the evolution of the concept of modularity in a historical perspective. The main reasons for modularity are: create variety, utilize similarities, and reduce complexity. The paper defines the terms: Module, modularity, and modularization....

  19. Low power cogeneration prototype system; Prototipo de sistema de co-geracao de pequena potencia

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sara M.; Martins, Jose A.S.; Camara, Paulo R.; Cortes, Breno P.; Neves, Elierton E. [Centro de Tecnologias do Gas (CTGAS), Natal, RN (Brazil); F. Filho, Roberto; Campos, Michel F. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The fuels from oil and natural gas play an important role, not only in the sector of primary energy, but also in almost all the other sectors of the economy, due to its imbrication as insum of these. The use of the natural gas will have great expansion in Brazil, motivated for the Government decision to increase the participation of this fuel in the Brazilian energy matrix from 4% to 12% up to 2010. Then, it's so important the investment in new technologies and also the improvement. In order to reach the objective related to increase the consumption of natural gas in the energy matrix, and to propose solutions to attend the electric requirements, of heat and refrigeration, using natural gas as primary power plant, the Center of Gas Technologies; CTGAS, in partnership with PETROBRAS and the Fockink Group, has developed the first modular system of generation and co-generation of energy by natural gas of low power, of easy installation and shipment with the characteristics techniques to take care of to companies or industrial sectors that consummate this band of power. The equipment generates 35 kW/55 kVA of electric energy, 7TR (Ton of Refrigeration) of energy for refrigeration and posses the ability to heat 2200 l/h of water in the temperature of 85 deg C. The equipment will be able to produce electric and thermal energy simultaneously, from an only fuel, the natural gas. The main objective of this work is to present the main phases of development of the archetype, functions techniques of the co-generator and its field of performance in the market of systems for generation and co-generation of energy by natural gas of low power. (author)

  20. Modular construction: 30 years of experience in the naval sector, useful for nuclear power plants

    International Nuclear Information System (INIS)

    Lepelletier, P.; Danguy des Deserts, S.

    2014-01-01

    This article reviews the benefits of modular construction in the sector of submarines that was implemented in the mid eighties in French shipyards. The design of the submarine is cut in different longitudinal parts so that each part can be built and completely equipped independently from the other parts. The different parts are then joined and welded at the end of the process of fabrication to form the submarine. The main advantages of such a construction are shorter construction times, standardized construction and a higher quality standard. DCNS proposes to use modular construction for the design of Flexblue which is an immersed small modular reactor (SMR). More generally, modular construction will add economic competitiveness to SMR reactors that will be necessary to their full development on a worldwide scale

  1. Experimental energetic analysis of gas natural-powered fuel cell cogeneration plant; Analise energetica experimental de uma planta de co-geracao com celulas a combustivel e gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, Jose G.M.; Lopes, Francisco C.; Silva Junior, Fernando R.; Soares, Guilherme F.W.; Serra, Eduardo T. [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Power systems based on fuel cells have been considered for residential and commercial applications in energy Distributed Generation (DG) market as these systems can minimize their acquisition, installation and operation high costs. In this work we present an experimental analysis of a power generation system formed by a 5 kW proton exchange membrane fuel cell unit and a natural gas reformer (fuel processor) for hydrogen production, of the CEPEL's Fuel Cell Laboratory. It was determined the electrical performance of the cogeneration system in function of the design and operational power plant parameters. Additionally, it was verified the influence of the activation conditions of the fuel cell electrocatalytic system on the system performance. It also appeared that the use of hydrogen produced from the natural gas catalytic reforming provided the system operation in excellent electrothermal stability conditions resulting in increase of the energy conversion efficiency and of the economy of the cogeneration power plant. The maximum electrical efficiency achieved was around 38% and in all power range unit operated with average potential per single fuel cell higher than 0.60 V. (author)

  2. Diesel engine cogeneration plants in the context of integration of renewable energy sources in power supply; Dieselmotor-Kraft-Waerme-Kopplungsanlagen im Kontext der Integration Erneuerbarer Energien in die Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, John

    2010-10-29

    The aim of this thesis is to investigate and assess future options, potentials, strengths and weaknesses of cogeneration of heat and power. This is carried out against the background of global climate change and the integration of an increasing share of fluctuating renewable energies in power generation considering the necessity of guaranteeing a reliable, efficient, sustainable and cost effective power supply. It is assumed that the transition process to an entirely renewable energy-based electricity generation in Germany will considerably depend on the integration of wind energy because of its economic competitiveness, environmental friendliness and potential. However, power generation using wind energy fluctuates quite considerably. Diesel motors are here investigated as a decentralized integration instrument. Thanks to their great flexibility, high efficiency and relatively low nominal capacity, they perfectly meet the requirements for the simultaneous decentralized use of heat. Boundary conditions of Diesel motor combined heat and power plants (CHP) are analyzed and described in this work, different models for wind energy integration are elaborated, and these models are used for several variations to simulate the balance of wind energy by cogeneration. In this context, environmental impacts are discussed. Common assessment methods on environmental impacts of CHP distort the results. The so-called output method is developed and described, by which the final assessment of environmental impacts is not implicitly mixed - as is commonly the case - with the calculation of environmental impacts. This output method is used to compare CHP generation with other energy conversion processes within the context of power generation including insulation of buildings, the use of different fuels and different applications for cogeneration. This work clearly demonstrates that while bio fuel resources can be optimally used for power generation, cogenerated electricity could also

  3. Cogeneration technologies, optimisation and implementation

    CERN Document Server

    Frangopoulos, Christos A

    2017-01-01

    Cogeneration refers to the use of a power station to deliver two or more useful forms of energy, for example, to generate electricity and heat at the same time. This book provides an integrated treatment of cogeneration, including a tour of the available technologies and their features, and how these systems can be analysed and optimised.

  4. Controlling systems of cogeneration blocks

    International Nuclear Information System (INIS)

    Suriansky, J.; Suriansky, J. Ml.; Puskajler, J.

    2007-01-01

    In this article the main parts of cogeneration unit control system are described. Article is aimed on electric power measurement with electricity protection as with temperature system regulation. In conclusion of the article, the control algorithm with perspective of cogeneration solve is indicated. (authors)

  5. The alarming future for cogeneration

    International Nuclear Information System (INIS)

    Koevoet, H.

    2000-01-01

    Low prices and uncertainty in pricing of energy, higher costs for investment and expensive fuels are the most important reasons why the growth of cogeneration capacity in the Netherlands stagnates. The liberalization of the energy market appears to be the malefactor. A brief overview is given of the ECN (Netherlands Energy Research Foundation) report 'Toekomst warmtekrachtkoppeling' (Future of cogeneration)

  6. Cogeneration feasibility: Otis Elevator Company and Polychrome Corporation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    The purpose of this study was to assess the feasibility of cogeneration at Otis Elevator Company and Polychrome Corporation located in Westchester County, New York. Each plant and its associated thermal and electrical load is reviewed. Three basic cycles for the cogeneration are investigated: power only, power generation with waste heat recovery, and combined cycle. Each case was assessed economically, beginning with a screening method to suggest those configurations most likely to be implemented and continuing through an assessment of the regulatory environment for cogeneration and an analysis of rate structures for buy back power, displaced power, and supplementing service. It is concluded that: for a plant designed to supply the combined loads of the two corporations, interconnection costs coupled to the coincidence of load result in unfavorable economics; for separate cogeneration plants, owned and operated by each individual corporation, energy consumption patterns and the current regulatory environment, in particular the existing and proposed cogeneration system rate structures, do not permit viable economics for the proposed plants; but if the proposed cycle were owned and operated by a new entity (neither Otis/Polychrome nor the utility), an economic scheme with marginal financial benefits can be developed and may be worthy of further study. (LEW)

  7. Modular plants with high power gas engines (1 to 30 MWe); Centrales modulaires a moteurs gaz de forte puissance (de 1 a 30 MWe)

    Energy Technology Data Exchange (ETDEWEB)

    Haushalter, J. [Wartsila NSD (France)

    1997-12-31

    After a review of pollution regulations in France and Europe for high capacity combustion plants, the Wartsila NSD spark ignition combustion system, using natural gas, is presented: the air-gas mixture in the combustion chamber is very weak (lambda is around 2-2.2) and its ignition is completed by the flame exiting the pre-chamber containing a stoichiometric mixture, and the spark plug. The temperature is decreased thus lowering the NOx emission level. The combustion system is integrated in the Pure Energy global concept (cogeneration plants, etc.) from Wartsila

  8. Proceedings of the 7th cogeneration and independent power congress, natural gas purchasing '92, HVAC controls and energy conservation '92, 1992 indoor air quality congress

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This book is covered under the following topics: Cogeneration and IPP Market Developments; Natural Gas Marketing and Deliverability Strategies; Identifying the Sources of IAQ Problems; User-Owner Cogeneration Systems; Strategies for International Power Development; Strategic Fuel Purchasing; Cogeneration and utility Power Plant Compliance Issues; New HVAC Design Trends; IAQ Practical solutions: Case Studies

  9. Practical design considerations for nuclear cogeneration installations

    International Nuclear Information System (INIS)

    Koupal, J.R.

    1987-01-01

    Dual-purpose nuclear plants, cogeneration electricity and steam, offer significant economic benefits over comparable electricity generating stations. The design of such a nuclear facility requires the resolution of unique technical challenges. This paper reports on experience gained in the detailed design of such a dual-purpose facility with the steam supplied to a chemical plant for process heating. The following topics are discussed: Siting, Radioactivity of Export Steam, Optimization for Load Combinations, Steam Supply Reliability, Steam Transportation, Water Chemistry, Cost Allocation. (author)

  10. Proposed chemical plant initiated accident scenarios in a sulphur-iodine cycle plant coupled to a pebble bed modular reactor

    International Nuclear Information System (INIS)

    Brown, N.R.; Revankar, S.T.; Seker, V.; Downar, Th.J.

    2010-01-01

    In the sulphur-iodine (S-I) cycle nuclear hydrogen generation scheme the chemical plant acts as the heat sink for the very high temperature nuclear reactor (VHTR). Thus, any accident which occurs in the chemical plant must feedback to the nuclear reactor. There are many different types of accidents which can occur in a chemical plant. These accidents include intra-reactor piping failure, inter-reactor piping failure, reaction chamber failure and heat exchanger failure. Since the chemical plant acts as the heat sink for the nuclear reactor, any of these accidents induce a loss-of-heat-sink accident in the nuclear reactor. In this paper, several chemical plant initiated accident scenarios are presented. The following accident scenarios are proposed: i) failure of the Bunsen chemical reactor; ii) product flow failure from either the H 2 SO 4 decomposition section or HI decomposition section; iii) reactant flow failure from either the H 2 SO 4 decomposition section or HI decomposition section; iv) rupture of a reaction chamber. Qualitative analysis of these accident scenarios indicates that each result in either partial or total loss of heat sink accidents for the nuclear reactor. These scenarios are reduced to two types: i) discharge rate limited accidents; ii) discontinuous reaction chamber accidents. A discharge rate limited rupture of the SO 3 decomposition section of the SI cycle is proposed and modelled. Since SO 3 decomposition occurs in the gaseous phase, critical flow out of the rupture is calculated assuming ideal gas behaviour. The accident scenario is modelled using a fully transient control volume model of the S-I cycle coupled to a THERMIX model of a 268 MW pebble bed modular reactor (PBMR-268) and a point kinetics model. The Bird, Stewart and Lightfoot source model for choked gas flows from a pressurised chamber was utilised as a discharge rate model. A discharge coefficient of 0.62 was assumed. Feedback due to the rupture is observed in the nuclear

  11. Perspectives on deployment of modular high temperature gas-cooled power plants

    International Nuclear Information System (INIS)

    Northup, T.E.; Penfield, S.

    1988-01-01

    Energy needs and energy options are undergoing re-evaluation by almost every country of the world. Energy issues such as safety, public perceptions, load growth, air pollution, acid rain, construction schedules, waste management, capital financing, project cancellations, and energy mix are but a few of those problems that are plaguing planners. This paper examines some of the key elements of the energy re-evaluation and transition that are in progress and the potential for the Modular High Temperature Gas-Cooled Reactor (Modular HTGR) to have a major impact on energy planning and its favorable prospects for deployment. (orig.)

  12. Incentives for cogeneration in Italy: Logic and implementation

    International Nuclear Information System (INIS)

    Tomassetti, G.

    1992-01-01

    Within the framework of legal and financial incentives made possible through Italian legislation on cogeneration plants for on-site power generation, this paper reviews the planning criteria that went into the formulation of the incentives and the response obtained from small, medium and large industrial firms. The discussion takes into account the following aspects: the optimal timing of retrofits, national energy conservation and environmental policy objectives, energy surcharges, benefits to consumers as compared with those for energy producers, benefits from incentives as a function of cogeneration plant size, and the technical complexity of application requirements for prospective applicants

  13. Micro cogeneration in residential scale; Bancada de sistema de cogeracao de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, Jose Carlos Charamba; Primo, Ana Rosa Mendes; Magnani, Fabio Santana; Henriquez, Jorge R. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Moura, Newton Reis de; Campos, Michel Fabianski [PETROBRAS, Rio de Janeiro, RJ (Brazil); Zimmerle, Sergio Ricardo T.S. [Companhia Pernambucana de Gas (COPERGAS), Recife, PE (Brazil)

    2004-07-01

    Cogeneration is very important to spread the use of natural gas in Brazil. Most of the existing cogeneration plants are of considerable size, as used in industries or commercial centers. Places with low demand on electrical or thermal energy (e.g. small industries, blocs of houses, etc.) could also benefit of cogeneration, but there is no available data about micro-cogeneration in Brazil. In order to verify the technical and economical viability of small size systems of cogeneration, FINEP/PETROBRAS/COPERGAS financed a project of micro-cogeneration at the Federal University of Pernambuco (UFPE), involving experiments on a micro turbine and a generator group, both with 30 kW power. The laboratory is also composed by two heat exchangers to regenerate the heat from the micro-turbine and generator group, a single effect absorption chiller, with 10 TR capacity, two thermal storage tanks (for hot and cold water) and a compression split of 5 TR. Data to build performance curves of the equipment will be stored and analyzed, in order to build their performance curves, allowing the overall cogeneration efficiency to be found. Most probable situations of thermal and electric power demands will be simulated. The aim of the simulations is to achieve the optimal situation for micro-cogeneration, which will offer the best efficiency, the lowest cost for buying the equipment and the lowest operational cost. A software was also developed, which optimizes micro-cogeneration systems. (author)

  14. Using a network modularity analysis to inform management of a rare endemic plant in the northern Great Plains, USA

    Science.gov (United States)

    Larson, Diane L.; Droege, Sam; Rabie, Paul A.; Larson, Jennifer L.; Devalez, Jelle; Haar, Milton; McDermott-Kubeczko, Margaret

    2014-01-01

    1. Analyses of flower-visitor interaction networks allow application of community-level information to conservation problems, but management recommendations that ensue from such analyses are not well characterized. Results of modularity analyses, which detect groups of species (modules) that interact more with each other than with species outside their module, may be particularly applicable to management concerns. 2. We conducted modularity analyses of networks surrounding a rare endemic annual plant, Eriogonum visheri, at Badlands National Park, USA, in 2010 and 2011. Plant species visited were determined by pollen on insect bodies and by flower species upon which insects were captured. Roles within modules (network hub, module hub, connector and peripheral, in decreasing order of network structural importance) were determined for each species. 3. Relationships demonstrated by the modularity analysis, in concert with knowledge of pollen species carried by insects, allowed us to infer effects of two invasive species on E. visheri. Sharing a module increased risk of interspecific pollen transfer to E. visheri. Control of invasive Salsola tragus, which shared a module with E. visheri, is therefore a prudent management objective, but lack of control of invasive Melilotus officinalis, which occupied a different module, is unlikely to negatively affect pollination of E. visheri. Eriogonum pauciflorum may occupy a key position in this network, supporting insects from the E. visheri module when E. visheri is less abundant. 4. Year-to-year variation in species' roles suggests management decisions must be based on observations over several years. Information on pollen deposition on stigmas would greatly strengthen inferences made from the modularity analysis. 5. Synthesis and applications: Assessing the consequences of pollination, whether at the community or individual level, is inherently time-consuming. A trade-off exists: rather than an estimate of fitness effects, the

  15. DDACE cogeneration systems : 10 case studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    DDACE Power Systems are experts in green energy power generation and provide solutions that deal with waste and industrial by-products. The company develops practical energy solutions that address environmental and financial concerns facing both industrial and municipal customers. The following 10 case studies are examples of the installations that DDACE Power Systems have completed in recent years: (1) a combined heat and emergency power installation on the roof of a 19 storey apartment building on Bloor Street in Toronto, Ontario. The cogeneration package provides electricity and heat to the entire building, replacing an old diesel generator, (2) a combined heat and emergency power installation at the Villa Colombo extended care facility in Vaughan, Ontario. The cogeneration system provides heat and power to the building, as well as emergency power, (3) emergency standby power with demand response capabilities at Sobeys Distribution Warehouse in Vaughan, Ontario. The primary purpose of the 2.4 MW low emission, natural gas fuelled emergency standby generator is to provide emergency power to the building in the event of a grid failure, (4) a dual fuel combined heat and power installation at the Queensway Carleton Hospital in Ottawa, Ontario that provides electricity, hot water and steam to all areas of the hospital, (5) a tri-generation installation at the Ontario Police College in Aylmer, Ontario which provides power and heat to the building as well as emergency power in the event of a grid failure. An absorption chiller provides cooling in the summer and an exhaust emission control system reduces NOx emissions, (6) a biomass gasification installation at Nexterra Energy in Kamloops, British Columbia. The 239 kW generator is fueled by synthesis gas, (7) biogas utilization at Fepro Farms in Cobden, Ontario for treatment of the facility's waste products. The biogas plant uses cow manure, as well as fats, oil and grease from restaurants to produce electricity and

  16. High-temperature gas-cooled reactor steam cycle/cogeneration application study update

    International Nuclear Information System (INIS)

    1981-09-01

    Since publication of a report on the application of a High Temperature Gas-Cooled Reactor Steam Cycle/Cogeneration (HTGR-SC/C) plant in December of 1980, progress has continued on application related activities. In particular, a reference plant and an application identification effort has been performed, a variable cogeneration cycle balance-of-plant design was developed and an updated economic analysis was prepared. A reference HTGR-SC/C plant size of 2240 MW(t) was selected, primarily on the basis of 2240 MW(t) being in the mid-range of anticipated application needs and the availability of the design data from the 2240 MW(t) Steam Cycle/Electric generation plant design. A variable cogeneration cycle plant design was developed having the capability of operating at a range of process steam loads between the reference design load (full cogeneration) and the no process steam load condition

  17. Can Dutch co-generation survive threats of the liberalisation of the energy markets

    International Nuclear Information System (INIS)

    Battjes, J.J.; Rijkers, F.A.M.

    2000-07-01

    The paper presents an analysis of the effects of liberalisation of the Dutch energy markets on the future development of combined heat and power generation (co-generation) in the Netherlands. First, it reviews the historical growth in co-generation in the Netherlands and the supportive policy measures that have contributed to this growth. Second, the liberalisation process of the Dutch electricity market and the Dutch gas market is described. Subsequently, we discuss the impacts of these new market structures on co-generation by using two scenarios for the Dutch energy markets. Our assessment of the impacts is mainly focused on the cost-effectiveness of co-generation projects. We determine the key aspects that influence the cost-effectiveness of a co-generation project and analyse some of the calculations for different small-scale and large-scale co-generation projects. Based on the results, we conclude that investments in new co-generation plants are unlikely in the short term and the existing plants can barely produce with a positive cash flow. As many parties have an interest in reducing the negative effects of a liberalised energy market on co-generation, approaches are sought to improve the cost-effectiveness of co-generation in the Netherlands. We describe several optional supportive measures for co-generation mainly resulting from the determination of the barriers for co-generation. Moreover, Dutch authorities have already responded to these barriers by preparing policy measures such as investment subsidies and exemption from the energy tax. 2 refs

  18. Cogenerators stretch the capital markets

    International Nuclear Information System (INIS)

    Robinson, Danielle.

    1993-01-01

    Independent power generation projects are being planned worldwide. But to finance them, the developers are starting to look increasingly for non-bank sources of funds. Key cogeneration finance deals are discussed in this article. (Author)

  19. Studying effect of heating plant parameters on performances of a geothermal-fuelled series cogeneration plant based on Organic Rankine Cycle

    International Nuclear Information System (INIS)

    Habka, Muhsen; Ajib, Salman

    2014-01-01

    Highlights: • We analyzed performances of a series ORC–CHP plant versus the heating plant parameters. • ORC–CHP power is destructed when raising the heat demand or the return temperature. • Only the high supply temperatures of the heating plant affect negatively the performances. • Reducing the return temperature optimizes both the energetic and exergetic criteria. • Increasing the heat demand improves the exergetic efficiency of the total CHP system. - Abstract: The present work aims to analyze the performance characteristics of the series Combined Heat and Power (CHP) system based on Organic Rankine Cycle (ORC) under influence of the heating plant parameters without considering the chemistry of the geothermal water considered as heat source. For evaluation, energetic and exergetic criteria along with the heat transfer capacities have been determined, and also the working fluid R134a has been used. The results showed that increasing the heat demand or the return temperature and only the high supply temperatures lead to destruct the net power generated by the ORC–CHP system. While, influence of the last parameters on the total exergy efficiency and losses is different; whereas raising the heat demands optimizes these exergetic indicators, variation of the supply temperature leads to an optimum for these performances. Since increasing the return temperature has purely negative impacts on all exergetic and energetic criteria, the latter can be improved by reducing this temperature with attention to the heat transfer capacities. Thus, reduction of the return temperature about 5 °C lowers the exhausted stream losses by app. 25% and enhances the power generation by app. 52% and the total exergy efficiency by 9%

  20. Model Thermoelectric Generator TEG Small Modular As Micro Electricity Plant At Indonesia Part 1 Design And Material

    Directory of Open Access Journals (Sweden)

    Kisman M. Mahmud

    2015-08-01

    Full Text Available Thermoelectrically Generator TEG can generate electricity from the temperature difference between hot and cold at the junction thermoelectric module with two different semiconductor materials there will be a flow of current through the junction so as to produce a voltage. This principle uses the Seebeck effect thermoelectric generator as a base. By using these principles this study was conducted to determine the potential of the electric energy of the two Peltier modules which would be an alternative source for micro electricity plant using heat from methylated. The focus of this research is to design a model TEG Thermoelectric Generator Small Modular to produce the kind of material that is optimum for a TEG on the simulation Computer Aided Design CAD with a variety of four different materials that Bi2Te3 Bismuth Telluride PbTe-BiTe CMO-32 -62S Cascade and CMO-32-62S Calcium Manganese Oxide to its cold side using the heat sink fan and simulating heat aluminum plate attached to the hot side of the TEG modules with heat source of methylated. Model simulation results on TEG Small Modular micro electrical plant material obtained CMO-32-62S Cascade thermal material that has a value greater than 3 other material.

  1. Reference modular High Temperature Gas-Cooled Reactor Plant: Concept description report

    Energy Technology Data Exchange (ETDEWEB)

    1986-10-01

    This report provides a summary description of the Modular High Temperature Gas-Cooled Reactor (MHTGR) concept and interim results of assessments of costs, safety, constructibility, operability, maintainability, and availability. Conceptual design of this concept was initiated in October 1985 and is scheduled for completion in 1987. Participating industrial contractors are Bechtel National, Inc. (BNI), Stone and Webster Engineering Corporation (SWEC), GA Technologies, Inc. (GA), General Electric Co. (GE), and Combustion Engineering, Inc. (C-E).

  2. Reference modular High Temperature Gas-Cooled Reactor Plant: Concept description report

    International Nuclear Information System (INIS)

    1986-10-01

    This report provides a summary description of the Modular High Temperature Gas-Cooled Reactor (MHTGR) concept and interim results of assessments of costs, safety, constructibility, operability, maintainability, and availability. Conceptual design of this concept was initiated in October 1985 and is scheduled for completion in 1987. Participating industrial contractors are Bechtel National, Inc. (BNI), Stone and Webster Engineering Corporation (SWEC), GA Technologies, Inc. (GA), General Electric Co. (GE), and Combustion Engineering, Inc

  3. Feasibility of a medium-size central cogenerated energy facility, energy management memorandum

    Science.gov (United States)

    Porter, R. W.

    1982-09-01

    The thermal-economic feasibility was studied of a medium-size central cogenerated energy facility designed to serve five varied industries. Generation options included one dual-fuel diesel and one gas turbine, both with waste heat boilers, and five fired boilers. Fuels included natural gas, and for the fired-boiler cases, also low-sulphur coal and municipal refuse. The fired-boiler cogeneration systems employed back-pressure steam turbines. For coal and refuse, the option of steam only without cogeneration was also assessed. The refuse-fired cases utilized modular incinerators. The options provided for a wide range of steam and electrical capacities. Deficient steam was assumed generated independently in existing equipment. Excess electrical power over that which could be displaced was assumed sold to Commonwealth Edison Company under PURPA (Public Utility Regulator Policies Act). The facility was assumed operated by a mutually owned corporation formed by the cogenerated power users. The economic analysis was predicted on currently applicable energy-investment tax credits and accelerated depreciation for a January 1985 startup date. Based on 100% equity financing, the results indicated that the best alternative was the modular-incinerator cogeneration system.

  4. The Optimal Operation Criteria for a Gas Turbine Cogeneration System

    Directory of Open Access Journals (Sweden)

    Atsushi Akisawa

    2009-04-01

    Full Text Available The study demonstrated the optimal operation criteria of a gas turbine cogeneration system based on the analytical solution of a linear programming model. The optimal operation criteria gave the combination of equipment to supply electricity and steam with the minimum energy cost using the energy prices and the performance of equipment. By the comparison with a detailed optimization result of an existing cogeneration plant, it was shown that the optimal operation criteria successfully provided a direction for the system operation under the condition where the electric power output of the gas turbine was less than the capacity

  5. Benefit Analysis of Emergency Standby System Promoted to Cogeneration System

    Directory of Open Access Journals (Sweden)

    Shyi-Wen Wang

    2016-07-01

    Full Text Available Benefit analysis of emergency standby system combined with absorption chiller promoted to cogeneration system is introduced. Economic evaluations of such upgraded projects play a major part in the decisions made by investors. Time-of-use rate structure, fuel cost and system constraints are taken into account in the evaluation. Therefore, the problem is formulated as a mixed-integer programming problem. Using two-stage methodology and modified mixed-integer programming technique, a novel algorithm is developed and introduced here to solve the nonlinear optimization problem. The net present value (NPV method is used to evaluate the annual benefits and years of payback for the cogeneration system. The results indicate that upgrading standby generators to cogeneration systems is profitable and should be encouraged, especially for those utilities with insufficient spinning reserves, and moreover, for those having difficulty constructing new power plants.

  6. About the gasification of untreated scrap and waste wood in fluidized bed reactor for use in decentralized gas engine-cogeneration plants; Zur Vergasung von Rest- und Abfallholz in Wirbelschichtreaktoren fuer dezentrale Energieversorgungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Tepper, H.

    2005-10-20

    This dissertation examines the thermochemical conversion (gasification) of untreated scrap and waste wood in combustible gases for use in decentralized gas engine-cogeneration plants of low output (1 to 10 MW fuel power). A general section goes into the basics of the energetic utilization of solid biomass, the subprocesses of thermochemical conversion being described in more detail. Special attention is given to the processes and state of the art of biomass gasification in decentralized plants. A theoretical section analyzes the gasification models for solid biomass presented in the literature. Based on this analysis, a simplified kinetic model is derived for the gasification of untreated scrap and waste wood with air in bubbling fluidized bed reactors. It includes a fluid mechanic analysis of the fluidized bed based on HILLIGARDT, an empirical pyrolysis model and a global kinetic approach to the main chemical reaction taken from the literature. An experimental section describes the tests of the gasification of forest scrap wood in a semi-industrial fluidized bed gasification test plant with 150 kW fuel power and presents the significant test results. The gasification model derived is applied to check the test plant's standard settings and compare them with measured values. Furthermore, the model is employed to explain basic reaction paths and zones and to perform concluding parameter simulations. (orig.)

  7. Exploration of plant growth and development using the European Modular Cultivation System facility on the International Space Station.

    Science.gov (United States)

    Kittang, A-I; Iversen, T-H; Fossum, K R; Mazars, C; Carnero-Diaz, E; Boucheron-Dubuisson, E; Le Disquet, I; Legué, V; Herranz, R; Pereda-Loth, V; Medina, F J

    2014-05-01

    Space experiments provide a unique opportunity to advance our knowledge of how plants respond to the space environment, and specifically to the absence of gravity. The European Modular Cultivation System (EMCS) has been designed as a dedicated facility to improve and standardise plant growth in the International Space Station (ISS). The EMCS is equipped with two centrifuges to perform experiments in microgravity and with variable gravity levels up to 2.0 g. Seven experiments have been performed since the EMCS was operational on the ISS. The objectives of these experiments aimed to elucidate phototropic responses (experiments TROPI-1 and -2), root gravitropic sensing (GRAVI-1), circumnutation (MULTIGEN-1), cell wall dynamics and gravity resistance (Cell wall/Resist wall), proteomic identification of signalling players (GENARA-A) and mechanism of InsP3 signalling (Plant signalling). The role of light in cell proliferation and plant development in the absence of gravity is being analysed in an on-going experiment (Seedling growth). Based on the lessons learned from the acquired experience, three preselected ISS experiments have been merged and implemented as a single project (Plant development) to study early phases of seedling development. A Topical Team initiated by European Space Agency (ESA), involving experienced scientists on Arabidopsis space research experiments, aims at establishing a coordinated, long-term scientific strategy to understand the role of gravity in Arabidopsis growth and development using already existing or planned new hardware. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. Cogeneration opportunities in the maritime provinces

    International Nuclear Information System (INIS)

    MacPherson, S.W.

    1999-01-01

    With the arrival of natural gas in New Brunswick in November 1999, the province will be faced with new power generation development opportunities in four different categories of power projects. These include industrial self generation (including cogeneration), merchant power plants, power projects to replace aging facilities, and power projects to help meet future environmental needs. New Brunswick's competitive advantage in harnessing the power generation development opportunities lies in the fact that it is close to major electricity markets in Quebec and New England. It also has many available generation sites. The province's many pulp and paper plants with large process steam needs are also ideal candidates for cogeneration. Some of the major competitive advantages of natural gas over coal are its lower operation and maintenance costs, it is thermally more efficient, produces lower emissions to the environment and prices are competitive. One of the suggestions in New Brunswick Power's new restructuring proposal is to unbundle electricity service in the province into generation and transmission and distribution services. Three gas-fired projects have already been proposed for the province. The 284 MW Bayside Power Project at the Courtenay Bay Generating Station is the most advanced

  9. Design Study of Modular Nuclear Power Plant with Small Long Life Gas Cooled Fast Reactors Utilizing MOX Fuel

    Science.gov (United States)

    Ilham, Muhammad; Su'ud, Zaki

    2017-01-01

    Growing energy needed due to increasing of the world’s population encourages development of technology and science of nuclear power plant in its safety and security. In this research, it will be explained about design study of modular fast reactor with helium gas cooling (GCFR) small long life reactor, which can be operated over 20 years. It had been conducted about neutronic design GCFR with Mixed Oxide (UO2-PuO2) fuel in range of 100-200 MWth NPPs of power and 50-60% of fuel fraction variation with cylindrical pin cell and cylindrical balance of reactor core geometry. Calculation method used SRAC-CITATION code. The obtained results are the effective multiplication factor and density value of core reactor power (with geometry optimalization) to obtain optimum design core reactor power, whereas the obtained of optimum core reactor power is 200 MWth with 55% of fuel fraction and 9-13% of percentages.

  10. Power oscillation damping capabilities of wind power plant with full converter wind turbines considering its distributed and modular characteristics

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nielsen, Jørgen N.; Jensen, Kim H.

    2013-01-01

    Wind power plants (WPP) are for power system stability studies often represented with aggregated models where several wind turbines (WT) are aggregated into a single up-scaled model. The advantage is a reduction in the model complexity and the computational time, and for a number of study types...... aggregation is investigated and it is shown that the level of WPP aggregation only has limited impact on the resulting modal damping. The study is based on a non-linear, dynamic model of the 3.6 MW Siemens Wind Power WT....... the accuracy of the results has been found acceptable. A large WPP is, however, both modular and distributed over a large geographical area, and feasibility of aggregating the WTs, thus, have to be reassessed when new applications are introduced for WPPs. Here, the power oscillation damping capabilities...

  11. Cogeneration for small SAGD projects

    Energy Technology Data Exchange (ETDEWEB)

    Albion, Stuart [AMEC BDR Limited (United Kingdom)

    2011-07-01

    As many SAGD projects are being developed in remote locations, the supply of a steady source of power to them becomes an important question. Connecting these remote facilities to a grid can often be difficult and costly. This presentation, by AMEC BDR Limited, promotes the use of cogeneration in small SAGD projects. Cogeneration is the generation of two forms of energy from one fuel source. In this particular case, the energy forms would be electricity and heat. In many SAGD projects, a gas turbine system is used to generate the electricity, while a heat recovery system is utilized to generate steam. The use of cogeneration systems in SAGD projects, as opposed to using separate heat and electricity systems, has the potential to significantly reduce the amount of energy lost, the amount of emissions and power costs, in addition to ensuring that there is a reliable supply of steam and electricity.

  12. Cogeneration of Electricity and Potable Water Using The International Reactor Innovative And Secure (IRIS) Design

    International Nuclear Information System (INIS)

    Ingersoll, D.T.; Binder, J.L.; Kostin, V.I.; Panov, Y.K.; Polunichev, V.; Ricotti, M.E.; Conti, D.; Alonso, G.

    2004-01-01

    The worldwide demand for potable water has been steadily growing and is projected to accelerate, driven by a continued population growth and industrialization of emerging countries. This growth is reflected in a recent market survey by the World Resources Institute, which shows a doubling in the installed capacity of seawater desalination plants every ten years. The production of desalinated water is energy intensive, requiring approximately 3-6 kWh/m3 of produced desalted water. At current U.S. water use rates, a dedicated 1000 MW power plant for every one million people would be required to meet our water needs with desalted water. Nuclear energy plants are attractive for large scale desalination application. The thermal energy produced in a nuclear plant can provide both electricity and desalted water without the production of greenhouse gases. A particularly attractive option for nuclear desalination is to couple a desalination plant with an advanced, modular, passively safe reactor design. The use of small-to-medium sized nuclear power plants allows for countries with smaller electrical grid needs and infrastructure to add new electrical and water capacity in more appropriate increments and allows countries to consider siting plants at a broader number of distributed locations. To meet these needs, a modified version of the International Reactor Innovative and Secure (IRIS) nuclear power plant design has been developed for the cogeneration of electricity and desalted water. The modular, passively safe features of IRIS make it especially well adapted for this application. Furthermore, several design features of the IRIS reactor will ensure a safe and reliable source of energy and water even for countries with limited nuclear power experience and infrastructure. The IRIS-D design utilizes low-quality steam extracted from the low-pressure turbine to boil seawater in a multi-effect distillation desalination plant. The desalination plant is based on the horizontal

  13. Aeroderivative gas turbines for cogeneration

    International Nuclear Information System (INIS)

    Horner, M.W.; Thames, J.M.

    1988-01-01

    Aircraft jet engine derivative gas turbines have gained acceptance for cogeneration applications through impressive advances in technology and especially in maintainability and reliability. The best advantages of heavy industrial turbines and of reliable commercial airline jet engines have been successfully joined to meet the requirements for industrial cogeneration service. The next generation is under development and offers improved thermal efficiencies, alternate fuel capabilities, low environmental emissions, flexibility of operation and improved competitive system economics. This paper summarizes the current aero-derivative engine features and advantages with various systems, and discusses advanced features under consideration at this time

  14. Study for Safeguards Challenges to the Most Probably First Indonesian Future Power Plant of the Pebble Bed Modular Reactor

    International Nuclear Information System (INIS)

    Susilowati, E.

    2015-01-01

    In the near future Indonesia, the fourth most populous country, plans to build a small size power plant most probably a Pebble Bed Modular Reactor PBMR. This first nuclear power plant (NPP) is aimed to provide clear picture to the society in regard to performance and safety of nuclear power plant operation. Selection to the PBMR based on several factor including the combination of small size of the reactor and type of fuel allowing the use of passive safety systems, resulting in essential advantages in nuclear plant design and less dependence on plant operators for safety. In the light of safeguards perspective this typical reactor is also quite difference with previous light water reactor (LWR) design. From the fact that there are a small size large number of elements present in the reactor produced without individual serial numbers combine to on-line refueling same as the CANDU reactor, enforcing a new challenge to safeguards approach for this typical reactor. This paper discusses a bunch of safeguards measures have to be prepared by facility operator to support successfully international nuclear material and facility verification including elements of design relevant to safeguards need to be accomplished in consultation to the regulatory body, supplier or designer and the Agency/IAEA such as nuclear material balance area and key measurement point; possible diversion scenarios and safeguards strategy; and design features relevant to the IAEA equipment have to be installed at the reactor facility. It is deemed that result of discussion will alleviate and support the Agency approaching safeguards measure that may be applied to the purpose Indonesian first power plant of PBMR construction and operation. (author)

  15. Modelling the thermodynamic performance of a concentrated solar power plant with a novel modular air-cooled condenser

    International Nuclear Information System (INIS)

    Moore, J.; Grimes, R.; Walsh, E.; O'Donovan, A.

    2014-01-01

    This paper aims at developing a novel air-cooled condenser for concentrated solar power plants. The condenser offers two significant advantages over the existing state-of-the-art. Firstly, it can be installed in a modular format where pre-assembled condenser modules reduce installation costs. Secondly, instead of using large fixed speed fans, smaller speed controlled fans are incorporated into the individual modules. This facility allows the operating point of the condenser to change and continuously maximise plant efficiency. A thorough experimental analysis was performed on a number of prototype condenser designs. This analysis investigated the validly and accuracy of correlations from literature in predicting the thermal and aerodynamic characteristics of different designs. These measurements were used to develop a thermodynamic model to predict the performance of a 50 MW CSP (Concentrated Solar Power) plant with various condenser designs installed. In order to compare different designs with respect to the specific plant capital cost, a techno-economic analysis was performed which identified the optimum size of each condenser. The results show that a single row plate finned tube design, a four row, and a two row circular finned tube design are all similar in terms of their techno-economic performance and offer significant savings over other designs. - Highlights: • A novel air cooled condenser for CSP (Concentrated Solar Power) applications is proposed. • A thorough experimental analysis of various condenser designs was performed. • Heat transfer and flow friction correlations validated for fan generated air flow. • A thermodynamic model to calculate CSP plant output is presented. • Results show the proposed condenser design can continually optimise plant output

  16. Experiences Applying Cogeneration Policies in Europe

    International Nuclear Information System (INIS)

    Marin Nortes, M.

    1997-01-01

    This paper starts by giving overview of the development of cogeneration in the European Union. The percentage of electricity produced by cogeneration is about 10%. The difference among the countries are however very big, ranging from 40% in Denmark to 2% in France. This is because the development of cogeneration in a country depends on a number of different factors. Political and regulatory factors are of a major importance. This paper tries to show this and to examinate a number of cogeneration policies in some countries in Europe. In each case, the reasons why or why not cogeneration has been successful will be analysed. (author)

  17. Stepping on the gas for district heating in Germany. Gas and steam turbines for cogeneration; Gas geben fuer Fernwaerme in Deutschland. Gas- und Dampfturbinen fuer die KWK

    Energy Technology Data Exchange (ETDEWEB)

    Bohtz, Christian [Alstom Power, Baden (Switzerland). Marketing and Product Management Gas Business

    2011-07-15

    Measured by its intensive efforts to lower CO{sub 2} emissions Germany is one of the leading countries in the EU. One contribution to this end is to be had from cogeneration. As a provider of cogeneration plants Alstom is working to improve the fuel efficiency as well as the overall efficiency and flexibility of its products. The author explains the technology of gas-fired cogeneration plants and gives three examples of their use.

  18. Mini/micro cogeneration, basis for installation. Dimensioning, accounting and potential. Project report 1; Mini/mikrokraftvarme, forudsaetninger for installation. Dimensionering, afregningsforhold og potentiale. Projektrapport 1

    Energy Technology Data Exchange (ETDEWEB)

    Wit, J. de; Iskov, H.

    2005-11-15

    Cogeneration is quite spread in Denmark. Approx. 50 % of the power supply and 80 % of the district heating supply come from cogeneration. Combined heat and power is produced on both centralized (large) plants and decentralized plants. Decentralized combined heat and power plants (typically based on natural gas) use gas motors or gas turbines for power and heat production. Cogeneration of heat and power saves primary fuels and a directly derived effect from cogeneration is CO{sub 2} emission reduction. If fuels with higher specific CO{sub 2} emission than natural gas (e.g. coal, oil) are substituted, additional CO{sub 2} reduction can be reached. (BA)

  19. Development of the DMS (2) (double MS: modular simplified and medium small reactor). Plant layout and construction for the DMS

    International Nuclear Information System (INIS)

    Shizuka Hirako; Yuusuke Shimizu; Shigeru Yokouchi; Yoshinori Iimura; Kumiaki Moriya; Takahiko Hida

    2005-01-01

    /machine) module. Moreover, an integrated modular construction method has been realized by using three specific technologies, namely 3D-CAD, large crawler cranes and module fabrication factories, which have been established through actual plant construction. Thus, work in the field can be reduced to a large extent and, as has been confirmed, a construction period of two years is possible. (authors)

  20. Gas-based electricity production: which possibilities? - Thermal plants with steam generator; Perspectives for mini-cogeneration in collective housing; Electricity production by gas plants: which orientations on a middle term?

    International Nuclear Information System (INIS)

    Charrier, M.; Hubert, Charles-Emile; Lu, Long; Maire, Jacques; Bornard, Pierre; Garnier, Philippe-Jean; Jamme, Dominique; Cheylus, Jean-Christophe

    2012-01-01

    A set of articles proposes a comparison between coal fired and natural gas fired power stations, discusses the perspectives of low power cogeneration installations for collective housing (some examples are evoked). It also reports interventions of a meeting on middle-term orientation for gas-based electricity production during which interveners addressed several issues such as the opportunity of investment in new infrastructures, the evolution of the gas sector, modulation means

  1. First and second law analysis of diesel engine powered cogeneration systems

    International Nuclear Information System (INIS)

    Abusoglu, Aysegul; Kanoglu, Mehmet

    2008-01-01

    In this article, the thermodynamic analysis of the existing diesel engine cogeneration system is performed. All necessary data are obtained from the actual diesel engine cogeneration plant located at Gaziantep, Turkey. The exergy analysis is aimed to evaluate the exergy destruction in each component as well as the exergetic efficiencies. The thermodynamic performance of a 25.32 MW electricity and 8.1 tons/h steam capacity diesel engine cogeneration system at full load conditions is analyzed. The thermal efficiency of the overall plant is found to be 44.2% and the exergetic efficiency is 40.7%. The exergy balance equations developed in this paper may also be utilized in the exergoeconomic analysis to estimate the production costs depending on various input costs in a diesel cogeneration system

  2. Studies of S-CO{sub 2} Power Plant Pipe Design for Small Modular Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Seok; Ahn, Yoon Han; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    If SFR can be developed into the economical small modular reactor (SMR) for an export from Korea, the expected value can be greater. However, current SFR design may face difficulty in public acceptance due to the potential hazard from sodium-water reaction (SWR) when the current conventional steam Rankine cycle is utilized as a power conversion system for a SFR. In order to eliminate SWR, the Supercritical CO{sub 2} (S-CO{sub 2}) cycle has been proposed. Although there are many researches on S-CO{sub 2} cycle concept and turbomachinery, very few research works considered pipe selection criteria for the S-CO{sub 2} cycle. As one of the most important parts of the plant, this paper will discuss how to select a suitable pipe considering thermal expansion for the S-CO{sub 2} power plant and perform a conceptual design of SFR type SMR. The S-CO{sub 2} cycle can improve the safety of SFR as preventing the SWR by changing the working fluid. Additionally, not only the relatively high efficiency with 450-750 .deg. C turbine inlet temperature, but also the physically compact footprint are advantages of the S-CO{sub 2} cycle. However the pipe design is more complicated than existing power plant because it has high pressure and temperature conditions and needs high mass flow rate. By designing the piping system for a small modular -SFR, the compactness and simplicity of the S-CO{sub 2} cycle are re-confirmed. Moreover, in this paper, realistic and safe pipe design was conducted by considering thermal expansion in the high pressure and temperature conditions. Although total pipe pressure drop is somewhat high, the cycle thermal efficiency is still higher than the existing steam Rankine cycle. Additional study for a larger system such as 300MW class system in MIT report will be conducted in the future study. From the preliminary estimation when the S-CO{sub 2} system becomes large, the pipe diameter may exceed the current ASME standard. This means that more innovative approach

  3. Selection for protection in an ant–plant mutualism: host sanctions, host modularity, and the principal–agent game

    Science.gov (United States)

    Edwards, David P; Hassall, Mark; Sutherland, William J; Yu, Douglas W

    2005-01-01

    Retaliation against cheaters can prevent the breakdown of cooperation. Here we ask whether the ant–plant Cordia nodosa is able to apply retaliatory sanctions against its ant symbiont Allomerus octoarticulatus, which patrols new shoots to prevent herbivory. We test the hypothesis that the modular design of C. nodosa physiologically ties the growth of housing (stem swellings known as domatia) to the successful development of the attached leaves. We experimentally simulated herbivory by cutting leaves from patrolled shoots and found that the domatia on such ‘cheated’ shoots suffered higher mortality and lower growth than did controls, evidence for a host sanction. On the other hand, patrolling is costly to the ant, and experiment shows that non-patrollers run a low risk of being sanctioned because most leaves (and the attached domatia) escape heavy herbivory even when patrollers are absent. This suggests that cheaters might enjoy a higher fitness than do mutualists, despite sanctions, but we find that patrolling provides a net fecundity benefit when the colony and plant exceed a minimum size, which requires sustained ant investment in patrolling. These results map directly onto the principal–agent (P–A) game from economics, which we suggest can be used as a framework for studying stability in mutualisms, where high sampling costs and cheating do not allow market effects to select for mutual benefits. PMID:16537131

  4. The modular pebble bed nuclear reactor - the preferred new sustainable energy source for electricity, hydrogen and potable water production?

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    2003-01-01

    This paper describes a joint project of Massachusetts Institute of technology, Nu-Tec Inc. and Proto Power. The elegant simplicity of graphite moderated pebble bed reactor is the basis for the 'generation four' nuclear power plants. High Temperature Gas Cooled (HTGC) nuclear power plant have the potential to become the preferred base load sustainable energy source for the new millennium. The great attraction of these helium cooled 'Generation Four' nuclear plant can be summarised as follows: Factory assembly line production; Modularity and ease of delivery to site; High temperature Brayton Cycle ideally suited for cogeneration of electricity, potable water and hydrogen; Capital and operating costs competitive with hydrocarbon plant; Design is inherently meltdown proof and proliferation resistant

  5. The design of a modular pilot plant based on the adsorber loop concept

    International Nuclear Information System (INIS)

    Koske, P.H.; Ohlrogge, K.

    1984-01-01

    The main design criteria for a pilot plant producing about 100 t uranium per year from seawater are discussed. The application of the ''adsorber loop concept'' for the contact between seawater and the adsorber granulate enables the employment of high seawater velocities. The seawater flow is accomplished by active pumping and the plant is supposed to be operating far from shores. Besides some informations on the theoretical background the essential engineering considerations are presented. (orig.) [de

  6. Cogeneration: A new opportunity for energy production market

    International Nuclear Information System (INIS)

    Minghetti, E.

    1997-03-01

    Cogeneration or Combined Heat and Power (CHP) is an advantageous technique based on the simultaneous utilisation of electricity and heat produced. For this purpose existing energetic technologies are used. Cogeneration is based on the thermodynamics principle that producing electricity by combustion process means, at the same time, producing waste heat that can be useful utilised. Three main advantages can be lay out in a cogeneration plant: 1. High efficiency (the global efficiency is often around 80-90%). 2. Economic profit (pay back time is usually not longer than 2-4 years). 3. Low pollutant emissions (as a consequence of the high efficiency less fuel is burned for generating the same quantity of electricity). In this report are analysed various aspects of cogeneration (technical and economical) and the conditions influencing is development. Some figures on the european and national situation are also given. Finally are presented the research and development activities carried out by Italian National Agency for new Technology Energy and the Environment Energy Department to improve the efficiency and the competitiveness of this technology

  7. The application of HTR type modular plants in refinieries and for aluminium oxide production

    International Nuclear Information System (INIS)

    Schad, M.; Clausen, E.; Funke, A.; Heng, R.; Poesche, W.; Simon, P.; Schwarz, T.; Feltes, W.; Hague, H.; Heidkamp, H.; Hesse, K.; Kohtz, N.; Mendte, K.; Ullrich, M.; Wild, W.; Zipper, E.

    1991-02-01

    The aim of the second study of coupling the HTR module to process plants consistsed in developing concepts for potential plants and analysing them again for their technical and economic feasibility. At each of the three process plants, heat is coupled in by a He/He intermediate heat exchanger. This principle of heat coupling was consistently aimed at - in order to keep the expensive nuclear part of plant coupling as small as possible, and - in order to avoid that primary helium can get into the process plants, just as vice versa process media into the HTRM-helium circuit. For refineries this principle is easy to comply with because of the low process temperatures of below 600deg C. For aluminium oxide production which conventionally requires a temperature of about 950deg C, calcination tests were made at lower process temperatures, and parallely the feed-in of heat to reach the highest process temperature through electric heating was studied. For petrochemistry, heat transfer during naptha cracking was closely analysed. (orig./GL) [de

  8. Modular implicits

    Directory of Open Access Journals (Sweden)

    Leo White

    2015-12-01

    Full Text Available We present modular implicits, an extension to the OCaml language for ad-hoc polymorphism inspired by Scala implicits and modular type classes. Modular implicits are based on type-directed implicit module parameters, and elaborate straightforwardly into OCaml's first-class functors. Basing the design on OCaml's modules leads to a system that naturally supports many features from other languages with systematic ad-hoc overloading, including inheritance, instance constraints, constructor classes and associated types.

  9. Cogeneration and the regulatory framework of energy law; Kraft-Waerme-Kopplung und der energiewirtschaftliche Ordnungsrahmen

    Energy Technology Data Exchange (ETDEWEB)

    Cornehl, Angelika Bettina

    2009-06-15

    The present publication shows that the existing regulatory framework poses numerous impediments to cogeneration plants. This holds especially for industrial operators, but also for municipalities. It has prevented cogeneration from developing its full potential both as an element of competition and as a relief for the environment. Unlike industrial cogeneration plants, those serving the public energy supply at least enjoy the privilege of regional monopoly rights. In today's liberalised electricity market, however, this can be a burden for existing municipal plants which were installed under territorial protection and in many cases have incurred high cost levels and become inflexible and lacking in entrepreneurial spirit as a result. On account of its tendency to promote optimal resource input and efficiency, competition promises positive impulses for the use of cogeneration in small-scale heat grids, where high fuel efficiency matters more. A reform of the competition regime in the power economy would eliminate numerous impediments, particularly for industrial cogeneration operators. Good hopes for the future of cogeneration in a liberalised electricity and gas market are also nurtured by cooperative supply concepts and, within the large domain of services, opportunities held out by special contracting offers.

  10. Service Modularity

    DEFF Research Database (Denmark)

    Avlonitis, Viktor; Hsuan, Juliana

    2015-01-01

    The purpose of this research is to investigate the studies on service modularity with a goal of informing service science and advancing contemporary service systems research. Modularity, a general systems property, can add theoretical underpinnings to the conceptual development of service science...... in general and service systems in particular. Our research is guided by the following question: how can modularity theory inform service system design? We present a review of the modularity literature and associated concepts. We then introduce the contemporary service science and service system discourse...

  11. Evaluation of Suitability of Selected Set of Coal Plant Sites for Repowering with Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [ORNL; Copinger, Donald A [ORNL; Mays, Gary T [ORNL; Omitaomu, Olufemi A [ORNL; Poore III, Willis P [ORNL

    2013-03-01

    This report summarizes the approach that ORNL developed for screening a sample set of small coal stations for possible repowering with SMRs; the methodology employed, including spatial modeling; and initial results for these sample plants. The objective in conducting this type of siting evaluation is to demonstrate the capability to characterize specific sample coal plant sites to identify any particular issues associated with repowering existing coal stations with SMRs using OR-SAGE; it is not intended to be a definitive assessment per se as to the absolute suitability of any particular site.

  12. An economic analysis of small-scale cogeneration using forest biomass and sawmill residuals in northern Ontario

    International Nuclear Information System (INIS)

    Beke, N.L.

    1994-01-01

    The economic feasibility of using biomass for cogeneration in northern Ontario was investigated and the institutional factors that may affect establishment and operation of cogeneration facilities were determined. Two fuel sources for a cogeneration plant were evaluated: forest materials and sawmill residuals. To establish and operate a cogeneration plant, the policies of the Ontario Ministry of Natural Resources and Ontario Hydro needed to be analyzed. Some of the benefits of using sawmill residuals for cogeneration were identified and an inventory of sawmill residuals was compiled. The welfare effects of three pricing schemes for non-utility generated electricity are described using a neoclassical welfare model. This model is further extended to include the effects of subsidizing public utilities and using biomass to generate electricity. A competitive market for electricity generation and relating pricing structure was also examined. The results of the capital budget for the cogeneration facility indicated that by using sawmill residuals and chipped forest biomass as fuel for cogeneration, internal rates of return would be 22.7% and 8.7% and net present values would be $8,659,870 and $1,867,822, respectively. This implied that using sawmill residuals for cogeneration fuel would be both profitable and would help to reduce possible harmful effects that current dumping practices may have on the surrounding ecosystem. 84 refs., 17 figs., 14 tabs

  13. The performance of residential micro-cogeneration coupled with thermal and electrical storage

    Science.gov (United States)

    Kopf, John

    Over 80% of residential secondary energy consumption in Canada and Ontario is used for space and water heating. The peak electricity demands resulting from residential energy consumption increase the reliance on fossil-fuel generation stations. Distributed energy resources can help to decrease the reliance on central generation stations. Presently, distributed energy resources such as solar photovoltaic, wind and bio-mass generation are subsidized in Ontario. Micro-cogeneration is an emerging technology that can be implemented as a distributed energy resource within residential or commercial buildings. Micro-cogeneration has the potential to reduce a building's energy consumption by simultaneously generating thermal and electrical power on-site. The coupling of a micro-cogeneration device with electrical storage can improve the system's ability to reduce peak electricity demands. The performance potential of micro-cogeneration devices has yet to be fully realized. This research addresses the performance of a residential micro-cogeneration device and it's ability to meet peak occupant electrical loads when coupled with electrical storage. An integrated building energy model was developed of a residential micro-cogeneration system: the house, the micro-cogeneration device, all balance of plant and space heating components, a thermal storage device, an electrical storage device, as well as the occupant electrical and hot water demands. This model simulated the performance of a micro-cogeneration device coupled to an electrical storage system within a Canadian household. A customized controller was created in ESP-r to examine the impact of various system control strategies. The economic performance of the system was assessed from the perspective of a local energy distribution company and an end-user under hypothetical electricity export purchase price scenarios. It was found that with certain control strategies the micro-cogeneration system was able to improve the

  14. High temperature reactors for cogeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl [Forschungszentrum Juelich (Germany). IEK-6; Allelein, Hans-Josef [Forschungszentrum Juelich (Germany). IEK-6; RWTH Aachen (Germany). Lehrstuhl fuer Reaktorsicherheit und -technik (LRST)

    2016-05-15

    There is a large potential for nuclear energy also in the non-electric heat market. Many industrial sectors have a high demand for process heat and steam at various levels of temperature and pressure to be provided for desalination of seawater, district heating, or chemical processes. The future generation of nuclear plants will be capable to enter the wide field of cogeneration of heat and power (CHP), to reduce waste heat and to increase efficiency. This requires an adjustment to multiple needs of the customers in terms of size and application. All Generation-IV concepts proposed are designed for coolant outlet temperatures above 500 C, which allow applications in the low and medium temperature range. A VHTR would even be able to cover the whole temperature range up to approx. 1 000 C.

  15. Optimal operation of cogeneration units. State of art and perspective

    International Nuclear Information System (INIS)

    Polimeni, S.

    2001-01-01

    Optimal operation of cogeneration plants and of power plant fueling waste products is a complex challenge as they have to fulfill, beyond the contractual obligation of electric power supply, the constraints of supplying the required thermal energy to the user (for cogeneration units) or to burn completely the by-products of the industrial complex where they are integrated. Electrical power market evolution is pushing such units to a more and more volatile operation caused by uncertain selling price levels. This work intends to pinpoint the state of art in the optimization of these units outlining the important differences among the different size and cycles. The effect of the market liberalization on the automation systems and the optimization algorithms will be discussed [it

  16. Co-generation: Increasing energy efficiency in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Lekić Alija

    2007-01-01

    Full Text Available The main sources for power generation in Bosnia and Herzegovina are domestic coals, mainly lignite and brown coals, which are relatively characterized with a high content of sulphur (3-5% and incombustibles (˜30%. From the 70’s, use of this type of fuels was not allowed in the city of Sarajevo due to very unfavorable emissions to the atmosphere, during the heating period, and since then Sarajevo has been supplied with natural gas. All the heating installations in the city were reconstructed and adapted. The district heating system Toplane Sarajevo is supplied with electrical energy from the Public electrical distribution network (Elektrodistribucija Sarajevo at low voltage (0.4 kV. The boiler-house Dobrinja III-2 (KDIII-2, from the district heating system of Sarajevo Suburb Dobrinja, which was not in use after the war 1992-1995, had a lot of advantages for the reconstruction into the co-generation plant. The Government of Canton Sarajevo financially supported this proposal. An analysis of co-generations for the district heating system and a selection of most appropriate co-generation systems were made. In the proposed conceptual design, the co-generation KDIII-2 was located in the existing boiler-house KDIII-2, connected with the heating system in Dobrinja. The operating costs of production of electricity and heat were evaluated in the study and compared with the costs of conventional energy supply to the district heating system. This analysis resulted in economic indicators, which showed that this investment was economically viable, and it also determined the payback period of the investment. In this paper results of the mentioned study and an overview of co-generation in Bosnia and Herzegovina are presented.

  17. Comparative economic evaluation of environmental impact of different cogeneration technologies

    International Nuclear Information System (INIS)

    Patrascu, Roxana; Athanasovici, Victor; Raducanu, Cristian; Minciuc, Eduard; Bitir-Istrate, Ioan

    2004-01-01

    Cogeneration is one of the most powerful technologies for reduction of environmental pollution along with renewable energies. At the Kyoto Conference cogeneration has been identified as being the most important measure for reducing emissions of greenhouse effect gases. It has also been mentioned that cogeneration has a potential of reducing pollution with about 180 million tones per year. In order to promote new cogeneration technologies and evaluate the existing ones it is necessary to know and to be able to quantify in economical terms the environmental issues. When comparing different cogeneration technologies: steam turbine (TA), gas turbine (TG), internal combustion engine (MT), in order to choose the best one, the final decision implies an economic factor, which is even more important if it includes the environmental issues. The environmental impact of different cogeneration technologies is quantified using different criteria: depletion of non-renewable natural resources, eutrofisation, greenhouse effect, acidification etc. Environmental analysis using these criteria can be made using the 'impact with impact' methodology or the global one. The results of such an analysis cannot be quantified economically directly. Therefore there is a need of internalisation of ecological effects within the costs of produced energy: electricity and heat. In the energy production sector the externalizations represent the indirect effects on the environment. They can be materialised within different types of environmental impact: - Different buildings of mines, power plants etc; - Fuel losses during transportation and processing; - Effect of emissions in the air, water and soil. Introduction of the environmental impact costs in the energy price is called internalisation and it can be made using the direct and indirect methods. The paper discusses aspects regarding the emissions of cogeneration systems, the eco-taxes - method of 'internalisation' of environmental

  18. Design and development of modular DNA assembly tools for Multigene Engineering and Synthetic Biology in Plants

    OpenAIRE

    Sarrión Perdigones, Manuel Alejandro

    2014-01-01

    The post-genomics era has put at the disposal of modern plant breeders an endless list of genetic building blocks for the design of new biotechnological crops. After a first wave of single-gene transgenic with controversial public acceptance, genomic information and technology is paving the way for increasingly complex designs based in multiple gene engineering. Those designs aiming at the production of inexpensive health-promoting compounds are most likely to be welcomed by consumers. In thi...

  19. Modular forms

    NARCIS (Netherlands)

    Edixhoven, B.; van der Geer, G.; Moonen, B.; Edixhoven, B.; van der Geer, G.; Moonen, B.

    2008-01-01

    Modular forms are functions with an enormous amount of symmetry that play a central role in number theory, connecting it with analysis and geometry. They have played a prominent role in mathematics since the 19th century and their study continues to flourish today. Modular forms formed the

  20. Biomass based optimal cogeneration system for paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Ashok, S.; Jayaraj, S. [National Inst. of Technology, Calicut (India)

    2008-07-01

    A mathematical model of a biomass supported steam turbine cogeneration system was presented. The multi-time interval non-linear model used genetic algorithms to determine optimal operating costs. The cogeneration system consisted of steam boilers; steam headers at different pressure levels; steam turbines operating at different capacities; and other auxiliary devices. System components were modelled separately to determine constraints and costs. Total costs were obtained by summing up costs corresponding to all equipment. Cost functions were fuel cost; grid electricity cost; grid electricity export revenues; start-up costs; and shut-down costs. The non-linear optimization model was formulated by considering equal intervals of 1-hour intervals. A case study of a typical paper industry plant system was considered using coal, black liquor, and groundnut shells. Results of the study showed that the use of groundnut shells as a fuel resulted in a savings of 11.1 per cent of the total monthly operating costs while delivering 48.6 MWh daily to the electricity grid after meeting the plant's total energy requirements. It was concluded that the model can be used to optimize cogeneration systems in paper plants. 14 refs., 3 tabs., 3 figs.

  1. Nuclear reactor PBMR and cogeneration

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Alonso V, G.

    2013-10-01

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  2. The design of a modular pilot plant based on the adsorber loop concept

    International Nuclear Information System (INIS)

    Koske, P.H.; Ohlrogge, K.

    1984-01-01

    The main design criteria for a pilot plant producing about 100 t uranium per year from seawater are discussed. The application of the adsorber loop concept for the contact between seawater and the adsorber granulate enables the employment of considerably higher seawater velocities in the adsorber bed in comparison with a fluidized bed thus reducing the necessary bed area. The seawater flow is accomplished by active pumping and the plant is supposed to be operating far from shores on high seas in tropical or subtropical waters. For this range of operation an ordinary ships hull is preferred for the basic structure to some new more sophisticated but unproven design. Depending on the effective flow rate in the adsorption units one or a few ships with standard dimensions (i.e. large container ships of about 50000 BRT; 290 m length; 40 m width) are able to produce the intended amount of 100 tU per year. Besides some information on the theoretical background the essential engineering considerations are presented. (author)

  3. Large-scale integration of off-shore wind power and regulation strategies of cogeneration plants in the Danish electricity system

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2005-01-01

    The article analyses how the amount of a small-scale CHP plants and heat pumps and the regulation strategies of these affect the quantity of off-shore wind power that may be integrated into Danish electricity supply......The article analyses how the amount of a small-scale CHP plants and heat pumps and the regulation strategies of these affect the quantity of off-shore wind power that may be integrated into Danish electricity supply...

  4. Combined heat and power unit using renewable raw materials. A cogeneration power plant with wood chips and pellets; BHKW auf Basis nachwachsender Rohstoffe. KWK mit Holzhackschnitzeln und Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Lennartz, Marc Wilhelm

    2013-07-15

    The combined heat and power units of the next generation operate with renewable resources. The plants working with wood chips or pellets now are ready for mass production. So, farmers and foresters, trade and municipalities may pile in the decentralized, energetic self-sufficiency. Two companies have developed procedures with which combined heat and power plants based can be operated on wood chips or pellets.

  5. Evolution of Italian environmental normative on cogeneration and application of Law 10/91

    International Nuclear Information System (INIS)

    Piancastelli, E.

    1992-01-01

    From the Proceedings of the FIRE (Italian Federation for the Rational use of Energy), December 12 - 13, 1991, meeting, separate abstracts were prepared for 2 papers. The main topics were: the planning criteria that went into the formulation of the incentives made possible through Italian legislation on cogeneration plants for on-site power generation and the response obtained from small, medium and large industrial firms; the evaluation of cogeneration plants for on-site power generation to allow prospective cogeneration plant owners to build energy/cost efficient plants and to be able to make a proper assessment of eligible financial assistance which may be obtained through the provisions of energy conservation/environmental protection normatives and laws set up by the Italian National Energy Plan; and the determination of optimal contracts with ENEL (the Italian National Electricity Board), especially for the case of excess power to be ceded to the national grid

  6. Heating unit of Berovo by co-generation (Macedonia)

    International Nuclear Information System (INIS)

    Armenski, Slave; Dimitrov, Konstantin; Tashevski, Done

    1999-01-01

    A plant for combined heat and electric power production, for central heating of the town Berovo (Macedonia) is proposed. The common reason to use a co-generation unit is the energy efficiency and a significant reduction of environmental pollution. The heat consumption of town Berovo is analyzed and determined. Based on the energy consumption of a whole power plant, e. i. the plant for combined and simultaneous production of power is proposed. The quantity of annually heat and electrical production and annually coal consumption are estimated. (Author)

  7. Modular entanglement.

    Science.gov (United States)

    Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio

    2011-02-04

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.

  8. Model-based monitoring, optimisation and cogeneration plant billing in heating power stations; Modellgestuetzte Ueberwachung, Optimierung und KWK Abrechnung in Heizkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Deeskow, P. [STEAG KETEK IT GmbH, Oberhausen (Germany); Pawellek, R. [Sofbid GmbH, Zwingenberg (Germany)

    2005-07-01

    On the basis of thermodynamic modelling, efficient online systems can be constructed which provide multiple commercial uses for plant operation. Incipient failures are recognized earlier, so that countermeasures can be taken at an early stage and long-term maintenance measures can be planned. Performance can be optimised, and - last but not least - the multitude of processed data enables workflow analysis, e.g. for simplifying billing processes in secondary relational databases. Performance data are presented of two coal power plants with 350 MWel/250MWth and 450MWel/50MWth in which systems of this type have been in use for several years now. (orig.)

  9. Cogeneration plant Mitte. Environmental-friendly energy geneation in the heart of Berlin; Heizkraftwerk Mitte. Umweltschonende Energieerzeugung im Herzen von Berlin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    In the past, Vattenfall Europe Generation set a good example by operating the 800/900 MW generating units from 1991 to 2000. The introduction of supercritical steam parameters made net efficiency factors of more than 40% possible, even for lignite-fired power plants. To be exact, levels of about 42% could be reached. The article presents examples for the heat cycle layout and offers solutions to problems of the turbo-generating set, the main-steam pipelines and the steam boiler. The next generation of coal-fired power plants will then reach efficiency factors of more than 50%, thanks to steam temperatures of about 700 C. (GL)

  10. Analysis of cogeneration in the present energy framework

    International Nuclear Information System (INIS)

    Conde Lazaro, E.; Ramos Millan, A.; Reina Peral, P.

    2006-01-01

    In this paper, a general vision of cogeneration penetration in the European Union is shown; after this, a case study is included, evaluating as a function of two factors (electricity and emission allowance prices) the suitability of installing, for an industry with a determined thermal demand, two different options. The first one is a gas turbine cogeneration plant generating steam through a heat recovery steam generator (HRSG). The second one consists of installing a natural gas boiler for steam production covering the electricity demand from the grid. The CO 2 emissions from both options are compared regarding different kinds of generation mixes from the electricity grid in the case of using the industrial boiler; taking into account the advantages of using biomass in relation to emissions, a last comparison has been carried out considering a biomass boiler instead of the natural gas boiler. (author)

  11. Exergoeconomic analysis of small-scale biomass steam cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Sotomonte, Cesar Adolfo; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba, MG (Brazil)], e-mails: c.rodriguez32@unifei.edu.br, electo@unifei.edu.br; Venturini, Osvaldo Jose; Escobar, Jose Carlos [Universidad Federal de Itajuba, MG (Brazil)], e-mail: osvaldo@unifei.edu.br

    2010-07-01

    The principal objective of this work is to develop a calculation process, based on the second law of thermodynamics, for evaluating the thermoeconomic potential of a small steam cogeneration plant using waste from pulp processing and/or sawmills as fuel. Four different configurations are presented and assessed. The exergetic efficiency of the cycles that use condensing turbines is found to be around 11%, which has almost 3 percent higher efficiency than cycles with back pressure turbines. The thermoeconomic equations used in this paper estimated the production costs varying the fuel price. The main results show that present cost of technologies in a small-scale steam cycle cogeneration do not justify the implementation of more efficient systems for biomass prices less than 100 R$/t. (author)

  12. The merit of cogeneration: Measuring and rewarding performance

    International Nuclear Information System (INIS)

    Verbruggen, Aviel

    2008-01-01

    Cogeneration or combined heat and power (CHP) is a thermal power generation cycle with the merit of recovering part or all of the heat that is fatally discarded by such cycles. This merit of higher efficiency is subject of rewarding by public authorities. When the EU enacts CHP promotion in a Directive (1997-2004), crucial measurement and qualification issues remain unsolved. CEN (coordinator of the European Bureaus of Standards) contributes in clarifying the measurement of CHP activities, but shortfalls remain, while CEN bypasses the debate on qualifying CHP performance. This article offers appropriate methods for measuring CHP activities based on design characteristics of the plants. The co-generated electric output is a necessary and sufficient indicator of CHP merit and performance. Regulators can extend this indicator, but should avoid the perverse effects of biased external benchmarking as the EU Directive entails

  13. Cogeneration development and market potential in China

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F.; Levine, M.D.; Naeb, J. [Lawrence Berkeley Lab., CA (United States); Xin, D. [State Planning Commission of China, Beijing, BJ (China). Energy Research Inst.

    1996-05-01

    China`s energy production is largely dependent on coal. China currently ranks third in global CO{sub 2} emissions, and rapid economic expansion is expected to raise emission levels even further in the coming decades. Cogeneration provides a cost-effective way of both utilizing limited energy resources and minimizing the environmental impacts from use of fossil fuels. However, in the last 10 years state investments for cogeneration projects in China have dropped by a factor of 4. This has prompted this study. Along with this in-depth analysis of China`s cogeneration policies and investment allocation is the speculation that advanced US technology and capital can assist in the continued growth of the cogeneration industry. This study provides the most current information available on cogeneration development and market potential in China.

  14. Development of high-strength concrete mix designs in support of the prestressed concrete reactor vessel design for a HTGR steam cycle/cogeneration plant

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.

    1985-01-01

    Design optimization studies indicate that a significant reduction in the size of the PCRV for a 2240 MW(t) HTGR plant can be effected through utilization of high-strength concrete in conjunction with large capacity prestressing systems. A three-phase test program to develop and evaluate high-strength concretes (>63.4 MPa) is described. Results obtained under Phase I of the investigation related to materials selection-evaluation and mix design development are presented. 3 refs., 4 figs

  15. Tax issues in structuring effective cogeneration vehicles

    International Nuclear Information System (INIS)

    Ebel, S.R.

    1999-01-01

    An overview of the Canadian income tax laws that apply to cogeneration projects was presented. Certain tax considerations could be taken into account in deciding upon ownership and financing structures for cogeneration projects, particularly those that qualify for class 43.1 capital cost allowance treatment. The tax treatment of project revenues and expenses were described. The paper also reviewed the 1999 federal budget proposals regarding the manufacturing and processing tax credit, the capital cost allowance system applicable to cogeneration assets and the treatment of the Canadian renewable conservation expense

  16. Optimal energy exchange of an industrial cogeneration in a day-ahead electricity market

    International Nuclear Information System (INIS)

    Yusta, J.M.; De Oliveira-De Jesus, P.M.; Khodr, H.M.

    2008-01-01

    This paper addresses an optimal strategy for the daily energy exchange of a 22-MW combined-cycle cogeneration plant of an industrial factory operating in a liberalized electricity market. The optimization problem is formulated as a Mixed-Integer Linear Programming Problem (MILP) that maximizes the profit from energy exchange of the cogeneration, and is subject to the technical constraints and the industrial demand profile. The integer variables are associated with export or import of electricity whereas the real variables relate to the power output of gas and steam turbines, and to the electricity purchased from or sold to the market. The proposal is applied to a real cogeneration plant in Spain where the detailed cost function of the process is obtained. The problem is solved using a large-scale commercial package and the results are discussed and compared with different predefined scheduling strategies. (author)

  17. Modular VSC converter based HVDC power transmission from offshore wind power plant: Compared to the conventional HVAC system

    DEFF Research Database (Denmark)

    Sharma, Ranjan; Rasmussen, Tonny Wederberg; Jensen, Kim Høj

    2010-01-01

    power transmission options with HVDC systems are under consideration. In this paper, a comparison between a conventional HVAC transmission system and a HVDC system equipped with modular voltage source converters is provided. The comparison is based on the total energy transmission capability...

  18. A proposal to define when combined cycle can be classified as a cogeneration plants; Proposta di definizione di impianto di cogenerazione a ciclo combinato

    Energy Technology Data Exchange (ETDEWEB)

    Macchi, E. [Milan Politecnico, Milan (Italy)

    1999-09-01

    The recent decree on liberalization of the Italian electric market assigns to the authority for electric energy and natural gas the task of defining under which conditions a combined heat and power plant (CHP) obtains a significant primary energy saving when compared to separate productions. The present paper outlines and discusses the proposal made by a working group of CTI (Italian thermo-technical committee). The most significant features of the proposal are the following: i the use of IRE (Energy saving index), based upon net, annual energy production, certified by independent institutions; ii the adoption of an automatic procedure of yearly updating the reference performance related to conventional power generation, accounting for technology evolution; iii the assumption of a lower limit for the thermal/fuel energy ratio and iv correction procedures in case of usage of non-conventional fuels (municipal wastes, process gases, etc.) [Italian] Il recente decreto sulla liberalizzazione del mercato elettrico prevede che l'autorita per l'energie elettrica e il gas definisca le condizioni per cui un impianto di produzione combinata di energia elettrica e calore garantisce un significativo risparmio di energia rispetto alle produzioni separate. Nella presente nota viene descritta e commentata una proposta operativa avanzata da un gruppo di lavoro del Comitato Termotecnico Italiano (CTI). Elementi caratterizzanti la proposta sono: i) il riferimento all'indice IRE (indice di Risparmio di Energia primaria), valutato su prestazioni annue nette, a consuntivo e certificate da Enti indipendenti, ii) l'introduzione di un meccanismo automatico di revisione annuale di parametri di confronto relativi alla generazione separata che tenga conto dell'evoluzione tecnologica, iii) l'introduzione di un limite inferiore al rapporto fra la generazione di energia termica utile e l'energia introdotta con il combustibile e iv l'inserimento di

  19. HTTR demonstration program for nuclear cogeneration of hydrogen and electricity

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Sumita, Junya; Terada, Atsuhiko; Ohashi, Hirofumi; Yan, Xing L.; Nishihara, Tetsuo; Tachibana, Yukio; Inagaki, Yoshiyuki

    2015-01-01

    Japan Atomic Energy Agency initiated a High Temperature Engineering Test Reactor (HTTR) demonstration program in accordance with recommendations of a task force established by Ministry of Education, Culture, Sports, Science and Technology according to the Strategic Energy Plan as of April 2014. The demonstration program is designed to complete helium gas turbine and hydrogen production system technologies aiming at commercial plant deployment in 2030s. The program begins with coupling a helium gas turbine in the secondary loop of the HTTR and expands by adding the H 2 plant to a tertiary loop to enable hydrogen cogeneration. Safety standards for coupling the helium gas turbine and H 2 plant to the nuclear reactor will be established through safety review in licensing. A system design and its control method are planned to be validated with a series of test operations using the HTTR-GT/H 2 plant. This paper explains the outline of HTTR demonstration program with a plant concept of the heat application system directed at establishing an HTGR cogeneration system with 950°C reactor outlet temperature for production of power and hydrogen as recommended by the task force. Commercial deployment strategy including a development plan for the helium gas turbine is also presented. (author)

  20. Feasibility study for retrofitting biogas cogeneration systems to district heating in South Korea.

    Science.gov (United States)

    Chung, Mo; Park, Hwa-Choon

    2015-08-01

    A feasibility study was performed to assess the technical and economic merits of retrofitting biogas-based cogeneration systems to district heating networks. Three district heating plants were selected as candidates for accommodating heat recovery from nearby waste treatment stations, where a massive amount of biogas can be produced on a regular basis. The scenario involves constructing cogeneration systems in each waste treatment station and producing electricity and heat. The amounts of biogas production for each station are estimated based on the monthly treatment capacities surveyed over the most recent years. Heat produced by the cogeneration system is first consumed on site by the waste treatment system to keep the operating temperature at a proper level. If surplus heat is available, it will be transported to the nearest district heating plant. The year-round operation of the cogeneration system was simulated to estimate the electricity and heat production. We considered cost associated with the installation of the cogeneration system and piping as initial investments. Profits from selling electricity and recovering heat are counted as income, while costs associated with buying biogas are expenses. Simple payback periods of 2-10 years were projected under the current economic conditions of South Korea. We found that most of the proposed scenarios can contribute to both energy savings and environmental protection. © The Author(s) 2015.

  1. System analysis of CO{sub 2} sequestration from biomass cogeneration plants (Bio-CHP-CCS). Technology, economic efficiency, sustainability; Systemanalyse der CO{sub 2}-Sequestrierung aus Biomasse-Heizkraftwerken (Bio-KWK-CCS). Technik, Wirtschaftlichkeit, Nachhaltigkeit

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Claus

    2014-10-15

    In the present work a system analysis is carried out to determine the extent to which a combination of the three areas of energetic biomass use, combined heat and power (CHP) and CO{sub 2} sequestration (CCS - Carbon Capture and Storage) is fundamentally possible and meaningful. The term ''CO{sub 2} sequestration'' refers to the process chain from CO{sub 2} capture, CO{sub 2} transport and CO{sub 2} storage. While the use of biomass in combined heat and power plants is a common practice, CO{sub 2} sequestration (based on fossil fuels) is at the research and development stage. A combination of CCS with biomass has so far been little studied, a combination with combined heat and power plants has not been investigated at all. The two technologies for the energetic use of biomass and cogeneration represent fixed variables in the energy system of the future in the planning of the German federal government. According to the lead scenario of the Federal Ministry of the Environment, electricity generation from biomass is to be almost doubled from 2008 to 2020. At the same time, the heat generated in cogeneration is to be trebled [cf. Nitsch and Wenzel, 2009, p. 10]. At the same time, the CCS technology is to be used in half of all German coal-fired power plants until 2030 [cf. Krassuki et al., 2009, p. 17]. The combination of biomass and CCS also represents an option which is conceivable for the German federal policy [cf. Bundestag, 2008b, p. 4]. In addition, the CCS technology will provide very good export opportunities for the German economy in the future [cf. Federal Government, 2010, p. 20]. The combination of biomass combined heat and power plants with CCS offers the interesting opportunity to actively remove CO{sub 2} from the atmosphere as a future climate protection instrument by means of CO{sub 2} neutrality. Therefore, in the energy concept of the German federal government called for a storage project for industrial or biogenic CO{sub 2

  2. 'BACO' code: Cogeneration cycles heat balance

    International Nuclear Information System (INIS)

    Huelamo Martinez, E.; Conesa Lopez, P.; Garcia Kilroy, P.

    1993-01-01

    This paper presents a code, developed by Empresarios Agrupados, sponsored by OCIDE, CSE and ENHER, that, with Electrical Utilities as final users, allows to make combined and cogeneration cycles technical-economical studies. (author)

  3. Modularizing development

    DEFF Research Database (Denmark)

    Müller, Anders Riel; Doucette, Jamie

    a deeper and wider understanding of Korea’s development experience with the hope that Korea’s past can offer lessons for developing countries in search of sustainable and broad‐based development" (KSP 2011). To do so, the KSP provides users with a modularized set of policy narratives that represent Korea...

  4. The Mexican electricity industry - cogeneration potential

    International Nuclear Information System (INIS)

    Monroy, I.L.

    2000-01-01

    A brief history of Mexico's electric power industry is given. Diagrams show (i) the increase in primary energy production from 1990-1998; (ii) energy consumption by sector and (iii) the change in capacity between 1990 and 1998. The projected energy development for 1998-2007 is discussed. The Mexican government has chosen cogeneration to be an important contributor to future energy-efficient power production. Data on installed cogeneration capacity for years 2000 and 2001 are given according to sector

  5. Electricity transport regimes: their impact on cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cotard, Erwan [COGEN, Europe (Belgium)

    2000-12-01

    In many cases the main product of cogeneration is heat and the surplus electricity is sold to the grid. However, the economics of cogeneration can be influenced by transport networks (transmission and distribution): the structure of network pricing is relatively new. In a recent note from COGEN Europe it was recommended that cogenerators who use only the local distribution system should not pay for the transmission system and that tariffs should be structured in sufficient detail for the advantages of decentralisation to be realised. The article is presented under the sub-headings of (i) why is this important? (the omission of the transmission element reduces the overall price of cogeneration); (ii) the advantages of decentralised cogeneration; (iv) the theory - the different systems (the European Directive on electricity market liberalization); (v) the options for transport fees; (vi) current regimes in some EU states (vii) the case of transborder transport; impact of each system on cogeneration; recommendations to policymakers; (viii) the Netherlands and (ix) the UK.

  6. Cogeneration based on gasified biomass - a comparison of concepts

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Fredrik

    1999-01-01

    In this report, integration of drying and gasification of biomass into cogeneration power plants, comprising gas turbines, is investigated. The thermodynamic cycles considered are the combined cycle and the humid air turbine cycle. These are combined with either pressurised or near atmospheric gasification, and steam or exhaust gas dryer, in a number of combinations. An effort is made to facilitate a comparison of the different concepts by using, and presenting, similar assumptions and input data for all studied systems. The resulting systems are modelled using the software package ASPEN PLUS{sup TM}, and for each system both the electrical efficiency and the fuel utilisation are calculated. The investigation of integrated gasification combined cycles (IGCC), reveals that systems with pressurised gasification have a potential for electrical efficiencies approaching 45% (LHV). That is 4 - 5 percentage points higher than the corresponding systems with near atmospheric gasification. The type of dryer in the system mainly influences the fuel utilisation, with an advantage of approximately 8 percentage points (LHV) for the steam dryer. The resulting values of fuel utilisation for the IGCC systems are in the range of 78 - 94% (LHV). The results for the integrated gasification humid air turbine systems (IGHAT) indicate that electrical efficiencies close to the IGCC are achievable, provided combustion of the fuel gas in highly humidified air is feasible. Reaching a high fuel utilisation is more difficult for this concept, unless the temperature levels in the district heating network are low. For comparison a conventional cogeneration plant, based on a CFB boiler and a steam turbine (Rankine cycle), is also modelled in ASPEN PLUS{sup TM}. The IGCC and IGHAT show electrical efficiencies in the range of 37 - 45% (LHV), compared with a calculated value of 31% (LHV) for the Rankine cycle cogeneration plant. Apart from the electrical efficiency, also a high value of fuel

  7. Comparison based on energy and exergy analyses of the potential cogeneration efficiencies for fuel cells and other electricity generation devices

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, M A [Ryerson Polytechnical Inst., Toronto, (CA). Dept. of Mechanical Engineering

    1990-01-01

    Comparisons of the potential cogeneration efficiencies are made, based on energy and exergy analyses, for several devices for electricity generation. The investigation considers several types of fuel cell system (Phosphoric Acid, Alkaline, Solid Polymer Electrolyte, Molten Carbonate and Solid Oxide), and several fossil-fuel and nuclear cogeneration systems based on steam power plants. In the analysis, each system is modelled as a device for which fuel and air enter, and electrical- and thermal-energy products and material and thermal-energy wastes exit. The results for all systems considered indicate that exergy analyses should be used when analysing the cogeneration potential of systems for electricity generation, because they weigh the usefulnesses of heat and electricity on equivalent bases. Energy analyses tend to present overly optimistic views of performance. These findings are particularly significant when large fractions of the heat output from a system are utilized for cogeneration. (author).

  8. Efficiency Assessment of Support Mechanisms for Wood-Fired Cogeneration Development in Estonia

    Science.gov (United States)

    Volkova, Anna; Siirde, Andres

    2010-01-01

    There are various support mechanisms for wood-fired cogeneration plants, which include both support for cogeneration development and stimulation for increasing consumption of renewable energy sources. The efficiency of these mechanisms is analysed in the paper. Overview of cogeneration development in Estonia is given with the focus on wood-fired cogeneration. Legislation acts and amendments, related to cogeneration support schemes, were described. For evaluating the efficiency of support mechanisms an indicator - fuel cost factor was defined. This indicator includes the costs related to the chosen fuel influence on the final electricity generation costs without any support mechanisms. The wood fuel cost factors were compared with the fuel cost factors for peat and oil shale. For calculating the fuel cost factors, various data sources were used. The fuel prices data were based on the average cost of fuels in Estonia for the period from 2000 till 2008. The data about operating and maintenance costs, related to the fuel type in the case of comparing wood fuel and oil shale fuel were taken from the CHP Balti and Eesti reports. The data about operating and maintenance costs used for peat and wood fuel comparison were taken from the Tallinn Elektrijaam reports. As a result, the diagrams were built for comparing wood and its competitive fuels. The decision boundary lines were constructed on the diagram for the situation, when no support was provided for wood fuels and for the situations, when various support mechanisms were provided during the last 12 years.

  9. COGENERATION IN AIR SEPARATION CRIOGENIC PLANTS

    OpenAIRE

    WALTER NOVELLO BASTOS

    1999-01-01

    Diante da crise energética e de mercado a Cogeração se apresenta oportuna tanto para a produção de energias elétrica e térmica quanto para a redução dos custos operacionais de produção de uma empresa. Um sistema de cogeração integrado e adaptado ao processo de uma Planta Criogênica de Separação de Ar, que tem a energia elétrica como insumo básico, pois o ar não tem custo, pode se mostrar viável, com considerável redução nos custos operacionais da planta. Um estudo termoeconômico, englob...

  10. Termoacu Cogeneration: gas, power and oil; Cogeracao Termoacu: gas, energia e oleo

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Geraldo Jose; Gomes, Cicero Sena Moreira [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    This paper describes the evolution of a project that involves cogeneration of power and steam for continuous injection in oil wells in the fields of Alto do Rodrigues and Estreito, in Rio Grande do Norte, Brazil. The project combines a PETROBRAS intention for recovering heavy oil in that area with partners intention of generating power to connect in a critical point of the Brazilian Electric System. PETROBRAS studies began in the nineties, when oil wells in that area became old end showed the necessity of some oil recovery technology. In 1999, PETROBRAS and Guaraniana made a partnership for implementation of Termoacu Combined Cycle, that would begin operation as a cogeneration plant for thirteen years, and as combined cycle from that point. The profile of steam injection has been adapted to a new one to comply with the powe r capacity of the Plant, and will operate eight years as a cogeneration plant , four years as a combined cycle with cogeneration and after twelve years as a complete combined cycle with 500 MW of capacity. The project integrates a gas pipeline, a Thermal Power Plant, a Transmission Line to connect to the grid and a Steam Pipeline for steam injection at Estreito and Alto do Rodrigues fields. (author)

  11. Energy and cost saving results for advanced technology systems from the Cogeneration Technology Alternatives Study (CTAS)

    Science.gov (United States)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    An overview of the organization and methodology of the Cogeneration Technology Alternatives Study is presented. The objectives of the study were to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the future and to assess the advantages of advanced technology systems compared to those systems commercially available today. Advanced systems studied include steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics. Steam turbines, open cycle gas turbines, combined cycles, and diesel engines were also analyzed in versions typical of today's commercially available technology to provide a base against which to measure the advanced systems. Cogeneration applications in the major energy consuming manufacturing industries were considered. Results of the study in terms of plant level energy savings, annual energy cost savings and economic attractiveness are presented for the various energy conversion systems considered.

  12. Analysis of possible energy efficiency increasing of the cogeneration process in EL-TO Zagreb

    International Nuclear Information System (INIS)

    Stanisa, B.; Krivak, B.

    1996-01-01

    In the erection planing of new generation capacity, besides the profitability, there is need to taken in account the rational consumption of primary energy, and the environmental protection. The main rules could have cogenerations of the heat and power. In power plant EL-TO Zagreb there are analysed generating capacity of the cogeneration process. There is considered reconstruction and revitalisation's of existing generating units, and erections of new one, all in the purpose to meet the growing heat demand. The district heating system is considered from the point as opportunity in energy saving capacity in the cogeneration of heat and power. For the amount of the energy saved there is need for less primary energy to be consumed, and this in finally means that for the some energy demands it has the some effect as the natural energy resources are expanded. (author)

  13. State Support for Promotion of Electrical Energy Produced in High Efficiency Cogeneration in Romania

    Directory of Open Access Journals (Sweden)

    Mushatescu V.

    2016-12-01

    Full Text Available Romania accumulated a useful experience in supporting high efficient cogeneration through a bonus type scheme. Spreading this experience to other countries that can choose a similar support scheme could lead to important savings and better results in developing this efficient tool. This state aid is operational, targeted to new investments stimulation for cogeneration technologies and replacement or existing plants rehabilitation. Present paper focuses on the results of support scheme after five years of its application: increase of number of producers who benefit of this aid, raising of general efficiency of high efficient cogeneration, important savings of primary energy and CO2 emissions avoided. On the other hand, use of this scheme showed a number of problems (to which this paper proposes adequate solutions on institutional/administrative, investition, technical, economical-financial and social frameworks that influences beneficiaries and/or financiers of state aid.

  14. Design of the measurements validation procedure and the expert system architecture for a cogeneration internal combustion engine

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.

    2005-01-01

    A research activity has been initiated to study the development of a diagnostic methodology, for the optimization of energy efficiency and the maximization of the operational time in those conditions, based on artificial intelligence (AI) techniques such as artificial neural network (ANN) and fuzzy logic. The diagnostic procedure, developed specifically for the cogeneration plant located at the Engineering Department of the University of Perugia, must be characterized by a modular architecture to obtain a flexible architecture applicable to different systems. The first part of the study deals with the identifying the principal modules and the corresponding variables necessary to evaluate the module 'health state'. Also the consequent upgrade of the monitoring system is described in this paper. Moreover it describes the structure proposed for the diagnostic procedure, consisting of a procedure for measurement validation and a fuzzy logic-based inference system. The first reveals the presence of abnormal conditions and localizes their source distinguishing between system failure and instrumentation malfunctions. The second provides an evaluation of module health state and the classification of the failures which have possibly occurred. The procedure was implemented in C++

  15. Evaluation of the applicability of existing nuclear power plant regulatory requirements in the U.S. to advanced small modular reactors.

    Energy Technology Data Exchange (ETDEWEB)

    LaChance, Jeffrey L.; Wheeler, Timothy A.; Farnum, Cathy Ottinger; Middleton, Bobby D.; Jordan, Sabina Erteza; Duran, Felicia Angelica; Baum, Gregory A.

    2013-05-01

    The current wave of small modular reactor (SMR) designs all have the goal of reducing the cost of management and operations. By optimizing the system, the goal is to make these power plants safer, cheaper to operate and maintain, and more secure. In particular, the reduction in plant staffing can result in significant cost savings. The introduction of advanced reactor designs and increased use of advanced automation technologies in existing nuclear power plants will likely change the roles, responsibilities, composition, and size of the crews required to control plant operations. Similarly, certain security staffing requirements for traditional operational nuclear power plants may not be appropriate or necessary for SMRs due to the simpler, safer and more automated design characteristics of SMRs. As a first step in a process to identify where regulatory requirements may be met with reduced staffing and therefore lower cost, this report identifies the regulatory requirements and associated guidance utilized in the licensing of existing reactors. The potential applicability of these regulations to advanced SMR designs is identified taking into account the unique features of these types of reactors.

  16. An estimation of cogeneration potential by using refinery residuals in Mexico

    International Nuclear Information System (INIS)

    Marin-Sanchez, J.E.; Rodriguez-Toral, M.A.

    2007-01-01

    Electric power generation in Mexico is mainly based on fossil fuels, specifically heavy fuel oil, although the use of natural gas combined cycles (NGCC) is becoming increasingly important. This is the main destination that has promoted growing imports of natural gas, currently accounting for about 20% of the total national annual consumption. Available crude oil is becoming heavier; thus refineries should be able to process it, and to handle greater quantities of refinery residuals. If all refinery residuals are used in cogeneration plants serving petroleum refineries, the high heat/power ratio of refinery needs, leads to the availability of appreciable quantities of electricity that can be exported to the public utility. Thus, in a global perspective, Mexican imports of natural gas may be reduced by cogeneration using refinery residuals. This is not the authors' idea; in fact, PEMEX, the national oil company, has been entitled by the Mexican congress to sell its power leftovers to The Federal Electricity Commission (CFE) in order to use cogeneration in the way described for the years to come. A systematic way of determining the cogeneration potential by using refinery residuals from Mexican refineries is presented here, taking into account residual quantities and composition, from a national perspective, considering expected scenarios for Maya crude content going to local refineries in the years to come. Among different available technologies for cogeneration using refinery residuals, it is believed that the integrated gasification combined cycle (IGCC) would be the best option. Thus, considering IGCC plants supplying heat and power to refineries where it is projected to have refinery residuals for cogeneration, the expected electric power that can be sent to the public utility is quantified, along with the natural gas imports mitigation that may be attained. This in turn would contribute to a necessary fuel diversification policy balancing energy, economy and

  17. Modular power station

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, T; Kanazawa, T

    1979-03-19

    In order to shorten the construction period of powerstations, to reduce the number of specialists at site and to prevent technical breakdowns, it was proposed that considerable parts of the powerstation should be assembled on a floating platform and then be towed to site by water, where they are set on foundations and then connected. It is now proposed that the necessary additional equipment (such as water supply plant, storage plant, Diesel generator and service buildings etc.) should be assembled on a second platform, and also transported by water on this. This modular construction will also reduce costs.

  18. CANDU co-generation opportunities

    International Nuclear Information System (INIS)

    Meneley, D.A.; Duffey, R.B.; Pendergast, D.R.

    2000-01-01

    Modern technology makes use of natural energy 'wealth' (uranium) to produce useful energy 'currency' (electricity) that can be used to society's benefit. This energy currency can be further applied to help solve a difficult problem faced by mankind. Within the next few years we must reduce our use of the same fuels which have made many countries wealthy - fossil fuels. Fortunately, electricity can be called upon to produce another currency, namely hydrogen, which has some distinct advantages. Unlike electricity, hydrogen can be stored and can be recovered for later use as fuel. It also is extremely useful in chemical processes and refining. To achieve the objective of reducing greenhouse gas emissions hydrogen must, of course, be produced using a method which does not emit such gases. This paper summarizes four larger studies carried out in Canada in the past few years. From these results we conclude that there are several significant opportunities to use nuclear fission for various co-generation technologies that can lead to more appropriate use of energy resources and to reduced emissions. (author)

  19. Feasibility study of wood-fired cogeneration at a Wood Products Industrial Park, Belington, WV. Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Vasenda, S.K.; Hassler, C.C.

    1992-06-01

    Customarily, electricity is generated in a utility power plant while thermal energy is generated in a heating/cooling plant; the electricity produced at the power plant is transmitted to the heating/cooling plant to power equipments. These two separate systems waste vast amounts of heat and result in individual efficiencies of about 35%. Cogeneration is the sequential production of power (electrical or mechanical) and thermal energy (process steam, hot/chilled water) from a single power source; the reject heat of one process issued as input into the subsequent process. Cogeneration increases the efficiency of these stand-alone systems by producing these two products sequentially at one location using a small additional amount of fuel, rendering the system efficiency greater than 70%. This report discusses cogeneration technologies as applied to wood fuel fired system.

  20. A theoretical and experimental investigation into the thermodynamic performance of a 50 MW power plant with a novel modular air-cooled condenser

    International Nuclear Information System (INIS)

    O'Donovan, Alan; Grimes, Ronan

    2014-01-01

    Economic and environmental restrictions have resulted in an increase in the installation of air-cooled condensers (ACCs) in thermoelectric power plants located in arid regions. The traditional A-frame design is installed most frequently, despite an array of empirical evidence that shows it to suffer from significant inefficiencies. As a result, there is scope for improvement in condenser design and this paper presents one such approach – a novel modular air-cooled condenser (MACC). It is suggested that the unique ability of the MACC to continually vary fan speed could result in efficiency gains over a plant operating with existing state-of-the-art fixed speed ACCs. To determine the impact of installing the MACC on plant output, the steam-side characteristics were established through a series of experimental measurements taken on a full-scale prototype. The experimental arrangement and measurement technique ensured that conditions representative of an operational ACC were maintained throughout. The steam-side characteristics are quantified in terms of temperature, pressure and thermal resistance. Predicted values of these quantities are also presented, calculated from established theory. Both the measurements and predictions were used in a thermodynamic analysis to determine the performance of a 50 MW power plant. Results show that, for a given steam flow rate, increasing fan speed leads to a reduction in condenser pressure which ultimately, results in increased plant output. This occurs up until a certain point, at which further increases in output are offset by larger fan power consumption rates. Thus, an optimum operating point is shown to exist. The results from the thermodynamic analysis demonstrate discrepancies between the plant output evaluated from the measurements and that predicted from theory. In some cases, a difference as large as 1.5% was observed, equating to a 0.8 MW over-prediction by the theory. - Highlights: • A novel modular air

  1. Metric modular spaces

    CERN Document Server

    Chistyakov, Vyacheslav

    2015-01-01

    Aimed toward researchers and graduate students familiar with elements of functional analysis, linear algebra, and general topology; this book contains a general study of modulars, modular spaces, and metric modular spaces. Modulars may be thought of as generalized velocity fields and serve two important purposes: generate metric spaces in a unified manner and provide a weaker convergence, the modular convergence, whose topology is non-metrizable in general. Metric modular spaces are extensions of metric spaces, metric linear spaces, and classical modular linear spaces. The topics covered include the classification of modulars, metrizability of modular spaces, modular transforms and duality between modular spaces, metric  and modular topologies. Applications illustrated in this book include: the description of superposition operators acting in modular spaces, the existence of regular selections of set-valued mappings, new interpretations of spaces of Lipschitzian and absolutely continuous mappings, the existe...

  2. Organização do trabalho na cadeia de suprimentos: os casos de uma planta modular e de uma tradicional na indústria automobilística Work organization in the supply chain: the cases of a modular and a traditional plant in the automotive industry

    Directory of Open Access Journals (Sweden)

    Alessandra Rachid

    2006-08-01

    Full Text Available Este artigo analisa a influência das empresas clientes na organização do trabalho de seus fornecedores em duas cadeias de suprimentos da indústria automobilística, uma comandada por uma planta modular e outra organizada num arranjo tradicional. Na cadeia tradicional, são examinadas as formas de organização do trabalho de uma fábrica de motores e de dez de seus fornecedores diretos. No caso da planta modular, produtora de caminhões e ônibus, examina-se a organização do trabalho no sistema modular como um todo, explorando-se as peculiaridades deste tipo de arranjo. Os resultados da pesquisa apontam que, na planta modular, a influência da montadora sobre a organização do trabalho configura-se de forma mais direta com relação a salários e jornada de trabalho. Na cadeia tradicional, a influência ocorre de forma indireta, por meio de exigências voltadas para outras áreas de gestão.This paper analyzes the influence that buyer firms have on their suppliers' work organization in two supply chains in the automotive industry. One of the supply chains is controlled by a modular plant and the other is organized in the traditional way. In the traditional supply chain, the work organization of an engine manufacturer plant as well as of ten of its suppliers is examined. In the modular plant, a truck and bus manufacturer, the work organization of the whole modular system is examined, exploring the peculiarities of this kind of arrangement. The results of the research shows that in the modular plant the assembler's influence over the work organization, relating to aspects like wages and work time, is more direct. In the traditional supply chain, the influence happens in a indirect way, through requirements done to other areas of management.

  3. Cogeneration cycles applied to desalination in the Arab World: state of the art

    International Nuclear Information System (INIS)

    Yassin, Jamal Saleh

    2006-01-01

    This paper presents a review of cogeneration cycles applied to water desalination in most of the Arab countries. The scarcity of fresh water resources in many countries around the world, and in particular Gulf countries and north African countries such as Libya and Tunisia forced the local authorities to establish many desalination plants to compensate the water shortage. Some plants are conventional for desalination processes only and others are with cogeneration cycle. The high performance of cogeneration cycles encouraged establishing combined power and desalination plants. The present study is intended to provide an overview of cogeneration cycles in conjunction with desalination technologies under the two main resources of energy, fossils and renewables. Thermal technologies, which utilize fossil resource constitute the mainstay of large-scale desalination in the Arab countries and enjoy a relatively important position worldwide. While the technologies which utilize renewable resources such as solar are getting more attention year by year and still under research and almost for small units.(Author)

  4. The modularity of pollination networks

    DEFF Research Database (Denmark)

    Olesen, Jens Mogens; Bascompte, J.; Dupont, Yoko

    2007-01-01

    In natural communities, species and their interactions are often organized as nonrandom networks, showing distinct and repeated complex patterns. A prevalent, but poorly explored pattern is ecological modularity, with weakly interlinked subsets of species (modules), which, however, internally...... consist of strongly connected species. The importance of modularity has been discussed for a long time, but no consensus on its prevalence in ecological networks has yet been reached. Progress is hampered by inadequate methods and a lack of large datasets. We analyzed 51 pollination networks including...... almost 10,000 species and 20,000 links and tested for modularity by using a recently developed simulated annealing algorithm. All networks with >150 plant and pollinator species were modular, whereas networks with

  5. Co-generation at CERN Beneficial or not?

    CERN Document Server

    Wilhelmsson, M

    1998-01-01

    A co-generation plant for the combined production of electricity and heat has recently been installed on the CERN Meyrin site. This plant consists of: a gas turbine generator set (GT-set), a heat recovery boiler for the connection to the CERN primary heating network, as well as various components for the integration on site. A feasibility study was carried out and based on the argument that the combined use of natural gas -available anyhow for heating purposes- gives an attractively high total efficiency, which will, in a period of time, pay off the investment. This report will explain and update the calculation model, thereby confirming the benefits of the project. The results from the commissioning tests will be taken into account, as well as the benefits to be realized under the condition that the plant can operate undisturbed by technical setbacks which, incidentally, has not been entirely avoided during the first year of test-run and operation.

  6. Combined cycles and cogeneration with natural gas and alternative fuels

    International Nuclear Information System (INIS)

    Gusso, R.

    1992-01-01

    Since 1985 there has been a sharp increase world-wide in the sales of gas turbines. The main reasons for this are: the improved designs allowing better gas turbine and, thus, combined cycle efficiencies; the good fuel use indices in the the case of cogeneration; the versatility of the gas turbines even with poly-fuel plants; greatly limited exhaust emissions; and lower manufacturing costs and delivery times with respect to conventional plants. This paper after a brief discussion on the evolution in gas turbine applications in the world and in Italy, assesses their use and environmental impacts with fuels other than natural gas. The paper then reviews Italian efforts to develop power plants incorporating combined cycles and the gasification of coal, residual, and other low calorific value fuels

  7. GTHTR300 cost reduction through design upgrade and cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Xing L., E-mail: yan.xing@jaea.go.jp; Sato, Hiroyuki; Kamiji, Yu; Imai, Yoshiyuki; Terada, Atsuhiko; Tachibana, Yukio; Kunitomi, Kazuhiko

    2016-09-15

    Japan Atomic Energy Agency began design and development of the Gas Turbine High Temperature Reactor of 300MWe nominal output (GTHTR300) in 2001. The reactor baseline design completed three years later was based on 850 °C core outlet temperature and a direct cycle gas turbine balance of plant. It attained 45.6% net power generation efficiency and 3.5 US¢/kW h cost of electricity. The cost was estimated 20% lower than LWR. The latest design upgrade has incorporated several major technological advances made in the past ten years to both reactor and balance of plant. As described in this paper, these advances have enabled raising the design basis reactor core outlet temperature to 950 °C and increasing power generating efficiency by nearly 5% point. Further implementation of seawater desalination cogeneration is made through employing a newly-proposed multi-stage flash process. Through efficient waste heat recovery of the reactor gas turbine power conversion cycle, a large cost credit is obtained against the conventionally produced water prices. Together, the design upgrade and the cogeneration are shown to reduce the GTHTR300 cost of electricity to under 2.7 US¢/kW h.

  8. Cogeneration technology alternatives study. Volume 1: Summary report

    Science.gov (United States)

    1980-01-01

    Data and information in the area of advanced energy conversion systems for industrial congeneration applications in the 1985-2000 time period was studied. Six current and thirty-one advanced energy conversion systems were defined and combined with appropriate balance-of-plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a framework for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. Various cogeneration strategies were analyzed and both topping and bottoming (using industrial by-product heat) applications were included. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Typically fuel energy savings of 10 to 25 percent were predicted compared to traditional on-site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Overall, fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual cost savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal-derived fuels, or coal with advanced fluid bed combustion or on-site gasification systems.

  9. GTHTR300 cost reduction through design upgrade and cogeneration

    International Nuclear Information System (INIS)

    Yan, Xing L.; Sato, Hiroyuki; Kamiji, Yu; Imai, Yoshiyuki; Terada, Atsuhiko; Tachibana, Yukio; Kunitomi, Kazuhiko

    2014-01-01

    Japan Atomic Energy Agency began design and development of the Gas Turbine High Temperature Reactor of 300MWe nominal output (GTHTR300) in 2001. The reactor baseline design completed three years later was based on 850°C core outlet temperature and a direct cycle gas turbine balance of plant. It attained 45.6% net power generation efficiency and 3.5US¢/KWh cost of electricity. The cost was estimated 20% lower than LWR. The latest design upgrade has incorporated several major technological advances made in the past ten years to both reactor and balance of plant. As described in this paper, these advances have enabled raising the design basis reactor core outlet temperature to 950°C and increasing power generating efficiency by nearly 5% point. Further implementation of seawater desalination cogeneration is made through employing a newly-proposed multi-stage flash process. Through efficient waste heat recovery of the reactor gas turbine power conversion cycle, a large cost credit is obtained against the conventionally produced water prices. Together, the design upgrade and the cogeneration are shown to reduce the GTHTR300 cost of electricity to under 2.7 US¢/KWh. (author)

  10. Gas cogeneration system in Sapporo Therme

    Energy Technology Data Exchange (ETDEWEB)

    Kanematsu, Michihiko

    1988-06-01

    Sapporo Therme is a multi-purpose resort including a hot-water jumbo swimming pool having an area of about 130,000m/sup 2/ and a circumference of 800 m, 13 additional swimming pools with additional sizes, a hot-water slider, 16 types of saunas, an artificial sunbathing system, an athletic system, a restaurant, a cinema, tennis courts, and other outdoor facilities. Sapporo Therme uses a cogeneration system consisting of using LP gas(95% or more propane gas) to drive a 1,200 PS gas engine and supply motive power and lightening. At the same time, the cogeneration system collects gas engine waste heat and combines this heat with that from hot-water and steam boilers to supply hot water to swimming pools, roads, and room heaters. The ratio of waste heat collection rate to power generation efficiency is about 5.0. Sapporo Therme is thus the optimal facilities for cogeneration. (1 figs, 3 photos)

  11. Extra cogeneration step seen boosting output 20%

    Energy Technology Data Exchange (ETDEWEB)

    Burton, P.

    1984-10-08

    Cogenerators can now buy a prototype 6.5 MW, pre-packaged cogeneration system that incorporates an added step to its cycle to reduce fuel use by 21%. Larger, custom-designed systems will be on the market in 1985. Fayette Manufacturing Co. will offer the Kalina Cycle system at a discount price of $8.2 million (1200/kW) until the systems are competitive with conventional units. The system varies from conventional cogeneration systems by adding a distillation step, which permits the use of two fluids for the turbine steam and operates at a higher thermodynamic efficiency, with boiling occuring at high temperature and low pressure. Although theoretically correct, DOE will withhold judgment on the system's efficiency until the first installation is operating.

  12. Transient behaviour of small HTR for cogeneration

    International Nuclear Information System (INIS)

    Verkerk, E.C.; Van Heek, A.I.

    2000-01-01

    The Dutch market for combined generation of heat and power identifies a unit size of 40 MW thermal for the conceptual design of a nuclear cogeneration plant. The ACACIA system provides 14 MWe electricity combined with 17 t/h of high temperature steam (220 deg C, 10 bar) with a pebble-bed high temperature reactor directly coupled with a helium compressor and a helium turbine. The design of this small CHP unit that is used for industrial applications is mainly based on a pre-feasibility study in 1996, performed by a joint working group of five Dutch organisations, in which technical feasibility was shown. Thermal hydraulic and reactor physics analyses show favourable control characteristics during normal operation and a benign response to loss of helium coolant and loss of flow conditions. Throughout the response on these highly infrequent conditions, ample margin exists between the highest fuel temperatures and the temperature above which fuel degradation will occur. To come to quantitative statements about the ACACIA transient behaviour, a calculational coupling between the high temperature reactor core analysis code package PANTHER/DIREKT and the thermal hydraulic code RELAP5 for the energy conversion system has been made. This coupling offers a more realistic simulation of the entire system, since it removes the necessity of forcing boundary conditions on the simulation models at the data transfer points. In this paper, the models used for the dynamic components of the energy conversion system are described, and the results of the calculation for two operational transients in order to demonstrate the effects of the interaction between reactor core and its energy conversion system are shown. Several transient cases that are representative as operational transients for an HTR will be discussed, including one representing a load rejection case that shows the functioning of the control system, in particular the bypass valve. Another transient is a load following

  13. Research report for fiscal 1998. Basic research for promoting joint implementation, etc. (fuel change plan for No. 1 and No. 9 Irkutsk Heat and Power Co-Generation Plants, Irkutsk, Russia); 1998 nendo chosa hokokusho. Roshia renpo Irkuktsk shu dai 1 go oyobi dai 9 go Irkutsk netsu heikyu hatsudensho nenryo tenkan keikaku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A research is conducted to find out if efficiency will increase and greenhouse gas will decrease when fuel is changed from coal to gas at the above-named plants, and the economics of the plan is reviewed. The No. 1 plant comprises 18 coal-fired boilers with a total design capacity of 2985 tons/hour, and 8 steam turbine generators rated at 185MW, constructed in the 1940s. The No. 9 plant was constructed in the 1960s and 1970s. Four different modifications programs are drafted to study the fuel change plan. As the result, it is found that the addition of natural gas burning facilities to the existing heat and power co-generation plants and the modification of the existing boiler-related facilities will be low in earning rate and reliability, though excellent in budget size and cost efficiency; and that to dismantle the existing plants and to newly construct heat and power plants operating on gas turbines will bring about a higher earning rate, fuel cost reduction effect, and reliability, though such will cost more. (NEDO)

  14. Potable water cogeneration using nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, G. [Instituto Nacional de Investigaciones Nucleares, Estado de Mexico (Mexico); Instituto Politecnico Nacional, Escuela Superior de Fisica y Matematicas, D.F. (Mexico); Ramirez, J.R. [Instituto Nacional de Investigaciones Nucleares, Estado de Mexico (Mexico); Valle, E. del [Instituto Politecnico Nacional, Escuela Superior de Fisica y Matematicas, D.F. (Mexico)

    2014-07-01

    Mexico is a country with a diversity of conditions; the Peninsula of Baja California is a semi-arid region with a demand of potable water and electricity where small nuclear power can be used. This part of the country has a low density population, a high pressure over the water resources in the region, and their needs of electricity are small. The SMART reactor will be assessed as co-generator for this region; where five different scenarios of cogeneration of electricity and potable water production are considered, the levelized cost of electricity and potable water are obtained to assess their competitiveness. (author)

  15. Cogeneration an opportunity for industrial energy saving

    International Nuclear Information System (INIS)

    Pasha, R.A.; Butt, Z.S.

    2011-01-01

    This paper is about the cogeneration from industrial energy savings opportunities perspective. The energy crisis in these days forces industry to find ways to cope with critical situation. There are several energy savings options which if properly planned and implemented would be beneficial both for industry and community. One way of energy saving is Cogeneration i.e. Combined Heat and Power. The paper will review the basic methods, types and then discuss the suitability of these options for specific industry. It has been identified that generally process industry can get benefits of energy savings. (author)

  16. Evaluation of potential for cogeneration of electricity and process heat in North Carolina. Final report, June 1, 1978-May 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The objective of this study was to enable North Carolina to more efficiently utilize available energy than would be possible without additional cogeneration. Effective use of cogeneration can ease the requirement for utility capital and power plant sites and, by reducing fuel usage, can lead to less environmental damage. The study used the National Emissions Data System data bank and the North Carolina Boiler Registry to identify potential candidates for cogeneration and to then ascertain the magnitude of the potential in existing, new, and expanded facilities as a function of cogeneration impediment elimination. The survey uncovered 372 MW of operable cogeneration capacity in North Carolina in 15 plants. An estimate of the potential for expansion of cogeneration by firms presently operating in North Carolina amounted to 130 MW. This estimate was based on current conditions of fuel costs, electricity rates, standby charges, and investment tax credit. Much information is provided concerning industry and utilities in North Carolina, fuel usage by industry, and barriers to cogeneration. Recommendations are summarized.

  17. AES Modular Power Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Modular Power Systems (AMPS) project will demonstrate and infuse modular power electronics, batteries, fuel cells, and autonomous control for exploration...

  18. Economic potential of natural gas-fired cogeneration in Brazil: two case studies

    Energy Technology Data Exchange (ETDEWEB)

    Szklo, Alexandre Salem; Soares, Jeferson Borghetti; Tolmasquim, Mauricio Tiomno [Rio de Janeiro Federal Univ., Energy Planning Program (COPPE), Rio de Janeiro (Brazil); Cidade Univ., Ilha do Fundao, Rio de Janeiro (Brazil)

    2000-11-01

    Recent restructuring of Brazil's power sector, allied to the expected larger share of natural gas in the nation's grid and the cost reductions of gas-fired power generation technologies, has introduced a set of situations apparently favorable to the expansion of natural gas-fired cogeneration. However, electricity self-generation applications are restricted to specific cases in Brazil. In order to deal with this issue, the COGEN model was developed to assess the economic potential of cogeneration ventures from the standpoint of the investor and guide incentive public policies. This model has been applied to two cases in Brazil -- a chemical plant and a shopping mall -- showing that the highest economic potential for gas-fired cogeneration in Brazil is found in industrial plants faced with high values of loss of load. In the commercial sector, measures reshaping the load curve of enterprises -- such as cold storage --- might be much more interesting than fired cogeneration. (Author)

  19. Thermoeconomic and exegetic analysis of a cogeneration proposal by using natural gas in breweries; Analise termoeconomica e exergetica de uma proposta de cogeracao usando gas natural em cervejarias

    Energy Technology Data Exchange (ETDEWEB)

    Gallego, Antonio Garrido; Martins, Gilberto [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara do Oeste, SP (Brazil). Faculdade de Engenharia Mecanica e de Producao]. E-mail: agallego@unimep.br; gmartins@unimep.br; Nebra, Silvia Azucena [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica]. E-mail: sanebra@fem.unicamp.br

    2000-07-01

    In this work the thermo economic method is used for analysis of the cost distribution in a cogeneration power plant proposed for a brewery in the Campinas - state of Sao Paulo, Brazil. The thermal process energy demands were considered for beer production in 1997. The proposed cogeneration system consists of two gas turbines with recovering boiler and ammonium compression cooling system. The present power generation configuration and the cogeneration proposed performance were simulated in a monthly basis, considering the month steam and refrigeration requests. The gas turbines were simulated considering the nominal load and the energy surplus sold to the concessionaire.

  20. Evolution of near term PBMR steam and cogeneration applications - HTR2008-58219

    International Nuclear Information System (INIS)

    Kuhr, R. W.; Hannink, R.; Paul, K.; Kriel, W.; Greyvenstein, R.; Young, R.

    2008-01-01

    US and international applications for large onsite cogeneration (steam and power) systems are emerging as a near term market for the PBMR. The South African PBMR demonstration project applies a high temperature (900 deg. C) Brayton cycle for high efficiency power generation. In addition, a number of new applications are being investigated using an intermediate temperature range (700-750 deg. C) with a simplified heat supply system design. This intermediate helium delivery temperature supports conventional steam Rankine cycle designs at higher efficiencies than obtained from water type reactor systems. These designs can be adapted for cogeneration of steam, similar to the design of gas turbine cogeneration plants that supply steam and power at many industrial sites. This temperature range allows use of conventional or readily qualifiable materials and equipment, avoiding some cost premiums associated with more difficult operating conditions. As gas prices and CO 2 values increase, the potential value of a small nuclear reactor with advanced safety characteristics increases dramatically. Because of its smaller scale, the 400-500 MWt PBMR offers the economic advantages of onsite thermal integration (steam, hot water and desalination co-production) and of providing onsite power at cost versus at retail industrial rates avoiding transmission and distribution costs. Advanced safety characteristics of the PBMR support the location of plants adjacent to steam users, district energy systems, desalination plants, and other large commercial and industrial facilities. Additional benefits include price stability, long term security of energy supply and substantial CO 2 reductions. Target markets include existing sites using gas fired boilers and cogeneration units, new projects such as refinery and petrochemical expansions, and coal-to-liquids projects where steam and power represent major burdens on fuel use and CO 2 emissions. Lead times associated with the nuclear licensing

  1. Market conditions for wind power and biofuel-based cogeneration

    International Nuclear Information System (INIS)

    1994-07-01

    The aim of this study is to analyze the prerequisites for biofuel-based cogeneration plants and for wind power, with special emphasis on following factors: 1/ The effect on the Swedish energy market of the opening of the power transmission networks for free competition within the electric power supply sector. 2/ A market model for the connection between the prices on fossil fuels, biomass fuels, electric power, and heating on the Swedish market. The analysis is made for three scenarios concerning carbon dioxide/energy taxation and the oil price development. The three scenarios are: A. Constant prices on heating oil and coal., B. An internationally uniform carbon dioxide tax, which successively is raised to SEK 0.40 per kilo carbon dioxide to the year 2010. In the year 2005 this will correspond to a doubling of the present prices on crude oil., C. An unilateral Swedish energy- and carbon dioxide tax of todays model (without exception for electric power generation), with constant import prices on heating oil and coal. The decisive factors for bio-cogeneration are construction- and operation costs, the costs of biofuels, and the sales price on electric power and heat. For wind power it is the construction- and operation costs that settle the conditions. 18 figs, 6 tabs

  2. Waste-to-Energy Cogeneration Project, Centennial Park

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Clay; Mandon, Jim; DeGiulio, Thomas; Baker, Ryan

    2014-04-29

    The Waste-to-Energy Cogeneration Project at Centennial Park has allowed methane from the closed Centennial landfill to export excess power into the the local utility’s electric grid for resale. This project is part of a greater brownfield reclamation project to the benefit of the residents of Munster and the general public. Installation of a gas-to-electric generator and waste-heat conversion unit take methane byproduct and convert it into electricity at the rate of about 103,500 Mwh/year for resale to the local utility. The sale of the electricity will be used to reduce operating budgets by covering the expenses for streetlights and utility bills. The benefits of such a project are not simply financial. Munster’s Waste-to Energy Cogeneration Project at Centennial Park will reduce the community’s carbon footprint in an amount equivalent to removing 1,100 cars from our roads, conserving enough electricity to power 720 homes, planting 1,200 acres of trees, or recycling 2,000 tons of waste instead of sending it to a landfill.

  3. CO2 recovery from cogeneration projects

    International Nuclear Information System (INIS)

    Rushing, S.A.

    2001-01-01

    There is a ready market for carbon dioxide for use in industrial processes as well as in food and beverage production. Recovering this gas from flue gas exhausts can provide extra income for cogeneration projects -as well as reducing emissions. (author)

  4. Energy conservation through the implementation of cogeneration and grid interconnection

    International Nuclear Information System (INIS)

    Dashash, M. A.

    2007-01-01

    With increasing awareness of energy conservation and environmental protection, the Arab World is moving to further improve energy conversion efficiency. The equivalent of over 2.7 MM bbl is being daily burnt to fuel the thermal power plants that represent 92% of the total Arab power generation. This adds up to close to one billion barrels annually. At a conservative 30$ per barrel, this represents a daily cost of over $81 Million. This paper will introduce two strategies with the ultimate objective to cut-off up to half of the current fuel consumption. Firstly, Cogeneration Technology is able to improve thermal efficiency from the current average of less than 25% to up to 80%. Just 1% improvement in power plant thermal efficiency represents 3 million $/day in fuel cost savings. In addition, a well-designed and operated cogeneration plant will: - Reduce unfriendly emissions by burning less fuel as a result of higher thermal efficiency, - Increase the decentralization of electrical generation, - Improve the reliability of electricity supply. As an example, the Kingdom of Saudi Arabia's experience of implementing cogeneration will be presented, in particular within its hydrocarbon facilities and desalination plants. This will include the existing facilities and the planned and on-going projects. Secondly, by interconnecting the power networks of all the adjacent Arab countries, the following benefits could be reached: - Reduce generation reserves and enhance the system reliability, - Improve the economic efficiency of the electricity power systems, - Provide power exchange and strengthen the supply reliability, - Adopt technological development and use the best modern technologies. At least two factors plead for this direction. On one hand, the four-hour time zone difference from Eastern to Western Arab World makes it easy to exchange power. On the other hand, this will help to reduce the reserve capacity and save on corresponding Capital investment, fuel, and O and M

  5. Co-generation potentials of municipal solid waste landfills in Serbia

    Directory of Open Access Journals (Sweden)

    Bošković Goran B.

    2016-01-01

    Full Text Available Waste management in the Republic of Serbia is based on landfilling. As a result of such year-long practice, a huge number of municipal waste landfills has been created where landfill gas has been generated. Landfill gas, which is essentially methane (50-55% and carbon dioxide (40-45% (both GHGs, has a great environmental impact which can be reduced by using landfill gas in cogeneration plants to produce energy. The aim of this paper is to determine economic and environmental benefits from such energy production. For that purpose, the database of cogeneration potentials (CP of 51 landfills in the Republic of Serbia (RS was created. Amount of landfill gas generated at each municipal landfill was calculated by applying a first order decay equation which requires the data about solid waste production and composition and about some landfill characteristics. For all landfills, which have over 100,000 m3 each, a techno-economic analysis about building a CHP plant was conducted. The results have shown, that the total investment in 14 CHP plants with payback period of less than 7 years amounts € 11,721,288. The total nominal power of these plants is 7 MW of electrical power and 7.9 MW of thermal power, and an average payback period is about 61 months. In addition, using landfill biogas as energy source in proposed plants would reduce methane emission for 161,000 tons of CO2 equivalent per year. [Projekat Ministarstva nauke Republike Srbije, br. III 42013: Research of cogeneration potential of municipal and industrial energy power plant in Republic of Serbia and opportunities for rehabilitation of existing and construction of new cogeneration plants

  6. District heating/cogeneration application studies for the Minneapolis-St Paul area. Executive summary; overall feasibility and economic viability for a district heating/new cogeneration system in Minneapolis-St. Paul

    Energy Technology Data Exchange (ETDEWEB)

    Margen, P.; Larsson, K.; Cronholm, L.A.; Marklund, J.E.

    1979-08-01

    A study was undertaken to determine the feasibility of introducing a large-scale, hot-water, district-heating system for the Minneapolis-St. Paul area. The analysis was based on modern European hot-water district-heating concepts in which cogeneration power plants supply the base-load thermal energy. Heat would be supplied from converted turbines of existing coal-fired power plants in Minneapolis and St. Paul. Toward the end of the 20-year development period, one or two new cogeneration units would be required. Thus, the district-heating system could use low-grade heat from either coal-fired or nuclear cogeneration power stations to replace the space-heating fuels currently used - natural gas and distillate oil. The following conclusions can be drawn: the concept is technically feasible, it has great value for fuel conservation, and with appropriate financing the system is economically viable.

  7. Power optimization in the STAR-LM modular natural convection reactor system. Topic 2.1 advanced reactor power plants

    International Nuclear Information System (INIS)

    Spencer, B.W.; Sienicki, J.J.; Farmer, M.T.

    2001-01-01

    The secure, transportable, autonomous reactor (STAR) project addresses the needs of developing countries and independent power producers for a small (300 MWt), multi-purpose energy system. The STAR-LM variant described here is a liquid metal cooled, fast spectrum reactor system. Previous development of a reference STAR-LM design resulted in a 300 MWt modular, pool- type reactor based on criteria for factory fabrication of modules, full transportability of modules (barge, rail, overland), fast construction and startup, and semi-autonomous operation. Earlier work on the reference 300 MWt concept focused first on addressing whether 100% natural circulation heat transport was achievable under the module size constraints for full transportability and under the coolant and cladding peak temperature limitations imposed by the existing Russian database for ferritic-martensitic core material with oxide-layer corrosion protection. Secondly, owing to uncertainties and limitations in the available Russian materials compatibility database, the objective of the reference design was to address how low the coolant and cladding peak temperatures could be commensurate with achieving 300 MWt power level with 100% natural circulation in a fully transportable module size. In the present work we have refocused the approach to attempt to maximize the power achievable in the reactor module based on preserving the criteria for full module transportability and remaining within the materials compatibility database limits. (author)

  8. Dualisme Modular

    Directory of Open Access Journals (Sweden)

    Natas Setiabudhi Daryono Putra

    2017-09-01

    Full Text Available Dualisme merupakan konsep filsafat yang menyatakan bahwa segala sesuatu memiliki dua hal yang berlawanan atau prinsip. Hidup dan mati, laki dan perempuan, siang dan malam, jiwa dan raga, sehat dan sakit, kaya dan miskin, baik dan buruk, halal dan haram, pro dan kontra, aktif dan pasif, statis dan dinamis, tampan dan buruk rupa, besar dan kecil, panjang dan pendek, manis dan pahit, mahal dan murah, kuat dan lemah, dan seterusnya. Dalam konteks karya ini merupakan representasi dari manusia yang pada dasarnya memiliki 2 kepribadian, baik dan buruk. Keduanya diterjemahkan ke dalam konsep modular dalam menyusun sebuah konfigurasi karya. Pesan yang ingin penulis sampaikan adalah seseorang tidak bisa dinilai dari “baju atau seragam” yang ia pakai. Selain itu keseimbangan dalam baik dan buruk yang direpresentasikan dengan modul positif dan negatif menjadi ambigu dalam kaitan dengan pahala dan dosa dalam Islam. Karya ini meminjam gambar Rubin’s vase/goblet (vas/piala Rubin karya seorang psikolog gestalt Edgar Rubin asal Denmark yang ditransformasi menjadi sebuah karya keramik 3 dimensional [1]. Vas/piala Rubin ini secara perseptual memiliki 2 makna, yaitu gambar vas/piala dan siluet wajah dari samping yang saling berhadapan (pengaruh antarobjek dan latar secara bergiliran. Proses kreasi berasal dari pengalaman empirik personal yang dihubungkan dengan teori-teori pendukung. Perpaduan keduanya menghasilkan karya seni yang merupakan representasi dari realitas. Dalam penciptaan karya seni rupa sebenarnya tidak ada metode baku seperti halnya dalam riset pada umumnya. Proses kreasi kadang berdasarkan intuisi, pengalaman personal yang dominan dan mengandung narasi yang sangat subjektif. Kesemuanya itu dikaitkan dengan disiplin ilmu lainnya (sosial, ekonomi, budaya dan politik untuk menghasilkan sebuah representasi. Modular Dualism Abstract. Dualism is the concept that everything has two opposite sides or principles. Life and death, male and female, day

  9. Increasing functional modularity with residence time in the co-distribution of native and introduced vascular plants

    Czech Academy of Sciences Publication Activity Database

    Hui, C.; Richardson, D. M.; Pyšek, Petr; Le Roux, J. J.; Kučera, T.; Jarošík, Vojtěch

    Sep 2013, č. 4 (2013), , 1-8, no-2454 ISSN 2041-1723 Institutional support: RVO:67985939 Keywords : plant invasions * nature reserves * species pool Subject RIV: EF - Botanics Impact factor: 10.742, year: 2013

  10. Honeywell modular automation system computer software documentation

    International Nuclear Information System (INIS)

    Cunningham, L.T.

    1997-01-01

    This document provides a Computer Software Documentation for a new Honeywell Modular Automation System (MAS) being installed in the Plutonium Finishing Plant (PFP). This system will be used to control new thermal stabilization furnaces in HA-21I

  11. Exploring Modularity in Services

    DEFF Research Database (Denmark)

    Avlonitis, Viktor; Hsuan, Juliana

    2017-01-01

    the effects of modularity and integrality on a range of different analytical levels in service architectures. Taking a holistic approach, the authors synthesize and empirically deploy a framework comprised of the three most prevalent themes in modularity and service design literature: Offering (service...... insights on the mirroring hypothesis of modularity theory to services. Originality/value The paper provides a conceptualization of service architectures drawing on service design, modularity, and market relationships. The study enriches service design literature with elements from modularity theory...

  12. Modular robot

    International Nuclear Information System (INIS)

    Ferrante, T.A.

    1997-01-01

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs

  13. Future Development of Modular HTGR in China after HTR-PM

    International Nuclear Information System (INIS)

    Zhang Zuoyi; Wang, Haitao; Dong Yujie; Li Fu

    2014-01-01

    The modular high temperature gas-cooled reactor (MHTGR) is an inherently safe nuclear energy technology for efficient electricity generation and process heat applications. The MHTGR is promising in China as it may replace fossil fuels in broader energy markets. In line with China’s long-term development plan of nuclear power, the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University developed and designed a MHTGR demonstration plant, named high-temperature gas-cooled reactor-pebble bed module (HTR-PM). The HTR-PM came into the construction phase at the end of 2012. The HTR-PM aims to demonstrate safety, economic potential and modularization technologies towards future commercial applications. Based on experiences obtained from the HTR-PM project with respect to design, manufacture, construction, licensing and project management, a further step aiming to promote commercialization and market applications of the MHTGR is expected. To this purpose, INET is developing a commercialized MHTGR named HTR-PM600 and a conceptual design is under way accordingly. HTR-PM600 is a pebble-bed MHTGR power generation unit with a six-pack of 250MWth reactor modules. The objective is to cogenerate electricity and process heat flexibly and economically in order to meet a variety of market needs. The design of HTR-PM600 closely follows HTR-PM with respect to safety features, system configuration and plant layout. HTR-PM600 has the six modules feeding one steam turbine to generate electricity with capacity to extract high temperature steam from various interfaces of the turbine for further process heat applications. A standard plant consists of two HTR-PM600 units. Based on the economic information of HTR-PM, a preliminary study is carried out on the economic prospect of HTR-PM600. (author)

  14. Natural gas cogeneration in the residential sector; La cogeneration au gaz naturel en residentiel

    Energy Technology Data Exchange (ETDEWEB)

    Lancelot, C.; Gaudin, S. [Gaz de France, GDF, Dir. de la Recherche, 75 - Paris (France)

    2000-07-01

    The natural gas cogeneration offer is now available and operational in the industrial sector. It is based on technologies of piston engines and gas turbines. Currently, this offer is sufficiently diversified, so much from the point of view of the range of powers available (from 1 MW to more than 40 MW electric) that number of manufacturers. In order to widen the cogeneration market in France to the markets of the commercial and residential sectors, Gaz De France has undertaken a technical economic study to validate the potential of those markets. This study led to work on the assembly of a french die to cogeneration packages of low power (less than 1 MW electric). This step has emerged at the beginning of 1999 with the launching of a commercial offer of cogeneration packages. In margin to this work Gaz De France Research division also initiated a study in order to evaluate the offer of micro cogeneration, products delivering an electric output lower than 10 kW. (authors)

  15. Case study of McCormick place cogeneration project

    International Nuclear Information System (INIS)

    Overstreet, E.L.

    1994-01-01

    In the authors business of providing district energy services, competition is the key to his being able to have a positive impact on the environment, business stability, and economic activity. In the district energy industry, the competitive options are for property owners to continue to self generate energy to meet their needs, purchase energy from a company that utilizes electricity during off-peak hours to produce chilled water or take advantage of a total solution of purchasing tri-generation energy from Trigen-Peoples District Energy Company. Tri-generation is an innovative technology which involves the simultaneous production of steam, chilled water, and electricity. The McCormick Place cogeneration project calls for producing steam and chilled water (co-) for use by the Metropolitan Pier and Exposition Authority (MPEA). The plant will produce electricity (tri-) to run the production equipment

  16. Independent power and cogeneration in Ontario's new competitive electricity market

    International Nuclear Information System (INIS)

    Barnstable, A.G.

    1999-01-01

    The factors influencing the initial market pricing in the early years of Ontario's new electricity market were discussed with particular insight on the potential for near term development of independent power and cogeneration. The major factors influencing prices include: (1) no increase in retail prices, (2) financial restructuring of Ontario Hydro, (3) the Market Power Mitigation Agreement, (4) tighter power plant emissions standards, and (5) an electricity supply and demand balance. Generation competition is not expected to influence market pricing in the early years of the new electricity market. Prices will instead reflect the restructuring decisions of the Ontario government. The decision to have Ontario Power Generation Inc. (OPGI) as a single generator for Ontario Hydro's generation assets will ensure that average spot market pricing in the early market years will be close to a 3.8 c/kWh revenue cap

  17. Case study of McCormick place cogeneration project

    Energy Technology Data Exchange (ETDEWEB)

    Overstreet, E.L.

    1994-12-31

    In the authors business of providing district energy services, competition is the key to his being able to have a positive impact on the environment, business stability, and economic activity. In the district energy industry, the competitive options are for property owners to continue to self generate energy to meet their needs, purchase energy from a company that utilizes electricity during off-peak hours to produce chilled water or take advantage of a total solution of purchasing tri-generation energy from Trigen-Peoples District Energy Company. Tri-generation is an innovative technology which involves the simultaneous production of steam, chilled water, and electricity. The McCormick Place cogeneration project calls for producing steam and chilled water (co-) for use by the Metropolitan Pier and Exposition Authority (MPEA). The plant will produce electricity (tri-) to run the production equipment.

  18. FBC utilization prospects in decentralized cogeneration units in Caucasus region countries

    Directory of Open Access Journals (Sweden)

    Skodras George

    2003-01-01

    Full Text Available Great differences are encountered among Caucasus region countries with respect to energy resources reserves and economic conditions. Thermal power plants consist of obsolete and inefficient units, while the Soviet-type large heating systems in the area collapsed after 1992 and their reconstruction is considered uneconomic. Renovation needs of the power and heat sector, and the potential of Fluidised Bed Combustion implementations in decentralized cogeneration units were investigated, since operating oil and gas power plants exhibit high fuel consumption, low efficiency and poor environmental performance. Results showed significant prospects of Fluidised Bed Combustion utilization in decentralized cogeneration units in the Caucausus region heat and power sector. Their introduction constitutes an economically attractive way to cover power and heat demands and promotes utilization of domestic energy resources in all of three countries, provided that financial difficulties could be confronted.

  19. District heating development, air quality improvement, and cogeneration in Krakow, Poland

    International Nuclear Information System (INIS)

    Manczyk, H.; Leach, M.D.

    1992-01-01

    Krakow, Poland, is served by a district heating system that includes coal-fired electrical and heating plants and distribution networks and by approximately 200,000 residential coal furnaces. Cogeneration facilities were added in the mid-1970s to supply up to 40% of the regional peak electrical demand and to optimize energy extraction from the low-heating-value coal mined in the region. Several difficulties prevent the district from realizing the potential efficiencies of its technology: the poor condition of the distribution network, the lack of consumption control and metering devices, inadequate plant maintenance, and the lack of economic incentives for operator productivity and energy conservation by users. Environmental concerns have caused the local government and international agencies to plan major improvements to the system. This paper discusses the development of the district heating system, coal use in Poland, cogeneration facilities, environmental concerns and pollution control plans, and improvement strategies

  20. Qualifying cogeneration in Texas and Louisiana

    International Nuclear Information System (INIS)

    Jenkins, S.C.; Cabe, R.; Stauffaeher, J.J.

    1992-01-01

    This paper reports that cogeneration of electricity and useful thermal energy by industrials along the Gulf Coast grew significantly more rapidly than in other parts of the country during and immediately following World War II as a result of the concentration of chemical and plastics processing facilities there. In 1982, Texas passed its version of PURPA, the Public Utility Regulatory Act (PURA) and designated those non-utility generators from which public utilities must purchase electricity as Qualifying Cogenerators. In 1991, there were nearly 7,500 MW of QF power generated for inside-the-fence use or firm capacity sale to utilities, with the two largest utilities in Texas purchasing over half that amount

  1. Development of Residential SOFC Cogeneration System

    Science.gov (United States)

    Ono, Takashi; Miyachi, Itaru; Suzuki, Minoru; Higaki, Katsuki

    2011-06-01

    Since 2001 Kyocera has been developing 1kW class Solid Oxide Fuel Cell (SOFC) for power generation system. We have developed a cell, stack, module and system. Since 2004, Kyocera and Osaka Gas Co., Ltd. have been developed SOFC residential co-generation system. From 2007, we took part in the "Demonstrative Research on Solid Oxide Fuel Cells" Project conducted by New Energy Foundation (NEF). Total 57 units of 0.7kW class SOFC cogeneration systems had been installed at residential houses. In spite of residential small power demand, the actual electric efficiency was about 40%(netAC,LHV), and high CO2 reduction performance was achieved by these systems. Hereafter, new joint development, Osaka Gas, Toyota Motors, Kyocera and Aisin Seiki, aims early commercialization of residential SOFC CHP system.

  2. Development of Residential SOFC Cogeneration System

    International Nuclear Information System (INIS)

    Ono, Takashi; Miyachi, Itaru; Suzuki, Minoru; Higaki, Katsuki

    2011-01-01

    Since 2001 Kyocera has been developing 1kW class Solid Oxide Fuel Cell (SOFC) for power generation system. We have developed a cell, stack, module and system. Since 2004, Kyocera and Osaka Gas Co., Ltd. have been developed SOFC residential co-generation system. From 2007, we took part in the 'Demonstrative Research on Solid Oxide Fuel Cells' Project conducted by New Energy Foundation (NEF). Total 57 units of 0.7kW class SOFC cogeneration systems had been installed at residential houses. In spite of residential small power demand, the actual electric efficiency was about 40%(netAC,LHV), and high CO2 reduction performance was achieved by these systems. Hereafter, new joint development, Osaka Gas, Toyota Motors, Kyocera and Aisin Seiki, aims early commercialization of residential SOFC CHP system.

  3. Modular helium reactor for non-electric applications

    International Nuclear Information System (INIS)

    Shenoy, A.

    1997-01-01

    The high temperature gas-cooled Modular Helium Reactor (MHR) is an advanced, high efficiency reactor system which can play a vital role in meeting the future energy needs of the world by contributing not only to the generation of electric power, but also the non-electric energy traditionally served by fossil fuels. This paper summarizes work done over 20 years, by several people at General Atomics, how the Modular Helium Reactor can be integrated to provide different non-electric applications during Process Steam/Cogeneration for industrial application, Process Heat for transportation fuel development and Hydrogen Production for various energy applications. The MHR integrates favorably into present petrochemical and primary metal process industries, heavy oil recovery, and future shale oil recovery and synfuel processes. The technical fit of the Process Steam/Cogeneration Modular Helium Reactor (PS/C-MHR) into these processes is excellent, since it can supply the required quantity and high quality of steam without fossil superheating. 12 refs, 25 figs, 2 tabs

  4. Cogeneration. Section 2: Products and services

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This is a directory of suppliers of products and services in the area of cogeneration. The subheadings of this directory include developers and owner operators, system packagers, manufacturers of prime movers, equipment manufacturers, instruments and controls manufacturing, consulting services, appraisal and valuation, computer services, environmental services, feasibility services, hydrology, marketing, measurements, meteorology, regulatory and licensing, research, testing, training and personnel, engineering and construction, operations and maintenance, and insurance, financial and legal services

  5. Efficient Use of Cogeneration and Fuel Diversification

    Directory of Open Access Journals (Sweden)

    Kunickis M.

    2015-12-01

    Full Text Available Energy policy of the European Community is implemented by setting various goals in directives and developing support mechanisms to achieve them. However, very often these policies and legislation come into contradiction with each other, for example Directive 2009/28/EC on the promotion of the use of energy from renewable sources and Directive 2012/27/EU on energy efficiency, repealing Directive 2004/8/EC on the promotion of cogeneration based on a useful heat demand.

  6. Experience feedback from nuclear cogeneration - 15369

    International Nuclear Information System (INIS)

    Auriault, C.; Fuetterer, M.A.; Baudrand, O.

    2015-01-01

    A consortium of 20 companies currently runs the NC2I-R (Nuclear Cogeneration Industrial Initiative - Research) project as part of the European Union's 7. Framework Programme. The project supports the development of an industrial initiative to demonstrate nuclear cogeneration of heat and power as an effective low-carbon technology for industrial market applications. As part of this project, operational feedback was collected from previous, existing and planned nuclear cogeneration projects in a number of countries with the aim of identifying a most complete set of boundary conditions which led to successful projects in the past. Stakeholders consulted include in particular utilities and end users. The scope encompassed technical and non-technical information (organizational structure, financial aspects, public relations, etc.) and specifically experience in licensing gained from these projects. The information was collected by a questionnaire and additional face-to-face interviews. The questionnaire was formulated to cover 9 categories of in total 56 questions for 36 identified projects: Motivation and initiative, Role of key players, Organizational structure, Technical aspects, Safety and licensing, Financial aspects, Timing, Public relations, General experience feedback. From the 36 identified projects worldwide, 23 from 10 countries have provided feedback on a variety of applications such as district heating, seawater desalination, paper and pulp industry, petrochemical industry, coal gasification or salt processing. This is a surprisingly positive response considering that several of these projects date back to the 1980's and many of them were performed outside Europe. This paper summarizes and analyzes the received information and deduces from there which boundary conditions are favorable for the construction of new nuclear cogeneration projects. (authors)

  7. Complexity in Managing Modularization

    DEFF Research Database (Denmark)

    Hansen, Poul H. Kyvsgård; Sun, Hongyi

    2011-01-01

    In general, the phenomenon of managing modularization is not well known. The cause-effect relationships between modularization and realized benefits are complex and comprehensive. Though a number of research works have contributed to the study of the phenomenon of efficient and effective...... modularization management it is far from clarified. Recognizing the need for further empirical research, we have studied 40 modularity cases in various companies. The studies have been designed as long-term studies leaving time for various types of modularization benefits to emerge. Based on these studies we...... have developed a framework to support the heuristic and iterative process of planning and realizing modularization benefits....

  8. Co-generation potentials of municipal solid waste landfills in Serbia

    OpenAIRE

    Bošković Goran B.; Josijević Mladen M.; Jovičić Nebojša M.; Babić Milun J.

    2016-01-01

    Waste management in the Republic of Serbia is based on landfilling. As a result of such year-long practice, a huge number of municipal waste landfills has been created where landfill gas has been generated. Landfill gas, which is essentially methane (50-55%) and carbon dioxide (40-45%) (both GHGs), has a great environmental impact which can be reduced by using landfill gas in cogeneration plants to produce energy. The aim of this paper is to determine econo...

  9. An HTR cogeneration system for industrial application

    International Nuclear Information System (INIS)

    Haverkate, B.R.W.; Van Heek, A.I.; Kikstra, J.F.

    1999-01-01

    Because of its favourable characteristics of safety and simplicity the high-temperature reactor (HTR) could become a competitive heat source for a cogeneration unit. The Netherlands is a world leading country in the field of cogeneration. As nuclear energy remains an option for the medium and long term in this country, systems for nuclear cogeneration should be explored and developed. Hence, ECN Nuclear Research is developing a conceptual design of an HTR for Combined generation of Heat and Power (CHP) for the industry in and outside the Netherlands. The design of this small CHP-unit for industrial applications is mainly based on a pre-feasibility study in 1996, performed by a joint working group of five Dutch organisations, in which technical feasibility was shown. The concept that was subject of that study, INCOGEN, used a 40 MW thermal pebble bed HTR and produced a maximum amount of electricity plus low temperature heat. The system has been improved to produce industrial quality heat, and has been renamed ACACIA. The output of this installation is 14 MW electricity and 17 tonnes of steam per hour, with a pressure of 10 bar and a temperature of 220C. The economic characteristics of this installation turned out to be much more favourable using modern cost data. 15 refs

  10. Geothermal GW cogeneration system GEOCOGEN

    Energy Technology Data Exchange (ETDEWEB)

    Grob, Gustav R

    2010-09-15

    GEOCOGEN is the GW zero pollution, no risk solution to replace nuclear and fossil fuelled power plants. It can be built near the energy consumption centers, is invisible and produces electricity and heat at a fraction of the cost of any other the energy mix options. It is a break through deep well geothermal energy technology lasting forever driving also millions of electric vehicles.

  11. Modular design of a reprocessing plant dissolver off-gas system. Variations, flexibility and stage of development

    International Nuclear Information System (INIS)

    Henrich, E.; Huefner, R.

    1984-01-01

    Simple and economic control of the volatile radionuclides in a reprocessing plant requires two equally important prerequisites: suitable processing in the plant head-end and reliable operation of the dissolver off-gas (DOG) purification system. A small number of DOG purification modules was selected from various alternatives. The major selection criteria are removal efficiency, simplicity, convenient operating conditions and flexibility that provide compatibility with other off-gas treatment steps, subsequent waste treatment and different processing modes in the head-end. The behaviour of noxious materials was investigated in nitric acid off-gas scrubbers of different design and for a wide range of operating modes and conditions. A concentration range of nitric acid from very dilute to hyperazeotropic concentrations and a temperature range from -55 deg. C to above room temperature as well as the use of hydrogen peroxide were studied on an engineering scale. Nitrous gases and iodine can be removed to the trace level at special operating modes. Aerosol and iodine filters are discussed briefly. A selective absorption process using CF 2 Cl 2 solvent for noble gas and 14 C removal was developed on a laboratory scale. It operates at low temperatures and atmospheric pressure. Xe and Kr were separated using two absorption columns. Pilot-plant scale noble gas scrubbers are under construction and are being integrated into the existing test facility. A series of process steps has been chosen for integrated process demonstration runs on an engineering scale. The integrated DOG system consists of several scrubbers and filters operating at atmospheric pressure. The temperature decreases stepwise, without producing large changes in the opposite direction, providing compatibility within the process train

  12. Understanding Socio Technical Modularity

    DEFF Research Database (Denmark)

    Thuesen, Christian Langhoff; Kudsk, Anders; Hvam, Lars

    2011-01-01

    Modularity has gained an increasing popularity as a central concept for exploring product structure, process structure, organization structure and supply chain structure. With the offset in system theory the predominant understanding of modularity however faces difficulties in explaining the social...... dimension of modularity like irrational behaviors, cultural differences, learning processes, social organization and institutional influences on modularity. The paper addresses this gab offering a reinterpretation of the modularity concept from a socio-technical perspective in general and Actor Network...... Theory in particular. By formulating modularity from an ANT perspective covering social, material and process aspects, the modularity of a socio-technical system can be understood as an entanglement of product, process, organizational and institutional modularity. The theoretical framework is illustrated...

  13. Implementation of gas district cooling and cogeneration systems in Malaysia; Mise en oeuvre de systemes de gas district cooling et de cogeneration en Malaisie

    Energy Technology Data Exchange (ETDEWEB)

    Haron, S. [Gas District Cooling, M, Sdn Bhd (Malaysia)

    2000-07-01

    With its energy demand in the early 1990's growing at a high rate due to the country's strong economic growth, Malaysia studied various options to improve the efficiency of its energy use. Since its natural gas reserves are almost four times that of its crude oil reserves, efforts were therefore centered on seeking ways to boost the use of natural gas to mitigate the growing domestic energy need. PETRONAS, the national oil company, subsequently studied and chose the District Cooling System using natural gas as the primary source of fuel. The Kuala Lumpur City Center development, which houses the PETRONAS Twin Towers, was subsequently chosen as the first project to use the Gas District Cooling (GDC) System. To acquire the technology and implement this project, PETRONAS created a new subsidiary, Gas District Cooling (Malaysia) Sendirian Berhad (GDC(M)). In the process of improving the plant's efficiency, GDC(M) discovered that the GDC system's efficiency and project economics would be significantly enhanced if its is coupled to a Cogeneration system. Having proven the success of the GDC/Cogeneration system, GDC(M) embarked on a campaign to aggressively promote and seek new opportunities to implement the system, both in Malaysia-and abroad. Apart from enhancing efficiency of energy use, and providing better project economics, the GDC/Cogeneration system also is environment friendly. Today, the GDC/Cogeneration systems is the system of choice for several important developments in Malaysia, which also includes the country's prestigious projects such as the Kuala Lumpur International Airport and the New Federal Government Administrative Center in Putrajaya. (author)

  14. Advantages of going modular in HTRs

    International Nuclear Information System (INIS)

    Reutler, H.; Lohnert, G.H.

    1984-01-01

    A multitude of problems that are encountered in large HTR power plans, constructively as well as concerning plant safety, can be related to the mere physical size of a large reactor core. In limiting the thermal power of an HTR-module to approximately 200 MW an inherent limitation of the fuel element temperature below critical values can be guaranteed for all possible core heat up accidents. Consequently, a significant failure rate of coated particles can be excluded and, hence, out of physical reasons, no intolerable fission product release from the core will ever have to be considered. The HTR-module is so qualified and very well suited for all possible plant sides which have to be taken into consideration for medium sized plants for the production of process steam and electricity. The cost investigations show considerable cost advantages for modular HTRs. For German conditions it was found that even a four-modular plant (800 MW/thermal) is competitive with a fossile-fueled plant of the same size, the specific plant costs were evaluated to be DM 4700/kW (electric). Moreover the investigations show that the increase of the power of the modular unit yields only small cost advantages, therefore in a modularized power plant it even would be possible to reduce the power of a modular unit below 200 MW without having to cope with severe economic penalties, if the distance from technological or safety limits is felt to be too small. (orig.)

  15. Cogeneration applications of biomass gasifier/gas turbine technologies in the cane sugar and alcohol industries

    International Nuclear Information System (INIS)

    Ogden, J.M.; Williams, R.H.; Fulmer, M.E.

    1994-01-01

    Biomass integrated gasifier/gas turbine (BIG/GT) technologies for cogeneration or stand-alone power applications hold forth the promise of being able to produce electricity at lower cost in many instances than most alternatives, including large central-station, coal-fired, steam-electric power plants with fuel gas desulphurization, nuclear power plants, and hydroelectricity power plants. BIG/GT technologies offer environmental benefits as well, including the potential for zero net carbon dioxide emissions, if the biomass feedstock is grown renewably. (author). 77 refs., 9 figs., 16 tabs

  16. Portable modular detection system

    Science.gov (United States)

    Brennan, James S [Rodeo, CA; Singh, Anup [Danville, CA; Throckmorton, Daniel J [Tracy, CA; Stamps, James F [Livermore, CA

    2009-10-13

    Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.

  17. Potential of the HTGR hydrogen cogeneration system in Japan

    International Nuclear Information System (INIS)

    Nishihara, Tetsuo; Mouri, Tomoaki; Kunitomi, Kazuhiko

    2007-01-01

    A high temperature gas cooled reactor (HTGR) is one of the next generation nuclear systems. The HTGR hydrogen cogeneration system can produce not only electricity but also hydrogen. Then it has a potential to supply massive low-cost hydrogen without greenhouse gas emission for the future hydrogen society. Japan Atomic Energy Agency (JAEA) has been carried out the design study of the HTGR hydrogen cogeneration system (GTHTR300C). The thermal power of the reactor is 600 MW. The hydrogen production plant utilizes 370 MW and can supply 52,000 m 3 /h (0.4 Bm 3 /y) of hydrogen. Present industrial hydrogen production capacity in Japan is about 18 Bm 3 /y and it will decrease by 15 Bm 3 /y in 2030 due to the aging facilities. On the other hand, the hydrogen demand for fuel cell vehicle (FCV) in 2030 is estimated at 15 Bm 3 /y at a maximum. Since the hydrogen supply may be short after 2030, the additional hydrogen should be produced by clean hydrogen process to reduce greenhouse gas emission. This hydrogen shortage is a potential market for the GTHTR300C. The hydrogen production cost of GTHTR300C is estimated at 20.5 JPY/Nm 3 which has an economic competitiveness against other industrial hydrogen production processes. 38 units of the GTHTR300C can supply a half of this shortage which accounts for the 33% of hydrogen demand for FCV in 2100. According to the increase of hydrogen demand, the GTHTR300C should be constructed after 2030. (author)

  18. CANDU 3 - Modularization

    International Nuclear Information System (INIS)

    McAskie, M.J.

    1991-01-01

    The CANDU 3 Heavy Water Reactor is the newest design developed by AECL CANDU. It has set as a major objective, the achievement of significant reductions in both cost and schedule over previous designs. The basic construction strategy is to incorporate extensive modularization of the plant in order to parallel the civil and mechanical installation works. This results in a target 38 month construction schedule from first concrete to in-service compared to 68 months for the Wolsong-1 CANDU 6 actually achieved and the 54 months envisaged for an improved CANDU 6. This paper describes the module concepts that have been developed and explains how they contribute to the overall construction program and achieve the desired cost and schedule targets set for the CANDU 3. (author). 7 figs, 2 tabs

  19. Functional and modular analyses of diverse endoglucanases from Ruminococcus albus 8, a specialist plant cell wall degrading bacterium.

    Science.gov (United States)

    Iakiviak, Michael; Devendran, Saravanan; Skorupski, Anna; Moon, Young Hwan; Mackie, Roderick I; Cann, Isaac

    2016-07-21

    Ruminococcus albus 8 is a specialist plant cell wall degrading ruminal bacterium capable of utilizing hemicellulose and cellulose. Cellulose degradation requires a suite of enzymes including endoglucanases, exoglucanases, and β-glucosidases. The enzymes employed by R. albus 8 in degrading cellulose are yet to be completely elucidated. Through bioinformatic analysis of a draft genome sequence of R. albus 8, seventeen putatively cellulolytic genes were identified. The genes were heterologously expressed in E. coli, and purified to near homogeneity. On biochemical analysis with cellulosic substrates, seven of the gene products (Ra0185, Ra0259, Ra0325, Ra0903, Ra1831, Ra2461, and Ra2535) were identified as endoglucanases, releasing predominantly cellobiose and cellotriose. Each of the R. albus 8 endoglucanases, except for Ra0259 and Ra0325, bound to the model crystalline cellulose Avicel, confirming functional carbohydrate binding modules (CBMs). The polypeptides for Ra1831 and Ra2535 were found to contain distantly related homologs of CBM65. Mutational analysis of residues within the CBM65 of Ra1831 identified key residues required for binding. Phylogenetic analysis of the endoglucanases revealed three distinct subfamilies of glycoside hydrolase family 5 (GH5). Our results demonstrate that this fibrolytic bacterium uses diverse GH5 catalytic domains appended with different CBMs, including novel forms of CBM65, to degrade cellulose.

  20. The Potential for Computer Based Systems in Modular Engineering

    DEFF Research Database (Denmark)

    Miller, Thomas Dedenroth

    1998-01-01

    The paper elaborates on knowledge management and the possibility for computer support of the design process of pharmaceutical production plants in relation to the ph.d. project modular engineering.......The paper elaborates on knowledge management and the possibility for computer support of the design process of pharmaceutical production plants in relation to the ph.d. project modular engineering....

  1. Evaluating the role of cogeneration for carbon management in Alberta

    International Nuclear Information System (INIS)

    Doluweera, G.H.; Jordaan, S.M.; Moore, M.C.; Keith, D.W.; Bergerson, J.A.

    2011-01-01

    Developing long-term carbon control strategies is important in energy intensive industries such as the oil sands operations in Alberta. We examine the use of cogeneration to satisfy the energy demands of oil sands operations in Alberta in the context of carbon management. This paper evaluates the role of cogeneration in meeting Provincial carbon management goals and discusses the arbitrary characteristics of facility- and product-based carbon emissions control regulations. We model an oil sands operation that operates with and without incorporated cogeneration. We compare CO 2 emissions and associated costs under different carbon emissions control regulations, including the present carbon emissions control regulation of Alberta. The results suggest that incorporating cogeneration into the growing oil sands industry could contribute in the near-term to reducing CO 2 emissions in Alberta. This analysis also shows that the different accounting methods and calculations of electricity offsets could lead to very different levels of incentives for cogeneration. Regulations that attempt to manage emissions on a product and facility basis may become arbitrary and complex as regulators attempt to approximate the effect of an economy-wide carbon price. - Highlights: ► We assess the effectiveness of cogeneration for carbon management in Alberta. ► Cogeneration can offset a significant portion of Alberta's high carbon electricity. ► CO 2 reduction potential of cogeneration may be higher if installed immediately. ► Product based policies should approximate the effect of an economy-wide policy.

  2. The performance of a temperature cascaded cogeneration system producing steam, cooling and dehumidification

    KAUST Repository

    Myat, Aung

    2013-02-01

    This paper discusses the performance of a temperature-cascaded cogeneration plant (TCCP), equipped with an efficient waste heat recovery system. The TCCP, also called a cogeneration system, produces four types of useful energy-namely, (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification-by utilizing single fuel source. The TCCP comprises a Capstone C-30 micro-turbine that generates nominal capacity of 26 kW of electricity, a compact and efficient waste heat recovery system and a host of waste-heat-activated devices, namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The performance analysis was conducted under different operation conditions such as different exhaust gas temperatures. It was observed that energy utilization factor could be as high as 70% while fuel energy saving ratio was found to be 28%. © 2013 Desalination Publications.

  3. Cogeneration: a win-win option for Cadbury Nigeria

    International Nuclear Information System (INIS)

    Dayo, Felix; Bogunjoko, S.B.; Sobanwa, A.C.

    2001-01-01

    Like most developing countries, Nigeria is looking to cogeneration as a sustainable and reliable means of overcoming its present unreliable supply of energy. The article focuses on the efforts of the food company Cadbury Nigeria which uses cogeneration for all its steam and power requirements within its own factory. The Company recently decided to upgrade further by switching from liquid fossil fuels to natural gas. Diagrams show the existing system as well as the systems for cogeneration with natural gas. Some of the obstacles to be overcome to improve the viability of cogeneration in developing countries are listed. It is hoped that the outcome of the COP6 meeting to be held in April 2001 will offer encouragement for cogeneration

  4. Cogeneration: a win-win option for Cadbury Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Dayo, Felix [Triple ' E' Systems Associates Ltd. (Nigeria); Bogunjoko, S.B.; Sobanwa, A.C. [Cadbury Nigeria plc. (Nigeria)

    2001-02-01

    Like most developing countries, Nigeria is looking to cogeneration as a sustainable and reliable means of overcoming its present unreliable supply of energy. The article focuses on the efforts of the food company Cadbury Nigeria which uses cogeneration for all its steam and power requirements within its own factory. The Company recently decided to upgrade further by switching from liquid fossil fuels to natural gas. Diagrams show the existing system as well as the systems for cogeneration with natural gas. Some of the obstacles to be overcome to improve the viability of cogeneration in developing countries are listed. It is hoped that the outcome of the COP6 meeting to be held in April 2001 will offer encouragement for cogeneration.

  5. Modularity and Economic Organization

    DEFF Research Database (Denmark)

    Sanchez, Ron; Mahoney, Joseph T.

    This paper addresses modularity as a basis for organizing economic activity. We first define the key concepts of architecture and of modularity as a special form of architecture. We then suggest how modular systems of all types may exhibit several properties of fundamental importance to the organ......This paper addresses modularity as a basis for organizing economic activity. We first define the key concepts of architecture and of modularity as a special form of architecture. We then suggest how modular systems of all types may exhibit several properties of fundamental importance...... to the organization of economic activities, including greater adaptability and evolvability than systems that lack modular properties. We draw extensively on our original 1996 paper on modularity and subsequent research to suggest broad theoretical implications of modularity for (i) firms' product strategies...... markets. We also discuss an evolutionary perspective on modularity as an emergent phenomenon in firms and industries. We explain how modularity as a relatively new field of strategy and economic research may provide a new theoretical perspective on economic organizing that has significant potential...

  6. An HTR cogeneration system for industrial applications

    International Nuclear Information System (INIS)

    Haverkate, B.R.W.; Heek, A.I. van; Kikstra, J.F.

    2001-01-01

    Because of its favourable characteristics of safety and simplicity the high-temperature reactor (HTR) could become a competitive heat source for a cogeneration unit. The Netherlands is a world leading country in the field of cogeneration. As nuclear energy remains an option for the medium and long term in this country, systems for nuclear cogeneration should be explored and developed. Hence, ECN Nuclear Research is developing a conceptual design of an HTR for Combined generation of Heat and Power (CHP) for the industry in and outside the Netherlands. The design of this small CHP-unit for industrial applications is mainly based on a pre-feasibility study in 1996, performed by a joint working group of five Dutch organisations, in which technical feasibility was shown. The concept that was subject of this study, INCOGEN, used a 40 MW thermal pebble bed HTR and produced a maximum amount of electricity plus low temperature heat. The system has been improved to produce industrial quality heat, and has been renamed ACACIA. The output of this installation is 14 MW electricity and 17 tonnes of steam per hour, with a pressure of 10 bar and a temperature of 220 deg. C. The economic characteristics of this installation turned out to be much more favourable using modern data. The research work for this installation is embedded in a programme that has links to the major HTR projects in the world. Accordingly ECN participates in several IAEA Co-ordinated Research Programmes (CRPs). Besides this, ECN is involved in the South African PBMR-project. Finally, ECN participates in the European Concerted Action on Innovative HTR. (author)

  7. Efficient Use of Cogeneration and Fuel Diversification

    Science.gov (United States)

    Kunickis, M.; Balodis, M.; Sarma, U.; Cers, A.; Linkevics, O.

    2015-12-01

    Energy policy of the European Community is implemented by setting various goals in directives and developing support mechanisms to achieve them. However, very often these policies and legislation come into contradiction with each other, for example Directive 2009/28/EC on the promotion of the use of energy from renewable sources and Directive 2012/27/EU on energy efficiency, repealing Directive 2004/8/EC on the promotion of cogeneration based on a useful heat demand. In this paper, the authors attempt to assess the potential conflicts between policy political objectives to increase the share of high-efficiency co-generation and renewable energy sources (RES), based on the example of Riga district heating system (DHS). If a new heat source using biomass is built on the right bank of Riga DHS to increase the share of RES, the society could overpay for additional heat production capacities, such as a decrease in the loading of existing generating units, thereby contributing to an inefficient use of existing capacity. As a result, the following negative consequences may arise: 1) a decrease in primary energy savings (PES) from high-efficiency cogeneration in Riga DHS, 2) an increase in greenhouse gas (GHG) emissions in the Baltic region, 3) the worsening security situation of electricity supply in the Latvian power system, 4) an increase in the electricity market price in the Lithuanian and Latvian price areas of Nord Pool power exchange. Within the framework of the research, calculations of PES and GHG emission volumes have been performed for the existing situation and for the situation with heat source, using biomass. The effect of construction of biomass heat source on power capacity balances and Nord Pool electricity prices has been evaluated.

  8. Product Architecture Modularity Strategies

    DEFF Research Database (Denmark)

    Mikkola, Juliana Hsuan

    2003-01-01

    The focus of this paper is to integrate various perspectives on product architecture modularity into a general framework, and also to propose a way to measure the degree of modularization embedded in product architectures. Various trade-offs between modular and integral product architectures...... and how components and interfaces influence the degree of modularization are considered. In order to gain a better understanding of product architecture modularity as a strategy, a theoretical framework and propositions are drawn from various academic literature sources. Based on the literature review......, the following key elements of product architecture are identified: components (standard and new-to-the-firm), interfaces (standardization and specification), degree of coupling, and substitutability. A mathematical function, termed modularization function, is introduced to measure the degree of modularization...

  9. Considerations on the design of a helium circulator for a high temperature modular reactor system

    International Nuclear Information System (INIS)

    Dumm, K.; Donaldson, J.

    1988-01-01

    A modular helium cooled, high temperature reactor system with a thermal output of 200 MW per reactor has been developed by the KWU group for cogeneration of electricity and process steam. The flow of the reactor coolant - Helium at 60 bars and 250/700 deg. C is maintained by one circulator per reactor. The circulator is driven by a variable speed Siemens asynchronous motor and is submerged in the helium primary system. For operational reasons high reliability and availability of the circulator is required. The operational requirements for the circulator design are presented in this paper. The actual design has been carried out in close cooperation with the designer and manufacturer of all submerged circulators operating in AGR plants in Great Britain, James Howden Co. Renfrew, Scotland. Design solutions received so far and mainly based on sufficiently proven components - such as oil bath lubricated bearing systems - will be described. Special attention will be paid on the necessary test work; especially for the prototype to confirm the lay out. (author). 9 figs

  10. Reflections about the cogeneration of electrical and thermal energy in conditions of Chisinau city, Republic of Moldova

    International Nuclear Information System (INIS)

    Musteata, Valentin

    2004-01-01

    The cogeneration of electrical and thermal energy in Chisinau city is implements on heat power plants HPP-1 and HPP - 2. The district heating, receiving thermal energy from these power plants, has a severe alternative from the autonomous heating system. The capabilities of reducing the cost of thermal energy produced by HPP-2 are analyzed and the paths of improvement of district heating are forecasted. (author)

  11. High temperature cogeneration with thermionic burners

    International Nuclear Information System (INIS)

    Fitzpatrick, G.O.; Britt, E.J.; Dick, R.S.

    1981-01-01

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging

  12. Tariffs for natural gas, electricity and cogeneration

    International Nuclear Information System (INIS)

    1995-02-01

    The rate of return of the combined generation of heat and power is not only determined by the capital expenditures and the costs of maintenance, control, management and insurances, but also by the fuel costs of the cogeneration installation and the avoided fuel costs in case of separated heat production, the avoided/saved costs of electricity purchase, and the compensation for possible supply to the public grid (sellback). This brochure aims at providing information about the structure of natural gas and electricity tariffs to be able to determine the three last-mentioned expenditures. First, attention is paid to the tariffs of natural gas for large-scale consumers, the tariff for cogeneration, and other tariffs. Next, the structure of the electricity tariffs is dealt with in detail, discussing the accounting system within the electric power sector, including the alterations in the National Basic Tariff and the Regional Basic Tariff (abbreviated in Dutch LBR, respectively RBT) per January 1, 1995, the compensations for large-scale consumers and specific large-scale consumers, electricity sellback tariffs, and compensations for reserve capacity. 7 figs., 5 tabs., 2 appendices, 7 refs

  13. High temperature cogeneration with thermionic burners

    Science.gov (United States)

    Fitzpatrick, G. O.; Britt, E. J.; Dick, R. S.

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging.

  14. Water and nuclear power cogeneration with desalination: the U.S. projects and prospects

    International Nuclear Information System (INIS)

    Faibish, Ron S.

    2004-01-01

    Recent dramatic increases in water shortages across the globe necessitate exploring innovative and practical methods for increasing the world's ever-depleting water and energy supplies. One proposed solution to alleviate water shortage, which is gaining popularity around the world, is to desalt seawater and produce potable water, i.e., via seawater desalination. Indeed, the basic technological know-how is readily available from extensive previous experience, especially in the Middle East and Arabian Gulf regions. However, new proposals for coupling desalination plants with power plants for the convenient cogeneration of water and power are rapidly emerging and requiring re-evaluation of process technology and economics

  15. Energy and cost savings results for advanced technology systems from the Cogeneration Technology Alternatives Study /CTAS/

    Science.gov (United States)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    The Cogeneration Technology Alternatives Study (CTAS), a program undertaken to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the 1985-2000 time period, is described, and preliminary results are presented. Two cogeneration options are included in the analysis: a topping application, in which fuel is input to the energy conversion system which generates electricity and waste heat from the conversion system is used to provide heat to the process, and a bottoming application, in which fuel is burned to provide high temperature process heat and waste heat from the process is used as thermal input to the energy conversion system which generates energy. Steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics are examined. Expected plant level energy savings, annual energy cost savings, and other results of the economic analysis are given, and the sensitivity of these results to the assumptions concerning fuel prices, price of purchased electricity and the potential effects of regional energy use characteristics is discussed.

  16. Emission characterization and evaluation of natural gas-fueled cogeneration microturbines and internal combustion engines

    International Nuclear Information System (INIS)

    Canova, Aldo; Chicco, Gianfranco; Genon, Giuseppe; Mancarella, Pierluigi

    2008-01-01

    The increasing diffusion of small-scale energy systems within the distributed generation (DG) paradigm is raising the need for studying the environmental impact due to the different DG solutions in order to assess their sustainability. Addressing the environmental impact calls for building specific models for studying both local and global emissions. In this framework, the adoption of natural gas-fueled DG cogeneration technologies may provide, as a consequence of cogeneration enhanced overall energy efficiency and of natural gas relatively low carbon content, a significant reduction of global impact in terms of CO 2 emissions with respect to the separate production of electricity and heat. However, a comprehensive evaluation of the DG alternatives should take into account as well the impact due to the presence of plants spread over the territory that could increase the local pollution, in particular due to CO and NO x , and thus could worsen the local air quality. This paper provides an overview on the characterization of the emissions from small-scale natural gas-fueled cogeneration systems, with specific reference to the DG technologies nowadays most available in the market, namely, microturbines and internal combustion engines. The corresponding local and global environmental impacts are evaluated by using the emission balance approach. A numerical case study with two representative machines highlights their different emission characteristics, also considering the partial-load emission performance

  17. First Study of Helium Gas Purification System as Primary Coolant of Co-Generation Reactor

    International Nuclear Information System (INIS)

    Piping Supriatna

    2009-01-01

    The technological progress of NPP Generation-I on 1950’s, Generation-II, Generation-III recently on going, and Generation-IV which will be implemented on next year 2025, concept of nuclear power technology implementation not only for generate electrical energy, but also for other application which called cogeneration reactor. Commonly the type of this reactor is High Temperature Reactor (HTR), which have other capabilities like Hydrogen production, desalination, Enhanced Oil Recovery (EOR), etc. The cogeneration reactor (HTR) produce thermal output higher than commonly Nuclear Power Plant, and need special Heat Exchanger with helium gas as coolant. In order to preserve heat transfer with high efficiency, constant purity of the gas must be maintained as well as possible, especially contamination from its impurities. In this report has been done study for design concept of HTR primary coolant gas purification system, including methodology by sampling He gas from Primary Coolant and purification by using Physical Helium Splitting Membrane. The examination has been designed in physical simulator by using heater as reactor core. The result of study show that the of Primary Coolant Gas Purification System is enable to be implemented on cogeneration reactor. (author)

  18. Service Modularity and Architecture

    DEFF Research Database (Denmark)

    Brax, Saara A.; Bask, Anu; Hsuan, Juliana

    2017-01-01

    , platform-based and mass-customized service business models, comparative research designs, customer perspectives and service experience, performance in context of modular services, empirical evidence of benefits and challenges, architectural innovation in services, modularization in multi-provider contexts......Purpose: Services are highly important in a world economy which has increasingly become service driven. There is a growing need to better understand the possibilities for, and requirements of, designing modular service architectures. The purpose of this paper is to elaborate on the roots...... of the emerging research stream on service modularity, provide a concise overview of existing work on the subject, and outline an agenda for future research on service modularity and architecture. The articles in the special issue offer four diverse sets of research on service modularity and architecture. Design...

  19. Cogeneration Technology Alternatives Study (CTAS). Volume 3: Industrial processes

    Science.gov (United States)

    Palmer, W. B.; Gerlaugh, H. E.; Priestley, R. R.

    1980-01-01

    Cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers is examined in terms of cost savings. The use of various advanced energy conversion systems are examined and compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the target energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. Data and narrative descriptions of the industrial processes are given.

  20. Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?

    International Nuclear Information System (INIS)

    Beretta, Gian Paolo; Iora, Paolo; Ghoniem, Ahmed F.

    2014-01-01

    A general method for the allocation of resources and products in multi-resource/multi-product facilities is developed with particular reference to the important two-resource/two-product case of hybrid fossil and solar/heat and power cogeneration. For a realistic case study, we show how the method allows to assess what fractions of the power and heat should be considered as produced from the solar resource and hence identified as renewable. In the present scenario where the hybridization of fossil power plants by solar-integration is gaining increasing attention, such assessment is of great importance in the fair and balanced development of local energy policies based on granting incentives to renewables resources. The paper extends to the case of two-resource/two-product hybrid cogeneration, as well as to general multi-resource/multi-generation, three of the allocation methods already available for single-resource/two-product cogeneration and for two-resource/single-product hybrid facilities, namely, the ExRR (Exergy-based Reversible-Reference) method, the SRSPR (Single Resource Separate Production Reference) method, and the STALPR (Self-Tuned-Average-Local-Productions-Reference) method. For the case study considered we show that, unless the SRSPR reference efficiencies are constantly updated, the differences between the STALPR and SRSPR methods become important as hybrid and cogeneration plants take up large shares of the local energy production portfolio. - Highlights: • How much of the heat and power in hybrid solar-fossil cogeneration are renewable? • We define and compare three allocation methods for hybrid cogeneration. • Classical and exergy allocation are based on prescribed reference efficiencies. • Adaptive allocation is based on the actual average efficiencies in the local area. • Differences among methods grow as hybrid CHP (heat and power cogeneration) gains large market fractions

  1. Cogeneration trends in Europe history -- State of the art - Outlook

    International Nuclear Information System (INIS)

    Hunschofsky, H.

    1998-01-01

    Cogeneration, the utilization of heat created while producing electricity from fossil fuels, is by no means a new technology. In 1926, 71 years ago, a brochure from MAN in Germany showed a heat recovery system for diesel engines. Despite the fact that cogeneration has existed for a long time, it took half a century and the first so called ''oil crisis'' in the 1970's for societies to become aware of limited energy resources. Environmental groups gave cogeneration an additional boost in the 1980's. Additionally, governments in the Western European Nations attracted cogeneration investors by not only providing subsidies and tax breaks but also regulating electricity prices. Although there has been much growth in the cogeneration market in the past years, the industry has still not reached its peak in Europe. A variety of studies have shown that there is still significant growth potential in the future: WWF (World Wildlife Fund) published a study in 1996 suggesting a target of 330 Twh of generation will be produced through cogeneration by the year 2005, a tripling of current generation. Due to the EU's belief that cogeneration is an optimal form of generation, it has developed a cogeneration strategy. As part of this strategy, the EC is promoting cogeneration so that it accounts for 20% of all European generation by the year 2010. These factors would give a variety of companies such as equipment suppliers, investment companies, utilities, consultants and energy brokers a wide range of opportunities in Europe. Detailed information and some hints will be given as to how to participate in this fast growing industry. Ways to overcome obstacles in those markets will be shown as well as the pros and cons of different entry strategies

  2. Community Design Parameters and the Performance of Residential Cogeneration Systems

    Directory of Open Access Journals (Sweden)

    Hazem Rashed-Ali

    2012-11-01

    Full Text Available The integration of cogeneration systems in residential and mixed-use communities has the potential of reducing their energy demand and harmful emissions and can thus play asignificant role in increasing their environmental sustainability. This study investigated the impact of selected planning and architectural design parameters on the environmental and economic performances of centralized cogeneration systems integrated into residential communities in U.S.cold climates. Parameters investigated include: 1 density, 2 use mix, 3 street configuration, 4 housing typology, 5 envelope and building systems’ efficiencies, and 6 passive solar energyutilization. The study integrated several simulation tools into a procedure to assess the impact of each design parameter on the cogeneration system performance. This assessment procedure included: developing a base-line model representing typical design characteristics of U.S. residential communities; assessing the cogeneration system’s performance within this model using three performance indicators: percentage of reduction in primary energy use, percentage of reduction in CO2 emissions; and internal rate of return; assessing the impact of each parameter on the system performance through developing 46 design variations of the base-line model representing potential changes in each parameter and calculating the three indicators for each variation; and finally, using a multi-attribute decision analysis methodology to evaluate the relative impact of each parameter on the cogeneration system performance. The study results show that planning parameters had a higher impact on the cogeneration system performance than architectural ones. Also, a significant correlation was found between design characteristics identified as favorable for the cogeneration system performance and those of sustainable residential communities. These include high densities, high use mix, interconnected street networks, and mixing of

  3. Modular Robotic Wearable

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2009-01-01

    In this concept paper we trace the contours and define a new approach to robotic systems, composed of interactive robotic modules which are somehow worn on the body. We label such a field as Modular Robotic Wearable (MRW). We describe how, by using modular robotics for creating wearable....... Finally, by focusing on the intersection of the combination modular robotic systems, wearability, and bodymind we attempt to explore the theoretical characteristics of such approach and exploit the possible playware application fields....

  4. Modular Stellarator Fusion Reactor concept

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1981-08-01

    A preliminary conceptual study is made of the Modular Stellarator Reactor (MSR). A steady-state ignited, DT-fueled, magnetic fusion reactor is proposed for use as a central electric-power station. The MSR concept combines the physics of the classic stellarator confinement topology with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11. The physics basis of the design point is described together with supporting magnetics, coil-force, and stress computations. The approach and results presented herein will be modified in the course of ongoing work to form a firmer basis for a detailed conceptual design of the MSR

  5. Regional characteristics relevant to advanced technology cogeneration development. [industrial energy

    Science.gov (United States)

    Manvi, R.

    1981-01-01

    To assist DOE in establishing research and development funding priorities in the area of advanced energy conversion technoloy, researchers at the Jet Propulsion Laboratory studied those specific factors within various regions of the country that may influence cogeneration with advanced energy conversion systems. Regional characteristics of advanced technology cogeneration possibilities are discussed, with primary emphasis given to coal derived fuels. Factors considered for the study were regional industry concentration, purchased fuel and electricity prices, environmental constraints, and other data of interest to industrial cogeneration.

  6. Development of a modular systems code to analyse the implications of physics assumptions on the design of a demonstration fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Tobias

    2013-07-03

    The successful development and operation of a demonstration power plant (DEMO) is the next important step on roadmaps for fusion energy after ITER that is currently constructed in France. In the first phase of the development process for such devices, the conceptual design phase, the primary aim is to identify coherent designs that are composed of self-consistent sets of values for all key parameters like machine size, plasma current or magnetic field strength. This multidimensional parameter space can be explored with systems codes in order to identify areas that seem to be suited for more detailed investigation. Systems codes are composed of simplified models for all crucial systems of fusion devices that take into account all requirements and constraints of each component. This thesis is about the development of a new systems code called TREND (Tokamak Reactor code for the Evaluation of Next-step Devices). TREND is implemented with modular code architecture and consists of modules for geometry, core plasma physics, divertor, power flow, technology and costing. The main focus has been on the core physics module, since the development of TREND was done in parallel to work on physics design guidelines for DEMO. Moreover, the validation of TREND in terms of benchmarks with other European and Japanese systems codes is discussed. For these benchmarks, specific parameter sets were selected and the observed deviations were traced back to differences concerning the individual modellings. One of these parameter sets constitutes also the basis for parameter studies that were conducted with TREND. The general idea behind these studies is the analysis of implications that arise from specific assumptions on selected key parameters. Besides constant fusion power and constant additional heating power, the plasma density is fixed with respect to the Greenwald limit. The benchmarks helped particularly to detect shortages in the modellings of all involved systems codes

  7. Development of a modular systems code to analyse the implications of physics assumptions on the design of a demonstration fusion power plant

    International Nuclear Information System (INIS)

    Hartmann, Tobias

    2013-01-01

    The successful development and operation of a demonstration power plant (DEMO) is the next important step on roadmaps for fusion energy after ITER that is currently constructed in France. In the first phase of the development process for such devices, the conceptual design phase, the primary aim is to identify coherent designs that are composed of self-consistent sets of values for all key parameters like machine size, plasma current or magnetic field strength. This multidimensional parameter space can be explored with systems codes in order to identify areas that seem to be suited for more detailed investigation. Systems codes are composed of simplified models for all crucial systems of fusion devices that take into account all requirements and constraints of each component. This thesis is about the development of a new systems code called TREND (Tokamak Reactor code for the Evaluation of Next-step Devices). TREND is implemented with modular code architecture and consists of modules for geometry, core plasma physics, divertor, power flow, technology and costing. The main focus has been on the core physics module, since the development of TREND was done in parallel to work on physics design guidelines for DEMO. Moreover, the validation of TREND in terms of benchmarks with other European and Japanese systems codes is discussed. For these benchmarks, specific parameter sets were selected and the observed deviations were traced back to differences concerning the individual modellings. One of these parameter sets constitutes also the basis for parameter studies that were conducted with TREND. The general idea behind these studies is the analysis of implications that arise from specific assumptions on selected key parameters. Besides constant fusion power and constant additional heating power, the plasma density is fixed with respect to the Greenwald limit. The benchmarks helped particularly to detect shortages in the modellings of all involved systems codes

  8. EFFECTS OF IMPLEMENTATION OF CO-GENERATION IN THE DISTRICT HEATING SYSTEM OF THE FACULTY OF MECHANICAL ENGINEERING IN NIŠ

    Directory of Open Access Journals (Sweden)

    Mladen M Stojiljković

    2010-01-01

    Full Text Available Implementation of co-generation of thermal and electrical energy in district heating systems often results with higher overall energy efficiency of the systems, primary energy savings and environmental benefits. Financial results depend on number of parameters, some of which are very difficult to predict. After introduction of feed-in tariffs for generation of electrical energy in Serbia, better conditions for implementation of co-generation are created, although in district heating systems barriers are still present. In this paper, possibilities and effects of implementation of natural gas fired co-generation engines are examined and presented for the boiler house that is a part of the district heating system owned and operated by the Faculty of Mechanical Engineering in Niš. At the moment, in this boiler house only thermal energy is produced. The boilers are natural gas fired and often operate in low part load regimes. The plant is working only during the heating season. For estimation of effects of implementation of co-generation, referent values are taken from literature or are based on the results of measurements performed on site. Results are presented in the form of primary energy savings and greenhouse gasses emission reduction potentials. Financial aspects are also considered and triangle of costs is shown.

  9. Cogeneration: A new opportunity for energy production market; La cogenerazione: Una nuova opportunita` per il mercato della produzione di energia

    Energy Technology Data Exchange (ETDEWEB)

    Minghetti, E [ENEA, Centro Ricerche Casaccia, Rome (Italy)

    1997-03-01

    Cogeneration or Combined Heat and Power (CHP) is an advantageous technique based on the simultaneous utilisation of electricity and heat produced. For this purpose existing energetic technologies are used. Cogeneration is based on the thermodynamics principle that producing electricity by combustion process means, at the same time, producing waste heat that can be useful utilised. Three main advantages can be lay out in a cogeneration plant: 1. High efficiency (the global efficiency is often around 80-90%). 2. Economic profit (pay back time is usually not longer than 2-4 years). 3. Low pollutant emissions (as a consequence of the high efficiency less fuel is burned for generating the same quantity of electricity). In this report are analysed various aspects of cogeneration (technical and economical) and the conditions influencing is development. Some figures on the european and national situation are also given. Finally are presented the research and development activities carried out by Italian National Agency for new Technology Energy and the Environment Energy Department to improve the efficiency and the competitiveness of this technology.

  10. Exergy assessment and optimization of a cogeneration system based on a solid oxide fuel cell integrated with a Stirling engine

    International Nuclear Information System (INIS)

    Hosseinpour, Javad; Sadeghi, Mohsen; Chitsaz, Ata; Ranjbar, Faramarz; Rosen, Marc A.

    2017-01-01

    Highlights: • A novel cogeneration system driven by a SOFC and Stirling engine is proposed. • Energy and exergy assessments are reported of a novel cogeneration system. • The energy efficiency of the combined system can be achieved 75.88%. • The highest exergy destruction occurs in the air heat exchanger. - Abstract: A cogeneration system based on a methane-fed solid oxide fuel cell (SOFC) integrated with a Stirling engine is analyzed from the viewpoints of energy and exergy. The effects on the system performance are investigated of varying four key system parameters: current density, SOFC inlet temperature, compression ratio and regenerator effectiveness. The energy efficiency of the combined system is found to be 76.32% which is about 24.61% more than that of a stand-alone SOFC plant under the same conditions. Considering exergy efficiency as the only objective function, it is found that, as the SOFC inlet temperature increases, the exergy efficiency of the cogeneration system rises to an optimal value of 56.44% and then decreases. The second law analysis also shows that the air heat exchanger has the greatest exergy destruction rate of all system components. The cooling water of the engine also can supply the heating needs for a small home.

  11. Mini gas turbines. Study related to energy efficient cogeneration applications for new cogeneration markets. Appendix; Mini gasturbiner. Udredning vedr. energieffektive kraftvarmeapplikationer til nye kraftvarmemarkeder. Appendix

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, J.B.; Weel Hansen, M.; Astrupgaard, N.P.

    2000-12-01

    The aim of the project is to investigate, design and increase the energy efficiency in new cogeneration/cooling systems, which are based on new developed mini gas turbines. Hereby cogeneration can primarily based on natural gas and bio-fuels be spread to new market segments. The appendix presents further details related to gas turbine as burner; cogeneration with recuperation gas turbine; gas turbine for cogeneration/absorption refrigerator; the economic and operational basis used in the study. (EHS)

  12. Klickitat Cogeneration Project : Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; Klickitat Energy Partners

    1994-09-01

    To meet BPA`s contractual obligation to supply electrical power to its customers, BPA proposes to acquire power generated by Klickitat Cogeneration Project. BPA has prepared an environmental assessment evaluating the proposed project. Based on the EA analysis, BPA`s proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 for the following reasons: (1)it will not have a significant impact land use, upland vegetation, wetlands, water quality, geology, soils, public health and safety, visual quality, historical and cultural resources, recreation and socioeconomics, and (2) impacts to fisheries, wildlife resources, air quality, and noise will be temporary, minor, or sufficiently offset by mitigation. Therefore, the preparation of an environmental impact statement is not required and BPA is issuing this FONSI (Finding of No Significant Impact).

  13. Cogeneration, renewables and reducing greenhouse gas emissions

    International Nuclear Information System (INIS)

    Naughten, B.; Dlugosz, J.

    1996-01-01

    The MENSA model is used to assess the potential role of cogeneration and selected new renewable energy technologies in cost-effectively reducing Greenhouse gas emissions. The model framework for analyzing these issues is introduced, together with an account of relevant aspects of its application. In the discussion of selected new renewable energy technologies, it is shown how microeconomic reform may encourage these technologies and fuels, and thereby reduce sector wide carbon dioxide emissions. Policy scenarios modelled are described and the simulation results are presented. Certain interventions in microeconomic reform may result in economic benefits while also reducing emissions: no regrets' opportunities. Some renewable energy technologies are also shown to be cost-effective in the event that targets and timetables for reducing Greenhouse gas emissions are imposed. However, ad hoc interventions in support of particular renewables options are unlikely to be consistent with a least cost approach to achieving environmental objectives. (author). 5 tabs., 5 figs., 21 refs

  14. Klickitat Cogeneration Project: Final environmental assessment

    International Nuclear Information System (INIS)

    1994-09-01

    To meet BPA's contractual obligation to supply electrical power to its customers, BPA proposes to acquire power generated by Klickitat Cogeneration Project. BPA has prepared an environmental assessment evaluating the proposed project. Based on the EA analysis, BPA's proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 for the following reasons: (1)it will not have a significant impact land use, upland vegetation, wetlands, water quality, geology, soils, public health and safety, visual quality, historical and cultural resources, recreation and socioeconomics, and (2) impacts to fisheries, wildlife resources, air quality, and noise will be temporary, minor, or sufficiently offset by mitigation. Therefore, the preparation of an environmental impact statement is not required and BPA is issuing this FONSI (Finding of No Significant Impact)

  15. Cogeneration steam turbines from Siemens: New solutions

    Science.gov (United States)

    Kasilov, V. F.; Kholodkov, S. V.

    2017-03-01

    The Enhanced Platform system intended for the design and manufacture of Siemens AG turbines is presented. It combines organizational and production measures allowing the production of various types of steam-turbine units with a power of up to 250 MWel from standard components. The Enhanced Platform designs feature higher efficiency, improved reliability, better flexibility, longer overhaul intervals, and lower production costs. The design features of SST-700 and SST-900 steam turbines are outlined. The SST-700 turbine is used in backpressure steam-turbine units (STU) or as a high-pressure cylinder in a two-cylinder condensing turbine with steam reheat. The design of an SST-700 single-cylinder turbine with a casing without horizontal split featuring better flexibility of the turbine unit is presented. An SST-900 turbine can be used as a combined IP and LP cylinder (IPLPC) in steam-turbine or combined-cycle power units with steam reheat. The arrangements of a turbine unit based on a combination of SST-700 and SST-900 turbines or SST-500 and SST-800 turbines are presented. Examples of this combination include, respectively, PGU-410 combinedcycle units (CCU) with a condensing turbine and PGU-420 CCUs with a cogeneration turbine. The main equipment items of a PGU-410 CCU comprise an SGT5-4000F gas-turbine unit (GTU) and STU consisting of SST-700 and SST-900RH steam turbines. The steam-turbine section of a PGU-420 cogeneration power unit has a single-shaft turbine unit with two SST-800 turbines and one SST-500 turbine giving a power output of N el. STU = 150 MW under condensing conditions.

  16. Urban Integrated Industrial Cogeneration Systems Analysis. Phase II final report

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Through the Urban Integrated Industrial Cogeneration Systems Analysis (UIICSA), the City of Chicago embarked upon an ambitious effort to identify the measure the overall industrial cogeneration market in the city and to evaluate in detail the most promising market opportunities. This report discusses the background of the work completed during Phase II of the UIICSA and presents the results of economic feasibility studies conducted for three potential cogeneration sites in Chicago. Phase II focused on the feasibility of cogeneration at the three most promising sites: the Stockyards and Calumet industrial areas, and the Ford City commercial/industrial complex. Each feasibility case study considered the energy load requirements of the existing facilities at the site and the potential for attracting and serving new growth in the area. Alternative fuels and technologies, and ownership and financing options were also incorporated into the case studies. Finally, site specific considerations such as development incentives, zoning and building code restrictions and environmental requirements were investigated.

  17. Development of a proton exchange membrane fuel cell cogeneration system

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jenn Jiang; Zou, Meng Lin [Department of Greenergy, National University of Tainan, Tainan 700 (China)

    2010-05-01

    A proton exchange membrane fuel cell (PEMFC) cogeneration system that provides high-quality electricity and hot water has been developed. A specially designed thermal management system together with a microcontroller embedded with appropriate control algorithm is integrated into a PEM fuel cell system. The thermal management system does not only control the fuel cell operation temperature but also recover the heat dissipated by FC stack. The dynamic behaviors of thermal and electrical characteristics are presented to verify the stability of the fuel cell cogeneration system. In addition, the reliability of the fuel cell cogeneration system is proved by one-day demonstration that deals with the daily power demand in a typical family. Finally, the effects of external loads on the efficiencies of the fuel cell cogeneration system are examined. Results reveal that the maximum system efficiency was as high as 81% when combining heat and power. (author)

  18. Modularization and Flexibilization.

    Science.gov (United States)

    Van Meel, R. M.

    Publications in the fields of educational science, organization theory, and project management were analyzed to identify the possibilities that modularization offers to institutions of higher professional education and to obtain background information for use in developing a method for modularization in higher professional education. It was…

  19. Modular tree automata

    DEFF Research Database (Denmark)

    Bahr, Patrick

    2012-01-01

    Tree automata are traditionally used to study properties of tree languages and tree transformations. In this paper, we consider tree automata as the basis for modular and extensible recursion schemes. We show, using well-known techniques, how to derive from standard tree automata highly modular...

  20. Implementing Modular A Levels.

    Science.gov (United States)

    Holding, Gordon

    This document, which is designed for curriculum managers at British further education (FE) colleges, presents basic information on the implementation and perceived benefits of the General Certificate of Education (GCE) modular A (Advanced) levels. The information was synthesized from a survey of 12 FE colleges that introduced the modular A levels…

  1. Sustainability assessment of cogeneration sector development in Croatia

    International Nuclear Information System (INIS)

    Liposcak, Marko; Afgan, Naim H.; Duic, Neven; Graca Carvalho, Maria da

    2006-01-01

    The effective and rational energy generation and supply is one of the main presumptions of sustainable development. Combined heat and power production, or co-generation, has clear environmental advantages by increasing energy efficiency and decreasing carbon emissions. However, higher investment cost and more complicated design and maintenance sometimes-present disadvantages from the economical viability point of view. As in the case of most of economies in transition in Central and Eastern Europe, Croatia has a strong but not very efficient co-generation sector, delivering 12% of the final energy consumption. District heating systems in the country's capital Zagreb and in city of Osijek represent the large share of the overall co-generation capacity. Besides district heating, co-generation in industry sector is also relatively well developed. The paper presents an attempt to assess the sustainability of Croatian co-generation sector future development. The sustainability assessment requires multi-criteria assessment of specific scenarios to be taken into consideration. In this respect three scenarios of Croatian co-generation sector future development are taken into consideration and for each of them environmental, social and economic sustainability indicators are defined and calculated. The assessment of complex relationships between environmental, social and economic aspects of the system is based on the multi-criteria decision-making procedure. The sustainability assessment is based on the General Sustainability Index rating for different cases reflecting different criteria and their priority. The method of sustainability assessment is applied to the Croatian co-generation sector contributing to the evaluation of different strategies and definition of a foundation for policy related to the sustainable future cogeneration sector development

  2. Cogeneration and taxation in a liberalised Nordic power market

    International Nuclear Information System (INIS)

    Jess Olsen, O.; Munksgaard, J.

    1997-01-01

    This report is about the impact of the liberalisation of the Nordic power market on cogeneration of heat and power. Special attention is given to the effects on competition of the entirely different tax regimes in the Nordic countries. Some of the main questions answered in this study are: Which cogeneration technologies are able to compete on a liberalised power market? What are the consequences of different tax structures in the four countries for cross-border competition? Which principles should be applied if a common Nordic tax structure is to be developed? The following countries are included in the study: Denmark, Finland, Norway and Sweden. Today, cogeneration provides a larger contribution to the energy supply in the Nordic countries than elsewhere in the world. Our analysis demonstrates that most cogeneration technologies can compete with the power-only technologies. This is the case with respect to both long- and short-term marginal costs. The main exception is the very expensive straw-fired cogeneration technology. The analysis is extended to include the effects of the existing tax regimes (in 1996) in Denmark, Finland and Sweden as well as of the combines energy/CO 2 -tax that was proposed in 1992 by the European Commission. Each of the four tax regimes preserve the competitiveness of cogeneration within its own regime, i.e. if a given cogeneration technology is competitive without taxes it will remain so in a closed market when either Danish, Finnish, Swedish or European taxes are added. The implication of this is that the same cogeneration technology will be exposed to very different conditions in an open power market with cross-border competition, if the present tax regimes in the Nordic countries are allowed to continue. (EG) Also published in Danish. 15 refs

  3. Electric power supply: the viability of natural gas cogeneration

    International Nuclear Information System (INIS)

    Paula, C.P. de; Ennes, S.A.W.

    1991-01-01

    The technical and economical aspects of Natural Gas conversion into electricity through cogeneration, analysing the potentials and costs of the power systems connections to downstream processes is related. The insertion impacts of these cogeneration potentials into the Electrical Network are also analysed, with special emphasis on the supply deficit risk reduction. The generation conditions for both auto-sufficiency and exceeding supply to network are determined, regarding the purposes of attendance efficiency improvement and the necessary new service stimulus. (author)

  4. Cogeneration and taxation in a liberalised Nordic power market

    Energy Technology Data Exchange (ETDEWEB)

    Jess Olsen, O.; Munksgaard, J.

    1997-12-31

    This report is about the impact of the liberalisation of the Nordic power market on cogeneration of heat and power. Special attention is given to the effects on competition of the entirely different tax regimes in the Nordic countries. Some of the main questions answered in this study are: Which cogeneration technologies are able to compete on a liberalised power market? What are the consequences of different tax structures in the four countries for cross-border competition? Which principles should be applied if a common Nordic tax structure is to be developed? The following countries are included in the study: Denmark, Finland, Norway and Sweden. Today, cogeneration provides a larger contribution to the energy supply in the Nordic countries than elsewhere in the world. Our analysis demonstrates that most cogeneration technologies can compete with the power-only technologies. This is the case with respect to both long- and short-term marginal costs. The main exception is the very expensive straw-fired cogeneration technology. The analysis is extended to include the effects of the existing tax regimes (in 1996) in Denmark, Finland and Sweden as well as of the combines energy/CO{sub 2}-tax that was proposed in 1992 by the European Commission. Each of the four tax regimes preserve the competitiveness of cogeneration within its own regime, i.e. if a given cogeneration technology is competitive without taxes it will remain so in a closed market when either Danish, Finnish, Swedish or European taxes are added. The implication of this is that the same cogeneration technology will be exposed to very different conditions in an open power market with cross-border competition, if the present tax regimes in the Nordic countries are allowed to continue. (EG) Also published in Danish. 15 refs.

  5. The role of cogeneration systems in sustainability of energy

    International Nuclear Information System (INIS)

    Çakir, Uğur; Çomakli, Kemal; Yüksel, Fikret

    2012-01-01

    Highlights: ► Energy source on the world is tending to run out day by day while the energy need of humanity is increasing simultaneously. ► There are two ways to overcome this problem; one of them is renewable energy sources like solar or wind energy systems. ► The other way is like cogeneration systems. ► Cogeneration system is one of the ways to save the energy and use the energy efficiently. ► A case study is made for a hospital to present the sustainability aspects of cogeneration systems. - Abstract: Cogeneration system (CHP) is one of the ways to save the energy and use the energy efficiently. When compared to separate fossil-fired generation of heat and electricity, CHP may result in a consistent energy conservation (usually ranging from 10% to 30%) while the avoided CO 2 emissions are, as a first approximation, similar to the amount of energy saving. In terms of sustainability, one of the primary considerations is energy efficiency. Sustainable energy is considered as a kind of energy which is renewable and continuous, meaning that the use of such energy can potentially be kept up well into the future without causing harmful repercussions for future generations. In this study, environmental benefits and sustainability aspects of cogeneration systems and importance of those systems to the use of sustainable energy are underlined. To support this idea, first we have referred some scientific studies previously made on cogeneration systems and then we have used our own case study. The case study made on gas engined cogeneration system was applied for a hospital to show the sustainability aspects of cogeneration systems.

  6. Cogeneration – development and prospect in Polish energy sector

    Directory of Open Access Journals (Sweden)

    Matuszewska Dominika

    2017-01-01

    Full Text Available Next 10-15 years are crucial for condition of Polish energy sector in light of challenges arising mainly from increasing demand for electric energy, need of reducing greenhouse gases emissions and shutdowns of old units. In this situation cogeneration can be one of the most rational way to meet those circumstances. This paper analyzes present development of cogeneration in Poland and its prospect for future.

  7. Proposal of 'Modular Heliotron'

    International Nuclear Information System (INIS)

    Yamazaki, Kozo

    1994-01-01

    A new modular helical system named 'Modular Heliotron' with clean and efficient helical magnetic divertor is proposed as an extension of the present conventional design of the continuous helical coil system. The sectored helical coils on one plane of the torus and the sectored returning vertical field coils on the other plane are combined. This coil system produces magnetic surfaces nearly equivalent to those of the l=2 helical system with one-pair poloidal coils, and overcomes the defects of construction and maintenance difficulties of the continuous coil systems. This concept satisfies the compatibility between the coil modularity and the sufficient divertor-space utilization, different from previous modular coil designs. The allowable length of the gap between each modular coil is clarified to keep good magnetic surfaces. Typical examples of the reactor coil configuration are described as an extension of the LHD (Large Helical Device) configuration. (author)

  8. Evolution of Modularity Literature

    DEFF Research Database (Denmark)

    Frandsen, Thomas

    2017-01-01

    Purpose The purpose of this paper is to review and analyze the modularity literature to identify the established and emerging perspectives. Design/methodology/approach A systematic literature search and review was conducted through the use of bibliometrics and network analysis. The analysis...... identified structure within the literature, which revealed how the research area evolved between 1990 and 2015. Based on this search, the paper establishes the basis for analyzing the structure of modularity literature. Findings Factors were identified within the literature, demonstrating how it has evolved...... from a primary focus on the modularity of products to a broader view of the applicability of modularity. Within the last decade, numerous research areas have emerged within the broader area of modularity. Through core-periphery analysis, eight emerging sub-research areas are identified, of which one...

  9. Designing Modular Robotic Playware

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Marti, Patrizia

    2009-01-01

    In this paper, we explore the design of modular robotic objects that may enhance playful experiences. The approach builds upon the development of modular robotics to create a kind of playware, which is flexible in both set-up and activity building for the end-user to allow easy creation of games....... Key features of this design approach are modularity, flexibility, and construction, immediate feedback to stimulate engagement, activity design by end-users, and creative exploration of play activities. These features permit the use of such modular playware by a vast array of users, including disabled...... children who often could be prevented from using and taking benefits from modern technologies. The objective is to get any children moving, exchanging, experimenting and having fun, regardless of their cognitive or physical ability levels. The paper describes two prototype systems developed as modular...

  10. Proposal of 'modular heliotron'

    International Nuclear Information System (INIS)

    Yamazaki, Kozo.

    1993-11-01

    A new modular helical configuration named 'Modular Heliotron' with clean and efficient helical magnetic divertor is proposed as an extension of the present conventional design of the continuous helical coil system. The sectored helical coils on one plane of the torus and the sectored returning vertical field coils on the other plane are combined. This coil system produces magnetic surfaces nearly equivalent to those of the l=2 helical system with one-pair poloidal coils, and overcomes the defects of construction and maintenance difficulties of the continuous coil systems. This concept satisfies the compatibility between the coil modularity and the sufficient divertor-space utilization, different from previous modular coil designs. The allowable length of the gap between each modular coil is clarified to keep good magnetic surfaces. Typical examples of the reactor coil configuration are described as an extension of the LHD (Large Helical Device) configuration. (author)

  11. Thermodynamic study of residual heat from a high temperature nuclear reactor to analyze its viability in cogeneration processes

    International Nuclear Information System (INIS)

    Santillan R, A.; Valle H, J.; Escalante, J. A.

    2015-09-01

    In this paper the thermodynamic study of a nuclear power plant of high temperature at gas turbine (GTHTR300) is presented for estimating the exploitable waste heat in a process of desalination of seawater. One of the most studied and viable sustainable energy for the production of electricity, without the emission of greenhouse gases, is the nuclear energy. The fourth generation nuclear power plants have greater advantages than those currently installed plants; these advantages have to do with security, increased efficiencies and feasibility to be coupled to electrical cogeneration processes. In this paper the thermodynamic study of a nuclear power plant type GTHTR300 is realized, which is selected by greater efficiencies and have optimal conditions for use in electrical cogeneration processes due to high operating temperatures, which are between 700 and 950 degrees Celsius. The aim of the study is to determine the heat losses and the work done at each stage of the system, determining where they are the greatest losses and analyzing in that processes can be taken advantage. Based on the study was appointed that most of the energy losses are in form of heat in the coolers and usually this is emitted into the atmosphere without being used. From the results a process of desalination of seawater as electrical cogeneration process is proposed. This paper contains a brief description of the operation of the nuclear power plant, focusing on operation conditions and thermodynamic characteristics for the implementation of electrical cogeneration process, a thermodynamic analysis based on mass and energy balance was developed. The results allow quantifying the losses of thermal energy and determining the optimal section for coupling of the reactor with the desalination process, seeking to have a great overall efficiency. (Author)

  12. A modular optical sensor

    Science.gov (United States)

    Conklin, John Albert

    This dissertation presents the design of a modular, fiber-optic sensor and the results obtained from testing the modular sensor. The modular fiber-optic sensor is constructed in such manner that the sensor diaphragm can be replaced with different configurations to detect numerous physical phenomena. Additionally, different fiber-optic detection systems can be attached to the sensor. Initially, the modular sensor was developed to be used by university of students to investigate realistic optical sensors and detection systems to prepare for advance studies of micro-optical mechanical systems (MOMS). The design accomplishes this by doing two things. First, the design significantly lowers the costs associated with studying optical sensors by modularizing the sensor design. Second, the sensor broadens the number of physical phenomena that students can apply optical sensing techniques to in a fiber optics sensor course. The dissertation is divided into seven chapters covering the historical development of fiber-optic sensors, a theoretical overview of fiber-optic sensors, the design, fabrication, and the testing of the modular sensor developed in the course of this work. Chapter 1 discusses, in detail, how this dissertation is organized and states the purpose of the dissertation. Chapter 2 presents an historical overview of the development of optical fibers, optical pressure sensors, and fibers, optical pressure sensors, and optical microphones. Chapter 3 reviews the theory of multi-fiber optic detection systems, optical microphones, and pressure sensors. Chapter 4 presents the design details of the modular, optical sensor. Chapter 5 delves into how the modular sensor is fabricated and how the detection systems are constructed. Chapter 6 presents the data collected from the microphone and pressure sensor configurations of the modular sensor. Finally, Chapter 7 discusses the data collected and draws conclusions about the design based on the data collected. Chapter 7 also

  13. Nuclear Co-generation: The Analysis of Technical Capabilities and Cost Estimates

    Directory of Open Access Journals (Sweden)

    Andrzej Reński

    2016-09-01

    Full Text Available This paper presents a concept of the parallel connection of a nuclear power plant fitted to provide heat for district heating application, with the CHP and heat plants existing in the supply region, in this case with the heating systems of Wejherowo and Gdynia. Presented variant proposes to add heat to a nuclear power plant’s total output by supplying heat exchangers with the steam from bleeders of low pressure (LP turbine stage and from the crossover pipe between its high pressure (HP and intermediate pressure (IP stages. A detailed diagram of the EPR nuclear turbine system adapted to supply district heat is also presented. Also determined are the formulas for: electric power output of a nuclear CHP plant; electric power generated strictly in cogeneration, and the decrease in the electric power and energy resulting from the operation in cogeneration mode. Finally, the profitability (competitiveness criteria for a nuclear power plant adapted to supply district heat in a selected heat supply region were proposed.

  14. Fiscal 1999 report on basic research for promotion of joint implementation programs. Heat and power plant reconstruction project for Yuzhmash Company co-generating plant, Donepropetrovsk City, the Ukraine; 1999 nendo Donepropetrovsk shi Yuzhmansh sha Heat and Power Plant Reconstruction Project chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This project complies with the COP3 (Third Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change) protocol. To be newly installed are three gas turbine power generators (rating: 26MW, main fuel: natural gas), three waste heat recovery boilers (additionally fired boilers, 2-pressure natural circulation type), and one 40MW water circulation type mixed pressure steam turbine power generator (including a bleeder for co-generation). Greenhouse gases will be reduced by 242,424 tons/year in terms of CO2. The project will cost 9-billion yen in total, with improvement on cost performance expected to be 37,000 yen/ton/year in terms of CO2 and 1,500 yen/ton/25 years. Profitability is assessed using EIRR (economic internal rate of return) when the exchange rate is set at 4.91 UHA/US dollar (as of February 2000). Provided that the emission trading rate in US dollar/ton in CO2 is 0.0, 5.00, 14.0, or 60.00, the economic rate of return will be 7.363, 8.112, 9.399, or 15.155%, respectively. To realize an internal rate of return of 15% which the project wants to achieve, the emission trading rate needs to be 60 US dollars/ton in CO2 or higher. (NEDO)

  15. Wastewater treatment facilities: Energy efficient improvements and cogeneration

    International Nuclear Information System (INIS)

    Kunkle, R.; Gray, R.; Delzel, D.

    1992-10-01

    The Washington State Energy Office (WSEO) has worked with both the Bonneville Power Administration (BPA) and the US Department of Energy to provide technical and financial assistance to local governments. Based on a recent study conducted by Ecotope for WSEO, local governments spend an estimated $45 million on utility bills statewide. Water and wastewater facilities account for almost a third of this cost. As a result, WSEO decided to focus its efforts on the energy intensive water and wastewater sector. The ultimate goal of this project was to develop mechanisms to incorporate energy efficiency improvements into wastewater treatment facilities in retrofits and during upgrades, remodels, and new construction. Project activities included the following: The review of the existing regulatory environment for treatment system construction, A summary of financing options for efficiency improvements in treatment facilities, A literature review of energy efficiency opportunities in treatment plants, Survey and site visits to characterize existing facilities in Washington State, Estimates of the energy efficiency and cogeneration potential in the sector, and A case study to illustrate the implementation of an efficiency improvement in a treatment facility

  16. Modelling of a chemisorption refrigeration and power cogeneration system

    International Nuclear Information System (INIS)

    Bao, Huashan; Wang, Yaodong; Roskilly, Anthony Paul

    2014-01-01

    Highlights: • An adsorption cogeneration was proposed and simulated for cooling and electricity. • A dynamic model was built and studied to demonstrate the variability of the system. • A dynamic model included the complex coupling of thermodynamic and chemical kinetic. • Mutual constrains between main components and optimisation methods were discussed. • The highest theoretical COP and exergy efficiency of cogeneration is 0.57 and 0.62. - Abstract: The present work for the first time explores the possibility of a small-scale cogeneration unit by combining solid–gas chemisorption refrigeration cycle and a scroll expander. The innovation in this work is the capability of producing refrigeration and electricity continuously and simultaneously without aggravating the energy scarcity and environmental impact. Individual modelling for each component, which has been validated by experimental data, was firstly investigated in order to identify the proper operation condition for the cogeneration mode achieving 1000 W power output. Subsequently, with the integrated modelling of two components the cogeneration performance was studied to demonstrate the viability of this concept. However, because of the mutual constraint between the chemisorption and the expansion when they link in series, the power output of the cogeneration mode was only around one third of the original expectation under the same condition identified in the individual modelling. Methods of improving the global performance including the selection of reactive mediums were also discussed and would be of referable value for the future practical investigation

  17. Development of cogeneration in Spain and financing methods

    International Nuclear Information System (INIS)

    Garcia, G.R.

    1994-01-01

    From 1980 there is in force in Spain a proper legal framework that could be considered a sound support to further cogeneration development. Despite this cogeneration law, a very few schemes were built. In 1986 IDAE, a state company attached to the Spanish Ministry of Industry and Energy, began a Cogeneration Programme focussed to a higher cogeneration utilisation. This programme has three main foundations: Technology dissemination; Technical support; Investment financing. As a result of these activities more than 1000 MW additional power schemes have been ordered all over the country and, as a consequence, cogenerated electricity will be multiplied by three in respect with the previous situation. A 20% of this new capacity has been developed directly by IDAE, that has invested approximately 90 million US Dollar through third party financing technics. The National Energy Plan 1991-2000 established the energy policy actuations in Spain for the present decade, giving importance to cogeneration development. This paper explains the way this development has been achieved, outlining IDAE's engagement to finance combined heat and power schemes through its comprehensive way of performing third party financing systems. (au)

  18. Italian cogeneration legislation (Laws 9 ampersand 10): ENEL's (Italy) point of view

    International Nuclear Information System (INIS)

    Pello', P.M.

    1991-01-01

    Referring to recently legislated Italian normatives governing on-site electric power generation by private industry, in particular, to the clauses which regard rate structure in the case of auto-producers ceding power to the national grid controlled by ENEL (the Italian National Electricity Board), this paper determines auto-production economic feasibility limits, based on cogeneration plant annual power production, ceded power quality, type of fuel, and overall operating costs. Some consideration is then given to the long term implications that this legislation, encouraging on-site production on a wide scale, has on ENEL's strategic planning and natural gas marketing in Italy

  19. Inquiry on the valorisation of heat produced by methanization with co-generation in France. Energy and territory: Valorisation of heat produced by methanization

    International Nuclear Information System (INIS)

    Bazin, Florian; David, Laura; Heuraux, Thalie; Jeziorny, Thibaud; Massazza, Michael; Mosse, Noemie; Nguyen Dai, Kim Yen; Pruvost, Paul; Regimbart, Amelie; Rogee, Pierre-Emmanuel; Roy, Samuel; Segret, Emilien

    2014-01-01

    A leaflet first proposes graphs which illustrate the valorisation of heat produced by methanization with co-generation in France: material and methods, farm characterisation, plant sources, valorisation modes. The second document proposes detailed and discussed presentations of the various involved processes. Contributions address methanization as a whole, valorisation of heat produced by co-generation through heating of agricultural and domestic buildings or through digestate dehydration, digestate hygienisation, and other types of valorisation such as fodder drying, cereal drying, wood drying, compost drying, fabrication of rape seed, greenhouse crops, cultures of micro algae, and mushroom farming

  20. Analysis of possible energy efficiency increasing of the cogeneration process in EL-TO Zagreb; Analiza mogucnosti povecanja energetske ucinkovitosti spojnog procesa EL-TO Zagreb

    Energy Technology Data Exchange (ETDEWEB)

    Stanisa, B [Tehnicki fakultet, Rijeka (Croatia); Krivak, B [Hrvatska elektroprivreda, Zagreb (Croatia)

    1997-12-31

    In the erection planing of new generation capacity, besides the profitability, there is need to taken in account the rational consumption of primary energy, and the environmental protection. The main rules could have cogenerations of the heat and power. In power plant EL-TO Zagreb there are analysed generating capacity of the cogeneration process. There is considered reconstruction and revitalisation`s of existing generating units, and erections of new one, all in the purpose to meet the growing heat demand. The district heating system is considered from the point as opportunity in energy saving capacity in the cogeneration of heat and power. For the amount of the energy saved there is need for less primary energy to be consumed, and this in finally means that for the some energy demands it has the some effect as the natural energy resources are expanded. (author). 9 figs., 7 tabs., 12 refs.